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Chapter 1

Introduction

The field of Brain-Machine Interfacing has received much attention and has become
a prospering domain for research in recent years, mainly caused by the progresses in
hardware and data analysis techniques.

The main idea behind Brain-Machine Interfacing is to connect the brain with an
artificial device. Therewith, it should be possible to gain control over the artifical device,
which could especially be interesting for people suffering from severe motor diseases
like Amyotrophic Lateral Sclerosis (ALS). In the worst case, such patients experience a
locked-in syndrome, such that they are literally locked-in in a motionless body although
they are still conscious and have an awake mind. On the other hand, the brain can
also be stimulated by the artificial device to, e.g., restore lost sensory functions as in an
auditory prosthesis like the cochlea implant. Third, it is even possible to stimulate the
brain for therapeutical purposes. It is for instance possible to inhibit symptoms from
Parkinson’s disease (PD) by stimulating the subthalamic nucleus in the brain.

According to the notation of Nicolelis et al. (2004), Brain-Machine Interfaces can
be divided into invasive and mon-invasive approaches. While the former approaches
penetrate the body, the latter ones do not require incisions into the body. Non-invasive
Brain-Machine Interfaces are also denoted as Brain-Computer Interfaces (BCIs). At
present, such Brain-Computer Interfaces can only be designed to control an artifical
device. The by far most frequently employed technique for assessing brain signals
for such an interface is Electroencephalography (EEG) due to its excellent temporal
resolution and its comparable little costs.

Several approaches in Brain-Computer Interfacing exist, but they all have in common
that they aim to increase their current unsatisfying speed for transferring information.
This means, within a specific amount of time, as much information as possible should
be transferred to the artificial device in order to become able to, e.g., write letters or
steer a wheelchair with a reasonable speed.

Among the Brain-Computer Interfaces, the P300 speller paradigm, introduced
by Farwell and Donchin (1988), produces high transfer rates. This paradigm relies
on the so-called P800 component which can be elicited by rare (oddball) stimuli, a
subject is directing attention to. This component is well-studied and can be induced
in human subjects without prior training, making it appealing for Brain-Computer
Interfacing which often requires to train the subject who is intending to use the device.

This thesis focuses on the P300 speller paradigm and aims to improve its transfer
rates by employing Machine-Learning techniques for data analysis. Such techniques
learn from given data to perform, e.g., classification tasks. They can therefore
easily adapt to a given data structure and do not depend upon assumptions
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about the structure of the problem. While common Model-Based techniques rely
on data from one electrode, the ability of Machine-Learning techniques to adapt
to a data structure is exploited in this thesis by making use of data from a set
of electrodes without the necessity to extend some model assumptions. Support
Vector Machines as state-of-the-art Machine-Learning classifiers as well as the
more simple and computationally less demanding Fisher’s Linear Discriminant
are utilized. In order to become able to directly work with the latter tech-
nique, appropriate feature vectors of low dimensionality need to be constructed first.

Own experiments are conducted with the P300 speller paradigm and analyzed offline.
This means that data are recorded from subjects who perform the experiment without
actually operating the device. Only after the experiment itself, the data are analyzed
and classified. With this kind of experiment, reliable data are produced on which the
data analysis techniques are optimized with the goal to increase the transfer speed.

Another topic which is investigated in this thesis is the generalization capability
to new subjects, from which no data were previously assessed to train the classifiers.
This enables to perform classifications without prior training of the classifier with
respect to the individual subject. Rather, a more general classifier can be constructed.

In a second step, the classification strategies as derived from these experiments
are employed in order to construct an online Brain-Computer Interface for the P300
speller paradigm, which can actually be operated by a user. The system is built
up from the scratch, and own software is designed which incorporates the optimized
classification strategies as derived from offline experiments. An own online experiment
is conducted with this system, which proves to work with a high speed and yields high
information transfer rates compared to existing P300-based Brain-Computer Interfaces.

This thesis is organized as follows: After introducing into brain anatomy and Elec-
troencephalography in chapter 2, an overview of current Brain-Machine Interfaces with
an emphasis on non-invasive approaches is given in chapter 3. This chapter further
introduces into the concept of information transfer rates. Previous work with the P300
speller paradigm, which is the central concept in this thesis, is reviewed in chapter 4
and considerations about transfer rates in this context are made. Afterwards, data
analysis techniques for preprocessing and classification of the BCI data in this thesis
are discussed in chapter 5. Thereby, an introduction into Statistical Learning Theory
is provided within this chapter.

Offline experiments are conducted in chapter 6, and it is investigated how to improve
the speed of the P300 speller Brain-Computer Interface. Additionally, possibilities
for generalizations are examined. In chapter 7, the way from offline to online Brain-
Computer Interfacing is drawn, and it is described how such a system is created from
the scratch incorporating the findings from the foregoing chapter within an efficient and
powerful data analysis procedure. Finally, the results obtained are summarized and an
outlook is given in chapter 8.




Chapter 2

Electroencephalography

Electroencephalography (EEG) is the measurement of electrical activity in the brain
as recorded by scalp electrodes. After Richard Caton discovered the electrical activ-
ity of the brain on the exposed cortex of rabbits and monkeys (Caton, 1875), Hans
Berger recorded electrical human brain signals from the scalp and published the first
study about the so-called “Elektroenkephalographie” (Berger, 1929). Berger made sev-
eral fundamental discoveries about EEG signals, such as o and (3 waves (see section 2.4),
amplitude changes during epileptic seizures, and altered signals in Alzheimer’s disease
and Multiple Sclerosis.

Due to the high temporal resolution and the non-invasive nature of the EEG, i.e.,
no incision of the body is necessary, it became a valuable tool for investigating human
brain activity. While other techniques like functional Magnetic Resonance Imaging
(fMRI) offer a higher spatial resolution, the EEG exposes a very high temporal
resolution making it an important technique for analyzing cognitive processes in the
brain and the method of choice in Brain-Computer Interfacing at present.

After a brief introduction into brain anatomy in section 2.1, this chapter introduces
into Electroencephalography by explaining on which processes in the brain the EEG re-
lies on (section 2.2) and how these signals are technically acquired (section 2.3). When
performing EEG measures, artifacts and ways to reduce them always have to be con-
sidered (see section 2.3). Typical ways of analyzing EEGs are discussed in section 2.4.
A common way to analyze EEG data is to calculate averages in terms of Event-Related
Potentials (see section 2.5). In this section, the P300 component, essential for this work,
is also discussed in detail. The reader is referred to the German books of Birbaumer
(1990), Birbaumer and Schmidt (2005), and Zschocke (1995), or the English articles of
Coles and Rugg (1995), Coles et al. (1990), Picton et al. (1995), and Naatanen (1982)
for more detailed information about Electroencephalography.

2.1 Brain Anatomy

Since Electroencephalography measures signals from the brain, it is useful to introduce
into its basic structures and mechanisms. Thus, in the following, a brief introduction is
given into the phylogenetic structure and the organization of the neocortex, which hosts
the most complex functions in the brain. More detailed information can be received
from Pinel (1990), Birbaumer and Schmidt (2005), and Nieuwenhuys et al. (1988).
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telencephalon

diencephalon

mesencephalon metencephalon

myelencephalon
Figure 2.1: Sagittal section of the human brain, illustrating its phylogenetic struc-
ture. While the telencephalon is the phylogenetic youngest structure, the mye-

lencephalon is the oldest. The ensemble of diencephalon, mesencephalon, me-
tencephalon and myelencephalon is also referred to as the brain stem.

2.1.1 Phylogenetic Structure

The vertebrate’s brain can be divided into its phylogenetic structures telencephalon,
diencephalon, mesencephalon, metencephalon and myelencephalon as depicted in the
sagittal section of Figure 2.1. The latter four structures are also referred to as the
brain stem. While the myelencephalon is the phylogenetic oldest structure, the telen-
cephalon is the youngest. Depending on the evolutionary age of animals, the different
phylogenetic parts expose different expansions; for example, phylogenetic younger an-
imals expose an enlarged neocortex, which is part of the telencephalon. In principle,
elder structures are concerned with ensuring basic bodily functions, while younger struc-
tures are more important for higher cognitive functions and are less specialized. The
telencephalon includes the neocorter, the limbic system and the basal ganglia. While
the neocortex plays a crucial role in complex reasoning, perception and consciousness,
the limbic system is involved in the regulation of motivated behavior, and the basal gan-
glia play a major role in performing voluntary motor responses. The diencephalon is
composed of the thalamus, the hypothalamus, the pituitary gland and the optic chiasm.
The thalamus processes signals from sensory receptors and direct them to sensory cortex
areas. On the other hand, the hypothalamus is involved in the regulation of motivated
behaviors by regulating the release of hormones from the pituitary gland; the optic
chiasm processes information from the optic nerves to the visual cortex. The mesen-
cephalon processes visual and auditory information in its tectum for fast responses,
while another structure, the tegmentum, is related to simple sensomotoric coordinations
and reflexes. In the metencephalon, including the cerebellum, movement and body
position regulations happen; in the myelencephalon, which leads to the spinal cord,
the reticular formation, a network of about 100 nuclei, regulates essential functions like
sleep and attention as well as cardiac, circulatory and respiratory reflexes (Pritzel et al.,

2003).
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central fissure

parietal lobe

frontal lobe

occipital lobe

temporal lobe

cerebellum

Figure 2.2: Cerebellum and the organization of the neocortex. The neocortex can
roughly be divided into the frontal, parietal, occipital and temporal lobe. The
cerebellum belongs to the metencephalon, and is involved in motor processes.

2.1.2 Organization of the Neocortex

The neocortex is divided into the left and the right hemisphere by the rolandic fissure.
Each hemisphere is concerned with the processing of motor and sensory information of
the opposing side of the body. Furthermore, the left hemisphere is commonly regarded
to be mainly responsible for analytic and language-related thinking, while the right
hemisphere is to a higher degree involved in more holistic aspects of thinking like melody
and spatial perception (Pritzel et al., 2003).

The neocortex can roughly be divided into the regions frontal lobe, parietal lobe,
occipital lobe and temporal lobe within each hemisphere as depicted in Figure 2.2 (Pinel,
1990). The central fissure separates the frontal lobe from the parietal lobe. The former
lobe hosts areas for preparing and producing motor actions in its premotor and motor
cortex areas, as well as areas for emotional, motivational and social behavior in the
prefrontal cortex. Furthermore, Broca’s area is located in the frontal cortex, in 97% of
the humans in the left hemisphere. Damages to this area result in strong deficits in the
production of fluent speech (Goodglass and Geschwind, 1976).

The parietal lobe includes the somatosensory cortex which captures incoming sen-
sory information from all parts of the body and is organized in a somatotopic fashion,
i.e., neighboring body parts project onto neighboring locations in this part of the brain.
Thereby, not the size of the specific body part determines the expansions of their corre-
sponding areas in the brain, but the number and types of the receptors. Thus, the hand
is represented by a larger region than, e.g., the chest. Within the occipital lobe, visual
stimuli are processed via the dorsal stream into the parietal lobe, and over the ventral
stream into the temporal lobe (Ungerleider and Mishkin, 1982). While the former
stream is said to prepare motor actions and is sometimes assigned as the where-system,
the latter one is likely to be involved in object recognition and conscious representation
(what-system). Beside these functions, the temporal lobe includes auditory process-
ing structures as well as, usually in the left hemisphere, the language-related Wernicke’s
area Miiller (2006). Damages to this area result in deficits in language comprehension
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and lead to the production of non-sense sentences by the patient. The temporal lobe
hosts furthermore parts of the olfactory system.

2.2 Electrophysiological Mechanisms behind EEG Signals

In Electroencephalography, voltages in terms of electrical potential differences between
electrodes are measured by an EEG amplifier. While one electrode (or a set of certain
electrodes) provides a reference signal, e.g., acquired from the ear, other electrodes
measure electrical activity from the scalp. Due to the long distances to generators
of the electrical signals in the cerebral cortex and the weakness of the signals from
single neurons, mainly only synchronous activities from assemblies of several hundred
thousands of neurons can be assessed by this technique. While signals from the brain’s
direct surface as measured inside the head by the Electrocorticogram (ECoG) reveal
amplitudes up to 100xV, EEG amplitudes are 3 to 10 times smaller (Cooper et al.,
1965). Compared to ECoG, the spatial resolution of the EEG is also worse (1cm? to
6cm?) because the distance in the EEG to the electrical sources is prolongated and the
electrical signals are volume conducted from their origin to the electrode (Vaughan and
Arezzo, 1988).

An obvious source for EEG signals seems to be the neuron’s action potentials, which
produce signals up to 80-100uV. But since action potentials are very short (1-2ms),
summation of signals from a large group of neurons becomes very improbable. Thus,
their contribution to the EEG signal is only minor (Zschocke, 1995). Studies assess-
ing intracerebral and EEG data simultaneously did not find correlations between single
neurons and the surface EEG (Schandry, 1981). Researchers agree that most electrical
potentials recorded from the scalp stem from extracellular current flow, caused by elec-
trical dipoles between the soma and apical dendrites of the pyramidal cells. Since these
cells are oriented parallel in an open field manner, they are able to produce these po-
tentials in a way that the potentials of single neurons can accumulate and be registered
by EEG recordings.

The dipoles in turn are generated by excitatory (EPSP) and inhibitory (IPSP) post-
synaptic potentials and emerge as follows: When an excitation takes place at an apical
dendrite (see Figure 2.3, right) by, e.g., contralateral callosal neurons, positive Na™ ions
accumulate within the cell body at the apical dendrite. This will be compensated by
negative ions in the extracellular space resulting in a negative environment within this
area. These ions were recruited from the extracellular media and also from the soma’s
region. Thus, the positive potential in the extracellular space around the soma is a re-
sult from the flow of ions. On the other hand, if an excitatory synapse connects to the
pyramidal cell nearby the soma, like thalamocortical neurons, the opposite effect results
and the dipole changes its direction (see Figure 2.3, left). At an inhibition, negative
ions flow into the cell or positive ions leave the cell and the dipole reverses polarity.
Thus, a positive potential results for the electrode on the scalp when an inhibition takes
place in higher cortex layers, or an excitation in deeper cortex layers (Schandry, 1981).
Pyramidal cells have their origin mainly in layer 5 of the cerebral cortex. Therefore,
predominantly events in this cortex area are registered by the EEG (Martin, 1991) and
subcortical processes can only be inferred indirectly.
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Cortex Layer

Axon from
contralateral
cortex

Axon from
thalamus

Figure 2.3: Constitution of EEG signals. Left: Electrical potential as recorded
by the EEG following thalamic excitatory inputs. The terminals of the thala-
mocortical neurons connect to the pyramidal cell mainly in layer 4. This leads
to an Na* influx in this region into the cell body. Reversely, the extracellular
space becomes negative. Since the ions for this negativation stem from upper
layers, these layers become more positive. Taken together, an electrical field
in the extracellular space results. Right: Axons from the contralateral cortex
connect to the apical dendrite in upper layers, and the same dynamic results for
the opposite direction such that the dipole changes its direction. Adapted from
Martin (1991).

2.3 Signal Acquisition and Artifacts

As stated above, in Electroencephalography, differences between electrical potentials of
electrodes are measured. In a simple case, one electrode serves as a reference, and the
potential from each other electrode is compared to that electrode’s potential. While
the reference electrode is usually attached to the ear, the other electrodes are located
on the scalp - hence, their name scalp electrodes.

The most common system for electrode placement is the international 10-20 system
(Jasper, 1958). According to the reference points Inion, Nasion, and left and right
preauricular points, the head’s surface is divided by steps of 10% and 20% of the whole
length between reference points into characteristic locations (see Figure 2.4). For more
detailed topographical analyses, more electrodes can be used, e.g., within a 10-10 or a
10-5 system.

In order to gain high quality data, a number of aspects has to be considered when
assessing EEG data. EEG data reflect electric voltages and are thus very sensitive
to electrical noise from the environment, such as the 50Hz or 60Hz power supply fre-
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Cz 20%

Nasion

20%
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10%

Figure 2.4: Electrode placement according to Jasper’s international 10-20 system
(Jasper, 1958). The distances between the reference points Nasion, Inion and
preauricular points A1 and A2 are divided into steps of 10% and 20% resulting
in electrode locations correlated to specific brain regions, like, e.g., the occipital
lobes at O1 and O2. Adapted from Birbaumer and Schmidt (2005).

quency. Various kinds of those artifacts, i.e., observable signals which are not related to
the biosignal the researcher is interested in, can be identified. They can roughly be di-
vided into the 5 sources electromagnetic induction, eye movements, muscular artifacts,
movement artifacts, and skin and sweating artifacts (Zschocke, 1995).

Electromagnetic Induction

Since EEG signals are voltages with only little amplitudes, they can easily be polluted by
electromagnetic influences. These can result from any electrical source like computers,
monitors, and power supply. Especially the 50-60Hz frequency of the power supply can
be filtered out by Notchfilters (Zschocke, 1995). On the other hand, with this technique,
also signals the researcher might be interested in, can get lost. However, electromagnetic
influences can be reduced by using a Faraday cage. In general, a good way to enhance
the signal quality is to keep the impedance between scalp and reference electrodes low,
i.e., commonly below 5k€). Additionally, the subject and the electrical devices should
be grounded.

Eye Movements and Blinking Artifacts

The front of an eye ball has a positive potential as compared to its back. Thus, the
eye builds a dipole and movements of the eye ball can influence the scalp potentials.
In particular, they affect signals as measured from frontal sites. These artifacts pri-
marily stem from vertical eye movements as they happen by, e.g., closing the lid. It is
well-known as the Bell-Phenomenon that the eyes move upwards when the lid closes.
Thus, lid closing commonly results in artifacts. A related mechanism exists for blinking,
which should therefore be prohibited by instruction and the experimental design. One
way to detect these artifacts is measuring the Electrooculogram (EOG, see Figure 2.5):
Electrodes are applicated left and right or above and below the eye balls. They register
shifts in the electrical potentials which can directly be interpreted as eye movements. A
common method is to exclude EEG trials where the EOG exceeded a specific threshold
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OO O
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Figure 2.5: Detecting eye movements with an Electrooculogram. Since the back
and the front of eye balls expose different electrical potentials, eye movements
result in voltages as recorded by electrodes located left and right or above and
below the eyes.

(e.g., 100 V). Other methods subtract the weighted EOG signal from the scalp elec-
trodes (Gratton and Coles, 1989) or eliminate their influence by utilizing Independent
Component Analysis (Jung et al., 2000).

Muscular Artifacts

The innervation of muscles is an electrical process, hence all muscular movements are
possible sources for interferences. In particular movements of the heart as measured by
the Electrocardiogram (ECG) and muscles nearby the EEG electrodes like in the neck
and at the forehead are important sources for artifacts. Neck muscle artifacts are mostly
caused by a lack of relaxation and can therefore be reduced by relaxation techniques or
pharmaceuticals. The ECG influences are vital, but can be recognized in the EEG by
their rhythmic structure.

Pulse and Movement Artifacts

Pulse artifacts are closely related to ECG artifacts but are not based on the electrical
character of the heart beat. Instead, they are based on pulsating blood vessels in
close proximity to the EEG electrodes. This can result in potential shifts within the
electrodes. Pulse artifacts can be reduced by slightly moving the electrodes, putting in
more electrode gel, or changing the pressure of the cap. Beside movements through pulse
artifacts, they can also be caused by the mechanical changes of the subject’s position,
which are also accompanied by muscular activations. A common kind of movement
artifacts is caused by breathe, where breathe-synchronous head movements are carried
forward to the EEG electrodes and their cables. Similar to ECG artifacts, breathe
artifacts can be identified by their frequency of about 0.25Hz. Furthermore, movements
of the chest can be recorded. By changing cable or head positions, these artifacts can
be reduced.

Skin and Sweating Artifacts

Further artifacts may arise from skin anomalies and sweating. Skin diseases, hairspray,
and lardy hairs are likely to cause malfunctions by affecting the contact to the electrode.
Thus, a head wash prior to the experiment can be useful for the latter two cases.
Sweating artifacts are the most common skin related artifacts. They can be caused by
electrical potentials of the sweating glands, by changing the skin’s electrical resistance,
and by the emission of sweat itself. This must not necessarily be accompanied by visible
sweating. Sweating artifacts predominantly occur at frontal sites and are characterized
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by slow and very high potential changes. To avoid sweating artifacts, the experimental
room should be cooled. On the other hand, sweating is often a psychological reaction
caused by stress or fear. In order to reduce these symptoms, the experimenter should
talk, explain and try to provide a less threatening, comfortable social situation for the
subject.

2.4 Analyzing EEG Data

As discussed in the previous section, EEG data are likely to be polluted by artifacts and
are affected by electromagnetic noise and therefore expose a low signal-to-noise ratio
(SNR). Thus, specific data analysis techniques are usually necessary to receive inter-
pretable information. Depending on the focus of the researcher or therapist, different
techniques for EEG data collection and analysis are suitable for different purposes.

2.4.1 Data Collection Techniques

Among the EEG data collection techniques, either spontaneous or evoked EEGs can be
recorded. The latter one can further be analyzed as Event-Related Potentials (ERPS).

The spontaneous EEG relies on unprovoked neural activity in absence of an iden-
tifiable stimulus (Salek-Haddadi et al., 2003). This kind of EEG data can mainly be
categorized on the basis of amplitude and frequency and is widely used for monitoring
purposes in anesthesia or for cerebral death identification. But also epileptic discharges
and sleep stages can be identified from the spontaneous EEG. In recent years, several
efforts have also been conducted to employ the spontaneous EEG for the purpose of
Brain-Computer Interfacing, as discussed in detail in section 3.2.

In contrast to the spontaneous EEG, evoked potentials are EEG data following
a stimulus. They can be analyzed as single trials or as a collection of trials as in
ERPs. The goal of single trial analysis is to analyze EEG data following single stimuli,
which can especially be useful for preprocessing purposes in cognitive science by, e.g.,
calculating the correct latency of each trial performed in a series of trials in order to
perform temporal shifts (Jaskowski and Verleger, 2000). As in the spontaneous EEG,
single trial analysis can also target on Brain-Computer Interfacing (cf. section 3.2).

A common way to overcome the bad signal quality of EEG data is to calculate Event-
Related Potentials, which will be discussed in detail in section 2.5. By repeating
stimulus expositions and recording the resulting EEG time series, the ERP can be
calculated by averaging these time series. Thus, the SNR is enhanced and those parts
of the signal which are correlated with the (psychological) properties of the stimulus
accumulate, while non-systematical voltage changes (noise) are averaged out. Data can
either be averaged according to the stimulus onset (stimulus-locked) or the response of
the subject (response-locked).

ERPs only reflect evoked potentials with a close temporal relationship to the event.
In order to be able to analyze components with temporal variations, so-called induced
potentials can be analyzed by performing power spectra calculations, and average the
power spectra. Afterwards, another transformation back to the amplitude domain can
be performed to receive a time series signal (Tallon-Baudry and Bertrand, 1999).
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Figure 2.6: EEG recordings belonging to repetitions of a certain stimulus (event)
can be averaged to compute the Event-Related Potential. Thereby, parts of
the signal correlated to the event remain while non-systematical influences are
regarded as noise are reduced with this procedure.

2.4.2 Data Analysis Techniques

EEG data analysis commonly relies on amplitude changes or frequency properties, which
can be further processed to assess coherence and phase relationships. In order to be-
come able to perform even more sophisticated analyses like, e.g., source localization, the
EEG data can be combined with other imaging techniques. In the past decade, modern
data analysis techniques inspired by artificial neural networks became increasingly im-
portant. These different aspects of EEG data analysis will shortly be discussed in the
following; further information is provided by Coles et al. (1986).

First, an apparent characteristic of EEG signals is their amplitude changes. They
are foremost analyzed in Event-Related Potentials. Section 2.5 gives an introduction
into analyzing these components.

A complementary aspect of EEG data is their frequency, which importance was
early recognized: Berger (1931) discovered decreases in frequencies about 10Hz (so-
called o waves) during sleep, anesthesia and cocaine stimulation. Table 2.1 gives an
overview about the five different frequencies which are commonly distinguished today':
§ (0.5-4Hz), 6 (5-7Hz), o (8-12Hz), 3 (13-30Hz), and v (>30Hz). Each frequency band is
correlated with certain aspects of cognitive processes: While, e.g., a waves correspond
to deep relaxation, 3 waves occur in awake humans and 7 band activity can reflect
memory processes. A common way to perform the transformation into the frequency
domain is Fourier transformation (FT). For instationary signals like EEG, Short-Term
Fourier transformation (STFT) can be employed on windows of EEG data. Since the
size of the STFT time window directly affects the frequency resolution, in recent years
Continuous Wavelet transform (CWT) became popular for power spectra calculations
- they expose different resolutions for different frequencies.

Large-scale integration, i.e., communication processes between cell-assemblies at dis-

'Depending on the focus of research, further subdivisions of either frequency, e.g., 5-1 (13-18Hz) vs.
(-2 (19-31Hz) or predominant location, like in o (occipital, 8-12Hz) vs. p (motor cortex, 8-12Hz)
can be found. The specific frequency ranges vary between researchers.

11
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Table 2.1: EEG frequency bands and related cognitive states or processes.

Frequency | Frequency
Band (Hz) Cognitive State / Processes
1) 0.5-4 deep sleep, coma
0 5-7 drowsiness
«@ 8-12 relaxed but awake, esp. with closed eyes
8 13-30 active, busy or anxious thinking
¥ >30 e.g., perceptual binding and memory processes

tant scalp locations can be investigated by analyzing their coherence properties (Weiss
and Miiller, 2003; Weiss et al., 2005). Coherence is reflected by power spectra corre-
lations of data from two electrodes and is commonly computed for specific frequency
bands (Rappelsberger and Petsche, 1988). Thus, frequency analysis can be employed
to calculate coherence. Furthermore, phase relationships provide information about
the direction of the communication between neurons, whether a certain cell assem-
bly sends information to or receives information from another one (Weiss and Miiller,
2003; Varela et al., 2001). Beside correlating power spectra, alternative sophisticated
approaches exist, like estimating coherence and phase relationships from adaptive au-
toregressive moving average (ARMA) models (Schack and Weiss, 2005). In this model,
electrode couplings are calculated by computing cross-correlations between electrodes
based on autoregressive functions.

In order to overcome the low spatial resolution of the EEG and its restriction on
cerebral cortex activity, efforts have been made to combine this technique with other
imaging techniques like fMRI. This combination enables researchers to perform, e.g.,
localizations of generators of EEG signals (Bledowski et al., 2004).

The rise of artificial neural networks in all its variations permitted to analyze
EEG data in new ways (Kaper et al., 2006). For example, Hidden-Markov-Models were
successfully utilized to identify sleep stages (Flexer et al., 2005). Independent Com-
ponent Analysis was employed to, e.g., perform artifact removal (Jung et al., 2000),
feature extraction (Meinicke et al., 2004), and to determine independent EEG compo-
nents (Makeig et al., 2004). Multi-Layer Perceptrons classified mental states (Ander-
son, 1997) and Self-Organizing Maps allowed classifications and convenient exploratory
data analyses (Heuser et al., 1997; Kaper et al., 2005). For Brain-Computer Interfaces,
a large variety of such approaches has been applied, foremost for classifying EEG data
(see section 3.2).

2.5 Event-Related Potentials

Components in Event-Related Potentials are classified by the polarity and latency of
amplitudes. Thus, negative deflections after about 100ms are assigned as a N100 com-
ponent and positive deflections with a latency of about 300ms are designated as a P300
component? (cf. Figure 2.7). Based on this classification scheme, a number of compo-
nents can be distinguished. The most common components are the N100, N200, N400,
and P300 components. These components can further be divided into subcomponents.

2By omitting the trailing zeros, components can also be abbreviated to, e.g., N1 and P3 in this case.
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Figure 2.7: ERP components are classified by their polarity (P/N) and their latency.
Positive deflections at about 300ms after stimulus exposition are therefore des-
ignated as P300 components while a negative deflection at about 200ms would
be regarded as a N200. Please note that it is common in EEG research to depict
reversed polarities.

A more detailed overview of the different ERP components is provided by Patel and
Azzam (2005), Coles and Rugg (1995), and Coles et al. (1990).

N100 Component

The N100 component’s peak latency is between 90ms and 200ms. The component is
elicited by novel or unexpected stimuli. Its occurrence does not depend on the attention
to the stimulus, thus it is regarded as being related to the orienting response (OR) as
introduced by Sokolow (1963). Nevertheless, its amplitude can be enhanced by directing
attention to the stimulus (Hillyard et al., 1973). The N100 habituates with repetitions
up to its disappearance. It is suspected that the psychophysiological basis for the
orientation response is a comparison of new incoming stimuli with previously stored
stimulus features, such that an OR results whenever no suitable neural representation
of the incoming stimulus exists.

N200 Component

The N200 component is correlated to stimulus evaluations by the subject and is divided
into the subcomponents N2a, N2b, and N2c, respectively. One way to elicit a N2a
is to present rare deviating stimuli in a series of similar stimuli - thus, the alternative
designation Mismatch Negativity (MMN) (Naatanen, 1982). Since this component par-
ticularly results when attention is not directed to the stimulus, it is assumed that this
component is related to preattentive processes and represents an automatic novelty-
sensing process (Picton et al., 2000). The N2b exposes a prolongated latency and is
elicited under similar circumstances as the N2a. But in contrast to the N2a, it only
occurs when subjects selectively attend to the rare stimuli and is therefore supposed to
reflect deviations to mentally-stored expectations of the standard stimulus. The N2b
commonly precedes a P300 (see section 2.5). If the stimuli are quite similar, the la-
tency of this component is prolongated. While the N2b has its maximum amplitude at
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Figure 2.8: Typical topographical distribution of ERP components. While the
topographical maximum of the early P3a components is located at central sites,
the maximum shifts to dorsal sites with prolongated latency of the components
P3a+P3b, P3b, and slow wave. Adapted from Picton et al. (1995).

parietal sites, the N2¢ maximum amplitude is fronto-central. A N2c results when the
subject’s task is to classify stimuli into categories. It is suspected that the N2c consists
of components for memorizing, recalling and categorizing stimuli.

N400 Component

In nonsense sentences, where the last word does not fit to the semantic context, like in
“the pizza was too hot to cry”, a N400 results for the word “cry”(Kutas and Hillyard,
1980). Furthermore, this component occurs when the word is semantically correct, but
makes no sense in the broader context. Thus, not the grammatical properties of the
word are responsible for eliciting the N400, but the probability of the target word’s
occurrence in that context. Hence, the N400 is associated with expectation violations.
This phenomenon is not restricted to linguistic material: The modification of well-known
melodies also result in this component.

P300 Component

Sutton et al. (1965) discovered a positive wave with a latency of about 350ms which
occurred when few target stimuli (oddballs) are presented in a series of background stim-
uli. Therefore, this general experimental setup is also known as the oddball-paradigm,
which is also the most common way to elicit a P300 component: Within a series of
background stimuli, rare stimuli (i.e., the oddball-stimuli) are presented. subjects are
instructed to concentrate on the oddball-stimuli by, e.g., counting their occurrences.
Then, for these stimuli, a P300 results in the subject’s EEG pattern. This finding was
first utilized by Farwell and Donchin (1988) in order to design a Brain-Computer In-
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Figure 2.9: Probability dependence of the P300 amplitude. In this experiment,
two different auditory stimuli, a high and a low tone, were presented. The
probability of their occurrence was varied between conditions and the subjects
were instructed to either count the high tone (bold, red line) or ignore the stimuli
(dashed blue line, control condition). No remarkable effects could be observed for
the latter condition, while in the former condition, the P300 amplitude decreases
with the likeliness of the stimulus. This effect happens for attended (left column)
as well as for unattended stimuli (right column). The P300 amplitude is higher
for the attended stimuli (Duncan-Johnson and Donchin, 1977).

terface. Even though most experiments utilize auditory stimuli for P300 research, the
component is multi-modal and can also be elicited by visual or even tactile stimuli.
Extensive overviews about the P300 are given by Polich (1998) and Pritchard (1981).

Although the P300 is a well-studied component, researchers differ about its psycholog-
ical meaning. Furthermore, it is more accurate to talk about a P300 group. This group
is divided into the subcomponents P3a, P3b and slow wave. Figure 2.8 illustrates their
temporal and spatial characteristics. For novel target stimuli, a pronounciated P3a
with a latency between 250ms and 350ms will result. The amplitude’s maximum is at
Fz (fronto-central, see Figure 2.4). It also occurs when the attention is not directed
to the stimuli and it can easily habituate. The component is therefore regarded as
being correlated to an automatized orienting response. The “classical’P300 component
is the P3b component. This component is elicited by the oddball-paradigm and has its
maximum amplitude at Pz (centro-parietal cortex, see Figure 2.4). Depending on the
modality, its latency lies between 340ms and 700ms after stimulus onset. The P3b is
endogenous, i.e., it depends on the subject’s interpretation of the stimulus rather than
its physical properties (which in turn would be correlated to ezogenous components).
For example, Klinke et al. (1968) demonstrated that the P3b component can also be
elicited by missing stimuli. In a regular series of “click”-sounds, an expected “click”was
missing, which resulted in a P3b. Thus, the presence of “no stimulus”with obviously no
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Figure 2.10: Age effects on P300 Amplitude. While strong differences of the P300’s
maximum amplitude can be observed in children and teenagers between scalp

sites, these voltages converge to a medium level with increasing age. Adapted
from Mullis et al. (1985).

physical properties is able to induce the P3b. A mandatory precondition for eliciting
a P3b is directing the attention towards the target stimuli. Some researchers believe
the P3b reflects context updating, i.e., the adaptation of a mental model to the incom-
ing oddball stimulus (Donchin, 1981). Others are convinced that it reflects a context
closure procedure, i.e., the termination of a waiting process for an anticipated stimulus
(Verleger, 1988). More details about P3a and P3b components can be found in Polich
(2003).

Slow waves, also denoted as slow cortical potentials (SCPs), with a latency of 600ms
up to 1400ms occur whenever the stimuli are relevant for the solution of a demanding
task. They regulate thresholds of excitability of cell assemblies and results for, e.g.,
complex thinking processes under time pressure. By operant conditioning, subjects can
learn to gain voluntary control over their SCP which led Birbaumer et al. (1999) to
design a Brain-Computer Interface, the Thought- Translation Device (TTD, see chapter
3.2.3), utilizing this component. Birbaumer et al. (1990) provides a review of SCPs.

Effects on the Amplitude and Latency of the P300

The P300 highly depends on the probability of the target stimuli. The rarer the stim-
uli, the higher is its amplitude. A clear P300 amplitude results with target probabilities
between 15% and 20%, but its amplitude wont increase any further below a probability
of 10%. Figure 2.9 illustrates the findings of Duncan-Johnson and Donchin (1977) who
conducted an experiment with varying probabilities of a high tone (1500Hz) relative
to a low tone (1000Hz). Either the high tone should be counted (red line) or every
tone should be ignored (blue line). With sinking probability, the amplitude of the P300
increases. It is important to distinguish between global and local target probability.
The latter refers to a series of few succeeding stimulus expositions. Even with a low
global target probability, the amplitude for a second target stimulus decreases when
it is exposed shortly after a target. The interstimulus interval (ISI) denotes the
temporal distance of two stimuli. The amplitude of the P300 is negatively correlated
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with this temporal distance. It is possible to induce a P300 with an ISI even below
300ms, which is very helpful in designing a P300-based Brain-Computer Interface as
described in chapter 4. The component’s amplitude and latency does not stay constant
throughout life. With increasing age, its latency prolongates (with about 1.4ms per
year) and its scalp distribution shifts after about 30 years of age. In elder people, the
P300 appears to display a more equipotential scalp distribution across the scalp mid-
line for visual, auditory and somatosensory stimuli (Mullis et al., 1985; Friedman et al.,
1989). The Pz amplitude ranges between 25,V and 404V (see Figure 2.10). These
are important facts to keep in mind, when targeting to design a classifier working for
different subjects (see chapter 6.5). A subject needs to be awake and to be able to
focus his attention towards the target stimuli. Lowered attention results in decreased
amplitudes, which was experimentally proven by introducing a distracting task within
an oddball-paradigm. As a result, the amplitude decreased with increasing attention
towards the distracting task. The higher the reward for correctly recognized stimuli,
the higher the amplitude. Thus, the relevance of the stimuli also plays an important
role. On the other hand, this might just mediate attention. After meals and within
summer time, the amplitude increases. The latency of the P300 decreases of about
30ms for an increase of 1° Celsius in body temperature. Gender and menstruation
cycle do not affect the P300.

2.6 Summary

Electroencephalography (EEG) measures potential differences between electrodes on
the scalp. Due to the small currences at single neurons, only synchronous activities
from assemblies of several hundred thousand neurons can be assessed by the EEG.
Nevertheless, the signal-to-noise ratio remains low, and the signal is likely to be pol-
luted by artifacts like, e.g., electromagnetic induction and muscular activity. One way
to overcome this handicap is to calculate so-called Event-Related Potentials (ERPs),
i.e., averaged EEG time series belonging to certain experimental conditions. Resulting
components are classified by the latencies and polarities of peaks in the ERP. The P300
component is a positive deflection after about 300ms. It occurs when in a series of
background stimuli few target stimuli (oddballs) which are relevant to the observing
subject, are presented. Even on the basis of very few trials, a P300 can be identified
which led Farwell and Donchin (1988) to design a Brain-Computer Interface utilizing
this component.

17



CHAPTER 2. ELECTROENCEPHALOGRAPHY

18



Chapter 3

Brain-Machine Interfaces

Brain-Machine Interfaces (BMIs) establish a connection between the brain and an arti-
ficial device to stimulate the brain or to receive information from it (Nicolelis, 2001). In
the former case, the BMI provides input to the brain, which can be employed to restore
lost sensory functions as in an artificial auditory prosthesis, or to suppress symptoms
from brain diseases like Parkinson’s disease (Nicolelis, 2001; Donoghue, 2002). In the
latter case, the BMI receives output from the brain, such that control over an artificial
unit can be achieved, which can especially be useful for paralyzed patients. An exam-
ple for intended users are thereby so-called locked-in patients. This syndrome denotes
a state where people are literally locked-in in a motionless body, but in contrast to
coma, these people are conscious and have an awake mind (Kiibler et al., 2001). Jean-
Dominique Bauby, a former editor-in-chief of Elle France, wrote about his experiences
in such a state. He suffered a stroke and was since then only able to perform residual
movements of his head and left eye. He wrote a whole book by employing just move-
ments of the eye (Bauby, 1998). At worst, locked-in patients are not able to move any
muscle and are therefore unable to communicate or express desires. As Patterson and
Grabois (1986) describe, “these patients are aware of both internal and external stimuli
but are able to carry on only an internal monologue”. Such patients could be equipped
with a BMI system to open up a communication channel when using their brain signals
to e.g., control a spelling device.

As depicted in Figure 3.1, Brain-Machine Interfaces can either be invasive or
non-invasive. While invasive methods rely on penetrating the body and depend on
surgery, non-invasive methods do not require any incision into the body. Electroen-
cephalography (see chapter 2) is the most common method to acquire data among the
latter BMI approaches. Non-invasive BMIs are also called Brain-Computer Interfaces
(BCIs)!. Another subdivision of BMIs relies on the direction of the information
transfer: While the brain is stimulated in input BMIs, brain signals are employed to
deliver information to a device in output BMIs. At present, non-invasive approaches
can reasonably only be designed as output devices. Although non-invasive stimulation
is in general possible by, e.g., transcranial magnetic stimulation (TMS), where strong
magnetic fields affect brain activity, this method is too rough and offers only a very
low spatial resolution, such that it is not suitable for BMI purposes at present.

