
Behavior Acquisition in
Artificial Agents

Christian Thurau

Dipl.-Inform. Christian Thurau
AG Angewandte Informatik
Technische Fakultät
Universität Bielefeld
email: cthurau@techfak.uni-bielefeld.de

Abdruck der genehmigten Dissertation zur Erlangung
des akademischen Grades Doktor-Ingenieur (Dr.-Ing.).
Der Technischen Fakultät der Universität Bielefeld
am 25.10.2006 vorgelegt von Christian Thurau
am 13.12.2006 verteidigt und genehmigt.

Gutachter:

Dr. Christian Bauckhage, Deutsche Telekom Laboratories, Berlin
Prof. Nando de Freitas, University of British Columbia, Vancouver, Canada

Prüfungsausschuss:

Prof. Dr. Gerhard Sagerer, Universität Bielefeld
Dr. Christian Bauckhage, Deutsche Telekom Laboratories, Berlin
Prof. Nando de Freitas, University of British Columbia, Vancouver, Canada
Dr. Robert Haschke, Universität Bielefeld

Gedruckt auf alterungsbeständigem Papier nach ISO 9706

Behavior Acquisition in
Artificial Agents

Christian Thurau
Applied Computer Science

Bielefeld University
P.O. Box 100131, 33501 Bielefeld, Germany

cthurau@techfak.uni-bielefeld.de

October 25th, 2006

Acknowledgements

This work would not have been possible without the help and support of many
people. First of all, I would like to thank my supervisor Christian Bauckhage. I
could not have imagined a better advisor for my thesis. Christian continuously
encouraged and trusted me to develop my own ideas, while ensuring that I was
following a reasonable path. I’m very grateful to Nando de Freitas who agreed to
review this thesis and despite his tight schedule also found the time to attend my
defense.

I would also like to thank the people of the Applied Computer Science Group
at Bielefeld University. Especially, I would like to thank Gerhard Sagerer for sup-
porting me, giving me the opportunity to present my work at many conferences,
and for creating the infrastructure necessary for carrying out this work. Over the
last year I enjoyed a close collaboration with Bernard Gorman from the Dublin City
University. Not only was it a great pleasure to work with Bernard, it was also a lot
of fun to meet him at conferences or during his research visit in Bielefeld. I would
further like to thank Dirk Stößel, Ingo Lütkebohle, Volker Wendt, Sven Wachsmuth,
Marko Tscherepanow, Katharina Rohlfing, Britta Wrede, Thomas Schack, Wulf Al-
bers, and Jan Frederik Maas for helping me at different stages of my work. Also,
many thanks to Dirk, Volker, and Ingo (again ;-), Frank Hegel, Sebastian Wrede,
Oscar Carrasquero, Marc Hanheide, and Nicolas Gorges for making office such an
inspiring and fun place to work at.

I deeply appreciated the interdisciplinary atmosphere at the graduate program
“Strategies & Optimization of Behavior”. I’m most grateful for the financial support
and for the great ideas how to develop my own work by interdisciplinary research.

On the personal side, I would like to thank my family, my parents and my sisters,
and Anke, for their assistance, affection, and emotional support.

i

Table of Contents

1 Introduction 1
1.1 Virtual environments . 3
1.2 Behavior acquisition through imitation learning 4
1.3 Organization of this thesis . 5

2 Behavior modeling & acquisition 9
2.1 Computational behavior acquisition 10
2.2 From strategies over tactics to reactions 13
2.3 Behavior learning in games . 14
2.4 Experimental environment . 16

2.4.1 Long-term strategical behaviors 18
2.4.2 Mid-term tactical behaviors 21
2.4.3 Instant reactive behaviors 23
2.4.4 Evaluation of synthesized behavior 24

2.5 Related work . 25
2.5.1 Game AI . 25
2.5.2 FPS AI . 27
2.5.3 Machine learning in games 30
2.5.4 Machine learning in FPS games 31
2.5.5 Believable game AI . 32

2.6 Summary . 32

3 Learning reactive behaviors 35
3.1 Reactive behaviors as functional mappings onto actions 35

3.1.1 Multi-layer Perceptrons 36
3.1.2 Time-delay neural networks 38
3.1.3 Features, behaviors and evaluation 38
3.1.4 Simple reactive behaviors 41
3.1.5 Situation aware reactive behaviors 42
3.1.6 Neural Gas . 44
3.1.7 Combining simple behaviors using place cells 47

iii

TABLE OF CONTENTS

3.1.8 Results . 49
3.1.9 Intermediate conclusion 53

3.2 Bayesian learning of reactive movement behaviors 54
3.2.1 Learning a topological representation 56
3.2.2 Extracting movement primitives from observation data . . . 58
3.2.3 Results . 59

3.3 Summary . 63

4 Learning tactical behaviors 67
4.1 Learning tactical situation handling 67

4.1.1 Mixture of Experts . 68
4.1.2 Context aware weapon handling 70
4.1.3 Results . 71

4.2 Bayesian learning of tactical movement behavior 72
4.2.1 Canonical state representations 75
4.2.2 Tactical movement primitives 77
4.2.3 Results . 78

4.3 Summary . 80

5 Learning strategic behaviors 81
5.1 Potential fields for modeling strategic behaviors 81

5.1.1 Topological gameworld representations 83
5.1.2 Estimating potential field parameters 85
5.1.3 Avoiding the past potential fields 88
5.1.4 Results . 89

5.2 Goal directed Bayesian imitation learning 93
5.2.1 Game state representations 95
5.2.2 Traversing state graphs . 97
5.2.3 Results . 98

5.3 Summary . 99

6 Towards integrating behavioral layers 103
6.1 A framework for integration . 103

6.1.1 Advanced strategy learning 104
6.1.2 Bayesian action selection 105

6.2 Results . 106
6.3 Summary . 111

7 Conclusion 113

Bibliography 117

iv

Chapter 1

Introduction

Figure 1.1: A human game player controlling a virtual avatar in a simulated environment

Looking at seemingly simple life-forms like mosquitos it astonishes the thor-
ough observer that the behavior of biological organisms is in many respects so
much superior to the performance of technical systems. This is especially strik-
ing in the case of adaptive behavior in complex and dynamically changing envi-
ronments. Even a mosquito is able to fuse motor programs, goal-oriented behavior
(food-acquisition) and reactive skills (evasion) in environments changing by the
minute which outperform the capabilities of any existing technical system by far.
Despite all insight of engineering, behavioral, neurological or biological or psy-
chological science there is still much ground to cover in order to close the obvious
gap between the natural abilities of biological organisms and man-made artifacts.
Regarding this behavioral gap, robust autonomous behavior can be regarded as a
key property of biological organisms that has not been satisfactorily built into a
technical system, yet.

1

Chapter 1. Introduction

Figure 1.2: Honda humanoid robot.

Autonomous behavior in animals and humans integrates a number of different
skills; most notably goal-orientation, sensor interpretation, reflexes, and transfer of
planned actions into actual motor commands. Considering autonomous behavior
of artificial systems in real-word scenarios, this ultimately leads to a number of
disjoint problems.

First, we have to realize an appropriate sensing system allowing world percep-
tion. Although the last years have seen an impressive progress in computer vision,
sensor fusion, and speech understanding, perception at a human level still seems to
be out of reach. Consider for instance team-sports where the apparently simple task
of tracking individual players still poses manifold challenges for computer vision
systems [Okuma et al., 2004, Figueroa et al., 2004].

Second, we have to develop an actuator system for world interaction. The ca-
pabilities of robots increased massively throughout the last years. For instance,
the research laboratories of the Honda corporation Japan developed an impressive
robot called ’Asimo’ in 2000, see also Figure 1.2. Asimo is able to walk, climb
stairs, and manipulate simple objects, thus showing already very good capabilities
in real world interaction. Nevertheless, what applies to the world perception of
artificial systems is also fact for actuator systems: interacting with the world at a
human-level still offers an incredible challenge.

Third, we have to elaborate the underlying intelligence responsible for evolving
smart behavior. The Artificial Intelligence community now worked to achieve the
goal of smarter machines for several decades, so far with only mediocre success

2

1.1. Virtual environments

considering the high expectations back in the seventies. In fact, making machines
more intelligent is often considered to be the hardest part in designing artificial
systems, notably artificial intelligence at a human level is only to be found in science
fiction movies.

1.1 Virtual environments

In this work we concentrate on machine intelligence in simulated environments. The
most important advantage is that by using a simulation, we can concentrate on the
behavioral aspects of intelligence and avoid the difficulties in sensor interpretation
and actuator control.

Approaching behavioral intelligence in simulated environments leads to an im-
portant question: can we really compare human behavior in real environments to
human behavior in virtual worlds? As noted by Wolpert et al. [2001], from a com-
putational viewpoint, the brain is a system that converts input into outputs. Conse-
quently, it shouldn’t matter if the input comes from a virtual world and the output
translates into virtual movements. The underlying basis of action and intelligence
is very likely to be the same. Up to a certain level, it shouldn’t matter to a human
whether he is walking in a real environment or steering a character through a virtual
one. However, designing a simulation with the goal of behavior modelling in mind
is difficult. Self-made simulations are often critized for concentrating on only a few
selected aspects while neglecting others, thereby obviously simplifying the task at
hand. At worst, we can not in all kinds of simulations expect truly human behavior
as intended. As soon as the level of abstraction of a simulation tends to get too high,
it is more likely that it is not human behavior or cognitive abilities showing the best
performance. An excellent example is the game of chess. In chess most humans
are easily outclassed by machines simply because the game allows for a tree-like
structuring of game states and thereby enters a domain that is extremely well suited
to the fast computational processing as provided by modern computers. The true
challenge in behavior modelling of artificial systems is found in the less abstract
environments where the real-world can be considered the ultimate challenge.

With the task of human behavior modelling in mind, we believe that the virtual
environment needs to fullfill certain requirements to actually call for human behav-
ior: we need an environment where human actors pursue real goals in a realistic
environment and have developed profound skills. These requirements are generally
not met by self designed simulations. Fortunately, modern computer games provide
an environment that comes very close to our expectations and have for some time
now been considered a great tool in researching human-level intelligence [Laird and
v. Lent, 2000]. As noted by Juul [2005], computer games are half-real - they are
real in that they consist of real rules and that winning or losing a game is a real
event. On the other hand, games take place in virtual worlds and as such are truly

3

Chapter 1. Introduction

fictional. Modern games provide a level of immersion that can not be compared to
classical card or board games. For instance, it can not only be difficult to get the
attention of a player during an ongoing game, players are often mixing up the vir-
tual environment with real-world actions by, for instance, trying to physically look
around virtual corners. For the reader not familiar with computer games we have to
point out that modern games are not to be confused with the games that appeared
two decades ago as they try to create more and more realistic environments inspired
by the real world (see also Figure 1.3 for a quick comparison). Thereby games
provide a new and challenging environment and close the gap between completely
artificial simulations on the one side and the real-world on the other side.

In this thesis, we used the popular computer game QUAKE II R© (developed by
ID Software) as an experimental environment, see Figure 1.1. It belongs to the game
genre of First-Person-Shooter games that is well known for trying to achieve more
and more realism and greater levels of immersion. The game will be explained in
detail in Chapter 2.

1.2 Behavior acquisition through imitation learning

Behavior defines how a human or a virtual character acts in his environment. The
problem of behavior modeling in artificial systems can be approached by differ-
ent means. We could specify suitable behaviors in advance (for general reading on
behavior based approaches see for instance [Arkin, 1998]), or let them acquire at
run-time using methods such as reinforcement learning (for a good introduction,
we recommend [Sutton and Barto, 1998]). We decided on a different approach, i.e.
imitation learning. Imitating someones else’s behavior is a fundamental mean of
skill learning in humans. Lately, imitation learning gained a lot of interest in the
humanoid robotics community and is widely believed as one of the most promis-
ing behavior acquisition methods [Schaal, 1999]. Here, we do not follow classical
robotics’ approaches by directly observing a human teacher’s actions. Instead, we
record and store human behavior and afterwards apply methods suited for learn-
ing by example. Thereby we also skip requirements of classical imitation learning
approaches, for example, the mapping of an observed action onto ones own body.
The used methodologies to learn and synthesize behaviors are taken from the fields
of machine learning and pattern recognition. Still, we have to decide on specific
methods to apply and refine.

The past years yielded an increasing interest in psychologically and biologi-
cally motivated approaches for computational learning tasks. In many settings, the
success of biological organisms over engineered machines is apparent. Therefore,
concepts in humans and animals found their way into the computer sciences. For
example, the concept of neurons specialized on spatial mapping, so called place
cells, found its way into robot navigation [Arleo, 2001], or the biological structur-

4

1.3. Organization of this thesis

(a) ASTEROIDS R© (1977) (b) CRYSIS R© (2006)

(c) Crysis (2006)

Figure 1.3: Computer games evolved: starting with ASTEROIDS R© , see Figure 1.3(a),
nowadays games such as CRYSIS R© , Figure 1.3(b) and Figure 1.3(c), do not only create
realistic environments but also have more and more real-looking artificial humans inhabit-
ing these virtual game-worlds.

ing of movements with movement primitives [Ghahramani, 2000] were applied for
action synthesis in virtual characters [Fod et al., 2002]. Apparently, it is often by
copying of biological mechanisms that good results in control problems in artifi-
cial agents can be obtained. Since this project was funded by the interdisciplinary
graduate program "Strategies & Optimization of Behavior", we enjoyed an inspir-
ing collaboration with the faculties of Economics, Psychology, Neuro-science, and
Behavioral-Biology of the University of Bielefeld. This had a huge impact onto
the choice of methods used within the presented work. A lot of the presented ap-
proaches are directly motivated by biological and psychological findings.

1.3 Organization of this thesis

Behavior acquisition in artificial agents is a topic of great interest. When acquiring
behaviors from observations of a human teacher the underlying view on what be-

5

Chapter 1. Introduction

haviors are, and how the observation data implicitly encodes them is important. In
Chapter 2 we introduce the principal theoretical view on behavior acquisition. On
the one hand, behavior is interpreted as a problem of function approximation i.e.
fitting functions according to "game situation - human action" (more general: state-
reaction) observation pairs. On the other hand, we interpret behavior as a problem
of probabilistic action selection, which often comes down to density estimation for
conditional state-action probabilities. In probabilistic action selection, we rely on
a set of learned or predefined prototypical actions. It was found that two distinct
views on behavior acquisition are indeed necessary, since not all considered behav-
iors could be learned with a single approach. In fact, as the later chapters will show,
certain behaviors can only be presented convincingly as a regression model while
others require appropriate action selection. To give an idea how this work relates to
current research, we summarize related work in the game-AI/learning-in-games do-
main. Finally, we introduce and explain the used experimental environment. Since
the used environment has different behavioral requirements, e.g. the agent has to
follow long-term goals while at the same time short-term reactive skills are equally
important, we had to provide a first separation of behaviors into different layers, i.e.
reactive, tactical, and strategic behaviors. This allows for concentrating on more
primitive behaviors in each layer instead of a global but unfeasible "learn every-
thing" approach. The subsequent chapters therefore deal with each separate layer
developing, testing, and refining various approaches.

In chapter 3, we elaborate approaches for acquiring reactive behaviors in artifi-
cial agents. Reactive behaviors are instantaneous reactions on a given situation with
a short-term effect e.g. simple movements or, in the case of QUAKE II R© , aiming
behaviors. We follow the underlying behavior learning idea by presenting two sep-
arate approaches. The first approach implements behavior as a state-action regres-
sion model. Different combinations of artificial neural networks serve as universal
function approximators. The second approach realizes behavior as probabilistic ac-
tion selection where the priors are learned from observations of humans controlling
virtual avatars. Furthermore, we give a short introduction to biological place cells
and movement primitives and explain the connection to the presented approaches.

In chapter 4 the focus is on tactical behaviors. Tactical behaviors are in our
case actions dependent not only on the environment but also on other players’ ac-
tions. This obviously requires a modified state representation and also more sophis-
ticated learning approaches to deal with dynamic situations. Again, two distinct
approaches are elaborated. We use a Mixture-of-Experts neural network architec-
ture to imitate tactical situation handling where each expert represents parts of a
learned regression model. The second approach utilizes extensive preprocessing of
data characterizing the situation to allow for adequate action selection in dynamic
situations including other avatars.

Approaches for imitating strategic behaviors are presented in chapter 5. Strate-

6

1.3. Organization of this thesis

gic behaviors implement long-term goal achievement. We utilize an approach based
on learned artificial potential fields to guide an agent through its world and to
achieve goals. In QUAKE II R© this comes down to collecting various items that
are distributed throughout the game world. A player simply tries to maximize its
profit by reaching and picking up the most valuable items. Since the value of items
changes with varying game states, the potential field guidance has to be adequately
adapted. In addition, we introduce a Bayesian approach inspired by recent psycho-
logical findings on imitation learning in infants.

A first look on a more thorough learning architecture is presented in chapter 6.
Here approaches from chapter 3 and chapter 5 are fused and integrated. Although
the focus of this thesis is on acquisition of single behaviors, we decided to include
first results towards the integration of behaviors operating on different time-scales.
In cooperation with Bernard Gorman from Dublin City University we furthermore
present experiments on believability testing. We asked humans to judge from video
recordings how human-like the actions of the implemented artificial agents are. This
showed to be a very good indicator for the performance of behavioral models which
is in general very difficult to measure. The results clearly show that human behavior
can be successfully mimicked, and that completely observation based approaches
are very well suited for doing so. Chapter 7 finally summarizes and concludes this
thesis. Nevertheless, the task of computational imitation learning still poses various
challenges. An outlook on future work, with a special emphasize on more global
learning architectures will give an impression on what to expect in upcoming years.

7

Chapter 2

Behavior modeling & acquisition

The process of behavior learning in humans can take place in at least two distinct
ways. On the one hand, we explore our environment and constantly learn and in-
tegrate knowledge by received feedback. For example, we learned to avoid fire or
sharp edges because of negative feedback. On the other hand, humans developed
social learning, i.e. learning from a teacher, learning by observing others, or learn-
ing by communicating. Social learning enabled us to evolve a rapid progress in
cultural and technological advances, while feedback learning helps us in avoiding
possible dangers in every day life.

Behavior acquisition in robots and simulated agents has been a topic of in-
creasing popularity throughout the last years. Most methods are inspired by either
feedback learning or social learning. Feedback learning methods, as for instance
reinforcement learning [Sutton and Barto, 1998], usually suffer from a very long
learning time, and thus are generally not considered an appropriate way of acquir-
ing complex behavior. Instead, they are more useful for adapting existing skills.
The process of bootstrapping behavior can be done more effectively using com-
putational social learning methods, for example imitation learning [Schaal, 1999].
By imitating someone else’s behavior one can avoid the expensive trial and error
learning process in reinforcement learning, and thus even complex behavior can be
learned in reasonable time.

In this chapter, we develop a computational approach for imitation learning or
learning from observation, and thereby ground the approaches elaborated in the
subsequent chapters. Consequently, in the first parts of this chapter, the idea of how
to interpret behavior in a computational imitation learning method are explored. Al-
though imitation learning has been known for quite some time, it was rarely used in
the context of a multiplexing of goal oriented, reactive, and tactical behavior, which
is essentially what we do when bootstrapping the behavior of computer game agents
acting in complex game worlds. Therefore, we had to develop a more universal ap-
plicable foundation. However, since behavior can only be interpreted in a specific
context, we can not completely neglect the connection to the used experimental

9

Chapter 2. Behavior modeling & acquisition

environment. Therefore, in the later sections of this chapter, we introduce the com-
mercial computer game QUAKE II R© that serves as an experimental environment in
this thesis. We explain the game itself, its rules, and behavioral requirements, and
we explain why we actually decided on a computer for the task of behavior learn-
ing in artificial agents. To compare our own work to the current research, we also
summarize well known work from the AI, and learning in games literature.

2.1 Computational behavior acquisition

From a computational viewpoint, behavior can be understood as finding an appro-
priate reaction to a given world situation. Meaningful sequences of reactions can be
interpreted as behavior. The idea of a meaningful behavior is usually not contained
within the computational approach, instead, it is merely a human interpretation of
a given action sequence. Ideally, a human observer could label a learned and gen-
erated action sequence as a specific behavior. Obviously, such an interpretation of
actions is rather subjective. In this work, we concentrate on a couple of selected
behaviors in the context of games. Since the behaviors are learned from the obser-
vations of virtual avatars controlled by humans, we take these behavioral recordings
and interpretations as ground truth.

In most tasks that have to be carried out by artificial creatures in robotics or vir-
tual environments, deliberative approaches were preferred so far. They are easy to
develop, since the required behavior can be modelled top-down by an expert. When
developing agents in a top-down approach, we could specify a set of common sit-
uations in conjunction with an optimal reaction (in the following, we often replace
situation by state vector and reaction by action vector, since both can be interpreted
as points in a p dimensional Euclidean state-action space). The simple top-down
solution leads to an optimal behavior, at least in pre-known situations. However,
this way of behavior modeling is not only time-consuming, it is also getting diffi-
cult with an increasingly complex state-action space, since it is impossible to think
of all known state-action pairs in advance. To deal with new situations, we would
have to extract rules and patterns from already known situation-action data. This is
exactly what we want to achieve in this work. We understand behavior as implicitly
defined by sets of state-action observations. Our goal now is to find an underlying
mapping of state vectors on action vectors that also works for novel situations. As
already noted in the introduction of this thesis, we interpret learning from obser-
vation as a regression problem on the one hand (action as a situation dependent
function), and as a classification problem on the other hand (behavior as situation
dependent action selection). As we will see in the later chapter, both interpretations
are required.

The basic idea is simple: based on observations of a human, an artificial agent
should learn how to react in a novel situation - ideally this would lead to a clone

10

2.1. Computational behavior acquisition

(a) Regression (b) Classification

Figure 2.1: Two views on behavior learning: 2.1(a) in the regression task, one is interested
in fitting a function into a set of data points, respectively behavior observations of a human
player; 2.1(b) the classification task searches for boundaries between classes of data points,
in the case of behavior learning, actions are classified based on game state observations.

of the observed human. The environment’s state is represented by a state vector
si, the reaction by an action vector ai. Pairs of states and reactions {ai, si} denote
points in a p dimensional Euclidean state-action space. The problem of reaction
synthesis and behavior learning can thus be understood as a regression problem,
where a reaction ai can be expressed as a function of the world’s state si:

ai = f(si) (2.1)

Figure 2.1(a) illustrates a simple didactic regression example, based on a num-
ber of observations (the small dots) the underlying behavior function should be de-
duced. Since behavior follows certain temporal dependencies, we have more likely
a functional dependency on the last n state vectors:

at+1 = f(st, st−1, . . . , st−n) (2.2)

where at+1 denotes the reaction at timestep t + 1, and st denotes the world’s
state at timestep t respectively. Certain aspects of the game’s state will remain unob-
servable or unpredictable, they will be further denoted as environmental influences
et. Thus, the complete model can be written as:

at+1 = f(st, st−1 . . . st−n, et, et−1 . . . et−n) (2.3)

Instead of modelling behavior as a problem of function approximation, we
could also interpret behavior as a problem of appropriate context dependent action
selection. This means, given a set of u discrete player actions A = {a1,a2 . . . ,au},
we want to find the action ai corresponding to a state vector si, see also Fig-
ure 2.1(b) for a small didactic example on classification.

Here, we decided on a probabilistic classification approaches. A Bayesian view

11

Chapter 2. Behavior modeling & acquisition

on behavior acquisition has certain advantages. Bayesian approaches have been
shown to be robust for various tasks; for example, they have been applied with great
success in speech analysis, computer vision, or behavioral imitation [Rao et al.,
2004]. Moreover, recent results indicate a connection between human reasoning
and Bayesian statistics, for instance, humans internally represent a statistical distri-
bution of tasks and uncertainty in sensors for sensorimotor learning [Körding and
Wolpert, 2004]. It was also suggested that humans integrate, update, and access
knowledge in a logic similar to Bayesian statistics [Griffiths and Tenenbaum, 2006,
Tenenbaum et al., 2006]. Thus, it seems promising to explore the applicability of
Bayesian classifiers for imitating complex human behavior. In the Bayesian refor-
mulation of the behavior learning problem we have to pick the action aj maximizing
the following probability:

at+1 = argmax
j

P (aj |si) (2.4)

where at+1 denotes the selected action for the next timestep, aj ∈ A, and
P (aj |si) denotes the probability of selecting aj if a state si is observed. When
again taking the last state vectors st, st−1, . . . , st−n and environmental influences
et, et−1 . . . et−n into account, the action at timestep t + 1 should be picked as the
action aj maximizing:

at+1 = argmax
j

P (aj |st, st−1, . . . , st−n, et, et−1 . . . et−n) (2.5)

where st denotes the state at timestep t, and et denotes environmental influences
at t.

For both suggested models a computational behavior imitation approach con-
sists of three steps: first, we have to record actions A = [a1, . . . ,ak] corresponding
to state sequences S = [s1 . . . sk]. Then, we have to extract a prediction model
based on the recorded state-action vectors. Finally, reaction predictions for new
state vectors can be used to synthesize behavior in test environments, and thereby
evaluate the learned behavior.

The simple nature of equations 2.3 and 2.5 may imply a quick ad-hoc solu-
tion. However, we have to keep in mind that we are dealing with human behavior
after all. Despite considerable efforts in robotics research that lead to automatic
skill acquisition capabilities, for example, a tennis-swing [Schaal, 1999] or a but-
ton pressing [Breazeal and Scassellati, 2002], imitating human behavior in artificial
systems is generally considered a difficult task. Furthermore, the more complex be-
haviors that are considered in this thesis provide a new challenge to computational
behavior learning approaches.

Although learning from observation seems to be a common way of behavior
acquisition, surprisingly little was contributed for games or similar domains. This
might be because of certain principal problems of applying machine learning ap-

12

2.2. From strategies over tactics to reactions

proaches for behavior acquisition. Although the two very general models might
suggest otherwise, it is up to now completely unclear how to actually extract a suit-
able behavior model from human observation data. Moreover, due to the versatility
of human behavior in complex environments, we are very likely to depend on huge
quantities of training data to make use of classical machine learning methods.

Regarding the problem of training data availability, modern computer games
provide a unique possibility. The popularity of networked games leads to millions
of people playing multiplayer games over the Internet. The network traffic contains
information about what the player perceives, the actual world state, and how he
reacts to it. This exactly conforms to our definition of behavior: implicitly, the
network traffic of Internet based games encodes human playing behavior. Given the
idea of interpreting network traffic as state-action observation pairs, the problem of
training data availability vanishes.

Still, it remains unclear which methods might be suited for the task of behavior
learning. Consequently, in this thesis, we test and refine various behavior modelling
approaches. All approaches try to find appropriate expressions for equation 2.3 and
2.5, respectively. A direct approach of finding these models showed to be unrealis-
tic, at least at the level of complexity of the considered behaviors and environments.
Since we aim at behavior modeling from scratch, we do not use predefined skills
and we avoid the usage of expert knowledge as much as possible (in fact, only the
process of selecting appropriate features was optimized by hand). Using prede-
fined skills might greatly simplify the creation of complex behavior models but it
also may result in unrealistic acting. The basis for our learners are the most basic
observations possible; everything learned is solely data dependent.

2.2 From strategies over tactics to reactions

Behavior learning and modelling is a highly task dependent problem. In robotics,
people usually tend to concentrate on only one specific behavior or a number of
similar skills. In contrast, complex environments, such as encountered in modern
computer games, require a broad variety of different behaviors. For instance, play-
ers might have to look for items, engage in combat, or jump over ledges. Therefore,
as mentioned earlier, a single monolithic "play the game" behavior for artificial
agents showed to be unrealistic (as it probably would be for robotic systems in
real world scenarios). Still, some behaviors are very similar to others and can be
grouped. Thus, it seems reasonable to combine and separate behaviors into behav-
ioral categories, in order to make the problem of computational behavior learning
feasible.

Based on a widely acknowledged psychological hierarchy of human behavior
[Hollnagel, 1994], we decided to discriminate behaviors into three different cate-
gories. These categories are: strategic behavior, for achievement of longterm goals,

13

Chapter 2. Behavior modeling & acquisition

tactical behavior, for mid-term goal achievement, and reactive behavior, which de-
notes simple movements and solely sensor dependent actions. In Section 2.4, we
explain in detail how these layers can be interpreted in our experimental environ-
ment.

