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tronic part of Fourier transform of electronic dipole. We use (probe) pulse of
intensity Iprobe = 1.7 × 1014 W/cm2, wavelength λ = 800 nm, and 36 cycles,
corresponding to γ = 0.876 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.3 The contribution of different angular momentum (lr, li) to the whole HHG
spectrum of O2. The quantities in y-axis are ãzz(lr, li;m), which is the elec-
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5.12 Contribution of individual ãzz(lr, li;m) on the whole spectrum. . . . . . . . 88

5.13 Molecular-axis distribution (blue, dash-dotted line), alignment-dependent sig-
nal (red, dashed line), and differential signal (green, solid line) at first half
revival of CO2. (a) H9 at top signal td = 21.06 ps, (b) H9 at average signal
td = 20.80 ps, (c) H9 at anti-top signal td = 21.60 ps, (d) H-19 at top signal
td = 21.06 ps, (e) H19 at average signal td = 20.80 ps, and (f) H19 at anti-top
signal td = 21.60 ps. The laser parameters are similar with Fig. 5.4. The
initial temperature is 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.14 HHG differential signal for 9th (upper panel) and 19th (lower panel) of CO2.
The laser parameters are similar with Fig. 5.4 and 5.5, for 9th and 19th
harmonic, respectively. The initial temperature is 300 K. . . . . . . . . . . . 91

5.15 (a) Comparison between the dynamic signal of 47th harmonic signal for O2

and its alignment degree at their first revival, for initial temperature 40K.
Pump intensity Ipump = 1.0 × 1014 W/cm2, duration 60 fs; probe intensity
Iprobe = 3.5 × 1014 W/cm2, duration 30 fs, mean wavelength 800 nm. (b)
Harmonic signal in (a) for various initial temperature. (c) Harmonic signal in
(a) for various pump intensities. (d) Harmonic signal in (a) for various probe
intensities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.16 Left column: harmonic spectra of O2 (panel a), N2 (panel b), and ethylene
(panel c). Right column: the corresponding alignment dependent signal for
interest orders, i.e for O2 (panel d), N2 (panel e), and ethylene (panel f). The
pulse parameters are given in text. . . . . . . . . . . . . . . . . . . . . . . . . 93

6.1 Comparison of the experimental (from [71]) and theoretical Fourier spec-
trum of the dynamic 19th harmonic signal for N2. The spectrum shows se-
ries I: (6, 14, 22, 30, 38, ..) Bc (blue mark), series II: (10 , 18 , 26 , 34 , 42 , ..) Bc

(green mark), series III: (20,28,36,44,52,60,..)Bc (red mark), and series
IV: (4 , 8 , 12 , 16 , ..)Bc (violet mark). We use pump pulse of intensity
Ipump = 0.8× 1014 W/cm2 and pulse width FWHM = 40 fs, and probe pulse
of intensity Iprobe = 1.7× 1014 W/cm2, wavelength λ = 800 nm, and 36 cycles.
The initial temperature is 200 K. . . . . . . . . . . . . . . . . . . . . . . . . . 98



xvi LIST OF FIGURES

6.2 Comparison of the experimental (from [71]) and theoretical Fourier spectrum
of the dynamic 19th harmonic signal for O2. The spectrum shows series II:
(10 , 18 , 26 , 34 , 42 , ..) Bc (green mark), series III: (20,28,36,44,52,60, ..) Bc

(red mark), and series V: (8 , 16 , 24 , ..) Bc (brown mark). We use pump pulse
of intensity Ipump = 0.5× 1014 W/cm2 and pulse width FWHM = 40 fs, and
probe pulse of intensity Iprobe = 1.2 × 1014 W/cm2, wavelength λ = 800 nm,
and 36 cycles. The initial temperature is 200 K. . . . . . . . . . . . . . . . . 100

6.3 Comparison of the experimental (from [138]) and theoretical Fourier spectrum
of the dynamic 19th harmonic signal for CO2. The spectrum is dominated by
three main series, i.e. series I: (6, 14, 22, ..) Bc, series III: (20, 28, 36, 44, ..)Bc,
and series V: (8 , 16 , 24 , ..)Bc. We use pump pulse of intensity Ipump =
0.53 × 1014 W/cm2 and pulse width FWHM = 40 fs, and probe pulse of
intensity Iprobe = 1.5 × 1014 W/cm2, wavelength λ = 800 nm, and 36 cycles.
The initial temperature is 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.4 Theoretical Fourier spectrum of the dynamic 9th harmonic signal for CO2. The
spectrum is dominated by three main series, i.e. series I: (6, 14, 22, ..) Bc, series
III: (20, 28, 36, 44, ..)Bc, and series V: (8 , 16 , 24 , ..)Bc. We use pump pulse
of intensity Ipump = 0.56× 1014 W/cm2 and pulse width FWHM = 40 fs, and
probe pulse of intensity Iprobe = 1.23 × 1014 W/cm2, wavelength λ = 800 nm,
and 36 cycles. The initial temperature is 300 K. There is no experimental
spectrum reported. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.5 Calculated spectra for19th harmonic signal of N2 (panel a) and O2 (panel b)
at Boltzmann temperature 100 K; laser parameters as in Fig. 6.1, for N2 and,
as in Fig. 6.2 for O2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Calculated spectra for CO2 of 9th harmonic (upper panel) and 19th harmonic
(lower panel) at Boltzmann temperature 100 K; laser parameters as in Fig.
6.4, for 9th harmonic order and, as in Fig. 6.3 for 19th harmonic order. . . . 105

6.7 Theoretical Fourier spectrum of the dynamic 19th harmonic signal for
O2; pump intensity I = 0.5 × 1014 W/cm2, probe intensity I = 1.2 ×
1014 W/cm2W/cm2, duration 40 fs, wavelength 800 nm, and temperature
200 K. The calculation was done based on the semi adiabatic model (left-
lower panel), the frozen nuclei model of Lin (right-upper panel) , the ’mixture
model’ of Madsen (right-lower panel). As comparison, the experimental spec-
trum (left-upper panel) is also shown. . . . . . . . . . . . . . . . . . . . . . . 107

7.1 Schematic diagram defining the directions of the molecular axis, R, electron
position vector r, the pump polarization (ε1 ‖ z − axis), and the probe polar-
ization (ε2 ‖ z′ − axis). The z and z’ axes lie on the common x-z plane; the
fields are assumed to propagate along the y-axis. . . . . . . . . . . . . . . . 111



LIST OF FIGURES xvii

7.2 Theoretical harmonic spectra of N2 for various relative polarization angle,
α, at top signal (left panel) and anti-top signal (right panel); pump pulse:
Ipump = 0.4 × 1014 W/cm2 and 60 fs; probe pulse: Iprobe = 2 × 1014 W/cm2

and 30 fs, wavelength 800 nm, temperature 30K. . . . . . . . . . . . . . . . . 114

7.3 Comparison of experimental (left panel) (from [138]) and calculated (right
panel) dynamic 19th harmonic order for N2 for various relative pump-probe
polarization angles, i.e. α = 0o, α = 45o, and α = 90o. The laser parameters
are Ipump = 0.8 × 1014 W/cm2, Iprobe = 1.7 × 1014 W/cm2, FWHM = 40 fs,
λ = 800 nm, and 36 cycles. The initial temperature is 200 K. . . . . . . . . . 116

7.4 Calculated dynamic 19th harmonic order for O2 for various relative pump-
probe polarization angles, i.e. α = 0o, α = 45o, and α = 90o. The
laser parameters are Ipump = 0.5 × 1014W/cm2, Iprobe = 1.2 × 1014W/cm2,
FWHM = 40 fs, λ = 800 nm, and 36 cycles. The initial temperature is 200 K. 117

7.5 Calculated dynamic 9th harmonic order for CO2 for various relative pump-
probe polarization angles, i.e. α = 0o, α = 45o, and α = 90o. The laser
parameters are Ipump = 0.56 × 1014 W/cm2, Iprobe = 1.3 × 1014 W/cm2,
FWHM = 40 fs, λ = 800 nm, and 36 cycles. The initial temperature is
300 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.6 Calculated dynamic 19th harmonic order for CO2 for various relative pump-
probe polarization angles. The laser parameters are Ipump = 0.53 ×
1014 W/cm2, Iprobe = 1.5× 1014 W/cm2, FWHM = 40 fs, λ = 800 nm, and 36
cycles. The initial temperature is 300 K. . . . . . . . . . . . . . . . . . . . . . 118

7.7 Experimental (left panel) (from [72]) and calculated (right panel) 19th har-
monic at peak of its first half-revival (when its alignment degree is maxi-
mum) plotted as a function of pump-probe angle α, for N2 (td = 4.09 ps), O2

(td = 5.68 ps), and CO2 (td = 21.18 ps) [72]. The laser parameters for both
calculation and experiment are similar with Fig. 7.3 for N2, Fig. 7.4 for O2,
and Fig. 7.6 for CO2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.8 HHG signal near the first half-revival plotted as a function of pump-probe
angle α, for N2, O2, and CO2. The solid (black) line for ‘top signal’, i.e. when
its alignment degree

〈〈
cos2 θ

〉〉
is maximized. The dashed (blue) line for ‘anti-

top signal’, i.e. when its alignment degree is minimum. The dash-dotted (red)
line for ‘average signal’, i.e. when its alignment degree is in average. The
observation times for top, average, and anti-top are: (4.09 ps, 4.18 ps, and
4.27 ps) for N2, (5.680 ps, 5.790 ps, and 5.900 ps) for O2, and (21.18 ps, 21.38
ps, and 21.58 ps) for CO2. The pulse parameters are the same as in Fig. 7.3
for N2, Fig. 7.4 for O2, Fig. 7.5 for 9th harmonic order of CO2, and Fig. 7.6
for 19th harmonic order of CO2. . . . . . . . . . . . . . . . . . . . . . . . . . 120



xviii LIST OF FIGURES

7.9 The modulation depth around first half revival of HHG signal of N2 (upper
panel) and O2 (lower panel) for various initial temperature. The pulse param-
eters are similar with Figs. 7.3 and 7.4 for N2 and O2, respectively. . . . . . 121

7.10 The 19th harmonic signal of O2 near the second eight-revival, plotted as a
function of pump-probe angle α. In panel (a), the signal is approximated by
its first leading term only (Eq. (7.16)), whereas the true signal is shown in
panel (b). The pulse parameters are the same as in Fig. 7.4 . . . . . . . . . . 123

7.11 The 19th harmonic signal for N2 (left upper panel) and O2 (left lower panel)
as function of time delay and relative polarization angle between pump and
probe pulses. We also show the dynamic signals around their half revival for
both N2 (right upper panel) and O2 (right lower panel). The pulse parameters
are the same as in Figs. 7.3 and 7.4 for N2 and O2, respectively. The initial
temperature is 200 K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.12 The HHG signal for CO2 for 9th (upper panel) and 19th (lower panel) har-
monic orders as function of time delay and relative polarization angle between
pump and probe pulses. We also show the dynamic signals around their half
revival for both 9th (right upper panel) and 19th (right lower panel). The pulse
parameters are the same as in Figs. 7.5 and 7.6 for 9th and 19th, respectively.
The initial temperature is 300 K. . . . . . . . . . . . . . . . . . . . . . . . . . 126

7.13 Comparison between planar model and 3D model, for 19th harmonic of N2.
The pulse parameters are the same as in Fig. 7.3. . . . . . . . . . . . . . . . 127

7.14 Experimental (upper panel) (from [67, 141, 142]) and theoretical (lower panel)
dynamic signal of 9th harmonic signal of N2 for various pump-probe polariza-
tions angle α = 0o and α = 90o; pump intensity I = 2× 1012W/cm2, duration
300 ps; probe intensity, I = 5 × 1014 W/cm2, duration 70 fs, and wavelength
798 nm; Boltzmann temperature 25 K. . . . . . . . . . . . . . . . . . . . . . . 129

7.15 Theoretical 19th harmonic signal of molecule aligned by using turn-off method.
(a) Dynamic alignment for various relative polarization angle α. (b) α-
dependent HHG signal for various delay time. (c) Fourier spectrum for HHG
signal with α = 0o. We use Ipump = 0.8 × 1014W/cm2 with τon = 2.6547 ps
and τoff = 24 fs, Iprobe = 1.7 × 1014W/cm2 with τ = 24 fs and wavelength
800 nm, and Boltzmann temperature 200 K. . . . . . . . . . . . . . . . . . . . 130



Chapter 1

Introduction

In recent years there have been a lot of interests and progresses in general understanding of
the interaction of atoms and molecules with intense laser fields (e.g. reviews [1, 2]). They are
stimulated by success of optical pulse engineering in strikingly decreasing the laser pulse
duration from a hundred micro second in 1960s down to femtosecond at very high peak
power and intensities in modern Ti:sapphire laser system in 2000s [3, 4, 5]. Femtosecond
laser technology has enabled us to follow atomic motion in real time, achieve high harmonic
generation (HHG), stimulate Raman scattering, as well as exploit the highly nonlinear
response of atoms and molecules [6, 7].

Further advances in femtosecond technology also allow one to align molecules and follow
their dynamic in so called pump-probe experiments [8]. Molecular alignment and orientation
in gaseous phase are of particular interest (see [9, 10]), not less because of their potential
and wide range applications, especially for controlling chemical reactions [11]. Recently,
the molecular alignment has been also applied for laser assisted isotope separation [12],
imaging molecular structure [13], nanoscale design [14], pulse compression [15], and quantum
information processing [16]. One of the best candidates for observing dynamic alignment is
high harmonic generation (HHG). As reverse, alignment also provides a way of controlling
HHG source and enables HHG to provide a powerful source of ultrashort coherent radiation
in the xuv region. In this chapter we shortly introduce some concepts that underline this
work, by highlighting the recent achievements both in experimental and theoretical sides.
While there has been considerable progress in experimental side on the HHG of aligned
molecules, there has been much less explanation of them from theoretical view. To overcome
this discrepancy is one of the motivations of this work. In particular, we shall develop a
detailed ab initio theory of molecular alignment and high harmonic generation in pump-
probe experiments, and analyze and interpret a whole class experimental observation in
recent years.

1
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1.1 Molecular Alignment

The idea of molecular alignment dates back to 1975, as the possibility molecular alignment
induced by a strong non-resonant laser field was first studied theoretically by Zon and
Katsnelson [17]. In the same year alignment by formation of rotational wavepackets was
demonstrated in the relatively heavy molecule CS2 [18] by using a 5 ps pulse which is
short enough to create a rotational wavepacket that aligns and revives regularly. Aligned
and oriented molecules can be also produced by collisions with atoms [19], by ‘brute force’
orientation with strong electric fields [20], or by using optical infrared radiation [21]. It is
important to distinguish between alignment, where molecular axis is preferentially aligned
at some relative angle to a space-fixed axis (e.g. an electric field line), and orientation, where
the direction in which the molecule is pointing along the alignment axis is also controlled.
Orientation degree is quantified by the orientation angle cos θ, meanwhile alignment degree
is quantified by the alignment degree: cos2 θ.

The current burst in molecular alignment research activities by using intense nonreso-
nant laser pulse was initiated by the work of Friedrich and Herschbach [21] and Seideman
[22] in mid-90s. Friedrich and Herscbach [21] developed a simple model of interaction be-
tween molecule and nonresonant laser field. The model used the anisotropic polarizability
of a (non polar) molecule, to couple the electric field of the intense laser field which give
a potential energy. The potential energy contains an angle-dependent term and creates a
torque, rotating the molecules to align along the electric field of the laser. The laser induced
alignment has the advantage that it is a general method and can be applied to any molecule,
because no permanent dipole is required. However, this method could only align but not
orient the molecule.

Based on the laser pulse duration, there are three different alignment scenarios. The
simplest case was alignment by using a pulse whose duration was longer than the rotational
period of molecule [21] (known as adiabatic alignment). In this scenario, a high alignment
degree could be reached, but it was lost once the pulse was turned off. The second scenario
was alignment by using a pulse shorter than the rotational period of the molecule [23] (known
as non-adiabatic alignment or dynamic alignment). This method ensured molecules to align
and revive even after the pulse was turned off, but could not reach an alignment degree as
high as in adiabatic alignment. The third scenario was a ‘turn-off’ alignment where a pulse
was slowly turned on but rapidly turned off [24]. In fact, the last method could reach higher
alignment degree than from the non-adiabatic method and still showed revival effects even
after the pulse was turned off.

Since the method of alignment was known, there have been experimental realizations of
non-adiabatic alignment of heavy to light molecule, such as I2 [25], N2 [26], O2 [27], CO2

[28], CO [29], and recently D2 [30]. Observations were also made for adiabatic alignment of
naphthalene [31] and turn-off alignment of CO2 [32]. In addition there were both theoretical
proposal and experimental realization of enhancement of alignments with (i) combination of
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short pulses [33, 34, 35, 36], (ii) combination of short and long pulses [37], (iii) combination
of laser pulse and strong electric field with various ‘tilt’ angle [38, 39, 40, 41], (iv) combi-
nation of laser pulse and static octahedral potential [42], and (v) variation of the relative
polarization angle between pump and probe pulses [43]. It was also possible to enhance
the degree of alignment by varying the temperature of the ensemble [44, 45] and the pulse
properties like pulse intensity and pulse duration [46]. Finally, molecular alignment by us-
ing elliptic polarization has been proposed [47] and realized for 3-dimensional alignment of
polyatomic molecules [48, 49].

1.2 High Harmonic Generation

First observed at the end of the 80’s, high harmonic generation (HHG) is a process in which
noble gas atoms are driven by an intense laser field of frequency ω and produce radiation of a
higher frequency Ω = nω (Fig. 1.1(a)), where n is an odd number, known as harmonic order
[50, 51]. The high harmonic spectrum (harmonic yields as a function of their order) has a
number of characteristic features. That is, the harmonic signal exponentially decreases for
the low harmonic orders (the so called perturbative region), followed by a harmonic intensity
plateau, where the harmonic signal stays roughly constant with increasing harmonic order,
before reaching a cut-off, where a rapid exponential decrease of harmonic signal is observed.
According to the perturbation theory, one would expect a rapid decrease of harmonic signal
with increasing harmonic order [52]. However, at high intensities the observed plateau
region and the cut-off of the harmonic was not immediately understood.

Ω 2

1

3
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ωω
ΩΩ

(b)

p I

Figure 1.1: (a) The HHG process, n photon with frequency ω produce radiation with
frequency Ω = nω. (b). Description of HHG process in the framework of three-step model,
which are (1) ionization, (2) propagation, and (3) recombination.

The first theoretical breakthrough in understanding of the origin of the plateau of HHG
came in 1992 when Krause et al. [53] showed, by solving the time-dependent Schrödinger
equation (TDSE) numerically, that the position of cut-off in harmonic spectrum is given
by the universal law, ncut−off = (Ip + 3Up) /~ω, where Ip is ionization potential and
Up = e2E2

4mω2 (where e and m are electric charge and mass of electron, respectively) or
Up(eV ) = 9.33 × 10−14I(W/cm2)λ2(µm) is the so-called ponderomotive energy, which is
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Table 1.1: Peak intensity I and wavelength λ corresponding to γ = 1 for N2, O2, and CO2.

N2 (Ip = 15.58 eV) ⇒
O2 (Ip = 12.03 eV) ⇒

CO2 (Ip = 13.77 eV) ⇒

Keldysh parameter
(γ = 1)

I (1014 W/cm2)

λ (nm)
600 700 800 900 1000 1064
2.31 1.70 1.30 1.03 0.83 0.74
1.78 1.31 1.01 0.80 0.65 0.57
2.05 1.51 1.15 0.91 0.74 0.65

the cycle-averaged kinetic energy of an electron in the laser electric field with peak electric
field E . This mean electron-laser interaction energy also raises the ionization potential
Ip by Up, as shown in Fig. 1.1(a). In 1993 Corkum [54] and Kulander et al. [55] pub-
lished a classical/quasiclassical theory, which reproduced the plateau region observed in
the experiments. According to their works, the HHG can be broken up into a three-step
process: ionization, propagation, and recombination. The model has therefore been named
the ‘three-step model’ or also the ‘simple-man’s model’ due to its striking classical sim-
plicity. In addition, they found classically also the cut-off in the harmonic spectrum to
occur at ncut−off = (Ip + 3.17Up) /~ω. Shortly after the three-step model was introduced,
a quantum model was proposed by Lewenstein et al. [56] which confirmed the validity of
the classical approximation.

The three-step model is quasiclassical, meaning that the quantum aspects, like tunneling
and ionization are incorporated into the model but the motion of the electron in the driving
laser field is treated classically. The three-step model is shown in Fig. 1.1(b). (1) The
electron is born into the continuum through tunnel ionization with zero kinetic energy.
(2) The electron is treated as a free classical particle, which is accelerated by the driving
laser field thereby accumulating kinetic energy. (3) The high harmonic emission takes place
because the electron is attracted back to recombine with the core and emit a single photon
with frequency Ω = nω. The three-step process repeats every half-cycle of the driving laser
field. This periodicity in the time domain results in the frequency domain as separation by
twice the frequency of the driving laser field, 2ω. The fundamental frequency appears in
the spectrum as a first order (n = 1) emission, and the separation by 2ω implies that the
HHG signals appear for the odd harmonic orders only.

It should be noted here that the three-step model is applicable only for high intensities
laser pulse, characterized with γ < 1 where γ =

√
Ip

2Up is the so-called Keldysh parameter
[57]. For γ > 1 or at low intensities the HHG process is explained by multiple absorption
of photons and described in the frame of perturbation theory. The typical value of peak
intensity I and wavelength λ corresponding to γ = 1 for N2, O2, and CO2 are given in Tab.
1.1. Higher intensities indicate the tunneling regime whereas the lower ones indicate the
multiphoton regime.

The HHG from molecules has been studied experimentally already soon after the dis-
covering of HHG from atoms [58, 59], and found to yield radiation patterns very similar to
that of atoms. The further studies however showed some differences on the cut-off position
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between HHG of molecules and that of atoms with similar potential ionization [60, 61], due
to the particular symmetry (e.g. the axial symmetry) of the molecules.

1.3 Pump-probe Experiment

To observe dynamic alignment of molecules, one needs at least two pulses. We start with a
pump-pulse to set them in rotational motions and wait for the molecules to be aligned at
a later time (a few picoseconds) when they could undergo a ‘rotational revival’. A second
delayed probe-pulse is then used to generate the observed signal from the aligned molecules.
The signal is then measured against the delay time between the two pulses and the rotational
alignment is traced out in time.

The first observation on the dynamic alignment was made by Rosca-Pruna and Vrakking
[25]. They used a short intense laser pulse to Coulomb explode aligned I2 molecule and a
velocity-map imaging, to study the angular distributions of ion fragments. Later on, similar
method was used by Dooley et al. for N2 and O2 [27] and Lee et al. for D2 [30]. Renard
et al. probed non-adiabatic alignment of CO2 [62] and N2 [63] by measuring transient
birefringence, whereas Susmann et al. [32] probed turn-off alignment of CO2 and CS2 by
optical Kerr effect (OKE). Further, it was proposed to detect molecular alignment by Pho-
toelectron Angular Distribution (PAD) [64] and the so-called Above Threshold Ionization
(ATI) [65, 66].

Observing molecular alignment by using HHG was first demonstrated in case of adiabatic
alignment of N2, H2, CS2 [67], and CO2 [68]. HHG signal has also been demonstrated as
a sensitive tool for probing non-adiabatic alignment in N2, O2, and CO2 [69, 70, 43, 71].
Unlike the Coulomb explosion, detection by HHG is a non-destructive process. Recent
observations show that the HHG signal from aligned molecules can be controlled by the
relative pump-probe polarization angle [72, 43] and the probe ellipticity [73, 74, 75]. As a
reverse case, HHG signal has been used to reconstruct the molecular orbital [13, 76, 77, 78,
5], proton dynamics [79], and molecular dynamics [80]. HHG from aligned molecule signals
had also potential application as a source of coherent ultraviolet light and generation of
ultrashort attosecond laser pulse [81].

The typical pump-probe experiment set up using HHG as a probe, is depicted in Fig.
1.2. A laser beam is split into two parts by a beam splitter (BS) to separate the pump
and probe pulses, with a specific ratio of intensity between them. The probe pulse is then
delayed with a controllable delay line system D and, if needed, can be also rotated with a
polarizer P . The two pulses is then mixed again with a beam mixer (BM) where the probe
pulse is delayed by 2l/c from the pump pulse and its polarization is rotated with respect to
that of the pump pulse by an angle α, if desired. The pump-probe pulse sequence is focused
by a system of lenses (F ) and is then subjected to a molecular gas jet: the pump pulse
dynamically ‘aligns’ the molecules whereas the probe pulse generates HHG signal from the
aligned molecules. The HHG signal is then recorded by a detector system. Depending on
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the experimental purpose, the observation of the HHG signal of aligned molecules can be
arranged in several different ways.

Laser

F

BS

Gas
Jet

PumpProbe

Detector
Systemt

d

SΩ(td,α)
P

D

l

BM

α

Figure 1.2: Schema of pump-probe experiment. The explanation is given in text.

1. Keeping the delay time between the two pulses fixed, one can measure the harmonic
signals for all possible frequencies, and plotting them as a function of emitted fre-
quency in units of the probe laser frequency ω. This gives the well known high
harmonic spectrum.

2. Observing the harmonic signal for a fixed frequency (corresponding to a specific order),
repeating it for various delay times, and plotting the signal against the delay between
two pulses, gives the so called dynamic HHG signal.

3. Observing the harmonic spectrum for various relative polarizations between the two
pulses [13], one can obtain information on the angular distribution of the process.

4. In addition, one can Fourier transform the dynamic signal and plot the emission
intensity as a function of Bc with B is the rotational constant of molecules. Compared
to the dynamic HHG signal, the HHG signal in frequency domain can give a more
precise information of the dynamic HHG signal [82].

1.4 Theoretical Background

A first theoretical investigation on HHG of aligned molecules was the dependence of HHG
spectrum on the alignment angle (between the polarization of the pump pulse and the
molecular axis) of a simple ion H+

2 and molecule H2 was made by directly solving the
time-dependent Schrödinger equation (TDSE) and introducing a static alignment angle
between the molecular axis and the laser polarization axis [83, 84, 85]. Kopold et al. [83]
and Lappas and Marangos [84] showed a discrepancy of HHG spectrum of H+

2 between
the assumed parallel and the perpendicular molecular axis alignment, relative to the field
polarization. Their work was then elaborated by Lein and his coworkers for any alignment
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angle [85, 86, 68] within a one and a two dimensional model. However, these early models
assumed a static angle, that did not change with the time.

Lin and his colleagues [87, 88] and Madsen and Madsen [89] proposed dynamic models
which were based on the atomic Lewenstein model [56] by replacing atomic wave function
with the molecular wave function of interest and introducing an adiabatic alignment angle
between the molecular axis and the laser polarization. They had only a limited success
in interpreting the observations and showed qualitative discrepancy with respect to the
spectrum of dynamic signal e.g. for O2 and modulation signal with respect to the relative
polarization angles (see [88]).

1.5 Organization of the Work

We develop an ab initio intense-field theory of the HHG signals from linear molecules using
a short femtosecond (linear polarization) pump pulse, to excite the coherent rotational
motion, which is then interrogated by a second probe-pulse.

The rest of the present work is organized as follow. The mathematical formulation for
the interaction between the molecule and a delayed sequence of a pump and a probe pulses
is presented in chapter 2. The dynamic HHG signal is then derived and expressed in term of
an explicit HHG operator. The present theory is used to provide a critique of the heuristic
models used earlier, at the end of the chapter. Chapter 3 focuses on dynamic alignments,
revivals and their periods, beat frequencies, and temperature.

In chapter 4, the theory is applied to diatomic molecules N2 and O2. The main topic
is the analysis of the dependence of the dynamic signals on the symmetry of the molecular
wavefunction. In addition, the differential signal is derived. In chapter 5, the theory is
applied to the three-atomic molecule CO2 where the origin of phenomenon of phase inversion
is investigated.

Chapter 6 discusses the signals in the frequency domain obtained by Fourier trans-
forming the time domain signals. The frequency domain provides more precise discrete
information and therefore can be used to test the validity of the present theory and the
earlier models, more stringently.

In Chapter 7, the theory is generalized for an arbitrary relative angle between the pump
and the probe polarizations and is applied to the most recent experiments that depend both
on the delay time between the pulses and on the relative angle between their polarizations.
We end the chapter by considering the nature of HHG signal in the adiabatic and turn-off
case for long pump pulse.

The last chapter 8 summarizes the results and gives a short outlook.
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Chapter 2

Mathematical Formulation

This chapter presents a mathematical formulation of intense-field theory for high harmonic
generation (HHG) from freely rotating linear molecules. It starts with a review of intense-
field wavefunction describing the interaction between a molecule and an intense laser field.
The wavefunction is then applied to the interaction between a molecule and a sequence of
two (pump and probe) pulses. The emission signal is given by the Fourier transform of
the expectation value of the total dipole (c.f. [90]). This is used to derive the dynamic
signal which is expressed in term of an HHG operator. The explicit expression of the HHG
operator is then derived for the usual parallel set-up of pump and probe polarizations. The
theoretical distinctions between the present theory and other ad hoc models are discussed
at the end of this chapter.

2.1 Intense-field Wavefunction

The Schrödinger equation of a molecule subject to an external intense laser field is given by

i~
∂

∂t
Ψ(R, r, t) = H(R, r, t)Ψ (R, r, t) (2.1)

with R = (R1, ...,Rn) are the coordinates of the atomic nuclei and r = (r1, ..., rm) are
coordinates of the electrons. H(R, r, t) is the total Hamiltonian of an interacting molecular
and laser system and can be written as

H(R, r, t) = H0(R, r, t) + V (R, r, t). (2.2)

Above, H0(R, r, t) is the reference Hamiltonian and V (R, r, t) is the interaction with the
external laser field.

The solution of Eq. (2.1) can be obtained by using an ab initio systematic approximation
method known as the ‘intense-field many-body S-matrix theory’ (IMST) [91, 92, 2]. In this
approach, the usual perturbation expansion of the transition amplitude of a process was

9
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arranged in such a way that the dominant virtual channels, when present, appear already
in the leading term of S-matrix series. To this end, the Hamiltonian of the system at the
initial time is partitioned as

H(t) = H0
i (t) + Vi(t) (2.3)

where H0
i (t) is the initial unperturbed Hamiltonian, and Vi(t) is the initial interaction with

the laser field (for simplicity, the explicit expressions of coordinates are dropped). By using
Eq. (2.3), the Schrödinger equation of the interacting system (Eq. (2.1)) can be rewritten
as a time-dependent generalization of the Lippman-Schwinger equation[

i~
∂

∂t
−H0

i (t)
]

Ψ(t) = Vi(t)Ψ (t) . (2.4)

In integral form, the last equation reads

|Ψ(t)〉 = |φi(t)〉+
∫ tf

ti

dt1G (t, t1) Vi (t1) |φi(t1)〉 (2.5)

with tf > t. The validity of Eq. (2.5) can be verified by directly substituting it in Eq.
(2.4). The first term, φi(t), is a (homogeneous) solution of the Schrödinger equation of
unperturbed Hamiltonian H0

i (t)[
i~

∂

∂t
−H0

i (t)
]
|φi(t)〉 = 0. (2.6)

The second term,
∫ tf
ti

dt1G (t, t1) Vi (t1) |φi(t1)〉, is a (non homogeneous) solution of the
Schrödinger equation of total Hamiltonian H(t). G(t, t′) is the total Green’s function (or
propagator), defined by [

i~
∂

∂t
−H(t)

]
G(t, t′) = δ(t− t′). (2.7)

Next, the final state partition of the Hamiltonian

H(t) = H0
f (t) + Vf (t) (2.8)

is introduced, where H0
f (t) is the final state reference Hamiltonian and Vf (t) is the final-

state interaction. The total Green’s function is then expanded in terms of the final-state
Green’s function, G0

f (t, t′), in the form

G
(
t, t′
)

= G0
f

(
t, t′
)

+
∫ tf

ti

dt1G
0
f (t, t1) Vf (t1) G

(
t1, t

′) (2.9)

where G0
f (t, t′) satisfies [

i~
∂

∂t
−H0

f (t)
]

G0
f (t, t′) = δ(t− t′). (2.10)
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By inserting the total Green’s function (Eq. (2.9)) in the expression for the total wavefunc-
tion |Ψ(t)〉, Eq. (2.5), one obtains

|Ψ(t)〉 = |φi(t)〉+
∫ tf

ti

dt1G
0
f (t, t1) Vi (t1) |φi(t1)〉

+
∫ tf

ti

∫ tf

ti

dt2dt1G
0
f (t, t2) Vf (t2) G (t2, t1) Vi (t1) |φi(t)〉 . (2.11)

The above form of the wavefunction automatically satisfies the initial state condition (e.g.
the molecule in the ground state at initial time ti)

lim
tf−→ti

|Ψ(t)〉 = |φi(t = ti)〉 (2.12)

where φi (ti) = e−
i
~ Eitiφi is one or a linear combination of the eigenstates, {φj}, with

energy Ej , of unperturbed Hamiltonian of the target Hamiltonian or Hiφj = Ejφj . Then
by introducing the third (intermediate) partition of the total Hamiltonian

H(t) = H0(t) + V0(t) (2.13)

and the corresponding propagator, G0(t, t′), we expand G(t, t′) as

G
(
t, t′
)

= G0

(
t, t′
)

+
∫ tf

ti

dt1G0 (t, t1) V0 (t1) G0

(
t1, t

′)+ ... (2.14)

Substitution of Eq. (2.14) in Eq. (2.11) gives the the desired systematic expansion of the
wavefunction of the interacting system

Ψ(t) =
∞∑

j=0

Ψ(j) (2.15)

with ∣∣∣Ψ(0)
〉

= |φi(t)〉 (2.16)∣∣∣Ψ(1)
〉

=
∫ tf

ti

dt1G
0
f (t, t1) Vi (t1) |φi(t1)〉 (2.17)

∣∣∣Ψ(2)
〉

=
∫ tf

ti

∫ tf

ti

dt2dt1G
0
f (t, t2) Vf (t2) G0 (t2, t1) Vi (t1) |φi(t1)〉 (2.18)

∣∣∣Ψ(n)
〉

=
∫ tf

ti

.......

∫ tf

ti

∫ tf

ti

dtn......dt2dt1

×G0
f (t, tn) Vf (tn) .....G0 (t3, t2) Vf (t2) G0 (t2, t1) Vi (t1) |φi(t1)〉 (2.19)
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2.2 Molecule Interacting with a Pump- and a Delayed Probe-

Pulse

The total Hamiltonian of a system consisting of a molecule interacting with a pump pulse
(L1) at a time t and a probe pulse (L2) at a delayed time t − td can be written (in Born-
Oppenheimer approximation [93]) as [94],

Htot(t) = HN + VN−L1(t) + He + Ve−L2 (t− td) (2.20)

where HN is the nuclear Hamiltonian, VN−L1(t) is the interaction due to the pump pulse
L1 with the nuclear motion, He is the electronic Hamiltonian, and Ve−L2 (t− td) is the
delayed interaction of the probe pulse L2 with the active electron. To be noted is that
in this approximation, the electronic wavefunction depends parametrically on the nuclear
coordinates R such as that its gradient with respect to R, and hence the adiabatic couplings,
is assumed to be zero.

The laser fields are described in terms of the vector potentials which have the form
A(t) = −c

∫
F (t)dt where F (t) is the electric field of the laser at time t. Thus the interaction

Hamiltonians appearing above are (in the usual dipole approximation [52], and for negligible
overlap between the pulses) given by

VN−L1(t) = −µ · F 1(t)−
1
2
F 1(t) : α : F 1(t) (2.21)

where µ is the permanent dipole moment (if non-zero) and α is the polarizability tensor of
the molecule; and

Ve−L2 (t− td) = −d̂e · F (t− td) (2.22)

where d̂e stands for the electronic dipole operator.

Following Eqs. (2.1) and (2.7), the Schrödinger equation of the total system is,

i~
∂

∂t
Ψ(t) = Htot(t)Ψ(t), (2.23)

where the corresponding Green’s function G(t, t′) satisfies[
i~

∂

∂t
−Htot(t)

]
G(t, t′) = δ(t− t′)1 (2.24)

We note first that the slow nuclear motion driven by the pump pulse can be described in
terms of the solutions of the Schrödinger equation

i~
∂

∂t
ΦJM (t) = (HN + VN−L1(t))ΦJM (t). (2.25)

They are obtained in practice by solving the coupled time dependent differential equations
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satisfied by the expansion coefficients aJM (t) of |ΦJM (t)〉 [95], where

|ΦJ0M0(t)〉 =
∑
JM

aJ0M0
JM (t)e−

i
~ EJM t |JM〉 , (2.26)

in which the basis functions are given by the angular momentum eigenfunctions, |JM〉. The
linear differential equations of interest are

i~
∂

∂t
aJ0M0

JM (t) =
∑
J ′M ′

〈
JM |VN−L1(t)|J ′M ′〉 aJ0M0

J ′M ′ (t) (2.27)

Physically, a fundamental solution |ΦJ0M0(t)〉 of Eq. (2.25), obtained from Eqs. (2.27) and
(2.26), is a rotational wave-packet state that uniquely evolves from an initially occupied ro-
tational eigenstate, |J0M0〉, of the unperturbed nuclear motion. The wave-packet solutions
are linearly independent, and like the eigenstates |J0M0〉 of HN , form a complete set:∑

J0M0

|ΦJ0M0(t)〉 〈ΦJ0M0(t)| = 1. (2.28)

The electronic motion arising from the interaction of the active electron with an intense
probe pulse L2, is governed by the electronic Green’s function Ge(t, t′), which satisfies the
equation, {

i~
∂

∂t
− (He + Ve−L2 (t− td))

}
Ge(t, t′) = δ(t− t′)1. (2.29)

The above equation can be solved in the form

Ge

(
t− t′

)
= − i

~
θ
(
t− t′

)∑
j,p

∣∣∣φ(+)
j

〉
e−

i
~ E+

j t
∣∣∣p (t− td)

〉
×e

− i
~

R t−td
t′−td

(p2(u)/2m)du
〈
p
(
t′ − td

) ∣∣∣ e i
~ E+

j t′
〈
φ

(+)
j

∣∣∣ (2.30)

where j runs over all the ionic electronic states
∣∣∣φ(+)

j

〉
, with eigenvalues E+

j , and p(t) stands
for the instantaneous electron momenta in the presence of the field, as defined by ‘minimum
coupling prescription’ (e.g. [90, 93])

p(t) ≡ p− eA(t)
c

(2.31)

where p is the free momenta of the electron. The validity of Eq. (2.30) can be verified by
substituting it in Eq. (2.29) and using the completeness relation of the Volkov wavefunctions
|φv (p (t))〉, ∑

p
〈r |φv(p(t))〉 〈φv (p (t))| r〉 = 1, (2.32)
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which are defined by

〈r |φv(p(t))〉 = e
i
~p(t)·re−

i
~

R t(p2(u)/2m)du, (2.33)

and Σp ≡
R

d3p

(2π~)3
. Note that the Volkov-wavefunctions account for the interactions of a free

electron with the laser field to all orders in the vector potential (or electric field) strengths.
Finally, by using Eqs. (2.28) and (2.30), the total Green’s function G0

f (t, t′) of the system
is obtained:

G0
f (t, t′) = − i

~
θ(t− t′)

∑
jpJM

∣∣∣φ(+)
j

〉 ∣∣∣φ(−)
v (p(t− td)

〉 ∣∣∣ΦJM (t)
〉

×e−
i
~ E+

j (t−t′)
〈
ΦJM (t′)

∣∣∣ 〈φ(−)
v (p(t′ − td)

∣∣∣ 〈φ(+)
j

∣∣∣ (2.34)

The validity of Eq. (2.34) can be verified by substituting it directly in Eq. (2.24), and
neglecting the derivatives of the electronic orbitals with respect to the nuclear coordinates
R (Born-Oppenheimer approximation).

2.3 Molecular Wavefunction of the Interacting System: KFR

Approximation

We require the total wavefunction of the system satisfying the initial condition i.e. with
(i) the nuclear motion prepared (by the pump laser L1) in a rotational wave-packet state
|ΦJ0M0(t)〉 evolving from the unperturbed angular momentum state |J0M0〉, and (ii) the
active electron in the ground electronic state, e−

i
~ E0t

∣∣∣φ(0)
e

〉
, where the energy of the initial

molecular state is E0. The initial state of the whole system is,∣∣∣Ψ(0) (t)
〉

= e−
i
~ E0t

∣∣∣φ(0)
e

〉 ∣∣∣ΦJ0M0(t)
〉

(2.35)

Using the Green’s function (Eq. (2.34)), the wavefunction of the system interacting with
the probe laser L2, can be written using the expansion of Eq. (2.15) as

∣∣∣∣ΨKFR(t)
〉

=
∣∣∣∣Ψ(0)(t)

〉
+
∣∣∣∣∫ t

0
dt′G0

f (t, t′)Ve−L2

(
t′ − td

)
Ψ(0)(t′)

〉
+ .... (2.36)

The neglect of the higher terms in the expansions consists of molecular generalization of
the well-known KFR (Keldysh-Faisal-Reiss)-approximation first introduced for atoms [57,
96, 97]. Note that the presence of the Volkov Green’s function G0

f (t, t′) (Eq. (2.34)) allows
for the laser-electron interaction of all orders. The above wavefunction (Eq. (2.36)) is now
used to derive an analytical expression for the expectation value of the dipole operator of
the system.
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2.4 Dipole Expectation Value

We now derive the total dipole expectation value, D(t), of the electronic dipole operator
d̂e, of the molecule and specify the approximations used to arrive at the result. Within the
first order KFR approximation (Eq. (2.36)), the dipole expectation value is defined as

D(t) =
〈

ΨKFR(t)
∣∣∣d̂e

∣∣∣ΨKFR(t)
〉

=
{〈

Ψ(0)(t)
∣∣∣d̂e

∣∣∣Ψ(0)(t)
〉

+
〈

Ψ(0)(t)
∣∣∣d̂e

∣∣∣ ∫ t

0
dt′G0

f (t, t′)Ve−L2

(
t′ − td

)
Ψ(0)(t′)

〉
+ c.c.