!This categorization of BMIs and BCIs follows the distinction of (Nicolelis et al., 2004) and the
reader might find deviating declarations. For example, “BCI”can also subsume invasive approaches
(Wolpaw et al., 2002), and instead of invasive vs. non-invasive BMIs, some authors talk about direct
vs. indirect BMIs (Donoghue, 2002).
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Brain—Machine Interfaces (BMIs)

/\

invasive non-invasive
/ \ = Brain-Computer Interfaces (BCls)
input output output
cochlea implant cursor control cursor control
visual prosthesis robot arm control virtual keyboards
therapeutical devices game control
orthosis control

Figure 3.1: Brain-Machine Interfaces can be divided into invasive and non-invasive
approaches. While invasive approaches require the penetration of the body, non-
invasive approaches do not depend on surgery. The direction of the information
flow constitutes another dimension: BMIs can either be input or output devices.
The former stimulate the brain and can be employed to, e.g., restore lost sensory
functions, while the latter ones receive information from the brain to enable the
subject to, e.g., control a computer. Exemplary applications are given in the
blue boxes.

This chapter gives a review about different BMIs with a focus on EEG-based Brain-
Computer Interfaces. Examples for invasive input BMIs, mainly auditory and visual
prostheses as well as therapeutical devices, are discussed in section 3.1. Output BMIs,
enabling to control cursors or robot arms are considered in the same section. Non-
invasive BMIs or Brain-Computer Interfaces, mostly providing spelling devices or wvir-
tual keyboards intended for paralyzed people, are presented in chapter 3.2. Finally,
the concept of information transfer rates (ITR), which is important for performance
comparisons of BMI approaches is introduced in section 3.3.

Further introductions and overviews can be received by, e.g., Kiibler et al. (2001), Alfa
(2005), Wolpaw et al. (2002), Wickelgreen (2003), Nicolelis (2001), Nicolelis (2003), and
Donoghue (2002). Progress in invasive recordings are discussed in Engel et al. (2005)
and a detailed introduction into neuroprosthetics in general is given by the book of
Horch and Dhillon (2004).

3.1 Invasive Brain-Machine Interfaces

Invasive Brain-Machine Interfaces establish a direct connection to the brain. Electrodes
are implanted into or in close proximity to the brain and therefore provide good signal
qualities, temporal and spatial resolutions. These factors allow for large bandwidths
compared to non-invasive approaches. On the other hand, these approaches face the
risks of bioincompatibility, often preventing long-term studies. Furthermore, ethical
problems have to be considered, and the benefits of the surgical treatment should clearly
countervail its risks. In the following, examples of realized input and output devices are
presented.
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Input Invasive Brain-Machine Interfaces

The first BMI application was the cochlea implant (Clark et al., 1981). This auditory
prosthesis was designed for deaf people and translates features of acoustic signals as
recorded by microphones into electrical stimuli which are delivered to implanted elec-
trodes nearby the auditory nerve fibers on the basilar membrane of the ear’s cochlea
(Pfingst, 2000). Within the cochlea, adjacent frequencies correspond to neighboring lo-
cations. Although about 40000 nerve fibers are located within the cochlea, present day
implants only provide as few as 6-22 electrodes. Thus, the quality of the auditory stim-
ulation remains low. Nevertheless, such implants allow to perform, e.g., telephone calls
(Qian et al., 2003). Cochlea implants for adults were approved by the U.S. Food and
Drug Association (FDA) in 1985 and for children in 1990. In 2002, the National Insti-
tute on Deafness and Other Communication Disorders (NIDCD) indicated that 59000
people have received a cochlea implant, aging from 12 months to 80 years (NIDCD,
2006).

Similar interfaces were also invented for blind people: A visual prosthesis is based
on neuronal electrical stimulation at specific locations along the visual pathways. Those
prostheses exist for the different locations retina, optical nerve, and wvisual cortex. Im-
plants providing stimulations to one of the first two locations are used when the visual
loss is caused by outer retinal degeneration, while visual loss caused by inner or whole
thickness retinal diseases, eye loss, optic nerve diseases, or diseases of the central ner-
vous system can be reversed by a cortical visual prosthesis (Maynard, 2001; Margalit
et al., 2002). A cortical visual prosthesis utilizes the finding of Lowenstein and Bor-
chart (1918) that electrical stimulations of the visual cortex result in visual impressions,
so-called phosphenes. Dobelle reported a first visual cortex prosthesis, allowing blind
people to recognize simple patterns (Dobelle et al., 1974, 1976). Such a cortical vi-
sual prosthesis uses signals of a video camera and stimulates the visual cortex by a 64
channel platinum disk electrode array on the surface of the visual cortex. This device
enabled patients to recognize 6-inch characters at 5 feet distance. One of his patients
was wearing this implant for more than 20 years (Dobelle, 2000).

Recent research for cortical visual prostheses focuses on using penetrating intracorti-
cal microelectrodes (Fernandez et al., 2005). Schmidt et al. (1996) reported the implan-
tation of 38 microelectrodes into the right visual cortex of a 42-year old woman who
was blind for more than 22 years. 34 of the electrodes produced phosphenes. Since the
implant was not designed for long-term usage, the experiment was performed for only
4 months. At present, long-term viability and biocompatibility are two of the main
frontiers of invasive Brain-Machine Interfacing (Vetter et al., 2004; Fernandez et al.,
2005).

Beside compensations for sensory loss, a further direction of BMI research targets
on developing therapeutical devices to alleviate the symptoms of brain disorders
like Parkinson’s disease or epilepsy by electrical stimulation of certain brain regions or
nerves. In deep brain stimulation (DBS) for example, electrodes are stereotactically
implanted into certain regions of the patient’s brain. Although also considered for,
e.g., Huntington’s disease and epilepsy (Fawcett et al., 2005; Hamani et al., 2005), the
technique is most commonly used for Parkinson’s disease. Thereby, electrodes are placed
into the subthalamic nucleus (STN) or globus pallidus interna (GPi) within the basal
ganglia (Kumar et al., 1999). Afterwards, electrical stimulation of these regions can
alleviate most Parkinson symptoms like tremor, slowness of movements, dyskinesia and
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difficulty with balance and walking (Anderson et al., 2005; Kumar et al., 2003). DBS
for Parkinson treatment was FDA approved in 1997 for unilateral thalamic regions and
in 2002 for STN and GPi bilaterally. Worldwide, more than 14000 Parkinson patients
have received a DBS implant (Medtronics, 2005).

In order to suppress epileptic seizures, vagus nerve stimulation (VNS) was success-
fully employed (Schachter, 2002). A recent long-term study on 48 patients reported a
decrease of the mean seizure frequency from 74% after one year to 48% after 12 years
with VNS treatment (Uthman et al., 2004). VNS was FDA approved in 1997, and since
then VNS devices were implanted to more than 30000 patients (Cyberonics, 2005).
VNS has also been considered as a therapy for depression (Hoppe et al., 2001) and the
treatment of pain disorders (Kirchner et al., 2000). Some findings suggest that it could
improve cognition and memory (Clark et al., 1999).

Beside these medical attempts, efforts have been conducted to gain control over
the brain: By stimulating the medial forebrain bundle (MFB), intense pleasure can
be produced. Utilizing this phenomenon as a reward system, and simultaneously stim-
ulating sensorimotorcortex areas in the rat’s brain, which receive sensory inputs from
the whiskers, Talwar et al. (2002) succeeded in literally steering rats with implanted
electrodes. They see applications in, e.g., land mine detection and search-and-rescue
missions.

Output Invasive Brain-Machine Interfaces

In order to control a cursor, a prosthesis or a robotic device, the vast number of inva-
sive output BMIs employ motorcortex signals. Such techniques could offer paralyzed
patients the possibility to gain control over an artificial device substituting lost motor
functions to control a computer or an artificial device like an orthosis.

Chapin et al. (1999) performed pioneering work in this area by deriving signals from
the brains of rats in order to steer a robot arm. In the following, Wessberg et al. (2000)
analyzed brain signals as recorded by microwire arrays from two owl monkeys. They
applied microwires to several cortex areas, primarily in the motor cortex. For 12 and 24
months, the monkeys were trained to perform one-dimensional hand movements with
a lever. Afterwards, also three-dimensional hand movements were trained by grasping
food from one out of four positions in front of the monkeys. The goal of the researchers
was the real-time approximation of the original hand movements of the monkeys (as
measured by the lever position) as precisely as possible. For this purpose, in a first step,
they employed coherence analysis, and, afterwards, the microwire data were analyzed by
either linear models or multilayer artificial neural networks, both continuously updated.
In the one-dimensional case as well as for three-dimensional movements, the researchers
achieved highly significant real-time predictions for both monkeys. The predictions were
utilized to control a local and a remote robot arm as well, indicating that it is possible
to gain real-time control over artificial limbs by brain signals. Another outcome of the
study was that chronically implanted microwires arrays can yield reliable signals in the
BMI context for as long as 24 months.

In a subsequent experiment, two macaque monkeys were trained to perform not
only reaching, but also grasping (Carmena et al., 2003). In this closed-loop BMI, the
monkeys received visual feedback about their actions. First, in a pole control mode,
the monkeys operated a pole to move a cursor on a computer screen. One task was
to move the cursor towards a randomly located disc on the screen. Further tasks also
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Table 3.1: Order of magnitudes of spatial and temporal resolutions of different
imaging techniques. Note that although NIRS offers higher temporal resolutions
in principle, the assessed hemodynamical signals induced by brain activity result
with a few seconds delay.

| method | EEG | MEG | fMRI | PET | NIRS ]
spatial resolution cm cm mm cm cm
temporal resolution ms ms S min S

included the application of gripping force to the pole to perform grasping behavior.
The screen delivered visual feedback about their actions and after a number of training
trials, the pole was plugged off, and the monkeys were required to move the cursor by
solely using their brain signals. In this brain control mode, the animals first produced
arm movements but realized soon that those were not necessary and discontinued them
for periods of time. The investigators therefore physically removed the pole after the
animals ceased to produce the movements in a session. Muscle activity as measured by
electromyography (EMGQG) at the three different locations wrist flezors, wrist extensors
and biceps, indicated that both animals were able to operate the system without muscle
activity.

Several other groups conducted studies proving that motor neurons from monkeys
can provide BMI control signals for 2D and 3D control (Taylor et al., 2002; Serruya
et al., 2002; Mehring et al., 2003). But also first studies with humans were conducted:
Kennedy et al. (2000) implanted neurotrophic electrodes in three patients suffering from
motor diseases. The electrodes were implanted into the motorcortex and the growth
of neural tissue into the hollow electrode tip was encouraged by using trophic factors.
Two wires within the electrode registered intra-cortical local field potentials (LFPs).
The patients learned to perform binary decisions to control a software system for com-
munication (TalkAssist). Despite the technical efforts, the most successful patient pro-
duced only about 3 letters per minute. One patient used this interface for as long as
4 years. More recently, in order to minimize surgical complications, the group applied
skull screws to assess extra-cortically LEPs in two paralyzed patients suffering from
Amyotrophic Lateral Sclerosis. Another group applied microarray electrodes into the
human motorcortex in order to provide control over steering devices. FDA approved a
test series on five patients, but only popular science publications can be obtained so far
(Duncan and Friedman, 2005). Both groups are involved in first commercial spin-offs:
Neural Signals Inc. (NSI) and Cyberkinetics Inc. each distribute invasive Brain-Machine
Interfaces to enable paralyzed patients to communicate (NeuralSignals, 2006; Cyberki-
netics, 2006).

3.2 Non-invasive Brain-Machine Interfaces

In non-invasive BMIs, so-called Brain-Computer Interfaces, no penetration of the body
is performed. Since Electroencephalography is easy to use, comparably cheap, and, most
of all, offers a very high temporal resolution (see Table 3.1), this technique is by far
the most frequently employed method for BCIs, although some work exists employing
functional Magnetic Resonance Imaging (fMRI) (Weiskopf et al., 2004; Hinterberger
et al., 2004b), Magnetencephalography (MEG) (Laitinen, 2003; Nykopp et al., 2005), and
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Figure 3.2: Illustration of an EEG-based Brain-Computer Interface. Depending on
the paradigm, stimulus presentation can be necessary to induce specific brain
activities or to provide feedback. EEG signals are recorded from the subject’s
scalp and a data analysis procedure yields features which can be evaluated for
specific applications like controlling an orthosis or operating a virtual keyboard.

Near-Infrared Spectroscopy (NIRS) (Coyle et al., 2004). Figure 3.2 gives an illustration
of a general EEG-based Brain-Computer Interface.

Since spontaneous EEG data itself does a-priori not provide interpretable informa-
tion to operate a BCI, any BCI is closely related to a specific paradigm. The different
approaches within non-invasive Brain-Computer Interfacing can be divided into the ba-
sic approaches mental tasks, steady-state visual evoked potentials (SSVEP), slow cortical
potentials (SCP), sensorimotorcortex activity and P300 evoked potentials which will be
explained in detail in the upcoming sections.

Beside the distinction of invasive vs. non-invasive Brain-Machine Interfaces, par-
ticularly the non-invasive approaches can be categorized further: Along a first dimen-
sion, BCIs can be distinguished according to whether they require training of the
subjects or not. Training time can last from almost no training (P300 and SSVEP) up
to several months (SCP). Another dimension is the stimulus-dependence of a BCI.
Some BCIs depend upon the presentation of a stimulus to be able to induce, depend-
ing on the subject’s attention, a certain brain signal (P300 and SSVEP) which can be
problematic for designing real-time devices. A similar distinction lies in synchronous
vs. asynchronous BCIs. The former BCIs depend upon the presentation of a cue as
a trigger, while the latter ones need to analyze spontaneous EEG signals without time
markers. Finally, BCIs can be divided into dependent and independent devices:
“an independent BCI does not depend in any way on the brain’s normal output path-
ways” (Wolpaw et al., 2002). Such a “normal output pathway”could be eye movements
to direct the gaze. The SSVEP BCI is therefore a dependent BCI, since the eyes are
directed towards a specific location which then result in modulations of the EEG signal.
The current P300 speller device is probably dependent (Kaper et al., 2004) because the
subjects commonly direct their gaze to specific locations of a screen. On the other
hand, the confoundation of fixation and locus of attention could in principle be resolved
(Posner et al., 1980) by instructing to fixate a specific point on the screen and shift the
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attention to other locations. Furthermore, e.g., auditory P300-based BClIs are possible
(see section 8.1).

3.2.1 Mental Tasks

Different brain areas are predominantly involved in certain mental operations. Pro-
cessing language-related material commonly results in strong activations at temporal
sites on the left (see section 2.1). On the other hand, imagining a rotating cube yields
right hemispheric activations. Reversely, such findings can be used to voluntary induce
specific patterns to provide information for communication purposes. Keirn and Aunon
(1990) instructed four subjects to perform one out of five randomly chosen tasks in a
trial which should induce specific EEG patterns. For a duration of 10 seconds, the sub-
jects should perform one of the following tasks which were repeated five times within
the experiment:

Baseline task: Relax as much as possible.
Letter task: Mentally compose a letter to a friend without vocalizing.
Math task: Perform nontrivial multiplication problems like 49 x 78.

Visual counting task: Imagine sequentially written numbers on a blackboard.

Figure rotating task: Visualize and rotate a 3-dimensional block figure around an
axis.

Trials of the different conditions were classified using Multilayer Perceptrons (MLPs)
with backpropagation learning (Anderson and Sijercic, 1996). Feature vectors were
Fourier transforms based on 6th order autoregressive coefficients from the 6 channels
C3,C4,P3,P4,01, and O2 (see Figure 2.4). Depending on the subject, classification
accuracies between 38% and 70% were achieved, resulting in transfer rates between
0.74 bits/min and 5.05 bits/min. This means that by using this device 0.74 to 5.05 bits
of information (Shannon and Weaver, 1949) can be transferred within one minute. Since
the concept of information transfer rates is important for Brain-Computer Interfacing
in general, it will be discussed in detail in section 3.3. Although this transfer rate might
be too little and the tasks are probably too demanding for communication purposes,
the finding that it is possible to identify these complex tasks by brain signals with an
accuracy of up to 70% encourages to employ such techniques for, e.g., clinical purposes.

3.2.2 Steady-State Visual Evoked Potentials

Changes in visual stimuli result in visual evoked potentials (VEP), which can foremost
be recorded at occipital sites. If stimulus changes occur below a frequency of 2Hz, the
evoked potentials are denoted as VEPs. If a visual stimulus is presented repetitively at
a rate of more than 6Hz, a periodic response called steady-state visual evoked potential
(SSVEP) will result. A useful property of SSVEPs is that their frequency as measured
in the EEG is the same as the frequency of the initiating stimulus (Regan, 1989). The
amplitude of the SSVEP can be enhanced by directing attention to the location of the
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Figure 3.3: Left: After determining a baseline within the first 2 seconds of a
trial, slow cortical potentials can either produce negative (thin blue line) or
positive shifts (thick red line) to provide information. Right: A virtual keyboard
controlled by slow cortical potentials. At the bottom, letters or a collection of
letters occur and the user needs to move the ball from the center either towards
the box on the bottom, or keep it away from it (Kiibler et al., 1999).

flickering stimulus, which was experimentally proven for the frequency ranges of 8-12Hz
(Morgan et al., 1996) and 20-28Hz (Miiller et al., 1998).

These properties can be employed to construct a Brain-Computer Interface. Since
the production of SSVEPs is an inherent mechanism of the brain, no training of the
subjects to control their brain activity is necessary. Cheng et al. (2002) presented a 3x4
matrix (and an additional button) to their test subjects filled with buttons of numbers
mimicking a telephone keypad. The buttons were flashing at different frequencies within
the range of 6-14Hz. From the power spectrum of the data, which was recorded from
the occipital sites O1 and O2 (see Figure 2.4), predominant frequencies were extracted.
From the frequency in turn, the buttons on the screen could be inferred. Seven subjects
participated in the experiment and their mean performances ranged from 3.05 bits/min
to 48.93 bits/min with a maximum transfer rate of 55.69 bits/min. Another experiment
performed by the same group utilized as many as 48 flickering light-emitting diodes
(LEDs) of 6-16Hz, resulting in 68.00 bits/min maximum transfer rate (Gao et al., 2003).

An Air Force research laboratory employed SSVEPSs as control signals for a flight
simulator (Middendorf et al., 2000). By directing attention to one of two flickering
stimuli, binary decisions (roll left/right) were provided. An accuracy of 80-95% has
been achieved but no information about the time required for one decision was reported.
Further on, the researchers successfully operated a functional electrical stimulator (FES)
for knee angle commands. In their best sessions, three able bodied subjects achieved
95.8% of the required knee angles with latencies between 4.28s and 5.93s.

Recently, attempts were made to utilize this technique for game control (Lalor et al.,
2004). Five subjects performed offline trials to find good signal processing parameters
and classification techniques. Afterwards, the subjects played a game steering a fantasy
figure balanced on a rope. By directing attention to one of two checkerboards at the
screen, flickering at different frequencies, SSVEPs were induced, commanding the figure
to either shift its weight to the left or to the right. The investigators suggested to use
this technique for subjects with attentional deficit hyperactivity disorders (ADHD).

Since this approach highly depends on eye position, it is regarded as a dependent
BCI. People need to move their eyes, and the eye position modulates the brain signals.
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3.2.3 Slow Cortical Potentials

Slow cortical potentials (SCP) are potential shifts in the EEG signal over 0.5-10s (see
section 2.5). The group around Birbaumer has shown that people can learn to control
their SCPs (Birbaumer et al., 1990). At the beginning, this finding was used to enable
people to gain some control over their epileptic seizures (Elbert et al., 1991), but it
also turned out that this signal could be used to provide communication signals, which
resulted in the so-called Thought Translation Device (TTD) (Birbaumer et al., 1999,
2003; Kiibler et al., 1999, 2001). Recently, the TTD has further been successfully
utilized for neurofeedback in children with attentional deficit hyperactivity disorders
(Holtmann et al., 2004).

In a pioneering study, two patients suffering from advanced Amyotrophic Lateral
Sclerosis which were not able to use muscle-driven interfaces and have been artificially
respirated and fed for four years were trained to employ their SCPs to provide control
signals for operating a spelling device. Satisfying skills in voluntary producing SCP
changes were achieved after 327 and 288 sessions, respectively. The patients performed
6-12 sessions on a training day, each including 70 to 100 trials of 5-10 minutes. A trial
consisted of a 2-second baseline and a response period of 2-4 seconds (see Figure 3.3,
left). Within an operant conditioning scheme, control over the SCP was trained by
providing visual feedback of the SCP amplitude to the patients. The training task for
the patients was to move a ball on a video screen either to a box in the upper half or
to a box in the lower half. The direction of the ball movement was calculated from
the baseline-response difference in the SCP voltage. In the test phase, as depicted in
Figure 3.3 (right), letters were selected by moving the ball towards a box in the bottom
containing changing letters, or keep it away from it using the SCPs. With this device,
the completely paralyzed patients regained the possibility to communicate, which was
formerly prohibited due to their severe motor diseases. One of the patients wrote a
letter to the leader of the group, which is depicted in Figure 3.4.

The TTD software was augmented with a word completion algorithm for a quick
selection within a dictionary of 500 commonly used words (Hinterberger et al., 2004a).
Another extension is a module for operating an internet browser (Mellinger et al.,
2003) within which links of each website are marked by green and red frames. By either
choosing the green or red set of links, subsequently only the links of the chosen color
remain and will again be divided into red and green links. After a number of such
binary decisions, each rejecting 50% of the remaining links, one link to follow can be
chosen after a number of decisions. Although this device requires training and does not
produce the highest information transfer rates, it is very remarkable since it has proven
its real-world usability and is currently in use by several patients (Birbaumer et al.,
2003) who became thereby able to express their thoughts and desires.

3.2.4 Sensorimotorcortex Activity

As it is introduced in section 2.1, the preparation and the execution of a movement is
commonly accompanied by a decrease in p (8-12Hz) and (3 (18-26Hz) waves primarily
on the opposite (contralateral) side in motorcortex areas. Beside these event-related
desynchronizations (EDS), also event-related synchronizations (ERS), an increase in
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Figure 3.4: Letter written by a locked-in patient using slow cortical potentials. The
patient thanks the investigators for providing the spelling device and for being
motivated by one of the researchers. He wishes to invite the investigators to
celebrate this success. It took the patient about 16 hours to write the letter
down (Birbaumer et al., 1999).

these rhythms exist, which occur after a movement and with relaxation. The spa-
tiotemporal ERD and ERS patterns are similar for actual performing movements or just
imagining these movements (Pfurtscheller and Neuper, 1997; Neuper and Pfurtscheller,
1999). Additionally, Kornhuber and Deecke (1965) reported a negative deflection at the
contralateral side of a movement in central cortex regions, the so-called Bereitschaftspo-
tential (readiness potential). Since this phenomenon also occurs when a movement is
just imagined, it can be exploited for Brain-Computer Interfacing.

Taken together, by just imagining a movement, specific brain signals (ERD, EDS,
Bereitschaftspotential) can voluntary be produced by a subject to provide information.
A number of groups employed this finding for Brain-Computer Interfaces for unidi-
mensional and multidimensional cursor control as well as for some applications as it is
outlined in the following.

Unidimensional Control

Most work within this paradigm targeted on exploiting the u waves over motorcortex
areas like C'3 and C4 (see Figure 2.4) to provide one-dimensional control signals. Those
signals were employed to control different types of virtual keyboards: Within the ap-
proach of (Wolpaw et al., 2003), a cursor is moving from the left to the right and its
vertical position can be influenced by the p rhythm. Thus, the cursor can select a row
at the right side containing letters or symbols by its vertical position (see Figure 3.5,
left). Using this approach, subjects achieved 20-25 bits/min.

Pfurtscheller et al. (2003) recorded and analyzed « and (3 bands of two bipolar EEG
channels? while performing two kinds of motor imagery. Employing ERD and ERS
for p rhythms, Pfurtscheller’s group has built a virtual keyboard with Hidden-Markov-
Models (HMM) as classifiers. In one experiment, performed with three able-bodied

2Electrodes were located 2.5cm anterior and posterior to C3 and C4, respectively (see Figure 2.4).
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Figure 3.5: BCI applications employing sensorimotorcortex activity. Left: Move-
ment imaginations result in up- and downwards shifts of a cursor moving from
the left to the right. At the right side, a box containing symbols can be se-
lected (Wolpaw et al., 2003). Middle: A bar can be shifted to the left or the
right by movement imaginations, resulting in the selection of a set of letters
(Pfurtscheller et al., 2003). Right: Two-dimensional movements are performed
by independently controlling 1 and 5 rhythms (Wolpaw and McFarland, 2004).

subjects, each subject employed a different imagination strategy. One subject imagined
right versus left hand movements, another one right hand versus tongue, and the final
subject left hand versus foot movements. In training sessions, data were acquired for
HMM training (Obermaier et al., 2001). Afterwards, from the screen’s center, a bar
was extended to either the left or the right side by imagining the according movement
(see Figure 3.5, middle). In the first step, 32 letters, including some special symbols,
were divided into two subsets, each displayed on one side of the screen. By successive
steps of isolation from the initial set, the correct letter can be chosen after 5 steps of
binary decisions and two further steps of confirmation and correction. Using a word
completion system with a dictionary of 145 common words, the number of selection
steps could be reduced down to 4, resulting in an increase of the transfer rate from
0.67-1.02 letters/min up to 1.06-4.24 letters/min (Pfurtscheller et al., 2003).

The BCI system was evaluated in a field study on a population of 99 subjects, each
performing short experiments of 20-30 minutes. After two initial training session, 93%
of the subjects achieved above 60% classification accuracy (Guger et al., 2003).

Beside constructing virtual keyboards, some further applications have been designed
for this paradigm. Pfurtscheller et al. (2003) developed a hand orthosis for a tetraplegic
patient. The patient learned to control the orthosis almost perfectly by imagining either
foot movements or right hand movements. After a training period of six days, he was
able to perform about 6 opening/closing operations of the hand within a minute.

Multidimensional Control
As will be discussed in detail in section 3.3, increasing the number of choices has a strong
impact on information transfer rates. Therefore, strong efforts have been conducted
to provide control over more than just one dimension. Two different strategies can
thereby be distinguished: Using more than two different movement imaginations and
independent control of p and 3 rhythms.

When performing more than two different movement imaginations, beside
movements of the hands, also those of feet or the tongue are employed. Since the feet’s
position in the cerebral cortex lies within the rolandic fissure (see section 2.1), reversed
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polarity is observed at the scalp compared to hand and feet movements. In Scherer
et al. (2004), three subjects were instructed to imagine left hand, right hand, and foot
movements. The former virtual keyboard of Pfurtscheller et al. (2003) was extended to
left, right and lower presentation of letters. Three Fisher’s Linear Discriminant Analysis
classifiers were trained to solve the classification problem, each trained to distinguish
two classes (cf. section 5.3.3). Without fixed time constraints, the user could move the
cursor within a graphical user interface in an asynchronous fashion to spell letters. The
mean overall spelling rate was 1.99 letters/min.

Dornhege et al. (2004) employed imaginations of left hand, right hand, and foot
movements as well. Their focus was on preprocessing and statistical data analysis
for speed improvements. For this purpose, the group combined features, specialized
on different aspects of the psychophysiological process like the Bereitschaftspotential,
desynchronization dynamics and spatial patterns. They further broadened the concept
of Common Spatial Patterns (CSP) (Koles and Soong, 1998) to multiple classes and
into Common Spatial Spectral Patterns (CSSP), also considering spectral information
(Lemm et al., 2005). In Blankertz et al. (2003) information transfer rates of up to
50.5 bits/min were reported. As an example for a gaming application, the group
designed a Brain-Pacman game (Krepki et al., 2004).

Another way to achieve multidimensional control utilizes the finding that it is
possible to gain independent control of y and # rhythms over left and right
sensorimotor cortices (Wolpaw and McFarland, 1994; Wolpaw et al., 2003). In a recent
experiment, four subjects were trained to operate a 2-dimensional BCI in 2-4 sessions
a week, each consisting of eight 3 minute lasting runs (Wolpaw and McFarland, 2004).
The subjects performed 22-68 sessions, and the last three sessions were statistically
analyzed. EEG amplitudes in the specific frequency bands were determined by
autoregressive frequency analysis, and were the basis for calculating horizontal and
vertical movements. Target stimuli appeared on one out of eight possible positions on
the periphery of a computer screen, and a cursor was shown on the screen’s center
which could be controlled by EEG activity (see Figure 3.5, right). The subjects were
instructed to hit the target with the cursor within 10 seconds. In the average, targets
were reached within 1.9-3.9 seconds. When comparing the results with those obtained
from invasive studies in monkeys (Taylor et al., 2002; Serruya et al., 2002; Carmena
et al., 2003), time and accuracy as well as hit rates of this approach were within
the range of the invasive investigations. Suspicions that non-invasive BCIs are not
appropriate for efficient real-time control (Nicolelis, 2001; Fetz, 1999; Donoghue, 2002)
could therefore be rejected.

3.2.5 P300 Evoked Potentials

BCIs utilizing the P300 component rely on the phenomenon that rare and significant
stimuli reliably induce a P300 component, as already discussed in section 2.5. Farwell
and Donchin (1988) employed this phenomenon for Brain-Computer Interfacing by pre-
senting a stimulus matrix with flashing symbols. By directing the attention to a specific
symbol, P300 components result when that specific symbol flashes. Thus, by identifying
P300 components in the EEG, the symbol can reversely be inferred. One advantage of
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this approach is that it is independent of training the subjects since the P300 component
naturally occurs in the human brain under the described circumstances. Furthermore,
it is capable to achieve high information transfer rates (see section 6.6). A drawback
of this method is that it depends on (visual) stimulations. Since this whole thesis is
dedicated to this paradigm, the whole next chapter gives a review of P300-based BCls.

3.3 Information Transfer Rates

Since Brain-Computer Interfaces are unsatisfying slow at present (e.g. the letter in
Figure 3.4 took the subject 16 hours to write it down), one of the main goals in Brain-
Computer Interfacing is to accelerate the devices. But in order to become able to
compare different approaches, it is necessary to have a suitable measure for the speed
of such a device.

Several parameters have to be considered when determining the speed of a BCI. First,
the number of choices N that can be performed within one trial has a strong impact on
the performance of a BCI. If a user intends to write a letter using 26 standard characters,
he would need to perform log,(26) = 4.7 trials at binary choices (Shannon and Weaver,
1949). On the other hand, only one trial would be required if the number of choices
would be NV = 26. However, these conclusions can only be drawn when perfect accuracy
in symbol prediction is guaranteed. According to Wolpaw et al. (2000), in the case of
imperfect classification accuracy p < 1, the information B(N,p) as measured in bits
transferred by such a device within a trial can be calculated by

1—p
N-1

B(N,p) =logy N + plogy p+ (1 — p) log,

The impact of the classification accuracy p on the transferred bits B(N,p) in one trial
is depicted in Figure 3.6 (left) for specific choices of N. Some important relationships
can directly be observed in this graph: First, at binary choice (N = 2), 10% decrease in
accuracy results in 50% reduced information transfer. Second, by increasing the number
of choices, strong performance benefits can be achieved and only about 80% accuracy is
necessary with NV = 4 to achieve the same performance with 100% accuracy at binary
choices®.

Another important parameter for speed assessments is the trial duration ¢, since it
determines how many trials can be performed within a specific time. It is therefore

common to calculate the amount of bits per minute transferred by a BCI as

60 I—p
B(N.p,t) = — <log2N+plogzp+(1 —p)logy +— 1) :

In Figure 3.6 (right), the impact of the trial duration on the information transfer rate
(ITR) B(N,p,t) in bits per minute for a fixed accuracy of 75% is depicted. As stated
above, for the selection of one letter from a set of 26 letters, 4.7 bits are required.
Therefore, dividing the number of bits per minute by 4.7 reveals the number of letters

3But note that the chance level is decreasing with the number of choices. By e.g. increasing the
numbers of choices from 2 to 4, the probability to choose the correct class by chance decreases from
50% to 25%.
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Figure 3.6: Information transfer rates. Left: Information in bits, transferred within
one trial for different numbers of choices N and accuracies. Right: Information
in bits per minute provided with specific numbers of choices for different trial
durations at a constant accuracy of 0.75.

and, for example, about 6.4 letters could be produced with N = 8 and ¢t = 3. An
apparent effect exposed by the graph of Figure 3.6 (right) is that the trial duration
highly affects the information transfer rate. This effect strongly increases with the
number of choices.

Recently, a review comparing the mean performances of different BCI approaches and
techniques was published by Serby et al. (2005) and is listed in Table 3.2. Note that
most of the work reflects theoretical information transfer rates and e.g., ignore delays
between trials. Unfortunately, it is not possible to calculate an information transfer
rate in bits/min for the appealing work of Wolpaw and McFarland (2004), since their
approach provides a continuous signal.

Thus, although the measure is quite fair and objective, it can not cover all systems
and should not solely be employed for system comparisons. Alternative measures like
the Nykopp rate (Kronegg et al., 2005) and letters per minute exist. At a constant infor-
mation transfer rate, the latter measure can be enhanced by employing word completion
algorithms. Further aspects, e.g., questions whether a system provides a continuous out-
put signal, depends upon stimulations, is dependent or independent, or is in practical
use, should also be taken into account.

In order to become able to compare the performance of different algorithms for BCls,
so-called BCI Competitions are conducted, in which BCI data sets are published which
are to be classified by the competitors (Blankertz et al., 2004; Sajda et al., 2003). More
details are described in section 6.6.

3.4 Summary

Brain-Machine Interfaces are devices between the brain and an artificial unit and can be
designed as input or output devices. In input devices, signals from the artificial unit are
transmitted to the brain in order to, e.g., restore lost sensory functions as in auditory
prostheses. Furthermore, therapeutical stimulations of the brain can be performed to,
e.g., alleviate symptoms of Parkinson’s disease. In contrast, output devices utilize brain
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SUMMARY

Table 3.2: Comparison of different BCI approaches and algorithms of Serby et al.
(2005) including earlier work of the author (Kaper and Ritter, 2004a).

Publication Online | Transfer Rate Training Number of
System (bits/min) Time Subjects
Donchin et al. (2000) no 20.1 - 10 able
Donchin et al. (2000) yes 9.23 - 5 (10) able
Babiloni et al. (2000) no 2.65 - 5 able
Cincotti et al. (2003) no 5.64 - 13 able
Levine et al. (2000) no 3.46 - 17 patients
Birbaumer et al. (2000) yes 2.35 Month 3 disable
Pfurtscheller et al. (2000) yes 6.3 7 sessions 3 able
Pfurtscheller et al. (2003) yes 9.48 Few weeks 4 patients
Wolpaw et al. (1991) yes 10.88 2 months 4 (60) able
McFarland et al. (2003) yes 8.49 Few months | 8 (2 disable)
Kaper and Ritter (2004a) no 47.26 - 8 able
Serby et al. (2005) no 23.75 - 6 able

signals to steer an artificial device like a virtual keyboard or a robot arm.

Brain-Machine Interfaces can further be divided into invasive and non-invasive ap-
proaches. While the former ones rely on penetrating the body, the latter approaches
need no incisions into the body. In recent years, several invasive approaches have been
designed among which are the cochlea implant, visual prostheses, and therapeutical
devices. It was even possible to steer the movements of rats using such an approach.
Several invasive studies utilized brain signals from animals to steer robot arms and first
studies in this area were conducted on humans.

Non-invasive BMIs, also denoted as Brain-Computer Interfaces, mostly utilize Elec-
troencephalography to assess brain signals. They are embedded in specific paradigms,
each focusing on certain brain processes. Current approaches employ EEG activations
which arise when performing different cognitive operations (mental tasks), specific vi-
sual stimulations are provided to which the subject directs the gaze to (SSVEP), trained
subjects learned to control their slow cortical potential (SCP), imaginations of motor
behavior are performed (sensorimotor cortex activity), or the subject attends to rare
and significant stimuli (P300).

The speed of an output device can be assessed by the information transfer rate which
denotes the amount of information which is transferred within a specific time span. A
widespread measure is to compute the number of bits transferred within a minute.

Employing the P300 component has the advantage of being independent of subject
training and allows to achieve high information transfer rates as will be shown in the
next chapter.
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Chapter 4

Review of P300-Based Brain-Computer
Interfacing

A P300 component is a positive deflection after about 300ms in the Event-Related
Potential and can be elicited by rare stimuli to which a subject is directing the attention
to (see section 2.5). This finding was employed by Farwell and Donchin (1988) to build
a Brain-Computer Interface (BCI) in which symbols can be chosen from a matrix as
depicted in Figure 4.1 to spell words. Later on, this so-called P300 speller paradigm
was improved by Donchin et al. (2000) by using further classification techniques, and
was also tested for disabled subjects. Since the P300 component is reliably elicited in
the brain for the described stimuli, no training of subjects is needed. Furthermore, this
approach allows for comparably high transfer rates because one out of (commonly) 36
symbols can be chosen within a choice, instead of, e.g., binary choices as in several
other approaches (cf. section 3.2). Other researchers conducted further work with
Brain-Computer Interfaces based on the P300 component. They performed experiments
using paralyzed patients, achieved performance improvements, and extended the basic
P300 speller paradigm to a more flexible interface. Additionally, further possibilities to
exploit the P300 component in a BCI context were found.

A G M S Y *
B H N T 2z *
c |1 o uU ~* TALK
D J P V FLN SPAC

E K Q wW ~* BKSP

F L R X SPL OUIT

Figure 4.1: Left: Stimulus matrix with 6 rows and 6 columns including 26 let-
ters from the alphabet and steering commands of Farwell and Donchin (1988).
Right: Stimulus matrix as used in this thesis.

This chapter introduces into P300-based Brain-Computer Interfacing by giving a re-
view of the work of Farwell and Donchin (1988) and Donchin et al. (2000) in section 4.1,
followed by considerations about information transfer rates within this paradigm in sec-
tion 4.2. Finally, in section 4.3, improvements of the basic P300 speller paradigm as
well as related work utilizing the P300 component for Brain-Computer Interfaces are
discussed.
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Figure 4.2: A complete sequence of 12 flashes, denoted as a subtrial in this thesis.
Each row and each column is highlighted once in random order. The Interstim-
ulus Interval (ISI) is the temporal distance between two highlightings.

4.1 The Basic P300 Speller Paradigm

The P300 speller paradigm relies on the P300 component, which can be elicited by rare
stimuli which are relevant to the observing subject. It has its largest amplitudes at the
location Pz and an onset latency of about 300ms varying with several parameters like
age and body temperature (see section 2.4). The component is independent of modality,
such that it occurs for visual as well as for auditory or tactile stimuli as introduced in
section 2.5.

Farwell and Donchin (1988) utilized the P300 component in order to construct an
EEG-based Brain-Computer Interface. They presented 36 symbols within a 6 x6 matrix
to their subjects (see Figure 4.1, left) which were instructed to choose one symbol from
the matrix. Afterwards, the rows and columns of the matrix were flashing in random
order and the subjects should mentally count how often their symbol is flashing (see
Figure 4.2).