Layered approaches for behavior execution are known for quite some time and
are commonly used in behavior based robotics, see for instance [Arkin, 1998] for
a brief review on traditional deliberative planners. Regarding simulated environ-
ments, Laird [2001b] introduced a behavioral structure for QUAKE II R© which is
similar to the introduced behavioral layers. Unlike Laird, we interpret the behav-
ioral layers as concurrently active and not as a hierarchy. Interpreting the layers as
a hierarchy implies a functional dependency of cognitive higher level layers (strate-
gies) on cognitive lower level layers (reactive). Although we obviously also have to
synthesize actions, and thereby, for example, translate strategies into actual move-
ments, action synthesis is not to be confused with reactive behavior. We interpret
certain observed behaviors as being reactive, tactical, or strategic. For instance,
an aiming behavior can be seen as reactive since it mostly depends on the current
position of an opponent. In contrast, picking up an important item is a strategic
behavior, because it usually involved (strategic) planning. Both need to synthesize
actions in order to execute the associated behavior. Each layer is responsible for
translating desired reactions into actual in-game movements. Thereby, it is possible
to learn and generate behavior in each layer independently of each other. Dividing
behavior into different layers leads to the question, on how to integrate behavior
from a multiplexing of reactive, tactic, and strategic behavior. We present a first
approach that combines aspects of strategic behavior learning and reactive motion
synthesis in Chapter 6.

2.3 Behavior learning in games

As Laird [2001b] pointed out, computer games are an excellent tool for researching
human-level intelligence in artificial systems, even more so than conventional sim-
ulations, since humans usually perceive games as more real than simulations. As
mentioned before, computer games are half-real, something in between reality and
simulation, which obviously provides interesting aspects for elaborating behavior
learning methods. We can expect humans to act in a much more natural way than
what we are used to in other simulated environments. After all, an experienced
human player encounters an environment he knows well, he is used to it, and has
already developed profound skills. These are typical characteristics of human be-
havior, usually only found in behavior acquired in the real-world.

The game we use in this work is taken from the popular genre of First-Person-
Shooter (FPS) games. FPS games try to create a realistic 3D simulation that is
inspired by the real world, in which humans control virtual avatars. These games

14

2.3. Behavior learning in games

(a) Pong (b) Pac-Man

Figure 2.2: The famous classical games Pong 2.2(a) and Pac-Man 2.2(b).

are complex and learning to master them takes its time, even in humans. We could
have made the task of behavior modelling a lot easier by selecting a much more
simplified game, for example, Pong or Pac-Man (see Figure 2.2). However, devel-
oping a human-like player for Pong would not only be simplistic behavior-wise, it
would probably also lead to a player being worse than the actual computer player.
In QUAKE II R© , the opposite is true as conventional game agents in FPS games
are not only less fun to play against, they are also pretty weak opponents. While
their aim and reflexes are superhuman, they clearly lack more sophisticated play-
ing skills. Consequently, developing a human-like agent for FPS games is not only
a challenging research topic, it would also impact the computer game industry by
creating more realistic gaming experiences.

From the behavior modelling perspective, the realistic FPS games might pro-
vide even more appealing aspects than other games or environments. Modelling a
player for QUAKE II R© brings us much closer to modelling of human intelligence
than creating, for example, a virtual player for an abstract tennis game like Pong, or
than modelling an agent for an arbitrary simulated environment. Imitating humans
wandering around a 3D virtual world and performing tasks of different complexity
might provide further insights on the modeling of human behavior in general, since
the level of abstraction compared to the real world is a lot lower than in Chess,
Tetris, or conventional simulations.

As already mentioned, the most important advantage is that by using a commer-
cially successful game, we have access to an incredible huge database of behavioral
recordings of humans. We interpret the network traffic of ongoing games as behav-
ioral observations. In QUAKE II R© , these recordings are stored in so called demo

15

Chapter 2. Behavior modeling & acquisition

Figure 2.3: Game players at a so called LAN-Party. Multiplayer network gaming is equiv-
alent to recording training samples for behavior acquisition.

files, and the QUAKE II R© engine is able to redisplay them. We can access demo
files from various websites (people like other people to watch their matches) or by
recording live games (Figure 2.3 shows a LAN-party, a possible location for gath-
ering vast amounts of observation data). Having an almost unlimited amount of
(noiseless) training samples, showing nothing less than humans performing com-
plex tasks in complex environments is a unique and previously unrecognized op-
portunity.

The training data we are dealing with are records of the network traffic. They
contain information about the exact locations (x, y, z) the player assumed, nearby
items, and other players. Temporary entities like sounds and flying projectiles are
included as well. There is no need for a visual analysis of game scenes, since
all necessary information is already available on a higher cognitive level. This also
applies to player actions which are included as velocity and position vectors. Before
coming to the details of how to make use of behavioral recordings, we first want to
introduce our experimental environment QUAKE II R© in more detail. The reader
already familiar with FPS games can safely skip the next section.

2.4 Experimental environment

QUAKE II R© belongs to the popular First-Person-Shooter (FPS) game genre. The

16

2.4. Experimental environment

(a) Item places . . . (b) . . . can be reached easily . . .

(c) . . . or require special maneuvers

Figure 2.4: A few typical game situations. A player, the character in the foreground,
perceives the world in a first-person perspective (for clarification purpose we decided for
a third person perspective for visualization). Numerous items, highlighted by green boxes,
can be picked up to increase player stats, health and ammunition highlighted by red boxes.
Some items can be reached easily, other require acrobatic skills, as the jump visualized by
the blue arrow in Figure 2.4(c).

game concept is rather simple. Basically, in a First-Person-Shooter, player avatars’
navigate a simulated 3D world with the task of surviving and shooting enemy play-
ers. Game agents can be controlled either by human players or by programs. Ar-
tificial players, game avatars controlled by the computer, are often referred to as
gamebots.

The FPS takes place in a world that is directly inspired by the real world. How-
ever, especially in games such as QUAKE II R© , game-play is favored over realism.
This allows certain extreme moves, for example, very high jumps, or falling down
from great heights. The game worlds themselves, in game terms map, appear realis-
tic. This does not only apply to the map’s architecture, but also to the map behavior,
for instance, maps might have doors that can be openend, or stairs, and elevators to
reach higher places. Commonly, a map consists of a number of rooms which are
interconnected by hallways.

Various items are distributed throughout a map at fixed places and can be picked

17

Chapter 2. Behavior modeling & acquisition

up by players. Usually, items increase player attributes: better weapons inflict more
damage, better armor allows for taking more damage, and health packages refill
lost energy. Once a player’s energy drops to zero, the opponent is awarded a point.
The player with the most points after a fixed time period wins the game. Figure 2.4
gives a first impression on the graphical visualization of a FPS game.

At the first sight, FPS games may rely solely on reactive behaviors, namely
movement and shooting. Although aiming and shooting are obviously an integral
part of game-play, FPS games shouldn’t be confused with the mindless shooter
games (for instance ASTEROIDS R©) that appeared two decades ago. In fact, FPS
games demand a huge amount of strategical and tactical reasoning. These require-
ments arise from various aspects of game-design:

Important items are placed at fixed map positions. This implies that each player
tries to claim the best items for himself while denying access to them for enemy
players. This strategy of securing items is often referred to as map control.

All weapons behave differently. Each weapon has a specific purpose, for exam-
ple, some are better at short ranges, others are better at long ranges. Appropriate
weapon selection combined with adequate map control is often the key to success.

The separation of behaviors into strategic, tactical, and reactive behaviors can
also be done for a FPS game. Figure 2.5 illustrates some commonly observed be-
haviors. In the following, we describe behaviors in each layer to give an idea of
what to expect from the learning approaches elaborated later on. Explaining the
considered behaviors should make clear that it is indeed complex human behavior
on different cognitive levels that we are imitating.

2.4.1 Long-term strategical behaviors

"What differentiates the good players from the great are their
strategies and their abilities to outsmart their opponents"

(Dennis "Thresh" Fong, author of "Thresh’s Quake Bible")

On the cognitively top-most level reside strategic behaviors which are used to
achieve long term goals. In our case, besides the obvious goal of winning the game,
several other subgoals can be identified. Since strategies are coupled to item places,
and since items always appear at fixed positions, strategies are highly map depen-
dent.

There are a number of different items players can pick up (see Figure 2.6 for
a quick introduction to items and a short description of their importance for strate-
gies). Each item has a special purpose. In general, there are two groups of items.
One group is increasing offensive attributes, for example, better weapons or am-
munition, the second group is increasing defensive attributes, for instance, health
packages or armor.

At the beginning of a match each player is equipped with only a weak weapon,

18

2.4. Experimental environment

item pickups, long term goals ...

Tactics

Reactive Behaviors

Behavior Learning

Strategy

basic movements, aiming, motion ...

weapon handling, in combat movements ...

Training Samples

Game Agent

Figure 2.5: Using in-game observations of human players, a layered learning approach
should generate life-like behaviors in artificial players.

and no armor. Consequently, most try to maximize their offensive attributes by
picking up their favorite weapon, whereas cautious players try to increase their de-
fensive attributes by picking up armor. Fixed item positions yield the possibility of
waiting next to an important item. Once an item is picked up, it will disappear, and
reappear after a fixed time period. By guarding important items, and shooting ap-
proaching opponents, a player can effectively lock an item so that it will be difficult
for an opponent to access it.

In most cases it won’t be enough to just secure one item, since there are multiple
important items distributed. It is far more effective, but also more difficult, to con-
trol a whole area. For a successful strategy a player has to find the most attractive
area to control. Effectively, this comes down to path and thereby item selection.
Given the complex architecture of most maps this is not an easy decision in most
cases, Figure 2.7 illustrates a common game situation where a player has to decide

19

Chapter 2. Behavior modeling & acquisition

Current weapon

Armor Shards

Player health value

Weapon

(a) Weapons for offensive power

Armor

Armor items often found in key areas

(b) Armor for defensive attributes

Figure 2.6: Items define the most important strategical component in QUAKE II R© . They
either enhance a player’s offensive power 2.6(a) or refill lost health and armor 2.6(b). The
most important item places are essential for winning the game.

Players have to decide on paths...

...leading to different items

Ammunition Armor

Figure 2.7: Players have to select paths, and thereby decide for items they want to pick up.

20

2.4. Experimental environment

on his path at a crossing. The attractiveness of an item changes with the game state.
A player has to adapt his strategy based on his own internal state. For example, if
a player is low on health, it is often better to look for a health package to refill lost
energy instead of guarding weapons or armor. The same is valid for the beginning
of a match. A player might first head for his favorite weapon, before going to a
specific area and guard it.

Learning and synthesis of strategic behavior requires two things: first, we have
to identify a game state representation capable of expressing strategies. This in-
cludes a method in extracting possible goal states. Second, we have to find a way
to adequately synthesize goal-reaching behavior within a live game. For the latter,
a strong coupling to movement synthesis is needed. In Chapter 5, we present and
evaluate computational approaches for imitating strategic behavior.

2.4.2 Mid-term tactical behaviors

Tactical behavior can be roughly characterized by smart, localized situation han-
dling. While the strategy tells the player about the next important region on a map,
the tactics are responsible for evading possible threats on the way. Tactical be-
haviors control important player vs. player interactions, where weapon handling,
weapon selection, and in-combat movements are possibly the most interesting and
gameplay relevant behaviors.

Weapon handling: QUAKE II R© players can pick up various weapons where
each weapon is handled differently. Weapons vary greatly in projectile flying speed
and fire rate. This leads to completely different handling and thus aiming behav-
iors. For slow projectiles anticipation is more important than accurateness, since a
future opponent’s position has to be predicted correctly. Other projectiles have a
huge damage radius, therefore they do not require overprecise hits. Other weapons
require accurateness while anticipation is not necessary at all, for example, the no-
torious Rail-Gun (a visualization on some weapon’s behavior can be seen in Fig-
ure 2.8).

Weapon selection: A player tactically picks his weapon based on numerous
possible state variables and based on his own preferences. Often, the distance to an
opponent is one of the key factors in weapon selection. Some weapons are better at
close range (shotgun, rocket-launcher), while others are better at long range (rail-
gun). Other game state variables might also be important. Since not all weapons are
available all the time, a player usually has some internal weapon selection ranking,
appropriate for varying game situations.

Tactical movements: When engaging in one vs. one situations players have
to move tactically. Normal movements, to pick up items or just navigate the map,
are very much position dependent, whereas tactical movements are centered around
player and opponent positions. These close combat movements are quite important
for successful gameplay. Both players try to evade and attack simultaneously. More

21

Chapter 2. Behavior modeling & acquisition

Blaster − default weapon

accurate, but slow firing rate

(a) Blaster

burst damage, instant hit weapon

Shotgun

(b) Shotgun

Railgun

very accurate, instant hit weapon

(c) Railgun

Figure 2.8: All QUAKE II R© weapons behave differently. Figure 2.8(a) shows the blaster, a
slow but accurate weapon. Figure 2.8(b) shows the shotgun, due to its burst-fire it is only
good at close range. Figure 2.8(c) shows the rail gun, which is very accurate at all ranges
but has a slow firing rate.

advanced moves include circle strafing, a player moves in circles around an oppo-
nent while holding him in his view, but also constant side movements to become a
harder target.

Obviously, a lot more and other tactical behaviors exist. The sheer amount
makes it impossible to include or mention them all within this work. However,
some tactical behaviors that could be considered in the future are tactical use of the
environment (hiding behind boxes or walls), anticipatory behavior (prediction of
opponent positions), or special behaviors, for instance, an ambush. In Chapter 4 we
present approaches on learning tactical behavior.

22

2.4. Experimental environment

starting

Rocket Jump phase I

(a)

Rocket Jump phase II

jumping

(b)

firing rocket on the ground

Rocket Jump phase III

(c)

Rocket Jump phase IV

flying

backstroke

(d)

Figure 2.9: A rocket-jump. A player fires a projectile on the ground while simultaneously
jumping, thereby leveling him up to much higher places than otherwise reachable.

2.4.3 Instant reactive behaviors

The cognitively most basic layer is reactive behavior. Here we find simple reactions
to audio-visual percepts as well as sequenced moves and jumps 1.

By popular definition reactive behaviors are immediate reactions on a state vec-
tor s [Arkin, 1998], generally, this also holds for games. There are arguably a
number of different situations requiring instant reactions of a player. Obviously, for
a FPS game, a player has to aim and fire weapons, but he also has to safely navigate
the game-world. Most maps contain a complex room architecture and various dan-
gerous areas, ledges, or pitfalls. Thus, a player has to avoid pitfalls and make sure
he won’t run into walls.

In addition, numerous other, more complex, moves can be observed. In order to

1It should be noted that all moves are the result of mouse and keyboards input commands. Conse-
quently, the modelling of human motions skills and reactive behaviors is in fact an abstract learning
of human mouse movements and keyboard inputs.

23

Chapter 2. Behavior modeling & acquisition

reach certain places or items, players have to jump. Besides ordinary jumps, there
exist more complicated and thus harder to master movement sequences. With these
moves, for example the notorious rocket- (see Figure 2.9) or strafe-jump, a player
outsmarts the game’s physics by doing a simulatenous side-forward jump, which
allows for larger jumps. Some of these specials are indeed hard to master and can
only be executed by expert players.

Further, the visual in-game movement appearance of an artificial player is very
important for a human-like impression. Although natural motion is a well known
topic in computer graphics and robotics, the situation here is different. In computer
graphics, smoothness of animations is achieved by interpolation and introduction
of constraints. Here, we additionally have to model a specific human player. There-
fore, we can not focus on smoothness alone but on player specific realistic motion
synthesis. In Chapter 3, we report on approach for acquiring reactive behaviors.

2.4.4 Evaluation of synthesized behavior

Playing styles are different among human players. Most players have elaborated
individual strategies and certain weapon and item preferences. While some almost
completely rely on their aiming skills, others prefer more strategical play. Further,
the way how players steer their characters can vary. Certain complex moves allow
for taking shortcuts and thus enable players to reach places faster. Although the
maximum forward velocity of all players is fixed, certain ways of exploiting game
rules were found and are frequently used. Consequently, mimicking a human player
does not only have to pay attention to a player’s strategical and reactive behaviors,
but also to the way movements and motions are executed. It is not sufficient to
know where to go next, we also have to know how to induce the adequate motion
to reach a place.

Evaluation of learned behavior is an important, yet difficult problem. Although
our main goal is the synthesis of human-like behavior in artificial game-agents, it is
not ultimately clear when we reach this goal. Obviously, the Turing test, i.e. in our
case human observers decide upon the humanness of an artificial game agent, is a
probable mean for evaluation. However, as long as we are dealing with individual
behaviors, it is very unlikely that an artificial agent could convince a human ob-
server. The variety in behavior might be too small to create the illusion of a human
player. Consequently, we decided for different evaluation mechanisms. We evaluate
each approach with respect to the intention of the generated behavior. This means
that we measure the accurateness, with respect to a human teacher, of a reproduced
action for reactive behaviors, or that we measure the goal success for strategic be-
havior. Since tactical behaviors are in between reactive and strategic behavior, we
measure both the accurateness and, in the case of tactical movements, the similarity
to an actual human movement. For an approach towards integrating different be-
havioral layers and thereby creating more versatile acting, in Chapter 6, we conduct

24

2.5. Related work

a believability testing, similar to the mentioned Turing test.
However, the importance of generating believable, human-like actions can not

be completely neglected for the imitation of single behaviors. Therefore, we report
on the visual appearance with respect to humanness of each synthesized behavior.
Although this is a rather subjective way of evaluation, it should give an idea how
close we can get to our ultimate goal of creating human-like behavior.

A direct comaparison of, for example, reactive and tactical learning approaches
is not intended. This is also not very likely to produce meaningful results, since each
approach is targetted at specific problems within its layer. The individual behaviors
in each layer are usually too different to be comaparable.

2.5 Related work

For summarizing related work, we decided to explicitly concentrate on the domain
of behavior modelling in games and virtual environments. Behavior modelling for
artificial creatures in real world environments is up to now not comparable to be-
havior modelling in virtual environments. Due to noiseless sensor data and virtual
actuators, far more sophisticated behavioral patterns can be realized in simulations.
Obviously, this leads to approaches which are in most cases not comparable.

Games are big business [Cass, 2002]. Non-player-character (NPC) control ob-
viously demands some sort of Artificial-Intelligence (AI). While the AI for games
like Pong or Pac-man was rather straight forward and could be programmed in a few
lines of code, the situation changed completely with the increasing game complex-
ity. Nowadays, game AI is an integral part of the whole production process. Nu-
merous book contributions deal with general and specific AI approaches in games
[Funge, 2004, Champandard, 2004], most notably the "Game Programming Gems"
[DeLoura, 2000, 2001, Treglia, 2002, Kirmse, 2004, Pallister, 2005, Dickheiser,
2006] and "AI Game Programming Wisdom" [Rabin, 2002, 2004, 2006] series.

The next sections gives a comprehensive overview over common game AI ap-
proaches. First, we briefly introduce more general game AI methods. Then, we
concentrate on conventional First-Person-Shooter AI methods, before finally re-
viewing recent machine learning approaches in games, in particular FPS games. A
final look on recent publications about believable, human-like game AI will close
this section.

2.5.1 Game AI

Only a few years ago, classical game AI often came down to finite state machines,
search-trees and the A∗ algorithm. With the huge success of the gaming industry,
an enormous variety of different approaches emerged during the last years. A lot
of these approaches are other formulations of finite-state machines, and most of

25

Chapter 2. Behavior modeling & acquisition

them are targetted at specific games. The following paragraph summarizes the more
general approaches.

Finite-state machines (FSMs) are often said to be the most common game AI
technique [Champandard, 2004, Funge, 2004, Fu and Houlette, 2002, Cass, 2002].
Various modifications to FSMs exist, to make them more suited for specific game
demands or to allow easier implementations [Tozour, 2004, Rosado, 2004]. How-
ever, it should be noted that Finite-state machines are mostly applied because of
their rather simple nature. FSMs are probably the most intuitive and quickest
way to approach game AI problems. Despite their simplicity, they require a time-
consuming implementation, all possible situations have to be thought of in advance.
This makes them very inflexible. However, a very complex finite-state machine cov-
ering a huge set of possible states and actions might be able to create convincing
game AI for the casual gamer. More often finite state-machines lead to "holes"
within the game AI [Spronck et al., 2002], situations where unrealistic behavior
emerges from unanticipated states.

Modern games often take place in simulated 2D and 3D environments. There-
fore, pathfinding is one of the major topics of commercial game AI. Pathfinding is
responsible for steering characters, units, or enemies through game environments.
Obviously, the calculation of collision free paths is mandatory. Besides some ad-
hoc solutions to game specific path planning [Mika and Charla, 2002, Surasmith,
2002], various game AI related publications deal with the A∗ algorithm [Matthews,
2002, Higgins, 2002a], its application in games [Higgins, 2002c], and improve-
ments to decrease computational demands [Higgins, 2002b, Cain, 2002].

Also more sophisticated path planning approaches were integrated into game
AI. For instance, probabilistic roadmaps are a well known mechanism for mo-
tion modelling in computer graphics and robotics [Geraerts and Overmars, 2006].
Roadmaps are a graph based approach where nodes denote entity places, and edges
denote collision free paths between them. Nodes and edges can be automatically
acquired in a preprocessing step. Various extensions showed the principal applica-
bility for pathplanning in games [Nieuwenhuisen et al., 2004, Overmars, 2005].

Besides pathfinding and FSMs, scripts are another commonly found technique
in commercial game AI. However, scripts are more an effective tool of imple-
mentation. Instead of hardcoding everything into the game engine, a Non-Player-
Character’s (NPC’s) intelligence is defined in a scripting language and interpreted at
runtime [Berger, 2002b,c,a, Cass, 2002]. Scripts can contain predefined movie-like
action sequences, finite state machines, or other sorts of sequenced action com-
mands [Tozour, 2002c]. Various extensions to standard scripting mechanisms were
proposed throughout the last years [Barnes and Hutches, 2002, Spronck et al.,
2003]. For example, Spronck et al. [2003] introduced "dynamic scripting", a
method for online adaption of NPC scripts. In dynamic scripting, a set of prede-
fined rules is weighted at runtime using reinforcement-learning. It is applied in AI

26

2.5. Related work

systems for role-playing games and real-time strategy games [Ponsen and Spronck,
2004]. In general, scripts are predefined (re)actions to game states. Thus, the more
states and actions are anticipated in advance, the more convincing the AI will be.

2.5.2 FPS AI

Tozour [2002a] presented a generic approach for FPS AI. He describes four basic
components of an FPS AI; first, the movement layer. The movement layer is re-
sponsible for determining how to move, for instance, to avoid obstacles, or follow
other agents. Second, the animation layer. It is responsible for selecting character
animations or playing animation sequences. Third, the combat layer. The combat
layer selects and fires weapons, or decides for tactics. And fourth, the behavior
layer, which is described as an overarching system, and determines goals and in-
teracts with other systems to reach these goals. This discrimination is inspired by
an already mentioned hierarchical order of behavior in robotics [Arkin, 1998], and
is very similar to the structuring presented in Section 2.2. Tozour [2002a] finally
gives some ideas about implementation where he suggests rather common methods
for each layer. For pathfinding, the A∗ algorithm is proposed. For the behavior con-
troller, he suggests usage of a FSM where typical states could include Patrolling,
Combat, Fleeing, Searching.

Champandard [2004] gives a very detailed overview on "AI Game Develop-
ment", with a special emphasize on FPS games (see also the AI-Depot website
maintained by Champandard [2006a]). In his book, the FEAR QUAKE II R© AI
project serves as an exemplary implementation [Champandard, 2006b, 2004]. The
book describes a vast amount of AI methods, including FSMs, Fuzzy logic, but also
machine learning approaches, genetic algorithms, reinforcement learning, neural
networks, and Markov-decision processes. Champandard gives an overview over
almost all facets of generating intelligent behavior in game agents. Unfortunately,
learning from observations is only touched in a few paragraphs and was apparently
not applied in games.

A very successful bot implementation for the game QUAKE III R© is introduced
by van Waveren [2001]. The bot is controlled by a layered architecture. The central
control unit is effectively a large FSM, referred to as AI network. The approach fur-
ther introduces Fuzzy logic to create less predictable opponents. Probably the most
interesting novelty is the Area Awareness System. Instead of making use of classi-
cal waypoint maps, movement is based around separate 3D bounded hulls. In these
defined areas, a bot can move from any point to any other point, thus movement
complexity is minimal. Areas overlap, thus it can be easily measured if a move-
ment from one area to another is possible. Summarized, the QUAKE III R© Arena
Bot is a good example for a well defined and strong conventional artificial oppo-
nent, although it does not create a convincing illusion of a human player. Notably,
van Waveren also created the famous QUAKE II R© Gladiator- and Omicron-bot [van

27

Chapter 2. Behavior modeling & acquisition

Waveren, 2001], in Chapter 6 the Gladiator-bot is compared against the imitation
learning agent introduced in this work.

In Academia, conventional AI methods for FPS games had been thoroughly
applied by Laird [2001b] using the SOAR engine. Although his approaches lead
to respectable opponents for the game QUAKE II R© (see also [Laird, 2001a] for an
extended approach adding anticipation capabilities to an artificial player), it mostly
relies on predefined behaviors which are combined by an heuristic approach us-
ing the SOAR engine [Soar, 2006]. In [Laird and Duchi, 2000] the SOAR bot is
evaluated letting human players judge the humanness of the artificial agent. The as-
sumption is that the Turing test assists in iteratively finding and adjusting behavior
parameters, for example, aiming skill values, to finally create a more human-like
agent. Therefore, Laird’s method can be seen as the top-down approach of creating
human-like game agents. In contrast, our work is approaching the same goal in a
bottom-up manner by directly imitating and learning human behavior from obser-
vational data.

A BDI (Belief-Desire-Intention) agent based approach was presented by Nor-
ling and Sonenberg [2004]. BDI is considered a psychological way of agent im-
plementation, implementing reasoning, "the way people think they think" [Norling
and Sonenberg, 2004]. By definition BDI approaches combine purely reactive and
deliberative techniques. Typically, a BDI system consists of an agent’s beliefs about
the situation, possible goals he desires, and plans on how to reach these goals. For
acquiring player specific goals and plan rulesets, Norling interviewed three expert
QUAKE II R© players. The interview consisted of a number of questions related to
situation dependent decisions (”If you’d just respawned and could hear but not see
a fight nearby, what would you do?”) or global opinions (”What makes a good
sniping spot?”). Finally, belief conditioned rulesets serve as a basis in game agent
implementations. The model itself does not include player specific modelling of
atomic actions, however, global known errors in human reaction time and mouse
movement errors known from HCI studies are incorporated. Norling’s overall ap-
proach is indeed interesting and yielded promising experimental results. The main
criticism arises from the BDI concept itself. It is questionable, if an introspective
analysis of behavior can ultimately lead to realistic, human-like behavior, since it
would require the interviewed expert players to be fully aware of their decision pro-
cesses. It would also require the selection of questions to cover the whole range of
possible situations, which is also very unlikely. Nevertheless, it is up to now one of
the most successful approaches in mimicking humans in video-games.

Khoo and Zubek [2002] developed "Groo" and "tt14m (trash-talking 14-year-
old-moron)", two artificial opponent projects for HALF LIFE R© , another popular
representative of the FPS genre. Groo could be considered a classical approach
utilizing a behavior based [Arkin, 1998] architecture. The main focus was on appli-
cability in live games and computational efficiency. However, as a chat bot, "tt14m"

28

2.5. Related work

is a different approach, focusing on the social aspects of multiplayer online gam-
ing; and indeed, some humans apparently began a conversation with the agent, and
believed they were talking to a human player. Although, certain stylistic problems
helped players to "break through the illusion" [Khoo and Zubek, 2002], for instance,
players refer to each other by abbreviations of their real nicknames, "Rev" instead of
"Reverand Phunk", or "Sebb" instead of "Sebbdawred", which is obviously difficult
to implement. Nevertheless, "tt14m" showed that also social aspects are important
for artificial players. Regarding social aspects in games, Spyridou et al. [2004] con-
ducted investigations on how humans use speech in FPS team-games. In fact, the
requirements for speech understanding appear to be rather low, since even teams
consisting of only human players use a surprisingly simple language. For example,
common conversations include (example according to Spyridou et al. [2004]):
Player 1: I’m heading for the shaft
Player 2: Right. I’m going for the lift then. There is one of them coming down
Further, they could show in Wizard of Oz experiments that human players would
prefer artificial team members being capable of understanding team speech. De-
spite some basic effort in commercial games (SOCOM R© , SOCOM II R© , RAIN-
BOW SIX 3 R© , S.W.A.T. R©), this is a so far unrecognized testbed for agent archi-
tectures in collaborative environments.

Aside from complete agent implementations, numerous improvements for spe-
cific behaviors exist. Tozour [2002b] introduces basic aspects of ranged weapon
combat. As before, it is mostly a top down approach, where for instance aiming
and hitting is expressed as an trigonometric function of target and player positions.

