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Chapter 1

Introduction

Let X and Y be two binary random strings of length n independent of each other.
Let Ln denote the length of the Longest Common Subsequence (LCS) of X and
Y . In general the order of magnitude in n of VAR[Ln] is not known. So far,
Matzinger and his collaborators had been able to prove that VAR[Ln] has order
Θ(n) in few cases [15, 16, 18, 19, 20]. In this thesis, we prove the same result for a
model which is not low entropy. Previous cases were all low entropy models. The
model for the distribution is an i.i.d. sequences of blocks, where blocks are words
consisting only of one symbol. In the present case all the blocks have length l−1,
l or l + 1 with probability 1/3 for a given integer parameter l > 5. We reduce
the problem of proving that VAR[Ln] = Θ(n) to showing that a function under
an entropy constraint does not go below zero. The method which we develop
could be used for many other more complex cases whenever one pattern tends
to influence the LCS score in a biased way. Also, a natural question is what
happens if one has a more realistic situation than i.i.d, like Markov chains of
words for instance (DNA models). This thesis partially answers this question
since the model considered is one particular example of Markov chain of words.
More general cases with more possible words are still open for future research
though the techniques shown here give us new tools for approaching them.

1.1 The LCS history

LetX and Y be two finite strings over a finite alphabet Σ. A common subsequence
of X and Y is a subsequence which is a subsequence of X as well as of Y . A
Longest Common Subsequence (LCS) of X and Y is a common subsequence of
X and Y of maximal length.

Example 1.1.1 Let us consider the DNA-alphabet Σ = {A,G,C, T}. In Bioin-
formatics, an usual problem is to decide if two sequences are related, which means
that they evolved from a common ancestor. If they are related, they should look
similar. Biologist try to determine which parts are related by finding an alignment
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6 CHAPTER 1. INTRODUCTION

which aligns the related parts. Let us consider two sequences x = ACGTAGCA
and y = ACCGTATA. If we compare them letter by letter the great similarity
does not become obvious:

x A C G T A G T A
y A C C G T A C A

(1.1.1)

The reason is that some letters “got lost” so that they are present only in one of
the two sequences. When we align without leaving any gaps for those lost letters,
we mostly align non-corresponding letter pairs. It is better to use gaps and to
allow aligning a letter with a gap. Then the letters which are present only in one
of the two sequences get aligned with gaps. A good alignment is provided by:

x A C G T A G T A
y A C C G T A C A

(1.1.2)

We now see a much better coincidence between the two sequences. We displayed
in 1.1.1 and 1.1.2 two possible alignments between x and y, 1.1.1 without gaps
and 1.1.2 with gaps. From here on, and throughout this thesis, we only allow
alignments which align same letter pairs and letters with gaps. This kind of
alignments are useful when the evolution process only looses letters (there is no
mutations). So, when we speak about an alignment, we automatically assume
that it only aligns same-letter-pairs or letters with gaps. Each such an alignment
defines a common subsequence. The number of aligned letters will be sometimes
refered to as alignment-score. An alignment aligning a maximum number of letter
pairs is called an optimal alignment. The Common Subsequence defined by an
optimal alignment is hence a LCS. For example, the alignment 1.1.2 defines the
common subsequence z = ACGTAA, which consists of the pair of matched letters:

x A C G T A G T A
y A C C G T A C A
z A C G T A A

(1.1.3)

In the alignment 1.1.3, the sequence z = ACGTAA is a common subsequence of
X and Y with maximal length, therefore a LCS of x and y.

Longest Common Subsequences are used in computational biology and linguis-
tics (among other areas) to recognize when strings are similar. A relatively long
LCS indicates that the strings are related. How long does the LCS need to be
to imply relatedness? In the direction of an answer, one could try to understand
the typical behavior of the length of the LCS. But even the asymptotic behavior
of the LCS of two independent random strings of length n is one of the major
open problems in probability theory.

Assume now that X = X1X2 . . . Xn and Y = Y1Y2 . . . Yn are two i.i.d. strings
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independent of each other over the same finite alphabet Σ. Let Ln denote the
length of the LCS of X and Y . Using a sub-additivity argument, Chvàtal-Sankoff
[6] prove that the limit

γ := lim
n→∞

E[Ln]

n
exists. The constant γ depends on the distribution of X1 and Y1. However until
the date the exact value of γ is not known in even such simple cases as when
one has two equally likely symbols. Neither it is known in general if VAR[Ln] is
of linear order in n. There exists conflicting conjectures on that topic: Water-
man [10] thinks that VAR[Ln] = Θ(n) and Chvàtal-Sankoff thought they were
observing in their simulation that VAR[Ln] = Θ(n2/3). The order conjectured
by Chvàtal-Sankoff would be similar to the situation in the Longest Increasing
Subsequence (LIS) of a random permutation problem where the fluctuation is of
order third root of the expectation.

Chvàtal-Sankoff [6] derived upper and lower bounds for γ, and similar upper
bounds were found by Baeza-Yates, Gavalda, Navarro and Scheihing [7] using
an entropy argument. These bounds have been improved by Deken [23], and
subsequently by Dancik-Paterson [24, 25]. For sequence with many equiproba-
ble letters (i.e. when Σ is large) Kiwi, Loebl and Matousek [8] determined the
asymptotic value of γ. Arratia-Waterman [11] derived a law of large deviation
for Ln for fluctuations on scales larger than

√
n. In [9], Steele was able to prove

that there exists a constant c > 0 not depending on n such that VAR[Ln] ≤ c n.
The LCS-problem can be formulated as a last passage percolation problem with
correlated weights, moreover Alexander [12] proved that E[Ln]/n converges at a
rate of order

√
log n/n by using first passage percolation methods.

One of the only cases where for first/last passage percolation models the asymp-
totic order of the fluctuation is known is for Longest Increasing Subsequence (LIS)
of a random permutation of natural numbers (see Baik, Deift and Johansson [26]
and also Aldous and Diaconis [27]). The LIS problem is asymptotically equivalent
to a special last passage percolation process on a Poisson graph. Furthermore,
the LIS problem can be formulated as a special LCS problem: the LIS is the LCS
of two sequences where one is a sequence of randomly permuted numbers and the
other is the sequence of increasing integers.

In [26] Baik, Deift and Johansson denoted ln as the length of the LIS of a random
permutation drawn from the symmetric group Sn with the uniform distribution.
They proved that the centered and scaled expression

ln − 2
√
n

n1/6

converges in distribution as n → ∞ to the so called Tracy-Widom distribution.
The Tracy-Widom distribution was first obtained by Tracy and Widom [26] in
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the framework of Random Matrix Theory where it gives the limit distribution
for the (centered and scaled) largest eigenvalues in the Gaussian Unitary En-
semble of Hermitian matrices. The problem of the asymptotics of ln was first
raised by Ulam [28]. Substantial contributions to the solution of the problem
have been made by Hammersley [30], Logan and Shepp [29], Vershik and Kerov
(Vershik/Kerov 1977 Soviet math dokl).

After the break through of Baik, Deift and Johansson [26] on the LIS prob-
lem it was natural to try to use these techniques to tackle the LCS-problem, but
for most situations it has not yet worked to adapt those methods to solving the
LCS-problem.

However, Matzinger and his collaborators have been able to develop and to pub-
lish a set of new techniques [15, 16, 18, 19, 20] which allow to determine the order
of the fluctuation for the LCS in several special cases of X and Y . In all this cases
the order of the fluctuation of VAR[Ln] is Θ(n). For giving a short description of
those cases above, let us call a random binary sequence X = X1X2 · · ·Xn to be
a Bernoulli sequence if P(Xi = 0) = P(Xi = 1) for every i = 1, . . . , n. We have
that:

• in [15] the sequence X is a Bernoulli sequence and Y is a non-random
periodic sequence.

• in [16] the sequence X is a Bernoulli sequence and Y is an i.i.d. random
sequence over a 3 – symbols alphabet.

• in [18] both sequences X and Y are Bernoulli sequences but they are aligned
by using a score function which gives more weight when aligning ones than
aligning zeros.

• in [19] the sequences are i.i.d. and one symbol has much smaller probability
than the other. That is a case where the considered sequences have low
entropy.

Nevertheless, the most basic situation of i.i.d. sequences with equiprobable sym-
bols remains open. The techniques go together with a deep understanding of the
path structure of the optimal alignments.

The LCS-problem has received a lot of attention also because LCS and the re-
lated optimal alignments are some of the main tools in computational biology
and string treatment (see for example [2], [1, 5, 10]).



Chapter 2

Main Ideas

2.1 Aim and definitions

Let l ∈ N be a parameter. Let BX1, BX2, . . . and BY 1, BY 2, . . . be two i.i.d.
sequences independent of each other such that:

P(BXi = l − 1) = P(BXi = l) = P(BXi = l + 1) = 1/3

and
P(BY i = l − 1) = P(BY i = l) = P(BY i = l + 1) = 1/3.

We call the runs of 0’s and 1’s blocks. Let

X∞ = X1X2X3 . . .

be the binary sequence so that the i-th block has length BXi. Similarly let

Y ∞ = Y1Y2Y3 . . .

be the binary sequence so that the i-th block has length BY i.

Example 2.1.1 Assume that X1 = 1 and BX1 = 2, BX2 = 3 and BX3 = 1.
Then we have that the sequence X∞ starts as follows X∞ = 1100010 · · · meaning
that in X∞ the first block consists of two 1’s, the second block consists of three
0’s, the third block consists of one 1’s, etc.

Let X denote the sequence obtained by only taking the first n bits of X∞:

X = X1X2X3 . . . Xn

and similarly
Y = Y1Y2Y3 . . . Yn.

Let Ln denote the length of the LCS of X and Y , Ln := |LCS(X, Y )|. The main
result of this paper states that for l large enough, the order of the
fluctuation of Ln is n:

9
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Theorem 2.1.1 There exists l0 so that for all l ≥ l0 we have that

VAR[Ln] = Θ(n).

We show that the above theorem is equivalent to proving that “a certain ran-
dom modification has a biased effect on Ln”. This is a technique with similar
approches in other papers (for instance see [16], [19]) . So the main difficulty is
actually proving that the random modification has typically a biased effect on
the LCS.

We choose at random in X a block of length l − 1 and at random one block
of length l+ 1. This means that all the blocks in X of length l− 1 have the same
probability to be chosen and then we pick one of those blocks of length l − 1 up
and also that all the blocks in X of length l + 1 have the same probability to be
chosen and we pick one of those blocks of length l + 1 up. Then we change the
length of both these blocks to l. The resulting new sequence is denoted by X̃.
Let L̃n denote the length of the LCS after our modification of X. Hence:

L̃n := |LCS(X̃, Y )|.

If we can prove that our block length changing operation has typically a biased
effect on the LCS than the order of the fluctuation of Ln is

√
n. This is the

content of the next theorem:

Theorem 2.1.2 Assume that there exists ε > 0 and α > 0 not depending on n
such that for all n large enough we have:

P
(

E[L̃n − Ln|X, Y ] ≥ ε
)
≥ 1− exp(−nα). (2.1.1)

Then,
VAR[Ln] = Θ(n).

The above theorem reduces the order of fluctuation problem to proving that our
random modification has typically a higher probability to lead to an increase than
to a decrease in score. Note that our random modification can change the score
by at most one unit. Hence, we always have:

|L̃n − Ln| ≤ 1. (2.1.2)

In theorem 2.1.3 we reduce proving 2.1.1 to showing that a minimizing problem
has a positive solution. The minimizing problem is on a 9 dimensional space but
in chapter 6, by using Lagrange multiplyers, we are able to further reduce it to a
parametrized 3 dimensional problem. We numerically and graphically verify that
the positive minimum condition in chapter 6 is already verified for l > 5. This
implies that VAR[Ln] = Θ(n) already for l = 6.
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Let us next look when the random modification introduces an increase or a de-
crease.

Example 2.1.2 Let us look at a situation where l = 3. Let us take two sequences
x = 00110011110000111 and y = 0011100001100001111. An optimal alignment
(in the sen of the Example 1.1.1 ) would be:

x 0 0 1 1 0 0 1 1 1 1 0 0 0 0 1 1 1
y 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 1 1 1 1

LCS 0 0 1 1 0 0 1 1 0 0 0 0 1 1 1
(2.1.3)

In this example no block gets left out completely. By this we mean that no block
is only aligned with gaps. The first block of x is aligned with the first block of y.
The second block of x is aligned with the second block of y. By this we mean that
all the bits from the second block of x are either aligned with bits of the second
block of y or with gaps and vice versa. We have that the second block of the
LCS is hence obtained from the second blocks of x and y by taking the minimum
of their respective lengths. In our current special example, we have that for all
i = 1, 2, . . . , 6, the i-th block of X gets aligned with the i-th block of y. We could
represent this idea visually by viewing the alignment as an alignment of blocks in
the following manner:

x 00 11 00 1111 0000 111
y 00 111 0000 11 0000 1111

LCS 00 11 00 11 0000 111
(2.1.4)

Let us next analyze what is the expected change when we perform our random
modification. In x there are exactly 3 blocks of length l − 1 = 2. These are the
first three blocks of x. The first block of x of length 2 is aligned with a block of y
of length 2, the second one with a block of length 3 and the fourth with a block of
length 4. Hence, when we increase the length of the first block of length 2 of x by
one the score does not increase. When we increase the second or third, however,
the score increases by one unit. Each of these blocks has the same probability 1/3
to get drawn. Hence, the conditional expected increase due to the enlargement of
a randomly chosen block of length 2 in this case, is equal to 2/3. In our random
modification we also choose a block of length l + 1 and decrease it to length l. In
our example, there are two blocks in x of length l + 1 = 4. These blocks are the
fourth and fifth block of x. The fourth block is aligned with a block of length 2
whilst the fifth is aligned with a block of length 4. Hence, when we decrease the
length of the fourth block we get no change in score whilst when we decrease the
fifth we get a decrease by one unit. Each of the two blocks have same probability
to get drawn. This implies that the expected change due to decreasing a randomly
chosen block of length 4 is equal to −1/2. Adding the two changes, we find that
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for x and y defined as in the current example, the conditional expected change is
equal to:

E[ L̃n − Ln |X = x, Y = y] =
2

3
− 1

2
=

1

6
(2.1.5)

In our example we have six aligned block pairs leading to the following set of pairs
of lengths:

{(2, 2); (2, 3); (2, 4); (4, 2); (4, 4); (3, 4)}.

Let pij designate the proportion of aligned block pairs which have the x-block
having length i and the y-block having length j.

Example 2.1.3 For our example above we have: p22 p23 p24

p32 p33 p34

p42 p43 p44

 =

 1
6

1
6

1
6

0 0 1
6

1
6

0 1
6

 (2.1.6)

With this notation, equality 2.1.5 can be written as:

E[ L̃n−Ln |X = x, Y = y] ≥ pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(2.1.7)

The inequality 2.1.7 holds if there exists an optimal alignment a of x and y leaving
out no blocks, and having a proportion pij of aligned block pairs such that the
x-block has length i and the y-block has length j (for every i, j ∈ {l−1, l, l+ 1}).

Typically, for large n, the optimal alignment will not be like in the example above,
but there will be blocks which are left out, which implies also that some blocks
are aligned with several blocks at the same time. Let us check an example.

Example 2.1.4 Let x = 00110011100011000 and y = 00001111000011000. In
this situation the LCS is equal to LCS(x, y) = 000011100011000 and corresponds
to the following optimal alignment:

x 0 0 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0
y 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0 0

LCS 0 0 0 0 1 1 1 0 0 0 1 1 0 0 0
(2.1.8)

which in block representation would be:

x 001100 111 000 11 000
y 0000 1111 0000 11 000

LCS 0000 111 000 11 000
(2.1.9)

In the last alignment above we see that the first block of y is aligned with the first
and third block of x. This implies that the second block of x is “completely left
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out”, which means all its bits are aligned with gaps. The other blocks are aligned
one block with one block: the fourth block of x is aligned with the second block of
y, whilst the fifth block of x is aligned with the third block of y. Finally the last
blocks of x and y are aligned with each other.

In everything that follows, the proportions pij will only refer to the block pairs
aligned one block with one block. Hence, in the alignment 2.1.8, the first three
blocks of x and the first block of y do not contribute to {pij}i,j.

Example 2.1.5 In the last example above there are 4 block-pairs aligned one
block with one block. The corresponding pairs of block-lengths are:

(3, 4); (3, 4); (2, 2); ((3, 3)

Hence for the alignment 2.1.8, we find p3,4 = 2/4, p2,2 = 1/4, p3,3 = 1/4 and
pij = 0 for all (i, j) /∈ {(3, 4), (2, 2), (3, 3)}. We will denote by q1, resp. q2, the
proportion of left out blocks in x, resp. in y. In the alignment 2.1.8, in the
sequence x there is one left out block from a total of 7 blocks. This implies that
q1 = 1/7. There is no left out block in y so that q2 = 0. In section 3.1, we will
see that typically, for n large enough, q1 and q2 can be taken as close to each
other as we want to. When q1 = q2 we denote the proportion of left out blocks
by q. When we choose a block of length l − 1 in x to increase its length we will
have to consider the probability that the block is not aligned one block with one
block. In the alignment 2.1.8, there are 4 blocks in x of length l−1 = 2. The first
three are not aligned one block with one block: the second is left out, whilst the
first and the third block are aligned with the same block of y. Hence in 2.1.13 the
proportion of blocks not aligned one to one among the blocks of length 2 is 3/4.
On the other hand, the blocks of length l + 1 = 4 in x are all aligned one to one.
So, for the alignment 2.1.8, we have that the proportion of blocks not aligned one
to one among the blocks of length 4 is 0.

Using some combinatorial arguments in section 3.1 we will see that typically the
proportion among the blocks of x of length l− 1 which are not aligned one block
with one block is not more than 9q. Similarly for the blocks of length l + 1 in x
one gets a bound 3q for the proportion of blocks aligned with several blocks of y
or left out. We can rewrite the lower bound on the right side of inequality 2.1.5,
taking also into account the left out blocks. Assuming that there is an equal
proportion of blocks q which are not aligned one to one in x and in y we get the
following lower bound for the conditional expected increase in the LCS:

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(1−9q)− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(1−3q)−3q (2.1.10)

The above lower bound for the conditional expected increase in LCS holds as-
suming that the following conditions holds:
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• There exists an optimal alignment leaving out exactly the same proportion
q of blocks in X and in Y . For that optimal alignment a, let {pij}i,j denote
the empirical distribution of the aligned block pairs, so that pij = Pij(a).

• There is exactly the same number of blocks in X and in Y .

• In X, each block lenghts l− 1, l, l+ 1 constitutes exactly 1/3 of the blocks.
Same thing in Y .

The above conditions do not typically hold exactly but only approximately. We
first look at this somehow simplified case before looking at the general case (for
the general case, see the proof of theorem 2.1.3). Let us next explain how we
get the bound 2.1.10 for this somehow simplified case (also, the reader should
compare it to the version 2.1.7 with no gaps). Assume next that we have an
optimal alignment a with given empirical distribution {pij}i,j∈{l−1,l,l+1} of the
aligned block pairs and leaving out in both sequences x and y a proportion q of
blocks. What is now the effect of our random change on the score of the alignment
a? First let us look at the randomly chosen block of length l − 1 which gets its
length changed to l. If that block is aligned with a block of length l or l + 1 the
alignment gets increased by one unit. So, conditional that the randomly chosen
block of length l− 1 is a block aligned one to one, we get that the probability of
an increase is equal at least to:

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

.

Now, if the randomly chosen block of length l − 1 is aligned with two or more
blocks, then we also get an increase by one unit. If the chosen block however is
aligned with a block of Y which is aligned with several blocks of Y (let us call it a
polygamist block), then we have no increase. The same happens if the block is not
aligned with a block of Y . There are at most a proportion of 3q blocks which are
not aligned with any block or aligned together with polygamist block of Y . There
are about a proportion of 1/3 blocks of length l − 1. Hence among the blocks of
length l − 1, there is a proportion of at least 1− 9q which are aligned one block
with one block or aligned one with several. Hence we get that the conditional
expected change due to changing the randomly chosen block of length l − 1 to l
is equal at least to:

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(1− 9q). (2.1.11)

Similarly we can analyze the effect of the randomly chosen block of length l + 1
which gets reduced to length l. If the block is aligned one block to one block and
the length of the aligned block of Y is l + 1 then the score can get reduced by
one. If the block is aligned with a block of Y of length l or l − 1 the score does
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not get reduced. Hence, given that the block of length l+ 1 chosen is aligned one
block to one block, the conditional expected change is not less than:

− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

.

On the other hand, when the chosen block of length l + 1 is aligned with several
blocks of Y then the score goes down by one unit. There are at most a proportion
q of blocks of X aligned with several blocks of Y . So, among the blocks of length
l + 1 this represents a proportion of at most 3q. Hence we get that at worst the
expected change due to changing a random block from l + 1 to l is equal to:

− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(1− 3q)− 3q (2.1.12)

Putting 2.1.11 and 2.1.12 together we get that the expected conditional change
of the alignment score is bounded below as follows:

E[∆La|X,Y ] ≥ pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1
(1− 9q)− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1
(1− 3q)− 3q

where ∆La denotes the change in score of the alignment a due to the random
modification of X.

Then, to prove inequality 2.1.1 in theorem 2.1.2, it is thus sufficient to show
that for all optimal alignments a of X and Y , expression 2.1.10 is positive and
bounded away from zero with high probability. Hence the next question is how
can we prove that typically, for large n, expression 2.1.10 is larger than a positive
constant not depending on n?