This setup provokes that a P300 is elicited when the row or the column containing the
attended symbol (i.e., the target row or target column) is highlighted: Since only one out
of six rows contains the symbol, and each row is flashing equally often, such an event is
rare (p = 0.17; the same is true for columns). Furthermore, by instructing the subject
to count the flashes of the specific symbol, the attention is directed to this event and it
becomes relevant to the subject. Figure 4.3 (right) depicts the differences of the EEG
patterns in the ERP as calculated from data belonging to the correct symbol (target
letter), symbols within the same row/column as the target letter (target row/column),
and symbols outside these regions (standards). The P300 amplitude in the target letter
condition is enhanced compared to the other conditions. Thus, the row and column
containing the target letter can reversely be identified by P300 occurrences. Exactly
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Figure 4.3: Left: From the six rows, the row with the most pronounciated P300
indicates the target row containing the target symbol. The same it true for
the columns, such that the target letter can be identified by the intersection of
the target row and the target column. Note that the depicted EEG signals are
idealized and contain much more noise in real data. Right: ERP amplitude
values from 10 subjects for ERP data according to the correct symbols (target
letter), symbols from the correct row/column (target row/column), which are
not the target letter, and other symbols (standards). Adapted from Donchin
et al. (2000).

one row and one column should be accompanied by a large P300 amplitude after the
flashing event. If a classifier succeeds in identifying these events, it can therefore infer
the target letter: The intersection of the target row and the target column indicates
the position of the target letter within the matrix (see Figure 4.3, left).

Unfortunately, EEG data expose a low signal-to-noise ratio, making it hard to iden-
tify P300 waves from single trials. Therefore, a number of repetitions is commonly
needed to increase the signal-to-noise ratio by averaging data. Since such repetitions
are time demanding, a main goal is to keep the number of repetitions low by devel-
oping well performing classification methods. Another way to enhance the speed of
such a device is to decrease the so-called Interstimulus Interval (ISI). The ISI is the
temporal distance between two flashes' (see Figure 4.2) and is therefore capable to
decrease the duration of a trial and therewith increase the information transfer rate of
the interface (see section 3.3). On the other hand, ISI reduction causes less pronoun-
ciated P300 components. Particularly below an ISI of about 600ms, P300 components
resulting from a stimulus event might interfere with early components from succeeding
events which can result in worse classification accuracies. Since ISI reduction results in
a faster presentation speed but also in a lower P300 amplitude, an optimal ISI has to
be found which allows for reasonable P300 classifications and high presentation speeds.
Reversely, a good classifier enables the researcher to employ short ISIs, which in turn
results in a faster device. Thus, in order to achieve a maximum speed for this device,
an optimal trade-off between classification accuracy and presentation speed has to be
found. Section 4.2 will discuss this topic in more detail.

!The correct term for the temporal distance of the onsets of two consecutive stimuli would be stimulus
onset asynchrony (SOA). In contrast, ISI denotes the offset-onset distance of two stimuli. Never-
theless, the author will use ISI for the temporal distance of two events to stay in line with previous
work (Farwell and Donchin, 1988).
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Figure 4.4: Average P300 amplitudes for 125ms and 500ms ISI for 4 different sub-
jects. In both conditions, attended and unattended stimuli can clearly be distin-
guished by the P300 amplitude. On the other hand, in each subject, the P300
amplitude is lower for 125ms ISI compared to 500ms ISI. Adapted from Farwell
and Donchin (1988).

Farwell and Donchin (1988) examined the impacts of the different ISIs 125ms and
500ms on the P300 amplitude. Figure 4.4 depicts their findings for P300 amplitudes
from the Pz electrode of four subjects for both conditions. On average, 500ms ISI
yielded base-to-peak amplitudes of 10.25uV for the target stimuli (1.654V for unat-
tended stimuli), while only 5.6,V for attended and 1.08uV for the unattended stimuli
resulted with 125ms ISI. Taken together, large differences in the maximum amplitude
between the 500ms and 125ms ISI condition were found. Employing the longer ISI
yielded larger amplitudes which could presumably also better be detected by a classifi-
cation algorithm.

4.1.1 Data Analysis

Before going into the details of data analysis, it is useful to introduce some definitions.
The basic unit of the data analysis procedure is an epoch, i.e., an EEG time series fol-
lowing a highlighting. Farwell and Donchin (1988) employed 600ms time windows after
stimulus presentation for the purpose of data analysis (see Figure 4.5). Twelve epochs,
i.e., a complete series of flashes such that each row and each column was highlighted
exactly one time, form a subtrial?. Within one trial, a certain number of subtrials is

2This distinction differs from the denotions of Farwell and Donchin (1988), where an epoch would be
declared as a subtrial. But to have an expression for multiple highlightings of a complete sequence
of 12 epochs in a trial, the author chose to denote this sequence a subtrial.
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Figure 4.5: Time course of events in the 125ms ISI condition. A 600ms time series
of EEG data (an epoch) was recorded, starting with the onset of a stimulus.
Since the ISI is far below the epoch duration, an overlap of 475ms results for
consecutive epochs. The inter-trial interval (ITI) is 1245ms and denotes the
temporal distance between two trials, each containing 12 epochs.

performed.

For classification purposes, Farwell and Donchin (1988) employed the different tech-
niques area, peak picking, stepwise discriminant analysis (SWDA), and covariance to
detect P300 occurrences. Area and peak picking each employ a P300 window, i.e., a
time window between onset and offset of the P300 deflection (see Figure 4.6). This
window typically ranged between 220ms and 500ms. SWDA and covariance are data
driven techniques and rely on disjoint training- and testsets of a collection of epochs.
Parameters for these classifiers are adjusted on the training set and are then applied
on the test set for classification purposes (see details about training- and testsets in
section 5.3.1). The principles behind these classification techniques are as follows:

Area: Calculates the surface under the curve within the P300 window. It is
reflected by the sum of the data points within this window.

Peak picking: Determines the difference between the highest positive peak within and
the lowest negative point prior to the P300 window.

SWDA: Computes the distance of an epoch to the mean of a group containing
P300 epochs as calculated from the training set. This score is obtained
by applying a discriminant function to the data from each epoch.

Covariance: Assesses the covariance of an epoch with a template. The template is
calculated as the average of epochs belonging to attended symbols in
the training set.

4.1.2 Performance of the Classification Techniques

In a first study, Farwell and Donchin (1988) employed four subjects, each performing
two sessions. While the feasibility of the technique was assessed and the subjects were
familiarized with the system in the first session, the subjects produced data for assessing
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Figure 4.6: Classification techniques area and peak picking. While area calculates
the surface under the curve within the P300 window, peak picking computes the
peak-to-peak difference of the minimum before and the maximum within the
P300 window. Note that the amplitudes are depicted with reversed polarity.

the operating characteristics of the system in the second study. EEG was recorded from
the Pz electrode (see Figure 2.4), digitized at a rate of 50Hz and band pass filtered
from 0.02Hz to 30Hz (cf. section 5.2.1). Data were analyzed in real-time in the first
session, but only after the experiment in the assessment session, which is denoted as
offline analysis in this context. The matrix from Figure 4.1 (left) was presented and
highlighted with both 125ms and 500ms in the assessment session. The subjects were
instructed to attend to a given letter and mentally count its highlightings. Five blocks of
30 trials (of one subtrial each) were performed for each ISI. The subjects were instructed
to count the flashings of the letters “B”, “R”, “A”, “I”, and “N” in the different blocks.
The four different classifiers from the previous section were applied to the data and
their performance in predicting the correct letters was assessed.

Resulting durations to reach 80% and 95% classification accuracy for 125ms IST and
500ms ISI, respectively, are summarized in Table 4.1. In the best case, 80% accuracy
has been achieved after 11.1 seconds (subject 3, SWDA, 500ms ISI), and in the worst
case after 114.8 seconds (subject 1, SWDA, 500ms ISI). Employing the best performing
classifier for each subject, a range of 11.1 to 23.3 seconds would result for this criterion.
The 95% accuracy level has been reached after 17.6 seconds in the best case (subject 3,
SWDA, 500ms ISI), and in the worst case after only 202.8 seconds (subject 1, SWDA,
500ms ISI). According to the algorithm presented by Wolpaw et al. (2000), the best
results correspond to information transfer rates (cf. section 3.3) of 18.50 bits/min and
15.77 bits/min for the 80% and 95% level, respectively. No general conclusions can be
drawn about the classification method or the ISI: For the different subjects, different
ISIs and different classification methods yielded the best results.

In a second study, Donchin et al. (2000) further analyzed this approach. Since one
of the major challenges in BCI research is to provide paralyzed patients a device for
communication purposes, next to 10 able-bodied subjects, they also recruited four dis-
abled subjects, three with complete paraplegia and one with incomplete paraplegia to
operate the BCI system. A matrix with white letters and a black background, similar
to Figure 4.1 (right) was employed. Subjects were instructed to count the highlightings
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Table 4.1: Required time in seconds to reach either 80% accuracy or 95% accuracy
for different ISIs, classification techniques and subjects in Farwell and Donchin
(1988). The best results for each subject are bold.

80% Accuracy 95% Accuracy
Method Subject | 125ms ISI | 500ms IST | 125ms ISI | 500ms ISI
Area 1 29.1 39.9 76.7 59.3
2 49.0 56.6 - -
3 29.3 12.6 55.8 17.9
4 45.5 44.9 82.2 52.9
Peak Picking 1 - 28.2 - 42.5
2 - 23.3 - 35.5
3 39.8 17.3 - 26.0
4 38.8 17.7 70.4 29.3
SWDA 1 15.7 114.8 21.6 202.8
2 33.4 56.9 57.5 -
3 22.3 11.1 46.4 17.6
4 54.4 26.7 - 49.5
Covariance 1 - 42.9 - 62.4
9 - - - R
3 41.8 15.5 82.2 22.6
4 36.7 28.6 64.0 52.0

Table 4.2: Average number of items per minute, achieved by disabled and able-
bodied subjects considering a criterion of 80% accuracy and 95% accuracy, re-
spectively (Donchin et al., 2000).

80% Accuracy | 95% Accuracy
Subject Group | Preprocessing Items/min Items/min
Able-Bodied SWDA 6.3 34
SWDA/DWT 7.8 4.3
Disabled SWDA 4.8 2.8
SWDA/DWT 5.9 3.2

of the letter “P”. Two classification strategies were employed for this study: SWDA as
described in the previous section was calculated on epochs of 600ms, downsampled to
50Hz, yielding 30 data points for epoch classifications. Thereby, in this study, SWDA
was applied on averages of the cells of the matrix, rather than to the rows and columns.
Second, 640ms epochs were extracted and downsampled to 50Hz. Afterwards, discrete
wavelet transform (DWT) using a Daubechies wavelet was applied and SWDA was
applied to perform the classification task.

The classification results from ten able-bodied and the four disabled subjects were
assessed and the average number of items per minute was calculated on the basis of 80%
and 95% classification accuracy (see Table 4.2). For the best performing classification
methods, 7.8 items/min and 4.3 items/min were achieved for the 80% and 90% accuracy
level, respectively. These results correspond to 26.69 bits/min and 19.90 bits/min trans-
fer rates. Disabled subjects achieved 5.9 items/min (20.19 bits/min) and 3.2 items/min
(14.81 bits/min) for reaching the criteria.

In summary, Farwell and Donchin (1988) and Donchin et al. (2000) demonstrated
that it is possible to employ the P300 component for predicting letters from a subject’s
EEG data, while the subject is focusing to letters within a flashing matrix. They
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Figure 4.7: Left: Impact of different accuracies on the information transfer rate
bits per minute for certain ISI durations. Right: Effect of the Interstimulus
Interval on the information transfer rate for certain accuracies.

managed to achieve high information transfer rates without the necessity of training
the subjects. However, the information transfer speed remains an important topic and
is still below being satisfying. Thus, attempts to improve these rates are worth further
considerations.

4.2 Information Transfer Rates in the P300 Speller
Paradigm

Interdependencies between ISI, classification accuracies and the number of symbols
within a matrix can be investigated by analyzing the information transfer rates as is
detailed out in section 3.3. According to Wolpaw et al. (2002), such transfer rates can
be calculated as

60 L—p
BV,p.0) = 5 (1og N+ plogsp-+ (1= p)logs 1 =2 ) (4.1)

with the number of choices N, the accuracy p and the time for a choice t. For the
P300 speller paradigm with 6 rows and 6 columns, IV is 36 and ¢ can be rewritten as
12 - tigr with t1gr being the Interstimulus Interval, such that equation (4.1) turns into

B(36,p,tis1) =

12 trs1) (108;2 36 + plogy p + (1 — p) log, 135p> . (4.2)

Figure 4.7 depicts the relationships between accuracies and transfer rates for different
ISIs. For a constant classification accuracy, a shorter ISI results in increased transfer
rates. This gap in transfer rates increases with higher accuracies. With a long ISI, even
high classification accuracies are unlikely to achieve competitive information transfer
rates compared to low ISIs. For example, with an IST of 500ms and an accuracy of 0.9,
worse transfer rates would be achieved than with an ISI of 200ms and an accuracy of
0.6. Thus, IST reduction is an important factor for speed improvements, and is likely to
countervail lower classification accuracies caused by this reduction. Especially at low
ISIs within the range of 100-200ms, small decreases in ISI result in strong enhances of
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Figure 4.8: Left: Impact of different accuracies for certain n in a n x n stimulus
matrix on the information transfer rate with a constant ISI of 500ms. Right:
Impact of variations of n in an n x n stimulus matrix on the information transfer
rate for certain accuracy levels with a constant ISI of 500ms.

information transfer rates (see Figure 4.7, right).

The basic P300 speller approach employs a 6 x 6 matrix but different expansions are
possible: By increasing n in a n X n matrix, the number of symbols in the matrix raises
quadratically. Therefore, more information could be transferred within one subtrial
when using a larger number for n than just 6. For example, with n = 8, almost twice
the symbols could be transferred than with n = 6, and the information transfer rate
would improve from 5.17 bits/min to 6 bits/min for a single subtrial. On the other
hand, with such a variation, the subtrial duration would also be enhanced: One trial
lasts ttrial = 2n - t1s1 seconds, resulting in the following transfer rates:

60
B(n,p,tst) = >

1—
(2 logy n + plogy p+ (1 — p) log, P > . (4.3)
n - ts1 1

n2 —

Allison and Pineda (2003) presented their subjects matrices of the three different
expansions 4x4, 8x8, and 12x12, respectively. Digrams, i.e. a combination of two
letters, served as symbols. The digrams in the matrix flashed for 100ms with a random
delay of 450ms to 550ms between flashes.

An outcome of the study was that the matrix size did not affect N100 amplitude
(see section 2.5) or latency. On the other hand, the P300 amplitude increased, and
its latency decreased with the matrix size. Since enlarging the matrix results in a
decreased probability for the target event, this finding is in line with findings from, e.g.,
Duncan-Johnson and Donchin (1977), stating that the P300 amplitude decreases with
the probability of a target stimulus (cf. section 2.5).

Allison and Pineda (2003) did not perform classifications such that it remains unclear
to which degree a classifier would benefit from amplitude increases for target letter
stimuli in a larger matrix. Therefore, the question remains which of the antagonists
has a stronger impact on the information transfer rate: While the duration of a trial
would be prolongated with a larger matrix, a higher transfer rate could be achieved due
to a higher amount of information and a higher target stimulus amplitude, presumably
resulting in better classification accuracies.
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4.3 Related Work

Beside Farwell and Donchin (1988) and Donchin et al. (2000), other researchers con-
ducted experiments and developed further approaches to exploit the P300 component
for Brain-Computer Interfacing.

Experiments with Paralyzed Subjects

It can a-priori not be taken for granted that the P300 speller paradigm works properly
with paralyzed subjects, a group of subjects which could benefit to a large extent from
a BCI. Therefore, Mellinger et al. (2004) employed seven patients with Amyotrophic
Lateral Sclerosis (ALS) for experiments with the P300 speller device. It was also tested
whether the device works well in the patient’s home environment with several artifact
sources among which are some typical for ALS patients. While the device worked well
for one subject, yielding transfer rates of about 19.20 bits/min in offline analysis, results
for the remaining six subjects stayed below 3 bits/min. Although this transfer speed is
quite unsatisfying, it was shown that it is in principle possible to utilize the P300 speller
paradigm for Brain-Computer Interfacing with ALS patients. The authors suspected
that this performance could be enhanced with a different classification technique.

Adaptive P300 Speller Device

Serby et al. (2005) designed a P300 speller Brain-Computer Interface with a classifi-
cation algorithm based on Independent Component Analysis and performed offline as
well as online experiments with this setup. A special characteristic of this device is
the circumstance that it adapts itself on the performance of the subject in the online
mode. By continuously evaluating the classification results after each subtrial, it can
be decided whether further stimulus presentations are necessary or if the presentation
can terminate. Thereby, rows and columns are sequentially presented and evaluated in
blocks, such that, e.g., 4 rows but 6 columns are presented within an trial to infer the
correct symbol. With this approach, they achieved mean information transfer rates of
23.75 bits/min in the offline and 15.30 bits/min in the online version.

Single Display Speller Paradigm
An advantage of the flashing rows and columns in the P300 speller paradigm is that
only 12 stimuli are needed to cover 36 symbols. On the other hand, 2 stimuli need
to be classified correctly in order to infer the right symbol. If each symbol would be
highlighted on its own, 36 flashes would be necessary for a complete subtrial, but on the
other hand, only one stimulus would need to be classified accurately (unfortunately, 35
epochs would also need to be rejected correctly). However, Farwell and Donchin (1988)
stated that “successively choosing from among the 26 letters and communicating his
choices via the P300 [...] would be unacceptably slow”. Guan et al. (2004) investigated
whether this assumption is true and turned away from flashing rows and columns.
Instead, they highlighted just one symbol at once. Since the P300 amplitude raises due
to the lowered probability of a relevant stimulus (1:36, instead of 1:6), it should be easier
to identify a P300 from only a few trials. Furthermore, constraints on the experimental
design which force a rectangular nature of the stimuli would not be necessary any more.
Six subjects attended in a study comparing the original setup of Farwell and Donchin
(1988) (FD speller) with this single display paradigm (SD speller). The subjects were
instructed to focus attention to specific symbols in the FD speller as well as in the
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SD speller approach. The ISI for the former paradigm was set to 180ms, while it was
reduced to 60ms in the latter approach. However, this setting results in comparable
temporal relationships: A FD speller subtrial (12 - 180ms), as well as a SD speller
subtrial (36 - 60ms) each required 2.16 seconds. A first outcome of the study was that
the P300 amplitudes in the SD speller condition were enhanced in comparison to the
FD speller condition (5.39uV vs. 4.04xV). Furthermore, 90% classification accuracy
was reached after 15s in the FD speller, and after 8s in the SD speller condition. Thus,
the SD speller paradigm yielded competitive transfer rates of up to 49.48 bits/min
(cf. section 3.3). Further ISI reductions for the FD speller paradigm could have been
possible, while smaller ISIs for the SD paradigm appear difficult, such that the speed of
the FD speller paradigm could presumably have been improved. Nevertheless, the SD
speller paradigm allows for more flexible interfaces with high transfer rates.

Employing the P300 for Interactions in Virtual Environments

Experiments on P300 elicitation commonly rely on static stimuli. In contrast, virtual
reality (VR) expands the possibilities for researchers to dynamic environments by si-
multaneously preserving controllability.

Bayliss and Ballard (1999) recorded EEG activities while their subjects were con-
trolling a VR driving simulator. The subjects were seated in a go cart, wearing a
head-mounted display (HMD) and controlled a car in a virtual world. In this world,
traffic lights were displaying yellow lights prior to green and red lights, making them
more frequent than the red or green lights. The researchers investigated EEGs fol-
lowing yellow and red lights and found that in averaged ERPs, no P300 occurred for
yellow lights while such a component could clearly be identified for red lights. Based on
single trials, promising classification accuracies for identifying yellow and red lights in
the range of 77% to 92% depending on the subject were found for the best performing
classifier which was a robust Kalman filter. In another study, Bayliss (2003) employed
the P300 to control items in a virtual apartment. By focusing attention to flashing
items, they could provide commands for switching on/off a television, a stereo system,
a lamp, saying “Hi”or saying “Bye”. Grand averages exposed clear goal responses in the
ERP for the items, and 2.83 items could be selected in the VR environment per minute.

In summary, the researchers have demonstrated that wearing a HMD and simultane-
ously recording an EEG is possible. Furthermore, classification of P300 signals can be
performed with reasonable classification accuracies in this context and can be used to
provide steering signals in a dynamic environment.

Employing the P300 for the Detection of Deception

Farwell and Donchin (1991) suggested to employ the P300 component for the detection
of deception (lie detection) in a guilty knowledge test (GKT) paradigm (Lykken, 1959).
This paradigm compares answers of subjects to relevant and neutral questions. Subjects
with knowledge of the crime should thereby expose different physiological reactions
to relevant questions (Ben-Shakhar and Elaad, 2003). For P300-based detection of
deception, the procedure would be as follows: First, within a series of irrelevant stimuli,
some target stimuli occur, the subject is familiar with. The latter stimuli would induce
a P300 component, because they are rare and relevant to the observer. A third kind of
stimuli are probes, i.e., unique details of an event that are supposed to be only known
by the suspect, if he was involved in the event. If the EEG patterns that result from

45



CHAPTER 4. REVIEW OF P300-BASED BRAIN-COMPUTER INTERFACING

the probes are similar to target stimuli, i.e., they expose a strong P300, the suspect has
probably knowledge about the certain details.

According to Farwell, this so-called brain fingerprinting yield results with a confidence
of 95%. Additionally, he augmented the P300 concept in this context to the Memory and
Encoding Related Multifaceted Electroencephalographic Response (MERMER), which
further includes subsequent electrical changes between 800ms and 1200ms. Employing
MERMER, Farwell is convinced of gaining more than 99% accuracy (Farwell, 2006).

Due to the lack of sufficient independent peer-reviewed studies, several sceptical views
about brain fingerprinting can be found (Wolpe et al., 2005; Rosenfeld, 2005). Never-
theless, these authors also claim that the P300 component can in principle be utilized
for the detection of deception.

4.4 Summary

This chapter provided a review of Brain-Computer Interfaces based on the P300 compo-
nent in the EEG signal. This component occurs for rare stimuli relevant to the observing
subject. Farwell and Donchin (1988) exploited the P300 for constructing a BCI: They
presented subjects a 6 x 6 matrix of 36 symbols and flashed its rows and columns. Sub-
jects should select one symbol in the matrix and mentally count its flashing, making
the rare (1:6) flashing at this position relevant, which resulted in a P300 component
for such an event. Thus, by detecting the P300 component in the EEG signal recorded
after a flashing, one row and one column could be determined, and their intersection in
the matrix indicated the symbol the subject drawed attention to.

Farwell and Donchin (1988) employed different classification strategies and achieved
up to 18.50 bits/min. In a later study, Donchin et al. (2000) improved the classification
algorithms and conducted studies with able-bodied as well as with disabled subjects.
Information transfer rates of maximal 26.69 bits/min could be achieved within this
study.

The information transfer rate of a P300 speller BCI highly depends on the tempo-
ral distance of two events (Interstimulus Interval, ISI) and the classification accuracy.
Thereby, decreasing the ISI can substantially improve the presentation speed. On the
other hand, this modification results in overlaps between consecutive epochs and there-
with in less pronounciated P300 signals, making good classifications less likely. There-
fore, a trade-off between presentation speed and classification accuracy has to be found.
Farwell and Donchin (1988) achieved reasonable results with 125ms ISI.

Since Farwell and Donchin (1988), several studies have been conducted employing
the P300 speller BCI targeting to improve the performance and usability of the in-
terface. Studies with paralyzed subjects, an adaptive speller device, and a modified
stimulus presentation mode were presented. Furthermore, alternative utilizations of
the P300 component in a BCI context have been developed as for interactions in virtual
environments and for the detection of deception.

The main drawbacks of the P300 speller paradigm are that it depends on stimula-
tions and does not provide a continuous signal. On the other hand, it allows for high
information transfer rates and requires no training of the subjects.
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Chapter 5

Data Analysis for the P300 Speller
Brain-Computer Interface

A crucial part for achieving reasonable information transfer rates in Brain-Computer
Interfacing is a suitable data analysis procedure. In order to relate specific brain activity
to certain events like choosing a letter from a set of letters or operate a hand orthosis,
the recorded data must be translated into such steering commands.

In general, the first step in BCI is to perform the data acquisition in order to
receive the raw data. In the case of EEG signals, e.g. electrode positioning, impedance
and shielding need to be considered to achieve a reasonable data quality. Then,
preprocessing facilitates further analyses by e.g. reducing noise by filtering and com-
puting adequate data representations, for example lower-dimensional representations,
as feature vectors. Due to the low signal-to-noise ratio of EEG signals, this step is very
important within this domain, especially when aiming to analyze single trials. In the
case of the P300 speller paradigm, the subsequent classification step calculates from
the feature vectors, representing brain activity patterns, whether a P300 occurred in a
data sample or not (cf. section 4.1). Only after this binary classification procedure, a
symbol within the stimulus matrix can be inferred by combining the binary classifica-
tions for the symbol inference step. Exactly one row and one column must be found
which are most likely to contain the P300. From these certain rows and columns, a
matrix entry can be identified. Figure 5.1 illustrates this whole data analysis procedure.

feature vector classification results scores
raw data X s(x) S(x)

data | | | | .
. : i ; ifinati ; ; : row index
acquisition ——p» preprocessing ——p classification ——p symbol inference ——p column index symbol

Figure 5.1: Data analysis chain for a P300-based BCI. After the raw data is ac-
quired, it is preprocessed in order to facilitate further processing. Classifying the
resulting feature vectors x yields the classification results s(x) which indicate
the row index i, and column index i. pointing on the symbol to be inferred.

In this chapter, each step of the data analysis procedure is described and methods as
used in this thesis are discussed. After explaining important aspects of data acquisition
in section 5.1, different preprocessing strategies like Fourier transform and Principal
Component Analysis are discussed in section 5.2. Classification, as a crucial step, is
discussed in more detail in section 5.3, including the theoretical backgrounds in terms
of Statistical Learning Theory, classification strategies, and practical implications like
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cross-validation. Finally, classifications for symbol inference as it is performed in the
context of the P300 speller paradigm is discussed in section 5.4.

5.1 Data Acquisition

In order to achieve a reasonable signal-to-noise ratio, several factors influencing the
data quality have to be considered!. Foremost, it is important to have the subject
grounded and to have low impedances between the electrodes. It is common to antici-
pate impedance values below 5k(2, but within the context of Brain-Computer Interfacing
and single trial analysis, even lower impedances are desirable. A key to achieve good
impedances is to clean the skin from fat and oil with alcohol and abrade the skin using
a skin preparation gel.

It is advisable to have the experimental room sound attenuated to prevent distrac-
tions of the subject. Furthermore, the room should be shielded against electromagnetic
influences by using a Faraday cage. In order to receive good signals, the subject should
be relaxed to prevent muscle activity, but not be drowsy, which would result in high
a wave activity (see section 2.4) which might pollute the signal. As introduced in
section 2.3, eyeblinks and movements should be prohibited by instruction and the ex-
perimental design, by e.g. introducing pauses for recreation. Eyeblinks can be identified
by recording the Electrooculogram (EOG) which can further be used for artifact elimi-
nation techniques (see section 2.3).

Different electrode locations are approriate for different kinds of BCI experiments.
While motor imagination primarily results in motor cortex activity, which can be as-
sessed by electrodes over motor cortex areas at e.g. C3 and C4, a P300 is commonly
most pronounciated at parietal locations like Pz (see Figure 2.4). On the other hand,
applying electrodes on a wide range of locations yield more information and allow for
more differentiated analyses like e.g. source localization (Lantz et al., 2003). Although it
is common to employ the international 10-20 System by Jasper (1958) (cf. section 2.3),
it can be useful to work with deviating locations, e.g., C3’ and C4’, which are lcm
frontal to C'3 and C'4, respectively, for investigating motor processes.

EEG amplifiers are differential amplifiers, which means that pairs of electrodes are
amplified. While one electrode provides a reference signal, the potential of another
electrode is measured with respect to this reference. In general, the three different
kinds common reference, average reference and bipolar derivations can be distinguished
(Ebe and Homma, 1994). In common reference, one or two electrodes, e.g. located at
the ear lobes, provide the reference potential, and all other electrodes (commonly the
scalp electrodes) are measured with respect to this potential. In average reference, the
average of all electrodes provides the reference. In bipolar derivations, explicit pairs
of electrodes are amplified. The lateralized readiness potential (LRP), measuring the
potential difference of C3 and C4 is an example for the latter derivation (Coles, 1989).

Common materials for electrodes are silver/silver chloride (Ag/AgCl), silver (Ag),
tin (Sn) and gold (Au). Accurate signals can be obtained with Ag/AgCl electrodes,
particularly, when using sintered electrodes, while the other electrodes expose high pass
filtering characteristics (Picton et al., 1995).

"More details can be obtained in section 2.3 and from Zschocke (1995).
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Electrodes can be applicated as single electrodes, with an electrode cap, or with a
Geodesic Sensor Net (GSN) (Tucker, 1993). Applying single electrodes requires to de-
termine the locations using e.g., straps, while an electrode cap and the GSN incorporate
the locations, and are therefore particularly useful for quick applications. On the other
hand, the latter approaches use mechanical pressure to hold the electrodes in position
which can be painful for the subjects, especially in long sessions.

5.2 Preprocessing

Preprocessing aims to produce appropriate feature vectors for the subsequent steps
of analysis. In principle, two goals can be distinguished for this step. First, noise
reduction aims to eliminate signals which do not correlate with the signal the researcher
is intending to assess. For this purpose, filters are especially important within the EEG
domain and are described in section 5.2.1. Second, another goal is to find an adequate
data representation (Bishop, 1995). Data in the input space mostly incorporate high
redundancies due to correlations within the data and unimportant information for the
subsequent steps of analysis. Reducing the dimensionality of the data space without
substantial loss of information is therefore usually possible. It is furthermore even
desirable for two reasons. First, lower-dimensional data is easier to process due to
decreased memory and computational demands?. In some cases, it is even inevitable to
have low-dimensional data matrices in order to be able to perform e.g. matrix inversion3,
which is crucial for the upcoming Fisher’s Linear Discriminant Analysis, an important
algorithm for this thesis (see section 5.3.3). Second, it is in general advisable to follow
the intrinsic dimensionality of the data. If the data lies entirely within a d-dimensional
subspace of the input space, it is said to have the intrinsic dimensionality d (Fukunaga,
1982). For classification purposes, it is recommended to work with low dimensionalities
due to the curse of dimensionality which says that the data representation becomes
very sparse, when the data dimensionality raises, providing a poor data representation
(Bishop, 1995). A powerful method to achieve a dimensionality-reduction is Principal
Component Analysis, which is described in section 5.2.2.

Artifact elimination can also be a preprocessing step. In a simple approach, trials
with eye movements, as assessed by EOG activity (see section 2.3) exceeding a spe-
cific threshold, e.g., 100pV are disbanded (Zschocke, 1995). Other techniques subtract
weighted EOG activity from the scalp electrode signal (Gratton and Coles, 1989) or
employ Independent Component Analysis for artifact elimination by discarding those
independent components for subsequent analyses which are likely to reflect artifact ac-
tivities (Jung et al., 2000). Although artifact elimination could reduce noise in the
data, the present work does not incorporate explicit artifact reduction methods beside
filtering for frequencies. Rather, the classifiers in this thesis should learn from the data
to deal with artifacts by themselves. Nevertheless, artifact elimination could possibly
further improve the classification results.

2For instance, matrix inversion with Gaussian Elimination leads to O(n®) complexity for inverting a
n X n matrix.

3Matrix inversion becomes improbable if the number of features (i.e., the data dimensionality) is
larger than the number of data examples (Guyon et al., 2002). In such cases, the matrix easily
becomes singular.
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5.2.1 Filtering

Filtering in the context of EEG-based BCI denotes filtering for frequencies for the
purpose of signal separation (Smith, 1999). Thus, filtering allows to selectively attenuate
specific frequencies within the EEG signal and disband other frequencies. First, the two
different kinds low pass and high pass filtering need to be considered. While the former
one disbands frequencies above a specific cut-off frequency which results in a smoothing
in the time domain, the latter one eliminates frequencies below such a cut-off frequency,
and therefore works as a derivator which attenuates slowly varying components in the
time domain. In particular for the examination of single trials, the importance of
filtering has been identified: “Filtering can also make possible the examination of ERPs
on a single trial basis when the signal magnitude is sufficiently large with respect to the
noise and/or the signal and noise spectra are sufficiently disparate. This has been found
to be feasible when dealing with high amplitude, low frequency components such as the
CNV, N200, P300 and slow wave.” (Picton et al., 1995).

In the context of BCI, it is useful to employ a high pass filter to prevent occurrences
of low frequencies to avoid drifts caused by sweating artifacts and slow drifts of the
electrode potentials (Zschocke, 1995). Such drifts would cause exceedings of the voltage
ranges of the EEG amplifier (oversteering). On the other hand, signals which could be
interesting, like potential drifts in the cortex surface (Caspers and Speckmann, 1974),
might get lost using this technique. A low pass filter can be useful to filter out the
50Hz or 60Hz power supply frequency and muscular artifacts. Furthermore, most of
the energy of low frequency ERPs like CNV, P300 and slow wave is concentrated below
20Hz (Picton et al., 1995). It is nevertheless desirable to sample data at a rate of at
least twice the highest frequency of interest in the data. Sampling below this Nyquist
rate might result in aliasing errors®. Since both high pass and low pass filters are linear
filters, they can easily be combined to form a band pass filter by consecutive execution
of the filters in arbitrary order.

Filtering can be achieved in an analog or digital fashion. While analog filtering is
commonly performed in the EEG amplifier itself, digital filtering is computed in a sub-
sequent data analysis step by a computer algorithm. Employing the Fourier transform
(FT) is one way to perform digital filtering (Smith, 1999). The idea behind FT is that
any periodic function can be decomposed into sinusoidal waves of different frequencies
and phase relationships. Windows of time series data can then be transformed to the
frequency domain. By eliminating certain frequencies in that domain and performing a
backtransformation, a frequency filter can be realized. In a discrete formulation, the se-
quence xg, ..., T,—1 of n complex numbers is transformed by discrete Fourier transform
(DFT) into a sequence of n complex numbers fy, ..., fn—1 by

fi=Y mpe w0 =0, n—-1 (5.1)

where ¢ is the imaginary unit v/—1. While this transform requires computational costs
of O(n?), it can recursively be broken down to smaller DFTs in a divide-and-conquer
strategy, resulting in the so-called Fast Fourier transform (FFT), which yields costs of

4 Aliasing is an artifact that occurs when analog signals are digitized at an inadequate frequency, such
that high frequency components can be improperly reflected as low frequency components.
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O(nlogn) (Cooley and Tukey, 1965). FFT requires the data to be of a length of a
power of 2, but this can easily be achieved by expanding the data vector to this size by
padding the data with zeros (Press et al., 1992).

A filter can be constructed by employing FFT for transformations into the frequency
domain. In the easiest case, the ideal or brick wall filter (Smith, 1999), coefficients
reflecting frequencies to be disbanded are set to zero, and the data are transformed
back to the time domain by

n—1
zp=Y fiewIh k=001 (5.2)
j=0

Note that this kind of filter can result in a damped ringing at the edges, i.e., frequencies
outside the pass band do not vanish completely but have a residual impact on the signal
due to the fact that the length of the window in the time domain is not infinite and
has therefore no infinite frequency response. A common way to reduce ringing is to use
cosine-smoothed Hanning windows instead of rectangular windows (Smith, 1999; Press
et al., 1992).

5.2.2 Dimensionality Reduction by Principal Component Analysis

Principal Component Analysis (PCA) computes an alternative data representation by
mapping the original data along uncorrelated dimensions that reflect the main vari-
ances of this data® (Bishop, 1995; Hyvirinen, 1999). Since the new basis system is
hierarchically organized with respect to the degree of variance they capture, such that
the first Principal Component also accounts for the most variance, PCA can easily be
employed for dimensionality reduction by considering only the first [ components for a
data representation. For a PCA algorithm, the goal is to find a transformation matrix
W mapping a vector x to an alternative representation

s = Wx. (5.3)

Thereby, the direction of the first Principal Component wq, which is the first column
of the matrix W, explains the most variance in the original space and obeys

wi = arg max < (w!x)%> (5.4)
wl=1
where < - > is the expectation value. Any subsequent direction wy (k > 1) can

recursively be computed by subtracting the first £k — 1 Principal Components from x by

k—1
Rp_1=X— Z wiw! X (5.5)

i=1

and calculating the direction of this component as indicated in (5.4):

W}, = arg Hmﬁixl < (wlgp_1)?>. (5.6)
wl||=

SPCA is equivalent to the Karhunen-Loéve transform and the Hotelling transform (Karhunen, 1947;
Hotelling, 1933).
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In practice, the simplest way to perform PCA is to employ Singular Value Decomposition
(SVD) to calculate the matrix W (Ripley, 1999; Golub et al., 1999). Given a dataset
X € R™™P_ representing n data vectors x; € RP of zero mean each with n exceeding the
dimensionality (n > p), SVD is calculated by

X = UAVT, (5.7)

with A being a diagonal matrix of decreasing non-negative entries. The matrix U €
R™ P contains orthonormal columns, and V € RP*P ig orthogonal. Then, the columns
of

XV = UA (5.8)

reflect the Principal Components and is therefore the desired matrix

W = UA. (5.9)

A contains the Eigenvalues A\ on its diagonal. The Eigenvalues correspond to the
variance they capture in the original space. Therefore, in order to achieve a data
compression by using PCA which captures a certain amount of variance, the first [
vectors can be employed which obey

l .
> TTA(ZA) >q (5.10)

i=1

with ¢ being the fraction of variance that should be captured, e.g. ¢g=0.9 for capturing
90% variance. It is often sufficient to employ only a few number of Principal Compo-
nents to capture the vast amount of variance, but the PCA components do a-priori not
necessarily reflect useful information, since PCA solely relies on variance which must
not be the most relevant criterion. Accordingly, although certain Principal Components
might contribute only minor to the data variance, they can nevertheless contain valu-
able information. Additionally, PCA is only a linear transformation. Thus, if the data
follows a non-linear distribution by e.g. being projected on a circle, the Principal Com-
ponents will not reflect the intrinsic trend of the data (Marques de Sa, 2001). Depending
on the data domain, Principal Components reflect certain aspects of the analyzed infor-
mation. For instance, specific characteristics of faces, so-called FEigenfaces are reflected
in these components when analyzing face databases (Turk and Pentland, 1991). Other
studies found Gabor-like filters for the Principal Components when analyzing natural
images (Hancock et al., 1992; Heidemann, 2006).

Some approaches try to overcome the restrictions of PCA. For example, Independent
Component Analysis tries to relax the orthogonality constraints of PCA and instead of
maximizing variance, it maximizes a measure of information, e.g. entropy (Hyvéirinen,

1999).

5.3 Classification

Within the P300 speller paradigm, binary classification needs to be performed in order
to determine whether a certain time series of EEG data (an epoch), contains a P300 or
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not. More formally, a classifier must categorize whether a time series x belongs to the
class PT (contains P300) or P~ (does not contain a P300). A strategy to perform this
assignment can be derived in different ways. First, it is possible to employ Model-Based
techniques. Those techniques rely on knowledge or assumptions about the underlying
processes or signal characteristics. For instance, the classifiers area and peak picking, as
discussed in detail in section 4.1.1, use knowledge about the characteristics of the P300
to perform the classification. An alternative approach are Machine-Learning classifica-
tion strategies. Such techniques learn from given data to distinguish between examples
from the different classes. The appealing fact about Machine-Learning techniques is
that almost no prior knowledge about the data domain is necessary - the algorithms
extract relevant information for the classification problem by themselves. A weakness
of this approach is that although it is possible to analyze to some degree what the
classifiers learnt (Golland, 2002), it is usually not possible to extract explicit human-
readable rules, such that it is not clear in most cases, what the classifier really learnt.
Thus, the usage of such methods is also accompanied with a loss of control, compared to
rule-based systems, making their applications in e.g. critical medical contexts difficult.
Another serious drawback of these classifiers is that they first need to be trained on a
data set of training examples in order to be able to perform classification.