}
+ ...

'
〈

Ψ(0)(t)
∣∣∣d̂e

∣∣∣ ∫ t

0
dt′G0

f (t, t′)Ve−L2

(
t′ − td

)
Ψ(0)(t′)

〉
+ c.c. (2.37)

In above, the term
〈
Ψ(0)(t)

∣∣∣d̂e

∣∣∣Ψ(0)(t)
〉

is zero due to the parity of electronic wavefunc-

tion. The term
〈
Ψ(0)(t)

∣∣∣d̂e

∣∣∣ ∫ t
0 dt′G0

f (t, t′)Ve−L2 (t′ − td) Ψ(0)(t′)
〉

(reading from right to

left) describes the electron propagating from the initial states Ψ(0)(t′), interacting with
the laser field Ve−L2 at t′ − td, going into intermediate Volkov through the propaga-
tor G(t, t′), and then at the later time t recombining to parent ion when a harmonic
photon is created. The c.c. stands for the complex conjugate of the term preceding
it, c.c. =

〈∫ t′

0 dtG0∗
f (t, t′)Ve−L2 (t− td) Ψ(0)(t)

∣∣∣d̂e

∣∣∣Ψ(0)(t′)
〉
. We have neglected here the

quadratic term on the right hand side, consistent with the lowest order KFR-approximation.
However, if needed, one can improve the D(t) expression by going to the higher terms sys-
tematically using Eq. (2.15). Further, by the following mathematical steps: (i) substituting
the total Green’s function of Eq. (2.34) in total dipole expression of Eq. (2.37), (ii) ne-
glecting the interaction of the inactive electrons with the probe laser field L2 and the small
deviation from unity of the overlap of the inactive neutral and the residual-ion orbitals i.e.〈
φ

(+)
e | φ(1,2,..Ne−1)

e

〉
≈ 1, and (iii) taking the wavefunction of Eq. (2.35) as an initial state

for the whole system, we may simplify the expression above as

D(t) = − i

~
∑

jpJM

〈
ΦJ0M0(t)

∣∣∣ 〈φ(0)
e

∣∣∣d̂e

∣∣∣p(t− td)
〉

×
∣∣∣φ+

j

〉 ∣∣∣ΦJM (t)
〉

e−
i
~ (E+

j −E0)(t−t′)
∫ t

0
dt′e

− i
~

R t−td
t′−td

(p2(u)/2m)du
〈
ΦJM (t′)

∣∣∣ 〈φ+
j

∣∣∣
×
〈
p(t′ − td)

∣∣∣Ve−L2

(
t′ − td

) ∣∣∣φ(0)
e

〉 ∣∣∣ΦJ0M0(t
′)
〉

+ c.c. (2.38)

Changing the variable t′ → t′ + td, and similarly, t → t + td, and noting that the free
evolution of the molecular wave packet at (t + td) is ΦJ0M0 (t + td) = e−

i
~ HN tΦJ0M0 (td), and

similarly, at (t′ + td) is ΦJ0M0 (t′ + td) = e−
i
~ HN t′ΦJ0M0 (td), and keeping only the dominant
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contribution from the ground state of the molecular ion, we may rewrite Eq. (2.38) as

D(t; td) ' − i

~
∑
pJM

〈
ΦJ0M0 (td)

∣∣∣ e i
~ HN t

〈
φ(0)

e

∣∣∣d̂e

∣∣∣p(t′)
〉 ∣∣∣φ+

0

〉
×
∣∣∣ΦJM (td)

〉
e−

i
~ HN t

∫ td+t

td

dt′e−
i
~

R t
t′ [p2(u)/2m+(E+

0 −E0)]due
i
~ HN t′

〈
ΦJM (td)

∣∣∣
×
〈
φ+

0

∣∣∣ 〈p(t′)
∣∣Ve−L2(t

′)
∣∣φ(0)

e

〉
e−

i
~ HN t′

∣∣∣ΦJ0M0 (td)
〉

+ c.c. (2.39)

where HN is the nuclear (rotational) Hamiltonian, and E+
0 − E0 = EB, where EB is the

binding energy of the active electron. Assuming adiabatic condition (e.g. [93, 98])

Max
∣∣∆EJ,J ′

∣∣� EB, ~Ω (2.40)

and/or
HN

~
∆tp ≈

∣∣∆EJ,J ′
∣∣

~
∆tp � 1 (2.41)

where ∆tp is of the order of the duration of the probe pulse, and using the completeness
relation of Eq. (2.28), the dipole expectation value (Eq. (2.39)) reads

D (t; td) = − i

~
∑
p

〈
ΦJ0M0 (td)

∣∣∣ 〈φ(0)
e

∣∣∣d̂e

∣∣∣p(t)
〉

×
∫ td+t

td

dt′e−
i
~

R t
t′ [p2(u)/2m+EB]du

×
〈
p(t′)

∣∣∣Ve−L2(t
′)
∣∣∣φ(0)

e

〉 ∣∣∣ΦJ0M0 (td)
〉

+ c.c. (2.42)

Or simply it can be written as:

D (t; td) = 〈ΦJ0M0(td) |De (t; td)|ΦJ0M0(td)〉+ c.c. (2.43)

with De (t; td) arises only from the electronic part of the total dipole expectation value
D (t; td) and is given by:

De (t; td) = − i

~
∑
p

〈
φ(0)

e

∣∣∣d̂e

∣∣∣p(t)
〉∫ td+t

td

dt′e−
i
~ S(p,t,t′)

〈
p(t′)

∣∣∣Ve−L2(t
′)
∣∣∣φ(0)

e

〉
+ c.c. (2.44)

where the action S(t, t′) is given by

S(p, t, t′) =
∫ t

t′
(p(u)2/2 + EB)du

=
∫ t

t′

[
1

2m

(
p− e

c
A(t′′)

)2
+ EB

]
dt′′ (2.45)

Thus, within the approximations of Eq. (2.42), we arrive at an expression of the time
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dependent of the total dipole expectation value for the molecular case that is analogous to
the well-known Lewenstein model obtained for the case of an atom [56].

2.5 Dynamic HHG Signal and HHG Transition Operator

According to semiclassical procedure, the amplitude for the harmonic emission from a pure
state is proportional to the modulus square of the Fourier transform of dipole moment [90,
§ 9.1]. The dynamic signal for the emission of the HHG for a given frequency Ω = nω and
delay time td is therefore given by the absolute square of the Fourier transform (F.T.) of the
total dipole expectation value D (t; td) (Eq. (2.42)). In the atomic case, Eq. (2.44) reduces
to the popular Lewenstein model [56]. For a thermal mixture of a molecular ensemble, the
dynamic signal for a given frequency Ω = nω and delay time td can be obtained by averaging
the signal, over the distribution of the initially pure unperturbed rotational eigenstates
|J0M0〉, at a given initial temperature T :

S(n) (td) =
∑
J0M0

ρ(J0) |[F.T. (D (t, td))] (nω)|2 (2.46)

with ρ(J0) = 1
ZP

e−EJ0
/kT where k is the Boltzmann constant, T is the temperature, EJ0

is the rotational energy of the eigen state |J0M0〉, and Zp =
∑

J0
(2J0 + 1)e−EJ0

/kT is the
rotational partition function. It can be seen from Eq. (2.43) that D (t, td) consists of the
nuclear rotational wave function ΦJ0M0 (td) and the electronic part De (t; td). Due to the
independence of nuclear rotational wave function ΦJ0M0 (td) on t, the F.T. of D (t, td) over
t can now be expressed as

[F.T. (D (t, td))] (n) = 〈ΦJ0M0 (td, θ) |[F.T. (De (t; td))] (nω)|ΦJ0M0 (td, θ)〉+ c.c. (2.47)

Here, we write explicitly the dependence of instantaneous nuclear wave function ΦJ0M0 (td, θ)
on the alignment angle θ. Then, we define a new operator

T (n)
e (θ) = [F.T. (De (t; td))] (nω). (2.48)

T
(n)
e (θ) can be viewed as HHG transition operator whose matrix element with respect to

the rotational wave-packet become responsible for the signal. In above, T
(n)
e (θ) depends on

θ through electronic ground state φ
(0)
e appears in De (t; td) which is defined in Eq. (2.44).

Finally, the dynamic signal at delay time td can be obtained by substituting Eq. (2.47) in
Eq. (2.46)

S(n) (td) =
∑
J0M0

ρ(J0)
∣∣∣〈ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉∣∣∣2 (2.49)
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It is important to note that the expression of dynamic signal (Eq. (2.49)), which is obtained
from the adiabatic hypotheses, differs from the other ad hoc models obtained by using fully
frozen nuclei assumption [88, 89]. The comparison will be discussed at the end of this
chapter.

2.6 HHG Operator: for Parallel Set-up of Pump and Probe

Polarizations

We now proceed to obtain an explicit expression of the HHG transition operator T
(n)
e (θ)

given by Eq. (2.48) and hence we need to evaluate the electronic dipole De (t; td) given by
Eq. (2.44). We first consider the most common experimental geometry in which the pump
and probe polarizations are chosen to be parallel. It is convenient to take the space fixed
polar axis (z-axis) along the common direction of the polarizations. Let the molecular axis
point in the direction R̂(θ, φ). We evaluate the triple-integral over the components of the
momentum p in Eq. (2.44) by the stationary phase method [99, 56], for which the derivative
of the action S(t, t′) with respect to p is put equal to zero

∇pS(p, t, t′) ≡ 0. (2.50)

The stationary value of momentum is then given by

pst(t, t
′) =

e

c (t′ − t)

∫ t

t′
A(t′′)dt′′ (2.51)

whereas the corresponding stationary value of the action is given by,

Sst(t, t′) =
∫ t

t′

{
1

2m

(
pst(t, t

′′)− e

c
A(t′′)

)2
+ EB

}
dt′′. (2.52)

Then by using expression of probe-electronic interaction in length gauge Ve−L2 (t′) =
−d̂e.F (t′) (Eq. (2.22)) and using saddle point method for integration over p [100, 56],
we obtain

De (t; td) =
i

~

∫ td+t

td

dt′

(
π

ε + i
2~(t− t′)

)3/2 〈
φ(0)

e

∣∣∣d̂e

∣∣∣p (t)
〉

×e−
i
~ Sst(t,t′)

〈
p
(
t′
) ∣∣∣d̂e.F (t′)

∣∣∣φ(0)
e

〉
+ c.c. (2.53)

where, p(t) = pst(t, t′) − e
cA(t) and p(t′) = pst(t, t′) − e

cA(t′) has been obtained from
minimum coupling prescription (Eq. (2.31)). A(t) and F (t) are the instantaneous vector
potential and the electric field of the probe pulse. It is also interesting to interpret the
last equation in the frame of three-step model of atom. The first factor in Eq. (2.53)
(reading from right to left) corresponds to a virtual ionization transition that occurs at



2.6. HHG OPERATOR 19

time t′, dion ≡
〈
p (t′)

∣∣∣d̂e.F (t′)
∣∣∣φ(0)

e

〉
, whereas the last factor corresponds to the virtual

recombination of the electron with the initial bound state at a time t, drec ≡
〈
φ

(0)
e

∣∣∣d̂e

∣∣∣p (t)
〉
.

The interval τ = t− t′ corresponds to the intermediate time that the electron spends in the
virtual continuum Volkov states, between the absorption of n photons in the first step and
the emission of the harmonic frequency Ω = nω in the last step. We may further assume
that there is no significant depletion of the ground state population during the process.
(However, if needed, this could be accounted for without difficulty by introducing in the
amplitude the exponential decay factor: e−(γ/2)(t+t′), where γ is the total ionization rate).
To be specific, we choose for a linearly polarized F (t) = ε̂ F0(t) cos(ωt), and

A(t) = −ε̂

(
cF0 (t)

ω

)
sin(ωt) (2.54)

To evaluate dipole of virtual ionization and recombination in Eq. (2.53), we need an
initial electronic wave function φ

(0)
e . The wave function of the active electron (usually

in the highest occupied molecular orbital or HOMO) can be written either in the multi-
center LCAO-MO (linear combination of atomic orbitals - molecular orbitals) form, or,
by converting it into an equivalent single-center MO by appropriate transformations (e.g.
[101, 102]). It is useful to note here that in the later form, it often suffices (e.g. for problems
of interaction of molecules with long-wavelength electromagnetic fields, and in conjunction
with the ‘length gauge’, used here) to retain only the asymptotic limit of the orbitals at
distances away from the molecular center, without significant loss of accuracy. Thus, quite
generally, let the unperturbed MO of the active electron at a given internuclear separation
R to be given in the body fixed frame, by a single-center expansion:

φ(bf)
e (r) =

∑
l

C
(m)
l Rl(r)Ylm(r̂) (2.55)

where C
(m)
l are the expansion coefficients, Rl(r) are the radial waves of angular momentum

l, Ylm(r̂) are the spherical harmonics, and m is the conserved projection of the angular
momentum of the electron along the molecular axis, that characterizes the MO.

Further, the molecular orbitals Eq. (2.55) is transformed to the space fixed system by
using the Wigner transformation,

φ(0)
e (r) = D̂φ(bf)

e (r)

=
∑

l

C
(m)
l Rl(r)

∑
µ

Dl
µm(φ, θ, χ)Ylµ(r̂) (2.56)

In above Dl
µm(φ, θ, χ) = e−iµφdl

µm(θ)e−imχ is the Wigner rotation matrix where (φ, θ, χ)
are the Euler’s angles which define the orientation of the molecular axis to the space fixed
coordinate frame [103]. θ is the relative angle between new (space fixed) coordinate and
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Figure 2.1: Schematic diagram defining the directions of the molecular axis, R, electron
position vector r, and the pump and probe polarization (ε1, ε2 ‖ z − axis). The fields are
assumed to propagate along the y-axis.

the old (body fixed) coordinate, φ is the azimuthal angle with respect to new coordinate,
whereas χ is the azimuthal angle with respect to old coordinate. The middle term of the
Wigner matrix, dl

µm(θ), is given by

dl
µm(θ) =

∑
k

[
(−1)k−m+µ

√
(l + m)!(l −m)!(l + µ)!(l − µ)!

(l + m− k)!(l − k − µ)!k!(k −m + µ)!

×
(

cos
θ

2

)2l−2k+m−µ(
sin

θ

2

)2k−m+µ
]

(2.57)

and their values for some low l have been tabulated e.g. in references [103, 104].

By using the electronic wavefunction in Eq. (2.56), the matrix element of (ionization)
dipole along probe polarization direction appearing in Eq. (2.53), by taking F (t′) outside
the integration, reads:

dion(t′) = F (t′)
∑

l

C
(m)
l

∑
µ

Dl
µm(φ, θ, χ)

〈
e

i
~pt′ .r

∣∣∣εω.r
∣∣∣Rm

l (r)Ylµ(r̂)
〉

(2.58)

Further, we expand e
i
~pt′ .r in spherical harmonics,

e
i
~pt′ .r =

(2π)3/2√
pt′r/~

∑
l′m′

(i)l′ Jl′+1/2

(pt′r

~

)
Yl′m′ (p̂t′) Yl′m′ (r̂) (2.59)

and note that in this system of axes we have,

εω.r = r

√
4π

3
Y10(r̂) (2.60)

Note also that the instantaneous momentum pt′ can be either parallel or anti-parallel with
respect to the direction of the field so that θpt′ = 0, π and φpt′ = 0. Therefore, the spherical



2.6. HHG OPERATOR 21

harmonics with the argument p̂t′ can be simplified to Yl′m′(p̂t′) = (σ)l′
√

2l′+1
4π δm′,0, with

σ = 1 for θpt′ = 0 and σ = (−1)l′ for θpt′ = π. Then, by substituting Eqs. (2.59) and (2.60)
in Eq. (2.58), the ionization dipole reads

dion(t′) = F (t′)
(2π)3/2√

3pt′/~

∑
l,l′,µ

C
(m)
l Dl

µm(φ, θ, χ)(iσ)l′
√

(2l′ + 1)
〈
l′0 |10| lµ

〉
Il,l′(t′) (2.61)

where, the radial integrals (m fixed) is defined by

Il,l′(t′) =
∫ ∞

0
Jl′+ 1

2
(
pt′r

~
) Rl(r)r−1/2 r r2dr (2.62)

The Clebsch-Gordon coefficient in Eq. (2.61) implies that only the terms with µ = 0 and
l′ = l ± 1 survive in the sums (e.g. [103, 104])

〈
l′0 |10| lµ

〉
=


(

3
4π

)1/2
(

l+1√
(2l+3)(2l+1)

)
δl′l+1δ0µ

(
3
4π

)1/2
(

l√
(2l+1)(2l−1)

)
δl′l−1δ0µ

. (2.63)

The ionization dipole can be simply written as

dion(t′) = F (t′)
∑
li

δion

(
li,m; t′

)
(2.64)

with

δion(li,m; t′) =
2π√
2pt′/~

C
(m)
li

Dli
0m(φ, θ, χ)√

(2li + 1)

×
(
(iσ)li+1(li + 1) Ili,li+1(t′) + (iσ)li−1li Ili,li−1(t′)

)
(2.65)

In the two last equations, we replace the notation l with li, refers to initial momentum in
ionization step, to distinguish it from that of recombination step.

Here we assume that the emitted harmonic is observed with its polarization along the
same direction as the probe pulse polarization. (There is no difficulty, except lengthier
algebra, to obtain the expression for the polarization direction orthogonal to it, but the
former would give the dominant contribution (c.f. [2, §4.7]). Then, following an analogous
calculation as above we get the recombination dipole as:

drec(t) =
∑
lr

δrec (lr,m; t) (2.66)
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with

δrec(lr,m; t) =
2π√
2pt/~

C
(m)
lr

Dlr∗
0m(φ, θ, χ)√

(2lr + 1)

×
(
(−iσ)lr+1(lr + 1) Ilr,lr+1(t) + (−iσ)lr−1lr Ilr,lr−1(t)

)
(2.67)

Above we introduce notation lr for final momentum in recombination step. Substituting
Eqs. (2.64) and (2.66) in Eq. (2.53) we obtain

De (t; td) =
i

~
∑
li,lr

∫ td+t

td

dt′

(
π

ε + i
2~ (t− t′)

)3/2

δrec(lr,m; t)e−
i
~ Sst(t,t′)F (t′)δion(li,m; t′)+c.c.

(2.68)
Further, by integrating over t′ and Fourier transforming with respect to t by using Eq.
(2.48), we obtain the HHG operator T

(n)
e (θ) at the frequency Ω = nω,

T (n)
e (θ) =

∑
li,lr

dlr
0,m(θ)ã(n)

zz (lr, li;m)dli
0,m(θ) (2.69)

with ã
(n)
zz (lr, li;m) is the dynamic part of electronic dipole and given by

ã(n)
zz (lr, li;m) = F.T.

 i

~

∫ td+t

td

dt′

(
π

ε + i
2~ (t− t′)

)3/2
δrec(lr,m; t)
Dlr∗

0m(φ, θ, χ)
e−

i
~ Sst(t,t′)

× F (t′)
δion(li,m; t′)

Dli
0m(φ, θ, χ)

+ c.c.

]
(2.70)

In Eq. (2.69), dlr
0m(θ)dli

0m(θ) = Dlr∗
0m(φ, θ, χ)Dli

0m(φ, θ, χ) arises from the geometric part
of the operator. In this case, the exponential part of Wigner matrix in ionization part
is canceled out by its conjugate in recombination part and therefore Dl

0m(φ, θ, χ) in both
ionization and recombination part reduces to its middle term dl

0,m(θ). The coefficients
ã

(n)
zz (lr, lri;m) are evaluated by fast Fourier transforming [....] and taking the value at nth

peak.

2.7 Evaluation the Radial Integration

Throughout this work, the radial part of electronic wave function is given by [105, 106]

Rl(r) = rη−1e−pBr (2.71)

with η ≡ Zc/pB with Zc is the core charge, and pB =
√

2me |EB|/~ with EB is binding
energy.

The radial integrals (I’s) appearing in the ionization dipole dion (Eq. (2.65)) and re-
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combination dipole drec (Eq. (2.67)) can now be evaluated explicitly by using the integral
formula [107]

∫ ∞

0
e−αxJν(βx) xµ−1dx =

(
β
2

)ν
Γ(ν + µ)√

(α2 + β2)ν+µΓ(ν + 1)

×F

(
ν + µ

2
,
1− µ + ν

2
, ν + 1;

β2

α2 + β2

)
(2.72)

where F (a, b, c;x) is a hypergeometric function. To be noted that since the argument
x ≡ β2

α2+β2 < 1, the hypergeometric function is guaranteed to converge for all values of a, b,
and c [108]. For ionization step, the radial integrations read

Ili,li+1(t′) =

(pt′
2~
)l+3/2 Γ(li + Zc/pB + 4)√

(P 2
B +

(pt′
~
)2)li+Zc/pB+4Γ(li + 5

2)

×F

(
li + Zc/pB + 4

2
,
li − Zc/pB

2
, li +

5
2
;

(pt′
~
)2

p2
B +

(pt′
~
)2
)

Ili,li−1(t′) =

(pt′
2~
)li−1/2 Γ(li + Zc/pB + 2)√

(p2
B +

(pt′
~
)2)li+Zc/pB+2Γ(li + 1

2)

×F

(
li + Zc/pB + 2

2
,
li − Zc/pB − 2

2
, li +

1
2
;

(pt′
~
)2

p2
B +

(pt′
~
)2
)

(2.73)

Exactly the same expressions hold for the radial integrals appearing in the recombination
dipole drec(lr,m; t) throughout (except that li is replaced by lr, and t′ by t, in Eq. (2.73)).

2.8 Comparison with Other Mathematical Models: Adia-

batic Versus Frozen Nuclei Approximations

To illustrate the distinct character of the present theory, we compare it with the ad hoc
mathematical models. First we notice that in our adiabatic model, the nth order HHG
signal at time td after pump pulse is given by

S
(n)
A (td) =

∑
J0M0

ρ(J0)
∣∣∣〈ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉∣∣∣2 (2.74)

where A stands for adiabatic. In our derivation, the nuclei are assumed to rotate adiabat-
ically during the probe interaction. The expectation value of the total dipole is therefore
obtained from the total wavefunction, including nuclear wavefunction of the system. The
signal for pure initial state ΦJ0M0 is given by the norm square of Fourier transform of the
total dipole expectation value. The total signal is obtained by averaging the signal from



24 CHAPTER 2. MATHEMATICAL FORMULATION

all single initial wavepacket states with the Boltzmann weight corresponding to the initial
temperature T .

Another model on HHG of aligned molecules was proposed by C.D. Lin and his colleagues
[87, 88]. In their model, the molecule axis is restricted to lie fixed along the z-axis, whereas
the laser’s polarization makes a fixed angle θ with respect to it. The dipole expectation value
was then calculated along and perpendicular to the molecular axis and then projected on to
the laser polarization direction. The initial electronic wavefunction was given in Gaussian
basis which is obtained from GAMESS (General Atomic and Molecular Electronic Structure
System) code [109]. In contrast to the present model, the model of Lin et al. assumed
that the total dipole expectation value did not take the whole molecular wavefunction into
account, but was simply given by the electronic dipole De (td), independent of the rotational
wavepacket states. The HHG yield signal at time td after pump pulse for nth order was
then obtained from [88, 110]

gn (td) =
∫

ρ (θ, td) ḡn(θ)dΩ (2.75)

with ρ (θ, td) was the molecular axis distribution, and ḡn(θ) was the average intensity ob-
tained by integrating the calculated intensity between (n − 1)th and (n + 1)th order of
the aligned molecules. Mathematically, gn(θ) is given by the norm square of the Fourier
transform of De (td). In our notation (Eq. (2.49)), the frozen nuclei (FN) signals of their
model therefore can be expressed as:

S
(n)
FN (td) =

∑
J0M0

ρ(J0)
〈

ΦJ0M0 (td, θ)
∣∣∣∣∣∣∣T (n)

e (θ)
∣∣∣2∣∣∣∣ΦJ0M0 (td, θ)

〉
(2.76)

which differs significantly from the present results (Eq. (2.74)). The same model (Eq.
(2.76)) was used by J.P. Marangos and colleagues [111], except they used atom-like wave-
functions as the initial electronic wavefunction and did not fix the molecular axis along a
given z-axis [61, 111].

Using completeness relation of Eq. (2.28), the signal from frozen nuclei model can be
written as:

S
(n)
FN (td) =

∑
J0M0

∑
J ′0M ′

0

ρ(J0)
〈
ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ ′0M ′
0
(td, θ)

〉
×
〈
ΦJ ′0M ′

0
(td, θ)

∣∣∣T ∗(n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉

=
∑
J0M0

ρ(J0)
∣∣∣〈ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉∣∣∣2 +

∑
J0M0

∑
J ′0 6=J0,M ′

0 6=M0

ρ(J0)
∣∣∣〈ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ ′0M ′
0
(td, θ)

〉∣∣∣2 (2.77)
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The first term of Eq. (2.77) is the diagonal terms showing the coherent HHG signal arising
from the electron ionized from the initial state ΦJ0M0 (td, θ) recombines into the same final
states. The second term of the last expression is the off-diagonal terms showing the HHG
signal arising from the inelastic transitions where the electron ionized from the initial state
ΦJ0M0 (td, θ) recombines into different final states ΦJ ′0M ′

0
(td, θ). Such transitions lead to

incoherent emission of frequencies differing from Ω by ∆J0J
′
0 and should not contribute to

the fully coherent high harmonic generation at the frequency Ω.

Still another model was proposed by C.B. Madsen and L.B. Madsen [89, 112]. They
took laser polarization to lay along z-axis, whereas molecular axis made angle θ with respect
to it. The initial electronic wavefunction was obtained from GAMESS code [109] and then
projected on spherical harmonics to get the asymptotic form. As in the model of Lin et al.,
the molecular rotation was assumed to be negligible under the probe pulse, and hence the
total dipole expectation was given by the electronic dipole De (td). The amplitude of nth
harmonic at time td after the pump pulse was defined by

d̄n (td) =
∫ π

0
ρ (td, θ) dn(θ) sin θdθ (2.78)

with dn(θ) was Fourier transform of the electronic dipole De (td). They, however, went on
to take the thermal average not at the level of probabilities, but at the level of the Fourier
transform of the dipole expectation value (proportional to the emission ‘amplitude’) and
defined the signal of nth harmonic (in the present notation) as the modulo square of the
thermally averaged amplitude

S
(n)
MM (td) =

∣∣∣∣∣∣
∑
J0M0

ρ(J0)
〈
ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉∣∣∣∣∣∣

2

, (2.79)

where MM stands for Madsen and Madsen. This mathematical expression can be expanded
as

S
(n)
MM (td) =

∑
J0M0

ρ(J0)
〈
ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉

×

∑
J ′0M ′

0

ρ(J ′0)
〈
ΦJ ′0M ′

0
(td, θ)

∣∣∣T ∗(n)
e (θ)

∣∣∣ΦJ ′0M ′
0
(td, θ)

〉
=

∑
J0M0

(ρ(J0))
2
∣∣∣〈ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉∣∣∣2

+
∑
J0M0

∑
J ′0 6=J0,M ′

0 6=M0

ρ(J0)ρ(J ′0)
〈
ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉

×
〈
ΦJ ′0M ′

0
(td, θ)

∣∣∣T ∗(n)
e (θ)

∣∣∣ΦJ ′0M ′
0
(td, θ)

〉
(2.80)
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There are some conceptual difficulties which arise in this model. First, as mentioned
above the standard thermal averaging is done at the probability level, whereas the quantity〈
ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉

which is thermally averaged in Eq. (2.79) is a tran-

sition amplitude and not a transition probability. Second, T
(n)
e (θ) is not a real quantity

and therefore
〈
ΦJ0M0 (td, θ)

∣∣∣T (n)
e (θ)

∣∣∣ΦJ0M0 (td, θ)
〉

is also not a real quantity. Therefore,
thermal averaging the last quantity defies the standard requirement of thermal averaging
of real signals only. Third, a well defined thermally averaged signal invariably contains the
weight linearly. On the other hand, Eq. (2.80) contains not only quadratic term of the
weight but also non-vanishing interference between the thermal weights.

Note that the present theory (Eq. (2.74)) gives a coherent signal for the emission of the
high harmonics with the usual thermal averaging taken at the probability level, where the
two models, do not.



Chapter 3

Dynamic Alignment

The previous chapter derives the general expression of HHG signal. This chapter gives
briefly the theory of dynamic alignment of linear molecules of a gas interacting with a
linearly polarized short laser pulse and their detection by observing the harmonic signal
due to the probe-pulse. Thus, it is required to obtain the nuclear rotational wavepackets
and evaluate the HHG transition operator. We start with the Schrödinger equation of
the system, the alignment degree and its thermal average, the type of alignment, and
the related expectation values. The discussion then shifts to the short pulse alignment
where the investigation is focused on some properties of the dynamic alignment, those are
required for understanding the dynamic HHG signals. They include high order transition,
Fourier transform, period, beat frequencies, and the contribution of each beat to the whole
alignment signal. This chapter ends with the investigation on the effect of the probe pulse
on the alignment degree.

3.1 Solving Schrödinger Equation of the System

The Schrödinger equation governing a molecule subject to an intense laser field can be
written as (Eq. (2.25)):

i~
∂

∂t
ΦJM (t) =

(
H

(0)
N + VN−L1(t)

)
ΦJM (t) (3.1)

where H
(0)
N is the field-free nuclear Hamiltonian of the molecule. Consider the molecule as a

rigid rotor whose energy operator is BĴ2 with B and Ĵ are rotational constant and angular
momentum operator, respectively. VN−L1(t) is laser-molecule interaction (Eq. (2.21):

VN−L1(t) = −µ · F 1(t)−
1
2
F 1(t) : α : F 1(t) (3.2)

For a linear symmetric top molecule subject to linearly polarized laser field, it can be

27
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expressed as [113, 10]:

VN−L1(t) = −1
2
(
α‖ cos2 θ + α⊥ sin2 θ

) 〈
ε2(t)

〉
= −1

2
(
∆α cos2 θ + α⊥

) 〈
ε2(t)

〉
(3.3)

In the last equation, ∆α is the difference between parallel and perpendicular polarizability
components with respect to the molecular axis. For a field with its oscillating frequency
to be far removed from any molecular resonance and much bigger than either τ−1 or T−1

(with τ and T are pulse width and rotational period, respectively) we can write [114]:

〈
ε2(t)

〉
=

8π

c
Ig(t)

〈
cos2 ωt

〉
=

4π

c
Ig(t) (3.4)

with I and g(t) are peak intensity and pulse time profile, respectively.

By using Eqs. (3.3) and (3.4), the Hamiltonian (Eq. (3.1)) can be cast in the form
[21, 38]:

H(t) = BĴ2 − 4π

c
Ig(t)

(
∆α cos2 θ + α⊥

)
= B

[
Ĵ2 −

(
∆ω(t) cos2 θ + ω⊥(t)

)]
= B

[(
Ĵ2 − ω⊥(t)

)
−∆ω(t) cos2 θ

]
(3.5)

with ∆ω(t) = (4π/c)Ig(t)∆α = ∆ω g(t) and ω⊥(t) = (4π/c)Ig(t)α⊥ = ω⊥g(t) are dimen-
sionless interaction parameters. The value of ∆ω and ω⊥ are given by the simple recipe
[39]:

∆ω =
10−11∆α

(
Å3
)

I
(
W/cm2

)
B (cm−1)

ω⊥ =
10−11α⊥

(
Å3
)

I
(
W/cm2

)
B (cm−1)

. (3.6)

θ is the angle between the molecular axis and the laser field polarization. In the following,
we take E along z-axis so that θ is the polar angle.

The time dependent Schrödinger equation now can be cast in dimensionless form as

i
~
B

∂Φ(t)
∂t

=
H(t)
B

Φ(t) (3.7)

It indicates that ~/B plays a role of reduced time. The nuclear wavefunction Φ(t) can
be expanded in term of a series in field-free rotor function |JM〉 with eigen energy EJ =
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i Bi[J(J + 1)]i [115]. For a given single initial state |ΦJ0M0(t)〉, it reads

|ΦJ0M0(t)〉 =
∑
JM

aJ0M0
JM (t) |JM〉 exp

(
−i

EJ t

~

)
. (3.8)

The evolution of the expansion coefficient aJ0M0
JM (t) can be found from differential equation

[95]:

i
~
B

ȧJ0M0
JM (t) = aJ0M0

JM (t)
〈
JM

∣∣∣(Ĵ2 − ω⊥(t)
)∣∣∣ JM

〉
−
∑
J ′M ′

aJ0M0
J ′M ′ (t)

〈
JM

∣∣∆ω(t) cos2 θ
∣∣ J ′M ′〉 exp

(
− i (EJ ′ − EJ) t

~

)
(3.9)

The Hamiltonian contains a constant term and angular-dependent term. The constant
term, however, is just a coordinate-independent shift which does not introduce any torque
and can be dropped for convenience. The cos2 θ potential hybridizes rotational states |JM〉
of molecule, by mixing J ’s that differ by 0 and ±2 with fixed M .

i
~
B

ȧJ0M0
J,M (t) = −aJ0M0

J−2,M0
(t)∆ω(t) CJ,J−2,M0 exp (−i (EJ−2 − EJ) t/~)

−aJ0M0
J,M0

(t)∆ω(t) CJ,J,M0 + aJ0M0
JM0

(t) (J(J + 1)− ω⊥(t)) (3.10)

−aJ0M0
J+2,M0

(t)∆ω(t) CJ,J+2,M0 exp (−i (EJ+2 − EJ) t/~)

The CJ,J ′,M0 coefficients are the matrix elements whose values are [103, 104]:

CJ,J−2,M0 =
〈
J,M0

∣∣cos2 θ
∣∣ J − 2,M0

〉
=

1
2J − 1

√(
(J − 1)2 −M2

0

) (
J2 −M2

0

)
(2J − 3)(2J + 1)

CJ,J,M0 =
〈
JM0

∣∣cos2 θ
∣∣ JM0

〉
=

1
3

+
2
3

[
J(J + 1)− 3M2

0

(2J − 1)(2J + 3)

]
(3.11)

CJ,J+2,M0 =
〈
J,M0

∣∣cos2 θ
∣∣ J + 2,M0

〉
=

1
2J + 3

√(
(J + 1)2 −M2

0

) (
(J + 2)2 −M2

0

)
(2J + 1)(2J + 5)

By increasing J in CJ,J−2,M0 by two, one obtains CJ+2,J,M0 = CJ,J+2,M0 , means that
CJ,J ′,M0 is a real number. Eq. (3.10) can be simply written as

i
~
B

ȧJ0M0
JM (t) = −MaJ0M0

JM (t) (3.12)

with M is a three-diagonal matrix element. Eq. (3.12) is a time dependent differential
equation system that in our case is solved by using sixth order Runge-Kutta method [116].
Once aJ0M0

JM (t) is known, the wave function expression at any time can be found. Fig.

3.1 shows that
∣∣∣aJ0M0

JM (t)
∣∣∣2 is almost constant after the pulse turn off and implies that all

properties are conducted essentially by phase of the wave function.
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Figure 3.1: |aJ0 (t)|2 plotted as a function of time delay after peak of laser pulse, for various
initial state, i.e. Φ (t = 0) = |10〉 (panel a), Φ (t = 0) = |30〉 (panel b), Φ (t = 0) = |50〉
(panel c), and Φ (t = 0) = |70〉 (panel d). The initial states are identified by thick line and
*. We use here the laser field (dashed line) of intensity 0.5 × 1014 W/cm2 with FWHM 40
fs subjected to molecule O2.

3.2 Alignment Degree

It is convenience to express the degree of alignment in term of
〈〈

cos2 θ
〉〉

[21]. For a linear
molecule, with EJ = BJ(J +1), the alignment degree for a given initial state |J0M0〉 reads:

〈
cos2 θ

〉
J0M0

(t) =
〈
ΦJ0M0(t)

∣∣cos2 θ
∣∣ΦJ0M0(t)

〉
=

∑
J

aJ0M0∗
J−2,M0

(t) aJ0M0
JM0

(t) CJ,J−2,M0 exp (−iB(4J − 2)t/~)

+
∑
J

∣∣∣aJ0M0
JM0

(t)
∣∣∣2 CJ,J,M0 (3.13)

+
∑
J

aJ0M0∗
J+2,J0

(t) aJ0M0
JM0

(t) CJ,J+2,M0 exp (−iB(4J + 6)t/~)

By shifting J → J + 2 in the first term, Eq. (3.13) can be written in a symmetric form as:

〈
cos2 θ

〉
J0M0

(t) =
Jmax∑
J=2

aJ0M0∗
J−2,M0

(t) aJ0M0
JM0

(t) CJ,J−2,M0 exp (−iB(4J + 6)t/~)

+
Jmax∑

J

∣∣∣aJ0M0
JM0

(t)
∣∣∣2 CJ,J,M0 (3.14)
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Table 3.1: Molecular properties of N2, O2, and CO2 [117, 118, 119, 120, 121]

Molecule B
(
cm−1

)
D
(
cm−1

)
α‖

(
Å3
)

α⊥

(
Å3
)

geven godd

N2 1.989581 5.67 10−6 2.38 1.45 2 1
O2 1.4297 4.839 10−6 2.35 1.21 0 1

CO2 0.3902 0.135 10−6 4.01 - 4.11 1.97 - 1.93 1 0

+
Jmax∑
J=0

aJ0M0∗
J+2,M0

(t) aJ0M0
JM0

(t) CJ,J+2,M0 exp (iB(4J + 6)t/~)

with Jmax is the maximum value of the excited states. The measurement of a value〈
cos2 θ

〉
= 1 gives an angular distribution perfectly peaked along θ = 0 or θ = π,

〈
cos2 θ

〉
= 0

for a distribution peaked along θ = π/2, and
〈
cos2 θ

〉
= 1/3 for an isotropic distribution at

all θ.

The system of interest is a molecular gas interacting with a linearly polarized laser pulse.
Before interaction, the gas ensemble is assumed to be in thermal equilibrium, characterized
by Boltzmann temperature T . In quantum picture, an ensemble is described by a statistical
mixture of angular momentum state |J0M0〉 with J0 = 0, 1, 2, ... and M = −J0,−(J0 −
1), ..., 0, ...(J0 − 1), J0 whose distribution follows Boltzmann distribution

PJ0 ∼ (2J0 + 1) exp(−EJ0

kT
) (3.15)

where EJ0 is the rotational energy of |J0M0〉 state. The (2J0 + 1) term accounts for the
degeneracy within a given J0 levels.

In the case of a molecule containing two identical nuclei, there is an additional factor
gJ0 arising from nuclear spin statistics [93, 122]. This factor controls the relative weight
between odd and even J states. Eq (3.15) now can be written as

PJ0 ∼ gJ0(2J0 + 1) exp(−EJ0

kT
) (3.16)

The properties of the linear molecules considered in this work, as well as the value of gJ0 ,
are listed in Tab. 3.1.

The alignment degree of the ensemble, at temperature T , can be found by averaging the
alignment degree of a single initial state (3.14) over the Boltzmann distribution, including
spin nuclear statistics (Eq. (3.16)), as

〈〈
cos2 θ

〉〉
(t) =

∑
J0

∑J0
M0=−J0

gJ0

〈
cos2 θ

〉
J0M0

(t) exp (−BJ0(J0 + 1)/kT )∑
J0

∑J0
M0=−J0

gJ0 exp (−BJ0(J0 + 1)/kT )
(3.17)

where
〈
cos2 θ

〉
J0M0

(t) is the alignment degree for a single individual state and given by Eq.
(3.14). The summation over J0 is done over all |J0M0〉 populated at an initial temperature
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T . Computationally, this summation is done until the result converges. The double brackets
in
〈〈

cos2 θ
〉〉

(t) stands for the expectation value with respect to the rotational wavepackets
(inner brackets) and that with respect to the Boltzmann distribution (outer brackets). In
what follows, Eq. (3.17) can be written as:

〈〈
cos2 θ

〉〉
= ΣJ0M0

[
ρ (J0)

〈
cos2θ

〉]
(3.18)

with ρ(J0) = 1
ZP

e−EJ0
/kT where k is the Boltzmann constant, T is the temperature, EJ0

is the rotational energy of the eigen state |J0M0〉, and Zp =
∑

J0
(2J0 + 1)e−EJ0

/kT is the
rotational partition function. For the sake of simplicity, the indices J0M0 are dropped from〈
cos2 θ

〉
. For the same reason, we omit the argument t from

〈
cos2 θ

〉
and other expectation

values.

It is important to note that the alignment degree is sensitive to molecular properties
(i.e. rotational constant B and nuclear statistics g), pulse parameter (peak intensity I and
pulse duration τ), and initial ensemble temperature (T ).