Towards strategic behaviors and internal NPC goals, Orkin [2004] developed a
goal-directed action planning for the game NO ONE LIVES FOREVER 2 R© . Effec-
tively, the system comes down to a FSM where the goal state is one node in the
FSM. Going from a start to a goal node usually requires a fixed node sequence. For
example, to push a button, the agent first has to move towards it, consequently, state
transitions correspond to in-game actions. The right sequence of actions and state
transitions is finally calculated at runtime and should end at the desired goal state.

A lot of games use waypoints for agent navigation, i.e. agents walk on intercon-
nected nodes within a graph structure instead of walking directly in 3D. Paths on the
waypoint-graph can be easily translated to paths in 3D and thus allows for fast and
robust collision free navigation. Lidén [2002] proposes the direct integration of tac-
tical information about the relation between waypoints into the waypoint map. For
instance, for FPS games the visibility of gameworld positions is important. These
additional information could be stored at each waypoint node and thereby mark po-
sitions as safe or dangerous. The approach is straight forward and can be easily
applied in most FPS games (gameworld positions could also be marked as ambush
locations, or cover places). In addition, tactical node information can also be used
for pathfinding, for instance to penalize unsafe paths. Hancock [2002] suggests a

29

Chapter 2. Behavior modeling & acquisition

similar approach for navigating doors, elevators, and other obstacles. Based on a
node map, specific actions are coupled to special nodes, for example, to enforce a
jump or a door opening action. As noted, the approach requires "good editing tools
and people who take the work seriously. If the input is sloppy, the results will be
too" [Hancock, 2002]. Reed and Geisler [2004] further expanded these ideas and
implemented it in the commercial game SOLDIER OF FORTUNE 2 R© .

2.5.3 Machine learning in games

During the past three years we were witnessing an increased academic interest in
machine learning applied to the design of believable computer game characters. A
boosting factor behind this growing interest was already mentioned in the intro-
duction of this contribution and was also noted by authors such as Cass [2002] or
Nareyek [2004]: as we showed in the last section, commercially available games
still mostly rely on deliberative AI techniques like finite state machines or A∗

searches. On the other hand, subsymbolic machine learning as a tool to produce
life-like game agents has been largely neglected by the scientific community. This,
however, seems to change.

For sake of completeness, we have to mention machine learning approaches ap-
plied to more conventional games, for instance, chess, othello, poker and various
other board and card games. A good overview can be found in [Fürnkranz, 2001],
a more recent work on reinforcement learning of strategies for the popular board
game Settlers of Catan is presented in [Pfeiffer, 2004]. However, these games usu-
ally do not have much in common with modern computer games although certain
requirements in strategical thinking also apply in video games.

Machine learning has not been used widely in games. Some games create an
illusion of learning by giving the AI access to more predefined behaviors over
time. With the exception of the lately released Forza Motorsport R© , where race
car driving behaviors are learned from observations [DrivatarTM- Driving Avatar,
2006], up to now, machine learning does not play an important role in commercial
game AI. According to [Togelius et al., 2006], the learned driving behavior in Forza
Motorsport R© is the outcome of stored trajectories for each player and each racing
track, instead of acquiring sophisticated steering behaviors from observational data.

In video games, mostly online learning approaches had been applied so far.
Recent work by Spronck et al. [2003] introduced reinforcement learning to the task
of rule selection for agent behavior in a commercially available role playing game.
Earlier, the same authors reported on a hybrid coupling of genetic algorithms and
neural networks for offline learning in a simple strategy game [Spronck et al., 2002].
Yannakakis and Hallam [2004] introduced an evolutionary optimization approach
for opponent behavior generation in Pac-Man like games. A successful application
of reinforcement learning for versatile opponent modelling in a Beat-Em-Up game
was presented by Graepel et al. [2004].

30

2.5. Related work

The idea of using human generated data to train game agents was first reported
by Sklar et al. [1999] who collected the key-strokes of people playing Tron in order
to train neural networks. Notably, Lipson et al. [2003] used the log-files for their
game Touring to cluster game-data to generate different models of play. Using
these, they were able to generate human-like playing styles in an artificial player.

Learning from observations was so far mostly done in simplified games or uti-
lizing basic sets of predefined behaviors. The presented work is trying to close the
gap by elaborating approaches for behavior acquisition in complex games by means
of imitation learning. Although the focus of this thesis is on basic skill acquisition,
we plan to use learned behaviors in higher level learning architectures.

2.5.4 Machine learning in FPS games

Recently, Le Hy et al. [2004] described advanced probabilistic action selection for
a commercial game using Baysian networks trained by human generated input. Ap-
propriate behaviors are selected during a live game by a human expert player, after-
wards state dependent behavior selection is reproduced by an artificial player. The
approach is very promising and could provide means of integrating learned basic
behaviors, as proposed in this work, in a more higher level imitation learning sys-
tem. The only disadvantage is the indirect control of the player avatar during the
training sample recording. Since the avatar is controlled by selecting an appropri-
ate behavior and not by directly steering it, similar criticisms as already brought
against the BDI architecture by Norling and Sonenberg [2004] apply here as well:
it is questionable if behavior synthesis based on a player’s introspection will result
in realistic acting.

Lately, Bakkes et al. [2004] presented a evolutionary team behavior learning
approach. Basic behavioral patterns were supplied in advance and combined during
live games, resulting in challenging and more versatile play.

In his Master thesis, Geisler [2002] let an agent learn combat behaviors of an
expert player by utilizing MLPs, a naive Bayesian classifier, and ID3 decision tree
learning [Quinlan, 1990]. He successfully managed to mimic speed of acceleration,
direction of movement, direction of facing, and jumping. The approach is straight
forward by simply selecting combat related feature vectors as an input, and possible
action vectors as an output. Comparing the different approaches, apparently the
MLP performed best. However, it remained unclear how the agent really performed
in-game, since no direct behavioral analysis is supplied.

Zanetti and Rhalibi [2004] applied MLPs to behavior learning in QUAKE III R© .
They combined three MLPs, responsible for movement, aiming and shooting, and
fighting. Each MLP was supplied with a set of relevant features. Training samples
were recorded from observations of human players. The approach seemed to be able
to capture certain behaviors, however, as noted by the authors, it is far from being a
competitive agent. It also fails at capturing human-like behavior "... The objective

31

Chapter 2. Behavior modeling & acquisition

of human like behavior and strategies is still far away." [Zanetti and Rhalibi, 2004].

2.5.5 Believable game AI

Since no one would be interested in dumb game agents, all described game AI tech-
niques aim at the creation of believable, realistic artificial characters. However, as
noted by Livingstone [2006], there is a difference between realistic and human-like
characters. A realistic game agent has to create the illusion of a specific charac-
ter, for example, a medieval knight in a fantasy role-playing game. In contrast, a
human-like game agent has to create the illusion of being controlled by a human,
which obviously only makes sense in multiplayer games.

Laird and Duchi [2000] had human observers judge the SOAR
QUAKE II R© agent in videos in which the bot battled an expert human player.
The judges had to rate the humanness of the observed game agents. All in all, the
SOAR bot did quiet well in producing a human-like impression. Interestingly, it
were the often criticized superhuman playing capabilities of artificial players that
helped to unmask them, i.e. instant reaction times, or perfect aiming. It was further
noted that an agent should be supplied with at least some basic tactical reasoning,
purely reactive agents mostly failed in convincing the participants.

In [McGlinchey and Livingstone, 2004], believability tests were carried out for
an artificial Pong player (see Figure 2.2 for Pong) which was modelled by means of
a self-organizing map trained on human playing data (see McGlinchey [2003] for
the original approach). The results were convincing, indicating that it is possible to
fool a human player/observer. However, the human judges never saw a human or
an artificial Pong player before the test took place, this obviously makes the results
less reliable. The reported results only made that more evident since the judges
appeared to be able to distinguish between artificial and human player, they just
mislabeled them occasionally.

2.6 Summary

Behavior acquisition in artificial systems is a very important, yet underexplored
area. In this chapter, we proposed two models as the theoretical basis for behav-
ior acquisition by means of imitation learning. Both are build on the assumption
that we can access a sufficient number of situation-action data pairs. These data
samples implicitly describe the behaviors that we want to imitate by assigning an
action to a specific situation. To goal of imitation learning now is to find an under-
lying mapping of situations to reactions that also accounts for novel situations. The
first approach consists of a regression model, in which actions of a human player
are interpreted as functional mappings of situation vectors on reaction vectors. A
second approach describes behavior in a probabilistic model, in which state depen-
dent probability distributions are learned from observational data to predict the most

32

2.6. Summary

likely action for a given situation.

Imitating human behavior is a demanding task. One of the major difficulties
lies within the versatility and flexibility of the behavior itself. Behaviors are seam-
lessly integrated and combined, although they are possibly operating on completely
different time-scales. For example, in soccer a player is able to think about the next
best strategical pass while at the same time looking for opponents, and team mem-
bers, but also controlling the ball. The considered computer game worlds might
not be as complex as the real world, they still require a large repertoire of distinct
behaviors. An artificial agent needs to implement a multitude of skills to develop
human-like playing behavior. Modelling, or learning, a monolithic “play the game”
behavior in an artificial agent is very likely to fail. In this chapter, we motivated
the use of a hierarchical behavior model, based on a well known psychological hi-
erarchy. The model separates behaviors into three categories; strategic, tactical and
reactive behavior. Although this might suggest a sequential execution of behaviors
where each layer controls the lower laying layer (e.g. the tactical layer selects an
appropriate action), it is to be understood as a concurrent set of behaviors. The step
of separating behaviors comes in naturally and greatly simplifies behavior learning
in artificial systems. By developing methods targetted at specific behaviors in each
category, the problem of behavior acquisition becomes feasible.

Since behavior is usually coupled to a specific environment, we introduced our
own experimental setup. We make use of the opportunities gained from modern
computer games for analyzing human behavior. It is basically two important aspects
that make computer games a suitable environment for the task of behavior imitation:
games are often perceived as more real than conventional simulations, therefore we
can expect more natural behavior which is essential for the task at hand. Further-
more, by using popular networked games, we can access vast amounts of noise
free observation data, which allows the application of common machine learning
and pattern recognition approaches. Regarding the experimental environment, we
decided for the game QUAKE II R© , which belongs to the genre of First-Person-
Shooter (FPS) games. This game was used by various researchers throughout the
last years and was named an excellent tool in researching human-level AI [Laird,
2002]. Modern FPS games create realistic virtual worlds, in which humans control
virtual avatars and play against computer controlled avatars. It is important to notice
that QUAKE II R© is not a simple game and indeed requires strategical and tactical
acting for successful gameplay. To further point out that the problem of creating
a realistic, human-like agent for games is by no means solved, we reported on the
most successful approaches carried out in the games industry and academia. Up
to now, no one could show that an artificial agent for computer games can come
up to human-level intelligence or playing behavior. The presented techniques were
mostly inspired by classical AI research. Recently, the idea of agent behavior mod-
elling by means of machine learning received increased attention, so far with only

33

Chapter 2. Behavior modeling & acquisition

mediocre success for FPS games.
The task we want to achieve with this work is to use the network traffic record-

ings of human players to (a) explore the data using different learning approaches,
and (b) synthesize behavior in computer controlled artificial players. The goal ob-
viously is to mimic the playing behavior of a human as accurate as possible. The
following chapters introduce various approaches, targetted at different behaviors,
on achieving this goal. We will first concentrate on specific behaviors within the
reactive, tactic, and strategical layers.

34

Chapter 3

Learning reactive behaviors

Reactive behaviors include, among others, directly sensor stimuli based movements
and motions. In this chapter, we outline methods in imitating reactive behav-
ior. The behaviors we consider are common reactive behaviors found in the game
QUAKE II R© , our experimental environment. In particular, we elaborate approaches
for computational imitation of movement, aiming, and complex motions. Besides,
we introduce basic pattern recognition methods that are also important for the later
elaborated tactical and strategical behavior learning.

Following ideas discussed in Section 2.1, we consider two distinct approaches
for learning reactive behaviors. The first approach interprets behavior as functional
mapping of sensor inputs on reactions in order to extract underlying behavioral
functions. The second approach focuses on state dependent action selection with
the goal of human-like motion synthesis. This chapter contains work published in
[Bauckhage et al., 2003, Thurau et al., 2003, 2005a,b].

3.1 Reactive behaviors as functional mappings onto ac-
tions

In Chapter 2, we introduced the idea of interpreting behavior as a functional map-
ping of a game state st at time step t on an action vector at:

at+1 = f(st, st−1 . . . st−n, et, et−1 . . . et−net) (3.1)

where et denotes environmental influences at t and at+1 represents the action
a player accomplishes according to the last n states. Although the state history,
the states st−1 . . . st−n, could be important, we for now only have a look at a few
past states or only direct sensor based reactions i.e. the state at timestep t. This
is because of the obvious computational constraints in real-time decision making.
Moreover, reactive behaviors, as they were introduced in robotics, are meant to
be dependent solely on the current state and the current environmetal influences

35

Chapter 3. Learning reactive behaviors

[Arkin, 1998]. By focusing on the current state at timestep t, and by neglecting
environmental influences et which we cannot observe anyway, we can restate equa-
tion 3.1 as follows:

at+1 = f(st) (3.2)

Given a set of human observation data of a reactive behavior, we now approx-
imate the underlying behavioral function f using the observational data as training
samples. For this task, we will first consider Multi-layer perceptrons (MLPs) which
are basically a universal function approximator and thus should be suited for the task
at hand. The next Section briefly introduces MLPs. In addition, we also introduce
Time-delay neural networks (TDNNs) which are a type of MLPs suited for learning
temporal dependencies. In the following, we mostly concentrate on standard MLPs.
Nevertheless, we found that including a limited state history is beneficial for certain
behaviors. In these particular behaviors, Time-delay neural networks were show-
ing an improved performance compared to standard MLPs. However, due to the
already mentioned computational constraints, we are usually only including a very
short state history, corresponding to a maximum value of n = 4 for Equation 3.1.

Here, one could argue that there are more advanced, and thus more capable
learners, for example, support vector Regression. However, Neural Networks are in-
spired by concepts in neurons in biological organisms, this simple fact makes them
an interesting candidate for imitating human behavior. There is no clear evidence
that biologically inspired approaches outperform others in imitation learning, still,
they also showed to be effective in numerous uncommon (from a machine learn-
ing perspective) applications as for instance chess playing [Thrun, 1995]. More-
over, given the basic idea of this thesis and the collaborations that supported this
work, whenever possible we decide for biologically or psychologically motivated
approaches. Furthermore, given the rather shallow preliminary work in the field of
behavior acquisition in artificial agents, we decided to first have a look at simple,
and well established approaches.

3.1.1 Multi-layer Perceptrons

A Multi-layer Perceptron is the most common type of artificial neural networks
(ANN). It consists of several connected layers of Perceptrons. The basic compu-
tational unit in a MLP is named neuron, since its basic functionality is inspired by
concepts in biological Neurons. Each neuron is a computational unit generating a
numerical output by weighting and summing up several numerical inputs, see also
Figure 3.1(b). The idea of combining Perceptrons in a larger network is motivated
by the limitations of single Perceptrons with respect to the type of functions they
are able to model. Theoretically, networks containing two layers of weights are
able to approximate any continuous function. Since MLPs are a common method

36

3.1. Reactive behaviors as functional mappings onto actions

Input Hidden Output

x1

x2

z1

z2

z3

y1

y2

(a)

wzy
31

z3

z2

z1

y1

wzy
21

wzy
11

y1 = ϕ
(

∑M
j=1

wzy
j1zj + by

1

)

(b)

Figure 3.1: Figure 3.1(a) shows a didactic example for a Multi-layer Perceptron. Fig-
ure 3.1(b) shows how a single neuron within a feedforward network calculates its output.

in pattern classification and function approximation tasks, we will only summarize
them briefly, for further reading we recommend [Bishop, 1996].

In the most common form a MLP consists of 3 layers of neurons, an input layer
receiving input signals x ∈ Rn, a hidden layer, and an output layer generating an
output y ∈ Rm. Given a sufficient number of hidden neurons, a MLP is able to
approximate any continuous function f : Rn → Rm.

Figure 3.1 shows a simple MLP, and a single neuron and how it calculates its
output. The output of a single neuron is calculated by a weighted linear sum of
inputs which is put through a (usually) non-linear activation function ϕ. In Fig-
ure 3.1(b), zj denotes inputs from the predecessing layer, wzy

ij denote the input
weights, and by

1 denotes a bias term for the neuron y1. As an activation function
ϕ, commonly the logistic sigmoid function y(x) = 1/(1 + exp(−x)), or tangens
hyperbolicus y(x) = tanh(x) are used.

For regression problems, the mean-squared error (MSE) E with respect to a
collection of training samples is optimized:

E =
1
N

N∑

i=1

(yi − g(xi))2 (3.3)

where N denotes the number of training samples, yi denotes the known target
values for the network output (or the unknown function f), and g(xi) denotes the
output generated by the MLP for an input vector xi. Implicitly, the function f is
already defined via the training samples. Learning in a MLP is equal to approxi-
mating the unknown function f by adjusting MLP weights wij . Various methods

37

Chapter 3. Learning reactive behaviors

Input Hidden Output

z1

z2

z3

y1

y3

xt

1

xt

2

xt+∆t

2

t

t + ∆t

t + 2∆t

t + 3∆t

xt+∆t

1

Figure 3.2: A simple Time-delayed neural network. Instead of using only one input signal
a TDNN uses sequential input data, to learn temporal relationships.

for finding appropriate weights wij are known. The most common is the backprop-
agation algorithm. However, in this work we make use of the (also very common)
Levenberg-Marquardt algorithm, both are explained in detail in [Bishop, 1996].

3.1.2 Time-delay neural networks

A Time-Delay Neural Network (TDNN) is a special type of Multi-layer Perceptron
used for learning temporal relationships. Similar to a MLP, it consists of a layer of
inputs, a hidden layer, and an output layer. The difference to MLPs lies within the
input layer. In TDNNs, an input signal x is sampled in a series of discrete intervals
∆t. This leads to a temporal sequence of input signal xt,xt+∆t, . . . ,xt+n∆t that
can be used as sequential input data for a TDNN, as can be seen in Figure 3.2. The
networks internal processes of output generation are the same as in standard MLPs.
For weight adaption, the backpropagation algorithm can be used.

3.1.3 Features, behaviors and evaluation

Using behavioral data to train a MLP approximates the underlying behavioral func-
tion f given by at = f(st). Thereby, we reproduce a human player’s reaction ai

38

3.1. Reactive behaviors as functional mappings onto actions

180
−180

0

(a) Yaw angle

0

−90

90

(b) Pitch angle

Figure 3.3: Yaw and Pitch game agent viewangles.

for a new state vector si, and thus create similar behavior for novel game situations.
Obviously, the selection of features for at and st is important and closely coupled to
the actual behavior we intend to learn. Essentially, the selection of features defines
what action to consider for which aspect of the game-state. Consequently, including
action variables for controlling the agent’s velocity would result in movement be-
havior, whereas including a fire action would result in learning aspects of a player’s
combat behavior. However, the selection of relevant state space features for si is
not as intuitive.

A human player perceives the game-world through 3D visualization of game-
data, and reacts by moving the mouse or using keyboard inputs. A computer vision
analysis of the game’s visualization could be used to extract information about ob-
jects or other players. However, here we rely on a different method by directly
accessing game-state information. As already mentioned, the network traffic of
QUAKE II R© , which we interpret as observation data, already contains a higher
level state description. It includes, for example, entity positions (objects, players in
x, y, z), character velocities (in ∆x

∆t ,
∆y
∆t ,

∆z
∆t), and internal state descriptors such as

player health or armor values. The player actions are included as well, they con-
tain the player viewangles (yaw and pitch), velocities (in ∆x

∆t ,
∆y
∆t ,

∆z
∆t), and special

actions as for instance fire or jump 1. Since the focus of this thesis is on behavior
acquisition, we decided to mostly hand-pick features we considered essential for
the considered behaviors (in the case of situative reactive behaviors we use a sim-
ple Principal Component Analysis based feature extraction which will be explained
in Section 3.1.7). This turned out to be sufficient for the behaviors considered in
this work. However, future work might consider automatic approaches for feature
selection, for instance boosting methods (see e.g. [Redpath and Lebart, 2005]).

1All in all, our underlying API, in MATLAB R© , to interact with QUAKE II R© can provide a total of
about 260 different features.

39

Chapter 3. Learning reactive behaviors

Opponent state:
(distance,

 vertical angle)
 horizontal angle,

(x,y,z)
Player Position:

(a) Perception

Player Velocity:

 velocity y direction)
(velocity x direction,

Player Viewangles:
(yaw,pitch)

(b) Reaction

Figure 3.4: A game-bots perception and reaction spectrum.

For the later, we carried out experiments where movement and aiming behav-
iors are to be learned. We selected for the game-state st the player’s origin ot =
[xt, yt, zt], an opposing player’s distance ∈ [0, 2000], target yaw ∈ [0◦, 180◦] and
pitch ∈ [−90◦, 90◦] viewangles, yaw being assigned a signum σ(YAW) ∈ {−1, 1},
in order to cover the full range as Figure 3.3 illustrates.

s =





position X
position Y
position Z

opponent distance
opponent target yaw angle
opponent target yaw sign

opponent target pitch





,a =





yaw angle
yaw anglesign

pitch angle
velocity forward

velocity side
velocity up





Figure 3.5: The agent’s state s and reaction a vector variables used in the experiments.

Regarding relevant features for the player’s action vectors at, we include all
movement relevant actions i.e. forward-, side-, and up- velocity, and yaw-, and
pitch-viewangles. Viewangle adjustments are coupled in a 3 dimensional vector,
containing the player’s yaw ∈ [0◦, 180◦] and pitch ∈ [−90◦, 90◦] angles, again
including a signum σ(YAW) ∈ {−1, 1}. The player’s velocity is represented by
a 2 dimensional vector, containing vforward ∈ [−400, 400], vside ∈ [−400, 400],
and vup ∈ [−400, 400]. Figure 3.4 illustrates the bot’s perception and reaction
spectrum, and Figure 3.5 contains a detailed listing of the features and actions used
in the later described experiments.

The behaviors we intend to learn ranged from simple movements, over more
versatile and complex moves, to an aiming behavior. All training data sets are

40

3.1. Reactive behaviors as functional mappings onto actions

recordings of a human performing the described action. Thus, successfully learning
and mimicking these behaviors is equal to imitating human behavior. We used the
following behavioral observation data:

Experiment 1 - Simple movement The first experiment is about reproducing a
simple movement behavior. A human player was recorded while running
around a map on a fixed route.

Experiment 2 - Simple aiming The second experiment introduces an aiming be-
havior. A human player was recorded while aiming at an opponent.

Experiment 3 - Combined aiming and movement A combination of experi-
ments 1 and 2, thus, two distinct behaviors should be learned within one
architecture. Thus,

As already mentioned, evaluation is an important aspect of behavior synthesis.
Evaluation for reactive behaviors is done by computing the mean squared error
(MSE) for a set of novel state/action data pairs. Given that MLPs are optimized
towards the MSE, and that reactive behaviors in this context only have a short-
term relevance, this seems appropriate. As opposed to strategies, where we find a
long-term relevance of actions, it is useless to measure goal success, since we do
not have any specific goal coupled to a reactive behavior. The performance of the
learner is measured by computation of the mean squared error Ed of given data set
d, containing n state s and reaction adesired vector pairs.

Ed =
1
n

n∑

i=1

(adesired
i − ai(si))2 (3.4)

Moreover, in addition to the MSE computation, we also decided to report on
the general appearance of the generated behavior. In the case of reactive behavior
it is important that the behaviors are learned and synthesized successfully, and, that
their in-game execution creates the illusion of a human player.

3.1.4 Simple reactive behaviors

In a first approach, we realized our agent by means of 1 MLP, responsible for
viewangle adjustment and velocity adjustment with a 6 dimensional output vector,
and a 7 dimensional input vector (see again Figure 3.5 for the features). Although
we treated viewangle and velocity adjustment as equally important player reac-
tions, in-game evaluation showed that viewangle adjustment has a greater influence
on overall bot performance; it is also harder to learn. MLPs were trained using the
Levenberg-Marquardt algorithm. We tested on various parameter settings, varying
the number of hidden layer neurons as well as varying training and test behavior
datasets.

41

Chapter 3. Learning reactive behaviors

It should be noted that although most behaviors were successfully imitated, the
approach also showed shortcomings. It appeared that a single MLP is not able to
successfully imitate a larger set of behavior. The outcome of experiment 3, where
two separate behaviors are included in the training data, shows this very well. The
problem appears to reside in the versatility of observed behavior. Effectively, mul-
tiple functions have to be learned, with at times compromising data pairs. There
seems to be interference in function representation. Before we analyze the experi-
mental results in detail in Section 3.1.8, we first introduce an extension to the MLP
learning in the next Section.

We noticed that by taking into account multiple MLPs and establishing a more
concrete situational dependency, the described problems can be avoided. Effec-
tively, we integrate the well established concept of biological place cells to allow
for specialized, situation aware learners.

3.1.5 Situation aware reactive behaviors

Animals build up environment representations using so called place cells Arleo
[2001]. Given visual cues, place specific cells respond, and thereby tell the animal
its location and orientation. In Figure 3.6 we present additional background on this
interesting concept. Here, we wanted to make use of a similar method: instead
of establishing direct functional dependencies, we decided to first roughly separate
states by making behavior learning dependent on activation of place cell like struc-
tures. This means that we learn different behavioral functions, dependent on the
highest activation of one specific situational or place cell.

Place cell activity in humans and animals is build up on visual cues and inte-
gration over the past movements. Since we do not have to rely on visual input for
game-agents, we can directly access game agent position vectors. Therefore, place
cell activity can be estimated straight forward by comparing state vectors to place
cell prototypes. The principal concept of place cells is in fact very similar to topo-
logical representations of environments, also often used in conventional Game AI
where it is called waypoint-map. However, unlike usual methods in waypoint-map
acquisition, we build up and learn representations from data which is not restricted
to position vectors. In fact, the introduced place cells are more likely situational
cells, since they correspond to not only spatial information representation, but can
also contain other information, for instance, positions of an opponent. To avoid
further confusion, we stick to the established name of place cell.

In order to make use of the concepts of place cells, we have to derive a place cell
like structure from the game-data. For that matter, we apply the Neural Gas vec-
tor quantization algorithm to game observation data which we will first introduce,
before reporting on the details of the behavior acquisition approach.

42

3.1. Reactive behaviors as functional mappings onto actions

(a) (b)

Spatial memory is of great importance for animals and humans. Recent findings
indicate that specialized neurons, so called place cells, are responsible for rec-
ognizing spatial position. Coupled to each place cell is a place field, an area of
response. This place field is defined by its target, and results in a higher activation
once a location is reached where locations are generally defined by fixed spatial
cues (i.e. objects). Place cell responses give us precise information about our po-
sition in an environment. The pictures show place fields of two place cells in rats
in a square room. The red regions mark the best responding area for a cell. In
blue regions, the cells are not responding (both pictures were taken from [Arleo,
2001]).
A few years ago, Maguire et al. [1998] investigated brain activity in humans dur-
ing navigation in complex environments. Findings indicate, that the right hip-
pocampus is associated with knowing exactly where places are located. They also
found further activation in other brain areas, probably involved in non-spatial as-
pects of navigation. Interestingly, the experimental environment they used was
the famous First-Person-Shooter game DUKE NUKEM R© , which is very similar to
QUAKE II R© . The proven existence of place cells, even during the playing of a
FPS game, further supports our own ideas of integrating artificial place cells into
imitation learning approaches.
Furthermore, Ekstrom et al. [2003] showed evidence for a neural code of cells
located in the hippocampus region that respond at specific spatial locations. They
also showed that other cells located in the parahippocampal region responded to
views of landmarks. Further, cells responded to navigational goals and to con-
junctions of place, goal, and view. Although this is still different to our proposed
situational cells, it is clearly showing biological means towards sensor integration,
and to a more unifying representation of spatial and other information.

Figure 3.6: Place Cells in humans

43

Chapter 3. Learning reactive behaviors

(a)

−0.1
−0.05

0
0.05

0.1
0.15

0.2
0.25

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1 0.12

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

(b)

Figure 3.7: A Neural Gas clustering of a 3.7(a) swiss-roll toy example, and of 3.7(b) player
positions extracted from the network code of QUAKE II R© .