Statistical Learning Theory is a basis for Machine-Learning classification and is ex-
plained in section 5.3.1. More details about this topic can be obtained by e.g. Evgeniou
et al. (2000), Hastie et al. (2001), and Vapnik (1995). This theory leads to the powerful
technique Support Vector Machines which gained much attention in recent years due to
its high generalization capabilities and good classification performance. This technique
will be illustrated in more detail in section 5.3.2. For further information the reader
is referred to Schoelkopf and Smola (2002), Cristianini and Shawe-Taylor (2000), and
Burges (1998). Another, more simple Machine-Learning classifier is Fisher’s Linear
Discriminant Analysis and will be discussed in section 5.3.3 (Bishop, 1995). When
evaluating classification performances, cross-validation is an important instrument to
assess the generalization performance of a trained classifier as will be detailed out in
section 5.3.4.

5.3.1 Statistical Learning Theory

The goal of Machine-Learning classification is to find a relationship between two (or
more) variables derived from a set of sample data, the so-called training data. More
formally, an algorithm seeks to find a function f from a set of functions F describing
the relationships between x € X C R? and y € Y C R. In real world data, an element
of x does not correspond to one specific element of Y in a deterministic manner. In
fact, the relationships between the elements of X and Y are commonly probabilistic
and the underlying probability distribution is a-priori unknown. Thus, the objective
of Machine-Learning is to find an estimator f : X — Y that predicts a value y from
any vector x. If y € R, this problem is called regression. In contrast, if y takes a
limited number of discrete values, classification is performed with the special case of
binary classification, when e.g. y € {—1,1}. Binary classification is the essential kind
of classification for this thesis, targeting to distinguish between P300 and non-P300
examples, reflected by the classes Pt and P, respectively.

One way to find a good estimator is to find a function f € F which produces the
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least number of errors among the functions in F. The first step in this strategy is to
define errors in terms of a loss function V' (y, f(x)). Typical loss functions for regression
(V;) and classification (V) are

Voly, f(%) = (y — f(x)?, (5.11)
Ve(y, f(x)) =1 =6y 1x)s (5.12)

with 0, rx) being Kronecker’s delta®. Together with the probability distribution
P(x,y), the average loss or Fzpected Risk can then be calculated as

RO = [ Vi 6Py (513)
and the optimal function fy can be found by minimizing this risk:
Jo(x) = arg min 7(f )- (5.14)

Empirical Risk Minimization
Unfortunately, only a fraction of all possible examples of x and y can usually be ac-
cessed, such that the Expected Risk can seldom be calculated in practice. Instead,
another mease, the Empirical Risk is calculated: Only a restricted set D; of [ samples
constituting the training set is drawn from the unknown probability distribution P(x,y)
in order to find f:

Dy = {(x5,4:) € X x Y}, (5.15)

Since the probability distribution P(x,y) is unknown and only the incomplete sample
set D; is available, it is improbable to find fo. Instead, the Empirical Risk R, can be
estimated on the data set D; as an approximation of the Expected Risk:

Remp(f) =

o~ =

I
> Vi, f(x1))- (5.16)
i=1

A target function f can then be found by Empirical Risk Minimization (ERM):

Fx) = argmin Rey(£). (5.17)

By the law of large numbers, the Empirical Risk converges towards the Expected Risk
for a large number of samples (Evgeniou et al., 2000):

Jim Remy(f) = R(f): (5.18)

Overfitting and Complexity

With a large set of functions F it is also likely to find a large number of functions,
which perfectly learn the training data, especially in the case of classification or with
only few samples. In fact, most of these functions would not reflect the trend of the

5Kronecker’s delta is defined as 6;; = 1 < i =j and 6;; = 0 < i # j.
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Y

Figure 5.2: Two regression functions try to approximate the distribution of the data
vectors as represented by the red circles. While the dashed gray function fits
very close to the specific data vectors, the solid black function follows a more
general trend of the data.

data appropriately and would therefore not work well for yet unseen data from outside
the training data. This overfitting phenomenon is illustrated in Figure 5.2. In this
example, for the sake of a very close approximation of the data, the regularity behind
the data is not identified by the dashed function and a function of high complexity is
postulated. It is unlikely that this function works well for unseen samples from the
underlying probability distribution. In contrast, the solid line within the figure follows
a more general trend of the data which appears to reflect the trend of the data more
appropriately. One way to deal with overfitting is to follow the philosophy of Occam’s
razor’ and the principle of parsimony and prefer the simpler theory (Domingos, 1999).
Thus, although both functions in Figure 5.2 approximate the data distribution well, the
less complex function, i.e., the solid black function, should be preferred. This principle
can be formalized by e.g. penalizing the complexity of a function and/or restricting
the set of functions. With only a small set of functions F, uniform convergence of the
Empirical Risk to the Expected Risk can be achieved (Evgeniou et al., 2000):

lim P{sup(R(f) — Remp(f)) > €} =0 Ve>0. (5.19)
I=oo  fer
One-sided uniform convergence is a necessary and sufficient condition for the ERM to
be consistent. Thus, according to ERM, f; can be found in this case. Thus, in general, a
restricted set of functions is necessary. Choosing such a function class F is called model
selection (Hastie et al., 2001) and the upcoming Vapnik-Chervonenkis dimensionality
provides a measure for finding an appropriate function class of suitable complexity.

Vapnik-Chervonenkis Dimensionality

A precondition for becoming able to penalize complexity is a measure for complexity.
The Vapnik-Chervonenkis (VC) dimension h provides such a measure as it reflects how
many samples® can be separated by a function f from the set F. For example, consider
F being the set of hyperplanes in R?. Then, the maximum number h of binary labeled

"Commonly phrased as “entities are not to be multiplied beyond necessity”.
8In order to keep the considerations simple, only binary classifications will be considered in the
following.
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Figure 5.3: The Vapnik-Chervonenkis dimension h reflects the number of data
points that a function class F can separate in all possible shatterings. In this
example of hyperplanes in R2, h is 3, and the number of ways to divide the data
into different classes is 2" = 8.

samples which can be separated is 3, resulting in 2" = 8 possible shatterings® (see
Figure 5.3).
If F is a set of functions with VC dimension h, for any [ examples {(x;,y;)} i.i.d. sam-

pled from the distribution P(x,y), the following inequality holds with the probability
1 —n (Burges, 1998):

R(f) < Remp(f) + \/h(log(% * })) —log(d) (5.20)

Thus, the higher h, the more samples can be separated, and the higher is the com-
plexity or capacity of a function set F. For small values of h, the capacity term
h(log(3 +1))—log(%)

l

R(f).

Taken together, in order to achieve good generalization to unseen samples, instead
of solely minimizing the Empirical Risk, also the complexity of the hypothesis space F
should be minimized (see also Figure 5.4). These requirements are formalized in the
principle of Structural Risk Minimization (SRM).

in equation (5.20) is low, also resulting in a low upper bound on

Structural Risk Minimization

Structural Risk Minimization augments Empirical Risk Minimization by seeking to find
the function f with the lowest Empirical Risk and the lowest complexity in terms of
VC dimensionality as well. For this purpose, SRM defines a nested set of function sets
F1 C Fa C ... C Fpy with n(l) being a non-decreasing integer function of / where each
hypothesis space F; has a finite VC dimension which is larger or equal than that of all
previous sets: hy < hg < ... < hn(l). SRM then yields the function class F; such that the
upper bound of the generalization error (5.20) is minimized. The abilities of a classifier
to generalize to new, unseen data can be assessed by performing e.g. cross-validation as
is explained in section 5.3.4.

9For instance, four samples would lead to the XOR-problem: There is no way to separate data points
by a hyperplane in four corners of a square, when opposing corners belong to the same class.
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Error A
‘.‘ Expected Risk

Empirical Risk

Complexity

Figure 5.4: Solely minimizing the Empirical Risk by increasing the model complex-
ity results in overfitting. In this case, the error on unseen data, as reflected
by the Expected Risk, will raise after a certain degree of complexity. Thus, a
trade-off between empirical error and complexity has to be found in order to
achieve a good generalization to unseen data.

5.3.2 Support Vector Machines

Support Vector Machines (SVMs) employ the theory of SRM in order to create a power-
ful classifier with high generalization to unseen samples. SVMs were successfully applied
in a large range of applications such as face detection, cancer detection, and handwritten
digit recognition (Bennett and Campbell, 2000; Schoelkopf and Smola, 2002; Guyon,
2006).

Geometrically, SVMs employ hyperplanes which can be described as f(x) = w-x+b
in order to perform binary classifications. Projecting a sample on w reveals the class
label by the function’s sign:

s =sgn(w-x+b). (5.21)

While several hyperplanes could correctly divide the data space into two regions accord-
ing to the specific classes, not every hyperplane is robust against variations of the data
vectors. Therefore, generalization to new, unseen data can be low. If the dotted black
hyperplane in Figure 5.5 separates the red circled data from the blue boxed data, small
deviations from the actual positions of the data could easily result in misclassifications.
On the other hand, employing the solid black hyperplane in the figure for separation
purposes, a more robust classifier with respect to deviations to the actual data can be
achieved. SVMs construct parallel hyperplanes to the separating hyperplane with the
nearest samples from the different classes lying on the parallel hyperplanes. In order to
find the optimal hyperplane with the best generalization capabilities, SVMs maximize
the distance ~, the so-called margin, between the parallel hyperplanes (see Figure 5.5).

This fulfills the requirements of SRM since the capacity of the function class decreases
when the margin increases: Let rsphere be the radius of the smallest sphere containing
all data vectors and v be the distance of the margin hyperplanes (the parallels to
the optimal hyperplane) to each other as depicted in Figure 5.5. Then, the following
inequality holds (Vapnik, 1995):

7,2
h o< SRhere (5.22)
v
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Figure 5.5: Data samples belonging to two different classes, separated by hyper-
planes (dotted and solid black). The radius rgphere describes the smallest sphere
containing all data. While the dotted black separating hyperplane would easily
result in misclassifications when the data slightly vary from the actual posi-
tions, the solid black plane would be more robust against such deviations. The
latter plane can be derived when constructing parallels to a separating hyper-
plane (gray, dashed lines) which touch the nearest samples to the hyperplane.
That hyperplane which parallels expose the largest distance to each other is the
optimal hyperplane with the best generalization capabilities (Burges, 1998).

According to SRM (and Occam), the function with a smaller value h should be preferred.
The separating hyperplane can be described by the vectors on the margin hyperplanes.
These Support Vectors are the nearest vectors to the hyperplane and are the only
relevant vectors for the training problem. If the classifier would be trained again under
exclusion of all other vectors, the Support Vectors would still be the same.

Linear Support Vector Machines

As already mentioned, a hyperplane separating data into two classes can be described
by f(x) = w-x+ b. If the data are linear separable, this plane can be found by
maximizing the margin v (see Figure 5.6) as follows: If w is normalized, such that

X;-w4+b>41 for y; = 41,
X -w+b<—1fory = -1

holds, this expression can be summarized to

A solution in two dimensions is illustrated in Figure 5.6. Data vectors on the parallels
Hy and Hs of the optimal hyperplane are called Support Vectors (bordered items within
the figure) and can be described by x; - w + b= 1 and x; - w + b = —1, resulting in

yi(xi - W+ b) —1=0 V(Xi,yi) € Dgy (5.24)

where Dgy is the space of the Support Vectors. The distance to the origin of a datapoint
on Hj is ﬁ and on Hjy is ]17_”17, respectively, resulting in v = Hy — Hy = ﬁ Another
way of maximizing ~y is therefore to minimize || w ||. Instead of using || w ||, it is more
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Y

Figure 5.6: Support Vector Machines find the optimal hyperplane (solid line) to sep-
arate two classes by maximizing the margin . This hyperplane can be described
by the vector w and the bias term b.

convenient to use the objective function

1
S lIw P (5.25)
for subsequent steps. In any case, equation (5.23) must still hold. In terms of opti-
mization, a quadratic function must be minimized with respect to linear constraints,
resulting in a convex function. A useful property of convex functions is that no local
minima exist and any local solution is also the global solution. A convenient way to
solve such convex functions is the use of Lagrange theory (Bishop, 1995). The primal
Lagrangian of the problem is

I !
1
Lp= 3 | w?* - E ayi(X; - W+ b) + E Q. (5.26)
=1 =1

This term can be minimized by setting the first differential to zero:

l
oL
a—“]: = w-— Zaiyixi =0 (5.27)
i=1
l
&S w= Z GYiXi, (5.28)
i=1
!
oL
8—; =Y iy =0. (5.29)
i=1

Resubstituting these expressions in the primal Lagrangian (5.26) yields the dual La-
grangian

l l

1

LD = E o; — 5 E QG OGY Y X - X (530)
i=1 1,j=1
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In this case, training a Support Vector Machine is equivalent to maximizing Lp by
varying the Lagrange Multipliers «;. The hyperplane w can then be computed using
equation (5.28). The data vectors with a; > 0 build the Support Vectors, which are
vectors on H; and Hs. For any other training vectors «; will be zero. The optimal solu-
tion of the dual Lagrangian can be achieved using the Karush-Kuhn-Tucker conditions,
which are necessary and sufficient for convex problems (Fletcher, 1987):

0

l
9w, Lp =w, — §aiy,~xw = 0 (5.31)
9 Z l
splp=- ;aiyi = 0 (5.32)
yi(xi-w4+b) -1 > (5.33)
a > 0 (5.34)
a;(yi(xi-w+b)—1) = 0. (5.35)

Finding the solutions for these equations, and therewith computing values for b and
all oy; is equivalent to solving the SVM problem. According to (5.24), Support Vectors
fulfill y;(x;-w+0b) —1 = 0. As the complementary condition (5.35) reveals, o; can then
not be zero for these cases. On the other hand, a; must be zero for those vectors with
yi(x;-w—+b)—1# 0, i.e., vectors which are no Support Vectors. Thus, when calculating
the weight vector w via (5.28), all vectors can be disregarded which are no Support
Vectors since they have no influence on w due to their a-value of zero. Reversely, the
Support Vectors contain the whole information about the optimal hyperplane. While w
can be computed by (5.28) and solving the Karush-Kuhn-Tucker conditions, b needs to
be calculated explicitly as the mean distance of the parallels H; and Hs to the origin:

b — maXﬂCiiyi:—l(W " X;) ;‘ minﬂﬁiiyi:-l—l(w ) Xi)_ (5.36)

Classification by a trained machine is performed by determining on which side of the
hyperplane a given test sample Xqg; lies. The class label is then calculated analogously
to (5.21) by sgn(w - Xgest + b).

Soft Margin Approach

So far, it was assumed that a linear separation of the data into two classes is possible. In
real-world data, this case is very seldom. The assumptions about separability therefore
need to be softened and therewith turned from a hard margin to a soft margin approach.
Introducing slack variables allows for a solution of non-separable problems. As depicted
in Figure 5.7, the condition (5.23) can be softened by introducing the slack variables £
such that not all data vectors need to be on the “correct”side of the hyperplane:

X, w4+b > +1-¢& for y; =+1,
X -w+b < —1+4¢& for y; =—1,
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Y

Figure 5.7: Within the soft margin approach, a certain number of violations to the
separation is allowed, which is achieved by introducing slack variables £ referring
to data points located at the “wrong”side of the hyperplane.

which can again be summarized:
yi(xi - w+0) > 1-¢&; Vi

Deviating data vectors should nevertheless be an exception. By introducing a penalty
term C' Zﬁ ¢¥ in the cost function, costs are increased for slack variable occurrences:

!
w2 k
o tOXE

C is a regularization parameter chosen by the user or a hyperparameter selection algo-
rithm. A higher value for C corresponds to a stronger penalization of slack 0. Note that
data lying within the margin on the correct side of the hyperplane are also penalized.
For the power k, a positive integer, the problem is convex and for £k = 1 and k = 2,
the problem is even quadratic. Furthermore, if £ = 1, neither &; nor their Lagrange
Multipliers are part of the dual problem. The expression

l l
1
LD = ZE 1 oy — 5 i ;1 OéiOéjyiiji . Xj (537)

must be maximized with respect to the constraints 0 < «; < C and Zi a;y; = 0,
resulting in

Ns
w = Z Y, (5.38)
=1

where N; is the number of Support Vectors. The only difference to the hard-margin
approach lies in the upper bound C for the values «;. The primal Lagrangian then

61



CHAPTER 5. DATA ANALYSIS FOR THE P300 SPELLER BRAIN-COMPUTER INTERFACE

Input Space L Feature Space H

Figure 5.8: Data vectors which are not linear separable in the the input space L
become linear separable after a transformation ® into a feature space H.

turns into

:—HWHQ—FCZ& Zalylxl W+b _1+£z Z,Uzgz

The resulting Karush-Kuhn Tucker conditions are

9 l

Dw. Lp =w, — Z; oYy, = 0 (5.39)
9 Z l

%LP - — Z aYi—1 — 0 (540)
iLp =C - o — g = 0 (541)

9§;
yi(x; ow4+b) —14& > 0 (5.42)
& = 0 (5.43)
a > 0 (5.44)
pi > 0 (5.45)
ailyi(x;-w+b)—14+&] = 0 (5.46)
pi& = 0. (5.47)

Again, b can be calculated using the complementarity conditions (5.46) and (5.47).

Non-linear Support Vector Machines

A trick to deal with linearly non-separable data is to transfer them into another, usually
higher-dimensional dataspace H where the data become linear separable (see Figure
5.8). This transformation can be constructed by using the mapping ® : . — H. Then,
the training algorithm does not work on the scalar products in the data space L but in
the feature space H. For this purpose, the expression x; - x; in in the dual Lagrangian
(5.37) is replaced by ®(x;) - D(x;).

But instead of explicitly calculating ®(x;)-®(x;), a kernel function is capable to compute
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the mappings implicitly, resulting in much lower computational costs. A kernel function
is defined as

K(Xi, Xj) == (I)(XZ) . (I)(Xj), (548)
and the dual Lagrangian (5.37) becomes

l

l
1
LD = Zai - 5 Z aiajyiyjK(Xiyxj)- (549)
i=1 i,j=1

Thus, only the function K(x;,x;) is required for the training algorithm and it is not
even necessary to know exactly what lies behind ®. All other considerations and com-
putations from the previous sections still hold. Depending on the question under inves-
tigation, different kernels can be employed. A very common kernel, which works well
for a large variety of applications is the Gaussian or radial-basis function (RBF) kernel

K(x;,%x;) = exp (—fyH X; — X; H2) . (5.50)

Here, the dimensionality of the feature space is infinite (Cristianini and Shawe-Taylor,
2000). It would therefore be hard to work with ® explicitly. In the training algorithm,
instead of using x; - x;, the kernel K (x;,x;) will be used resulting in a Support Vector
Machine working within this infinite feature space. All considerations of the previous
sections hold since the linear separation still happens - but only in another space. In
the test phase, the sign of the following function reveals the class (s; are the Support
Vectors):

Ns

flz) = Zaiy@(si)-@(x)w (5.51)
z]\:[sl

= > awiK(si,x) +b. (5.52)
i=1

At no point, ® needs to be calculated explicitly. Rather, calculating the kernel function
K is sufficient. It must nevertheless fulfill some constraints. Necessary preconditions
are symmetry K(x,z) = K(z,x) and the Cauchy-Schwarz Inequality

K(x,2)* = (2(x) - 2(2))” < | 2(x) [I* | 2(2) |I* - (5.53)

Sufficient is Mercer’s Condition. It says that e.g. for any kernel that can be described

as
00

K(x,y) =) cp(x-y)

p=0

and converges uniformly, a feature space exists (¢, are positive real coefficients). More
details can be obtained by (Schoelkopf and Smola, 2002). Common kernel functions
are:
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K(x,y) X-y (linear kernel) (5.54)
K(x,y) = (x-y)? (polynomial kernel) (5.55)
K(x,y) = exp(—y|x-y|*) (RBF kernel) (5.56)
K(x,y) = tanh(kx-y —J) (sigmoidal neural net kernel) (5.57)

While kernel functions allow to perform non-linear separation with originally linear
classifiers whenever those can be described in a dual form, they have the drawback that
it usually costs more efforts to find optimal hyperparameters. For instance, in linear
SVMs, only the hyperparameter C' needs to be chosen carefully. On the other hand,
a SVM with RBF kernel further employs the hyperparameter . Finding the optimal
combination of C' and « therefore becomes expensive when e.g., scanning C' and v with
10 values each, resulting in 100 trainings of the RBF SVMs, instead of just 10 trainings
in the linear case (see also section 5.3.4).

5.3.3 Fisher’'s Linear Discriminant

A much simpler Machine-Learning classifier is Fisher’s Linear Discriminant Analysis
(FLDA) (Fisher, 1936). As in Linear Support Vector Machines, a linear hyperplane is
derived from training data, revealing a weight vector w and a bias b (Bishop, 1995).
Like in SVMs, projecting a test vector Xiest on w yields

Y= W - Xgest (5.58)

and under consideration of a bias b, a class label can be calculated by the expression
y = sgn(w - Xyest + b). But in contrast to SVMs, w is derived in a different way (Duda
et al., 2000): Given training data vectors x from two classes C; and Ca, the goal is
here to find a projection which maximizes the class separation. To derive a measure for
separation, a mean vector

1
m; = Z x (5.59)

! x€C;
for each class is required with N; denoting the number of samples in the class C;. The
projection of the mean vectors of class C; onto w is then

i = wlm (5.60)

and a good separation of the classes should be expected when w lies in such a direction
that the mean vectors of the classes expose a long distance in the projection

1 — po = wl (my —my). (5.61)

Beside maximizing the distance in the projection, also the variance of the data within
the classes should be considered. As Figure 5.9 illustrates, although a larger distance of
the means would be obtained for projections onto x1, a clearer class separation would
result for projections onto x5 due to the smaller variances along this direction. For this
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X2

X1

Figure 5.9: The blue circles represent data distributions of the classes C; and C. A
data projection maximizing the distances between the means of the distributions
is computed in Fisher’s Linear Discriminant. Although the projection along x;
results in a larger distance of the means, the projection onto x, allows for a
better class separation due to a smaller variance along this direction. Thus, a
score must also take into account the variances of the data distributions which
results in a projection w as depicted within the figure. The Fisher criterion
J(w) provides such a measure.

purpose, the scatter

ol =Y (yn — i)’ (5.62)

neC;

within the classes are employed by considering the total within-class covariance o + o5
in order to compute the Fisher criterion

_ (1 — ,u2)2
J(w) = W. (5.63)

Fisher’s Linear Discriminant then employs that function w’x for which J(w) is maxi-
mum. This optimal w can be determined by finding an expression of J(w) which is an
explicit function of w. For this purpose, first the scatter matrix S; needs to be defined:

S, = Z (x —my)(x — my)T. (5.64)

xeC;

Then, with the help of (5.58) and (5.60), the scatter can be reformulated as

o} = Z (wlx — wlm;)? (5.65)
x€C;

= Z wl(x —my)(x —my)Tw (5.66)
x€C;

= wl'S;w. (5.67)
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The within-class scatter matrix

Sw =S1+ Sy (5.68)

is proportional to the sample covariance matrix for pooled d-dimensional data. With
Sw, the denominator of the Fisher criterion (5.64) can now be formulated as

o2 + 02 =wlSyw. (5.69)

Employing (5.60), its numerator can be calculated as

(1 — ,u2)2 = (WTml - WTm2)2 (5.70)
= WT(m1 — 1’1’12)(1’!11 — mQ)TW (571)
= w!Spw (5.72)
with the between-class scatter matriz

SB = (m1 — mg)(ml — mg)T. (573)

Taken together, the Fisher criterion can be rewritten as

wTSpw

J = 5.74
(W) = g (5.74)

which is commonly known as the generalized Rayleigh coefficient. As shown in e.g.
Bishop (1995), calculating % = 0 reveals that J(w) is maximized when

(wISpw)Syw = (WX Syw)Spw (5.75)

which can, under consideration of (5.73), be simplified to the canonical variate

w = S;;} (m; — my). (5.76)

Thus, a convenient solution for w can be computed by just inverting Sy and calculating
the class means. Sy is symmetric and positive semidefinite and usually non-singular if
the number of samples n exceeds the data dimension d (Duda et al., 2000). In order to be
able to perform classifications, the bias b must be determined, which is a threshold along
the one-dimensional subspace separating the projected data vectors. If the probability
densities for the classes are both multivariate normal with equal covariance matrices,
the Fisher discriminant is the Bayes optimal solution (Bishop, 1995). In this case, b is
the point where the posterior probabilities are equal. On the other hand, if the data
distribution is not normal, b can be found as a hyperparameter in a cross-validation
scheme. Fisher’s Linear Discriminants can easily be generalized for multiple classes
(Bishop, 1995) and the kernel trick from the previous section can also be employed for
this approach (Miiller et al., 2001; Mika et al., 2001).
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Folding

1 ’ train H train H train ‘} test
|

2
s [van ]! st [ wan ][ van ]
4

| test 1’ train H train H train ‘

Figure 5.10: Each of the 4 subsets of a dataset within a 4-fold cross-validation serves
once as a test set. In each folding, three subsets are aggregated and constitute
the training set for this folding while the remaining set serves as a test set.
Thus, training and test sets are always disjoint. The datasets are systematically
permutated and the average classification rate on the test sets in the different
foldings gives an approximation about the classification performance on unseen
data of the classifiers.

5.3.4 Cross-Validation

It is crucial to have disjoint sets for training and testing to avoid overfitting of a Machine-
Learning classifier (see section 5.3.1). In order to assess the performance of a classifier,
cross-validation can be performed. Cross-validation divides a dataset into k£ subsets of
data for a k-fold cross-validation and takes k — 1 subsets for training and the omitted
subset for testing (Bishop, 1995). The sets are permutated and the average rate of the
k test set classifications is taken as a measure for the classification rate as depicted
in Figure 5.10. This can especially be important for finding optimal hyperparameters
for a Machine-Learning classifier. By e.g. varying the hyperparameter C' for a linear
SVM in a systematical way and assessing the average classification performance, the
“optimal”parameter can be found. When e.g. using RBF kernel SVMs, scanning value-
combinations for the both hyperparameters v and C' is a common strategy (Keerthi and
Lin, 2003).

5.4 Symbol Inference

The outcome of the whole data analysis procedure for the P300 speller BCI should be a
symbol from the stimulus matrix, a subject directed attention to (cf. Figure 5.11). As
introduced in section 4.1, when a subject directs attention towards one specific symbol
within the stimulus matrix which rows and columns are flashing in random order, a
P300 component is induced in the EEG time series (epoch) after a flashing of that
specific symbol. Thus, the attended symbol can reversely be inferred from the basic
distinction of P300 (P*) and non-P300 (P~ ) samples of EEG time series. It is necessary
to determine exactly one row and one column by occurrences of P300 components to
infer the symbol which would lie in the intersection of the row and the column. More
formally, from an EEG time series x, a symbol inference algorithm needs to identify that
row i, and that column i, which is most likely to be associated with a P300: Among
the rows and the columns, the winners ¢, and 7. have to be chosen from the row indices
Trows = {r1,7r2,73,74,75,76} and the column indices Zeoymns = {c1,¢2,¢3,¢4,C5,¢6},
respectively. As already introduced in Kaper et al. (2004) and Meinicke et al. (2003),
this can be accomplished by computing a certain score S,¥(x) containing classification
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subtrial 1 ...  subtrial Neompined

SLP(Xr31) o F Sw(xrg.ncombmed) _>

Figure 5.11: The score S,Y(x), abbreviated as S,?,
figure. It is calculated as the sum of the subtrial scores s¥ (x;;) from the number
of Necombined aggregated subtrials. Thereby, U refers to a certain classifier and a
subtrial refers to a sequence of flashing each row and each column once. Among
the rows and the columns, S;¥ with the highest value yields the index i, and i.,

respectively, indicating the position of the symbol within the matrix.

is reflected by red bars in the

(

results for the specific row or column ¢ as derived from a classifier ¥ (e.g. a Support
Vector Machine). The row and the column with the highest score among the rows and
the columns is selected as the target row or column:

i = arg max S;”(x) and i.=arg max S, (x). (5.77)
1€21rows 1€Zcolumns
As section 4.1 reveals, it is usually not sufficient to employ just one subtrial'® for
classification. In contrast, a certain number of repetitions needs to be performed to
reach reasonable classification accuracies. As it is depicted in Figure 5.11, the score
S.¥(x) must therefore also incorporate these repetitions, which can be achieved by
accumulating the epoch scores sV (x;;) of the time series x;;, belonging to flashes of the
specific rows and columns from ncombined Subtrial repetitions:

Ncombined
SYx) = Y s¥(xa). (5.78)
k=1

In this thesis, s (xi) is derived from a classifier
U € {Area, PP, FLDA, LSVM, RBF SVM}, but others are possible. ~Among
these classifiers, scores from the Model-Based approaches area and peak picking (PP)
as discussed in section 4.1 can be calculated as

M) = 3 aalt) (5.79)

t=t1
PPl \ ol (h) A
s (sz) £r<11tr11 Tik (t) Itll%{( xzk@)» (580)

'"Within a subtrial, each row and each column is flashed once (cf. section 4.1).
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Table 5.1: Example for the calculation of accuracy rates in symbol inference for the
symbol “S”. From ngybPersymbol = 42 subtrials belonging to one symbol, ncombined
subtrials are aggregated, such that only a fraction of the symbols that can be
inferred are remaining for ncombined > 1. Correct inferences are underlined and
the accuracy pace is calculated as the ratio ncorrect/Minferences-

| Ncombined | Inferred SymbOIS | Necorrect | Ninferences | Pacc |
1 MKKSSA4YYG79XS6USXCTSSTXUFNGGAVOSZWSVXBSSX8 9 42 0.21
2 SS4YYXYUSSSSCGS4UV3S3 8 21 0.38
3 GSYOUSSSCANWSS 6 14 0.43
4 SS4SSSASWS 7 10 0.70
5 SYXSSASS 5 8 0.63
6 SSSSASS 6 7 0.86
7 SS88S88S 6 6 1.00

with ¢; being the onset of the P300 deflection, and ¢ being its offset. On the other hand,
scores for the Machine-Learning approaches as considered in this thesis are derived as

STEPA (x) = WX, + b, (5.82)

sSSYM(x) = wexg + b, (5.83)
N

SRBE SVM(y ) Z ajy; K (s;5,%) + b, (5.84)
j=1

among which FLDA and LSVM are linear approaches, whereas RBF SVM utilizes the
kernel trick and incorporates a Gaussian kernel to deal with data which are not linear
separable (cf. section 5.3.2). The approaches FLDA and LSVM each determine a
separating hyperplane in the input space L as indicated by the vector w, which can be
calculated by (5.76) and (5.38), respectively. On the other hand, the RBF SVM score
only relies on a hyperplane in the feature space H, and not in the input space L (cf.
Figure 5.8). Thus, it is necessary to calculate the score s®BF SVM(x ;) from the Support
Vectors s; and the according Lagrange Multipliers «; as well as their class labels y; in
the input space as also shown in (5.52). Finding the bias b is explained in section 5.3.2
for the Support Vector Machines and in section 5.3.3 for Fisher’s Linear Discriminant.
While it is common to employ the label of the predicted class in these binary classifiers,
in this context, it is more appropriate to employ the real-valued scores as listed above
to avoid ambiguities.

When performing offline analyses, i.e., data are collected and analyzed after the
experiment (see chapter 6), a certain number ngbpersymbol Of subtrials will result for
each symbol. From these data belonging to a certain symbol, different numbers of
subtrials ncombined can be aggregated in order to compute Si\I’ (x). In the simplest case,
Neombined = 1, and an accuracy rate for classification performance can be derived as
follows: Let ngubPerSymbol be the number of subtrials which were collected for a symbol,
and neorrect the number of correctly inferred symbols (see top row of Table 5.1 for an
example). With neombined = 1, the accuracy paec can then be computed as

Pacc = NMcorrect / TNsubPerSymbol - (585)

In this case, the number of possible inferences for a certain symbol equals the number
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NgubPerSymbol Of subtrials for this symbol. But this equation is only valid when just one
subtrial is employed for a symbol inference. In case of employing data from more than
one subtrial (ncombined > 1), the number of possible symbol inferences decreases to

Ninferences = inf (nsubPerSymbol / ncombined) (5 . 86)

when aggregating succeeding subtrials. Thus, as illustrated in Table 5.1, for ncombined =
1, the number of inferences is 42, while it decreases to 21 for n¢ombined = 2, to 14 for
Ncombined = 3, and so on. Since the number of possible symbol inferences decreases with
the number of aggregated subtrials, classification accuracies are also determined on the
basis of Ninferences:

Pacc = Ncorrect / Ninferences - (587)

Note that the resolution for accuracies decreases with the possible number of inferences
Ninferences- YWhen aggregating data from e.g., 15 subtrials, only two symbols can be
inferred in this example from the 42 symbols, resulting in possible accuracies of only
0%, 25%, 75% and 100%, respectively.

5.5 Summary

Analyzing EEG data to operate the P300 speller paradigm can be subdivided into the
steps data acquisition, preprocessing, classification, and symbol inference.

In data acquisition, a high data quality can be obtained by low impedances, using
a sound attenuated and electromagnetically shielded experimental chamber. Electrode
materials, electrode locations, and amplifier design further influences the data quality.

Preprocessing aims to produce adequate data representations (feature vectors) for
subsequent steps of analysis. Filtering by, e.g., band pass filtering is capable to elimi-
nate influences from frequencies which are not under consideration. This is especially
important for single trial analysis as performed in Brain-Computer Interfacing. Reduc-
ing the dimensionality of the feature vectors in order to achieve a data representation
which follows the intrinsic dimensionality of the data can be achieved by Principal
Component Analysis.

Classification in this context aims to relate the feature vectors with a label, reflecting
either the class “P300” (P1) or “non-P300” (P~). For this purpose, Model-Based tech-
niques or Machine-Learning techniques can be employed. While the former techniques
depend on explicit knowledge of the problem structure, the latter learn from given data
to perform such a classification. Statistical Learning Theory provides a framework for
Machine-Learning problems. Its concept of Structural Risk Minimization is employed in
the classification technique Support Vector Machines. They rely on finding a hyperplane
which lies in the middle between data classes and can easily be extended to non-linear
problems by employing the kernel trick. A much simpler classification technique is
Fisher’s Linear Discriminant, which finds a separating hyperplane by maximizing the
ratio of the between-class and within-class scatter, as encoded in the Fisher criterion,
and can easily be computed.

Based on the results of these classifiers, symbol inference calculates scores for each
row and each column from several repetitions of subtrials. These scores finally indicate
the row and column indices of an entry in the stimulus matrix.
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Chapter 6

Offline Experiments

Before designing Brain-Computer Interfaces which can actually be operated by a user,
it is necessary to find and optimize appropriate preprocessing and classification algo-
rithms and evaluate parameters under which the system works best. For this purpose,
it is desirable to have reliable data at hand, which were produced under controlled con-
ditions. Such data can be generated within so-called offline BCI experiments, in which
data of a subject are recorded and analyzed after the experiment itself (see Figure 6.1).
In contrast, in online BCI experiments, data are processed and analyzed during the
experiment, such that the user can operate the system. Throughout the offline exper-
iments presented within this chapter, the goal of online BCI experiments will be kept
in mind and drive the experimental questions. The foundation stones of the work were
set in (Hoppe and Kaper, 2003).

store in file N load from file )
°v Analysis

Amplifier \\

Stimulus Data Recording Data Analysis
Presentation

Figure 6.1: Scheme for offfine BCI analysis within the P300 speller paradigm. Stim-
uli are presented which induce specific brain signals depending on the subject’s
attention. Electroencephalography measures electrical potentials from the scalp
and stores the data in a file. These data are then analyzed after the experiment
was performed.

In this chapter, offline experiments are performed with the goal to find optimal stim-
ulus parameters, classifiers, and preprocessing strategies for driving online experiments.
After explaining the general experimental method in section 6.1, preprocessing parame-
ters are derived from a first experimental series and common Model-Based classification
algorithms are compared with Machine-Learning classifiers (section 6.2) based on data
from the electrode at the location Pz' (cf. Figure 6.2). Afterwards, classification perfor-
mance is further improved by analyzing data from a larger set of electrodes in section 6.3.
In order to accelerate the speed of the BCI device and to evaluate its generalization
performance, the presentation speed is increased within section 6.4 and more subjects
are considered. The capabilities to generalize to new subjects, i.e., whether it is possible

!This site was also the location for EEG recordings in the work of Farwell and Donchin (1988) and
Donchin et al. (2000) as detailed out in chapter 4.
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to train a classifier on data from certain subjects and use it for classifications of data
from other subjects, are investigated in section 6.5. This would allow to apply a classi-
fier without prior classifier training for the individual subject. Finally, the performance
of an earlier version of the algorithm, as assessed within the BCI Competition 2003
(Blankertz et al., 2004), is described in section 6.6.

6.1 General Experimental Setup

Throughout the chapter, the general experimental setup will stay the same. Those as-
pects of data acquisition, stimulus presentation, and data analysis that will be constant
are introduced in the following.

Data Acquisition

EEG electrodes were applicated to the positions Fz,Cz, Pz,0z,C3,C4, P3, P4, PO7,
and PO8?, respectively using Ag/AgCl electrodes and a Neuroscan Synamps 5083 am-
plifier (see Figure 6.2). The experimental chamber was sound attenuated and shielded
from electromagnetic influences with a Faraday cage. Impedances of about 2k{2 were
aimed for, which could not be achieved in every case, such that some electrodes exposed
higher impedances. Nevertheless, impedance was always below 11k{2. No correction for
EOG artifacts was performed.

Figure 6.2: Electrode locations of the experiments conducted in this chapter.

Stimuli
After applying EEG electrodes, the subjects were instructed to mentally count the
flashings of a symbol that was chosen by the presentation program, and given to the
subject in advance of each trial (see Figure 6.3). In order to familiarize the subject with
the program, some training trials were performed prior to each experiment, the data of
which were not recorded. The expansions of the stimulus matrix for the subject were
14.5° x 10°.

The subjects performed a number of trials within an experiment, each subdivided
into a constant number of subtrials. Thereby, a subtrial consists of a sequence of 12

2The locations PO7 and POS are 20% away from the Oz electrode towards the temporal lobe. These
sites were chosen due to their proximity to the Pz site, which is known to expose the largest P300
amplitudes (see section 2.5).
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time

button
button press
press

Figure 6.3: Sequence of a trial within an offline experiment. After the presentation
program randomly chooses the symbol to concentrate on, the subject can proceed
to a matrix presentation by pressing a button. A second button press initiates
the flashing sequence.

events where each column and each row of the matrix was flashed exactly once in
random order. The duration of the flashes, the so-called Interstimulus Interval (ISI, see
section 4.1), was varied among the experiments discussed in this chapter. EEG data
were recorded with respect to the certain experimental events, such that time series
of a specific length following a stimulus presentation were recorded. These series are
referred to as epochs. Note that depending on the ISI and the time window, overlaps of
consecutive time series can occur.

Data Analysis

Data were recorded with a samplingrate of 200Hz and band pass filtered within the
band 0.5Hz-30Hz at 96dB by the amplifier to correct for drifts and the power supply
frequency of 50Hz (cf. sections 2.3 and 5.2.1). The stimulus presentation was driven by
a program under MS-DOS since it is no multitasking operating system, which makes it
easy to produce software with stable clocking properties. The proprietary Neuroscan
software Acquire 4.1.1 for driving the amplifier and recording the data was designed
for Windows, such that Windows 98 was used to record the data. Finally, data were
analyzed using Matlab in a Linux environment because distributed calculations can be
performed in the Neuroinformatic’s Linux cluster. Since establishing a communication
between these three operating systems is difficult and the Neuroscan amplifier does not
offer direct access to the EEG data, designing an online BCI in this framework is a
delicate task (cf. section 7.1).