3.3 Type of Alignment

Depending on the duration of applied laser pulse, there are three kinds of alignments, known
as adiabatic alignment, dynamic alignment, and switched-off alignment [9]. In the first case,
a laser field is slowly turned on and turned off such that the molecules can adiabatically
adjust to the changing potential and rotate. The criterion ‘slowly’ can be satisfied by
using a pulse longer than the rotational period, from which this alignment is also known
as long pulse alignment. With a ‘long’ pulse, each eigenstate of the field-free Hamiltonian
is guaranteed to evolve adiabatically during the interaction [21], from which this methods
gets its name, adiabatic alignment. Adiabatic alignment can reach high alignment degree
but it is lost once the pulse is turned off. The second schema is the alignment by using a
‘short’ pulse that is rapidly turned on and turned off. This alignment shows recurrence even
after the pulse was turned off [23]. Unfortunately, this method can not reach an alignment
degree as high as in adiabatic alignment. This alignment is also known as short pulse
alignment (referring to the type of the applied pulse), non-adiabatic alignment (referring
to the non-adiabatic interaction), or kick alignment (referring to the impulse interaction by
the laser pulse). The third case is a ‘mixture’ between the long pulse and the short pulse
method: an applied pulse is slowly turned on but rapidly turned off [24]. This is similar to
a long pulse that is suddenly switched off at its peak. The last case takes all the benefits
of the two previous cases and provides a dynamic alignment with high alignment degree.
The recurring alignment of this case has been first seen experimentally for CO2 molecule
by observing the optical Kerr effect (OKE) signal [32].

For a Gaussian pulse g(t) = exp
(
−(t/τ)2

)
with pulse duration τ ≈ (3/5) FWHM , the

limit of ‘short’ and ‘long’ pulse depends on the ratio τ and ~/B. The earliest study was
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done by Ortigoso et al. [95] where they found an adiabatic alignment for τ ≥ 10(~/B) and
a dynamic alignment for τ � (~/B). Here we follow a simple description given by Spanner
[123]. cos2 θ hybridizes the rotational states that are characterized by ∆J = 0,±2. For a
transition with lowest initial state |0M〉 → |2M〉, the energy difference is ∆E = 6B. The
time scale related to that transition is ∆t ≈ 2π~

6B = π
3

( ~
B

)
. A more formal derivation using

the phase difference [124, 9] gives τlong pulse > π(~/B), where the quantity π(~/B) is also
known as the rotational period. For N2 with B = 1.989581 cm−1 we have ~/B = 2.65474
ps. Fig. 3.2 shows the expectation value

〈〈
cos2 θ

〉〉
of N2 of three different alignments. We

use τ = ~/B for a long pulse and τ = 24 fs for a short pulse.
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Figure 3.2: Alignment of N2 with pulse intensity of 0.8×1014W/cm2 and initial temperature
300 K. We use pulse duration τ = 2.6547 ps (panel a), τ = 24 fs (panel c), and a combination
of τ = 2.6547 ps for left side and τ = 24 fs for right (panel b). Solid (black) line is

〈〈
cos2 θ

〉〉
(left scale), whereas dashed (blue) line for pulse profile (right scale). Pulse profile for panel
c is not shown. The red line shows a period .

3.4 Dynamics Alignment: Some Expectation Values

The common expression for alignment degree is
〈〈

cos2 θ
〉〉

. Fig. 3.5 shows dynamic align-
ment for three linear molecules with different nuclear statistics. The dynamics returns to
its initial value after a ‘period’. Among the three molecules, N2 is the lightest, whereas
CO2 is the heaviest. For heavier molecule we have the longer rotational period, Trev, since
it is proportional to the molecular mass or Trev ∼ (1/B).

The revival signals for the three molecules generally mimic each other, but differ at
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Figure 3.3: Dynamics alignment of N2, O2, and CO2 with initial temperature 300 K. We
use laser pulse with peak intensity of 0.5 × 1014 W/cm2 for O2 and 0.8 × 1014 W/cm2 for
N2 and CO2 with FWHM 40 fs.

t = (2n − 1)Trev
4 with n an integer. The signal at t = (1/4) Trev is peaked up for O2 but

peaked down for CO2. The reverse situation occurs at t = (3/4) Trev. The other fact is the
alignment signal of N2 at these times mimics that of CO2 but with half the strength. This
phenomenon is related to the initial ensemble population where O2 has Jodd only, CO2 has
Jeven only, and N2 has both J with ratio Jeven = 2Jodd.

To understand the above phenomena, we plot the molecular axis distribution (Fig. 3.4)
which is given by

P (td, θ) =
∑
J0M0

ρ (J0) |ΦJ0M0 (td, θ)|2 . (3.19)

For calculating |ΦJ0M0 (td, θ)|2, we use the series form of spherical harmonics [103]

Ylm (θ, φ) = ξm0e
imφ

√
2l + 1

4π

(l + |m|)!
(l − |m|)!

sinm θ

|m|!2|m|

×F

(
−l + |m| , l + |m|+ 1, |m|+ 1; sin2 θ

2

)
(3.20)
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Figure 3.4: Molecular axis distribution of N2 (upper panel), O2 (middle panel), and CO2

(lower panel). The laser parameters are similar with ones of Fig. 3.3.
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where F (a, b, c;x) is a hypergeometric function and

ξm0 =

{
(−1)m if m > 0

1 if m ≤ 0
(3.21)

By comparing three figures in Fig. 3.4, we can see that

• Molecular axis distribution revives with a period which is specific for the molecule
and is related to the rotational constant of the molecule. This recurrence is the origin
of alignment-revival shown in Fig. 3.3.

• The distribution pattern at n (Trev/2) are similar for all molecules, since the corre-
sponding alignment degrees at these time delay have similar phase.

• The distribution pattern at (2n−1)Trev
4 is specific for a molecule since the correspond-

ing alignment degrees at these time delay have different phase. It will be shown later
that these two last phenomena are related to the nuclear spin statistics.

• From three distributions, the distribution of N2 has less yield at θ = 90o, due to the
stronger peak intensity of the pump pulse.

• For O2 and CO2, there is a weak revival at (2n− 1)Trev
8 , whereas it is absent for N2.

Once the wave function is known, one can calculate any other expectation values. Here
the calculation is done for

〈〈
sin2 θ

〉〉
and

〈〈
sin2 2θ

〉〉
. The expectation value of

〈
sin2 θ

〉
for

single initial state |J0M0〉 can be expressed as:

〈
sin2 θ

〉
J0M0

(t) =
〈
ΦJ0M0(t)

∣∣sin2 θ
∣∣ΦJ0M0(t)

〉
=

Jmax∑
J=2

aJ0M0∗
J−2,M0

(t) aJ0M0
JM0

(t) DJ,J−2,M0 exp (−iB(4J + 6)t/~)

+
Jmax∑

J

∣∣∣aJ0M0
JM0

(t)
∣∣∣2 DJ,J,M0 (3.22)

+
Jmax∑
J=0

aJ0M0∗
J+2,M0

(t) aJ0M0
JM0

(t) DJ,J+2,M0 exp (+iB(4J + 6)t/~)

Where DJ,J ′,M0 is given by [103]

DJ,J−2,M0 =
〈
JM0

∣∣sin2 θ
∣∣ J − 2,M0

〉
= − 1

2J − 1

√(
(J − 1)2 −M2

0

) (
J2 −M2

0

)
(2J − 3)(2J + 1)

DJ,J,M0 =
〈
JM0

∣∣sin2 θ
∣∣ JM0

〉
=

√
(J −M0 − 1)(J −M0)(J −M0 + 1)(J −M0 + 2)

(2J − 1)(2J + 1)
(3.23)
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Figure 3.5: Some expectation value of O2 at 300 K subject to laser field of intensity
0.5× 1014 W/cm2 with FWHM 40 fs. Solid (black) line for

〈〈
cos2 θ

〉〉
, dashed dotted (red)

line for
〈〈

sin2 θ
〉〉

, and dashed (blue) line for
〈〈

sin2 2θ
〉〉

.

+

√
(J + M0 − 1)(J + M0)(J + M0 + 1)(J + M0 + 2)

(2J + 1)(2J + 3)

DJ,J+2,M0 =
〈
JM0

∣∣sin2 θ
∣∣ J + 2,M0

〉
= − 1

2J + 1

√(
(J + 1)2 −M2

0

) (
(J + 2)2 −M2

0

)
(2J + 1)(2J + 5)

Unlike cos2 θ and sin2 θ that mix J ’s that differ by 0,±2 with fixed M , sin2 2θ hybridizes
J ’s that differ by 0, ±2 ± 4 with fixed M0. The expectation value of

〈
sin2 2θ

〉
is given by

〈
sin2 2θ

〉
J0M0

(t) =
〈
ΦJ0M0(t)

∣∣sin2 2θ
∣∣ΦJ0M0(t)

〉
=

Jmax∑
J=4

aJ0M0∗
J−4,M0

(t) aJ0M0
JM0

(t) FJ,J−4,M0 exp (−iB(8J + 20)t/~)

+
Jmax∑
J=2

aJ0M0∗
J−2,M0

(t) aJ0M0
JM0

(t) F J,J−2,M0 exp (−iB(4J + 6)t/~)

+
Jmax∑

J

∣∣∣aJ0M0
JM0

(t)
∣∣∣2 FJ,J,M0 (3.24)

+
Jmax∑
J=0

aJ0M0∗
J+2,M0

(t) aJ0M0
JM0

(t) FJ,J+2,M0 exp (iB(4J + 6)t/~)

+
Jmax∑
J=0

aJ0M0∗
J+4,M0

(t) aJ0M0
JM0

(t) FJ,J+4,M0 exp (iB(8J + 20)t/~)

Where the matrix elements are given by

FJ,J−4,M0 =
˙
JM0

˛̨
sin2 2θ

˛̨
J − 4, M0

¸
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=
−4

(2J − 5)(2J − 3)(2J − 1)

×

s
((J − 1)2 −M2

0 )
`
(J − 2)2 − (M0 + 1)2

´
(J2 −M2

0 ) (J −M0 − 1) (J + M0 − 3)

(2J − 7)(2J + 1)

FJ,J−2,M0 =
˙
JM0

˛̨
sin2 2θ

˛̨
J − 2, M0

¸
=

−4 (2M0 + 1)

(2J − 5)(2J − 1)2

s
((J − 2)(J − 1)−M0 (M0 + 1)) (J2 −M2

0 ) (J −M0 − 2) (J −M0 − 1)

(2J − 3)(2J + 1)

+
4 (2M0 + 1)

(2J − 1)2(2J + 3)

s `
J2 − (M0 + 1)2

´
(J(J + 1)−M0 (M0 + 1)) (J + M0 − 1) (J + M0)

(2J − 3)(2J + 1)

FJ,J,M0 =
˙
JM0

˛̨
sin2 2θ

˛̨
JM0

¸
= 4

q
((J + 1)2 −M2

0 )
`
(J + 2)2 − (M0 + 1)2

´
(J + M0 + 1) (J + M0 + 2)2 (J + M0 + 3)

(2J + 1)(2J + 3)2(2J + 5)

+ 4
(2M0 + 1)2 (J(J + 1)−M0 (M0 + 1))

((2J − 1)2(2J + 3))3
(3.25)

+ 4

q`
(J − 1)2 − (M0 + 1)2

´
(J2 −M2

0 ) (J −M0 − 2) (J −M0 − 1)2 (J −M0)

(2J − 3)(2J − 1)2(2J + 1)

FJ,J+2,M0 =
˙
JM0

˛̨
sin2 2θ

˛̨
J + 2, M0

¸
=

4 (2M0 + 1)

(2J + 3)2(2J + 7)

s
((J + 1)2 −M2

0 ) ((J + 2)(J + 3)−M0 (M0 + 1)) (J + M0 + 2) (J + M0 + 3)

(2J + 1)(2J + 5)

− 4 (2M0 + 1)

(2J − 1)(2J + 3)2

s
(J(J + 1)−M0 (M0 + 1))

`
(J + 1)2 − (M0 + 1)2

´
(J −M0 + 1) (J −M0 + 2)

(2J + 1)(2J + 5)

FJ,J+4,M0 =
˙
JM0

˛̨
sin2 2θ

˛̨
J + 4, M0

¸
=

−4

(2J + 3)(2J + 5)(2J + 7)

×

s
((J + 1)2 −M2

0 ) ((J + 3)2 −M2
0 )

`
(J + 3)2 − (M0 + 1)2

´
(J −M0 + 4) (J + M0 + 2)

(2J + 1)(2J + 9)

Figure 3.5 shows some expectation values of O2. Like any linear operator, these expectation
values also follow the summation rules, such as

〈
sin2 θ

〉
+
〈
cos2 θ

〉
= 1 and

〈
sin2 2θ

〉
=

4
(〈

cos2 θ
〉
−
〈
cos4 θ

〉)
= 4

〈
sin2 θ cos2 θ

〉
.

3.5 Periods and Phase of Revival Structures

We consider a Gaussian pulse centered at t0 = 0 with time profile g(t) = exp
(
−t2/τ2

)
.

For a short pulse with τ → 0, the time evolution of the initial wave function |J0M0〉
under Hamiltonian (Eq. (3.5)), can be approximated, up to order τ , by a propagator
S(t) = exp

(
−(i/~)

∫
H(t′)dt′

)
as [40, 114]

|ΦJ0M0(t)〉 = exp

(
−(i/~)

∫
H(t′)dt′

)
|ΦJ0M0(0)〉

=
∑
JM

|JM〉 〈JM |
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×exp

(
−(i/~)

(
EJ t−∆ω cos2 θ

∫
g(t′)dt′ − ω⊥

∫
g(t′)dt′

))
|J0M0〉

=
∑
JM

|JM〉 〈JM |

×exp
(
−(i/~)

(
EJ t−B∆ω cos2 θG(t)−Bω⊥G(t)

))
|J0M0〉 (3.26)

with G(t) is given by

G(t) =
∫ t

−∝
exp(−t′2/τ2)dt′

= σ

√
π

2

(
1 + erf

(
t

τ

))
(3.27)

Because erf(12) ' 1, so that for t ≥ 12τ we obtain

G(t ≥ 12τ) = τ
√

π (3.28)

and Eq. (3.26) can be written as

ΦJ0M0(t ≥ 12τ) =
∑
JM

|JM〉 〈JM | exp
(
−(i/~)(EJ −Bω⊥τ

√
π)t
)

×exp
(
(i/~)B∆ωτ

√
π cos2 θ

)
|J0M0〉

= exp (−(i/~)τV0t)
∑
JM

|JM〉 〈JM | exp (−(i/~)EJ t)

×exp
(
(i/~)τV1 cos2 θ

)
|J0M0〉 (3.29)

where V0 = Bω⊥
√

π and V1 = B∆ωτ
√

π. The wave function now consists of three com-
ponent factors. The first component is just a phase shift component that is coordinate
independent and is removed by the product with its conjugate. The second factor is phase
dependent. The interaction is governed by the last one that can be expanded in a series,
and we get

|ΦJ0M0(t ≥ 12τ)〉 = exp (−(i/~)τV0t)
∑
JM

|JM〉 〈JM | exp (−(i/~)EJ t)

×
[
1 +

iτV1

~
cos2 θ − (τV1)2

2!~2
cos4 θ − (τV1)3

3!~3
cos6 θ + .....

]
|J0M0〉

= exp (−(i/~)τV0t)

×
∑

j=0,±1,±2,...

exp (−(i/~)EJ0±2jt) bJ0M0
J0+2j,M0

|J0 + 2j, M0〉 (3.30)

Above, |J0M0〉 hybridizes to |J0 + 2j, M0〉 with j = 0,±1,±2, ... as a results of interaction
with cos2 θ (cf. Hamiltonian of Eq. (3.3)). The expectation value of cosN θ can be expressed
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as

〈
cosN θ

〉
J0M0

(t) =
〈
ΦJ0M0(t)

∣∣cosN θ
∣∣ΦJ0M0(t)

〉
=

∑
N=0,±2,...,±N

∑
j

[
bJ0M0∗
J0+2j, M0

bJ0M0
J0+2j+N, M0

× exp (−i (EJ0+2j+N − EJ0+2j))
]

(3.31)

The phase operator of the expectation of
〈
cosN θ

〉
for any single initial state |J0M0〉, of

a system whose Hamiltonian is proportional to cos2 θ, reads

∆φJ0
2,N = 2πBct

(
2NJ0 + N2 + N + 4Nj

)
(3.32)

For the system whose Hamiltonian is proportional to cosn θ, the above equation reads:

∆φJ0
n,N = 2πBct

(
2NJ0 + N2 + N + 2nNj

)
(3.33)

Above N = |∆J |max and for
〈
cos2 θ

〉
it is equal to 2. The quantity in the bracket is always

even for any combination (N, J0, j), therefore the full revival occurs whenever 2πBct = π

giving the well known revival period [25, 44, 45]

Trev =
1

2Bc
(3.34)

where B and c are in cm−1 and cm/second, respectively.1 For higher transition with N > 2,
the quantities in the bracket is (N/2) multiple of an even number. As a consequence, one
should find also the shorter revival periods TN

rev = 1
(N/2)2Bc = 1

NBc = Trev
(N/2) , which is more

general than Eq. (3.34). In Fig. 3.7, we show the dynamic expectation value of
〈〈

sin2 2θ
〉〉

of O2, corresponding to N = |∆J | = 0, 2, 4. For N = 0, we obtain a constant signal (panel
b). For N = 2, we obtain TN=2

rev = Trev
2/2 = Trev = 11.6 ps (panel c). For N = 4, we obtain

TN=4
rev = Trev

4/2 = Trev
2 = 5.8 ps (panel d). However, since transition with N = 4 also includes

the lower one with N = 2, the observed period is Trev = 11.6 ps (panel a). These phenomena
have been observed experimentally [71].

For phase matching that is independent of j and J0, the condition 2πBct2Nnj = 2πjk

must be fulfilled, from which we get the lowest fractional revival

tfr =
k

2BcNn
=

k

Nn
Trev (3.35)

where k is an integer fulfills k ≤ Nn. Eq. (3.35) shows that the fractional revival tfr

depends on the interaction Hamiltonian via n, molecular properties via Trev = 1/2Bc, and
the order of measured expectation value

〈
cosN θ

〉
via N . As seen in Fig. 3.5, we find that

1In atomic units, Eq. (3.34) reads Trev = π
2B

. Another popular expression is Trev = 1
2B

with B is given
in MHz.
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Figure 3.6: The lowest fractional revival of dynamics alignment of O2 for
〈〈

cos4 θ
〉〉

at
Trev/12 (upper panel) and

〈〈
cos6 θ

〉〉
at Trev/16 (lower panel). Note hat these fractional

revivals are so small that does not appear in full figure. We use here the pulse of intensity
0.5× 1014 W/cm2 and FWHM 40 fs with initial temperature 300 K.

for interaction Hamiltonian cos2 θ or n = 2, the lowest revival periods are 1
4Trev for

〈
cos2 θ

〉
(N = 2) and 1

8Trev for
〈
sin2 2θ

〉
(N = 4), respectively. An interaction Hamiltonian with

cos θ or n = 1 shows that its dynamic orientation 〈cos θ〉 or N = 1 has the lowest revival
at Trev [125, 126]. Our result is more general and more complete than the previous results
with models obeying the interaction Hamiltonian [45, 127, 128, 129].

In general, Eq. (3.35) always hold for any combination (N,n). The only restriction is
coming from the fact that for large N the matrix element is so small that the fractional
revival can not be observed. Fig. 3.6 shows a lowest fractional revival for

〈
cos6 θ

〉
(N = 6)

and
〈
cos8 θ

〉
(N = 8).

We now consider the alignment degree
〈
cos2 θ

〉
(N = 2) generated by Hamiltonian

cos2 θ (n = 2). For this case, the relative phases of the revival structures (Eq. (3.32)) can
be written as

∆φJ0
2,2(t) = 2π

t

Trev
(2J0 + 3 + 2j) (3.36)

It follows that ∆φJ0
2,2(Trev) − ∆φJ0

2,2(Trev/2) = π (2J0 + 3 + 2j). As a result, the wave
packet at t = Trev/2 is π out phase with respect to that at t = Trev. Therefore the half-
revival is nearly an exact mirror image of the full revival (that is independent of J0 and j).
It is also possible to compare the revival properties between Jeven and Jodd at such time as



42 CHAPTER 3. DYNAMIC ALIGNMENT

0.48

0.52

0.56

0.48

0.52

0.56

-0.06

-0.03

0

0.03

0.06

0 2 4 6 8 10

Delay time (ps)

-0.06

-0.03

0

0.03

0.06

(a)

(b)

(c)

(d)

T
rev

/2

Figure 3.7: Revival structure of
〈〈

sin2 2θ
〉〉

of O2, for the total frequency (panel a), with
∆J = 0 only (panel b), with ∆J = ±2 only (panel c), and with ∆J = ±4 only (panel d).
It is clear that the transition with ∆J = ±4 has lowest fractional revival at 1

8Trev. Panel
(d) also tells us that the transition with ∆J = ±4 has rotational period 1

2Trev.
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Figure 3.8: Dynamics alignment
〈〈

cos2 θ
〉〉

of N2 with same parameter of Fig. 3.3. Panel
(a): dynamics for single initial state |50〉 only (blue) and for all odd J with Jmax = 19
(black). Panel (b): for |60〉 only (blue) and all even J with Jmax = 20 (black). Panel (c):
for all J with Jmax = 20. We use here pulse of intensity 0.8 × 1014 W/cm2 and FWHM 40
fs with initial temperature 300 K.
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∆φJ0+1
2,2 (Trev) − ∆φJ0

2,2(Trev) = 4π

∆φJ0+1
2,2 (Trev/2) − ∆φJ0

2,2(Trev/2) = 2π

∆φJ0+1
2,2 (Trev/4) − ∆φJ0

2,2(Trev/4) = π

(3.37)

Eq. (3.37) tells us that at 1
4Trev the phase of Jeven is an exact mirror image of the phase

of Jodd, as shown at Fig. 3.8. Thus, we predict that O2 with Jodd only has a peak at
Trev/4, whereas CO2 with Jeven only has a valley at Trev/4. For N2 with Jeven = 2Jodd,
the revival at Trev/4 is similar with one of Jeven only but with half the intensity. Vice
verse, we can predict the nuclear statistics of such a molecule by comparing the revival
shape at Trev/2 and Trev/4. Let’s define a modulation amplitude at half revival to be equal
to the difference between peak and the average signal (A1/2 = Stop

1/2 − Save
1/2). Similarly, a

modulation amplitude at quarter revival is equal to the difference between peak and the
average signal (A1/4 = Stop

1/4 − Save
1/4). The amplitude at half revival is a sum of even and

odd J contribution, and therefore A1/2 is always positive. In contrast, the amplitude at
quarter arises from their difference, and therefore A1/4 can be positive (if it makes a top) or
negative (if it makes an anti-top). Therefore, the existence of a top (an anti-top) at quarter
revival is a sign that even (odd) J is dominant. We can deduce the nuclear ratio between
the even and the odd J by using

Jeven

Jodd
=

A1/2 −A1/4

A1/2 + A1/4
(3.38)

The dynamic signal of O2 satisfies A1/2 = A1/4 indicating absence of the even J . In contrast,
A1/2 = −A1/4 for CO2, indicating absence odd J . For N2, we have A1/4 = −1

3A1/2, and
hence we have Jeven : Jodd = 2 : 1. This property can be used for detecting the existence of
isotope in a molecular sample, as suggested recently [12].

3.6 Beat Frequencies

From Eq. (3.22), it is seen that the phase difference associated with
〈〈

cos2 θ
〉〉

is (B/~)(4J+
6). For B in cm−1, the phase difference reads

∆φ (J → J ± 2) = 2πBc(4J + 6) (3.39)

with c in cm/second. According to Eq. (3.39), one can make a Fourier transform of〈
cos2 θ

〉
using Bc as basis frequency and find a series of peaks at (4J + 6). Fig. 3.9 shows

the Fourier transform of
〈〈

cos2 θ
〉〉

of N2, O2, and CO2. The spectrum of O2 has peak series
at (10, 18, 26, ..)Bc = (4Jodd + 6)Bc, showing that O2 has odd J only. In contrast, the peak
series of CO2 are located at (6, 14, 22, 30, ...)Bc = (4Jeven + 6), showing that CO2 has even
J only. For N2, we obtain a peak series (6, 14, 22, 30, ...)Bc = (4Jeven + 6) is twice greater
than that of (10, 18, 26, ..)Bc = (4Jodd + 6)Bc. It means that both J present in N2, where
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Figure 3.9: Fourier transform of dynamics alignment of Fig. 3.3, plotted using Bc as basis
frequency (lower scale). Following 4J + 6 rule for

〈〈
cos2 θ

〉〉
, it is clear that the peak

frequencies occur for J odd only for O2, even only (CO2), and both even and odd (N2).
The corresponding J values are shown in upper scale.

Jeven : Jodd = 2 : 1. These conclusion are in agreement with that obtaining by investigating
the dynamic signal.

For
〈〈

sin2 2θ
〉〉

, there are two kinds of phase differences (Eq. (3.24)). The first one is
related to the transition with ∆J = ±2 and is expressed by Eq. (3.39). The second one is
related to transition with ∆J = ±4 and can be expressed as

∆φ(J → J ± 4) = 2πBc(8J + 20) (3.40)

As a results, in addition to the series of (4J + 6), the Fourier transform of
〈〈

sin2 2θ
〉〉

also
has another series peaked at (8J + 20), with beats at ∆J = 4. Fig. 3.10 shows the Fourier
transform of

〈〈
sin2 2θ

〉〉
of O2.

It is seen from Fig. 3.10, that the first transition (∆J = ±2) reaches its maximum at
Jmax = 11, while the second one (∆J = ±4) at Jmax = 13. This difference comes from
the fact that the ∆J = 4 transition requires ∆J = 2 as an intermediate transition. As a
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Figure 3.10: Fourier transform of
〈〈

sin2 2θ
〉〉

of O2 : whole frequencies (panel a), beat
frequencies coming from transition with ∆J = ±2 only (panel b), and beats frequencies
coming from transition with ∆J = ±4 (panel c). We use here pulse of intensity 0.5 ×
1014 W/cm2 and FWHM 40 fs with initial temperature 300 K.

result, ∆J = 4 comes one step after ∆J = 2 transition. For O2 containing Jodd only, one
step means shifting J by 2 (see Eq. (3.24)).

From Fig. 3.10 one can also find that the intensity of the second transition is smaller
than the first one. This fact is qualitatively related to the matrix element (Eq. (3.25))
where the element for the second transition is weaker than that of the first transition.

3.7 Temperature Effect

Consider that initially the molecule is in a state |J0M0〉. The laser interaction will change
the rotational state as |J0M0〉 → |J ′0,M0〉. Unlike an up transition where the molecule can
find any J ′0 state, there is a restriction for a down transition so that J ′0 ≥ M0. As a result,
the new wave packet would consist of states with higher J ′0 ≥ M0 (meaning that the vector
of rotational angular momentum tends to lie in plane perpendicular to laser polarization
direction). Since the rotational angular momentum is perpendicular to the internuclear axis
in diatomic molecules, the condition J ′0 ≥ M0 means that the molecular axis would tend to
align in the direction of the laser polarization. This is the reason why the alignment angle
after the laser interaction is always smaller than one before the interaction. In other words,
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Figure 3.11: Signature of initial temperature of jet gas O2, on the molecular axis distribution
(panel a-b) of O2, on the expectation value of
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(panel c-d), and the Fourier

spectrum (panel e-f). The molecular distribution on panel a-b are given at various time
delay, i.e. at top alignment t = 5.649 ps (blue, dashed line), at average alignment t =
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radii are in same scale. The peak intensity of laser field is 0.5× 1014 W/cm2 with FWHM
40 fs.
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Figure 3.12: Mean energy of O2 before and after interaction with the laser pulse, for different
initial temperature. The peak intensity of laser field is 0.5×1014 W/cm2 with FWHM 40 fs.

the alignment degree after the laser interaction is always higher than the one before the
interaction. For a lower initial temperature we have lower initial M0 so that the ratio J ′0 to
M0 is higher. As consequences, for lower initial temperature the

〈〈
cos2 θ

〉〉
and

〈〈
sin2 2θ

〉〉
values are higher. It means that for lower initial temperature, molecule is easier to align.
Fig. 3.11(c-d) shows a dynamic plot of

〈〈
sin2 2θ

〉〉
for different initial temperatures. The

corresponding molecular distributions are shown in Fig. 3.11(a-b).
It is also seen from Fig. 3.11 (e-f) that for a higher initial temperature, the Fourier

transform has a higher Jmax. The Jmax value should reflect both the initial temperature
and the ‘rotational heating’ due to laser interaction. A previous calculation [125] in fact
showed that the J population depended on the laser intensity chosen.

Fig. 3.12 shows the mean energy before and after the interaction with the laser pulse.
As expected, the figure shows increasing the mean energy of the molecule and therefore also
raising up the ‘temperature’. However, the final system is not an equilibrium system but a
dynamical system that can not be characterized by a temperature rigorously.

3.8 Does Probe Pulse Affect The Dynamic Alignment?

To observe alignments of molecules by a pulse, one needs another pulse either e.g. to ionize
molecule, or to dissociative the molecule, or to generate a high harmonic signal. (We call
the first and second pulse as the pump and the probe pulse, respectively.)

So far it is assumed that the alignment is due to the pump pulse only, while the second
one only gives the observed signal, without rotating it during the short duration of the probe
pulse. To check the validity of this assumption, we directly compare here the alignment
by the pump pulse only with that obtained by using both the pump and the probe pulses.
For the second schema, we allow the possibility that the probe pulse also may rotate the
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Figure 3.13: Dynamics alignment of
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cos2 θ
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(upper panel) and
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sin2 2θ
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(lower panel)
of O2 at 300 K subject to laser pulses of Ipump = 0.8 × 1014W/cm2 and Iprobe = 1.7 ×
1014W/cm2 with FWHM 40 fs. We keep second pulse to interact for 40 fs.

molecule before generating the observed signal. The field is assumed to consist of the sum
of the two pulses:

ε(t) = ε1(t) + ε20(t−∆t)

= ε10

√
g1(t)cos(ω1t) + ε20

√
g2(t−∆t)cos(ω2(t−∆t)) (3.41)

and

〈
ε2(t)

〉
=

1
2
ε2
10g1(t) +

1
2
ε2
10g1(t−∆t)

+2ε10ε20g1(t)g2(t−∆t) 〈(cos (ω1t)) (cos (ω2(t−∆t)))〉 (3.42)

In the above indices 1 and 2 stand for pump and probe pulse, respectively. ∆t is the
delay time between the two pulses. For two pulses, dynamic alignment is characterized by
pump and probe intensity, pump and probe time profiles, delay time between them, and
interaction time (i.e. delay time between entering probe pulse and observing signal) 2.

The schema for alignment by the pump and the probe pulses is the following. The probe
pulse is given ∆t after the pump pulse. We let the probe pulse to interact with the molecule
at a given time and then take the

〈〈
cos2 θ

〉〉
value and plot as function of the delay time ∆t,

2It is important to distinguish the present work with the alignment by using multi pulses, as first intro-
duced theoretically by Leibscher et. al. [130, 34] and realized in a experiment by Lee et. al. [35, 131]. In
their works, they aligned molecules with two (or more) sequential pulses but assumed the probe pulse to
generate observed signal only and not enhance the alignment.



3.9. COMPARISON WITH PHYSICAL OBSERVABLE 49

as shown in Fig. 3.13. We choose here the pulse duration as the interaction time between
the probe pulse and the molecule. The results shows that the probe pulse does not change
the dynamics of

〈〈
cos2 θ

〉〉
except in two aspects. First, the probe pulse intensity adds up

the intensity of the pump pulse and enhances the alignment process prepared and generated
by the pump pulse, so that the expectation value of

〈〈
cos2 θ

〉〉
with two pulses is higher

than the one with pump pulse only. Second, the alignment enhancement by the probe pulse
depends on the delay time between the two pulses and reaches a maximum when the slope
of alignment degree is positive. This means that the degree of alignment is enhanced before
its maximum and as a consequence reaches the maximum earlier than the alignment with
one pulse only, as seen in Fig. 3.13.

In general, these aspects do not change the general characteristic of the dynamical
signals and their Fourier transforms. Therefore, based on the above understanding, one can
neglect the probe effect on the dynamics of alignment.

3.9 Comparison with Physical Observable

To compare the calculated alignment degree with the experimental results, one must take
in to account the following factors. (1) The probe schema. As mentioned in chapter
1, the dynamic alignment can be probed through many ways such as ionization [26, 27],
dissociation [25, 44], HHG [69, 70, 43], or optical Kerr effect (OKE) [28, 32]. (2) The
alignment-dependence of interaction which depends on the HOMO of molecule, which will
be investigated in chapter 4 and 5. (3) The geometric schema of experiment including the
relative angle between the pump and the probe pulse, as will be investigated in chapter 7.
(4) The medium properties, where some medium is dissipative [132]. In this work we limit
our investigation for alignment in non-dissipative medium only.
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Chapter 4

Application to Diatomic Molecules:

Case N2 and O2

The main features of the dynamic HHG signals in N2 and O2 may be summarized as
follows. It was observed by several authors [69, 133, 70, 72, 71, 82, 134, 43] that the delay-
time HHG signal obtained in pump-probe experiments for N2 strongly mimicked the usual
alignment degree defined by the expectation value

〈〈
cos2 θ

〉〉
(td), where td was the delay

between the probe and the pump pulses. This result exhibited the well-known phenomenon
of rotational revival [44, 9] including the full-revival with a period Trev = 1

2Bc , where B was
the rotational constant [117], as well as a 1

2 -revival, and a 1
4 -revival, which were consistent

with the behavior of
〈〈

cos2 θ
〉〉

(td). In the case of O2 also the analogous full-revival, 1
2 -

revival, and the 1
4 -revival were observed but more interestingly also an unexpected 1

8 -revival
appeared in the delay-time dependent signal [70, 43, 71, 134].

To fit the observational data of O2, Itatani et al. [70] proposed empirically to take the
expectation value

〈〈
sin2 2θ

〉〉
(td). Subsequently, a theoretical model of the HHG signal

[88, 89] obtained a similar result for O2 and
〈〈

cos2 θ
〉〉

(td) for N2, which appeared to
justify the empirical models to fit the data in N2 and O2. These results also suggest that
the maximum HHG signal of N2 occurs when laser field polarization and molecular axis are
parallel whereas the maximum signal of O2 occurs when they make an angle 45o.

Careful examination, however, has revealed surprising discrepancies with the above un-
derstanding of the HHG signals from N2 and O2. First: The HHG signal of N2 observed
by Itatani et al. [70] showed asymmetrically greater ‘hill’ (the difference between the top
and the average signal) than ‘valley’ (the difference between the anti-top and the average
signal). On the other hand, the

〈〈
cos2 θ

〉〉
(td) for N2 has the ‘hill’ almost equal to the

‘valley’. Second: Kanai et al. [43] found that their experimental HHG signals for N2 and
O2 could not be fitted by the expectation values of the operators cos2 θ and sin2 2θ, alone.
They proposed additional operators involving higher powers of them, to fit the data empir-
ically. Third: Miyazaki et al. [82, 135, 71] measured the dynamical HHG signals of N2 and
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Table 4.1: Explicit form of dl
0m(θ) required for evaluating Eqs. (4.3) and (4.10) [103, 104]

l N2 (m = 0) O2 (m = 1)
0 1 -

2 1
2

(
3 cos2 θ − 1

) √
3
2 sin θ cos θ

4 1
8(3− 30 cos2 θ + 35 cos4 θ) −

√
5

4 sin θ cos θ
(
3− 7 cos2 θ

)
O2 and Fourier transformed their signals and discovered extra series of peaks, for both the
N2 and the O2 spectra, that could not be associated with the respective Fourier transform
of
〈〈

cos2 θ
〉〉

(td) for N2 and of
〈〈

sin2 2θ
〉〉

(td) for O2.

In this chapter, we apply the present theory to the molecules N2 and O2 and obtain
explicit analytic expressions for the HHG operators governing their pump-probe HHG sig-
nals. The analytic result is then used to analyze the recent experimental data obtained
for non-adiabatically aligned molecules, in the usual case of parallel polarizations, and it
provides a unified interpretation of the salient experimental features, observed.

4.1 Explicit Expression of HHG Transition Operator for N2

and O2

4.1.1 HHG operator T
(n)
e (θ) and dynamic signal for N2

We start with N2 whose HHG spectra have been extensively observed [69, 43, 70, 134].
N2 has molecular symmetry σg [136], and we approximate its highest occupied molecular
orbital (HOMO) by the asymptotic approximation obtained from single center wavefunction
of the molecule [101] in the body-frame as

φ(bf)
e (r) =

∑
l=0,2,4

C
(0)
l Rl(r)Yl0(r̂) (4.1)

i.e. with m = 0 and l = 0, 2, 4 [105, 106].

Evaluating the HHG operator (Eq. (2.69)) for m = 0 and li, lr = 0, 2, 4 for N2 we get
the results

T (n)
e (θ) =

∑
li,lr=0,2,4

{
dlr

00(θ)ã
n
zz(lr, li; 0)dli

00(θ)
}

(4.2)

Where ãn
zz(lr, li; 0) is the electronic part of the Fourier transform of the expectation value of

the electronic dipole operator, given by Eq. (2.70), with the initial angular momentum li,
the final angular momentum lr, and the conserved projection of the angular momentum of
the electron along the molecular axis, m = 0. Using the expressions for the reduced rotation
matrices dl

00(θ) from Tab. 4.1 and simplifying them, we may rewrite the HHG operator of
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N2 as a sum of powers of cos2 θ only,

T (n)
e (θ) = b

(n)
0 + b

(n)
1 cos2 θ + b

(n)
2 cos4 θ + b

(n)
3 cos6 θ (4.3)

where the coefficients b
(n)
j s read,

b
(n)
0 = ã(n)

zz (0, 0; 0)− 1
2
ã(n)

zz (2, 2; 0) +
3
8
ã(n)

zz (4, 4; 0)− 1
2

(
ã(n)

zz (0, 2; 0) + ã(n)
zz (2, 0; 0)

)
+

3
8

(
ã(n)

zz (0, 4; 0) + ã(n)
zz (4, 0; 0)

)
− 3

16

(
ã(n)

zz (2, 4; 0) + ã(n)
zz (4, 2; 0)

)
b
(n)
1 =

3
2
ã(n)

zz (2, 2; 0)− 15
4

ã(n)
zz (0, 0; 0) +

3
2

(
ã(n)

zz (0, 2; 0) + ã(n)
zz (2, 0; 0)

)
−15

4

(
ã(n)

zz (0, 4; 0) + ã(n)
zz (4, 0; 0)

)
− 21

16

(
ã(n)

zz (2, 4; 0) + ã(n)
zz (4, 2; 0)

)
b
(n)
2 =

35
8

(
ã(n)

zz (0, 4; 0) + ã(n)
zz (4, 0; 0)

)
− 55

16

(
ã(n)

zz (2, 4; 0) + ã(n)
zz (4, 2; 0)

)
b
(n)
3 =

150
16

(
ã(n)

zz (2, 4; 0) + ã(n)
zz (4, 2; 0)

)
(4.4)

Thus, by using Eq. (2.49), the nth harmonic signal for N2 becomes

S(n)(td) = c
(n)
00 + c

(n)
01

〈〈
cos2 θ

〉〉
(td) + c

(n)
11

〈〈
cos2 θ

〉2〉 (td) + c
(n)
02

〈〈
cos4 θ

〉〉
(td)

+c
(n)
12

〈〈
cos2 θ

〉 〈
cos4 θ

〉〉
(td) + c

(n)
03

〈〈
cos6 θ

〉〉
(td) + c

(n)
13

〈〈
cos2 θ

〉 〈
cos6 θ

〉〉
(td)

+c
(n)
22

〈〈
cos4 θ

〉2〉 (td) + c
(n)
23

〈〈
cos4 θ

〉 〈
cos6 θ

〉〉
(td) + c

(n)
33

〈〈
cos6 θ

〉2〉 (td) (4.5)

Or it is simply written as

S(n)(td) =
3∑

j=0

3∑
j′≥j

c
(n)
jj′

〈〈
cos2j θ

〉〈
cos2j′ θ

〉〉
(td) (4.6)

where the coefficients c
(n)
j,j′ are related to b

(n)
j as follow

c
(n)
j,j′ =


∣∣∣b(n)

j

∣∣∣2 for j = j′

2Re
(
b
(n)
j b

(n)∗
j′

)
for j 6= j′

(4.7)

4.1.2 HHG operator T
(n)
e (θ) and dynamic signal for O2

O2 has the symmetry πg [136], and thus we approximate its HOMO by the asymptotic
approximation from single center molecule with m = 1 and l = 2, 4 [105, 106] in the body-
frame

φ(bf)
e (r) =

∑
l=2,4

C
(1)
l Rl(r)Yl1(r̂). (4.8)
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Figure 4.1: The calculated squared asymptotic wavefunction for N2 (left panel) and O2

(right panel).