Example 2.1.6 Let us return back to the example of alignment 2.1.8. That
alignment left out only one block, and that was the second block of X. We could
now proceed in a different order. We could first decide which blocks get left out
before generating the random sequences X and Y . The resulting alignment is
in general not optimal. On the other hand, such an alignment has the property
that the block pairs aligned one to one are i.i.d. This is a very nice property
for large deviation estimations, for instance. Let us give an example. Assume
we request that the only left out block is the second block of X (as in alignment
2.1.8). Assume we redraw X and Y and obtain X = 00111001100011000 and
Y = 00011110000111000. Then we get as alignment and Common Subsequence
(CS) the following:

x 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0
y 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0

CS 0 0 0 1 1 0 0 0 1 1 0 0 0
(2.1.13)
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which can be represented as an alignment of blocks by:

x 0011100 11 000 11 000
y 000 1111 0000 111 000

CS 000 11 000 11 000

In this case we use the term of common subsequence instead of the longest com-
mon subsequence because we are leaving a block out of the alignment, if we do
not leave it out we might get a longer common subsequence (which does not
happen in this case neither but might happens in the general case). So, in this
last example, before drawing X and Y , we know that the fourth block of X gets
aligned with the second block of Y and this aligned pair builts the second block
in the CS. The length of the second block of the CS has thus length equal to
min{BX4, BY 2}. Similarly, before even drawing X and Y , we know that the fifth
block of X gets aligned with the third block of Y . Hence, we have that the pair of
lengths in the second block pair is (BX5, BY 3) whilst the third block of the CS has
length min{BX5, BY 3}. Note that (BX4, BY 2) is independent of (BX5, BY 3) and
BX4 is independent of BY 2 whilst BX5 is independent of BY 3. The distribution
of each of the blocks BX4, BY 2, BX5 and BY 3 is unchanged, they take value l−1,
l or l+ 1 with equal probability 1/3. Hence, (BX4, BY 2) can take any of the nine
values in the set {(i, j)|i, j = l − 1, l, l + 1} with probability 1/9.

When we specify an alignment by deciding which blocks we leave out before
drawing X and Y , the aligned block pairs are “almost” i.i.d. Why do we say
“almost”? In the above example (BX4, BY 2) and (BX5, BY 3) are i.i.d. and not
just close to be i.i.d. On the other hand, block BX7 in the case 2.1.8 is no longer
in X if the first, third and fourth blocks get each increase by one unit. In this
sense the blocks are not completely independent. But since we take n large this
is only a minor effect. We will take care of this detail in section 4 and until then
pretend that the aligned block pairs are i.i.d.

Note that for each alignment a defined by specifying which blocks we left out be-
fore drawing X and Y , the empirical distribution of the aligned blocks is random.
We write {Pij(a)}i,j∈{l−1,l,l+1} for this empirical distribution. Thus, Pij(a) denotes
the proportion of aligned block pairs where the block of X has length i and the
block of Y has length j. Given a non-random distribution {pij}i,j∈{l−1,l,l+1} we
can ask what is the probability for the empirical distribution to be equal to the
{pij}i,j. The answer is, since the block pairs are close to i.i.d, the distribution is
close to a multinomial distribution:

P ( Pij(a) = pij,∀i, j ∈ Il ) ≈
(

n∗

pl−1,l−1n
∗ pl−1,ln

∗ . . . pl+1,ln
∗ pl+1,l+1n

∗

)(
1

9

)n∗
(2.1.14)
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where n∗ designates the total number of aligned block pairs (here we act as if
that number would be non-random). By using Stirling, the expression 2.1.14 is
approximately equal to:

e(ln(1/9)+H(p))n∗ (2.1.15)

where H(p) designates the entropy of the empirical distribution:

H(p) =
∑

i,j∈{l−1,l,l+1}

pij ln(1/pij).

A question arises: for a given aligned block pairs distribution {pij}, is it likely
that there exist an alignment with that distribution and having a proportion q of
left out blocks? Let A(q) denote the set of alignments leaving out a proportion q
of blocks. Let A denote the event that there exists an alignment in A(q) having
its empirical distribution equal to {pij}. An upper bound for the probability
P(A) is given by the number of elements in A(q) times the probability 2.1.14. By
using 2.1.15, this product is close to:

|A(q)| · e(ln(1/9)+H(p))n∗ . (2.1.16)

But the size of the set A(q) is approximately equal to e2H(q)n/l, since there are
about n/l blocks. Hence, expression 2.1.16 is approximately equal to:

e(2H(q)n/l)+(ln(1/9)+H(p))n∗ . (2.1.17)

If we want the event A to not have exponentially small probability in n, we need
the logarithm of 2.1.17 to be non-negative, which leads to the condition:

2H(q) + (1− 4q)(ln(1/9) +H(p)) ≥ 0, (2.1.18)

where we used as lower bound on n∗ the number (n/l)(1− 4q).

We can now explain how we prove that typically, for all optimal alignment, ex-
pression 2.1.10 is larger than a positive constant not depending on n. For this we
simply need to find a q0 so that we can prove that the optimal alignment leaves
out at most a proportion of q ≤ q0 blocks and then show that expression 2.1.10
is bounded away from zero under condition 2.1.18 for q ∈ [0, q0].

Let F n(q) be the event that any optimal alignment of X and Y leaves out at
most a proportion q of bocks in X and leaves out the same proportion q of blocks
in Y . In more details, given q > 0 and an optimal alignment a of X and Y in
F n(q), we can count the number of blocks that are left out (not used in a) and
divide this number by the total number of blocks in X to obtain q1, and also
divide this number by the total number of blocks in Y to obtain q2, then we
know that q1 ≤ q and q2 ≤ q.
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Example 2.1.7 Let us take again the case where X = 00111001100011000 and
Y = 00011110000111000, then we have as before the following common subse-
quence (CS) represented in an alignment:

X 0 0 1 1 1 0 0 1 1 0 0 0 1 1 0 0 0
Y 0 0 0 1 1 1 1 0 0 0 0 1 1 1 0 0 0
CS 0 0 0 1 1 0 0 0 1 1 0 0 0

and represented as an alignment of blocks by:

X 0011100 11 000 11 000
Y 000 1111 0000 111 000
CS 000 11 000 11 000

Let us compute q1 and q2 in this case. For X we have a total of 7 blocks and only
1 block is left out in the alignment, so q1 = 1/7. For Y we do not have left out
blocks so q2 = 0. Then given q > 0, this alignment belongs to F n(q) if and only
if q1 = 1/7 ≤ q and q2 = 0 ≤ q.

The next theorem says that if we can bound expression 2.1.10 away from zero
under condition 2.1.18, then we have typically the desired bias for E[L̃n−Ln|X, Y ]
the conditional expected increase in score:

Theorem 2.1.3 Assume that there exists q0 ∈ [0, (1/3)[ such that the following
minimizing problem:

min

(
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(1− 9q)− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(1− 3q)− 3q

)
(2.1.19)

under the conditions:

q ∈ [0, q0],
∑
j

pl−1,j ≥ ((1/3)− q0)/2 ,
∑
j

pl+1,j ≥ ((1/3)− q0)/2 (2.1.20)

∑
i,j∈I

pij = 1, pij ≥ 0,∀i, j ∈ I (2.1.21)

2H(q) + (1− 4q) (ln(1/9) +H(p)) ≥ 0 (2.1.22)

has a strictly positive solution. Let this minimum be equal to 2ε > 0. Then we
have that:

P
(

E[L̃n − Ln|X, Y ] ≥ ε
)
≥ 1− e−nβ − P(F nc(q0)) (2.1.23)

where β > 0 is a constant not depending on n.
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The last theorem above reduces proving condition 2.1.1 to a minimizing problem.
Note that this minimizing problem depends on the parameter q0. Also, if the
probability to have less than q0 gaps is not a likely event, that is if P (F nc(q0)) is
not small, then 2.1.23 is useless. To be able to use the above theorem, we first
need to find a q0 such that P (F nc(q0)) is small. Having such a q0, we try to show
that the minimizing problem above has a strictly positive solution. If we succeed
in proving that, then we get the likely biased effect of the random modification
(inequality 2.1.23) which, according to theorem 2.1.2, implies the fluctuation or-
der VAR[Ln] = Θ(n).

The probability P(F nc(q)) depends on the parameter l. In chapter 3.2, we show
how to find upper bounds on the proportion of left out blocks. In general, for l
larger, the bounds gets better. Actually the bounds even converge to zero as l
goes to infinity. As q goes to zero, expression 2.1.19 gets close to 1/3 on the do-
main. That is why the minimizing problem in theorem 2.1.3 has a strictly positive
solution when l is large enough. Next we are going to prove formally that from the
last theorem 2.1.3 it follows, for l large enough, that we have VAR[Ln] = Θ(n).
In other words, we prove that theorem 2.1.3 and theorem 2.1.2 implies theorem
2.1.1. Here comes the proof:

Proof. We suppose that F nc(q0) has exponentially small probability for any
fixed q0 > 0 provided l is large enough (see section 3.2 and 4.2). In section 4 we
will show how large l should be depending on q0 but not on n. The conditions in
theorem 2.1.3 are satisfied when q0 > 0 (hence q ≤ q0 small enough) is taken small
enough. Let us explain why. First note that inequality 2.1.22 can be written:

H(p) ≥ −2H(q)

1− 4q
+ ln(1/9) (2.1.24)

When q goes to zero, then H(q) also goes to zero and so does 2H(q)/1− 4q. But
we have that H(p) is always less or equal to ln(1/9), with equality iff all the pij’s
are equal to 1/9.
It follows that by taking q > 0 small enough, we get condition 2.1.24 to imply
that the distribution pij gets as close as we want to the equiprobable distribution.
On the other hand, when q goes to zero and all the pij’s converge to 1/3, then
the quantity

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(1− 9q)− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(1− 3q)− 3q,

converges to 2/3−1/3 = 1/3 > 0. This shows that by taking q0 > 0 small enough
we get that the minimizing problem in theorem 2.1.3, has a strictly positive
solution. So, assume that q0 > 0 is such that the following two things hold:

• F nc(q0) has exponentially small probability in n.
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• The minimizing problem in theorem 2.1.3, has a strictly positive solution.
Call this solution 2ε, where ε > 0.

By theorem 2.1.3, we then have that inequality 2.1.23 holds. But since F nc(q0)
is exponentially small in n, we get that the expression on the right hand side of
inequality 2.1.23 is smaller than exp(−nα) for all n and α > 0 not depending on
n. This implies that condition 2.1.1 in theorem 2.1.2 is satisfied. Then theorem
2.1.2 implies that:

VAR[Ln] = Θ(n).



Chapter 3

Left out blocks in an optimal
alignment

3.1 Combinatorics of the left out blocks

Example 3.1.1 Let X = 0011100 and Y = 0001100. The LCS is 001100. This
corresponds to the following alignment:

X 0 0 1 1 1 0 0
Y 0 0 0 1 1 0 0

LCS 0 0 1 1 0 0
(3.1.1)

In this example, the first block of the LCS has length 2. It is obtained from the
first block of X and the first block of Y . The first block of X has length 2 whilst
the first block of Y has length 3. The length of the first block of the LCS is equal
to the minimum of these two numbers. In this kind of situation we say that the
first block of X is aligned to the first block of Y . Similarly the length of the second
block of the LCS is the minimum of the lengths of the second block of X and of Y .
We say that in this alignment the second block of X gets aligned with the second
block of Y . Finally the third block of X gets aligned with the third block of Y to
yield the third block of the LCS. In this present example no block of X or Y got
left out completely: every block “contributed” some bits to the LCS. All the blocks
are aligned one block of X with one block of Y . Each such pair of aligned blocks
is responsible for one block in the LCS.

In some other cases, some blocks of X and Y are completely left out. Let us look
at such a situation.

Example 3.1.2 Consider X = 00100000111 and Y = 00000100011. The LCS
would be 000000011. The LCS corresponds to the alignment:

X 0 0 1 0 0 0 0 0 1 1 1
Y 0 0 0 0 0 1 0 0 0 1 1

LCS 0 0 0 0 0 0 0 1 1
(3.1.2)

21



22 CHAPTER 3. LEFT OUT BLOCKS IN AN OPTIMAL ALIGNMENT

In the last example above we have that the second block of X and of Y are totally
left out and do not contribute to the LCS. We say that these blocks are left out
blocks. The last block of X and the last block of Y “get aligned” together to
yield the last block of the LCS. We say that this is an aligned block pair or also
that these two blocks are aligned one block to one block. One way of thinking
about the LCS defined by the alignment 3.1.2 above is as follows: we first decide
which blocks we leave out in X and Y . Then from the two obtained sequences,
we align block by block without leaving out any blocks. So the alignment 3.1.2
can be seen as the alignment in which we leave out the second block of X and the
second block of Y . This gives then the modified sequences X∗ = 0000000111 and
Y ∗ = 0000000000011. Then we align X∗ and Y ∗ block by block. The common
subsequence we obtain has its i-th block having length equal to the minimum of
the length of block i of X∗ and of Y ∗. In this example we have that the first and
the third block of X get aligned with the first and third block of Y . By this we
mean that in both sequences the first and third block are made into one block
and these blocks are then matched. We will be able to prove that in the case we
study here this is untypical: for optimal alignment we will only have one block
aligned with several at the same time, but not several with several.

Let us look at one more example.

Example 3.1.3 Let X = 001001111 and Y = 000011011. The LCS is 00001111.
This corresponds to the alignment:

X 0 0 1 0 0 1 1 1 1
Y 0 0 0 0 1 1 0 1 1

LCS 0 0 0 0 1 1 1 1
(3.1.3)

Here the second block of X is left out. Hence the first and the third block of X
get aligned with the first block of Y . Similarly the fourth block of X gets aligned
with the second and fourth block of Y . The third block of Y is left out.

This situation will happen in optimal alignment: one block aligned with several
blocks of the other sequence.

Assume that we know for an alignment a which blocks are left out. Assume that
X∗, resp. Y ∗ denotes the modified sequence X, resp. Y where we left out the
specified blocks. Let Z denote a common subsequence defined by the alignment
a. The alignment must then align all the blocks of X∗ with the blocks of Y ∗ one
to one, otherwise there would be more left-out blocks. Hence, the first block of
X∗ gets aligned, then the second block of X∗ and so on. If the alignment wants
to stand a chance to be an optimal one (and hence Z to be a LCS) for each pair
of aligned blocks from X∗ and Y ∗ aligned to one another, it needs to extract a
maximum of bits of each such pair. Hence, for every i = 1, 2, . . . , j we have that
the length of the block number i of Z must be equal to the minimum between
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the length of the i-th block of X∗ and the length of the i-th block of Y ∗ (here
j denotes the number of blocks in Z.) Hence, since we are interested in LCS’s
(and hence in optimal alignments) we will only consider alignments defined in
the following manner: first we define exactly which blocks get left out. Second
we align the resulting sequences X∗ and Y ∗ one block with one block. The next
lemma says that in our setting an optimal alignment cannot align several blocks
with several blocks.

Another useful fact is that for optimal alignments we do not need to consider
adjacent left-out blocks except maybe at the end of the sequences. But in section
4 we prove that only a small percentage of bits could be left out at the end of X
and Y in an optimal alignment. Hence, the practical implication is that we only
need to consider left out blocks at least separated by one non-left out block. Let
us first explain what we mean by adjacent left out blocks between aligned blocks:

Example 3.1.4 Take x = 11001100 and y = 00001100. Let us align as follows:

x 1 1 0 0 1 1 0 0
y 0 0 0 0 1 1 0 0

(3.1.4)

We see a typical situation where the second and third block of x in the alignment
above get left out (i.e. entirely aligned with gaps). These two blocks are adjacent
and they are comprised between aligned blocks (i.e. in our example they are
comprised between the first and fourth block of x which are “aligned”, by aligned
we mean aligned with another block hence not entirely aligned with gaps). The
next lemma below states that for our LCS problem (i.e. optimal alignments) the
kind of situation we face in the current numerical example 3.1.4 can be discarded.
The reason is as follows. In the current example y7 gets aligned with x7. Now
instead align y7 with x3 and keep all the rest of alignment 3.1.4 identical otherwise.
Then by doing this you have not decreased the score but have destroyed the
situation of two adjacent completely left out blocks. The next lemma shows
what we explained in our example in a rigorous way:

Lemma 3.1.1 There exists an optimal alignment of X and Y having no adjacent
left-out blocks between aligned blocks.

Proof. View an alignment as a finite sequence of points in N × N, so that if xi
gets aligned with yj, then (i, j) is a point in the set representing the alignment.
Introduce for two alignments a, b ∈ N×N the order relation a ≤ b iff all a contains
the same number of points as b and if we numerate in both sets the points from
down left to up right then the i-th point ai = (aix, aiy) of a and the i-th point
bi = (bix, biy) of b satisfy aix ≤ bix and aiy ≤ biy for all i ≤ |a|. Here |a| designates
the number of points in a. Take now an optimal alignment which is minimal
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according to the relation ≤. That optimal alignment satisfies the property of not
having several adjacent left out blocks between aligned blocks.

Next we show the relation between left out blocks at the end of each sequence
and the total left out blocks in each sequence:

Lemma 3.1.2 Let x, y ∈ {0, 1}n be two sequences of length n. Let the number of
blocks of x, resp. y be denoted by n∗1 = (n/l)+∆1, resp. n∗2 = (n/l)+∆2. Assume
that |∆1|, |∆2| ≤ ∆. Assume also that a is an alignment of x and y which does
never leave out adjacent blocks except maybe a contiguous group at the very end
of x and of y. Let δ1 ≥ 0 denote the proportion of blocks which are entirely left
out at the end of x, resp. y, among all the blocks of x, resp. y. Let q1, resp. q2
denote the proportion of blocks left out in x, resp. in y. Then we find that:

|q1 − q2| ≤ 1.5|δ1 − δ2|+
4l∆

n
(3.1.5)

Proof. Let x∗, resp. y∗ denote the sequence we obtain after we removed the
blocks which are completely left out by a. Since there are no other completely
left out blocks, we have that the number of blocks in x∗ must be equal to the
number of blocks in y∗. Note that for every left out blocks which has no adjacent
left out block the number of blocks is reduced by 2. for the adjacent left out
blocks at the end, for each left out block there is one block less. Since there are
no adjacent left out blocks except the adjacent blocks at the end, we get that the
number of blocks of x∗, resp. of y∗ is equal to

n∗1(1− 2(q1 − δ1) + δ1)), (3.1.6)

resp.
n∗2(1− 2(q2 − δ2) + δ2)). (3.1.7)

Taking the difference of 3.1.6 and 3.1.7 and dividing by (l/2n), we find

q1 − q2 = 1.5(δ2− δ1) +
bl∆

n
(3.1.8)

where
2b = 1− 2(q1 − δ1) + δ1)− (1− 2(q2 − δ2) + δ2))

we see that b is always smaller than 4 which ends the proof.

Lemma 3.1.3 For l > 4 any optimal alignment of X and Y does not align
several blocks in X with several blocks in Y .

Proof. Let us explain the idea behind through an example. Let us take x =
0001111000111100000 and y = 0001111000001110000 two realizations of X and
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Y , respectively, with l = 4. An alignment using all blocks of x and y in block
representation becomes:

x 000 1111 000 1111 00000
y 000 1111 00000 111 0000

LCS 000 1111 000 111 0000
(3.1.9)

Let us now suppose that we leave out the second block of x and the second block
of y, then the alignment in block representation looks like:

x 0001111000 1111 00000
y 000111100000 111 0000

LCS 000000 111 0000
(3.1.10)

One clearly sees that in alignment 3.1.10 we lost the entire block of 1’s of length
4 and we did not gain any new aligned symbol, so the LCS decreased on 4 units
compared to alignment 3.1.9. In this particular example, the neighbour blocks
of the left out block in y had all together at least as many symbols (8 zeros all
together) as the neighbour blocks of the left out block in x had all together (6
zeros). In general we could gain at most 2 new symbols from the neighbour blocks
of the left out block but we always loose at least l − 1 symbols leaving a block
out and aligning its neighbours together instead. The other blocks do not get
involved in the change on the score. Hence, when one leaves out a block and tries
to align the neighbour blocks together the LCS changes in 2−(l−1) = 3−l. Then
for blocks of length l > 4, to align several blocks with several blocks decreases
the LCS rather than to increase it.

3.2 Maximum number of left out blocks

The first key question is the percentage of blocks which are at most left out in
an optimal alignment. Since the blocks have length l − 1, l or l + 1 with equal
probability 1/3 the expected block length is l. Hence, the expected number of
blocks in a sequence of length n is about n/l. Now let us define the limit:

γl = lim
n→∞

E[Ln]

n
. (3.2.1)

Hence, the number of bits in the sequence X (and also in the sequence Y ) which
are not used for the LCS is about (1− γl)n. Every block we leave out means at
least l− 1 non-used bits. Hence, the number of left out blocks for long sequences
can typically not be much above:

(1− γl)n
l − 1

.
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This represents typically a proportion of:

(1− γl)n/(l − 1)

n/l
=

1− γl
1− (1/l)

from the total number of blocks. Hence we find that the proportion of left out
blocks in the optimal alignment is typically close or below the following bound:

1− γl
1− (1/l)

. (3.2.2)

Let us next find a simple lower bound for γl which we can use in expression
3.2.2. Assume we choose an alignment which leaves out no blocks. The typical
score of such an alignment gives a lower bound for γl. In this case the common
subsequence defined by such an alignment has its i-th block having length:

Bi := min{BXi, BY i}.

where BXi (resp. BY i) is the length of the i-th block of X (resp. Y ). Recall
that BXi (resp. BY i) has uniform distribution on the set {l − 1, l, l + 1}. The
distribution of the minimum above is as follows:

P(Bi = l − 1) = 5/9,P(Bi = l) = 3/9,P(Bi = l + 1) = 1/9.

The expected length is thus:

E[Bi] =
5

9
(l − 1) +

3

9
l +

1

9
(l + 1) = l − 4

9
. (3.2.3)

Since there are about n/l blocks, the score aligning all the blocks gives thus about
a score of:

n

l
· E[Bi] = n

(
1− 4

9l

)
,

so that we obtain:

γl ≥
(

1− 4

9l

)
.

