
Dissertation zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften (Dr. rer. nat.)

der Technischen Fakultät der Universität Bielefeld

Bellman’s GAP: A 2nd Generation
Language and System for Algebraic

Dynamic Programming

Georg Sauthoff∗

March 4, 2011

∗gsauthof@techfak.uni-bielefeld.de

mailto:gsauthof@techfak.uni-bielefeld.de

Gedruckt auf alterungsbeständigem Papier °° ISO 9706

Abstract

The dissertation describes the new Bellman’s GAP which is a programming sys-
tem for writing dynamic programming algorithms over sequential data. It is the
second generation implementation of the algebraic dynamic programming frame-
work (ADP) [20]. The system includes the multi-paradigm language (GAP-L), its
compiler (GAP-C), functional modules (GAP-M) and a web site (GAP Pages) to
experiment with GAP-L programs. GAP-L includes declarative constructs, e.g. tree
grammars to model the search space, and imperative constructs for programming
advanced scoring functions. The syntax of GAP-L is similar to C/Java to lower
usage barriers. GAP-C translates the high-level and index-free GAP-L programs
into efficient C++-Code, which is competitive with handwritten code. It includes a
novel table design optimization algorithm, support for dynamic programming (DP)
over multiple sequences (multi-track DP), sampling, optional top-down evaluation,
various backtracing schemes etc. GAP-M includes modules for use in GAP-L pro-
grams. Examples are efficient representations of classification data types and sam-
pling as well as filter helper functions. GAP Pages contain web dialogs for selected
text book dynamic programming algorithms implemented in GAP-L. The web di-
alogs allow interactive ad-hoc experiments with different inputs and combinations
of algebras.
Several benchmarks and examples in the dissertation show the practical efficiency

of Bellman’s GAP in terms of program runtime and development time.

Acknowledgements

I thank my supervisor Prof. Dr. Robert Giegerich for his support during my PhD
studies, his open-door policy and very interesting discussions.
I am grateful to the DFG (Deutsche Forschungsgemeinschaft) for funding my

work through the GK635.
Thanks are due to Jens Reeder for providing ADP versions of RNA folding algo-

rithms and discussions.
I thank Christian Lang for the excellent teamwork and fruitful discussions during

the table design study project in 2005.
I thank Stefan Janssen, Alexander Kaiser and Marco Rüther for fruitful discus-

sions, effective coffee breaks and proofreading efforts. Stefan also did careful alpha
and beta testing of Bellman’s GAP, which was quite helpful.
Thanks to fellow open-source enthusiasts who are providing an enormous amount

of high quality software. I appreciate their efforts and I profited by that a lot.
In particular the Linux Kernel, the GNU Compiler Collection, the Boost C++
library, Flex and Bison parser generators, the LATEX typesetting system and a lot
of sophisticated LATEX packages, including the KOMA classes, tikz and pgfplots all
with incredible documentations have been very useful.
I am deeply grateful to my parents for their ongoing support.

Contents

1 Introduction 9
1.1 Problem Statement . 10
1.2 Role of Dynamic Programming in Bioinformatics 11
1.3 Related Dynamic Programming Frameworks 14

1.3.1 Dynamite . 14
1.3.2 Staging DP . 15
1.3.3 Dyna . 15
1.3.4 Shortcut Fusion . 16

2 Algebraic Dynamic Programming 18
2.1 First Generation ADP . 18

2.1.1 Algebra Products . 20
2.1.2 Haskell Embedding of ADP 23
2.1.3 The ADP Compiler . 26

2.2 Second Generation ADP . 27
2.2.1 Products . 28
2.2.2 Generalizations . 29
2.2.3 Algebra characteristics . 29

3 Bellman’s GAP Overview 33
3.1 Limitations of Haskell-embedded ADP 34

4 Bellman’s GAP Language 36
4.1 Design Goals . 36
4.2 New ADP features . 37
4.3 Example . 38
4.4 Lexical Structure . 41

4.4.1 Keywords . 41
4.4.2 Comments . 41
4.4.3 Operators . 41
4.4.4 Constants . 42
4.4.5 Whitespace . 42
4.4.6 Identifiers . 42
4.4.7 Layout . 42

4.5 Program Structure . 42
4.5.1 Imports . 42
4.5.2 Input . 43

6

4.5.3 Types . 44
4.5.4 Signature . 45
4.5.5 Algebras . 47
4.5.6 Statements . 50
4.5.7 Variable Access . 51
4.5.8 Grammar . 52
4.5.9 Instances . 57

4.6 Selected Language Features . 59
4.6.1 Algebra extension . 59
4.6.2 Syntactic filtering . 59
4.6.3 Semantic instance filtering . 60
4.6.4 Multi-Track programs . 64
4.6.5 Alphabets . 64

5 Bellman’s GAP Compiler 65
5.1 Compiler Architecture . 65
5.2 Example . 68
5.3 Semantic Analyses . 69

5.3.1 Unreachable Non-Terminals 71
5.3.2 Productive Checking . 71
5.3.3 Yield Size Analysis . 73
5.3.4 Loop Checking . 76
5.3.5 Max size filter propagation 76
5.3.6 Table Dimension Analysis . 78
5.3.7 Table Design . 82
5.3.8 Type Checking . 98
5.3.9 List analysis . 100
5.3.10 Dependency analysis . 101
5.3.11 Non-terminal inlining . 103
5.3.12 Index analysis . 103

5.4 Code Generation . 105
5.4.1 Parsing Schemes . 105
5.4.2 Parallelization . 111
5.4.3 Backtracing . 117
5.4.4 Window Mode . 125
5.4.5 Index Hacking . 125

6 Bellman’s GAP Modules 129
6.1 Memory Pools . 129
6.2 Lists . 130
6.3 String Data Structures . 130
6.4 librna . 132

7

7 Bellman’s GAP Pages 135
7.1 BiBiServ . 136

8 Benchmarks 137
8.1 RNAfold . 138
8.2 Thermodynamic matchers . 139
8.3 RNAshapes . 141
8.4 pknotsRG . 141

9 Conclusion 144

10 Outlook 146
10.1 Sparse ADP . 146
10.2 Knapsack style DP algorithms . 148
10.3 ADP over Trees . 149

Bibliography 150

8

1 Introduction

Dynamic Programming (DP) is an optimization method developed by Richard Bell-
man in the 1950ies [5]. It is used to solve optimization problems where overall solu-
tions are computed from sub-solutions. Solutions and sub-solutions are computed
using the same objective function, e.g. maximization or minimization. Applying
the objective functions to compute optimal sub-solutions and the tabulation of
reused sub-solutions leads to an algorithm that evaluates a search space of usually
exponential size in polynomial runtime and space. Bellman’s Principle (Definition
5) specifies the properties an objective function has to satisfy such that dynamic
programming can be used to solve the optimization problem.
Traditionally, dynamic programming algorithms are presented as matrix recur-

rences involving case distinctions. For example, the matrix-entry Mi,j contains
the sub-solution for the sub-problem (i, j), the complete problem instance is repre-
sented by (0, n) and the right hand side of the matrix recurrence specifies for each
(i, j) how to recursively compute the solution taking solutions for some (k, l), with
i ≤ k ≤ l ≤ j and (k, l) 6= (i, j) into account. Implementing the matrix recurrence
as a computer program means using an array as matrix and a loop control structure
that computes entries representing smaller sub-solutions before computing larger
ones.
Often, one is not only interested in the optimal score as specified by the matrix

recurrence, but also in the candidate structure from the search space that represents
the score. The structure is derived from the sequence of optimization steps during
the computation of the score. Given a score-matrix computing the structure is
called backtracing: starting from the global solution recursively the steps yielding
that solution are traced back.
In textbooks, dynamic programming is usually introduced with example algo-

rithms that only use one matrix recurrence (e.g. [8]). Such examples are easily
understood and implemented in a straight-forward way, but in practice dynamic
programming algorithms are common that use several interdepending matrix re-
currences, e.g. up to 30 matrix recurrences in manually developed algorithms.
Developing dynamic programming algorithms holds several challenges. One has

to decide what the search space of the problem domain is, how many tables are
needed, how to score elements of the search space and what structure a scoring
scheme implicates. Using matrix recurrences as specification tool for developing
DP algorithms, all these concerns are not separated, but need to be solved in an
interleaved fashion.
Learning dynamic programming only from small textbook style examples, it is

not obvious that these different concerns exist, e.g. one could assume that all matrix

9

recurrences have to be tabulated in any case.
In addition, index computations in matrix recurrences are error-prone, which

leads to tedious debugging sessions when implementing the recurrences as an im-
perative computer program. For example, when writing (i + 1, j + 1) instead of
(i+ 1, j − 1) in one place may only yield once in a while an obviously wrong solu-
tion during optimization.
More difficulties arise, when extending an existing DP algorithm. Changing, for

example, the backtracing mode, making minor conceptual changes to the scoring
scheme or the need to combine several objectives may require a completely new
implementation of the DP algorithm.
Algebraic Dynamic Programming (ADP, Chapter 2), developed by Robert Giegerich

around 2004, is a formal framework for developing dynamic programming algo-
rithms over sequences that provides a clear separation of the described concerns
and eliminates the use of indices, coining the slogan: “No subscripts, no errors!”
Bellman’s GAP is a second generation implementation of ADP, which is the

topic of this dissertation and is outlined in the next section. The role of dynamic
programming in bioinformatics is discussed in Section 1.2 and several approaches
that are similar to ADP in their motivation are reviewed in Section 1.3.

1.1 Problem Statement

The subject of this dissertation is the development of a novel programming system
for ADP that provides the advantages and features of ADP as published in 2004,
generalizes ADP for dynamic programming over multiple sequences (multi-track
DP), provides table design that takes constant runtime factors into account and
uses a new domain specific programming language that is easy accessible by ADP
novices, efficient to use by ADP professionals and not based on embedding into a
host language.
Additional goals of this work are the investigation of new product operations, the

development of classification schemes for products and the compilation of products
into efficient code. Further, alternative evaluation strategies, besides CYK-style
parsing, are to be investigated.
The aim of this dissertation is to establish a new programming system for ADP

which is to be called Bellman’s GAP in the following. The task is twofold: develop-
ment of GAP-L (Chapter 4), the novel domain specific programming language for
ADP that has a Java/C-like syntax, but has declarative constructs and development
of GAP-C from scratch (Chapter 5), an optimizing compiler that translates GAP-L
programs into efficient C++ code. Besides the presentation of novel and gener-
alized semantic analysis algorithms, e.g. for table design (Section 5.3.7) and table
dimension analysis (Section 5.3.6), the presentation of code-generation technique,
e.g. an alternative evaluation scheme that exploits sparseness (Section 5.4.1) and
parallelization (Section 5.4.2), Chapter 8 shows several benchmarks of the practical
runtime and memory usage of GAP-L programs compiled with GAP-C, comparing

10

s1 = darling
s2 = airline

da-rling
-airline

D
_
M

a
I

i

M
r
M

l

M

i

M
n
M

e

ε

gnilr_ad

Figure 1.1: Two example sequences and a possible alignment in two different
notations.

them with hand-written versions and with versions using previous ADP tools.
I developed GAP-M (Chapter 6) as a runtime-library that is part of GAP-C. It

provides efficient implementations of internal data-structures and reusable functions
for the application domain of bioinformatics. GAP Pages (Chapter 7) is a web-
site project to present the GAP-L syntax using examples of well known dynamic
programming as GAP-L versions and providing an interactive interface for ad-hoc
experiments with different inputs and objectives.
The ADP generalizations I developed during the design of GAP-L that are inde-

pendent of GAP-L are presented in Section 2.2.
Chapter 2 gives an overview over the current ADP framework and Chapter 3

gives an overview over Bellman’s GAP including a discussion of the motivation.
Chapter 9 concludes the dissertation and Chapter 10 discusses open problems

and further research opportunities.

1.2 Role of Dynamic Programming in Bioinformatics

Dynamic programming plays an important role in bioinformatics. Several optimiza-
tion problems in bioinformatics can be solved with the help of dynamic program-
ming. For example, in a textbook about sequence analysis [12], every presented
algorithm uses the method of dynamic programming. In the following a few exam-
ple use cases are described.
In the analysis of genomic sequence data, the optimal pairwise sequence alignment

is an important building block that can be computed via dynamic programming.
Given two sequences, the alignment is a sequence of edit-operations that, applied
to the first sequence, yields the second sequence. Figure 1.1 shows an example of an
alignment. Examples of edit-operations are deletion, insertion, match, mismatch or
transposition of characters. Each edit-operation has a score associated and the score
of the alignment is the sum of all edit-operation scores. An alignment is optimal,
if it has the best score. Depending on the scoring model, the objective function is
to maximize the score, i.e. to maximize the similarities between the sequences, or
to minimize the score, i.e. to minimize the dissimilarities or distance between the
sequences. The best score is then the maximal or minimal one. The search space
of all possible alignments is of exponential size, and with dynamic programming, it
can be evaluated in polynomial time.

11

U
U

U

U

A

A

A

A
AA

A
G

G

G G

G G G

C
CC

C C

C

CC

Figure 1.2: Example of an RNA secondary structure. Base pairings are colorized as
two bases that are connected with a bold blue edge. This motif is called
a hairpin. This image is from Wikimedia Commons. It is licenced under CC-
3.0-by-sa. For more information see: http://commons.wikimedia.org/wiki/File:

Stem-loop.svg

There are several variants of the basic algorithm that involve special scoring
schemes for gaps, allow free gaps at the beginning and end or find the two substrings
of the input with the highest alignment score (local alignment).
The model of edit-operations is an approximation of the reality in the cell, i.e.

a genomic sub sequence in the genome of an organism encodes a molecule or some
transcription information. Cell processes that lead e.g. to mutations of bases can
be seen as edit operations. When comparing two sequences, an alignment score
can be interpreted as measure for relatedness. Or an optimal alignment of a known
gene sequence with an unknown sequence with many similarities in a genome can
indicate a gene with similar functionality.
Hidden Markov models (HMMs) are used in bioinformatics for probabilistic mod-

eling. A HMM is a set of (hidden) states. Each state emits different characters with
certain probabilities. A model defines a set of transitions and state changes along
possible transitions with specific probabilities. Given a HMM and a sequence of
observed characters, the standard tasks are finding the most probable sequence
of hidden states (Viterbi algorithm) and the probability that the model was in
state X (Forward/Backward algorithm). Each algorithm uses the method of dy-
namic programming. Example applications are the search of sequence patterns, e.g.
CPG-islands or the start and end of genes in the genome. Another application are
profile HMMs, where a HMM is derived from an existing multiple alignment of a
sequence family. The resulting HMM is used to find unknown family members in
new sequence data.
HMMs have the same modeling power as regular grammars. Stochastic context

free grammars (SCFGs) allow probabilistic modeling using the power of CFGs.
Use cases are the search of sequence descriptions or patterns and the prediction of
the secondary structure of RNA molecules. The secondary structure of an RNA

12

http://commons.wikimedia.org/wiki/File:Stem-loop.svg
http://commons.wikimedia.org/wiki/File:Stem-loop.svg

Figure 1.3: Example of an RNA motif, generated with the Locomotif GUI.

molecule is described by the set of base pairings. Figure 1.2 shows an example. In
many processes in the cell, the structure of an RNA determines its function. Since
different sequences may yield the same structure, only looking at the sequence
data is not enough when comparing or searching RNA sequences. Analog to the
Viterbi algorithm for HMM, the CYK algorithm [58] can be modified to get the most
probable parse of a grammar for a given input sequence. To derive rule probabilities
from a training set of inputs, the generalization of the Forward/Backward algorithm
for SCFGs is the Inside/Outside algorithm.
Besides probabilistic modeling, CFGs are used to model the search space of pos-

sible secondary structure under a minimum free energy (MFE) model. Different
structure elements have different free energy contributions to the complete struc-
ture of an RNA sequence. The used energy parameters are derived experimentally.
The base of this model is that due to physicochemical laws, an RNA molecule in
the cell folds itself such that the free energy is minimal. Minimization optimization
using dynamic programming (e.g. implemented as a CYK style parser) computes
the MFE value and the structure or structures that yield this MFE. Using Boltz-
mann statistics [54], the probability of structures or structure ensembles under the
MFE model can be computed.
In RNA structure analysis, a CFG can be used to model the general search space

of an RNA structure. In other use cases, a CFG restricts the search space to specific
structural motifs, e.g. to the search space of all clover-leaf like structures (basically

13

three hairpins enclosed in a hairpin structure), which includes the family of tRNAs
(transfer RNAs). Figure 1.3 shows another motif created with the graphical gram-
mar generator Locomotif [38]. Grammars that model restricted structural motifs
and use the MFE model are also called thermodynamic matchers (TDMs).
For searching new members of a family of sequences, covariance models are used.

Such models use SCFGs, i.e. the use case is similar to profile HMMs, but context
free grammars are used instead of regular grammars.

1.3 Related Dynamic Programming Frameworks

The theoretical base of Bellman’s GAP is Algebraic Dynamic Programming (ADP,
Section 2). ADP is a formal framework for specifying dynamic programming al-
gorithms over sequences on a high level. It eliminates the use of indices, a major
source of error in dynamic programming. In ADP, there is a separation of the de-
scription of the candidate structure, from the candidate evaluation, from the search
space description and from tabulation concerns.
The following sections present and discuss languages, frameworks and libraries

for dynamic programming that are related to ADP.

1.3.1 Dynamite

Dynamite [6] is a domain specific language (DSL) for specifying pairwise sequence
alignment style DP algorithms. Its compiler generates C code. The main formal
concept in the Dynamite language are finite-state machines (FSM). A Dynamite
program defines states and transitions. Every transition is associated with a scoring
function and two offsets that specify how many characters from each input sequence
are consumed during that transition. The explicit specification of the offsets means
that one major source of error in DP, the use of indices, is not completely eliminated
from the Dynamite language. A state is directly mapped to a two-dimensional table,
i.e. for each state all sub-solutions are tabulated.
For example, the Gotoh algorithm [23] for pairwise sequence alignment with affine

gap-cost is modelled in Dynamite as FSM with three normal states: match, delete
and insert. In addition, the two special states start and end are defined, which are
not mapped to tables. A transition from the match to delete state corresponds to
opening a deletion gap, i.e. the gap opening cost is associated to that transition.
The first offset is 1 and the second offset is 0, since a deletion consumes one character
from the first sequence and none from the second. Then a gap extension cost is
associated to the delete state to delete state transition, etc.
The Dynamite compiler is coupled with a rich runtime library that includes data-

structures and tools needed for bioinformatics sequence analysis, e.g. for integrating
database searching, reading FASTA files or using protein scoring matrices. The
object system that is used in Dynamite is designed for extensibility, e.g. to integrate
a protein HMM or custom sequence types into a sequence alignment algorithm.

14

As a special code generation feature, the Dynamite compiler supports the gener-
ation of linear space alignment computation code which is a generalization of the
Hirschberg algorithm [24].
The Dynamite language only supports optimization functions, e.g. minimization

or maximization. Synoptic analyses of the search space, e.g. counting via sum-
mation, are not possible. The domain of the language comprises pairwise sequence
style O(n2) DP algorithms. There is no support for generic Needleman-Wunsch [35]
O(n3) style pairwise sequence alignment algorithms for using generic gap length
functions. Likewise, sequence alignment algorithms for more than two sequences,
generic single-track (e.g. O(n3) RNA secondary structure folding), generic two-track
(e.g. the Sankoff algorithm [42], for simultaneous folding and aligning) or generic
multi-track DP algorithms over sequences cannot be formulated in Dynamite.

1.3.2 Staging DP

A combinator library for specifying dynamic programming algorithms as multi stage
programming (MSP) code is presented in [52]. It is implemented in MetaOCaml
that provides elementary MSP constructs. The used MSP constructs are operators
to quote expressions and to instruct the compiler to inline quoted expressions.
The combinators of the library are implemented as monads. They do not abstract

from the matrix recurrences style of dynamic programming that is usually used
in textbooks to present dynamic programming algorithms. This means that one
major source of error in dynamic programming is not eliminated with the use of
this library. The details of MSP are not encapsulated in the library.
Example implementations and benchmark results are shown for simple one-table

dynamic programming algorithms. They are specialized on input sizes from 7 to 34
characters. The task of printing optimal candidates or backtracing is not covered
by the library.

1.3.3 Dyna

Dyna [13] is a turing-complete declarative language for specifying weighted deduc-
tive programs, which are a generalization of probabilistic parsing. It was devel-
oped to simplify the development of algorithms and parsers in the field of natural
language processing (NLP). Dynamic programming algorithms can be specified in
Dyna, but Dyna is not restricted to dynamic programming.
The syntax of Dyna is Prolog based and some concepts originate from the world

of deductive databases. A Dyna program is a set of deductive inference rules.
The Dyna compiler generates optimized C++ code, whose main part is an agenda
based parser. In NLP large grammars are not unusual and Dyna is able to handle
grammars with over 100000 rules.
Since the scope of Dyna is not restricted to dynamic programming, dynamic

programming related optimizations are not a main focus. For example, garbage
collection is run in fixed intervals, even when an optimizing dynamic programming

15

algorithm on elementary data types implicates no need for any garbage collection,
and in that case garbage collection only introduces overhead. Similar to that, the
generic agenda based parsing loop introduces some overhead in practice.
In the examples, the printing of optimal candidates or backtracing is not men-

tioned. One alternative is to forward compute string representations of candidates
with the scores or using an available graph browser to introspect the derivation
space.
The Dyna language does not separate the search space description from the

evaluation of candidates. For example the use of minimization, maximization or
something else as optimizing function or the score scheme are embedded on the left
hand side of the inference rules.
In Dyna the optimal sub-solutions are tabulated for sharing of sub-solutions,

which yields an asymptotic optimal runtime of dynamic programming algorithms.
The compiler does not include optimizations to reduce unnecessary tabulation.
Dyna supports optimizing program transformations like folding and unfolding,

but they are not automatically applied by the compiler. The user has to instruct
the compiler, where such transformations have to be applied.

1.3.4 Shortcut Fusion

The optimal sequence problem solving framework [33] provides functions to write
dynamic programming algorithms specifications. It is implemented as a Haskell
[28] library. It uses the functional programming technique of shortcut fusion, which
is a program transformation for eliminating intermediate data-structures between
function calls. The Haskell library implements several shortcut fusion rules as
GHC (Glasgow Haskell Compiler) rewrite rules, which are applied by the GHC to
the parse tree of the input program during compile time.
A dynamic programming algorithm is specified in the optimal sequence frame-

work via a Haskell program that enumerates the problem search space and applies
one or more objective functions to all candidates of the search space. These speci-
fications are constructed using higher order functions from the library. When com-
piling the program via GHC, the rewrite rules are applied to the inefficient search
space enumeration program and it is automatically transformed into an efficient
optimization program.
Since the framework is implemented as a Haskell library, the user is confronted

with errors from the Haskell systems exposing implementation details, when an op-
timal sequence specification contains an error. When a specification is written such
that the rewrite rules cannot automatically be applied, an inefficient specification
is transformed to an inefficient program without warning.
The framework does not eliminate the use of indices in search space specifications.

The framework specifies rewrite rules for selective or scoring objective functions, as
e.g. minimum or maximum. Synoptic objective functions, e.g. for computing the
size of the search space, are not included.
The rewrite rules generate dynamic programming programs that tabulate every

16

derived recurrence. The nested framework functions need to keep intermediate
candidate lists sorted, which may introduce an asymptotically suboptimal runtime
factor. Similar to that the use of a binary map data structure for tabulating solution
may asymptotically increase the runtime of the generated program.
[33] presents several example dynamic programming algorithms as optimal se-

quence specifications, e.g. Knapsack variants, the longest common subsequence
algorithm and the optimal binary search tree algorithm. In several benchmarks
the runtime of translated specifications, using the optimal sequence framework, are
compared to the runtime of directly handwritten Haskell implementations. The
generated programs are as fast or faster than the manually implemented dynamic
programming versions, but the manually implemented versions are not tuned for
efficiency. For example, the manually implemented version for some algorithms
consumes a lot of memory in comparison to the generated version such that much
runtime is spent during garbage collection.

17

2 Algebraic Dynamic Programming

Algebraic Dynamic Programming (ADP) is a formal framework for specifying dy-
namic programming algorithms on sequences. It clearly separates the concerns of
search space description, candidate description, candidate evaluation and tabula-
tion.
Tree grammars (G) specify the search space, algebras (E) evaluate candidate

terms and signatures (Σ) declare the function reservoir which tree grammars and
algebras are using. Tabulation is specified through non-terminal annotation in
tree grammars. The use of tree grammars for search space description eliminates
subscripts from the algorithm description, i.e. a major source of programming errors
in developing DP algorithms.
Algebras are building blocks to wrap different scoring schemes or optimization

strategies (h). With product operations they can be combined to more powerful
analyses.

2.1 First Generation ADP
The ADP framework as published in 2004 is referred to as the first generation of
ADP. This section defines the semantics of the basic GAP-L components. The
definitions follow the semantic description of ADP in [20], Section 3.
To simplify the following definitions, we assume the case of one input track, one

objective function and one sort. A denotes the alphabet of the input string. A
signature Σ over A is a set of function symbols and a data type placeholder (sort)
S. The return type of each function symbol is S, each argument is of type S or A.
TΣ denotes the term language described by the signature Σ and TΣ(V) is the term
language, where each term may contain variables from the set V . The regular tree
grammar G is defined as tuple (V,A, Z, P), where V is the set of non-terminals,
Z ∈ V is the axiom, and P is the set of productions. Each production is of the
form of Equation 2.1:

v → t with v ∈ V, t ∈ TΣ(V) (2.1)

The language generated by a tree grammar G is defined by Equation 2.2:

L(G) = {t ∈ TΣ|Z →∗ t} (2.2)

Definition 1 (Yield Function). y denotes the yield function and is of type TΣ →
A∗. It is defined as y(a) = a, where a ∈ A and y(f(x1, . . . , xn)) = y(x1) . . . y(xn),
and n ≥ 0, for each function symbol f from Σ.

18

The yield language L(G, y) of a tree grammar G is defined by Equation 2.3.

L(G, y) = {y(t)|t ∈ L(G)} (2.3)

Definition 2 (Yield Parsing). Computing the inverse of the yield function y is
called yield parsing. The yield parser Q of a tree grammar G computes the search
space of all possible yield parses:

Q(x) = {t|t ∈ L(G), y(t) = x} (2.4)

Note that a context-free parser for a yield language returns parse-trees and a
yield parser returns elements from TΣ. A user of Bellman’s GAP needs not to care
about how yield parsing works.

Definition 3 (Evaluation Algebra). An evaluation algebra E for a signature Σ
contains a function for every function symbol from Σ with the same arity. The
algebra substitutes the sort symbol with a concrete type S ′, i.e. the i-th argument
of the algebra function f is of type S ′ if the argument of functional symbol f is of
type S. In addition an evaluation algebra contains a objective function h of type
[S ′]→ [S ′].

Definition 4 (ADP Problem Solution). An ADP problem instance is specified by
a grammar G, evaluation algebra E and input sequence x ∈ A∗. Its solution is
defined by Equation 2.5.

G(E , x) = hE [E(t)|t ∈ L(G), y(t) = x] (2.5)

The square brackets in Equation 2.5 denote multi-sets, which are used to allow
for co-optimal solutions or a restricted class of sub-optimal solutions.
A GAP-L program encodes G and E , and running on input x, it produces the solu-

tion defined in Equation 2.5. The actual execution of a translated GAP-L program
does not enumerate the search space, building all candidate trees and evaluating
them. For efficiency reasons the objective function application is interleaved with
the evaluation of candidate trees, which are not explicitly constructed. In functional
language terminology, this is a case of deforestation. Tabulation of sub-solutions is
used to eliminate re-computations that lead to an exponential runtime.
The prerequisite for correct and efficient computation of the solution is Bellman’s

Principle of Optimality [5], which in the ADP framework is defined by Equations
2.6 and 2.7.

Definition 5 (Bellman’s Principle of Optimality).

hE [fE(x1, . . . , xk) | x1 ← Z1, . . . , xk ← Zk] =
hE [fE(x1, . . . , xk) | x1 ← hE(Z1), . . . , xk ← hE(Zk)]

(2.6)

hE(Z1 ∪ Z2) = hE(hE(Z1) ∪ hE(Z2)) and hE [] = [] (2.7)

19

Bellman’s Principle states that applying the objective function to sub-solutions
or applying it to sub-multi-sets does not change the computation of the global
optimum. An example of an objective function that does not satisfies Bellman’s
Principle is a function that selects the second best solution, e.g. the second largest
score. This function violates Equation 2.7.

2.1.1 Algebra Products
While products of evaluation algebras do not strictly enhance the ADP theory, they
are of enormous practical value. Products allow the easy combination of multiple
objectives, e.g. to choose the largest pizza among the cheapest ones or to get a list
of the best scored pizza place in every district.
Without products these combinations of objectives would need to be manually

re-implemented in a new evaluation algebra, which computes on l-tuples for l ob-
jectives.
The definition of the lexicographic product operation follows [48, 49].

Definition 6 (Lexicographic Product). Let A and B be evaluation algebras over
Σ. The product A ∗B is an evaluation algebra over Σ and has the functions

fA×B(x1, . . . , xk) = (fA(a1, . . . , ak), fB(b1, . . . , bk))
if xi = (xAi , xBi), then ai = xAi , bi = xBi , xAi ∈ SA, xBi ∈ SB
if xi ∈ A, then ai = xi = bi

, 1 ≤ i ≤ k

(2.8)
for each f ∈ Σ, and the objective function

hA∗B[(a1, b1), . . . , (am, bm)] =
[(l, r) |
l← set(hA[a1, . . . , am]),
r ← hB[r′ | (l′, r′)← [(a1, b1), . . . , (am, bm)], l′ = l]].

(2.9)

The expression set(U) reduces the multi-set U to a set. Using the product
minPrice·maxSize implements the first objective combination example, i.e. it selects
the largest pizza from the cheapest ones, which is the lexicographic ordering of the
two objectives, hence the name of the product. The second example is a classifica-
tion as described in [48]. Every pizza candidate from the search space is classified
into several districts. The product district · best implements these classification,
where the objective function of the district algebra is the identity.

2.1.1.1 Example

In this section the Nussinov algorithm [36] is introduced as a running example
to apply the ADP definitions and concepts. The Nussinov algorithm is a historic
dynamic programming algorithm that takes one character string as input and com-
putes the maximal number of character pairings. Not every character pair can form

20

a pairing, only certain complementary ones can do this. Each character can only
be part of one pairing and two pairings are not allowed to cross each other, i.e. for
every two pairings i, j and k, l with i < j < n, k < l < n and i < k it holds either
j < k or i < k < l < j, where n is the length of the input.
The first component of an ADP algorithm is the specification of the alphabet
A. Since the Nussinov algorithm is a historical landmark (see for example [12]) in
the field of RNA secondary structure prediction an RNA alphabet is used in this
example, i.e. A = {a, u, c, g}. In RNA sequence analysis a character from A is called
base and a string of characters is called sequence. An RNA secondary structure is
defined by the set of base pairings. Figure 1.2 shows an example structure.
The signature contains the function symbols we need to describe the candidates

of the search space:

nil : → X

right :X ×A → X

pair :A×X ×A → X

split :X ×X → X

where X denotes the sort symbol. The function symbol nil describes the empty
structure, right describes an unpaired base on the right of a sub-structure, pair
describes a sub-structure enclosed by a base pairing and split describes two sub-
structures side by side.
For example for the input sequence x = ccugg the candidate term t1 describes a

structure with two base pairings:

t1 = pair

c pair

c right

u nil

g

g

The yield string (Definition 1) y(t1) equals the input sequence x.
Combining the functional symbols in every possible way yields an unnecessary

large search space. Following grammar (Gnuss) restricts the search space to all terms
that represent well-formed RNA structures:

21

S → nil

ε

| right

S b

| split

S pair

b S b̂

The symbol b is shorthand for a base from the alphabet and b̂ is shorthand for
a complementary base. For RNA the bases (a, u), (u, a), (c, g), (g, c), (g, u) and
(u, g) are complementary and may pair with each other.
Algebras define how to evaluate the search space candidates. The following al-

gebra score maximizes the base pairings:

nil = 0
right(x, e) = x

split(x, y) = x+ y

pair(e, x, f) = x+ 1
h(l) = [max l]

It substitutes the sort symbol with an integer type. For printing the candidates
as Vienna Strings [25], where each unpaired base is marked with a dot and each
pairing with parentheses, the algebra pretty substitutes the sort for a string data
type.

nil = “”
right(x, e) = x+ “.”
split(x, y) = x+ y

pair(e, x, f) = “(” + x+ “)”
h(l) = l

where the + operator denotes string concatenation and the objective function is
the identity. Since every candidate from the search space yields a different pretty
print under this algebra the above Nussinov grammar is called semantically non-
ambiguous.
Following algebra uses an objective function which differs from the ones before.

It does not select elements from the input list, it possibly creates new elements.
The algebra counts the search space defined by the grammar.

22

nil = 0
right(x, e) = x

split(x, y) = x · y
pair(e, x, f) = x+ 1

h(l) =

∑
x∈l

x

Solving the ADP problem for algebra score given an input sequence x, i.e. solving
G(score, x) yields a one element list of type int that contains the maximal number
of base pairings. Using algebra pretty, G(pretty, x) returns a list of all candidates
in Vienna String notation.
The product score ·pretty, i.e. solving G(score ·pretty, x), computes a list of tuples,

where the left component stores the maximal number of base pairings and the right
stores the Vienna String of the candidate that yields this score. Note that more
than one candidate may yield the maximal number of base pairings. The product
score · count computes how many.
For example for x = ccaggg:

Gnuss(score · count, x) = [(2, 3)]
Gnuss(score · pretty, x) = [(2, “((.)).”) , (2, “((..))”)]