After recording, the data were analyzed using Matlab and the Support Vector Ma-
chine algorithms from the 1ibsvm toolbox of Chang and Lin (2001). For preprocessing,
data were band pass filtered with parameters as determined in section 6.2.1. After-
wards, the amplitudes were scaled to the interval [-1,1]. For the different classifiers,
it is necessary to scan a number of hyperparameters, i.e. parameters which need to be
adjusted to control the behavior of the classifiers: For Linear SVMs, the Parameter
C' controlling the violations to the classification by slack variables (cf. section 5.3.2)
needs to be chosen. RBF SVMs incorporate the additional hyperparameter « for the
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Table 6.1: In order to find reasonable hyperparameters for the different classifiers
Linear SVM (LSVM), SVM with Gaussian kernel (RBF SVM), and Fisher’s Lin-
ear Discriminant (FLDA), parameters were systematically scanned, and the cor-
responding classification performance was assessed in a 5-fold cross-validation.
For this purpose, a start value was multiplied with a specific factor in each step.
In case of RBF SVM, after finding first “optimal”’parameter values Copt and opt,
this procedure was repeated within close proximity of these values. In case of
FLDA, the start value was added by 0.02 in each step.

| Classifier | Parameter | Start Value | Increase | Steps |
LSVM 1] 1x107° x 1.06 200
RBF SVM (1) C 1x1072 X 2 25
v 1x1077 X 2 25
RBF SVM (2) c Copt X (£)° x 1.1 10
5 Yopt X (1—11)5 x 1.1 10
FLDA b -2 +0.02 200

bandwidth of the Gaussian kernel (see section 5.3.2). For Fisher’s Linear Discriminant,
the bias b needs to be chosen (see section 5.3.3). Values for the hyperparameters were
systematically varied with heuristic factors (Chang and Lin, 2001), and the resulting
classification accuracy was then assessed on disjoint test sets in a cross-validation man-
ner (cf. section 5.3.4). Parameters exposing the best average classification accuracies
in the cross-validation are regarded as being optimal. For this purpose, a start value
for each hyperparameter is multiplied by a factor in a certain number of steps for the
different classifiers (Table 6.1). Note that in the case of FLDA, the bias b is varied in a
linear fashion: From a start value, a constant value is added in each step. In the case
of RBF SVMs, each pair of hyperparameters (C,~) was used for training and testing.
Unfortunately, it would be computationally too expensive to look for optimal hyperpa-
rameters for both C' and + with 200 steps each, as it is performed in FLDA and LSVM
as well, since it would result in 40000 evaluations. Therefore, two levels of parameter
selection were employed: After finding a first “optimal’hyperparameter combination of
C and ~ within 25 steps for each hyperparameter, a finer search was conducted of 10
steps each within close proximity of this parameter combination (see Table 6.1, rows 4

and 5).

6.2 Improving Classification Accuracies on Single Electrode

Data

The goal of this first investigation is to derive appropriate preprocessing parameters
and to compare preprocessing and classification strategies on data solely acquired from
the Pz electrode. P300 components are most pronounciated at this site and Farwell
and Donchin (1988) also utilized this site for their analyses. To gain first insights into
the data, especially about which features might be useful, one can look at the Event-
Related Potential (ERP, see section 2.5) and the power spectra of P and P~ samples,
i.e., samples belonging to the correct row or column of the given symbol, or not. In
other words, the oddball event (see section 2.5) “correct row”or “correct column”produces

a P epoch in the EEG time series.
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Two male subjects (1A: 24 years, 1B: 26 years) participated in this experiment, each
performing 140 trials. A trial was divided into 3 subtrials (cf. section 4.1), resulting in
420 subtrials, and therewith in 840 Pt and 4200 P~ samples. In the data of subject 1A,
an invalid trial occurred due to drift corrections performed by the amplifier, resulting
in only 834 PT and 4170 P~ samples. Although data were recorded from the whole set
of electrodes as described above, only data from the Pz electrode were employed for
analyses within this experiment. After recording, data were analyzed offline. Ten out
of the 36 symbols were randomly chosen by the presentation program (ngymbor = 10),
and each symbol was repeated 14 times, resulting in ngyppersSymbol = 3-14 = 42 subtrials
per symbol. The Interstimulus Interval was set to 500ms (485ms highlighting + 15ms
delay, see also section 4.1). In advance of each trial, the subject was given a symbol
as randomly chosen from the presentation program. The matrix was then presented to
enable the subject to direct attention to the specified symbol. By pressing a button, the
subject could start the flashing sequence (see Figure 6.3). Within a trial, the flashing
sequence consisted of a series of 3 subtrials, each lasting 6 seconds and containing 12
flashes, such that each row and each column was highlighted once within a subtrial,
and a trial lasted 18 seconds. The sequence of the highlightings was random within
each subtrial. Thus, in a subtrial, there are two “positive”samples (P"), one belonging
to the row, and one belonging to the column with the specified symbol. All other 10
samples are “negative”’(P~) and should therefore not contain a P300.

6.2.1 Deriving Preprocessing Parameters

While most P300-based BCI approaches employ only heuristic preprocessing parame-
ters, for example 600ms time windows and a 0.02-35Hz band pass filter in Farwell and
Donchin (1988), in this section, the time window and the frequency band as well are to
be chosen in a more systematical way.

Methods

With the start of each event (i.e., a flashing row/column), an epoch of 2000ms was
extracted and Event-Related Potentials as introduced in section 2.5 were calculated by
averaging events which should contain a P300 (P") and those which should not (P~),
separately. Differences between P+ and P~ conditions can be identified by subtracting
according ERPs. In a second step, the power spectra of these differences were calculated
for each subject to identify relevant frequency ranges.

Results
The ERPs of the experiment are shown in Figure 6.4 (note that in EEG research,
negative amplitudes are commonly drawn upwards). While the first row depicts the
ERP of P' samples, the middle row contains the ERP of P~ samples, and the third
row exposes their differences. Within the ERP of the PT samples, negative peaks with
a temporal distance of about 500ms, starting with the first peak at about 200ms can
be identified for subject 1A. A similar rhythmic structure with more sustained signals
exists for subject 1B, where negative deflections also occur each 500ms. While a strong
positive deflection within the time frame of 300ms to 600ms is present for subject 1A,
subject 1B lacks this component. For P~ samples, the regularity of the negative peaks
remains for both subjects, but no P300 component can be identified for subject 1A.
In the difference P — P~ both subjects expose a strong positive deflection between
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Figure 6.4: ERPs for subject 1A (left) and subject 1B (right). While the first row
contains data from P+ samples, the middle row depicts data from P~ samples
and the bottom row exposes their differences P+ — P~.
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Figure 6.5: Power spectra of the ERP differences for subject 1A (left) and subject
1B (right). The dashed white rectangle indicates the time-frequency frame for
subsequent analyses.

300ms and 600ms without any further remarkable components. Power spectra of the
Pt —P~ difference also reveal similar components for both subjects. From the beginning
to about 800ms, components at a frequency up to about 8 Hz can be identified.

Discussion

The regular negative deflections with a temporal distance of 500ms for subject 1A and
subject 1B can be interpreted as N200 components, which are mainly related to the
sensory processing of a stimulus (see section 2.5). They are likely to reflect the sensory
processing of subsequent flashes which occur with a frequency of 500ms (t151=500ms).
However, in the average of the P samples only the first flash corresponds to the
oddball event, and should therefore elicit a P300 as also explained in section 2.5. Thus,
the positive deflection in subject 1A’s data between 300ms and 600ms can easily be
interpreted as a P300 and correlates with the semantic meaning of the stimulus, while
this component does barely occur for the other flashes within this 2000ms time window.
When computing the differences between the ERPs, the N200 components of their ERPs
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Figure 6.6: Cumulative Eigenvalues as a fraction of the sum of all Eigenvalues,
reflecting the degree of captured variance for subject 1A (left) and subject 1B
(right).

eliminate each other. Thus, the N200 components are not likely to carry information
which could contribute to the classification task. Only the P300 as well as the N200
component prior to the P300 carry this information. This pattern also occurs for subject
1B, although a P300 can not clearly be identified in the ERP of P* samples. However,
when comparing ERPs of P and P, the negative deflection at about 300ms to 600ms
in the ERP of P~ is missing in the ERP of PT. Thus, due to the comparably slow
negative deflections in subject 1B, a superposition of negative and positive components
seem to happen, resulting in amplitude values of about OuV.

The power spectra of the ERP differences reveal components within the time frame
of Oms-800ms with frequencies of not more than 8Hz. Thus, in the remaining sections,
feature extraction will rely on a 800ms time frame, corresponding to 160-dimensional
data vectors at a samplingrate of 200Hz. Furthermore, a low pass filter of 8Hz will be
utilized (cf. section 5.2.1). With this kind of filter, o waves (frequencies between 8 and
13 Hz, cf. section 2.1), which can be a source for artifacts, are a-priori excluded.

6.2.2 Principal Component Analysis

Performing Principal Component Analysis (PCA) reveals information about the vari-
ance of a dataset and allows to reduce the dimensionality of the data by projecting
them onto a certain number of Principal Components (cf. section 5.2.2). From the
Eigenvalues of the resulting 160 Principal Components, the variance captured by each
Principal Component can be calculated. The fraction

k
Zi:l Ai
160
ijl Aj
of the specific Eigenvalues A; from the sum of all Eigenvalues reflects the degree of

variance captured in the components up to this point.

qr = (6.1)

Methods

For performing PCA, data were preprocessed as suggested by the previous section by
extracting epochs of 800ms and performing band pass filtering (0.5-8Hz). Since the
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Figure 6.7: PCA matrices for the first 11 Principal Components for subject 1A
(left) and subject 1B (right). The columns of the matrices are the Principal
Components, which amplitudes are encoded in colors. Apparently, mainly cer-
tain frequencies are reflected by the different Principal Components.

number of the P~ samples exceeds the number of P+ samples by the factor 5 within
this paradigm, a subset of P~ samples was randomly chosen to construct a balanced set
with equal numbers of P+ and P~ samples. Then, a balanced set of 834 Pt and 834
P~ data samples was extracted. PCA was applied on the data and their Eigenvalues
and Principal Components were examined.

Results

The cumulative Eigenvalues for the different Principal Components, reflected as frac-
tions of the sums of all Eigenvalues is depicted in Figure 6.6. A variance of more than
99.9% is captured for both subjects within the first 11 Principal Components. For sub-
ject 1A, the first 9 Principal Components reflect 90% variance, while this amount of
information is captured in 8 Principal Components in subject 1B.

PCA matrices containing the first 11 Principal Components are shown for both sub-
jects in Figure 6.7, in which the columns contain the different Principal Components.
Apparently, predominantly certain frequencies are encoded within the different compo-
nents. While the first component reflects a frequency of about 1Hz (note that 160 data
points correspond to 800ms in the time domain), the frequency rises with subsequent
components up to about 6Hz in Principal Component 11.

Discussion

According to the Eigenvalues, a high data compression without loss of information from
160 to 11 dimensions is possible for both subjects by using PCA, maintaining 90% of
variance in either the first 9 (subject 1A) or 8 (subject 1B) Principal Components. In
both subjects, the different Principal Components reflect different frequencies and phase
shifts. Thus, rather than decomposing the original data in components which resemble
a P300 or other typical EEG components, oscillatory bases were found by PCA. This
outcome is related to the findings of Hancock et al. (1992) and Heidemann (2006) who
found two-dimensional Gabor-patches of different frequencies when analyzing collections
of natural scenes with Principal Component Analysis.
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6.2.3 Symbol Inferences using Model-Based Classifiers

In the following, the classification performance of the Model-Based classifiers area and
peak picking as (among others) employed by Farwell and Donchin (1988) and previously
discussed in section 4.1.1 will be assessed.

Methods

Classification in order to infer a symbol was performed as discussed in more detail in
section 5.4: From an EEG time series x;i, reflecting an epoch belonging to the flashing
of a row or column i within the subtrial &, the score sV (x;,) was calculated to infer a
symbol. For this section, one of the Model-Based classifiers area and peak picking, i.e.,
U € {Area, PP}, was chosen. The parameters for both classifiers were the boundaries
t1 and 9 of the P300 window, which need to be calculated from the ERP from a
number of trials, as can be seen in equations (6.2) and (6.3). As can also be observed
in Figure 4.6, area calculates the surface under the curve within the P300 window, and
peak picking measures the difference between the maximum within and the minimum
prior to the P300 window:

sMR (xyp) = ink(f), (6.2)
PP( "

$ 1 (X)) = minz(t) — max zig(t). (6.3)

t<tl t>t1
It is usually necessary to employ more than just one subtrial for a symbol inference
such that the score

Ncombined
SYx) = > s¥(xa), (6.4)
k=1

aggregating the number of ncombineq Subtrials is computed to infer the correct symbol
by choosing that row of index i, € Zyows = {r1,72,73,74,75,76} and that column with
index i, € Zeolumns = {€1,C2, €3, ¢4, C5, 6} which is assigned with the maximum score
S.¥(x) among the rows and columns, respectively (cf. section 5.4):

i = arg ax SY(x) and i, =arg iegﬁfnns SY(x). (6.5)
The number of aggregated subtrials n¢ombined Was systematically varied and the number
of correct symbol predictions, divided by the number of all possible predictions ninferences
for the specific ncombined has yielded the accuracy

Pacc = Ncorrect / Ninferences - (6'6)

Table 6.2 gives an example of performed symbol predictions utilizing different numbers
Neombined Of aggregated subtrials. The predictions were performed with the area clas-
sifier for all collected subtrials belonging to the symbol “S”on data from subject 1A.
Consult section 5.4 for more details about symbol inference.

As explained in sections 3.3 and 4.2, in order to assess the speed of the BCI device
and to be able to compare the results with other approaches, the more general measure
information transfer rate in bits/min, taking also the time for spelling a symbol into
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Table 6.2: Calculation of accuracy rates in symbol inference for the symbol “S”.
From ngybpersymbol = 42 subtrials belonging to one symbol, n¢ombined Subtrials
are aggregated, and only ninferences can be inferred. The number of correctly
inferred symbols ncorrect divided by ninferences yields the accuracy pacc. Correctly
inferred symbols are underlined.

Necombined | Inferred Symbols | Neorrect | Ninferences | Pace |
1 MKKSS4YYG79XS6USXCTSSTXUFNGGAVOSZWBVXBSSX8 9 42 0.214
2 SS4YYXYUSSSSCGS4UV3S3 8 21 0.381
3 GSY9USSSCANWSS 6 14 0.429
4 SS4SSSASWS 7 10 0.70

account, can be computed as

60 - (10g2 36 + Pacc 1085 Pace + (1 — Pace) logy 1_3%1“)

Ncombined * 12 - tis1

B(367 Pace LIST, ncombined) =

(6.7)
for ncombined Subtrials and an Interstimulus Interval of ¢151. For the current investigation,
the data were split into two halfs, each containing half of the symbols. On the first half,
the parameters ¢; and to for the classifiers were determined (see below). Afterwards,
the symbols for the second half were computed. This procedure was then repeated on
switched sets, i.e., the parameters were determined on the second set and then applied
for classifying the first set.

Results

As depicted in Figure 6.8, for subject 1A, the mean classification accuracy reached 80%
(Pace = 0.800) with 12 subtrials and the area classifier, while a limit of 90% accuracy
was achieved after 14 subtrials (pace = 0.933). Several authors regard reaching 80%
or 90% classification accuracy as a limit for a practical usage of a BCI (Farwell and
Donchin, 1988; Serby et al., 2005). Thus, in the following, the times for exceeding these
criteria will be crucial measures for the performance of the BCIs. In this experiment,
each subtrial lasted 6 seconds. Therefore, durations of 72s and 84s, respectively, would
be required to satisfy the criteria. Peak picking reached the 80% criterion after just
8 subtrials or 48s (paec = 0.840) and 90% accuracy with 13 subtrials or within 78s
(Pace = 0.900). The maximum information transfer rate (cf. section 3.3) in subject 1A
was 4.10 bits/min using the area classifier and 4.86 bits/min under the peak picking
classification method. When reaching 80% accuracy first, information transfer rates
of 2.99 bits/min and 3.51 bits/min, respectively, were achieved for the area and peak
picking classifiers.

In contrast, area and peak picking as well did both not exceed 30% accuracy for
subject 1B, and information transfer rates also stayed below 1 bit/min in any case.

Discussion

For both classifiers, strong interindividual differences were found. Although area and
peak picking both reached a criterion of 80% accuracy after a certain number of repeti-
tions for subject 1A, they failed to produce reasonable results for subject 1B, such that
it would not be practicable to use the methods for subject 1B. While in this experi-
ment, for subject 1A, in the average subtrials of a length of 48s for the area classifier
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Figure 6.8: Classification accuracies (top row) and information transfer rates in
bits/min (bottom row) for subject 1A (blue line) and subject 1B (red line).
Results were computed using the Model-Based classifiers area (left) and peak
picking (right) employing data from the Pz electrode. While the classifiers
work comparably well for subject 1A, they only expose a weak performance for
subject B. A subtrial denotes a sequence of flashing all 6 rows and 6 columns
once and lasted 6 seconds in this experiment.

and 72s for the peak picking classifier were needed to reach 80% accuracy, Farwell and
Donchin (1988) achieved better results with these techniques, ranging from 12.6 s to
56.6 s (area) and 17.3 s to 28.2 s (peak picking) to reach the 80% accuracy criterion
(see section 4.1.1).

6.2.4 Binary Classification using Machine-Learning Classifiers

After the Model-Based classifiers yielded only unsatisfying results, the performance of
Machine-Learning classifiers will be investigated.

In a first step, the three classification techniques Fisher’s Linear Discriminant
(FLDA), Linear Support Vector Machine (LSVM) and Support Vector Machine with
Gaussian kernel (RBF SVM) will be compared (see section 5.3). In contrast to area and
peak picking, which both rely on averaged trials, these approaches are used to classify
single trials. Only in a second step, classifications of a number of single trials will be
aggregated in order to infer the symbols (see section 5.4). Relying on single trials makes
it possible to first compare the performance of the classifiers for binary classifications
distinguishing between P and P~ samples in order to receive preliminary information
about how well they will work for symbol inferences. This procedure is computationally
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much cheaper and therefore allows for a larger number of comparisons.

Beside investigating effects of the different classifiers on classification accuracies, it
will be assessed how well the classifiers work with dimensionality reduced data using
PCA. As detailed out in section 5.2.2, due to the curse of dimensionality and compu-
tational costs, it is advisable to find a data representation which follows the intrinsic
dimensionality of the data. Furthermore, with a lower dimensionality, singularity of
the data matrix becomes more improbable, making it possible to apply FLDA using
simple matrix inversions (see section 5.3.3). While it is not possible to employ PCA for
the Model-Based methods area and peak picking, which both depend upon the specific
temporal structure of the data, Machine-Learning techniques can easily be adapted to
a given data structure and do not take into account the temporal relationships here.
PCA dimensionality reduced feature vectors were used for classification, such that data
projections onto 2, 8, 9, and 11 Principal Components will be examined. The previous
PCA analyses revealed that 8 Principal Components reflect 90% variance of the data
from subject 1A, and 9 Principal Components 90% variance of subject 1B’s data. For
both subjects, 11 Principal Components capture 99.9% variance (see section 6.2.2).

Methods

Classification performance was assessed using a balanced set of 834 P and 834 P~
samples of the data. This set was further divided into two balanced halfs of 417 P+
and 417 P~ randomly selected samples. One half served as the training set, and the
other half as the test set (see section 5.3.1). The Machine-Learning classifiers were
trained on the training set, and their performance in correctly classifying the unseen
data of the test set was evaluated afterwards. Training consisted of two steps: In a
first step, the hyperparameters of the classifiers were varied as described in section 6.1
and summarized in Table 6.1, and the classification performance was assessed in a 5-
fold crossvalidation scheme (see section 5.3.4): The training data were divided into 5
sets, and 4 sets were used for training while the remaining set served as a test set;
this procedure was then repeated for each possible combination of these sets, and the
mean classification performance on the 5 test sets was computed. In a second step,
those hyperparameters which yielded the best mean classification performances were
selected and the whole training data were used for adapting the Machine-Learning
classifiers with this parameter configuration. Then, the test data were classified and
the classification accuracy, i.e., the number of correctly inferred labels divided by the
number of all samples, was calculated.

Results

Table 6.3 exposes the classification results as achieved for the two subjects by employing
the different numbers of Principal Components and different classifiers. The classifica-
tion results obtained with feature vectors of 8, 9, 11, and 160 dimensions ranged from
0.693 to 0.707 for subject 1A, and from 0.646 to 0.668 for subject 1B. Employing 2-
dimensional feature vectors yielded accuracies of only 0.621 to 0.636 for subject 1A, and
0.585 to 0.612 for subject 1B. In an overall comparison, the RBF SVM classifier with
11 or 160 dimensions exposed the best classification performance.

Discussion
Three important outcomes can be observed in the results. First, the 160-dimensional
data vector can be reduced to 11 (and even less) dimensions without loss in classifi-
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Table 6.3: Classification accuracies in binary classification using the Machine-
Learning classifiers FLDA, LSVM, and RBF SVM for the subjects 1A and 1B.
Beside classifying data from the Pz electrode with the original 160 dimensions,
also feature vectors with reduced dimensionality were analyzed. By employ-
ing PCA, such feature vectors of 2, 8, 9, and 11 dimensions were calculated.
Thereby, 8 and 9 dimensions reflect 90% of captured variance for subject 1A
and subject 1B, respectively. For both subjects, 11 dimensions capture 99.9%
variance of the data. With 160 dimensions, the data matrix became singular
and FLDA could not be performed without further adaptations.

Principal Components Original Space
Subject Classifier 2 | 8 | 9 | 11 160
FLDA 0.621 | 0.700 | 0.698 | 0.689 -
1A Linear SVM | 0.624 | 0.693 | 0.707 | 0.687 0.687
RBF SVM | 0.636 | 0.698 | 0.698 | 0.695 0.696
FLDA 0.595 | 0.648 | 0.646 | 0.646 -
1B Linear SVM | 0.612 | 0.649 | 0.651 | 0.651 0.651
RBF SVM | 0.585 | 0.651 | 0.663 | 0.668 0.668

cation accuracies. This finding indicates that PCA has qualified as a good technique
for dimensionality reduction in this context. Second, when employing 11-dimensional
feature vectors, it is possible to use the computational less expensive FLDA, and this
classifier exposes almost the same performance as the state-of-the-art Support Vec-
tor Machines. Furthermore, RBF SVM did not necessarily perform better than the
other methods, such that the regularity behind the data was well reflected by linear
techniques. Third, in contrast to the Model-Based classifiers, only small differences in
classification accuracy between the subjects can be observed. Apparently, the ability
of the Machine-Learning classifiers to adapt to signals reduced the interindividual dif-
ferences. This first rough investigation of classification performances helps to design
further examinations but does nevertheless not allow to draw far reaching assertions.
Thus, to allow for more conclusions and to provide a fair comparison with the Model-
Based techniques, computing symbol inferences is necessary.

6.2.5 Symbol Inferences using Machine-Learning Classifiers

Binary classification revealed that the strong differences in classification performance
between the subjects as observed for the Model-Based classifiers almost vanished when
using Machine-Learning classifiers. Furthermore, by reducing the dimensionality of
the data to only 11 dimensions by using Principal Component Analysis, no loss in
performance occurred. In this section, symbols the subjects directed attention to are
to be inferred by the Machine-Learning classifiers.

Methods

The data were divided into two halfs, each containing 50% of the symbols. Training
of the Machine-Learning classifiers was performed as in binary classification: The first
half served as a training set, within which a 5-fold crossvalidation was performed on a
balanced set in order to find the suitable hyperparameters. Then, the classifiers were
trained on the whole data from this set, and the data of the second half were classified
to compute the correct symbols as described in 5.4 for different numbers of subtrial
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combinations. Afterwards, this whole procedure was also performed on switched sets,
i.e., the first half served as a test set and the second half as the training set.

As for binary classification, the trained classifier as well as the PCA matrices were
computed on the training sets. The whole dimensionality of 160 was employed for
LSVM and RBF SVM classifications. Using data projections onto the first 11 Principal
Components, beside LSVM and RBF SVM also FLDA was used for data analysis, which
became possible without further modifications for this dimensionality (cf. section 5.3.3).

Results
As it is depicted in Figure 6.9, for subject 1A, employing the whole dimensional-
ity of 160, a classification accuracy of 80% was exceeded when employing 8 subtri-
als® and the Linear SVM (pacc = 0.815), and after 9 subtrials using the RBF SVM
(Pace = 0.825). However, the classifier’s performance temporarily sank below 80% for
10 subtrials (LSVM: paec = 0.767, RBF SVM: pae. = 0.792). Both classifiers exceeded
90% classification accuracy after 12 subtrials. Maximum information transfer rates
were 5.08 bits/min and 5.10 bits/min for LSVM and RBF SVM, after 4 and 5 sub-
trials, respectively. Under the precondition of reaching 80% accuracy, transfer rates
of 4.63 bits/min and 4.12 bits/min were obtained for LSVM and RBF SVM and for
exceeding 90% accuracy, 3.65 bits/min were achieved with both classifiers. For sub-
ject 1B, 80% accuracy was achieved with 12 subtrials for both classifiers (LSVM:
Pacc = 0.800, RBF SVM: pyee = 0.830). Again, LSVM experienced a short fallback
below 80% at 14 subtrials (pacc = 0.767). The classifiers failed to reach 90% accuracy
for subject 1B within 15 subtrials. Best Information transfer rates were 3.91 bits/min
and 4.19 bits/min after 4 and 3 subtrials for the classifiers LSVM and RBF SVM.
When projecting the data onto 11 Principal Components, it became possible to di-
rectly employ FLDA. For subject 1A, the different classifiers FLDA, LSVM, and RBF
SVM each reached 80% accuracy after 8 subtrials, but RBF SVM exposed superior per-
formance with paec = 0.875 in contrast to paec = 0.815 for FLDA and paec = 0.855 for
LSVM (see Figure 6.10). An accuracy of 90% was reached after 12 subtrials for each clas-
sifier (pace = 0.90 each). The best information transfer rates were 5.24 bits/min (FLDA,
4 subtrials), 5.33 bits/min (LSVM, 6 subtrials), and 6.33 bits/min (RBF SVM, 4 subtri-
als). Considering a criterion of mandatory 80% accuracy, 4.63 bits/min, 5.07 bits/min
and 5.23 bits/min were achieved with the classifiers FLDA, LSVM, and RBF SVM,
respectively. For subject 1B, the best information transfer rate was 4.49 bits/min
(LSVM, 4 subtrials). All classifiers reached the 80% criterion after 13 subtrials (FLDA:
Pace = 0.867, LSVM: paee = 0.800, RBF SVM: pyee = 0.800) with information transfer
rates of 3.17 bits/min, 2.97 bits/min and 3.04 bits/min, respectively, for the three clas-
sifiers. They failed to reach 90% accuracy within 15 subtrials. In contrast to analyses
with the 160-dimensional data space, no fallback occurred in these cases.

Discussion

The Machine-Learning classifiers outperformed the Model-Based classifiers in two ways.

First, the classification accuracies of the Machine-Learning approaches were superior

compared to the Model-Based approaches. Second, the lack in performance for subject

1B with Model-Based methods disappeared when using Machine-Learning techniques.
The ability of Machine-Learning techniques to adapt to the data, rather than obeying

3In this experiment, one subtrial lasted 6 seconds.
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Figure 6.9: Classification accuracies (top row) and information transfer rates (bot-
tom row) for subject 1A (blue graph) and subject 1B (red graph) using the
classifiers Linear SVM (left), and RBF SVM (right) on data of 160-dimensional
feature vectors representing data recorded from the Pz electrode.
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Figure 6.10: Classification accuracies (top row) and information transfer rates (bot-
tom row) for subject 1A (blue graph) and subject 1B (red graph) using the clas-
sifiers Fisher’s Linear Discriminant (left), Linear SVM (middle), and RBF SVM
(right) on data from the Pz electrode projected onto 11 Principal Components.
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Figure 6.11: Mean classification accuracies among both subjects for symbol in-
ferences of the different classifiers employing either 160-dimensional or PCA-
reduced 11-dimensional feature vectors representing data from the Pz electrode.
In this experiment, a subtrial (a sequence of 6 row and 6 column flashes) lasted
6 seconds.

certain assumptions about the data, led to much better results than achieved with the
Model-Based techniques area and peak picking. As already revealed by Figure 6.4, the
data from the two subjects differ substantially, and the data from subject 1B expose
ERP waves which do not fit exactly into common assumptions about a P300, as they are
employed in the classification techniques area and peak picking. Particularly for such
subjects, the classification accuracies can substantially be improved by using Machine-
Learning techniques.

Performing Principal Component Analysis to reduce the dimensionality of the feature
vectors by projecting the data onto 11 dimensions, capturing more than 99.9% of the
variance, yielded almost the same performances as employing the original data with
160 dimensions (see Figure 6.11). Thus, as in binary classification, PCA qualified as a
good choice for dimensionality reduction in this context. Using the dimensionality re-
duced feature vectors, classification with Fisher’s Linear Discriminant Analysis became
possible. Although this technique is much simpler (and computationally less expensive)
than Support Vector Machines, comparable classification results were achieved with this
techniques.

With the increases in classification accuracy using Machine-Learning classifiers, the
information transfer rates were also improving. But with a maximum transfer rate of
6.33 bits/min they stayed nevertheless unsatisfying.
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6.2.6 Conclusion

In a first step, preprocessing parameters were derived from the ERPs and the power
spectra, suggesting epoch lengths of 800ms and band pass filtering of 0.5-8Hz. These
parameters were subsequently used for preprocessing.

When calculating Principal Components, it turned out that a dimensionality reduc-
tion from 160 to 11 dimensions was possible by retaining more than 99.9% of the data
variance. The according Principal Components reflect different frequency and phase
information from 1Hz to 6Hz.

Ambiguous results were found for the Model-Based classifiers area and peak picking.
While they performed comparably well for subject 1A, they failed to produce viable
results for subject 1B. In contrast, applying the Machine-Learning classifiers Linear
and RBF SVM has yielded reasonable classification performances for both subjects.
In the mean, the Machine-Learning classifiers outperformed the Model-Based classi-
fiers. Thereby, the non-linear classifier RBF SVM produced almost the same results
as the linear classifiers, making it likely that the classification problem is already well
represented by linear techniques.

Binary classifications with Machine-Learning classifiers of P* and P~ samples as
well as symbol inference computations have shown that projecting the data onto the
first 11 Principal Components revealed almost the same classification rates compared
to using the original 160-dimensional data. Therefore, PCA qualified as an appropriate
technique for dimensionality reduction in this context. Since RBF SVM as a non-linear
method yielded comparable results as the linear methods, non-linear techniques for
dimensionality reduction (like a kernel PCA) need not to be considered.

With dimensionality reduced feature vectors it became possible to directly perform
classifications with FLDA, since the within-class scatter matrices did no longer became
singular (cf. section 5.3.3). The classification performance for FLDA was almost the
same as for the Support Vector Machines. Furthermore, the dimensionality of the
feature vectors (11 or 160) did not affect the classification results. A summary of the
classification accuracies obtained with the different classification strategies is depicted
in Figure 6.11.

Although the Machine-Learning classifiers enhanced the classification performance,
the classification accuracies remained low, and in the mean, about 8 subtrials, i.e.,
92 seconds would be necessary to spell a symbol with an accuracy of 80%, which is
unsatisfying slow when intending to use this device for communication purposes in an
online version. Thus, the following section aims to increase the classification accuracies
by employing data from more electrodes.

6.3 Improving Classification Accuracies using Data from
Multiple Electrodes

As a first possibility to further increase the performance of the Machine-Learning clas-
sifiers and therewith the information transfer rates, taking data from more than just
one electrode for classifications can be considered. The prior analyses were based on
data from the Pz electrode because the P300 is known to be most prominent at this
site, and the original work of Farwell and Donchin (1988) and Donchin et al. (2000)
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Figure 6.12: Scalp distributions of ERPs from P* (red solid line) and P~ (blue
dashed line) events for subject 1A (left) and subject 1B (right).

relied on data from this electrode. However, when examining data from other scalp
positions than Pz, differences between P+ and P~ epochs can also be identified in the
ERP. Most of these differences are similar to those observed at Pz, but some of them,
especially at the sites PO7, PO8 and Oz also expose another structure of differences
(see Figure 6.12). This finding encourages to employ data from more than just one
electrode location. If oddball events (cf. section 6.2), i.e., flashings of the row or col-
umn containing the symbol to attend to, also induce different activations compared to
non-oddball events at further sites than Pz, this might enhance the signal-to-noise ratio
and result in better classification performances when considering more electrode sites.

This section aims to examine this suspicion based on data from the experiment of the
previous section. The experiments is the same, but instead of using only data from the
P~z electrode, also data from the further locations are to be considered. As a first step,
Principal Components will be analyzed. It will be investigated to which degree they
are still capable to decrease the dimensionality of the feature vectors with the extended
electrode space. In contrast to the previous section, it would be necessary to extend
the model assumptions of the Model-Based classifiers area and peak picking to further
locations than Pz. Since the Model-Based techniques already lacked performance in the
previous section, they will not be considered in the following. Instead, Machine-Learning
techniques can easily be adapted to a new data structure, and binary classification as
well as symbol inference will solely be performed with Machine-Learning classifiers in
the remaining sections.

6.3.1 Principal Component Analysis

Methods

Principal Component Analysis was performed in the same way as in the previous
section, but the feature vectors were 1600-dimensional, reflecting the 10 scalp sites
Fz,Cz Pz,0z,C3,C4, P3, P4, PO7, and POS as well as the 160 sampling points for
time series of 800ms data. Again, PCA was calculated on a balanced set of 834 P+
and 834 P~ samples. Since the new data vector incorporates data from 10 electrodes
simultaneously, a Principal Component reflects temporal and spatial patterns as well.
Figure 6.13 (left) gives an example of such a spatio-temporal Principal Component. The
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Figure 6.13: Example of a Principal Component taken from subject 1A (Principal
Component 14, cf. Figure 6.15). Left: Electrode positions are vertically aligned,
while time is drawn on the x-axis. Color shading indicates intensities, compara-
ble to amplitude values. Clear differences between the last three electrode sites
PO7, PO8, Oz and the other sites can be observed in their temporal structure.
Right: Intensity plots of the component reflecting the electrode sites which were
color encoded in the left figure.

1600-dimensional data vector is split into 10 rows, each reflecting an electrode position,
and into 160 columns, containing the 800ms points in time. Thereby, color shading
indicates intensities as depicted in 6.13 (right).

Results

The distribution of the cumulative Eigenvalues for both subjects is depicted in Fig-
ure 6.14. For subject 1A, 99.9% of the data variance are captured within the first 84
Principal Components, while 99% and 90% are incorporated in 56 and 17 components,
respectively. For subject 1B, 90%, 99% and 99.9% are captured within the first 26, 71,
and 95 components, respectively.

The first 28 Principal Components, including the first 17 and 26 components which
reflect 90% variance in subject 1A and 1B, are depicted in Figures 6.15 and 6.16,
respectively.

Discussion

Strong dimensionality reductions from 1600 to less than 100 dimensions by retaining
99.9% of the data variance were achieved for both subjects by Principal Component
Analysis. The Principal Components reflect spatio-temporal activation patterns. A
first investigation of the components revealed that predominantly different frequencies
were reflected within the different components. While these frequency patterns were
distributed over all electrodes in almost the same way up to PCA 7 in subject 1A and
PCA 11 in subject 1B, differentiations between electrodes occurred for higher Principal
Components as can be observed in Figures 6.15 and 6.16. Particularly the occipital
and parieto-occipital sites Oz, PO7 and POS often form a cluster of different patterns
compared to the other sites (e.g., PCA 14 for subject 1A and PCA 12 for subject 1B).
This finding corresponds to the different activations at these sites already found in the
ERP (cf. Figure 6.12).
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Figure 6.14: Cumulative Eigenvalues of Principal Components from the data of
subject 1A (left) and subject 1B (right) using 1600-dimensional feature vectors
representing time series of 10 electrodes.

6.3.2 Binary Classification with Principal Components as Feature Vectors

In order to estimate the classification accuracies with data projections onto different
numbers of Principal Components, the computationally rather inexpensive binary clas-
sification is performed.

Methods

Classification accuracies were assessed as in section 6.2.4: The 834 P* and 834 P~
samples data were further divided into two balanced halfs of randomly chosen 417 P+
and 417 P~ samples each. A 5-fold cross-validation was then performed on one half to
find suitable hyperparameters, which were then employed for training the data on this
half. Afterwards, classification of the other half was performed.

Results

Table 6.4 contains the classification results as obtained for the different numbers of
Principal Components and different classifiers for subject 1A, while Table 6.5 shows
this information for subject 1B.

For subject 1A, classification accuracies were increasing with the number of Principal
Components for each classifier, but only little differences were found between 84- and
1600-dimensional feature vectors. With 84 dimensions in the feature vector, FLDA
yielded the same accuracy rate as LSVM.

For subject 1B, the general trend that employing more Principal Components results
in better accuracies was also present with the exception that employing 95 Principal
Components produced slight better classification results than using the full space with
1600 dimensions. Furthermore, with FLDA and 71 Principal Components, better results
could be obtained than with 95 Principal Components.

Compared to section 6.2.4, the best classification results could be improved from 0.707
(9 Principal Components, LSVM) and 0.668 (11 Principal Components, RBF SVM) for
subject 1A and 1B, respectively, to 0.886 (1600 dimension, RBF SVM) and 0.845 (71
Principal Components, FLDA).

The number of Principal Components affected the classification accuracies such that
better accuracies were achieved when using more Principal Components. However,
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Figure 6.15: Subject 1A: First 28 Principal Components. While the first compo-
nents mainly reflect certain frequencies for all electrode sites, varying patterns
can be observed for different sites with higher components (>PCA 13). Fig-
ure 6.13 gives an example about the structure of the activation patterns.
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Figure 6.16: Subject 1B: First 28 Principal Components. Again, first components
reflect same frequency patterns for the different electrode sites, while they spread
in higher components (>PCA 11).
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Table 6.4: Classification accuracies in binary classification based on data from 10
electrodes using the Machine-Learning classifiers FLDA, LSVM, and RBF SVM
for subject 1A. The full data space of 1600 dimensions as well as dimensionality
reduced feature vectors were employed for classification. In this subject, pro-
jections on the first 17, 56, and 84 Principal Components reflect 90%, 99% and
99.9% of the data variance, respectively. With 1600 dimensions, the data matrix
became singular and FLDA could not be performed without further adaptations.

Principal Components Full Space
Classifier 2 | 10 | 17 | 56 | 84 1600
FLDA 0.645 | 0.753 | 0.825 | 0.873 | 0.879 -
Linear SVM | 0.655 | 0.764 | 0.812 | 0.878 | 0.879 0.884
RBF SVM | 0.627 | 0.736 | 0.814 | 0.877 | 0.883 0.886

Table 6.5: Classification accuracies in binary classification for subject 1B. In this
subject, projections on the first 26, 71, and 95 Principal Components reflect
90%, 99% and 99.9% of the data variance, respectively.