3.1.6 Neural Gas

The Neural Gas algorithm [Martinetz and Schulten, 1991] is a soft vector quanti-
zation algorithm. Similar to other clustering algorithms, the Neural Gas algorithm
fits a number of k prototype vectors W = [w1, . . . ,wk],wi ∈ Rn to represent a
number of input signals V = [v1, . . . ,vm],vi ∈ Rn (for the Neural Gas algorithm
the prototypes are often named neurons to underline the biological background). In
contrast to winner takes all clustering algorithms, as for instance k-means, the Neu-
ral Gas algorithm adapts not only a winner prototype according to an input signal,
but also more or even all prototypes. One characteristic of the algorithm is that at
the beginning generally more prototypes beside the winner are adapted, at the end
it is usually only the winner prototype which is modified. Moreover, the Neural
Gas algorithm introduces a Hebbian learning of a topological structure which inter-
connects prototypes wi, thereby reflecting the underlying structure of input signals
vi. Figure 3.7 gives two examples of a resulting clustering and learned topology.
In the following we explain the clustering as well as the Hebbian learning of the
topological structure:

For a new input signal vi, the distance Dvi =‖ vi −wu ‖, u = {1, . . . , k} to
each prototype vector wu is computed, and ordered as follows

44

3.1. Reactive behaviors as functional mappings onto actions

1. Assign initial values to the prototypes W = [w1, . . . ,wk],wi ∈ Rn

2. Select an input signal vi from V = [v1, . . . ,vm],vi ∈ Rn

3. Determine the distances of each prototype vector to vi, and rank the proto-
types in W :

{w1
m,w2

m, . . . ,wk
m}, where ‖ vi −w1

m ‖≤‖ vi −w2
m ‖ . . . ‖ vi −wk

m ‖

According to the ordering assign each prototype wi a value di that reflects
its ranking (dm = 1 for the winner, dm = 2 for the second . . .).

4. Adapt each prototype according to its ranking du:

wu = wu + ε(t) exp
(

1− du

λ(t)

)
(vi −wu) (3.5)

where

λ(t) = λs(λe/λs)(t/tmax) and ε(t) = εs(εe/εs)(t/tmax) (3.6)

5. Increment the time parameter t: t = t + 1

6. If t ≤ tmax, continue with step 2

Figure 3.8: Neural Gas vector quantization

{w1
m,w2

m, . . . ,wk
m}, where ‖ vi −w1

m ‖≤‖ vi −w2
m ‖ . . . ‖ vi −wk

m ‖ (3.7)

According to the ordering each wi is assigned a value di, reflecting its ranking.
The prototype w1

m which is closest to vi is assigned a value of dm = 1, the second
closest w2

m a value of dm = 2, till the last prototype wk
m which is assigned a value

of dm = k. Each prototype is now adapted according to

wu = wu + ε(t) exp
(

1− du

λ(t)

)
(vi −wu) (3.8)

where du denotes the ranking value, ε(t) ∈ [0, 1] denotes a learning rate which
is decreased over time, and λ(t) influences how many ranked prototypes are adapted
with each step. According to [Martinetz and Schulten, 1991], λ(t) and ε(t) can be
defined as follows:

λ(t) = λs(λe/λs)(t/tmax) and ε(t) = εs(εe/εs)(t/tmax) (3.9)

45

Chapter 3. Learning reactive behaviors

1. Initialize a connectivity Matrix C,Cij ∈ {0, 1} with i, j = 1 . . .M . Set all
Cij to zero

2. Select an input signal vi from V = [v1, . . . ,vm],vi ∈ Rn

3. Determine the distance of each prototype vector to vi, and rank the proto-
types in W :

{w1
m,w2

m, . . . ,wk
m}, where ‖ vi −w1

m ‖≤‖ vi −w2
m ‖ . . . ‖ vi −wk

m ‖

According to the ordering assign each prototype wi a value di that reflects
its ranking (di = 1 for the winner, dj = 2 for the second . . .).

4. Determine the two best matching prototypes wi,wj with di = 1, dj = 2

5. If there is no existing connection between the two best matching prototypes
wi,wi, set Cij = 1

6. Increment the time parameter t: t = t + 1

7. If t ≤ tmax, continue with step 2

Figure 3.9: Neural Gas Hebbian topology learning

where λs, and εs denote initial values, and λe, and εe denote end values, and
tmax denotes the maximum number of iterations. For their examples, Martinetz
et al. [1993] used the following parametrization : λs = 10, λe = 0.01, εi =
0.5, εf = 0.005, tmax = 40000. Generally, λs should be given a higher value
than λe. The complete algorithm is summarized in Figure 3.8.

The Hebbian learning of a topological structure is usually done after the adap-
tion of prototype vectors. It could also be done in parallel to the adaption process,
therefore an additional decay parameter to remove edges needs to be included.
For a detailed explanation of the latter we recommend [Martinetz and Schulten,
1991].The principal idea of the topology learning is to establish an edge between
two prototypes wi,wj that have a ranking of de = 1 and dk = 2 for a new input
signal vk.

First, initialize a connectivity Matrix C,Cij ∈ {0, 1} with i, j = 1 . . . k to
describe the neighborhood relationship of all prototypes. Since an index Cij = 1
means that prototype wi is connected to prototype wj , initialize all Cij to zero.
After the initialization process, the learning of the topological structure starts by
setting the starting time parameter t = 1. For a new input signal vk, the win-
ner and the second ranked prototype di = 1, dj = 2 is determined according to
Equation 3.7. If there is not already an existing connection between the two win-
ner prototypes wi,wj , set Cij = 1. Figure 3.9 summarizes the approach for the

46

3.1. Reactive behaviors as functional mappings onto actions

−1
−0.5

0
0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

Player X positionsPlayer Y positions

P
la

ye
r Z

 p
os

iti
on

Figure 3.10: Blue crosses mark observed player positions p = [px, py, pz], larger green
dots mark resulting place cell or waypoint map cluster centres.

Hebbian topology learning.

3.1.7 Combining simple behaviors using place cells

In the experiments, where we used a single MLP, we observed problems in behav-
ior synthesis as soon as the training data for learning consisted of more than one
behavior, or more complex behavior. We now address this problem by introduc-
ing situation aware learners i.e. we first determine a rough situation classification
using a place cell inspired approach, and then select a specialized MLP for gener-
ating reactions. For this approach, we first have to determine how to distinguish
game-situations. In addition, we have to distribute the training data among different
learners, to imitate specialized behavior.

For separating situations we make use of the concept of place cells by assign-
ing game-states to specific place cells. Thus, in a first step, place cells are derived
by clustering training data samples D = [(s1,a1), . . . , (sn,an)], si ∈ Rk,ai ∈ Rl

in state space ∈ Rk using a Neural Gas clustering. This leads to m prototypes of
P = [sp

1, . . . , s
p
m]. By assigning each training sample pair (si,ai) to the prototype

sp
o with the minimum Euclidean distance Eo =‖ si − sp

o ‖, the training data is dis-
tributed among prototypes. Each prototype (or place cell) sp

i is now associated with
a number of training samples Di = [(si

1,a
i
1), . . . , (si

u,ai
u)]. Implicitly, the Voronoi

partition in the surrounding of each training sample cluster yields a situative behav-
ior description and each Voronoi region corresponds to a place field. Individual data

47

Chapter 3. Learning reactive behaviors

(a) (b)

Figure 3.11: If applied to data representing the paths a player did run during a match
(3.11(a)), Neural Gas clustering will result in a structured set of waypoints which captures
the topology of the corresponding map(3.11(b)).

sets Di can now be separated and distributed among different learners. A exemplary
distribution of Neural Gas neurons in input state space is displayed in Figure 3.10,
a didactic example of clustering the player positions is shown in Figure 3.11. Since
the correct number of Neural Gas neurons for place cell computation is impossi-
ble to guess, we estimate an optimal number through experimental validation. A
detailed analysis follows in the next Section.

In a second step, MLPs are assigned to each subset of training data Di, to learn
the associated behavior for each prototypical situation. The MLPs learn how to map
state vectors st to an appropriate player reaction at(st), this is the same approach
as outlined in Section 3.1.4. Whenever a bot’s reaction to a given situation st has
to be generated, the MLP associated with the best matching Neural Gas cluster will
be selected for behavior generation.

Since we are now dealing with disjoint behaviors that are learned individually,
we should again have a look at feature selection. It is very unlikely for a multitude
of different behaviors to depend on the same state space features to establish a state-
action association. For example, for an aiming behavior, it is obvious that the action
is dependent on the position of an opponent, whereas a movement behavior is more
likely to depend on the map position. For an automatic behavior learning approach,
it would be impossible to select relevant features in advance, since we do not know
anymore which behaviors are learned by which MLP. Therefore, we decided for a
simple variance based approach for feature selection i.e. Karhunen-Loewe transfor-
mation, see for instance [Hastie et al., 2001]. In Karhunen-Loewe transformation, a
number of relevant features is selected based on the variance of data samples. First,
Principal-Component-Analysis (PCA) (see also [Hastie et al., 2001]) is applied to
a data set. Resulting from PCA, the eigenvectors of the covariance matrix of a data
set can be used to project the data to an optimum representation. By using only the

48

3.1. Reactive behaviors as functional mappings onto actions

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2: Neural Gas Clustering

4: MLP training

3: PCA feature selection

4: MLP training

3: PCA feature selection

4: MLP training

3: PCA feature selection

4: MLP training

3: PCA feature selection

1: Record game

Figure 3.12: A simple concept for reactive behavior learning: training samples are first
assigned to prototypical state cluster centres. Then, relevant features are selected using
Karhunen-Loewe transformation, finally coupled MLPs are trained and later used for in-
game synthesis of behavior.

eigenvector with the corresponding largest eigenvalues, the dimensionality of a data
set can be reduced. Selecting relevant features for each learner using Karhunen-
Loewe transformation could indeed improve the overall performance. Effectively,
selecting about 2− 4 features did improve our overall results, where 2− 4 features
usually were able to reconstruct 98% of the complete state vector (the actual number
varies among behaviors). Figure 3.12 visualizes the whole learning approach.

3.1.8 Results

In the following we report on the results of imitation learning using single MLPs,
and the Neural Gas and MLP combination. In three experimental setups we applied
the outlined methods to an imitation learning task in QUAKE II R© . Most impor-
tantly, we were interested in the principal usability of the approach for behavior
acquisition. In addition, we estimated the correct parametrization for (a) Neural
Gas clustering (number of prototypes), (b) MLPs/TDNNs (number of hidden Neu-
rons, number of TDNN timesteps), and (c) number of relevant features for different
behaviors. The number of TDNN timesteps n for a state vector st at t corresponds to
a sequence consisting of the n last state vectors i.e. S = {st, st−1, . . . , st−n}. The

49

Chapter 3. Learning reactive behaviors

NG # MLP # time Etest

cluster Neurons steps
1 4 1 0.388
3 12 1 0.205
9 12 1 0.175
9 16 1 0.202

NG # MLP # time Etest

cluster Neurons steps
1 4 4 0.372
1 16 4 0.263
5 8 4 0.208
9 12 4 0.188

Table 3.1: Experiment 1: MSE on test samples for simple movement behavior. The bold
results indicate the best and worst results from different configurations.

number of relevant features refers to the number of selected features for Karhunen-
Loewe transformation after applying PCA.

Experiment 1: Our first set of training samples showed a player navigating vari-
ous routes on the map "The Edge - q2dm1", and thus implicitly encoded a running
behavior. The demos we used for training contained a total of 2275 state/reaction
vector pairs, our evaluation set contained 975 test samples. As the relevant feature
vectors in st, we decided for agent positions p = [px, py, pz].

Although the Neural Gas is switching between different MLPs, it is not really
switching different behaviors. Every MLP represents the same behavior only that it
is specialized on a certain part of the state space. Increasing the number of Neural
Gas clusters did slightly lower the overall test mean squared error. A single MLP
still showed good performance and was capable of learning the behavior encoded
in the training set. Increasing the number of learners to more than 2 did not lower
our overall results considerably. In addition, the usage of TDNNs could also not
improve the results. Details on the results are presented in Table 3.1 and Figure 3.13.

A visual inspection of the gamebots in-game behavior showed a very good im-
itation of a movement behavior. We did notice a difference when varying the num-
ber of coupled learners, whereas weak performers did end up more often in front
of walls or fell down ledges. We also noticed, despite an appropriate reproduction
of behavior, motion appeared overly smooth. This seems to be a result of the very
good interpolation abilities of MLPs. Instead of performing quick turns at corners
as they were observed in the training data, the agent started a turning maneuver
earlier, and it took him longer to finish it. While the smoothness of motion might
sound like a benefit, it did sometimes lead to a rather artificial appearance, which is
something we intentionally wanted to avoid.

Experiment 2: The second set of training samples showed an aiming behavior.
An overall number of 2059 training samples had to be learned. For evaluation
we used a set of 883 test samples. In contrast to the first experiment, we used

50

3.1. Reactive behaviors as functional mappings onto actions

1 2 3 4 5 6 7 8 9 10

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

M
S

E
 o

n
te

st
 s

et
 fo

r v
ar

ia
bl

e
hi

dd
en

 n
eu

ro
n

nu
m

be
r

number of cluster centres

Figure 3.13: Selected MSEs for the simple-run experiment using different numbers of
state space cluster. Although an increase in cluster numbers (X-Axis) did lead to a lower
MSE, even a single MLP was able to learn the "simple run" behavior.

the opponent position vectors as state descriptors. Detailed results can be seen in
Table 3.2 and Figure 3.14

Increasing the number of NG cluster centres did improve the test MSE. Again,
choosing more than 2-3 cluster did not have significant impact. Interestingly, the
corresponding in-game evaluation showed good aiming behavior for all learners.
Even a single MLP managed to learn the connection between opponent positions
and player viewangles, thus allowing for successfull imitation of an aiming behav-
ior.

As we already mentionend, the temporal context might also be important for
reactive behaviors. We used Time-delay neural networks with a varying number of
past states to consider. For the aiming behavior, we could indeed improve the per-
formance, as Table 3.2 shows. Including a rather short state history (we considered
the last 4 states) resulted in more accurate behavior reproduction for the test data.

Experiment 3: The third experimental set was a combination of samples of ex-
periment 1 and 2. A total of 4334 training samples and 1858 test samples were used.
Relevant features were selected for every learner using Karhunen-Loewe transfor-
mation as described in the last section.

51

Chapter 3. Learning reactive behaviors

1 2 3 4 5 6 7 8 9 10

0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

0.2

0.205

M
S

E
 o

n
te

st
 s

et
 fo

r v
ar

ia
bl

e
hi

dd
en

 n
eu

ro
n

nu
m

be
r

number of cluster centres

Figure 3.14: MSE for the "aiming" experiment using different numbers of state space
cluster.

NG # MLP # time Etest

cluster Neurons steps
1 4 1 0.205
1 16 1 0.184
2 12 1 0.167
7 16 1 0.152

NG # MLP # time Etest

cluster Neurons steps
1 4 4 0.151
4 8 4 0.109
4 12 4 0.097
4 16 4 0.091

Table 3.2: Experiment 2: MSE on test samples for aiming behavior. The bold results
indicate the best and worst results from different configurations.

The best results could been achieved for more than 7 Neural Gas clusters and
coupled MLPs, indicating that behavior learning for multiple behaviors can indeed
be improved using the proposed distributed approach. Online evaluation showed
again some interesting behavior. Due to state space separation and feature selection
the artificial player decides on one active behavior at a time. This means, the agent
is either aiming or moving. Although there are some in-between behaviors they
are only activated in special situations, for instance, the agent starts aiming only
when he is close to a place where the aiming training data was collected, or when
an opponent was very close to him.

Selecting large numbers of Neural Gas cluster centres did not necessarily result
in an increased performance, as can be seen in Figure 3.15 and Table 3.3. The usage
of too many learners suffers from overfitting and a possibly insufficient number of

52

3.1. Reactive behaviors as functional mappings onto actions

1 2 3 4 5 6 7 8 9 10

0.12

0.14

0.16

0.18

0.2

0.22

0.24

M
S

E
 o

n
te

st
 s

et
 fo

r v
ar

ia
bl

e
hi

dd
en

 n
eu

ro
n

nu
m

be
r

number of cluster centres

Figure 3.15: MSE for the combination of movement and aiming behavior using different
numbers of state space cluster and 4 time steps.

NG # MLP # time Etest

cluster Neurons steps
1 4 1 0.231
2 16 1 0.188
7 4 1 0.138
10 16 1 0.122

NG # MLP # time Etest

cluster Neurons steps
2 4 4 0.211
2 16 4 0.1743
5 8 4 0.141
10 8 4 0.1176

Table 3.3: Experiment 3: MSE on test samples for combined aiming and movement be-
havior. The bold results indicate the best and worst results from different configurations.

training samples.

3.1.9 Intermediate conclusion

Although a single MLP is generally able to learn the mentioned behaviors, it showed
problems if there are different behaviors included in the training data. In case of
multiple implicitly encoded behaviors, the divided approach yielded considerably
better performance than the single learner. Moreover, the feature selection using
Karhunen-Loewe transformation showed to be quite usefull. For instance, in the
third experiment an aiming and movement behavior were included in the training
set. The state space separation of the observation data leads to at least two clusters,
one cluster representing the situation when an opponent is in view, the other clus-

53

Chapter 3. Learning reactive behaviors

ter corresponding to situations when no enemy player is visible. The data variance
analysis using Karhunen-Loewe transformation showed that for aiming the vari-
ables describing the opponent were selected, whereas for simple movements, it was
mostly the player positions. Thus feature selection did indeed lead to an improved
performance for the coupled learners (here, we are not comparing the MSEs that are
obviously not comparable as soon as the number of considered features is reduced).

An interpretation of a single learner as a meaningfull behavior, for example a
specialized aiming or jumping MLP, is not possible in all cases. For example, it is
possible that multiple MLPs are responsible for movement behavior and only one
for aiming. Also, there is no direct connection between the number of learners,
implicitly encoded behaviors, and error rates for learning behavior functions. As
a rule of thumb we can say that the more behaviors are implicitly encoded within
the observational data, the more learners are needed to sufficiently represent and
learn the underlying behavioral functions. Also it is interesting to note that an
increase of hidden layer neurons in MLPs couldn’t compensate for too few learners.
Consequently, a modularized architecture seems to be favorable over a monolithic
system.

Following these first results, it is obvious that motion synthesis has to be ex-
panded, as this was one of the major problems in the MLP learning approach.
While the approach leads to a sufficient program level imitation of behavior i.e.
the actions were reproduced successfully, it also leads to a rather artificial action
synthesis. Moreover, more complex actions require rather awkward input of mouse
and keyboard commands. As the MLP generally led to overly smooth motion, these
complex motions showed to be very hard to learn. Consequently, for motion syn-
thesis, we switched to another approach which is directly inspired by movement
generation in biological organisms.

3.2 Bayesian learning of reactive movement behaviors

The question of storage and synthesis of movement commands is a popular topic
in biology and robotics. Recent results indicate that also movements in humans are
very likely not stored as functional mappings, but rather as movement primitives
which provide a less demanding way of movement encoding [Ghahramani, 2000].
A movement primitive is a unit located in a sensorimotormap that projects limb-
trajectories onto motor commands. In the following, we will further outline the
concept of movement primitives, and how they can be used for behavior learning in
virtual agents. First, however, we have to further develop the underlying learning
approach for behavior acquisition.

Here, we make use of a Bayesian framework for behavior learning. Movement
synthesis is dependent on appropriate action selection for a given state vector. As
already suggested in Chapter 2, if we assume the state of an agent at time t given

54

3.2. Bayesian learning of reactive movement behaviors

by st, and the agent’s reaction corresponding to timestep t given by at, then a naive
reactive Bayesian model for estimating the next action is given by:

at+1 = P (ak|st, st−1, . . . , st−n, et, et−1 . . . et−n) (3.10)

Again, we can focus onto the latest observed states when interpreting the model
as truly reactive behavior:

at+1 = argmax
k

P (ak|st, et) (3.11)

where st denotes the game’s state at time-step t, and ak denotes a specific
action. The next action at+1 is selected by picking the action k maximizing
P (ak|st, et). If we neglect environmental influences et, the probability of exe-
cuting a specific action ai can be denoted as

Pai = P (ai|sk) (3.12)

Although this model considerably simplifies equation 3.10, it should be accurate
for short-term relevant actions as intended by reactive behavior learning. However,
in a sequence of actions, not every action can be executed as a successor of another
one. Also, on the one hand humans tend to move in a smooth way, at least com-
pared to what would be possible for an artificial player. On the other hand, humans
are bound to physical limitations of their hand motion, besides, some players might
have certain habits, they tend to jump for no reason or make other kinds of use-
less, yet very human movements (as Chapter .6 will show, these are indeed very
important to create a human-like agent impression). To reflect those aspects, the
probability of executing an action ai as a successor of a at should be incorporated.
It can be denoted as

Pai = P (ai|at) (3.13)

Assuming the conditional probabilities at and sk are independent (the current
state should only influence the next action), the next action can be selected accord-
ing to:

at+1 = argmax
i

P (ai|st,at) = argmax
i

P (ai|at)P (ai|st)
P (ai)

(3.14)

In order to extract the required priors from human observation data, we first
need an appropriate representation for states and action data {si,ai}. The repre-
sentants should be suited for generating the desired motion sequences. Regarding
state descriptors, we further extend the model of situation aware learners proposed
in Section 3.1.5 by first deriving a topological state representation. For action rep-
resentants, we make use of the already mentioned movement primitive concept.

55

Chapter 3. Learning reactive behaviors

Figure 3.16: A simple map and its possible corresponding topological representation. The
dashed green lines are only have didactic purpose, nodes are not interconnected.

3.2.1 Learning a topological representation

Again, the chosen state representation is inspired by biological place cells. For a
representation of the virtual world we are learning a topology using a Neural Gas
algorithm which we already explained in Section 3.1.6. Here, the training data used
for Neural Gas learning consists of all locations p = {x, y, z} a human player vis-
ited during various plan executions. Application of a Neural Gas algorithm to the
player’s positions results in a number of prototypical positions. Since we focus,
in this Section, on action synthesis of complex moves, it is important to mention
that the prototypical positions are implicitly interconnected by the player’s actions.
However, for this approach, we do not need the toplogical structure of the proto-
types given by the Neural Gas edge learning. Figure 3.16 shows a small map and its
corresponding topological representation, edges were only drawn for clarification
reasons. In contrast to place cell structures learned in the Section 3.1.5, we found
that for a probabilistic approach a much finer graining is needed. This effectively
results in more accurate representations of player positions, and thereby also of the
map’s structure.

By assigning training samples of recorded player actions to cluster centres in
the topological map, similar to the approach in section 3.1.5, small sets of localized
training samples are generated. Each separated training set defines the legal actions
for a specific region, not only in the topological map, but also in the simulated 3D
world.

56

3.2. Bayesian learning of reactive movement behaviors

The storage and organization of movement in biological organisms is an ex-
tremely complex task. When viewing it as a control problem, the motor sys-
tem receives thousands of sensory inputs to effectively control hundreds of motor
units [Wolpert et al., 2001]. The sheer number of muscles within an organisms
body leads to an unmanageable number of degrees of freedom. An example by
Wolpert et al. [2001] illustrates the problem as follows: ".. consider the 600 or
so muscles in the human body as being, for extreme simplicity either contracted
or relaxed. This leads to 2600 possible motor activation patterns, more than the
number of atoms in the known universe“.
Obviously, animals and humans are still able to internally deal with the challeng-
ing task of motor representation. Instead of directly controlling motor activation
commands, recent results indicate that complex movements are the outcome of a
combination of movement primitives [Ghahramani, 2000]. A movement primitive
is in this context a computational element in a sensorimotormap that transforms
desired limb-trajectories into actual motor commands [Thoroughman and Shad-
mehr, 2000]. For instance, [Fod et al., 2002] interpreted this concept in a compu-
tational approach, by linear superposition of primitive motor commands. As they
noted, movement primitives can be interpreted as a basis set of motor commands.
Superposition of these can finally lead to complex movements.
[Fod et al., 2002] further introduced action primitives which instantiate certain
motor commands, and thus denote a specific superposition of movement primi-
tives. Interestingly, recent findings in modern sport-psychology suggested basic
action concepts [Schack, 2004, Schack and Mechsner, 2006] as a way for inter-
nally structuring complex movements. Basic action concepts denote a characteris-
tical motor unit within a sequence of complex movement patterns. Although basic
action concepts are introduced in a different context, they come very close to the
concept of action primitives.
The images show an interpretation of basic action concepts (or action primitives)
in the context of QUAKE II R© by visualizing prototypical action units. Red arrows
denote the view direction, green arrows the movement direction.

Figure 3.17: Movement primitives in humans

57

Chapter 3. Learning reactive behaviors

3.2.2 Extracting movement primitives from observation data

Evidence form neuroscience indicates that complex movements in humans and
animals are built up by combinations of simpler motor or movement primitives
[Ghahramani, 2000]. Thus, for a more life-like appearance of a computer game
character’s motion, a biological approach utilizing movement primitives seems
promising. In Figure 3.17 we summarize a little background information on how
movement is encoded in biological organisms, and possibly artificial agents might
work.

In our experimental environment, an action of a player usually comes down to
a 7 dimensional vector. In contrast to the actions in the MLP learning, we decided
to also include a fire action. This was necessary in order to learn complex moves
such as the rocket jump:

a =





yaw angle
yaw anglesign

pitch angle
velocity forward

velocity side
velocity up
player fire





A motion vector completely defines an action the player executed2. To iden-
tify the underlying set of basic movement-primitives, we apply a variance based
approach, Principal-Component-Analysis (PCA) (see for instance Hastie et al.
[2001]). PCA is applied to the training samples, the resulting eigenvectors e pro-
vide the elementary movements of which a motion vector can be constructed. No
dimension reduction is applied at this stage, PCA is simply used for computing an
optimal representation. Thereby a projection of the observed motion vectors onto
the eigenvectors can be viewed as a reconstruction of player movements by their
movement primitives. Although dimensionality reduction might be possible, it is
not needed due to the low dimensionality of motion vectors. Formally, PCA does
not change the data and is merely a rotation. Thus, it is also not required at this
stage. We simply included it to explain the connection to the biological movement
primitives.

Frequently executed player movements can be grouped to gain action primi-
tives. To acquire a set of action primitives, the projected motion vectors are clus-
tered using a k-means vector quantization algorithm (for a good introduction to

2A motion vector corresponds to a human player’s mouse and keyboard inputs. While we effec-
tively only see the outcome in the virtual world, we have to keep this in mind. We are, after all,
modelling human motion - though more likely hand motion. These motion vectors can be directly
send to a server, no further mapping on agent motor commands is needed.

58

3.2. Bayesian learning of reactive movement behaviors

k-means we recommend Hastie et al. [2001] 3, thereby staying close to the action
primitive derivation suggested in [Fod et al., 2002]. This results in a set of cluster
centers, each of which represents a single action unit or action primitive.

The number of action primitives does have an influence on the overall smooth-
ness of the learned motion sequences. The right number of cluster centers depends
on the number of training samples and on the variety of observed motions. How-
ever, the representation of a large number of training samples could not be further
improved by choosing a higher number of cluster centres. Instead, we found sub-
stantial overfitting when increasing the number of primitives over a certain value.
This indicates that there might be a fixed number of action primitives which guar-
antees a smooth execution of motion sequences. A detailed analysis follows in the
next Section.

3.2.3 Results

To test the presented approach, we carried out a set of eight smaller experiments.
Each experiment dealt with a separate training sample set, in which (at times) com-
plicated movement sequences were executed several times by a human player. The
observable motions varied from simple ground movements to more complex jump-
ing or shooting maneuvers (or combinations of both). In addition, a larger training
set, this time a real match between two human players, was used. Here, we decided
for a different set of behaviors as in the MLP learning approach. Using the prob-
abilistic approach, numerous different behaviors can be learned, especially more
complex movements and motions.

The acquisition of the priors (see again Equation 3.14) needed for action syn-
thesis is relatively simple. Each movement vector can be assigned to a node in the
topological representation and it can be assigned to an action primitive. Counting
the evidences of action primitives in all nodes results in a m × n matrix, where m
denotes the number of nodes in the topological map and n denotes the number of
action primitives. A matrix entry at position k, i denotes the probability P (ai|sk)
of executing an action primitive ai for node number k. The probabilities can be
extracted from the training samples by inspecting the observed action primitive se-
quence, resulting in a n × n transition matrix, where n denotes the number of ac-
tion primitives. The probabilities for P (au|al) are calculated and stored in a similar
fashion.

When placed in the game world, the next action for the artificial game character
is chosen randomly using a roulette wheel selection according to the probabilities
for each ai in Equation 3.14, or by selection the action ai corresponding to

3 We decided to skip a more detailed explanation of the k-means algorithm because of the similar-
ities to the already introduced Neural Gas algorithm. By restricting the attraction of neighboring units
in the Neural Gas algorithm, we could effectively extract a similar clustering as by using k-means,
since the algorithms are then almost identical.

59

Chapter 3. Learning reactive behaviors

NG # action Etest

cluster primitives
5 10 0.6096
30 30 0.2709
30 70 0.3618
5 80 0.7314

NG # action Etest

cluster primitives
5 10 0.1109

30 30 0.0639
30 70 0.0610
5 80 0.1590

Table 3.4: MSE results on rocket (left) and a longer run with a long jump. MSE results
are not really comparable, due to the different complexity in observed behaviors in both
cases. The right table shows results of a longer movement sequence, where walking in one
direction was dominant, thus, leading to a rather low MSE.