The last inequality together with the bound 3.2.2 implies that the proportion of
left out blocks should typically not be much above the following bound:

1− (1− (4/9l))

1− (1/l)
=

4/9

l − 1
(3.2.4)

Another similar approach is to get a lower bound for γl by simulations. As a
matter of fact we have for any n that E[Ln]/n is a lower bound for γl. By
Montecarlo we can find an estimate of E[Ln]/n and a very likely lower bound γlb.
We then replace in inequality 3.2.2 γl by γlb.
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High probability events

Let δ > 0 be a parameter not depending on n. We will define a number of events
related with the combinatorial properties of the optimal alignments, called Cn,
Dn(δ), Gn(δ) and Jn(δ). In the following we will prove that these events have
high probability for n large. By high probability, we mean a quantity which is
negatively exponential close to one in n. It will turn out that this is true for
the above events for any parameters δ > 0 not depending on n. Also we will
prove that F n(q) has high probability for n large in the same sense as above but
restricted to some values of q.

A very useful tool we use often is the Azuma-Hoeffding theorem. The following
is a version of it for martingales (for a proof see [14]):

Theorem 4.0.1 (Hoeffding’s inequality) Let (V,F) be a martingale, and suppose
that there exists a sequence a1, a2, · · · of real numbers such that

P(|Vn − Vn−1| ≤ an) = 1

for all n. Then:

P(|Vn − V0| ≥ v) ≤ 2 exp
{
− 1

2
v2
/ n∑

i=1

a2
i

}
(4.0.1)

for every v > 0.

We also will use a corollary of the above theorem, for some intermediate bounds:

Corollary 4.0.1 Let a > 0 be constant and V1, V2, . . . be an i.i.d sequence of
random bounded variables such that:

P(|Vi − E[Vi]| ≤ a) = 1

for every i = 1, 2, . . . Then for every ∆ > 0, we have that:

P

( ∣∣∣∣V1 + · · ·+ Vn
n

− E[V1]

∣∣∣∣ ≥ ∆

)
≤ 2 exp

(
−∆2

2a2
· n
)

(4.0.2)
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4.1 Number of blocks as renewal process

For k > 0 let us define the sum of the length of the first k blocks in X as:

SXk = BX1 + · · ·+BXk

Let us define the number of blocks used in a sequence of length t in X as:

NX
t = max{k > 0 : SXk ≤ t} (4.1.1)

Note that there might be at the end of X a block which has length smaller than
l − 1. Since this is at most one block it plays little role and we will not mention
it every time, only when it is relevant (the same will apply to Y in what follows).

Due to the standard theory of renewal processes, for every k, t > 0 the following
relation holds between the two random variables defined above:

NX
t ≥ k ⇔ SXk ≤ t. (4.1.2)

In the same way we define for Y the same variables as before:

SYk = BY 1 + · · ·+BY k

NY
t = max{k > 0 : SYk ≤ t}

where still the relation NX
t ≥ k ⇔ SXk ≤ t, for every k, t > 0 holds true.

Let Cn be the event that the number of blocks in X and in Y lies in the in-
terval

In :=
[n
l
− n0.6,

n

l
+ n0.6

]
.

Lemma 4.1.1 There exists a constant b1 > 0 depending on l such that:

P(Cnc) ≤ 8 e−b1·n
0.2

for every n > 0 large enough.

Proof. It is easy to see that:

Cn = {NX
n ∈ In} ∩ {NY

n ∈ In} (4.1.3)

It is sufficient to compute directly P({NX
n ∈ In}c):

P({NX
n ∈ In}c) ≤ P

(
NX
n ≤

n

l
− n0.6

)
+ P

(
NX
n ≥

n

l
+ n0.6

)
(4.1.4)
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Now let us compute each expression separately. Let m1 :=
⌈
n
l
− n0.6

⌉
be an

auxiliar variable. We have at the beginning:

P
(
NX
n ≤

n

l
− n0.6

)
≤ P(NX

n ≤ m1)

(by using NX
t ≥ k ⇔ SXk ≤ t) = P

(
SXm1
≥ n

)
= P

(
SXm1

m1

− l ≥ n

m1

− l
)

(by 4.0.2 with P(|BX1 − l| ≤ 1) = 1) ≤ 2 exp

(
−m1

2

(
n

m1

− l
)2
)

(4.1.5)

Now we need to bound m1 in order to get the right order for moderate deviations.
Let us start looking at the following:(

n

m1

− l
)2

≥ l2
(

n

n− ln0.6 + l
− 1

)2

, by using m1 ≤ n
l
− n0.6 + 1

≥ l2

(
1

1− l
n0.4 + l

n

− 1

)2

≥ l4
(

1

n0.4
− 1

n

)2
(

1

1− l
n0.4 + l

n

)2

≥ l4

n0.8

(
1− 1

n0.6

)2
(

1

1− l
n0.4 + l

n

)2

(4.1.6)

We have:

lim
n→∞

(
1− 1

n0.6

)2
(

1

1− l
n0.4 + l

n

)2

= 1 >
1

4

Hence for n large enough, the expression on the right hand side of 4.1.6 is larger
than l4/(4n0.8) so that: (

n

m1

− l
)2

≥ l4

4n0.8
(4.1.7)

Also, for n > 0 large enough we can take:

m1 =
⌈n
l
− n0.6

⌉
≥ n

l
− n0.6 + 1 ≥ n

2l
+ 1 =

n

2l

(
1 +

2l

n

)
≥ n

4l
(4.1.8)

Finally we can use 4.1.7, 4.1.8 in 4.1.5 to get:

P
(
NX
n ≤

n

l
− n0.6

)
≤ 2 exp

(
−m1

2

(
n

m1

− l
)2
)

≤ 2 exp

(
− l

3

32
· n0.2

)
(4.1.9)
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for n > 0 large enough. For the other term, let m2 :=
⌊
n
l

+ n0.6
⌋

be an auxiliar
variable and do the same as before. We have at the begining:

P
(
NX
n ≥

n

l
+ n0.6

)
≤ P(NX

n ≥ m2)

(by using NX
t ≥ k ⇔ SXk ≤ t) = P

(
SXm2
≤ n

)
= P

(
SXm2

m2

− l ≤ n

m2

− l
)

(by 4.0.2 with P(|BX1 − l| ≤ 1) = 1) ≤ 2 exp

(
−m2

2

(
n

m2

− l
)2
)

(4.1.10)

Now we need to bound m2 in order to get the right order for moderate deviations.
Let us start looking at the following:(

n

m2

− l
)2

≥ l2
(

n

n+ ln0.6
− 1

)2

, by using m2 ≤ n
l

+ n0.6

≥ l2

(
1

1 + l
n0.4

− 1

)2

≥ l4

n0.8

(
1

1 + l
n0.4

)2

(4.1.11)

where the very last inequality was obtained by assuming n large enough and
noticing that:

lim
n→∞

(
1

1 + l
n0.4

)2

≥ 1

4

Also, for n > 0 large enough we can take:

m2 =
⌊n
l

+ n0.6
⌋
≥ n

2l
(4.1.12)

Finally we can use 4.1.11, 4.1.12 in 4.1.10 to get:

P
(
NX
n ≥

n

l
+ n0.6

)
≤ 2 exp

(
−m2

2

(
n

m2

− l
)2
)

≤ 2 exp

(
− l

3

16
· n0.2

)
(4.1.13)

Then combining 4.1.4, 4.1.9 and 4.1.13 we obtain:

P({NX
n ∈ In}c) ≤ 4 exp

(
−n0.2 · l

3

32

)
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and by symmetry we finally get:

P(Cc
n) ≤ 8 exp

(
−n0.2 · l

3

32

)
for every n > 0 large enough. Taking b1 = l3

32
> 0 the proof is finished.

4.2 Left out blocks in an optimal alignment

Let F n(q) denote the already defined event that any optimal alignment of X and
Y leaves out at most a proportion q of blocks in X as well as in Y .

Lemma 4.2.1 For any q satisfying q > 4
9(l−1)

, we have that there exists β > 0
such that:

P(F nc(q)) ≤ e−βn

for all n. Note that here q does not depend on n and also β > 0 does not depend
on n but on l and q.

Proof. For the proof we need two events. Let δ > 0 and let An(δ) be the event
that the two strings X and Y both have more than n/l−δn blocks. Let Kn denote
the event that when we align the first d(n/l) − δne blocks of X and Y without
leaving out a single block, the score for these aligned blocks is above expectation
minus δ(n/l). Recall that in the formula 3.2.3 we computed the expected length
of Bi as:

E[Bi] = l − 4

9

where Bi = min{BXi, BY i} each i = 1, 2, . . . . Hence Kn is the event that the
following inequality holds:

d(n/l)−δne∑
i=1

Bi ≥
(
l − 4

9

)⌈
n

l
− δn

⌉
− δn

l
.

Now we find that when both events An and Kn hold, then:

Ln ≥
(
l − 4

9

)⌈
n

l
− δn

⌉
− δn

l
,

which is the same as saying that the number of unused (not used for the LCS)
bits are less or equal to:

n−
(
l − 4

9

)⌈
n

l
− δn

⌉
+ δ

n

l
.
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Since each block has length at least n − 1, this then implies that the number of
left out blocks (left out by an optimal alignment) is at most the last bound above
divided by (l − 1). As a proportion of the total number of blocks in X and Y ,
this gives the following upper bound:

n−
(
l − 4

9

) ⌈
n
l
− δn

⌉
+ δ n

l

(l − 1)((n/l)− δn)
≤

n−
(
l − 4

9

) (
n
l
− δn

)
+ δ n

l

(l − 1)((n/l)− δn)

=
n− l

(
n
l
− δn

)
+ 4

9

(
n
l
− δn

)
(l − 1)((n/l)− δn)

=
4

9(l − 1)
+

δnl + δn/l

(l − 1)((n/l)− δn)

=
4

9(l − 1)
+ δ

(
1 + l2

(l − 1)(1− δl)

)
(4.2.1)

where we used that by An(δ) the number of blocks in X and Y is above (n/l)−δn
(here δ < 1/l). In other words, we have just proved that when we take q to be
equal to:

4

9(l − 1)
+ δ

(
1 + l2

(l − 1)(1− δl)

)
then,

An(δ) ∩Kn(δ) ⊂ F n(q)

and hence:
P(F nc(q)) ≤ P(Anc(δ)) + P(Knc(δ)).

Note that holding l fixed and letting δ > 0 go to zero, we find that δ
(

1+l2

(l−1)(1−δl)

)
goes to zero. This implies that for any q satisfying

q >
4

9(l − 1)
, (4.2.2)

there exists δ > 0 such that:

δ

(
1 + l2

(l − 1)(1− δl)

)
< q − 4

9(l − 1)
. (4.2.3)

For given q satisfying 4.2.2, let thus δ > 0 be such that inequality 4.2.3 is satisfied.
In that case and with that choice of q and δ > 0 we get that:

P(F nc(q)) ≤ P(Anc(δ)) + P(Knc(δ)).

So to prove that P(F nc(q)) has exponentially small probability in n, it is enough
to show that P(Anc(δ)) and P(Knc(δ)) have both exponentially small probability
in n for any δ > 0 not depending on n. This is going to be proved (for any δ > 0)
in the next two lemmas.
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Lemma 4.2.2 For every 0 < δ < 1
l

there exists a constant b2 > 0 depending on
δ and l but not on n, such that:

P(Anc(δ)) ≤ 4e−b2·n

for n large enough.

Proof. With our definitions on renewal processes, we can re-write An(δ) as
follows:

An(δ) =
{
NX
n ≥

n

l
− δn

}
∩
{
NY
n ≥

n

l
− δn

}
(4.2.4)

Then let us compute directly, setting m =
⌈
n
l
− δn

⌉
:

P
(
NX
n ≤

n

l
− δn

)
≤ P

(
NX
n ≤ m

)
(by using NX

t ≥ k ⇔ SXk ≤ t) = P
(
SXm ≥ n

)
= P

(
SXm
m
− l ≥ n

m
− l
)

(by 4.0.2 with P(|BX1 − l| ≤ 1) = 1) ≤ 2 exp

(
−m

2

( n
m
− l
)2
)

(4.2.5)

From one side we have that:( n
m
− l
)2

≥
(

nl

n− lδn+ l
− l
)2

, by using m ≤ n
l
− δn+ 1

= l2

(
1

1− lδ + l
n

− 1

)2

= l2
(
lδ − l

n

)2
(

1

1− lδ + l
n

)2

≥ l2 · l
2δ2

4
· 1

4

(
1

1− lδ

)2

(4.2.6)

for n > 0 large enough, where the last inequality is due to:

lim
n→∞

(
lδ − l

n

)2
(

1

1− lδ + l
n

)2

≥ l2δ2

4
· 1

4

(
1

1− lδ

)2

From the other side we also know that:

m ≥ n

l
− δn = n

(
1

l
− δ
)

(4.2.7)



34 CHAPTER 4. HIGH PROBABILITY EVENTS

Then by using inequalities 4.2.6 and 4.2.7 in 4.2.5 we get:

P
(
NX
n ≤

n

l
− δn

)
≤ 2 exp

(
−m

2

( n
m
− l
)2
)

≤ 2 exp

(
−n · l3δ2

32(1− lδ)

)
(4.2.8)

Finally by symmetry and using 4.2.8 we get:

P(Anc(δ)) ≤ 4 exp

(
−n · l3δ2

32(1− lδ)

)
which ends the proof by taking

b2 =
l3δ2

32(1− lδ)
> 0.

Lemma 4.2.3 For every 0 < δ < 1
l

there exists a constant b3 > 0 depending on
δ and l but not on n such that:

P(Knc(δ)) ≤ e−b3·n

for n large enough.

Proof. First let us remember again that

E[Bi] = l − 4

9

where Bi = min{BXi, BY i} for each i = 1, . . . , n. Now, after setting an auxiliar
variable m := dn

l
− δne, we can write:

P(Knc(δ)) ≤ P

(
1

m

m∑
i=1

Bi ≤
(
l − 4

9

)
− δ n

ml

)

≤ P

(∣∣∣∣∣ 1

m

m∑
i=1

Bi −
(
l − 4

9

) ∣∣∣∣∣ ≥ δ

1− δl

)

≤ 2 exp

(
−1

2
· 1

4

(
δ

1− δl

)2

m

)
, by 4.0.2 and P(|Bi − E[Bi]| ≤ 2) = 1

≤ 2 exp

(
−1

8

(
δ

1− δl

)2(
1

l
− δ
)
n

)
, by using m ≥ n

l
− δn

= 2 exp

(
−1

8
· δ2

l(1− δl)
n

)
To finish the proof choose b3 = 1

8
· δ2

l(1−δl) .
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4.3 Proportion of blocks in X and Y

Let Xm be the sequence X∞ taken up to the m-th block. Similarly, let Y m be
the sequence Y ∞ taken up to the m-th block. Let Dm(δ) be the event that the
proportions of blocks in Xm and Y m of length l − 1, l and l + 1 are not further
from 1/3 than δ. Let Dn(δ) be the event:

Dn(δ) =
⋂
m∈In

Dm(δ)

where we defined the interval In = [n/l − n0.6 , n/l + n0.6 ].

Lemma 4.3.1 For every δ > 0 we have that:

P(Dnc(δ)) ≤ 2n0.6

(
1

1 + 3δ

)n (1+3δ)
2l

for n large enough.

Proof. Let B be the set of all possible blocks in Xm (or in Y m), namely:

B = {bl−1, bl, bl+1}

where bi denotes a block of length i. Let W1,W2, . . . be i.i.d. random variables
on B with distribution:

pi := P(Wk = bi) = 1/3 every i = l − 1, l, l + 1 and k > 0.

Let Z1, Z2, . . . be new random variables in {0, 1}3 such that for j > 0 and i =
l − 1, l, l + 1 the components are defined as follows:

(Zj)i :=

{
1 if Wj = bi
0 otherwise

Then we can see that W1,W2, . . . has the same distribution as BX1, BX2, . . . (or
as BY 1, BY 2, . . . ) and then for m > 0 the expression:

Z1 + · · ·+ Zm
m

is the empirical distribution of Xm (or of Y m). Then for ~q = (q1, q2, q3) ∈ R3
+ we

know that (from [13]; chapter 2):

P

Z1 + · · ·+ Zm
m

=

( q1
q2
q3

) ≤ r(~q)m (4.3.1)
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for every given m > 0, where

r(~q ) :=
p1
q1p2

q2p3
q3

q1q1q2q2q3q3
. (4.3.2)

Given δ > 0, for ~qδ = (1/3 + δ, 1/3 + δ, 1/3 + δ) we get by replacing in 4.3.2:

r(~qδ) =

(
1

1 + 3δ

)1+3δ

and later by using 4.3.1:

P(Dc
m(δ)) ≤ P

Z1 + · · ·+ Zm
m

=

 1/3 + δ
1/3 + δ
1/3 + δ


≤

(
1

1 + 3δ

)(1+3δ)m

(4.3.3)

Finally by using 4.3.3 we can write down:

P(Dnc(δ)) ≤
∑
m∈In

(
1

1 + 3δ

)(1+3δ)m

≤ 2n0.6

(
1

1 + 3δ

)(1+3δ)(n/l−n0.6)

= 2n0.6

(
1

1 + 3δ

)n( 1
l
− 1
n0.4 )(1+3δ)

≤ 2n0.6

(
1

1 + 3δ

) n
2l

(1+3δ)

where the very last inequality is due to:

1

l
− 1

n0.4
≥ 1

2l

for n large enough.

4.4 Number of blocks for an optimal alignment

Recall that NX
n (resp. NY

n ) is the number of blocks in X (resp. in Y ) having
lenghts in {l − 1, l, l + 1} as in expression 4.1.1. Let Gn(δ) be the event that the
following inequality holds:

NY
n

NX
n

≤ 1 + δ.

Lemma 4.4.1 For every δ > 0 there exist two constantsl b4, b5 > 0 depending on
l and on δ such that:

P(Gnc(δ)) ≤ 2e−b4·n
0.2

+ 2e−b5·n
0.2

for every n large enough.
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Proof. Let us denote α := n
l

+ n0.6. Now computing directly we obtain:

P(Gnc(δ)) = P(NX
n (1 + δ) ≤ NY

n )

= P(NX
n (1 + δ) ≤ NY

n |NY
n ≤ α)P(NY

n ≤ α)

+ P(NX
n (1 + δ) ≤ NY

n |NY
n > α)P(NY

n > α)

≤ P

(
NX
n ≤

α

1 + δ

)
P(NY

n ≤ α) + P(NY
n > α)

≤ P

(
NX
n ≤

α

1 + δ

)
+ P(NY

n > α) (4.4.1)

since P(NY
n ≤ α) ≤ 1. Let us work on each term as before. First, let us define

m2 =
⌊
n
l

+ n0.6
⌋

and write down:

P(NY
n > α) ≤ P(NY

n ≥ m2)

(by using NY
t ≥ k ⇔ SYk ≤ t) = P

(
SYm2
≤ n

)
= P

(
SYm2

m2

− l ≤ n

m2

− l
)

(by 4.0.2 with P(|BY 1 − l| ≤ 1) = 1) ≤ 2 exp

(
−m2

2

(
n

m2

− l
)2
)

(4.4.2)

Now we need to bound m2 in order to get the right order for moderate deviations.
Let us start looking at the following:(

n

m2

− l
)2

≥ l2
(

n

n+ ln0.6
− 1

)2

, by using m2 ≤ n
l

+ n0.6

≥ l2

(
1

1 + l
n0.4

− 1

)2

≥ l4

n0.8

(
1

1 + l
n0.4

)2

≥ l4

4n0.8
(4.4.3)

where the very last inequality above holds for n large enough since:

lim
n→∞

(
1

1 + l
n0.4

)2

= 1 >
1

4

Also, for n > 0 large enough we can take:

m2 =
⌊n
l

+ n0.6
⌋
≥ n

2l
(4.4.4)
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Finally we can use 4.4.3, 4.4.4 in 4.4.2 to get:

P
(
NY
n > α

)
≤ 2 exp

(
−m2

2

(
n

m2

− l
)2
)

≤ 2 exp

(
− l

3

16
· n0.2

)
(4.4.5)

for n > 0 large enough. In the same way, calling m =
⌈

α
1+δ

⌉
we have:

P

(
NX
n ≤

α

1 + δ

)
≤ P

(
NX
n ≤ m

)
(by using NX

t ≥ k ⇔ SXk ≤ t) = P
(
SXm ≥ n

)
= P

(
SXm
m
− l ≥ n

m
− l
)

(by 4.0.2 with P(|BX1 − l| ≤ 1) = 1) ≤ 2 exp

(
−m

2

( n
m
− l
)2
)

(4.4.6)

Now we need again to bound m in order to get the right order for moderate
deviations. Let us start looking at the following:( n

m
− l
)2

≥ l2
(

(1 + δ)n

n+ ln0.6
− 1

)2

, by using m ≤ 1
1+δ

(
n
l

+ n0.6
)

≥ l2

(
1 + δ

1 + l
n0.4

− 1

)2

≥ l2

(
1 + δ

1 + l
n0.4

− (1 + δ)

)2

≥ l4(1 + δ)2

n0.8

(
1

1 + l
n0.4

)2

≥ l4(1 + δ)2

4n0.8
(4.4.7)

where the very last inequality holds for n large enough since:

lim
n→∞

(
1

1 + l
n0.4

)2

= 1 >
1

4

Also, for n > 0 large enough we can take:

m ≥ 1

1 + δ

(
1 +

l

n0.4

)
n

l
≥ 1

2(1 + δ)
· n
l

(4.4.8)
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Finally we can use 4.4.7, 4.4.8 in 4.4.6 to get:

P

(
NX
n ≤

α

1 + δ

)
≤ 2 exp

(
−m

2

( n
m
− l
)2
)

≤ 2 exp

(
− l

3(1 + δ)

8
· n0.2

)
(4.4.9)

for n > 0 large enough. Combining inequalities 4.4.5 and 4.4.9 in 4.4.1 we have:

P(Gnc(δ)) ≤ P

(
NX
n ≤

α

1 + δ

)
+ P(NY

n > α)

≤ 2 exp

(
− l

3

16
· n0.2

)
+ 2 exp

(
− l

3(1 + δ)

8
· n0.2

)
(4.4.10)

from where we can take the constants

b4 =
l3

16
> 0

b5 =
l3(1 + δ)

8
> 0

and finish the proof.