Principal Components Full Space
Classifier 2 | 10 | 26 | 71 | 9 1600
FLDA 0.651 | 0.671 | 0.800 | 0.845 | 0.839 -
Linear SVM | 0.638 | 0.669 | 0.806 | 0.831 | 0.844 0.830
RBF SVM | 0.649 | 0.667 | 0.808 | 0.830 | 0.844 0.841

only slight differences in classification accuracy were obtained for the feature vectors
employing the full 1600-dimensional space or with 99.9% PCA-reduced features. Again,

all Machine-Learning classifiers yielded results within the same accuracy range.

Discussion

Employing data from all 10 electrodes has yielded much better classification accuracies
compared to using data from the Pz electrode alone (cf. section 6.2.4). The per-
formance of the classifiers was in the same range. The RBF SVM did not necessarily
produce better results, indicating that the classification problem is already well reflected
by linear techniques. Classification accuracies were barely worsen when using 99.9% of
the information represented in the Principal Components compared to using the full
space of 1600 dimensions. Thus, dimensionality reduction as performed by PCA has
found an adequate representation of the data structure. For subject 1B, classification
accuracies even rised when employing the first 95 Principal Components. This phe-
nomenon might be caused by reduction of noise contained in the dropped 0.1% of the
data variance. Nevertheless, for less than 95 Principal Components, the general trend
was that employing fewer Principal Components also resulted in worse classification

accuracies.

6.3.3 Symbol Inferences

As performed in section 6.2.3, the Machine-Learning classifiers are employed to infer

symbols from the data in the following.
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Table 6.6: Calculation of accuracy rates in symbol inference for the symbol “S”in
subject 1A using the LSVM classifier and the 1600-dimensional feature vector.
From ngybPersymbol = 42 subtrials, which is the number of subtrials belonging to
one symbol, ncombined Subtrials are aggregated, such that ninferences inferences
can be computed for this number of aggregations. Correct inferences are under-
lined and symbols were inferred on the same data source as the results exposed
in Table 6.2.3.

| Necombined | Inferred SymbOIS | Necorrect | Ninferences | Pace |
1 SGSSTSYYSSSSSSM7SSSSSSSGSAXSSSMASGSUSYWSSS 27 42 0.643
2 SSSYSSSMSSSSSSSSSSSSS 19 21 0.905
3 SSSSS5SSS5SSS8SS 14 14 1.000
4 SS5555SSSSS 10 10 1.000
Methods

Data were split into two halfs, each half containing 50% of the symbols. One half served
as the training set, the other half as the test set and vice versa. Training was performed
as in binary classification: Balanced sets were constructed on the training set and a 5-
fold cross-validation was performed to find suitable hyperparameters for the classifiers
which were then trained on the whole training set and applied to the test set in order
to infer the symbols. Symbol inference was then performed as discussed in detail more
in sections 6.2.5, 6.2.3 and 5.4.

This procedure was performed using the original 1600-dimensional feature vectors for
LSVM and RBF SVM as well. On the other hand, PCA dimensionality reduced feature
vectors capturing 99.9% variance, resulting in 84 dimensions for subject 1A, and 95
dimensions for subject 1B, were a further basis for classifications with FLDA, LSVM,
and RBF SVM.

Results

For a direct comparison, Table 6.6 contains symbol inferences from the same data
source as Table 6.2 with the difference that the former results were calculated using 10
electrodes and the LSVM classifier, while the latter ones were calculated using the area
classifier on the Pz electrode alone. Constant perfect accuracy was reached after 13
subtrials using the area classifier on the Pz electrode, and after just 3 subtrials with 10
electrodes and the LSVM classifier.

Figure 6.17 depicts classification accuracies and information transfer rates for subject
1A and subject 1B as calculated with RBF SVM and LSVM on 1600-dimensional
data from the 10 electrodes. For subject 1A, both classifiers reached 80% as well
as 90% classification accuracy with data from 2 subtrials (LSVM: p,.. = 0.927, RBF
SVM: paec = 0.918). A maximum information transfer rate of 31.54 bits/min (1 sub-
trial) was achieved using LSVM, and of 29.82 bits/min with the RBF SVM. However,
with the constraint to reach at least 80% and 90% accuracy, transfer rates decrease to
22.25 bits/min and 21.78 bits/min, respectively.

For subject 1B, LSVM achieved an accuracy of p,.c = 0.814 after 2 subtrials, and
exceeded 90% accuracy after 3 subtrials (pacc = 0.936). RBF SVM exceeded 80% (and
also 90%) accuracy after 3 subtrials (pacc = 0.943). The best information transfer
rates for subject 1B were 22.56 bits/min and 22.28 bits/min for LSVM and RBF SVM,
respectively. Reaching the 80% criterion first yielded corresponding transfer rates of
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Figure 6.17: Classification accuracies (top row) and information transfer rates (bot-
tom row) for subject 1A (blue graph) and subject 1B (red graph) using the
classifiers Linear SVM (left) and RBF SVM (right) on data of 1600 dimensions.
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Figure 6.18: Classification accuracies (top row) and information transfer rates (bot-
tom row) for subject 1A (blue graph) and subject 1B (red graph) using the
classifiers FLDA (left), Linear SVM (middle), and RBF SVM (right) on data
projected onto Principal Components capturing 99.9% variance (i.e., 84 for sub-
ject 1A and 95 for subject 1B).
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17.86 bits/min and 15.37 bits/min for LSVM and RBF SVM, respectively.

For dimensionality reduced features capturing 99.9% variance, Figure 6.18
reveals the classification results and transfer rates for the different classifiers FLDA,
LSVM, and RBF SVM under this condition. For subject 1A, the first exceedings
of the 80% (and 90%) limit were reached after 2 subtrials for each classifier (FLDA:
Pace = 0.956, LSVM: p,ec = 0.922, RBF SVM: paec = 0.928). Best information trans-
fer rates were consistently achieved for one subtrial (FLDA: 34.25 bits/min, LSVM:
31.74 bits/min, RBF SVM: 31.81 bits/min), but decreased when considering a mini-
mum limit of 80% accuracy (FLDA: 23.57 bits/min, LSVM: 22.06 bits/min, RBF SVM:
22.34 bits/min).

When analyzing the dimensionality reduced data of subject 1B, 80% accuracy was
reached after 3 subtrials with FLDA (pacc = 0.929) and RBF SVM (pacc = 0.914) as well,
while LSVM only required 2 subtrials (pacc = 0.819). Again, the best information trans-
fer rates were observed for one subtrial (FLDA: 22.95 bits/min, LSVM: 22.70 bits/min,
RBF SVM: 21.72 bits/min), but decreased when considering the 80% criterion
(FLDA: 14.90 bits/min, LSVM: 18.02 bits/min, RBF SVM: 14.51 bits/min).

Discussion

Strong increases in classification performance were achieved by augmenting the elec-
trode space from the Pz electrode to an ensemble of 10 electrodes distributed over the
scalp. While it was necessary to employ at least 8 subtrials to reach 80% classification
accuracy, only two subtrials for subject 1A, and three subtrials for subject 1B were
required. This increase in classification accuracy also resulted in improved information
transfer rates. The overall best transfer rate was 34.25 bits/min, and with a minimum
classification accuracy of 80%, transfer rates between 14.90 bits/min and 22.25 bits/min
were achieved.

Similar to the findings in the previous section, by projecting the data onto Prin-
cipal Components capturing 99.9% of the data variance, no substantial reductions in
classification performance, regardless of classification technique, were observed. No
combination of classification and dimensionality reduction technique was superior to
the other (see also Figure 6.19).

6.3.4 Conclusion

Similar to section 6.2, without loss of classification accuracy, strong dimensionality
reductions could be performed with PCA. Only 84 (subject 1A) and 95 (subject 1B)
Principal Components were necessary to employ for representing more than 99.9% of
the variance of the original 1600-dimensional data space.

Binary classification revealed that strong classification improvements can be obtained
when employing the whole set of 10 electrodes: While using one electrode yielded
accuracies of maximal 0.707 (subject 1A) and 0.668 (subject 1B), with 10 electrodes,
maximal accuracies of 0.886 (subject 1A) and 0.845 (subject 1B) were reached.

This trend was also confirmed when calculating accuracies for symbol inferences and
corresponding information transfer rates, such that compared to section 6.2 the best
information transfer rates could be improved from 6.33 bits/min and 4.49 bits/min
up to 34.25 bits/min and 22.95 bits/min for subject 1A and subject 1B, respectively.
As Figure 6.19 summarizes, in the average, all three classification techniques yielded
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Figure 6.19: Classification accuracies for the different classifiers using the whole
dimensionality of 1600 or 99.9% captured variance in Principal Components.

classification results within the same range, regardless of employed dimensionality.
Since e.g., Farwell and Donchin (1988) could improve their transfer rates by employing
a shorter Interstimulus Interval, it can be suspected here that decreasing the ISI might
also result in even better information transfer rates than obtained so far. Furthermore,
analyzing data from just two subjects might not be sufficient for general assertions,
such that the following section will also extend the investigations to more subjects.

6.4 Improving Information Transfer Rates by ISI Reduction

Although the classification accuracies could be improved in the previous sections by
employing Machine-Learning classifiers and multiple electrodes, it would nevertheless
be desirable to have higher information transfer rates. As discussed in section 4.2 and
depicted in Figure 4.7, decreasing the Interstimulus Interval is capable to improve the
information transfer rate. Little decreases in classification accuracies as they can be
expected for small ISIs due to less pronounciated P300 components (see Figure 4.4)
can eagsily be compensated by the increases in presentation speed. Thus, the IST will
be set to 140ms (125ms highlighting + 15ms delay) in the following to achieve better
information transfer rates. Furthermore, in order to generalize the findings, data from
eight subjects will be collected and analyzed.

Eight volunteers (denoted as 2A-2H, age 20-34) participated in the experiment. Each
subject was instructed to count the flashings of one symbol in the matrix which was
randomly chosen by the presentation program and presented to the subject in advance
of each trial. A trial consisted of 4 to 6 subtrials. The subjects performed 450 to 720
subtrials each*, but randomly selected subsets of 450 subtrials from each subject were

4The subjects performed two further blocks of different experiments, resulting in different numbers
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Table 6.7: Number of Principal Components required to capture specific amounts
of data variance for the subjects 2A to 2H.

Captured Variance
Subject | 90% | 95% | 99% | 99.9%
2A 22 33 64 90
2B 16 25 54 84
2C 24 35 66 91
2D 22 33 63 88
2E 16 27 55 83
2F 21 32 62 91
2G 25 37 65 91
2H 21 31 60 86
Mean 20.88 | 31.63 | 61.13 | 88.00

employed for the analyses. The Interstimulus Interval was set to 140ms which results
in an overlap of the epochs because their length was 800ms. First investigations with
the RBF SVM were already described in (Kaper and Ritter, 2004b) and (Kaper and
Ritter, 2004a).

6.4.1 Principal Component Analysis

It is valuable to identify Eigenvalue characteristics of the Principal Components to
become able to perform efficient dimensionality reductions. Thereby, it would be inter-
esting which differences in the Eigenvalue distributions between the subjects exist.

Methods
From each subject, 900 P* and 900 P~ samples were randomly chosen to perform the
Principal Component Analysis for each subject separately.

Results

As exposed by Table 6.7, in the mean, at least 90%, 95%, 99%, and 99.9% data vari-
ance were captured in the first 21, 32, 62, and 88 Principal Components, respectively.
Thereby, 99.9% of the data’s variance of each subject was captured within the first 83
(subject 2E) to 91 (subjects 2C, 2F, 2G) first Principal Components. As much as 90%
was captured even in the first 16 (subjects 2B and 2E) to 25 (subject 2G) Principal
Components. Figure 6.22 gives an impression of the first Principal Components of the
subjects®.

Discussion

Very similar Eigenvalue distributions can be observed for the different subjects such
that 99.9% of the variance is captured within the first 83 to 91 Principal Components.
Therefore, employing 100 Principal Components appears to be sufficient to capture at
least 99.9% variance of the EEG data for a subject. Since employing feature vectors
capturing 99.9% variance produced competitive results in the previous sections and
allowed to use FLDA, only feature vectors relying on projections onto the first 100
Principal Components will be considered in the following.

of subtrials.
5Note that the Principal Components are not assorted to their Eigenvalues in that figure. Details are
explained in section 6.5.1
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6.4.2 Binary Classification

Binary classification of the data on a balanced set yields a first estimation of classi-
fication performance for symbol inferences. In contrast to the previous sections, only
dimensionality reduced feature vectors are considered.

Methods

As explained above, feature vectors of 100 dimensions were constructed for each subject
as they contain at least 99.9% of the data’s variance. The data from the different
subjects were each divided into balanced halfs, a training and a test set, of randomly
chosen Pt and P~ samples, and a 5-fold cross-validation was performed on the training
set to find suitable hyperparameters for the classifiers. The classifiers were then trained
with these hyperparameters on the training set and applied on the test set to classify
the test data.

Results

Binary classification of P and P~ samples yielded results as listed in Table 6.8. Mean
accuracies of 0.83140.059, 0.828+0.057 and 0.827+0.059 were achieved using FLDA,
LSVM, and RBF SVM, respectively. In the single cases, classification results ranged
between 0.749 (subject 2B, RBF SVM) and 0.920 (subject 2F, FLDA).

Discussion

Although the ISI was strongly reduced, resulting in overlapping epochs and therewith
in less pronounciated P300 components, encouraging classification accuracies between
0.749 and 0.920 were achieved. Again, the three different classifiers yielded compara-
ble results. Thus, ISI reduction did not worse the signal quality in such a way that
classification accuracies became unacceptable. In contrast, they stayed pleasantly high.
Interindividual differences occurred, such that 3 of the 8 subjects stayed below 80%
classification accuracy, and 5 exceeded 80% accuracy. Therewith, similar results to
those obtained with 500ms ISI (cf. section 6.3.2) were achieved although the IST was
reduced.

6.4.3 Symbol Inferences

After achieving encouraging binary classification results even for the small Interstimulus
Interval, computing symbol inferences also appears to be promising.

Methods

As in previous sections, symbol inference was calculated by dividing the dataset into
two halfs, each containing 50% of the symbols employed in the experiment. First,
cross-validation was performed on one set, revealing appropriate hyperparameters for
the classifiers, which were then trained on this whole half, and classifications of symbols
were performed on the other half. Afterwards, the halfs were interchanged and the
procedure was repeated. In any case, training and test sets stem from the same subject
and the same experiment.

Results

As depicted in Figure 6.20 (top row), each classifier reached 80% classification accuracy
with 3 subtrials and 90% accuracy with 5 subtrials in the mean. For the best per-
forming subjects, 80% accuracy was reached after 2 subtrials using FLDA (subject 2F,
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Table 6.8: Binary classification accuracies performed by FLDA, LSVM, and RBF

SVM for subjects 2A to 2H based on data projections onto the first 100 Principal
Components.

Subject
Method | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H Mean
FLDA | 0.882 | 0.761 | 0.808 | 0.842 | 0.881 | 0.920 | 0.769 | 0.783 | 0.831 % 0.059
LSVM | 0.871 | 0.768 | 0.808 | 0.833 | 0.886 | 0.913 | 0.770 | 0.778 | 0.828 =+ 0.057
RBF SVM | 0.876 | 0.749 | 0.807 | 0.839 | 0.882 | 0.912 | 0.776 | 0.774 | 0.827 + 0.059
FLDA (PCA 100) LSVM (PCA 100) RBF SVM (PCA 100)

0.3 —— single subjects 0.3 —— single subjects 0.3} —— single subjects
=4$= mean =4$= mean =4$= mean
0.2 0.2 0.2
1 2 3 4 5 2 3 4 5 1 2 3 4 5
subtrials subtrials subtrials
FLDA (PCA 100) LSVM (PCA 100) RBF SVM (PCA 100)
140 140 140
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Figure 6.20: Classification accuracies (top row) and information transfer rates (bot-
tom row) for the eight subjects as yielded by the classifiers FLDA, LSVM, and
RBF SVM using 100 Principal Components for dimensionality reduction. For
certain numbers of aggregated subtrials for symbol inference, thick red lines re-
flect the mean performances among subjects, while their single performances are
drawn thin blue.
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Figure 6.21: Mean classification accuracies and standard deviations as obtained
for the classifiers FLDA (blue squares), LSVM (red diamonds), and RBF SVM
(green circles).

Pace = 0.972), and after only one subtrial using the SVM classifiers (subject 2F, RBF
SVM: paec = 0.815, LSVM: paee = 0.853). In contrast, the worst performing subject
reached 80% accuracy after 5 subtrials, regardless of classification technique.

Best mean information transfer rates were 65.94 bits/min (FLDA), 73.22 bits/min
(LSVM), and 66.89 bits/min (RBF SVM), as also depicted in Figure 6.20 (bot-
tom row). Under the precondition of reaching a limit of 80% accuracy first, in-
formation transfer rates of 46.26 bits/min (FLDA), 46.48 bits/min (LSVM), and
45.59 bits/min (RBF SVM) resulted. The best information transfer rate for a sin-
gle subject was 136.77 bits/min (LSVM), and the worst rate for reaching 80% accuracy
was 26.94 bits/min (RBF SVM).

Discussion

As in previous examinations, the performances of the three classification techniques were
within the same range and no remarkable performance differences could be observed for
reaching 80% accuracy. Comparable classification performances for the certain numbers
of subtrials as described in the previous section employing an ISI of 500ms were also
achieved for 150ms ISI and the larger population of eight subjects. Due to the lower ISI
in the current experiment, the amount of information that can be transferred within
in a specific time increased: In the mean, transfer rates of 73.22 bits/min could be
achieved and of 46.48 bits/min when considering the limit of at least 80% classification
accuracy. In single cases, transfer rates of up to 136.77 bits/min were achieved, which
corresponds to spelling about 26 symbols in a minute. Strong differences in classification
performance between the subjects were found: While some subjects achieved more than
100 bits/min, others produced less than 30 bits/min.

The calculation of the transfer rates does not consider delays between trials such that
they remain quite theoretical. Thus, assuming a delay of 2 seconds between trials would
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yield 62.44 bits/min instead of 136.77 bits/min for the best case and 33.28 bits/min
instead of 46.48 bits/min in the mean. Nevertheless, these transfer rates are competitive
compared to other approaches as section 3.3 indicates. The highest reported information
transfer rates of alternative approaches were 68.00 bits/min (Gao et al., 2003) and
50.50 bits/min (Blankertz et al., 2003).

6.4.4 Conclusion

Principal Component Analysis on data from the eight subjects revealed that employing
the first 100 Principal Components is sufficient to capture more than 99.9% of the
variance of the data in these cases. Thus, subsequently, feature vectors of projections
onto the first 100 Principal Components were used for classification. This was further
motivated by the findings in the previous sections that data reductions to capture 99.9%
variance also produced competitive results and enabled to use FLDA.

Despite of ISI reduction, binary classification revealed that the EEG signals could
nevertheless reasonably be distinguished as classification accuracies between 0.749 and
0.920 indicate. Therefore, as initially suspected, reducing the Interstimulus Interval
yielded higher information transfer rates and led to competitive theoretical information
transfer rates of up to 136.77 bits/min and 46.48 bits/min in the mean. Nevertheless,
quite strong interindividual differences in classification performance were found and the
upcoming section will investigate generalizations among the subjects.

6.5 Generalization Capabilities

Generalization capabilities of preprocessing and classification strategies are to be inves-
tigated in this section in two ways. First, it will be examined whether it is possible to
calculate a PCA matrix on data from a set of subjects and apply it for the purpose of
dimensionality reduction on other subjects. Success with this procedure would allow to
calculate a general PCA matriz once on a set of subjects and use it for dimensionality
reduction ever after without the necessity of calculating an own PCA matrix for a new
subject.

Second, in a similar fashion, and as already suggested in Kaper and Ritter (2004a),
the generalization capabilities of the classifiers are investigated. Data from a set of
subjects are used to train a classifier, which will then be applied to classify data from
another subject, whose data were not included in the training set. If this procedure
succeeds, it would even be possible to use a general classifier which does not need to be
trained on data from the individual subject. A new user could therefore immediately
start to operate the system when employing the general classifier.

6.5.1 Principal Component Analysis

Methods

In a first step, the Principal Components from the previous section of the single subjects
were investigated with respect to interindividual differences in the PCA structures. For
this purpose, the Euclidean distances between the components were calculated and they
were subsequently assorted according to these values:
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Figure 6.22: Comparison of Principal Components from different subjects. Each
row contains similar Principal Components from the different subjects which
are assorted in the columns. The original position of each Principal Component
within each subject is drawn on top of each component.

First, the index £ of the Principal Component PCAsg « of subject 2B which exposes
the minimum distance to the first Principal Component PCAs, ;1 of subject 2A was
computed. Since the sign of Principal Components can be arbitrary, this distance was
measured regardless of polarity:

kQB’l = arg miin <m1n( || PCA.QA’]_ —PCAQB,i ||2, || —PCA2A71 —PCAQB’i ||2 )) . (68)

This procedure was iterated over all 8 subjects, such that the minimum distances
of the Principal Component PCAg4 1 to all other subjects were assessed. Afterwards,
this assortion algorithm was repeated for each initial Principal Component PCAga ;
with j € {1,...,1600} of subject 2A. The new position l%j of the resulting Principal
Components was then calculated by assorting the components according to the mean

of the indices ks .:
p 1
ki=< Y. ke (6.9)
se{24,...2H}
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Figure 6.23: Standard deviations (solid, left scale, blue) of the original positions
and means of minimum distances to each other (dashed, right scale, red) of the
Principal Components from the eight subjects.

Results

The first eight assorted Principal Components for each subject are depicted in Fig-
ure 6.22. Similar structures in terms of frequency and phase relationship can be ob-
served among subjects at each new PCA position. With increasing numbers of Princi-
pal Components, the frequency of the components is also raising within the considered
range. The standard deviations of the original sources of the Principal Components
within a certain position kpeyw as well as the means of the Euclidean distances are de-
picted in Figure 6.23 and expose that the first 100 Principal Components also stem
from proximal sources of less than 10 positions away from each other.

Discussion

Similar Principal Components were found for the different subjects. This encourages to
follow the suspicion that it might be possible to have one Principal Component matrix
for dimensionality reduction purposes for a large variety of subjects.

For that purpose, an equal number of 900 P* and 900 P~ samples from each of the
eight subjects was collected, and Principal Component Analysis was performed on the
whole collection of data to calculate the general PCA matriz, as it will also be used in
chapter 7.

As an outcome of this analysis, the Eigenvalue distribution shows that 90% variance
are captured within the first 22 Principal Components, while 99% and 99.9% variance
are reflected by the first 66 and 91 Principal Components, respectively. The first 25
Principal Components are shown in Figure 6.24. Similar structures to the Principal
Components from the single subjects can be identified: Again, different frequencies
for the whole set of electrodes are reflected by the different Principal Components.
Differentiations between electrode sites occur for PCA 10 and for PCA 12 and the
following. Mostly, a cluster representing Oz, PO7 and POS together exposes a different
structure compared to the other electrode positions.
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Figure 6.24: The first 25 Principal Components as derived from data collected from
all eight subjects. Figure 6.13 explicates the structure of the images.

6.5.2 Binary Classification and Symbol Inferences using PCA Matrices
from disjoint Subjects

The previous analyses revealed similar Principal Components for different subjects,
which supports the assumption that a general PCA matrix for the purpose of dimen-
sionality reduction can be constructed. In the following, based on the data from the
subjects 2A-2H, the generalization capabilities of the PCA matrix will be investigated.

Methods

In a leave-one-case-out scheme, data from seven subjects were employed to calculate a
PCA matrix. Afterwards, this matrix was applied to reduce the dimensionality of the
data from the omitted 8th subject down to 100 dimensions. The procedure was repeated
for each subject serving as the omitted test subject. The dimensionality reduced data
from the latter subject were then analyzed in the same way as in previous sections
(see, e.g., section 6.3.2 for binary classification and section 6.2.5 for symbol inference).
For binary classification, the data were divided into two balanced halfs of P* and P~
samples, one half serving as a training, and the other half serving as a test set. Within
a b-fold cross-validation on the training set, appropriate parameters were found, with
which the classifiers were trained on the whole training set. Afterwards, data from the
test set were classified. On the other hand, for symbol inference, the data were split into
two halfs, one half serving as a training set, and the other half serving as a test set and
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vice versa. Training was performed as in binary classification, and symbol inferences
were computed as described in previous sections. The procedure was repeated for each
of the eight subjects.

Results

Binary classification of P and P~ samples yielded results as listed in Table 6.9. In
the mean, accuracies of 0.844+0.050 (FLDA), 0.832+0.057 (LSVM) and 0.830+0.059
(RBF SVM) were achieved. Classification results for the single subjects ranged from
0.746 (subject 2B, RBF SVM) to 0.923 (subject 2F, FLDA and RBF SVM).

As it is depicted in Figure 6.25 (top row), for symbol inference, an accuracy level
of 80% was consistently achieved in the mean after 3 subtrials, irrespective of the
classification technique. For reaching an accuracy of 90%, the aggregation of 5 subtrials
was necessary for each classifier. The best performing subject (2F) reached the 80%
criterion after only one subtrial and the 90% criterion after two subtrials while the worst
performing subject (2D) reached the 80% criterion after only 5 subtrials and the 90%
criterion using 6 subtrials. Figure 6.26 summarizes the mean classification accuracies
obtained with the different classifiers.

Best information transfer rates of 64.69 bits/min, 70.20 bits/min, and 65.18 bits/min
were obtained in the mean for the classifiers FLDA, LSVM, and RBF SVM, respec-
tively (see Figure 6.25, bottom row). With three subtrials (which correspond to reach-
ing 80% classification accuracy), transfer rates of 44.98 bits/min, 46.68 bits/min, and
43.87 bits/min were obtained with the three classifiers. The best transfer rate was
136.00 bits/min (subject 2F, RBF SVM) and the worst rate for reaching 80% accuracy
was 26.96 bits/min (subject 2G, RBF SVM).

Discussion

When comparing the results to those obtained using a PCA matrix from the same
subject, similar outcomes resulted. Thus, for the purpose of dimensionality reduction,
a general PCA matrix can be computed which yields no remarkable loss in classification
accuracy for a new subject Like in the previous experiments, the classification accuracies
among classifiers were comparable.

6.5.3 Binary Classification and Symbol Inferences using PCA Matrices
and Training Sets from disjoint Subjects

After a general PCA matrix provided reasonable results, it is now to be investigated
whether it is even possible to use a classifier in a pretrained fashion without the necessity
of training it on previously recorded data from the same subject. Within this section,
therefore not only the PCA matrix, but also the training set stems from a disjoint set of
subjects. Again, similar to the previous investigation for calculating the general PCA
matrix, the classifiers are trained and tested in a leave-one-case-out scheme.

Methods

Principal Component Analysis was performed on data from 7 subjects, and the different
classifiers FLDA, LSVM, and RBF SVM were also trained on balanced sets of data from
these subjects as in the previous section. Then, the PCA as well as the classifiers were
applied on the whole data from the omitted 8th subject for binary classification (for
which a balanced set was extracted) and for symbol inferences as described above in
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Table 6.9: Classification results based on projections onto the first 100 Principal
Components. Data from 7 subjects were taken to train the classifier and to cal-
culate the PCA. The trained classifier was then applied on the omitted subject.
This procedure was performed for each subject.

Subject
Method | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H Mean
FLDA | 0.878 | 0.828 | 0.821 | 0.810 | 0.896 | 0.923 | 0.774 | 0.825 [ 0.844 + 0.050
LSVM | 0.850 | 0.753 | 0.823 | 0.824 | 0.902 | 0.917 | 0.777 | 0.806 | 0.832 + 0.057
RBF SVM | 0.854 | 0.746 | 0.806 | 0.830 | 0.898 | 0.923 | 0.778 | 0.807 | 0.830 + 0.059
FLDA LSVM RBF SVM

0.3 —=— single subjects 0.3 —=— single subjects 0.3 —— single subjects
== mean == mean == mean
0.2 0.2 0.2
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
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Figure 6.25: Classification accuracies (top row) and information transfer rates (bot-
tom row) for eight subjects as yielded by the classifiers FLDA, LSVM, and RBF
SVM on 100-dimensional feature vectors. The PCA matrix for dimensionality
reduction was calculated from data from 7 subjects and applied on data from
the omitted subject while the training sets stem from the same subject as the
test set. For certain numbers of aggregated subtrials for symbol inference, thick
red lines reflect the mean performances among subjects, while their single per-
formances are drawn blue thin.
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Figure 6.26: Mean classification accuracies and standard deviations as obtained for
the classifiers FLDA (blue squares), LSVM (red circles), and RBF SVM (green
diamonds) for computing the PCA on data from disjoint subjects.

more detail. This procedure was repeated for each of the eight subjects.

Results

In binary classification of P™ and P~ samples, results as listed in Table 6.10
were obtained. Mean accuracies of 0.726+0.054 (FLDA), 0.750+0.075 (LSVM) and
0.7514+0.076 (RBF SVM) resulted and the classification results ranged between 0.661
(subject 2B, RBF SVM) and 0.862 (subject 2F, LSVM).

For symbol inference, in the mean, an accuracy level of 80% was achieved with
7 subtrials for FLDA and LSVM, but only with 8 subtrials for the RBF SVM (see
Figure 6.27, top row). For 90% accuracy, at least 12 subtrials were needed (FLDA
and LSVM), but RBF SVM did not succeed to reach this criterion within 15 subtrials.
However, with 15 subtrials, an accuracy of p,cc = 0.899 was nevertheless achieved.
For a direct comparison, mean accuracies and standard deviations are summarized in
Figure 6.28. The best performing subjects (subjects 2A and 2H) reached the 80%
criterion after two subtrials (FLDA and LSVM) and the 90% criterion utilizing three
subtrials (with the RBF SVM as well), while the worst performing subject failed to
reached the 80% criterion within 15 subtrials (subject B).

As Figure 6.27 (bottom row) exposes, the best mean information transfer rates were
38.89 bits/min (LSVM), and 20.89 bits/min (LSVM) when exceeding 80% accuracy
after 6 subtrials. The best information transfer rate was 92.61 bits/min (subject H,
LSVM), and at worst, 80% accuracy was never achieved within 15 subtrials.

Discussion
Applying a classifier which was trained on data from a set of subjects and used for
classifying data from a new, disjoint subject, yielded a lower performance than training
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Table 6.10: Classification results in binary classification based on feature vectors
derived from the first 100 Principal Components. Data from 7 subjects were
taken to train the classifier and to calculate the PCA. The trained classifier was
then applied on the omitted subject.

Subject
Method | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H Mean
FLDA 0.772 | 0.686 | 0.664 | 0.704 | 0.792 | 0.804 | 0.698 | 0.689 | 0.726 £ 0.054
LSVM 0.801 | 0.693 | 0.655 | 0.719 | 0.840 | 0.862 | 0.707 | 0.722 | 0.750 £ 0.075
RBF SVM | 0.804 | 0.681 | 0.661 | 0.729 | 0.843 | 0.861 | 0.707 | 0.718 | 0.751 + 0.076
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Figure 6.27: Classification accuracies (top row) and information transfer rates (bot-
tom row) for eight subjects as yielded by the classifiers FLDA, LSVM, and RBF
SVM. The PCA matrix for dimensionality reduction down to 100 dimensions
and the training set as well were based on data from 7 subjects. The trained
predictor was then applied on data from the omitted subject. For certain num-
bers of aggregated subtrials for symbol inference, thick red lines reflect the mean
performances among subjects, while their single performances are drawn blue

thin.
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Figure 6.28: Mean classification accuracies and standard deviations as obtained for
the classifiers FLDA (blue squares), LSVM (red circles), and RBF SVM (green
diamonds) for training the classifier on data from disjoint subjects.

the classifier on data from the same subject.

However, classification accuracies only decreased to a level where operating the BCI
is slow, but still possible. According to the outcome of the experiment, in the mean,
a subject would achieve a transfer rate of 38.89 bits/min. With a criterion of at least
80% accuracy, 20.89 bits/min would still result.

Note that this information transfer rate nevertheless lies within the range of several
other Brain-Computer Interfaces as the overview in section 3.3 reveals. The variance
between the subjects was high: While single subjects could achieve transfer rates up to
92.61 bits/min, others remained at a level of about 10 bits/min.

6.5.4 Conclusion

As it is summarized in Figures 6.29 and 6.30, it was possible to apply PCA matrices
computed on data from a set of subjects to data from new subjects for the purpose
of dimensionality reduction. Thereby, almost the same results compared to utilizing a
PCA matrix calculated on data from the same subject were achieved.

In contrast, applying a Machine-Learning classifier which was trained on data from
other subjects produced worse performances. Nevertheless, high transfer rates could
still be achieved in some cases and even in the mean, operating the device would still
be possible, but only comparably slow.

Therefore, a P300-based BCI could be created to be operated by an user without
any prior training. Neither the subject, nor the PCA, nor the classifier would need to
be trained for the individual subject, and in the mean, a theoretical transfer rate of
38.89 bits/min would still be possible, which could rise up to more than 90 bits/min
for some subjects.
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Figure 6.29: Mean classification accuracies and standard deviations obtained using
data from the same subject or from different subjects for computing the PCA
matrix and/or training the FLDA classifier.
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Figure 6.30: Mean information transfer rates and standard deviations obtained
using data from the same subject or from different subjects for computing the
PCA matrix and/or training the FLDA classifier.
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6.6 BCI Competition 2003

Whenever a research group is conducting own BCI experiments and use own algorithms
for classification, a confoundation of experimental methods (e.g., data recording device,
characteristics of the subjects, experimental environment) and the algorithm’s perfor-
mance exists. In order to become able to compare the performance of algorithms,
Blankertz et al. (2004) conducted a competition for best classification algorithms on
given BCI data setsS.

The group published data sets for several kinds of BCI approaches. Each set was
subdivided into two further sets, a training and a test set. While the labels were
included in the training set, they were missing in the test set. The objective in the
competition was to infer the correct labels for the test set, by training a classifier only
on data from the training set.

Methods

EEG data were derived from 64 channels at 240Hz sampling rate from one subject and
collected within three sessions, denoted as session 10, 11, and 12. While sessions 10 and
11 provided training data accompanied by valid labels, the 12th session came without
labels, and it was the challenge of the competitors to infer these labels. In each session,
a 6 x 6 matrix was presented to the subject, and an investigator provided a word on
which characters the subject should sequentially focus attention to. Rows and columns
were flashed with a frequency of 5.7Hz, corresponding to an ISI of 175 ms. For each
character, 15 subtrials were recorded.

In the author’s contribution (Kaper et al., 2004), an earlier version of the RBF SVM
variant of the classification procedure was utilized: Epochs of 600ms were extracted and
for preprocessing, a band pass filter of 0.5-30Hz was used before normalizing the data
to [-1,1]. From the provided training set, balanced data from the same 10 electrode
sites as in the previous sections were extracted for the data analysis procedure. Within
a b-fold cross-validation, suitable values for the hyperparameters C' and v were found
for the RBF SVM on the whole training data. Subsequently, the classifier was trained
on the training set using these hyperparameter values. The trained classifier was then
applied on data from the test set, and symbol inference was computed as explained in
section 5.4.

Results

For the calculated hyperparameter values C' = 20.007 and v = 6.68-10~4, a 5-fold cross-
validation on the training set revealed an accuracy of 0.845 for separating P+ from P~
epochs. When analyzing the test set for the different numbers of subtrial combinations
Ncombined, this resulted in the inferred symbols shown in Table 6.11. The accuracy pacc
increased with the number of combined subtrials from 0.645 to 1.000, and the correct
solution was found after five subtrials. When choosing 80% correct classification as
satisfying (Farwell and Donchin, 1988), only three repetitions would be necessary.

Discussion

The objective of the competition was to infer the correct symbols with maximal 15
subtrials, and the algorithm of the author therefore qualified, next to four other con-
tributions, as a winner. But furthermore, the algorithm required only 5 subtrials to

SA further competition was conducted in 2005, the author did not attend to.
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Table 6.11: Inferred words and associated accuracies pacc from the test set for
different numbers of aggregated subtrials ncombined (Kaper et al., 2004).

Ncombined | Inferred words ‘ Dace
1 FOOD MOOT BBM PIE CAXE NCNA N5A06 X5Z7 | 0.645
2 FOOD MOOT BBM PIE CALE TCBA Z5A0T X5Z7 | 0.710
3 FOOD MOOT HAM PIE CALE TCNA ZYAON X567 | 0.839
4 FOOD MOOT HAM PIE CALE TUNA ZYGOT 4567 | 0.968
5 FOOD MOOT HAM PIE CAKE TUNA ZYGOT 4567 | 1.000

reach perfect accuracy. Only one competitor (Xu et al., 2004) reached a comparable
performance. In summary, the algorithm did not only work well on own data, but also
on external data and proved its performance in an objective comparison with other
algorithms.

6.7 Summary

In this chapter, offline BCI experiments with the P300 speller paradigm, originally
proposed by Farwell and Donchin (1988) were conducted. Several aspects were analyzed
with the goal to enhance the classification performance and the speed of the BCI device:

First, comparisons between the Model-Based classifiers area and peak picking and
the Machine-Learning classifiers Linear SVM and RBF SVM were performed on data
derived from the Pz electrode from two subjects. It turned out that the Machine-
Learning approaches outperformed the Model-Based techniques. Furthermore, it was
possible to reduce the dimensionality of the data by projecting them onto the first 11
Principal Components, reflecting 99.9% data variance, which in turn allowed to use the
computational rather inexpensive Fisher’s Linear Discriminant. Comparable results
were obtained for the different Machine-Learning classifiers, regardless of the employed
dimensionality of the feature vector (11 or 160).

Second, inspired by the ERP scalp distribution of P™ and P~ epochs, data from
a set of 10 electrodes were employed for classification. Again, strong dimensionality
reduction could be obtained by employing Principal Component Analysis.

Third, information transfer rates could be improved by increasing the presentation
speed through Interstimulus Interval reduction. Theoretical information transfer rates
of up to 136.77 bits/min and of 73.22 bits/min in the mean were achieved in experiments
with eight subjects, which decreased to 62.44 bits/min and 33.43 bits/min, respectively,
when assuming a delay of 2 seconds between trials. All three classification techniques
yielded results within the same range.

Fourth, it was shown that it is possible to use a general PCA matrix and still achieve
almost the same results as obtained with a PCA matrix calculated for the individual
subjects. Thus, for future experiments, no prior PCA calculation is necessary for the
individual subject when using the same setup. When trying to apply classifiers in a
similar fashion, it turned out that they produced worse results. Nevertheless, in some
cases, competitive information transfer rates could still be achieved, and in the mean,
theoretical transfer rates within the range of other approaches resulted. Thus, it is in

112



6.7. SUMMARY

principle possible to use the classifiers without any prior training, such that a subject
could immediately start to operate the system.

Finally, an earlier variant of the algorithm won the BCI Competition 2003 for the
P300 speller section, in which algorithms were competing for best classification results
on an independently published dataset. Among the winners, the algorithm proposed
by the author required the least number of subtrials.
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Chapter 7

From Offline to Online Analysis

The analyses of the offline experiments in the previous chapter have provided valuable
insights which can now be employed for constructing an online Brain-Computer Inter-
face (BCI) where an user can actually operate the BCI device. For this purpose, data
need to be processed and classified directly after the recording from the subject’s scalp
(see Figure 7.1). Several outcomes from the previous chapter are useful for designing
the device. For instance, the finding that a general PCA matrix can be used for dimen-
sionality reduction, which must not be computed for the individual subject conveniently
allows to perform dimensionality reductions with little computational costs, allowing
to directly employ Fisher’s Linear Discriminant Analysis (FLDA). Another outcome of
the previous chapter has been that with an adequate preprocessing, the FLDA classifier
achieves similar performance as the state-of-the-art Support Vector Machine.

store in file
E
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plifier
ltransmit data

feedback

)
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load from file

4

Online Offline
Analysis Analysis

Figure 7.1: Scheme for online BCI analysis as performed in this thesis. The EEG
data are recorded from the subject’s scalp and processed by an EEG amplifier.
After each trial, the incoming EEG data are classified and the results, i.e., the
predicted symbol, can directly be presented as a feedback.