Figure 3.18: The artificial game character, observed while executing one of the experiment
movements - a jump to an otherwise unreachable item

at+1 = argmax
i

P (ai|at)P (ai|st)
P (ai)

(3.15)

For evaluation, since we are still dealing with reactive behavior, we calculate
the mean squared errors on test sets. In all tests, we excluded 40% of training data,
and used it for evaluation. MSEs are calculated as follows:

Ed =
1
n

n∑

i=1

(adesired
i − at+1)2 (3.16)

where at+1 is the outcome of Equation 3.15, or selected via a roulette wheel se-
lection. For in-game movement synthesis, we usually preferred the roulette wheel
selection. For MSE calculation we usually used the argmaxi for the probabilities
for each ai. Table 3.4 summarizes MSE results for learning the rocket jump, and
for a longer movement sequence. Generally, all movement sequences were learned
sufficiently, when considering the optimum parametrization for each individual ex-
periment. Since the MSE tables, and graphs, are rather similar, we decided to only
include the more interesting behaviors.

Additionally, we decided to evaluate based on generated movement trajectories,
and based on visual inspection of synthesized behaviors. In the experiments, we

60

3.2. Bayesian learning of reactive movement behaviors

0.18
0.2

0.22
0.24

0.26
0.28

0.3

0.240.260.280.30.320.340.360.380.40.42

0.195

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

(a)

0.3

0.35

0.4
−0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1

0.164

0.166

0.168

0.17

0.172

0.174

0.176

0.178

(b)

Figure 3.19: Comparison of the artificial player’s (blue) movement trajectories in 3D and
the trajectories of a human player (red). Figure 3.19(a) shows a combination of different
jumps to reach an item located on a platform. Figure 3.19(b) shows a repeated jump through
a window.

were interested in finding sufficient numbers of action primitives for each test set,
and sufficient number of situation prototypes.

Generally, the approach managed to learn and imitate the observed behaviors.
Even complicated actions, for instance, the already mentioned rocket jump, could
be learned and synthesized correctly. Occasionally, in other movement behaviors,
the agent ran into a wall and stopped moving. However, this appeared to be the
exception. The agent does not have a direct sensing of obstacles which is clearly a
disadvantage when dealing with narrow hallways or obstacles.

Although staying very close to the training set movements, an exact repro-
duction almost never occurred because of the randomness in sequence generation.
While this might seem like a disadvantage, it definitely adds to a more human-like
impression. Despite the random action selection mechanism, the synthesized be-
haviors can be easily identified as the observed behavioral patterns, indicating that
the agent indeed imitates human behavior. Figure 3.19 and Figure 3.20 show the
trajectories of the artificial player compared to a human test player in 3D. How-
ever, not staying as close as possible to the human observation data can have some
disadvantages, as already mentioned.

Regarding the number of place cells, we found that this is indeed very much
dependent on the actual map size, and on the complexity of a certain movement.
To sufficiently cover an average sized map, we found that a number of 600 − 800
prototypes is needed. However, since this also very much depends on the map’s
architecture, usually, a sufficient number of prototypes has to be selected manually.

Regarding the number of action primitives, the results are more interesting. Fig-
ure 3.21 the influence of number of action primitives on the MSE. What we usually

61

Chapter 3. Learning reactive behaviors

0.2
0.25

0.3
0.35

0.4

0.050.10.150.20.250.3
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

(a)

0.3
0.35

0.4
0.45

0.5
0.12

0.14
0.16

0.18
0.2

0.22
0.24

0.1

0.11

0.12

0.13

0.14

0.15

(b)

Figure 3.20: Comparison of the artificial player’s (blue) movement trajectories in 3D and
the trajectories of a human player (red). The experiment underlying Figure 3.20(a) con-
tained an elevator usage and a long jump to a platform. While Figure 3.20(b) displays the
trajectories extracted from the experimental results illustrated in Figure 3.18

find is a minimum number of action primitives for optimal results, for each sample
set. In the case of only a rocket jump, 30 − 50 action primitives appear sufficient.
Although the amount of training data and observed motion complexity have a huge
influence, even larger training sample sets, or more complex moves, showed a sim-
ilar characteristic. This can be seen in Figure 3.2.3, where a more complex training
set was used (2 players fight each other). In that example we used 11768 train-
ing samples and 5044 test samples (QUAKE II R© records the training data at a rate
of 10Hz), and still could find that a rather low number of action primitives was
sufficient (about 80 − 120). Moreover, increasing the number of primitives above
approx. 200 did lead to worse results, and did also not improve the overall smooth-
ness of motion synthesis (at least not to a degree that is noticeable for a human
observer). This indicates that a there might be a fixed number of action primitives
that guarantees appropriate movement generation.

Besides the basic reconstruction of certain movements, the artificial player’s
motions themselves, his way of turning, jumping and running, were naturally look-
ing, thus creating the illusion of a human player (this applies to motion, not the
tactical/strategic decisions).

The more realistic training set, two human players competing on a smaller map,
finally resulted in a very good imitation of a broader repertoire of a human player’s
motion, indicating, that our approach is suitable for larger scale problems. The
strong coupling between the game characters position in the topological represen-
tation and the selection of motion primitives made the character appear smart, by
acting in an appropriate way to the architecture of the 3D game world - jumping

62

3.3. Summary

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M
SE

 o
n

te
st

 s
et

 fo
r v

ar
ia

bl
e

clu
st

er
 s

ize

number of action primitives

Figure 3.21: MSE for the synthesis of a rocket-jump under varying number of movement
primitives and varying number of state cluster. The horizontal axis denotes number of
primitives.

over cliffs or standing still when using an elevator. In addition, the approach pre-
served certain player habits by (in one case) executing senseless jumps from time to
time. Since no information about the enemy player was introduced during live play,
some kind of shadow fighting could be observed, as if an enemy would be present
(approaches in the next Chapter will take the opponent position into account).

3.3 Summary

Reactive behaviors represent the most basic behaviors, usually immediate reactions
on sensory input data. In our computer game test environment, this comes down to
basic movements, but also aiming behavior. In this chapter we outlined approaches
in mimicking reactive behaviors in artificial agents. Given the basic model dis-
cussed in the first chapters of this thesis, we explored a functional and a probabilistic
approach on imitating these behaviors.

For the function approximation, a Multi-layer Perceptron (MLP) serves as a
simple universal function approximator. One MLP was trained using the observa-
tional data of a human player performing specific behaviors. To account for multiple
behavior included in the observational data, we extended the approach to multiple
MLPs where the training samples are first partitioned using a Neural Gas vector

63

Chapter 3. Learning reactive behaviors

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

0.7

M
SE

 o
n

te
st

 s
et

 fo
r v

ar
ia

bl
e

clu
st

er
 s

ize

number of action primitives

[Rocketjump results on varying cluster numbers] MSE for varying action primitive
cluster numbers on the map q2dm1.

quantization algorithm, afterwards a single MLP is trained on each individual set.
The rough categorization of training data is similar to concepts in spatial orientation
in biological organisms, so called place cells. Thereby, multiple specialized MLPs
are responsible for creating the overall agent’s behavior. The divided approach fi-
nally managed to learn multiple behaviors at once, and could sufficiently synthesize
actions for novel situations. We also used Time-delay neural networks (TDNN) to
account for temporal dependencies. These managed to gain better results for certain
behaviors.

In the probabilistic approach, we introduced the concept of movement primitives
within the learning in games domain. In detail, we first derived action primitives
(action units) by k-means clustering over all observed player actions. Here, we con-
structed action units by a superposition of movement primitives, in our case move-
ment primitives are the result of an application of PCA to motion observations. The
movement and action primitives are inspired by the recently discovered concepts
in animals and humans. Then we clustered player positions to extract a topolog-
ical world representation, similar to the place cell inspired approach in the MLP
learning. Based on movement observations, we derived action primitive probabil-
ities dependent on nodes within the topological map, thereby realizing a situation
aware selection of action units. In addition, we introduced a dependency on the last
executed action primitive to reflect physical limitations in a human player’s input
(usually mouse and keyboard) devices. This approach led to a sufficient reproduc-

64

3.3. Summary

tion of more complex moves. Moreover, the appearance of the game bot was very
close to a human player.

In general, both approaches were able to learn and generate behavior. Al-
though the MLP based approach worked well for movement and aiming behaviors,
it clearly lacked a life-like appearance in movement generation. In contrast, the
probabilistic approach showed a very realistic, life-like generation of movement or
motion behavior, where even complex moves consisting of sequential execution of
action units could be learned. Evaluation is an important topic for mimicking of
behavior. The question when a behavior is learned correctly is not easy to answer.
In our experiments, we could see that it is not always a low mean squared error
with respect to test data samples that guarantees a successful and realistic behavior
synthesis. Although the MLP based learning lead to a sufficient approximation of
training data, the action synthesis tended to look artificial. It can be far more im-
portant to directly inspect the behavior success rates, and the overall appearance of
the generated behavior for novel situations.

65

Chapter 4

Learning tactical behaviors

While strategic or reactive behaviors can be expressed in a rather straight forward
manner, for instance, strategic behaviors implement a goal-attainment behavior, this
is not as intuitive for tactical behaviors.

According to our definition in Section 2.4.2, tactics are behaviors in between
reactive and strategic behavior. The main problem in tactical behaviors is due to
the shire number of possible behaviors to consider; a huge amount of different be-
haviors is imaginable. Due to the versatility in behavior, a single approach learning
all of these behaviors is unrealistic. In FPS games, tactical behaviors can be often
found in direct player vs. player interactions. Consequently, we decided to approach
imitation learning of tactics for a few exemplary behaviors i.e. behaviors needed for
intelligent player-opponent interactions. Given the rather specialized tasks, the un-
derlying approaches are summarized more briefly, in contrast to the methods for
learning reactive or strategic behavior.

Parts of the work in this chapter were published in [Bauckhage and Thurau,
2004] and [Thurau and Bauckhage, 2005].

4.1 Learning tactical situation handling

For the first approach we consider tactical weapon handling. This is, in the case
of QUAKE II R© , situation dependent weapon selection and weapon specific aiming
behavior. In the last Chapter, a Multi-layer Perceptron (MLP) based approach suf-
ficiently learned an aiming behavior from human observation data. Notably, the
learned aiming behavior did not consider the used weapon. As already mentioned
in Section 2.4.2, all available weapons behave differently. Therefore, a single aim-
ing behavior can not produce sufficient results for all supplied weapons. Besides
successfull aiming, the problem of appropriate weapon selection arises. Weapons
do not only behave differently, they also have different purposes. Therefore, we
can not only focus on weapon handling alone, but also have to consider situation

67

Chapter 4. Learning tactical behaviors

Σ
g1

g2

gn

Expert 2 Expert n

Gating Network

Expert 1

y1 y2 yn

y

x

Figure 4.1: A mixture of experts architecture consists of a set of expert networks and
a gating network. Given an input x, the output y of the system is computed as the sum
y =

∑
j gj(x)yj(x).

dependent weapon selection.
Following the positive results for learning reactive behaviors using MLPs, in

the following, we elaborate a learning approach consisting of multiple MLPs. For
learning an aiming behavior, these are combined in a Mixture of Experts (MOE)
architecture [Jacobs et al., 1991]. This approach is similar to the already intro-
duced combination of MLPs using a topological structure. Both approaches try to
make a complex learning problem feasible by partitioning training data in the corre-
sponding state space. In contrast to the place cell approach, the Mixture of Experts
provide a soft partitioning of the training data. This means that the samples are not
divided based on a clustering in state space, instead, they are divided based on the
actual approximation quality of each individual expert. The output is, instead of
the winner takes all selection of the place cell approach, a weighted sum of outputs
of each expert. In addition, for learning the situation dependent weapon switching,
we are applying a simple Time-delay neural network(TDNN). Before coming to the
details of our implementation, we first briefly introduce the MOE architecture in the
next Section.

4.1.1 Mixture of Experts

As introduced in Section 3.1.1, given a training set of pairs of vectors {(xi,yi)}
where yi = f(xi), a MLP can solve the regression problem by learning a function
g that approximates f through minimizing the sum of errors

68

4.1. Learning tactical situation handling

E =
1
N

N∑

i=1

(yi − g(xi))2 (4.1)

However, as we could see in the last Chapter, a single MLP is not in all cases
able to sufficiently approximate the underlying function. Especially, for different
tasks to be learned at the same time we can expect interferences. The MOE ap-
proach as introduced by Jacobs et al. [1991] tackles this problem by means of a
divide and conquer strategy. Instead of fitting a single function into the training
data, it uses a mixture of local experts which are moderated by a gating network.
As shown in Figure 4.1, the basic idea of the MOE technique is to compute the vec-
tor y as a weighted sum of outputs produced by n expert networks. Given a vector
x, the corresponding y thus results from

y = F (x) =
n∑

j=1

gj(x)fj(x) (4.2)

where gj(x) denotes the weighting for each expert i, dependent on the input
signal x. Learning in a MOE network is equal to finding appropriate parameters for
the experts and the gating network. Assuming MLPs for the local experts and the
gating network, the corresponding weights Wi for each learning structure need to
be adapted. It is common to require

∑
j gj = 1 which can be realized by assuming

the gj to be soft-max functions of the output layer values sj of the gating network:

gj(x) =
esj(x)

∑
k esk(x)

(4.3)

Apparently, this suggests a probability interpretation of the weights gj . The
naive approach for estimating the parameters would be, to minimize the error func-
tion E

E =
1
N

N∑

i=1

(yi − F (xi))2 (4.4)

by, for instance, a gradient descend. However, more sophisticated approaches
for estimating the parameters include usage of the expectation maximization (EM)
method (see for instance [Dempster et al., 1977], or [Rao et al., 1997]). Note that
a MOE model simultaneously learns a segmentation of the input space and the
mappings from the segments to the output space. Unlike clustering techniques like
the Neural Gas algorithm, the MOE approach yields a soft partition of the input
space. Finally, extensions to hierarchical MOE models are possible where each
expert itself consists of a mixture of experts.

69

Chapter 4. Learning tactical behaviors

4.1.2 Context aware weapon handling

(a) Targeting its expected position . . . (b) . . . an sending the missile there . . .

(c) . . . will most likely hit the opponent.

Figure 4.2: Example of experienced handling of the QUAKE II R© rocket launcher. In
contrast to the ’direct hit’ weapons in the arsenal, rockets are relatively slow. This requires
to anticipate the opponent’s movement and to target its expected rather than its current
position. A gamebot will have to reproduce this behavior in order to appear life-like.

In a series of experiments, we examined whether a Mixture of Experts architec-
ture can learn human-like handling of different weapons in QUAKE II R© . Thereby,
we focused on a subset of three weapons and considered the blaster, the rocket
launcher and the railgun. As already mentioned in Section 2.4.2, these weapons
do have different characteristics. The railgun is very accurate at long-distances, but
comes with a considerable recharge delay. The rocket launcher is more intended
for mid-distance combat. Human players avoid its use in close combat because the
splash of rockets can cause harm to oneself. The blaster is a handgun with a high
bullet frequency suited for close combat. According to their characteristics, these
weapons are typically used in different (spatial) contexts. However, their use does
not only differ with respect to the distance to an enemy player; their ballistics vary
as well. This requires to add anticipation to the handling of the rocket launcher,
as is exemplified in Figure 4.2, instead of directly targeting their opponents, ex-

70

4.1. Learning tactical situation handling

training pre-trained # hidden
ETRAIN ETESTmethod experts neurons

∇θL no 4 0.01318 0.01280
EM no 4 0.01332 0.01293
EM no 7 0.01125 0.01133
EM yes 7 0.01153 0.01167

Table 4.1: Results in learning human-like aiming behavior using a Mixture of Experts
architecture.

perienced players fire rockets towards a location where their adversaries will most
likely appear in a few moments.

4.1.3 Results

The training data consisted of different sequences where each weapon specific aim-
ing behavior could been observed for a few minutes. For the blaster, 3651 frames
were recorded, for the rocket launcher we obtained 5641 frames and for the railgun
8378 frames. The recorded demos perfectly reflected the recharging times of the
considered weapons. While for the blaster the ratio of frames where the player fired
a shot to the total number of frames was approximately 3/4, for the railgun it was
about a mere 2/7 on average.

The data that was extracted from this demos consisted of pairs
{ai, si} where the state vectors si ∈ 6 encoded the spatial angle
{opponent yaw, opponent pitch} ∈ [−180, 180], and the distance between
the player and its opponent {opponent distance} ∈ [0, 2000] as well as the current
activated weapon indicated by a flag {rail gun,blaster,rocket launcher} ∈ [0, 1].
For the experiments, we used a short state history i.e. the last 5 state vectors
were considered, in the case of QUAKE II R© , this corresponds to a period of 0.4
seconds. Effectively, resulting in a 25 dimensional state vector, consisting of
sβ = [sα

t , sα
t−∆t, . . . , s

α
t−4∆t].

The action vectors a ∈ R7 consist of a flag indicating whether to shoot or
not ∈ [0, 1], and a corresponding target viewangle {yaw angle, pitch angle} ∈
[−180, 180].

Weapon handling consists of weapon selection and aiming. Since weapon selec-
tion and aiming are in fact completely different behaviors, we decoupled the, and
learned them individually. Thus, the task of imitating weapon handling becomes
easier. It showed that weapon selection can be implemented in a straight forward
manner by using TDNNs. Effectively, weapon selection seemed to be mostly based
on the distance of an opponent. Since we used TDNNs in the already introduced
reactive behavior learning in Section 3.1, we decided to not include further details

71

Chapter 4. Learning tactical behaviors

about this approach. However, the output of the TDNN, a binary output vector
aw ∈ 3,aw = [rail gun, blaster, rocket launcher] ∈ [0, 1] consisted of flags indi-
cating the type of weapon to be used, and is used as an input vector for the MOEs,
responsible for an aiming behavior. Learning appropriate aiming seems to be the
harder problem though.

For learning weapon handling, we experimented with a MOE architecture of
three experts and a gating network. The gate was chosen to have 10 hidden neurons,
the experts were tested with 4 and 7 hidden neurons, respectively. Training was
done in 5000 epochs using gradient descend or the EM algorithm. For the sake of
comparison, we also tested an architecture where the three expert networks were
pre-trained, one for each weapon, and the gate was subsequently trained to select
the most appropriate expert.

An in-game examination of the resulting network architectures showed game-
bots that were able to produce the desired behavior. Using the TDNN for weapon
selection, if the opponent was close, the bots selected the blaster, in mid-distance
combat they referred to the rocket launcher and for long-distance fights they used
the railgun. Relying on the MOE architecture, the bots reproduced the aiming be-
havior contained in the demos. When using the blaster or the railgun they directly
targeted their enemies; when using the rocket launcher they ’predicted’ their adver-
saries trajectory and fired accordingly. Finally, the shooting frequencies character-
istic for the different weapons were learned as well.

Table 4.1 displays some of the results we obtained from an offline evaluation.
Obviously, the architectures with expert networks with 7 hidden neurons perform
better even though, compared to the ones with 4 hidden neurons, the gain is small.
What is noticeable, is that the difference between training error and test error is
small in every case; this backs the above observation of a good reproduction of the
behavior encoded in the training material. However, for the evaluation, the in-game
synthesis of behavior seemed to be more important.

4.2 Bayesian learning of tactical movement behavior

As already mentionend, tactical movements are usually found in 1 vs. 1 interactions
of players. For example, players try to evade the direct focus of an opponent, or they
try to gain an advantage by moving around an opponent and keeping him in their
field of view. The latter, a so called circle-strafe behavior, is illustrated in Figure 4.3.

In Chapter 3, we introduced the concepts of biologically motivated movement
synthesis using movement and action primitives. These very promising results led
to the assumption that these concepts are also applicable in the context of tactical
movement imitation. Notably, the situation for synthesis of tactical moves is con-
siderably different than for environment dependent reactive behaviors. As we will
see, the representation of the spatial relations of the player and opponent are crucial.

72

4.2. Bayesian learning of tactical movement behavior

(a) (b)

(c)

Figure 4.3: The circle strafe maneuver: the player circles around the opponent while
keeping him in focus.

73

Chapter 4. Learning tactical behaviors

Following Chapter 3, a probabilistic expression for choosing an action ai at
timestep t + 1 can be stated as follows:

at+1 = argmax
j

P (aj |st, st−1, . . . , st−n, et, et−1 . . . et−n) (4.5)

where st denotes the state at timestep t, and et denotes environmental influences
at t. For reactive behaviors, we restated Equation 4.5 to only consider states at the
latest observed state st. Although we are dealing with tactics, we decided to also
restrict the number of states to take into account. Here, the meaning of tactical
behavior is not grounded in the assumption of depending on a longer state-history
than reactive behaviors. It is only dependent on a meaningful interpretation as a
tactic behavior. While this is, as already noted, rather subjective, the movement
behaviors we intend to learn in this Chapter are still considerably different than
the reactive movements introduced in Chapter 3. However, implicitly a temporal
dependency is included in the representation of states which will be introduced in
the next Section.

By assuming the behaviors to be dependent solely on the states at timestep t,
and by neglecting environmental influences, we can restate Equation 4.5 as follows:

at+1 = argmax
k

P (ak|st) (4.6)

Probably the most important features for describing tactical movement behav-
ior in 1 vs. 1 situations are the positions of the two involved players. Based on the
relative positions to each other, the players will decide about their next action. For
instance, if they come too close, they will most probably back off, whereas if they
are in a good shooting distance (which then usually applies to both players), the
players are very likely to perform circle strafes or other dodging behaviors. Thus,
tactical movements are mostly dependent on the current state of the player sp

t , and
the state of the opponent so

t . Besides, since we again aim at life-like imitation of
motion, we have a dependency on the latest executed action at, as already intro-
duced in Section 3.2. Therefore, we will substitute the state vector st by a triple of
player and opponent state vectors, and past action vectors (sp

t , so
t ,at):

at+1 = argmax
k

P (ak|sp
t , s

o
t ,at) (4.7)

by assuming independence of past actions at and states sp
t , so

t , the action selec-
tion probabilities can be restated as follows:

at+1 = argmax
k

P (ak|sp
t , so

t)P (ak|at)
P (ak)

(4.8)

where both P (ak|sp
t , se

t) and P (at|ak) can be estimated from observations of

74

4.2. Bayesian learning of tactical movement behavior

Figure 4.4: For a usable representation the player positions are transformed into the same
canonical coordinate system, which captures the essentials of both pictures: despite the
shift in viewangles both situations show an opponent standing in front of the player.

human players. The next Sections will provide details concerning the states and
actions used in our implementation.

4.2.1 Canonical state representations

Using 3D player coordinates as a feature for behavior learning does not allow for
recognizing behaviors that are independent of their environment. This is simply
because the same underlying behavior might generate different trajectories in the
3D space. Therefore, for behaviors that are not dependent on the environment, an
appropriate, invariant representation is needed.

In [Sukthankar and Sycara, 2005], an approach for classification of behaviors
in the game UNREAL TOURNAMENT R© was presented. In order to achieve a rota-
tionally and translationally invariant representation of player positions, the player
positions were centered around their overall mean and rotated according to the prin-
cipal axis of the positions within a certain time window. In our work, we make use
of this idea and apply Principal Component Analysis (PCA) to sequences of player
and opponent positions, similar to an approach we recently applied to classifying

75

Chapter 4. Learning tactical behaviors

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(a)

−0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

(b)

Figure 4.5: Tactical waypoint maps: (4.5(a)) the red marked nodes are positions usually
occupied by the observed player, while the blue marked nodes are usually occupied by an
enemy player. (4.5(b)) The red path shows a path of the observed player, the blue the path
of an opponent.

team behavior in sports computer games [Thurau et al., 2006].
Given a set of observed player positions P = [pp

1,p
p
2, . . . ,p

p
n] and opponent

positions Po = [po
1,p

o
2, . . . ,p

o
n],po

i , where po
i = [px, py, pz],∈ 3 and po

i =
[ox, oy, oz],∈ 3, we can derive a canonical representation by rotating the vectors
according to the resulting eigenvectors of the matrices Ai with

Ai =
1

2fs

k=i+fs∑

k=i

(pp
k − µi)(pp

k − µi)T + (po
k − µi)(po

k − µi)T (4.9)

where fs denotes the framesize, and µi denotes the centroid of the positions
of a frame i. The eigenvectors of the covariances Ai can now be used to represent
the positions in a canonical coordinate system. This can be done by a rotation,
according to

pc
i = BT

i (pi − µi) (4.10)

where Bi are the eigenvectors of Ai, and pc
i denotes the resulting canonical

representation of the original state vector pi at timestep i. Transforming all training
vectors results in a map independent representation of player and opponent state
vectors, with the principal axis usually aligned along the displacement between the
player and opponent positions. However, we should make sure that either player or
opponent positions are usually projected on the same “side” of the resulting repre-
sentation (see also Figure 4.5), which can be achieved by an inverting the eigenvec-
tors Bi, in case the positions are projected on the wrong side.

The framesize fs considerably influences the appearance of the canonical repre-

76

4.2. Bayesian learning of tactical movement behavior

sentation: too high a value might lead to a mere rotation of the original coordinate
system, too low a value might result in (unintended) dimensionality reduction by
aligning position vectors along their displacement axis. We found that values of
10-15 for fs provide sufficient results, and still allow for fast computations of the
projection needed in live games. This holds for a variety of game genres, see for
instance Thurau et al. [2006]. Interestingly, the rotation in the canonical reference
frame manages to capture the dynamics in the player-opponent interactions. For ex-
ample, if the two players are not moving at all for fs gametics, they will be aligned
along their displacement axis.

Representing the player positions in angular positions would have been an al-
ternative to the canonical representation. However, considering the canonical rep-
resentation allows us to again apply the concept of biological place cells. There-
fore, we extract prototypical state vectors from the training samples. As usual, this
can be achieved by applying a Neural Gas algorithm to the rotated representations.
The resulting prototypical player and enemy positions S = [s1, . . . , sm] can be
interpreted as tactical place cells or a tactical waypoint map. Understanding the
resulting position prototypes as a tactical waypoint map implies that we can project
player and enemy positions to specific waypoint nodes using a nearest neighbor
criterion, resulting in sequences of prototypical positions Sp = [sp

1, . . . , s
p
n], and

So = [so
1, . . . , s

o
n] respectively.

4.2.2 Tactical movement primitives

As already introduced in Section 3.2.2, we characterized player actions using ac-
tion primitives. Again, following [Fod et al., 2002], these are extracted from the
observation data using k-means clustering. For the experiments described later on,
we decided to use a simplified selection of actions and describe an action ai as:

a =




yaw angle

forward velocity
sideward velocity





where the player’s viewangle is represented by yaw angle ∈ [−180◦, 180◦],
the player’s velocity is represented by vforward = ∆sforward/∆t,∈ [−400, 400], and
vsideward = ∆sside/∆t,∈ [−400, 400]. Clustering of actions results in a set of action
primitives, similar to the approach outlined in Section 3.2. For the considered be-
havior, we experienced sufficient results, and smooth artificial player movements,
when using approximately 100− 140 action primitives. To interpret the movement
primitives in conjunction with the tactical waypoint map, we have to rotate them
according to the rotation already applied to the state vectors. Thereby, actions, too
are invariant to different orientations of the recorded players.

77

Chapter 4. Learning tactical behaviors

Figure 4.6: While aiming the artificial player moves from left to right.

4.2.3 Results

Given these preconditions, the final probabilities for action ai in P (ai|so
t , so

t ,at)
(see also equation 4.8) can be estimated in a straight forward manner by analyzing
recorded demo files of human players. In a live game, at every time step t, based
on the player and opponent positions mapped on the place cell structure sp

t ,so
t , and

the last selected action at+1, we have estimates for selecting the next action at+1

(again, we could also select the next action based on a roulette wheel selection):

at+1 = argmax
k

P (ak|sp
t , so

t)P (ak|at)
P (ak)

(4.11)

For verification of the given approach, we conducted one larger experiment. For
this, we used training samples from a real 1 vs. 1 match of two human players.
The map consisted of only one room where the players could pick up one weapon.
Obviously, the recorded behaviors are more focused on tactical movements than on,
for example, strategic item pickups. Having only one available item does not allow
for sophisticated strategies.

From observing the players’ behavior, we could spot a few dominant move-
ments. Mostly, both players were strafing around each other, strafing from side to
side (see also Figure 4.6), while still trying to focus their opponent as accurately as
possible. Both tried to keep the opponent at a good shooting distance. This included
evasive movements once the opponent decided to come closer. We expected similar
behavior from the game agent. For the experiments we used a total of 200 action
primitives, and 50 state prototypes, and approx. 5000 training sample vectors. Due
to the simple, flat nature of the chosen map, we decided to reduce 3D state position
vectors to 2D (s = [x, y])).