4.5 Cut blocks at the end

Let Jn(δ) denote the event that the proportion of left out blocks at the end of
X or Y in any optimal alignment is at most a proportion δ of the total number
of blocks in each of these sequences. As all events before, we want to prove that
Jn(δ) has high probability to happen for every δ > 0 provided n is large enough.
We need an extra definition and a previous lemma in order to show the high
probability of Jn(δ).

For an integer number s ∈ [1, n] we denote:

Ls1 := |LCS(X1X2 · · ·Xs, Y1Y2 · · ·Yn)| (4.5.1)

Lemma 4.5.1 Given δ > 0, there exists a constant c∗ > 0 not depending on n
but on δ such that:

E[Ln − Ln−δn1 ] ≥ c∗ · n (4.5.2)

for every n > 0 large enough.

Proof. Given n > 0 and t ∈ [−1, 1] let us define the number γ(t, n) > 0 as
follows:

γ(t, n) :=
E[ |LCS(X1 · · ·Xn+nt, Y1 · · ·Yn−nt)| ]

n
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This number γ(t, n) is a kind of extension for the Chvatal-Sankoff constant γ (see
[6]), or more precisely in the case of our paper an extension of γl defined as in
expression 3.2.1. An extended motivation for this definition can be found in [21].
For any fixed t ∈ [−1, 1] it is known that γ(t, n) converges as n→∞ (see [12] or
[21]), let us denote that limit by

γ(t) := lim
n→∞

γ(t, n).

The speed of convergence to that limit is also known due to theorem 2.1 in [12].
This theorem says that there exists θ1 > 0 a constant not depending on n such
that:

|γ(t, n)− γ(t)| ≤ θ1 ln(n)√
n

(4.5.3)

for any fixed t ∈ [−1, 1] provided n > 0 is large enough. On the other hand, it is
known that the map t ∈ [−1, 1] 7→ γ(t) ∈ [0, 1] is concave and symmetric in the
origin (see [21]). Hence, for every t ∈ [−1, 1] we have

γ(0) ≥ γ(t) (4.5.4)

Let us set an auxiliar variable n∗ as follows:

n∗ := n

(
1− δ

2

)
Note that with the last definition, the inequality

n ln(n)√
n

=
√
n ln(n) ≥

√
n∗ ln(n∗) =

n∗ ln(n∗)√
n∗

(4.5.5)

holds due to
√
· and ln(·) being increasing functions. By using the previous defi-

nitions, the inequality for the speed of convergence 4.5.3, the concave inequality
4.5.4 and inequality 4.5.5 (following this order), we can write:

E[Ln − Ln−δn1 ] = n γ(0, n)− n∗γ (t∗, n∗)

≥ n

(
γ(0)− θ1 ln(n)√

n

)
− n∗

(
γ(t∗) +

θ1 ln(n∗)√
n∗

)
≥ n

(
γ(0)− θ1 ln(n)√

n

)
− n∗

(
γ(0) +

θ1 ln(n∗)√
n∗

)
= (n− n∗)γ(0)− θ1

(
n ln(n)√

n
+
n∗ ln(n∗)√

n∗

)
≥ (n− n∗)γ(0)− 2θ1

n ln(n)√
n

=
n δ γ(0)

2
− 2θ1

n ln(n)√
n

=

(
δ γ(0)

2
− 2θ1

ln(n)√
n

)
n

≥ δ γ(0)

4
n (4.5.6)



4.5. CUT BLOCKS AT THE END 41

where the very last inequality above holds for n large enough, since

lim
n→∞

(
2θ1

ln(n)√
n

)
= 0 <

δ γ(0)

4

To finish the proof we take c∗ = δ γ(0)
4

.

Now comes the main result of this section which establishes the high probability
of the event Jn(δ):

Proposition 4.5.1 For every δ > 0, there exists a constant θ > 0 not depending
on n but on δ such that:

P(Jnc(δ)) ≤ 2e−θ·n

for every n > 0 large enough.

Proof. With the notation as in 4.5.1 we write:

P(Jnc(δ)) ≤ 2 P( |LCS(X1 · · ·Xn−δn, Y1 · · ·Yn)| − Ln ≥ 0 )

= 2 P(Ln−δn1 − Ln ≥ 0 )

= 2 P(Ln−δn1 − Ln − E[Ln−δn1 − Ln ] ≥ E[Ln − Ln−δn1 ] )(4.5.7)

Let us define

Mn(δ) := Ln−δn1 − Ln − E[Ln−δn1 − Ln ]

It is not difficult to see that Mn(δ) is a martingale with respect to the filtration
Fn = σ{(Xk, Yk) : k ≤ n} and that M0 = 0. The following inequality also holds:

|Mn(δ)−Mn−1(δ)| ≤ 4

for δ > 0 with probability 1. So, we can use the theorem 4.0.1 (Azuma-Hoeffding
inequality for martingales) with ai = 4 and v = E[Ln − Ln−δn1 ] to estimate:

P(Ln−δn1 − Ln − E[Ln−δn1 − Ln ] ≥ v ) ≤ 2 exp

(
− v2

2 · 4n

)
= 2 exp

(
−n

8

(
E[Ln − Ln−δn1 ]

n

)2
)

(by 4.5.2 and c∗ from lemma 4.5.1) ≤ 2 exp

(
−c

2
∗
8
· n
)

Taking θ = c2∗
8
> 0 finishes the proof.
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4.6 Optimal events

In theorem 2.1.3, q represents the proportion of left out blocks in X and in Y . In
reality, typically, the proportion of left out blocks in X will not be exactly equal
to the proportion of left out blocks in Y . Because of this, q1 will designate the
proportion of left out blocks in X and q2 will designate the proportion of left out
blocks in Y . We will have that q1 can be made as close to q2 as we want to by
taking a large n. Now we need to rewrite all our conditions as in theorem 2.1.3
with q1 and q2 instead of q.

Let us define the following events:

• Given any m1,m2, q1, q2, let Em1,m2,q1,q2(ε) denote the event that there is no
optimal alignment of Xm1 with Y m2 leaving out a proportion of q1 blocks
in Xm1 and a proportion of q2 blocks in Y m2 and such that:

H(q1)+H(q2)+(1−max{q1+3q2, 3q1+q2}) (ln(1/9) +H(p)) ≤ −ε. (4.6.1)

• Let En(ε) be the event :

En(ε) =
⋂

m1,m2∈In,q1,q2

Em1,m2,q1,q2(ε). (4.6.2)

If δ designates the difference between q1 and q2, then note that the system

min

[
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(
1− 3q1

(1/3)− δ

)
+

−
(

1− δ + 2(q1 − δ)
(1/3 + δ)

)
pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

− q2 ·
1 + δ

(1/3)− δ

]

|q1 − q2| ≤ 2δ

H(q1) +H(q2) + (1−max{q1 + 3q2, 3q1 + q2}) (ln(1/9) +H(p)) ≥ 0

(4.6.3)

converges to the conditions in theorem 2.1.3 when δ goes to zero (when q1 is as
close to q2 as we want to by taking a large q1). Note also that replacing q1 and
q2 by q and taking δ = 0 in the minimized function and in the last inequality of
4.6.3, they become equal to 2.1.19 respectively 2.1.22. If the minimizing problem
in theorem 2.1.3 has a strictly positive solution 2ε and if expression 2.1.19 is less
than ε1, this implies that 2.1.22 must be smaller than a −ε2 for ε2 > 0 (we are
assuming that 2.1.20, 2.1.21 and 2.1.22 hold). The next lemma shows that the
same holds true for the system 4.6.3 if we take δ small enough.



4.6. OPTIMAL EVENTS 43

Lemma 4.6.1 Assume there exists 0 < q0 < (1/3) and ε1 > 0 such that for
all {pij}i,j and q ∈ [0, q0] satisfying all the conditions 2.1.20, 2.1.21 and 2.1.22
in theorem 2.1.3, we have that expression 2.1.19 is larger or equal to 2ε1 (in
other words, the condition that the minimizing problem in theorem 2.1.3 has a
strictly positive solution 2ε1 is satisfied). Then, we have that there exists ε2 > 0
and δ0 > 0 such that for all {pij}i,j∈{l−1,l,l+1} and q1, q2 ∈ [0, q0] and δ ∈ [0, δ0]
satisfying 2.1.20 and 2.1.21, we have that if |q1 − q2| ≤ 2δ0 and if

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(
1− 3q1

(1/3)− δ0

)
+

−
(

1− δ0 + 2(q1 − δ0)
(1/3 + δ0)

)
pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

− q2 ·
1 + δ0

(1/3)− δ0
≤ ε1

(4.6.4)

then

H(q1) +H(q2) + (1−max{q1 + 3q2, 3q1 + q2}) (ln(1/9) +H(p)) ≤ −ε2 (4.6.5)

Proof. We are going to do the proof by reductio ad absurdum (reduction to
the absurd). Assume for this that for all (pij)i,j∈I and q ∈ [0, q0] satisfying all
the conditions 2.1.20, 2.1.21 and 2.1.22 in theorem 2.1.3 we have that expression
2.1.19 is larger equal to 2ε1. Assume that the rest of the lemma would not hold.
Then for every δ > 0 (as small as we want) we could find a vector ~p:

~p := (pl−1,l−1, pl−1,l, . . . , pl+1,l+1, q1, q2, δ)

such that the components satisfy |q1 − q2| ≤ δ, and the components of ~p satisfy
2.1.20, 2.1.21 whilst inequality 4.6.4 is satisfied and we can take the expression

H(q1) +H(q2) + (1−max{q1 + 3q2, 3q1 + q2}) (ln(1/9) +H(p)) (4.6.6)

as close to zero as we want. Hence there exists a sequence ~p1, ~p2, . . . , ~pt, . . . of
such vectors with notation:

~p(t) := (pl−1,l−1(t), pl−1,l(t), . . . , pl+1,l+1(t), q1(t), q2(t), δ(t))

so that for each t ∈ N the vector ~p(t) satisfies all the conditions 2.1.20, 2.1.21 and
4.6.4, whilst

lim
t→∞
|q1(t)− q2(t)| = 0

and expression 4.6.6 converges to zero as t goes to infinity.
The vectors ~p(t) are contained in a bounded domain and hence in a compact
domain. This implies that there exists a converging subsequence. Hence there
exists an increasing map π : N→ N so that ~p(π(t)) converges as t goes to infinity.
Let the limit be denoted by

~p := (pl−1,l−1, pl−1,l, . . . , pl+1,l+1, q1, q2, 0).
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We have that q1 = q2, so let us denote q1 = q2 = q. We find that our limit
satisfies all the conditions 2.1.20, 2.1.21. Furthermore, at the limit expression
4.6.6 becomes equal to zero. Replacing then q1 and q2 in 4.6.6 by q, we find that
condition 2.1.22 is satisfied. finally since for our sequence ~p(π(t)), we have that
4.6.4 is satisfied, by continuity it must also be satisfied for the limit. Hence, noting
that at the limit q1 = q2 = q and δ = 0, we get that expression 2.1.19 is less or
equal to ε1. This contradicts our assumption, since our limit vector satisfies all the
conditions2.1.20, 2.1.21 and 2.1.22 and should thus have expression 2.1.19 larger
equal to 2ε1. Hence, we have that when all the conditions 2.1.20 and 2.1.21, are
satisfied and when δ goes to zero then expression 4.6.4 should be bounded away
from zero. This means that for δ > 0 small enough and when all the conditions
2.1.20 and 2.1.21 are satisfied, we have that there exists ε2 > 0 so that 4.6.4 is
less or equal to −ε2.

Let us now show that event Em1,m2,q1,q2(ε) holds with high probability.

Lemma 4.6.2 Assume that there exists 0 < q0 < (1/3) and ε1 > 0 such that for
all {pij}i,j and q ∈ [0, q0] satisfying all the conditions 2.1.20, 2.1.21 and 2.1.22 in
theorem 2.1.3, we have that expression 2.1.19 is larger or equal to 2ε1. Then, for
every ε > 0 there exist a polynomial w(n) > 0 and a constant ϑ > 0, both only
depending on l such that:

P(Enc(ε)) ≤ w(n)e−ϑ·n

for every n large enough.

Proof. Let ~a denote an alignment of the Xm1 and Y m2 . Hence a consists of two
binary vectors ~a = (~aX ,~aY ) the first one having length m1 and the second one
having length m2.
Hence ~ax ∈ {0, 1}m1 ,~aY ∈ {0, 1}m2 when the i-th entry aXi of ~aX is a 1 that
means that the i-th block of Xm1 is discarded (entirely aligned with gaps)by the
alignment ~a, otherwise the i-th block of Xm1 is not discarded. Similarly when
aY i = 1 then the i-th block of Y m1 is discarded. Here we use the same way
of defining alignment as explained before in the first section: we specify which
blocks get entirely discarded and then align the rest block by block. Doing so
and assuming that the alignment ~a is not random, we get that the aligned block
pairs are i.i.d.. For the lengths of aligned block pairs we have nine possibilities
each having the same probability. Hence, given the alignment a, the empirical
frequencies of the aligned block pair lengths is simply a multinomial distribution.
Let p = {pij}i,j∈{l−1,l,l+1} be a (non-random) probability distribution. Let Ea(p)
denote the event that the empirical distribution of the aligned block pairs by the
alignment a is not p.
From what we said we have that the probability P(Ec

a(p)) is equal to the proba-
bility that a 9-nomial variable with parameter m∗ and all probability parameters
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equal to 1/9 gives the frequencies given by p. Here m∗ designates the number of
aligned block pairs by a. Hence, we get

P(Ec
a(p)) =

(
m∗

m∗pl−1,l−1 m∗pl−1,l . . . m∗pl+1,l+1

)(
1

9

)m∗
(4.6.7)

where (
a

a1 . . . ak

)
=

a!

a1! · · · ak!
is the multinomial factorial coefficient. Let us define

B(p) :=

(
m∗

pl−1,l−1m∗ pl−1,lm∗ . . . pl+1,l+1m∗

)
M(p) :=

∏
pi∈{pl−1,l−1,...,pl+1,l+1}

ppii

H(p) :=
∑

pi∈{pl−1,l−1,...,pl+1,l+1}

pi ln(1/pi) = ln

(
1

M(p)

)
(4.6.8)

note that B(p) ·(M(p))m
∗

is the probability distribution of a multinomial random
variable with parameters m∗ and vector (m∗pl−1,l−1, . . . ,m

∗pl+1,l+1). Hence

B(p) · (M(p))m
∗ ≤ 1. (4.6.9)

Then, by using 4.6.9 we can bound expression 4.6.7 as follows:

B(p)

(
1

9

)m∗
= B(p) · (M(p))m

∗
(

1/9

M(p)

)m∗
≤

(
1/9

M(p)

)m∗
= exp

([
ln

(
1

9

)
+H(p)

]
m∗
)

(4.6.10)

On the other hand, we have at least (1 − max{q1 + 3q2, 3q1 + q2}) min{m1,m2}
aligned block pairs. Let us give an intuition for this. There are three situations for
aligning a fixed block in X with blocks in Y . First, when we align one block in X
with one block in Y one to one, the resulting length contributing to the LCS is the
minimun between their lenghts, so at most if all the blocks of X and Y are aligned
one to one then we will have at most a contribution of min{m1,m2} aligned blocks
pairs. Second, when we align one block in X with several blocks in Y then we
at least leave q1 ·m1 blocks in X. Third, when know that we cannot align two
adjacent blocks in X with the same block in Y , then we leave at least 2q1 ·m1

blocks in X also. In total, in the worse case, looking first at blocks in X, we are
leaving (3q1 + q2) min{m1,m2} blocks in both sequences X and Y . Similarly, but
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looking first at Y , we can leave (3q2 + q1) min{m1,m2} blocks in both sequences
X and Y . Finally, at least we have (1 − max{q1 + 3q2, 3q1 + q2}) min{m1,m2}
aligned block pairs due to the considerations above.
Since m1,m2 ∈ In, this gives the lower bound for m∗

m∗ ≥ (1−max{q1 + 3q2, 3q1 + q2}) · ((n/l)− n0.6). (4.6.11)

and hence together with the bound 4.6.10, we obtain

P((Ec
a(p)) ≤ exp

(
(ln(1/9) +H(p))(1−max{q1 + 3q2, 3q1 + q2})((n/l)− n0.6)

)
(4.6.12)

Let Am1,m2,q1,q2 denote the set of all alignments aligning Xm1 with Y m2 and
leaving out a proportion of q1 blocks in Xm1 and a proportion of q2 blocks in
Y m2 . In other words, the set Am1,m2,q1,q2 is the set of all elements ~a = (~aX ,~aY )
of {0, 1}m1 × {0, 1}m2 for which |~aX | = q1m1 and |~aY | = q2m2.
Let Pε,q1,q2 denote the set of those distributions p (for aligned block pairs, hence
on the space Ω = {(l− 1, l− 1), (l− 1, l), . . . , (l + 1, l + 1)}) for which inequality
4.6.1 is satisfied and which are possible in our case. Before we continue with the
proof, let us look at an example:

Example 4.6.1 Assume we look at binary strings of length 5. Then there can be
0,1,2,3,4 or 5 ones. Hence, the empirical distribution for side one when we flip a
coin exactly five times can only be 0, 20%, 40%, 60%, 80% or 100%. In general
for a string of length n and k symbols, there are no more than (n+ 1)k−1 possible
empirical distributions (see [13], Lemma 2.1.2 (a)). In the case above we have
an empirical distribution for m∗ aligned block pairs. For each block pairs there
are 9 possibilities. Hence, there are no more than (m∗ + 1)8 possible empirical
distributions. However m∗ is not known. It could potentially take on any value
between 1 and (n/l) + n0.6. Hence, we find that for the number of empirical
distributions we need to consider the following upper bound:

((n/l) + n0.6) · ((n/l) + n0.6 + 1)8 ≤ ((n/l) + n0.6 + 1)9.

Let us continue with the proof. We have that:⋂
a∈Am1,m2,q1,q2 ,Pε,q1,q2

Ea(p) = Em1,m2,q1,q2(ε)

and hence:

P(Ec
m1,m2,q1,q2

(ε)) ≤
∑

a∈Am1,m2,q1,q2 , p∈Pε,q1,q2

P(Ec
a(p)). (4.6.13)

By using 4.6.12, the inequality 4.6.13 above becomes:

P(Ec
m1,m2,q1,q2

(ε)) ≤
∑

a∈Am1,m2,q1,q2 , p∈Pε,q1,q2

exp
(

(ln(1/9) +H(p))(1−max{q1 + 3q2, 3q1 + q2})((n/l)− n0.6)
)
.



4.6. OPTIMAL EVENTS 47

Note that the number of alignment considered in the sum on the right hand side
of the last inequality above can be bound as follows:

|Am1,m2,q1,q2| =

(
m1

q1m1(1− q1)m1

)(
m2

q2m2(1− q2)m2

)
≤

(
1

qq11 (1− q1)1−q1

)m1
(

1

qq22 (1− q2)1−q2

)m2

= exp(H(q1)m1 +H(q2)m2)

≤ exp((H(q1) +H(q2))m
∗)

≤ exp
(

(H(q1) +H(q2))((n/l) + n0.6)
)

(4.6.14)

where for i = 1, 2 we denote

H(qi) := qi ln(1/qi) + (1− qi) ln(1/(1− qi)).

The number of distributions in Pε,q1,q2 we need to consider is (as explained
above) less or equal to ((n/l) + n0.6 + 1)9. Combining all of this we find that
P(Ec

m1,m2,q1,q2
(ε)) is less or equal to:

exp((H(q1)+H(q2))((n/l)+n0.6))·b·exp
(

(ln(1/9) +H(p))(1−max{q1 + 3q2, 3q1 + q2})((n/l)− n0.6)
)
.

where b := ((n/l) + n0.6 + 1)9. In other words, we found that:

P(Ec
m1,m2,q1,q2

(ε)) ≤ b exp
(n
l

(H(q1) +H(q2) + (ln(1/9) +H(p))(1−max{q1 + 3q2, 3q1 + q2}) + r)
)

(4.6.15)

where the rest term r is equal to:

r = ln−0.4 (H(q1) +H(q2)− (ln(1/9) +H(p))(1−max{q1 + 3q2, 3q1 + q2}))

being bounded as follows:

|r| ≤ ln−0.4(|H(q1)|+ |H(q2)|+ (| ln(1/9)|+ |H(p)|)) = ln−0.4(3 + | ln(1/9)|).

Note that r is bounded from above by a constant times n−0.4 where the constant
does not depend on l, q1, q2, p. Hence for n large enough:

r ≤ ε/2 (4.6.16)

Note also that in the sum 4.6.13, we only took distributions p ∈ Pε,q1,q2 hence
satisfying inequality 4.6.1. This implies that in the bound 4.6.15, we can assume
that inequality 4.6.1 holds. This then implies

P(Ec
m1,m2,q1,q2

(ε)) ≤ b exp
(n
l

(−ε+ r)
)

(4.6.17)
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Assuming now that 4.6.16 holds, we obtain:

P(Ec
m1,m2,q1,q2

(ε)) ≤ b exp
(n
l

(−ε/2)
)

(4.6.18)

Note that the bound on the right side of the last inequality above is negatively
exponentially small in n, since b is an expression which is only polynomial in n.
Using the equation 4.6.2, we obtain:

P(Enc(ε)) ≤
∑

m1,m2∈In,q1,q2

P(Ec
m1,m2,q1,q2

(ε)).