This chapter describes the construction of an online P300-based Brain-Computer In-
terface from the scratch. After considerations about mandatory properties of the system
in section 7.1, the hardware environment is discussed (see section 7.2). Afterwards, the
layout of the software for driving the BCI is explained in section 7.3 and an experiment
is conducted with this setup in section 7.4.
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7.1 Deriving Specifications for Designing and Driving an
Online System

Driving an online Brain-Computer Interface is accompanied by different requirements
for the system compared to offline analysis. For instance, data need directly to be
processed and analyzed after recording. The data analysis procedure in turn should not
be too time consuming, such that it is desirable to employ a classification algorithm
with only little computational costs. Another substantial difference to offline analysis
is the fact that operating a Brain-Computer Interface with a machine-learning classifier
requires a previously trained classifier. Therefore, either training data from the same
subject must have been recorded in advance, or the classifier must have been trained
on data from different subjects as proposed in section 6.5.

In the following, several considerations are outlined concerning designing and driving
the soft- and hardware of an online P300-based BCI system.

Access Data from the Amplifier
In order to become able to process the data online, it is necessary to directly record
the data from the EEG amplifier with the BCI program. With the Neuroscan Synamps
5083 EEG amplifier used for the offline experiments in this thesis, data can be accessed
only indirectly from the proprietary data acquisition program Acquire.

The setup for the BCI system in this thesis employs 10 channels, such that the EEG
amplifier should also offer at least this number of channels. Some additional channels
for, e.g., EOG acquisition (cf. section 2.3) would be useful.

Communication

In the previous chapter, the three operating systems MS-D0S, Windows 98, and Linux
were used for the different tasks stimulus presentation, data acquisition, and data anal-
ysis, respectively. Within an online device, data analysis would need to be performed
immediately after the data acquisition, and the classification results should be presented
within the stimulus presentation environment. One way to perform this task is to es-
tablish communication channels between the three different operating systems, which
can be very nasty with MS-D0S. On the other hand, one could try to employ only one
operating system, and preferably even only one computer program. This would further
allow to use a single computer (even without virtual operating systems), making it also
easier to transport the system.

Data Preprocessing
As introduced in section 5.2, preprocessing in the setup of this thesis consists of band
pass filtering, dimensionality reduction and scaling.

Utilizing the Fast Fourier transform allows to construct efficient band pass filters as
is detailed out in section 5.2.1. The offline experiments have shown that reducing the
dimensionality using Principal Component Analysis to a degree that 99.9% data vari-
ance is still captured, does not negatively affect the classification results (see sections
6.2 and 6.3). The experiments further indicated that such a PCA matrix can be cal-
culated from a set of subjects and then applied to different subjects. Therefore, from
the data of the offline experiments, a general PCA can be computed and subsequently
be used for dimensionality reduction purposes in new subjects in the online context.
No expensive calculations besides simple matrix multiplications with the general PCA
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Figure 7.2: Transpose of the extraction of 2040 x 100 dimensions from the general
PCA matrix as derived from the collection of the eight subjects in section 6.5.1.
The input dimension was linearly expanded from 1600 to 2040 because the sam-
pling frequency raised from 200Hz to 256Hz from offline to online analysis. This
matrix reduces 2040-dimensional input vectors to 100-dimensional feature vec-
tors.

matrix are required. The general PCA matrix as derived from the eight subjects in
section 6.5.1 is depicted in Figure 7.2. Employing lower-dimensional feature vectors
decreases subsequent computational costs and allows to utilize FLDA, which is com-
putationally less expensive than, e.g., Support Vector Machines. Offline experiments
nevertheless revealed similar performances for the FLDA compared to Support Vector
Machines as is also discussed in section 6.4.

Classification Procedure

The classification procedure should be implemented under consideration of the temporal
constraints for training and testing as well. While the computational costs were not
very important for offline analysis, it would be desirable to have a classifier with only
little computational demands to make classifications fast and to become able to provide
a direct feedback about the classification results. This constraint can be realized by
employing the FLDA classifier, which has proven to yield high accuracies for this domain
in the previous chapter.

Rather than performing a parallel continuous analysis in real-time as it is, e.g., nec-
essary for motor imagery devices (cf. section 3.2.4), it is sufficient to perform clas-
sifications after each trial for the P300 speller device. Before being able to perform
classifications with a machine-learning classifier, such a classifier needs to be trained
first. Section 6.5 has shown that it is possible to train a machine-learning classifier
on data from a set of subjects, apply it to new subjects and still achieve reasonable
results. On the other hand, information transfer rates experience substantial decreases
when using this strategy. In order to perpetuate good classification results, training
data from the same subject should preferably be employed for classifier training.

Trigger and Jitter

It is necessary to augment the EEG time series with information about latencies and
types of the presented visual stimuli. In the previous experiments, such trigger signals
were realized by transmitting this information via the serial port to the EEG amplifier.
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Thereby, it is important to keep fluctuations (jitter) in temporal distance between
stimulus onset and the temporal position of the according trigger signal low.

Further Requirements

To a large extent, the hardware should consist of standard components or at least be
compatible with those. A portable system would be preferable, such that it could be
tested and used in environments outside the laboratory. The experimental environment
should be chosen with the goal to avoid artifacts. In the optimal case, the room should
be sound attenuated and shielded for electromagnetic influences. On the other hand, it
would also be desirable to make it possible to drive the BCI system in an environment
which is not shielded, allowing to use it in common rooms.

7.2 Hardware Environment

From the considerations in the previous section, specific requirements to the hardware
environment can be derived. First of all, it is necessary to directly record the EEG data
with own programs. Thus, software interfaces for a common programming language,
preferably C++, should exist or easy to be implemented. Second, to make the system
portable, it would be desirable to work with a conventional laptop. In order to achieve
a high signal quality, impedances are to be kept low (cf. section 2.3). Therefore, a way
for assessing impedances is needed - either the EEG amplifier itself should offer such a
possibility or an external device is to be utilized for this purpose. It is sufficient to have
an amplifier with a limited number of channels since data from only 10 channels are
acquired in this experimental setup. In the following, the hardware components engaged
for driving the Brain-Computer Interface which satisfy these criteria are presented.

Figure 7.3: The Mindset24 EEG amplifier with 24 differential input channels.

EEG Amplifier

The EEG amplifier Mindset2}, depicted in Figure 7.3, was engaged in this BCI setup.
It offers 24 differential input channels which second channels can be interconnected
to measure electrode signals with respect to one common reference (cf. section 5.1).
The data from the amplifier are transmitted via a SCSI port, allowing to operate the
EEG amplifier with a conventional laptop when using, e.g., a SCST PCMCTA adapter.
For this purpose, the Adaptec APA-1460D PCMCIA adapter was utilized. Data from
the EEG amplifier can be recorded with a frequency of up to 512Hz. The system can
either be operated with single electrodes or a cap. The device comes with some basic
C sources providing direct access to the data in own programs under the Windows
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operating system. Since no distinct trigger channel is provided with the amplifier, the
software needs to be carefully designed with respect to this topic to gain EEG signals
with only a small jitter.

Computer

A Samsung X30 laptop with an Intel Pentium M 1.5 GHz CPU and 512MB RAM
with a 64 MB NVIDIA Ge ForceFX 5200 go graphic card was chosen. The laptop
is reasonably silent (<0.7 sone), offers a 15.4" WXGA TFT display with a maximal
resolution of 1280 x 800 pixels and a brightness of up to 150cd/m?.

X7 —

VAT
5

Figure 7.4: Left: Gold cup (Au) electrode as used in the experiment in this chap-
ter. Middle: Checktrode 1089 mk IIT electrode tester for assessing impedances.
Right: Circuit with an adjustable photo resistor for measuring temporal rela-
tionships between screen presentations and EEG recordings.

Accessories

Single gold cup (Au) electrodes as depicted in Figure 7.4 (left) were used for data ac-
quisition from the scalp (see also Figure 7.8). For measuring impedances, the device
Checktrode 1089 mk III (Figure 7.4, middle) was employed. An electrical circuit with
an adjustable photo resistor (see Figure 7.4, right) was constructed to measure synchro-
nization between stimulus presentations and data acquisitions from the EEG device!.
The tool transforms light signals from the computer screen into electrical currents which
can be delivered to the EEG amplifier. The EEG amplifier can be calibrated with the
Mindset Calibrator, a device which simultaneously provides a precise 16Hz, 50V signal
to all channels, used to normalize signals derived from the channels. For grounding the
subjects, a wrist strap was employed. It turned out that the refresh time of the laptop’s
TFT screen was too high and not constant due to the rising and falling of the LCD
pixels, such that an external 20" CRT computer screen (SONY Multiscan 20sf II) was
used instead for stimulus presentations. Thus, in this point, the specifications of the
previous section could unfortunately not be fulfilled, and it is not sufficient to employ
the display of the laptop at present. Today’s high-quality stand-alone TF'T displays
offer better response times (of down to below 4ms), and if laptop displays will also
be designed with comparable displays, the system could be operated without the CRT

!The author thanks Risto Kéiva and Oliver Lieske for this indispensable tool.
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Figure 7.5: Experimental setup with EEG amplifier, laptop and computer screen.

screen. The whole system including the EEG amplifier, the laptop and the CRT screen
is depicted in Figure 7.5.

7.3 Software

As for the hardware environment, requirements can also be derived from the specifica-
tions of section 7.1 for designing the software.

To begin with, it is necessary to have a system which acquires the data from the
EEG amplifier and synchronously steers the stimulus presentation. Thereby, the point
in time for stimulus presentation and recording the according EEG time series should
be the same. Differences between the trigger event, i.e., the time marker for stimulus
presentations, and the onset of the according EEG time series result in a jitter.

For data analysis, the processing stages preprocessing and classification together with
symbol inference must be incorporated (cf. chapter 5). Preprocessing includes band
pass filtering, dimensionality reduction, and scaling. Classification is performed with
the FLDA classifier, since it is fast, simple and yields similar performances compared
to Support Vector Machines (cf. section 6.4). The system was realized with the C++
compiler gcc 3.3.1 for Windows XP, and the basic tasks of the system are divided
into the three major modules Graphical User Interface (GUI), Communication, and
Classification which will be explained in the following. An overview of the commu-
nication processes between the modules is given in Figure 7.6.

7.3.1 Graphical User Interface (GUI)

One task of the GUI module is to provide an input mask for adjusting experimental
variables concerning aspects of the subject, parameters for stimulus presentation and
for controlling the EEG amplifier (see Figure 7.7). The module further organizes and
steers the presentation of the stimuli as well as the results for the subject. For the
latter purpose, it receives the classification results from the Classification module
after each trial.

The experimental sequence is controlled by the GUI module: By simultaneously start-
ing the presentation and the EEG recordings within separate threads, a trial is initiated.
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GUI Parameter - Classification
Input Mask Preprocessing
Stimulus Presentation Classification Results Classifier Training
Feedback < Classify Data

Parameter EEG Data

Communication

Communication with EEG Amplifier
Data Preparation
Data Storage

Figure 7.6: Tasks and communication processes of the modules GUI,
Classification, and Communication.

Trigger information, i.e., the sequence of flashings and their temporal occurrences is fur-
thermore computed for each epoch within this module. With this concept a jitter of
about 1ms is achieved. The GUI module includes a port of QT 3.3.4 for Windows
(Trolltech, 2006).

7.3.2 Communication

The module Communication initializes and controls the EEG amplifier and reads data
from this device via the SCSI port. From the module GUI, it receives commands for these
actions as well as parameters like sampling frequency and trial duration for steering the
amplifier. Data are written into a file, dissected into epochs of 800ms time series, which
are transmitted to the Classification module.

7.3.3 Classification

The Classification module is adjusted by parameters from the GUI module and re-
ceives EEG data from the Communication module. It incorporates the processing stages
preprocessing, binary classification and symbol inference.

Preprocessing consists of band pass filtering, scaling and dimensionality reduction.
As it is described in section 5.2.1, band pass filtering is realized by Fourier transforms
using FFTW 3.0.1 (Frigo and Johnson, 2006) allowing a brickwall filter operation in
the frequency space. The dimensionality of the 2040-dimensional input data vectors
is reduced to 100 dimensions by multiplying the input vector with the general PCA
matrix (cf. section 6.5.1, see Figure 7.2), and scaled to an interval of [-1,1].

The Classification module is capable to perform train as well as testing. It employs
the FLDA classifier, scans a number of values for its hyperparameter b in the training
section and performs a 5-fold cross-validation to find an appropriate value for . In
contrast to chapter 6, the values for b are now evaluated in 500 equidistant steps in
between the means of both classes (see also section 5.3.3). If the histograms of both
classes do not overlap (which is seldom), the mean of the inner edges of both histograms

121



CHAPTER 7. FROM OFFLINE TO ONLINE ANALYSIS

=T

File  Experiment

— General — Presentation

o [1o1 MElectodss  [100
Age m Dlimenzion I2_y
Ser [Male | | | M St [z
—Classifier—————————————————— hLiltiply |1

High Cut Iﬂi N Subtials Fi—
tewCut  [1 || N Sumbols [«
[test =] = 140

— Communication——— Epoch Length 00

Samplerate |258 V| [~ Fix Lefters
Bilncksize I?EB v| I Fix Sequence

%

Figure 7.7: User interface for adjusting parameters of the BCI system.

is selected for b and no scanning for b is conducted. Binary classification is performed
as, e.g., described in section 6.2.4 and it is the basis for the subsequent symbol inference,
which is computed as described in section 5.4. The classification results are transmitted
to the GUI module. Data objects and the classification framework are included from an
in-house machine-learning library.

7.4 Online Classification with the P300 Speller Paradigm

In this section, the hardware environment and the developed software were engaged to
perform a BCI experiment with online classification. For this purpose, seven subjects
(age 20-30), denoted as 3A to 3G, participated in the experiment, each conducting
two blocks: A training block of 50 trials with 5 subtrials each, and a test block of
90 trials with altogether 414 subtrials (see below). Within the test block, the word
INTERFACE should be spelled by the subjects using the online Brain-Computer Interface.
For that purpose, the number of subtrials employed in a trial for symbol inference was
systematically decreased from 10 to 1 subtrials (omitting 9)2 such that a trial lasted
between 1.68 seconds (1 subtrial) and 16.8 seconds (10 subtrials) and the 90 trials result
in 414 subtrials. Thereby, it is important to keep in mind that it becomes hard for the
subject to prevent blinking and eye movements with a prolongated trial duration. In
between the two blocks for training and testing, the FLDA classifier was trained on a
balanced set of the training data. Only the FLDA classifier was employed, granting fast
training and testing procedures.

The Interstimulus Interval was set to 140ms. Data were recorded from the scalp
sites F'z, Pz,Cz,C3,C4, P3, P4, PO7, POS, and Oz and recorded with a sampling rate

Tt was initially planned to perform trials with 10,8,6,5,4,3,2, and 1 subtrials, but after performing 10
and 8 subtrials with the first subject, it turned out that a higher resolution would be desirable.
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Figure 7.8: Electrode application on a subject with easy scalp access.

of 256Hz (see Figure 7.8 for an example of electrode application and Figure 6.2 for
locations). Impedances below 2k were anticipated, which could not be achieved in all
cases. Nevertheless, impedances always stayed below 5k€2. Epochs of 800ms, i.e., 204
sampling points, were extracted from each of the 10 channels, resulting in data vectors
of 2040 samples for an epoch. The data were band pass filtered within the range
0.5-8Hz and normalized to the interval [-1,1]. Afterwards, under usage of the general
PCA matrix as derived from offline experiments (cf. section 6.5.1, see Figure 7.2), the
data’s dimensionality was reduced down to 100 dimensions. The input dimensionality
of the PCA matrix was linearly expanded to 2040 dimensions because the data in this
experiment was sampled with 256Hz, instead of 200Hz as in the offline sections.

7.4.1 Preliminary Analysis: Offline Binary Classification

Methods

A binary classification of the training set was performed as a preliminary analysis to
become able to compare the results with those obtained from offline analysis. For this
purpose, the data were analyzed analogously to offline analysis: The 1000 data samples
were divided into two halfs of balanced Pt and P~ data. On one set, parameter opti-
mization was performed in a 5-fold cross-validation, and on the other set, classification
performance was assessed (see section 6.2.4 for details).

Results

Binary offline classification results are listed in Table 7.1. In the mean, a binary clas-
sification accuracy of 0.796+0.056 was achieved using the FLDA classifier on the 100-
dimensional feature vectors. While for the best performing subject an accuracy of 0.880
was reached, the worst performing subject yielded an accuracy of only 0.710.

Discussion
Compared to the offline results from section 6.5.2, the classification results for binary
classification decreased from a mean accuracy of 0.844 to a mean accuracy of only
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Table 7.1: Binary classification accuracies obtained within the new environment
using the FLDA classifier on 100-dimensional feature vectors as computed under
the usage of the general PCA for subjects 3A to 3G.

Subject
Method | 3A | 3B | 3C | 3D | 3E | 3F | 3G Mean

| FLDA [0.798 [ 0.818 | 0.710 | 0.744 | 0.880 | 0.788 | 0.832 | 0.796+0.056 ]

0.796. Different factors can be responsible for this outcome. First, it is possible that
the subjects did not perform as well as those used in chapter 6. Second, the experimental
environment provided more noise than the previous one because the room was neither
sound attenuated nor shielded from electromagnetic influences in the online experiment
(cf. section 2.3). However, the results are on a level that should allow to perform online
classifications.

7.4.2 Online Analysis

Methods

In the online analysis block, the subjects were instructed to spell the word INTERFACE
with varying numbers of subtrials in a trial. The first number of subtrials was 10, and
then the number of subtrials was decreasing from 8 to 1. In advance of each trial, the
experimenter told the subject the particular symbol to spell. From the recorded EEG
data of a trial, the classifier computed a symbol and presented it immediately after each
trial on the computer screen.

Results
For spelling the word INTERFACE, Figures 7.9 and 7.10 reveal the classification results
for accuracies and information transfer rates, respectively.

In the mean, an accuracy level of 80% was exceeded when using 4 subtrials (pacc =
0.810). However, employing 5, 6 and 7 subtrials yielded lower accuracies (pacc = 0.683,
Pace = 0.762, and paee = 0.778). Only when using 8 subtrials, 80% accuracy was reached
again (pacc = 0.825). Table 7.2 exposes the letters spelled by the different subjects when
employing 4 subtrials. For single subjects, 80% accuracy was reached after 2 subtrials
(pacc = 1.000, subject 3E). Accuracies for the worst performing subject never exceeded
80% accuracy within the 10 subtrials (pacc = 0.778 after 8 subtrials, subject 3D).

The best mean information transfer rate was 32.17 bits/min (4 subtrials, paec =
0.810). Table 7.3 exposes the highest information transfer rates from each of the 7
subjects. The best performing subject achieved 92.32 bits/min (subject 3E), and the
second best performing subject reached 61.55 bits/min (subject 3G). The highest infor-
mation transfer rate for the worst performing subject (subject 3C) was 22.70 bits/min
and 18.46 bits/min under the precondition pse. > 0.8. The mean of the highest infor-
mation transfer rates was 46.71 + 24.07 bits/min, and with the precondition pse. > 0.8,
it was 42.63 £ 26.46 bits/min.

Discussion
Compared to the offline experiments in chapter 6.5.2, information transfer rates were
low: For exceeding 80% mean accuracy in offline experiments, transfer rates of
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Figure 7.9: Classification accuracies obtained for spelling the word INTERFACE with
different numbers of subtrials employed for spelling a symbol. The red line
reflects the mean accuracies of the 7 subjects.
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Figure 7.10: Information transfer rates for spelling the word INTERFACE for different
numbers of subtrials. The red line reflects the mean transfer rates.
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Table 7.2: Results produced by the individual subjects for spelling the word
INTERFACE employing 4 subtrials in the online block.

| Subject | Inferred Symbols | pacc

3A ONTEFEACE 0.667
3B IMTERLACE 0.778
3C CNSERFACE 0.778
3D HNZERFECE 0.667
3E INTERFHIE 0.778
3F INTERFACE 1.000
3G INTERFACE 1.000

Table 7.3: Highest information transfer rates in bits/min for each of the 7 subjects
for spelling the word INTERFACE in the online block. The second row exposes the
highest information transfer rates under the precondition p,.. > 0.8. Note that
subject 3D did not reach 80% accuracy, such that p,.. = 0.778 was employed in
the second row for this subject.

Subject
Method 3A 3B 3C 3D 3E 3F 3G Mean
FLDA 45.39 | 29.16 | 22.70 29.72 92.32 | 46.16 | 61.55 | 46.714+24.07
FLDA (pacc > 0.8) | 26.38 | 24.39 | 18.46 | (29.16) | 92.32 | 46.16 | 61.55 | 42.63+26.46

44.98 bits/min resulted with the FLDA classifier and a disjoint PCA matrix. In con-
trast, only 32.17 bits/min were achieved in the online experiment in this condition. A
similar picture can be drawn for the best information transfer rates: The best informa-
tion transfer rate in the offline experiment using FLDA was 120.17 bits/min. This rate
decreased to 92.32 bits/min in the online experiment.

Thus, the findings from the online block are in line with the results obtained for
the previous binary offline classification. Therefore, the reasons for the lack in perfor-
mance are likely to be the same as already discussed for binary classification: Foremost,
an enhanced noise due to the experimental environment and the performances of the
subjects are possible sources for the performance deficits. But by not conducting the
experiment in a special environment, comparable results can be expected when driving
the Brain-Computer Interface in common rooms in a house or a hospital.

Despite the decrease in accuracies and transfer rates from offline to online analysis,
the information transfer rates obtained in online classification are still high compared
to other approaches as shown in section 3.3.

Although the results are convincing, these outcomes must be interpreted with care
for several reasons: First, the number of 9 symbols predicted in this experiment in
each subtrial condition for each subject is probably too low to allow general conclu-
sions. Second, it is difficult to incorporate the findings of, e.g., Wolpaw and McFarland
(2004) in the comparisons, since information transfer rates in bits/min might not be
an appropriate measure for this two-dimensional device for continuous movements (cf.
section 3.2.4). Third, delays between trials were omitted for computing the informa-
tion transfer rates. This calculation is quite common (Donchin et al., 2000; Serby
et al., 2005) but overestimates the speed of the devices. For example, assuming an
average delay of 2 seconds between trials, each employing 4 subtrials would yield a
decrease in information transfer rates of 22.94%. Thus, the mean information transfer
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Figure 7.11: Subject operating the online Brain-Computer Interface.

rate of 32.17 bits/min would decrease to 24.79 bits/min. The best information trans-
fer rate of 92.32 bits/min would even decrease to 57.88 bits/min. Fourth, information
transfer rates should not solely be employed for evaluating the performance of a Brain-
Computer Interface. Different devices are appropriate for different application purposes.
Compared to other approaches, the P300 speller paradigm would probably not be very
suitable for, e.g., steering a wheelchair since it does not provide a continuous signal and
depends on stimulations. On the other hand, the P300 speller device can be valuable for
producing text or controlling an internet browser. Therefore, the different approaches
can complement each other and it is desirable to achieve improvements within each of
the different approaches.

For the approach under investigation, the P300 speller paradigm, it can be stated
that the presented classification strategy in this thesis has yielded high performances
in an online version while employing rather simple classification techniques.

7.5 Summary

Within this chapter, the conclusions derived from the offline experiments in the previous
chapter were exploited for constructing an online P300-based Brain-Computer Interface.
This interface was built from the scratch such that hardware had to be set up carefully
and software needed to be written to drive the BCI with respect to special requirements
to the system. Most important, it was necessary to directly access the data from the
amplifier to allow immediate data analysis and feedback after each trial. Furthermore,
precise synchronizations of stimulus presentations and EEG recordings in order to avoid
jitters were inevitable.

One of the constraints for an online BCI is that the data analysis procedure needs to
operate fast. This prerequisite is fulfilled in the presented software by employing the
efficient Fast Fourier transform for band pass filtering. Furthermore, dimensionality
reduction is realized by using the general PCA as derived from the offline experiments.
Finally, classification is conducted in an efficient way by using Fisher’s Linear Discrim-
inant, which was shown to yield similar results as the Support Vector Machine in the
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previous chapter. After designing the BCI system for driving the P300 speller paradigm,
an own experiment was performed with this device.

It was possible to drive the system in an online fashion and achieve mean theoretical
information transfer rates of 32.17 bits/min (=~ 6 symbols per minute), which is lower
than in the offline analysis, but still competitive to other systems. When considering
a delay of 2s between trials, this rate decreases to 24.79 bits/min (=~ 4 symbols per
minute). In the best case, a theoretical information transfer rate of 92.32 bits/min (~
17 symbols per minute) was achieved, which is reduced to 57.87 bits/min (= 11 symbols
per minute) with a 2s delay between trials.

A possible reason for the performance deficits compared to the offline experiments
conducted in chapter 6 is the experimental environment. While, e.g., the experimen-
tal room was sound attenuated and shielded from electromagnetic influences in offline
experiments, only a conventional room was used for online experiments. On the other
hand, results obtained in the latter environment can thus better be generalized to com-
mon house or hospital environments.

Although high information transfer rates were achieved, these findings have to be
interpreted with care because only a restricted number of inferences was performed.

Information transfer rates should not be the only measure for comparing Brain-
Computer Interfaces. Rather, different Brain-Computer Interfaces are appropriate for
different applications and should complement each other. For the case of the P300
speller device, a simple but powerful classification framework was developed.
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Chapter 8

Conclusion

Within this thesis, an efficient data analysis procedure incorporating Machine-Learning
techniques was developed for the P300 speller Brain-Computer Interface (BCI). First,
in own offline experiments, data were produced which were subsequently engaged to
optimize classification algorithms. Afterwards, based on these findings, an online BCI
was designed, implemented and evaluated.

In the first chapters, basic aspects of Electroencephalography, Brain-Machine In-
terfaces in general and the P300 speller paradigm BCI in particular were introduced.
Afterwards, data analysis techniques relevant for the P300 speller device proposed in
this thesis were discussed. Then, in a series of experiments and accompanying analytical
investigations, the data analysis procedure for the P300 speller paradigm was improved
and finally incorporated in an online BCI. These steps and quintessential findings will
be outlined in the following.

Better Classification Accuracies by Machine-Learning Techniques
An experiment with two subjects was conducted and after deriving adequate preprocess-
ing parameters, it was investigated whether it is possible to increase the performance of
common Model-Based approaches by employing Machine-Learning techniques. Further-
more, the impact of dimensionality reduction based on Principal Component Analysis
(PCA) as a preprocessing step on classification results was examined.

It turned out that Machine-Learning techniques have yielded higher performances
than the Model-Based approaches and that dimensionality reductions have not affected
classification accuracies negatively when capturing at least 99.9% variance. No substan-
tial performance differences for the three Machine-Learning classification techniques
Support Vector Machine with Gaussian kernel (RBF SVM), Linear Support Vector
Machine (LSVM), and Fisher’s Linear Discriminant Analysis (FLDA) have been found.

Classification Improvements by Employing Multiple Electrodes
Inspired by the scalp distribution of Event-Related Potentials from EEG time series
belonging to the (oddball) events which elicit a P300, instead of one electrode as in the
previous investigation, a set of ten electrodes was chosen to constitute the feature vector.
The ability of Machine-Learning techniques to adapt to a data structure allowed to use
these new feature vectors with only minor modifications. In contrast, for the Model-
Based methods, the model assumptions would need to be augmented. Therefore, these
methods were not employed any more and only the performances of the three Machine-
Learning classifiers were compared with different (PCA-reduced) dimensions.

The experiment indicated that strong increases in classification performance were
achieved when using data from ten channels. Similar to the previous investigations, the
three Machine-Learning classification techniques reached almost the same performance,
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and PCA-based dimensionality reduction capturing 99.9% variance had no negative
impact on the classification results.

Information Transfer Improvements by Enhancing the Presentation Speed

After these improvements, the speed of the BCI was still unsatisfying such that the
temporal distance of two consecutive stimuli was reduced from 500ms to 140ms. Fur-
thermore, to allow for more general assertions, eight subjects were employed. More than
99.9% data variance was captured within the first 100 Principal Components of each
subject, such that only projections of the EEG data on these 100 Principal Components
were subsequently employed as feature vectors.

As an outcome, although the temporal distance between events decreased, resulting in
less pronounciated P300 components due to overlaps of consecutive time series of EEG
signals (cf. section 4.1), comparable high classification accuracies were achieved with the
Machine-Learning classifiers. All three classification methods yielded mean theoretical
information transfer rates of about 70 bits/min (disregarding delays between trials).
The best subject achieved up to 136.77 bits/min.

Generalizations to New Subjects
Two directions of generalization capabilities were investigated. Inspired by a high de-
gree of similarity of the first Principal Components between subjects, it was examined
whether it would be possible to employ a general PCA matrix for dimensionality reduc-
tion which was trained on data from a set of subjects and applied for dimensionality
reduction to data from new subjects. The same strategy was then pursued for the
Machine-Learning classifiers which were also trained on a set of subjects and applied
to a new subject. Success with such a strategy would allow to use a pretrained PCA
matrix and/or classifier for a new subject, avoiding the requirement to record data from
the individual subject for classifier training.

The results indicate that using a general PCA matrix did not affect the classification
results negatively. In contrast, accuracies decreased when using a Machine-Learning
classifier which was not trained on data from the individual subject.

Performance in the BCI Competition 2003

An early version of the classification method was applied on data provided with the
BCI Competition 2003 (Blankertz et al., 2004). The goal of the competition was to
let different algorithms compete for best classification accuracies. For this purpose, a
labeled data set of EEG data as recorded during a BCI experiment was published which
could be used for classifier training. For another unlabeled data set, the algorithms
should infer the labels on the basis of the EEG data. The author’s contribution managed
to find the correct labels with the least numbers of trials among the contributions for
the P300 speller domain.

Constructing and Driving an Online BCI

The results of the offline analyses were utilized for designing an online BCI. Particularly
the findings that a general PCA can be employed and that it is sufficient to employ a
rather simple classifier like Fisher’s Linear Discriminant were valuable for constructing
the online system. After defining hard- and software specifications, the online BCI sys-
tem was built from the scratch. Most important, direct access to EEG data from the
amplifier in own programs had to be performed, and an exact synchronization of the
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amplifier and the stimulus presentation was mandatory. Additionally, a fast classifica-
tion was desirable which could be realized by employing Fisher’s Linear Discriminant
classifier and the previously computed general PCA matrix for dimensionality reduc-
tion. With this system, an online experiment with seven subjects was conducted. Each
subject performed 50 training trials on which the classifier was trained and, afterwards,
operated the BCI device for spelling the word INTERFACE with varying numbers of
subtrials for each letter.

In the online experiment, theoretical information transfer rates of 32.17 bits/min
(mean) and 92.32 bits/min (best) could be achieved, which are competitive compared
to existing P300-based approaches. Considering a delay of 2s between trials, these rates
decrease to 24.79 bits/min (= 4 symbols per minute) and 57.87 bits/min (= 11 symbols
per minute), respectively .

The rates obtained in the online experiment are lower than in offline experiments,
which might be caused by a lack of sound attenuation and shielding from electromag-
netic influences in the laboratory. On the other hand, the experimental conditions are
therewith closer to a real-world environment as provided in rooms in a normal house,
such that the system could presumably also work there with a comparable performance.

Although promising information transfer rates have been obtained, the online results
rely on a limited set of only 9 sample letters for each subject, such that general conclu-
sions can only be drawn with care. Furthermore, the information transfer rate should
not be the only basis for comparing BCIs. Depending on the purpose of the system,
other variables like the question whether the interface depends upon stimulation or not,
or whether it provides a continuous signal are also important.

However, it can be stated that for the P300 speller device an efficient and powerful
classification strategy was found within this thesis which has also yielded high
information transfer rates in an online experiment.

In summary, the investigations conducted in this thesis succeeded in enhancing the
classification performance of a P300 speller Brain-Computer Interface and, therewith,
its speed for transferring information. Additionally, the generalization capability of
the proposed method to new subjects has been demonstrated. The findings were
incorporated in an online BCI system which was constructed from the scratch and for
which own software was written. This BCI proved that the classification strategies
derived from the offline experiments also work well under real-world circumstances,
and still allow for high information transfer rates.

8.1 Outlook

After designing an online Brain-Computer Interface with the P300 speller paradigm
allowing for high classification accuracies, further directions in which the performance
of the system could be improved can be investigated. Additionally, one can include the
proposed P300 recognition mechanism for alternative applications.

Enhancing the Performance of the P300 Speller Device
A first attempt to further improve the speed of the current P300 speller device would
be to employ a variable number of subtrials. Rather than reaching different accuracies
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with a predetermined constant number of subtrials, the mechanism can be reversed,
such that a specific level of certainty could be defined which is to be reached with a
variable number of subtrials. For this purpose, classification results are to be computed
after each subtrial, providing a basis for deciding whether further subtrials need to be
performed. Since efficient strategies for band pass filtering (Fast Fourier transform), di-
mensionality reduction (general PCA matrix) and classification (FLDA) were employed,
fast classifications would be possible’.

A way to improve the spelling of words would be to employ a T9-like system as com-
monly known from the Short Messaging System (SMS) for cell phones. By exploiting
the facts that only a limited number of words are commonly used in conversations and
that neighboring letters of a word are probabilistically related, a word completion al-
gorithm could be designed, such that after, e.g., the first three letters of a word were
determined, a selection of possible words could be presented as stimuli. Similar ap-
proaches for a BCI were already included for other BCIs (Hinterberger et al., 2004a;
Pfurtscheller et al., 2003). Note that a prerequisite would be a perfect classification of
the three letters. A similar approach would target into another direction: Imperfect
classifications of single letters in a word could be compensated by calculating the min-
imum distance to words in a dictionary. If still ambiguities exist, the possible words
could be presented as choices after the initial spelling. Furthermore, it could be consid-
ered for this strategy that misclassifications mostly result in symbols from the same row
or column. For example, subject 3C in section 7.4 spelled the word CNSERFACE instead
of INTERFACE. The letter C is in the same column as I, and the letter S lies in the same
row as T, such that the correct word INTERFACE could easily be determined.

Section 6.5 revealed that it is possible to construct a general classifier which was
trained on data from a number of subjects and subsequently applied to new subjects.
With such a classifier, no training for the individual subject is necessary and the subject
does not need to perform training trials. Unfortunately, compared to classifiers adapted
to the individual, only minor performance was achieved with this strategy. But to avoid
exhausting training sessions, one could combine both classifiers: Initially, a general
classifier could be used to achieve classifications even after the first trials. Therewith,
data samples from the individual can be collected and a classifier can be trained on
that data. A large number of subtrials would initially be needed to guarantee valid
labels. Since the computational inexpensive classifier FLDA proved to produce high
performance results, such an online training would consume only little computational
costs and could easily be performed in the background. In Machine-Learning, gradually
increasing the number of training samples is denoted as online learning, and several
publications can be found regarding this topic (Schoelkopf and Smola, 2002). While
operating the BCI device, the classification strategy can gradually be faded from the
general to the individual classifier. This procedure could also be performed for an
individual subject among sessions to compensate for intraindividual variations. By
using a dynamic number of subtrials, relying on reaching a certainty level for symbol
inferences as described above, no further control of the numbers of subtrials would be
necessary. This strategy would result in a continuously adapting self-accelerating BCI.

Another direction for improving the performance would be to include artifact elimi-

!Note that a delay of 660ms between subtrials would result because a time series of 800ms must be
recorded for the last stimulus of a subtrial, of which 140ms are consumed for presentation.

132



8.1. OUTLOOK

nation techniques. For example, artifacts in the training samples could be detected and
the according EEG time series be dropped for the training procedure. On the other
hand, the impact of artifacts could be reduced by appropriate preprocessing techniques
as e.g. suggested by Guan et al. (2004) and Jung et al. (2000).

Further Applications

A drawback of the current P300 speller device is that it relies on visual stimulation,
which could lead to serious problem when working with locked-in patients which might
loose control of their visual attention. As stated in section 2.5, the P300 component
is modality independent and a first alternative to visual stimuli are auditory stimuli.
However, transferring the matrix style of the P300 speller paradigm to auditory stim-
uli is a delicate task, since two dimensions of an auditory stimulus need to be varied
independently. While it would be possible to e.g. change the volume and the frequency
of an auditory stimulus in such a way, it would be hard for the subject to mentally
construct the desired combination of volume and frequency to choose a symbol in the
auditory matrix. Therefore, it would be more promising to employ single stimuli, e.g.
spoken letters. The SD speller design as introduced in section 4.3 proved that such an
approach could also work with reasonable speed (Guan et al., 2004). Beside using audi-
tory stimuli, also tactile stimulation could be employed by e.g. mechanical or electrical
stimulation of the finger tips.

Using the presented Machine-Learning classification framework, P300-based detection
of deception as suggested by Farwell and Donchin (1991) and discussed in section 4.3
could possibly be enhanced. The Machine-Learning classifier could learn which EEG
patterns result for familiar and unfamiliar stimuli without requiring a concept like e.g.
MERMER. Furthermore, adaptations to the EEG patterns of the individual subjects
would result when training trials with familiar/unfamiliar stimuli would be recorded
from the specific subject and the Machine-Learning classifier would be trained on that
data. The stimuli in the present online BCI software are stored as bitmaps, making it
possible to easily substitute them by pictures from any scene.

Once equipped with an online classification procedure, real interactions are possible
which allow for a broad range of applications: For example, as introduced by Mellinger
et al. (2003) for the Slow Cortical Potential BCI, a webbrowser could be controlled with
such a device: The links of a website could be flashed and induce a P300 component
for the link the user wishes to follow. Furthermore, several kinds of games could be
implemented. Obiously, for checker board games, which naturally expose a matrix style,
the P300 speller approach could be utilized to select fields in the checker board. But
also more dynamic interactions in virtual environments are possible as Bayliss (2003)
has shown.

The subjects in the online experiment reported that it highly depends on their
degree of attention whether a classification succeeds or not. Inspired by Lalor et al.
(2004), the logic of the BCI could be reversed and used as a measure for attention.
Combined with feedback, such a device could then be useful for e.g. children with
attentional deficits (Holtmann et al., 2004). The degree of attention could be provided
as a feedback for the children in a game with the goal to improve their attention.

133



CHAPTER 8. CONCLUSION

134



Bibliography

Alfa, R. (2005). Brain-machine interfaces: Reinventing sensory and motor functions
after injury or disease. Saltman Quarterly, 2(1).

Allison, B. and Pineda, J. (2003). ERPs evoked by different matrix sizes: implications
for a brain computer interface (BCI) system. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 11(2):110-113.

Anderson, C. (1997). Effects of variations in neural network topology and output aver-
aging on the discrimination of mental tasks from spontaneous electroencephalogram.
Journal of Intelligent Systems, 11:423-431.

Anderson, C. and Sijercic, Z. (1996). Classification of EEG signals from four sub-
jects during five mental tasks. In Bulsari, A., Kallio, S., and Tsaptsinos, D., edi-
tors, Proceedings of the Conference on Engineering Applications in Neural Networks
(EANN’96), pages 405-414. Systems Engineering Association.