The HHG operator (Eq. (2.69)) for O2 therefore reduces to

T (n)
e (θ) =

∑
li,lr=2,4

{
dlr

01(θ)ã
(n)
zz (lr, li; 1)dli

01(θ)
}

(4.9)

By using the expressions for the reduced rotation matrices dl
01(θ) from Tab. 4.1 and sim-

plifying them, we may rewrite the HHG operator of O2 as a sum of powers of sin2 θ cos2n θ

only 1

T (n)
e (θ) = b

(n)
1 sin2 θ cos2 θ + b

(n)
2 sin2 θ cos4 θ + b

(n)
3 sin2 θ cos6 θ (4.10)

where b
(n)
j -coefficients are given by

b
(n)
1 =

3
2
ã(n)

zz (2, 2; 1) +
45
16

ã(n)
zz (4, 4; 1)− 3

4

√
15
2

(
ã(n)

zz (2, 4; 1) + ã(n)(4, 2; 1)
)

b
(n)
2 = −105

8
ã(n)

zz (4, 4; 1) +
7
4

√
15
2

(
ã(n)

zz (2, 4; 1) + ã(n)
zz (4, 2; 1)

)
b
(n)
3 =

245
16

ã(n)
zz (4, 4; 1) (4.11)

Finally, by substituting operator expression (Eq. (4.10)) in Eq. (2.49), we obtain the nth
harmonic signal of O2

S(n) (td) = c
(n)
11

〈〈
sin2 θ cos2 θ

〉2〉 (td) + c
(n)
12

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos4 θ

〉〉
(td)

+c
(n)
13

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos6 θ

〉〉
(td) + c

(n)
22

〈〈
sin2 θ cos4 θ

〉2〉 (td)

1It is also possible to express the HHG operator of O2 as

T (n)
e (θ) = b

(n)
I cos2 θ + b

(n)
II cos4 θ + b

(n)
III cos6 θ + b

(n)
IV cos6 θ

where b
(n)
I = b

(n)
1 , b

(n)
II = b

(n)
2 − b

(n)
1 , b

(n)
III = b

(n)
3 − b

(n)
2 , and b

(n)
IV = −b

(n)
3 . Expressing HHG operator of O2

(and other molecules) in cos θ powers gives a unified representation for HHG operators of aligned molecules.
However, expressing HHG operator of O2 in sin θ cos θ power gives somewhat more physical insight [70]. We
use the last expression in this work.
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Table 4.2: The molecular properties of N2 and O2 used in this work. Ip is ionization
potential, B is rotational constant of molecule, α‖ and α⊥ are parallel and perpendicular

polarizability, and C
(m)
l ’s are angular coefficient of electronic wave function.

N2 O2 Ref.
HOMO σg, m = 0 πg, m = 1 [136, 117]
Ip (eV) 15.58 12.03 [105]

B (cm−1) 2.0 1.4377 [121]
α‖

(
Å3
)

2.38 2.35 [118]

α⊥

(
Å3
)

1.45 1.21 [118]

C
(m)
0 2.02 - [105]

C
(m)
2 0.78 0.62 [105]

C
(m)
4 0.04 0.03 [105]

+c
(n)
23

〈〈
sin2 θ cos4 θ

〉 〈
sin2 θ cos6 θ

〉〉
(td) + c

(n)
33

〈〈
sin2 θ cos6 θ

〉2〉 (td) (4.12)

Or it is simply written as

S(n)(td) =
3∑

j=1

3∑
j′≥j

c
(n)
j,j′

〈〈
sin2 θ cos2j θ

〉〈
sin2 θ cos2j′ θ

〉〉
(td) (4.13)

Above, coefficients c
(n)
j,j′ are related to b

(n)
j coefficients of Eq. (4.11) through Eq. (4.7).

Eq. (4.6) [Eq. (4.13)] is an exact expression of dynamic HHG signal of N2 [O2] at time
td after the pump pulse. The value of 〈〈f(θ)〉〉 depends on the pump parameters, the initial
temperature, and the molecular properties such as polarizability, nuclear spin statistics,
and molecular rotational constant. We note that, in general, the value of 〈〈f(θ)〉〉 decreases
with increasing orders of f(θ). On the other hand, c

(n)
j,j′ coefficient depends on the probe

parameters and the molecular properties such as ionization potential and HOMO symmetry.
As mentioned above, c

(n)
j,j′ depends on ã

(n)
zz (lr, li;m) through b

(n)
j . It will be shown later that

ãzz(lr, li;m) depends on (lr, li) such that a higher (lr, li) gives a weaker signal. Therefore
the value of c

(n)
j,j′ is reduced by increasing j and/or j′. Since both〈〈f(θ)〉〉 and c

(n)
j,j′ decrease

with increasing term’s order, therefore only the lowest order terms of Eqs. (4.6) and (4.13)
are significant for the calculated HHG signal.

4.2 HHG Spectra

We first performed the calculation of HHG spectrum, i.e. harmonic signals as a function of
their order. The recent experiment by Itatani et al. [70] showed that, among other steps,
the recombination step played a greater role in the alignment dependence of HHG signal of
N2 and O2. In other experiment by Miyazaki and his colleagues [69], it was seen that the



56 CHAPTER 4. APPLICATION TO N2 AND O2

HHG spectrum of N2 had a minimum at n = 9.2 In addition, Miyazaki and his colleagues
also saw that the signal of aligned N2 was greater than the one of non-aligned N2. This sub
chapter is addressed to understand the three above phenomena.

To investigate the results of Itatani et al., we first calculate ãzz(lr, li;m) which is the
electronic part of the Fourier transform of the expectation value of the electronic dipole
operator (see Eq. (2.70)). In real computation, we use the molecular properties which are
shown in Tab. 4.2. The calculated spectra are shown in Figs. 4.2 and 4.3 for N2 and O2,
respectively. For the given parameters, it is found that γ < 1 for both N2 and O2, allows
us to describe the HHG process in the frame of three-step model. It can be seen from the
figures that the shape of the spectrum and the position of its minima depend on the initial
and the final angular momentum, implying that the whole spectrum strongly depends on
nature of the HOMO molecular. A more careful examination of the figures shows that the
final angular momentum has a stronger effects than the initial momentum. For N2 (Fig.
4.2), lr = 0 gives a minimum at n = 27 (whatever the value of li is). On the other hand,
lr = 2 gives a minimum at n = 19 and lr = 4 gives a minimum at n = 9 . For O2 (Fig.
4.3), the minima occur at n = 19 for lr = 2 and n = 9 for lr = 4. This means that the
recombination step plays a greater role in the alignment dependence of HHG signal. In
contrast, the ionization step plays a lesser role or its role is diminished by the intermediate
acceleration step. These behaviors are in agreement with the experiment by Itatani et al.
[70]. In fact, Figs. 4.2 and 4.3 also show that the value ãzz(lr, li;m) depends on (lr, li)
such that a lower (lr, li) gives a stronger spectrum. It can be easily understood because
ãzz(lr, li;m) depends on C

(m)
lr

C
(m)
li

, and C
(m)
l of N2 and O2 decrease with increasing l.

2The term ‘minimum’ refers to the harmonic order its signal is weaker than that of neighboring order.
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Figure 4.2: The contribution of different angular momentum (lr, li) to the whole HHG
spectrum of N2. The quantities in y-axis are ãzz(lr, li;m), which is the electronic part of
Fourier transform of electronic dipole. We use (probe) pulse of intensity Iprobe = 1.7 ×
1014 W/cm2, wavelength λ = 800 nm, and 36 cycles, corresponding to γ = 0.876
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Figure 4.3: The contribution of different angular momentum (lr, li) to the whole HHG
spectrum of O2. The quantities in y-axis are ãzz(lr, li;m), which is the electronic part of
Fourier transform of electronic dipole. We use (probe) pulse of intensity Iprobe = 1.2 ×
1014 W/cm2, wavelength λ = 800 nm, and 36 cycles, , corresponding to γ = 0.917
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model.
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Figure 4.6: Alignment-dependent HHG signal of N2 for various order. The pulse parameters
are equal to those of Fig. 4.2.
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Figure 4.7: Alignment-dependent HHG signal of O2 for various order. The pulse parameters
are equal to those of Fig. 4.3.

The total calculated spectra, i.e. including the whole contributions of all initial and
final angular momenta, for various alignment angles θ are shown in Figs. 4.4 and 4.5, for
N2 and O2, respectively. It can be seen from the Fig. 4.4, that the HHG spectrum of
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N2 reaches its minimum at n = 9 and n = 21. As mentioned above, the first minimum
is due to the recombination process with lr = 4, while the second minima is related to
the recombination process with lr = 2. The recombination with final angular momentum
lr = 0 has a minimum at n = 27, but it is so weak that it does not appear in the harmonic
spectrum. We note here that the previous theoretical analysis did not predict the existence
of quantum interference for N2 [137]. However, the experimental data of Miyazaki and his
colleagues showed a strong minima at n = 9 and a weaker minima n = 23, quite close to
the present calculated spectra. It means that, the most recombined electrons has greater
angular momentum than the ionized electrons. For O2, the spectrum reaches its minimum
at n = 17 − 23, which is due to the recombination with lr = 2. It means that the most
returned electron for O2 has a lowest angular momentum.

It can be seen in the figures, that the HHG signals reach the maximum at θ = 0o for
N2 and θ ' 45o for O2. These phenomena can be attributed to the HOMO symmetry.
The HOMO of N2 is σg and hence its electron density is maximized along the nuclear axis
direction. Since HHG mechanism starts with the ionization process, which is maximum (in
the low frequency tunnel limit) along θ = 0o, it yields a maximum signal when the laser
polarization is parallel with the nuclear axis, and it decreases with increasing alignment
angle. This results well agree with the observation by Miyazaki and his colleagues [69].
Their spectrum of aligned N2 was always greater that of non-aligned N2. It could be
understood, since the aligned molecules have smaller alignment angle than the non-aligned
molecules. For O2 with HOMO πg, its electron density is maximum at θ = 45o. Therefore
the HHG maximum signal occurs at intermediate angle θ ' 45o. It will be discuss more
detail in § 4.5.

In Fig. 4.4, we also present the results for the calculated HHG spectrum of N2 for θ = 0o

showing that its ‘cut-off’ harmonic is in agreement with the one obtained from the so called
simple-man’s model [53, 54]

ncut−off = (Ip + 3.17Up) /~ω (4.14)

with Up = e2E2

4mω2 is a ponderomotive energy (see § 1.2). For O2, the calculated spectrum for
θ = 45o is shown in Fig. 4.5 whose cut-off harmonic also agrees with the above predicted
cut-off. More specifically, the peak signal of O2 depends on its order, as shown in Fig. 4.7.
In contrast, the signal of N2 always reaches a maximum at θ = 0o for all orders, as shown
in Fig. 4.6.

4.3 Dynamic Signal

The central issue of HHG of aligned molecule is the dynamic HHG signal as a function of
the delay time between the pump and the probe pulses. We start with a short pump-pulse
and wait for the molecules to be aligned at a later time (a few picoseconds) when they
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Table 4.3: The c
(n)
j,j′ and the related expectation values of N2 for different harmonic order.

The coefficients for 19th harmonic order are calculated by using Miyazaki’s parameters [71]
and normalized so that c

(19)
0,1 = 1. The coefficients for 23th and 35th harmonic orders are

obtained by using Itatani’s parameters [70] and normalized so that c
(23)
0,1 = 1.

(i,j) Expectation value 19th harmonic 23th harmonic 35th harmonic
(0,0) 1 0.3327 0.5168 0.0329
(0,1)

〈〈
cos2 θ

〉〉
1 1 0.2067

(1,1)
〈〈

cos2 θ
〉2〉 0.7513 0.4837 0.3251

(0,2)
〈〈

cos4 θ
〉〉

0.0064 0.0733 0.0027
(1,2)

〈〈
cos2 θ

〉 〈
cos4 θ

〉〉
0.0097 0.0710 0.0085

(0,3)
〈〈

cos6 θ
〉〉

0.0022 0.0543 0.0034
(1,3)

〈〈
cos2θ

〉 〈
cos6θ

〉〉
0.0034 0.0525 0.0106

(2,2)
〈〈

cos4 θ
〉2〉 3.1140× 10−5 0.0026 0.0001

(2,3)
〈〈

cos4 θ
〉 〈

cos6 θ
〉〉

2.1864× 10−5 0.0039 0.0001
(3,3)

〈〈
cos6 θ

〉2〉 3.8372× 10−6 0.0014 0.0001

undergo ‘rotational revival’. A second short probe-pulse is then used to generate the HHG
signal from these aligned molecules. The HHG yield is then measured against the delay
time between the two pulses.

Here, we test the present calculation against the experiment of Miyazaki et al. [71, 138]
providing a complete data set in both time- and spectral-domain for any arbitrary pump-
probe polarization’s angle α. In their experiment, an ensemble of N2 molecules was aligned
by using a pump-pulse of peak intensity 0.8 × 1014 W/cm2 and pulse duration 40 fs. The
HHG signal was then generated by using a probe-pulse of peak intensity 1.7× 1014 W/cm2,
mean wavelength λ = 800 nm, and pulse duration 40 fs. For O2, they used a pump- and
probe-pulse of peak intensity 0.5× 1014 W/cm2 and 1.2× 1014 W/cm2, respectively. In the
experiment, the initial gas temperature was not known. We choose the initial temperature
to be 200 K (which gives the best agreement of calculated frequency spectral results with
respect to the experimental data, as will be shown in chapter 6).

The dynamic signal of N2 can be obtained by using Eq. (4.5) whose c
(n)
j,j′ coefficients are

obtained by evaluating ãzz(lr, li; 0) from Fig. 4.2. The c
(n)
j,j′ coefficients for n = 19 are listed

in Tab. 4.3. The comparison between theoretical calculations and experimental data for
the 19th harmonic order is given in Fig. 4.8. Both signals show revivals at a quarter, half,
and full period with Trev = 8.4 ps, which are consistent with Trev = 1/(2Bc) given in Eq.
(3.34) and also consistent with the other experimental data [70, 43, 134]. Examining the
c
(n)
jj′ coefficients from Tab. 4.3, the dynamic HHG signal for n = 19 can be approximated

as:
S(n)(td) ' c

(n)
00 + c

(n)
01

〈〈
cos2 θ

〉〉
(td) + c

(n)
11

〈〈
cos2 θ

〉2〉 (td) (4.15)

The properties of the dynamic HHG signal of N2 are therefore determined mainly by the
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Figure 4.8: Comparison of the experimental (from [69, 71]) and the theoretical dynamic
19th harmonic signal for N2; pump intensity Ipump = 0.8 × 1014 W/cm2, probe intensity
Iprobe = 1.7× 1014 W/cm2; duration 40 fs, wavelength 800 nm, temperature 200K.

expectation values
〈〈

cos2 θ
〉〉

(td) and
〈〈

cos2 θ
〉2〉 (td). The term

〈〈
cos2 θ

〉〉
(td) is the dom-

inant term and makes the dynamic signal mimic the dynamics of the alignment degree〈〈
cos2 θ

〉〉
(td). However, the next term

〈〈
cos2 θ

〉2〉 (td) has also a significant contribution.

We note that for different orders or different probe parameters, some times the c
(n)
j,j′ coeffi-

cients can change to make terms like
〈〈

cos2 θ
〉2〉 (td) and

〈〈
cos4 θ

〉〉
(td) more dominant in

the signal.

Another experimental data set was reported by Itatani et al. [70]. A laser pulse with
intensity Ipump = 0.4 × 1014 W/cm2 and duration 60 fs was used to generate coherent
rotation of molecules in a gas jet at 30K. The HHG signal was then generated by using a
probe-pulse with Iprobe = 2× 1014 W/cm2, duration 30 fs, and mean wavelength 800 nm. In
Fig. 4.9 we show the calculated result by using the same parameters and directly compare
it with the experimental data. Compare to the signal of Miyazaki, the signal of Itatani et
al. have different coefficients, in which the higher terms have more significant strengths,
as shown in Tab. 4.3. As a consequence, the HHG signals have some distinct properties,
in which their ‘hill’ is greater than their ‘valley’. In addition, the revival at t = 1

4Trev is
not a mirror symmetric image of revival at t = 1

3Trev. These properties are due mainly to

the terms
〈〈

cos2 θ
〉2〉 (td) and

〈〈
cos4 θ

〉〉
(td). Fig. 4.9 also directly shows a comparison

between the 23th order harmonic which is in the plateau region and the 35th order near
the cut-off region.
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Figure 4.9: Comparison of the experimental (upper panel) (from [70]) and the theoretical
(lower panel) dynamic HHG signal for N2; pump pulse: Ipump = 0.4 × 1014 W/cm2 and
60 fs; probe pulse: Iprobe = 2 × 1014 W/cm2 and 30 fs, wavelength 800 nm, temperature
30 K.
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We now turn to the harmonic signal of O2. The dynamic signal of O2 is obtained by
using Eq. (4.12) whose c

(n)
j,j′ coefficients are obtained from ãzz(lr, li; 1) in Fig. 4.3. The

c
(n)
j,j′ coefficients for n = 19 are given in Tab. 4.4. The comparison between the theoretical

calculations and the experimental data for the 19th harmonic order are given in Fig. 4.10.
Like N2, the signal of O2 shows revivals at half, fourth, and the full revival with period
Trev = 11.6 ps. In addition to the above revival, the signal of O2 shows a revival at 1

8Trev.
These phenomena are also consistent with the experimental data [70, 43, 134]. For O2, one
of the puzzles regarding its dynamic signal (as observed by Itatani et al. [70]), was the
failure of the expectation value of the alignment measure

〈〈
cos2 θ

〉〉
(td) to account for the

dynamic HHG signal. In fact, Itatani et al. found empirically that their data behaved more
closely to the expectation value

〈〈
sin2 2θ

〉〉
(td). Examining the c

(n)
j,j′ coefficients from Tab.

4.3, the dynamic HHG signal for n = 19 can be approximated as:

S(n) (td) ' c
(n)
11

〈〈
sin2 θ cos2 θ

〉2〉 (td) + c
(n)
12

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos4 θ

〉〉
(td)

+c
(n)
22

〈〈
sin2 θ cos4 θ

〉2〉 (td) (4.16)

From equation above, it can be seen that indeed the leading term of the signal for O2 is
given by

〈〈
sin2 θ cos2 θ

〉2〉 (td) = 1
16

〈〈
sin2 2θ

〉2〉 (td), which is directly proportional to the
proposed empirical fit by Itatani et al. [70]. Moreover, the present theory also predicts that
there ought to be modifications to this result due to the higher order terms in Eq. (4.16).
Moreover, in contrast to N2, there is no difference between the heights of ‘hill’ and ‘valley’
for O2, since all terms in Eq. (4.16) have their ‘hill’ almost equal to their ‘valley’.

In fact, as mentioned earlier, Kanai et al. [43] found empirically that their experimental
HHG signals for N2 and O2 demanded heuristic introduction of operators involving higher
order functions, implying that their dynamic signal could not be expressed in term of〈〈

cos2 θ
〉〉

(td) only for N2 and
〈〈

sin2 2θ
〉〉

(td) only for O2. A related phenomenon of interest
first, observed by Miyazaki et al. [138], is the appearance of extra series of lines in the Fourier
spectrum of the dynamic HHG signal for both N2 and O2. These extra lines can not be
attributed to

〈〈
cos2 θ

〉〉
(td) for N2 and

〈〈
sin2 2θ

〉〉
(td) for O2. It can be seen now from Eq.

(4.15) for N2 and from Eq. (4.16) for O2, that respective higher order contributions with
decreasing strengths are predicted by the present theory. Directly comparing the signals
for N2 and O2 also show that the signal for N2 is much stronger than the one of O2, as
observed experimentally [138].

The existence of 1
8th revival in O2 and its absence in N2 is also due to the different

leading terms of the signal. The leading term of N2 is
〈〈

cos2 θ
〉〉

(N = 2) that gives the
lowest fractional revival at tfr = 1

4Trev (see Eq. (3.35)). On the other hand, the leading

term of O2 is
〈〈

sin2 θ cos2 θ
〉2〉(N = 4) that implies tfr = 1

8Trev. Classically, an average

alignment (
〈〈

cos2 θ
〉〉

= 0.34) corresponds to θave ' 54o. The 1
8th revival corresponds to

a molecular motion with a small angle around θave. For O2, with θmax ' 40o − 45o, this
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Table 4.4: The c
(n)
j,j′ and related expectation values of O2 for 19th harmonic order. The

coefficients are normalized so that c1,1 = 1.
(i,j) Expectation value 19th harmonic

(1,1)
〈〈

sin2 θ cos2 θ
〉2〉 1

(1,2)
〈〈

sin2 θ cos2 θ
〉 〈

sin2 θ cos4 θ
〉〉

0.4829
(1,3)

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos6 θ

〉〉
0.0188

(2,2)
〈〈

sin2 θ cos4 θ
〉2〉 0.1045

(2,3)
〈〈

sin2 θ cos4 θ
〉 〈

sin2 θ cos26 θ
〉〉

0.0082
(3,3)

〈〈
sin2 θ cos6 θ

〉2〉 0.0002
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Figure 4.10: Comparison of the experimental (from [71]) and the theoretical dynamic 19th
HHG signal for O2; pump intensity Ipump = 0.5 × 1014 W/cm2, probe intensity Iprobe =
1.2× 1014 W/cm2; duration 40 fs, wavelength 800 nm, temperature 200K.
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motion shows a revival. However, this revival is not as large as when the molecules rotate
with a greater angle, as in the case of the half period. For N2, this motion does not cause a
revival (or causes a negligible revival), because the electron’s cloud is centered at θmax = 0o.

In general, both the calculated and the experimental HHG signals contain four distinct
regions, as a function of the delay-time between the pump and the probe pulses:

• ∆t < 0, when the probe pulse precedes the pump pulse. In this region, no alignment
is present. The HHG signal is therefore generated by the homogeneously distributed
molecules, which is time independent. Therefore the signal is flat during this time
domain.

• ∆t ' 0 when the pump and probe pulses overlap in time. Experimentally, it is
difficult to adjust precisely the overlap of the first pulse (pump pulse) and the second
one (probe pulse). The experimental spectrum in this time domain, for any molecules
and any pump-probe polarization angles, is quiet weak [138]. It means the absence
of any observed harmonic signals. The combined pump and probe pulse therefore
creates something else, for example a strong ionization signal that prevents efficient
HHG.3

• ∆t > 0 when the pump pulse proceeds significantly from the probe pulse. In this
region the probe pulse generates clear harmonic signals from the aligned molecules.
The average signal in this time domain is stronger than the one for ∆t < 0 due to
molecular alignment by the pump pulse.

• ∆t ' n1
4Trev for N2 and ∆t ' n1

8Trev for O2, with n integer. As mentioned above,
there is a clear revival structure with rapid change of molecular alignment.

4.4 Effect of Initial Temperature

The dependency of HHG signal on some expectation values implies its dependency on the
initial temperature of gas jet, as shown in Figs. 4.11 and 4.12. It can be seen from the
figures that the lower initial temperature produces the HHG signal with a greater revival
amplitude, as seen experimentally for both adiabatic [139] and non-adiabatic alignment
[44, 140]. These phenomena have been discussed at § 3.7.

Comparing the dynamic HHG signal of O2 for different initial temperature, one obtains
that the peaks at quarter and half revival split to make a double-peaks at a lower initial
temperature, a phenomena does not occur in case of N2. For O2, the most effective angle
(i.e. the angle gives a maximum HHG signal) is an intermediate angle (θpeak ' 40o − 45o).
For any alignment angle which is greater than the most effective angle, the HHG signal

3It was also seen in experiment that the ionization signal [43] and dissociation signal [44] increase in this
time domain.
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Figure 4.11: Dynamic 19th harmonic signal of N2 for various initial temperature . The
laser parameters and the initial temperature are similar with Fig. 4.8.
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Figure 4.12: Dynamic 19th harmonic signal of O2 for various initial temperature. The laser
parameters and the initial temperature are similar with Fig. 4.10.
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increases with increasing alignment angle. In contrast, for alignment angle which is less
than the most effective angle, the HHG signal decreases by increasing the alignment angle.
Therefore the ‘valley’ at the top signal is due to the alignment angle exceeds the maximum
angle. For a higher initial temperature, the molecules never reach alignment angle which
is less than the maximum angle, therefore the splitting top signal is not observed. For N2,
the maximum angle is θ = 0o, therefore the splitting top signal is never observed, because
molecular is never perfectly aligned, whatever the initial temperature is.

4.5 Molecular Axis Distribution, Alignment Dependent Sig-

nal, and Differential Signal

One interesting issue in HHG of aligned molecule is how the signal depends on the angle
between the nuclear axis and the probe polarization. In the present model, the dependence
of HHG signal on the alignment angle is governed by the HHG operator T

(n)
e (θ) whose square

represents the alignment dependence of HHG signal for a ‘single’ molecule. The quantity∣∣∣T (n)
e (θ)

∣∣∣2 is shown in Fig. 4.13 as a dashed curve. It can be seen from the figure that the
most effective angle, θpeak, is 0o for N2 and 40o for O2, due to the different HOMO symmetry
of each molecules. The HOMO of N2 is σg and hence its electron density is maximized along
the nuclear axis direction. For O2 with HOMO πg, its electron density is maximum at
θ = 45o. The discrepancy between maximum electron density before interaction (θ = 45o)
and the alignment dependence of HHG signal (θ = 40o) shows a dynamics of the electron
due to the pump pulse interaction.

For molecular ensemble, the HHG signal also depends on the molecular-axis distribution,
P (td, θ) = |ΦJ0M0(td, θ0)|2, whose value can be obtained by using Eq. (3.19). The molecular
distribution is shown as dash-dotted curve in Fig. 4.13. From the figures, it was shown
that P (td, θ) is peaked at θ = 0o for top alignment, at θ = 90o for anti top alignment, and
almost homogeneously distributed for average alignment. For a lower initial temperature,
the molecules are easily aligned, and therefore the distribution is sharply peaked at θ = 0o

for top alignment and at θ = 90o for anti top alignment.
The relative observed signal as a contribution of molecule with specific alignment angle

θ = θ0 and φ = φ0 can be obtained from Eq. (2.49) as

dS(n)(td, θ0, φ0) ∝
∑
J0M0

ρ(J0)
∣∣∣Φ∗

J0M0
(td, θ0)T (n)

e (θ0)ΦJ0M0(td, θ0)
∣∣∣2 (4.17)

The differential signal dS(n)(td, θ0, φ0) near the first revival as a function of alignment angle
θ0 for a fixed φ0 = 0o is drawn (as a solid line) in Fig. 4.13. For N2 whose effective alignment
angle is 0◦, the signal reaches its maximum at the top alignment, as molecular distribution
also peaks at θ = 0◦ as seen in Fig. 4.13(a). In contrast, at the anti-top alignment, the
molecular distribution is peaked at θ = 90◦, as shown in Fig. 4.13(c). For O2, the most
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Figure 4.13: Alignment-dependent HHG signal for single molecule (red, dashed line), molec-
ular distribution (blue, dash-dotted line), and dS(n)(td, θ0, φ = 0o) (green, solid line) cal-
culated at first half revival. (a) N2 at top signal td = 4.09 ps, (b) N2 at average signal
td = 4.18 ps, (c) N2 at anti-top signal td = 4.27 ps, (d) O2 at top signal td = 5.68 ps, (e)
O2 at average signal td = 5.79 ps, and (f) O2 at anti-top signal td = 5.90 ps. The laser
parameters are similar with Figs. 4.8 and 4.10 for N2 and O2, respectively. The initial
temperature is 200 K.

effective angle for harmonic generation from the electron cloud is θ = 45◦. Therefore the
peak of the HHG signal should be shifted by ∆θ ≈ 45◦ from the maximum molecular-axis
distribution. In fact, the signal reaches maximum at θ = 40o at the top alignment and
θ = 55o at anti-top alignment, as shown in Figs. 4.13(d-f).

It is clear from Eq. (4.17) that dS(n)(td, θ0, φ0) depends on both alignment-dependent

signal
∣∣∣T (n)

e (θ)
∣∣∣2 which is specific for the molecule but time-independent, and molecular-

axis distribution P (td, θ) which is time-dependent but qualitatively does not depend on the
specific molecule. As a consequence, the differential signal depends on both the delay time
and the alignment angle. However, there is no experimental data available for HHG signal as
function of the alignment angle of the molecular axis with respect to the pump polarization
axis4. Here, we compare our results with the other theoretical results. In fact, the most
efficient HHG signal has been calculated by extending the atomic Lewenstein model for

4Some experimentalist [67, 141, 142] tried to obtain the differential HHG signal by keeping the delay time
between the pump and the probe pulses to be equal to the top signal, and rotating the relative polarization
angle between them. In this delay time, most of molecules are assumed to align parallel to the pump
polarization. Therefore, they assumed, the relative polarization angle to be equal to the molecular axis
alignment angle. However, this method is not really true, because, not the whole molecules are aligned
along the pump’s polarization, as shown in Fig. 4.13. We will discuss it later in chapter 7.
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the molecule [87, 88], by the quantum calculation including nuclear motion [89, 66], and by
directly solving Schrödinger equation within time dependent density functional theory [143].
In contrast to our results, they found that the HHG signal, for any delay time between the
pump and the probe pulse, reached maximum at θ = 0o for N2 and at θ ' 45o for O2, which
is time-independent. This is because they toke the electronic dipole only and neglected the
molecular distribution. Therefore, their results can be interpreted as alignment-dependent

signal
∣∣∣T (n)

e (θ)
∣∣∣2 of the present theory.

The distinction result of the present theory is shown in Fig. 4.14: a calculated
dS(n)(td, θ0, φ0) as a function of both the delay time and the alignment angle. The cal-
culation is done for initial temperature T = 200K. The distribution rapidly changes both
in time and angle, and have a complex structure with several nodes. For N2, in general, the
signal decreases with increasing alignment angle. However, at some delay times correspond
to the anti top alignment, the differential signal is maximized at θ = 90o. For O2, the signal

is peaked at θ ' 45o, due mainly to its alignment dependency
∣∣∣T (n)

e (θ)
∣∣∣2 which is maximized

at this intermediate angle. However, the differential signal at θ ' 45o also changes with
delay time due to the time dependence of the molecular distribution P (td, θ).
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Figure 4.14: Differential signal of 19th harmonic as function of both time delay and align-
ment angle for N2 (upper panel) and O2 (lower panel). The laser parameters are similar
with Figs. 4.8 and 4.10 for N2 and O2, respectively. The initial temperature is 200 K.
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Chapter 5

Application to the Three-atomic

Molecule: CO2

In this chapter, we discuss the HHG of CO2 whose experimental spectrum shows a richer
dynamics [43, 144, 138]. In contrast to N2 and O2, the phase modulation of dynamic HHG
signal of aligned CO2 molecules can be in the same or in the inverted phase with respect to
its dynamic ionization signal, and it depends also on its order [43, 144, 73, 138]. In addition,
the harmonic cut-off position for CO2 can be more extended or compressed compared to
that observed for its companion atom Kr, depending on the peak laser intensity [61, 111].1

The first experimental data on dynamic HHG signal of CO2 was reported by Kanai et
al. [43]. They observed the dynamic HHG signal in the plateau region as a function of
the pump-probe delay and compared the spectrum with its dynamic ionization signal. The
HHG signal showed an inverted modulation phase with respect to the ionization signal, i.e.
the HHG yield is maximum (minimum) when the ionization signal is minimum (maximum).
More recently, the inverted modulation phase in the plateau region was also reported by
Vozzi et al. [144, 73], Miyazaki et al. [72], Lee et al. [134], and Merdji et al. [145].

In addition, Kanai et al. [43] and Vozzi et al. [73] measured the top signal (the HHG
signal when its alignment degree is maximum) and directly compared it with the anti-
top signal (the HHG signal when its alignment degree is minimum) for various harmonic
orders in the plateau region. They obtained that for several harmonic orders, the top signal
was always smaller than the anti-top signal meaning that the HHG signal has inverted
modulation compare with its ionization signal. For smaller and greater harmonic orders,
the top signal increases whereas the anti-top signal decreases and they tend to become
close to each other, suggesting a possibility to obtain a non-inverted modulation-phase of
HHG signal in the lower and the higher orders. Recently, the non-inverted HHG signal was
reported by Miyazaki et al. [138] in the lower perturbative order region and by Vozzi et al.
[144, 73] near the cut-off region.

1We note here that a ‘companion atom’ of a molecule is defined as an atom with an equal or comparable
ionization potential, as that of the molecule.

73
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What is the origin of the phase difference between the HHG and the ionization signal
in CO2? Kanai et al. [43], Marangos [146], and Vozzi et al. [144, 73] attributed the
inverted phase of HHG signal of CO2 as a manifestation of the destructive interference
in the recombination process. The idea of the interference of two-center molecules was
originally proposed by Faisal and his colleagues2 for ionization and was adopted by Lein
et al. for HHG [85, 86]. Lein et al. investigated the HHG spectrum (harmonic signal
as a function of its order) of aligned H+

2 model by directly solving the time-dependent
Schrödinger equation (TDSE) for an arbitrary alignment angle between the molecular axis
and the laser polarization. The harmonic spectra exhibited minima whose positions shift
to the higher orders on increasing the alignment angle. The further investigations also
have shown that the positions of minima shift to higher order on reducing the internuclear
distance [86], but they did not depend on the laser intensity [142]. Similar interference
effect has been also found later in H+

2 using more realistic 3D simulation [150] and in other
molecules such as H2+

3 [130] and H2 [151] for both 2D and 3D simulations. The similar
minima was clearly seen in the calculated spectra of N2 and O2 presented in chapter 4.

The correlation between minima and phase inversion in HHG of CO2 has been confirmed
experimentally by Vozzi et al. [144]. They measured HHG spectrum of both aligned and
non-aligned CO2 at a fixed pump-probe delay td = 21.1 ps, when the alignment degree
reached its maximum. The minima were found in the spectra of the aligned molecules but
were absent in that of non-aligned molecules. They also obtained that the dynamic signal
in the minima region has inverted phase with respect to the ionization signal, while in the
other region both HHG and ionization signals have the same phase.3

The theoretical investigation by Le et al. [110, 152] gave another possible interpretation
for the origin of the inverted modulation. By using the atomic Lewenstein model [56]
extended for molecules [87, 88], it was shown that the inverted modulation was strongly
related to its alignment dependence. The HHG signal was peaked at θpeak ' 45o for non-
inverted modulation and at θpeak > 45o for inverted modulation. The dependence of the
HHG peaks from adiabatically aligned CO2 on the harmonic order also has been investigated
recently both theoretically and experimentally by Nalda et al. [68, 151]. However, both Le
et al. and Nalda et al. did not give explanation why HHG peak of CO2 changed with its
order.

To fit their inverted CO2 spectrum, Kanai et al. [43] needed to postulate empirically
the higher power of − cos2n θ, which implied that the phase of their dynamic signal was not
simply the opposite of the phase of

〈〈
cos2 θ

〉〉
(td). A careful examination of the Fourier

2The interference idea was initially proposed by Faisal and his colleagues for describing suppressed ion-
ization of molecules anti-bonding symmetry [147, 148]. It also successfully described the existence of minima
in above threshold ionization spectra of those molecules [149].

3In their experiment, Vozzi et al. used the signal from non-aligned molecules as a reference or as a
substitute of signal of the average alignment. When the signal of the top-alignment was found to be weaker
than the reference, they concluded that the signal to have an inverted phase. Unfortunately, they did not
measure the signal of anti-top alignment to know if they were stronger than the top and reference signals
(or not).
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spectrum of the dynamic signal for a given harmonics by Miyazaki et al. [138] showed the
existence not only of a series of peaks spaced by 8Bc, but also a peak-series spaced by 16Bc

as well as another extra series. For CO2 with only even allowed J values, the peak series
spaced by 16Bc in frequency domain corresponds to 1

8 revival in time domain signal.
In this chapter, we (i) apply the present theory to CO2 and derive a general operator

governing the dynamic HHG from the molecule, (ii) observe how the operator governs the
signal phase, and (iii) observe the origin of the inverted modulation. Finally, we (iv) consider
the possibility to invert the modulation in O2.

0180

90

270

2

0180

90

270

2

Figure 5.1: The calculated squared asymptotic wavefunction. The left column for CO2

whereas the right one for O2, as a comparison.

5.1 HHG Operator T
(n)
e (θ) for CO2

CO2 has the symmetry πg [136], and we approximate its HOMO by the asymptotic approx-
imation from single center molecule in body frame (bf) with m = 1 and l = 2, 4, 6 [152] as
follows

φ(bf)
e (r) =

∑
l=2,4,6

C
(1)
l Rl(r)Yl1(r̂) (5.1)

where Rl(r) is given by Eq. (2.71), whereas C
(1)
l is the asymptotic coefficients, their value

are listed in Tab. 5.2. The HOMO of CO2 is shown in Fig. 5.1, together with that of
O2, as a comparison. However, the electronic density of CO2 reaches its maximum at a
smaller angle than those of O2, because the first has a longer internuclear distance O −O.
Therefore, the angular momentum l = 4 of CO2 has more significant contribution on the
asymptotic form of the electronic wavefunction than the one in O2. In addition, C

(1)
6 is not

zero for CO2, in contrast to that of O2.
Evaluating the HHG operator (Eq. (2.69)) for m = 1 and li, lr = 2, 4, 6 for CO2 we get

T (n)
e (θ) =

∑
li,lr=2,4,6

{
dlr

01(θ)ã
(n)
zz (lr, li; 1)dli

01(θ)
}

(5.2)

Where ãn
zz(lr, li; 1) is the electronic part of the Fourier transform of the expectation value
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Table 5.1: Explicit form of dl
0m(θ) required for evaluating Eq. (5.2) [103, 104, 153]

l dl
01(θ)

2
√

3
2 sin θ cos θ

4 −
√

5
4 sin θ cos θ

(
3− 7 cos2 θ

)
6 1

112

√
6
7 sin θ cos θ

(
5− 30 cos2 θ + 33 cos4 θ

)

of the electronic dipole operator, given by Eq. (2.70), with the initial angular momentum
li, the final angular momentum lr, and the conserved projection of the angular momentum
of the electron along the molecular axis, m = 1. By using the expressions for the reduced
rotation matrices dl

01(θ) from Tab. 5.1 and simplifying them, we may rewrite the HHG
operator of CO2 as a sum of powers of sin2 θ cos2n θ only

T (n)
e (θ) = b

(n)
1 sin2 θ cos2 θ + b

(n)
2 sin2 θ cos4 θ + b

(n)
3 sin2 θ cos6 θ

+b
(n)
4 sin2 θ cos8 θ + b

(n)
5 sin2 θ cos10 θ (5.3)

where b
(n)
j -coefficients are given by

b
(n)
1 =

3
2
ã(n)

zz (2, 2; 1) +
45
16

ã(n)
zz (4, 4; 1) +

75
43904

ã(n)
zz (6, 6; 1)

−3
4

√
15
2

(
ã(n)

zz (2, 4; 1) + ã(n)(4, 2; 1)
)

+
15
112

√
1
7

(
ã(n)

zz (2, 6; 1) + ã(n)(6, 2; 1)
)

− 15
448

√
30
7

(
ã(n)

zz (4, 6; 1) + ã(n)(6, 4; 1)
)

b
(n)
2 = −105

8
ã(n)

zz (4, 4; 1)− 90
43904

ã(n)
zz (6, 6; 1) +

7
4

√
15
2

(
ã(n)

zz (2, 4; 1) + ã(n)
zz (4, 2; 1)

)
−45

56

√
1
7

(
ã(n)

zz (2, 6; 1) + ã(n)
zz (6, 2; 1)

)
+

125
448

√
30
7

(
ã(n)

zz (4, 6; 1) + ã(n)
zz (6, 4; 1)

)
b
(n)
3 =

245
16

ã(n)
zz (4, 4; 1) +

1845
21952

ã(n)
zz (6, 6; 1) +

99
112

√
1
7

(
ã(n)

zz (42, 6; 1) + ã(n)
zz (6, 2; 1)

)
−309

448

√
30
7

(
ã(n)

zz (4, 6; 1) + ã(n)
zz (6, 4; 1)

)
b
(n)
4 = − 85

686
ã(n)

zz (6, 6; 1) +
231
448

√
30
7

(
ã(n)

zz (4, 6; 1) + ã(n)
zz (6, 4; 1)

)
b
(n)
5 =

6534
87808

ã(n)
zz (6, 6; 1) (5.4)

The corresponding harmonic signal for nth harmonic order is then given by

S(n) (td) = c
(n)
11

〈〈
sin2 θ cos2 θ

〉2〉 (td) + c
(n)
12

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos4 θ

〉〉
(td)

+ c
(n)
13

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos6 θ

〉〉
(td) + c

(n)
14

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos8 θ

〉〉
(td)
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Table 5.2: The molecular properties of CO2 and O2 (as a comparison) used in this work.
Ip is ionization potential, B is rotational constant of molecule, α‖ and α⊥ are parallel

and perpendicular polarizability, R0 is the internuclear distance, and C
(m)
l ’s are angular

coefficient of electronic wave function. The C
(m)
l for CO2 are normalized so that C

(1)
2 has

the same value for both O2 and CO2.
CO2 O2 Ref.