Applying inequality 4.6.18 to the last inequality above, we obtain:

P(Enc(ε)) ≤
∑

m1,m2∈In,q1,q2

b exp
(n
l

(−ε/2)
)
. (4.6.19)

Note that when m1 is given, the number of possibilities for the number of left out
blocks in Xm1 is at most m1. Hence, for given m1 we have that q1 can take on
at most m1 values. Similarly for given m2 we have that q2 can take on at most
m2 values. But m1 and m2 are less then (n/l) + n0.6. Also, both m1 and m2 are
in In hence they can take on at most 2n0.6 values. This implies that in the sum
4.6.19, the number of terms is bound above by the expression:(

(n/l) + n0.6
)2

4n1.2

This upper bound applied to inequality 4.6.19 yields:

P(Enc(ε)) ≤ b
(
(n/l) + n0.6

)2
4n1.2 exp

(n
l

(−ε/2)
)
. (4.6.20)

which is the negative exponential upper bound we where looking for.

4.7 Positive expected change in the score

Let us recall the events that we have proven to have high probability:

• Cn is the event that the number of blocks in X and in Y lies in the interval

In =
[n
l
− n0.6,

n

l
+ n0.6

]
.

• Dn(δ) is the intersection

Dn(δ) =
⋂
m∈In

Dm(δ),

where Dm(δ) is the event that the proportion of blocks in Xm and in Y m

of length l − 1, l and l + 1 are not further from 1/3 than δ, where Xm

(resp. Y m) denotes the sequence X∞ taken up to the m-th block (resp. the
sequence Y ∞ taken up to the m-th block).
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• F n(q) is the event that any optimal alignment of X and Y leaves out at
most a proportion q of blocks in X as well as in Y .

• Gn(δ) is the event that the following inequality holds:

NY
n

NX
n

≤ 1 + δ

where NX
n (resp. NY

n ) is the number of blocks in X (resp. in Y ) having
length in {l − 1, l, l + 1}.

• En(ε) is the intersection

En(ε) =
⋂

m1,m2∈In ; q1,q2∈[0,1]

Em1,m2,q1,q2(ε)

where Em1,m2,q1,q2(ε) is the event that there is no optimal alignment of Xm1

with Y m2 leaving out a proportion of q1 blocks in Xm1 and a proportion of
q2 blocks in Y m2 and such that:

H(q1) +H(q2) + (1−max{q1 + 3q2, q2, 3q1})(ln(1/9) +H(p)) ≤ −ε2

where ε2 > 0 depends on ε, δ0 and q0 and comes from lemma 4.6.1, Xm1

(resp. Y m2) denotes the sequence X∞ taken up to the m1-th block (resp.
the sequence Y ∞ taken up to the m2-th block) and H(p) denotes the entropy
as in 4.6.8 for an alignment.

We can now formulate our combinatorial lemma based on those events:

Lemma 4.7.1 Let us consider the constants q0, ε1, δ0 and ε2 from lemma 4.6.1.
Assume that Cn, Dn(δ0), F n(q0), Gn(δ0) and En(ε2) all hold. Then, we have that

E[L̃n − Ln|X, Y ] ≥ ε1

Proof. For any x, y ∈ {0, 1}n let L(x, y) denote the length of the LCS of x
and y. Let now x, y ∈ {0, 1} be any two realizations so that if X = x and
Y = y, then the events Cn, Dn(δ0), F

n(q0) and En(ε2) all hold. Let a be a left
most optimal alignment of x and y. Let x̃ denote the sequence x on which we
performed our random changes. That is x̃ is obtained by selecting a block of
length l − 1 at random and changing it to length l and also selecting a block of
length l + 1 at random and reducing it to length l. Let x∗ be the sequence we
obtain by applying to x only the first one of the two random changes. That is
x∗ is obtained be increasing the length of a randomly chosen block of x of length
l− 1 to length l. So, we start with x. Then we apply the first change and obtain
x∗. Then in x∗ we choose a block of length l + 1 at random, decrease it by one
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unit to obtain x̃.
For all i, j ∈ {l − 1, l, l + 1}, let pij denote the proportion of aligned block pairs
with lengths (i, j) in the alignment a of x and y. Let q1, resp. q2 denote the
proportion of blocks not aligned by a in x, resp. in y. Let pIl−1 denote the
proportion of blocks which get aligned by a one block to one block, among all
blocks of x of length 1− 1. Let pIIl−1 denote the proportion among all blocks of x
of length l− 1 which are aligned with several blocks of y. Finally, let pIIIl−1 denote
the proportion among the blocks of length l − 1 in x which are left out or are
together with other blocks of x aligned with the same block of y. Note that when
we increase by one unit a block in this third category, then in general the score
does not get any increase. On the other hand, assume that the block of x length
l − 1 chosen randomly and increased by one unit, is aligned one block with one
block. Then if this chosen block is aligned with a block of length l or l + 1 the
score is going to increase. Let Gl−1,I be the event that the block of length l − 1
chosen is aligned one block with one block. From what we said it follows that:

P(L(x∗, y)− L(x, y) = 1 | Gl−1,I) ≥
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

.

Note that by only adding a bit the score cannot decrease, so that the last in-
equality above means:

E[L(x∗, y)− L(x, y) | Gl−1,I ] ≥
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

. (4.7.1)

When the block of length l−1 chosen and increased is aligned with several blocks
of y at the same time, then we will always observe and increase of one unit. This
yields:

E[L(x∗, y)− L(x, y) | Gl−1,II ] = 1, (4.7.2)

where Gl−1,II denotes the event that the chosen block of length l − 1 is aligned
with several blocks of y. By law of total probability we find thus:

E[L(x∗, y)− L(x, y)] ≥ P(Gl−1,I)
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

+ P(Gl−1,II)

≥ (1− P(Gl−1,III))
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

where Gl−1,III denotes the event that the block of length l − 1 chosen is left out
or aligned to the same block of y at the same time as other blocks of x. The last
inequality above yields:

E[L(x∗, y)− L(x, y)] ≥ (1− pIIIl−1)
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

. (4.7.3)

Note that the proportion of left out blocks in x is q1. There can not be two
adjacent blocks of x aligned with the same block of y (this is so because a is an
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optimal left most alignment, see lemma 3.1.1). So between blocks of x aligned
with the same block of y, there is at least one left out block of x. Hence the
maximum proportion of blocks of x, which are aligned at the same time as other
blocks of x to the same block of y, can not exceed twice the number of left out
blocks of x. This yields a lower bound equal to 2q1. This is as a proportion among
all blocks in x, but we are interested in the number as a proportion of the total
number of blocks of length l− 1 of x. So, we get as lower bound 2q1/pl−1, where
pl−1 is the proportion of blocks of x which have length l − 1. Adding the blocks
in x which are left out and the blocks which are aligned with several blocks of y,
we get:

pIIIl−1 ≤
3q1
pl−1

. (4.7.4)

By Dn(δ0), we have that pl−1 ≥ (1/3)−δ0, so that together with 4.7.4, we obtain:

pIIIl−1 ≤
3q1

(1/3)− δ0
.

By using the above inequality in 4.7.3 we obtain:

E[L(x∗, y)− L(x, y)] ≥ pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(
1− 3q1

(1/3)− δ0

)
. (4.7.5)

Next we are going to investigate the effect of decreasing a randomly chosen block
of length l + 1 by one unit. The score can decrease when the selected block of x
of length l+ 1 is aligned with a block of length l+ 1 of y. If it is aligned with one
block and that block has length l or l − 1, then there is no decrease. This leads
to:

E[L(x̃, y)− L(x∗, y)|Gl+1,I ] ≥ −
pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

,

where Gl+1,I denotes the event that the block of length l + 1 chosen is aligned
one block with one block. When the selected block of x of length l+ 1 is aligned
with several blocks of y then the score decreases by one unit. When the selected
block of length l+ 1 in x is left out or is aligned at the same time as other blocks
of x to the same block of y then there is no decrease. This leads to:

E[L(x̃, y)−L(x∗, y)] ≥ −P(Gl+1,I)
pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

−P(Gl+1,II), (4.7.6)

where Gl+1,II denotes the event that the selected block of length l + 1 is aligned
with several blocks of y at the same time. Let pl+1 denote the total proportion
of blocks of length l + 1 among all blocks of x. Let pl+1,I denote the proportion
among all blocks of x of length l + 1, of blocks which are aligned one to one.
There is a proportion of q1 totally left out blocks in x. At most a proportion
δ0 are at the end of the alignment a contiguous group of left out blocks. That
means, (assuming q1 ≥ δ0), the proportion of left out blocks in x which are not
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adjacent to another left out block of x is at least q1− δ0. Going with each left out
block which is not adjacent to another left out block, there is at least one adjacent
block which is aligned together with several other blocks of x to the same block
of y. This gives a lower bound for the blocks of x which are not aligned one block
to one block of δ0 + 2(q1 − δ0). This is taken as a proportion among all blocks of
x. This gives among all blocks of length l + 1 a proportion of at least:

δ0 + 2(q1 − δ0)
(1/3 + δ0)

,

since by the event Dn(δ0) we know that among all blocks of x the proportion of
the blocks of length l + 1 is less than (1/3) + δ0. Hence,

P(Gl+1,I) ≤ 1− δ0 + 2(q1 − δ0)
(1/3 + δ0)

. (4.7.7)

Next let us note that we can give an upper bound for the number of blocks of
x aligned with several blocks of y. Since we never have several blocks aligned
with several blocks, we have that the number of blocks of x aligned with several
blocks of y is not more than the total number of left out blocks of y. This is so
because between two blocks aligned with the same block there is always at least
one left out block. The proportion of left out blocks in y is q2. but this is taken
as proportion among all the blocks of y. Since the total amount of blocks in x
and y could not be exactly the same, that number can get slightly changed when
we report it as proportion of the total number of blocks in x. Let pl+1 denote the
proportion among the blocks of x which are of length l + 1. We have thus that
the probability to select a block of length l+ 1 of x which is aligned with several
blocks of y is less or equal to

P(Gl+1,II) ≤
q2N

Y
n

pl+1NX
n

. (4.7.8)

By the event Dn(δ0) we have

pl+1 ≥
1

3
− δ0 (4.7.9)

and by the event Gn(δ0) we have

NY
n

NX
n

≤ 1 + δ0. (4.7.10)

Applying now 4.7.9 and 4.7.10 to 4.7.8, we find

P(Gl+1,II) ≤ q2 ·
1 + δ0

(1/3)− δ0
(4.7.11)
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Finally, using inequalities 4.7.11, 4.7.7 in 4.7.6 we get:

E[L(x̃, y)− L(x∗, y)] ≥ −
(

1− δ0 + 2(q1 − δ0)
(1/3 + δ0)

)
pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

−q2 ·
1 + δ0

(1/3)− δ0
, (4.7.12)

Using inequalities 4.7.5 and 4.7.12 together we find:

E[L(x̃, y)− L(x, y)] ≥ E[L(x̃, y)− L(x∗, y)] + E[L(x∗, y)− L(x, y)]

≥ pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(
1− 3q1

(1/3)− δ0

)
−

(
1− δ0 + 2(q1 − δ0)

(1/3 + δ0)

)
pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

−q2 ·
1 + δ0

(1/3)− δ0
, (4.7.13)

Note next that we can apply lemma 3.1.2 with ∆ = n0.6 because of Cn and
δ1, δ2 ≤ δ0 thanks to En(δ0). Hence we find that:

|q1 − q2| ≤ 1.5|δ0|+
4ln0.6

n

We assume that n is large enough so that:

|q1 − q2| ≤ 2|δ0|.

With the last inequality holding, we get from lemma 4.6.1 that if inequality 4.6.4
holds, then 4.6.5 should be satisfied. By the event En(ε2), we have that 4.6.5
can not be satisfied. Hence, the inequality 4.6.4 cannot hold, which implies that
the expression on the left side of 4.6.4 is larger or equal to ε1. Together with
inequality 4.7.13, this implies that:

E[L(x̃, y)− L(x, y)] ≥ ε1.



Chapter 5

Random modification &
fluctuation

In this chapter, we show that the biased effect of our random modification implies
the fluctuation order Θ(n). In other words, we are going to prove theorem 2.1.2
which states that VAR[Ln] = Θ(n) holds if there exist ε, α > 0 not depending on
n such that:

P
(

E[L̃n − Ln|X, Y ] ≥ ε
)
≥ 1− exp(−nα). (5.0.1)

for all n large enough. Note that if Z is a random variable with VAR[Z] = Θ(n)
and f is a map which tends to increase linearly, then forW = f(Z), we also have
the order VAR[W ] = Θ(n). The map f can be even a random map but must be
independent of Z. The exact basic result ([16], lemma 3.2) goes as follows:

Lemma 5.0.2 Let c > 0 be a constant. Assume that g : R→ R is a map which
is everywhere differentiable and such that for all x ∈ R we have:

dg(x)

dx
≥ c.

Let B be a random variable such that E[|g(B)|] < +∞. Then:

VAR[g(B)] ≥ c2 · VAR[B].

In the present context, we need a slightly different version:

Lemma 5.0.3 Let ε,m > 0 be constants and f : Z → Z be a map such that for
all z1 ≤ z2 the following two conditions hold:

z2 − z1 ≥ m⇒ f(z2)− f(z1) ≥
ε

8
(z2 − z1) (5.0.2)

∃ β > 0 : z2 − z1 < m⇒ f(z2)− f(z1) ≤ β(z2 − z1) (5.0.3)

Let B be a random variable such that E[|f(B)|] ≤ +∞. Then:

VAR[(f(B)] ≥ ε2

64

(
1− 16

(ε/8 + β)m

ε
√

VAR[B]

)
VAR[B] (5.0.4)

54
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Proof. Let h : Z → Z be a map defined from f as follows: for a given z ∈ Z
choose k ≥ 2 such that z ∈ [km, (k + 1)m] and compute

h(z) =

(
f((k + 1)m)− f(km)

m

)
(z − km) + f(km)

then h(z) is just the linear interpolation of f(z) in [km, (k + 1)m]. It is easy to
see that h satisfies the conditions of lemma 5.0.2 for c = ε/8. Then:

VAR[h(B)] ≥ ε2

64
VAR[B] (5.0.5)

We want to estimate the distance between the random variables h(B) and f(B).
First, we note that from 5.0.2 and by the definition of h, the following inequalities
hold for km ≤ B ≤ (k + 1)m:

ε

8
(B − km) + f(km) ≤ f(B), h(B) ≤ ε

8
(B − (k + 1)m) + f((k + 1)m)

looking at conditions 5.0.2, 5.0.3 and the inequalities above we get

|h(B)− f(B)| ≤ | ε
8

(B − km) + f(km)− ε

8
(B − (k + 1)m) + f((k + 1)m)|

≤ ε

8
m+ |f((k + 1)m)− f(km)|

≤
( ε

8
+ β

)
m

and by using the last inequality above:

VAR[f(B)− h(B)] ≤
( ε

8
+ β

)2

m2. (5.0.6)

Since f(B) = h(B) + (f(B)− h(B)) we can apply triangular inequality and find:√
VAR[f(B)] ≥

√
VAR[h(B)]−

√
VAR[f(B)− h(B)],

hence we have:

VAR[(f(B)] ≥ VAR[h(B)]− 2
√

VAR[h(B)] ·
√

VAR[f(B)− h(B)]

= VAR[h(B)]

(
1− 2

√
VAR[f(B)− h(B)]√

VAR[h(B)]

)
Finally, applying the inequalities 5.0.5 and 5.0.6 to the last inequality above, we
get:

VAR[(f(B)] ≥ ε2

64

(
1− 16

(ε/8 + β)m

ε
√

VAR[B]

)
VAR[B].

Hence to prove that VAR[Ln] = Θ(n), we try to represent Ln as f(Z) where f
is a random map which tends to increase linearly on a certain scale and Z is a
random variable having fluctuation of order

√
n.
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5.1 Random modifications and variables (T, Z)

Let Nl denote the number of blocks in X of length l, whilst Nl−1, resp. Nl+1

denote the number of blocks of length l − 1, resp l + 1 in X. Let us define the
following three random variables:

T := Nl +Nl−1 +Nl+1 (5.1.1)

Z := Nl −Nl−1 −Nl+1 (5.1.2)

R := n− ( l Nl + (l + 1)Nl+1 + (l − 1)Nl−1 ) (5.1.3)

Note that when we know the values of (T, Z,R) we can determine the values of
Nl−1, Nl and Nl+1 as a linear function by using the definitions of T, Z and R as
follows: Nl−1(T, Z,R)

Nl(T, Z,R)
Nl+1(T, Z,R)

 =

 (2l + 1)/4 −1/4
1/2 1/2

−(2l − 1)/4 −1/4

( T
Z

)
+

 −(n−R)/2
0

(n−R)/2


(5.1.4)

The variable R represents what is left in X after the last block of length l − 1, l
or l + 1.

Example 5.1.1 Let us consider the sequence X = 000111100011001 for l = 3
and n = 15. We see that Nl−1 = 2, Nl = 2 and Nl+1 = 1, hence T = 5, Z = −1
and R = 1. Also, the block 1 at the end of X has length strictly smaller than
l − 1 which also means that R = 1. In this case is easy to interpret what R is
since the last block in X has length strictly less than l − 1. Let us see a different
situation. Let us take again l = 3 and now consider BX1 = 2, BX2 = 3, BX3 =
4, BX4 = 3, BX5 = 2, BX6 = 4, . . . such that X∞ = 001110000111001111 · · · Take
n = 16 so that X = 0011100001110011. Here the last block of X has length
l − 1 = 2 which should imply (using the point of view of the last situation) that
R = 0. But, notice that the block in X∞ corresponding to BX6 was cut when we
took X. In this case, we say that the last block in X corresponds to the rest so
R = 2 and therefore Nl−1 = 2, Nl = 2 and Nl+1 = 1, then T = 5 and Z = −1.
We take this convention on R, even if the definition 5.1.3 is not the exact one,
because of the simplifications later during the computation of the joint distribution
of Nl−1, Nl, Nl+1.

Let us roughly explain the main idea behind this subsection. Assume that we
have a random couple (V,W ) which can take on a finite number of values only. We
also assume the joint distribution L(V,W ) to be given. To simulate (V,W ), we
could first simulate V using the marginal law L(V ). We would obtain a numeric
value v0. Then, we could simulate W using the conditional law L(W |V = v0) and
obtain the numeric value w0. The couple (v0, w0) has joint distribution L(V,W ).
Another less efficient possibility is to simulate for each (non-random) value v that
V can take, a value for W with distribution L(W |V = v). Call the numeric value
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w(v). Then, we would simulate V with distribution L(V ) and obtain a numeric
value v0. Then, for W we would take among all the values which we have si-
mulated, the one corresponding to V = v0. In this manner, we get (v0, w(v0)).
This couple has the distribution L(V,W ) and this does not even require that we
simulate the different w(v)’s independently of each other. Only, V needs to be
simulated independently of the assignment v 7→ w(v).

We are going to do the above simulation scheme with V being (T, Z,R) and
W being the rest of the information in (X, Y ). More precisely, for all possible
(t, z, r) non-random values, we simulate X conditional on (T, Z,R) = (t, z, r).
The resulting string is denoted by X(t,z,r) and has thus distribution

L(X(t,z,r)) = L(X | (T, Z,R) = (t, z, r) ).

Let Ln(t, z, r) denote the length of the LCS

Ln(t, z, r) := |LCS(X(t,z,r), Y )|.

We assume that the simulation of the string X(t,z,r) is done independently of
(T,R, Z) and of Y . In this manner, we get that Ln(T, Z,R) has same distribution
as Ln = |LCS(X, Y )|. So to prove that VAR[Ln] = Θ(n), it is enough to prove
that

VAR[Ln(T, Z,R)] = Θ(n). (5.1.5)

We saw at the beginning of this section (see lemma 5.0.2 and 5.0.3), that when
we transform a variable having variance of order Θ(n) with a map which tends
to increase linearly, then the resulting variable has variance of order Θ(n). It is
easy to see that VAR[Z] = Θ(n) (see also lemma 5.1.6). Hence to prove 5.1.5, it
is enough to show that with high probability the (random) map

z 7→ Ln(T, z, R)

tends to increase linearly (on the appropriate scale and on a domain on which Z
typically takes its value). That means, we need to show that we can simulate the
values Ln(t, z, r) in such a manner to get the desired distribution L(X|(T, Z,R) =
(t, z, r)) as well as the desired linear increase of the map z 7→ Ln(T, z, R). This is
achieved by simulating X(t,z,r) in the following way: for a given value (t, r), so that
P((T,R) = (t, r)) 6= 0, we take a left most (left most to be defined later) value
z0 and simulate a string with distribution equal to the conditional distribution of
X given (T, Z,R) = (t, z0, r). That resulting string is denoted by X(t,z0,r). Then,
we apply the random modification to X(t,z0,r). This means, we choose one block
of length l− 1 and one block of length l+ 1 at random in X(t,z0,r) and turn them
both into length l. The resulting string is denoted by X(t,z0+4,r). Then, we choose
at random in X(t,z0+4,r) a block of lenght l − 1 and a block of lenght l + 1 and
turn them both into length l. The new string which we obtain in this manner
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is denoted by X(t,z0+8,r). We keep repeating this same operation to obtain the
sequence of strings

X(t,z0,r), X(t,z0+4,r), X(t,z0+8,r), . . . . (5.1.6)

For each value of (t, r) with P((T,R) = (t, r)) 6= 0 we obtain two finite sequences
of strings: first 5.1.6 and then

X(t,z0+2,r), X(t,z0+6,r), X(t,z0+10,r), . . . .

by a similar procedure. Namely, after X(t,z0+2,r) is generated with distribution X
conditional on (T, Z,R) = (t, z + 2, R), the subsequent strings are obtained by
applying sucessively the random modification tilde, which chooses at random in
the string a block of length l− 1 and a block of length l+ 1 and turn them both
into length l.