2.1.2 Haskell Embedding of ADP

Haskell-ADP [20] is the implementation of ADP as embedded domain specific lan-
guage (eDSL) in the purely functional programming language Haskell [28].
The signature of an ADP program is implemented in Haskell-ADP as parametrized

type synonym tuple of type signatures of functions, where the alphabet and sort are
the type parameters. An algebra is of the signature type, where the type parame-
ters are set to concrete types, i.e. an algebra is a tuple of functions. A tree grammar
is specified in Haskell-ADP with the help of parser combinators. Parser combina-
tors are higher order functions to build parsers. Haskell-ADP defines several yield
parsing combinators to parse the input. During the yield parsing the evaluation
algebra functions are applied such that the resulting program is efficient.
In the following the implementation of the Haskell-ADP combinators is exempli-

fied.

> type Subword = (Int , Int)
> type Parser b = Subword -> [b]

A sub-word of the input is represented as a tuple of integers. It is not a Haskell
string to save space. The input is available as an array, i.e. (0, n) marks the complete

23

input string, where n is the length of the input. A parser combinator is of type
Parser, which is parametrized with the type of the results. A parser takes a sub-
word as input and returns a list of successes, i.e. if it cannot parse the input it
returns the empty list.
> infixr 6 |||
> (|||) :: Parser b -> Parser b -> Parser b
> (|||) r q (i,j) = r (i,j) ++ q (i,j)

The first line specifies the associativity and the priority of an operator in Haskell.
This combinator implements an alternative of two grammar rules. Both argument
parsers are called and the results are concatenated.
> infix 8 <<<
> (<<<) :: (b -> c) -> Parser b -> Parser c
> (<<<) f q (i,j) = map f (q (i,j))

The apply parser combinator applies an algebra function to the arguments parsed
by argument parsers.
> infixl 7 ~~~
> (~~~) :: Parser (b -> c) -> Parser b -> Parser c
> (~~~) r q (i,j) = [f y | k <- [i..j], f <- r (i,k),
> y <- q (k,j)]

The next parser combinator nests argument parsers.
> infix 5 ...
> (...) :: Parser b -> ([b] -> [b]) -> Parser b
> (...) r h (i,j) = h (r (i,j))

This parser is used to specify an objective function application in grammar rules.
The objective function evaluates the parse result list of the parser on the left hand
side.
Haskell-ADP contains further parser combinators for syntactic filtered parsing

and to specify tabulation of parse results. It also includes specialization of the
basic parser combinators and terminal parsers.

2.1.2.1 Example

In this section the Nussinov algorithm from Section 2.1.1.1 is implemented in
Haskell-ADP.
> type Signature alphabet sort = (
> () -> sort , -- nil
> sort -> alphabet -> sort , -- right
> alphabet -> sort -> alphabet -> sort , -- pair
> sort -> sort -> sort , -- split
> [sort] -> [sort] -- h
>)

24

The signature is a parametrized type synonym with the parameters alphabet and
sort. The names of the signature function symbol are written as Haskell comments
for documentation purposes. The programmer has to be careful to use the symbol
names in algebra and grammar definitions in the same order.

> nussinov alg inp = axiom s where
> (nil , right , pair , split , h) = alg

> s = tabulated (
> nil <<< empty |||
> right <<< s ~~- base |||
> split <<< s ~~+
> ((pair <<< base -~~ s ~~- base)
> ‘with ‘ basepairing) ... h
>)

In the grammar definition, variants of the next parser combinator are used that
reduce the number of considered sub-word splits for an efficient evaluation. All parse
results for all sub-words are tabulated and the second argument of the function
symbol split is only parsed, if the basepairing filter identifies two complementary
bases at that location. The filter is a direct translation of the b, b̂ shorthand notation
in Section 2.1.1.1.
The score and pretty algebras are implemented as tuple of Haskell functions:

> score :: Signature Char Int
> score = (nil , right , pair , split , h) where
> nil _ = 0
> right x _ = x
> pair _ x _ = x + 1
> split x y = x + y
> h [] = []
> h xs = [maximum xs]

> pretty :: Signature Char String
> pretty = (nil , right , pair , split , h) where
> nil _ = ""
> right l b = l ++ "."
> pair a l b = ’(’:l ++ ")"
> split l1 l2 = l1 ++ l2
> h = id

The implementation of the lexicographic product directly follows Definition 6:

> infix ***
> alg1 *** alg2 = (nil , right , pair , split , h) where
> (nil1 , right1 , pair1 , split1 , h1) = alg1
> (nil2 , right2 , pair2 , split2 , h2) = alg2

25

Table 2.1: Examples of Haskell-ADP code and the equivalent ADPC-ADP code,
where l denotes a list of integers, u a string and c a character. In the
first three lines the left column is not valid ADPC-ADP code and vice
versa the right column is not valid Haskell code. In the last line the
left column is not valid ADPC-ADP code, but the right column is valid
Haskell code (it yields a runtime error if l is empty).

Haskell-ADP ADPC-ADP

h l = l h x = [id x]
u ++ [c] u ++ c
c:u c ++ u
h [] = [] ; h l = [minimum l] h l = [minimum l]

> nil a = (nil1 a, nil2 a)
> right (x1 , x2) a = (right1 x1 a, right2 x2 a)
> pair a (x1 , x2) b = (pair1 a x1 b, pair2 a x2 b)
> split (x1 , x2) (y1 , y2) = (split1 x1 y1 , split2 x2 y2)
> h xs = [(x1 , x2)| x1 <- nub $ h1 [y1 |
> (y1 ,y2) <- xs],
> x2 <- h2 [y2 |
> (y1 ,y2) <- xs , y1 == x1]]

Given the described elements of the Nussinov algorithm implemented in Haskell-
ADP the expression Gnuss(score · pretty, x) is equivalent to the Haskell expression
nussinov (score *** pretty) x.

2.1.3 The ADP Compiler

The ADP compiler (ADPC) [47] was the first effort to compile ADP programs
to imperative code. It is written in Haskell and generates C code by default. It
contains an alternative backend that generates Java code [43]. The input language
of the ADPC is a Haskell-ADP dialect (in the following called ADPC-ADP). The
compiler implements semantic analyses, e.g. yield size analysis, table dimension
analysis and table design. ADPC includes a type-checker that checks the ADP
programs after a successful parse (see Section 5.3.8 for a discussion).
With the help of the ADPC, several RNA related bioinformatics tools were cre-

ated, e.g. RNAshapes [51], pknotsRG [40] and RNAhybrid [41]. The tools were
prototyped in Haskell-ADP which does not scale well, as benchmark results show
(Section 8). For a discussion of the reasons see Section 3.1. Using the ADPC to
compile these tools made it possible to create versions that are usable or perform
better on sequence input of real world sizes. The table-design heuristic derives good
results for some grammars.
ADPC-ADP uses the layout rules of literate Haskell: each code line has to begin

26

with a > character, all other lines are comments and a more indented line starts a
new block (off-side rule). Other similarities to Haskell-ADP are the three character
ADP combinators and the Haskell tuple style notation of algebras. Haskell-ADP
contains several compiler directives (pragmas) that mark code blocks as signature,
algebras and grammars. The ADPC-ADP programs with pragmas and other con-
structs are invalid Haskell-programs. Basic data structure (e.g. list) operations in
ADPC-ADP are inspired by the Haskell or Haskell-ADP syntax, but show some
differences. Table 2.1 gives some examples. The differences complicate the type-
checking of ADPC-ADP programs. The language ADPC-ADP is not specified in a
document.
In case of a parse error the ADPC prints a generic error message with only the

line number and no further diagnostic. The ADPC is separated into two programs.
The actual compiler adpcompile and a frontend program adpc that inspects the
ADP source file and calls adpcompile with a set of low-level options. The frontend
generates a command-line interface, a makefile and does some post-processing of
the generated C-Code. The end-user of the compiler is expected to use the adpc
frontend. The frontend does not allow a selection of products, it calls adpcompile
for the algebras it finds and some simple products like score *** pretty. A side
effect of the frontend is that it does not check the status or error messages of
adpcompile. For example, a parse error is not printed to the console. Instead it is
written to a C module. The end-user is then confronted with cryptic error messages
of the C-compiler if the generated makefile is executed.
The included heuristic table design algorithm does not derive good results for

some practical grammars, e.g. auto generated thermodynamic matcher grammars.
A problem is that table configurations are derived which yield an asymptotic opti-
mal runtime, but with prohibitively large constant factors.
For the above tools, the ADPC created a basic code structure which was then

heavily post-processed in a semi-automatic fashion adding hand-written code to
implement features like stochastic-backtracing or more complicated products. The
compiler support of certain products is not available for all grammars. For example,
ADPC cannot generate shape classifying products for the pknotsRG grammar [39].
ADPC is not advertised to support dynamic programming on multiple input se-

quences (multi track DP). Probably it includes limited two-track support to compile
RNAhybrid [41].
The benchmark chapter (Chapter 8) contains runtime and memory usage com-

parisons of selected ADP grammars compiled with the ADPC and GAP-C.

2.2 Second Generation ADP

The notion Second Generation ADP subsumes extensions of the ADP framework
that were mainly developed after 2004 and are unpublished. The interleaved prod-
uct was developed by Robert Giegerich. The role classification scheme of algebras
and the generalization of ADP for multiple input tracks have been developed as

27

parts of this thesis.

2.2.1 Products

Definition 7 (Unitary Algebra). An objective function that returns lists of size one
at most is called a unitary objective function. An algebra containing only unitary
objective functions is called a unitary algebra.

Definition 8 (Cartesian Product). Let A and B be unitary evaluation algebras
over Σ. The cartesian product A× B is an evaluation algebra over Σ and has the
functions

fA×B(x1, . . . , xk) = (fA(a1, . . . , ak), fB(b1, . . . , bk))
if xi = (xAi , xBi), then ai = xAi , bi = xBi , xAi ∈ SA, xBi ∈ SB
if xi ∈ A, then ai = xi = bi

, 1 ≤ i ≤ k

(2.10)
for each f ∈ Σ, and the objective function

hA×B[(a1, b1), . . . , (am, bm)] =
[(l, r) |
l← hA[a1, . . . , am],
r ← hB[b1, . . . , bm]].

(2.11)

Using the cartesian product and just computing G(A×B, x) provides no strong
advantages compared to computing G(A, x) and G(B, x) separately, except the
first is a bit faster in practice. However, the cartesian product is used as part
of larger products where the combination is advantageous to several redundant
re-computations of other parts of the products.

Definition 9 (Generic Algebra). A generic evaluation algebraA(k) has a parameter
k and an objective function that returns the k best solutions.

Definition 10 (Interleaved Product). Let A be a Σ-algebra and B(k) a generic
Σ-algebra such that B(1) is unitary. The interleaved product (A⊗B)(k) is a generic
Σ-algebra and has the functions

fA⊗B = fA×B (2.12)

for each f ∈ Σ, and the objective function

h(A⊗B)(k)[(a1, b1), . . . , (am, bm)] =
[(l, r) | (l, r)← U, p← V, p = r]

where
U = hA∗B(1)[(a1, b1), . . . , (am, bm)]
V = set(hB(k)[v | (_, v)← U])

(2.13)

28

The interleaved product is an extension of the lexicographic product for more
restricted classification purposes. Consider the product A · B, where algebra A
classifies every solution into a class and algebra B scores and selects the best solu-
tion. The result of the product is the best solution of every class. Using a k-scoring
algebra, an algebra that selects the k-best solutions for B results in the k-best solu-
tions of every class. Using the lexicographic product, it is not possible to compute
the k-best classes with the best solution of every class. However, the interleaved
product (A⊗B)(k) does exactly this.

2.2.2 Generalizations

In the case of algebras containing more than one objective function, the objec-
tive function hE splits into several functions h1

E , h
2
E , . . . which all have to satisfy

Bellman’s Principle of Optimality. In the case of more than one sort, the basic
evaluation semantics does not change. For multi-track programs, the return type
of the yield function y is the l-tuple of strings from A∗, where l is the number
of used tracks. If the GAP-L program computes on l tracks, then Equation 2.14
specifies the semantics.

G(E , x1, . . . , xl) = hE [E(t)|t ∈ L(G), y(t) = (x1, . . . , xl)] (2.14)

2.2.3 Algebra characteristics

In Bellman’s GAP the compiler inspects the algebras and products and computes
two attributes of the objective functions. The first attribute is the role of an ob-
jective function and the second one is the maximal length of the list the objective
function may return. The reason for this characterization is threefold. First, this
information imply in code generation that optimizations like list elimination or
the use of hash table data structures in classifying products are safely applicable.
Second, when analysing the roles, the compiler is able to print error messages in
cases, where it is sure that the product does not satisfy Bellman’s Principle. Third,
depending on the computed roles, the compiler is able to issue warnings about
products that will produce exponentially sized answer lists.
Consider e.g. a scoring algebra with one objective function that computes the

minimum of the input list. If the input list is empty, then the empty list is returned,
else the minimum value is returned. The ADP framework assumes that every
objective function returns a list of successes. In this example, the list is always of
size zero or one. Thus, in the generated code there is not really a list data structure
needed for dealing with the result of the objective function. Instead of a list of type
T , a variable of type T is sufficient to store the result of the objective function.
By convention a value from the domain, like e.g. ‘infinity’, encodes the empty list.
Doing such an optimization, the runtime of the resulting code is improved, because
list operations are more expensive than elementary data type operations, memory
is saved and the CPU’s cache is more efficiently utilized.

29

An example where a whole class of products does not satisfy Bellman’s Principle
is count·B, where the objective function of the algebra count sums over all elements
of the input list and B is an algebra that satisfies Bellman’s Principle. Following
the definition of the lexicographic product (Equation 2.9), the objective function
h1 of the count algebra produces a new value which is not included in the first
components of the input list elements, unless the input list is empty or contains
just one element and the first component is set to 1. Thus, the answer list of
the product’s objective function h is always the empty value, unless the input list
contains one tuple with a value of 1 in the first component. Consider an input list l,
where l = [(1,_), (1,_)] and a split of the input list l = l1 ++l2, where l1 = [(1,_)]
and l2 = [(1,_)]. Then, h(l1 + +l2) 6= h(h(l1) + +h(l2)), which violates Bellman’s
Principle (Equation 2.7).
Examples of algebras that usually yield exponentially sized answer lists are the

algebra pretty or the product pretty · score where the objective function of pretty
is the identity and the objective function of score returns the maximal or minimal
value of the input list. Both products enumerate the (usually) exponentially sized
search space.
If the algebra contains just one objective function, then the role of the algebra is

defined as the role of that objective function. Since GAP-L supports algebras with
multiple objective functions, the roles of each objective function can differ. In such
cases, the role of such algebras is only defined, if all objective functions have the
same role. The concept of a role of an algebra is just a short hand notion, internally
for the optimizations the compiler works with the roles of the objective functions.
A product of two algebras is again an algebra.
GAP-C classifies each algebra into one of four roles: selective, enumerative, set-

valued and synoptic. A selective objective function selects one or more elements
from the input list according to an optimization criterion. An example for a selective
algebra is an algebra that computes scores and minimizes them. An enumerative
objective function just returns the input list. For example, a pretty printing algebra
is enumerative. A set-valued objective function removes all duplicates from the
input list. A synoptic objective function is a function that does not select elements
from the list, but computes new values from the input. An example of a synoptic
algebra is a counting algebra, where the search space of a GAP-L grammar is
counted. The objective function then is the sum of the input list. The following
definition summarizes the properties of the various roles:

Definition 11 (Algebra roles). An evaluation algebra A with objective function
hA, with hA([]) = [], is

• enumerative, if hA(X) = X,

• set-valued, if hA(X) = set(X),

• selective, if hA(X) ⊆ X,

• synoptic, if |hA(X)| = 1 and ∃X : hA(X) 6⊂ X

30

Table 2.2: The roles and the maximum return list sizes of objective functions de-
tected by the compiler.

objective function role maximum length

return list(minimum(l)) selective 1
return list(maximum(l)) selective 1
return list(sum(l)) synoptic 1
return l enumerative n
return unique(l) set-valued n

for all multisets X 6= [].

The compiler tries to detect the role of each evaluation objective. Table 2.2
shows the detected role of certain objective function expressions. If a user-defined
objective function is used, then the compiler assumes a scoring role with possibly
more than one optimal element returned. When defining an objective function in
GAP-L, it is possible to explicitly specify the role of the objective function (see
Section 4.5.5.1).
Combining two algebras with the cartesian, lexicographic or interleaved product

operation creates a new algebra. Table 2.3 shows the roles and worst-case list sizes
of the resulting objective functions depending on the left and right multiplicand.
Most cells in the cartesian product matrix are marked as not satisfying Bellman’s
Principle, because the definition of the cartesian product operation requires that
each operand is a unitary algebra (Definition 8) . Likewise, the first operand of the
interleaved product has to be a enumerative or set-valued algebra and the second
operand has to be a selective algebra with an answer list greater one (Definition 10).
For the lexicographic product, combining two enumerative objective functions yields
a permutation of the input list, which follows directly from the product definition
(Definition 6). First, all the left components of the input list are extracted and
all duplicates are removed. Then for each extracted component the corresponding
tuples are selected that match the left component. Analogous to that, the product
of a set-valued objective function and an enumerative one is a permutation of the
input list, too. In the ADP framework a permutation of the answer list of an
objective function does not matter, since the lists are viewed as multi-sets, where
the order of elements is not important. Thus, during code generation the compiler
is able to eliminate the objective function application in enumerative products or
in enumerative sub-products, which leads to more efficient code.

31

Table 2.3: Resulting roles of the different product operations (sel→ selective, enum
→ enumerative, set → set-valued, syn → synoptic). The worst-case
length of the returned lists is specified in parentheses, where n is the
size of the input list. A - entry in the table means non-preservation of
Bellman’s Principle.

(a) cartesian

× sel (1) sel (n) enum (n) set (n) syn (1)

sel (1) sel (1) - - - syn (1)
sel (n) - - - - -
enum (n) - - - - -
set (n) - - - - -
syn (1) syn (1) - - - syn (1)

(b) lexicographic

· sel (1) sel (n) enum (n) set (n) syn (1)

sel (1) sel (1) sel (n) sel (n) sel (n) syn (1)
sel (n) sel (n) sel (n) sel (n) sel (n) syn (n)
enum (n) sel (n) sel (n) enum (n) set (n) syn (n)
set (n) sel (n) sel (n) enum (n) set (n) syn (n)
syn (1) - - - - -

(c) interleaved

× sel (1) sel (n) enum (n) set (n) syn (1)

sel (1) - - - - -
sel (n) - - - - -
enum (n) - sel (n) - - -
set (n) - sel (n) - - -
syn (1) - - - - -

32

3 Bellman’s GAP Overview

Bellman’s GAP is a programming system for developing dynamic programming
algorithms over sequences in the ADP framework. It is named after the most
important ADP concepts:

• Bellman’s Principle of Optimality (Definition 5)

• Grammars

• Algebras

• Products (Section 2)

Bellman’s GAP consists of the following parts:

• GAP-L — a declarative language with C/Java like Syntax for specifying ADP
programs. Grammars are specified in a declarative style, where the right hand
side of non-terminals contains tree patterns resembling function calls. The
algebra code is written as imperative code blocks. Instance declarations allow
the combination of algebras with product operations to new algebras.

• GAP-C — a novel optimizing compiler that translates GAP-L programs to
efficient C++ code, which is competitive with handwritten code.

• GAP-M — a runtime library for compiled GAP-L programs including ef-
ficient implementations of internal data-structures and a module providing
convenience functions for accessing energy parameters and computing energy
contributions as used in RNA secondary structure prediction.

• GAP Pages — an educational website providing an interactive interface to a
set of GAP-L examples.

The following section describes the motivation behind designing a new language
for ADP and to choose the route of compiling ADP programs instead of embedding
it into another language. Section 2.1.3 has discussed the previous ADPC compiler,
the first compiler translating ADP to C, and has mentioned its shortcomings.
GAP-L is presented in Chapter 4, where the design goals are discussed, the syn-

tax is specified and new ADP features are shown. Chapter 5 describes GAP-C,
presenting the overall architecture of the compiler, specifying several optimization
algorithms used in semantic analyses of the compiler, e.g. a novel table design algo-
rithm, and the used code generation techniques, e.g. for parsing or parallelization.

33

In Chapter 6 GAP-M modules are presented, the optimized implementation of sev-
eral internal data-structures, like e.g. memory pools and strings, are discussed and
the RNA domain specific helper library is specified. GAP Pages is presented in
Chapter 7 and Chapter 8 includes several benchmarks of GAP-L versions compiled
by GAP-C against ADPC-ADP versions, Haskell-ADP versions and manual coded
implementations.

3.1 Limitations of Haskell-embedded ADP

The first implementation of ADP was done as embedded domain specific language
(eDSL) in Haskell [21]. Haskell [28] is a general purpose purely functional pro-
gramming language that uses lazy-evaluation by default. In the following the ADP
embedding is called Haskell-ADP.
The motivation for designing a new language and a stand-alone compiler for

ADP are two-fold. First, compiled Haskell-ADP does not perform and scale well,
see Chapter 8 for benchmarks of Haskell-ADP versions. The reason for this is that
the Haskell system does not have knowledge of ADP to apply ADP-specific opti-
mizations. For example, the Haskell system cannot eliminate the use of lists if only
a scoring algebra is used. Other factors are the lazy-evaluation and garbage col-
lection of Haskell. Lazy-evaluation means that expressions in functional programs
are only evaluated if needed. Lazy-evaluation pays off in cases, where the overhead
of bookkeeping, which expressions are or are not computed, is less than the strict
computation of all expressions. For example, if the structure of the search space
implies that only a few entries of a DP table are used, only these entries are com-
puted with lazy-evaluation. However, if an expression triggers the computation of
all subexpression, then lazy-evaluation is just overhead. In some cases a Haskell
compiler can optimize unnecessary lazy-evaluation away and the programmer can
place strictness annotations in the code. But in Haskell-ADP, the heavy use of
higher-order functions (parser combinators) makes it difficult to debug locations
where lazy-evaluation or strictness would improve the runtime.
Garbage collection is a runtime system that automatically deletes objects which

are not needed any more, and frees their memory. Doing an efficient garbage col-
lection is a hard problem. If e.g. an object is reused several times in the subsequent
program execution, then it makes sense to keep it around to avoid re-computations.
On the other hand, keeping objects too long wastes memory. Then there is the
design decision, how often the garbage collection should run and interrupt the exe-
cution of the program. A garbage collection algorithm has to implement a policy if
there is memory pressure: which objects to delete first and which cannot be deleted
at all. The general trade-off in garbage collection is memory usage efficiency vs. the
runtime complexity of the garbage collection algorithm. In practice, the garbage
collection often leads to extensive memory consumption for Haskell-ADP programs
(see Chapter 8).
In addition, Haskell-ADP uses heavy-weight data-structures. For example, a

34

ERROR "Optbin.lhs":89 - Inferred type is not general
enough

*** Expression : tree
*** Expected type : Tree_Algebra Alphabet a

-> [Alphabet] -> [a]
*** Inferred type : Tree_Algebra Alphabet ()

-> [Alphabet] -> [()]

Figure 3.1: Error message example of an ADP error in Haskell-ADP issued by the
Haskell interpreter Hugs: in the grammar definition a function symbol
is used with the wrong number of arguments.

Haskell string is a list of character objects and even in the optimized case a character
uses 12 bytes [9] (using GHC on a 32 bit architecture).
A dedicated ADP compiler can avoid the problems of the ADP Haskell embedding

in its code generation. The compiler can inspect the input program and implement
several ADP specific optimizations, e.g. list eliminations or table dimension reduc-
tion. It is able to restrict lazy-evaluation to cases, where it is likely to pay off. The
need for garbage-collection can be eliminated for making dynamic programming
programs more efficient, by using an explicit memory management code.
Second, the embedding of ADP in Haskell has some usability implications. Since

the Haskell system does not know the semantics of ADP, a (perhaps trivial) error in
an ADP program may yield generic and/or long type-inference error reports from
the Haskell system. Figure 3.1 shows an error message example. Such messages
suppose some knowledge of the Haskell programming language and the implemen-
tation details of Haskell-ADP. The design of Haskell-ADP is restricted by its host
language. For example, Haskell-ADP has to use the off-side rule. The off-side rule
means that the indentation of lines defines where code blocks start and end. To
minimize overloading problems with existing operators, the used parser combinators
have a length of 3 characters.
A main target audience are bioinformaticians, who are usually not trained Haskell

programmers. For them the off-side rule is a new, complicated concept and type-
inference error messages are “opaque”. In any case, an ADP programmer should
not need to know the implementation details of Haskell-ADP to understand the
error messages.
An ADP language implementation outside of Haskell does not need to consider

Haskell constraints. For example, the off-side rule is not used and the syntax of the
grammar declaration can be designed according to a function-like notation with the
well known single character for an alternative operator. Algebra functions do not
need to be implemented as Haskell functions. An ADP compiler is the right place to
implement an ADP specific type checker (Section 5.3.8) that generates more useful
error and warning messages.

35

4 Bellman’s GAP Language
Bellman’s GAP Language (GAP-L) is the 2nd generation domain specific language
for programming ADP. Its syntax is Java/C like but GAP-L includes declarative
constructs for several elements of an ADP algorithm, e.g. for specifying the gram-
mar. It is not embedded into a host language to avoid unnecessary constraints in
the design of the language. GAP-L implements the features of the first generation
ADP (Section 2.1) and later ADP extensions (Section 2.2). Several concepts, like
e.g. syntactic filtering, are generalized in GAP-L and advanced DP techniques, like
e.g. sampling, are available via the language in a general way.
The next section discusses the design goals of GAP-L. In Section 4.2 the new ADP

features in GAP-L are listed with forward references. The discussion of a GAP-
L version of the running Nussinov example in Section 4.3 exemplifies the main
syntactic elements of a GAP-L program. Section 4.4 describes the lexical structure
and Section 4.5 the syntactic structure using a CFG of an GAP-L program. Finally,
Section 4.6 presents advanced language features, like e.g. filtering or multi-track DP
that cover several language constructs.

4.1 Design Goals
The main design goal of GAP-L is: It should be easy to learn and to use for new
users and it should be usable effectively by ADP experts.
A main target audience of GAP-L are bioinformaticians. Most likely an under-

graduate bioinformatics student has some knowledge of an imperative programming
language with C-like Syntax like Java or C/C++. Therefore the syntax of large
parts of GAP-L is C-like. Using known syntax elements and concepts lowers the
barrier of learning and using GAP-L for new users. The signature declaration
in GAP-L resembles an interface declaration in Java. An algebra implements a
signature like a Java class may implement a Java interface. To highlight the reuse
of algebra functions, GAP-L has the concept of algebra inheritance. An algebra may
extend another algebra and only overwrite single functions, as classes can extend
other classes in Java. The syntax of algebra function code in GAP-L is C-like,
too. The complexity of dealing with data structures is encapsulated in the runtime
library that provides high-level data structure operations and tools via a function
based API. Thus, GAP-L does not need to provide object oriented language features
or pointer-arithmetic. The language for defining algebra functions is basically a
mini-Java.
As a consequence of using a C-like syntax and avoiding the off-side rule, GAP-L

is easier to parse. Easier parsing results in easier generation of helpful warning

36

and error messages which helps to satisfy the above main goal. For example, the
tracking of exact locations is simplified if no pre-processing of the off-side layout is
done.
For the ADP expert, GAP-L provides advanced features like extended filtering

constructs in grammar rules and products, instance declarations, generic support
for products, parametrized non-terminals and the explicit manipulation of indices
where needed. See Section 4.2 for an overview.
Both, the ADP beginner and the ADP expert profit from the GAP-L grammar

syntax. The tree grammar patterns on the right hand side of the non-terminal
definition are function like. There are no three character parser combinators. The
arguments of a function symbol are separated by commas. Special versions of next-
to combinators, like in Haskell-ADP, which separate the arguments, are not needed,
because the compiler automatically optimizes the moving index boundaries between
the arguments (Section 5.3.12). Thus, a GAP-L grammar looks like pseudo-code
grammar notation. Again, this syntax is not only easier to read, but also easier to
parse and easier to typecheck.

4.2 New ADP features
GAP-L is an implementation of the ADP framework. The ADP concepts of alpha-
bet, signatures, evaluation algebras, tree grammars and products are available in
GAP-L. In addition to that, it introduces the following new concepts. The detailed
description in later sections is referenced in the listing of features.

• An algebra can extend other algebras, i.e. in the extended algebra, algebra
functions can be overwritten or added (Section 4.5.5 and 4.6.1).

• Algebras that count the search space or print the candidate term as ASCII
serialization are built mechanically after the structure of the signature. In
GAP-L the user does not need to program them for each new signature.
It is possible to declare them as automatic and the compiler automatically
generates them (Section 4.5.5).

• A GAP-L program may contain several instance declarations that specify
different products (Section 4.5.9). For example, instance names allow to ref-
erence complicated products when compiling a GAP-L program.

• GAP-L includes new product operations (Section 4.5.9). The take-one prod-
uct is a specialization of the lexicographic product that ignores co-optimal
candidates. The overlay product allows the specification of different alge-
bra during the forward computation and backtracing. The cartesian and
interleaved products are not new, but are recent innovations from the ADP
community. All product operations are directly supported by GAP-C, i.e.
the compiler automatically generates optimized code that has the semantics
of the product operation. In comparison to that, in Haskell-ADP, the user is

37

required to mechanically program the product operation for each signature
from scratch as Haskell-Code.

• The concept of syntactic with-filters in ADP is generalized in GAP-L (Section
4.5.8.5 and 4.6.2). The patterns of tree grammars can now contain syntactic
filters that take more than one function symbol argument at once into account.
In addition, grammar patterns can be restricted by semantic filters that filter
on the values of the grammar parsers that result from the referenced grammar
pattern.

• Semantic filtering is possible in products, as well (Section 4.5.9 and 4.6.3).
This allows to reuse product filters for different products and separate filtering
concerns from optimization concerns in the evaluation function of the algebra.

• Parametrized non-terminals (Section 4.5.8.1) allow to declare non-terminals
in the tree grammar that have arguments. This allows, for example, to restrict
the recursion depth of recursive rules or pass context depending information
around and feed them into algebra functions.

• The ADP framework is specified for dynamic programming over one input
sequence (track). GAP-L generalizes ADP to multiple input tracks (Section
4.5.8.2 and 4.6.4). For example, parsers in the tree grammar can read from
one or multiple input tracks. It is possible to integrate single track grammars
into multi track ones.

• ADP eliminates indices from the search space description. However, in some
desperate cases the access and manipulation of moving index boundaries is
necessary for efficiency reasons. In GAP-L some language constructs are
provided for specifying explicit indices and moving index boundaries (Section
4.5.8.4 and 5.4.5). This makes it possible to specify large parts of a dynamic
programming algorithm high-level in ADP and have at the same time the
possibility to manipulate low-level indices only in single locations.

4.3 Example
Before introducing the syntax of GAP-L in all detail in the next two sections, the
basic elements of an ADP algorithm are shown implementing the Nussinov example
from Sections 2.1.1.1 and 2.1.2.1 in GAP-L.
The signature is implemented in GAP-L via the following declaration:

signature Nuss(alphabet , answer) {

answer nil(void);
answer right(answer , alphabet);
answer pair(alphabet , answer , alphabet);
answer split(answer , answer);

38

choice [answer] h([answer]);

}

The alphabet is a placeholder for the type of the input characters and answer
is the sort, i.e. the placeholder for the value of a candidate under an evaluation
algebra. Function symbol signatures are explicitly named. The name is not placed
inside a comment as in Haskell-ADP. The order of the function symbol signature
declarations does not matter. The syntax of the function symbol declarations is
Java/C-like, the type of the return value is written before the function symbol name
and not at the end, as in Haskell. The choice modifier marks the objective function
symbol.
The following declaration shows the Nussinov grammar in GAP-L syntax:

grammar nussinov uses Nuss (axiom = struct) {
struct = nil(EMPTY) |

right(struct , CHAR) |
split(struct ,

pair(CHAR , struct , CHAR)
with char_basepairing) # h ;

}

Tree patterns on the right hand side are written in a function like notation and
there are no three-character wide parser-combinator-like operators. In particular,
there are no next-combinator variants. Arguments of a function symbol application
are separated by commas because the GAP-L compiler automatically optimizes
moving index boundaries in the generated code using results from the yield size
analysis (Section 5.3.12).
After the description of the search space and the signature, we need to define

algebras to assign a meaning to each candidate and specify how to optimize over
the different candidates. The easiest algebra specifications are automatic ones:

algebra co auto count ;
algebra en auto enum ;

The first one generates an algebra that counts the search space under the given
tree grammar and the second enumerates the search space, where each candidate is
printed in a term representation. The latter is useful to check whether a grammar
matches its intention. The GAP-C analyzes the grammar and automatically gener-
ates the code for the automatic algebra declaration. In Haskell-ADP these algebras
need to be manually implemented for every grammar.
Next the score algebra which computes the maximal number of base pairings is

implemented in GAP-L syntax:

algebra score implements Nuss(alphabet = char ,
answer = int)

{

39

int nil(void) { return 0; }
int right(int a, char c) { return a; }
int pair(char c, int m, char d) { return m + 1; }
int split(int l, int r) { return l + r; }
choice [int] h([int] l) { return list(maximum (l)); }

}

The alphabet and sort placeholders in the signature are mapped to concrete types
in the header of the algebra declaration. The code of the algebra function is C/Java
like. The functions list and maximum are pre-defined and specialized versions for
different types and products are part of the GAP-L runtime library.
The implementation of the pretty algebra looks like this:

algebra pretty implements Nuss(alphabet = char ,
answer = string)

{
string nil(void)
{

string r;
return r;

}

string right(string a, char c)
{

string r;
append (r, a);
append (r, ’.’);
return r;

}

string pair(char c, string m, char d)
{

string r;
append (r, ’(’);
append (r, m);
append (r, ’)’);
return r;

}

string split(string l, string r)
{

string r;
append (r, l);
append (r, r);
return r;

40

}

choice [string] h([string] l)
{

return l;
}

}

In this case, the evaluation function is the identity. The result of the pretty
print algebra evaluation is a list of Vienna-Strings [25]. The strings are constructed
via the built-in function append, which is overloaded for different data-types and
arguments. This example shows the imperative nature of the GAP-L algebra code.
The example products from Section 2.1.1.1 are defined in GAP-L via instances:

instance scorepp = nussinov (score * pretty) ;
instance scoreco = nussinov (score * count) ;

The GAP-L programmer does not need to manually write the definition of the
lexicographic product for the above signature, as in Haskell-ADP, it is automatically
derived by GAP-C.