HOMO πg, m = 1 πg, m = 1 [136, 117]
Ip (eV) 13.77 12.03 [105]

B (cm−1) 0.3902 1.4377 [121]
R0

(
Å
)

2.352 1.208 [154]
α‖

(
Å3
)

4.01-4.11 2.35 [118]

α⊥

(
Å3
)

1.97-1.93 1.21 [118]

C
(m)
2 0.62 0.62 [105, 152]

C
(m)
4 0.27 0.03 [105, 152]

C
(m)
6 0.08 [152]

+ c
(n)
15

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos10 θ

〉〉
(td) + c

(n)
22

〈〈
sin2 θ cos4 θ

〉2〉 (td)

+ c
(n)
23

〈〈
sin2 θ cos4 θ

〉 〈
sin2 θ cos6 θ

〉〉
(td) + c

(n)
24

〈〈
sin2 θ cos4 θ

〉 〈
sin2 θ cos8 θ

〉〉
(td)

+ c
(n)
25

〈〈
sin2 θ cos4 θ

〉 〈
sin2 θ cos10 θ

〉〉
(td) + c

(n)
33

〈〈
sin2 θ cos6 θ

〉2〉 (td)

+ c
(n)
34

〈〈
sin2 θ cos6 θ

〉 〈
sin2 θ cos8 θ

〉〉
(td) + c

(n)
35

〈〈
sin2 θ cos6 θ

〉 〈
sin2 θ cos10 θ

〉〉
(td)

+ c
(n)
45

〈〈
sin2 θ cos8 θ

〉 〈
sin2 θ cos10 θ

〉〉
(td) + c

(n)
55

〈〈
sin2 θ cos10 θ

〉2〉 (td) (5.5)

Or it is simply written as

S(n)(td) =
5∑

j=1

5∑
j′≥j

c
(n)
jj′

〈〈
sin2 θ cos2j θ

〉〈
sin2 θ cos2j′ θ

〉〉
(td) (5.6)

Above, coefficients c
(n)
jj′ are related to b

(n)
j coefficients of Eq. (5.4) through

c
(n)
j,j′ =


∣∣∣b(n)

j

∣∣∣2 for j = j′

2Re
(
b
(n)
j b

(n)∗
j′

)
for j 6= j′

(5.7)

Eq. (5.6) is an exact expression for the dynamic HHG signal of CO2 at a delay time td

after the pump pulse. The value of 〈〈f(θ)〉〉 depends on the pump parameters, the initial
temperature, and the molecular properties such as the polarizability, the nuclear statistics,
the molecular rotational constant, and the HOMO symmetry. In contrast, c

(n)
jj′ coefficients

depend on the probe parameters and the molecular properties such as the ionization poten-
tial, the binding energy, and the HOMO symmetry.
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Figure 5.2: The contribution of different angular momentum (lr, li) to the whole HHG
spectrum of CO2. The quantities in y-axis are ãzz(lr, li;m = 1), which is the electronic
part of Fourier transform of electronic dipole. We use (probe) pulse of intensity Iprobe =
1.5× 1014 W/cm2, wavelength λ = 800 nm, and 36 cycles, corresponding to γ = 0.876. The
arrows show the position of minima.
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5.2 HHG Spectrum

To obtain the c
(n)
jj′ coefficients, we first calculate ãzz(lr, li;m) which is the electronic part

of the Fourier transform of the expectation value of the electronic dipole operator (see Eq.
(2.70)). In real computations, we use the molecular properties which are shown in Tab. 5.2.
The calculated spectra of CO2 for individual angular momentum are shown in Fig. 5.2. It
can be seen from the figures that the shape of spectrum and its minima positions change
with the initial and final angular momenta, implying that the whole spectrum strongly
depends on its HOMO. The minima occurs at n = 21 for the final momentum lr = 2
and n = 9 for lr = 4, regardless of the initial momentum li. For lf = 6, the position of
minima depends on the li, where n = 9 for (lr, li) = (6, 2), n = 7 for (6, 4), and n = 11 for
(6, 6). From the shifting of the minima positions, one can see that the recombination plays
a greater role on the harmonic signal. This conclusion well agree with the experimental
observation by Itatani et al. [70]. Fig. 5.2 also shows that the value ãzz(lr, li;m) depends
on (lr, li) such that the lower (lr, li) gives stronger contribution to the spectrum. The later
fact can be easily understood because ãzz(lr, li;m) depends on C

(m)
lr

C
(m)
li

, whereas C
(m)
l

decreases with increasing l.

The total spectrum calculated by including the contributions of all the initial and the
final angular momenta, for various alignment angles θ, is shown in Fig. 5.3. It is seen
in the figures, the maximum alignment angle, i.e. the angle that gives a maximum HHG
signal, changes with the order of the harmonic. For low harmonic orders, the maximum
angle is θpeak = 45o, whereas for n ≥ 17, the peak of harmonic is quite sensitive to the
harmonic order. Comparing 9th and 19th harmonic orders, we obtain that S(θ = 45◦) >

S(θ = 30◦) > S(θ = 60◦) > S(θ = 15◦) > S(θ = 75◦) for the 9th harmonic order whereas
S(θ = 60◦) > S(θ = 15◦) > S(θ = 45◦) > S(θ = 30◦) > S(θ = 75◦) for the 19th harmonic
order. These phenomena will be discussed further later.

5.3 Dynamic Signal

We tested the present theory against the experiment by Miyazaki et al. [138, 72]. They
presented the dynamic HHG signal as a function of the delay time between the pump and the
probe pulse, for the 19th and the 9th harmonic orders, for the following laser parameters:
Ipump = 0.56 × 1014 W/cm2 and Iprobe = 1.3 × 1014 W/cm2 for the 9th harmonic while
Ipump = 0.53 × 1014 W/cm2 and Iprobe = 1.5 × 1014 W/cm2 for 19th harmonic. The initial
temperature is assumed to be 300 K. The calculated Fourier spectra are found to well agree
with the experimental data (cf. discussion in § 6.4). For calculating the dynamic signal,
we first evaluate ãzz(lr, li;m) from Fig. 5.2, and then we obtain the c

(n)
j,j′ coefficients, whose

value for n = 9 and n = 19 are given in Tab. 5.3.

The calculated dynamic HHG signals for the 9th harmonic order is shown in Fig. 5.4.
As a comparison, also shown is the expectation value of its dynamic alignment degree
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Figure 5.4: Comparison of the experimental (upper panel) (from [138]) and the theoretical
dynamic (middle panel) of 9th HHG signal for CO2; pump intensity I = 0.56×1014 W/cm2,
probe intensity I = 1.3 × 1014 W/cm2; duration 40 fs, wavelength 800 nm, temperature
300 K. The corresponding alignment degree

〈〈
cos2 θ

〉〉
is presented in lower panel.
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Table 5.3: The c
(n)
j,j′ and related expectation values of CO2 for different harmonic order.

The coefficients are normalized so that c1,1 = 1.
(i,j) Expectation value 9th harmonic 19th harmonic

(1,1)
〈〈

sin2 θ cos2 θ
〉2〉 1 1

(1,2)
〈〈

sin2 θ cos2 θ
〉 〈

sin2 θ cos4 θ
〉〉

0.9017 −2.4287
(1,3)

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos6 θ

〉〉
−3.6058× 10−2 −2.07249

(1.4)
〈〈

sin2 θ cos2 θ
〉 〈

sin2 θ cos8 θ
〉〉

−8.6300× 10−4 1.7335× 10−2

(1,5)
〈〈

sin2 θ cos2 θ
〉 〈

sin2 θ cos10 θ
〉〉

−4.5539× 10−7 −1.7726× 10.5

(2,2)
〈〈

sin2 θ cos4 θ
〉2〉 0.2891 1.4999

(2,3)
〈〈

sin2 θ cos4 θ
〉 〈

sin2 θ cos6 θ
〉〉

3.6113× 10−2 2.6921
(2,4)

〈〈
sin2 θ cos4 θ

〉 〈
sin2 θ cos8 θ

〉〉
−3.6735× 10−4 −2.2063× 10−2

(2,5)
〈〈

sin2 θ cos4 θ
〉 〈

sin2 θ cos10 θ
〉〉

-7.3397× 10−7 1.7583× 10−5

(3,3)
〈〈

sin2 θ cos6 θ
〉2〉 8.3103× 10−3 1.3783

(3,4)
〈〈

sin2 θ cos6 θ
〉 〈

sin2 θ cos8 θ
〉〉

2.2193× 10−5 −2.1479× 10−2

(3,5)
〈〈

sin2 θ cos6 θ
〉 〈

sin2 θ cos10 θ
〉〉

−1.5300× 10−7 4.6776× 10−6

(4,4)
〈〈

sin2 θ cos8 θ
〉2〉 14004× 10−7 8.5274× 10−5

(4,5)
〈〈

sin2 θ cos8 θ
〉 〈

sin2 θ cos10 θ
〉〉

1.2954× 10−10 −7.4602× 10−8

(5,5)
〈〈

sin2 θ cos10 θ
〉2〉 8.6550× 10−13 2.3247× 10−10

〈〈
cos2 θ

〉〉
.4 As can be seen from figure, both the 9th harmonic signal and its alignment

degree
〈〈

cos2θ
〉〉

have the same phase, by means that the harmonic signal is maximum
(minimum) when its alignment degree is maximum (minimum). In contrast, the 19th har-
monic signal (Fig. 5.5) has inverted phase compare with its dynamic alignment. Both signal
have revival period Trev = 42.7 ps, which satisfies Trev = 1/(2Bc) (Eq. (3.34)), which B is
rotational constant whose value for CO2 is listed in Tab. 5.2. Compare with N2 and O2,
the dynamic signal of CO2 has longer period due to its heavier molecular mass. The signal
of CO2 also shows a revival at 1

8Trev, even though with a weaker strength compare with
one of O2. These phenomena are also consistent with other experimental data [43, 138].

We note here that both inverted and non inverted signal are generated by the same
HHG operator of CO2 (Eq. (5.6)). The only differences are the strength and the sign of
the coefficients, implies the different phase. The whole combination also affects on the ratio
of 1

8 - and 1
4 -revival. By examining the c

(n)
jj′ coefficients from Tab. 5.3, it is shown that

some terms do not have significant contribution. On the other hand, the expectation value
reduces with increasing its order, so that the dynamic HHG signal for n = 9 and n = 19

4We note that the alignment degree and the ionization signal always have the same modulation phase.
Therefore comparison of the phase of the dynamic HHG signal with that of the dynamic ionization signal
can be simply done by comparing the phase of dynamic HHG signal with that of the alignment degree.
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can be approximated as:

S(n)(td) =
3∑

j=1

3∑
j′≥j

c
(n)
jj′

〈〈
sin2 θ cos2j θ

〉〈
sin2 θ cos2j′ θ

〉〉
(td) (5.8)

In fact, as mentioned earlier, Kanai et al. [43] found empirically that their experimental
HHG signals for CO2 demanded heuristic introduction of operators involving higher order
functions, meaning that the dynamic signal can not be expressed in term of

〈〈
sin2 2θ

〉〉
(td)

only. A related phenomenon of interest first observed by Miyazaki et al. [138] is the
appearance of extra series of lines in the Fourier spectrum of the dynamic HHG signal for
CO2, that can not be attributed to

〈〈
sin2 2θ

〉〉
(td). It can be seen now from Eq. (5.8), that

the correspondingly higher order contributions with decreasing strengths are predicted by
the present theory.

5.4 Origin of Inverted Modulation Phase

As mentioned above, the first interpretation on the origin of the inverted modulation on the
dynamic HHG signal of CO2 was proposed by Kanai et al. [43]. They attributed the inverted
modulation phase as a manifestation of the destructive interference of recombination process
from the two oxygen centers in CO2. The idea was then adopted by other groups [146, 144].

However, there are some difficulties to understand the inverted modulation in the frame
of Kanai et al.’s model. First, according to them, the destructive interference occurs when
the recombined electron satisfies condition R0 cos θ = mλ, where R0 is internuclear distance,
θ is alignment angle of molecule, m is integer, and λ is the wavelength of recombined
electron. This destructive interference reduces the harmonic signal of the corresponding
harmonic order and appears as a minimum in the harmonic spectra and as an inverted
modulation in the dynamic signal. It implies that the minimum and inverted modulation
occur in the same order, but without explanation how the minimum causes an inverted phase
modulation. In addition, the model needs a quantity alignment angle θ to be constant. In
fact, θ is a time-dependent quantity and should be averaged over the ensemble. Second, the
bare quantum-interference model of Kanai et al. is not a complete interpretation because
it does not take the probe parameters, tunneling ionization step, and electron acceleration
step in to account. As a consequence, the order of inverted modulation should not change
with the changing of the probe parameters. In fact, by using the same wavelength but
different probe parameters, Miyazaki et al. [72], Vozzi et al. [144], and Lee et al. [134] have
observed inverted phase at different harmonic order.

Concerning to the first point, we directly compare the calculated harmonic spectra at
the top alignment and the spectra at the anti-top alignment (points a and c in Fig. 5.5(c),
respectively), and draw the results in Fig. 5.6. The top spectrum reaches its minimum at
n = 21, whereas the anti-top spectrum has minimum at n = 23. According, to Kanai et
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Figure 5.6: A direct comparison between the spectrum of the top alignment and the one of
the anti-top alignment. The term top and anti-top alignment refer to the points a and c in
Fig. 5.4. The pulse parameters are similar to those of Fig. 5.5.

al.’s model, the inverted modulation should occur at the same orders, either at n = 21 or
n = 23. In fact, the dynamic signal of those both orders are not inverted, and we obtain
the inverted modulation at n = 19, as shown in Fig. 5.5. We note that the dynamic
signal of 19th harmonic order has a smaller top signal than the anti-top signal. On the
other hand, for n = 9, whose dynamic signal is non inverted (Fig. 5.4), the top alignment
signal is greater than that of the anti-top alignment. By using the same parameters, it was
experimentally observed that the 19th harmonic signal has indeed inverted modulation as
well as the 9th harmonic signal has the non-inverted signal compare to its ionization signal
[138]. We remark that the inverted modulation is due mainly to the different minima’s
position of the top and the anti-top signal, and is not due to the minima itself, as claimed
by Kanai et al.. In this regard, the inverted modulation can take place on the different
order with respect to the order of minima, even tough they should close to each other.

Concerning to the second point, we recalculate the same HHG spectrum as in Fig. 5.6,
but for a higher probe intensity. The results are shown in Fig. 5.7(a). In contrast to the
prediction of Kanai et al.’s model, the present model shows that the inverted modulation
shifts to higher order with increasing the probe intensity. The corresponding dynamic HHG
signal with inverted modulation is shown in Fig. 5.7(b).

Another theoretical interpretation by Le et al. [110] stated that the inverted modulation

was related to the squared HHG operator
∣∣∣T (n)

e (θ)
∣∣∣2 of the interest harmonic order. The

inverted modulation take places when
∣∣∣T (n)

e (θ)
∣∣∣2 is peaked at θpeak > 45o, whereas the non-

inverted modulation occurs when θpeak ≤ 45o. To check the model, we draw the θpeak for
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Figure 5.8: Peak of alignment dependence of HHG signal θpeak as a function of harmonic
order. The laser parameters are equal to those in Fig. 5.6.
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Figure 5.9: (a) A direct comparison between the spectrum of the top alignment and the
one of the anti-top alignment. (b) The dynamic signal of 21th harmonic order. The laser
parameters are equal to the one in Fig. 5.6, except the initial temperature, T = 25K.

5 ≤ n ≤ 33, in Fig. 5.8. It was shown that the squared operator reaches its maximum
at angle greater than 45o for n = 15 and n = 19. According to Le et al.’s model, both
harmonic orders should have an inverted modulation. However, our calculation shows that
the dynamic signal of 15th harmonic order has non-inverted modulation. We will discuss it
further later.

The Le et al.’s model has shown the dependence of the order of inverted modulation
on the probe pulse. But, on the other hand, it did not take into account the changing of
molecular distribution due to different pump parameters. Our calculation however, shows
that the different initial temperature gives different position of minima. For initial temper-
ature T = 25K, we get inverted modulation for 19th and 15th harmonic orders, as shown
in Fig. 5.9.

We now come to the interpretation of inverted modulation according to the present
theory. Based on the previous discussion, one can say that the signal modulation is
due to the different strength between the top signal and the anti-top signal, as a result
of different spectrum and position of minima between them. If top signal is stronger
[weaker] than the anti-top signal, then we get non-inverted [inverted] modulation. There-
fore, the best way to predict the phase modulation is by drawing the spectrum of the
top and anti-top signal, and directly comparing them, to each ther, as done in Figs. 5.6,
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Figure 5.10: Semi-classical HHG spectrum of Fig 5.6 (panel a), Fig 5.7 (panel b), and Fig.
5.9 (panel c).

5.7(a), and 5.9(a). Instead of quantum mechanical calculation which is very time con-
suming, it can be done quickly by semi classical interpretation that molecules have a
classical angle θtop = arccos

(√
〈〈cos2 θ〉〉 (td = ttop)

)
at top signal and have θanti top =

arccos
(√

〈〈cos2 θ〉〉 (td = tanti top)
)

at anti-top signal. Fig. 5.10 shows the HHG spectra of
the previous three cases, which are recalculated by using semi classical way. In general,
the semiclassical spectrum are similar to the that calculated by using quantum mechanics.
They predict the same position of minima, inverted phase, and harmonic cut-off.

Another signature of inverted modulation is related to θpeak, θtop, and θanti top. Let first
define ∆θtop ≡ |θtop − θpeak| and ∆θanti top ≡ |θanti top − θpeak| . If ∆θtop ≤ ∆θanti top, it
means that θtop is closer to θpeak, than θanti top. Therefore the top signal is stronger than
the anti-top signal, provides a non-inverted modulation dynamic signal. In contrast, if
∆θtop > ∆θanti top, we obtain an inverted modulation signal. In Fig. 5.11(a) we draw the
peak alignment of the HHG spectrum from Fig. 5.6, for n = 15− 23. From the figure, one
can see that θpeak for 15th and 19th harmonic orders are greater than 45o, and according
to the Le et al.’s model, their dynamic signal should be inverted. From the view of the
present theory, we get that ∆θtop > ∆θanti top for 19th harmonic order and therefore its
dynamic signal has an inverted modulation. In contrast, for 15th harmonic order, we get
∆θtop < ∆θanti top, so that its dynamic signal is non-inverted. Fig. 5.11(b) shows the the



88 CHAPTER 5. APPLICATION TO CO2

15 19 23

20

30

40

50

60

15 19 23 15 19 23

θanti top

θpeak

θtop

∆θanti top

∆θtop

(a) (b) (c) (d)

Figure 5.11: Peak of alignment dependence of HHG signal θpeak as a function of harmonic
order, obtained from Fig. 5.6 (panel a), Fig 5.7 (panel b), and Fig. 5.9 (panel c).
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Figure 5.12: Contribution of individual ãzz(lr, li;m) on the whole spectrum.

peak alignment of HHG spectrum from Fig. 5.7. From the spectrum, we predict the 17th
harmonic order to have non-inverted modulation, even tough it satisfies θpeak > 45o. On the
other hand, the 21th harmonic order has an inverted modulation, as it has been calculated.
Fig. 5.11(c) shows the peak alignment of the HHG spectrum from Fig. 5.9. From the
spectrum, we obtain an inverted modulation for n = 19 and n = 15 harmonic orders.

We note here that the present model has covered all parameters used in experiments.
θpeak depends on the probe parameters, whereas θtop and θanti top depend on the pump
parameters. Figs. 5.11(a) and 5.11(b) have a similar pump parameters, but different probe
parameters. As a results, they have the same θtop and θanti top, but different θpeak. The
other case, Figs. 5.11(a) and 5.11(c) have a similar probe parameters, but different pump
parameters. Therefore they have the same θpeak but different θtop and θanti top.

To further understand the origin of the inverted phase, we calculate the individual
contribution of ãzz(lr, li;m) for various (lr, li), where lr and li stand for the final and the
initial angular momentum, respectively. The results are drawn in Fig. 5.12. In general, the
value of ãzz(lr, li;m) depends on their asymptotic coefficients C

(m)
lr

and C
(m)
li

. In fact, C
(m)
lr

(C(m)
li

) reduces with increasing lr (li), and therefore the contribution of ãzz(lr, li;m) reduces
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Figure 5.13: Molecular-axis distribution (blue, dash-dotted line), alignment-dependent sig-
nal (red, dashed line), and differential signal (green, solid line) at first half revival of CO2.
(a) H9 at top signal td = 21.06 ps, (b) H9 at average signal td = 20.80 ps, (c) H9 at anti-
top signal td = 21.60 ps, (d) H-19 at top signal td = 21.06 ps, (e) H19 at average signal
td = 20.80 ps, and (f) H19 at anti-top signal td = 21.60 ps. The laser parameters are similar
with Fig. 5.4. The initial temperature is 300 K.

with increasing lr and/or li. This situation takes places in the lower and higher harmonic
orders, where the the greatest contribution comes from ãzz(2, 2; 1) whose geometric factor∣∣d2

01(θ)
∣∣2 is peaked at θ ≈ 45o, and therefore the dynamic signal in this harmonic region

has non-inverted modulation. However, for CO2 with a long internuclear distance, the ratio
of asymptotic coefficients C

(1)
l+1/C

(1)
l is significant, and therefore it is possible to obtain

ãzz(lr + 1, li; 1) to be greater than ãzz(lr, li; 1). For n = 15 − 25, some transitions with
lr = 4 grow rapidly and for some orders become more dominant than that with lr = 2
(see Fig. 5.12(a)). The signals in this harmonic region are mainly generated by ãzz(4, 2; 1)
whose geometric factor

∣∣d2
01(θ)d

4
01(θ)

∣∣2 has two peaks: θ ≈ 29o and θ ≈ 64o. The second
peak contributes on the shifting of the peak alignment θpeak to a higher θ, and enhances
the possibility of inverted modulation on its dynamic signal. We remark that the inverted
modulation takes place if most of the recombined electron have higher final momentum,
than their initial momentum.

In Fig. 5.13 we plot the squared operator
∣∣∣T (n)

e (θ)
∣∣∣2 (red, dashed line) that can be

interpreted as alignment-dependence of HHG signal of a ‘single’ molecule. It can be seen
that the HHG operator is peaked at θ ' 42o for the 9th harmonic order, whereas for the
19th harmonic order it is peaked at three angles: θ ' 58o , θ ' 37o, and θ ' 15o. We
also plot molecular-axis distribution, P (td, θ) = ΣJ0ρJ0 |ΦJ0M0 (td, θ) |2, (blue, dash-dotted
curve). The differential signal dS(n) (td, θ0, φ0) (green, solid line) is obtained by averaging
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the alignment angle dependent signal over the molecular distribution (c.f. Eq. (4.17)).

Therefore dS(n) (td, θ0, φ0) tends to mimic
∣∣∣T (n)

e (θ)
∣∣∣2. As

∣∣∣T (n)
e (θ)

∣∣∣2, the differential signal
has stronger peaks at θ ' 60o and θ ' 30o, for n = 19. The existence of two peaks on θ-
dependent signal is also found experimentally and theoretically by directly solving a model
of Schrödinger equation [68].

Fig. 5.14 shows the time-dependent HHG differential signal for the 9th (upper panel)
and the 19th (lower panel) of CO2 calculated for T = 300K. The distributions rapidly
change both in time and axis angle and have a complex structure with several nodes. Even
though the signals change with changing of delay time due to its dynamic electronic and
molecular distribution, but they peak at the same alignment angle for all revival periods.

This is the signature of
∣∣∣T (n)

e (θ)
∣∣∣2 which is time-independent.

We summarize the origin of the inverted phase in HHG signal in CO2 as follow. (i)
The interaction between electron clouds and a laser probe creates different contributions
from the angular momenta quantum states, and gives different HHG transition operator∣∣∣T (n)

e (θ)
∣∣∣2 which is specific for different harmonic order. (ii) Plotting

∣∣∣T (n)
e (θ)

∣∣∣2 as a function
of harmonic order n, gives us the minima, where their positions depend on a given alignment
angle θ. Due to different alignment angle θ between the top and the anti-top signals, they
have different position of minimum n. As a consequence, the top signal can be stronger
[weaker] than the anti-top signal and give the non-inverted [inverted] phases modulation.

(iii) For each harmonic order,
∣∣∣T (n)

e (θ)
∣∣∣2 reaches its maximum at specific angle θpeak. The

inverted [non-inverted] modulation takes place if θpeak close to θanti top [θtop]. In general, we
remark: (i) The quantum interference effect of a two-center molecule, appears in the one-
center expansion of the molecular wavefunction as different contributions from the angular
momenta components. (ii) The inverted phase is an effect of different strength between
the top and the anti-top signal (as a consequence of different position of their minima),
due to the recombined electrons mostly occupied a high momentum state lr. Therefore,
the inverted modulation is not due to the destructive interference itself. (iii) The inverted
modulation is indicated by one of the following: (a) a greater spectrum from θanti top than
that of θtop or (b) θpeak is closer to θanti top, than to θtop. The inverted phase, therefore,
depends on all the three steps of HHG and all pump and probe parameters, taken together.

5.5 Inverted Modulation in Other Molecules

From the above discussion, it was concluded that the inverted modulation in CO2 is due
mainly to its πg symmetry (m = 1). For the molecules with πg symmetry, the electron
clouds are peaked at an intermediate angle. In this situation, the most effective angle for
HHG, θpeak, can shift to be closer to classical top angle, θtop, or classical anti-top angle,
θanti top. Therefore, it is also reasonable to expect the inverted modulation to occur in other
πg symmetry molecules. We will use two above indicators to investigate the possibility of
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Figure 5.14: HHG differential signal for 9th (upper panel) and 19th (lower panel) of CO2.
The laser parameters are similar with Fig. 5.4 and 5.5, for 9th and 19th harmonic, respec-
tively. The initial temperature is 300 K.
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Figure 5.15: (a) Comparison between the dynamic signal of 47th harmonic signal for O2

and its alignment degree at their first revival, for initial temperature 40 K. Pump intensity
Ipump = 1.0 × 1014 W/cm2, duration 60 fs; probe intensity Iprobe = 3.5 × 1014 W/cm2,
duration 30 fs, mean wavelength 800 nm. (b) Harmonic signal in (a) for various initial
temperature. (c) Harmonic signal in (a) for various pump intensities. (d) Harmonic signal
in (a) for various probe intensities.

inverted modulation in other molecules, in connecting with the recent experiments.
Recently, by using 30 fs and 3.5×1014 W/cm2 probe pulse (corresponding to theoretical

cut-off n = 51), Vozzi et al. [73] have indeed observed a double peak structure of the
47th HHG signal of O2, at its first half revival.5 They claimed the double structure as
an inverted modulation due to the destructive interference. In Fig. 5.15(a) we draw the
theoretical dynamic signal of 47th harmonic of O2 around its first half revival, by using
the same pulse parameters as those in experiment. In contrast to the alignment degree,
the peak of harmonic signal has a double structure, and it reaches its minimum when the
alignment degree

〈〈
cos2 θ

〉〉
reaches maximum. As discussed in § 4.4, the double structure

occurs when θpeak ≤ θ ≤ θtop for θpeak < θtop : a condition when the alignment degree
still grows due to its angle has not reached θtop, whereas the harmonic signal reduces as
the alignment angle exceeds θpeak. The same situation occurs when θpeak ≥ θ ≥ θtop for
θpeak > θtop. In this delay time, harmonic signal has the opposite phase with respect to
the alignment degree. For a higher initial temperature, the top angle θtop become closer to
the peak alignment θpeak, gives a shallower ‘valley’ in a double peak structure, as shown
in Fig. 5.15(b). A possible explanation is that the ‘inverted-like’ modulation observed by
Vozzi et al. is not due to the destructive interference, but due to the double structure at a
lower initial temperature gas jet. In contrast to the inverted modulation, the double peak is
sensitive to the pump parameters (Fig. 5.15(c)), but not sensitive to the probe parameters

5Unfortunately, they did not present the full period dynamic signal, except around its first revival.
Therefore we do not know the phase of HHG signal at the other fractional revivals.



5.5. INVERTED MODULATION IN OTHER MOLECULES 93

10 15 20 25 30 35 40 45 50

1e-06

0.0001

0.01
’top’ signal
’anti-top’ signal

0 30 60 90
0

2e-06

4e-06

10 15 20 25 30 35 40

1e-06

0.0001

H
H

G
 s

ig
na

l (
ar

b.
 u

ni
ts

)

0 30 60 90
0

3e-06

6e-06

9e-06

10 15 20 25 30 35 40
Harmonic order

1e-09

1e-06

0.001

0 30 60 90
Align. angle θ (deg)

0

0.003

0.006

H47

H31

H17

(a)

(b)

(c)

(d)

(e)

(f)

θanti-topθtop
θpeak

H47

H31

H17

Figure 5.16: Left column: harmonic spectra of O2 (panel a), N2 (panel b), and ethylene
(panel c). Right column: the corresponding alignment dependent signal for interest orders,
i.e for O2 (panel d), N2 (panel e), and ethylene (panel f). The pulse parameters are given
in text.

(Fig. 5.15(d)).

In Fig. 5.16(a), we directly compare the harmonic spectra for the top and anti-top
classical angles. It can be seen in the figure that even-tough there is a local minimum at
n = 47, but the top signal is always stronger that of the anti-top signal: a characteristic
of a non-inverted modulation (see also Fig. 5.15(a)). The conclusion is supported by Fig.
5.16(d) confirms that ∆θtop < ∆θanti−top.

It is also interesting to know if inverted modulation occurs in σg molecules, like N2.
Recently, by using Ipump = 6×1013 W/cm2, 50 fs pump pulse and Iprobe = 2×1014 W/cm2,
50 fs, and 800 nm, Kanai et al. have measured the ellipticity dependence of HHG signal
of aligned molecules [74]. They found that for N2 at top signal, the 31st harmonic signal
was suppressed in a small range around zero ellipticity, in contrast to the HHG from its
companion atom, Ar. They argued that the suppression was a signature of inverted mod-
ulation.6 In Fig. 5.16(b), we draw theoretical HHG spectrum with the same parameters
and T = 25 K. However, the present theory does not predict the inverted modulation to

6Another experiment by Flettner et al. [155, 156] has shown a discrepancy between the ellipticity de-
pendence HHG signal of non-aligned N2 and the one of Ar . They measured that the HHG signal of N2 is
enhanced for ε ≥ 0.2, in contrast to the HHG signal of Ar. On the other words, one can say that the HHG
signal of N2 is suppressed at ε < 0.2, in contrast to that of Ar. Our remark, if both top-aligned signal (as
observed by Kanai et al.) and non-aligned signal (as observed by Flettner et al.) are suppressed, then it is
a signature of minima, not a signature of inverted modulation.
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occur in N2, even though there is a minimum at n = 31. For N2, the signal is peaked at
θ = 0o. Therefore ∆θtop is always smaller than ∆θanti−top, as shown in Fig. 5.16(e). In this
case, the top alignment always has stronger signal than the anti-top alignment. It gives us
a non-inverted modulation.

More recently, the inverted modulation phase was seen in plateau region (17th - 27th
harmonic orders) for some organic molecules, such as acetylene (HC ≡ CH, linear), allene
(H2C = C = CH2, symmetric top), and ethylene (H2C = CH2, asymmetric top), all of which
have bonding π orbitals between the carbon atoms [157, 158]. Among three molecules,
the dynamic alignment of ethylene is most well investigated from the point of view that
its one dimensional alignment has been observed experimentally [159, 160] and its three
dimensional alignment has been explored theoretically [161]. In Fig. 5.16(c), we draw a
theoretical spectrum for ethylene. We use the same parameters as those in experiment: a
probe pulse of intensity Iprobe = 1.8 × 1014 W/cm2 and duration 14 fs. The pump pulse
reaches a classical top angle θtop ≈ 50o and an classical anti-top angle θanti top ≈ 58o .
The wavefunction is approximated by l = 1, 3 and m = ±1, with C

(±1)
1 = ±1.10 and

C
(±1)
3 = ±0.22 [162]. The electron clouds is therefore peaked at θ ≈ 37o. From the figure,

one sees that for the whole orders, the top signal is weaker than the anti-top signal, gives
us an inverted modulation. Fig. 5.16(f) shows that the alignment signal of 17th harmonic
order is peaked at θpeak = 90o: a guarantee that the inverted modulation for this order is
kept for any initial temperature.



Chapter 6

Signal in Frequency Domain:

Fourier Analysis of Dynamic HHG

Signal

The previous discussion on the dynamic signal of N2, O2 (chapter 4), and CO2 (chapter 5)
provides that the dynamic signal is generated by transitions which differ in their rotational
quantum numbers by ∆J related to the frequency {(J +∆J)(J +∆J +1)−J(J +1)}Bc. A
better understanding of the above transition can be obtained by investigating the HHG spec-
trum in the frequency domain, that can be obtained by Fourier transforming the dynamic
signal (td-dependence) and plotting the Fourier amplitude as a function of its frequency in
units of Bc.

The first experimental data of the spectral frequency of dynamic alignment was the
spectrum of aligned I2 observed by using its dissociation signal [140, 44]. The spectrum
showed a ladder of beat frequencies with a spacing equal to 4Bc. Dooley et al. then reported
the frequency spectrum of dynamic alignment of N2 and O2 observed by using dissociation
by Coulomb explosion [27]. They also reported that the signal ratio between the even
and the odd J could be understood as due to the nuclear statistics of the corresponding
molecule. Later on, the frequency spectrum of the dynamic alignment of CO2, observed by
monitoring its optical Kerr effect, was also reported [32]. The Kerr signal was proportional
to the square of measured alignment (I(td) =

[〈〈
cos2 θ

〉〉
(td)− 1

3

]2) and, therefore, the
frequency spectrum not only consisted of its original frequency but also the sum and the
difference frequencies, as indicated by the presence of an extra series at low frequencies.
A similar frequency-spectra was also produced from the aligned O2 molecules observed by
time-dependent degenerate four-wave mixing (TD-DFWM) [163].

The first frequency spectrum of dynamic HHG signal was reported by Miyazaki et al.
[135, 82, 71, 138]. They measured the dynamical HHG signals of N2, O2, and CO2 and
Fourier transformed them to obtain the signals in the frequency domain. For all the three

95
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molecules, the signals showed initially unexpected extra series of peaks, that could not be
associated with the respective Fourier transform (F.T.) of

〈〈
cos2 θ

〉〉
for N2 and

〈〈
sin2 2θ

〉〉
for O2 and CO2. As mentioned above, these extra series were also present in the frequency
spectrum observed by optical Kerr signal [32] but absent in its ionization signal [44, 140, 27].
These facts suggest that the HHG signal is proportional to the square of the measured
alignment as shown in Eq. (2.49). For HHG, the signal is proportional to the square of the
expectation value of the F.T. of the total dipole. It implies the dependence of HHG signal
on higher order alignment moments.

Unlike the dynamic signal, the frequency spectrum provides more succinct and clearer
information of the beats involved in the signal and provides a better way for distinguishing
the role of the order of the alignment operator. Based on Eq. (4.5) for N2, Eq. (4.12)
for O2, and Eq. (5.5) for CO2, the dynamic HHG signal is also related to the sum and
difference frequencies

=
[
{(J + ∆J)(J + ∆J + 1)− J(J + 1)} ± {(J ′ + ∆J ′)(J ′ + ∆J ′ + 1)− J ′(J ′ + 1)}

]
Bc

=
[
∆J (2J + ∆J + 1)±∆J ′

(
2J ′ + ∆J ′ + 1

)]
Bc (6.1)

For
〈〈

cos2 θ
〉〉

, we have ∆J = 0,±2 and ∆J ′ = 0. For
〈〈

sin2 θ cos2 θ
〉2〉, we have

∆J = 0,±2,±4 and ∆J ′ = 0,±2,±4. Moreover, the frequency spectrum also confirms
the existence not only Raman transition with |∆J | = 2 and |∆J ′| = 2 but also higher order
transitions with |∆J | ≥ 4 (|∆J ′| ≥ 4). In this chapter, we present the frequency spectrum
of the dynamic alignment of N2, O2, and CO2, directly compare them with experimental
spectrum, and give a unified interpretation of their origin. We use the leading term of HHG
operator to explain the salient features of the series observed by Miyazaki et al. [71, 138].

6.1 Frequency Spectrum of N2

First, we Fourier transform the calculated dynamic signals of N2 (c.f. Eq. (4.5)) to get their
spectrum in frequency domain and directly compare the results with the experimental data,
as shown in Fig. 6.1. The calculated data was obtained by assuming an initial temperature
200 K. We will discuss the initial temperature later. It can be seen from the figure that the
experimental spectrum (panel a) exhibits two prominent series I: (6, 14, 22, 30, ..) Bc and II:
(10 , 18 , 26 , 34 , ..) Bc, which are also present in the theoretical spectrum (panel b). They
are easily understood to arise from the F.T. of the

〈〈
cos2 θ

〉〉
(td) term in Eq. (4.5) which

vanishes unless ∆J = 0,±2, produces a sequence of lines (EJ+2−EJ)/2π = (4J+6) Bc, and
gives series I and II for even and odd J , respectively. The relative prominence of the series
I over the series II, in both the panels in Fig. 6.1, could be understood as the 2 : 1 ratio
of even J over odd J value of the nuclear spin statistics of N2 (e.g. [27, 117]). The weakly
resolved series III: (20,28,36,44, ..)Bc and series IV: (4 , 8 , 12 , 16 , ..)Bc in Fig. 6.1(a) is
the unexpected series and can not be produced by the F.T. of the leading term

〈〈
cos2 θ

〉〉
(td)
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Table 6.1: All possible frequency arising from
〈〈

cos2 θ
〉〉

,
〈〈

cos2 θ
〉2〉, and

〈〈
cos4 θ

〉〉
for

N2 whose both odd and even J ’s are allowed
No. Group Weighting Formula Peak series Expt.

freq. factor (in Bc) series〈〈
cos2 θ

〉〉
1 - a - 0 -

2 ω1 b 4J + 6
10, 18, 26, ... for odd J
6, 14, 22, ... for even J

II
I〈〈

cos2 θ
〉2〉

3 - aa′ - 0 -

4 ω1 and ω′1 a′b and ab′ 4J + 6
10, 18, 26, ... for odd J
6, 14, 22, .... for even J

II
I

5 ω1 + ω′1
bb′

2 4(J + J ′) + 12 20, 28, 36, .. III
6 ω1 − ω′1

bb′

2 4(J − J ′) > 0 4, 8, 12, .. IV〈〈
cos4 θ

〉〉
7 - a - 0 -

8 ω1 b 4J + 6
10, 18, 26, ... for odd J
6, 14, 22, .... for even J

II
I

9 ω2 c 8J + 20 28, 44, 60.. III

(see Fig. 3.9(a)). We note that the series III and IV, although relatively weak, are certainly
also present in the calculated spectrum (Fig. 6.1(b)). To interpret their origin, we therefore
consider the two higher order terms involving

〈〈
cos2 θ

〉2〉 (td) and
〈〈

cos4 θ
〉〉

(td) in Eq.

(4.5). Because of squaring, the expected frequency from
〈〈

cos2 θ
〉2〉 (td) not only included

the (4J + 6)Bc series but also its sum and its difference, as follow

(a + b cos ω1t)
(
a′ + b′ cos ω′1t

)
= aa′ + a′b cos ω1t + ab′ cos ω′1t + bb′ cos ω1t cos ω′1t

= aa′ + a′b cos ω1t + ab′ cos ω′1t

+
bb′

2
cos
(
ω1 + ω′1

)
t +

bb′

2
cos
(
ω1 − ω′1

)
t (6.2)

Above, the term a (a′) is a weighting for the transition of ∆J = 0 (∆J ′ = 0) with frequency
ω0 = 0, whereas b (b′) is the weighting factor for the transition of ∆J = ±2 (∆J ′ = ±2)
with frequency ω (ω′). The sum frequency (ω1 + ω′1) is corresponding to the transition with
∆J = 2 and ∆J ′ = 2, and according to Eq. (6.1), it produces (4(J + J ′) + 12) Bc series. On
the other hand, the difference frequency (ω1 − ω′1) produces (4(J − J ′)Bc) > 0 series. For
integer J and J ′ they yield series IV: (4 , 8 , 12 , 16 , ..)Bc. The next term

〈〈
cos4 θ

〉〉
(td)

vanishes unless ∆J = 0,±2, and ±4 produces not only (EJ+2 − EJ)/2π = (4J + 6) Bc

sequences lines but also (EJ+4−EJ)/2π = (8J +20)Bc gives series III (20,28,36,44, ..)Bc.
The whole possible series arising from these three leading terms and their grouping according
to experimental series are shown in Tab. 6.1. Note that series III is identical and hence
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Figure 6.1: Comparison of the experimental (from [71]) and theoretical Fourier spec-
trum of the dynamic 19th harmonic signal for N2. The spectrum shows series I:
(6, 14, 22, 30, 38, ..) Bc (blue mark), series II: (10 , 18 , 26 , 34 , 42 , ..) Bc (green mark), se-
ries III: (20,28,36,44,52,60,..)Bc (red mark), and series IV: (4 , 8 , 12 , 16 , ..)Bc (vio-
let mark). We use pump pulse of intensity Ipump = 0.8 × 1014 W/cm2 and pulse width
FWHM = 40 fs, and probe pulse of intensity Iprobe = 1.7 × 1014 W/cm2, wavelength
λ = 800 nm, and 36 cycles. The initial temperature is 200 K.

overlap with the series IV: (4 , 8 , 12 , 16 , ..)Bc and strengthen it. Moreover, the remaining
lines at (4 , 8 , 12 , 16 , 24,32 , 40 , 48 , ...)Bc found in the experimental spectrum in Fig.
6.1(a) as well as in the theoretical spectrum in Fig. 6.1(b), confirms the existence of series
IV and distinguishes itself from series III. The existence of series III and IV is a prove that
the dynamic signal of N2 can not be described in term of

〈〈
cos2 θ

〉〉
(td) only.