Recall that in this section we assume that our random modification has a bi-
ased effect of ε > 0 on the LCS, so that with high probability

E[L̃n − Ln | X, Y ] ≥ ε.

Hence, it follows that the map z 7→ Ln(T, z, R) tends with high probability
to increase with slope close to ε on a constant time scale lnn (the constant
must be taken large enough though, see lemma 5.1.4 and proposition 5.1.2). In
other words, since the random modification has a biased positive effect, the map
z 7→ Ln(T, z, R) behaves like a random walk with drift ε. The only thing which
remains to be proved is that with our scheme of using the random modification,
the strings X(t,z,r) have the right distribution, i.e. the distribution of X condi-
tional on (T, Z,R) = (t, z, r). This is proved in lemma 5.1.3.

We have so far summarized the idea which explains why the biased effect of
the random modification implies VAR[Ln] = Θ(n). There is one more detail
which we should mention and which makes notations a little more difficult. To
prove that z 7→ Ln(T, z, R) tends to increase linearly we use the biased effect on
the LCS for the random modification. However, this bias holds with high proba-
bility for X and not for X(t,z,r). When we look at the conditional distribution of
X given (T, Z,R) = (t, z, r), we divide by the probability

P((T, Z,R) = (t, z, r)). (5.1.7)

The string X(t,z,r) has distribution of X conditional on (T, Z,R) = (t, z, r). So
for the biased effect to have large probability also for X(t,z,r) (and not just for X),
we need the probability 5.1.7 to not be too small. To assure this, we will restrict
ourselves to “typical” values for (T, Z,R). We will consider only values for (T, Z)
which lie in an interval D = DT × DZ (see definition below 5.1.19) and prove
that any possible value (t, z) ∈ Dz × Dt has polynomially bounded probability
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(see lemma 5.1.2).

Let us now give all the details:

Proposition 5.1.1 Given ε > 0 there exist constants 1 ≤ k1, k2, k3 ≤ k∗ all not
depending on n but on ε such that:

P

(∣∣∣∣Nl−1 − n
3l√

n

∣∣∣∣ ≤ k1

)
, P

(∣∣∣∣Nl − n
3l√

n

∣∣∣∣ ≤ k2

)
, P

(∣∣∣∣Nl+1 − n
3l√

n

∣∣∣∣ ≤ k3

)
≥ 1− ε

(5.1.8)
for every n large enough.

Proof. We will prove the result only for Nl in the positive case, namely

P

(
Nl − n

3l√
n
≤ k2

)
≥ 1− ε (5.1.9)

since the technique is the same for all the other cases and for Nl−1, Nl+1 as well.
Given α, β, π,m, n > 0, let us define the following events:

A(α,m) =
{
ξ1 + · · ·+ ξm ≤

m

3
+ α
√
m
}

B(β, n) =
{
Nl−1 +Nl +Nl+1 ≤

n

l
+ β
√
n
}

C(π, n) =
{
Nl ≤

n

3l
+ π
√
n
}

where the random variables ξi are defined as

ξi =

{
1 if Bi = l
0 otherwise

Now to prove 5.1.9 is the same as to find π depending on ε but not on n such
that:

P(C(π, n)) ≥ 1− ε (5.1.10)

for every n large enough. For given α, β we define

m∗ =
n

l
+ β
√
n

π∗ =
β

3
+ α

√
1

l
+ β

Taking m∗, π∗ as before we have that:

ξ1 + · · ·+ ξm∗ ≤ m∗

3
+ α
√
m∗

Nl−1 +Nl +Nl−1 ≤ n
l

+ β
√
n

}
⇒ Nl ≤

n

3l
+ π∗
√
n
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which is equivalent to the inclusion

A(α,m∗) ∩B(β, n) ⊆ C(π∗, n).

Hence, proving 5.1.10 is equivalent to finding α and β depending on ε such that:

P(Cc(π∗, n)) ≤ P(Ac(α,m∗)) + P(Bc(β, n)) ≤ ε (5.1.11)

For this we will use a special version of Chebichev inequality: let U be a random
variable, then for every positive constant u we have

P
(
|U − E[U ]| ≥ u

√
VAR[U ]

)
≤ 1

u2
(5.1.12)

For the event A(α,m∗) we have, that taking α =
√

2/(3ε) and using 5.1.12 the
following inequality holds:

P(Ac(α,m∗)) = P

(
ξ1 + · · ·+ ξm∗

m∗
− 1

3
≥ α√

m∗

)
≤ ε

2
. (5.1.13)

To choose β in the event B(β, n) such that P(Bc(β, n)), we will use the same
techniques as in the previous chapter. Let m := n

l
+β
√
n be an auxiliar variable.

Recall that NX
n is the total number of blocks in X defined in 4.1.1. We have

P(Bc(β, n)) ≤ P
(
NX
n ≥

n

l
+ β
√
n
)

(by using NX
n ≥ m⇔ SXm ≤ n ) ≤ P

(
SXm ≤ n

)
= P

(
SXm
m
− l ≤ n

m
− l
)

(by 4.0.2 with P(|BX1 − l| ≤ 1) = 1) ≤ 2 exp

(
−m

2

( n
m
− l
)2
)

= 2 exp

(
− l

3β2

2
n

)
which finally says

P(Bc(β, n)) ≤ exp

(
− l

3β2

2
n

)
. (5.1.14)

Then, taking β such that

exp

(
− l

3β2

2
n

)
≤ ε

4

for n large enough, in 5.1.14 we have

P(Bc(β, n)) ≤ ε

2
(5.1.15)

Combining 5.1.13 and 5.1.15 in 5.1.11, we finish the proof with k2 = π∗.

We will need later the following lemma:
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Lemma 5.1.1 There exists c > 0 not depending on n such that:

P
(
T ∈

[n
l
− c
√
n,
n

l
+ c
√
n
]
, Z ∈

[
− n

3l
− c
√
n,− n

3l
+ c
√
n
])
≥ 0.9 (5.1.16)

Proof. Given any ε > 0 we have that:

P
(∣∣∣∣Nl−1 +Nl +Nl+1 − n

l√
n

∣∣∣∣ > 3k∗
)
≤ P

(∣∣∣∣Nl−1 − n
3l√

n

∣∣∣∣+
∣∣∣∣Nl − n

3l√
n

∣∣∣∣+
∣∣∣∣Nl+1 − n

3l√
n

∣∣∣∣ > 3k∗
)

≤ 3 · P
(∣∣∣∣Nl − n

3l√
n

∣∣∣∣ > k∗
)
< 3ε (5.1.17)

P
(∣∣∣∣Nl −Nl−1 −Nl+1 + n

3l√
n

∣∣∣∣ > 3k∗
)
≤ P

(∣∣∣∣Nl − n
3l√

n

∣∣∣∣+
∣∣∣∣ n

3l −Nl−1√
n

∣∣∣∣+
∣∣∣∣ n

3l −Nl+1√
n

∣∣∣∣ > 3k∗
)

≤ 3 · P
(∣∣∣∣Nl − n

3l√
n

∣∣∣∣ > k∗
)
< 3ε (5.1.18)

both inequalities hold due to proposition 5.1.1. Then, it is not difficult to see
that

P
({

T /∈
[n
l
− 3k∗

√
n,
n

l
+ 3k∗

√
n
]}
∪
{
Z /∈

[
− n

3l
− 3k∗

√
n,− n

3l
+ 3k∗

√
n
]})

≤ 6ε

from where the proof is complete with c = 3k∗ and ε = 1/60.

Let D denote the domain

D :=
[n
l
− c
√
n,
n

l
+ c
√
n
]
×
[
− n

3l
− c
√
n,− n

3l
+ c
√
n
]

(5.1.19)

and let

DT :=
[n
l
− c
√
n,
n

l
+ c
√
n
]

DZ :=
[
− n

3l
− c
√
n,− n

3l
+ c
√
n
]

hence,
D = DT ×DZ .

Given (t, z) ∈ D such that (T, Z) = (t, z) we have

Nl−1(t, z) +Nl(t, z) +Nl+1(t, z) = t.

The probability for a realization of Nl−1, Nl and Nl+1 is given by:

P(T = t, Z = z,R = r) =

(
Nl−1(t, z) +Nl(t, z) +Nl+1(t, z)

Nl−1(t, z) Nl(t, z) Nl+1(t, z)

)(
1

3

)t
· P(BX1 > r)

=
t!

(Nl−1(t, z))! (Nl(t, z))! (Nl+1(t, z))!

(
1

3

)t
· P(BX1 > r)

(5.1.20)
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where the probability P(BX1 > r) = P(R = r) is due to the convention of R
described in the example 5.1.1. Finally, due to 5.1.4, for any n1, n2, n3 ∈ N the
conditional joint distribution

P(Nl−1(T, Z,R) = n1, Nl(T, Z,R) = n2, Nl+1(T, Z,R) = n3 |R = r)

is multinomial.

Lemma 5.1.2 There exists k0 > 0 not depending on n (but depending on c) such
that for every (t, z) ∈ D and r < l + 1 for which the probability P((T, Z,R) =
(t, z, r)) 6= 0, we have that:

P((T, Z,R) = (t, z, r)) ≥ k0

n

for every n large enough.

Proof. In all what follows, we always suppose that every expression in factorial
numbers is an integer number. As we saw in 5.1.20, given (t, z) ∈ D we have the
following expression for the probability P((T, Z,R) = (t, z, r)):

P((T, Z,R) = (t, z, r)) =
t!

n1! n2!n3!

(
1

3

)t
· P(BX1 > r)

where for simplicity n1 := Nl−1(t, z, r), n2 := Nl(t, z, r), n3 := Nl+1(t, z, r). Now
we will develop the expression in order to find a lower bound. Let us keep in mind
that in all what follows n1 +n2 +n3 = t. Consider the Stirling’s approximations:

t! =
√

2π · tt+
1
2 · e−t

(
1 +O

(
1

t

))
ni! =

√
2π · nni+

1
2

i · e−ni
(

1 +O

(
1

ni

))
for i = 1, 2, 3. For r < l + 1 natural number, note that P(BX1 > r) ≥ 1/3 since
when r < l − 1 then P(BX1 > r) = 1, otherwise P(BX1 > r) = 2/3. With all
above, we may write:

P((T, Z,R) = (t, z, r)) =
t!

n1! n2!n3!

(
1

3

)t
· P(BX1 > r)

≥ 3−t tt+
1
2 e−t

2π · nn1+ 1
2

1 e−n1 · nn2+ 1
2

2 e−n2 · nn3+ 1
2

3 e−n3

· 1

3
·
(

1 +O

(
1

t

))

=
3−t tt+

1
2

6π · nn1+ 1
2

1 ·n2+ 1
2

2 ·nn3+ 1
2

3

(
1 +O

(
1

t

))

=
3−t

6π

(
t

n1

)n1
(
t

n2

)n2
(
t

n3

)n3
(

t

n1 n2 n3

) 1
2
(

1 +O

(
1

t

))
,
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which says that:

P((T, Z,R) =
3−t

6π

(
t

n1

)n1
(
t

n2

)n2
(
t

n3

)n3
(

t

n1 n2 n3

) 1
2
(

1 +O

(
1

t

))
(5.1.21)

Recall that t ∈ DT implies

t ≥ n

l
− c
√
n (5.1.22)

and that, from lemma 5.1.1 the following inequalities hold almost sure

n1 ≤
n

3l
+ k∗
√
n, n2 ≤

n

3l
+ k∗
√
n, n3 ≤

n

3l
+ k∗
√
n (5.1.23)

for every n large enough. So, by using 5.1.22 and 5.1.23, equality 5.1.21 becomes

P((T, Z,R) ≥ 3−
n
l
−c
√
n

6π

( n
l
− c
√
n

n
3l

+ k∗
√
n

)n
l
+3k∗

√
n
(

n
l
− c
√
n(

n
3l

+ k∗
√
n
)3
) 1

2 (
1 +O

(
1

n

))
,

=
32c
√
n+ 3

2 l

6πn
·

(
1− cl√

n

)3k∗
√
n

(
1 + 3k∗l√

n

)3k∗
√
n
·

(
1− cl√

n

1 + 3k∗l√
n

)n
l

·

(
1− cl√

n

) 1
2

(
1 + 3k∗l√

n

) 3
2

(
1 +O

(
1

n

))

≥ 32c
√
n+ 3

2 l

6πn
·

(
1− cl√

n

)3k∗
√
n

(
1 + 3k∗l√

n

)3k∗
√
n
·

(
1− cl√

n

1 + 3k∗l√
n

)√n
l

·

(
1− cl√

n

) 1
2

(
1 + 3k∗l√

n

) 3
2

(
1 +O

(
1

n

))

So we get:

P((T,Z,R) = (t, z, r)) ≥ 32c
√

n+ 3
2 l

6πn
·

(
1− cl√

n

)3k∗
√

n

(
1 + 3k∗l√

n

)3k∗
√

n
·

(
1− cl√

n

1 + 3k∗l√
n

)√n
l

·

(
1− cl√

n

) 1
2

(
1 + 3k∗l√

n

) 3
2

(
1 +O

(
1
n

))
(5.1.24)

But we have the following inequalities for the limits:

lim
n→0

(
1− cl√

n

)3k∗
√
n

= e−3ck∗l ≥ e−3ck∗l

2

lim
n→0

(
1 +

3k∗l√
n

)3k∗
√
n

= e9k
∗2 l ≤ 2e9k

∗2 l

lim
n→0

(
1− cl√

n

1 + 3k∗l√
n

)√n
l

= e−(c+3k∗) ≥ e−(c+3k∗)

2

lim
n→0

(
1− cl√

n

) 1
2

(
1 + 3k∗l√

n

) 3
2

= 1 ≥ 1

2
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Hence, by using these last inequalities and
√
n ≥ 1 in 5.1.24 we have:

P((T, Z,R) = (t, z, r)) ≥ 32c+ 3
2 l

96π e3ck∗l+c+3k∗−9k∗2l
· 1

n

for every n large enough. Therefore, taking

k0 =
32c+ 3

2 l

96π e3ck∗l+c+3k∗−9k∗2l

proves the result.

Note that for any variables X and Y we have (see for example [22])

VAR[Y ] = E[VAR[Y |X]] + VAR[E[Y |X]] ≥ E[VAR[Y |X]]. (5.1.25)

Let O be the random variable which is equal to one when (T, Z) is in D and 0
otherwise.
We can now use inequalities 5.1.16 and 5.1.25 to find

VAR[Ln] ≥ E[VAR[Ln|O]] ≥ VAR[Ln|O = 1] · P(O = 1) ≥ 0.9VAR[Ln|O = 1]
(5.1.26)

Next for every (t, z) in D and r < l + 1 we are going to simulate the random
variable Ln conditional on (T, Z,R) = (t, z, r). We denote the result by Ln(t, z, r).
In other words, the distribution of Ln(t, z) is equal to

L(Ln(t, z, r)) = L(Ln|(T, Z,R) = (t, z, r)).

Let (TD, ZD) denote a variable having the distribution of (T, Z) conditional on
the event (T, Z) ∈ D. We assume that all the Ln(t, z, r) are independent of
(TD, ZD). Then, we get that

Ln(TD, ZD, R)

has same distribution as Ln conditional on (T, Z) ∈ D. Hence, we get

VAR[Ln|O = 1] = VAR[Ln(TD, ZD, R)] (5.1.27)

By using 5.1.25, we find

VAR[Ln(TD, ZD, R)]] ≥ E[ VAR[Ln(TD, ZD, R)|TD, R ] ]. (5.1.28)

Note that for Ln(TD, ZD, R) to have the same distribution as Ln conditional on
(T, Z) ∈ D and on R = r, the variables Ln(t, z, r) do not need to be indepen-
dent of each other. We are next going to explain how we simulate the variables
Ln(t, z, r) a bit more in detail as before. We simulate a string X(t,z,r) having the
distribution of the string X conditional on the event (T, Z,R) = (t, z, r). Then
we put

Ln(t, z, r) = |LCS(X(t,z,r), Y )|.
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Next, let us describe how we simulate X(t,z,r) based on what was roughly explained
at the beginning of subsection 5.1. Given t0 ∈ DT the most left element in DT

and r0 < l−1, we are going to simulate X(t0,z,r0) for z ∈ DZ only if P((T, Z,R) =
(t0, z, r0)) 6= 0. We simulate X(t0,z0,r0) so that it has distribution L(X|(T, Z,R) =
(t0, z0, r0) ). Next, we simulate X(t0,z0+2,r0) by choosing in X, with the same
probability, a block of length l − 1 either a block of length l + 1 and change its
length to l. The next realization we simulate is X(t0,z0+4,r0) by choosing in X,
with the same probability, a block of length l − 1 and a block of length l + 1
and change their lengths to l (this is our usual random modification). Then by
induction we simulate

{X(t0,z0+4i,r0) : i = 1, 2, . . . }

with our usual random modification and later

{X(t0,z0+2+4i,r0) : i = 1, 2, . . . }

just starting with X(t0,z0+2,r0) and performing our usual random modification to
get X(t0,z0+6,r0), X(t0,z0+10,r0), X(t0,z0+14,r0), etc. Both inductions run untill indexes
i0 and i∗0, resp., satisfying:

z0 + 4i0 ≤ − n
3l

+ c
√
n ⇒ i0 ≤

√
n

z0 + 2 + 4i∗0 ≤ − n
3l

+ c
√
n ⇒ i∗0 ≤

√
n− 1

2

For simplicity, let us call z0, z1 = z0 + 2, z2 = z0 + 4, . . . , zd all the values which Z
takes. After we have simulated X(t0,z0,r0), X(t0,z1,r0), . . . , X(t0,zd,r0) we fix t1 = t0 +1
and repeat all the procedure again starting with the simulation of X(t1,z0,r0). We
keep taking t2 < t3 < t4 . . . all natural numbers in DT to finish all the simulation
of {X(t,z,r0) : t ∈ DT , z = z0, z1, . . . , zd}. Once we have finished with that, we
take r1 < l − 1 natural number and do all the simulation above starting with
X(t0,z0,r1) only if P((t0, z0, r1)) 6= 0. Finally, we obtain the complete sequence
{X(t,z,r) : t ∈ DT , z = z0, z1, . . . , zd , r = 0, . . . , l − 2}, where each (t, z, r) has
probability P((T, Z,R) = (t, z, r)) 6= 0.

We need to verify that this operation give us the equiprobable distribution. This
is the content of the next lemma:

Lemma 5.1.3 Assume that X(t,z,r) is distributed according to

L(X|(T, Z,R) = (t, z, r)).

Choose at random (with equal probability) in the string X(t,z,r) a block of length
l + 1 and l − 1 and modify them to have both length l. Then the resulting string
has distribution

L(X|(T, Z,R) = (t, z + 4, r)).
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Proof. Because of our linear equation system 5.1.4, we have that condition-
ing on T, Z,R is equivalent to conditioning on (Nl−1, Nl, Nl+1). As mentioned,
X(t,z,r) denotes a string of length n, having the distribution of X conditional on

(T, Z,R) = (t, z, r). We denote by X̃(t,z,r) the string we obtain by performing our

random modification on X(t,z,r). In other words, X̃(t,z,r) is obtained by choosing a
block of length l+1 and a block of length l−1 at random in X(t,z,r) and changing
them both to length l. Let (n1, n2, n3) be the number of blocks of length l − 1,
l and l + 1 corresponding to (t, z, r). In other words, n1, n2 and n3 are given
by the linear system of equation 5.1.4 when Nl−1 = n1, Nl = n2, Nl+1 = n3 and
T = t, Z = z,R = r. We have

P(N1 = n1, N2 = n2, N3 = n3|T = t, Z = z, R = r) = 1.

The distribution of the random string X(t,z,r) is the uniform distribution on
ξn(t, z, r). Here, ξn(t, z, r) denotes the set of strings of length n, which consists
only of blocks of length l− 1, l and l+ 1, such that the total number of blocks is
t, whilst the number of blocks of length l minus the number of blocks of length
l − 1 and l + 1 is z. We also request that the rest block at the end has length r.
We can describe ξn(t, z, r) equivalently as the set of all strings consisting exactly
of n1 blocks of length l− 1, n2 blocks of length l and n3 blocks of length l+ 1, no
other blocks allowed except a rest block at the end which has length strictly less
than l − 1. In other words, the random string X(t,z,r) is such that the number of
blocks of length l − 1, l and l + 1 is determined, only the order in which these
blocks appear varies. Among others, each possible realization for X(t,z,r) which
has non-zero probability has the same probability:(

n1 + n2 + n3

n1 n2 n3

)−1

(5.1.29)

When we apply the random modification, the variable T stays the same, the vari-
able Z increases by 4 and the variable R stays the same.

Since the distribution of X conditional on (T, Z,R) is the uniform distribution
on the appropriate set of strings, we have the following: for proving that X̃(t,z,r)

has distribution of X conditional on (T, Z,R) = (t, z + 4, r) it is enough to show
that its distribution is the uniform distribution on ξn(t, z + 4, r). For this, let x̃
denote a (non-random) element of ξn(t, z + 4, r). Hence, the number of blocks in
x̃ of length l − 1, l, resp l + 1 is n1 − 1, n2 + 2, resp. n3 − 1. The probability

P (X̃(t,z,r) = x̃)

can be calculated as follows: if we only know x̃, any block of length l of x̃ could
be the block which had lenght l − 1 and has been turned into length l by the
tilde operation (choosing blocks at random and changing their lenghts). Same
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thing for the block which had length l + 1. But when we know these two blocks,
then the string before the random modification is uniquely determined. Let x
be such a string which could lead to x̃ after the random modification. There are
hence ñ2 · (ñ2− 1) such strings (here, ñ2 = n2 + 2, so that ñ2 denotes the number
of blocks of length l in x̃). The probability, given X(t,z,r) = x, that the random
string turns out to be x̃ is equal to 1/(n1 ·n3). As a matter of fact, among the n1

blocks of lenght l− 1, there is exactly one which needs to be randomly modified.
Similarly, among the n3 blocks of lenght l + 1, there is exactly one which needs
to be changed into length l in order to obtain the string x̃. Hence,

P(X̃(t,r,z) = x̃|X(t,z,r) = x) =
1

n1 · n3

. (5.1.30)

Let ξn∗ denote the set of all strings which could lead to x̃ if we apply the random
modification to them. We saw that there are (n2 + 2)(n2 + 1) elements in the set
ξn∗. By law of total probability, we have

P(X̃(t,z,r) = x̃) =
∑
x∈ξn∗

P(X̃ = x̃|X = x)P(X(t,z,r) = x) =
∑
x∈ξn∗

1
n1 · n3

(
n1 + n2 + n3

n1 n2 n3

)−1

(5.1.31)
The last equation above was obtained using 5.1.30 and 5.1.29. Note that the

sum on the most right of equation in 5.1.31, is a sum of (n2 + 2)(n2 + 1) equal
terms. This leads to

P(X̃(t,z,r) = x̃) =
(n2 + 2)(n2 + 1)

n1 · n3

(
n1 + n2 + n3

n1 n2 n3

)−1

.