4.4 Lexical Structure

The character set of Bellman’s GAPprograms is ASCII. The lexing is case sensitive.

4.4.1 Keywords

The following tokens are keywords:
algebra alphabet auto axiom choice classify else extends extern for grammar if im-
plements import input instance kscoring overlay parameters pretty return scoring
signature suchthat synoptic tabulated type uses void with

4.4.2 Comments

Comments are specified as in C++/Java. Everything between /* and */ and from
// to the end of line is ignored.

4.4.3 Operators

The following operators are supported:
+ - = * / % . < > == != <= >= && || ! ++ += - - -=

41

4.4.4 Constants

Character constants are enclosed by single ticks (’) and string constants are en-
closed by double ticks (").
Numbers are encoded as integers or in the standard IEEE 754 floating point

notation.

4.4.5 Whitespace

Blanks, tabs and newlines outside of constants are considered as whitespace and
are ignored.

4.4.6 Identifiers

Identifiers are described by this regular expression: [A-Z_a-z][A-Z_a-z0-9]*

4.4.7 Layout

There is no special treatment of the source code layout, i.e. there is no off-side
rule (like in Haskell or Python). Statements are separated by semicolons and code
blocks are enclosed by curly braces.

4.5 Program Structure

The syntax of GAP-L is specified as a context-free grammar. Meta-symbols of the
grammar are ’:’ (separating left and right hand side of productions), ’|’ (separating
alternative right hand sides), and ’;’ (separating productions). An empty alternative
on the right hand side is always listed last. Nonterminal symbols are written in
plain typewriter style, terminal symbols in italic-face style. The non-terminal
symbol ident designates arbitrary identifiers. For clarity, it will be written in the
form algebra_ident, var_ident etc. to indicate the semantic role of the identifier.
However, these identifiers for different roles are not distinguished syntactically.
A Bellman’s GAP program is structured into several sections. Some sections

are optional, but the order of the sections is fixed. The non-terminal program is
the start symbol of the syntax description. Some optional parts are mandatory to
generate target code, but are not needed for semantic analyses by GAP-C.

program :
imports_opt input_opt types_opt
signature algebras_opt grammar instances_opt
;

4.5.1 Imports

42

imports_opt :
imports |
;

imports :
import |
imports import
;

import :
import module_ident
;

The module_ident can be a module from GAP-M; otherwise module names are
treated as names of a user defined module. The module rna is an example for
a module from GAP-M (see 6.4). It defines several functions for computing free
energy contributions of bases in different RNA secondary structure elements.

4.5.2 Input

input_opt :
input input_specifier |
input ’<’ inputs ’>’ |
;

inputs :
input |
inputs ’,’ input
;

input:
input_specifier
;

The input declaration specifies a special input string conversion. By default the
input is read as is (raw). The input specifier rna signals an input conversion from
ASCII encoded nucleotide strings to strings, which are encoded in the interval [0..4]:

43

value nucleotide
0 an unspecified base
1 A
2 C
3 G
4 U

The alphabet of the input string is specified in the algebra definition.
The input declaration also specifies the number of input tracks in a multi track

Bellman’s GAP program. For example, input <raw, raw> means two-track input
and both tracks are read as is. In GAP-L the default is single-track processing.
Multi-track dynamic programming algorithms work on more than one input se-

quence. For example, the Needleman-Wunsch pairwise sequence alignment algo-
rithm [35] or the Sankoff fold and align algorithm [42] work on two input sequences
(two-track). RNA folding, like the Zuker minimum free energy (MFE) algorithm
[59], work on one input sequence (single-track).

4.5.3 Types

types_opt :
types |
;

types:
type |
types type
;

type:
type ident ’=’ datatype |
type ident ’=’ extern
;

Type declarations at the global level are either type synonyms or declarations of
datatypes in imported external modules.

datatype :
type_specifier |
alphabet |
void |
’[’ type_specifier ’]’ |
’(’ named_datatypes ’)’
;

44

A datatype is either an elementary datatype, the alphabet type, void, a list or
a (named) tuple.
The alphabet type can only be used in the signature declaration. It is a place-

holder for an actual datatype of an alphabet. An algebra implementing the signa-
ture declares which datatype is the alphabet datatype.
Elementary datatypes are:
int, integer, float, string, char, bool, rational, bigint, subsequence,

shape, void.
float is in double precision, rational and bigint are of unlimited precision

and subsequence saves only the begin-/end-index of a substring. int is at least 32
bit long and integer is at least 64 bit long.

named_datatypes :
named_datatype |
named_datatypes ’,’ named_datatype
;

named_datatype :
datatype name_ident
;

Note that this syntax forces the programmer to name the components used in
tuples.

4.5.4 Signature

signature :
signature ident ’(’ sig_args ’)’ ’{’ sig_decls ’}’
;

sig_args :
alphabet ’,’ args signtparas
;

The parameters of the signature declaration are the alphabet keyword and one
or more sorts. A sort is a name for a data type which will be substituted in an
algebra that implements the signature. (In Haskell terminology, a Bellman’s GAP
sort is a type parameter.)

args:
arg |
args ’,’ arg
;

45

arg:
ident
;

signtparas :
’;’ datatypes |
;

sig_decls :
decl ’;’ |
sig_decls decl ’;’
;

decl:
qual_datatype ident ’(’ multi_datatypes signtparas ’)’
;

The signature contains one or more signature function declarations. The qual_datatype
indicates the result type of the function.

qual_datatype :
datatype |
choice datatype
;

The qualifier choice marks a signature function name as objective function. The
declaration of several objective functions is allowed. For the objective function,
argument and return types must be list types.

datatypes :
datatype |
datatypes ’,’ datatype
;

multi_datatype :
’<’ datatypes ’>’ |
datatype
;

A multi_datatype is a tuple of datatypes. In an algebra function the i-th
component of this type comes from the i-th input track. In a single track context,
datatype is equal to < datatype >.

46

multi_datatypes :
multi_datatype |
multi_datatypes ’,’ multi_datatype
;

4.5.5 Algebras
An algebra implements a signature. The algebra declaration specifies which data
type is used for the alphabet and which data type is used for each sort. The body
of the algebra contains a compatible function definition for each signature function
declaration, where alphabet and sort types are substituted according to the head
of the algebra declaration.

algebras_opt :
algebras |
;

algebras :
algebra |
algebras algebra
;

algebra :
algebra_head ’{’ fn_defs ’}’ |
algebra ident automatic automatic_specifier ’;’
;

automatic_specifier :
enum |
count
;

The automatic keyword specifies the auto generation of the specified algebra. The
Bellman’s GAP compiler supports the auto generation of an enumeration (enum)
algebra and a counting (count) algebra under an arbitrary signature. An enumer-
ation algebra prints each candidate term as a human readable string and keeps
all candidate strings in the objective function, i.e. running the enumeration alge-
bra alone prints the whole candidate search space. A counting algebra counts how
many candidates there are in the search space.

algebra_head :
mode algebra ident parameters implements

signature_ident ’(’ eqs ’)’ |
algebra ident parameters implements

47

signature_ident ’(’ eqs ’)’ |
algebra ident parameters extends algebra_ident
;

An algebra is declared as an implementation of a signature or as an extension of
a previously defined algebra. If a signature is directly implemented, the mapping
between signature parameters (alphabet and sorts) and concrete datatypes is spec-
ified. In the case of an extension, every already declared algebra function can be
overwritten.
The mode of an algebra is optional and either: synoptic stringrep classify

scoring kscoring
kscoring is the default mode for every objective function of the algebra and can

be overwritten by a declaration of an objective function.
In case of no mode specification, the compiler tries to derive the mode auto-

matically. If an objective function uses the generic list minimization function, the
objective function mode is autodetected as scoring.

parameters :
parameter_block |
;

parameter_block :
’(’ var_decl_init_p |
’(’ var_decl_inits var_decl_init_p
;

var_decl_inits :
var_decl_init_k |
var_decl_inits var_decl_init_k
;

var_decl_init_p :
datatype ident ’=’ expr ’)’
;

var_decl_init_k :
datatype ident ’=’ expr ’,’
;

Parameters of the algebra are optional. If present, they are supplied or over-
written at runtime of the resulting Bellman’s GAP program, e.g. via command line
switches and are intended to be supplied or overwritten by the user of a generated
Bellman’s GAP program.

48

eqs:
eq |
eqs ’,’ eq
;

eq:
sig_var ’=’ datatype
;

sig_var :
sort_ident |
alphabet
;

4.5.5.1 Algebra Functions

fn_defs :
fn_def |
fn_defs fn_def
;

fn_def :
mode_opt qual_datatype ident ’(’ para_decls fnntparas ’)’

’{’ statements ’}’
;

fnntparas :
’;’ para_decls |
;

mode_opt :
mode |
;

para_decls : |
para_decl |
para_decls ’,’ para_decl
;

para_decl :
datatype ident |
’<’ para_decls ’>’ |

49

void
;

An algebra contains normal functions and one or more objective functions. A
function is marked as objective function by using the keyword choice (see definition
of qual_datatype). In each declaration of the objective function it is possible to
overwrite the default algebra mode. It is possible to declare an algebra with two
objective functions, where the first one is of scoring mode and the second one is
of kscoring mode.
A para_decl is either a single-track, a multi-track or a VOID parameter declara-

tion. A multi-track parameter declaration is the implementation of a multi-track
tuple type of the corresponding signature function parameter. If a non-terminal
parser evaluates a branching element, it feeds each branch result into the corre-
sponding declared parameter of a multi-track parameter declaration.
An example of the multi-track parameter declaration syntax is the following

algebra function match:

int match(<char a, char b>, int rest)
{

if (a == b)
return 1 + rest;

else
return rest;

}

The corresponding signature function is:

answer match(<char , char >, answer);

The signature function symbol match may be used in a grammar rule, e.g.:

ali = match(< CHAR , CHAR >, ali)

4.5.6 Statements

statements :
statement |
statements statement
;

statement :
continue |
return |
if |
for |
assign |
var_decl |

50

fn_call |
’{’ statements ’}’
;

continue :
continue ’;’
;

fn_call :
ident ’(’ exprs ’)’ ’;’
;

return :
return expr ’;’
;

if:
if ’(’ expr ’)’ statement %prec LOWER_THAN_ELSE |
if ’(’ expr ’)’ statement else statement
;

The %prec LOWER_THAN_ELSE grammar description annotation specifies that the
else part of an if statement belongs to the last started if statement (like in C/Java)
while parsing nested conditionals.

for:
for ’(’ var_decl_init expr ’;’ inc_stmt ’)’

statement
;

assign :
var_access ’=’ expr ’;’
;

4.5.7 Variable Access

var_access :
ident |
var_access ’.’ name_ident |
var_access ’[’ expr ’]’
;

51

A variable access is either an access to a simple variable, an access to a component
of a named tuple or an access to an array.

4.5.8 Grammar

4.5.8.1 Grammar rules

grammar :
grammar ident uses signature_ident

’(’ axiom ’=’ nt_ident ’)’ ’{’ grammar_body ’}’
;

grammar_body :
tabulated productions |
productions
;

The definition of a grammar specifies the name of the grammar, the used signa-
ture and the name of the start symbol. The grammar is a regular tree grammar.
The right hand side contains function symbols from the signature as tree nodes.
The GAP-C checks whether the grammar is valid under the specified signature.

tabulated :
tabulated ’{’ args ’}’
;

With the optional tabulated declaration it is possible to request the tabulation
of a list of non-terminals. In case of an increased optimization level or a non-
present tabulated declaration the compiler automatically computes a good table
configuration (see Section 5.3.7).

productions :
production |
productions production
;

production :
ident ntargs ’=’ rhs ’;’
;

ntargs :
’(’ para_decls ’)’ |
;

52

A non-terminal symbol can be defined with arguments (i.e. a parameterized non-
terminal). The arguments, or expressions including the arguments, can be used
on the right hand side as extra arguments of a function symbol, a filter function
or another parametrized non-terminal call. A parametrized non-terminal cannot
be tabulated, because for every combination of parameter values a separate table
would be needed.
An example for the use of parametrized non-terminals is the design of RNA pat-

tern matching algorithms in ADP [31], where a non-terminal models e.g. a stack
of base pairings and the argument of the non-terminal is the stack length. The
argument is then decremented, if greater than zero, and applied to a recursive
non-terminal call. Another example is pknotsRG [40], where canonicalization in-
formation is supplied via non-terminal parameters (Section 5.4.5).

rhs:
alts |
alts ’#’ choice_fn_ident
;

The right hand side of a production is a set of alternatives with an optional
application of an objective function which was declared in the signature.

ntparas :
’;’ exprs |
;

filters :
filters ’,’ filter_fn |
filter_fn
;

tracks :
track |
tracks ’,’ track
;

track:
alt
;

alts:
alt |
alts ’|’ alt
;

53

alt:
’{’ alts ’}’ |
sig_fn_or_term_ident ’(’ rhs_args ntparas ’)’ |
symbol_ident |
alt filter_kw filter_fn |

An alternative is a block of enclosed alternatives, a function symbol from the
signature plus its arguments, a non-terminal/terminal parser call or a conditional
alternative.

4.5.8.2 Multi-Track Rules

’<’ tracks ’>’ |
alt filter_kw ’<’ filters ’>’ |

For multi-track dynamic programming an alternative can also be a branching
from a multi-track context into several single-track contexts or a conditional alter-
native guarded by different single-track filters for each track.
A multi-track context of n tracks may contain an n-fold branching < a_1, ..., a_n >.

Each ai is then in a single-track context for each track i, where ai is a terminal- or
non-terminal parser call.
For example, match (< CHAR, CHAR >, ali) is a grammar rule that calls

two character reading terminal parsers, which read a character from the first or the
second input track, respectively.
To apply a filter on different tracks in a multi-track context, a list of filters has

to be included in <> parentheses.
In multi-track mode the grammar may contain combinations of single-track and

multi-track productions. The following example contains two-track and single-track
productions:

foo = del (< CHAR , EMPTY > , foo) |
ins (< EMPTY , CHAR > , foo) |
x (< fold , REGION >, foo) # h ;

fold = hl (BASE , REGION , BASE) # h’ ;

4.5.8.3 Non-terminal parameters

alt ’.’ ’(’ exprs ’)’ ’.’ |

This alternative specifies the syntax for calling non-terminals that have parame-
ters. In case alt is not a link to another non-terminal, an error should be signaled.

54

4.5.8.4 Index Hacking

symbol_ident ’[’ exprs ’]’ |
alt ’.’ ’{’ alt ’}’ ’.’ |
’.’ ’[’ statements ’]’ ’.’ ’{’ alt ’}’
;

These index hacking related alternatives specify a non-terminal call with explicit
indices, an overlay of two alternatives and verbatim index manipulation code be-
fore an alternative. The tree grammar search-space specification mechanism from
the ADP framework eliminates the need of using explicit indices for most dynamic
programming algorithms over sequences. However, some algorithms, like for ex-
ample pknotsRG [40], need to perform their own index computations at selected
non-terminal locations for efficiency reasons. In the example of pknotsRG, canon-
icalization rules are applied to reduce the number of moving index boundaries. In
GAP-L, these rules are implemented as verbatim index manipulation code in the
grammar. The overlaying of alternatives is used in the semantic analyses. The left
alternative is a fake rule that approximates the resulting index boundaries, such
that the runtime analysis computes more realistic results. The right alternative is
then used for code generation.
See Section 5.4.5 for more details on index hacking in the use case of pknotsRG.

4.5.8.5 Grammar Filters

filter_kw :
with |
suchthat |
with_overlay |
suchthat_overlay
;

With P filter_kw f in case of the with keyword, the filter function f is called
before P is parsed, with the sub-word that should be parsed by P , as an (addi-
tional) argument. With the suchthat keyword the filter function is called after P
is evaluated for each parse of P . with_overlay and suchthat_overlay are vari-
ations of with and suchthat and are only defined if P uses a signature function
g. In the case of with_overlay the filter function is called with a list of sub-
words which correspond to the unparsed arguments of g, before P is parsed. With
suchthat_overlay the filter function is called after the arguments of g are parsed
and before the evaluation of g for each combination of argument values.
Filtering through with and with_overlay clauses is called syntactic filtering,

since the filter function depends only on the input word. Filtering with suchthat

55

and suchthat_overlay is called semantic filtering, since the filter does not depend
on the input word, but on the used algebra.

filter_fn :
ident |
ident ’(’ exprs ’)’
;

The filter function can be part of the signature and algebra definition or can be
included in a module. The filter function must return a boolean value. In addition
to the default arguments, it is possible to supply user defined arguments.
If the return value is false, the left hand side of the filter keyword is not used

during parsing. In the case of syntactic filtering this means that the left hand side
is neither parsed nor evaluated. With semantic filtering, the left hand side is parsed
and evaluated, but the result is discarded.
The filters are used to reduce the search space which is described by the grammar.

rhs_args :
rhs_arg |
rhs_args ’,’ rhs_arg
;

rhs_arg :
alt |
const
;

const:
number |
’\’’ character_constant ’\’’ |
’"’ string_constant ’"’
;

4.5.8.6 Terminal Symbols

The Bellman’s GAP language supports several terminal parsers or symbols. For a
terminal parser it is possible to have one or more arguments.
The yield size of a terminal parser is the number of characters it parses from

the input word. The STRING terminal parser parses some non-empty string, i.e. its
minimum yieldsize is 1 and its maximum yieldsize is n, where n is the length of the
input word.
The terminal symbols without arguments (including their return type) are listed

as follows:

56

yield size

Return type Parser min max

[void] EMPTY 0 0
[subsequence] LOC 0 0
[char] CHAR 1 1
[subsequence] BASE 1 1
[string] STRING0 0 n
[string] STRING 1 n
[subsequence] REGION0 0 n
[subsequence] REGION 1 n
[float] FLOAT 1 n
[int] INT 1 n
[int] SEQ 1 n

If a terminal parser cannot parse successfully, an empty list is returned. The parser
LOC is used to access the position in the input string, where the empty word was
parsed. INT reads an integer number and returns its value. SEQ parses a sub-word
from the input string and returns its length.
The list of terminal symbols with arguments is:

[alphabet] CHAR(alphabet)
[int] INT(int)
[int] CONST_INT (int)
[subsequence] STRING (string)
[float] CONST_FLOAT (float)

The CONST_* terminal parsers have a maximum yieldsize of 0, i.e. they don’t
consume any sub-word of the input. Those terminal parsers can be used in a
grammar context to supply a constant argument to an algebra function.

4.5.9 Instances

An instance declaration specifies under which algebra (or product) a grammar is
evaluated.

instances_opt :
instances |
;

instances :
instances_
;

instances_ :

57

instance |
instances_ instance
;

instance :
instance i_lhs ’=’ ident ’(’ product ’)’ ’;’
;

An instance is named. On the right hand side of the equal sign, the grammar
and the product is specified. See Section 2.1.1 for the semantics of the products.

product :
product ’*’ product |

The lexicographic product.

product ’/’ product |

The interleaved product.

product ’%’ product |

The cartesian product.

product ’.’ product |

The take-one product. The difference to the lexicographic product is that only
one co-optimal result is chosen in the case of co-optimal results.

product ’|’ product |

The overlay product. With A | B, A is used in the forward computation and B
is used during backtracing. An use case for this is stochastic backtracing (Section
5.4.3.1), i.e. the sampling of shape strings under a partition function:

((p_func | p_func_id) * shape5) suchthat sample_filter)

The objective function of the p_func algebra is summation and the objective
function of the p_func_id algebra is identity. During the forward computation
only p_func is evaluated. In the backtracing phase the intermediate p_func val-
ues are evaluated by the p_func_id algebra and value lists are filtered by the
sample_filter. The sample_filter interprets the value lists as discrete proba-
bility distributions and randomly takes one element from the list under this distribu-
tion. During the backtracing the shape representation is randomly built according
to the computed probability distribution, i.e. the repeated stochastic backtracing
samples shape strings according to their shape probability (see Section 5.4.3.1).

58

’(’ product ’)’ |
algebra_ident |

Singleton product.

product suchthat filter_fn
;

Before evaluating the answers list with the product’s objective function, the
filter_fn is applied to each intermediate (candidate) answer list. The result of
the filter_fn is the input for the products objective function.
A usecase for this feature is the probability mode in RNAshapes [51], where

in the computation of shape * pf every (sub-)candidate is removed during the
computation, if the left hand side is < 0.000001. This filter significantly reduces
the exponential number of classes, such that the computation of this product for
longer sequences is feasible (Section 4.6.2).

4.6 Selected Language Features
The previous section has presented the syntactic constructs of GAP-L, focusing on
the structure of GAP-L programs. In this section several language concepts are
described in more detail to show how different language features cooperate.

4.6.1 Algebra extension

It is possible to define an algebra as an extension of an existing algebra. This
concept is similar to class inheritance in object oriented languages like Java. See
Section 4.5.5 for the syntax specification. In the extended algebra, function defini-
tions overwrite the ones of the base algebra. The extended algebra has the same
alphabet type and type assignments to the sorts like the base algebra. The exten-
sion mechanism is e.g. used in the ElMamun example where the buyer algebra and
the seller algebra only differ in its evaluation function (Figure 4.1).
Further examples are the different classification algebras of RNA-folding pro-

grams, where the implementation of each shape level abstraction differs only in a
few function definitions.

4.6.2 Syntactic filtering

Filtering in the grammar means pruning the search space. Consider the following
code example.

closed = { stack | hairpin | leftB | rightB | iloop |
multiloop }

with stackpairing # h ;

59

algebra buyer implements Bill(alphabet = char ,
answer = int) {

...

choice [int] h([int] i)
{

return list(minimum (i));
}

}

algebra seller extends buyer {
choice [int] h([int] l)
{

return list(maximum (l));
}

}

Figure 4.1: Example of an algebra extending another. The evaluation function is
overwritten.

This means that each possible sub-word from the input string fed into the non-
terminal parser closed is checked by the filter stackpairing before it is subject
to be parsed by the non-terminal parsers stack, hairpin Only if the filter
returns true, the sub-word is parsed. The filter checks, if the first and second
characters (or bases) are complementary to the last and second-last characters.
Pruning the search space with filters may reduce computation time in practice,

but another advantage is the simplification of algebras and a clear separation be-
tween search space description and evaluation. For example, if in a maximization
algebra the stackpairing would be checked and scored with minus infinity, the
grammar filter would not be needed. Then a counting or probabilistic algebra
would return wrong results. If extending the algebra for minimization, it is not
enough to just exchange the objective function. Further practical problems with
this approach would be range-overrun problems when using integers.
For more filter variants and the formal syntax see Section 4.5.8.1. Syntactic

filtering is a source of sparseness in dynamic programming that is exploited in
top-down evaluation of the search space (Section 5.4.1).

4.6.3 Semantic instance filtering

In the instance declaration, there is optional support for semantic filtering (see
Section 4.5.9 for formal syntax). Semantic filtering means that the answer list of a
non-terminal parser is filtered with the specified filter function after the objective

60

function was applied. This language feature makes it possible to cleanly separate
filtering concerns from generic algebras.
A use case is found in classified DP [48, 49], where the classification algebra

computes an exponential number of classes with growing input length, i.e. during
the computation a filter heuristically removes those classes that only contribute
very small values to the solution. An example is this instance declaration:

instance shape5pfx = fold ((shape5 * p_func)
suchthat p_func_filter);

The product computes the probability of each shape in the search space (each
candidate has a shape, each shape embraces multiple candidates). The filter func-
tion p_func_filter removes the shape classes with a very low contribution (for
example < 0.000001 percent) for all non-terminal parser results.
Figure 4.2 shows the distribution of shape probability deviations δ (Equation

5.29, page 122) using two different grammars and various cut-off filter values for
2000 randomly generated sequences. RNAshapes and GAPC nonamb use the same
grammar that takes energy contributions of dangling bases unambiguously into
account. The δ between two sets of shape probabilities is computed using the
results of a computation without filtering and of one with a cut-off filter applied
during the computation. The results show that using a cut-off filter of 0.0001 or
less only introduces small errors in comparison to the exact computation. For most
comparisons the δ are less than 0.01. Only for RNAshapes and a cut-off value
of 0.0001 it shows that 5 percent of the sequences larger than 110 bases yield δ
between 0.01 and 0.05. This means for the tested sequences that a filtered shape
probability deviates 5 percent points from the exactly computed shape-probability
in the worst case. Figure 4.3 shows the number of shape classes as a function of
the sequence length for different cut-off filter values for the same set of randomly
generated sequences. Using filtering the number of shapes is greatly reduced. The
numbers of shapes resulting from an unfiltered computation are up to 103 or 104

times of the numbers resulting from filtering, depending on the used cut-off values
and grammars.
An alternative to this use case of semantic filtering is to sample shapes from the

grammar (which is also called stochastic backtracing, see Section 5.4.3.1 for details).
Figure 5.41 shows the distribution of shape probability deviations due to sampling
for the set of sequences used in Figure 4.2. When computing only the partition
function (Equation 5.24, page 122) and then sampling shape strings several times
(e.g. 1000 iterations) under a shape algebra, the number of samples that return the
same shape is divided by the number of samples which approximates the probability
of that shape class. Comparing semantic filtering with stochastic backtracing shows
that semantic filtering yields smaller shape probability deviations, but stochastic
backtracing is more efficient, i.e. filtering is in O(k2n3) and stochastic backtracing
is in O(n3), where k is the number of classes.

61

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(a) GAPC adpf (cut-off: 0.000001)

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(b) GAPC adpf (cut-off: 0.0001)

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(c) GAPC nonamb (cut-off: 0.000001)

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(d) GAPC nonamb (cut-off: 0.0001)

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(e) RNAshapes (cut-off: 0.000001)

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(f) RNAshapes (cut-off: 0.0001)

Figure 4.2: Distribution of shape probability deviations δ for two different gram-
mars and various cut-filter values. The δ is computed between the re-
sults of an unfiltered computation and a filtered one. Each program was
run on the same set of 2000 randomly generated sequences. RNAshapes
and GAPC nonamb use the same grammar (see text).

62

0 20 40 60 80 100 120 140
100

101

102

103

104

105

106

n

#
sh
ap

es

GAPC adpf cut-off: 0 GAPC nonamb cut-off: 0
RNAshapes cut-off: 0 GAPC adpf cut-off: 0.000001

GAPC nonamb cut-off: 0.000001 RNAshapes cut-off: 0.000001
GAPC adpf cut-off: 0.0001 GAPC nonamb cut-off: 0.0001
RNAshapes cut-off: 0.0001

Figure 4.3: The maximal numbers of shapes as a function of the sequence length n
for various grammars and cut-off filter values and RNAshapes. The in-
put are 2000 randomly generated sequences. A cut-off value of 0 means
that no filtering of shape classes was done during the computation. A
cut-off value of x means that all shape classes are filtered during the
computation that have a shape-probability of < x percent.

63

4.6.4 Multi-Track programs
The input declaration (Section 4.5.2) specifies on how many input tracks a GAP-L
program computes, e.g. for two input tracks:

input < raw , raw >

In most single track GAP-L programs there is no input declaration, since the
default is the input < raw > declaration (raw means no pre-processing or conver-
sion of the input string). The alphabet of the input tracks is not specified in the
input declaration, but in the algebra declaration.
If the input declaration specifies l input tracks, the axiom non-terminal is in a

l-track context. An l-track context non-terminal can directly call other l-track non-
terminals or use the < x1, . . . , xl > construct (see Section 4.5.8.1) to call for each
track a single track context non-terminal or terminal xi, where 0 ≤ i < l. A single
track context non-terminal can be called for different tracks. In this case the non-
terminal parser parses different tracks in dependence of the callers track position.
Using this track context change feature, single track sub-grammars are usable from
a multi-track grammar. A use case for this feature is e.g. the combination of
alignment and duplication history computation in one algorithm [1].
The <> parentheses are used in the definition of signature and algebra functions

according to their use in the grammar. See Section 4.5.5.1 for the formal syntax .
In the general case, a two-track DP-program needs O(n4) space, since there are

two indices for each track. However, the GAP-C analyzes the grammar and elim-
inates the indices that are constant (Section 5.3.12). For example, in the Pairwise
Sequence algorithm, only one index changes for each track, thus the space con-
sumption is in O(n2).

4.6.5 Alphabets
In GAP-L programs, the alphabet specifies the basic unit of parsing. The terminal
parsers like CHAR, REGION etc. are alphabet polymorphic. That means that CHAR
returns a char, if the alphabet is char or a float if the alphabet is float.
The alphabet can be changed for each algebra, but note that the algebras used in

a product have to use the same alphabet. The formal syntax is specified in Section
4.5.5. An example:

algebra pretty implements Align(alphabet = single ,
answer = spair) {

...
}

The algebra pretty works on input strings of single precision floating point num-
bers.
In the default command line frontend generated by the GAP-C, the user input is

converted to the right alphabet. In alphabets other than char, whitespace is used
to delimit the characters of the input.

64

5 Bellman’s GAP Compiler

The Bellman’s GAP Compiler (GAP-C) is the novel ADP compiler which translates
GAP-L programs into efficient C++ code. Section 5.1 specifies the overall architec-
ture of GAP-C. An example compile session using the running Nussinov example
is presented in Section 5.2. The compiler implements several semantic analyses
for optimization purposes, error reporting, type checking and automatic table de-
sign, which are specified in Section 5.3. Algorithms and techniques regarding the
code-generation phase of GAP-C are reported in Section 5.4.

5.1 Compiler Architecture

The Bellman’s GAP compiler is written from scratch in C++. Object-orientation
is extensively used for the different parts of the compiler. The architecture of the
compiler consists of three modules: The frontend, the middle-end and the backend.
See Figure 5.1 for an overview.
The frontend consists of a lexer and a parser. The lexer divides the input GAP-L

program into a stream of tokens which are consumed by the parser. The parser
creates an abstract syntax tree (AST). The elements of the AST are C++ objects.
For example, there is an expression base class and the substraction operation is
a sub-class of the expression base class. Figure 5.2 shows a class diagram of the
main classes an AST is made of. Both, the lexer and the parser are autogenerated
from abstract specifications. The lexer is specified as Flex [37] description and
the syntax is specified as Bison [18] grammar. The lexer and parser implement
a sophisticated location tracking scheme to be able to report the exact line and
column in error messages. A generic error message printing component takes the
location object into account in printing the specified line of the input program and
highlighting the specified columns, such that a Bellman’s GAP programmer gets
a more informative error message. Figure 5.3 shows an example message. Syntax
parse errors, i.e. violations of the GAP-L grammar, and simple consistency checks
are done interleaved with the AST construction. More sophisticated type-checking
and reporting of semantic errors/warnings are done in the middle-end, since the
whole AST and the output of semantic analyses are needed.
The middle-end takes the AST as input and applies several semantic analyses

to it. Examples for semantic analyses are type-checking (Section 5.3.8), yield size
analysis (Section 5.3.3) and table-design (Section 5.3.7). The results of the semantic
analyses and the AST are the input for the code-generation. The result of the code
generation is a data structure that represents the abstract target code. The abstract

65

BackendFrontend Middle-end

Lexer

Parser

Semantic
Analyses

Codegen

C++
Typechecker
Table-Design

Ta
rg

e
t

C
o
d

e

A
S

T

...

...

Figure 5.1: Architecture of the Bellman’s GAP compiler. AST is the abstract syn-
tax tree. The Java backend is not yet implemented, it symbolizes the
extensibility of the backend architecture for more output languages.

Symbol

Terminal NT

Grammar

1..n

1

Alt

Simple

Block

Link

Multi

1 1..n

Fn_Arg

Const

AlgebraInstance

Product

Single

Times Statement

Foreach Fn_Call

Expr

Mult

Add

Filter
...

...

Fn_Def

1..n

1..n

1

1

1

...

2

1

1

1..n

1..n

1

1..n

1

1..n
1

SignatureAST

1..n

11

Figure 5.2: Class diagram of the main abstract syntax tree (AST) classes.

Error:
mult(times, formula) # h ;
^--^

elm.gap:186.13-16: Function mult has 2 arguments, but
Error:

answer mult(answer, alphabet, answer);
^--^

elm.gap:9.10-13: it is defined with 3 arguments here.

Figure 5.3: Example of an error message of GAP-C. A context of the error location
is printed and the columns of the location are marked.

66

Table 5.1: Examples of ADTs used in code generated by GAP-C. They are provided
by the runtime library GAP-M. For each ADT a few examples of access
function are listed.

ADT functions

List push_back
append
empty
is_empty
. . .

String append
empty
. . .

Hashtable push_back
append
update_filter
finalize
. . .

target code is an internal language. This language is imperative. It contains high-
level statements, e.g. for-loops and functions, and it abstracts from implementation
details of central data structures. They are better defined in a language dependent
backend. For example, the way tables are stored and accessed efficiently, and
the efficient representation of intermediate lists and backtrace structures depend
highly on the output language. Thus the target language contains a set of built-
in abstract datatypes (ADTs) and operations on them. This includes ADTs for
lists, backtracing structures, arbitrary precision rationals/integers, classification
data structures and tabulation. Table 5.1 shows an overview. As a consequence,
the target language does not need to implement pointer arithmetic. This simplifies
the implementation of backends for output languages that do not have pointers (as
e.g. Java).
The backend takes the target code as input and generates output language code.

The backend architecture is constructed for extensibility, i.e. to enable the addition
of new output languages. There is an abstract base class that defines the interface,
which each output language backend has to implement. Figure 5.4 sketches the
interface of the backend classes. Currently, a language backend for C++ output is
included. The C++ backend maps the ADTs operations to generated C++ classes
and to a Bellman’s GAP C++ runtime library. On the one hand, the backtracing
target code is translated into generated classes, since the data structure sensitively
depends on the signature and algebra of the GAP-L input program. On the other
hand, the memory management and an efficient list data type is implemented as
C++ template classes in the runtime library because they are independent of the

67

void print(const Statement :: For &stmt);
void print(const Statement ::If &stmt);
void print(const Statement :: Backtrace_Decl &stmt);
void print(const Statement :: Hash_Decl &stmt);
void print(const Statement :: Table_Decl &stmt);

...
void print(const Expr :: Base &);

...
void print(const Type :: List &expr);
void print(const Type :: BigInt &expr);

...