As already mentioned, we want to evaluate behaviors with respect to their in-
tention. It is therefore important to directly inspect the resulting behaviors, with
respect to the goal of the player, i.e. do the synthesized behaviors result in appro-

78

4.2. Bayesian learning of tactical movement behavior

(a) (b)

(c) (d)

Figure 4.7: The artificial player (the red character in the background) successfully manages
to keep the opponent (the white character in the foreground) at a safe distance. When the
opponent is chasing him, he manages to evade the attack and at the same time moves around
him, back to a safe distance (pictures were taken from a recorded test run).

priate evasion, or circle-strafe behaviors. This is, in the case of tactical movements,
only possible by inspecting the agent’s behavior in 1 vs 1 situations beside a human
player. As already mentionend, the life-like synthesis of motion is another impor-
tant aspect of movement imitation. Consequently, we relied on visual inspection of
the learned behaviors.

The artificial player, driven by the Bayesian model, managed to reproduce most
of the observed behaviors. We tested the artificial agent on a different map, which
provided more open spaces, thus we could avoid wall collisions. Generally, the
agent showed the same strafing and circle-strafing behaviors as observed in the
training samples. When a human test player was approaching the agent, it moved
to the side and still managed to keep the opponent in his view. The agent tracked
the opponent throughout the whole game but it always stayed at a distance which
appeared to be similar to the one the human teacher preferred. Besides, synthesis of
movements using a weighted roulette wheel selection over the movement primitives

79

Chapter 4. Learning tactical behaviors

made the agent’s motion look very similar to the movements of the original player.
Figure 4.7 shows one exemplary generated behaviors. Besides reproducing the tac-
tical behaviors correctly, the agent’s motion created a life-like agent impression.

4.3 Summary

Tactics are found to reside in between reactive and strategic behavior. In
QUAKE II R© , players have to decide how to use the different weapon types ap-
propriately, and when to use each weapon. Although weapon handling could be
considered a reactive behavior, it has certain tactical components, since weapons
behave differently and as such require sophisticated skills. Further, bringing one-
self into a good position towards an enemy player, or special maneuvers like circle
strafing are considered tactical behaviors.

First, we outlined a Mixture of Experts based approach on weapon handling.
Here, a Mixture of Experts architecture was used to learn and synthesize weapon
specific aiming. A simple hierarchical combination of MLPs was able to handle
differently behaving weapons in one architecture. Synthesizing and testing of this
approach showed good aiming skills in the artificial player, also when using differ-
ent weapon types. The weapon selection was realized using a simple Time-delay
neural network, the output of these were used as additional input variables for the
Mixture of Experts.

Besides weapon handling, appropriate movement in player-opponent situations
is very important. In humans, a number of behaviors can be observed. For in-
stance, circle strafes i.e. a player circles around an opponent while aiming. In
a Bayesian action selection approach, we learned tactical movement behaviors in
artificial agents. For this, a rotationally and translationally invariant data represen-
tation was required. Based on this, finally, actions could been sequenced in live
games, to produce tactical moves; circle strafes, and dodging behaviors.

In the context of tactics, a lot of different behaviors can be observed in humans.
As this Chapter showed, it is very unlikely that a single approach could be able to
capture all of these behaviors. Moreover, we could think of a couple of tactical
behaviors that would possibly require even more specialized approaches. Consider
for instance tactical movements taking advantage of the environment, for example,
hiding behind a wall or obstacles. These behaviors would first of all demand a
representation capable of grasping possible hiding places, in addition, appropriate
acting towards a possible hiding place is also important (where exactly to hide?).
The gaming industry did so far approach these problems by top-down approaches
where the agent is told what to do for a specific situation, see for example [Paull
and Darken, 2004].

80

Chapter 5

Learning strategic behaviors

So far, we concentrated on behavior that only had a short-term relevance. For reac-
tive behaviors, the outcome of an action is immediately visible. In contrast, strate-
gic behaviors are targeted at long-term goal achievement. Therefore, when learning
strategic behavior, we have to rely on approaches especially suited for recogniz-
ing action patterns that lead to goal-states. In addition, the extraction of possible
goal-states is very important, since they are usually not known in advance.

Based on a certain state a human decides about the next goal-state to attain.
Since we intend to synthesize actions within each behavioral layer independently of
each other we also need appropriate movement imitation. Consequently, for learn-
ing strategies from human observation data, we need to (a) derive an appropriate
representation for states and goal-states, (b) establish a mapping between states and
goal-states (which goal to attain for a given situation?), and (c) synthesize adequate
motion to generate a goal reaching behavior.

This Chapter is based on work published in [Thurau et al., 2004, 2005a,b].

5.1 Potential fields for modeling strategic behaviors

Fortunately, regarding the extraction of goal-states, we can rely on a few known
facts for our game scenario: obviously, the main goal would be to win the match.
Since we can safely assume that a player pursues this goal, we can concentrate
on various subgoals. As already mentioned in Chapter 2, although subgoals differ
among players, most are centered around important items or important areas which
a player tries to reach. These decisions usually depend on the current game-state as
well as on the individual player. Each player usually has his own opinion about the
value of items or areas. Following the strategies considered in Section 2.4.1, learn-
ing a strategy is equivalent to learning goal-directed movement in 3D dependent on
the current internal player statistics. In the following, we denote the game-state or
internal state of a player at timestep i by a vector si ∈ Rn, whereas the position of

81

Chapter 5. Learning strategic behaviors

the player is denoted by a vector pi ∈ R3. For this first part on learning strategies,
it is important to note that the position pi of the player is not a component of the
game-state vector sj . However, we will see that the actions of a player are also
determined by his position.

Artificial potential fields [Arkin, 1998] provide an computationally inexpensive
and well examined approach for navigational, goal-oriented movement control, and
allow for an overlay of concurrent goals. Therefore, we consider them for learning
goal-oriented behavior in game agents1. An artificial potential field can be described
by a function E : Rm → R, assigning every point in a m-dimensional space a
scalar value f . These values will be referred to as potential. A potential field is
characterized by an originating vector µ, and its corresponding field strength F .
A potential field’s strength decreases with the distance to the field’s origin. To
calculate the potential fx at an arbitrary point in space x, we can use a simple
inverse squared distance metric, thus:

fx =
F

(µ− x)2
(5.1)

When used for movement control, an artificial potential field can either attract or
repulse an agent. The potential field’s force F , and the distance (µ−x)2 determine
the degree of attraction or repulsion. For an agent, guided movement by potential
fields is equivalent to following the steepest gradient of potentials.

According to Section 2.1, the underlying model for interpreting behavior as a
function approximation task assumes a strong coupling of a player’s decision at at
timestep t and the world state st (again, we neglect environmental influences and
concentrate on the latest state vector):

at+1 = g(st) (5.2)

where g denotes the behavioral function. Considering potential fields for agent
navigation, the action at is the result of following the strongest local potential field
force. Consequently, we want to learn the mapping st → Fi between world states
and corresponding potential field forces, effectively resulting in an idealized func-
tion

at+1 = g(Fi(st)) (5.3)

However, for proper guidance in complex worlds, usually more than one active
potential field is required, thus

1Although we prefer biologically and psychologically motivated approaches in this thesis, we
decided on artificial potential fields which are not, to our knowledge, inspired by biological or psy-
chological findings. Still, the idea of interpreting certain areas or items as attractive, and thereby
associating them with an attraction force, seems to be an intuitive approach.

82

5.1. Potential fields for modeling strategic behaviors

Figure 5.1: A screenshot of a small part of the map and the corresponding waypoint map

at+1 = f(F1(st), . . . ,Fn(st)) (5.4)

Thereby, field forces are changed depending on the current game’s state, and
thus guide an agent. These mapping should be derived from the observation data of
a human player.

However, first of all the potential fields require a medium through which they
are transmitted. Although we could have relied on the 3D game-world as a medium,
a place cell inspired representation showed numerous advantages.

5.1.1 Topological gameworld representations

Following ideas presented in Section 3.2.1, for a representation of the virtual world
we are learning a place cell like structure using a Neural Gas algorithm. The training
data used for Neural Gas learning consists of all positions O = [o1, . . . ,on],oi ∈
R3,oi = {x, y, z} a human player held during various plan executions. Applying a
Neural Gas algorithm to the player positions results in a set of position prototypes
P = [p1, . . . ,pm], i.e. places a player visited frequently.

In contrast to our regular application of the Neural Gas algorithm, this case also
requires to interconnect the position prototypes. The reason for this is simple: we
plan to use the topological structure as a medium for transmitting potential field
forces. This requires edges over which the forces will be transmitted.

Compared to directly moving in the 3D game-world, moving on a topological
representation has certain advantages, especially in conjunction with artificial po-
tential fields. Consider a potential field placed at an arbitrary 3D position in the
world of QUAKE II R© . Estimating the potential for nearby positions could only be
done sufficiently, if we obey the map’s structure i.e. we do not let forces propagate
through walls or similar obstacles. Using a learned graph representation for naviga-
tion should allow for collision free paths, and it should provide a suitable medium

83

Chapter 5. Learning strategic behaviors

1. Initialize a connectivity Matrix Cij ∈ {0, 1} with i, j = 1 . . .M . Set all
Cij to zero. Initialize the counter t to 1.

2. Select an input signal vt from V = [v1, . . . ,vm],vi ∈ Rn

3. Determine and store the best matching prototype wt
i corresponding to vt:

wt
i = argmin

i
‖ vt −wi ‖

4. if t > 1, and Cwt−1
i ,wt

i
(= 1, set Cwt−1

i ,wt
i
= 1

5. Increment t: t = t + 1

6. If t ≤ m, continue with step 2

Figure 5.2: Neural Gas sequence based edge learning

for guidance by potential fields. However, the edges connecting the nodes are not
computed using the classical Hebbian topology learning, which is originally used
in the Neural Gas algorithm.

Drawing edges based on concurrent activity, as introduced in the Hebbian learn-
ing, would not result in an accurate representation of possible movement paths. It
could easily lead to connections between nodes that are, for example, separated by
a wall. Therefore, we only connect two nodes if there was an observable player
movement from one node to the other. The following approach is briefly summa-
rized in Figure 5.2. For the Figure, we decided to keep to the already used variables
for the Neural Gas learning in Section 3.1.6, since it is effectively an alternative
approach to Neural Gas edge learning, suited for sequences:

Given a number of position prototypes P = [p1, . . . ,pm], and given a sequence
of player positions O = [o1, . . . ,on],oi ∈ R3, we can assign each player position
to the prototype po with the minimum Euclidean distance Eo =‖ oi − poi ‖.
Thus, we can express player movements by a sequence of position prototypes PO =
[po1 , . . . ,pon].

Considering the topological structure, the edges connecting the nodes are stored
in a m×m matrix Ci,j ∈ N+ where m denotes the number of position prototypes.
If Ci,j = 0 unit i is not connected to unit j, if Ci,j = 1 unit i is connected to
unit j. Thus, for connecting nodes based on subsequent movements, we set Ci,j =
1 if there was an observed movement between the two prototypes pi and pj . .
Figure 5.1 shows a resulting waypoint map.

The node distances, measured via the topological structure, can be computed in
advance and are stored in a m×m matrix D, where Di,j ∈ R+ denotes the distance
from node i to node j.

Interconnecting the prototypes based on the observed movements of a human

84

5.1. Potential fields for modeling strategic behaviors

player results in an accurate representation of the game-world’s topology and of the
possible movement paths. For example, prototypes that are next to each other but
are separated by a wall are not interconnected, whereas prototypes that are not next
to each other in the 3D space, but are connected via a teleporter (a quite common
entity in QUAKE II R©), would also be connected in the graph structure, because of
the observed subsequent player positions.

For an artificial agent, a movement from one node to another is only possible
if a connection between the two exists, and can be translated to movements in 3D.
Obviously, directly moving from node to node bears certain problems that will be
mentioned later on.

5.1.2 Estimating potential field parameters

As already mentioned, for strategic behavior, the world state is best described by
the internal state of a player. In our experiments, we used the player’s inventory2

as well as his current armor and health value as state vector variables. The internal
state is assumed to contain the most relevant information for strategic decisions.
For a recording of strategic behavior, the sequence of internal player states is given
by Z = [z1, . . . , zn] and zi ∈ R10, z = {health, armor, weapon1, . . . , weapon8}.

Situations that are similar to others will most likely lead to similar strategic
decisions. Therefore, we are grouping similar observed player states using the k-
means clustering algorithm. This results in a number of state vector prototypes
S = [s1, . . . , sm], representing more common game situations. In a second step,
each observation of a world state can be assigned to a state prototype using a nearest
neighbor criterion, resulting in a sequence of state prototypes SZ = [sz1 , . . . , szn].
Corresponding to these, we already derived a sequence of player position prototypes
PO = [po1 , . . . ,pon].

We assume that a player changes his strategic behavior and his desired goal-
state, as soon as his internal state corresponds to another state prototype si. Conse-
quently, each movement behavior begins at a specific time-step t if the sequence SZ

is entering a new state space cluster (szt (= szt−1), and ends at a time-step e if a state
change occurs (sze+1 (= sze). Accordingly, the movement pattern is described by
the position prototype sequence, going from time-step t to e: [pot , . . . ,poe]. Each
movement pattern can be interpreted as a state dependent, goal-oriented movement
behavior.

Most state changes occur when items are picked up. Therefore, almost all move-
ment patterns end with an item pickup, implicitly defining item positions as the goal
states to attain (or defining the internal state of a player where he already possesses
the desired item, as a goal-state). A single movement pattern D can be denoted as
a sequence of nodes in the topological representation:

2The set of items a player picked up in the course of a game

85

Chapter 5. Learning strategic behaviors

D = [poi , . . . ,poj] (5.5)

where pi denote a single node, and j − n denotes the length of the movement
pattern D. Based on these assigned movement patterns, we have to shape potential
field forces, in order to mimic the observed movement behaviors.

Potential fields originating in a node in the waypoint map produce a certain po-
tential on all nodes, which decreases with the distance to the potential field source.
Since any node is a possible potential field source, the potential fj at node j is
denoted as:

fj =
n∑

i=1

Fi

d2
i,j

(5.6)

where di,j denotes the distance from node i to node j and Fi denotes the poten-
tial field strength at node i.

For every given state space cluster si, we have to find a potential field force
configuration Fsi = [F1, . . . ,Fm], where m denotes the number of place cells.
The configurations should contribute to the observed movement patterns.

Since the movement in a potential field does always follow the steepest gradient,
there has to be an increase in the potentials fi found on every node along a specific
movement pattern. Consequently, by assigning ascending discrete values to each
node in the sequence Dsi corresponding to a state prototype si, we construct a set
of possible potentials for every node along a certain movement pattern, thus:

[fpD1
= 1, . . . , fpDn

= n] (5.7)

where fpDi
denotes the assigned potential for the i-th waypoint map node taken

from the Sequence D. The final node, and possible goal-state, pDn is always as-
signed the highest value. This is done with all observed movement paths belonging
to a certain state space cluster si, giving more weight to more common plans by
summing up all observed potential distributions. Thus, for each node pu associated
with a state prototype si, we can estimate a potential fu,desired. Arbitrary movements
which do not approach the final goal node pk,n are always assigned lower potentials
than their successor nodes. Thereby, random (non goal-oriented) moves are filtered
out to a certain extend, as can be seen in Figure 5.4.

Given the potentials fi,desired, we can interpret the behavior learning problem
as a regression problem. By knowledge of a few desired potentials given a certain
situation, we can estimate the potentials for all other nodes in the topological repre-
sentation. This will be done by appropriate selection of potential field forces Fj,sk

corresponding to state prototypes sk.

86

5.1. Potential fields for modeling strategic behaviors

1

2

3

4

7

65

Figure 5.3: The left figure shows the observed movement path and the assigned discrete
potentials, the right the learned potential field forces

The computation of the field strengths Fj can be interpreted as an optimization
problem, where the following error function has to be minimized:

E =
1
2

n∑

i=1

(fi,desired − fi)2 (5.8)

where fi,desired denotes the sum over all assigned potentials of a node belonging
to a state prototype sk. A gradient descent leads to the update rule for the potential
field force Fi of a node i:

Fi = Fi − α
n∑

k=1

(
fi,desired −

n∑

l=1

Fl

dk,l
2

)
1

dk,i
2 (5.9)

where α denotes a learning rate which is decreased during the training process.
In each step, the forces of one nodes are adapted, then, the next node Fi+1 is mod-
ified, until the learning rate α ≤ 0. It showed to be usefull to only allow positive
potential forces Fi, and to restrict the number of originating potential fields to the
actual number of observed fi,desired.

Figure 5.3 illustrates the relation between the observed movement path and re-
sulting potential field forces, given a simple goal oriented movement pattern.

On the first sight, this methods seems a bit ineffective, since a shortest path
algorithm, as for instance elaborated by Dijkstra [1959], might provide the same
results. However, the problem we are facing is different from finding the shortest
path to a specific map location. First of all, the goal states are not known in advance.
Since we aim at behavior learning from observation data, and since goal-states tend
to be different among players, we can not define them by expert knowledge. More-
over, learning a strategic movement behavior does not imply that we are searching

87

Chapter 5. Learning strategic behaviors

8

91011

12

13

141516

17

18

19

20 21

1

2
3 4 5 6 7

Figure 5.4: An observed movement pattern with some arbitrary, non goal oriented move-
ment, can still produce goal oriented potential fields.

for the shortest path. Instead, we try to learn the strategically most appealing path.
This could also mean to guide the agent along a longer path, if this is an observed
behavior (for instance, a player might prefer a path in darker areas), Figure 5.5 illus-
trates how the approach can learn a more player specific path. Moreover, by using
potential fields, we can also provide guidance for seldom visited nodes.

However, the usage of potential fields comes along with some problems. On the
one hand, we might encounter local maxima, on the other hand, we have a relatively
weak guidance when the distance to originating potential field nodes increases. The
next section deals with both problems.

5.1.3 Avoiding the past potential fields

Avoiding the past potential fields [Balch and Arkin, 1993] serve as a local spatial
memory, to avoid already visited nodes, in order to not get stuck at local maxima.
At fixed time intervals a repulsing potential force is deposited at the current node.
To reduce interference with goal based potential fields, the avoid-past potential field
forces are reduced over time, thus, effectively resulting in a pheromone trail known
from ant-algorithms [Bonabeau et al., 1999]. In addition, the area of effect is re-
duced compared to the goal based potential field forces.

These pheromone trails have two purposes. First, local maxima can be avoided
by pushing the agent to nearby nodes, hopefully back to the field of influence of
potential fields offering a better guidance. Second, areas which provide poor guid-
ance because of the distance to goal oriented potential fields can be escaped by
reinforcing a chosen direction.

The overall potential distribution on waypoint map node mj at timestep t is now
computed as follows:

88

5.1. Potential fields for modeling strategic behaviors

Figure 5.5: The left figure shows an observed movement path, where the green arrows
denotes the actual observation, the red one the shortest path to the goal. The right figure
shows the learned potential field forces, which would guide the agent along the longer path,
when approaching the goal from the initially observed direction.

fj(t) =
n∑

i=1

Fi

di,j
2 −

n∑

i=1

Pi(t)
di,j

3 (5.10)

where Pi(t) denotes the Pheromone concentration at node i, at timestep t, and
with Pi(t + 1) = Pi(t)− &Pevap , where & is a diffusion parameter and Pevap is the
fixed evaporation parameter for an occupied node.

Both parameters Pevap and & have to be chosen manually to provide the ex-
pected effects and to not interfere too much with the goal oriented potential field
forces. Generally, we decided on rather low values to leave most of the guidance
with the potential fields.

5.1.4 Results

The agent control mechanism is straight forward. With knowledge about the po-
tential field forces, the potentials for all nodes, connected to the currently occupied
node, can be computed. From the list of possible successor nodes, the one with
the highest potential is selected, thereby, the agent follows the steepest gradient of
potentials. Environmental influences or item pickups change the agents state vector
si and result in a change to the overall potential field forces, thereby leading the
way to other nodes.

The training data which we used consisted of the observation of 20 different
tasks on one map, mainly item pickup sequences. In every demo, we recorded a
human player steering a game agent. The human was told to pickup certain items
in a fixed sequence. Thereby, various combinations of item pickup-sequences were
tested. In the most simple setup, the human picked up only one item, whereas

89

Chapter 5. Learning strategic behaviors

Task human player starting p. 1 starting p. 2 starting p. 3 starting p. 4
time in sec. time in sec. time in sec. time in sec. time in sec.

Set 1 20.2 13.89 17.60 16.51 8.31
Set 2 38.4 33.30 25.71 24.50 31.42
Set 3 20.6 8.42 9.00 11.43 3.02
Set 4 17.8 22.49 19.30 23.62 14.89
Set 5 14.2 11.64 9.21 13.61 14.01
Set 6 20.0 16.82 16.52 22.70 16.42
Set 7 28.7 33.30 35.03 36.40 31.54
Set 8 19.2 28.01 − − −
Set 9 44.6 41.50 41.24 41.80 46.33
Set 10 24.9 20.02 14.71 24.82 15.71
Set 15 28.0 39.19 46.48 41.20 36.21
Set 20 32.8 40.2 55.10 32.41 50.91

Table 5.1: The bot had to complete every learned task when starting from four different
locations. To give an indicator about the agent’s performance, we measured the time in
sec. it took him to reach all goals in the predefined order, thereby reproducing the human
movement behavior.

the more complex demos showed 4-5 subsequent items to attain. For each task a
separate bot was trained.

To estimate the game-bot performance, we evaluated four different starting lo-
cations from which the game-agent had to find its way according to the human
behavior in the training samples. With respect to the intention of strategic behav-
ior which obviously is a goal-reaching behavior, we evaluated the success rate in
goal attainment. Letting the game-agent start from different locations tested the
program-level imitation, i.e. how well strategic goals of the behavior are imitated
for novel situations. Here it is first of all important to reach the desired items from
each starting location. Notably, the human observation data usually only contained
one starting location. Thus, the agent did produce behavior, with respect to the
movement path, that was not directly observed in the training data (notably, the
waypoint-map was learned by taking into account all player recordings). Perfor-
mance can be measured over the number of goals the bot reached, and the time it
took him to do so. Table 5.1 shows some of the results. The game-bot’s movement
speed is comparable to a human player, since he usually took the shortest path to
the goals, and thereby reproduced the observed behavior.

Generally, our approach showed very good program-level imitation, failing to
reach the goals in the predefined order only once. Regarding task number 8, the bot
got stuck in three out of four different runs. The main problem in that experiment
was that the first goal was located very close to the latest goal, thus, the agent

90

5.1. Potential fields for modeling strategic behaviors

−0.4
−0.3

−0.2
−0.1

0
0.1

0.2
0.3

−0.05
0

0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

−0.15

−0.1

−0.05

0

0.05

Figure 5.6: Visualization of a human and a game agent’s movement path in x, y, z. The
blue arrows indicate the game bot’s current positions and its velocity, the red arrows show
the observed human player’s position and velocity, which was used for learning the potential
field forces. The bot started from the same positions as the human player and managed to
fully imitate the human movement behavior.

accidentally picked up the last item at the beginning of its run which lead to an
internal state which was associated with only very weak potential field forces, and
therefore resulted in too weak guidance.

Visual comparison of the human and artificial player’s movement paths gives
further insights how the potential fields are able to learn human movement patterns.
Figure 5.6 shows the observed game agent’s movement path in comparison to the
human’s movement path. Figure 5.7 illustrates a complete goal directed movement
sequence.

Since strategic movements do not depend on the execution of a single, isolated
movement pattern but on a combination of adequate movement paths, we decided
to test the described approach with more complex behaviors. Here, we instructed
a human player to play the game Quake II as if an enemy was present (again we
simplified the situation in order to focus on the strategical aspects). This resulted
in a set of training samples where the player collected various items in different
orders, dependent on the initial starting position, and after that securing important
areas by cycling different types of armor (a quite common behavior shown by many
players).

This experimental setup, too, yielded good results, showing that the approach
is also working reasonably well on a larger scale. The artificial agent convincingly

91

Chapter 5. Learning strategic behaviors

1 2

4

3

5
−0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

1

2

3

4

5

Figure 5.7: The bot started from a map location, other than the one used during the learning
process. While the red arrows show all bot positions and its velocity, the blue arrows show
the positions and velocity of the observed human player’s movement path. Picture 1 shows,
where the bot moves up a staircase and comes close to the observed movement pattern. In
Picture 2, he is targeting the first item and picks it up at 3, reproducing the observed human
behavior. A state change occurs, switching the potential field forces. The bot moves on to
the next goal in 4 and finally reaches it at 5.

92

5.2. Goal directed Bayesian imitation learning

moved through the 3D game-world and managed to reproduce the observed behav-
ior. He picked up several different types of items, before he mostly stayed at one
area, usually located around an important armor item, and only moved away when
driven by its pheromone trail or when there were sudden changes in its state vec-
tor (for example, a decrease in its armor value due to an attack by another player).
Usually, the agent reached a state where he owned all weapons and filled up his
armor value to the maximum. In comparison to the first experimental setup, no
fixed movement behavior sequence was reproduced. Instead, more sophisticated
behavior emerged by mixing various observed movement patterns.

5.2 Goal directed Bayesian imitation learning

So far, we introduced several computational approaches motivated by biological or
psychological findings. All of these considered functional aspects that could be
used to improve mechanisms of computational imitation learning. Notably, we did
not yet motivate the general process of imitation learning by psychological findings.

In a recent contribution, Rao et al. [2004] introduced a Bayesian model of imi-
tation learning for application in robotics. Based on experiments in developmental
psychology, their probabilistic framework models four stages of imitative abilities
that were observed in infant behavior. Thus, they realized human imitation learning
capabilities by a Bayesian model. In the following, we apply this model for learn-
ing strategic behavior from human observation data. Here, we do not only aim at
a sufficient program-level imitation, but also at realistic motion synthesis. Since a
basic understanding of these stages helps grasping the approach discussed below,
we summarize them briefly in Figure 5.8.

As already suggested in Section 2.1, in a probabilistic behavior learning ap-
proach, we can express a human’s reaction at+1 within a conditional probability,
dependent on a number of state vectors si, and environmental influences ei:

at+1 = argmax
k

P (ak|st, st−1, . . . , st−n, et, et−1 . . . et−n) (5.11)

Although we are considering strategic behavior, we for now focus on the latest
observed states:

at+1 = argmax
k

P (ak|st, et) (5.12)

As already mentionend, for strategic behaviors, we also need to consider goal-
states or subgoal-states. Interstingly, the Bayesian model of imitation learning
proposed by Rao et al. [2004] also accounts for goals and subgoals. Within the
Bayesian framework, the probability for the execution of an action ai at time step t
depends not only on the current state st, but also on the next desired state (subgoal)

93

Chapter 5. Learning strategic behaviors

The concept and biological basis of imitation learning is known for quite some
time. Interestingly, the ability for learning from observing others is already devel-
oped in infants. The development can be described in three subsequent steps.
By means of postnatal body babbling infants acquire a model of their body. They
learn which muscular actions lead to what kind of limb configurations and thus
acquire a vocabulary of useful motor primitives. From a computational point of
view, this step can be interpreted as acquiring a forward model, connecting actions
to states, and establishing an idea about consequences of actions.
This enables the imitation of body movements where infants map observed actions
onto their own body. At the age of several weeks, for instance, they can mimic
facial expressions they have never seen before, an example for this can be seen in
the pictures (the pictures are taken from [Rao et al., 2004]).
In a third stage, infants start imitating actions on physical objects such as toys
which are external to their body. By the time they are 1.5 years old, infants are
experienced in interacting with other humans. Consequently, they can acquire
models of agents with intentions. Forward models allow them to infer the goals of
an agent even if they only observe unsuccessful demonstrations; inverse models
are used to select motor commands that will achieve undemonstrated but inferred
goals.

Figure 5.8: Stages of imitation learning in humans

94

5.2. Goal directed Bayesian imitation learning

st+1, and the overall goal state sg. Thus, we can restate Equation 5.12 as follows
(again, we neglect environmental influences et):

at+1 = argmax
k

P (ak|st, st+1, sg) (5.13)

According to [Rao et al., 2004], we assume that a forward model P (st+1|st,ai)
that describes the consequences of actions in state space, is already acquired by
means of body babbling. It is important to note that this model is also assumed to
be independent of the goal state, since it is determined by the environment, thus
P (st+1|st,ai, sg) = P (st+1|st,ai). Further, we assume a set of priors P (ak|st, sg)
that are also already learned from, for instance, observations of a teacher. Using
Bayes’ theorem, Equation 5.12 can be restated:

at+1 = argmax
k

P (ak|st, st+1, sg)

= argmax
k

1
C

P (st+1|st,ak) P (ak|st, sg) (5.14)

where the normalization constant C results from marginalizing over all possible
actions:

C = P (st+1|st, sg)

=
∑

m

P (st+1|st,am)P (am|st, sg). (5.15)

In order to apply this model for selecting subsequent actions at+1 for learn-
ing strategic behavior, we need to know the subgoal-state st+1, and the current
goal-state sg. If both goal states are known, the best matching action at+1 can be
selected.