The formula on the right side above does not depend on x̃. Hence, this proves that
X̃(t,z,r) has the uniform distribution on the set of strings ξn(t, z + 4, r). But the
uniform distribution is the distribution ofX conditional on (T, Z,R) = (t, z+4, r).
That is, we have proven that

L(X̃(t,r,z)) = L(X|(T, Z,R) = (t, z + 4, r)),

which finishes this proof.

Note that we have seen what happens with the variables T, Z,R after our random
modification, let us see what happens with the length of the LCS after our random
modification. In what follows, we always consider a triplet of values (t, z, r) such
that P((T, Z,R) = (t, z, r)) 6= 0. For any ε > 0 let Un

t,r(ε) denote the event that
the map

DZ → N : z 7→ Ln(t, z, r)

is increasing with a slope of at least ε/8 on a scale c2 ln(n) where c2 > 0 is a large
constant not depending on n. More precisely, Un

t,r(ε) is the event that for any
z1, z2 in DZ , with z2 − z1 ≥ c2 ln(n) we have

Ln(t, z2, r)− Ln(t, z1, r) ≥ (z2 − z1)ε/8.



68 CHAPTER 5. RANDOM MODIFICATION & FLUCTUATION

The event Un
t,r(ε) has large probability because we assumed that inequality 5.0.1

holds. Hence z 7→ Ln(t, z, r) can be viewed somehow as behaving like a random
walk with drift ε. In the next lemma we will show this looking at the event Un(ε):

Un(ε) :=
⋂

t∈DT , r<l+1

Un
t,r(ε).

Lemma 5.1.4 Given ε > 0, take α from inequality 5.0.1 (theorem 2.1.2) and c2
to be big enough but not depending on n, for example c2 ≥ 80

ε2
depending on ε.

Then, there exists a constant k∗ > 0 not depending on n but on α and on c2 such
that:

P(Unc(ε)) ≤ k∗
n2

(5.1.32)

for n large enough, provided 5.0.1 holds.

Proof. We are going to define an event U(ε) for any ε > 0. Let U(t,z,r)(ε) be the
event that the expected conditional increase is larger than ε when we introduce
the random change into X(t,z,r). More precisely, let Un(t,z,r)(ε) be the event that

E[ Ln(t, z + 4, r)− Ln(t, z, r)|X(t,z,r), Y ] ≥ ε (5.1.33)

Let

Un(ε) :=
⋂

(t,z)∈D, r<l+1

Un(t,z,r)(ε).

hence

P(Unc(ε)) ≤
∑

(t,z)∈D, r<l+1

P(Unc(t,z,r)(ε)). (5.1.34)

Note that inequality 5.0.1 provides a bound for the probability that the con-
ditional expected increase of LCS due to our random modification not being
larger or equal to ε. That probability bound is exp(−nα). The only problem
is that the bound is for X and Y whilst the event Un(t,z,r)(ε) is for X(t,z,r) and
Y . By going on to conditional probability we must multiply the probability by
P((T, Z,R) = (t, z, r)). Hence we find

P(Unc(t,z,r)(ε)) ≤
exp(−nα)

P((T, Z,R) = (t, z, r))
. (5.1.35)

We can next use the lower bound on P((T, Z,R) = (t, z, r)) provided by lemma
5.1.2 for all values (t, z) ∈ D and r < l + 1 to inequality 5.1.35 and obtain

P(Unc(t,z,r)(ε)) ≤
1

k0

· n · exp(−nα). (5.1.36)
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which still gives an exponentially small bound in n. Applying now 5.1.36 to
inequality 5.1.34, we obtain

P(Unc(ε)) ≤ 4lc2

k0

· n2 · exp(−nα). (5.1.37)

Which is an exponentially small bound in n. Note that when the event Un(ε)
holds, we have that z 7→ Ln(t, z, r) behaves like a random walk with drift ε. Let
us formalize this. As before, let {z0, z1, z2, . . . , zd} be the set for the admissible
values of Z. For fixed t ∈ DT and r < l + 1, we are going to define L∗n(t, z)
inductively for z ∈ {z0, z1, z2, . . . , zd}. Let us define L∗n(t, z, r) := Ln(t, z, r)
for every z ∈ {z0, z1, z2, . . . , zd}. Given z̃ ∈ {z0, z1, z2, . . . , zd − 4} let us define
L∗n(t, z̃ + 4, r) as follows:

L∗n(t, z̃ + 4, r) =

{
Ln(t, z̃ + 4, r) if Un(t,s,r)(ε) hold for all s ∈ {z0, z1, . . . , z̃}
L∗n(t, z̃, r) + ε otherwise

Note that when the event Un(ε) holds, then Ln(t, z, r) and L∗n(t, z, r) are identical
for all t ∈ DT , r < l+ 1 and z ∈ {z0, z1, . . . , zd}. Let Vnt,r(ε) be the event that the
map

DZ → N : z 7→ L∗n(t, z, r)

is increasing with a slope of at least ε/8 on a scale c2 lnn.

Let Vn(ε) be the event

Vn(ε) :=
⋂

t∈DT , r<l+1

Vnt,r(ε).

Hence by using proposition 5.1.2 we have that:

P(Vnc(ε)) ≤
∑

t∈DT , r<l+1

P(Vnct (ε)) ≤
∑

t∈DT , r<l+1

2n−τ ≤ 4lc n0.5−τ (5.1.38)

where τ = ε2 c2
32

. When Un(ε) holds then Vn(ε) and Un(ε) are equivalent. Hence

Un(ε) ∩ Vn(ε) ⊂ Un(ε)

Hence by using 5.1.37 and 5.1.38 we get:

P(Unc(ε)) ≤ P(Unc(ε)) + P(Vnc(ε)) ≤ 4lc2

k0

· n2 · exp(−nα) + 4lc n0.5−τ (5.1.39)

To show that the last inequality gives us a rate of convergence to zero as a constant
divided by a polynomial in n, we try now to get a closed form for the inequality
supposing extra information for the involved constants.
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Taking c2 ≥ 80
ε2

we have the following bound for the exponent:

0.5− τ ≤ −2

therefore we can bound

4lc n0.5−τ ≤ 4lc

n2
. (5.1.40)

Also, we have that:

n2 exp
(
n−α

)
≤ 1

n2
(5.1.41)

holds for n large enough. So, by using 5.1.40 and 5.1.41 in 5.1.39 we can finally
bound:

P(Unc(ε)) ≤ P(Unc(ε)) + P(Vnc(ε)) ≤ 4lc2c̃2n
2 · exp(−nα) + 4lc n0.5−τ

≤ (4lc2c̃2 + 4lc) · 1

n2

for n large enough, which ends the proof with k∗ = 4lc2k0 + 4lc.

Proposition 5.1.2 Given ε > 0, let Vnt,r(ε) denote the event that the map z 7→
L∗(t, z, r) is increasing with a slope at least ε/8 on a scale c2 ln(n). Given t ∈ DT ,
r < l + 1 and z1, z2 ∈ DZ such that z2 − z1 ≥ c2 ln(n) we have the following
inequality:

P
(
Vnct,r(ε)

)
≤ 2n−τ

where τ = ε2 c2
32

.

Proof. Let z1, z2 ∈ DZ such that z1 < z2. In order to simplify the notation, let
us assume that z2 − z1 can be dived by 4 and denote z2−z1

4
= m ∈ N. Let z0 be

the most left point of DZ . Given ε > 0, let us remember that Vnt,r(ε) is the event
such that the following inequality holds:

L∗(t, z2, r)− L∗(t, z1, r) ≥
ε

8
.

Now let us define the filtration F0 ⊂ F1 ⊂ · · · ⊂ Fm as follows:

Fi := σ
(
X(t,z0,r), X(t,z1,r), . . . , X(t,z1+4i,r) ; Y

)
for i = 1, . . . ,m. Let us denote

ei = E[L∗n(t, z1 + 4(i+ 1), r)− L∗n(t, z1 + 4i, r) |Fi ]

and define a martingale M0,M1, . . . ,Mm with respect to the filtration F0 ⊂ F1 ⊂
· · · ⊂ Fm as follows:

M0 := L∗n(t, z1, r)

Mi+1 −Mi := L∗n(t, z1 + 4(i+ 1), r)− L∗n(t, z1 + 4i, r)− ei
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for i = 1, . . . ,m. By definition of the map z 7→ L∗n(t, z, r) we have an expected
increase of at least ε every time z gets increased by 4, so that the expected increase
of

E[L∗n(t, z1 + 4(i+ 1), r)− L∗n(t, z1 + 4i, r) ]

is at least ε which implies that the following inequality

ei ≥ ε (5.1.42)

is satisfied almost surely for every 0 = 1, . . . ,m. We can write the increase of the
map z 7→ L∗n(t, z) in terms of the martingale M0, . . . ,Mm in the following way:

L∗(t, z2, r)− L∗(t, z1, r) = Mm −M0 +
m−1∑
i=0

ei (5.1.43)

Now, we are ready to estimate the probability of Vnct,r(ε):

P
(
Vnct,r(ε)

)
= P

(
L∗(t, z2, r)− L∗(t, z1, r) ≤

ε

8
(z2 − z1)

)
(by equality 5.1.43) ≤ P

(
Mm −M0 +

m−1∑
i=0

ei ≤
ε

8
(z2 − z1)

)

= P

(
Mm −M0 ≤

ε

8
(z2 − z1)−

m−1∑
i=0

ei

)
(by 5.1.42 and z2 − z1 = 4m) ≤ P

(
Mm −M0 ≤

ε

8
(z2 − z1)−

ε

4
(z2 − z1)

)
= P

(
Mm −M0 ≤ −

ε

8
(z2 − z1)

)
(5.1.44)

At this point we want to use Azuma-Hoeffding inequality 4.0.1. For this, we note
that for every i = 1, . . . ,m we have

P(|Mi+1 −Mi| ≤ 1) = 1

since ε < 1 and we take v = ε
8
(z2 − z1) for writing down:

P
(
Mm −M0 ≤ −

ε

8
(z2 − z1)

)
≤ 2 exp

(
− v2

2m

)
(by using z2 − z1 = 4m) = 2 exp

(
− ε

2

32
(z2 − z1)

)
(5.1.45)

Combining together 5.1.44 and 5.1.45 we finally have:

P
(
Vnct,r(ε)

)
≤ 2 exp

(
− ε

2

32
(z2 − z1)

)
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from where, after taking z2 − z1 ≤ c2 ln(n), we have:

P
(
Vnct,r(ε)

)
≤ 2 exp

(
−ε

2 c2
32

ln(n)

)
= 2n−

ε2 c2
32

which finishes the proof

Note that by law of total probability E[ VAR[Ln(TD, ZD, R)|TD, R ] ] is equal to :

P(Un(ε))E[ VAR[Ln(TD, ZD, R)|TD, R ] |Un(ε)]+P(Unc(ε))E[ VAR[Ln(TD, ZD, R)|TD, R ] |Unc(ε)],

for every ε > 0 and hence:

E[ VAR[Ln(TD, ZD, R)|TD, R ] ] ≥ P(Un(ε))E[ VAR[Ln(TD, ZD, R)|TD, R ] |Un(ε)]
(5.1.46)

Now, conditional on the event Un(ε) holding, we have that the random map:

DZ → N : z 7→ Ln(t, z, r)

has a slope of at least ε/8 on a scale of c2 ln(n) (as in proposition 5.1.2) for any
t ∈ DT and r < l + 1, then:

z2 − z1 ≥ c2 ln(n) ⇒ Ln(t, z2, r)− Ln(t, z1, r) ≤
ε

8
(z2 − z1)

z2 − z1 < c2 ln(n) ⇒ Ln(t, z2, r)− Ln(t, z1, r) ≤ 2 (z2 − z1)

hold. Hence, conditional on Un(ε), we can apply lemma 5.0.3 and obtain:

VAR[Ln(t, ZD, R)|TD = t, R = r, Un(ε)] ≥ ε2

64

(
1− 16

(ε/8 + 2)c2 ln(n)
ε
√

VAR[ZD|TD = t, R = r]

)
VAR[ZD|TD = t, R = r]

(5.1.47)
The next results give us an uniform bound for VAR[ZD|TD = t, R = r] for all
t ∈ DT .

Lemma 5.1.5 There exists a constant K > 0 not depending on n such that:

1− K√
n
≤ P (ZD = z + 4|TD = t, R = r)

P (ZD = z|TD = t, R = r)
≤ 1 +

K√
n

(5.1.48)

for every (t, z) ∈ D, r < l + 1 and n large enough.

Proof. Note that from 5.1.4 we can get the following relations:

Nl−1(t, z + 4, r) = Nl−1(t, z, r)− 1

Nl(t, z + 4, r) = Nl(t, z, r) + 2

Nl+1(t, z + 4, r) = Nl+1(t, z, r)− 1



5.1. RANDOM MODIFICATIONS AND VARIABLES (T, Z) 73

therefore we have an explicit formula for the joint probability by using the above
last relations and 5.1.20:

P (Z = z + 4|T = t, R = r)

P (Z = z|T = t, R = r)
=

Nl−1(t, z, r)Nl+1(t, z, r)

(Nl(t, z, r) + 1)(Nl(t, z, r) + 2)
≥ 0 (5.1.49)

By using 5.1.8 we can bound the expression in 5.1.49 as follows:

(
n
3l
− k1

√
n
) (

n
3l
− k3

√
n
)(

n
3l

+ 1 + k2

√
n
) (

n
3l

+ 2 + k2

√
n
) ≤ Nl−1(t, z, r)Nl+1(t, z, r)

(Nl(t, z, r) + 1)(Nl(t, z, r) + 2)

≤
(
n
3l

+ k1

√
n
) (

n
3l

+ k3

√
n
)(

n
3l

+ 1− k2

√
n
) (

n
3l

+ 2− k2

√
n
)

(5.1.50)

By using the following inequalities for logarithm :

−3x

2
≤ ln(1− x), for 0 < x ≤ 0.5

ln(1 + x) ≤ x, for x > −1 (5.1.51)

we have on the right hand side:

(
n
3l

+ k1

√
n
) (

n
3l

+ k3

√
n
)(

n
3l

+ 1− k2

√
n
) (

n
3l

+ 2− k2

√
n
) ≤

(
1 + 3lk1√

n

)(
1 + 3lk3√

n

)
(

1− 3lk2√
n

)2

= exp

[
ln

(
1 +

3lk1√
n

)
+ ln

(
1 +

3lk3√
n

)
−2 ln

(
1− 3lk2√

n

)]
≤ exp

[
15lk∗√
n

]
≤ 1 +

15lk∗√
n

+ |R(ξ)|

≤ 1 +
15lk∗√
n

+ ε (5.1.52)

after considering the rest form for a Taylor expansion of the function f(x) = ex

and ξ = 15lk∗√
n

as follows:

R(ξ) =

∣∣∣∣f ′′(ξ)2

∣∣∣∣ ξ2 ≤ (15lk∗)2

2n
exp

(
15lk∗√
n

)
≤ ε
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for n large enough and a given precision ε, and on the left hand side:(
n
3l
− k1

√
n
) (

n
3l
− k3

√
n
)(

n
3l

+ 1 + k2

√
n
) (

n
3l

+ 2 + k2

√
n
) ≥

(
1− 3lk1

2
√
n

)(
1− 3lk3

2
√
n

)
(

1 + 3lk2
2
√
n

)2

= exp

[
ln

(
1− 3lk1

2
√
n

)
+ ln

(
1− 3lk3

2
√
n

)
−2 ln

(
1 +

3lk2

2
√
n

)]
≥ exp

[
− 9lk∗

4
√
n

]
≥ 1− 9lk∗

4
√
n

(5.1.53)

Finally, taking K = 15lk∗ we have our desired result combining 5.1.52, 5.1.53 and
5.1.50 for any given ε > 0.

Lemma 5.1.6 There exists a constant C > 0 not depending on n such that:

VAR[ZD|TD = t, R = r] ≥ C · n

for every t ∈ DT , r < l + 1 and for every n large enough.

Proof. Since 5.1.48 is satisfied we have that ZD takes almost surely the same
value on DZ conditional on TD = t, R = r. More in details, given (t, z) ∈ D,
r < l + 1 and k ∈ Z such that z + 4k ∈ DZ we can write down

P(ZD = z+4k|TD = t, R = r) = P(ZD = z|TD = t, R = r) ·a1 ·a2 · · · ak (5.1.54)

where the notation is

ai =
P(ZD = z + 4(k − i) + 4|TD = t, R = r)

P(ZD = z + 4(k − i)|TD = t, R = r)

for every i = 1, . . . , k. By using 5.1.48 there exists K > 0 such that:

1− K√
n
≤ ai ≤ 1 +

K√
n

for every n large enough and every i = 1, . . . , k which means:(
1− K√

n

)k
≤ a1 · a2 · · · ak ≤

(
1 +

K√
n

)k
and finally:(

1− K√
n

)k
≤ P(ZD = z + 4k|TD = t, R = r)

P(ZD = z|TD = t, R = r)
≤
(

1 +
K√
n

)k
(5.1.55)
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Moreover, when n is large enough, we have better bounds from 5.1.55:

exp

(
− 3K

2
√
n
k

)
≤ P(ZD = z + 4k|TD = t, R = r)

P(ZD = z|TD = t, R = r)
≤ exp

(
K√
n
k

)
(5.1.56)

due to inequalities 5.1.51, which means that for n large enough ZD has the same
probability of taking two values which are 4k far away from each other. This only
can happen if VAR[ZD|TD = t, R = r] is at least of order n. More precisely, let
us take δ > 0 such that:

P

(
|ZD − E[ZD|TD = t, R = r]| ≥ 1√

δ
σZ

∣∣∣TD = t, R = r

)
≤ δ (5.1.57)

by using Chebyshev inequality 5.1.12 where σZ =
√

VAR[ZD|TD = t, R = r]. If

we suppose σZ < 4δ
√
δ
√
n then 5.1.57 tells us that:

P
(
|ZD − E[ZD|TD = t, R = r]| ≥ 4δ

√
n
∣∣∣TD = t, R = r

)
≤ δ (5.1.58)

But at the same time 5.1.56 also tells us that:

exp
(
−3K

2
δ − 3K

2
√
n
k

)
≤ P(ZD = z + 4(δ

√
n+ k)|TD = t, R = r)

P(ZD = z + 4k|TD = t, R = r)
≤ exp

(
Kδ +

K√
n
k

)
(5.1.59)

for every z ∈ DZ and k ∈ Z such that z + 4(δ
√
n + k) ∈ DZ . In particular for

z = E[ZD|TD = t, R = r] we have:

exp

(
−3K

2
δ − 3K

2
√
n
k

)
≤ P(ZD = E[ZD|TD = t, R = r] + 4(δ

√
n+ k)|TD = t, R = r)

P(ZD = E[ZD|TD = t, R = r] + 4k|TD = t, R = r)

≤ exp

(
Kδ +

K√
n
k

)
which says that when we choose δ > 0 small enough the probability of taking
values which are 4δ

√
n far away is the same for n large enough, showing a con-

tradiction with 5.1.58. Finally we can take C = 16δ3 for a choosen δ depending
on the precision we want to have in 5.1.58.

Using the bound in lemma 5.1.6 we get the following inequality:(
1− 16

(ε/8 + 2)c2 ln(n)

ε
√

VAR[ZD|TD = t, R = r]

)
≥
(

1− 16
(ε/8 + 2)c2

ε
√
C

· ln(n)√
n

)
≥ 0.5

(5.1.60)
for n large enough. Using inequality 5.1.60 above with inequality 5.1.47 we find:

VAR[Ln(t, ZD, R)|TD = t, R = r, Un(ε)] ≥ ε2

64
0.5 · VAR[ZD|TD = t, R = r].
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Using again lemma 5.1.6 we find that the left side of the above inequality is larger
than

Cε2

128
n

and hence:

E[ VAR[Ln(TD, ZD, R)|TD, R] |Un(ε) ] ≥ Cε2

128
n (5.1.61)

We can now combine inequalities 5.1.26, 5.1.27, 5.1.28, 5.1.46 and 5.1.61 to obtain:

VAR[Ln] ≥ P(Un(ε))
Cε2

1000
n

and plugging in the lower bound for P(Un(ε)) obtained in 5.1.32 (lemma 5.1.4)
we get:

VAR[Ln] ≥ Cε2

1000
n

(
1− k∗

n2

)
with k∗ > 0 is the constant from lemma 5.1.4. This expression is a lower bound
of order Θ(n) for VAR[Ln]. Hence, we have finished proving the statement of our
main result in theorem 2.1.1.