Figure 5.4: Excerpts of the interface which a language backend of GAP-C has to
implement.

translated program and C++ as output language is powerful enough to allow for an
efficient runtime library implementation. The advantage of moving functionality,
where it is appropriate, into a runtime library is the possibility to optimize or
exchange parts of the runtime library without having to change the compiler, thus
reducing the complexity of the C++ language backend.
Besides the translation of target code to output language code, the C++ backend

generates a makefile and a generic command line interface. The makefile contains
the build dependencies of the generated code and the generic interface code. By
default, everything needed is built and linked into an executable. The command
line interface is optional. The generated C++ code is enclosed in a C++ class
which implements a common API. This makes it easy to integrate it into other
C++ code. Examples are more sophisticated, specialized interface programs or a
C++ program where a GAP-L program is just one step in a bigger pipeline.

5.2 Example
Before the internals of the compiler are described in the next sections, this section
shows how the example from Section 4.3 is compiled with GAP-C.
A specific product of a GAP-L program is compiled with GAP-C with following

commands:

$ gapc -t nussinov.gap -p ’score*count’
$ make -f out.mf

The option -t instructs the compiler to automatically determine the non-terminal
parsers, whose solutions needs to be tabulated1 (Section 5.3.7) and the -p option

1The option -t is enabled by default if the GAP-L program does not contain a table configuration.

68

specifies the product to compile. The compiler then produces optimized C++ code
and a makefile. The program can be executed like this:

$./out ccaggg
(2, 3)

In some use cases of dynamic programming algorithms, not only the optimal score
for an input string is of interest, but also the structure of the optimal candidate.
In this example, this is accomplished with using the instance scorepp, which is
declared in the source program:

$ gapc -t nussinov.gap -i scorepp
$ make -f out.mf
$./out ccaggg
(2, ((.)).)
(2, ((..)))

The standard product operation computes all co-optimal solutions.
In addition to the default compiler call for the scorepp example, GAP-C can

be instructed with the --backtrace option to generate backtrace code for the
product (Section 5.4.3). This is more efficient, since in the forward computation
the score algebra is computed and only in a backtracing step the algebra pretty
is used. In addition to that, we can choose to generate a CYK-style bottom-
up evaluator with the --cyk option. The default is the generation of top-down
evaluators (Section 5.4.1). Top-down evaluators do extra bookkeeping but have
advantages if the algebra is expensive to compute and the grammar has a lot of
search space restrictions such that the top-down evaluation only does a very sparse
computation of the tables. In this example this is not the case. Thus the bottom-up
evaluator leads to more efficient code.

5.3 Semantic Analyses
In the following sections several semantic analyses are described which are part of
GAP-C. A semantic analysis is an algorithm that computes properties of the AST
or does optimizations. The results are needed for the generation of efficient code,
for error reporting and to warn the user of problematic constructs.
In most cases the pseudo-code of a semantic analysis is given as a completive

specification of the algorithm. The algorithms are of recursive nature and traverse
the grammar data-structure, i.e. the AST. The relationship of the classes of the
AST is shown in a class diagram (Figure 5.38). Figure 5.5 shows an object diagram
of the AST of the Nussinov example from Section 4.3. It exemplifies the mapping
of the different syntax elements in the source program to concrete objects.
Not included in the diagrams are the attributes of the objects that are used in

the pseudo-code since they follow an easy scheme, e.g. Alt::Block and Symbol::NT

69

Alt::Simplenil

Alt::Simpleright

Alt::Simplesplit

Alt::Simplepair

Symbol::NTS

Grammarnuss

Symbol::TerminalCHARAlt::Linkl1

Filterbasepairing

Alt::Blockb1

Alt::Linkl4

Alt::Linkl2 Alt::Linkl3

Alt::Linkl5 Alt::Linkl6 Alt::Linkl7

Alt::Linkl8 Symbol::TerminalEMPTY

Figure 5.5: Object diagram of the grammar data-structure (AST) instance of the
Nussinov example from Section 4.3. The directed edges indicate that
the source contains the pointer of destination object. Multiple pointers
are saved in an attribute of list type. The left part of the node contains
a human readable object identifier and the right part the class name.

objects both contain a list of Alt::Base pointers, which is called alts, a Alt::Link
object references a Symbol::Base object of which the pointer is saved in the at-
tribute nt and the arguments of a function symbol, represented by an Alt::Simple
object, are saved as a list of pointers to Alt::Base objects in the args attribute.
Class hierarchies have their own namespace (the prefix up to ::) and the base class
of a hierarchy is called Base.

The present example is a single track algorithm such that the object diagram
does not include Alt::Multi objects. An Alt::Multi object references for each
track an Alt::Base object for which the pointers are saved in the attribute tracks.

The pseudo-code is similar to a scripting language and mixes traditional pseudo-
code elements with Python and C++ ones. For space saving the code uses the
off-side rule as in Python, i.e. a wider indentation starts a new block. Namespaces
are used as in C++. As in scripting languages, variables need not to be declared:
the first assignment automatically creates them as new object attributes. Similarly,
the return type of methods is not declared, it is derived from the context. Object
oriented features are used, i.e. a method call may target a method defined in the
base class or calling a method on an object of base-class type dispatches to the
version overwritten in a sub-class. Every method is by default declared as virtual
like e.g. in Java.

70

grammar nonproductive uses Signature (axiom =start) {

start = foo(CHAR(’+’), start) ;

}

Figure 5.6: A non-productive GAP-L grammar.

grammar nonproductive2 uses Signature (axiom =S) {

S = m (< CHAR , CHAR >, S) |
ins (< fold , EMPTY >, S) |
nil (< EMPTY , EMPTY >) # h ;

fold = f (CHAR , fold , CHAR) ;
}

Figure 5.7: A non-productive GAP-L multi-track grammar.

5.3.1 Unreachable Non-Terminals

An unreachable non-terminal is a non-terminal which cannot be part of any deriva-
tion tree: a non-terminal B is unreachable if axiom 6→∗ B is true.
The GAP-C automatically detects unreachable non-terminals. It issues warnings

about them and removes them from the internal grammar data structure to simplify
later grammar analyses and transformations.
To detect the unreachable non-terminals the transitive-closure of the reachable-

from-axiom relation is computed using a standard algorithm.

5.3.2 Productive Checking

A non-terminal is productive, if a parser of this non-terminal terminates. A deriva-
tion including a non-productive non-terminal runs indefinitely. Figure 5.6 shows a
sample grammar with a non-productive non-terminal. Translating a GAP-L gram-
mar with non-productive non-terminals results in GAP-L programs that do not
terminate. Thus, GAP-C checks for non-productive non-terminals and issues er-
ror messages for each one found. The check is implemented using a simple fixed
point iteration algorithm. At the beginning every non-terminal is initialized as
non-productive and each terminal is initialized as productive. In each fixed point
iteration each non-terminal data structure is traversed recursively until a call to
another non-terminal or terminal symbol. During the traversal the objects of the
non-terminal data structure are marked as productive if the linked objects are
marked as productive, otherwise they are marked as non-productive. For example,

71

Grammar :: init_productive :
changed = true
while changed :

changed = false
foreach (nt in nts): changed = changed || nt -> init_productive

Productive :: start:
changed = false; p = true

Productive :: step(x):
changed = changed || x-> init_productive (); p = p && x-> productive

Productive :: set:
if p != productive : productive = p; return true
return changed

Symbol :: Terminal :: init_productive :
productive = true; return false

Symbol ::NT:: init_productive :
start ()
foreach (alt in alts): step(alt)
return set ()

Alt :: Simple :: init_productive :
start ()
foreach (arg in args): step(arg)
return set ()

Alt :: Block :: init_productive :
start ()
foreach (alt in alts): step(alt)
return set ()

Alt :: Multi :: init_productive :
start ()
foreach (track in tracks): step(track)
return set ()

Alt :: Link :: init_productive :
if nt -> productive != productive :

productive = nt -> productive ; return true
return false

Figure 5.8: Pseudo code of the productive check algorithm. Productive is a super-
class of the Alt and Symbol classes.

72

a right hand side alternative data structure is only productive if all its alternative
elements are productive. A multi-track non-terminal is only productive, if all its
tracks are productive. See Figure 5.7 for an example of a non-productive multi-
track grammar. The algorithm is finished if no object changes its productive state
variable anymore. Figure 5.8 shows the pseudo-code of the algorithm.

5.3.3 Yield Size Analysis

The yield or yield string of a derivation tree is the string of its concatenated leafs
in a pre-order traversal. The yield function y is of type TΣ → A∗ and it is defined
as y(f(t1, . . . , tn)) = y(t1) . . . y(tn) and y(a) = a, where a ∈ A∗ and f is a function
symbol from the signature Σ (see Definition 1, page 18).
The yield size of a non-terminal or terminal symbol A is defined as the tuple of

the minimal and maximal size of a yield string of all possible derivation trees that
start at that symbol (Equation 5.3). The minimal or maximal yield size of a symbol
A is defined by Equation 5.1 or 5.2.

ysmin(A) = min{size(y(t)) | t ∈ L(A)} (5.1)
ysmax(A) = max{size(y(t)) | t ∈ L(A)} (5.2)

ys(A) = (ysmin(A), ysmax(A)) (5.3)

In the context of a non-terminal or terminal parser that parses the language of
the non-terminal or terminal symbol A, the yield size of the parser is the minimal
and maximal size of the input string the parser is able to consume.
The yield size analysis is important, as its result is used by several other subse-

quent semantic analyses, e.g. the table dimension analysis or the runtime analysis.
For example, if a non-terminal has a constant maximal yield size of 30 then only
a 30 × n table is needed for tabulating results for all parsed sub-words instead
of a n2 table in the general case, where n is the length of the input string. If
in the grammar rule A = f(B,C) and it holds that ysmin(B) = ysmax(B) and
ysmin(C) = ysmax(C), then the resulting non-terminal parser of A only needs to
consider one split of the input string between the parsers of B and C. In the general
case it needs to consider O(n) splits of the input string.
The description of the yield size computation algorithm for a single-track dynamic

programming follows [21]. The basic algorithm is here extended for multi-track
GAP-L programs.
The yield sizes of terminal symbols are known a priori. See Table 5.2 for an

overview of the yield sizes of the pre-defined terminal parsers. The yield size of the
non-terminal symbols is initialized with (1, n). From there the fixed point iteration
is started and in every iteration the yield size of the elements of the grammar
data structure are computed until nothing changes any more. The termination of
the analysis is guaranteed because the yield size interval length is monotonically
decreasing. Each track has a yield size associated. In Equations 5.4 to 5.6 the basic

73

Table 5.2: Overview of the yield sizes of the terminal parsers.
Yield Size

Parser min max

STRING 1 n
REGION 1 n
FLOAT 1 n
INT 1 n
SEQ 1 n
STRING0 0 n
REGION0 0 n
CHAR, CHAR(arg) 1 1
BASE 1 1
CONST_INT 0 0
EMPTY 0 0
LOC 0 0
. . .

operations are defined over yield sizes of single-track contexts and in Equation 5.7
over tuples of yield sizes of multi-track contexts, where ◦ is one of +=, /= or |=
operations, as used in the fixed point iteration algorithm.

+=(a, b) = (a.min +b.min, a.max +b.max) (5.4)
/=(a, b) = (min(a.min, b.min),max(a.max, b.max)) (5.5)
|=(a, b) = (max(a.min, b.min),min(a.max, b.max)) (5.6)

◦(< a1, . . . , an >,< b1, . . . , bn >)
= (< a1 ◦ b1, . . . , an ◦ bn >) (5.7)

Note that yield size tuples are elements from the set B×B, where B = N∪{n} and
n is a symbol. The arithmetic of minimal and maximal yield sizes has saturating
semantics, i.e. 0− c = 0 and n+ c = n, where c ∈ B.
Figure 5.9 shows the pseudo-code for the computation of the yield size of a

non-terminal symbol and Figure 5.10 shows the pseudo-code of the yield size com-
putation of the data structure elements on the right hand side of the non-terminal
symbol. The yield size analysis algorithm also considers the use of minimal and
maximal yield size filters in the grammar. For example, the yield size of the gram-
mar rule b = f(REGION) with minsize(2) with maxsize(2) ; is (2, 2).

74

Symbol ::NT:
foreach (alt in alts):

alt. init_ys ()
ys /= alt.ys()

ys |= (minsize , maxsize)

Figure 5.9: Yield-size computation pseudo-code for a non-terminal symbol.

Alt :: Simple :: init_ys :
foreach (arg in args):

arg. init_ys ()
ys += arg.ys()

ys |= (minsize , maxsize)

Alt :: Block :: init_ys :
foreach (alt in alts):

alt. init_ys ()
ys /= alt.ys()

ys |= (minsize , maxsize)

Alt :: Link :: init_ys :
ys = nt.ys()
ys |= (minsize , maxsize)

Alt :: Multi :: init_ys :
i = 0
foreach (track in tracks):

track. init_ys
ys[i++] = track.ys

ys |= (minsize , maxsize)

Figure 5.10: Yield size analysis algorithm pseudo-code for the data structure ele-
ments on the right hand side of the non-terminal. The variables minsize
and maxsize are minimal or maximal yield size restrictions given in the
grammar filter. If no filter is present, minsize and maxisze are set to
0 and n.

75

grammar Loop uses Signature (axiom = A)
{

A = f(B, A, C) | g(CHAR) ;

B = STRING0 ;

C = STRING0 ;

}

Figure 5.11: A tree grammar with a loop. Non-terminal A is part of a loop, because
the minimal yield size of the STRING terminal parser is 0.

5.3.4 Loop Checking

A non-terminal symbol A is part of a loop if there is a derivation A →∗ A that
does not consume characters of the input string. If a top-down parser is generated
from A and enters this derivation, then it does not terminate. A bottom-up parser
cannot be constructed, since the parse of (i, j) is needed to compute the parse for
a sub-word (i, j). Figure 5.11 shows a loop grammar example.
GAP-C implements a loop detection algorithm that is run for every non-terminal

of the grammar. It takes the grammar data structure and the yield size information
from the yield size analysis computation as input. In case of a detected loop a
detailed error message is given and the compilation ends after this phase. Figure
5.3.4 shows the pseudo-code of the recursive algorithm. For each non-terminal the
algorithm does a depth-first traversal of the grammar data structure as long as the
left hand context and right hand context of the current structure element have both
a minimal yield size of 0. A traversal stops if an element is reached which is still
part of a running computation. If the non-terminal from the start of the traversal
is reached, it is part of a loop.

5.3.5 Max size filter propagation

The yield size analysis algorithm from Section 5.3.3 considers the minimal and
maximal yield size filters in the grammar. The filter restrictions in the yield size
analyses only propagate bottom-up. See the following grammar as an example
for a situation, where it makes sense that the filter information should propagate
top-down:

grammar Max uses Signature (axiom = A)
{

A = f(REGION with minsize (12) , B, REGION with minsize (7))
with maxsize (42) ;

76

Symbol ::NT:: detect_loop :
Yield :: Size p
foreach (track in tracks): p[track] = (0, 0)
foreach (alt in alts):

if alt -> detect_loop (p, p, this):
error (...)

Symbol ::NT:: detect_loop (left , right , nt):
if active : return false
active = true
r = false
foreach (alt in alts):

r = r || alt -> detect_loop (left , right , nt)
active = false
return r

Alt :: Simple :: detect_loop (left , right , nt):
r = false
foreach (arg in args):

t = arg.next.ys + ... + args.last.ys
if (forall i in tracks ,

left[i].ys.min == 0 && t[i].ys.min == 0):
r = r || arg -> detect_loop (left , t, nt)

left += arg ->ys
return r

Alt :: Block :: detect_loop (left , right , nt):
r = false
foreach (alt in alts):

r = r || alt -> detect_loop (left , right , nt)
return r

Alt :: Link :: detect_loop (left , right , nt):
if this ->nt == nt: return true
return nt -> detect_loop (left , right , nt)

Alt :: Multi :: detect_loop (left , right , nt):
r = false
foreach (track in tracks):

r = r || track -> detect_loop (left[track], right[track], nt)
return r

Figure 5.12: Pseudo-code of the loop detection algorithm for the data structure
elements of the non-terminal symbol. The parameters left and right
contain yield sizes.

77

B = g(STRING0) ;
}

Looking only at non-terminal B, we can derive its yield size from the known yield
size of terminal symbol STRING0, which is (0, n). This is also computed by the
yield size analysis algorithm if it is run on the complete grammar Max. However,
in the grammar Max, the non-terminal B is only called from non-terminal A. This
call is restricted by a maxsize filter of 42. Thus, one can derive that the effective
maximal yield size of B is 42. Taking also the enclosed minsize filters into account
we can derive that the effective maximal yield size of B is 23.
In the following we only look at the propagation of maximal yield sizes, because

it is asymptotically more interesting: getting a constant maximal yield size instead
of n yields a table with a constant number of entries instead of O(n2) in the gen-
eral single-track case. Increasing only the minimal yield size yields a table with a
constant number of rows or columns less than in the general case. However, the
computation of minimal yield size propagation is analogous to the computation of
maximal yield size propagation.
The algorithm does a depth-first traversal of the grammar data structure and

picks up maximal yield size filter restrictions during this traversal. Figure 5.13
shows the pseudo-code of the algorithm. After the traversal is finished, each non-
terminal and right hand side data structure element contains an initialized member
max_ys. In multi-track contexts with l tracks, max_ys is an l-tuple.

5.3.6 Table Dimension Analysis

The tabulation of a non-terminal means that the generated non-terminal parser
saves its results for each sub-word in a table. In the general single track case such
a table has O(n2) entries. Depending on the contexts, from which a non-terminal
is called, a reduction of the quadratic table size is possible. Consider for example a
start symbol which is not called from elsewhere in the grammar. It is called just one
time for the sub-word (0, n), i.e. the complete input string, where n is the length of
the input. Thus, to tabulate this start symbol, only a constant-size table with one
entry is needed.
Another table dimension reduction example is the case where one index of a non-

terminal is constant and only the other changes. In this case only a linear table
with one row or one column is needed. Consider grammar tabdim1:

grammar tabdim1 uses Signature (axiom = skipR) {
skipR = skip_right (skipR , CHAR) |

skipL # h ;

skipL = ... ;
}

78

Symbol ::NT:: propagate_max_filter (max_ys):
if active : return
active = true
m = min(ys.max , max_ys)
if (m <= this -> max_ys): active = false; return
this -> max_ys = max(this ->max_ys , m)
foreach (alt in alts):

alt -> propagate_max_filter (m)
active = false

Alt :: Base :: propagate_max_filter (max_ys):
this -> max_ys = max(this ->max_ys , min(ys.max , max_ys))

Alt :: Simple :: propagate_max_filter (max_ys):
Base :: propagate_max_filter (max_ys)
Yield :: Size left
foreach (arg in args):

right = arg.next.ys + ... + args.last.ys
max_ys = min(max_ys , ys.max)
max_ys -= left.low
max_ys -= right.low
arg -> propagate_max_filter (max_ys)
left += arg ->ys

Alt :: Block :: propagate_max_filter (max_ys):
Base :: propagate_max_filter (max_ys)
foreach (alt in alts)

alt -> propagate_max_filter (min(ys.max , max_ys))

Alt :: Link :: propagate_max_filter (max_ys):
Base :: propagate_max_filter (max_ys)
nt -> propagate_max_filter (min(ys.max , max_ys))

Alt :: Multi :: propagate_max_filter (max_ys):
Base :: propagate_max_filter (max_ys)
foreach (track in tracks):

m = min(ys.max , max_ys)
track -> propagate_max_filter (m[track])

Figure 5.13: Pseudo-code of the maximal yield size propagation algorithm.

79

The non-terminal skipR is the axiom and it is only called from its own right
hand side. For each call for the sub word (i, j) the non-terminal parser skipR calls
itself recursively for the sub-word (i, j − 1) (because the terminal parser CHAR has
a yield size of (1, 1)). Since the axiom is called for the complete input string (0, n),
skipR is always called for i = 0 and only a linear table with one row is needed.
The benefits of reducing the table dimension of non-terminal parsers are three-

fold. First, reducing table dimensions saves memory. In the single-track case a
reduction from O(n2) to O(n) is important, in the general two-track case a table
needs O(n4) and there it is mandatory to try to reduce the dimension of the table.
Second, in the case of generating bottom-up CYK-style parsers (see Section 5.4.1)

it improves the runtime of the program. For the single-track case, the general
CYK-loop is composed of two nested for-loops that explicitly fill the table entries
for each sub-word, going from smaller to bigger sub-words. If it is derived that a
non-terminal has only a constant or linear table, it can be moved outside of the
innermost CYK-loop. This optimization eliminates unnecessary memory accesses,
which are expensive. Consider the case, where all non-terminals of a grammar
only need tables of linear size and there is no moving boundary on the right hand
side. Then an unoptimized general CYK-loop would lead to a program with an
asymptotically suboptimal runtime of O(n2) instead of O(n). Again, in the multi-
track case using the general CYK-loop unconditionally is prohibitive.
Third, exact table dimension data improve the runtime computation (Section

5.3.7.1). The runtime computation algorithm depends on the results of the table
dimension analysis. For example, the compiler checks if the given table configura-
tion yields a GAP-L program with asymptotically optimal runtime. For this, the
runtime under the given table configuration is compared with the runtime under the
full table configuration (every non-terminal is tabulated). If the runtime under the
full table configuration is asymptotically better, then the compiler issues a warning.
Thus, without the table dimension data, the runtime computation always has to
assume the runtime of tabulating O(n2) table entries in the single-track case. In
the worst case for a program of asymptotically linear runtime and linear tables, the
runtime computation algorithm would falsely derive an asymptotically suboptimal
runtime of O(n2) instead of O(n). In the two-track case, the general tabulation
runtime is in O(n4). In the runtime computation of the pairwise sequence align-
ment grammar, O(n4) would overlay the asymptotically optimal runtime of O(n2)
without exact table dimension data.
The previous grammar examples of table dimension reduction possibilities were

easy, because an automatic table dimension analysis only has to check the case
when one or both indices do not change. However, consider grammar tabdim2:

grammar tabdim2 uses Signature (axiom = skipR) {
start = x(CHAR , start) |

b ;

b = x(CHAR , b) |

80

x(CHAR , c) |
y(c, CHAR) ;

c = z(REGION , d) ;

d = w(REGION , REGION) ;
}

Non-terminal c is called from two locations on the right hand side of non-terminal
b. If non-terminal parser b is called for the sub-word (i, j) then c is called for (i+1, j)
and for (i, j − 1). Thus, a naive table dimension analysis would derive a quadratic
table for non-terminal c because both indices are changing. However, from the
general point of view, for (i, j) the non-terminal parser start and b call themselves
for (i+1, j). The right index of non-terminal parser c is always n or n−1, resulting
from the call of non-terminal start for (0, n) . Thus an asymptotically linear table
for c is enough (a table with two columns).
For the case of multiple input tracks it is sufficient to call the single-track table

dimension reduction algorithm for each track independently. For example, the
analysis returns for a two-track program the need of a linear table for the first
track and a quadratic table for the second track. This means that a linear table of
quadratic tables is needed (or a table with three dimensions). Consider the example
of the basic edit distance grammar:
grammar Ali uses Signature (axiom = alignment) {

alignment = nil(< EMPTY , EMPTY >) |
del(< CHAR , EMPTY >, alignment) |
ins(< EMPTY , CHAR >, alignment) |
match(< CHAR , CHAR >, alignment) # h ;

}

Only looking at the first track, a vertical split of the two-track grammar results
in the following pseudo grammar for the first track:

alignment_t1 = nil(EMPTY) |
del(CHAR , alignment_t1) |
ins(EMPTY , alignment_t1) |
match(CHAR , alignment_t1) # h ;

For the second track it results in:

alignment_t2 = nil(EMPTY) |
del(EMPTY , alignment_t2) |
ins(CHAR , alignment_t2) |
match(CHAR , alignment_t2) # h ;

81

Note that these pseudo-grammars contain a loop, but this does not matter for
table dimension reduction analysis. In both grammars the right index of non-
terminals alignment_t1 and alignment_t2 is constant. Thus, the table space is
reduced from O(n4) for the generic two-track case to O(n2).
In GAP-C, a table dimension reduction analysis algorithm is implemented that

recognizes if a non-terminal only needs a constant table of one entry or a linear table
of one row/column and it checks whether a non-terminal needs an asymptotically
constant or linear table as in the example of grammar tabdim2. In the case of
asymptotically constant or linear tables the exact index range is computed.
The algorithm does a depth-first traversal on the grammar data structure and

during the traversal the sums of the minimal and maximal yield sizes of the left
and right context of the current object are picked up. If e.g. at a non-terminal the
maximal yield size sum of the left context is n and that of the right context is a
constant, then only an asymptotically linear table is needed. The case distinction at
the non-terminal data structure object has to take simple recursive (a non-terminal
directly calls itself) and general recursive non-terminals into account. Thus, the
algorithm keeps track, which computations of non-terminals are currently active
and it does a re-computation if a later recursion changes the table dimension state
of an object, whose computation is not finished.
The table dimension reduction analysis of the first generation ADP compiler [47]

is not able to derive a reduction to asymptotically linear tables in examples like
tabdim2.

5.3.7 Table Design

In the ADP framework, there is a clear separation between search space design,
i.e. creating the grammar, and choosing the set of non-terminals whose parsing
results are stored in tables. Deriving the set of non-terminals for tabulation, i.e.
the table configuration, is called table design. Tabulating every non-terminal in
the GAP-L grammar is a safe choice, because the runtime of the resulting GAP-L
program is asymptotically optimal. Tabulating no non-terminal of a grammar that
describes an exponentially sized search space leads to a program with exponential
runtime, because sub-solutions are re-computed recursively. However, according
to the runtime computation equations (Section 5.3.7.1) the runtime of a grammar
may be asymptotically optimal even if a subset of the non-terminals is tabulated.
Figure 5.14 shows an example of such a table configuration.
Thus, finding the minimal table configuration under which the GAP-L program

still runs in asymptotically optimal time is a feasible objective, since saved tables
may reduce the memory footprint of the generated program significantly. This
optimization problem is called the table design problem. Unfortunately, the table
design problem is NP-complete [50]. Another motivation for table design is the
possibility of reducing the constant runtime factors, if the overhead of storing the
table with its entries does not pay off in comparison to just computing the needed
parsing results in constant time for each sub-word.

82

5.3.7.1 Runtime computation

Given the GAP-L grammar and its table configuration ϑ, i.e. the set of tabulated
non-terminals, as input, it is possible to compute the asymptotic runtime of its
generated parser. The following runtime equations follow [50] and for simplicity it
is assumed that the generated parser computes under a unitary algebra (Definition
7, page 28). For convenience, “the runtime of grammar A” or “the runtime of a non-
terminalB” is just a shorthand writing for “the runtime of the parser generated from
grammar A” or “the runtime of the non-terminal parser that parses the language
of non-terminal B”.
In the following the right hand sides of the runtime equations contain big-O

notation symbols and an asymptotic arithmetic is assumed, e.g. 23n3 + 42n2 =
O(n3) and 42 = O(1) = 23.
Equation 5.8 describes the runtime of a non-terminal parser A,

rt(A) =
∑

x∈rhs(A)
calls(A, x) ·

{
rt(x) if x /∈ ϑ
O(1) if x ∈ ϑ

(5.8)

where the function rhs returns the set of terminal and non-terminal symbols on
the right hand side of the non-terminal A, the function calls returns the number of
calls from non-terminal A to symbol x and ϑ is the set of tabulated non-terminals.
The runtime of a terminal parser is constant. Thus, it is necessary to compute the
runtime of the axiom and the runtime of tabulating all tabulated non-terminals for
computing the complete runtime of a GAP-L program. Equation 5.9 specifies the
complete runtime of a GAP-L program P :

rt(P) = rt(S) +
∑
x∈ϑ

ndim(x) · rt(x) (5.9)

where S is the axiom, n denotes the length of the input string, and the function
dim returns the table dimension needed to store the parse results for all sub-words.
In the single track-case, the image of dim is {0, 1, 2}.
The computation of the runtime of a GAP-L program is an important semantic

analysis, since other semantic analyses in the compiler depend on it. First, the
compiler checks, whether the runtime under the full table configuration is asymp-
totically better than under the user-supplied table configuration. If this is the
case, then the user-supplied table configuration is asymptotically sub-optimal and
a warning message is printed. Second, in table design the runtime of a grammar is
computed several times for changing table configurations. Table design is the opti-
mization problem to find the minimal table configuration, under which the runtime
of the grammar is still asymptotically optimal (Section 5.3.7).
If the generated parser uses a non-unitary algebra, i.e. an algebra whose objective

function returns more than one result, then the asymptotic runtime of the parser
may deteriorate. For example, consider the case, where the asymptotic runtime of
a GAP-L program under a given table configuration and a unitary algebra is in

83

O(n3). If the parser just uses a pretty printing algebra, whose objective function is
the identity, the runtime is in O(2n), since the search space of exponential size is
enumerated.

Constant Factors The Equations 5.8 and 5.9 describe how to compute the asymp-
totic runtime of a GAP-L program. In practice, constant factors are also of interest.
It matters if the runtime under two different table configuration is asymptotic op-
timal, but the constant factors of the first runtime are prohibitively large (e.g.
999999n3 vs. 20n3). The runtime functions just need to use a data type that
represents polynomials with factors to support constant factors. O(1) is replaced
by 1 and the term ndim(x) is replaced by cells(x). The function cells returns the
asymptotic number of cells to tabulate all results of a non-terminal parser x. If the
table dimension reduction analysis (Section 5.3.6) computes a lower bound (includ-
ing constant factors), then this bound is returned. Note that the constant factors
of the runtime computation are an approximation of the real constant factors of a
generated parser. For example, not all terminal parsers have the exact runtime of
one time unit and syntactic grammar filters, which depend on the input, introduce
some conditional code blocks in the generated parser code.

Dependency Graph A dependency graph of a GAP-L grammar is a directed
acyclic graph, where each non-terminal and terminal symbol is a vertex and an
edge (A,B) specifies that symbol A calls symbol B. The number of calls of A from
B is an attribute of the edge (A,B). If a non-terminal is tabulated, then its vertex
outline is dotted. Figure 5.14 shows an example of a dependency graph.
For computing the runtime of a GAP-L program, the compiler has to establish

the runtime equations for each non-terminal and compute all runtime equations
with a recurrent polynomial solver. Such a recurrent solver needs to be efficient,
since the runtime computation is the major time consuming operation for the table
design analysis. The author is not aware of an open source recurrent polynomial
solver which is efficient, stable and maintained. Thus, the GAP-C implements the
runtime computation as a recursive algorithm that directly traverses the grammar
data structure. The grammar data structure is a dependency graph.

Algorithm Figure 5.15 shows the pseudo-code for computing the runtime of the
grammar and the non-terminal symbols. Figure 5.16 shows the pseudo-code of
the runtime-computation of the objects on the right hand side of a non-terminal
symbol. The runtime computation algorithm does a depth-first traversal of the
dependency graph and during that traversal the runtimes of the data structure
elements are set. The algorithm updates during traversal a list of non-terminals
whose computation is not yet finished (active_list) as well as the accumulated
runtime (accum_rt, or accumulated number of calls) over the traversed path. In the
case of a cycle at non-terminal X being detected in the traversal, the accumulated
runtime specifies how many recursive calls follow from one call of non-terminal X.

84

pal

match

1 skipl

1

skipr

1

inner

1

1

1

1

1

1

(a) Runtime: n2

pal

match

1 skipl

1

skipr

1

inner

1

1

1

1

1

1

(b) Runtime: 2n

Figure 5.14: Dependency graphs of a simple palindrome grammar for two different
table configurations. Tabulated non-terminals are drawn with a dotted
outline and axioms are drawn with a rectangle outline.

85

Grammar :: runtime :
active_list = []
rt = axiom -> runtime (active_list , 1)
foreach (nt in tabulated):

rt += nt -> runtime (active_list , 1) * nt ->cells ()
return rt

Symbol :: Terminal :: runtime (active_list , accum_rt):
return 1

Symbol ::NT:: set_rec (accum_rt):
if (accum_rt == 1 && rec <= 1):

rec = n
else:

rec = 2^n

Symbol ::NT:: set_recs (active list , accum_rt):
foreach (nt in this , ..., active_list ->last):

nt -> set_rec (accum_rt)

Symbol ::NT:: runtime (active_list , accum_rt):
if (rt_computed)

return rt;
if (active):

set_recs (active_list , accum_rt)
return 1

active = true
active_list ->push(this)
rec = 1
foreach (alt in alts):

rt += alt -> runtime (active_list , accum_rt)
if rt == 2^n:

rt_computed = true
active = false
return rt

rt *= rec
active = false
active_list .pop
rt_computed = true
return rt

Figure 5.15: Runtime computation pseudo-code of Bellman’s GAP grammar, non-
terminal and terminal data structure objects.

86

Alt :: Simple :: runtime (active_list , accum_rt):
rt = 1
foreach (arg in args):

rt += arg -> runtime (active_list , accum_rt)
return rt

Alt :: Block :: runtime (active_list , accum_rt):
rt = 0
foreach (alt in alts):

rt += alt -> runtime (active_list , accum_rt)
return rt

Alt :: Link :: runtime (active_list , accum_rt):
rt = calls
if (!nt -> is_tabulated):

rt *= nt -> runtime (active_list , accum_rt * calls)
return rt

Alt :: Multi :: runtime (active_list , accum_rt):
rt = 0
foreach (track in tracks)

rt += track -> runtime (active_list , accum_rt)
return rt

Figure 5.16: Runtime computation pseudo-code of data structure objects of the
right hand side of a non-terminal data structure.

87

A = f(A, CHAR) |
g(CHAR) # h ; A 1

(a) One call of non-terminal A yields n calls of A without tabulation.