6.2 Frequency Spectrum of O2

In Fig. 6.2 we compare the experimental spectrum (panel a) for O2 [71] with the theoretical
spectrum (panel b) calculated from Eq. (4.12). Both the experimental and the theoretical
spectra in Fig. 6.2 show the Raman-allowed series II: (10 , 18 , 26 , 34 , 42 , ..) Bc, but not the
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Table 6.2: All possible frequency arising from
〈〈

sin2 cos2 θ
〉2〉 for O2 whose only odd J ’s

are allowed. The group of frequencies with a weak intensity are noticed with (*).
No. Group Weighting Formula Peak series Expt.

freq. factor (in Bc) series
1 - aa′ - 0
2 ω1 and ω′1 a′b and ab′ 4J + 6 10, 18, 26, ... II
3 ω2 and ω′2 a′c and ac′ 8J + 20 28, 44, 60, ... III
4 ω1 + ω′1

bb′

2 4(J + J ′) + 12 20, 28, 36, .. III
5 ω1 − ω′1

bb′

2 4(J − J ′) > 0 8, 16, 24, .. V
6 ω2 + ω′2

cc′

2 8(J + J ′) + 40 56, 72, 88, .. I*
7 ω2 − ω′2

cc′

2 8(J − J ′) > 0 16, 32, 48, .. V*
8 ω1 + ω′2 and ω2 + ω′1

bc′

2 and b′c
2 4(J + 2J ′) + 26 38, 46, 54, .. VI*

9 ω1 − ω′2
bc′

2 4(J − 2J ′)− 14 > 0 6, 14, 22, ... VI*
10 ω2 − ω′1

b′c
2 4(−J + 2J ′) + 14 > 0 2, 10, 18, ... II*

series I: (6, 14, 22, 30, 38, ..) Bc. The anomalous series III: (20,28,36,44,..) Bc, discussed
in the case of N2 above, also appears for O2 as well. Finally, another anomalous sequence
V: (8 , 16 , 24 , ..) Bc can be seen to be present in the data for O2 in Fig. 6.3(a), but can
not be generated by F.T. of

〈〈
sin2 2θ

〉〉
term (see Fig. 3.10).

To interpret the origin of the observed series in O2 we first consider the first term given
by Eq. (4.12),

〈〈
sin2 θ cos2 θ

〉2〉. The matrix element of
〈
sin2 θ cos2 θ

〉
vanishes unless for

∆J = 0,±2,±4 corresponds to frequency ω0, ω1, and ω2. For
〈〈

sin2 θ cos2 θ
〉2〉, there will

be sum and difference frequencies that arise from the squaring, as follows

(a + b cos ω1t + c cos ω2t)
(
a′ + b′ cos ω′1t + c′ cos ω′2t

)
= aa′ + ab′ cos ω′1t + a′b cos ω1t + ac′ cos ω′2t + a′c cos ω2t

+
bb′

2
cos
(
ω1 + ω′1

)
t +

bb′

2
cos
(
ω1 − ω′1

)
t +

cc′

2
cos
(
ω2 + ω′2

)
t

+
cc′

2
cos
(
ω2 − ω′2

)
t +

bc′

2
cos
(
ω1 + ω′2

)
t +

bc′

2
cos
(
ω1 − ω′2

)
t

+
b′c

2
cos
(
ω2 + ω′1

)
t +

b′c

2
cos
(
ω2 − ω′1

)
t (6.3)

with a > b > c. As discussed before, the frequency ω1 generates the series (4J + 6) that for
odd J will give us series II: (10, 18, 26, ..)Bc. The series I: (6, 14, 22, ..) Bc that originates
from even J , is absent from the spectrum. The latter fact is easily understood as due to
the nuclear spin of O atoms, which is 0, that strictly forbids any even J rotational state for
O2, as required by the overall symmetry of the total wavefunction for O2 (e.g. [27, 117]).
With odd J , the frequency ω2 produces series (8J + 20)Bc = (28, 44, 60, ...)Bc, whereas
(ω1 + ω′1) produces (4(J + J ′) + 12) Bc = (20, 28, 36, ...)Bc, together generates series III:
(20, 28, 36, 44, ..)Bc. The remain series, ω1 − ω′1, ω2 + ω′2, and ω2 − ω′2, together generate
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Figure 6.2: Comparison of the experimental (from [71]) and theoretical Fourier spec-
trum of the dynamic 19th harmonic signal for O2. The spectrum shows series II:
(10 , 18 , 26 , 34 , 42 , ..) Bc (green mark), series III: (20,28,36,44,52,60, ..) Bc (red mark),
and series V: (8 , 16 , 24 , ..) Bc (brown mark). We use pump pulse of intensity Ipump =
0.5 × 1014 W/cm2 and pulse width FWHM = 40 fs, and probe pulse of intensity Iprobe =
1.2×1014 W/cm2, wavelength λ = 800 nm, and 36 cycles. The initial temperature is 200 K.

series V: (8 , 16 , 24 , ..)Bc, as shown in Tab. 6.2. It is also shown in Tab. 6.2 that
frequency ω1 + ω′2, ω2 + ω′1, and ω1 − ω′2 produce a peak series of (4(J + 2J ′) + 26)Bc =
(6, 14, 22, ..., 38, 46, 54, ...)Bc overlaps with series I, even though with a weak intensity. These
series were also observed experimentally as a peak at interval 38 Bc. (These additional series
can not be generated from

〈〈
sin2 2θ

〉〉
). The remaining higher order terms in Eq. (4.12)

contribute, generally weakly, to the same series as above or to some additional lines that
can be seen in Fig. 6.2(b), but hardly resolved in experimental Fig. 6.2(a). Finally, we may
point out that the observed heights of the few lowest frequency lines in the data in Fig.
6.2(a) for O2 are due mostly to the fluctuation of the laser outputs (foot-note [20] of [71]).
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Table 6.3: All possible frequency arising from
〈〈

sin2 cos2 θ
〉2〉 for CO2 whose only even J

’s are allowed. The group of frequencies with a weak intensity are noticed with (*).
No. Group Weighting Formula Peak series Expt.

freq. factor (in Bc) series
1 - aa′ - 0 -
2 ω1and ω

′
1 a′b and ab′ 4J + 6 6, 14, 22, ... I

3 ω2 and ω
′
2 a′c and ac′ 8J + 20 20, 36, 52, ... III

4 ω1 + ω′1
bb′

2 4(J + J ′) + 12 12, 20, 28, .. III
5 ω1 − ω′1

bb′

2 4(J − J ′) > 0 8, 16, 24, .. V
6 ω2 + ω′2

cc′

2 8(J + J ′) + 40 40, 56, 72, .. V*
7 ω2 − ω′2

cc′

2 8(J − J ′) > 0 16, 32, 48, .. V*
8 ω1 + ω′2 and ω′1 + ω2

bc′

2 and b′c
2 4(J + 2J ′) + 26 26, 34, 42, .. II*

9 ω1 − ω′2
bc′

2 4(J − 2J ′)− 14 > 0 2, 10, 18, ... II*
10 ω2 − ω′1

b′c
2 4(−J + 2J ′) + 14 > 0 6, 14, 22, ... I*

6.3 Frequency Spectrum of CO2

In Fig. 6.3 we compare the experimental spectrum (panel a) for 19th harmonic of CO2

[72] with the theoretical spectrum (panel b) calculated from Eq. (5.5) (assuming an ini-
tial temperature 300 K). Both the experimental and the theoretical spectra in Fig. 6.3
(panel a, and panel b, respectively) show three main series, i.e. Raman-allowed series I:
(6, 14, 22, 30, ..) Bc, series III: (20,28,36,44,..) Bc, and series V: (8 , 16 , 24 , ..)Bc. The
series II arises from 4J + 6 with even J only, a nuclear characteristic of CO2. Series
III arises from two series, i.e. (8J + 20)Bc = (20,36,52,..)Bc and (4(J + J ′) + 12)Bc =
(12,20,28,..)Bc. The contribution of the series (12,20,28,..)Bc appear in the experimental
spectrum at (90,98,104, ....)Bc that can not be associated with the series (20,36,52,..)Bc.
The series (12,20,28,..)Bc also makes spectrum at 20 Bc stronger than the following peaks.
In general, the existence of two different series (20,36,52,..)Bc and (12,20,28,..)Bc, and
their overlapping, makes the series III has more than one peak. The series V and the
series (12,20,28,..)Bc can not be associated with

〈〈
sin2 2θ

〉〉
, but can be generated by〈〈

sin2 θ cos2 θ
〉2〉, providing strong evidence of the validity of the present model. In ad-

dition to these three series, there are also some additional weaker series, as listed in Tab.
6.3.

In Fig. 6.4, we present the calculated HHG spectrum for 9th harmonic for CO2. Like
the 19th harmonic spectrum, the 9th harmonic spectrum also shows a similar behavior
with a dominant series, i.e. series II: (10 , 18 , 26 , 34 , 42 , ..) Bc, III: (20,28,36,44,..) Bc,
V: (8 , 16 , 24 , ..)Bc, and additional weak series. Please note that the series III is more
prominent in 9th harmonic spectrum, than in the 19th harmonic spectrum. In time domain,
the 9th harmonic spectrum has greater 1

8revival than the one for the 19th harmonic.
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Figure 6.3: Comparison of the experimental (from [138]) and theoretical Fourier spectrum of
the dynamic 19th harmonic signal for CO2. The spectrum is dominated by three main series,
i.e. series I: (6, 14, 22, ..) Bc, series III: (20, 28, 36, 44, ..)Bc, and series V: (8 , 16 , 24 , ..)Bc.
We use pump pulse of intensity Ipump = 0.53×1014 W/cm2 and pulse width FWHM = 40 fs,
and probe pulse of intensity Iprobe = 1.5 × 1014 W/cm2, wavelength λ = 800 nm, and 36
cycles. The initial temperature is 300 K.
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Figure 6.4: Theoretical Fourier spectrum of the dynamic 9th harmonic signal for CO2.
The spectrum is dominated by three main series, i.e. series I: (6, 14, 22, ..) Bc, series III:
(20, 28, 36, 44, ..)Bc, and series V: (8 , 16 , 24 , ..)Bc. We use pump pulse of intensity
Ipump = 0.56× 1014 W/cm2 and pulse width FWHM = 40 fs, and probe pulse of intensity
Iprobe = 1.23×1014 W/cm2, wavelength λ = 800 nm, and 36 cycles. The initial temperature
is 300 K. There is no experimental spectrum reported.

6.4 Effect of Initial Temperature

We point out that during the test calculations, the relative strengths of the lines in a calcu-
lated spectrum were found to depend significantly on the assumed molecular temperature
(which is rather difficult to determine experimentally), provides a way of determine tem-
perature of ensemble. Typically, the signature of initial temperature appear in both its
dynamic and Fourier spectrum (see § 4.4). The gas jet with a lower initial temperature will
produce a stronger signal with a greater modulation depth, as observed both in adiabatic
(for example, aligned I2 observed with its dissociation signal [164] and a class of asymmet-
ric top molecule observed by using Coulomb explosion [139]) and non-adiabatic case (for
example, aligned I2 observed with its dissociation signal [44, 140]). In Fourier spectrum,
the lower initial temperature produces spectrum with lower Jmax.

From the previous figures, one sees that the experimental spectra give a main series
reaching their maximum at 38 Bc (correspondent to Jmax = 8) for N2, 42 Bc (Jmax = 9)
for O2, 94 Bc (Jmax = 22) for 19th harmonic order of CO2, and 110 Bc (Jmax = 26)
for 9th harmonic order. These similar spectra with same position Jmax can be obtained
theoretically by an initial temperature 200 K for N2 and O2 and 300 K for CO2, that are
somewhat higher than the expected temperature of the gas, which is estimated to be some
what less than 100 K [71]. In contrast, the calculated data for initial temperature 100 K
gives smaller Jmax of the main series, those are 6 for N2, 7 for O2, and for 14 CO2. (Figs.
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Figure 6.5: Calculated spectra for19th harmonic signal of N2 (panel a) and O2 (panel b) at
Boltzmann temperature 100K; laser parameters as in Fig. 6.1, for N2 and, as in Fig. 6.2
for O2.

6.5 and 6.6).1

The difference between theoretical temperature obtained from the spectral signal and
that estimated from the experiment could be caused by the following. (1) There is a delay
time between the moment of measuring temperature and the moment of entering the pump
pulse. To be interact with laser beam, the valve should be opened, a little bit earlier before
entering pulse. During the delay time (between opening valve and entering the pulse), the
gas jet interacts with the environment with higher temperature, and therefore it makes the
nozzle’s temperature to be higher. Rosca-Pruna and Vrakking has observed the effect of
the delay time on the dynamic alignment of I2 by observing its dissociation signal [140, 44].
They found that the modulation signal obtained by applying the laser pulse 440 µs after
opening the valve is a half of the one obtained from an opening time 420 µs. The smaller

1The fact that the initial temperature estimated from Fourier spectra is higher than the measured initial
temperature in experiment is not only observed in this case -i.e. aligned N2, O2, and CO2 observed with
HHG- but also occurs in aligned N2 and O2 observed with Coulomb explosion [27] and aligned CO2 observed
by its Kerr effect [32].
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Figure 6.6: Calculated spectra for CO2 of 9th harmonic (upper panel) and 19th harmonic
(lower panel) at Boltzmann temperature 100 K; laser parameters as in Fig. 6.4, for 9th
harmonic order and, as in Fig. 6.3 for 19th harmonic order.

modulation signal is a sign of higher initial temperature. It means that a longer opening
time corresponds to a higher initial temperature. We note here that Miyazaki et al. enter
the pulse 200µs after measuring the temperature [138]. (2) So far, it was generally assumed
that the second pulse just acts as a probe only (it generates HHG signal only). However,
if we assume the second pulse also induces the molecule to rotate, the situation is similar
with the case of alignment by two pulses. The calculation in § 3.8 (Fig. 3.13) and some
experimental data (for example [35]), implies that the HHG signal from molecular ensemble
aligned with a combination the pump and the probe pulses should have a smaller modulation
depth, than the HHG signal of ensemble aligned with the pump pulse only. The reduction of
modulation depth is a characteristic of dynamic alignment with higher initial temperature.
Finally, it is important to note that the dynamic signal of O2 and CO2 have no double peak
at their half and fourth revivals. The absence of double peak is another characteristic of
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alignment with high initial temperature.

6.5 Comparison with Other Theoretical Model: Case O2

So far, the frequency spectra are calculated with assuming the adiabatic nuclear approxima-
tion of the present theory (Eq. (2.74)). First, we calculate the individual dipole expectation
value from each reference wave packet state produced by the pump pulse (Eq. (2.42)). Sec-
ond, we calculate the individual probability of HHG emission from each reference wave
packet, which is given by the modulus square of the F.T. of individual dipole expectation
value. Third, we obtain the HHG emission signal by taking thermal average from the
individual probabilities, as shown in Eq. (2.46)

The model of Lin and his colleagues [88] uses instead a more drastic a ‘frozen’ nuclei
model, in which the nuclei are assumed to be totally at rest during the interaction and hence
the total dipole expectation value is just the electronic dipole expectation value. The HHG
signal was obtained by averaging the electronic transition probability with the molecular-
axis distribution, as shown by Eq. (2.76). Compared to the present theory, where the
nuclear position is allowed to vary, the model of Lin et al. makes too strong assumption,
where the probability is obtained at a fix nuclear position.

Another model was proposed by Madsen and Madsen [89, 112]. First, they calculate the
electronic dipole expectation value. Second, the corresponding transition matrix element is
obtained by taking F.T. of the electronic dipole . Third, they thermal average the complex
matrix element. And finally, they squared the last thermal average quantity to obtain HHG
signal (see Eq. (2.79)). This is a very unorthodox thermal average and does not appear to
be justified by quantum statistical mechanics.

We show in Fig. 6.7 the calculated signals based on the three definitions of the signal, for
O2, together with the experimental spectrum, as a comparison. There are two distinctions
appear between three definitions. First, the existence of an extra series. We can see from
the figure that the ‘frozen’ nuclei model (Lin et al.’s model) does not produce the extra
series (series V : (8 , 16 , 24 , ..)Bc ) which was well produced by the present adiabatic
nuclei theory and is also observed experimentally. Model of Madsen and Madsen produces
the series V, but with much weaker intensity compared to the experimental spectrum. To
understand the origin, we turn to the leading term of HHG signal which is

S
(n)
A (td) = c

(n)
11

〈〈
sin2 θ cos2 θ

〉2〉+ c
(n)
12

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos4 θ

〉〉
+ ... (6.4)

S
(n)
FN (td) = c

(n)
11

〈〈
sin4 θ cos4 θ

〉〉
+ c

(n)
12

〈〈
sin4 θ cos6 θ

〉〉
+ ... (6.5)

S
(n)
MM (td) = c

(n)
11

〈〈
sin2 θ cos2 θ

〉〉 〈〈
sin2 θ cos2 θ

〉〉
+c

(n)
12

〈〈
sin2 θ cos2 θ

〉〉 〈〈
sin2 θ cos4 θ

〉〉
+ ... (6.6)
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Figure 6.7: Theoretical Fourier spectrum of the dynamic 19th harmonic signal for O2; pump
intensity I = 0.5×1014 W/cm2, probe intensity I = 1.2×1014 W/cm2W/cm2, duration 40 fs,
wavelength 800 nm, and temperature 200 K. The calculation was done based on the semi
adiabatic model (left-lower panel), the frozen nuclei model of Lin (right-upper panel) , the
’mixture model’ of Madsen (right-lower panel). As comparison, the experimental spectrum
(left-upper panel) is also shown.

where the indices A, FN , and MM stand for adiabatic, frozen nuclei, and Madsen and
Madsen, respectively. It is clear that the adiabatic signal as well as the Madsen and Madsen’s
signal contain mix-term (i.e. the squaring or multiply between different expectation values
of operator) which is the origin on the series V. On the other hand, the signal of ‘frozen’
nuclei does not contain mix-term and therefore does not produce series V. The difference
in the strength between the series V in the adiabatic signal, and the one in the Madsen and
Madsen’s signal is related to the way of multiplying. For the adiabatic theory, the squaring
was done before the thermal averaging, and therefore the the mix-term has a weight of
ρ (J0). For the Madsen and Madsen theory, on the other hand, the squaring is done after
thermal averaging, and therefore the mix-term has a weight of ρ (J0) ρ (J ′0).

Second, the ratio between series the III ((20, 28, 36, 44, ..)Bc) and the series II
((10, 18, 26, ..)Bc). Theory of Madsen and Madsen as well as theory of Lin et al. pro-
duce too weak signal of the series III, relative to the series II. The best ratio is produced
by the present adiabatic nuclei approximation. To understand the origin, we back to Tab.
6.2. From the table, one sees that the series III in adiabatic signal is generated not only by
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a group frequency ω2 (and ω
′
2), with the weighting factor a′c (and ac′), but also by a group

frequency ω1 + ω
′
1 with a weighting factor bb′

2 . For the signal of Madsen and Madsen, the
group of frequency ω1 + ω

′
1 is present, but with much weaker intensity due to the squaring

of thermal weight ρ (J0) ρ (J ′0), instead of ρ (J0) in the adiabatic signal. For the signal of
‘frozen’ nuclei, the group of frequency ω1 + ω

′
1 is absent.

These above facts speak strong in favor of the present theory and reject the two other
models discussed.



Chapter 7

Dependence of the Dynamic Signal

on the Relative Angle Between the

Pump and the Probe Polarizations

α

7.1 Salient Experimental Data

So far we have limited ourselves to the usual experimental geometry in which the pump and
the probe polarizations are kept parallel to each other. We now consider the more general
case in which the probe and the pump polarizations make an arbitrary angle α between
them.

The dependence of dynamic HHG signal on the relative angle, α, between the pump
and the probe polarizations was first reported by Marangos and collaborators [67]. They
revealed a marked difference of the HHG signals of adiabatically aligned molecules by a long
pulse, for the parallel and perpendicular geometries of the pump and the probe polarizations
for the fixed 9th order for H2, N2, and CS2 [67, 141, 142]. Moreover, they also obtained
the dependence of HHG signal of CO2 on the angle α, for several other harmonic orders
[68, 151].

Following Marangos et al., Itatani et al. [13] measured the HHG signal of non-
adiabatically aligned N2 by a short pulse at a fixed delay time td ' 4.0 ps (corresponds
to the top signal) for various relative polarization angle α between the pump and the probe
polarization. They found that the signal reached its maximum when the pump polarization
was parallel to the probe polarization (α = 0o), and was reduced by increasing the angle α,
and it reached the minimum at α = 90o. A similar conclusion was obtained by A. Scrinzi,
when he normalized HHG signal of N2 with respect to HHG signal of its companion atom
Ar for several angle α [165].

109
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Kanai et al. [43] and Miyazaki et al. [71, 138] measured the dynamic HHG signal as a
function of delay time between the pump and the probe pulse for the diatomic molecules
N2, O2, and triatomic CO2 molecules for different relative angles α (= 0◦, 45◦, and 90◦)
and observed that the HHG modulation signals were smaller in the perpendicular case,
than in the parallel case, and showed an opposite phase relation in the two geometries. In
fact, the dynamic HHG signal had a similar phase in the parallel case when α < 60 and
had an opposite phase when α > 60 [138, 145]1. In addition, Miyazaki et. al. measured
the modulation depth, which is the difference between the maximum and minimum signal
observed during one period and plotted the results against the angle α [138]. Moreover,
Miyazaki and his colleagues also measured HHG signal by varying the angle α and keeping
td at the top-signal around its half revival period [72]. The results for the 19th harmonic
signal were the following. For N2, the signal was maximum at α = 0 and minimum α = 90o.
In contrast, due to the inverted phase, the signal of CO2 was maximum at α = 90 and
minimum α = 0o. For O2, an interesting phenomenon was reported: the signal reached a
maximum at α ' 20o and a minimum at α ' 80o.

The first heuristic explanation on the dependence of HHG signal on the angle α was
proposed by Kanai et al. [43]. They proposed a planar emission model of HHG which
predicted an opposite phase relation, as observed, but could not account for the observed
unequal modulation of the signals in the two geometries. In addition, the planar model
could not explain why the signal amplitude was equal to zero at critical angle αc ' 54.7o

[138]. A more satisfactory model was then proposed by Zhou et al. [88]. They predicted
that the HHG signal of N2 should monotonically decrease on increasing the angle α, which
was in agreement with the experimental data. For O2, they predicted that the signal to be
maximized at α ≈ 50o, which however, differed from the experimental data.

The present theoretical investigation of the α-dependent dynamic HHG signal is there-
fore motivated by the following. First, the necessity of a consistent theory for explaining
the salient experimental data. Second, unlike the dependence on the alignment angle θ, the
relative polarization angle α can be controlled in the laboratory and therefore provides a
possible way in controlling the HHG signal. In this chapter, we investigate the α-dependent
of HHG signals and directly compare the results with the experimental data.

7.2 Generalization of the Expression of Dynamic Signal for

Arbitrary Relative Polarization Angle α

To derive the HHG signal in more general case, it is convenient to choose a coordinate
system where the pump polarization along the space fixed polar axis (z-axis) is kept fixed
as before, but to rotate the probe polarization by an angle α from it and let the pump and

1Actually, Miyazaki et al. reported the HHG yield for different angle α = 0o, 10o, 20o, ......, 90, whereas,
Merdji et al. reported for α = 0, 30, 60, 90. Their results imply the existence of angles between 50o and
60o, where the signal is flat.
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Figure 7.1: Schematic diagram defining the directions of the molecular axis, R, electron
position vector r, the pump polarization (ε1 ‖ z − axis), and the probe polarization (ε2 ‖
z′−axis). The z and z’ axes lie on the common x-z plane; the fields are assumed to propagate
along the y-axis.

the probe polarization vectors define the common (x− z′ − z)-plane, as shown in Fig. 7.1.
Let the direction of the probe polarization be the polar axis z′ of the rotated frame, and
the direction of the molecular axis in this frame be denoted by (θ′, φ′). Then we may carry
out the electronic dipole integrals as before with z′ as the polar axis, and obtain the same
expressions as before for the HHG operators (Eq. (4.3) for N2, Eq. (4.10) for O2, and Eq
(5.3) for CO2) except that they are now given in terms of the variables (θ′, φ′) in the rotated
frame. The HHG signal (Eq. (4.5) for N2 for an arbitrary angle α now can be written as:

S(n)(td;α) = c
(n)
00 + c

(n)
01

〈〈
cos2 θ′

〉〉
(td)

+c
(n)
11

〈〈
cos2 θ′

〉2〉 (td) + · · ·+ c
(n)
33

〈〈
cos6 θ′

〉2〉 (td) . (7.1)

Similarly, the HHG signal of O2 (Eq. (4.12)) reads

S(n)(td;α) = c
(n)
11

〈〈
sin2 θ′ cos2 θ′

〉2〉 (td) + c
(n)
12

〈〈
sin2 θ′ cos2 θ′

〉 〈
sin2 θ′ cos4 θ′

〉〉
(td)

+ · · ·+ c
(n)
33

〈〈
sin2 θ′ cos6 θ′

〉2〉 (td) (7.2)

whereas the HHG of CO2 (Eq. (5.5)) can be written as

S(n)(td;α) = c
(n)
11

〈〈
sin2 θ′ cos2 θ′

〉2〉 (td) + c
(n)
12

〈〈
sin2 θ′ cos2 θ′

〉 〈
sin2 θ′ cos4 θ′

〉〉
(td)

+ · · ·+ c
(n)
55

〈〈
sin2 θ′ cos10 θ′

〉2〉 (td) (7.3)

In the equations above, a quantity 〈〈f(θ′)〉〉 (td) is an expectation value of the function f(θ′),
given in probe frame, but evaluated with respect to the rotational wave packet obtained in
the pump frame, or 〈〈f(θ′)〉〉 (td) ≡

∑
J0M0

ρ(J0) 〈ΦJ0M0 (td, θ) |f(θ′)|ΦJ0M0 (td, θ)〉. Before
evaluating integral, it is convenient, therefore, to transform the HHG operators which is
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given in the variables (θ′, φ′) of probe frame to the angles (θ, φ) of the pump frame (i.e.
with the z along the pump polarization). This can be done by the simple transformation

cos θ′ = cos θ cos α + sin θ sinα cos φ (7.4)

where φ is the azimuth angle between plane of the molecular axis and the pump pulse, and
plane of the pump and the the probe pulses.

Using the above transformation, for example, the expectation value of
〈
cos2 θ′

〉
in the

case of a non-zero angle α reads

〈
cos2 θ′

〉
=

(
cos2 α− 1

2
sin2 α

)〈
cos2 θ

〉
+

1
2

sin2 α

+
1
4

sin2 α
(〈

sin2 θe2iφ
〉

+ c.c.
)

+
1
2

sin 2α
(〈

sin θ cos θeiφ
〉

+ c.c.
)

(7.5)

where
〈
sin θ cos θe±iφ

〉
couples the J −→ J ′ states with ∆J = 0,±2 and M −→ M ′ states

with ∆M = ±1 whereas
〈
sin2 θe±2iφ

〉
couples the J −→ J ′ states with ∆J = 0,±2 and

M −→ M ′ states with ∆M = ±2 .2 We note that for the linearly polarized pump pulse
of the present interest, the interaction Hamiltonian is proportional to cos2 θ, which is in-
dependent of M in the space fixed pump-frame. Thus the M -quantum number of the
rotational wave-packet remains constant, or M = M0, throughout the evolution. Hence,
the expectation values of

〈
sin θ cos θe±iφ

〉
and

〈
sin2 θe±2iφ

〉
are zero, and Eq. (7.5) reads

〈
cos2 θ′

〉
=

1
2
(
3 cos2 α− 1

) 〈
cos2 θ

〉
+

1
2

sin2 α (7.8)

In a similar way, we obtain the expectation value for higher terms

〈
cos4 θ′

〉
=

1
8
(
35 cos4 α− 30 cos2 α + 3

) 〈
cos4 θ

〉
+

3
8
(
−10 cos4 α + 12 cos2 α− 2

) 〈
cos2 θ

〉
+

3
8

sin4 α (7.9)

2The non vanishing element matrix of
˙
sin θ cos θe±iφ

¸
are [103]

˙
J, M

˛̨
sin θ cos θe±iφ

˛̨
J − 2, M ± 1

¸
= ∓ 1

(2J+3)

r
((J+1)2−M2)(J±M+2)(J±M+3)

(2J+1)(2J+5)˙
J, M

˛̨
sin θ cos θe±iφ

˛̨
J, M ± 1

¸
= − (2M±1)

(2J−1)(2J+3)

p
J(J + 1)−M(M ± 1)˙

J, M
˛̨
sin θ cos θe±iφ

˛̨
J + 2, M ± 1

¸
= ± 1

(2J−1)

r
(J2−M2)(J∓M−1)(J∓M−2)

(2J+1)(2J−3)

, (7.6)

For
˙
sin2 θe±2iφ

¸
, the non vanishing matrix are:˙

J, M
˛̨
sin2 θe±2iφ

˛̨
J − 2, M ± 2

¸
= 1

(2J−1)
√

(2J+1)(2J−3)

q
(J±M)!

(J±M−4)!˙
J, M

˛̨
sin2 θe±2iφ

˛̨
J, M ± 2

¸
= 1

(2J−1)(2J+3)

q
(J±M)!

(J±M−4)!˙
J, M

˛̨
sin2 θe±2iφ

˛̨
J + 2, M ± 2

¸
= 1

(2J+1)
√

(2J+1)(2J−3)

q
(J±M+2)! (J∓M)!
(J∓M−2)! (J±M)!

(7.7)
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Notice that for α = 0,
〈
cos2 θ′

〉
in Eq. (7.8) and

〈
cos4 θ′

〉
in Eq. (7.9) reduce to

〈
cos2 θ

〉
and

〈
cos4 θ

〉
, respectively, as they should. Thermal averaging Eqs. (7.8) and (7.9) gives us〈〈

cos2 θ′
〉〉

and
〈〈

cos4 θ′
〉〉

which are the second and the fourth term of HHG signal of N2

for an arbitrary angle α (Eq. (7.1)). On the other hand, squaring and thermal averaging
Eq. (7.8) gives us

〈〈
cos2 θ′

〉2〉, the third term of HHG signal of N2. Further, substracting
Eq. (7.9) from Eq. (7.8) gives us

〈
sin2 θ′ cos2 θ′

〉
=

1
8
(
−35 cos4 α + 30 cos2 α− 3

) 〈
cos4 θ

〉
+

1
8
(
30 cos4 α− 24 cos2 α + 2

) 〈
cos2 θ

〉
+

1
8
(
−3 sin4 α + 4 sin2 α

)
(7.10)

In a similar way, squaring and then thermal averaging Eq. (7.10) gives us the first term of
HHG signal of O2 and CO2 that appear in Eqs. (7.2) and (7.3), respectively. We obtain
the higher order terms, analogously.

An alternative way to express the HHG signal for arbitrary relative polarization angle
α can be done as follow. Suppose the probe pulse is placed at angle θ′ with respect to the
molecular axis, as shown in Fig. 7.1. The expectation value of an operator T

(n)
e (θ′) at delay

time td is given by

〈
T (n)

e (θ′)
〉

=
∫ π

0

∫ 2π

0
|Φ (td; θ, φ)|2 T (n)

e (θ, φ, α) sin θdφdθ (7.11)

In above, θ′ is a function of alignment angle θ, azimuth angle φ, and relative polarization
angle α, as given by Eq. (7.4). We note that our interaction Hamiltonian is proportional
to cos2 θ, which is independent of M in the space fixed pump-frame. Therefore the squared
wavefunction |Φ (td; θ, φ)|2 is M -independent. If we define

T (n)
e (θ, α) =

∫ 2π

0
T (n)

e (θ, φ, α)dφ, (7.12)

the expectation value of T
(n)
e (θ, φ, α) reads〈

T (n)
e (θ′)

〉
=
∫ π

0
|Φ (td; θ)|2 T (n)

e (θ, α) sin θdθ. (7.13)

We note that Eq. (7.13) satisfies only for linear polarization. For circularly polarized pump
pulse, we use the more general form, Eq. (7.11).

For the lowest order HHG signal of N2, we have T
(n)
e (θ′) = cos2 θ′. The corresponding

T
(n)
e (θ, α) is given by

T (n)
e (θ, α) =

∫ π

0

[
cos2 θ cos2 α + sin2 θ sin2 α cos2 φ
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+ 2 sin θ cos θsinα cos α cos φ
]
dφ

= 2π

(
cos2 θ cos2 α +

1
2

sin2 θ sin2 α

)
(7.14)

Finally, substituting Eq. (7.14) in Eq. (7.13) gives the value of
〈
cos2 θ′

〉
, which is equal to

Eq. (7.8).

7.3 Harmonic Spectrum

As mentioned above, the first evidence of the dependence of HHG signal of non-adiabatic
aligned molecule, on the relative polarization angle, α, is the experiment of Itatani et al.
[13]. They aligned N2 at initial temperature T = 30 K by using a pump pulse of intensity
Ipump = 0.4 × 1014 W/cm2 and pulse duration 60 fs. The HHG signal was then generated
by using a probe pulse of intensity Iprobe = 2× 1014 W/cm2, duration 30 fs, and wavelength
800 nm at fixed delay time td' 4.0 ps when the HHG signal reached its maximum. The
HHG spectra was then measured for various relative angle α.
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Figure 7.2: Theoretical harmonic spectra of N2 for various relative polarization angle, α,
at top signal (left panel) and anti-top signal (right panel); pump pulse: Ipump = 0.4× 1014

W/cm2 and 60 fs; probe pulse: Iprobe = 2 × 1014 W/cm2 and 30 fs, wavelength 800 nm,
temperature 30 K.

Fig. 7.2(a) shows the calculated spectra obtained with the same parameters as those
of Itatani et al. and observed at the delay time when the dynamic HHG signal reaches
its maximum. As experimental data, the theoretical spectrum reaches its maximum for
parallel polarization (α = 0o), decreases with increasing α, and reaches its minimum for
perpendicular polarization. At this delay time of observation, most of the molecules are
aligned along pump polarization (θ ' 0o) and therefore the polarization angle, α, represents
the angle between the probe polarization and the molecular axis. Due to the electron cloud
of N2 are peaked along its nuclear axis, therefore the signal reaches its maximum at parallel
polarization (α = 0o). For perpendicular polarization (α = 90o), most of molecules are
aligned perpendicular to the probe polarization, and therefore the signal becomes minimum.
We note that the molecular distribution depends on the initial temperature, where the lower
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temperature gives the sharper distribution around pump polarization. The present data is
calculated with the initial temperature T = 30K, where molecule distribution is sharply
peaked at pump polarization. Therefore, the α-dependent spectrum is almost similar to
the θ-dependent spectrum, as shown in Fig. 4.4. We also present the calculated spectrum
measured at delay time td = 4.37 ps (when the signal reaches its minimum), as shown in
Fig. 7.2(b). At this delay time, most of the molecules are aligned perpendicular to the
pump polarization’s direction. Therefore, the signal reaches its maximum when the probe
polarization is perpendicular to the pump polarization.

7.4 Dynamic Signal as Function of Delay Time for Fixed Rel-

ative Pump-Probe Polarization Angle α

To further compare with the experimental data, we calculate the HHG signals as a function
of the delay time between the two pulses td, at three different relative polarization angles
α, i.e. α = 0o, 45o, and 90o, as shown in Fig. 7.3 for N2, Fig. 7.4 for O2, and Figs. 7.5 and
7.6 for CO2. In general, the signal for α = 90o changes its phase by π with respect to the
signal for α = 0o, a phenomenon that is observed experimentally [43, 138]. The signal for
α = 45o is seem to remain rather flat as a function of α.

We start with N2. To see qualitatively the α dependence of HHG signal of N2, we may
consider the leading term of Eq. (7.1) which is given by

S(n) (td;α) = c
(n)
00 + c

(n)
01

[
1
2

sin2 α +
1
2
(
3 cos2 α− 1

) 〈〈
cos2 θ

〉〉
(td)
]

(7.15)

Thus, for the parallel polarizations we have, S(n) (td; 0o) ≈ c
(n)
00 + c

(n)
01

〈〈
cos2 θ

〉〉
(td) and

for the perpendicular polarizations, S(n) (td; 90o) ≈ c
(n)
00 + c

(n)
01
2

(
1−

〈〈
cos2 θ

〉〉
(td)
)

which
are clearly of opposite phase, as a function of td. The expressions also show that the
modulation depth for α = 90o is smaller than the one for α = 0o, that can not be obtained
by planar model [43], as will be further discussed in § 7.7.

For O2, the leading term of HHG signal (Eq. (7.2)) reads

S(n)(td;α) ≈ c
(n)
11

64
〈((

35 cos4 α− 30 cos2 α + 3
) 〈

sin2 θ cos2 θ
〉
(td)

+
(
−5 cos4 α + 6 cos2 α− 1

) 〈
cos2 θ

〉
(td)

+
(
−3 sin4 α + 4 sin2 α

))2〉 (7.16)

Thus, for the parallel polarizations we have, S(n) (td; 0o) ≈ c
(n)
11

〈〈
sin2 θ cos2 θ

〉2〉,
as they should, and for the perpendicular polarizations, S (td; 90o) ≈
c
(n)
11
64

〈(
3
〈
sin2 θ cos2 θ

〉
−
〈
cos2 θ

〉
+ 1
)2〉. It was clear that the sign of

〈
cos2 θ

〉
changes

from positive for α = 0o to negative for α = 90o. It implies that the half and fourth
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Figure 7.4: Calculated dynamic 19th harmonic order for O2 for various relative pump-
probe polarization angles, i.e. α = 0o, α = 45o, and α = 90o. The laser parameters are
Ipump = 0.5× 1014W/cm2, Iprobe = 1.2× 1014W/cm2, FWHM = 40 fs, λ = 800 nm, and 36
cycles. The initial temperature is 200 K.
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Figure 7.5: Calculated dynamic 9th harmonic order for CO2 for various relative pump-
probe polarization angles, i.e. α = 0o, α = 45o, and α = 90o. The laser parameters are
Ipump = 0.56× 1014 W/cm2, Iprobe = 1.3× 1014 W/cm2, FWHM = 40 fs, λ = 800 nm, and
36 cycles. The initial temperature is 300 K.
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Figure 7.6: Calculated dynamic 19th harmonic order for CO2 for various relative pump-
probe polarization angles. The laser parameters are Ipump = 0.53 × 1014 W/cm2, Iprobe =
1.5× 1014 W/cm2, FWHM = 40 fs, λ = 800 nm, and 36 cycles. The initial temperature is
300 K.

revival signals for α = 90o are in opposite phase, compared with α = 0o. On the other
hand, the sign of

〈
sin2 θ cos2 θ

〉
does not change and hence the phase of the 1

8 -revival also
remains constant, as seen in Fig. 7.4 (lower panel) and this is also observed experimentally

[43, 138]. The expression S (td; 90o) ≈ c
(n)
11
64

〈(
3
〈
sin2 θ cos2 θ

〉
−
〈
cos2 θ

〉
+ 1
)2〉 also shows

that the modulation depth for α = 90o is smaller than that for α = 0o (that can not be
obtained by the planar model [43]). The α-dependent signal of CO2 (Figs. 7.5 for the 19th
harmonic order and 7.6 for the 9th harmonic order) are qualitatively similar to the one of
O2.

7.5 Harmonic Signal as Function of Relative Polarization

Angle α at a Fixed Delay Time

To further compare the present theoretical results with the experimental data, we have
calculated the harmonic signal by keeping the time delay to be fixed and equal to the top
alignment at first half revival td ≈ 1

2Trev and rotate the relative polarization angle α. In
Fig. 7.7, we show the results for the 19th harmonic for N2, O2, and CO2 and compare
them with the experimental data. For 0o ≤ α ≤ 90, the signal of N2 and O2 reduce with
increasing α, whereas the signal of the 19th harmonic for CO2 increases with increasing α.
It can be seen that the calculated results qualitatively agree with the experimental data.
We also point out that the calculated α-dependent signal given by Zhou et. al. [88] gives
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Figure 7.7: Experimental (left panel) (from [72]) and calculated (right panel) 19th harmonic
at peak of its first half-revival (when its alignment degree is maximum) plotted as a function
of pump-probe angle α, for N2 (td = 4.09 ps), O2 (td = 5.68 ps), and CO2 (td = 21.18 ps)
[72]. The laser parameters for both calculation and experiment are similar with Fig. 7.3
for N2, Fig. 7.4 for O2, and Fig. 7.6 for CO2.

the same properties for N2, but they predict unsatisfactorily that the signal for O2 to be
maximized at α ≈ 50o, which defies from the experimental data.

The experimental results also show an extreme angle where the signal reaches a maxi-
mum or a minimum. Theoretically, the extreme angles satisfy

∂S(n) (td, α)
∂α

= 0 (7.17)

For N2 (Eq. (7.15)) the above equation gives us sin α cos α
[
1− 3

〈〈
cos2 θ

〉〉
(td)
]

= 0. It
implies that the extrema of the signal occur for sin α cos α = 0, corresponding to α = 0o and
α = 90o, as indeed confirmed experimentally. The last results do not depend on the delay
time td, as will be seen later. The present theory also predicts that for randomly distributed
molecules,

〈〈
cos2 θ

〉〉
(td) = 1

3 , the signal will be α-independent. Unlike N2, the dominant
contribution for HHG signal of O2 and CO2 come from more than one term. Therefore
their derivative with respect to α also depend on at least two expectation values and hence
depend on the initial temperature, even in relative scale. The extrema experimental values
occur at α ' 20o and α ' 80o for O2 and at α ' 0o and α ' 100o for CO2. The theoretical
results with T = 200 K gives α ' 0o and α ' 90 for both O2 and CO2. However, a
calculation with a lower initial temperature (T=25 K), gives the extrema signal at 30o for
O2, as expected.