For the task of learning a strategy for QUAKE II R© , winning the game is the
only true global goal. Again, we can assume a player to follow this goal anyway.
Therefore, in the following we concentrate on elaborating a model for subsequent
subgoal states [st+1, . . . , st+n]. Thus, a suitable representation for states is needed
that also fullfills the requirements for the forward model P (st+1|st,ai).

5.2.1 Game state representations

A state vector si should contain a problem specific description of a player’s internal
state, and the surrounding gameworld. With the goal of strategic behavior imitation
in mind, we decided on the ever important player’s position, and his inventory.
In the experiments, the considered number of state variables varied, therefore, for

95

Chapter 5. Learning strategic behaviors

si

sj3

sj1

w(si, sj3
)

sj2

w(si, sj2
)

w(si, sj1
)

Figure 5.9: Didactic example of a state transition graph.

now a state vector is given by si ∈ Rm. As usual, in order to derive a discrete
approximation of the state space, we cluster the state vectors recorded from the
network traffic using a Neural Gas clustering.

To select the next subgoal st+1, as the successor of subgoal st, we also d on a
probabilistic model. Thus, we select st+1 according to:

st+1 = argmax
k

P (sk|st) (5.16)

First, however, we need to provide the resulting discrete state space with a useful
structure. This can be achieved by a state transition graph. In this graph, a directed
edge between two state prototypes indicates a possible state transition. Moreover,
edges are labeled with transition counts (see Figure 5.9). As the idea for the transi-
tion graph was inspired by the theory of edge reinforced random walks known from
statistics [Diaconis, 1988], we use the term weights when referring to state transi-
tion counts. Formally, the transition graph is thus given as a triple G = (V,E, w)
where V = {s1, s2, . . . , sM} is a set of vertices, E ⊆ V × V is a set of directed
edges and w : E → R+ is a function assigning weights to the edges. Edges are
drawn based on state transitions observed in the training data; i.e. we have

(si, sj) ∈ E ⇐⇒ ∃ st, st+1 : st = si ∧ st+1 = sj (5.17)

Transition counts are recovered from traversal frequencies in the training data;
the weight w of an edge (si, sj) corresponds to the number of times a human player
was observed to move from state space prototype si to prototype sj .

Given this weighting scheme, suitable upcoming subgoals for Bayesian be-
havior synthesis can be determined either from a roulette wheel or a maximum
a-posteriori selection over the state transition probabilities

st+1 = argmax
k

P (sk|st) = argmax
k

w(st, sk)∑
i w(st, si)

(5.18)

Again, imposing a discrete state space structure like this provides certain advan-
tages over an unstructured collection of prototypes. Besides the already mentioned

96

5.2. Goal directed Bayesian imitation learning

advantages in Section 5.1.1, limiting the choice for a successor to those states that
are connected to the current state considerably lowers the computation time but
still allows for a reconstruction of all observed state sequences. Moreover, we stay
very close to the observed human behavior by only considering recorded movement
patterns, thus, certain state transitions become impossible.

5.2.2 Traversing state graphs

The state graph introduced in the last Section can only be traversed by executing
actions at. For instance, if the next desired state would correspond to a position
in front of the player, a forward movement would result in the desired state tran-
sition. This implicit knowledge of action consequences should be available within
the forward model P (st+1|st,ai).

Again, the set of available actions is given by action primitives, prototypical
actions, which are extracted from recorded matches. For the experiments presented
below, an action primitive is a 5 dimensional vector

a =





yaw angle
pitch angle

forward velocity
sideward velocity
upward velocity





where the player’s viewangle is represented by a yaw angle ∈ [−180◦, 180◦],
a pitch angle ∈ [−90◦, 90◦], the player’s velocity is represented by vforward =
∆sforward/∆t,∈ [vmin, vmax], vside = ∆sside/∆t,∈ [vmin, vmax], and vupward =
∆supward/∆t ∈ [vmin, vmax], with vmin = −400 and vmax = +400. Prototypical
action primitives result from applying k-means clustering to the given movements
of human players. As already mentioned, a number of 100 to 120 action primitives
is usually sufficient for synthesizing smooth looking motions.

Following the proposal of Rao et al. [2004], we apply the mechanism of body-
babbling to estimate a forward model P (st+1|at, st). In the case of QUAKE II R© ,
we do not have to rely on self-exploration of the agent, instead, we simply use the
recordings of a human player’s actions on states st.

Following ideas discussed in Section 3.2.2, we introduced a conditional proba-
bility P (at+1|at) for generating more life-like agent motions. Again, these can be
learned from observing human players. Since the action vector at can be seen as
part of the world state vector st, we extend Equation 5.2 by integrating a depen-
dency between actions P (at+1|at). Assuming independence of at, st and sg (after
all, physical limitations should not affect environmental conditions), this results in
the following model for selecting an action at+1 (again, we could also select an
action based on a roulette wheel selection instead of maximum a-posteriori):

97

Chapter 5. Learning strategic behaviors

at+1 = argmax
k

P (ak|st, st+1, sg)

= argmax
k

1
C

P (st+1|st,ak)
P (ak|st, sg)P (ak|at)

P (ak)
(5.19)

where the normalization constant C is now given by:

C = P (st+1|st, sg)

=
∑

m

P (st+1|st,am)P (am|st, sg)

(5.20)

5.2.3 Results

In order to test the Bayesian framework for imitating strategic behavior and motion
behavior, we carried out a series of experiments. The basis of all experiments was of
course formed by recordings of data generated by human players. The experimental
goal was to reproduce all observed movement and strategic behaviors.

The first experiment basically tested the functionality of the approach. Several
examples of a goal directed movement sequence were recorded; in each sequence,
the player’s motion ended at the same map position. Due to the simplicity of the
task, the state vectors si that we considered only contained the observed player po-
sitions [x, y, z] ∈ R3. Since the agent traverses a discrete lattice of prototypical
positions, the number of clustered state prototypes plays a vital role. Our experi-
ments revealed that smaller maps require 50 to 100 prototypes to allow for collision
free navigation. All in all, the movements were learned and reproduced success-
fully.

Our second experiment considered an extended maze problem; Figure 5.10
sketches its setting. The training data we considered here displayed several in-
stances of a human player first picking up goal-item 1 (an armor) and then continu-
ing to goal-item 2 (a better weapon). The state space dimensionality was extended
to account for the player’s inventory. The additional dimensions encode information
about the internal armor value and the weapon currently hold.

Given state graphs computed under these conditions, we expect to observe state
sequences which reflect the order of the item pickups. In order to reach a state with
higher armor values, the agent has to obtain the armor item. Since in the demo data
the armor pickup precedes the weapon pickup, states of higher armor value must
lie on the way through state space that leads to the overall goal state. On the map,
the agent therefore has to visit the location of the armor prior to continuing to the

98

5.3. Summary

Goal Item I

Goal Item II

Figure 5.10: Schematic representation of an extended simple maze task. Two points in
the waypoint map correspond to the locations of desirable items on the map. In the exper-
imental setting, a subgoal of the game agent is to increase its amour value. It therefore has
to devise a path trough the abstract higher dimensional state space that accords with a path
through the 3D waypoint map leading to the armor item.

final destination (note that state space paths must not be confused with paths in the
3D gameworld). Figure 5.11 shows an example of a trained game-agent trying to
accomplish this task and a three dimensional projection of the corresponding state
graph transitions.

The number of state prototypes is crucial. Using a 5 dimensional state space and
a medium-sized game-map, we found a number of 150− 200 prototypes sufficient
for our purpose. Using this setup the observed behaviors were imitated convincingly
as is illustrated by state space trajectories in Figure 5.12. The agent managed to
reach both goals in the predefined order. Additionally, the movements appeared to
be smooth and showed characteristics mostly seen in human players. For instance,
the agent “slides” around corners thus preserving observed player habits.

However, we also noticed that the approach tended to show a less accurate
program-level imitation than the potential field learning approach. For the Bayesian
approach, the agent can usually only imitate state-action pairs that were observed
in the training data. While this could be considered accurate imitation, it leads to
problems for novel situations.

5.3 Summary

Strategic behaviors represent complex behaviors that aim at long-term goal-
achievement. In computer game worlds, as considered in this thesis, strategic be-
haviors are often centered around specific, important positions in the game-world.
Usually, a player tries to reach these places to pickup an item, or to gain a strate-
gic advantage by staying in an important area. In this chapter, we elaborated two
approaches for acquiring strategic behaviors from human observation data.

The first approach used artificial potential fields to guide an agent through the

99

Chapter 5. Learning strategic behaviors

1 2

3

3

2

1

Figure 5.11: Screenshots showing an artificial player solving an item pickup task and
visualization of the corresponding transitions in state space. The screenshots display the
agent’s actions in the game world; the plot in the lower right corner shows what is going on
in a subspace of the state space considered in this experiment: the X and Y axes denote the
gamebot’s (x, y) positions, while the Z axis represents inventory item information. Move-
ments in the 3D gameworld and resulting changes of the agent’s internal state correspond to
movements between nodes of the state graph. First, in (1), the agent is seen moving along
the graph closer to a node whose (x, y) coordinates coincide with a goal item. In (2), the
agent is strafing around the corner of a transparent wall. Finally, as seen in screenshot (3), it
reaches the item and continues its way to the next item. The item pickup in (3) considerably
increases the inventory value for this item and thus results in a ’jump’ along the Z axis of
the subspace shown here. Although, in visualizations like this, such state space discontinu-
ities appear random to the human eye, they are not. In fact, the screenshots in this figure
show but a part of a longer sequence of actions. At the beginning of this sequence, the agent
determined its next suitable subgoal represented by a state st+1 and the item pickup in this
figure is actually a planned action to reach this graph node st+1.

100

5.3. Summary

−0.1
0

0.1
0.2

0.3

−0.2

0

0.2

0.4

0.6
−1

−0.8

−0.6

−0.4

−0.2

0

(a)

−0.1
0

0.1
0.2

0.3

−0.2

0

0.2

0.4

0.6
−1

−0.5

0

0.5

1

(b)

Figure 5.12: Examples of synthesized movements (plotted in state space coordinates).
Again, the X and Y axes correspond to x and y positions of the agent whereas the Z axis
denotes inventory armor values (5.12(a)) and inventory rail gun values (5.12(b)). The blue
dots correspond to sequences of state vectors generated by human player while ’solving’
the task of item cycling considered in our second experiment. Red circles indicate state
prototypes reached by the artificial player.

game-world. The potential field forces were learned, based on the movements ob-
served in a human player. Since strategies are usually dependent on the internal
state of a player, we introduced state dependent variations in potential field strength
distributions. In experiments, we could show that the learned potential fields were
successfully able to steer an artificial player through the 3D world. However, the
rigid way of moving between waypoint nodes led to at times jerky movements,
which is something we intentionally tried to avoid. Nevertheless, the approach
showed a very good program-level imitation by successfully imitating various ob-
served strategic behaviors of different complexity.

The second approach is based on recent work by Rao et al. [2004]. In their
"Bayesian model of imitation in infants and robots", a probabilistic behavior acqui-
sition based on psychological findings is introduced. We applied this model to the
task of acquiring strategic behavior in artificial game agents. At the same time, we
used the approach to learn human-like synthesis of motion. In detail, we learned
state dependent probabilistic action selection to reach implicitly defined goal states.
Successfull experimental results underlined the applicability for acquisition of com-
plex goal directed behavior.

To summarize the outcome of the experiments: the Bayesian learning showed to
be more suited for generating life-like motions. While we could observe sufficient
program-level imitation, generally, the artificial potential field approach was more
successfull with respect to goal-reaching behaviors. Moreover, the approach utiliz-
ing potential fields also generated adequate goal following behavior for completely
novel state observations and for seldom visited nodes. However, due to the artificial

101

Chapter 5. Learning strategic behaviors

movement between discrete points in 3D, it so far clearly lacked sufficient motion
synthesis. Notably, the potential field learning is similar to learning a value function
known from dynamic programming or reinforcemeant learning. In the next Chap-
ter, we therefore present a first approach towards integrating decent program-level
imitation, using a reinforcement learning approach, and suitbale motion modelling,
using the presented Bayesian model of imitation learning. Furthermore, a more
detailed evaluation by means of believability testing will provide a more objective
rating about the humanlikeness of the artificial player.

102

Chapter 6

Towards integrating behavioral
layers

So far, we could show that behavior acquisition by means of imitation learning can
lead to life-like agent acting, the learned and synthesized strategic, tactic, and re-
active behaviors appeared human-like. Unfortunately, the overall playing behavior
of a human player is a multiplexing of these behavioral layers. Consequently, in
order to generate more versatile agent behavior, we should consider integration and
combination of individual behaviors.

In this Chapter, we introduce an approach towards integrating strategic
program-level imitation into a Bayesian action selection framework. Besides the
approach itself, its evaluation will be an important topic of this Chapter. Due to
the integration of behaviors considered in this chapter, we finally are able to gener-
ate more versatile agent behavior. This, however, allows for a more objective way
of evaluation. When synthesizing individual behaviors, the artificial agent usually
could be identified as artificial rather easily, because of the restricted repertoire of
behaviors. Therefore, an independent evaluation by human subjects did not make
sense. Here, for the first time, we conducted a believability test, i.e. human subjects
had to decide about the humanness of the generated agent’s behavior.

This Chapter is based on a close collaboration with Bernard Gorman, it was
published in [Gorman, Thurau, Bauckhage, and Humphrys, 2006a,b], we would
like to thank him for the excellent cooporation during his research visit at Bielefeld
University in 2005.

6.1 A framework for integration

Most of the time, in QUAKE II R© , the players are either engaging in combat or they
are navigating the game-world and try to pickup items. Here, we concentrate on the
latter. In order to imitate the human behavior observed in item-pickups sequences,

103

Chapter 6. Towards integrating behavioral layers

we require program-level imitation (where to go next?), and a life-like motion syn-
thesis (how to go there?). Notably, we already tried to achieve this by the Bayesian
imitation learning introduced in the last Chapter. However, that approach did not re-
sult in the desired program-level imitation, at least not as sufficient as it is required
here.

For the program-level imitation it is important that the decisions appear smart
and are reasonable with respect to the situation. In the last Chapter this was achieved
by imitating the strategic behavior of a human by means of artificial potential fields.
For the motion synthesis, it is required that different movements can be learned and
generated. Further, they need to create a life-like impression. For example, if an
agent can only move forward and back, it is probably not creating a human-like
impression. In contrast, an agent that is able to execute even complex jumps and
difficult maneuvers is more likely to create the impression of being controlled by a
human.

In the following, we integrate an approach for learning strategies and an ap-
proach for synthesizing movements. The strategy learning is based on a reinforce-
ment learning approach introduced in [Gorman and Humphrys, 2005]. We might
have also used the potential field based approach introduced in the last Chapter,
since both approaches are similar. However, as we will see, the reinforcement learn-
ing approach introduces two extensions (to deal with in-game items) that make it
more suited for application in FPS games. The movement synthesis is based on the
Bayesian imitation learning that we presented in the last Chapter.

6.1.1 Advanced strategy learning

As usual, a topological graph structure of the game-world is derived by clustering
a sequence of player positions [o1, . . . ,on],o ∈ 3,o = [x, y, z], using a k-means
algorithm, resulting in a set of prototypical player positions [p1, . . . ,pm]. Similar
to the Neural Gas edge learning in Section 5.1.1, based on sequential traversal of
nodes, the nodes are interconnected and a connectivity matrix C is constructed. In a
second step, similar to the approach in Section 5.1.2, observed movement paths are
clustered according to the player’s inventory, in order to assign movement patterns
to prototypical situations.

In order to learn strategic decisions, we build a value function by assigning
an increasing reward to consecutive nodes in every path taken under each state
prototype si. Thereby, each node pi in the topological map is assigned a value
Vsj (pi), for each state prototype sj . For observed strategic behavior, the value
Vsj (pi) usually increases for nodes along the movement path leading to certain
items. Thus, following the maximum value of nearby nodes will lead the agent to
possible goal-states. Furthermore, the value iteration algorithm is applied to assign
utility values to each node under any given inventory prototype. This should lead to
appropriate guidance on all nodes in the topological map, for every state prototype.

104

6.1. A framework for integration

Gorman and Humphrys [2005] further improved this idea by applying fuzzy
clustering for weighting multiple state prototypes, i.e. effectively weighting multi-
ple goals. In addition, they introduced an item activation variable. In QUAKE II R© ,
once an item is picked up it won’t be available for a fixed time period. The item ac-
tivation variable is responsible for keeping track of this. Both, the fuzzy clustering
of state prototypes as well as the item activation variable can be modelled within a
membership function msk :

msk(zi) =
a(op)|zi − sk|−1

∑S
j=1 a(sj)|zi − sj |−1

(6.1)

where zi denotes the current inventory state, sk denotes a prototype inventory
state, S is the number of prototypes, a is 1 if the object o at the terminal node of the
path associated with prototype sk is present and 0 otherwise.

In addition, an online discount factor γ is added to decrease the utility value
of recently visited nodes. Thereby, the agent is driven to nearby nodes and won’t
reside in one area. Thus, the utility for a node pi can be calculated as follows:

U(pi) = γe(pi)
∑

Vsj (pi)msj (zi) (6.2)

where U(pi) is the final utility of node pi, γ denotes the online discount, e(pi)
denotes the number of times the player has entered cluster pi, Vsj (pi) is the original
value of node pi in state prototype sj .

Thus, the next node to attain can be selected by maximizing the utility U(pk)

pt+1 = argmax
k

U(pk), k ∈ {x|Cpt,px = 1} (6.3)

The learned strategic behavior leads to decisions about where to go next, i.e. the
next node pt+1 in the topological representation. Thereby, it supplies the intended
program-level imitation.

Moving in a straight line from node to node creates a very unrealistic movement
behavior, as we already saw in the learning of strategies in the last Chapter. Even
worse, moving from node to node might not be possible in all cases, consider for
instance a ledge that would require the agent to jump in order to reach the next node.
Since we try to make behavior learning an automatic process we obviously can not
associate every single node traversal with an action in advance. Consequently, the
actions associated with each node have to be learned from observations as well.

6.1.2 Bayesian action selection

In earlier chapters, we successfully acquired motion and movement behaviors using
probabilistic models. The very general model elaborated in Chapter 3 introduced a
dependency on the latest executed action at, and the latest position prototype pt:

105

Chapter 6. Towards integrating behavioral layers

at+1 = argmax
i

P (ai|at,pt) =
P (ai|at)P (ai|pt)

P (ai)
(6.4)

where at+1 denotes the next selected action, st denotes the state at t, and ai

denotes a single action. This simple model led to life-like motion synthesis of even
complex moves.

In Chapter 5, we enhanced this basic model by accounting for goal-states and
subgoals, thus

at+1 = argmax
i

P (ai|pt,pt+1,pg)

= argmax
i

P (pt+1|ai,pt,pg)P (ai|pt,pg)∑
m P (pt+1|pt,am)P (am|pt,pg)

(6.5)

where pt+1 denotes the next subgoal, and pg denotes a goal-state. Given the
states pt, and the membership function msk from the strategy learning, we can
directly apply the action selection from Equation 6.5 for motion synthesis of goal-
directed moves. In addition, a weighting of multiple goals needs to be included to
account for the goal weighting in the strategy learning. Finally, the probabilities for
each action ai are computed as follows:

∑

g

mgP (ai|pt,pt+1,pg)
P (ai|at)∑
u P (au|at)

(6.6)

An action at+1 can thus be selected according to:

at+1 = argmax
i

∑

g

mgP (ai|pt,pt+1,pg)
P (ai|at)∑
u P (au|at)

(6.7)

where pt+1, and the goal weighting mg are supplied by the strategy learn-
ing. Thereby, the program-level behavior imitation is achieved using reinforcement
learning, whereas motion modelling is implemented using the Bayesian imitation
learning. Interestingly, both models depend on each other. The motion synthe-
sis obviously demands subgoal and goal states, while the program-level behaviors
need appropriate movement imitation to successfully traverse the topological graph
structure.

6.2 Results

In order to test the presented approach we used various gameplay sequences. As
usual, the training data showed a human player performing different movements.
The gameplay sequences included a variety of item pickups and complex movement

106

6.2. Results

sequences, we will give more details about the selection of moves later on. Again,
action primitives an are derived by clustering player movement observations:

a =





yaw angle
pitch angle

forward velocity
side velocity

upward velocity
firing





where the player’s viewangle is represented by a yaw angle ∈ [−180◦, 180◦],
a pitch angle ∈ [−90◦, 90◦], the player’s velocity is represented by vforward =
∆sforward/∆t,∈ [vmin, vmax], vside = ∆sside/∆t,∈ [vmin, vmax], and vupward =
∆supward/∆t ∈ [vmin, vmax], firing ∈ [0, 1], with vmin = −400 and vmax = +400

State prototypes are clustered from the player’s inventory Z = [z1, . . . , zn]
and zi ∈ R10, z = {health, armor, weapon1, . . . , weapon8}, where health ∈
[0, 200], armor ∈ [0, 200], and weapon1, . . . , weapon8 ∈ [0, 1].

Given these features, the strategic behaviors included in the gameplay se-
quences could been successfully learned. The in-game action synthesis again
yielded a life-like impression, the agent also sufficiently managed to reach the im-
plicitly defined goal-states. Thus, the approach combines a sufficient program-level
imitation with learned realistic movement synthesis. As already mentionend, in
order to evaluate the generated behaviors, we let human subjects decide about the
humanness of the agent. This should give an indicator for the quality of the ap-
proach with respect to our ultimate goal of mimicking human behavior.

Based on video-clips, a number of human participants had to decide about the
humanness of different agent implementations. The first obvious pitfall lies in the
selection of video clips. The experiment consisted of 15 groups, with 3 clips in each;
these clips were, on average, approximately 20 seconds in length. The selector may
deliberately choose certain clips in an effort to influence the respondents. To guard
against this, we first ensure that the number of samples is sufficient to embody
a wide variety of behaviors, and second, we cede control of the selection of the
specific behaviors to an unbiased arbiter. In our case, we wished to compare the
believability of our imitation agents against both human players and traditional rule-
based bots1; thus, we first ran numerous simulations with the traditional agent – over
whose behavior we had no control – to generate a corpus of gameplay samples,
and then proceeded to use human clips embodying similar behavior both in the
believability test and to train our imitation agents.

The test is presented as a website, as shown in Figure 6.12. First, each rater had

1We used the famous Gladiator bot programmed by van Waveren
2The website can be accessed at http://reynard.computing.dcu.ie/sab_tests/

107

http://reynard.computing.dcu.ie/sab_tests/

Chapter 6. Towards integrating behavioral layers

Figure 6.1: Believability test for game agents. A human player rates the believability of a
video showing a game agent from a third person perspective.

to estimate his experience in playing QUAKE II R© by assigning it a rating between
1-5 (1 corresponding to “Never played, rarely or never seen”, and 5 corresponding
to “Played frequently (daily)”). This helped us to interpret the test results. Each
subject was presented a series of 15 pages, showing 3 clips. The human subjects
had to classify each video into one out of five categories: human, probably human,
don’t know, probably artificial, and artificial. In order to make the results reliable,
the selection of clips, and the way they are presented are crucial. For example,
the clips’ order and selection were randomized, and the file names were hidden.
Further, we made sure that the clips do not contain any additional ’clues’ that might
reveal the nature of the agent, for instance nicknames, or special avatar models for
visualization. More details on the construction of the test can be found in [Gorman
et al., 2006b].

After a one week test period, and after discarding incomplete responses, we had
a total number of 20 completed forms and 900 rated clips.

From the evaluation we could conclude that the agent managed to convince
human subjects that it is a human who is controlling. In about 69% of all clips
showing our agent, it was thought of as human. Interestingly, a human was also only
believed to be human in 69% of all human player clips. Whereas the conventional
artificial agent was usually classified as being artificial. The corresponding details
can be seen in Table 6.1 and Table 6.2. It is of course interesting to see why the
imitation learning agent managed to convince the human subjects:

The test allowed to also submit a comment to each clip. These comments gave
a very good idea about what people did expect from a human player, and what
from an artificial one, Table 6.3 contains some comments. It showed that the player
habits often helped to create a human-like impression. The imitation learning ap-

108

6.2. Results

Clip Type Imitation Human Artificial
Human 225 145 102

Artificial 102 68 176
Neutral 32 28 22

Clip Type Imitation Human Artificial
Human 15 12 1

Artificial 1 0 13
Neutral 2 0 1

Table 6.1: The tables show how all subjects classified the clips (upper table), and one
exemplary very successful (for our agent) individual user rating (lower table). In a total 900
clips were rated (359 for the imitation learning agent, 241 for the human player, and 300 for
the conventional artificial player). In 225 rated clips the imitation agent was being thought
of as a human, in contrast, in only 102 clips it was thought of as being artificial. The ratings
for the clips showing an agent controlled by a human are similar. In 145 it was rated as
human, and in 68 clips it was rated as artificial. The classification threshold is taken to be a
rating of ’probably artificial/human’, thus interpreting a rating of ‘probably human’ as rated
as ‘human’.

Clip Type Recall Precision (%)
Human 68.08

Imitation 68.81
78.39

Artificial 36.69 50.87

Table 6.2: The table shows recall and precision values based on the ratings from the web
survey. The values consider classification as ‘human’ to be the desired results. Again, the
very similar ratings for the imitation agent, and the human support the overall human-like
agent impression.

109

Chapter 6. Towards integrating behavioral layers

Experience Comment
5 Bunny hop for no reason, also seems to be scanning for enemies
5 Fires gun for no reason , so must be human
5 Unnecessary jumping
5 Stand and wait. AI wouldn’t do this (?)
5 Human as they knew how to Rocket jump

The rocket jump and the short sequence of backward5
running at the end suggest this was human

Table 6.3: Sample comments from imitation agent clips misidentified as human. Interest-
ingly, it is often a player’s habits (unnecessary jumps, unnecessary firing of gun) that led to
a human-like impression. Moreover, complex moves also supported the human-like agent
impression (rocket-jumps).

Figure 6.2: Average variation of believability with experience level. The believability in-
dex is a representation of the degree to which a given type of clip was regarded as human,
in the range (0, 1). What is interesting about these results is that the experienced players
mostly believed that the imitation agent is a human player, moreover, they usually correctly
identified the rule-based agent as being artificial. The more inexperienced players occasion-
ally mislabeled the different agent types, but generally rated the imitation and human agent
similar. The average experience level of respondents was 3.2 in the range (1, 5).

110

6.3. Summary

proach successfully learned and generated these habits, for example, useless jumps
or firings of weapon. Moreover, the movements themselves also showed to be very
important. More complex moves are generally believed to be too difficult to be
executed by an artificial player. Therefore, for the experienced QUAKE II R© player,
seeing an artificial player doing a rocket-jump was probably a surprise - and conse-
quently it had to be human. In general, the experienced players did not have better
rating results than the inexperienced, as can be seen in Figure 6.2. Most classified
the imitation learning agent as a human player. However, the experienced players
also usually recognized the human player as being human. Although the imitation
agent also showed a decent program-level imitation by picking up items, this gen-
erally did not led to a more human-like impression (this interpretation is based on
the user comments that usually did not mention item-pickups).

6.3 Summary

In this chapter, we presented an approach for integrating the imitation of strategic
behavior and Bayesian motion modelling. The combination of these led to more
versatile, and even more realistic agent behavior compared to what we could achieve
with each single approach. The synthesis of more versatile behavior made it possi-
ble to conduct a believability test, i.e. human subjects decide about the humanness
of an agent.

For the combined approach, we first presented a reinforcement learning based
approach for imitating program-level behaviors. In this, a value function is build up
considering different movement paths of a human player. The movement paths are
expressed as node-sequences in a topological game-world representation. Accord-
ing to a player’s internal state, various value functions are build up. Given a specific
game situation, the agent can now decide on the next node in the topological map
to attain by selecting the node with the corresponding maximum utility value. The
iterative selection of nodes finally guides the agent along movement paths leading
to important items or places. For a life-like agent’s appearance and for steering the
agent between nodes in the topological representation, realistic movement imitation
is required. For this, we elaborated a Bayesian imitation learning approach, similar
to the already introduced methods. The two approaches were integrated in a straight
forward manner. The strategy imitation is responsible for selecting the next node
to attain, while the motion imitation is responsible for moving between the nodes.
The combined approaches finally led to an agent capable of walking along learned
paths to goal-states, and at the same time generating life-like movements for doing
so.