B = u(B, CHAR) |
v(CHAR , B) |
w(CHAR) # h ;

B 2

(b) One call of non-terminal B yields 2n calls of B without tabulation.

Figure 5.17: Two grammar rules and the corresponding dependency graphs.

If it is one call, then a factor n is multiplied to the current runtime, because in
each recursion at least one character of the input string (of length n) is consumed.
Otherwise the grammar would be unproductive or would contain a loop. If one call
of a non-terminal X yields more than one recursive call, then the overall runtime
is exponential. Figure 5.17 shows both cases with dependency graphs. The list of
active non-terminals is necessary, since in a cycle over more than one non-terminal,
the runtime of every non-terminal of the cycle needs to be updated according to
the accumulated runtime. See Figure 5.18 as an example. Figure 5.19 shows an
example, where the runtime computation algorithm would compute wrong results
without an active list.
The extension of the runtime computation algorithm for multi-track grammars

is straight forward. If the grammar uses multiple tracks, then the runtime of each
track sums up in an Alt::Multi object.
The runtime of the runtime computation algorithm is composed of the runtime

of the dependency graph traversal and the runtime of the set_recs function. The
depth-first traversal of the graph is in O(|V | + |E|). One call of set_recs is in
O(|V |). If a non-terminal is more than one time in the active_list when set_recs
is executed, then the computed overall runtime is exponential, the traversal of the
dependency graph is aborted and set_recs is not called again. Thus, the worst-
case runtime complexity of the runtime computation algorithm is in O(|V |+ |E|).
The space used by the algorithm is O(|V |+ |E|), which is the space complexity of
the dependecy graph data structure representation.
A prerequisite of the runtime computation algorithm is the correct initialisation

of the grammar data structure objects, i.e. the number of calls of another non-
terminal in a Alt::Link object and the number of cells needed to store the parse

88

A1 B1
C1 D1

E

1
1

Figure 5.18: A circle over multiple non-terminals in a dependency graph. In the
runtime computation traversal beginning at non-terminal A, the active
list contains all non-terminals when B is reached the second time.
Then the runtimes of all non-terminals of the circle, excluding the first
non-terminal from the active list, are multiplied with an additional
factor n.

An

X1

B

1

1

C1

1

Figure 5.19: A dependency graph example, where one call of non-terminal X yields
2 recursive calls of itself. Without a list of active non-terminals, the
runtime computation could not keep track of such cases and would
miss the additional 2n factor in this example.

89

results for all sub-words in a Symbol::NT object. The number of cells is computed
in the table dimension reduction analysis (Section 5.3.6). The number of calls of
a non-terminal from another one is computed in a depth-first traversal. While
traversing the data structure, moving boundaries from the left and right context
of a symbol are picked up and translated to a polynomial of the number of calls.
A moving boundary is introduced in a grammar data structure if in the derivation
there are two or more symbols horizontal neighbors whose minimal yield size is
unequal to its maximal yield size. Consider for example the following grammar
rule:

A = f(REGION , CHAR , REGION , CHAR , g(CHAR , B, CHAR), CHAR) ;
B = b(REGION) ;

The terminal parser REGION has a yield size of (1, n) and the terminal parser
CHAR has a yield size of (1, 1). On the right hand side of non-terminal A, the left
context of symbol B is REGION two times and CHAR two times and the right context
of B is CHAR two times. Since the minimal yield size of B is unequal to its maximal
yield size and the minimal yield sizes of two symbols from the left context of B are
unequal to their maximal yield sizes, two moving boundaries are introduced. Each
one is translated to a factor of n. Thus, the non-terminal B is called n2 times from
the non-terminal A.

5.3.7.2 Approximative Algorithm

Looking at the dependency graph of small GAP-L programs, an experienced ADP
programmer has no difficulties to identify those non-terminals, whose tabulation
breaks the cycles in the grammar that introduce additional linear or exponential
factors in the runtime computation. However, manually deriving an optimal table
configuration for larger grammars is tedious and error prone. Thus, the compiler
should implement an algorithm that automatically solves the table design problem.
Since the table design problem is NP-complete, an exact computation of the optimal
table configuration is in O(2n). An exact algorithm has to do a brute-force search
in the exponentially sized search space of all possible table configurations. The
exact computation of the optimal configuration being in O(2n) does not necessarily
mean that in practice the runtime of an exact algorithm explodes for moderately
sized input grammars. A careful implementation of the exact algorithm is able to
exclude certain non-terminals whose tabulation always deteriorates the asymptotic
runtime for reducing the search space. Such an implementation computes the opti-
mal table configuration for grammars up to 14 non-terminals in reasonable time in
practice. However, hand-written grammars exist with up to 30 – 40 non-terminals
and there are Bellman’s GAP grammar generating programs like RapidShapes [27]
that generate grammars with 200 – 300 non-terminals. Another example of a gram-
mar generating tool is Locomotif [38] that translates graphically constructed RNA
structure motifs into ADP RNA-motif-matcher programs. A moderately sized motif
easily translates into a grammar with 50 or more non-terminals.

90

Thus, an approximative optimization algorithm is needed to solve the table design
problem heuristically. GAP-C implements a novel table design algorithm that com-
putes a good table configuration. A table configuration is good if the corresponding
grammar runs in asymptotically optimal time, i.e. a good table configuration may
include more non-terminals than an optimal table configuration.
The algorithm is approximative in the sense that it may return a table configu-

ration which is larger than the optimal table configuration. It never returns a table
configuration under which the grammar has an asymptotically suboptimal runtime.
The main idea of the algorithm is to identify a non-terminal whose tabulation

breaks one or more runtime-increasing cycles. This step is repeated until the re-
sulting table configuration yields an asymptotically optimal runtime. In breaking
a cycle that contains more than one non-terminal, there are all the non-terminals
of the cycle to be chosen from and ideally a non-terminal is selected that breaks
the most cycles at the same time. The algorithm tries to identify such important
non-terminals with the method of scoring all non-terminals of the grammar and
then picking that with the highest score. Equation 5.10 shows the used scoring
function s:

s(x) = in(x) · out(x) · selfrec(x) (5.10)

where the function in returns the number of incoming edges, function out returns
the number of outgoing edges and function selfrec returns the recursion factor of
the non-terminal x. Thus, the score of a non-terminal is higher than another, if it
is more connected and takes part in more recursions. Figure 5.20 shows the score
computation of a non-terminal in the palindrome example grammar. The recursion
factor of a non-terminal is a counter that is incremented during several depth-first
traversals, if a cycle is detected. Figure 5.21 shows the pseudo-code for computing
the recursion factors for each non-terminal.
The approximate table design algorithm works in three phases. First, all non-

terminals are scored according to the scoring function s. Second, the non-terminals
are stored in a vector. The vector is sorted with the score as key. And in the third
phase, iteratively the highest scored non-terminal is set tabulated until the result-
ing table configuration yields an asymptotically optimal runtime of the grammar.
Figure 5.22 shows the pseudo-code of this algorithm.
The worst-case runtime of the first phase is in O(|V |(|V |+|E|)), where V is the set

of vertices and E is the set of edges of the dependency graph. Sorting the vertices
is in O(|V |log|V |). Since the worst-case complexity of one runtime computation
is in O(|V | + |E|) the complexity of the third phase is in O(|V |2 + |V ||E|). Thus,
the overall worst-case runtime of the algorithm is in O(|V |2 + |V ||E|). The space
used by the algorithm is in O(|V | + |E|), because the dependency graph and an
additional vector for sorting is stored. In the worst case the algorithm returns the
full table configuration and in every case the returned table configuration yields an
asymptotically optimal runtime.
Solving or approximating the table design problem means computing a table-

91

pal

match

1 skipl

1

skipr

1

inner

1

1

1

1

1

1

attribute value

in(match) 3
out(match) 1
selfrec(match) 7

Figure 5.20: Example of the score computation of the non-terminal match under
the given table configuration on the left. The score of match is 21.

92

Grammar :: init_self_rec :
foreach (nt in nts):

nt -> init_self_rec
foreach (nt in nts): nt -> active = false

Symbol :: init_self_rec :
if (active):

if (started):
self_rec ++

return
active = true; started = true
foreach (alt in alts): alt -> init_self_rec
started = false

Alt :: Simple :: init_self_rec :
foreach (arg in args): arg -> init_self_rec

Alt :: Link :: init_self_rec : nt -> init_self_rec

Alt :: Block :: init_self_rec :
foreach (alt in alts): alt -> init_self_rec

Alt :: Multi :: init_self_rec :
foreach (track in tracks): track -> init_self_rec

Figure 5.21: Pseudo-code of recursive factor attribute computation for each non-
terminal.

93

Grammar :: approx_table_design :
foreach (nt in nts): nt -> tabulated = true
opt = runtime
v = []
foreach (nt in nts):

nt -> tabulated = false;
nt -> init_score
v.push(nt)

sort(v, \nt -> nt ->score)
reverse (v)
r = runtime
foreach (x in v):

if (opt == r):
break

x-> tabulated = true
r = runtime

Figure 5.22: Pseudo-code of the approximative table design algorithm.

configuration, under which the runtime of the generated parser is asymptotically
optimal. However, this asymptotic condition is not sufficient in practice. Consider
e.g. two table configurations of a grammar whose asymptotically optimal runtime is
in O(n3). The first table configuration may yield a runtime of 26n3 and the second
table configuration may yield a runtime of 666666n3. A user would probably accept
the first table configuration in any case, even if it contains more non-terminals than
the second one, because such a large constant factor is prohibitive in practice. Thus,
the table design algorithm in GAP-C also takes constant factors into account during
the third optimization phase.

Constant Factors The table design objective is extended, to take constant factors
into account and to compute a table configuration that yields a runtime with good
constant factors. The extended table design objective is: Find the minimal table
configuration, under which the runtime of the generated parser is still asymptoti-
cally optimal and the constant factor of the largest polynomial is at most c percent
higher than the constant factor of the largest polynomial of the runtime under the
full table configuration. In GAP-C c is set to 20, which leads to good results. The
extension of the approximative table design algorithm to check for the extended
table design objective is straight forward. The runtime calculations need to use
a polynomial data type that supports constant factors and another abort condi-
tion in the main loop of the third optimization phase. Figure 5.23 contains the
pseudo-code.

94

Grammar :: approx_table_design (c):
foreach (nt in nts): nt -> tabulated = true
opt = runtime
const_factor = opt.last. factor
v = []
foreach (nt in nts):

nt -> tabulated = false;
nt -> init_score
v.push(nt)

sort(v, \nt -> nt ->score)
reverse (v)
r = runtime
foreach (x in v):

if (opt == r):
a = r.last. factor
if (a <= const_factor + const_factor * c / 100):

break
x-> tabulated = true
r = runtime

Figure 5.23: Pseudo-code of the approximative table design algorithm variant that
takes constant factors into account.

95

5.3.7.3 Benchmarks

Table 5.3 shows runtime and memory usage benchmark results of various GAP-L
programs compiled with GAP-C under different table configurations.
The ADPfold (adpf) program is a GAP-L version of RNAfold [25], adpf_nonamb

uses the RNAshapes grammar [51], Loco3stem is a simple RNA motif matcher
generated with Locomotif [38], pknotsRG [40] is a GAP-L version of the pknotsRG
program and the shape programs are differently sized shape matchers generated by
RapidShapes. The mfe algebra does free energy minimization, the algebra count
counts the search space and the algebra pf computes the partition function. In
the benchmark each program was run for all table configurations for 10 randomly
generated sequences and the runtime and memory usage values in the table are
averages over these runs. All tests were run on the Athlon 64 Linux system described
in Section 8.
Every algorithm was run under three different table configurations: the full table

configuration, a table configuration derived by a human ADP expert or an expert
system and the table configuration computed by the table design algorithm of GAP-
C which is described in the previous section. The ADP expert is in most cases the
creator of the algorithm. For the automatically generated grammars the expert
table configuration is derived by the generators Locomotif and RapidShapes. Note
that RapidShapes was developed after the table design algorithm of GAP-C was
available and tested to yield good results in practice such that RapidShapes by
default uses the table design feature of GAP-C, and the expert table configuration
feature of RapidShapes was developed with a low priority of deriving good results.
The shown theoretical runtime expressions are computed by the runtime com-

putation algorithm of GAP-C and are only approximations because different kinds
of statements are assumed to yield the same constant runtime unit-cost and other
performance relevant factors, e.g. caching effects, are not considered. However, in
most cases the theoretical runtime expression rtapprox is consistent with the mea-
sured practical runtime rtprac data, i.e. it holds that rtapprox(a) ≤ rtapprox(b) ⇒
rtprac(a) ≤ rtprac(b), where a and b are two GAP-L grammars. However, for exam-
ple in the comparison of the ADPfold expert version with the full table configuration
version the implication does not hold because of the approximation.
The runtime of the pknotsRG algorithm is in O(n4) which does not match the

theoretical runtime expressions because the table design is not able to consider the
index hacking constructs (Section 5.4.5) that eliminate two moving index bound-
aries.
The results show that designing a table configuration is in most cases a trade-

off between memory saving and runtime speedup. For example, the expert table
configuration for ADPfold uses an additional table in comparison to the expert table
configuration such that the memory usage is only half of the full table configuration
version and not a third as the expert version, but it is 24 percent faster than the
expert version.
In most cases the table design algorithm computes a table configuration that

96

R
at
io

al
go

rit
hm

#
N
Ts

n
st
ra
te
gi
e
|ϑ
|

th
eo
.
rt

rt
m
em

rt
m
em

ad
pf
_
m
fe

11
40

00
al
l

11
6n

3
+

62
80
n

2
+

8n
+

6
70

7
30

6
1.
00

1.
00

ex
pe

rt
4

15
n

3
+

62
76
n

2
+

11
n

+
6

67
2

92
1.
05

3.
30

de
sig

n
5

6n
3

+
62

74
n

2
+

8n
+

6
53

5
12

3
1.
32

2.
48

ad
pf
_
no

na
m
b_

m
fe

26
15

00
al
l

26
48
n

3
+

60
42
n

2
+

18
n

+
8

33
7

11
36

1.
00

1.
00

ex
pe

rt
9

13
7n

3
+

60
52
n

2
+

18
n

+
3

79
9

36
3

0.
42

3.
13

de
sig

n
15

57
n

3
+

60
44
n

2
+

18
n

+
4

45
1

62
0

0.
75

1.
83

lo
co
3s
te
m
_
co
un

t
23

40
00

al
l

23
8n

3
+

31
1n

2
+

6n
+

4
80

2
13

44
1.
00

1.
00

ex
pe

rt
8

19
n

3
+

46
5n

2
+

6n
+

4
50

5
42

8
1.
59

3.
14

de
sig

n
9

9n
3

+
47

6n
2

+
6n

+
4

52
5

48
9

1.
53

2.
75

pk
no

ts
R
G
_
m
fe

25
10

00
al
l

25
30
n

8
+

14
n

3
+

63
48
n

2
+

8n
+

6
28

2
62

1.
00

1.
00

ex
pe

rt
6

54
n

8
+

17
2n

3
+

63
21
n

2
+

35
n

+
6

42
5

20
0.
66

3.
06

de
sig

n
19

34
n

8
+

14
n

3
+

63
43
n

2
+

8n
+

6
29

2
56

0.
97

1.
10

sh
ap

e1
_
pf

43
60

0
al
l

43
88
n

3
+

11
95

4n
2

+
30
n

+
18

10
6

43
7

1.
00

1.
00

ex
pe

rt
12

2n
-

-
-

-
de

sig
n

17
99
n

3
+

11
93

4n
2

+
33
n

+
20

11
3

20
0

0.
94

2.
18

sh
ap

e2
_
pf

95
60

0
al
l

95
20

0n
3

+
29

97
8n

2
+

30
n

+
18

13
5

10
84

1.
00

1.
00

ex
pe

rt
29

2n
28

52
33

7
0.
05

3.
21

de
sig

n
68

20
0n

3
+

29
95

6n
2

+
28
n

+
12

13
6

81
0

0.
99

1.
34

sh
ap

e3
_
pf

19
5

60
0

al
l

19
5

46
8n

3
+

54
09

8n
2

+
30
n

+
18

16
9

23
29

1.
00

1.
00

ex
pe

rt
59

2n
-

-
-

-
de

sig
n

14
7

46
8n

3
+

54
05

5n
2

+
28
n

+
12

16
9

17
94

1.
00

1.
30

Ta
bl
e
5.
3:

R
un

tim
e
an

d
m
em

or
y
us
ag

e
be

nc
hm

ar
ks

of
va
rio

us
G
A
P-

L
pr
og

ra
m
s
co
m
pi
le
d
w
ith

G
A
P-

C
us
in
g
va
rio

us
ta
bl
e

co
nfi

gu
ra
tio

ns
ϑ
.
T
he

fir
st

co
lu
m
n
en

co
de

s
th
e
na

m
e
of

th
e
al
go

rit
hm

an
d
th
e
us
ed

al
ge
br
a
(s
ee

te
xt
),

th
e
se
co
nd

co
lu
m
n
sh
ow

s
th
e
nu

m
be

r
of

no
n-
te
rm

in
al
s
(N

T
)
of

th
e
gr
am

m
ar

an
d
n
de

no
te
s
th
e
le
ng

th
of

th
e
in
pu

t
se
qu

en
ce
.

T
he

st
ra
te
gy

is
on

e
of

al
l,

ex
pe

rt
or

de
sig

n,
i.e

.
a
ta
bl
e
co
nfi

gu
ra
tio

n
w
he

re
ev
er
yt
hi
ng

is
ta
bu

la
te
d,

a
ta
bl
e

co
nfi

gu
ra
tio

n
de

riv
ed

by
a
hu

m
an

A
D
P
ex
pe

rt
or

an
ex
pe

rt
sy
st
em

re
sp
ec
tiv

el
y
a
ta
bl
e
co
nfi

gu
ra
tio

n
co
m
pu

te
d
by

th
e
ta
bl
e
de

sig
n
al
go

rit
hm

of
G
A
P-

C
.T

he
th
eo
re
tic

al
ru
nt
im

e
(t
he

o.
rt
)e

xp
re
ss
io
ns

ar
e
ap

pr
ox
im

at
io
ns

as
de

riv
ed

by
th
e
ru
nt
im

e
co
m
pu

ta
tio

n
al
go

rit
hm

of
G
A
P-

C
.T

he
ru
nt
im

e
(r
t)

is
m
ea
su
re
d
in

se
co
nd

s
an

d
th
e
m
em

or
y
us
ag

e
(m

em
)
in

m
eg
ab

yt
es

as
an

av
er
ag

e
ov
er

10
se
qu

en
ce
s
(s
ee

te
xt
).

T
he

ra
tio

s
ar
e
gi
ve
n
in

re
fe
re
nc

e
to

th
e
va
lu
es

un
de

r
th
e
fu
ll
ta
bl
e
co
nfi

gu
ra
tio

n.

97

yields a better runtime than the expert table configuration. Only for the Loco3stem
program the expert version is 4 percent faster. In comparison to the runtime of
the programs under the full table configuration the design table configuration yields
speedups greater 1 or a similar runtime in most cases. Only the runtime of the table
design version of adpf_nonamb is 33 percent slower than the full table configuration
version.
The table design algorithm removes several tables from tabulation in all cases,

i.e. it maximally tabulates 75 percent and minimally tabulates 35 percent of the
non-terminals. The practical memory usage is maximally reduced by a factor of
more than one half.
In conclusion, the results show that the table design algorithm of GAP-C works

well in practice. For several non-trivial GAP-L programs the computed table con-
figurations yield a better runtime and less memory usage than versions using a full
table configuration or even an expert table configuration.

5.3.8 Type Checking

Type checking means checking for type errors in GAP-L programs. A type error
occurs, when e.g. a function symbol in the signature declaration has two arguments,
but is used with three arguments in the grammar, or when the third argument of
a function symbol is declared as of type int in the signature and in the algebra
the third argument is of type char. Another example is a non-terminal with two
alternatives on the right hand side of different types. The compiler has to detect
such errors, because it does not know how to generate a correct parser from it.
When programming ADP in Haskell-ADP, the Haskell compiler or interpreter

does type-inference on the input program. Since the Haskell type inference system
does not know anything about ADP, the type inference error message may expose
implementation details of ADP Domain Specific Language constructs, in the case
of a type error in ADP code. Such error message may obfuscate the real location
and the perhaps simple cause of the error message. Consider this correct grammar
snippet:

formula = mult(formula , times , formula)

If we delete the second argument of the function symbol mult, a simple error is
introduced and yields this type inference message in the interactive Haskell inter-
preter hugs:

ERROR "El2.lhs":116 - Type error in application
*** Expression : add <<< formula ~~- plus ~~~ formula |||

mult <<< formula ~~- formula
*** Term : add <<< formula ~~- plus ~~~ formula
*** Type : (Int,Int) -> [Char]
*** Does not match : (Int,Int) -> [Char -> Char]

98

Error:
mult(formula, formula) # h ;
^--^

e2.gap:186.13-16: Function mult has 2 arguments, but
Error:

answer mult(answer, alphabet, answer);
^--^

e2.gap:9.10-13: it is defined with 3 arguments here.

Figure 5.24: Example of a type error message of GAP-C. The function symbol ap-
plication in the grammar misses the second argument.

When integrating a special purpose type checking algorithm into the compiler,
it is possible to derive more useful error messages in type error cases. The GAP-C
implementation succeeds in displaying the exact location and context of type errors
where the GAP-L programmer has to fix the error. See Figure 5.24 for an example
error message.
The type checking analysis of GAP-C is divided into three phases. First, the

grammar is checked against the signature. Second, each algebra is checked against
the signature. And last, types in the body of algebra functions are checked.
If type errors are detected in one phase, then the following type checking phases

are skipped. Otherwise, the compiler would display a lot of redundant type error
messages which reference the same error, but report it in different type contexts.
Such messages would decrease the signal to noise ration of the error message output.
Consider e.g. a GAP-L program where x algebras correctly implement the signature.
If the grammar uses symbols from the signature in an erroneous way, then the type
checking of the grammar against each algebra necessarily finds the same errors.
The difference is that sort symbols are replaced by concrete types.
The type checking of GAP-C is related to the ADP Typechecker [44]. It started

as a standalone program and was later integrated into the old ADPC. As part
of the ADPC it can check ADPC-ADP language programs, but no Haskell-ADP
programs. In comparison to the GAP-C type checking design, it does not stop
checking algebras against the grammar if the grammar uses signature functions
incorrectly.
Checking the grammar against the signature means that the signature declara-

tions are inserted into the grammar data structure, i.e. the type checking algorithm
traverses the grammar data structure and at each object that uses a function sym-
bol, it is looked up in the signature. The return type of the signature function is
propagated upwards in the data structure and the types of the arguments are prop-
agated downwards. A type error is found, if one propagated type information does
not match another. Other errors are present, if a function symbol is not declared
in the signature or the number of arguments differs.
Checking an algebra against the signature means checking each algebra function

99

definition against the corresponding signature function symbol declaration. The
algebra definition contains a mapping between signature sorts and alphabet type
to concrete types. Thus, during the checking this information is looked up in a
symbol table.
The body of an algebra function is not directly checked by GAP-C. Instead, the

compiler generates the algebra function code and includes line and file position
pragmas in the output. These pragmas are understood by a C++ compiler: if the
C++ compiler detects type errors in the generated algebra code they are reported
in the context of the GAP-L source program. This strategy eliminates the need
to implement a classic type checker for imperative algebra code inside GAP-C. A
C++ compiler already does a good job at type checking that code.

5.3.9 List analysis

The list analysis algorithm takes the results of the algebra characteristics analysis
(Section 2.2.3) and the grammar data structure as input and computes the worst-
case list sizes resulting from symbol parser calls at different elements of the grammar
data structure. Using fixed point iteration, the algorithm does several depth-first
traversals of the grammar data structure to propagate list size influencing factors
until the computed list sizes do not change anymore. In the beginning the worst-
case list sizes of the non-terminals are initialized with n, which denotes the length
of the input.
During a traversal the following rules are applied:

lsize(X = Y ;) = lsize(Y) (5.11)
lsize(X # h) = lsize(h) (5.12)
lsize(X | Y) = lsize(X) + lsize(Y) (5.13)

lsize(f(a1, . . . , ak)) = lsize(a1) · . . . · lsize(ak) · nb (5.14)
lsize(< X1, . . . , Xk >) = lsize(X1) · . . . lsize(Xk) (5.15)

The exponent b denotes the number of unrestricted moving index boundaries
in the right hand side symbol context inside and outside of f . Looking at the
context of a single-track, an unrestricted moving index boundary is introduced if
two symbols with maximal yield size of n are placed side by side, possibly interleaved
with constant yield sized symbols and nested function symbol applications. Each
additional maximal yield sized symbol adds another index boundary. The number
of moving boundaries of multiple-tracks multiply with each other.
The role of an objective function influences the worst-case list-size of a non-

terminal, as computed by the algebra characteristics computation (Equation 5.11).
In the case of a scoring algebra, the non-terminal with an objective function on the
right hand side then has a worst-case list size of 1.

100

The results of list-size analysis are used in two ways. First, the use of lists is
unnecessary at locations where a worst-case list-size of 1 is detected, and is thus
eliminated. This leads to more efficient code, since the memory and cache is used
more efficiently and the list-accesses include more overhead. Second, the compiler
checks for missing objective function applications on the right hand side of non-
terminal rules. If an objective function is missing then it is checked, whether the
application of an objective function at that location would reduce the worst-case
list-size and improve the asymptotic runtime of the resulting program. If this is
the case, a warning message with the exact location of possible objective function
application is printed.

5.3.10 Dependency analysis

The compiler supports the generation of two different styles of parsers: top-down
Unger-style parsers and bottom-up CYK-style parsers. In top-down parsing, the
control flow of the parser functions implicitly fills a table entry of a tabulating non-
terminal parser before it is accessed by a computation of another table entry. In
bottom-up parsing, the tables are filled explicitly in a main loop. This main loop
has to satisfy two conditions. First, smaller entries for smaller sub-words have to be
computed before larger sub-words are addressed. Second, for each sub-word a table
entry of one table has to be computed before it is accessed by another non-terminal
parser computation for the same sub-word. For more details on the different parsing
schemes see Section 5.4.1. The first condition is satisfied by generating a correct
loop structure. The results of the dependency analysis are needed to generate an
ordering of non-terminal tabulate calls from the inner CYK-loop that satisfies the
second condition.
In the following it is assumed for simplicity that the input is a one-track grammar.
If a GAP-L program contains multiple tabulated non-terminals, then it is pos-

sible that computation of a table entry (i, j) of one non-terminal depends on the
computed entry (i, j) of another table. In bottom-up parsing the compiler has to
derive these dependencies and generate the parser results table filling calls from the
main CYK-loop in a non-conflicting order.
A tabulating non-terminal parser A depends on another tabulating non-terminal

parser B, if there is a derivation from A to B and for a call of A for the sub-word
(i, j), the parser B is called for the same sub-word (i, j), i.e. during the derivation
the left and right context of the call location of B is empty. Figure 5.25 shows two
grammar snippet examples.
The dependency derivation algorithm works on the grammar data structure and

depends on the results of the yield size analysis (Section 5.3.3), where the yield size
of each object is computed. The algorithm works in two phases. First, for each
non-terminal the algorithm does a depth-first traversal as long as the left and right
context of a link to another non-terminal is empty. If both contexts are empty,
then the dependency is recorded in a list. A context is empty, if all neighboring
leaves in the derivation tree have a minimal yield size of 0. In the second phase, the

101

A = f(REGION0 , B) ;

B = g(CHAR) ;
(a) Parser PA depends on parser PB .

A = f(REGION , B) ;

B = g(CHAR) ;
(b) Parser PA does not depend on parser PB

Figure 5.25: Two grammar snippets, where a parser execution dependency for one
sub-word is analyzed. The minimal yield sizes of the terminal parsers
REGION0 and REGION are 0 and 1, respectively.

Grammar :: parser_deps :
l = []
foreach (nt in nts):

nt -> collect_deps (l)
tsort(l)
return l

Symbol ::NT:: collect_deps (l):
Yield :: Size left , right;
foreach (alt in alts):

alt -> collect_deps (l, this , left , right)

Alt :: Simple :: collect_deps (l, n, left , right):
foreach (arg in args):

t = arg.next.ys + ... + args.last.ys
arg -> collect_deps (l, n, left , right+t)
left += arg ->ys

Alt :: Block :: collect_deps (l, n, left , right):
foreach (alt in alts):

alt -> collect_deps (l, n, left , right)

Alt :: Link :: collect_deps (l, n, left , right):
if left == right == ((0, _), ..., (0, _)):

l. push_back ((n, nt))

Alt :: Multi :: collect_deps (l, n, left , right):
foreach (track in tracks):

track -> collect_deps (l, n, left[track], right[track])

Figure 5.26: Pseudo-code of the parser dependency collection algorithm.

102

resulting list is sorted topologically. Figure 5.26 contains the pseudo-code of the
algorithm. For the topological sort, the collected dependencies must not contain
cycles. This is the case, because the dependency analysis is only executed, if the
loop analysis (Section 5.3.4) does not find a loop. The worst-case runtime of both
phases is in O(|V | + |E|), where V is the set of non-terminals and E is the set of
links in the grammar data structure.

5.3.11 Non-terminal inlining

The compiler supports inlining of non-terminal symbols. Inlining a non-terminal A
means that it is removed from the grammar and the non-terminal call is replaced
by a copy of the right hand side of A at each calling location. This grammar
transformation is only possible, if the inlined non-terminal is not part of a cycle.
Inlining a non-terminal may increase or decrease the practical runtime of the gen-
erated program. The code generation phase implements a non-terminal parser as
a code function for each non-terminal. If the overhead of a function call is more
expensive than the direct computing of the function body, then inlining improves
the constant factors of the runtime. In the inlining phase, the compiler inlines only
those non-terminals which are not part of a cycle and contain a simply structured
right hand side. A right hand side is considered simply structured, if it just contains
one alternative, no objective function application and a worst-case answer list size
of 1. Because of this simple structure, the algorithm approximates that inlining
improves the runtime of the resulting code, i.e. inlining depends on the computed
data from the list analysis. Depending on the selected product, a present objective
function application could be present in the source grammar, but would be removed
by a previous objective function elimination phase.
The code generation subsystem of the compiler does not contain more low-level

inlining phases for inlining very small generated code functions or runtime library
functions. Since current C++ compilers already include good general purpose inline
optimization phases, GAP-C does not need to duplicate this effort for more low-level
code. It is sufficient that the runtime library code in question and the generated
low-level code is structured in such a way that a generic C++ inline optimizer is
not limited in its operation. When an inlining should be considered by the compiler
of the generated code, it needs access to the function definitions in all translation
units and the function must not be too large.

5.3.12 Index analysis

The index analysis uses the results from the yield size analysis (Section 5.3.3) and
the table dimension analysis (Section 5.3.6) as input and creates index expressions
for the elements of the grammar data structure. In multi-track programs, each
track is processed independently, because the index boundaries of one symbol ac-
cess of one track do not influence the boundaries of the other tracks. For each
non-terminal the index analysis does a depth-first traversal of the data structure

103

iloop = il(BASE , BASE , REGION with maxsize (30) , closed ,
REGION with maxsize (30) , BASE , BASE) # h ;

(a) GAP-L non-terminal

for (k_0 = i + 3; k_0 <= j - 10 && k_0 <= i + 32; ++ k_0)
for (k_1 = j - (k_0 + 7) >= 32 ?

j - 32 : k_0 + 7; k_1 <= j - 3; ++ k_1)

BASE(i, (i + 1))
BASE(i + 1, i + 2)
REGION (i + 2, k_0)
closed (k_0 , k_1);
REGION (k_1 , j - 2)
BASE(j - 2, j - 1)
BASE(j - 1, j)

(b) index pseudo-code

Figure 5.27: Grammar snippet and the computed indices for symbol accesses by the
index analysis algorithm.

that represents the right hand side. When on the right hand two symbols with
the minimal yield size unequal to the maximal yield size are horizontally side by
side, then a new moving index boundary is detected and a new index-variable is
created. The detection of moving boundaries keeps track of nested function sym-
bol applications and interleaved symbols with constant minimal and maximal yield
sizes. Each new index variable introduces a new loop construct that contains the
upper and lower bounds of this index depending on the outer indices of the outer
non-terminal, which are needed for the code generation phase. When a symbol
with minimal yield size equal to maximal yield size is traversed, then the value
is collected to compute the index boundaries of the following symbols as tight as
possible.

Figure 5.27 shows an example of a GAP-L grammar snippet and resulting indices
of parser calls.

During index analysis indices are eliminated if the table dimension analysis has
found one or more indices of a non-terminal parser being constant.

Another part of the index analysis is the generation of conditional expressions
that consider implicit and explicit yield size limits. In code generation they are
then used to generate if-statements that guard against unnecessary executions of
code blocks depending on the size of the parser sub-word argument.

104

5.4 Code Generation
The code-generation phase of GAP-C takes the AST and the results from the se-
mantic analyses as input and generates optimized target code for the backend.
The tasks of the code-generation phase are the generation of an efficient imple-
mentation of yield parsing (Section 5.4.1), the generation of code that exploits
parallelism on shared memory architectures (Section 5.4.2) and the application of
several backtracing schemes where possible in the generated code (Section 5.4.3).
In Section 5.4.4 the Window-Mode feature is described and Section 5.4.5 presents
the code-generation for index-hacking constructs, for application domain specific
optimizations, and discusses their motivation.

5.4.1 Parsing Schemes
The compiler implements two different schemes for generating the non-terminal
parser code: top-down Unger-style parsing [53] and bottom-up CYK-style parsing
[58].