Anderson, V., Burchiel, K., Hogarth, P., Favre, J., and Hammerstad, J. (2005). Pallidal
vs subthalamic nucleus deep brain stimulation in parkinson disease. Archives of
Neurology, 62:554-560.

Babiloni, F., Cincotti, F., Lazzarini, L., and Marciani, M. G. (2000). Linear classifica-
tion of low-resolution EEG patterns produced by imagined hand movements. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 8(2):186—-188.

Bauby, J.-D. (1998). The Diving Bell and the Butterfly. Vintage, New York.

Bayliss, J. (2003). Use of the evoked potential p3 component for control in a virtual
apartment. IFEEE Transactions on Neural Systems and Rehabilitation Engineering,
11(2):113-116.

Bayliss, J. and Ballard, D. (1999). Single trial P300 recognition in a virtual environment.
Soft Computing in Biomedicine (CIMA).

Ben-Shakhar, G. and Elaad, E. (2003). The validity of psychophysiological detection of
information with the guilty knowledge test: A meta-analytic review. The Journal of
Applied Psychology, 88(1):131-151.

Bennett, K. and Campbell, C. (2000). Support vector machines: Hype or halleluya?
SIGKDD Ezxplorations, 2:1-13.

Berger, H. (1929). Uber das elektroenkephalogramm des menschen. Archiv fiir Psychi-
atrie und Nervenkrankheiten, 87:527-570.

135



Bibliography

Berger, H. (1931). Uber das elektroenkephalogramm des menschen (teil 2). Archiv fiir
Psychiatrie und Nervenkrankheiten, 94:16.

Birbaumer, N. (1990). Physiologische Psychologie. Springer, Heidelberg.

Birbaumer, N., Elbert, T., Canavan, A., and Rockstroh, B. (1990). Slow potentials of
the cerebral cortex and behaviour. Physiological Reviews, 70(1):1-41.

Birbaumer, N.; Ghanayim, N., Hinterberger, T'., Iversen, 1., Kotchoubey, B., Kiibler, A.,
Perelmouter, J., Taub, E., and Flor, H. (1999). A spelling device for the paralysed.
Nature, 398:297-298.

Birbaumer, N., Hinterberger, T., Kiibler, A., and Neumann, N. (2003). The thought
translation device (TTD): Neurobehavioral mechanisms and clinical outcome. IEEE
Transactions on Rehabilitation Engineering, 11(2):120-123.

Birbaumer, N., Kiibler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser,
J., Iversen, I., Kotchoubey, B., Neumann, N., and Flor, H. (2000). The thought
translation device (TTD) for completely paralyzed patients. IEEE Transactions on
Rehabilitation Engineering, 8(2):190-193.

Birbaumer, N. and Schmidt, R. (2005). Biologische Psychologie. Springer, Berlin.

Bishop, C. (1995). Neural Networks for Pattern Recognition. Oxford University Press,
Oxford.

Blankertz, B., Dornhege, G., Schifer, C., Krepki, R., Kohlmorgen, J., Miiller, K.-
R., Kunzmann, V., Losch, F., and Curio, G. (2003). Boosting bit rates and error
detection for the classification of fast-paced motor commands based on single-trial
EEG analysis. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
11:100-104.

Blankertz, B., Miiller, K.-R., Curio, G., Vaughan, T. M., Schalk, G., Wolpaw, J. R.,
Schlégl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schréder, M., and Bir-
baumer, N. (2004). The BCI competition 2003. IEEE Transactions on Biomedical
Engineering, 51(6):1044-1051.

Bledowski, C., Prvulovic, D., Hoechstetter, K., Scherg, M., Wibral, M., Goebel, R.,
and Linden, D. (2004). Localizing P300 generators in visual target and distractor
processing: A combined event-related potential and functional magnetic resonance
imaging study. Journal of Neuroscience, 24:9353-9360.

Burges, C. J. C. (1998). A tutorial on support vector machines for pattern recognition.
Data Mining and Knowledge Discovery, 2(2):121-167.

Carmena, J., Lebedev, M. A., Crist, R., O’Doherty, J., Santucci, D., Dimitrov, D.,
Patil, P., Henriquez, C., and Nicolelis, M. (2003). Learning to control a brain-machine
interface for reaching and grasping by primates. Public Library of Science (PLoS)
Biology, 1:1-16.

136



Bibliography

Caspers, H. and Speckmann, E. (1974). Cortical DC shifts associated with changes of
gas tensions in blood and tissue. In Handbook of Electroencephalography and Clinical
Neurophysiology, pages A10-A65. Elsevier.

Caton, R. (1875). The electric currents of the brain. British Medical Journal, 2:278.

Chang, C.-C. and Lin, C.-J. (2001). LIBSVM: a library for support vector machines.
Software available at www.csie.ntu.edu.tw/“cjlin/libsvm.

Chapin, J., Moxon, K., Markowitz, R., and Nicolelis, M. (1999). Real-time control
of a robot arm using simultaneously recorded neurons in the motor cortex. Nature
Neuroscience, 2(7):664-670.

Cheng, M., Gao, X., Gao, S., and Xu, D. (2002). Design and implementation of a
brain-computer interface with high transfer rates. IEEE Transactions on Biomedical
Engineering, 49:1181-1186.

Cincotti, F., Mattia, D., Babiloni, C., Carducci, F., Salinari, S., Bianchi, L., Mar-
ciani, M. G., and Babiloni, F. (2003). The use of EEG modifications due to motor
imagery for brain-computer interfaces. IEEE Transactions on Neural Systems and
Rehabilitation Engineering, 11(2):131-133.

Clark, G., Tong, Y., Martin, L., and Busby, P. (1981). A multi-channel cochlear implant.
an evaluation using an open-set word test. Acta Otolaryngol, 91:173-175.

Clark, K., Naritoku, D., Smith, D., Browning, R., and Jensen, R. (1999). Enhanced
recognition memory following vagus nerve stimulation in human subjects. Nature
Neuroscience, 2:94-98.

Coles, M. (1989). Modern mind-brain reading: Psychophysiology, physiology and cog-
nition. Psychophysiology, 26(3):251-269.

Coles, M., Gratton, G., and Fabiani, M. (1990). Event-related brain-potentials. In
principles of psychophysiology, pages 413-455. Cambridge University Press.

Coles, M., Gratton, G., Kramer, A., and Miller, G. (1986). Principles of signal acquisi-
tion and analysis. In Coles, M., Donchin, E., and Porges, S., editors, Psychophysiology
- System, Processes and Applications, New York. The Guilford Press.

Coles, M. and Rugg, M. (1995). Event-related brain potentials: An introduction. In
Rugg, M. and Coles, M., editors, Electrophysiology of Mind, Oxford. Oxford Univer-
sity Press.

Cooley, J. W. and Tukey, J. W. (1965). An algorithm for the machine calculation of
complex Fourier series. Mathematics of Computation, 19:297-301.

Cooper, R., Winter, A., Crow, H., and Grey, W. (1965). Comparison of subcortical,
cortical and scalp activity using chronically indwelling electrodes in man. FElectroen-
cephalography and clinical Neurophysiology, 28:217-228.

Coyle, S., Ward, T., Markham, C., and McDarby, G. (2004). On the suitability of near-
infrared (NIR) systems for next-generation brain-computer interfaces. Physiological
Measurement, 25:815—-822.

137



Bibliography

Cristianini, N. and Shawe-Taylor, J. (2000). An introduction to support vector machines.
Cambridge University Press, Cambridge, UK.

Cyberkinetics (2006). Cyberkinetics - neurotechnology systems, inc. Website, retrieved
February 2, 2006, from http://www.cyberkineticsinc.com.

Cyberonics (2005). VNS therapy fact sheet. Website, retrieved June 27, 2005, from
http://www.cyberonics.com.

Dobelle, W. (2000). Artificial vision for the blind by connecting a television camera to
the visual cortex. American Society of Artificial Internal Organs Journal, 46:3-9.

Dobelle, W., Mladejovsky, M., Evans, J., Roberts, T., and Girvin, J. (1976). 'Braille’
reading by a blind volunteer by visual cortex stimulation. Nature, 259:111-112.

Dobelle, W., Mladejovsky, M., and Girvin, J. (1974). Artificial vision for the blind:
electrical stimulation of visual cortex offers hope for a functional prosthesis. Science,
183:440-444.

Domingos, P. (1999). The role of occam’s razor in knowledge discovery. Data Mining
and Knowledge Discovery, 3(4):409-425.

Donchin, E. (1981). Surprise! . . . surprise? Psychophysiology, 18:493-513.

Donchin, E., Spencer, K., and Wijeshinghe, R. (2000). The mental prosthesis: As-
sessing the speed of a P300-based brain-computer interface. IEFEE Transactions on
Rehabilitation Engineering, 8(2):174-179.

Donoghue, J. (2002). Connecting cortex to machines: Recent advances in brain inter-
faces. Nature Neuroscience supplement, 5:1085—-1088.

Dornhege, G., Blankertz, B., Curio, G., and Miiller, K.-R. (2004). Boosting bit rates in
non-invasive EEG single-trial classifications by feature combination and multi-class
paradigms. IEEE Transactions on Biomedical Engineering, 51(6):993-1002.

Duda, R. O., Hart, P. E., and Stork, D. G. (2000). Pattern Classification. Wiley-
Interscience Publication.

Duncan, D. and Friedman, R. (2005). Fernsteuerung durch gedanken. MIT Technology
Review, 3:72-T8.

Duncan-Johnson, C. C. and Donchin, E. (1977). On quantifying surprise: The variation
of event-related potentials with subjective probability. Psychophysiology, 14:456—467.

Ebe, M. and Homma, I. (1994). Leitfaden fir die EEG Praxis: Ein Bildkompendium.
Gustav Fischer, Stuttgart.

Elbert, N. B. T., Rockstroh, B., Daum, I., Wolf, P., and Canavan., A. (1991). Clinical-
psychological treatment of epileptic seizures: a controlled study. In Ehlers, A., editor,
Perspectives and promises of clinical psychology.

Engel, A., Moll, C., Fried, I., and Ojemann, G. (2005). Invasive recordings from the
human brain: Clinical insights and beyond. Nature Neuroscience, 6:35-47.

138



Bibliography

Evgeniou, T., Pontil, M., and Poggio, T. (2000). Regularization networks and support
vector machines. Advances in Computational Mathematics, 13:1-50.

Farwell, L. (2006). Brain fingerprinting - home. Website, retrieved February 4, 2006,
from http://www.brainwavescience.com.

Farwell, L. and Donchin, E. (1988). Talking off the top of your head: toward a mental
prosthesis utilizing event-related brain potentials. Electroencephalography and clinical
Neurophysiology, 70(52):510-523.

Farwell, L. and Donchin, E. (1991). The truth will out: Interrogative polygraphy (lie
detection) with event-related brain potentials. Psychophysiology, 28(5):531-547.

Fawcett, A., Moro, E., and Lang, A. (2005). Pallidal deep brain stimulation influences
both reflexive and voluntary saccades in huntington’s disease. Movement Disorders,
20(3):371-376.

Fernandez, E., Pelayo, F., Ahnelt, P., Ammermiiller, J., and Normann, R. A. (2005).
Cortical visual neuroprostheses for the blind. Restorative Neurology and Neuroscience,
page in press.

Fetz, E. (1999). Real-time control of a robotic arm by neuronal assemblies. Nature
Neuroscience, 2:583-584.

Fisher, R. (1936). The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7:179-188.

Fletcher, R. (1987). Practical Methods of Optimization. John Wiley and Sons.

Flexer, A., Gruber, G., and Dorffner, G. (2005). A reliable probabilistic sleep stager
based on a single EEG signal. Artificial Intelligence in Medicine, 33:199-207.

Friedman, D., Putnam, L., and Sutton, S. (1989). Event-related potentials in children,
young adults and senior citizens. Developmental Neuropsychology, 5:33—60.

Frigo, M. and Johnson, S. (2006). FFTW home page. Website, retrieved January 25,
2006, from http://www.fftw.org.

Fukunaga, K. (1982). Intrinsic dimensionality extraction. In Krishnaiah, P. and Kanal,
L., editors, Handbook of Statistics, volume 2, pages 347-360. Amsterdam.

Gao, X., Xu, D., Cheng, M., and Gao, S. (2003). A BCI-based environmental controller
for the motion-disabled. IEEE Transactions of Neural Systems and Rehabilitation
Engineering, 11(2):137-140.

Golland, P. (2002). Discriminative direction for kernel classifiers. In Dietterich, T.,
Becker, S., and Ghahramani, Z., editors, Advances in Neural Information Processing
Systems 14, Cambridge, MA. MIT Press.

Golub, T., Slonim, D., Tamayo, P., Huard, C., Gassenbeek, M., Mesirov, J., Coller, H.,
Loh, M., Downing, J., Caligiuri, M., Bloomfield, C., and Lander, E. (1999). Molec-
ular classification of cancer: Class discovery and class prediction by gene expression
monitoring. Science, 286(286):531-537.

139



Bibliography

Goodglass, H. and Geschwind, N. (1976). Language disorders. In Carterette, E. and
Friedman, M., editors, Handbook of Perception: Language and Speech, volume 7, New
York. Academic Press.

Gratton, G. and Coles, M. (1989). Generalization and evaluation of eye-movement
correction procedures. Journal of Psychophysiology, 3:14-16.

Guan, C., Thulasidas, M., and Wu, J. (2004). High performance P300 speller for
brain-computer interface. In Proceedings of IEEE Biological Circuits and Systems
(BioCAS), Singapore.

Guger, C., Edlinger, G., Harkam, W., Niedermayer, I., and Pfurtscheller, G. (2003).
How many people are able to operate an EEG-based brain-computer interface (BCI)?
IEEFE Transactions on Neural Systems and Rehabilitation Engineering, 11(2):145-147.

Guyon, I. (2006). SVM application list. Website, retrieved February 4, 2006, from
http://www.clopinet.com /isabelle /Projects/SVM /applist.html.

Guyon, 1., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer
classification using support vector machines. Machine Learning, 46(1-3):389-422.

Hamani, C., Hodaie, M., and Lozano, A. (2005). Present and future of deep brain
stimulation for refractory epilepsy. Acta Neurochirurgica, 147(3):227-230.

Hancock, P. J. B., Baddeley, R. J., and Smith, L. S. (1992). The principal components
of natural images. Network, 3:61-70.

Hastie, T., Tibshirani, R., and Friedman, J. (2001). The Elements of Statistical Learn-
ing. Springer, New York.

Heidemann, G. (2006). The principal components of natural images revisited. IEEE
Trans. on Pattern Analysis and Machine Intelligence. accepted.

Heuser, U., Goppert, J., Rosenstiel, W., and Stevens, A. (1997). Classification of
human brain waves using self-organizing maps. In Lavrac, N., Karavnou, E., and
Zupan, B., editors, Intelligent Data Analysis in Medicine and Pharmacology, pages
279-294, Boston. Kluwer Academic Publishers.

Hillyard, S., Hink, R., Schwent, V., and Picton, T. (1973). Electrical signs of selective
attention in the human brain. Science, 182:177-180.

Hinterberger, T., Schmidt, S., Neumann, N., Mellinger, J., Blankertz, B., Curio, G., and
Birbaumer, N. (2004a). Brain-computer communication and slow-cortical potentials.
IEEFE Transactions on Biomedical Engineering, 51(6):1011-1018.

Hinterberger, T., Weiskopf, N., Veit, R., Wilhelm, B., Betta, E., and Birbaumer, N.
(2004b). An EEG-driven brain-computer interface combined with functional magnet-
ics resonance imaging. IEEFE Transactions on Biomedical Engineering, 51(6):971-974.

Holtmann, M., Stadler, C., Leins, U., Strehl, U., Birbaumer, N., and Poustka, F. (2004).
Neurofeedback in der behandlung der aufmerksamkeitsdefizit-hyperaktivitatsstorung
(adhs) bei kindern. Zeitschrift fir Kinder- und Jugendpsychiatrie, 32(3):187-200.

140



Bibliography

Hoppe, C., Helmstaedter, C., Scherrmann, J., and Elger, C. (2001). No evidence for
cognitive side effects after 6 months of vagus nerve stimulation in epilepsy patients.
Epilepsy and Behavior, 2:351-356.

Hoppe, F. and Kaper, M. (2003). EEG-Datenanalyse zur Entwicklung einer Gehirn-
Computer Schnittstelle. Bielefeld University, Faculty of Technology. Diploma Thesis.

Horch, W. and Dhillon, G. S. (2004). Neuroprosthetics: Theory and Practice. World
Scientific Publishing Company, Singapore.

Hotelling, H. (1933). Analysis of a complex of statistical variables into principal com-
ponents. Journal of Educational Psychology, 24:417-441.

Hyvérinen, A. (1999). Survey on independent component analysis. Neural Computing
Suverys, 2:94-128.

Jaskowski, P. and Verleger, R. (2000). An estimation of methods for single-trial esti-
mation of P3 latency. Psychophysiology, 37:153-162.

Jasper, H. (1958). The ten-twenty electrode system of the international federation.
Electroencephalography and clinical Neurophysiology, 10:371-375.

Jung, T., Humphries, C., Lee, T., McKeown, M., Iragui, V., S.Makeig, and Sejnowski,
T. (2000). Removing electroencephalographic artifacts by blind source separation.
Psychophysiology, 37:163-178.

Kaper, M., Meinicke, P., Grossekathoefer, U., Lingner, T., and Ritter, H. (2004).
BCI competition 2003 - dataset IIb: Support vector machines for the P300 speller
paradigm. IEEE Transactions Biomedical Engineering, 51:1073-1076.

Kaper, M., Meinicke, P., Miiller, H. M., Weiss, S., Bekel, H., Hermann, T., Saalbach,
A., and Ritter, H. (2006). Neuroinformatic techniques in cognitive neuroscience of
language. In Rickheit, G. and Wachsmuth, 1., editors, Situated Communication, pages
265-286, Berlin. Mouton de Gruyter.

Kaper, M. and Ritter, H. (2004a). Generalizing to new subjects in brain-computer
interfacing. In Proceedings of the 26th IEEE EMBS Annual International Conference
(EMBC), San Francisco, USA.

Kaper, M. and Ritter, H. (2004b). Progress in P300-based brain-computer interfacing.
In Proceedings of IEEE Biological Circuits and Systems (BioCAS), Singapore.

Kaper, M., Saalbach, A., Finke, A., Miiller, H. M., Weiss, S., and Ritter, H. (2005). Ex-
ploratory data analysis of EEG coherence using self-organizing maps. In Proceedings
of the International Conference on Neural Information Processing (ICONIP).

Karhunen, K. (1947). Uber lineare methoden in der wahrscheinlichkeitsrechnung. An-
nales Academiae Scientarium Fennicae, 37:3-79.

Keerthi, S. S. and Lin, C.-J. (2003). Asymptotic behaviors of support vector machines
with gaussian kernel. Neural Computation, 15:1667-1689.

141



Bibliography

Keirn, Z. and Aunon, I. (1990). A new mode of communication between man and his
surroundings. IEEE Transactions on Biomedical Engineering, 37(12):1209-1214.

Kennedy, P., Bakay, R., Moore, M., Adams, K., and Goldwaithe, J. (2000). Direct
control of a computer from the human central nervous system. IEEE Transactions
on Rehabilitation Engineering, 8(2):198-202.

Kirchner, A., Birklein, F., Stefan, H., and Handwerker, H. (2000). Left vagus nerve
stimulation suppresses experimentally induced pain. Neurology, 55:1167-1171.

Klinke, R., Frithstorfer, H., and Finkenzeller, P. (1968). Evoked responses as a function
of external and stored information. Electroencephalography and Clinical Neurophysi-
ology, 25:119-122.

Koles, Z. and Soong, A. (1998). EEG source localization: implementing the spatio-
temporal decomposition approach. Electroencephalography and Clinical Neurophysi-
ology, 107:343-352.

Kornhuber, H. and Deecke, L. (1965). Hirnpotentialinderungen bei willkiirbewegun-
gen und passiven bewegungen des menschen: Bereitschaftspotential und reafferente
potentiale. Pfliiger’s Archiv fiir die gesamte Physiologie, 284:1-17.

Krepki, R., Blankertz, B., Curio, G., and K.R.-Miiller (2004). The berlin brain-
computer interface (BBCI): towards a new communication channel for online control
of multimedia applications and computer games. Journal of Multimedia Tools and
Applications.

Kronegg, J., Voloshynovskiy, S., and Pun, T. (2005). Analysis of bit-rate definitions for
brain-computer interfaces. International Conference on Human-Computer Interaction
(HCI'05).

Kiibler, A., Kotchoubey, B., Hinterberger, T., Ghanayim, N., Perelmouter, J., Schauer,
M., Fritsch, C., Taub, E., and Birbaumer, N. (1999). The thought translation device:
a neurophysiological approach to commincation in total motor paralysis. Experimental
Brain Research, 124:223-232.

Kiibler, A., Kotchoubey, B., Kaiser, J., Wolpaw, J., and Birbaumer, N. (2001).
Brain-computer communication: Unlocking the locked in. Psychological Bulletin,
127(3):358-375.

Kumar, R., Lozano, A. M., Sime, E., Halket, E., and Lang, A. E. (1999). Compar-
ative effects of unilateral and bilateral subthalamic nucleus deep brain stimulation.
Neurology, 53:561-571.

Kumar, R., Lozano, A. M., Sime, E., and Lang, A. E. (2003). Long-term follow-up of
thalamic deep brain stimulation for essential and parkinsonian tremor. Neurology,
61:1601-1604.

Kutas, M. and Hillyard, S. (1980). Reading senseless sentences: Brain potentials reflect
semantic incongruity. Science, 207:203-205.

142



Bibliography

Laitinen, L. (2003). Neuromagnetic sensorimotor signals in brain computer interfaces.
Helsinki University of Technology. Master’s Thesis.

Lalor, E., Kelly, S., C.Finucane, R.Burke, Reilly, R., and McDarby, G. (2004). Brain
computer interface based on the steady-state vep for immersive gaming control.
Biomedizinische Technik, 49(1):63-64.

Lantz, G., Peralta, R., Spinelli, L., Seeck, M., and Michel, C. (2003). Epileptic source
localization with high density EEG: How many electrodes are needed?  Clinical
Neurophysiology, 114:63-69.

Lemm, S., Blankertz, B., Curio, G., and K.R.-Miiller (2005). Spatio-spectral filters
for improved classification of single trial EEG. IEEE Transactions on Biomedical
Engineering. to appear.

Levine, S. P., Huggins, J. E., BeMent, S. L., Kushwaha, R. K., Schuh, L. A., Rohde,
M. M., Passaro, E. A., Ross, D. A., Elisevich, K., and Smith, B. J. (2000). A direct
brain interface based on event-related potentials. IEFE Transactions on Rehabilita-
tion Engineering, 8:180-185.

Loéwenstein, K. and Borchart, M. (1918). Symptomatologie und elektrische reizung bei
einer schubverletzung des hinterhauptlappens. Deutsche Zeitung fiir Nervenheilkunde,
58:264.

Lykken, D. (1959). The GSR in the detection of guilt. Journal of Applied Psychology,
43(6):385—-388.

Makeig, S., Debener, S., and Onton, J. (2004). Mining event-related brain dynamics.
Trends in Cognitive Sciences, 8(5):204-210.

Margalit, E., Maia, M., Weiland, J., Greenberg, R., Fujii, G., Torres, G., Piyathaisere,
D., O’Hearn, T., Liu, W., Lazzi, G., Dagniele, G., Scribner, D., de Juan, E., and
Humayun, M. (2002). Retinal prosthesis for the blind. Survey of Ophthalmology,
47(4):335-356.

Marques de Sa, J. (2001). Pattern Recognition. Springer, New York.

Martin, J. H. (1991). The collective electrical behavior of cortical neurons: The elec-
troencephalogram and the mechanisms of epilepsy. In Principles of Neural Science,
pages 777-790. Elsevier.

Maynard, E. (2001). Visual prostheses. Annual Review of Biomedical Engineering,
3:145-168.

McFarland, D. J., Sarnacki, W. A., and Wolpaw, J. R. (2003). Brain-computer inter-
face (BCI) operation: Optimizing information transfer rates. Biological Psychology,
63:237-251.

Medtronics (2005). Questions and answers about activa parkinson’s control therapy.
Website, retrieved June 27, 2005, from http://www.medtronic.com.

143



Bibliography

Mehring, C., Rickert, J., Vaadia, E., de Oliviera, S. C., Aertsen, A., and Rotter, S.
(2003). Inference of hand movements from local field potentials in monkey motor
cortex. Nature Neuroscience, 6:1253-1254.

Meinicke, P., Hermann, T., Bekel, H., Miiller, H. M., Weiss, S., and Ritter, H. (2004).
Identification of discriminative features in eeg. Journal for Intelligent Data Analysis,
8(1):97-107.

Meinicke, P., Kaper, M., Hoppe, F., Heumann, M., and Ritter, H. (2003). Improving
transfer rates in brain computer interfacing: a case study. In Becker, S., Thrun, S.,

and Obermayer, K., editors, Advances in Neural Information Processing Systems 15,
Cambridge, MA. MIT Press.

Mellinger, J., Hinterberger, T., Bensch, M., Schréder, M., and Birbaumer, N. (2003).
Surfing the web with electrical brain sigfnals: The brain web surfer (BWS) for the
completely paralysed. In Ring, H. and Soroker, N., editors, Proceedings of the 2nd
World Congress of the International Society of Physical and Rehabilitation Medicine
(ISPRM).

Mellinger, J., Nijboer, F., Pawelzik, H., Schalk, G., McFarland, D. J., Vaughan, T. M.,
Wolpaw, J. R., Birbaumer, N., and Kiibler, A. (2004). P300 for communication:
Evidence from patients with amyotrophic lateral sclerosis (ALS). Biomedizinische
Technik, 49:71-74.

Middendorf, M., McMillan, G., Calhoun, G., and Jones, K. (2000). Brain-computer
interface based on the steady-state visual-evoked response. IFEFE Transactions on
Rehabilitation Engineering, 8(2):211-214.

Mika, S., Rétsch, G., and Miiller, K.-R. (2001). A mathematical programming approach
to the kernel fisher algorithm. In Leen, T., Dietterich, T., and Tresp, V., editors,

Advances in Neural Information Processing Systems 13, pages 591-597, Cambridge,
MA. MIT Press.

Morgan, S., Hansen, J., and Hillyard, S. (1996). Selective attention to stimulus loca-
tion modulates the steady state visual evoked potential. Proceedings of the National
Academy of Science USA, 93:4770-4774.

Miiller, H. M. (2006). Neurobiological aspects of meaning constitution during language
processing. In Rickheit, G. and Wachsmuth, 1., editors, Situated Communication,
pages 243-264, Berlin. Mouton de Gruyter.

Miiller, K.-R., Mika, S., Rétsch, G., Tsuda, K., and Scholkopf, B. (2001). An intro-
duction to kernel-based learning algorithms. IEEFE Transactions on Neural Networks,
12(2):181-201.

Miiller, M., Picton, T., Valdes-Sosa, P., Riera, P., Teder-Sélerjarvi, W., and Hillyard,
S. (1998). Effects of spatial selective attention on the steady-state visual evoked
potential in the 20-28hz range. Cognitive Brain Research, 6:249-261.

Mullis, R., Holcomb, P., Diner, B., and Dykman, R. (1985). The effect of aging on
the P3 component of the visual event-related potential. Electroencephalography and
Clinical Neurophysiology, 62:141-149.

144



Bibliography

Neuper, C. and Pfurtscheller, G. (1999). Motor imagery and erd. Handbook of Elec-
troencephalogram and Clinical Neurophysiology, 6:3—74.

NeuralSignals (2006). Neural signals inc. - cutting edge assistive technology. Website,
retrieved February 2, 2006, from http://www.neuralsignals.com.

Nicolelis, M. (2001). Actions from thoughts. Nature, 409:403-406.

Nicolelis, M. (2003). Brain-machine interfaces to restore motor function and probe
neural circuits. Nature Neuroscience, 4:417-422.

Nicolelis, M., Birbaumer, N., and Miiller, K.-R. (2004). Editorial. IEEE Transactions
on Biomedical Engineering, 51/6:877-879.

NIDCD (2006). Cochlear implants [NIDCD health information|. Website, retrieved
February 4, 2006, from http://www.nided.nih.gov/health /hearing/coch.asp.

Nieuwenhuys, R., Voogd, J., and van Huijzen, C. (1988). The Human Central Nervous
System. Springer, Berlin.

Nykopp, T., Laitinen, L., Heikkonen, J., and Sams, M. (2005). Statistical methods for
MEG based finger movement classification. IEEE Transactions on Neural Systems
and Rehabiliteering Engineering. in press.

Naaténen, R. (1982). Processing negativity: An evoked potential reflection of selective
attention. Psychological Bulletin, 92:605-640.

Obermaier, B., Guger, C., Neuper, C., and Pfurtscheller, G. (2001). Hidden markov
models for online classification of single trial EEG data. Pattern Recognition Letters,
22:1299-1309.

Patel, S. and Azzam, P. (2005). Characterization of N200 and P300: Selective studies of
the event-related potential. International Journal of Medical Sciences, 2(4):147-154.

Patterson, J. and Grabois, M. (1986). Locked-in syndrome: a review of 139 cases.
Stroke, 17:758-764.

Pfingst, B. (2000). Auditory prostheses. In Chapin, J. and Moxon, K., editors, Neural
Prostheses for Restoration of Sensory and Motor Function, pages 3-43. CRC Press.

Pfurtscheller, G. and Neuper, C. (1997). Motor imagery activates primary sensorimotor
area in man. Neuroscience Letters, 239:65—68.

Pfurtscheller, G., Neuper, C., Guger, C., Harkam, W., Ramoser, H., Schlégl, A., Ober-
maier, B., and Pregenzer, M. (2000). Current trends in graz brain computer interface
(BCI) research. IEEE Transactions on Rehabilitation Engineering, 8(2):216-219.

Pfurtscheller, G., Neuper, C., Miiller, G., Obermaier, B., Krausz, G., Schlogl, A.,
Scherer, R., Graimann, B., Keinrath, C., Skliris, D., Woertz, M., Supp, G., and
Schrank, C. (2003). Graz-BCI: State of the art and clinical applications. IEEE
Transactions on Neural Systems and Rehabilitation Engineering, 11(2):177-180.

145



Bibliography

Picton, T., Alain, C., Otten, L., Ritter, W., and Achim, A. (2000). Mismatch negativity:
Different water in the same river. Audiology and Neuro-Otology, 5:111-139.

Picton, T., Lins, O., and Scherg, M. (1995). The recording and analysis of event-related
potentials. In Boller, F. and Grafman, J., editors, Handbook of Neuropsychology, pages
3—74. Elsevier.

Pinel, J. P. (1990). Biopsychology. Allyn & Bacon, Boston.

Polich, J. (1998). P300 clinical utility and control of variability. Journal of Clinical
Neurophysiology, 15(1):14-33.

Polich, J. (2003). Overview of P3a and P3b. In Polich, J., editor, Detection of Change:
FEvent-Related Potential and fMRI Findings, pages 83-98, Boston. Kluwer Academic
Press.

Posner, M., Snyder, C., and Davidson, B. (1980). Attention and the detection of signals.
Journal of Experimental Psychology: General, 109:160-174.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992). Numerical
Recipes in C: The Art of Scientific Computing. Cambridge University Press, New
York, NY, USA.

Pritchard, W. (1981). Psychophysiology of P300. Psychological Bulletin, 89:506-540.

Pritzel, M., Brandt, M., and Markowitsch, H. (2003). Gehirn und Verhalten. Spektrum,
Heidelberg.

Qian, H., Loizou, P., and Dorman, M. (2003). A phone-assistive device based on blue-
tooth technology for cochlear implant users. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 11(3):282-287.

Rappelsberger, P. and Petsche, H. (1988). Probability mapping: Power and coherence
analysis of cognitive processes. Brain Topography, 1:46-54.

Regan, D. (1989). Human brain electrophysiology: evoked potentials and evoked mag-
netic fields in science and medicine. Elsevier.

Ripley, B. (1999). Pattern Recognition and Neural Networks. Cambridge University
Press, Cambridge, UK.

Rosenfeld, J. (2005). Brain fingerprinting: A critical analysis. Scientific Review of
Mental Health Practice. in press.

Sajda, P., Gerson, A., Miiller, K.-R., Blankertz, B., and Parra, L. (2003). A data anal-
ysis competition to evaluate machine learning algorithms for use in brain-computer

interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
11(2):184-185.

Salek-Haddadi, A., Friston, K., Lemieux, L., and Fish, D. (2003). Studying spontaneous
EEG activity with fMRI. Brain Research Reviews, 43:110-133.

146



Bibliography

Schachter, S. (2002). Vagus nerve stimulation therapy summary - five years after fda
approval. Neurology, 59:15-29.

Schack, B. and Weiss, S. (2005). Quantification of phase synchronization phenomena
and their importance for verbal memory processes. Biological Cybernetics, 92(1):275—
287.

Schandry, R. (1981). Psychophysiologie. Urban and Schwarzenberg, Miinchen.

Scherer, R., Miiller, G., Neuper, C., Graimann, B., and Pfurtscheller, G. (2004). An
asynchronously controlled EEG-based virtual keyboard: Improvement of the spelling
rate. IEEE Transactions on Biomedical Engineering, 51(6):979-984.

Schmidt, E., Bak, M., Hambrecht, F., Kufta, C., O’'Rourke, D., and Vallabhanath, P.
(1996). Feasibility of a visual prosthesis for the blind based on intracortical micros-
timulation of the visual cortex. Brain, 119:507-522.

Schoelkopf, B. and Smola, A. J. (2002). Learning with Kernels. The MIT Press,
Cambridge, MA.

Serby, H., Yom-Tov, E., and Inbar, G. (2005). An improved P300-based brain-computer
interface. IEEE Transactions on Neural Systems and Rehabilitation Engineering,
3(1):89-98.

Serruya, M., Hatsopoulos, N., Paninski, L., Fellows, M., and Donoghue, J. (2002).
Instant control of a movement signal. Nature, 416:141-142.

Shannon, C. and Weaver, W. (1949). The Mathematical Theory of Communication.
University of Illinois Press.

Smith, S. W. (1999). The Scientist and Engineer’s Guide to Digital Signal Processing.
California Technical Publishing, San Diego.

Sokolow, Y. (1963). Perception and the Conditioned Reflex. Pergamon Press, Oxford.

Sutton, S., Braren, M., Zubin, J., and John, E. (1965). Evoked-potential correlates of
stimulus uncertainty. Science, 150:1187-1188.

Tallon-Baudry, C. and Bertrand, O. (1999). Oscillatory gamma activity in humans and
its role in object representation. Trends in Cognitive Sciences, 3(4):151-162.

Talwar, S., Xu, S., Hawley, E., Weiss, S., Moxon, K., and Chapin, J. (2002). Rat
navigation guided by remote control. Nature, 317:37-38.

Taylor, D., Tillery, S., and Schwartz, A. (2002). Direct cortical control of 3d neuropros-
thetic devices. Science, 296:1829-1832.

Trolltech (2006). Trolltech - cross-platform C++ gui development, and embedded linux
solutions. Website, retrieved February 3, 2006, from http://www.trolltech.com.

Tucker, D. M. (1993). Spatial sampling of head electrical fields: The geodesic sensor
net. FElectroencephalography and Clinical Neurophysiology, 87:145-163.

147



Bibliography

Turk, M. and Pentland, A. (1991). Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3:71-86.

Ungerleider, L. and Mishkin, M. (1982). Two cortical visual systems. In Ingle, D.,
Goodale, M., and Mansfield, R., editors, Analysis of visual behior, pages 549-586,
Cambridge. MIT Press.

Uthman, B., Reichl, A., and Dean, J. (2004). Effectiveness of vagus nerve stimulation
in epilepsy patients: A 12-year observation. Neurology, 63:1124-1126.

Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer, New York.

Varela, F., Lachaux, J.-P., Rodriguez, E., and Martinerie, J. (2001). The brainweb:
Phase and synchronisation and large-scale integration. Nature Neuroscience, 2:229—
239.

Vaughan, H. and Arezzo, J. (1988). The neural basis of event-related potentials. Hand-
book of Electroencephalogram and Clinical Neurophysiology, 3:45-96.

Verleger, R. (1988). Event-related potentials and cognition: A critique of the context
updating hypothesis and an alternative interpretation of P3. Behavioral and Brain
Sciences, 11:343-427.

Vetter, R., Williams, C., Hetke, J., Nunamaker, E., and Kipke, D. (2004). Chronic
neural recording using silicon-substrate microelectrode arrays implanted in cerebral
cortex. IEEE Transactions on Biomedical Engineering, 51(6):896-904.

Weiskopf, N., Mathiak, K., Bock, S., Scharnowski, F., Veit, R., Grodd, W., Goebel,
R., and Birbaumer, N. (2004). Principles of a brain-computer interface (BCI) based
on real-time functional magnetic resonance imaging (fMRI). IEEE Transactions on
Biomedical Engineering, 51(6):966-970.

Weiss, S., Miiller, H., Schack, B., King, J., Kutas, M., and Rappelsberger, P. (2005).
Increased neuronal synchronization accompanying sentence comprehension. Interna-
tional Journal of Psychophysiology, 57:129-141.

Weiss, S. and Miiller, H. (2003). The contribution of EEG coherence to the investigation
of language. Brain and Language, 85:325-343.

Wessberg, J., Stambaugh, C., Kralik, J., Beck, P., Chapin, J., Kim, J., Biggs, S.,
Srinivasan, M., and Nicolelis, M. (2000). Real-time prediction of hand trajectory by
ensembles of cortical neurons in primates. Nature, 408:361-365.

Wickelgreen, I. (2003). Tapping the mind. Science, 299:496 — 499.

Wolpaw, J., Birbaumer, N., Heetderks, W., McFarland, D., Peckham, P., Schalk, G.,
Donchin, E., Quatrano, L., Robinson, C., and Vaughan., T. (2000). Brain-computer
interface technology: A review of the first international meeting. IEEE Transactions
on Rehabilitation Engineering, 8:161-163.

Wolpaw, J., Birbaumer, N., McFarland, D., Pfurtscheller, G., and Vaughan, T. (2002).
Brain-computer interfaces for communication and control. Clinical Neurophysiology,
113:767-791.

148



Bibliography

Wolpaw, J. and McFarland, D. (1994). Multichannel EEG-based brain-computer com-
munication. Electroencephalographie and Clinical Neurophysiology, 90:444-449.

Wolpaw, J. and McFarland, D. (2004). Control of a two-dimensional movement signal
by a noninvasive brain-computer interface in humans. Proceedings of the National
Academy of Science (PNAS), 101:17849-17854.

Wolpaw, J., McFarland, D., Vaughan, T., and Schalk, G. (2003). The wadsworth
center brain-computer interface (BCI) research and development program. I[EEE
Transactions on Neural Systems and Rehabilitation Engineering, 11(2):204-207.

Wolpaw, J. R., McFarland, D. J., Neat, G. W., and Forneris, C. A. (1991). EEG-based
brain-computer interface for cursor control. Clinical Neurophysiology, 78:252-259.

Wolpe, P., Foster, K., and Langleben, D. (2005). Emerging neurotechnologies foer
lie-detection: Promises and perils. American Journal of Bioethics, 5(2):39-49.

Xu, N., Gao, X., Hong, B., Miao, X., Gao, S., and Yang, F. (2004). BCI competition
2003 - dataset IIb: Enhancing P300 wave detection using ICA-based subspace projec-
tions for BCI applications. IEEE Transactions Biomedical Engineering, 51:1067-1072.

Zschocke, S. (1995). Klinische Elektroenzephalographie. Springer, Berlin.

149