In Fig. 7.8 we show the results for N2, O2, and CO2, for three points around the first
half-revival time, i.e. at the top, the average, and the anti top alignments. For the case of
N2, a coincidence of the three signals is seen to occur at a critical angle αc ≈ 54.7o. This can
be understood from its leading term, Eq. (7.15). The dynamic signal essentially remains
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Figure 7.8: HHG signal near the first half-revival plotted as a function of pump-probe angle
α, for N2, O2, and CO2. The solid (black) line for ‘top signal’, i.e. when its alignment
degree

〈〈
cos2 θ

〉〉
is maximized. The dashed (blue) line for ‘anti-top signal’, i.e. when its

alignment degree is minimum. The dash-dotted (red) line for ‘average signal’, i.e. when its
alignment degree is in average. The observation times for top, average, and anti-top are:
(4.09 ps, 4.18 ps, and 4.27 ps) for N2, (5.680 ps, 5.790 ps, and 5.900 ps) for O2, and (21.18
ps, 21.38 ps, and 21.58 ps) for CO2. The pulse parameters are the same as in Fig. 7.3 for
N2, Fig. 7.4 for O2, Fig. 7.5 for 9th harmonic order of CO2, and Fig. 7.6 for 19th harmonic
order of CO2.
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Figure 7.9: The modulation depth around first half revival of HHG signal of N2 (upper
panel) and O2 (lower panel) for various initial temperature. The pulse parameters are
similar with Figs. 7.3 and 7.4 for N2 and O2, respectively.



122 CHAPTER 7. DEPENDENCE ON RELATIVE ANGLE α....

constant and independent of the delay td between the pulses if contribution of
〈〈

cos2 θ
〉〉

(td)

is zero. This condition is satisfied by
(
3 cos2 αc − 1

)
= 0, or αc = arccos

(√
1
3

)
≈ 54.7o.

In general, the HHG signal at td = 4.090 ps (‘top’-alignment) (solid curve) lies above the
signal at td = 4.27 ps (‘anti-top’ alignment) (dash-dotted), for all angles α smaller than
the critical αc ≈ 54.7o; the opposite relation holds above αc. This geometry therefore can
be used to generate a steady state HHG signal from N2 with femtosecond pulses. The
theoretical predictions on the existence of the critical angle has been seen in experiment by
Miyazaki and his coworkers. The typical experimental results for N2 are shown in Fig. 1(b)
appendix G.

The existence of the critical angle αc can be used to check the validity the other models.
For the frozen nuclei model, the HHG signal of N2 can be approximated as S(n)(td;α) '
c
(n)
00 + c

(n)
01

〈〈
cos2 θ′

〉〉
(td) + c

(n)
11

〈〈
cos4 θ′

〉〉
(td). In contrast to

〈
cos2 θ′

〉
, the

〈
cos4 θ′

〉
has

three crossing points, and therefore the HHG signal of N2 has no critical angle αc. This
fact strongly supports on rejecting the frozen nuclei model.

For the case of O2 and CO2, in contrast, there is no single critical value of α where the
signals for all td’s could coincide. This is due mainly to the leading term

〈〈
sin2 θ′ cos2 θ′

〉2〉
which has three crossing points. As a result, the HHG signal also has three crossing points,
those are point a, when the signal at the top alignment become equal to the signal at the
anti-top alignment, point b when the ‘top’ signal is equal to the ‘average’ signal, and point c

when the ‘anti-top’ signal is equal to the ‘average’ signal. Nevertheless, it can be seen that
these three points are not far from the critical angle αc ≈ 54.7o. For the 19th harmonic
signal of CO2, these three points are close to each other. The presence of these three
points have been observed experimentally [138]. We also note that for the angles α smaller
than that at point a the signals have the same phase with the case of parallel polarization
(α = 0o) and they reverse their phases above it. During the calculation, we found that the
position of the points a, b, and c depend on the choice of the initial temperature. For all
molecules, experiment results show that the top signal is equal to anti top signal at relative
polarization angle closed to αc = 54.7o.

Recently, the α-dependent signals have been seen in the experiment for three organic
molecules, acetylene (HC ≡ CH, linear), allene (H2C = C = CH2, symmetric top), and ethy-
lene (H2C = CH2, asymmetric top) [157, 158], all of which have bonding π orbitals between
the carbon atoms. Acetylene and allene exhibit a crossover near the magic angle αc ≈ 54.7o,
while ethylene does not. A spherical top molecule has, in addition to a conserved M -
projection, also a conserved K projection, but the later has no effect on the rotational
spectrum that remains constant. The present theory therefore predicts that the acetylene
and allene would show a crossover, like in O2 and CO2, near the magic angle. In contrast,
the asymmetric-top molecule ethylene has no conserved M , does not follow Eq. (7.13), and
therefore does not show the same α-dependence.

In Fig. 7.9, we present the signal modulation depth, i.e. the difference between the
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Figure 7.10: The 19th harmonic signal of O2 near the second eight-revival, plotted as a
function of pump-probe angle α. In panel (a), the signal is approximated by its first leading
term only (Eq. (7.16)), whereas the true signal is shown in panel (b). The pulse parameters
are the same as in Fig. 7.4 .

‘top’ and the ‘anti-top’ signals. The zero modulation corresponds to the point a in Fig.
7.8. The figures show that the position of zero modulation depends on the Boltzmann
temperature for O2. This is due to the different temperature dependence of

〈〈
cos2 θ′

〉〉
and〈〈

cos4 θ′
〉〉

, both which are dominant in dynamic signal of O2. For N2, the dominant terms

are
〈〈

cos2 θ′
〉〉

and
〈〈

cos2 θ′
〉2〉 and hence its zero modulation is temperature-independent.

We now turn to the eighth revivals of dynamic HHG signal of O2 and CO2, which are
due to the transition with ∆J = ±4. For the approximated signal taking the first leading
term only (Eq. (7.16)), the transition with ∆J = ±4 is generated by the

〈
sin2 θ′ cos2 θ′

〉
term. The eighth revivals, therefore, dissapear when the contribution of the

〈
sin2 θ′ cos2 θ′

〉
term is zero or

(
35 cos4 α− 30 cos2 α + 3

)
= 0, satisfied by αc = 30.55o or αc = 70.12o.

It mans that the eighth-revivals have two ‘magic angles’, in contrast to the only one
‘magic angle’ of the half-revivals. Moreover, the eighth revivals have extreme modula-
tion depth (the difference between top signal and anti-top signal in eighth revival) when
∂
(
35 cos4 α− 30 cos2 α + 3

)
/∂α = 0, which is satisfied by α = 0o, α = 49.11o, and α = 90o.

The modulation depth, therefore, reduces with increasing α for 0 ≤ α ≤ 30.55o, increases
again for 30.55o ≤ α ≤ 49.11o and reduces again for 49.11o ≤ α ≤ 70.12 with opposite
phase, and finally increases again with original phase for α ≥ 70.12. However, the exact
position of the ‘magic angles’ and the ‘extreme angle’ can shift from the above values, due
to the contribution of the higher term. The dependence of eighth-revivals of dynamic signal
of O2 on the relative polarization angle α is shown in Fig. 7.10.
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7.6 Harmonic Signal as Function of Delay Time td and Po-

larization Angle α

Using the above results, it is possible to obtain the HHG signal as a function of both delay
time td and the relative polarization angle α. The calculated results are shown in Fig. 7.11
for the 19th harmonic of N2 and O2 and Fig. 7.12 for the 9th and the 19th harmonic orders
of CO2.

The figures show how the signals change with the delay time and the angle between the
pump and the probe pulse. Keeping the angle α equal to zero, we obtain a condition when
the pump and the probe polarization are parallel. By increasing α, the revival amplitude
reduces and closes to zero at α ' 54.7o, and then increases again but with a different phase.
For N2, there is a critical angle αc ' 54.7o (Fig. 7.8), and therefore its dynamic signal
at α = αc is time-independent. The theoretical dynamic signals of N2 for various angle
including α = αc are presented in Fig. 7.11 (top-right panel), whereas the corresponding
experimental signals are shown in appendix G. However, O2 and CO2 do not have critical
angle, and they never have a delay time-independent dynamic signal, as shown in Fig. 7.11
(lower panel) and Fig. 7.12. At α = 90o, the signal is in opposite phase but has only half
the amplitude compared to the one at α = 0o. Further calculations show that the period of
α is 180o, beyond which the signal returns to its origin, or S(n)(td;α + 180o) = S(n)(td;α).
Physically, α = 0o (pump and probe pulses are parallel) and α = 180o (they are anti-parallel)
are indistinguishable, for the linear symmetric top molecules considered.

Finally, it is important to note here that the ‘direction’ of the probe pulse with respect
to the pump pulse is defined by relative polarization angle α only, and it does not depend
on the azimuthal angle between them, φ, as mentioned in Eq. (7.15) for N2 as well as Eq.
(7.16) for O2 and CO2. Suppose the polarization of the pump pulse is along z-axis direction,
the equations above for α = 90o represent the HHG observed signal for the probe pulse lie
either at x-axis or y-axis direction. It means that the linear polarization pump pulse aligns
molecules in the polar angle only, but leave the molecules to randomly distributed in the
azimuthal angle.

7.7 Comparison with the Planar Model : Case N2

As mentioned at the beginning of this chapter, the first heuristic model on the relative
polarization angle between the pump and the probe pulses was the planar model, proposed
by Kanai et al. [43]. In this section, we shows the distinction between the present 3
dimension (3D) model and the planar model, for case the dynamic signal of N2.3

3We neglect two other theoretical models for different reason. The model of Madsen and Madsen did not
say anything for α 6= 0o. The Lin et al.’s model, on the other hand, gave only a prediction on the dependence
of the top signal of N2 and O2 on the relative polarization angle. But, their prediction for O2 defies from
the experimental data. However, they did not give any theoretical dynamic signal for α 6= 0o.
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Figure 7.11: The 19th harmonic signal for N2 (left upper panel) and O2 (left lower panel)
as function of time delay and relative polarization angle between pump and probe pulses.
We also show the dynamic signals around their half revival for both N2 (right upper panel)
and O2 (right lower panel). The pulse parameters are the same as in Figs. 7.3 and 7.4 for
N2 and O2, respectively. The initial temperature is 200 K.
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Figure 7.12: The HHG signal for CO2 for 9th (upper panel) and 19th (lower panel) harmonic
orders as function of time delay and relative polarization angle between pump and probe
pulses. We also show the dynamic signals around their half revival for both 9th (right upper
panel) and 19th (right lower panel). The pulse parameters are the same as in Figs. 7.5 and
7.6 for 9th and 19th, respectively. The initial temperature is 300 K.
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Figure 7.13: Comparison between planar model and 3D model, for 19th harmonic of N2.
The pulse parameters are the same as in Fig. 7.3.

The planar model assumed the molecular axis, the pump polarization, and the probe
polarization to lie in the same plane. In this assumption, the angle between the probe
polarization and the molecular axis θ′ is given by

θ′ = θ ± α (7.18)

with θ is the alignment angle between the molecule and the pump pulse, while α are the
relative angle between the two pulses. Following Eq. (7.18), the nth harmonic order signal
of N2 for any arbitrary angle α reads

S
(n)
planar (td;α) = c

(n)
00 + c

(n)
01

[
sin2 α + cos 2α

〈〈
cos2 θ

〉〉
(td)±

1
2

sin 2α 〈〈sin 2θ〉〉 (td)
]

+ c
(n)
11

〈(
sin2 α + cos 2α

〈
cos2 θ

〉
(td)±

1
2

sin 2α 〈sin 2θ〉 (td)
)2
〉

+ ...(7.19)

For α = 90o, Eq. (7.19) reduces to:

S
(n)
planar (td; 90o) = c

(n)
00 + c

(n)
01

[
1−

〈〈
cos2 θ

〉〉
(td)
]
+ c

(n)
11

〈(
1−

〈
cos2 θ

〉
(td)
)2〉+ ... (7.20)

The calculated result for α = 900 is shown in Fig. 7.13. As the 3D model, the planar
model also predicts the opposite phase of the dynamic signal of perpendicular polarization
compared to that of parallel polarization. However, the results from planar model defy from
the experimental data in the following:

• The experimental data [72, 43], as well as the 3D model, shows that the top signal
decreases with increasing the relative polarization angle α. In contrast, the planar

Kanai et al. did not give any theoretical expression for dynamic HHG signal. Here we use the dynamic
HHG signal obtained by using the present adiabatic theory, generalize it for arbitrary relative polarization
angle α by using both the present α-recipe and the planar model of Kanai et al., and compare the results
to each other.
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model predicts the strength of signal, for any delay time, to increase with increasing
the relative polarization angle α.

• It was shown from the experimental data [72, 43] and the 3D models, that the depth
modulation at α = 90o (∆Sα=90o = S (ttop; 90o) − S (tanti top; 90o)) is almost a half
of one at α = 0o. The planar model, on the other hands, gives a greater depth
modulation for α = 90o than that of α = 0o. It can be understood from Eq. (7.20)
that the first and second term give the same depth for both α = 0o and α = 90o. The
difference is, therefore, due to the third term.4

• The planar model did not predict the existence of the critical angle αc = 54.7◦, which
is seen in the experiment.

We note here that, the discrepancy between Kanai et al.’s and experimental results is due
to their planar assumption, or just taking the case for φ = 0o. In fact, the results also
shows that the azimuthal symmetry of molecular-axis distribution around the probe pulse
is broken for α 6= 0o. Therefore the observed signal should be obtain by integrating over φ.
Due to the some failures mentioned above, we neglect the planar model.

7.8 A Special Case: Application to Adiabatic and Turn-off

Alignment

Finally, we apply the present theory to HHG spectrum of adiabatically aligned ensemble.
An experiment has been reported long time ago by Marangos and collaborator [67, 141,
142], however it remained without any theoretical explanation. In their experiment, an
ensemble of N2 molecule was aligned by a long (300 ps) pump pulse. The HHG signal was
then generated by a short (70 fs) probe pulse. The HHG signal was observed for parallel
and perpendicular polarizations. The calculated results for the same laser parameters and
geometries are shown in Fig. 7.14, and directly compared with experimental data. For the
sake of comparison we also show the intensity profile (dash-curve) of the pump pulse (right
scale). As can be seen immediately from the figure, the HHG signal closely follows the
evolution of the long pump pulse itself (which might be expected for an adiabatic process)
and the maximum of the signal occurs at the maximum of the pulse profile, for α = 0o.
On the other hand, a minimum is predicted for the signal at the maximum intensity, for
α = 90o. These characteristics of the theoretical adiabatic signals for N2 are consistent with
the observed data.

4Kanai et al. fitted their experimental data for parallel polarization as S (td; α = 0o) = c1 +
c2

˙˙
cos2 θ

¸¸
(td) + c3

˙˙
sin2 2θ

¸¸
(td). Using their planar model, the signal for perpendicular polarization

reads S (td; α = 90o) = c1 +c2

ˆ
1−

˙˙
cos2 θ

¸¸
(td)

˜
+c3

˙˙
sin2 2θ

¸¸
(td) , clearly showing that the modulation

depth remains constant for two polarizations. This result disagrees with their experimental data, where the
modulation depth of perpendicular polarization is a half of that for parallel polarization. However, they did
not fit their experimental data for perpendicular polarization, with their formula.
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Figure 7.14: Experimental (upper panel) (from [67, 141, 142]) and theoretical (lower panel)
dynamic signal of 9th harmonic signal of N2 for various pump-probe polarizations angle
α = 0o and α = 90o; pump intensity I = 2× 1012W/cm2, duration 300 ps; probe intensity,
I = 5×1014 W/cm2, duration 70 fs, and wavelength 798 nm; Boltzmann temperature 25 K.

A good agreement between the theoretical and the experimental HHG spectrum of adi-
abatically and non-adiabatically aligned ensemble, supports the application of the present
theory to the HHG spectrum of ensemble aligned by using turn-off schema, which has not
been investigated theoretically and experimentally. In Fig. 7.15, we show the calculated
results for HHG spectrum of N2 aligned by using turn-off schema. Fig. 7.15(a) presents the
dynamic signal as a function of delay time between the pump and the probe pulse. From the
figure, we see that the HHG signal mimics the profile of long pump pulse, until it was turned
off. After the long pulse is turned off, the signal recurrence with period Trev = 8.4 ps, as
in non-adiabatic case. This phenomena is kept for any relative polarization angle α, except
that the signal with perpendicular polarization has opposite phase with respect to that with
parallel polarization. In Fig. 7.15(b), we show the dependence of the top-, average-, and
anti-top-signal on relative polarization angle α. It shows a ‘magic’ angle, αc ≈ 54.7o, in
which the dynamic signal is time-independent. Fig. 7.15(c) shows the frequency spectra
of dynamic alignment with parallel polarization. It is obtained by Fourier transforming
the dynamic signal in a delay time 11 ps ≤ td ≤ 19.4 ps. The spectrum shows series I:
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Figure 7.15: Theoretical 19th harmonic signal of molecule aligned by using turn-off method.
(a) Dynamic alignment for various relative polarization angle α. (b) α-dependent HHG
signal for various delay time. (c) Fourier spectrum for HHG signal with α = 0o. We use
Ipump = 0.8× 1014W/cm2 with τon = 2.6547 ps and τoff = 24 fs, Iprobe = 1.7× 1014W/cm2

with τ = 24 fs and wavelength 800 nm, and Boltzmann temperature 200 K.

(6, 14, 22, 30, 38, ..) Bc (blue mark), series II: (10 , 18 , 26 , 34 , 42 , ..) Bc (green mark), series
III: (20,28,36,44,52,60,..)Bc (without mark), and series IV: (4 , 8 , 12 , 16 , ..)Bc (violet
mark), as observed in non-adiabatic case.

In spite of some similarities, we remark the different character of the HHG signal from
the turn-off schema. First, comparing to the non-adiabatic case, the switched-off schema has
a benefit that it gives a greater top signal, a smaller anti-top signal, and as a consequence
a greater modulation depth. Second, the peak of intensity of Fourier spectrum occurs at
Jmax = 10. With the same pulse parameter (except that τon = τoff for non-adiabatic
alignment), the non-adiabatic signal has Jmax = 8.



Chapter 8

Summary and Outlook

In this work, we have developed an intense-field theory for investigating high harmonic
generation (HHG) signals from pump-probe experiments with intense ultrashort femtosec-
ond lasers from aligned linear symmetric-top molecules. The present theory distinguishes
itself significantly from the earlier ad hoc models. First, the present theory is derived
systematically from the Schrödinger equation of the interacting system starting with the
Born-Oppenheimer Hamiltonian of the total system. Second, the dipole expectation value
is evaluated from the approximate intense-field expansion of the wavefunction of the consid-
ered system, which is a combination of the molecular coherent rotational wave function and
the electronic wavefunction. Third, the coherent HHG emission is recognized as due to the
virtual ionization of the electron by absorption of n photons and its recombination into the
same state of the system from which it starts. The signal for a pure initial state is given by
the norm square of the Fourier transform of the total dipole expectation value. The total
HHG signal is obtained by averaging the signals from all single initial rotational wavepacket
states with the Boltzmann weights corresponding to the initial temperature T . Fourth, in
real computations, we use the asymptotic wave functions of the molecular orbitals, which
provide an analytical expression of the dependence of HHG signal of aligned molecules on
their alignment angle as a function of delay time between the pump and the probe pulse.
Finally, the signal derived here has a simple structure that can be readily generalized to
any relative angle between the polarization directions of the the pump and the probe pulse.

The theory is applied to the diatomic (N2 and O2) (chapter 4) and three-atomic (CO2)
(chapter 5) molecules. The calculated results for experimentally accessible laser parameters
are presented both for the differential and the integrated total signals as a function of har-
monic order and delay time between pump and probe pulse, and compared with available
given experimental data. The behavior of harmonic signal is shown to depend on the molec-
ular symmetry. For N2, the harmonic emission signal is maximized when the pump pulse
is parallel to the molecular axis, whereas the dynamic signal mimics the expectation value
of the alignment measure:

〈〈
cos2 θ

〉〉
(td). On the other hand, the harmonic signal of O2 is

maximum when the pump pulse makes an angle θpeak ≈ 40o with respect to the molecular
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axis, whereas its dynamic signal is given by the leading term
〈〈

sin2 θ cos2 θ
〉2〉 (td). The

behavior predicted for N2 should be applicable to other molecule with σg HOMO symmetry,
while the behavior for O2 should be applicable to other molecules with πg HOMO symme-
try. The present theory also predicts the existence of higher order terms, providing a good
explanation on the rich properties of the dynamic signals. In addition, the harmonic spectra
also show minima, which depend on angular momentum components of the recombination
matrix element and thus strongly speak of the importance of the recombination process in
HHG.

The three-atomic molecule CO2 has a similar HOMO as O2, except that the first has
a longer internuclear distance and therefore its wavefunction has more significant contri-
bution of electron with higher linear momentum state. It causes the harmonic signal of
CO2 to have the following properties. (i) The peak HHG signal θpeak can be greater or
smaller than that of O2. (ii) The dynamic signal has more terms, gives the leading term
c11

〈〈
sin2 θ cos2 θ

〉2〉 (td) + c12

〈〈
sin2 θ cos2 θ

〉 〈
sin2 θ cos4 θ

〉〉
(td) . (iii) The harmonic order

with a greater θpeak tends to have c12 to be negative, that causes an inverted modulation,
where the dynamic HHG signal has an opposite phase with respect to that of its alignment
degree

〈〈
cos2 θ

〉〉
(td). The inverted modulation depends on the pump and the probe pa-

rameters and it is indicated by (a) a stronger signal at θanti top than the one at θtop or (b)
θpeak is closer to θanti top, than to θtop. The behavior predicted for CO2 should be applicable
to other molecule with πg HOMO symmetry with long internuclear distances, as seen in the
recent experiment with organic molecules [158].

The validity of the present theory is then further investigated by the following.

• Investigating the Fourier spectra of the dynamic signal, which provides more precises
discrete information of the spectral lines and shows detailed agreements between the
theoretical and the observed spectra (chapter 6). The extra ‘anomalous’ series ob-
served in experiment with O2 is correctly generated by the present theory while the
earlier ad hoc models fail to do so (see § 6.5). The frequency spectra also distinguish
the present theory from the other ad hoc models. The Fourier spectrum also provides
a way of determining otherwise difficult to determine the initial temperature of the
gas jet (§ 6.4).

• Generalizing the theory for arbitrary relative polarization angle between the pump
and the probe pulse, α (chapter 7). The observed dependence of the HHG signal on
α which could not be reproduced by the earlier ad hoc models, is well reproduced by
the present theory. By controlling α, it is shown to be possible to obtain a control
over HHG signal with a maximum or a minimum modulation depth.

• The present theory predicts the existence a single ‘magic angle’ αc = arc cos
(√

1
3

)
≈

54.7o for linear symmetric-top molecules with σg HOMO symmetry, where the signals
become independent of the delay, whereas a ‘crossing-neighborhood’ near αc ≈ 54.7o
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is predicted for linear molecules with πg HOMO symmetry (§ 7.5). Existence of such
‘magic angles’ and ’crossing neighborhood’ have recently been confirmed experimen-
tally [166, 158].

We conclude that the theory developed and tested in this work is expected to provide a
powerful analytical tool for the analysis of the phenomena of molecular HHG radiation
and molecular alignments that are currently being rigorously pursued in various word wide
various laboratories.

With increasing in the experimental interest in more complex systems, such as the
organic molecules and for much shorter time scales, such as given by attosecond laser pulses,
the present theory needs to be and could be extended to investigate them fruitfully in the
future. This could be done without having to change the basic framework of the theory laid
down in this work.
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[148] J. Muth-Böhm. Theoretische Untersuchungen zur Ionisationsdynamik von Molekülen
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Field-Free Alignment of Molecules Observed with High-Order Harmonic Generation
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High-order harmonic generation is demonstrated to provide a sensitive way for an extensive study of
dynamic processes in the field-free alignment of strong-field-induced molecular rotational wave packets.
The time-dependent harmonic signal observed from field-free-aligned N2, O2, and CO2 has been found to
include two sets of beat frequency for pairs of coherently populated rotational states. One of them is the
well-known frequency component characterizing the field-free alignment of molecules, and the other is
ascribed to the beat that arises from coherence embedded in the wave packet. We discuss the effect of each
frequency component on the revival signal observed with the harmonic generation.

DOI: 10.1103/PhysRevLett.95.243903 PACS numbers: 42.65.Ky, 33.15.Mt, 33.90.+h

The interaction of an intense ultrashort laser pulse with
molecules has theoretically been shown to create a super-
position of coherently excited rotational states or a rota-
tional wave packet [1]. This wave packet gives rise to
transient alignment of molecules that is recurrent under
field-free conditions. There has been much interest in this
field-free alignment of molecules, because it provides a
promising and versatile way to control molecules with an
external field for a variety of applications [2]. The revival
structure in the field-free molecular alignment was first
observed with the Coulomb explosion imaging by Rosca-
Pruna and Vrakking [3]. The fundamental behavior and
dynamics of the alignment have been extensively studied
so far using the imaging [4,5] and polarization spectros-
copy [6,7].

Recently the present authors [8] and Zeidler et al. [9]
have reported the first observation of high-order harmonic
generation (HHG) from the rotational wave packet with an
intense femtosecond (fs) laser pulse. In contrast to the
HHG from randomly oriented molecules observed so far
[10], the harmonic yield was very sensitive to the molecu-
lar alignment [11] and strongly modulated by the temporal
evolution. The characteristic HHG observed demonstrates
an effective approach to an extensive study of wave packet
dynamics through the high-order nonlinear optical process
[8,9,12–14], while suggesting a possible new area of non-
linear optics using the molecular wave packet to control the
strong-field interaction.

The purpose of this Letter is to show a new aspect in the
field-free molecular alignment that emerges in the HHG
and to discuss the detailed structure and formation process
of rotational wave packets in time and frequency domains.
We focus our attention on temporal evolutions of harmonic
yield from the wave packet in N2, O2, and CO2 and their
frequency spectra. The results have shown that the time-
dependent harmonic signal includes two sets of beat fre-
quency for pairs of rotational states making up a wave
packet. One of them is well known to characterize the
field-free alignment of molecules with a full revival period

of Trev � 1=�2Bc�, where B is the rotational constant. The
other is ascribed to the beat that results from coherence
embedded in the wave packet and creates the revival signal
with a period of Trev=2.

We consider a pump-probe experiment for simple
linear molecules such as N2 and O2, using nonresonant,
linearly polarized ultrashort laser pulses. The pump pulse
forms a ground-state rotational wave packet �g�t� �P
JaJ JM exp��iEJt=@� that brings about molecular

alignment and its field-free revivals, where  JM is the
field-free rotor wave function, pertaining to the eigene-
nergy EJ, for the rotational state with the angular momen-
tum J and its projection M on the field direction, and the
coefficient aJ depends on the interaction strength and
should almost be independent on time after the end of
interaction [1]. As theoretically discussed in detail, the
degree of alignment is characterized by the expectation
value hcos2�i, which is calculated using �g�t�, with the

angle � between the molecular axis and the field direction
[1]. It is well known that the time-dependent behavior of
hcos2�i is dominated by beats between any pair of rota-
tional states populated through the transition, �J � J-J0 �
0, �2 with �M � 0. For the rotational states with EJ �
2�@BcJ�J� 1�, the beat frequency is calculated as !1 �
2�Bc�4J� 6� for a pair of J and J� 2. This beat usually
leads to four transient peaks of hcos2�i in a revival period
Trev � 1=�2Bc� [3–7].

In the pump-probe experiment, the delayed probe pulse
generates high harmonic radiation from the wave packet,
and the harmonic signal is observed as a function of time
delay �t between the pump and probe pulses. The HHG
from a single molecule is illustrated well by a semiclassical
model consisting of three steps of ionization, acceleration
of freed electron, and recombination to emit a harmonic
photon [15]. This harmonic generation process is essen-
tially a single-cycle event in the laser field. In contrast, the
temporal change in the harmonic signal to be observed is
very slow and predominantly governed by the beat at!1 as
for hcos2�i.
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The experimental procedure was almost the same as in

our recent work [8]. Briefly, the laser can produce pulse

energy of 40 mJ in 40 fs pulses at 800 nm. The linearly

polarized output was split into two beams to produce a

variable time delay �t between the pump and probe pulses.

The two beams were recombined collinearly and focused

with a 50 cm focal-length lens into a pulsed molecular

beam jetted from a 1 mm diameter nozzle. The gas jet

pressure was typically 10 Torr. The accurate time delay of

�t � 0 was determined by the second-harmonic autocor-

relation signal produced with a small portion of the com-

bined pulses. The pump pulse intensity in the gas jet was in

a range of �4–8� � 1013 W=cm2, while the probe intensity

for the HHG was slightly higher than the pump. The

harmonic radiation was detected by an electron multiplier

mounted on a vacuum ultraviolet monochromator, and the

signal processed by a boxcar averager was stored on a

personal computer. The probe pulse polarization was fixed

to the direction along the monochromator slit, while the

pump polarization was usually parallel to the probe and

rotated by an angle � if necessary.

In the preliminary experiment we observed the time-

dependent signal for all orders of harmonic higher than the

15th for which the semiclassical model [15] would be

valid. Since their revival structures represented no funda-

mental difference, for the present study we selected the

19th harmonic (�	 42:1 nm) with a good signal to noise

ratio.

Figure 1 shows (a) a typical example of the harmonic

signal observed for N2 as a function of �t and (b) the

temporal evolution of hcos2�i simulated under the same

pump pulse conditions as in the experiment. The observed

time-dependent harmonic signal is well reproduced by the

simulated result of hcos2�i, except for the signal at �t	 0.

This demonstrates that the harmonic is most efficiently

produced with N2 molecules aligned parallel to the probe

pulse field and suppressed with those aligned perpendicu-

larly, as reported so far [8,9,13]. The detailed revival

structure is seen comparing the observed signal with the

simulated hcos2�i. The large signal drop at �t	 0 is due to

strong ionization induced by the high intensity of super-

imposed pump and probe pulses, which is not taken into

account in the simulation. The onset of alignment is shown

by the first peak at �t	 0:2 ps after the pump pulse

interaction [16]. This signal peak rapidly decreases due

to dephasing of rotational states in the wave packet, but the

background signal from randomly oriented molecules is

kept higher than that at �t < 0. This enhanced background

at �t > 0 is seen also in the simulated result, whereas

hcos2�i � 1=3 for the isotropic distribution at �t < 0,

and attributed to the effect of the time-independent com-

ponent for �J � 0. The full revival of alignment is ob-

served at �t	 8:5 ps, corresponding to Trev � 8:3 ps with

B � 2 cm�1 for N2, where the rapid signal modulation is

due to the rotation of aligned molecules.

With the Fourier transform we analyzed the observed

time-dependent harmonic signal to see the structure, and

the result is shown in Fig. 2. The spectrum is mainly

composed of beat frequencies at !1 with a separation

�!1=2� � 4Bc, as expected. The spectral amplitude is

larger for the even J and weaker for the odd J, representing

the intensity alternation that originates from the population

ratio 2:1 between the even- and odd-J states of N2 [17].

Making the inverse Fourier transform for each, we have

confirmed that the even- and odd-J states contribute in

antiphase to the revival signals at Trev=4 and 3Trev=4 to

produce the small peak owing to the population difference,

as discussed by Dooley et al. [4].

The spectrum shown in Fig. 2 includes another set of

weak frequency component with a separation of 8Bc. This
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FIG. 1. (a) The 19th harmonic signal observed for N2 as a

function of time delay between the pump and probe pulses at the

intensities of 0.8 and 1:7� 1014 W=cm2, respectively, and

(b) temporal evolution of hcos2�i simulated under the same

pump pulse conditions, where Trot � 300 
K is assumed so as

to give the same J value for the peak amplitude as in Fig. 2.
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component is definitely ascribed to the beat frequency

!2 � �EJ�4 � EJ�=@ � 2�Bc�8J� 20� for a pair of rota-

tional states J and J� 4. We note that the rotational wave

packet includes such additional coherence as to be detected

with the HHG, while hcos2�i is not allowed to contain the

!2 component due to the selection rule. This coherence

between the states for �J � �4 would be created by

multistep transitions during the wave packet formation

process, and then the spectral amplitude at !2 should be

much weaker than that at !1, as seen in Fig. 2. The time-

dependent signal from the !2 component is easily shown

to have the revival period of Trev=2 � 1=�4Bc�. Since it is

difficult to see the effect of the !2 component on the

revival signal in Fig. 1(a), we discuss it in detail for O2.

Figure 3 shows (a) the time-dependent 19th harmonic

signal for O2 and (b) its frequency spectrum. The full

revival is seen at Trev 	 11:6 ps, corresponding to B �
1:44 cm�1 for O2. The revival signals at multiples of

Trev=4 represent almost the same amplitude, since only

odd-J states are populated in the ground state of O2 with

no nuclear spin. The observed harmonic yield as well as the

revival signal was much smaller than that for N2. The low

HHG efficiency would result from the antisymmetric struc-

ture of molecular orbital [18]. We tried to find a different

angle � between the pump and probe field directions to

produce a larger revival signal, but the best signal modu-

lation was observed at �	 0
, as well as the highest

harmonic yield. This appears to be inconsistent with the

previous conclusion [13] that the HHG from aligned O2 is

peaked at �	 45
 and minimized at �	 0
 and 90
, while

� might be different from �, and the phase matching

consideration is not involved.

The frequency spectrum shown in Fig. 3(b) consists of

the strong component at !1 and the weak at !2 for only

odd J. It is noted that the spectral peaks at !1=2� �
�42–58�Bc correspond to those at !2=2� � �92–124�Bc
for almost the same values of J � 9–13. This confirms that

the !2 component certainly originates from the beat be-

tween the rotational states J and J� 4 that are coherently

populated in the wave packet.

To see the excitation process to form the wave packet in

O2, we have simulated the ensemble averages of hcos2�i at

different rotational temperatures Trot. The results have

shown that the !1 component is peaked for J � 5 and 11

at Trot � 90 and 300 
K, respectively. Since Trot in the

supersonic O2 gas jet would be less than 100 
K [19],

the spectral peaks for J � 9–13 in Fig. 3(b) indicate

that the multistep Stokes transitions preferentially take

place to shift the initial rotational distribution and form

the wave packet, due mainly to the restriction of �M � 0
for jMj � J.

The spectrum shown in Fig. 3(b) appears to involve a

different series of the weak !2 component at �28–76�Bc
with a subpeak for J � 3. We believe that this series of the

!2 in the low frequency region accounts for the initial low

temperature Trot in the supersonic gas jet. Our simulation

has shown that the spectral peak for J � 3 corresponds to

Trot � 25–50 
K.

The above discussion on the !2 component in the high

and low frequency regions is valid also for the N2 spectrum

shown in Fig. 2.

The effect of the !2 component on the time-dependent

harmonic signal can be seen in Fig. 3(a), where the signal

includes weak revival signals at �2m� 1�Trev=8 with posi-

tive integer m. The 1=8-partial revival signals are shown to

arise from the !2 component as follows. With the inverse

Fourier transform we reconstructed the time-dependent

harmonic signal, using one of two components at !1 and

!2 [20]. The results presented in Fig. 4 demonstrate that

the !1 component certainly creates the revival signals at

mTrev=4, while the !2 component produces the small

revival signals at mTrev=8 with the full revival period of

Trev=2. We note that the time-dependent harmonic signal

observed is the simple superposition of those arising from

two components at !1 and !2.

Theoretically, the temporal evolution of hcos2�i does not

include the !2 component, as discussed above. This sug-

gests that the coherence for the beat at !2 is embedded in

the wave packet, while detected through the anisotropic

electronic response to the linearly polarized probe pulse

used for the HHG. The 1=8-revival signals for O2 were also

observed so far with the Coulomb explosion imaging [4],

where hcos2m�iwas used to analyze the fractional revivals.

On the other hand, the analysis with hsin22�i was proposed

to reproduce the time-dependent harmonic signal for O2

[13]. The temporal evolution of hsin22�i is certainly able to
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include the !2 component that leads to the revival signals

at mTrev=8, so that this analysis appears to reconcile with

the present picture for the revival signals.

The time-dependent 19th harmonic signal was also mea-

sured for CO2 having only even-J states, where the revival

period of 42.7 ps was in good agreement with Trev for B �
0:39 cm�1, and the frequency spectrum was also observed

to consist of the !1 and !2 components. In contrast to

those for N2 and O2, however, the onset of alignment

was observed with a signal minimum at �t	 0:3 ps that

was clearly separated from the signal drop at �t	 0.

Corresponding to the first negative peak, the revival signal

phase was completely reversed from those in Figs. 1(a) and

3(a). The temporal evolution of hcos2�i simulated for CO2

represented the same amplitude phase as those for N2 and

O2. These results suggest that the 19th harmonic is mini-

mized with CO2 aligned along the pump pulse polarization

and peaked with those aligned perpendicularly. This might

be induced by the destructive interference of recombining

electron wave [21,22] and/or by the �-dependent HHG

process characteristic to CO2 molecules. The experimental

results on the harmonic signal phase will be presented and

discussed in a separate paper.

In summary, the results of time-dependent HHG from

rotational wave packets and its frequency analysis have

shown a new aspect in the revival structure of field-free

molecular alignment. The present results are useful for

controlling rotational wave packets with ultrashort laser

pulses [23] and nonlinear optical processes in molecules.
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FIG. 4 (color). Time-dependent 19th harmonic signals (red

solid lines) reproduced using (a) the frequency component at

!1, (b) at !2, and (c) both at !1 and !2. For comparison, each

trace includes the observed signal given by the gray solid line.
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Recent pump-probe experiments with intense femtosecond laser pulses and diatomic molecules N2 and

O2, have revealed the presence of Raman-forbidden anomalous series and lines in the Fourier spectrum of

HHG (high harmonic generation) signals. A theoretical analysis of the problem is made by deriving a

general expression of the angle dependent HHG operator that governs the dynamic alignment signals in

linear molecules, and applying them to the experiments in N2 and O2. A unified interpretation of the origin

of the observed Raman-allowed and the anomalous spectral features is given. The results are also used to

estimate the molecular temperature in the experiments.

DOI: 10.1103/PhysRevLett.98.143001 PACS numbers: 32.80.Rm, 32.80.Fb, 42.50.Hz

Much interest has recently been generated by the obser-

vation [1–7] of dynamic alignments [8,9] of the linear

molecules N2 and O2, that are monitored by the nondes-

tructive high harmonic generation (or HHG) signals in-

duced by a delayed probe pulse. The observed signal from

N2 was found to mimic the usual measure (e.g., [8–10]) of

alignment, A�td�, of the molecular axis, and the associated

fractional revival structures (e.g., [9]), given by the en-

semble averaged expectation value of cos2�: A�td� �
hhcos2�ii�td�, where � is the angle between the polarization

direction and the molecular axis, td is the delay between

the pump and the probe pulse; the inner brackets stand for

the expectation value with respect to the rotational wave

packet excited by the pump pulse, and the outer brackets,

for the thermal average with respect to the Boltzmann

distribution of the molecular ensemble. As expected, the

Fourier spectrum of the HHG signal of N2 was found to

show the rotational lines associated with A�td� that were

consistent with the Raman selection rules �J � 0, �2.

Recently, Miyazaki et al. reported [6] the surprising ob-

servation of a weak sequence of lines in N2 that is Raman

forbidden. A similar Raman-forbidden series, or the asso-

ciated 1

8
-revival in the time domain, has been also observed

for O2, and several empirical ansatz have been made to fit

the data (e.g., [4–6]). Finally, a careful examination of the

experimental spectra of the HHG signals [6] for N2 and O2

reveals the presence of still another puzzling sequence of

lines that does not belong either to the usual Raman-

allowed or the Raman-forbidden series, mentioned above.

The purpose of this Letter is to analyze the Raman-

allowed and the anomalous spectral features of the HHG

signals observed for N2 and O2, and to give a unified

theoretical interpretation of their origin. To this end, we

first derive an explicit expression of the operator governing

the pump-probe HHG signal for linear molecules and

obtain the corresponding expressions for the dynamic

(delay-time dependent) HHG signals for N2 and O2.

The total Hamiltonian of the molecular system inter-

acting with a pump pulse (L1) at a time t and a probe

pulse (L2) at a delayed time t� td, within the Born-

Oppenheimer approximation (we use atomic units, unless

stated otherwise: e � @ � m � �c � 1) is:

Htot�t� � H�0�
N � VN�L1

�t� �H�0�
e � Ve�L2

�t� td�; (1)

where H�0�
N is the nuclear Hamiltonian, H�0�

e is the elec-

tronic Hamiltonian, and VN�L1
�t���1

2

P
i;jF1i�t��ijF1j�t�

is the interaction of the nuclear motion with the pump pulse

F1�t� (polarizability tensor �); Ve�L2
�t� td� � �F2�t�

td� � de (dipole operator de) is the delayed interaction of the

molecule with the probe pulse F2�t� td�. The pump pulse

produces a rotational wave packet, evolving from an initial

rotational state jJ0M0i:

j�J0M0
�t�i �

X

JM

C
J0M0

JM �t�e�iEJMtjJMi; (2)

where the coefficients C
J0M0

JM �t� are determined by solving

the equations for the nuclear motion (e.g., [9]),

i
@

@t
C
J0M0

JM �t� �
X

J0M0

hJMjVN�L1
�t�jJ0M0iC

J0M0

J0M0 �t�: (3)

Using Eq. (2) and the well-known Volkov Green’s func-

tion of the active electron (e.g., [11]) we have constructed

the wave function of the interacting total system, within

the molecular Keldysh-Faisal-Reiss approximation

(cf. [11,12]), and used it to evaluate the expectation value

(cf. [13]) of the dipole operator and to derive the matrix

element of the HHG transition operator for the nth har-

monic with respect to the reference wave packet state

�J0M0
�td�. Finally, modulo-squaring it to obtain the corre-

sponding probability and taking, as usual, the Boltzmann

average of the independent probabilities [14], we obtain

the scaled dynamic HHG signal ‘‘per molecule’’, as a

function of td:
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S�n��td� �
X

J0M0

��J0� � jh�J0M0
�td�jT

�n����j�J0M0
�td�ij

2:

(4)

We note that Eq. (4) implies that the state of the molecule

(including the nuclear rotational wave packet part) after the

HHG process, remains the same as that before the probe

pulse. This strong constraint (‘‘selection rule’’) is imposed

by the requirement of the space-time coherence of HHG

signals emitted by different molecules in the forward di-

rection (as in the experiments) (cf., e.g., [11], section 4.8).