5.4.1.1 Top-Down

In top-down parsing, each non-terminal parser is generated as a function. At the
beginning of a parse, the axiom parser is called for the complete input as argument.
The parser code then recursively calls the referenced non-terminal parsers on the
right hand side for all possible splits of the current sub-word. When a non-terminal
parser is tabulating, then it tests at every call, if it was already called with the
same sub-word argument. If yes, then it returns the already computed result from
the table, else it computes the parse and saves it into the table. Figure 5.28(b)
shows the pseudo-code of a top-down non-terminal parser for a non-terminal from
an example grammar.
Using the results from the yield size and index analysis (Sections 5.3.3 and 5.3.12)

the top-down parser code generation eliminates recursions into unnecessary splits
of the sub-word argument that cannot return a valid parse, if e.g. a split would
yield a parser call with a sub-word argument of size greater than the maximal yield
size of the non-terminal.
The runtime of a top-down parser is in O(nl+m) where n is the maximal track

length, l is the maximal number of dimensions of a non-terminals table and m is
the number of non-restricted moving index boundaries on the right hand side of a
non-terminal. A non-restricted moving boundary is introduced if one input track
contains two links to symbols with a maximal yield size of n. Each additional
link to symbol with maximal yield size of n introduces another moving boundary.
Thus, the top-down parser runtime corresponds to the equations in the runtime
computation analysis (Section 5.3.7.1).
The top-down parsing scheme is comparable to the parsing of the Haskell-ADP.

The Haskell-ADP parser combinators also work top-down. The on-demand table
entry checking is implicit, since Haskell uses lazy-evaluation.

105

grammar nussinov uses Fold(axiom = struct) {

struct = nil(EMPTY) |
right(start , CHAR) |
split(start , pair(CHAR , start , CHAR)

with basepairing) # h ;

}
(a) Grammar

comp_N (0, n)

comp_N (i, j):
if (computed (N, i, j))

return N[i,j]
...
foreach k, i<k<j:

...
tmp = comp_N (i, k -1)

+ comp_N (k+1, j -1)
N[i,j] = max(N[i,j], tmp)
....

return N[i,j]
(b) Top-Down

for j=0; j<n; ++j
for i=j+1; i >1; i--

compute_N (i-1,j)

compute_N (i, j):
...
foreach k, i<k<j:

...
tmp = N[i,k -1]

+ N[k+1,j -1]
N[i,j] = max(N[i,j], tmp)
....

(c) Bottom-Up

Figure 5.28: Nussinov algorithm grammar and two pseudo-code skeletons for top-
down and bottom-up evaluation of a basepair maximization algebra.

106

5.4.1.2 Bottom-Up

In bottom-up parsing the tabulating non-terminal parsers are called explicitly from
a main loop to fill the tables with parser results. The tables must be filled in the
order of increasing sub-word size, because a smaller sized entry could be referenced
to compute the parse result of a table entry. If there are more than one tabulat-
ing non-terminal parser then the order of computing table entries for same-sized
sub-words must take the parser dependencies into account (Section 5.3.10). Non-
tabulating non-terminal parsers are called during the computation of table entries
top-down as recursive functions. If the axiom is tabulated, then the parsing result
is stored in the axiom table in the entry that represents the whole input parse (e.g.
(0, n) in the single-track case). Else the axiom parser is called top-down with the
whole input as argument. Figure 5.28(c) shows the pseudo-code of a bottom-up
parser for a small single-track grammar.
The worst-case runtime of a bottom-up parser is the same as the runtime of a

top-down parser. The main loop iterates over O(nl) sub-words and for each sub-
word, while computing the entries, O(m) non-restricted index-boundaries have to
be considered.
The code generated by ADPC uses bottom-up parsing.

5.4.1.3 Benchmarks

The practical runtime, i.e. the constant factors, of the generated parsers may differ
significantly in the two parsing schemes. On the one hand, top-down parsing in-
troduces some overhead, because a recursion stack has to be administered and for
each sub-word each tabulating non-terminal parser has to execute table checking.
In bottom-up parsing the conditional code is eliminated and a stack is only needed
for non-tabulated parsers. On the other hand, if the grammar of the programming
introduces sparseness, then the entries of the tables are accessed sparsely as well.
During bottom-up parsing all table entries are computed. But in top-down parsing,
sparseness may prune some derivations which yield sparsely filled tables. Sparseness
is introduced due to grammar filters (e.g. stackpairing) or non-parsable symbols
on the right hand side of a non-terminal. The effect of sparseness depends on the
used algebra as well. A well structured CYK-style loop is able to exploit caching
and pre-fetching effects of the CPU, if for example a scoring algebra works on an
elementary data type. These effects may outweigh reduced computation due to
sparseness. However, for an algebra with more expensive operations, the top-down
overhead may pay off in reducing the number of algebra computations. Conversely,
in a dense grammar the top-down overhead would yield no benefit.
Figure 5.29 shows two plots of the top-down vs. bottom-up runtime ratio of

the compiled ADPfold algorithm for two different algebra products. The ADPfold
grammar is basically a GAP-L version of RNAfold[25]. It introduces sparseness,
because large parts of the grammar are protected by stackpairing filters (Figure
5.30). The mfe algebra computes the minimum free energy, i.e. the energy contribu-

107

0 500 1,000 1,500 2,000
1

1.5

2

sequence length

ra
tio

Top-Down/Bottom-Up

execution time ratio

(a) mfe

0 50 100

0.5

1

1.5

sequence length
ra
tio

Top-Down/Bottom-Up

execution time ratio
memory usage ratio

(b) shape · mfe

Figure 5.29: Runtime and memory usage ratios of top-down and bottom-up parsers
for two different products.

closed = { stack | hairpin | leftB | rightB |
iloop | multiloop }

with stackpairing # h ;

Figure 5.30: Non-terminal rule that is protected by the stackpairing syntactic
filter, i.e. the right hand side is only parsed if the first and second
character of the sub-word form basepairings with the last and second-
last one.

108

tions of substructures are added and the objective function minimizes over all values.
In this case, the bottom-up computation is two times faster than the top-down com-
putation, even if the grammar introduces some sparseness. The shape*mfe product
computes the MFE for each shape in the search space. The number of shapes grows
exponentially with the input size, i.e. the product objective function returns a list
of shapes and the runtime of a parser for each sub-word increases from O(n) in
the mfe case to (nm2), where m is the maximal list size of an argument parser. In
this case, the overhead of top-down parsing does pay off and the top-down runtime
and space usage is just half the bottom-up ones. During bottom-up parsing a lot
of sub-word entries are computed which represent successful sub-parsers but which
are not used by any computation of bigger sub-word parses, because at that level
a stackpairing filter returns false for all those bigger sub-words.

5.4.1.4 Argument Reordering

In both top-down and bottom-up parser code generation, the compiler does a re-
ordering of the argument call order of function symbols on the right hand side of a
non-terminal. The heuristic used there is to score each argument and then sort the
arguments with decreasing score. An argument is scored higher than another if it
is approximately more likely to be computed less expensively and thus may return
an unsuccessful parse with less computation, i.e. terminal parsers are scored higher
than non-terminal parsers and local grammar filters increase the score.

5.4.1.5 Sparseness

Pure top-down parsing exploits sparseness in a grammar, but pre-processing of the
input and on-the-fly bookkeeping to eliminate moving index boundaries can exploit
the sparseness on a higher level, using algebra and grammar properties. See Section
10.1 for a discussion.

5.4.1.6 CYK Loops

In the single-track case, the main CYK-style loop is constructed with two nested
for-loops as displayed in Figure 5.28(c). Using results from the table dimension
analysis (Section 5.3.6) the basic CYK-style loop is optimized during code gener-
ation. For example, the table entry filling code for a parser P does not need to
be called for every sub-word (i, j), if the table dimension analysis shows that P
needs only a constant sized table. In that case the tabulating parser only needs to
be called for the complete sub-word (0, n). Analogous to that, a parser that only
needs a linear table, because it is always called with a constant left index, does not
need to be called from the innermost for-loop, but for every j. The CYK-style loop
is specialized and rolled out during code-generation and the parser-calls are moved
out of the nested loops as much as possible to save unnecessary calls to tabulating
code. Figure 5.31 shows the pseudo-code of this optimization. If the asymptoti-
cally optimal runtime of the GAP-L program is in O(nx), where x > 1, then this

109

for (unsigned j = 0; j < n; ++j) {
for (unsigned i = j + 1; i > 1; i--) {

nt_tabulate_A (i-1, j);
}

unsigned i = 1;
nt_tabulate_A (i-1, j);
nt_tabulate_B (i-1, j);

}

unsigned j = n;
for (unsigned i = j + 1; i > 1; i--) {

nt_tabulate_A (i-1, j);
nt_tabulate_C (i-1, j);

}

unsigned i = 1;
nt_tabulate_A (i-1, j);
nt_tabulate_B (i-1, j);
nt_tabulate_C (i-1, j);
nt_tabulate_D (i-1, j);

Figure 5.31: Specialized 2-track CYK-style loop where non-terminal A needs a
quadratic table, B and C a linear table and D a constant sized table.

110

optimization does not change the asymptotic runtime of the code, but reduces the
constant runtime factors of the generate code. Otherwise, if the asymptotically op-
timal runtime is in O(n), just generating the basic CYK-style loop instead of doing
this optimization would yield a program with asymptotically suboptimal runtime.
In practice, reducing constant runtime factors may yield significant runtime im-
provements.
The CYK-loop specialization is generalized in the multi-track case. Figure 5.32

shows the pseudo-code of the loop code generation algorithm. The optimization
is applied recursively on the tracks and recursively loops with empty bodies are
eliminated. Consider the pairwise sequence alignment algorithm as a two-track
GAP-L program example. The general two-track CYK-style loop would consider
all sub-words, i.e. iterating over O(n4) index combinations of the two tracks. Ap-
plying this optimization yields a specialized loop that eliminates two of four indices
that are constant and thus iterates over O(n2) index combinations, which is the
asymptotically optimal runtime of the algorithm. The resulting two-fold nested
loop resembles a handwritten loop if manually implementing the control flow of
the pairwise sequence alignment algorithm textbook recurrences in an imperative
programming language.

5.4.2 Parallelization

Today, multi-core CPUs and multi-socket computer systems are widely available.
One can interpret this trend as a result of Moore’s Law that states: “The complexity
for minimum component costs has increased at a rate of roughly a factor of two
per year [. . .]. Certainly over the short term this rate can be expected to continue,
if not to increase.” [32] This means that every year more transistors are available
for producing a CPU at the same costs as last year. Thus, putting more cores in
one CPU-package is one way to utilize the increasing transistor count. Figure 5.33
shows that this law still fits with current developments.
As a consequence, new algorithms should scale well on parallel machines.
There are several parallel versions of dynamic programming algorithms on se-

quences. For example, [30] describes a parallel version of the pairwise sequence
alignment algorithm. Since the computation of a table entry (i, j) depends on the
values of the neighboring entries (i−1, j), (i, j−1) and (i−1, j−1), it is not possible
to compute the entries in parallel in arbitrary order. The described parallelization
scheme respects the table entry dependencies and the edit distance table is filled
in a diagonalized fashion (diagonal after diagonal), because the computation of the
entries on the diagonal does not depend on each other and thus it is possible to
compute them in parallel. Another example is the parallel version of McCaskill’s
partition function algorithm [17], which uses a similar parallelization scheme. Mc-
Caskill’s algorithm is a single-track O(n3) algorithm that takes an RNA sequence
as input.
The GAP-L compiler supports the generation of code that is parallelized and

optimized for shared memory architectures. It aims at shared memory architec-

111

partition_nts (tord , all , inner , left , right , track):
foreach (nt in tord):

if (!nt. is_cyk_left (track) && !nt. is_cyk_right (track) &&
!nt. is_cyk_const (track))

inner. push_back (*i);
if (!nt. is_cyk_right (track) && !nt. is_cyk_const (track))

left. push_back (*i);
if (!nt. is_cyk_left (track) && !nt. is_cyk_const (track))

right. push_back (*i);
all. push_back (*i);

print_cyk (tord , track)
partition_nts (tord , all , inner , left , right , track);
print("...");
if (! inner .empty ())

print("for (..) { for (..) ... {");
print_cyk2 (inner , track);
print("}");
if (! left.empty ())

print_cyk2 (left , track);
print("}");

if (inner.empty () && !left.empty ())
print("for (..) {");
print_cyk2 (left , track);
print("}");

if (! right .empty ())
print("for (..) {");
print_cyk2 (right , track);
print("}");

if (! all. empty ())
print_cyk2 (all , track);

print_cyk2 (tord , track):
if track == tracks :

// generate nt tabulating calls
else:

print_cyk (tord , track +1)

Figure 5.32: Pseudo-code of the generic multi-track optimized CYK-style loop gen-
eration algorithm. The tord argument contains the table configuration
topological sorted according to the parser dependencies.

112

1970 1980 1990 2000 2010
103

105

107

109

Intel 8080

NVIDIA GT200

UltraSPARC

AMD K10

Intel 386

MIPS R4000

year

#
tr
an

sis
to
rs

(a) transistor counts

2002 2004 2006 2008 2010

5

10

15

POWER4

POWER4 mc

Xeon mc

Opteron

AMD Istanbul
POWER7

Niagara T1

year

#
co
re
s

(b) number of cores

Figure 5.33: The increase of transistor counts in CPUs and the trend to integrate
more cores into one CPU package.

tures, because the communication overhead of O(n3) single track DP algorithms
is likely to decrease significantly the parallel efficiency of the resulting program
in a message passing environment. In such an algorithm a moving boundary at
the right hand side of a rule means that for computing the value for the current
sub-word, O(n) values have to be considered, which are not locally available in the
worst case. Even with a specialized low-latency message-passing network, the com-
munication overhead is then prohibitive in comparison with local memory accesses.
Besides that, shared memory architectures are an attractive target, because they
are widely available.
To generate portable parallel code, the compiler generates code according to the

OpenMP standard [7]. OpenMP is a free-available open standard that specifies
language extensions for writing parallel programs for shared memory environments
in C, C++ and Fortran. OpenMP constructs are pragmas, which declare how anno-
tated language statements, like e.g. loops, should be parallelized by the compiler.
A compiler that does not support OpenMP, ignores these pragmas. The result-
ing program is then just single-threaded, but still yields correct results. OpenMP
support is widely available in Open-Source and closed-source C/C++ compilers.
GAP-C generates code that computes the table entries diagonal after diagonal, as

in the mentioned examples, to satisfy the entry dependencies. Figure 5.34(a) shows
the dependencies of an entry in a ≥ O(n3) single-track DP algorithm and Figure
5.34(b) shows the diagonal control flow in the table computations. The generated
code does not compute on single entries of diagonals in parallel, but computes on
diagonals of blocks of entries in parallel. The advantage of using blocks as smallest
distribution unit is that during the computation of one or more blocks, a core could
profit from caching and prefetching effects. Another advantage of this is that the
synchronization overhead is reduced. The block size is configurable, but a local

113

i

j

k

k

(a) Table entry dependencies. The computation
of (i, j) depends in general on all entries (k, k′),
where i ≤ k ≤ k′ ≤ j.

i

j

(b) Diagonal control flow. Each color symbol-
izes the computation on a different processor in
parallel.

Figure 5.34: Dependencies of the computation of one table entry in an ≥ O(n3)
single-track DP algorithm and the parallelization scheme used in the
code generation by GAP-C.

search on an Opteron system showed that a block size of 32 × 32 is a good choice
for O(n3) DP algorithm under an integer based scoring algebra. The partitioning
of the blocks of a diagonal to the available processors is done for every diagonal
from scratch such that the available processors are better utilized in the case of
smaller diagonals.
The generated backtracing code is not parallelized since e.g. in the case of a

single-track DP O(n3) algorithm, the backtracing phase is in O(n2) and profiling
shows that the practical backtracing runtime in that case is just an insignificant
fraction of the complete runtime.
To measure the efficiency of the described parallelization scheme that is imple-

mented by GAP-C, the parallel speedup and efficiency of running the compiled
ADPfold GAP-L version under the mfe algebra on different shared memory archi-
tectures is benchmarked. The following definitions are introduced for discussing
the benchmark results.

Definition 12 (Speedup). The speedup of a parallelized program is defined as

su(n) = T1
Tn

(5.16)

where T1 is the runtime of the program on one processor and Tn is the runtime of
running the program on n processors in parallel.

114

Disregarding caching effects, it follows that the maximal speedup of a program
is:

maxsu(n) = T1
T1/n

= n (5.17)

Definition 13 (Parallel efficiency).

eff(n) = su(n)
maxsu(n) (5.18)

Definition 14 (Amdahl’s Law).

es(n) = 1
(1− p) + p

n

(5.19)

≤ 1
1− p (5.20)

es∗(n) = 1
(1− p) + p

n + φ(n) (5.21)

Amdahl’s law [2] defines the expected speedup (es) when parallelizing a single-
threaded program where p is the fraction of the program which can be perfectly
parallelized. 1 − p is the inherent single-threaded fraction of the original program
that cannot be parallelized. es∗ describes the practical expected speedup, where φ
describes cost factors that are a result of parallelization, like e.g. communication or
synchronization overhead.

Figure 5.35 shows plots of the expected parallel speedup and efficiency for differ-
ent values of p. For example, even when disregarding extra parallelization costs (φ),
an assumed program with 95 percent perfectly parallelized code and only 5 percent
inherently non-parallelizeable code, the expected parallel efficiency running it on
10 CPUs is less than 70 percent. Thus, effectively the computation time of 3 CPUs
cannot be utilized through parallelization in that case.
Figure 5.36 shows the benchmark results of running the GAP-L version of the

ADPfold algorithm under the mfe algebra. The ADPfold is an O(n3) single-track
algorithm that is an ADP version of the RNAfold algorithm [25]. RNAfold pre-
dicts the secondary structure of RNA molecules. The input are random uniformly
distributed RNA sequences of size 4000. For comparison, plots of the expected
speedup (as defined in Equation 5.19) of an assumed program P with 98 percent
perfectly parallelizeable code are included in the display of the results. The results
show that the generated code scales well on different machines. The plots of the
parallel speedup and efficiency fit the plots of the expected speedup and efficiency
of the assumed program P .

115

2 4 6 8 10

2

4

6

8

10

#CPUs

sp
ee
du

p
99%
98%
95%
90%
80%

(a)

2 4 6 8 10

0.4

0.6

0.8

1

#CPUs

pa
ra
lle

le
ffi
ci
en

cy

99%
98%
95%
90%
80%

(b)

Figure 5.35: Plots of the parallel speedup and efficiency of different parallelizable
ideal programs according to Amdahl’s Law for various x percent. An
x percent plot means that it represents a program of which x percent
of the code is perfectly parallelizable. Communication overhead is not
taken into account.

0 10 20 300

10

20

30

#CPUs

sp
ee
du

p

4× 4 Xeon
8× 4 Opteron

8× 8 Niagara T1
98%

(a)

0 10 20 30

0

0.5

1

#CPUs

pa
ra
lle

le
ffi
ci
en

cy

4× 4 Xeon
8× 4 Opteron

8× 8 Niagara T1
98%

(b)

Figure 5.36: Parallel speedup and efficiency of running the compiled ADPfold GAP-
L program on different machines (see text). For comparison, plots
of an ideal program with 98 percent perfectly parallelizable code are
included. The input of ADPfold are uniformly distributed random
sequences of size 4000. All machines were running Solaris 10 and Sun
Workshop Pro 12 was used as C++ compiler.

116

5.4.3 Backtracing

In dynamic programming, backtracing denotes the process of tracing back the op-
timization decisions for a computed DP-table, and building a pretty-printed string
representation of that path during the backtrace. A forward dynamic program-
ming computation computes the table which is the input of the backtracing phase.
Consider for example the pairwise sequence alignment algorithm. In the forward
computation the edit distance is minimized for two sequences. The backtracing
phase works on the distance-value table and during backtracing, the actual align-
ment is constructed that has the minimal computed edit distance.
Backtracing is not a concept of the ADP framework. The effect of backtracing,

i.e. computing a representation of the optimal path, is implemented via products of
algebras in ADP. Conceptually, different algebras for scoring and pretty-printing are
specified, under which the candidates of the search space are evaluated. To compute
the string representation of the optimal scored candidates, the lexicographic product
(Definition 6) is used. For example:

score · pretty (5.22)

where score is a scoring algebra and pretty has an enumerative role.
Backtracing is then an optimization of the GAP-L compiler in the code genera-

tion. The compiler inspects the specified product and splits it into two parts that
are computed in a forward and backtrace computation, if the product satisfies cer-
tain conditions. In the example the generated code for the forward computation
uses just algebra score for computation and the generated backtracing code uses
the pretty algebra for backtracing. The backtrace code generation phase tries to
split the product into two parts

A ·B (5.23)

where A is an algebra or an algebra product of role scoring and B is an algebra or
an algebra product of role enumerative. If this is not possible, then no backtracing
code is generated. Disabling the backtracing optimization yields code that has
the same asymptotic runtime, but the constant factors of the practical runtime
are higher. Without backtracing the computation of B is done in the forward
computation, i.e. B is computed for sub-candidates, which are not part of the
optimal solution and hence are not computed during backtracing. Consider e.g.
a single-track O(n3) RNA folding algorithm, with the optimal backtracing phase
in O(n2). Starting from table entry (0, n), the backtracing traverses O(n) entries
above and O(n) entries to the left in the worst case. At each entry a non-restricted
index boundary implies a lookup of O(n) values.
GAP-C supports several backtracing schemes for code-generation: optimal, co-

optimal, sub-optimal and stochastic backtracing.
Figure 5.37(b) shows the pseudo-code for an optimal-backtrace code for a small

grammar example (Figure 5.37(a)). Optimal backtracing means that in the situ-

117

formula = number |
add(formula , plus ,

formula) |
mult(formula , times ,

formula)
h ;

(a) GAP-L grammar

string bt_formula (i,j):
score = formula [i,j]
if number [i,j] == score:

return bt_number (i,j)
foreach k, i<k<j:

if add(formula [i,k], plus(k, k+1),
formula [k+1, j]) == score:

return add_pp (bt_formula (i, k),
plus(k, k+1),
bt_formula (k+1, j))

...
(b) Optimal backtrace

[string] bt_formula (i,j):
ret = []
score = formula [i,j]
if number [i,j] == score:

ret.add(bt_number (i,j))
foreach k, i<k<j:

if add(formula [i,k], plus(k, k+1),
formula [k+1, j]) == score:

ls = bt_formula (i, k)
rs = bt_formula (k+1, j)
foreach l in ls , r in rs:

ret.add(add_pp (l, plus(k, k+1), r))
...

return ret
(c) Co-Optimal backtrace

Figure 5.37: An example for a GAP-L grammar and the pseudo-code for optimal
and co-optimal backtracing that follows the grammar structure.

118

Figure 5.38: Diagram of the classes that are used for constructing the backtrace
data-structure. Class names with a star represent a set of classes that
are generated by the compiler. The other classes are part of the run-
time library.

ations with more than one optimal sub-solution, only one is considered and the
others are ignored. In co-optimal backtracing every optimal sub-solution is taken
into account, such that the backtracing phase may return several co-optimal re-
sults. This is consistent with the definition of the lexicographic product operation
in ADP (Definition 6). From the definition of the products objective function it
directly follows that all co-optimal candidates are processed. Figure 5.37(c) shows
the pseudo-code of co-optimal backtrace code for the example. Instead of choosing
the first optimal split and return one optimal solution, all splits are considered and
a list of optimal solutions is returned.
The generated code for co-optimal backtracing is similar to the pseudo-code ex-

amples, because it also uses a set of recursive functions. Using recursive functions
has the advantage of eliminating the explicit administration of a stack during back-
tracing, since the function call stack is used for that. In addition, data-structures
are generated that represent a backtrace.
Figure 5.38 shows the diagram of the classes used to construct a backtrace in the

generated code. The class names that contain a star are generated by the compiler
and the classes are part of the runtime library, because they are independent of the
source program. For each function symbol of the algebra a Backtrace_Fn_* class

119

typedef (score , Backtrace) bt -tupel
typedef [bt -tupel] bt -list
...
bt -list ret_2 = bt_proxy_nt_formula (i, k_0);
if (is_not_empty (ret_2))

foreach (x_0 , ret_2)
foreach (x_2 , ret_4)

bt -tupel ans = add_bt (x_0 , a_1 , x_2);
push_back_min_other (answers , ans);

...
bt -list eval = h_bt(answers);
bt bt_list = execute_backtrace_k (eval);
return bt_list

Figure 5.39: Simplified code of the generated co-optimal backtracing code by GAP-
C for the grammar example.

is generated and objects of that class represent the choice of that function dur-
ing the backtracing. For each non-terminal symbol a class Backtrace_NT_*_Front
is generated that represents a call of a non-terminal parser in the backtrace. It
may reference a list of Backtrace_NT_Back_Base objects that represent co-optimal
backtraces for sub-words. Considering the previous grammar example, Figure 5.39
shows a simplified version of the generated code that creates objects of the backtrac-
ing data-structure. The function bt_proxy_nt_formula generates a list of score
and Backtrace_NT_formula_Front object tuples and the function add_bt returns
score and Backtrace_Fn_add objects. The function push_back_min_other is an
optimized list-append version that only appends, if the score is less than the top
of the list, and because of this the special objective function h_bt is just the iden-
tity. At the end of the recursive backtrace function a call execute_backtrack_k
triggers the backtrace member functions of the collected objects that continue the
recursion. After the backtracing is finished and a list of backtrace path represent-
ing Backtrace objects is returned for the input, the evaluate member function
is called to actually call the algebra functions of B recursively according to the
constructed backtrace path.
This backtracing scheme resembles top-down parsing (Section 5.4.1). The dif-

ference is that the part B of the product is replaced by a generated backtracing
algebra and the parsing is guided by the results of the forward computation. The
execution of the backtracing code is delayed after the objective function execution
with the help of proxy-objects of the backtracing data structure.
In suboptimal backtracing during backtracing not only the optimal scored can-

didates are considered, but all candidates with scores x′ where x′ ≤ x + δ or
x′ ≥ x− δ for minimization or maximization objective functions. Since usually the

120

Table 5.4: Examples of Vienna Strings and their shapes (at shape level 5).
Structure Shape

....(((.....)))... []

....(((...((....))....)))... []

..(((...((...))...((((...))))...))).. [[][]]

search space of a GAP-L program is of exponential size, depending on the value
of δ the runtime of suboptimal backtracing is exponential. The generated code by
GAP-C is similar to the co-optimal case. The difference is that the construction of
score and backtrace-object tuple lists takes the δ value into account. This scheme
is similar to that of RNAsubopt [57]. RNAsubopt uses an explicit stack during
backtracing.

5.4.3.1 Stochastic Backtracing

In stochastic backtracing, the score component of the score and the backtrace-object
tuples are interpreted as an discrete probability distribution and the backtracing
objective function chooses a candidate from the candidate list at random under this
distribution. Stochastic backtracing means sampling candidates from the search
space under an algebra B and according to a probability distribution, defined by
algebra A (Equation 5.23).
A use-case for stochastic backtracing is the situation, where computing the alge-

bra product C ·D is expensive, because computing C is expensive, but it is possible
to compute D in polynomial time and D is a synoptic algebra that defines a prob-
ability distribution for the candidates. An alternative to directly computing C ·D
is to compute D and then use D during stochastic backtracing. Thus, an approx-
imation of the result of C · D is obtained via several samplings from the search
space.
An example of this is the computation of the product shape · pfunc for a single-

track O(n3) RNA-folding algorithm like ADPfold (it is a GAP-L version of RNAfold
[25]). The algebra shape has a classifying role and the algebra pfunc has a synoptic
role. Algebra pfunc computes and sums over the partition function values of the
candidates. The ADPfold grammar is semantically non-ambiguous under the Vi-
enna String representation [25]. Each candidate from the search space has a unique
Vienna String representation. A Vienna String prints a dot for an unpaired base
in the input and a matched pair of brackets for a base pairing. A shape neglects
small differences in Vienna Strings [22], such that e.g. all candidates from the search
space with exactly one hairpin structure have different Vienna Strings, but the same
shape. Table 5.4 shows examples of Vienna Strings and shape strings of various
candidates. Using Boltzmann statistics [54, 55] the partition function value of the

121

lcandidates = [hl(. . .),ml(. . . , il(. . .), . . .), . . .] (5.27)
lpf = [1, 23, 42, . . .] (5.28)

Figure 5.40: Conceptual list of candidate structures and their corresponding parti-
tion function values. The values define the discrete probability distri-
bution during sampling.

search space S is defined as

Q =
∑
s∈S

e−βEs (5.24)

where Es is the energy of structure s. Accordingly the partition function value
of a shape X is defined as the sum over all candidate values with the same shape.

pf(X) =
∑
s∈X

e−βEs (5.25)

Then the shape-probability is defined as:

p(X) = pf(X)
Q

(5.26)

The computation of product shape · pfunc provides the shape probabilities of
an input string. The search-space of the ADPfold grammar is of exponential size
and the shape space size depends on the search space size. The shape abstraction
reduces the search space size in comparison to the Vienna Strings space, but the
number of shapes still grows exponentially with the input size [29]. Thus, computing
shape · pfunc leads to an exponential runtime in the worst-case. Computing pfunc
is in O(n3). Thus, using stochastic backtracing, the complete runtime is then
O(n3 + in2), where O(n2) is the worst-case runtime of one stochastic backtracing
and i is the number of sampling iterations. Figure 5.40 shows an example of the
correspondence of partition function values and search space candidates.
To analyze the errors of shape probabilities obtained via stochastic backtracing,

the following expression is used:

δ(u, x, y) =
∑

S∈Sx∪Sy

|px(S)− py(S)| (5.29)

where u is an RNA sequence, x and y are two shape probability computation
methods, Sx and Sy are the shape spaces of the two methods for sequence u,

0 ≤ δ(u, x, y) ≤ 2 (5.30)

and δ(u, x, x) = 0. A δ of 2 means that the shape spaces of the two sequences do
not share any shape.

122

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(a) GAPC nonamb

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(b) RNAshapes

0–
28

28
–5

6
56
–8

4

84
–1

12

11
2–

14
00

50

100

n

pe
rc
en
t

[0; 0.01[[0.01; 0.05[
[0.05; 0.1[[0.1; 0.25[
[0.25; 0.5[[0.5; 1[

(c) GAPC adpf

Figure 5.41: Distribution of shape probability deviations δ (Equation 5.29) as a
function of sequence length n when comparing the exact shape prob-
abilities with shape probabilities approximated by various programs
via stochastic backtracing (see text). Each program was run with the
same set of 2000 random sequences. Each δ value is collected in one
of the 6 intervals shown in the legend boxes. The versions in 5.41(a)
and 5.41(b) use the same ADP grammar that unambiguously takes
dangling bases into account. The version in 5.41(c) implements the
RNAfold grammar.

123

Figures 5.41(a) and 5.41(c) compare the shape-probabilities for several random
sequences obtained via stochastic backtracing and via an exact forward computa-
tion. The plot shows that 1000 sampling iterations suffice in that case to produce
very good approximations. [11] describes the program sfold, which is an O(n3)
RNA folding algorithm that samples RNA secondary structures using Boltzmann
statistics. The paper gives statistical reproducibility guarantees for sampling.
The stochastic backtracing is available in GAP-L via the use of the overlay prod-

uct and an instance filter. For the previous example the right hand side of the
instance declaration in GAP-L is:

(pfunc | pfunc_id) * shape5 suchthat sample_filter_pf

The overlay product specifies that the left operand is used during the forward
computation and the right operand is used during backtracing. In this case pfunc_id
is an algebra derived from pfunc and the objective function is replaced by the iden-
tity function. An instance is called in the generated code after the objective function
on the results of the objective function. In this case sample_filter_pf interprets
the first components of the result tuples as points of a discrete probability distri-
bution and chooses one tuple under this distribution at random. Doing the actual
sampling in a filter and not in the objective function has the advantage of better
code reuse: the filter can be plugged together with other partition function-like
algebras.
In stochastic backtracing the objective function always chooses one sub-solution

from the list of tuples. For the RNAshapes [22] grammar, this is not sufficient.
The RNAshapes grammar is an RNA folding grammar. It is non-ambiguous under
the canonical Vienna String representation of the candidates in the search space
and it unambiguously takes energy contributions of dangling bases into account
while computing the minimum free energy (MFE). As a consequence, the result
type of the mfe algebra is a tuple of the score, possible dangling contributions and
indices, because at some locations in the grammar the decision to use a dangling
energy contribution is delayed to a later application of another algebra objective
function. Such constructions, in combination with a unitary objective function,
violate Bellman’s Principle of Optimality (Definition 5), because sub-solutions with
co-optimal scores may yield differently scored super-solutions, i.e. two sub-solutions
with the same MFE, but with different dangling-energy contributions. In stochastic
backtracing this results in approximation problems for the RNAshapes grammar
and sampling shape · pfunc. For example, the comparison of RNAshapes (Figure
5.41(b)) and the GAP-L version of the RNAfold grammar (Figure 5.41(c)) shows
that the stochastic backtracing of RNAshapes produces some larger approximation
errors. In the GAP-L version of the RNAshapes grammar the used sampling filter
also unambiguously takes dangling-energy contributions into account. As a result,
the distribution of δ values of this version (Figure 5.41(a)) is comparable to the
GAP-L version of the RNAfold grammar (Figure 5.41(c)).
Using stochastic backtracing is not restricted to partition function-like algebras.

It is possible to implement Stochastic Context Free Grammars (SCFGs, [4]) as

124

GAP-L programs. The rule probabilities are then coded in an algebra.

5.4.4 Window Mode

In window mode, the computation is done in a sliding window over the input string,
where the sub-solutions of the overlap region between two iterations are reused.
For example, for a cubic runtime algorithm the space requirement is then in

O(w2) and the runtime in O(w2n), where w is the window-size and n the input
length.
The code-generation of GAP-C supports the optional generation of window mode

code for arbitrary single-track GAP-L programs.