For evaluation, we conducted a believability test. Based on video clips of dif-
ferent agent implementations, human subjects had to decide on how human-like our
agent did behave. Votings on humanness were compared to ratings of video record-

111

Chapter 6. Towards integrating behavioral layers

ings of a human player and a conventional game agent. The believability test was
carefully designed in order to be as objective as possible. And indeed, the imitation
learning bot successfully managed to convince human subjects. In most cases, it
was perceived as being a human rather than artificial. In contrast, the conventional
game-agent was usually correctly identified as being artificial. And also the human
player was sometimes rated as artificial instead of being human. This is, except for
some early work by Laird and Duchi [2000], not only the first time that a test like
this was conducted for an artificial agent in FPS games, it is also the first time that
an artificial player learned all its behavior from the observations of a human player
and thereby managed to create the impression of being controlled by a human.

112

Chapter 7

Conclusion

In humans, behavior acquisition by means of learning from observations is neces-
sary for a rapid development of behaviors. Lately, this topic gained popularity in
robotics and artificial agent control, too. The idea is that by imitating someone else
an artificial agent can boostrap behavior in a fast and reliable manner. In this thesis
we applied this concept for behavior acquisition in artificial game-agents, in order
to model human-like behavior.

Behavior acquisition can only be addressed in association with an environment.
For instance, modern computer games also require sophisticated, complex behav-
iors in order to successfully play the game. Within such games, not only can we
observe a number of complex behaviors of humans, we can also access vast amounts
of observation data extracted from the network traffic of Internet games. Moreover,
we do not have to deal with problems in sensor-noise or actuator control. This al-
lows us to fully concentrate on the behavioral aspects. In this work, we considered
the popular genre of First-Person-Shooter games. In these, simulated avatars are
steered by human players through a simulated 3D world that is in many aspects in-
spired by the real-world. Therefore, FPS games require less abstraction than most
other genres, and are thus a well suited application for researching human-level
intelligence.

In games, we can easily access the game-state informations a human player re-
ceives as well as his reactions. In our case, the behavior of a player defines how
these sensory inputs are transformed to reactions. The task now is to learn a sim-
ilar mapping for usage in an artificial agent. For this, we applied methodologies
from pattern recognition and machine learning. In particular, we preferred methods
inspired by biological and psychological findings. Even the idea of acquiring be-
havior from observing others is clearly inspired by psychological findings, since it
is a basic human ability already developed in infants. Besides this, we also utilize
the concepts of biological "place cells" for providing a spatial memory, or "basic
action units" for providing an optimized storage of motor commands, and also dif-
ferent types of artificial neural networks. Thus, the contribution of this thesis is

113

Chapter 7. Conclusion

not only the idea of transferring the imitation learning task to games, it is also the
unique combination of approaches grounded in biological findings.

To make the idea of behavior learning feasible, we used a well known psycho-
logically motivated separation of behavior into three categories, i.e. (a) reactive,
(b) tactic, and (c) strategic behavior. The overall behavior of a human can be under-
stood as a multiplexing of these layers. Regarding imitation learning, we could now
concentrate on each layer individually. However, we did not understand the struc-
turing of behavior as truly hierarchical. In a truly hierarchical model the cognitive
higher level layers would control the cognitive lower layers. Instead, each layer is
responsible on its own for synthesizing the required in-game actions. Moreover,
we do not iteratively combine atomic behaviors, as for instance obstacle avoidance,
to generate complex behavior. Therefore, our view on behavior differs from the
ideas proposed in the behavior-based robotics community that are usually based on
combinations of atomic behaviors.

(a) Reactive behaviors denote player actions that only have a short-term rel-
evance, for example, simple movements or aiming. For learning reactive behav-
iors, we developed two main approaches: the first understood the reactive learning
as a regression problem, where we used neural networks; Multi-layer Perceptrons
were applied to learn a suitable mapping from sensor inputs to reactions. We fur-
ther enhanced this approach by applying the concept of biological place cells to
roughly discriminate prototypical situations, and thus divide the learning problem
among multiple MLPs. It has been shown that this approach was very well suited
for learning distinct behaviors that are simultaneously included in the observation
data. Behavior-wise, it led to a good reproduction of movement and aiming be-
haviors. The second approach utilized the already mentioned movement and action
primitives, where the idea of basic action units is also supported by psychological
evidence. Here, we learned a probabilistic mapping of prototypical situations onto
a single action unit, i.e. basically a prototypical player action. The prototypical sit-
uations were derived from a topological game-world representation, which again is
inspired by place cells. The suggested probabilistic sequencing of basic action units
led to natural motion and movement imitation. Even complex moves performed by
a human player were successfully imitated in an artificial agent. The idea of appro-
priate action sequencing is one of the main contributions and is also applied for the
learning of tactical and strategic behaviors.

(b) Tactical behaviors were introduced as behaviors in-between reactive and
strategic ones. We concentrated on the important, for a FPS game, behaviors in
player and opponent interactions. Again, we made use of the biological concepts of
place cells and action primitives. However, for a first approach on learning weapon
handling we were using a Mixture of Experts architecture. In this, we aggregated
multiple MLPs responsible for learning the handling of different weapon-types from
the observations of a human player. The resulting aiming behavior adapted to the

114

different characteristics of a selected weapon. Besides the weapon handling, ap-
propriate tactical movements for 1 vs. 1 situations were important. For example,
human players might try to evade, or approach an opponent. Again, the successfull
probabilistic selection of basic action units was applied here. However, this time
we developed a different state representation especially suited for the dynamics of
player and opponent interactions. The states were again based on deriving state
prototypes. The prototypes, however, reflected the special spatial orientations in
1 vs. 1 game-states. Finally, the developed approach resulted in life-like, opponent
dependent movement synthesis.

(c) For the cognitively highest layer, i.e. strategic behaviors, we considered be-
haviors targetted at long-term goal achievement. These behaviors provide another
challenge since they require the extraction of goal- and subgoal-states. Instead of
directly trying to extract the goal-states, we contributed an approach for implicitly
learning them. In this, state dependent movement patterns were remodelled using
artificial potential fields. Thus, the artificial agent was guided along a the steepest
gradient of the learned potential fields, thereby, the agent was guided to places or
items that could be interpreted as goal-states. Changes to the state vector, by for
instance picking up an item, led to changed potential field forces, and thus pro-
vide further guidance. This developed approach provided successful goal-reaching
behavior, i.e. program-level imitation. However, since no motion modelling was
included, the movements appeared rather machine-like. To tackle the problem of
motion synthesis we elaborated a second approach. Recently, based on recent re-
sults in developmental psychology, Rao et al. proposed a Bayesian model of imi-
tation learning. We applied this model to the task of learning strategies in games.
Again, behavior was the outcome of appropriate action primitive sequencing. The
sequencing depends on memorized sequences of subgoal and goal-states, effec-
tively denoting nodes in a topological represention of the game-world and internal
player states. Although the program-level imitation did not reach the performance
of the potential field based approach, the motion modelling using the action primi-
tives appeared realistic and life-like.

Since the overall behavior of a human can be understood as a multiplexing of
reactive, tactic, and strategic behavior, we finally developed a first approach towards
integrating strategic behavior and reactive motion modelling. In this, we combined
an approach for learning a strategy based on reinforcement learning, and the already
mentioned Bayesian motion imitation. For imitating a player’s strategical behavior,
a utility value was assigned to each node in a topological game-world representa-
tion. They are assigned so that maximizing the reward for the agent would result
in imitating the observed strategic movement patterns. To adapt the strategy, i.e.
react to varying internal states of the human player, multiple state dependent utility
distributions are build up. Finally, novel movement patterns are generated by fol-
lowing the node with the maximum reward. Here, the Bayesian imitation learning

115

Chapter 7. Conclusion

of movements comes into play. Instead of walking directly from node to node, the
motions between the nodes are learned within a probabilistic model. Thus, based
on the current and the next desired node action primitives are selected. This unique
approach allowed for a sufficient program-level imitation while at the same time
generating complex motion sequences.

In order to evaluate the approach we conducted a believability test. In the test,
human subjects had to make judgments on the humanness of different agent imple-
mentations based on a series of video clips. By constraining the showed behaviors,
and randomizing, and anonymizing the clips we tried to make sure that the human
subjects indeed only decide on the observed behaviors, and that their decisions are
not influenced by hidden ’clues’ that might reveal the nature of the agent. In the test,
we compared our own agent, using the combined approach, against a human player
and a conventional artificial agent. The results indicated that the agent is mostly per-
ceived as being controlled by a human rather than being artificial. Thereby, we not
only developed a Turing like test for believability in games, we also could confirm
that the developed approaches successfully learn and generate human-like behavior.

Future work

While we managed to successfully imitate a vast amount of important behaviors
in artificial agents, the agent did not yet reach a status at which it would be able
to play against a human player. We obviously tested the various behaviors in live
games, but a fully working agent indeed demands behavior learning and integration
capabilities that are to date beyond realization. Therefore, we can not yet answer
the question how good the agent actually is at playing the game. We are confident
that future work will lead to the imitation of more complex human behaviors, and
finally to a level at which a competition between a human and an imitation learning
agent can take place.

This thesis clearly showed that single behaviors can be learned by observing
others. For future research and according to our experience we would suggest a
more global learning architecture. A crucial question will be, how to integrate be-
havior. Therefore, it is not only important to combine already learned behaviors,
but also to integrate novel behavioral observations into existing behaviors. The
analysis of observation data is probably another crucial topic for ongoing research.
We are confident that it is possible to extract important information directly from
the data samples, for example about goal-states, segments of behavior, or relations
between behaviors. Moreover, the refinement and adaptation of existing behaviors
will also be of great importance. Often, these abilities are considered characteristic
of human-level intelligence.

116

Bibliography

R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.

A. Arleo. Spatial Learning and Navigation in Neuro-Mimetic Systems, Modeling
the Rat Hippocampus. PhD thesis, Swiss Federal Institute of Technology of
Lausanne (EPFL), 2001.

S. Bakkes, P. Spronck, and E. Postma. TEAM: The Team-oriented Evolutionary
Adaptability Mechanism. In In Proc. Int. Conf. on Entertainment Computing
- ICEC, number 3166 in Lecture Notes in Computer Science, pages 273–282.
Springer-Verlag, 2004.

T. Balch and R. Arkin. Avoiding the past: A simple but effective strategy for reac-
tive navigat. In Proc. IEEE Int. Conf. on Robotics and Automation, 1993.

J. Barnes and J. Hutches. AI Game Programming Wisdom, chapter Scripting for
Undefined Circumstances, pages 530–540. Charles River Media, 2002.

C. Bauckhage and C. Thurau. Exploiting the Fascination: Video Games in Machine
Learning Research and Education. In Proc. 2nd Int. Workshop in Computer Game
Design and Technology (GDTW’04), pages 61–70. ACM, 2004.

C. Bauckhage, C. Thurau, and G. Sagerer. Learning Human-like Opponent Behav-
ior for Interactive Computer Games. In Pattern Recognition, volume 2781 of
LNCS, pages 148–155. Springer-Verlag, 2003.

L. Berger. AI Game Programming Wisdom, chapter Scripting: Overview and Code
Generation, pages 505–510. Charles River Media, 2002a.

L. Berger. AI Game Programming Wisdom, chapter Scripting: System Integration,
pages 516–519. Charles River Media, 2002b.

L. Berger. AI Game Programming Wisdom, chapter Scripting: The Interpreter En-
gine, pages 511–515. Charles River Media, 2002c.

C. M. Bishop. Neural networks for pattern recognition. Oxford University Press,
Oxford, UK, 1996.

117

BIBLIOGRAPHY

E. Bonabeau, M. Dorigo, and G. Theraulaz. From Natural to Artificial Swarm
Intelligence. Oxford University Press, 1999.

C. Breazeal and B. Scassellati. Robots that imitate humans. Trends in Cognitive
Science, 6(11):481–487, 2002.

T. Cain. AI Game Programming Wisdom, chapter Practical Optimizations for A
Path Generation, pages 146–152. Charles River Media, 2002.

S. Cass. Mind Games. IEEE Spectrum, pages 40–44, December 2002.

A. J. Champandard. AI Game Development. New Riders, 2004.

A. J. Champandard. AI Depot. URL:http://ai-depot.com, 2006a.

A. J. Champandard. FEAR Project. URL:http://fear.sourceforge.net, 2006b.

M. DeLoura, editor. Game Programming Gems 1. Charles River Media, 2000.

M. DeLoura, editor. Game Programming Gems 2. Charles River Media, 2001.

A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data
via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):
1–38, 1977.

P. Diaconis. Recent Progress on de Finetti’s Notions of Exchangeability. In J.M.
Bernardo, M.H. DeGroot, D.V. Lindley, and A.F.M. Smith, editors, Bayesian
Statistics, volume 3, pages 111–125. Oxford Univ. Press, 1988.

M. Dickheiser, editor. Game Programming Gems 6. Charles River Media, 2006.

E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

DrivatarTM- Driving Avatar. URL: http://research.microsoft.com/mlp/forza/, 2006.

A. D. Ekstrom, M. J. Kahana, J. B. Caplan, T. A. Fields, E. A. Isham, E. L. Newman,
and I. Fried. Cellular networks underlying human spatial navigation. Nature, 425:
184–187, 2003.

P. Figueroa, N. Leite, R. M. L. Barros, Isaac Cohen, and Gerard Medioni. Tracking
soccer players using the graph representation. In ICPR, 2004.

A. Fod, M.J. Matarić, and O.C. Jenkins. Automated Derivation of Primitives for
Movement Classification. Autonomous Robots, 12(1):39–54, 2002.

D. Fu and R. Houlette. AI Game Programming Wisdom 2, chapter The Ultimate
Guide to FSMs in Games, pages 283–302. Charles River Media, 2002.

118

BIBLIOGRAPHY

J. Funge. Artificial Intelligence for Computer Games. A K Peters, Wellesley, MA,
2004.

J. Fürnkranz. Machine Learning in Games: A Survey. In J. Fürnkranz and M. Ku-
bat, editors, Machines that Learn to Play Games, chapter 2, pages 11–59. Nova
Science Publishers, Huntington, NY, 2001.

B. Geisler. An Empirical Study of Machine Learning Algorithms Applied to Mod-
eling Player Behavior in a ’First Person Shooter’ Video Game. Master’s thesis,
Department of Computer Sciences, University of Wisconsin-Madison, 2002.

R. Geraerts and M. H. Overmars. Sampling and node adding in probabilistic
roadmap planners. Robotics and Autonomous Systems, 54:165–173, 2006.

Z. Ghahramani. Building blocks of movement. Nature, 407:682–683, October
2000.

B. Gorman and M. Humphrys. Towards Integration of Strategic Planning and Mo-
tion Modelling in Interacctive Cojmputer Games. In Proc. Int. Conf. Computer
Game Design & Technology, pages 92–99, 2005.

B. Gorman, C. Thurau, C. Bauckhage, and M. Humphrys. Bayesian Imitation of
Human Behavior in Interactive Computer Games. In Proc. Int. Conf. on Pattern
Recognition. IEEE, 2006a.

B. Gorman, C. Thurau, C. Bauckhage, and M. Humphrys. Believability Testing and
Bayesian Imitation in Interactive Computer Games. In Proc. 9th Int. Conf. on the
Simulation of Adaptive Behavior (SAB’06), volume LNAI. Springer, 2006b.

T. Graepel, R. Herbrich, and J. Gold. Learning to Fight. In Proc. Int. Conf. on
Computer Games, Artificial Intelligence,Design and Education, 2004.

T. L. Griffiths and J. B. Tenenbaum. Statistics and the bayesian mind. Significance,
3(4):130–133, 2006.

J. Hancock. AI Game Programming Wisdom, chapter Navigating Doors, Elevators,
Ledges, and other Obstacles, pages 193–201. Charles River Media, 2002.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning.
Springer, 2001.

D. Higgins. AI Game Programming Wisdom, chapter Generic A Pathfinding, pages
114–121. Charles River Media, 2002a.

D. Higgins. AI Game Programming Wisdom, chapter Hot wo Achieve Lightning-
Fast A, pages 133–145. Charles River Media, 2002b.

119

BIBLIOGRAPHY

D. Higgins. AI Game Programming Wisdom, chapter Pathfinding Design Architec-
ture, pages 122–132. Charles River Media, 2002c.

E. Hollnagel. Human Reliability Analysis: Context & Control. Academic Press,
1994.

R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptive Mixture of Local
Experts. Neural Computation, 3(1):79–87, 1991.

J. Juul. Half-Real: Video Games between Real Rules and Fictional Worlds. MIT
Press, 2005.

A. Khoo and R. Zubek. Applying Inexpensive AI Techniques to Computer Games.
IEEE Intelligent System Special Issue on Interactive Entertainment, 17(4):48–53,
2002.

A. Kirmse, editor. Game Programming Gems 4. Charles River Media, 2004.

K. P. Körding and D. M. Wolpert. Bayesian integration in sensorimotor learning.
Nature, 427:244–247, 2004.

J. E. Laird. It knows what you’re going to do: adding anticipation to a Quakebot.
In Jörg P. Müller, Elisabeth Andre, Sandip Sen, and Claude Frasson, editors,
Proceedings of the Fifth International Conference on Autonomous Agents, pages
385–392, Montreal, Canada, 2001a. ACM Press.

J. E. Laird. Research in Human-Level AI using Computer Games. Communications
of the ACM, 45:32–35, 2002.

J. E. Laird and J. C. Duchi. Creating Human-like Synthetic Characters with Mul-
tiple Skill Levels: A Case Study using the Soar Quakebot. In AAAI 2000 Fall
Symposium Series: Simulating Human Agents, 2000.

J. E. Laird and M. v. Lent. Interactice Computer Games: Human-Level AI’s Killer
Application. In Proc. AAAI, pages 1171–1178, 2000.

J.E. Laird. Using a Computer Game to develop advanced AI. IEEE Computer,
pages 70–75, July 2001b.

R. Le Hy, A. Arrigioni, P. Bessière, and O. Lebeltel. Teaching Bayesian behaviours
to video game characters. Robotics and Autonomous Systems, 47(2–3):177–185,
2004.

L. Lidén. AI Game Programming Wisdom, chapter Strategic and Tactical Reasoning
with Waypoints, pages 211–220. Charles River Media, 2002.

120

BIBLIOGRAPHY

A. Lipson, H. Kueck, E. Brochu, and N. de Freitas. The "Touring" Test: Human-
Like Play in Computer Games. In First International Digital Games Research
Conference (DiGRA), 2003. (Invited poster presentation).

D. Livingstone. Turing’s Test and Believable AI in Games. ACM Computers in
entertainment, 4(1), 2006.

E. Maguire, N. Burgess, J. Donnett, R. Frackowiak, C. Frith, and J. O’keefe. Know-
ing Where and Getting There: A Human Navigation Network. Science, 280:
921–924, 1998.

T. Martinetz and K. Schulten. A "Neural Gas" Network Learns Topologies. In
Artificial Neural Networks. Elsevier Science Publisher B.V., 1991.

T.M. Martinetz, S.G. Berkovich, and K.J. Schulten. Neural Gas Network for Vec-
tor Quantization and its Application to Time-Series Prediction. IEEE Trans. on
Neural Networks, 4(4):558–569, 1993.

J. Matthews. AI Game Programming Wisdom, chapter Basic A pathfinding made
simple, pages 105–113. Charles River Media, 2002.

S. McGlinchey. Learning of AI players from game observation data. In Proc. 4th
International Conference on Intelligent Games and Simulation (Game-On’03),
2003.

S. McGlinchey and D. Livingstone. What believability testing can tell us. In Proc.
Int. Conf. on Computer Games, Artificial Intelligence,Design and Education,
2004.

M. Mika and C. Charla. AI Game Programming Wisdom, chapter Simple, Cheap
Pathfinding, pages 155–160. Charles River Media, 2002.

A. Nareyek. Artificial Intelligence in Computer Games – State of the Art and Future
Directions. ACM Queue, 1(10):58–65, 2004.

D. Nieuwenhuisen, A. Kamphuis, M. Mooijekind, and M.H. Overmars. Automatich
Construction of Roadmaps for Path Planning in Games. In In Proc. International
Conference on Computer Games:Artificial Intelligence, Design and Education,
2004.

E. Norling and L. Sonenberg. Creating Interactive Characters with BDI Agents. In
In Australian Workshop on Interactive Entertainment, 2004.

K. Okuma, A. Taleghani, N. de Freitas, J. Little, and D. Lowe. A Boosted Particle
Filter: Multitarget Detection and Tracking. In ECCV, 2004.

121

BIBLIOGRAPHY

J. Orkin. AI Game Programming Wisdom 2, chapter Applying Goal-Oriented Ac-
tion Planning to Games, pages 217–227. Charles River Media, 2004.

M. H. Overmars. Path Planning for Games. In In Proc. International Game Design
and Technology Workshop and Conference. ACM, 2005.

K. Pallister, editor. Game Programming Gems 5. Charles River Media, 2005.

G. H. Paull and C. J. Darken. Integrated On- and Off-line Cover Finding and Ex-
ploitation. In Proc. GAME-ON, pages 20–24, 2004.

M. Pfeiffer. Reinforcement learning of strategies for Settlers of Catan. In Proc.
of Int. Conf. on Computer Games, Artificial Intelligence, Design and Education,
2004.

M. Ponsen and P. Spronck. Improving Adaptive Game AI with Evolutionary Learn-
ing. In Proc. Int. Conf. on Computer Games, Artificial Intelligence,Design and
Education, pages 402–408, 2004.

J. R. Quinlan. Induction of Decision Trees. In J. W. Shavlik and T. G. Dietterich,
editors, Readings in Machine Learning. Morgan Kaufmann, 1990. Originally
published in Machine Learning 1:81–106, 1986.

S. Rabin, editor. AI Game Programming Wisdom. Charles River Media, 2002.

S. Rabin, editor. AI Game Programming Wisdom 2. Charles River Media, 2004.

S. Rabin, editor. AI Game Programming Wisdom 3. Charles River Media, 2006.

A.V. Rao, D. Miller, K. Rose, and A. Gersho. Mixture of Experts Regression Mod-
eling by Deterministic Annealing. IEEE Trans. on Signal Processing, 45(11):
2811–2820, 1997.

R.P.N. Rao, A.P. Shon, and A.N. Meltzoff. A Bayesian Model of Imitation in In-
fants and Robots. In K. Dautenhahn and C. Nehaniv, editors, Imitation and Social
Learning in Robots, Humans, and Animals: Behavioural, Social and Commu-
nicative Dimensions. Cambridge University Press„ 2004. to appear.

D. Redpath and K. Lebart. Bossting feature selection. In 3rd International Confer-
ence on Advances in Pattern Recognition (ICAPR’05), 2005.

C. Reed and B. Geisler. AI Game Programming Wisdom 2, chapter Jumping. Climb-
ing. and Tactical Reasoning: How to Get More Out of a Navigation System, pages
141–150. Charles River Media, 2004.

G. Rosado. AI Game Programming Wisdom 2, chapter Implementing a Data-Driven
Finite-State Machine, pages 307–318. Charles River Media, 2004.

122

BIBLIOGRAPHY

S. Schaal. Is Imitation Learning the Route to Humanoid Robots? Trends in Cogni-
tive Sciences, 3(6):233–242, 1999.

T. Schack. The cognitive architecture of complex movement. International Jour-
nal of Sport and Exercise Psychology, Special Issue Part II: The construction of
action - new Perspectives in Movement Science,2 (4):403–438, 2004.

T. Schack and F. Mechsner. Representation of motor skills in human long-term
memory. Neuroscience Letters, 391:77–81, 2006.

E. Sklar, A.D. Blair, P. Funes, and J. Pollack. Training Intelligent Agents Using
Human Internet Data. In Proc. 1st Asia-Pacific Conference on Intelligent Agent
Technology (IAT-99), 1999.

Soar. URL:http://sitemaker.umich.edu/soar, 2006.

P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma. Improving Opponent Intelli-
gence through Machine Learning. In Proc. 3rd Int. Conf. on Intelligent Games
and Simulation (GAME-ON’02), 2002.

P. Spronck, I. Sprinkhuizen-Kuyper, and E. Postma. Online Adaptation of Game
Opponent AI in Simulation and in Practice. In Proc. 4th Int. Conf. on Intelligent
Games and Simulation (GAME-ON’03), 2003.

E. Spyridou, I. Palmer, and E. Williams. Investigating Team Speech Communica-
tion in FPS Video Games. In Proc. of Int. Conf. on Computer Games, Artificial
Intelligence, Design and Education, 2004.

G. Sukthankar and K. Sycara. Automatic Recognition of Human Team Behaviors.
In Modeling Others from Observations, Workshop at IJCAI, 2005.

S. Surasmith. AI Game Programming Wisdom, chapter Preprocessed Solution for
Open Terrain Navigation, pages 161–170. Charles River Media, 2002.

R. S. Sutton and A. G. Barto. Introduction to Reinforcement Learning. MIT Press,
1998.

J.B. Tenenbaum, T. L. Griffiths, and C. Kemp. Theory-based bayesian models of
inductive learning and reasoning. Trends in Cognitive Sciences, 10(7):309–318,
2006.

K.A. Thoroughman and R. Shadmehr. Learning of action through adaptive combi-
nation of motor primitives. Nature, 407:742–747, October 2000.

S. Thrun. Learning to Play the Game of Chess. In G. Tesauro, D. Touretzky, and
T. Leen, editors, Advances in Neural Information Processing Systems (NIPS) 7,
Cambridge, MA, 1995. MIT Press.

123

BIBLIOGRAPHY

C. Thurau and C. Bauckhage. Tactical Waypoint Maps: Towards Imitating Tac-
tics in FPS Games. In M. Merabti, N. Lee, and M.H. Overmars, editors,
Proc. 3rd International Game Design and Technology Workshop and Conference
(GDTW’05), pages 140–144. ACM, 2005.

C. Thurau, C. Bauckhage, and G. Sagerer. Combining Self Organizing Maps
and Multilayer Perceptrons to Learn Bot-Behavior for a Commercial Computer
Game. In Proc. GAME-ON, pages 119–123, 2003.

C. Thurau, C. Bauckhage, and G. Sagerer. Learning Human-Like Movement Be-
havior for Computer Games. In Proc. 8th Int. Conf. on the Simulation of Adaptive
Behavior (SAB’04), pages 315–323, 2004.

C. Thurau, T. Paczian, and C. Bauckhage. Bayesian Imitation Learning in Game
Characters. In International Workshop on Automatic Learning and Real-Time
(ALaRT’05), pages 143–151, 2005a.

C. Thurau, T. Paczian, and C. Bauckhage. Is Bayesian Imitation Learning the Route
to Believable Gamebots? In Proc. GAME-ON North America, pages 3–9, 2005b.

C. Thurau, T. Hettenhausen, and C. Bauckhage. Classification of Team Behaviors
in Sports Video Games. In Proc. Int. Conf. on Pattern Recognition. IEEE, 2006.

J. Togelius, R. De Nardi, and S. M. Lucas. Making racing fun through player
modeling and track evolution. In SAB’06 Workshop on Adaptive Approaches for
Optimizing Player Satisfaction in Computer and Physical Games, 2006.

P. Tozour. AI Game Programming Wisdom, chapter First-Person Shooter AI Archi-
tecture, pages 387–396. Charles River Media, 2002a.

P. Tozour. AI Game Programming Wisdom, chapter The Basics of Ranged Weapon
Combat, pages 411–418. Charles River Media, 2002b.

P. Tozour. AI Game Programming Wisdom, chapter The Perils of AI Scripting,
pages 541–547. Charles River Media, 2002c.

P. Tozour. AI Game Programming Wisdom 2, chapter Stack-Based Finite State
Machines, pages 303–306. Charles River Media, 2004.

D. Treglia, editor. Game Programming Gems 3. Charles River Media, 2002.

J. P. van Waveren. The Quake III Arena Bot. Master’s thesis, Delft University of
Technology, 2001.

D. M. Wolpert, Z. Ghahramani, and J. R. Flanagan. Perspectives and problems
in motor learning. TRENDS in Cognitive Sciences, 5(11):487–494, November
2001.

124

BIBLIOGRAPHY

G. N. Yannakakis and J. Hallam. Evolving Opponents for Interesting Interactive
Computer Games. In Proc. 8th Int. Conf. on the Simulation of Adaptive Behavior
(SAB’04), pages 499–508, 2004.

S. Zanetti and A. El Rhalibi. Machine learning techniques for FPS in Q3. In
ACE ’04: Proceedings of the 2004 ACM SIGCHI International Conference on
Advances in computer entertainment technology, pages 239–244. ACM Press,
2004.

125