The HHG operator T�n���� is given by,

T�n���� �
X

l;l0;L

a�n�zz �l; l0; L;m�PL�cos��; (5)

where L � jl� l0j, jl� l0j � 2; . . . �l� l0�, and the pa-

rameters a�n�zz �l; l0; L;m� are given by somewhat lengthy

but explicit expressions [15] that depend on the partial

angular momenta l�l0� [16] of the active electron and their

conserved projection, m, on the molecular axis, on the

matrix elements of the absorption and recombination

transition-dipoles and the usual vector addition coeffi-

cients: ��J0� �
1
Z e

�EJ0
=kT and EJ 	 J�J� 1�2�Bc. The

polarizations of the pump and the probe pulse are chosen

to be linear and parallel (as in the experiments). The above

result is derived assuming the adiabatic separation of the

rotational and the electronic motions such that

Max��EJ;J0� 
 EB, � (where EB is the binding energy,

and � � n! is the harmonic frequency), which is well

satisfied in practice.

Equation (5) provides a first theoretical justification of

the empirical ansatz with Legendre polynomials, and/or

powers of cos2�, that had been invoked for fitting the

experimental data in the past (e.g., [3,5]). Specializing

Eq. (5) to the case of N2 [molecular orbital symmetry

�g, m � 0; dominant l�l0� � 0, 2, 4], we get, in an ordinary

trigonometric representation,

T�n���� � b�n�0 � b�n�1 cos2�� b�n�2 cos4�� b�n�3 cos6�; (6)

where the coefficients b�n� are given by simple combina-

tions of the parameters a�n�zz �l; l0; L;m� [15]. Similarly, for

O2, [�g symmetry, m � 1, and dominant l�l0� � 2, 4] we

get

T�n���� � c�n�1 sin2�cos2�� c�n�2 sin2�cos4�

� c�n�3 sin2�cos6�; (7)

where the coefficients c�n� are determined by simple com-

binations of the parameters a�n�zz �l; l0; L;m�. We note that

the leading cos2� operator in Eq. (6) for N2 turns out to be

the same as the usual measure of the alignment A�td�,
mentioned above. The leading operator sin2�cos2� of

Eq. (7) for O2, is clearly different from the alignment

measure A�td�, but is directly proportional to the empirical

operator sin22�, first introduced for the experimental fit-

ting purposes by Itatani et al. [4] and, subsequently, ob-

tained by Zhou et al. [17]. Substituting Eq. (6) in Eq. (4) we

easily obtain an analytic expression of the dynamic HHG

signal for N2:

S�n��td� � p1 � p2hhcos
2�ii�td� � p3hhcos

2�i2i�td�

� p4hhcos
4�ii�td� � . . .� p10hhcos

6�i2i�td�;

(8)

where the constants p are simply related to the coefficients

b�n�. Similarly, substituting Eq. (7) in Eq. (4) we get the

signal for O2:

S�n��td� � q1hhsin
2�cos2�i2i�td�

� q2hhsin
2�cos2�ihsin2�cos4�ii�td� � � � �

� q6hhsin
2�cos6�i2i�td�; (9)

where the constants q are simply related to the coefficients

c�n�. The spectrum of the dynamic signal can now be

calculated from the direct Fourier transform of Eqs. (8)

and (9). For actual computations we have used the single-

center asymptotic approximations (e.g., [18]) of the active

molecular orbitals of N2 and O2. In Fig. 1 we compare the

experimental spectrum [(panel (a)] from the 19th harmonic

signal obtained in the case of N2 [6], with the correspond-

ing theoretical spectrum [(panel (b)] obtained from the

Fourier transform (FT) of Eq. (8). The laser parameters
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FIG. 1. Comparison of the experimental [6] and theoretical

Fourier spectrum of the dynamic 19th HHG signal for N2; pump

intensity I � 0:8� 1014 W=cm2, probe intensity I�1:7�
1014 W=cm2; duration 40 fs, wavelength 800 nm; Raman-

allowed series I: �6; 14; 22; 30; 38; . . .�Bc and II: �10; 18; 26; 34;
42; . . .�Bc, Raman-forbidden series III: �20; 28; 36; 44; 52;
60; . . .�Bc, anomalous sequence IV: �4; 8; 12; 16; . . .�Bc; tem-

perature 200 K.
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are chosen to be the same in the calculations as in the

experiment: peak intensity I � 0:8� 1014 W=cm2 for

pump pulse, and I � 1:7� 1014 W=cm2 for probe pulse;

duration and wavelength of both pulses are 40 fs and

800 nm. It can be seen from the figure that the experimental

spectrum [(panel (a)] exhibits two prominent series I:

�6; 14; 22; 30; 38; . . .�Bc, and II: �10; 18; 26; 34; 42; . . .�Bc,

which are also present in the theoretical spectrum [(panel

(b)]. They are easily understood to arise from the FT of the

hhcos2�ii term in Eq. (8). Since the matrix elements of

cos2� between the rotational states are zero except for the

Raman transitions �J � 0, �2, one gets (besides the zero

frequency contribution) a sequence of lines at �EJ�2 �
EJ�=2� � �4J� 6�Bc. This gives the series I:

�6; 14; 22; 30; 38; . . .�Bc for even values of J, and series

II: �10; 18; 26; 34; 42; . . .�Bc, for odd values of J. We may

recall that both the even and the odd J levels are permitted

for N2 by the nuclear spin of 1 for the N atoms. The relative

prominence of the even series I over the odd series II, in

both the panels in Fig. 1, could be understood as the 2:1

ratio of the nuclear spin statistics giving the same ratio of

even:odd J values in N2 (e.g., [19,20]). The weakly re-

solved series III: �20; 28; 36; 44; 52; 60; . . .�Bc [6] in

Fig. 1(a) is the unexpected Raman-forbidden series of N2

mentioned at the outset; it cannot be produced by the FT of

the alignment signal A�td�. A careful examination of the

experimental spectrum, Fig. 1(a), also shows the presence

of an additional anomalous sequence of lines IV:

�4; 8; 12; 16; . . .�Bc, which does not belong to the usual

Raman-allowed or the Raman-forbidden series mentioned

above. We note that the series III, although relatively weak,

is certainly also present in the calculated spectrum

[Fig. 1(b)]. The anomalous sequence IV also can be seen

in the theoretical spectrum [(panel (b)]. To interpret their

origin, we therefore consider the two higher order terms

involving hhcos4�ii�td� and hhcos2�i2i�td� in Eq. (8). From

the rotational matrix elements of the operator cos4�, which

vanishes unless �J � 0, �2, and �4, we see that its

expectation value allows not only the Raman-allowed tran-

sitions discussed above but also the Raman-forbidden tran-

sitions with �J � �4. The Raman-allowed transitions

simply overlap with the series I and II (and strengthen

them). But the Raman-forbidden transitions produce the

sequence: �EJ�4�EJ�=2���8J�20�Bc. For integer val-

ues of J, this yields the series �20; 28; 36; 44; 52; 60; . . .�Bc,

which agrees with the Raman-forbidden series III in

Fig. 1(a). Next, we consider the product term hhcos2�i2i�
�td�. From the �J � 2 and �J0 � 0 transitions, this term

produces the combination frequencies f�4J� 6� � �0�gBc.

However, the resulting series for the even and odd values

of J, overlap with the Raman-allowed series I and II, and

give no new spectral lines. But, from the transitions �J �
2 and �J0 � 2, the cross term can produce the sum and

difference (or combination) frequencies, f�EJ�2 � EJ� �
�EJ0�2 � EJ0�g=2� 	 �4�J � J0� � 12�Bc and �4�J �
J0�Bc� > 0, respectively. For integer values of J and J0, to-

gether they yield the sequence of lines: �4; 8; 12; 16;

20; 24; 28; . . .�Bc. Note that the alternative values of the

sequence, starting with 20Bc, are identical, and hence

overlap, with the Raman-forbidden series III:

�20; 28; 36 . . .�Bc. Moreover, the remaining members of

the sequence produce the anomalous sequence IV:

�4; 8; 12; 16; . . .�Bc, found in the experimental spectrum

in Fig. 1(a) as well as in the theoretical spectrum in

Fig. 1(b). Thus, the present theory is seen to provide a

unified interpretation of the origin of the Raman-allowed

series I and II, the Raman-forbidden series III, and the

additional anomalous lines IV, that had been observed

experimentally for N2. We may point out that during the

test calculations, the relative strengths of the lines in a

calculated spectrum were found to depend significantly on

the assumed molecular temperature (which is rather diffi-

cult to determine experimentally); Figs. 1(b) and 2(b), have

been calculated for an illustrative temperature of 200 K. In

Fig. 2 we compare the experimental spectrum [(panel (a)]

for O2 [6] with the theoretical spectrum [(panel (b)] calcu-

lated from Eq. (9). They correspond to a pump intensity

I � 0:5� 1014 W=cm2 and a probe intensity I � 1:2�
1014 W=cm2, and for the same duration and wavelength as

in Fig. 1. Both the experimental and the theoretical spectra

in Fig. 2 [panel (a), and panel (b), respectively] show the

Raman-allowed series II: �10; 18; 26; 34; 42; . . .�Bc, but not

the series I: �6; 14; 22; 30; 38; . . .�Bc. The latter fact is

easily understood as due to the nuclear spin of O atoms,

which is 0, that strictly forbids any even J rotational state

for O2, as required by the overall symmetry of the total
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FIG. 2. Comparison of the experimental [6] and theoretical

Fourier spectrum of the dynamic 19th HHG signal for O2;

pump intensity I � 0:5� 1014 W=cm2, probe intensity I �
1:2� 1014 W=cm2; other parameters are as in Fig. 1; Raman-

allowed series II: �10; 18; 26; 34; 42; . . .�Bc, forbidden series III:

�20; 28; 36; 44; 52; 60; . . .�Bc, another anomalous sequence V:

�8; 16; 24; . . .�Bc; temperature 200 K.
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wavefunction for O2 (e.g., [19,20]). The forbidden series

III: �20; 28; 36; 44; 52; 60; . . .�Bc, discussed in the case of

N2 above, appears for O2 as well. Finally, another anoma-

lous sequence V: �8; 16; 24; . . .�Bc can be seen to be present

in the data for O2 in Fig. 2(a). To interpret the origin of the

observed series in O2 we first consider the HHG operator

T�n�, given by Eq. (7). Noting that the leading term of T�n�

can be split in the form: sin2�cos2� � cos2�� cos4�, it

becomes clear that the leading term of the signal, Eq. (9),

would contain product of expectation values of the form

hhcos2�i2i, as in the case of N2, as well as higher order

terms. The product term gives as before the combina-

tion frequencies, from the transitions �J�J0� � 2�0�, at

��4J� 6� � �0��Bc. For odd values of J, this produces

the Raman-allowed series II: �10; 18; 26; . . .�Bc in Fig. 2,

and, as noted already, due to the absence of the even J
levels in O2, the corresponding Raman-allowed series I:

�6;14;22;30;38; . . .�Bc can not occur. This is consistent

with the experimental data [(panel a)] and the theoretical

spectrum [(panel (b)]. The product term produces also the

combination frequencies from the transitions �J�J0� �
2�2�, at f�EJ�2 � EJ� � �EJ0�2 � EJ0�g=2� 	 �4�J� J0��
12�Bc and �4�J� J0�Bc�> 0, respectively. For the odd

J�J0� values, appropriate for O2, the sum frequencies yield

the forbidden series III: �20; 28; 36; 44; . . .�Bc, and the

difference frequencies yield the another anomalous se-

quence V: �8; 16; 24; . . .�Bc, as seen in Fig. 2. The remain-

ing higher order terms in Eq. (9) contribute, generally

weakly, to the same series as above or to some additional

lines that can be seen in Fig. 2(b), but hardly resolved in

Fig. 2(a). Finally, we may point out that the heights of the

few lowest frequency lines in the data in Fig. 2(a) for O2

are due to the fluctuation of the laser outputs (footnote [19]

of [6]). Before concluding, we compare the spectra in

Fig. 3 for N2 [(panel (a)] and O2 [(panel (b)] calculated

at 100 K, with the spectra in Figs. 1(b) and 2(b), calculated

for 200 K. Note that the maximum of the spectrum for N2

moves from the position 38 at 200 K, to 30 at 100 K, and

that for O2, from 42 to 26. Comparisons with the respective

experimental spectra show a better overall agreement for

200 K than for 100 K, which suggests an effective molecu-

lar temperature near 200 K; it is higher than what one

might expect from a supersonic beam.

To summarize, we give an ab initio theory of molecular

HHG that provides a unified interpretation of the recently

observed anomalous series and lines in the Fourier spec-

trum of the dynamic HHG signals from N2 and O2.

This work was supported partially by NSF through a

grant for ITAMP at Harvard University and Smithsonian

Astrophysical Observatory.
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Interplay of polarization geometry and rotational dynamics in high harmonic

generation from coherently rotating linear molecules

F.H.M. Faisal1,2 and A. Abdurrouf1
1Fakultät für Physik, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany and

2ITAMP, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA

Recent reports on intense-field pump-probe experiments for high harmonic generation from coher-

ently rotating linear molecules, have revealed remarkable characteristic effects of the simultaneous

variation of the polarization geometry and the time delay on the high harmonic signals. We analyze

the effects and give a unified theoretical account of the experimental observations.

PACS numbers: 32.80.Rm,32.80.Fb,34.50.Fk,42.50.Hz

The phenomenon of high harmonic generation (HHG)
from atoms or molecules in intense laser fields can be
thought of as a “fusion” of n laser photons, each of en-
ergy ~ω, into a single harmonic photon of an enhanced
energy ~Ω = n~ω. This might seem surprising at first
since the photons do not interact with each other and
therefore can not “fuse” on their own. However, a bound
electron interacting with a laser pulse can absorb n pho-
tons from the laser field, go into highly excited virtual
states and can return to the same bound state by re-
leasing precisely the excitation energy (n~ω) as a single
harmonic photon. Note that at the end of the coherent
process the electron does not change its state – it merely
acts as a “catalyst” of the process. The phenomenon
is currently being vigorously investigated, both experi-
mentally and theoretically, specially in connection with
dynamic alignments of molecules (e.g. [1]).

Recently a number of remarkable pump-probe exper-
iments for high harmonic generation with intense fem-
tosecond laser pulses from coherently rotating linear
molecules (e.g. N2, O2, CO2, HC≡CH) have been re-
ported in this journal and elsewhere (e.g. [2, 3, 4, 5, 6, 7]).
These experiments measure the HHG signals as a func-
tion of the delay-time, td, between a pump pulse that
sets the molecule in coherent rotation, and a probe pulse
that generates the high harmonic signal from the rotating
molecule. The changes in the dynamic signals are then
recorded by varying the angle, α, between the polariza-
tions of the two pulses. Fig. 1 shows a schematic diagram
of the various vectors involved in the pump-probe experi-
ments. The geometric angle α is the operational angle in
the laboratory, although at times it is erroneously identi-
fied with the angle θ (or θ′); the latter is a quantum vari-
able, not measured in these experiments. Here we derive
an explicit theoretical expression for the HHG signal as
a simultaneous function of the geometric angle α and the
delay-time td and analyze the experimental observations.
The results provide a unified theoretical account of the
observed effects.

Let the total Hamiltonian of the molecular system in-
teracting with a pump pulse L1 at a time t, and a probe
pulse L2 applied after a delay-time td, be written, within
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Figure 1: A schematic diagram defining: molecular axis, R,

electron position r, pump polarization ǫ1, probe polarization

ǫ2; z and z’ axes lie on common z-z’-x plane; fields propagate

along y-axis.

the Born-Oppenheimer approximation as (e.g. [8, 9]):

Htot(t) = H
(0)
N + VN−L1

(t) + H(0)
e + Ve−L2

(t − td) (1)

where the subscripts N and e stand for the nuclear and
the electronic subsystems, respectively. An intense fem-
tosecond pump-pulse is assumed to interact with the
molecular polarizability, via VN−L1

(t), and sets it into
coherent free rotation.

The coherent rotational motion [10] is described by the
nuclear wavepacket states created by the pump pulse:

|ΦJ0M0
(t)〉 =

∑

J

CJ0M0

JM (t)e−
i

~
EJM t |JM〉 . (2)

Each wavepacket state (2) evolves one-to-one from an
initially occupied ensemble of eigen states, |J0M0〉,
populated with a Boltzmann distribution ρ(J0) =
1

ZP
e−EJ0M0

/kT , where ZP is the partition function. Thus,
after the pump pulse, the initial state of the molecule is
characterized by the ensemble of product states, |χi(t)〉,
with i ≡ {e, J0, M0}, composed of the ground electronic

state
∣

∣

∣
φ

(0)
e (t)

〉

and the coherent wavepackets |ΦJ0M0
(t)〉:

|χi(t)〉 =
∣

∣

∣
φ(0)

e (t)
〉

|ΦJ0M0
(t)〉 . (3)

Generalizing the well-known strong-field KFR (Keldysh-
Faisal-Reiss) approximation (e.g. [11]) to the present
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Figure 2: Quantum amplitude for coherent emission of a
high harmonic photon (frequency Ω) is the sum of two di-
agrams, (a) direct, and (b) time-reversed; probe-interaction
(line-×), photon emission (arrow); intermediate propagators,
G0; Volkov wave-vector k; i ≡ Eq.(3).

molecular case, we write the wavefunction of the system,
evolving from each of the ensemble of the initial states
(3) as:

|Ψ(t)〉 = |χi(t)〉 +

∫

dt′G0(t, t
′)Ve−L2(t

′ − td) |χi(t
′)〉

(4)
where, the Green’s function G0(t, t

′) of the system is
given by

G0(t, t
′) = −

i

~
θ(t − t′)

∑

jpJM

∣

∣

∣
φ

(+)
j

〉

|φp(t − td)〉

× |ΦJM (t)〉 e−
i
~

E
+

j
(t−t′) 〈ΦJM (t′)|

× 〈φp(t′ − td)|
〈

φ
(+)
j

∣

∣

∣
(5)

where,
∣

∣

∣
φ

(+)
j

〉

are ionic orbitals and |φp(t)〉 are Volkov

states (e.g. [11]).
The quantum transition amplitude for the coherent

emission of a harmonic photon of energy ~Ω = n~ω, from
an initial state (3) evolving into (4) and recombining back
into the same state (3), is given by the sum of a ‘direct’
and a ‘time reversed’ diagram for the photon emission
process (cf. Fig. 2). Writing out the amplitude ana-
lytically using Eqs. (2) to (5), assuming the “adiabatic
nuclei” condition, Max(∆EJ,J′) ≪ Ee, carrying out the
lengthy algebra, and modulo-squaring the result, we ob-
tain the coherent HHG emission probability for each ini-
tial state (3). Taking the statistical average of the in-
dependent probabilities for the ensemble of initial states
(3), we obtain the scaled HHG signal “per molecule”, as
an explicit function of α and td:

S(n)(td, α) =
∑

J0M0

ρ(J0)
∣

∣

∣
〈ΦJ0M0

(td)|T
(n)(θ, φ; α)

× |ΦJ0M0
(td)〉

∣

∣

∣

2

(6)

where

T (n)(θ, φ; α) =
∑

L,M,l,l′

a
(n)
z′z′(l, l

′, L; m)
4π

2L + 1
YLM (α, 0)

×YLM(θ, φ) (7)

with, L = (|l − l′|, (l + l′)), M = (−L, L); the parame-

ters a
(n)
z′z′(l, l′, L; m) are given by rather lengthy but ex-

plicit expressions [9] that depend on the partial angular
momenta l(l′) of the active electron and their conserved
projection, m, on the molecular axis, on the matrix el-
ements of the absorption and recombination transition-
dipoles, and on the usual vector addition coefficients.

Specializing Eq. (7) to the case of N2 (molecular or-
bital symmetry σg, m = 0; dominant l(l′) = 0, 2, 4), we
get, in an ordinary trigonometric representation, an an-
alytic expression of the dynamic HHG signal for N2:

S(n) (td, α) = p1 + p2

〈〈

cos2 θ′
〉〉

(td)

+p3

〈〈

cos2 θ′
〉 〈

cos2 θ′
〉〉

(td)

+p4

〈〈

cos4 θ′
〉〉

(td) + · · ·

+p10

〈〈

cos6 θ′
〉 〈

cos6 θ′
〉〉

(td) (8)

where cos θ′ = cosα cos θ + sinα sin θ cosφ. Similarly, for
O2, (πg symmetry, m = 1, and dominant l(l′) = 2, 4) we
get,

S (td, α) = q1

〈

〈

sin2 θ′ cos2 θ′
〉2

〉

(td)

+q2

〈

〈

sin2 θ′ cos2 θ′
〉

×
〈

sin2 θ′ cos4 θ′
〉

〉

(td)

+ · · ·+ q6

〈

〈

sin2 θ′ cos6 θ′
〉2

〉

(td) . (9)

The coefficients p’s and q’s are determined by simple com-

binations of the parameters a
(n)
z′z′(l, l′, L; m) [9]. We note

that for α =0, Eqs. (8) and (9) reduce correctly to the
special limits [8].

In Fig. 3 we show the results of computations using
Eq. (8) for the dynamic signals from N2 as a function
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Figure 3: Calculated 19th harmonic dynamic signal for N2

for various pump-probe polarization angles, i.e. α = 0o, α =
45o, and α = 90o; pump intensity I = 0.8 × 1014W/cm2,
probe intensity, I = 1.7 × 1014 W/cm2, duration 40 fs, and
wavelength 800 nm; Boltzmann temperature 200 K.
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3

of the delay time td, at three different relative polar-
ization angles, α =0o, 45o, and 90o. The results show
the full revival with a period Trev ≡ 1

2Bc
= 8.4 ps, and

the fractional 1

2
and 1

4
revivals, for all three α values.

The
〈〈

cos2 θ
〉〉

(td) term is known to govern the 1

2
and

1

4
revivals and the associated Raman allowed spectral

lines (e.g.[1, 8]). Remarkably, the signals for α =0o and
α = 90o are found to be in opposite phase, while that for
α = 0o and α = 45o are in the same phase. Exactly the
same phase relation between the α-dependence of the td-
signal from N2 has been observed in recent experiments
(e.g. [3, 4, 5]).

To analyze their origin, we consider the leading term
of Eq. (8) for N2, more explicitly. (Below, we omit
the argument (td) for the sake of brevity.) Noting that
〈

cos2 θ′
〉

= 1

2
sin2 α + (cos2 α− 1

2
sin2 α)

〈

cos2 θ
〉

we get:

S (td; α) ≈

(

p1 + p2

1

2
sin2 α

)

+ p2

(

cos2 α−
1

2
sin2 α

)

×
〈〈

cos2 θ
〉〉

+ · · · (10)

Therefore, for the parallel polarizations we have,
S (td; 0

o) ≈ p1 + p2

〈〈

cos2 θ
〉〉

and for the perpendicular

polarization, S (td; 90o) ≈
(

p1 + 1

2
p2

)

− 1

2
p2

〈〈

cos2 θ
〉〉

.

Clearly due to the opposite sign of the
〈〈

cos2 θ
〉〉

term,
they vary in opposite phase to each other from their
respective bases. In contrast, the signal at α = 45o,
S (td, 45o) ≈

(

p1 + 1

4
p2

)

+ 1

4
p2

〈〈

cos2 θ
〉〉

, has the same

sign of the
〈〈

cos2 θ
〉〉

term as for α =0, which makes them
to vary in phase. These behaviors are what can be seen
in the full calculations in Fig. 3, and they also agree with
the recent experimental observations (e.g. [2, 3, 4, 5]).
The simple formula (10) predicts further that the ex-
trema of the signal should occur for sinα cosα = 0, with
a maximum at α =0o and a minimum at α = 90o. This
is also what has been seen experimentally [2, 5]. Finally,

(10) predicts a “magic angle” αc = arcsin
√

2

3
≈ 54.7o,

given by the condition (cos2 αc −
1

2
sin2 αc) = 0 at which

the HHG signals become essentially independent of the
delay td between the pulses. Exactly such a “magic”
crossing angle for N2 signals has been observed experi-
mentally [5]. We may point out that this geometry can be
used in femtosecond pulse-probe experiments to generate
an essentially steady HHG signal from freely rotating N2.

In Fig. 4 we present the results of full calculations for
O2, using Eq. (9), for the three geometries, α = 0o, 45o,
and 90o. The signals are seen to be characterized by a full
revival at Trev = 1

2Bc
= 11.6 ps and also by the fractional

1

2
and 1

4
revivals, like in N2, as well as an additional 1

8
-

revival, for all the three geometries; the same characteris-
tics have been observed experimentally (e.g. [4, 5]). The
existence of the 1

8
-revival is due mainly to the presence of

higher powers and moments than
〈〈

cos2 θ
〉〉

, that couple
the Raman-forbidden (∆J = ±4) and the “anomalous”
transitions (|∆J | > 4) between the rotational states [8].
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Figure 4: Calculated 19th HHG spectrum of O2 for various
pump-probe polarizations angle, i.e. α = 0o, α = 45o, and
α = 90o; pump intensity I = 0.5 × 1014W/cm2, probe inten-
sity, I = 1.2 × 1014 W/cm2, duration 40 fs, and wavelength
800 nm; Boltzmann temperature 200 K.

We may express the contribution from the first term of
Eq. (9) more explicitly as:

S (td; α) ≈
q1

64

〈

{(

3− 30 cos2 α + 35 cos4 α
)

×
〈

sin2 θ cos2 θ
〉

−
(

1− 6 cos2 α + 5 cos4 α
) 〈

cos2 θ
〉

+
(

4 sin2 α− 3 sin4 α
)}2

〉

+ · · · . (11)

For α = 0o, this gives, S (td; α) ≈

q1

〈

〈

sin2 θ cos2 θ
〉2

〉

and, for α = 90o, S (td; α) ≈

q1(
3

8
)2

〈

{〈

sin2 θ cos2 θ
〉

− 1

3

〈

cos2 θ
〉

+ 1

3

}2
〉

. A compar-

ison of the above expressions suggests that for α = 0o

and 90o, the signals at the full, 1

2
and 1

4
revivals would

be in opposite phase, and that at the 1

8
revival would be

in phase. A direct comparison of the calculations using
the above abbreviated formulas with the full calculation
in Fig. 4 and the experimental observations in O2 (e.g.
[4, 5]), fully confirm the above expectations.

In Fig. 5 we show the calculated results of the dynam-
ical signals for N2 (upper panel) and O2 (lower panel),
as a continuous function of α, between 0o to 90o, at
three different delay-times td near the 1

2
revival period.

In the upper panel for N2, a remarkable coincidence of
the three signals is seen to occur at the “magic angle”

αc = arcsin
√

2

3
≈ 54.7o as predicted above. More-

over, the signal at the “top”-alignment time td = 4.05 ps
(solid curve) is seen to lie above the signal at the “anti-
top” alignment time td = 4.3 ps (dash-dot curve), for all
α < αc, and they invert their relative strengths for all
α > αc. This is again in agreement with the recent ob-
servations (e.g. [2, 3]). The corresponding signals for
O2 (lower panel) does not show a single crossing point,
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Figure 5: Variation of dynamic HHG signal as a function of
pump-probe angle α, near the first half-revival, for N2 and
O2. The pulse parameters are the same as in Fig. (3) for N2

and Fig. (4) for O2.

rather they cross at three different points a, b, and c in
the neighborhood of the magic angle αc ≈ 54.7o. Such a
crossover-neighborhood around the magic angle ≈ 54.7o

for O2 is recently confirmed experimentally [5]. The ab-
sence of a single crossing point for O2 is due mainly to
the non-negligible contribution of the moment

〈〈

cos4 θ
〉〉

to the O2 signal (cf. Eq. (11)).
Before concluding, we may make a few qualitative re-

marks on the α dependence of the dynamic signals for
the more complex triatomic molecule CO2 [5], and the or-
ganic molecule acetylene (π symmetry), that are mesured
recently [6, 7]. The structure of the operator (7) shows,
even without a detailed calculation, that the CO2 and
acetylene (HC≡CH), due to their linear structure, would
show a similar crossover at or near αc ≈ 54.7o. A direct
perusal of the experimental data [5, 6] confirms this gen-
eral expectation from the present theory – both CO2 and
acetylene exhibit the crossover effect, and indeed near the

“magic angle” αc = arcsin
√

2

3
≈ 54.7o.

To summarize: The simultaneous dependence of the
dynamic HHG signals from coherently rotating linear
molecules, on the relative polarization angle, α, and the
time delay, td, between a pump and a probe pulse, is
investigated theoretically. A general formula for the dy-
namic signals for linear molecules is derived (Eqs. (6) and
(7)). It is used to analyze the recently observed charac-

teristics of the HHG signals from N2 and O2. Among

other things, a “magic angle” αc = arcsin
√

2

3
≈ 54.7o

for the crossing of the dynamic signals for N2, and a
crossover-neighborhood around the “magic angle”, for
O2, are predicted by the theory and confirmed by the
available experimental data. The presence of analogous
crossovers for the more complex linear molecules, CO2,
HC≡CH (acetylene), are also suggested by the present
theory, and are corroborated by the recent observations.
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supported by NSF through a grant for ITAMP at Har-
vard University and Smithsonian Astrophysical Observa-
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Abstract: A general theory of molecular high harmonic generation in intense femtosecond pump-

probe experiments is presented. It provides explicit analytical expressions correlating the harmonic  

signals with the dynamical alignment of linear molecules. Recent experimental data from pump-

probe experiments are analyzed and a unified interpretation of the diverse observations is given. 

 

1. Introduction 

In this paper we present a general theory of molecular high harmonic generation by an intense 

femtosecond probe-pulse, interacting with coherently rotating linear molecules, that are set in free-motion at an 

earlier time, by another intense femtosecond pump-pulse. The theory is applied to establish the nature of the 

correlation between the time-dependent recurrent alignments of the freely rotating molecules (starting from a 

thermally populated ensemble) and the modulation of the observed high harmonic generation (HHG) signals 

[1,2,3], as well as their Fourier-spectra [4]. We also analyze the dependence of the signals on the controllable 

geometrical angle, α , between the polarizations of the pump- and the probe-pulse [3,5]. Finally, we have 

computed and analyzed the (Raman) allowed, forbidden, and anomalous spectral series and lines that are 

observed recently in the Fourier spectra of the alignment signals from a number of linear molecules, e.g. N2, O2 

and CO2 (e.g. [4,6]). A remarkable agreement between the data and the theory is found and a unified 

interpretation of their origin is given. 

 

2. Theory 

The total Hamiltonian of a molecule interacting with a pump pulse ( 1L ) at a time t and a probe pulse 

( 2L ) after a delay dt , can be written (in Born-Oppenheimer approximation) (in a.u.: 1==== cme αh ) as, 

( ) ( ) ( )dLeeLNNtot ttVHtVHtH −+++= −− 21
  (1) 

where NH  is the nuclear Hamiltonian, ( ) ( ) ( ) ( )t::t
2

1
t.tV 111LN 1

FFF ααααµµµµ −−=−  where µµµµ   is the permanent 

molecular dipole (if a polar molecule), eH  is the electronic Hamiltonian, and ( ) ( ) eLe ttV dF .22
−=−  where ed  is 

the electronic dipole operator. 

We generalize the well-known intense-field KFR-approximation for laser-atom interaction to the 

molecular Hamiltonian (Eq. [1]) and derive fully theoretical expressions of molecular HHG signals for intense-

field pump-pulse experiments. Thus, for the general case of an arbitrary angle α   between the pump and probe 

polarizations, we obtain, for example for  N2, the thn  harmonic emission signal: 

( ) ( ) ( ) ( )dn

d

n

d

nn

d

n tctctcctS
2

6)(

33

2
2)(

11

2)(

01

)(

00

)( 'cos...'cos'cos; θθθα +++=   (2) 

In above, 'θ  is the direction of the molecular axis with respect to the probe polarization, given by 

φαθαθθ cossinsincoscos'cos +=   (3) 

where ( φθ , ) is the direction of the molecular axis with respect to the pump polarization. The )(n

ijc  coefficients 

are obtained analytically and are to be presented elsewhere. The angle-brackets stand for the quantum 

expectation value (inner brackets) with respect to the rotational wavepacket states, ( )dMJ t
00

Φ , created by the 

pump pulse, and the outer angle brackets stand for the Boltzmann average over the initial occupation of the 

rotational states. Similarly, for O2 we get, 
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( ) ( ) ( ) ...'cos'sin'cos'sin'cos'sin; 4222)(

12

2
22)(

11

)( ++= d

n

d

n

d

n tctctS θθθθθθα   (4) 

We present a number of illustrative results of the theoretical predictions, regarding the dynamic signals 

for N2 and O2 and their α -dependence. We also show a comparison between the calculated and the observed 

Fourier-spectra of the dynamic alignment in O2. These and other results will be reported and discussed in greater 

details. 
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Fig 1. Dynamic HHG signal from N2 (left panel) and O2 (right panel) for different relative anglesα , between 

the pump and probe polarizations.  
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Fig 2. Comparison of experimental [4] and theoretical Fourier spectrum of n=19th harmonic signal for 

dynamical alignment of O2; pump-
214 W/cm105.0 xI = , probe-

214 W/cm102.1 xI = ; fs40=τ , nm800=λ , 

K200=T . Raman allowed series II: Bc4,42,....10,18,26,3 )( , Raman forbidden series III: 

Bc....),( 4,52,6020,28,36,4 , `anomalous' sequence V: Bc....),( 8,16,24 .  
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Abstract: This paper discusses rotational coherence created in wave packets of N2, O2 and CO2 with

intense ultrashort laser pulses and observed with high-order harmonic generation. We identify the origin

of several sets of frequency component included in the time-dependent harmonic signal and its effect on

the revival structure.

1. Introduction

There has been much interest in molecular alignment that is nonadiabatically induced with intense

ultrashort laser pulses, since the laser-induced alignment would be a promising approach to control molecules for

a variety of applications in molecular and/or material science. We have demonstrated that high-order harmonic

generation (HHG) is a sensitive way to probe the dynamic alignment of molecules, and the characteristic

harmonic signal in time and frequency domains clearly reveals coherence included in the rotational wave packet

[1,2]. In this paper, we report the complete identification of frequency components according to a theory that

has recently been developed to elucidate fundamental properties of the harmonic signal from aligned molecules

[3], where we focus our attention on the revival structure in the field-free alignment of N2, O2 and CO2.

2. Experimental

We made a pump-probe experiment with nonresonant, linearly polarized ultrashort laser pulses, where the

pump pulse forms a wave-packet, and the delayed probe pulse generates high harmonic radiation from the wave

packet that aligns molecules. The linearly polarized output in 40 fs pulses at 800 nm from a Ti:sapphire laser

was split into two beams to produce a variable time delay !t between the pump and probe pulses. The two

beams were recombined collinearly and focused with a 50-cm focal-length lens into a pulsed molecular beam

jetted from a 1-mm-diameter nozzle. The harmonic radiation was detected by an electron multiplier mounted

on a VUV monochromator, and the signal processed by a boxcar averager was stored on a personal computer.

2. Results and discussion

Figure 1 shows a typical example of frequency spectrum for the 19th harmonic signal observed for O2 as a

function of !t. The time-dependent signal shown in the inset of Fig.1 is often reproduced well by the
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expectation values <cos
2
"> and/or <sin

2
2"> with the angle ! between the molecular axis and the field direction,

where <cos
2
"> represents the degree of alignment with the revival period of 1/(2Bc) with the rotational constant

B, while <sin
2
2"> is empirical. The result shown in Fig.1 demonstrates that the major coherence in the

harmonic signal is created through the Raman transition induced by the pump pulse, which is seen with the

frequency component at #1 = (EJ+2 - EJ)/h = 2$Bc(4J+6) that give rise to a series (10, 18, 26, 34, 42, ---) for a

pair of odd J and J±2 states of O2. This Raman-allowed series certainly arises from <cos
2
">. The spectrum

includes additional sets of component at #2 = (EJ+4 - EJ)/h = 2$Bc(8J+20) with a series (28, 44, 60, 76, 92, ---).

This coherence between the rotational states J and J±4 arises from the expectation value <cos
4
"> and would be

created by multi-step Raman transitions during the wave packet formation. The third set of frequency

component is identified to #3 = 2$Bc[4(J-J')] and #3 = 2$Bc[4(J+J')+12], which leads to a series (8, 16, 24, 32,

40,---) with the former and a weak one (12, 20, 28, 36,---) with the latter. This anomalous series originates

from the expectation of the form <cos
2
"><cos

2
">, as shown by the theory [3]. The relatively large amplitude

for 4(J-J') = 8 represents the coherence between the adjacent rotational states J and J’. Higher order coherence

is also seen with a series (6, 14, 22, 30, 38, ---), which comes from <cos
2
!><cos

4
!>.

These frequency components observed are consistent with the theoretical result [3] that the time-dependent

harmonic signal for O2 is dominated by the term proportional to <<cos
2
! sin

2
!>

2
>(!t). The experimental

results for N2 and CO2 have also been compared with the theoretical.
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Fig.1. Example of frequency spectrum of the time-dependent 19th harmonic signal for O2.

The number for each peak denotes the frequency in Bc. The inset is the time-dependent signal

observed at the pump intensity of 0.71 x 10
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Abstract: High-order harmonic generation from field-free aligned molecules has been measured as a

function of the angle between polarization directions of femtosecond pump and probe pulses. The

results are compared with the recent theoretical prediction for N2, O2 and CO2 molecules.

1. Introduction

Intense ultrashort laser pulses are able to non-adiabatically induce alignment of molecules that is recurrent

under field-free conditions. The field-free alignment of molecules provides a promising approach to control

linear and nonlinear optical properties of molecules. Recently we have demonstrated that high-order harmonic

generation (HHG) is able to detect the dynamic alignment of molecules at a high sensitivity, suggesting possible

control of the HHG with the molecular alignment [1.2]. In this paper we report the HHG efficiency for the

aligned molecules that were measured as a function of the angle ! between the pump and probe polarization

directions. We discuss the results for N2, O2 and CO2 molecules by comparing with theoretical predictions [3,4] .

2. Experimental

We used linearly polarized 40-fs, 800-nm laser pulses in the measurement using a pump and probe

technique, where the pump pulse forms a rotational wave packet for alignment of molecules, and the delayed

probe generates high-order harmonic radiation from the aligned molecules. The pump and the probe with a

time delay !t were focused into a pulsed molecular beam jet. The pump intensity in the gas jet was in a range

of (4 ~ 8) x 10
13
W/cm

2
, and the probe intensity was slightly higher than the pump. The harmonic radiation

was detected by an electron multiplier mounted on a VUV monochromator. For the angle-dependent HHG, the

probe pulse polarization was fixed to the direction along the entrance slit of the monochromator, while the pump

polarization was rotated by an angle !.

3. Results and discussion

We observed the time-dependent harmonic signals of most of all harmonic orders at ! = 0 ~ 90˚ that could be

observed for N2, O2 and CO2 with our experimental apparatus. Figure 1 shows (a) examples of the time-
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dependent 19th-harmonic signal observed around the half revival time Trev/2 = 1/(4Bc) at different angles " for

N2, where B is the rotational constant. In Fig.1(b) are plotted the modulation amplitude S1 – S2, as well as S1 –

S0 and S2 – S0, where S1, S2, and S0 are the harmonic signals measured at the top-alignment, at the anti-top

alignment, and at the random alignment in the time-dependent degree of alignment <cos
2
#> with the angle "

between the molecular axis and the field direction, respectively, as illustrated in the inset. The modulation S1 –

S2 is peaked and minimized at ! = 0° and 90°, respectively. The "-dependent modulation demonstrates that the

19th harmonic radiation is most efficiently produced at the top alignment where molecules are parallel to the

probe pulse field and suppressed at the anti-top alignment, though " does not always coincide with ". It should

be noted in Fig.1 that the modulation phase is reversed at ! ~ 55˚, where the harmonic signal is independent of

the time delay. These "-dependent high-harmonic signals observed are well reproduced with the theory that

has recently been developed for N2 and O2 [3,4].

The similar angle dependences of harmonic signals were measured for different molecules. The

experimental results will be discussed by comparing with the theoretical.
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Fig.1. (a) Time-dependent 19th harmonic signals observed at the different angle ! between the pump and

probe filed directions and (b) the signal modulations S1 – S2 (solid square), S1 – S0 (white circle), and S2 –

S0 (solid circle) as a function of ! around Trev/2 for N2, where S1, S2 and S0 are defined as in the inset, and

the solid line represents the modulation S1 – S2 calculated for the same conditions as for the experiment.

The pump and probe intensities are 0.8 and 1.7 x 10
14
W/cm

2
, respectively.
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