5.4.5 Index Hacking

While introducing ADP, usually at some point the slogan “No subscripts, no errors!”
is cited. The ADP framework avoids the use of indices with the concept of tree
grammars. A tree grammar specifies the search space of a DP problem instance in
a declarative fashion and the compiler derives efficient matrix recurrences from the
tree grammar.
Standard RNA-folding algorithms like the Nussinov algorithm [36] and standard

minimum free energy folding algorithms [25] operate under the (nested) base pairing
condition. The base pairing condition says that two base pairings may not intersect:
for two base pairings (ui, uj) and (uk, ul), where i < k then either either i < j <
k < l or i < k < l < j, where u is the input string and 0 ≤ i, j, k, l < |u|.
For the modeling of RNA secondary structures that may include pseudo-knots,

the pseudo-knot motifs violate the base pairing condition [40]. Figure 5.42 de-
scribes the basic segments of canonical simple recursive pseudo-knots which are
recognized by the RNA folding algorithm pknotsRG [40]. A naive implementation
of the pknotsRG algorithm would run in O(n8) because 6 moving index boundaries
in the pseudo-knot need to be considered for each sub-word of the input string
[40]. The algorithm reduces the number of boundaries to 2, due to canonicaliza-
tion rules, while still calling 7 non-terminal parsers for each pseudo-knot segment.
This results in an overall runtime of O(n4). The algorithm is implemented in the
ADP framework, but with one exception. In the grammar rule which describes the
pseudo-knot structure, indices are explicitly manipulated outside of the grammar.
To make the efficient implementation of pknotsRG and similar pseudo-knot-aware

folding algorithms possible in Bellman’s GAP, GAP-L contains constructs for index
hacking (see Section 4.5.8.4). These constructs allow for a mix of explicit manual
index optimizations and clean declarative grammar code, to get the best of both
worlds. The usual application is the reduction of moving boundaries in the right
hand side of a grammar rule for which some expert knowledge is used. In the case of
moving index boundary reduction because of a constant yield size of a non-terminal
parser, no index-hacking is necessary, since the compiler automatically removes the
moving boundaries (see Section 5.3.12) in such cases.

125

i l

jk

u

a

v w

b

Figure 5.42: Basic segments of a canonical simple recursive pseudo-knot [39]. The
boxes a, b, u, v and w mark regions of the pseudo-knot, where a and
b denote helices and u, v and w denote loops. The loops may contain
complex RNA structures including recursive pseudo-knots. The indices
are i, k, l and j, where (i, j) denotes the sub-word which is parsed as
pseudo-knot and k and l are moving index boundaries.

126

1 grammar pknotsRG uses Algebra (axiom = struct) {
2 ...
3 help_pknot_free_kl =
4 .[
5 int i = t_0_i; int j = t_0_j;
6 if (i+11 < j) {
7 for (int l = i+7; l <= j -4; l=l+1) {
8 int alphamaxlen = second (stacklen (t_0_seq , i, l));
9 if (alphamaxlen < 2) continue ;

10 for (int k = i+3; k <= l -4; k=k+1) {
11 int alphareallen = min(alphamaxlen , k-i -1);
12 if (alphareallen < 2) continue ;
13 int betamaxlen = second (stacklen (t_0_seq , k, j));
14 if (betamaxlen < 2) continue ;
15 ...
16 INNER(CODE);
17 }
18 }
19 }
20].
21 {
22 pknot(REGION , REGION , REGION) .{
23 pknot(REGION [i, i+ alphareallen],
24 front[i+ alphareallen +1, k] .(j).,
25 REGION [k, k+ betareallen],
26 middle [k+ betareallen , l- alphareallen]
27 .(j- betareallen , i+ alphareallen).,
28 REGION [l- alphareallen , l],
29 back[l, j- betareallen -2] .(i).,
30 REGION [j- betareallen , j] ;
31 stackenergies)
32 }.
33 } # hKnot;
34

35 middle (int betaRightInner , int alphaLeftInner) =
36 ... |
37 middlr (BASE , mid , BASE ; betaRightInner , alphaLeftInner)
38 ... # ;
39

40 ...
41 }

Figure 5.43: Grammar rule examples from the pknotsRG GAP-L that uses index
hacking and parametrized non-terminals (see text).

127

Figure 5.43 shows a grammar snippet from the pknotsRG GAP-L grammar that
heavily uses index hacking and parametrized non-terminals (see Section 4.5.8.1).
Line 5 accesses implementation details of the generated code. The nested for-
loops in line 7 and 10 explicitly state how the remaining two index boundaries
in a simple recursive pseudo-knot are iterated. In line 16 a pragma is used that
tells the compiler to insert the generated rule code (line 23 until line 31) at that
location during code output. Line 22 is only used as replacement for semantic
analyses. An example of a parser call with explicit indices is line 23 (REGION). In
line 24 a parametrized non-terminal is called, where the non-terminal parameter
is enclosed in special parentheses. The stackenergies parameter of the algebra
function pknot in line 31 is separated by a semicolon because it does not result
from a parser application. middle (line 35) is a non-terminal parametrized with two
parameters that are used as additional arguments to the algebra function middlr.

128

6 Bellman’s GAP Modules

Bellman’s GAP Modules (GAP-M) is the runtime library for GAP-L programs that
are translated with GAP-C. In this chapter design and implementation choices of
important modules of GAP-M are presented. Since currently the default backend
of GAP-C is generating C++ code, in the following the C++ version of GAP-M is
described. The next section shows the design of memory pools, Section 6.2 describes
the design of list data-structures, Section 6.3 shows the design of different string
data-structures and Section 6.4 presents a module of reusable functions for RNA
folding algorithms.

6.1 Memory Pools

In the generated code of GAP-L programs the use of several data-structures leads
to a lot of allocations and de-allocations of fixed-size memory slices, many of which
are short lived. Examples are temporary lists containing backtrace objects which
are destructed at the end of the function, except the optimal one or the heavy use
of small string concatenations in pretty printing algebras.
For these use-cases memory pools are advantageous. A memory pool maintains

large blocks of memory and allows only fixed-size memory allocations. An allo-
cation from a memory pool just returns a pointer into a memory block after a
minimal amount of internal bookkeeping and a de-allocation induces only cheap
internal bookkeeping that marks the location as reusable. The memory of the pool
is de-allocated at once when the pool is not needed anymore, e.g. at program end.
This concept amortizes the overhead of general purpose allocator allocations over
multiple-allocations.
The memory pool implementation in GAP-M uses memory blocks of 100 MB.

It obtains them from the kernel’s virtual memory system, i.e. via the mmap syscall.
A page in that virtual memory is automatically allocated by the kernel from real
memory at the first write into it, where a common page size is 4 KB.
A memory block is divided into multiple entries. An entry contains space for a

next pointer and an element of fixed-size. In the basic case an allocation from a
block returns the next free entry and increments an index variable. A de-allocation
prepends the entry into a linked list of freed entries which uses the next pointers
in the freed entries. If freed entries are available, an allocation returns the last
freed entry and removes it from the linked list. When a block is full, a new block
is obtained and used as the primary block in the pool.
GAP-M also provides memory pools for allocations of multiples of a fixed size.

129

The data-structure internally uses a separate pool and does multiplexing between
them for each multiplier.
Since the current output language of GAP-C is C++ and GAP-M is implemented

in C++ as well, the memory pool API of the common Boost C++ library [10]
would be an alternative to implementing a new memory pool solution for GAP-M.
Actually, early versions of GAP-M contained a small wrapper around the Boost
memory pool API (using version 1.38), but profiling showed that the usage of real
memory (RSS, Resident Set Size) was large, i.e. depending on the input and the
GAP-L program, up to 40 percent more memory usage is observed compared to
a version only using the system default general purpose allocator (malloc). The
GAP-M memory pool allocator uses RSS more efficiently, i.e. it uses less memory
than a malloc based version. The runtime is the same as with the Boost memory
pool.

6.2 Lists
Lists are used in the generated code during backtracing of co-optimal or sub-optimal
candidates or when in the forward computation a non-unitary product is used.
Dominant list operations are appending objects to a list, the joining of two lists
and the copying of list objects.
Thus, the implementation of the list-data type in GAP-M uses fixed-size memory

slices which are allocated from a memory pool (Section 6.1). Each slice has space
for a few list elements and a pointer to a following slice. The small number of
elements a slice can hold that yields good results in practice. The list objects used
in the generated code are smart-pointers that reference the real list implementation
objects that manage the slices. Smart-pointers are small objects that implement
reference counting, i.e. they automatically destruct the referenced object if it is not
referenced any more in the program. In addition to that lazy-allocation is used.
Using reference counting makes the copying around of list objects cheap, using

fixed-size slices amortizes the allocation cost over multiple element append options
and the next pointer inside a slice makes the joining of two large lists cheap. The
use of memory improves the performance of memory allocations and de-allocations
in general.

6.3 String Data Structures
GAP-M contains several optimized string modules for GAP-L programs. They
are optimized for different use cases, but share the same API such that they are
easily exchangeable via type-synonyms if performance profiling shows optimizing
opportunities.
First, the implementation of the GAP-L string data-type is optimized for use

in pretty-print algebras, e.g. a Vienna-String pretty printing algebra of an RNA
folding algorithm. The most used operations in this use case are the concatenating

130

of small sub-strings and the copying string objects. It uses internally fixed-size
slices of memory which are allocated from a memory pool (see Section 6.1). A slice
contains a sequence of characters, references to sub-strings and repeat-codings.
Using references means that if a string object is appended to another one then
only a reference is appended to the destination slice and not the content is copied
around. In the case of an append operation of a character that is repeated several
times only the characters and the number of repeats is saved for space efficiency
reasons.
The implementation of the string data-type uses a class hierarchy where the

string objects, which are used in the generated code, are only smart-pointers that
reference the heavy-weight objects which reference string slice objects. Besides
reference counting, the implementation of the string data-type uses lazy-allocation
and copy-on-write for efficiency.
Second, for classifying algebras, i.e. algebras that are used in classifying products,

as e.g. algebra shape in shape · mfe (see Section 2.1.1), there is a shape_t data-
type in GAP-L and GAP-M contains an efficient implementation of it. During
classification, the construction of strings from sub-strings and copying are common
operations, too. In addition to that, dominating operations are the computation of
hash values and string equality testing. GAP-C generates code that uses hashtables
as an optimization of classifying products. In a lot of use cases the alphabet of class
strings is very small, e.g. for shapes it is of size 3, and class strings are not very
long in practice.
Thus, the implementation of the shape data-type uses slices of multiples of

machine-word length and 2 bits for a character. As a result it packs up to 32
characters into a single slice on a 64 bit architecture. Slices are pooled in a memory
pool which is optimized for allocations of multiples of a fixed small size. If the
string length does not fit into a single slice then a new large enough multi-slice is
allocated from the pool and the old content is copied. String append operations are
optimized using elementary find-first-set (FFS, the index of the first bit set) of the
machine, when available. The implementation uses also lazy allocations to avoid
costs for empty strings and reference counting.
The data-structure is parametrized with the concrete alphabet such that it is

re-usable for the definition of new optimized classification data-types that need
different alphabets.
Third, GAP-M provides a general purpose string data-type, which is called rope.

It should be used for classification strings that use a larger alphabet and string
algebras where the slice size of the string data-type is not large enough. The
implementation of the data-type uses reference counting, lazy allocation and fix
sized memory slices from a memory pool. When a rope string grows larger than
the slice size then another slice is used as an extension. There is no copy-on-write
and the contents of appended rope objects are directly copied. When comparing
the rope data-type with the shape data-type using ADPfold and a shape algebra,
the shape data-type implementation was 2 times faster.

131

6.4 librna
The GAP-M module rna provides several functions for programming RNA folding
algorithms, especially for computing local energy contributions of different possi-
ble RNA secondary structure elements, like e.g. a hairpin loop or a bulge loop of
different sizes and bases. The energy functions are used e.g. in MFE and partition
function algebras.
In GAP-L programs the module can be used via import rna. It provides the

following filter functions:

bool basepairing (Subsequence);
bool stackpairing (Subsequence);

And following energy functions are predefined:

int dl_energy (Subsequence , Subsequence);
int dr_energy (Subsequence , Subsequence);
int termaupenalty (Subsequence , Subsequence);
int sr_energy (Subsequence , Subsequence);
int hl_energy (Subsequence , Subsequence);
int bl_energy (Subsequence , Subsequence , Subsequence);
int br_energy (Subsequence , Subsequence , Subsequence);
int il_energy (Subsequence , Subsequence);
int dli_energy (Subsequence , Subsequence);
int dri_energy (Subsequence , Subsequence);
int ss_energy (Subsequence);

The functions work on the arguments of the built-in type Subsequence. A sub-
sequence object is returned e.g. by the terminal parsers LOC, BASE and REGION. A
sub-sequence object represents a substring (i, j) of the input string (0, n), i.e. the
string s[i] . . . s[j − 1] of s[0] . . . s[n− 1] 1.
A stackpairing grammar filter returns true if the first two bases are comple-

mentary to the last two bases of the sub-sequence. This filter is used in some RNA
folding algorithms because a lonely base pairing is considered as very unlikely in
nature. The naming of the energy functions follows the naming of structure ele-
ments, e.g. dl for left dangle, bl for left bulge loop and ss for single stacking. The
arguments of an energy function represent part of the structure that influences the
energy contribution, e.g. for hl_energy the first sub-sequence marks the beginning
and the second sub-sequence marks the end of a hairpin loop. Figure 6.1 shows an
example.
The rna module is a thin wrapper around the librna C library which is also part

of GAP-M. The C API of librna uses C-strings and raw indices as parameters to
the energy functions such that it is reusable for arbitrary RNA folding algorithms
and not just for GAP-L ones. Figure 6.2 shows an excerpt from the librna API. In
addition to the functions of the GAP-M module it provides a few specialized energy

1In the definition of Haskell-ADP the character indexing scheme starts from 1.

132

grammar fold uses FS(axiom = struct) {
...

hairpin = hl(BASE , BASE , REGION with minsize (3), BASE , BASE) ;
...
}
algebra mfe implements FS(alphabet = char , comp = int)
{
...

int hl(Subsequence lb , Subsequence f1 , Subsequence x,
Subsequence f2 , Subsequence rb)

{
return hl_energy (f1 , f2) + sr_energy (lb , rb);

}
...
}

Figure 6.1: Grammar and algebra example, where a MFE algebra uses energy func-
tions from the GAP-M module rna.

enum base_t { N_BASE , A_BASE , C_BASE , G_BASE , U_BASE };

typedef unsigned int rsize;

int hl_energy_stem (const char *s, rsize i, rsize j, rsize n);

int sr_energy (const char *s, rsize i, rsize j);

...

Figure 6.2: Excerpt of the librna C API.

133

functions and functions needed for partition function computations. The indexing
scheme is the same as for the GAP-M module. Internally, the energy functions use
the energy tables which are distributed with the Vienna RNA package [25].

134

7 Bellman’s GAP Pages

Bellman’s GAP Pages is an interactive web-site for presenting GAP-L by examples.
A list of example GAP-L versions of textbook dynamic programming algorithms,
like e.g. optimal matrix chain execution, pairwise sequence alignment variants or
palindromic RNA secondary structure like folding variants, are available. For each
program a page presents a web-form. It includes a description of the algorithm, a
link to the source code and input fields. A user can enter input sequences and con-
struct an algebra product from multiple drop-down boxes. The resulting program
is executed on the server and the results are shown to the user. Figure 7.1 shows a
screenshot of an example.

The purpose of GAP Pages is to provide a platform, where practical aspects of
GAP-L and ADP can be studied without the need to install the full compiler on
a local machine. The accessible algebra product selections should inspire users to
experiment with different algebra products. In addition, the presented GAP-L ver-
sions of well known dynamic programming algorithms may show how to use certain
GAP-L constructs in practice and act as a starting point for own developments.

Behind the scenes, a server process generates all possible algebra products and
pre-compiles them with GAP-C. This speeds up the web interface and reduces the
load on the web server. A part of the GAP Pages concept is to inspect the user
selection of algebras and input sequence and to issue a warning if a product with
exponential runtime and an input length above a threshold is entered. For certain
products, this could be implemented in the server software by executing a modified
product which includes the count algebra, before the entered algebra product is
executed. The count algebra counts the candidate search space of the algebra and
GAP-C supports the automatic generation of a count-algebra for every GAP-L
grammar (Section 4.5.5). If a run with the count algebra returns a number above
a threshold, an appropriate error message is presented. For example, for a product
that starts with an enumerative algebra, the list of answers is of the size of the
search space.

Apart from this, the server software has to monitor the resource use of the com-
piled GAP-L programs. For example, an input sequence could induce a lot of
co-optimal candidates, which have to be sent back to the user of the web-page.
After a reasonable threshold of output lines and runtime the server software should
truncate the output and display a helpful explanatory warning message.

135

Figure 7.1: Screenshot of GAP Pages. As an example GAP-L program the local
sequence alignment algorithm is shown.

7.1 BiBiServ
The GAP Pages should be integrated into the BiBiServ [45]. The BiBiServ is a web-
site that provides several bioinformatic tools as web-services and web-forms. An
example set of applications on the BiBiServ is RNA Studio [46]. The BiBiServ exists
since 1996 and is actively maintained and improved. Integrating a web-version of
a tool into the BiBiServ guarantees a stable internet address and stable support of
the underlying software and hardware infrastructure. Also, generic improvements of
the BiBiServ framework, like e.g. machine readable tool descriptions, come for free.
Basic first-level support questions are filtered out and answered by the BiBiServ
team. Only higher level issues are forwarded to the tool authors.
Since the BiBiServ is written in Java and makes heavy use of Java application

server technologies, GAP Pages is implemented in Java for better integration. The
web interface is implemented using the Java Server Faces (JSF 2.0) API. This makes
it easy to integrate dynamic changes in the web-forms, like for example displaying
the available output, without a complete reload of the page. A disadvantage of
using Java is that it does not provide an API for the monitoring of called external
programs. Also, executing external programs from Java has a noticeable runtime
overhead1.

10.2 to 0.5 seconds under Solaris 10 using Oracle Java

136

8 Benchmarks

To test the practical overall efficiency of the code generated by GAP-C, several
GAP-L programs of different sizes are benchmarked in the following. The imple-
mented algorithms are well-known bioinformatics RNA folding algorithms. For
comparison, the GAP-L version is benchmarked against the original implementa-
tion, a Haskell-ADP version and an ADPC-ADP version, where available.
Benchmark results of the generated parallelized code are presented in Section

5.4.2, benchmarks comparing top-down-style vs. bottom-up-style code generation
are shown in Section 5.4.1.3 and efficiency results running the GAP-L program with
table configuration computed by the heuristic table design algorithm are presented
in Section 5.3.7.3. The errors during stochastic backtracing of shape strings under
a partition function algebra in comparison with the exact computation are shown
in Section 5.4.3.1.
All benchmarks in this chapter were run under a Debian Linux 5.0 system with

default package versions, especially GNU GCC 4.3.2 for compiling C and C++ code
and GHC 6.8.2 for compiling Haskell-ADP code. Haskell-ADP code was compiled
with optimization flags -O2 and C/C++ code with -O3, unless the default was set to
-O2. The GNU GCC and the GHC produced 64 bit code. The table configurations
of the GAP-L versions were automatically derived by the GAP-C. The hardware
consists of a AMD Athlon 64 X2 Dual Core 5200+ (2.6 GHz, cache size of 2 times 1
MB) and 4 GB RAM main memory. The benchmark runs were all single-threaded.
In each benchmark, a sequence of randomly generated RNA sequences were used

as inputs. The sequences were randomly generated under a uniform distribution
of lengths and nucleotides. In the comparison of different implementations of an
algorithm every implementation was called with the same random sequence of se-
quences.
Runtimes of less then one second and runtimes over a threshold of 10 minutes

are excluded from the plots, unless otherwise stated. Likewise data are excluded
from programs, where the memory usage hits the threshold of the GHC runtime
garbage collection. The measured memory sizes are the high-water marks of the
actually used memory (Resident Set Size – RSS).
Note that the maximal sequence length used in the benchmarks is chosen to

show the principal scaling behavior of the generated DP code and does not nec-
essarily mean that a concrete program is usually used in practice with that large
sequences. For example, in biology practice computing the secondary structure
with the minimum free energy (MFE) for an RNA sequence becomes less useful for
larger sequences greater than 400 bases because of accumulating errors. In general,
depending on the sort of RNA sequences under examination, the sequence lengths

137

vary, e.g. sequences of up to 2000 bases may be considered while searching for target
sites, and other classes of RNA only contain very small sequences, e.g. up to a few
100 bases.

8.1 RNAfold

RNAfold[25] computes the optimal secondary structure of an RNA input sequence
under a minimum free energy (MFE) model. It is a O(n3) algorithm which is manu-
ally implemented in C. The underlying matrix recurrences describe semantic ambi-
guity free under the canonical Vienna String candidate notation the search space of
candidate structures. Semantic non-ambiguity, as defined in [19], means that each
candidate has a unique Vienna String. Jens Reeder translated the RNAfold recur-
rences (assuming dangling mode -d2 and forbidding lonely base pairings -noLP)
into an ADP grammar and an mfe algebra in Haskell-ADP. This version was trans-
lated to ADPC-ADP and to GAP-L. It is available as example grammar both with
the ADPC and GAP-C.
RNAfold does not print co-optimal candidates; this is possible with RNAsubopt

[57]. Besides co-optimal backtracing it supports suboptimal backtracing.
As benchmark, the runtimes and memory usages of RNAfold, RNAsubopt, a

Haskell-ADP version, an ADPC-ADPC version of the RNAfold grammar and two
GAP-L versions of the RNAfold grammar are compared. RNAfold was run with the
options -d2 -noLP, RNAsubopt was run with -e0 -d 2 -noLP (only co-optimal
candidates) and the ADPC-ADP version was compiled with ADPC 0.8 and run
with -e0 (only co-optimal candidates). One GAP-L version was compiled with co-
optimal backtracing enabled and the other with single-optimal backtracing. The
four ADP based versions used the algebra product mfe · pretty, where the pretty
algebra generates a Vienna String representation of a candidate. For benchmarking
50 randomly generated sequences were used in the length interval of [100; 4000].
Figure 8.1 shows the runtime and memory results for the different RNAfold ver-

sion. The runtimes of RNAfold and RNAsubopt are mostly close together and for
larger input length mostly 16 times faster than the ADPC and GAPC versions.
The runtime of RNAsubopt increases up to 7 times in comparison to RNAfold in
cases where a lot of co-optimal candidates exist and are backtraced. The runtime
of the Haskell-ADP version is 200 times of the runtime of the GAP-L version and
more for small sequences under 1000 nucleotides. In these range the runtimes of
the non-Haskell versions are mostly under 1 second and not plotted. For larger
sequences the Haskell-ADP version is out of memory.
The runtime of the ADPC-ADP version usually is close to the runtime of the

GAP-C versions. For some sequences there are some dramatic deviations. The
output of the ADPC-ADP version indicates some problems with the backtracing.
For some inputs during backtracing there are a lot of candidates which are printed
several times. For the complete benchmark run, every candidate is printed 30 times
during backtracing on average. Since the grammar is semantically unambiguous,

138

0 1,000 2,000 3,000 4,000100

101

102

103

104

n

ru
nt
im

e
(s
)

ADPC GAPC
GAPC noco Haskell
RNAfold RNAsubopt

(a) RNAfold runtime

0 1,000 2,000 3,000 4,000
103

104

105

106

n

m
em

R
SS

(k
b)

ADPC GAPC
GAPC noco Haskell
RNAfold RNAsubopt

(b) RNAfold memory

Figure 8.1: Runtime and memory usage of various versions of the basic RNAfold
algorithm as a function of input length n.

this looks like a bug in the backtracing code generated by the ADPC.
The memory usage of the GAP-L versions is usually smaller than the memory

usage of the ADPC-ADP version. Only the GAP-L version with co-optimal back-
tracing has larger memory usages for some sequences that have a lot of co-optimal
candidates, because the co-optimal backtracing code generated by GAP-C collects
all co-optimal backtraces in a data-structure, before printing them. This is useful,
if the generated code is interfaced by external code that inspects the backtraces.
RNAsubopt directly prints finished backtraces and frees their memory.
The runtimes of the GAP-L co-backtracing and non-co-backtracing versions do

not differ much. This is quite different from the runtime comparison of RNAfold
and RNAsubopt.
The speedup of the manually in C implemented RNAfold versions compared to

the compiled ADP versions shows that they are highly optimized. In that case the
use of a compiler means paying an abstraction penalty, because the compiler does
not recognize all chances of MFE-dependent low-level optimization, as a human
programmer does. On the other hand, one can argue that the development time
of a bug-free and sufficiently efficient version using GAP-L is greatly reduced in
comparison to implementing the recurrences by hand.

8.2 Thermodynamic matchers

RapidShapes [27] is a bioinformatics tools that computes exact shape probabilities
of input sequences using thermodynamic matchers (TDMs). In a preprocessing

139

200 400 600 800 1,000100

101

102

103

n

ru
nt
im

e
(s
)

GAPC Shape 1 Haskell Shape 1
GAPC Shape 2 Haskell Shape 2
GAPC Shape 3 Haskell Shape 3

(a) TDM runtime

0 200 400 600 800 1,000

104

105

106

n

m
em

R
SS

(k
b)

GAPC Shape 1 Haskell Shape 1
GAPC Shape 2 Haskell Shape 2
GAPC Shape 3 Haskell Shape 3

(b) TDM memory

Figure 8.2: Benchmark results of TDMs, i.e. runtime and memory RSS as a function
of input length n for three different shapes (43 non-terminals, 95 non-
terminals and 195 non-terminals). Each TDM was created as Haskell-
ADP and GAP-L version.

phase it approximates shape probabilities under an RNAshapes grammar. Heuris-
tically the highest scored shapes are selected and for each shape a TDM is generated
and run. In that case a TDM is an ADP grammar that describes the RNA structure
folding space of exactly one given shape and a generic partition function algebra.
The runtime of each TDM is in O(n3). To compute the exact shape probability of a
given shape, the partition function value using the corresponding TDM and the par-
tition function value, using the generic, all-shapes-allowing RNAshapes grammar
are computed under the partition function algebra.
RapidShapes supports the generation of TDMs as Haskell-ADP or GAP-L pro-

grams. In practice RapidShapes generates GAP-L programs.
In the benchmark, the runtime and memory usage of the Haskell-ADP and the

GAP-L versions were compared for three TDMs, which match various shapes. The
first TDM grammar contains 43 non-terminals, the second 95 non-terminals, and
the third 195 non-terminals. Each program was called for each input from a set of
50 randomly generated input sequences of length 50 to 1000.
Figure 8.2 shows the results. For all shapes the Haskell-ADP TDM versions are

out-of-memory for short sequences of size greater than 200 bases. The runtime of
the Haskell-ADP versions are up to 200 times of the runtime of the GAP-L ver-
sions. The results show that compiling the TDM-grammars via GAP-C just enables
their use in practice. Without the compilation to efficient code the RapidShapes
approach would not scale.

140

The generation of TDMs has a manageable level of complexity at the level of
tree grammars and algebras. One can imagine that the complexity level of TDM
generation increases at the lower level of matrix recurrences. Writing and debug-
ging a TDM generator outside of ADP is expected to significantly increase the
development time.

8.3 RNAshapes
RNAshapes [55] provides several shape related optimization algorithms. For bench-
marking the exact computation of shape probabilities is selected. In GAP-L this is
the computation of the algebra product shape · pfunc. For each shape of the shape
search space the partition function is computed. This task is challenging, because
the number of shapes grows exponentially with the length of the input (see Section
5.4.3.1 for a discussion). The runtime of the algorithm is in O(αnn3), where α > 1.
The programs have to use efficient data structures to store and access a large num-
ber of shape classes. See Section 6.3 for the description of the shape data type. For
classifying products, GAP-C generates optimized code that uses hashtables. An
efficient hashtable implementation tailored for GAP-L programs is part of GAP-M.
In this benchmark the RNAshapes version 2.1.6 was used. It was run with the

options -p -F 0, which disables the heuristic filtering of shape classes with low
probabilities during the computation. By default, RNAshapes uses the shape level
5, and this is what the GAP-L versions used. A GAP-L version of the RNAshapes
grammar was ran under the algebra product shape · pfunc. To show the impact
of the partition function computation a second GAP-L version that computes just
the algebra shape was run. Each version was called for 100 randomly generated
sequences in the length interval of]20; 140[.
Figure 8.3 shows the benchmark results. The runtime of the GAP-L version

is from 2 to 6 times faster than the runtime of RNAshapes, depending on the
input sequence. The GAP-L version is more memory efficient than RNAshapes.
Some larger sequences could not be computed with RNAshapes on that computer,
because not enough memory was available. With the GAP-L version the exact
shape probabilities of these sequences could be computed within the 4 GB of RAM.
Depending on the input sequence the memory usage of RNAshapes was 2 to 10
times that of the GAP-L version.

8.4 pknotsRG
pknotsRG [40] is an RNA secondary structure prediction program that also allows
a restricted class of pseudo-knots in its structure search space. The runtime of
the algorithm is in O(n4). The algorithm was developed with ADP with some
index access extensions to allow for pseudo-knot structures (see Section 5.4.5 for
discussion and the GAP-L syntax). In the benchmark the product mfe · pretty is
computed.

141

80 100 120 140100

101

102

103

n

ru
nt
im

e
(s
)

GAPC RNAshapes
GAPC no-pf

(a) RNAshapes runtime

50 100 150
103

104

105

106

n

m
em

R
SS

(k
b)

GAPC RNAshapes
GAPC no-pf

(b) RNAshapes memory

Figure 8.3: Benchmark of the shape · pfunc classification algebra product in combi-
nation with the RNAshapes grammar, i.e. runtime and memory RSS as
a function of input length n for the RNAshapes program and a GAP-L
version.

The benchmark compares the runtime and the memory usage of the original
Haskell-ADP version of the pknotsRG algorithm, the pknotsRG program version
1.3 and a GAP-L version of the pknotsRG grammar and algebra. The pknotsRG
program contains C code that was generated by the ADPC compiler. The GAP-L
version and the pknotsRG program both do backtracing while ignoring co-optimal
candidates. The pknotsRG program provides suboptimal backtracing, which was
turned off during benchmarking. All versions were run with the same set of 100
randomly generated sequences from the length interval of]10; 1000[.
Figure 8.4 shows the results of the benchmark runs. The runtime of the Haskell-

ADP version is up to 100 times the runtime of the other versions. For sequences
larger than 250 bases the Haskell-Version is out of memory. The GAP-L version
has a runtime speedup of 2 to 3 times compared to the pknotsRG program. The
memory usage of the pknotsRG program is 2 times that of the GAP-L version or
more for most sequences. Only for a few larger sequences the memory usage of the
pknotsRG program is less than 2 times that of the memory usage of the GAP-L
version.

142

0 200 400 600 800 1,000100

101

102

103

n

ru
nt
im

e
(s
)

GAPC ADPC
HASKELL

(a) pknotsRG runtime

0 200 400 600 800 1,000
103

104

105

n

m
em

R
SS

(k
b)

GAPC ADPC
HASKELL

(b) pknotsRG mem

Figure 8.4: Benchmark results of the pknotsRG program, i.e. runtime and memory
RSS as a function of input length n a for a Haskell-ADP version, a
ADPC version and a GAP-L version of the pknotsRG grammar. Input
were 100 random generated sequences.

143

9 Conclusion

Bellman’s GAP simplifies the development of dynamic programming algorithms
over sequences.
Especially for large scale DP algorithms Bellman’s GAP reduces the development

time. An example is the tool RapidShapes that generates GAP-L grammars with
up to a few hundred non-terminals. At the level of tree grammars the complexity
of code-generation in RapidShapes is manageable in comparison to low-level matrix
recurrences (see Section 8.2).
Benchmarks show that the novel heuristic Table Design algorithm for deriving a

good table configuration that takes constant factors into account yields good results
in practice. In the tested cases the table configuration heuristically derived leads to
a better practical runtime than the domain expert choices or expert systems. The
recent RapidShapes grammar generator by default uses the automatic table design
of GAP-C because of these results and this design choice simplifies the generating
process (Section 5.3.7.3).
The novel domain specific language for ADP GAP-L supports general multi-track

DP, lexicographic products from ground up and the new cartesian and interleaved
product. It generalizes the concept of simple syntactic grammar filtering and in-
troduces semantic filtering in grammar and instance constructs. Advanced DP
features, like e.g. sampling or filtering of candidates, are available via orthogonal
language constructs, such that the need of error-prone and tedious manual hack-
ing of these features is eliminated. The use of established language concepts and
syntax elements from widely-used languages like Java and C makes GAP-L more
easily accessible to new ADP users (Chapter 4).
The novel GAP-C compiler which translates GAP-L programs to optimized C++

code, provides state of the art error and warning support during parsing and a type-
checker for better usability. Benchmark results show that the generated code scales
well on parallel shared memory architectures (Section 5.4.2). The code-generation
for multi-track GAP-L programs profits from an improved table dimension analysis
and CYK-loop optimization. Performance optimizations for the single-track case
are generalized for the multi-track case such that multi-track optimizations, like e.g.
in the pairwise-sequence alignment example, are obtained as a side effect (Section
5.3.6 and Section 5.4.1.6). The generated code is dependable, as the test results
of sampling and filtering code show and the errors are less than in compared non-
GAP-L program versions (Section 5.4.3.1 and Section 4.6.3). The overall runtime
and memory usage performance of the generated code by GAP-C in cases of ADP
programs that are also compilable with the ADPC is equal or several times better
than the results from ADPC versions. Comparing the performance to Haskell-

144

ADP versions, the GAP-C versions show huge speedups and in several cases the
Haskell-ADP version runs out of space or show a prohibitively long runtime for
relatively small inputs. Thus the availability of GAP-C enables the practical usage
or improves the practical value of ADP algorithms in several cases (Chapter 8).
During the study of alternative evaluating schemes in generated yield parsing

code a top-down scheme shows advantages for a certain kind of products and gram-
mars (Section 5.4.1). In cases where sparseness can be exploited and using substan-
tial products twofold runtime and memory improvements are possible. Top-down
parsing is available in GAP-C in addition to a bottom-up evaluation scheme.
In Section 2.2.3 two classification schemes for algebras and products are intro-

duced. Their benefit is twofold. They allow to establish and discuss product prop-
erties on a general level, like e.g. the lexicographic product of two unary selective
algebras satisfies Bellman’s Principle, and GAP-C uses the roles internally for op-
timization and warning-generation purposes.
The description of selected modules of GAP-M, the runtime library of GAP-

C shows that using high-level abstract data-types in the code-generation of the
compiler allows for greater flexibility in optimizing the concrete implementation for
a certain output language and reduces the complexity of the compiler (Section 5.1
and Chapter 6).

145

10 Outlook

There are several open topics in the ADP framework and in the compilation of ADP
regarding the exploitation of further generalization and optimization possibilities.

10.1 Sparse ADP

A sparse DP algorithm is a functionally equivalent variant of an existing DP algo-
rithm that systematically omits parts of the search space due to constraints implied
by the problem domain. The process to modify an existing DP algorithm such that
sparse properties of the problem space are exploited is called sparsification. De-
pending on the problem a sparse algorithm version may achieve an asymptotically
improved runtime in the average-case in comparison to the non-sparse one. There
are different kinds of sparseness that can be exploited in dynamic programming.
A form of sparseness is introduced by the data-flow of the program. For example

consider a GAP-L program, where in a top-down evaluation scheme filtering con-
structs in the grammar or implicit yield size constraints may prune large parts of
the search-space depending on the input (see Section 5.4.1.3).
Another form of sparseness can be exploited doing a pre-processing of the in-

put as described in [14, 15, 16], which includes several examples of sparsified DP
algorithms. For example, in ADPfold, the GAP-L version of the standard O(n3)
MFE RNA folding algorithm, there exist several right hand sides of non-terminals
that induce a moving index boundary in the generated code. These moving index
boundaries are responsible for one O(n) factor of the overall runtime. Depending
on the structure of the right hand side, the number of considered boundaries can
be reduced in practice. Figure 10.1 shows two example rules. Since non-terminal
closed is guarded by a filter, only those index boundaries need to be considered
where the filter result at the referenced non-terminal is true. In an O(n2) time
and space pre-processing of the input sequence a data-structure can be constructed
that contains all successful boundaries for each (i, j). Thus, when evaluating the
moving index boundaries the data-structure is used to iterate only over a restricted
set of boundaries. Such a modification is not heuristic, and the algorithm is still
guaranteed to return the same optimal results as the original algorithm.
A more aggressive pre-processing can lead to more sparseness and an approx-

imative version of the original algorithm. For example, in [39] sparse versions of
pknotsRG are presented, where an inner loop is replaced by a loop that iterates only
over index boundaries that induce base pairings with a base pair probability above
a certain threshold. The runtime of the original pknotsRG algorithm is in O(n4),

146

struct = sadd(BASE , struct) |
cadd(dangle , struct) |
nil(EMPTY) # h ;

dangle = dlr(LOC , closed , LOC) ;

closed = { stack | hairpin | leftB | rightB | iloop |
multiloop }

with stackpairing # h ;

Figure 10.1: Example of a source of sparseness in a GAP-L grammar. The rules
are part of the ADPfold grammar. The moving index boundary of the
second alternative of non-terminal struct only needs to consider those
boundaries where the stackpairing filter is true.

the computation of all base pair probabilities is in O(n3) and the approximative
pknotsRG version is in O(n3).
Besides pre-processing, additional sparseness can be exploited using additional

bookkeeping during runtime of the algorithm. In [56] a sparsified version of the
RNAfold algorithm is presented that has an average case runtime of O(n2ψ(n))
where ψ converges against a constant. The basic matrix recurrences are arranged
in such a way that the triangle inequality holds for the computed values. This
property is used in the sparse version to skip the iteration of index boundaries that
cannot improve the result, i.e. it is iterated in the inner loop only over a constant
number of boundaries. pknotsRG was sparsified using a similar technique [34]
and [3] concentrates on the space usage improvements in RNA folding exploiting
sparseness.
Thus, reviewing the state of sparseness in DP, general support for automatic

sparsification of GAP-L programs in GAP-C is a promising research topic. A spar-
sification analysis in GAP-C could analyze the used product and identify certain
score algebras, if conditions needed for different kind of sparseness exploitations
are satisfied. Alternatively, a user could manually mark a scoring algebra as satis-
fying such conditions, if complicated scoring functions are used. When analysing
the grammar, moving index boundaries that reference guarded non-terminals could
be automatically identified and pre-processing sparseness optimization could be
generalized for different kind of filters and implicit yield size constraints. The code-
generation could use the result of sparseness related analyses to generate specialized
sparseness exploiting target code. Ideally, in the development of a new DP algo-
rithm in GAP-L an automatic sparsification feature in GAP-C would liberate the
GAP-L programmer from manually implementing low-level sparsification versions.
Instead only a recompilation would be needed, similar to the automatic table design
feature, which liberates the developer from tedious manual tabulation concerns.

147

10.2 Knapsack style DP algorithms
ADP is a formal framework to develop dynamic programming algorithms over se-
quences. It started with single-track support and Bellman’s GAP implementation
of ADP generalizes it to include full multi-track support. Looking at textbook
style dynamic programming algorithms on sequences, the Knapsack algorithm [8]
presents a challenge to implement it in the ADP framework.
The Knapsack algorithm runs in pseudo-poly time and solves the optimization

problem that: with a set of objects and their weights wi and values mi the most
valuable subset which fits into a weight restricted backpack (≤ wmax) is computed.
Equation 10.1 specifies the matrix recurrences of this algorithm.

Ki,j = max
snd

Ki,j−1 if j > 0
(wj ,mj) if i ≥ wj
Ki−wj ,j−1 + (wj ,mj) if i ≥ wj , j > 0
(0, 0)

(10.1)

To transform the matrix recurrences into GAP-L we model it as a two-track
GAP-L program. The first track is the string u of increasing weighs, with u =
0 . . . wmax, and the second track is the string v of weight and value tuples, with v =
(w1,m1) . . . (wn,mn). Grammar sack is a first draft of the search space description:

grammar sack uses Bill (axiom =knap) {

knap = ins(sack , <WEIGHT , CHAR >) |
start(<WEIGHT , CHAR >) |
skip(<EMPTY , CHAR >) # h ;

}

An imaginative terminal parser WEIGHT takes care to parse as much of u as the
current item consumed by the CHAR terminal parser of the second track weights.
Such a WEIGHT terminal parser is currently not possible in GAP-L since there is
no language concept of user-defined terminal parsers and terminal parsers cannot
interact between different tracks of a multi-track program. The GAP-C has no
concept of a terminal parser that has a variable yield size which is constant for a
sub-word of the other track which would lead to an additional unneeded inner loop
in the generated target code.
The problem with the implementation of the Knapsack and similar style algo-

rithms in ADP is that a key concept of ADP is the separation of the search space
description (tree grammar) and the evaluation of candidates (algebra). In the
Knapsack algorithm these aspects are inherently intermixed.
One solution is to extend GAP-L to allow for the definition of new terminal

parsers. The new user-defined terminal parser definition syntax has to provide the
possibility to define a multi-track terminal parser and to specify the yield size of
one track in dependence of the other track. In particular, the syntax has to allow

148

for the possibility to indicate that the yield size of the first track is variable, but
constant for each sub-word of the second track. This is the precondition for a
future semantic analysis extension of GAP-C which would automatically eliminate
the moving boundary on the first track of the ins alternative of the knap grammar
rule.
Thus, the extension of GAP-L and GAP-C in the drafted way is feasible to

allow the implementation of the class of Knapsack-like algorithms from fields like
operational research.

10.3 ADP over Trees
The ADP framework was developed for dynamic programming over one input string
and in GAP-L it is generalized for multiple input strings (Multi-Track DP). How-
ever, the method of dynamic programming is not restricted to string inputs. An-
other class of dynamic programming algorithms are DP algorithms over trees.
An example is RNAforester [26], which computes the optimal tree alignment

between two trees or forests. In the description of the algorithm there are also
special purpose combinators defined in Haskell which are used for a Haskell version.
For efficiency reasons the RNAforester program is manually implemented in C++.
Generalizing ADP to tree and forest inputs would simplify the development of

new dynamic programming algorithms over trees, e.g. an RNAforester variant that
supports affine gap-costs or other modifications. However, the design of ADP over
trees provides several challenges.
What is the appropriate grammar device for search space description? How to

generalize the tree-grammar concept from single sequence ADP? The yield of a
candidate tree should be the input tree or forest. An ASCII representation of such
a grammar formalism has to be sufficiental practical to be useful for programming.
What are useful pattern matching mechanisms in a grammar that are powerful,

easy to use and manageable to optimize in a compiler?
Another challenge is the research of other tree DP algorithms, to design ADP

over trees in such a way that it is not only applicable to tree alignment problems.
Analogous to the pairwise sequence alignment problem, where the standard O(n2)
space algorithm is already an optimisation of the general O(n4) two-track scheme
(see Section 5.4.1.6), one could study the general structure of two-track tree DP
algorithms. Also, it would be instructive to study “single-track” tree DP algorithms,
i.e. algorithms that take only one tree or forest as input, for designing ADP over
trees.
In general, ADP over trees provides several open language design questions and

several opportunities to develop novel compiler optimizations.

149

Bibliography

[1] Mohamed I. Abouelhoda, Robert Giegerich, Behshad Behzadi, and Jean-Marc
Steyaert. Alignment of Minisatellite Maps: A Minimum Spanning Tree based
Approach. In Asia Pacific Bioinformatics Conference Kyoto, Japan, 14-17
January 2008, 2008. 4.6.4

[2] Gene Amdahl. Validity of the single processor approach to achieving large-
scale computing capabilities. In AFIPS Conference Proceedings, volume 30,
pages 483––485, 1967. Available from: http://www-inst.eecs.berkeley.
edu/~n252/paper/Amdahl.pdf. 14

[3] Rolf Backofen, Dekel Tsur, Shay Zakov, and Michal Ziv-Ukelson. Sparse
RNA folding: Time and space efficient algorithms. In Gregory
Kucherov and Esko Ukkonen, editors, Proceedings of the 20th Sym-
posium on Combinatorial Pattern Matching, volume 5577 of Lecture
Notes in Computer Science, pages 249–262. Springer, 2009. Available
from: http://www.bioinf.uni-freiburg.de/Publications/backofen09:
_spars_rna_foldin.pdf, doi:10.1007/978-3-642-02441-2_22. 10.1

[4] J. K. Baker. Trainable grammars for speech recognition. The Journal of
the Acoustical Society of America, 65(S1):S132–S132, 1979. doi:10.1121/1.
2017061. 5.4.3.1

[5] Richard E. Bellman. Dynamic Programming. Princeton University Press, 1957.
1, 2.1

[6] Ewan Birney and Richard Durbin. Dynamite: A flexible code generating lan-
guage for dynamic programming methods used in sequence comaprison. In Pro-
ceedings of the 5th International Conference on Intelligent Systems for Molecu-
lar Biology, pages 56–64, 1997. Available from: http://citeseerx.ist.psu.
edu/viewdoc/download?doi=10.1.1.49.6539&rep=rep1&type=pdf. 1.3.1

[7] OpenMP Architecture Review Board. OpenMP application program interface
version 3.0. Technical report, OpenMP Architecture Review Board, 2008.
Available from: http://www.openmp.org/mp-documents/spec30.pdf. 5.4.2

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2001. 1, 10.2

150

http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
http://www.bioinf.uni-freiburg.de/Publications/backofen09:_spars_rna_foldin.pdf
http://www.bioinf.uni-freiburg.de/Publications/backofen09:_spars_rna_foldin.pdf
http://dx.doi.org/10.1007/978-3-642-02441-2_22
http://dx.doi.org/10.1121/1.2017061
http://dx.doi.org/10.1121/1.2017061
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.6539&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.49.6539&rep=rep1&type=pdf
http://www.openmp.org/mp-documents/spec30.pdf

[9] Duncan Coutts, Don Stewart, and Roman Leshchinskiy. Rewriting haskell
strings. In Practical Aspects of Declarative Languages 8th International Sym-
posium, PADL 2007, pages 50–64. Springer-Verlag, January 2007. Available
from: http://www.cse.unsw.edu.au/~dons/papers/fusion.pdf. 3.1

[10] Boost developers. Boost — free peer-reviewed portable c++ source libraries,
2010. Available from: http://www.boost.org/. 6.1

[11] Ye Ding and Charles E. Lawrence. A statistical sampling algorithm for
RNA secondary structure prediction. Nucleic Acids Research, 31(24):7280–
7301, December 2003. Available from: http://nar.oxfordjournals.org/
cgi/reprint/31/24/7280.pdf, doi:10.1093/nar/gkg938. 5.4.3.1

[12] Richard Durbin, Sean R. Eddy, Anders Krogh, and Graeme Mitchison. Bio-
logical sequence analysis. Cambridge, 1998. 1.2, 2.1.1.1

[13] Jason Eisner, Eric Goldlust, and Noah A. Smith. Compiling comp ling:
Weighted dynamic programming and the Dyna language. In Proceedings of Hu-
man Language Technology Conference and Conference on Empirical Methods
in Natural Language Processing (HLT-EMNLP), pages 281–290, Vancouver,
October 2005. Available from: http://cs.jhu.edu/~jason/papers/eisner+
goldlust+smith.emnlp05.pdf. 1.3.3

[14] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse
dynamic programming. In SODA ’90: Proceedings of the first annual ACM-
SIAM symposium on Discrete algorithms, pages 513–522, Philadelphia, PA,
USA, 1990. Society for Industrial and Applied Mathematics. 10.1

[15] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse
dynamic programming i: linear cost functions. Journal of the ACM, 39(3):519–
545, 1992. doi:10.1145/146637.146650. 10.1

[16] David Eppstein, Zvi Galil, Raffaele Giancarlo, and Giuseppe F. Italiano. Sparse
dynamic programming ii: convex and concave cost functions. Journal of the
ACM, 39(3):546–567, 1992. doi:10.1145/146637.146656. 10.1

[17] Martin Fekete, Ivo L. Hofacker, and Peter F. Stadler. Prediction of RNA
base pairing probabilities using massively parallel computers. Journal of Com-
putational Biology, 1999. Available from: http://www.santafe.edu/media/
workingpapers/98-06-057.pdf. 5.4.2

[18] Free Software Foundation. Bison — GNU parser generator, 2010. Available
from: http://www.gnu.org/software/bison/. 5.1

[19] Robert Giegerich. Explaining and controlling ambiguity in dynamic pro-
gramming. In Proceedings of Combinatorial Pattern Matching, volume 1848
of Springer Lecture Notes in Computer Science, pages 46–59. Springer,

151

http://www.cse.unsw.edu.au/~dons/papers/fusion.pdf
http://www.boost.org/
http://nar.oxfordjournals.org/cgi/reprint/31/24/7280.pdf
http://nar.oxfordjournals.org/cgi/reprint/31/24/7280.pdf
http://dx.doi.org/10.1093/nar/gkg938
http://cs.jhu.edu/~jason/papers/eisner+goldlust+smith.emnlp05.pdf
http://cs.jhu.edu/~jason/papers/eisner+goldlust+smith.emnlp05.pdf
http://dx.doi.org/10.1145/146637.146650
http://dx.doi.org/10.1145/146637.146656
http://www.santafe.edu/media/workingpapers/98-06-057.pdf
http://www.santafe.edu/media/workingpapers/98-06-057.pdf
http://www.gnu.org/software/bison/

2000. Available from: http://bibiserv.techfak.uni-bielefeld.de/adp/
ps/ambi.pdf. 8.1

[20] Robert Giegerich, Carsten Meyer, and Peter Steffen. A discipline
of dynamic programming over sequence data. Science of Computer
Programming, 51(3):215–263, June 2004. Available from: http:
//bibiserv.techfak.uni-bielefeld.de/adp/ps/GIE-MEY-STE-2004.pdf,
doi:10.1016/j.scico.2003.12.005. (document), 2.1, 2.1.2

[21] Robert Giegerich and Peter Steffen. Implementing algebraic dynamic pro-
gramming in the functional and the imperative programming paradigm. In
E.A. Boiten and B. Möller, editors, Mathematics of Program Construction,
pages 1–20. LNCS 2386, 2002. Available from: http://bibiserv.techfak.
uni-bielefeld.de/adp/ps/adp_implementing.ps.gz. 3.1, 5.3.3

[22] Robert Giegerich, Björn Voß, and Marc Rehmsmeier. Abstract shapes
of RNA. Nucleic Acids Research, 32(16):4843, September 2004. Avail-
able from: http://nar.oxfordjournals.org/cgi/reprint/32/16/4843.
pdf, doi:doi:10.1093/nar/gkh779. 5.4.3.1, 5.4.3.1

[23] Osamu Gotoh. An improved algorithm for matching biological sequences. Jour-
nal of Molecular Biology, 162:705–708, 1982. 1.3.1

[24] Dan S. Hirschberg. A linear space algorithm for computing maximal com-
mon subsequences. Communications of the ACM, 18(6):341–343, 1975. Avail-
able from: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.
1.88.7183&rep=rep1&type=pdf. 1.3.1

[25] Ivo L. Hofacker, Walter Fontana, Peter F. Stadler, L. Sebastian Bonhoeffer,
Manfred Tacker, and Peter Schuster. Fast folding and comparison of RNA
secondary structures. Monatshefte für Chemie, 125(2):167–188, 1994. Avail-
able from: http://fontana.med.harvard.edu/www/Documents/WF/Papers/
vienna.rna.pdf, doi:10.1007/BF00818163. 2.1.1.1, 4.3, 5.3.7.3, 5.4.1.3,
5.4.2, 5.4.3.1, 5.4.5, 6.4, 8.1

[26] Matthias Höchsmann. The Tree Alignment Model: Algorithms, Implementa-
tions and Applications for the Analysis of RNA Secondary Structures. PhD
thesis, Universität Bielefeld, 2005. Available from: http://bieson.ub.
uni-bielefeld.de/volltexte/2005/709/pdf/diss.pdf. 10.3

[27] Stefan Janssen and Robert Giegerich. Faster computation of exact
RNA shape probabilities. Bioinformatics, 26(5):632–639, 2010. Available
from: http://bioinformatics.oxfordjournals.org/cgi/reprint/26/5/
632.pdf, doi:10.1093/bioinformatics/btq014. 5.3.7.2, 8.2

[28] Simon Peyton Jones, editor. Haskell 98 Language and Libraries – The Revised
Report. Cambridge University Press, 2003. Available from: http://www.
haskell.org/definition/haskell98-report.pdf. 1.3.4, 2.1.2, 3.1

152

http://bibiserv.techfak.uni-bielefeld.de/adp/ps/ambi.pdf
http://bibiserv.techfak.uni-bielefeld.de/adp/ps/ambi.pdf
http://bibiserv.techfak.uni-bielefeld.de/adp/ps/GIE-MEY-STE-2004.pdf
http://bibiserv.techfak.uni-bielefeld.de/adp/ps/GIE-MEY-STE-2004.pdf
http://dx.doi.org/10.1016/j.scico.2003.12.005
http://bibiserv.techfak.uni-bielefeld.de/adp/ps/adp_implementing.ps.gz
http://bibiserv.techfak.uni-bielefeld.de/adp/ps/adp_implementing.ps.gz
http://nar.oxfordjournals.org/cgi/reprint/32/16/4843.pdf
http://nar.oxfordjournals.org/cgi/reprint/32/16/4843.pdf
http://dx.doi.org/doi:10.1093/nar/gkh779
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.7183&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.88.7183&rep=rep1&type=pdf
http://fontana.med.harvard.edu/www/Documents/WF/Papers/vienna.rna.pdf
http://fontana.med.harvard.edu/www/Documents/WF/Papers/vienna.rna.pdf
http://dx.doi.org/10.1007/BF00818163
http://bieson.ub.uni-bielefeld.de/volltexte/2005/709/pdf/diss.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2005/709/pdf/diss.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/26/5/632.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/26/5/632.pdf
http://dx.doi.org/10.1093/bioinformatics/btq014
http://www.haskell.org/definition/haskell98-report.pdf
http://www.haskell.org/definition/haskell98-report.pdf

[29] W. A. Lorenz, Yann Ponty, and Peter Clote. Asymptotics
of RNA shapes. Journal of Computational Biology, 15(1):31–
63, 2008. Available from: http://www.lri.fr/~ponty/docs/
AsymptoticsRNAShapes-JCompBiol-LorenzPontyClote.pdf, doi:
10.1089/cmb.2006.0153. 5.4.3.1

[30] Wellington S. Martins, Juan B. Del Cuvillo, Francisco Jose Useche, Kevin B.
Theobald, and Guang R. Gao. A multithreaded parallel implementation of
a dynamic programming algorithm for sequence comparison. In Proceedings
of the Pacific Symposium on Biocomputing, pages 311–322, 2001. Avail-
able from: http://psb.stanford.edu/psb-online/proceedings/psb01/
martins.pdf. 5.4.2

[31] Carsten Meyer and Robert Giegerich. Matching and Significance Evaluation of
Sequence-Structure Patterns in RNA. Journal of Physical Chemistry, 216:1–24,
2002. Available from: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.2.7910&rep=rep1&type=pdf. 4.5.8.1

[32] Gordon E. Moore. Cramming more components onto integrated cir-
cuits. Electronics Magazine, 38(8), 1965. Available from: ftp:
//download.intel.com/museum/Moores_Law/Articles-Press_Releases/
Gordon_Moore_1965_Article.pdf. 5.4.2

[33] Akimasa Morihata. A short cut to optimal sequences. New Generation Com-
puting, accepted, 2010. 1.3.4

[34] Mathias Möhl, Raheleh Salari, Sebastian Will, Rolf Backofen, and S. Sahi-
nalp. Sparsification of RNA structure prediction including pseudoknots. In
Vincent Moulton and Mona Singh, editors, Proceedings of the 10th Workshop
on Algorithms in Bioinformatics (WABI), volume 6293 of Lecture Notes in
Computer Science, pages 40–51. Springer Berlin / Heidelberg, 2010. Avail-
able from: http://www.bioinf.uni-freiburg.de/Publications/moehl_
wabi10:Sparsification.pdf, doi:10.1007/978-3-642-15294-8_4. 10.1

[35] Saul B. Needleman and Christian D. Wunsch. A general method applicable to
the search for similarities in the amino acid sequence of two proteins. Journal
of Molecular Biology, 48:443–453, 1970. 1.3.1, 4.5.2

[36] Ruth Nussinov, George Pieczenik, Jerrold R. Griggs, and Daniel J. Kleit-
man. Algorithms for loop matchings. SIAM Journal on Applied Mathematics,
35(1):68–82, 1978. Available from: http://link.aip.org/link/?SMM/35/68/
1, doi:10.1137/0135006. 2.1.1.1, 5.4.5

[37] The Flex Project. flex: The Fast Lexical Analyzer, 2010. Available from:
http://flex.sourceforge.net/. 5.1

153

http://www.lri.fr/~ponty/docs/AsymptoticsRNAShapes-JCompBiol-LorenzPontyClote.pdf
http://www.lri.fr/~ponty/docs/AsymptoticsRNAShapes-JCompBiol-LorenzPontyClote.pdf
http://dx.doi.org/10.1089/cmb.2006.0153
http://dx.doi.org/10.1089/cmb.2006.0153
http://psb.stanford.edu/psb-online/proceedings/psb01/martins.pdf
http://psb.stanford.edu/psb-online/proceedings/psb01/martins.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.7910&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.2.7910&rep=rep1&type=pdf
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
ftp://download.intel.com/museum/Moores_Law/Articles-Press_Releases/Gordon_Moore_1965_Article.pdf
http://www.bioinf.uni-freiburg.de/Publications/moehl_wabi10:Sparsification.pdf
http://www.bioinf.uni-freiburg.de/Publications/moehl_wabi10:Sparsification.pdf
http://dx.doi.org/10.1007/978-3-642-15294-8_4
http://link.aip.org/link/?SMM/35/68/1
http://link.aip.org/link/?SMM/35/68/1
http://dx.doi.org/10.1137/0135006
http://flex.sourceforge.net/

[38] Janina Reeder and Robert Giegerich. A graphical programming system for
molecular motif search. In Proceedings of the 5th international Conference on
Generative Programming and Component Engineering, pages 131–140, Port-
land, Oregon, USA, October 22 - 26 2006. ACM Press, New York, NY.
GPCE’06. Available from: http://aop.cslab.openu.ac.il/~lorenz/www/
ontheShelf/p131.pdf. 1.2, 5.3.7.2, 5.3.7.3

[39] Jens Reeder. Algorithms for RNA secondary structure analysis : prediction of
pseudoknots and the consensus shapes approach. Thesis, Universität Bielefeld,
2007. Available from: http://bieson.ub.uni-bielefeld.de/volltexte/
2008/1276/pdf/thesis.pdf. 2.1.3, 5.42, 10.1

[40] Jens Reeder and Robert Giegerich. Design, implementation and evaluation of a
practical pseudoknot folding algorithm based on thermodynamics. BMC Bioin-
formatics, 5:104, August 2004. Available from: http://www.biomedcentral.
com/content/pdf/1471-2105-5-104.pdf, doi:10.1186/1471-2105-5-104.
2.1.3, 4.5.8.1, 4.5.8.4, 5.3.7.3, 5.4.5, 8.4

[41] Marc Rehmsmeier, Peter Steffen, Matthias Höchsmann, and Robert Giegerich.
Fast and effective prediction of microRNA/target duplexes. RNA, 10:1507–
1517, 2004. Available from: http://rnajournal.cshlp.org/content/10/
10/1507.full.pdf. 2.1.3, 2.1.3

[42] David Sankoff. Simultaneous solution of the rna folding, alignment and pro-
tosequence problems. SIAM Journal on Applied Mathematics, 45(5):68–82,
October 1985. 1.3.1, 4.5.2

[43] Georg Sauthoff. Java-Backend für den ADP-Compiler. Diplomarbeit, Univer-
sität Bielefeld, 2007. 2.1.3

[44] Stefanie Schirmer. A Frontend for the ADP compiler. Diplomarbeit, Univer-
sität Bielefeld, 2006. 5.3.8

[45] Alexander Sczyrba and Jan Krüger. BiBiServ – Bielefeld University
Bioinformatics Server, 2010. Available from: http://bibiserv.techfak.
uni-bielefeld.de. 7.1

[46] Alexander Sczyrba, Jan Krüger, Henning Mersch, Stefan Kurtz, and Robert
Giegerich. RNA-related tools on the Bielefeld Bioinformatics Server. Nu-
cleic Acids Research, 31(13):3767–3770, 2003. Available from: http://nar.
oupjournals.org/cgi/reprint/31/13/3767.pdf. 7.1

[47] Peter Steffen. Compiling a Domain Specific Language for Dynamic Program-
ming. PhD thesis, Technische Fakultät Universität Bielefeld, 2006. Avail-
able from: http://bieson.ub.uni-bielefeld.de/volltexte/2007/1035/
pdf/diss.pdf. 2.1.3, 5.3.6

154

http://aop.cslab.openu.ac.il/~lorenz/www/ontheShelf/p131.pdf
http://aop.cslab.openu.ac.il/~lorenz/www/ontheShelf/p131.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2008/1276/pdf/thesis.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2008/1276/pdf/thesis.pdf
http://www.biomedcentral.com/content/pdf/1471-2105-5-104.pdf
http://www.biomedcentral.com/content/pdf/1471-2105-5-104.pdf
http://dx.doi.org/10.1186/1471-2105-5-104
http://rnajournal.cshlp.org/content/10/10/1507.full.pdf
http://rnajournal.cshlp.org/content/10/10/1507.full.pdf
http://bibiserv.techfak.uni-bielefeld.de
http://bibiserv.techfak.uni-bielefeld.de
http://nar.oupjournals.org/cgi/reprint/31/13/3767.pdf
http://nar.oupjournals.org/cgi/reprint/31/13/3767.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2007/1035/pdf/diss.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2007/1035/pdf/diss.pdf

[48] Peter Steffen and Robert Giegerich. Versatile and declarative dynamic pro-
gramming using pair algebras. BMC Bioinformatics, 6(1):224, Septem-
ber 2005. Available from: http://www.biomedcentral.com/content/pdf/
1471-2105-6-224.pdf, doi:10.1186/1471-2105-6-224. 2.1.1, 2.1.1, 4.6.3

[49] Peter Steffen and Robert Giegerich. Correction: versatile and declarative
dynamic programming using pair algebras. BMC Bioinformatics, 7:214,
April 2006. Available from: http://www.biomedcentral.com/content/pdf/
1471-2105-7-214.pdf, doi:10.1186/1471-2105-7-214. 2.1.1, 4.6.3

[50] Peter Steffen and Robert Giegerich. Table Design in Dynamic Program-
ming. Information and Computation, 204(9):1325–1345, 2006. Available
from: http://www.techfak.uni-bielefeld.de/~psteffen/pub/tabulate.
pdf. 5.3.7, 5.3.7.1

[51] Peter Steffen, Björn Voß, Marc Rehmsmeier, Jens Reeder, and Robert
Giegerich. RNAshapes: an integrated RNA analysis package based on ab-
stract shapes. Bioinformatics, 22(4):500–503, February 2006. Available
from: http://bioinformatics.oxfordjournals.org/cgi/reprint/22/4/
500.pdf. 2.1.3, 4.5.9, 5.3.7.3

[52] Kedar Swadi, Walid Taha, and Oleg Kiselyov. Staging dynamic programming
algorithms. In Proceedings of the 10th ACM SIGPLAN International Confer-
ence on Functional Programming, 2005. Available from: www.cs.rice.edu/
~taha/publications/preprints/2005-04-13.pdf. 1.3.2

[53] Stephen H. Unger. A global parser for context-free phrase structure grammars.
Communications of the ACM, 11(4):240–247, April 1968. 5.4.1

[54] Björn Voß. Advanced Tools for RNA Secondary Structure Analysis. The-
sis, Universität Bielefeld, 2004. Available from: http://bieson.ub.
uni-bielefeld.de/volltexte/2005/664/pdf/Diss.pdf. 1.2, 5.4.3.1

[55] Björn Voß, Robert Giegerich, and Marc Rehmsmeier. Complete probabilis-
tic analysis of RNA shapes. BMC Biology, 4(1):5, February 2006. Avail-
able from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479382/
pdf/1741-7007-4-5.pdf, doi:10.1186/1741-7007-4-5. 5.4.3.1, 8.3

[56] Ydo Wexler, Chaya Zilberstein, and Michal Ziv-Ukelson. A study of accessible
motifs and rna folding complexity. Journal of Computational Biology, 14(6),
2007. doi:10.1089/cmb.2007.R020. 10.1

[57] Stefan Wuchty, Walter Fontana, Ivo L. Hofacker, and Peter Schuster. Com-
plete suboptimal folding of RNA and the stability of secondary structures.
Biopolymers, 49:145–165, 1998. Available from: http://www.santafe.edu/
~walter/Papers/subopt.pdf. 5.4.3, 8.1

155

http://www.biomedcentral.com/content/pdf/1471-2105-6-224.pdf
http://www.biomedcentral.com/content/pdf/1471-2105-6-224.pdf
http://dx.doi.org/10.1186/1471-2105-6-224
http://www.biomedcentral.com/content/pdf/1471-2105-7-214.pdf
http://www.biomedcentral.com/content/pdf/1471-2105-7-214.pdf
http://dx.doi.org/10.1186/1471-2105-7-214
http://www.techfak.uni-bielefeld.de/~psteffen/pub/tabulate.pdf
http://www.techfak.uni-bielefeld.de/~psteffen/pub/tabulate.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/22/4/500.pdf
http://bioinformatics.oxfordjournals.org/cgi/reprint/22/4/500.pdf
www.cs.rice.edu/~taha/publications/preprints/2005-04-13.pdf
www.cs.rice.edu/~taha/publications/preprints/2005-04-13.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2005/664/pdf/Diss.pdf
http://bieson.ub.uni-bielefeld.de/volltexte/2005/664/pdf/Diss.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479382/pdf/1741-7007-4-5.pdf
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1479382/pdf/1741-7007-4-5.pdf
http://dx.doi.org/10.1186/1741-7007-4-5
http://dx.doi.org/10.1089/cmb.2007.R020
http://www.santafe.edu/~walter/Papers/subopt.pdf
http://www.santafe.edu/~walter/Papers/subopt.pdf

[58] Daniel H. Younger. Recognition and parsing of context-free languages in time
n3. Information and Control, 10(2):189–208, February 1967. 1.2, 5.4.1

[59] Michael Zuker and Patrick Stiegler. Optimal computer folding of large RNA
sequences using thermodynamics and auxiliary information. Nucleic Acids
Research, 9(1):133–148, 1981. 4.5.2

156

	Introduction
	Problem Statement
	Role of Dynamic Programming in Bioinformatics
	Related Dynamic Programming Frameworks
	Dynamite
	Staging DP
	Dyna
	Shortcut Fusion

	Algebraic Dynamic Programming
	First Generation ADP
	Algebra Products
	Haskell Embedding of ADP
	The ADP Compiler

	Second Generation ADP
	Products
	Generalizations
	Algebra characteristics

	Bellman's GAP Overview
	Limitations of Haskell-embedded ADP

	Bellman's GAP Language
	Design Goals
	New ADP features
	Example
	Lexical Structure
	Keywords
	Comments
	Operators
	Constants
	Whitespace
	Identifiers
	Layout

	Program Structure
	Imports
	Input
	Types
	Signature
	Algebras
	Statements
	Variable Access
	Grammar
	Instances

	Selected Language Features
	Algebra extension
	Syntactic filtering
	Semantic instance filtering
	Multi-Track programs
	Alphabets

	Bellman's GAP Compiler
	Compiler Architecture
	Example
	Semantic Analyses
	Unreachable Non-Terminals
	Productive Checking
	Yield Size Analysis
	Loop Checking
	Max size filter propagation
	Table Dimension Analysis
	Table Design
	Type Checking
	List analysis
	Dependency analysis
	Non-terminal inlining
	Index analysis

	Code Generation
	Parsing Schemes
	Parallelization
	Backtracing
	Window Mode
	Index Hacking

	Bellman's GAP Modules
	Memory Pools
	Lists
	String Data Structures
	librna

	Bellman's GAP Pages
	BiBiServ

	Benchmarks
	RNAfold
	Thermodynamic matchers
	RNAshapes
	pknotsRG

	Conclusion
	Outlook
	Sparse ADP
	Knapsack style DP algorithms
	ADP over Trees

	Bibliography