Chapter 6

Solution of the Optimization
Problem

We have so far shown in section 5 that a likely biased effect of the random
modification leads to the desired order VAR[Ln] = Θ(n). This means that if

E[L̃n − Ln | X, Y ] ≥ ε (6.0.1)

holds with high enough probability, then the desired fluctuation order VAR[Ln] =
Θ(n) follows. Theorem 2.1.3 allows to prove the high probability bias for the
random modification as in 6.0.1. More, precisely according to theorem 2.1.3,
the bias 6.0.1 follows as soon as the minimizing problem in theorem 2.1.3 has a
solution greater or equal to 2ε. For the bias 6.0.1 to be have high probability
(see 2.1.23), one needs to take the input variable q0 in the optimization problem
to be such that with high probability there is not more than a proportion q0 of
left out blocks in the optimal alignment. This means that we need F nc(q0) to
have exponentially small probability in a fractional power in n. Note that the
whole system depends on l only through q0 = q0(l). One simple upper bound for
the number of left out blocks is 4/(9(l − 1)) (see 3.2.4). We can take q0 equal
to 4/(9(l − 1)) and then check if the optimization problem in theorem 2.1.3 has
a strictly positive solution. If yes, then it follows that VAR[Ln] = Θ(n). We
have already explained that if we take l large enough (and hence q0 = q0(l) small
enough) then the optimization problem in theorem 2.1.3 has a strictly positive
solution and hence VAR[Ln] = Θ(n) for l large enough (see the proof of 2.1.3).
The goal of this section is to verify numerically, that this already holds for l not
too large. We actually find that linear order for every l ≥ 5, i.e.

VAR[Ln] = Θ(n) , ∀ l ≥ 5.

To prove this we simply have to check that for l ≥ 5 the optimization problem in
theorem 2.1.3, namely

min

(
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(1− 9q)− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(1− 3q)− 3q

)
77
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under the conditions

q ∈ [0, q0],
∑
j

pl−1,j ≥ ((1/3)− q0)/2 ,
∑
j

pl+1,j ≥ ((1/3)− q0)/2

∑
i,j∈I

pij = 1, pij ≥ 0,∀i, j ∈ I

2H(q) + (1− 4q) (ln(1/9) +H(p)) ≥ 0

has a strictly positive solution. Again, we need a bound for q0. We also use a
better bound than 4/9(l − 1)) which is obtained by Montercarlo simulation (see
subsection 6.2.2).

One important thing about the minimizing problem is that when we take q
smaller, the constraint becomes stricter and the objective function increases.
Hence, we can replace in the objective function and the constrain q by q0.

6.1 Parametrical solution

We are going to transform the minimizing problem into a problem with a linear
objective function by introducing two help variables κ1 and κ2. We would like to
use the so called Lagrange method. As a first approach to do so, for fixed l and
q = q0, let us re-write the minimization problem above in an equivalent linear
version parametrized by κ1, κ2 > 0 as follows:

min F (p) := αp12 + αp13 − βp33 − 3q0

G1(p) := p11 + p12 + p13 − κ1 = 0 (6.1.1)

G2(p) := p31 + p32 + p33 − κ2 = 0 (6.1.2)
3∑

i,j=1

pij − 1 = 0

−pij ≤ 0

H(p) := −2H(q0)− (1− 4q0)(ln(1/9) +H(p)) ≤ 0 (6.1.3)

where the simplified notation is the following: pl−1,l−1 pl−1,l pl−1,l+1

pl,l−1 pl,l pl,l+1

pl+1,l−1 pl+1,l pl+1,l+1

 =

 p11 p12 p13

p21 p22 p23

p31 p32 p33


α =

1− 9q0
κ1

β =
1− 3q0
κ2
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Note that the straight forward relation between the variables in our simplified
notation and the variables in the orginal problem. When we read conditions
6.1.1 and 6.1.2 we get:

κ1 = pl−1,l−1 + pl−1,l + pl−1,l+1

κ2 = pl+1,l−1 + pl+1,l + pl+1,l+1

We consider the conditions∑
j

pl−1,j ≥ ((1/3)− q0)/2 ,
∑
j

pl+1,j ≥ ((1/3)− q0)/2

as inside an optimal region for the parameters κ1 and κ2 described by the in-
equalities:

1/3− q0
2

≤ κ1, κ2 ≤ 2/3 + q0

The idea behind this scheme is to reduce the complexity of computing the optimal
conditions for the matrix p since the original expression

min

(
pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(1− 9q)− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(1− 3q)− 3q

)
is non-linear in (pij)i,j. We will only consider 6.1.1,6.1.2 and 6.1.3 as active con-
strains for the computation of the gradients in the Lagrange formulation, the rest
of the constraints will be considered especifically to reduce the degree of freedom
through the computations.

Now we start the Lagrange method. Let us compute the gradients:

(
∂G1

∂pij

)
ij

=

 1 1 1
0 0 0
0 0 0


(
∂G2

∂pij

)
ij

=

 0 0 0
0 0 0
1 1 1



(
∂H
∂pij

)
ij

= (1− 4q0)


 1 1 1

1 1 1
1 1 1

+

 ln p11 ln p12 ln p12

ln p21 ln p22 ln p23

ln p31 ln p32 ln p33


(
∂F

∂pij

)
ij

=

 0 α α
0 0 0
0 0 −β
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Then the Lagrange optimal condition for the lagrange multipliers λ for H, η1 and
η2 for G1 and G2 respectively is(

∂F

∂pij

)
ij

= λ

(
∂H
∂pij

)
ij

+ η1

(
∂G1

∂pij

)
ij

+ η2

(
∂G2

∂pij

)
ij

which leads to the following expressions for (pij)ij as functions of λ, η1, η2 :

p11 = exp

(
η1

λ(1− 4q0)
− 1

)
= c−η1e−1

p12 = p13 = exp

(
α− η1

λ(1− 4q0)
− 1

)
= cα−η1e−1

p21 = p22 = p23 =
1− κ1 − κ2

3
=: d

p31 = p32 = exp

(
−η2

λ(1− 4q0)
− 1

)
= c−η2e−1

p33 = exp

(
−β − η2

λ(1− 4q0)
− 1

)
= c−β−η2e−1

where c := exp( 1
λ(1−4q0)

). Here, to determine the constant d we used that all the

{pij}ij sum up to one,
κ1 + 3d+ κ2 = 1.

In matrix notation the optimal form of p looks like:

p =

 c−η1e−1 cα−η1e−1 cα−η1e−1

d d d
c−η2e−1 c−η2e−1 c−β−η2e−1

 (6.1.4)

Note that η1, η2 can be expressed both in terms of κ1, κ2 and c in the following
way by using expressions 6.1.1, 6.1.2 and the positivity and normalized conditions
on (pij)ij:

η1 = −
ln κ1e

1+2cα

ln c
(6.1.5)

η2 = −
ln κ2e

2+c−β

ln c
(6.1.6)

6.2 Numerical solution

For a numerical solution, we should decide between having a difficult expression
for p as a function of (κ1, κ2, c) after replacing η1, η2 from 6.1.5, 6.1.6 in the opti-
mal form 6.1.4 or having a more simplified expression for p as a function of more
parameters (κ1, κ2, c, η1, η2) but performing an extra searching for the values of
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η1, η2.

We prefer to use the second strategy since the expression in the first case is
higly implicit for the method of numerical solution implemented in MATLAB
which could lead to less accuracy in the results.

We will proceed in detail as follows: let us fix the constants l > 0 and κ1, κ2

for now on. In general we will consider that q depends on l, so we compute q.
The parameter c depends on the multiplier λ which is related to the inequality
of the entropy 6.1.3 then we determine c looking at the entropy condition:

c−η1(1 + η1 ln c) + 2cα−η1(1− (α− η1) ln c) + 2c−η2(1 + η2 ln c) +

c−β−η2(1 + (β + η2) ln c) + 3de ln(1/d) + e ·
(

2H(q0)

1− 4q0
+ ln(1/9)

)
= 0

For each value of η1, η2 we get a c = c(η1, η2) solution of the equation above. This
solution is obtained by using in MATLAB the routine fsolve which basically uses
an optimization method to find the zeros of an non-linear function.

With that c we compute the updated values of η∗1, η
∗
2 as a function of c by using

expressions 6.1.5, 6.1.6. After that we use expression 6.1.4 for writing down the
last form of p∗ = p(η∗1, η

∗
2). Then we perform our searching of η∗1 ∈ (α, 1] and

η∗2 ∈ (−β, 1] such that: min{F (p∗)} > 0, since we would like to fullfill the condi-
tion VAR[Ln] = Θ(n). Finally the next iteration is to pick up another value of
κ1, κ2 and repeat the same as before. At the end we will have an optimal value
for κ1, κ2, let us denote them κ∗1, κ

∗
2.

In order to have more realistic results we will study three types of dependency of
q on l, namely the basic form, the simulation form and the entropy form.

6.2.1 The basic form

As in equation 3.2.4 we consider q0 to be:

q0 =
4

9(l − 1)

The numerical results for the minimum, in this case, are shown in table 6.1.

6.2.2 The simulation form

We consider q0 to be:

q0 =
1− γl
l − 1

where γl = limn→∞ E[Ln]/n is the value of the Chvatal-Sankoff constant [6] for
X, Y being two sequences of uniformly i.i.d blocks. It is not difficult to prove
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l p∗ F (p∗) H(p∗) q∗

10

 0.191 0.2255 0.2255
0.072 0.072 0.072
0.0613 0.0613 0.0194

 0.1257 0.948 0.0494

Table 6.1: solution values for l = 10, . . . , 20 taking the basic form for q.

that γl exists due to a sub-additivity argument. We also simulated γl by using a
home made script in MATLAB. The numerical results for the minimum, in this
case, are shown in table 6.2.

l γl p∗ F (p∗) H(p∗) q∗

5 0.9131

 0.1778 0.239 0.239
0.0295 0.0295 0.0295
0.106 0.106 0.0439

 0.3609 0.7803 0.0217

Table 6.2: solution values for l = 5, . . . , 20 taking the simulation form for q.

6.2.3 The entropy form

Let W1,W2, . . . be a sequence of i.i.d variables with distribution:

P (Wi = l − 1) = 5/9, P (Wi = l) = 3/9, P (Wi = l + 1) = 1/9

for i = 1, 2, . . . Hence Wi is distributed like Bi the minimum of two independent
blocks of X and Y . We argued in section 3.1 that we only need to consider
alignments where there are no left out blocks next to each other. In the part
combinatorics we already noted that we never have several blocks of X aligned
together with several blocks of Y . Note also that when in an alignment we specify
the left out blocks in a non-random manner, then the aligned block pairs become
independent of each other. They also are independent of the polygamist blocks
and their families. We consider here alignments with all of those above properties.
Hence if we have n∗1 blocks aligned one block with one block and n∗2 polygamist
blocks aligned with several blocks, then we have that the score of an optimal
alignment, under this properties, behaves at least like:

W1 +W2 + . . .+Wn∗l
+ (l − 1)n∗2.

With q0 blocks missing we have in the alignment at least a proportion (1− 3q0)
of blocks aligned one to one and at most a proportion of q0 polygamist blocks.
Hence, we have at least (n/l)(1−3q0) blocks which are aligned on block with one
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block and at most (n/l)q0 polygamist blocks, then the score of such an optimal
alignment behaves at least like:

W1 + . . .+Wn
l
(1−3q0) + (l − 1)

n

l
q0 (6.2.1)

On the other hand, note that typically for large n the LCS is close to γln. Hence,
if an alignment with q0 left-out blocks should not be optimal we would need the
sum 6.2.1 to be close to γln or above:

W1 + . . .+Wn
l
(1−3q0) + (l − 1)

n

l
q0 ≥ γl n (6.2.2)

Assuming that we leave out a proportion q0 of blocks, there are about e2H(q0)n/l

ways of specifying which blocks are left out in the alignment. Hence for q0 to
not get excluded as candidate for the proportion of left out blocks in an optimal
alignment, we need that the probability for the sum 6.2.2 times e2H(q0)n/l must
have exponentially small probability. If we denote

m := (1− 3q0)
n

l

c := −
(

(l − 1)q0 − lγl
1− 3q0

)
κ(l, c) := − ln

[
min
t≥0

{
e−tc

(
5

9
e(l−1)t +

3

9
elt +

1

9
e(l+1)t

)}]
,

we should verify that:

P

n
l
(1−3q0)∑
i=1

Wi + (l − 1)
n

l
q0 ≥ γl n

 · e2H(q0)n/l = P

(
1
m

m∑
i=1

Wi − c ≥ 0

)
· e2H(q0)n/l

≤ e(−κ(l,c)+
2H(q0)

l
)n

is an exponential small bound, which holds if:

−κ(l, c) +
2H(q)

l
≤ 0 (6.2.3)

Note that κ(l, c) above comes from a large deviation approach. Based in this way
of thinking and given l, γl we consider q0 to be a solution of the inequality 6.2.3.
Here we need to solve an extra minimization problem associated to computing
κ(l, c). The numerical results for the minimum of F (p), in this case, are shown
in table 6.3.
Finally, we compare in figure 6.1 the minimun values of F (p) taking the basic,
simulation and entropy forms for q0 with values l = 6, . . . , 30. We clearly see that
the so called entropy form is the most accurate one in reaching F (p) = 0.
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l γl p∗ F (p∗) H(p∗) q∗

5 0.9131

 0.1785 0.2398 0.2398
0.0279 0.0279 0.0279
0.1062 0.1062 0.0457

 0.3983 0.7486 0.017

Table 6.3: solution values for l = 5, . . . , 20 taking the entropy form for q.
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Figure 6.1: values of the objective function using the basic, simulation and entropy
form for q0.



Appendix A

Proof of Theorem 2.1.3

Chapter 4 contains all the lemmas and definitions needed for the proof of theorem
2.1.3. We already have a rough idea why theorem 2.1.3 holds: we found for the
expected score increase

E[L̃n − Ln|X, Y ] (A.0.1)

a lower bound, given by the expression 2.1.10:

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(1− 9q)− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(1− 3q)− 3q,

where {pi,j}i,j denotes the empirical distribution of the aligned block pairs in an
optimal alignment. We also found that only the distributions satisfying 2.1.18
are likely to happen. So, if the expression 2.1.10 is bounded from below by 2ε
under the condition 2.1.18, then it is likely that for all optimal alignments, the
expression 2.1.10 stays above 2ε. This gives a lower bound of 2ε for the expected
increase. In reality, we will only get a likely expected increase of ε instead of 2ε.
The reason is that to stay on the safe side, we consider that the expression on the
left hand side of inequality 2.1.18 needs to be smaller than a negative quantity
−ε2 < 0 (in order to have an unlikely corrresponding alignment) instead of just
being smaller than 0.

The main problem with the above simplified description of the proof is that to
obtain the lower bound 2.1.10 we had to make assumptions which do not exactly
hold. These assumptions are the following:

1. We assumed that the propotion of left out blocks in X and in Y is the same.
In reality, it is not exactly the same. We denote instead by q1, resp. q2 the
proportion of left out blocks in X and in Y .

2. We assumed that the proportions of blocks in X for the different lengths
l − 1, l, l + 1 are exactly equal to 1/3. We assumed the same for Y . In
reality, these proportions are typically of order Θ(1/

√
n) away from 1/3. In

85
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section 4.3, we define Dn(δ) to be the event that all these proportions are
not further from 1/3 than δ.

3. We assumed that the number of blocks in X and Y are exactly equal. In
reality, there is typically a difference of order Θ(

√
n). In section 4.4, we

define Gn(δ) to be the event that the number of blocks in X is not way
bigger than the number of blocks in Y . More precisely, Gn(δ) is defined to
be the event that

NX
n

NY
n

≤ 1 + δ,

where NX
n , resp. NY

n , is the number of blocks in X, resp. Y .

In the proof of lemma 4.7.1, it is shown that when Dn(δ) and Gn(δ) hold, then
the expression

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(
1− 3q1

(1/3)− δ

)
+

− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(
1− δ + 2(q1 − δ)

(1/3)− δ

)
− q2(1 + δ)

(1/3)− δ
(A.0.2)

bounds from below the expected increase E[L̃n−Ln|X, Y ] instead of the expression
2.1.10 (here {pij}i,j is the empirical distribution of the aligned block pairs of an
optimal alignment). When we consider different proportions of left out blocks in
X and Y , then the expression on the left hand side of 2.1.22 is replaced by the
following expression:

H(q1) +H(q2) + (1−max{q1 + 3q2, 3q1 + q2})

 ∑
i,j∈{l−1,l,l+1}

pij ln(1/3) +H(p)


(A.0.3)

To prove theorem 2.1.3, we assume that there exists q0 > 0 such that the minimum
in theorem 2.1.3 under the constrains of theorem 2.1.3 is bounded from below by
2ε > 0. We need to prove that with high probability, if F n(q0) holds then the
expected increase in score is larger than ε, i.e.

E[L̃n − Ln|X, Y ] ≥ ε.

Take the additional condition

|q1 − q2| ≤ 2δ (A.0.4)

Note that with this additional condition, when δ → 0 then the expression A.0.2
converges to the expression 2.1.19 in theorem 2.1.3. Also, the expression A.0.3
converges to the expression on the right hand side of inequality 2.1.22 in theorem
2.1.3. So, by continuity, we get that for δ > 0 small enough “the conditions A.0.3
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and A.0.2” behave similarly to the conditions in theorem 2.1.3. More precisely,
there exists δ0 > 0 such that: if |q1 − q2| ≤ 2δ0, 0 < q1, q2 ≤ q0 and |δ| ≤ δ0, then

H(q1)+H(q2)+(1−max{q1+3q2, 3q1+q2})

 ∑
i,j∈{l−1,l,l+1}

pij ln(1/3) +H(p)

 ≥ −ε2
(A.0.5)

implies that

pl−1,l + pl−1,l+1

pl−1,l−1 + pl−1,l + pl−1,l+1

(
1− 3q1

(1/3)− δ

)
+

− pl+1,l+1

pl+1,l−1 + pl+1,l + pl+1,l+1

(
1− δ + 2(q1 + δ)

(1/3)− δ

)
− q2(1 + δ)

(1/3)− δ
(A.0.6)

is larger than ε (we also assumed that conditions 2.1.20 and 2.1.21 of theorem
2.1.3 hold). In other words, the fact that the minimizing problem in theorem
2.1.3 has a lower bound 2ε > 0, implies that when we take δ > 0 small enough
then, under constrain A.0.5 and |q1 − q2| ≤ 2δ, the expression A.0.6 must be
larger than ε. This is proved in lemma 4.6.1.

Alignments for which condition A.0.5 is not satisfied are unlikely to happen. Ac-
tually, the probability that an alignment does not satisfy A.0.5 is about e−m

∗ε2 ,
where m∗ designates the number of aligned block pairs. In section 4.6, we define
the event En(ε2), which states that there is no optimal alignment not satisfying
A.0.5. In the same section, we prove the high probability of this event. The next
question is how do we get the condition |q1−q2| ≤ 2δ0 to be satisfied? The answer
is the following: in section 4.5, we define the event Jn(δ) which states that the
proportion of left out blocks at the end of X and Y is less than δ, for any optimal
alignment. Also, in section 4.1, we defined the event Cn which states that the
numbers of blocks in X and in Y are not further from n/l than n0.6. In section
3.1, lemma 3.1.1 shows that we need to consider only optimal alignments which
do not leave out adjacent blocks between aligned blocks. For such alignments,
we get by lemma 3.1.2 that when the events In and Jn(δ) both hold, for n large
enough we have then the following: for any optimal alignment not leaving out
adjacent blocks between aligned blocks, we have

|q1 − q2| ≤ 2δ. (A.0.7)

Next, we were showing that when all the events F n(q0), D
n(δ0), G

n(δ0), J
n(δ0),

Cn and En(ε2) hold, then

E[L̃n − Ln|X, Y ] ≥ ε.

For this, let a be an optimal alignment of X and Y leaving out no adjacent blocks
between aligned block pairs. Let q1, resp. q2 designate the proportion of block



88 APPENDIX A. PROOF OF THEOREM 2.1.3

left out by a in X, resp. in Y . Let Pi,j(a) denote the empirical distribution of
the lenght of the aligned block pairs by a. Then, as mentioned, when Dn(δ0)
and Gn(δ0) hold, then the expression A.0.2 is a lower bound for the expected
increase E[L̃n − Ln|X, Y ]. For this, take pij in A.0.2 equal to Pij(a) and δ equal
to δ0. When the event F n(q0) holds, then every optimal alignment has less than
a proportion q0 of left out blocks in X as well as in Y . Since a is an optimal
alignment, this implies that q1, q2 ≤ q0. Now, assume that In and Jn(δ0) both
hold. As explained, by lemma 3.1.2, this implies that |q1 − q2| ≤ 2δ0. The last
inequality together with q1, q2 ≤ q0 imply that the expression A.0.6 is larger than
ε if A.0.3 is larger than −ε2 (this is how we had defined δ0 in the first place). But
by the event En(ε2), we have that all optimal alignments satisfy that A.0.3 is more
than −ε2. Hence, the expression A.0.6 is larger than ε if the event En(ε2) holds.
Note that we have argued the following: when Dn(δ0) and Gn(δ0) hold, then
the expected increase E[L̃n − Ln|X, Y ] is bounded from below by the expression
A.0.6. But, with En(ε2), J

n(δ0), F
n(q0) and In all holding, the expression A.0.2 is

larger than ε. Summarizing, we have just shown that when all the events F n(q0),
Dn(δ0), G

n(δ0), J
n(δ0), C

n and En(ε2) hold, then

E[L̃n − Ln|X, Y ] ≥ ε.

Hence,

P( E[L̃n − Ln|X, Y ])

is not less than

1− P(F nc(q0))− P(Dnc(δ0))− P(Gnc(δ0))− P(Jnc(δ0))− P(Cnc)− P (Enc(ε2)).
(A.0.8)

We can now apply the bounds for the probabilites P(Dnc(δ0)), P(Gnc(δ0)), P(Cnc),
P(Jnc(δ0) and P(Enc(ε2)) which we obtained in section 4, to A.0.8. These bounds
are:

• In section 4.1, we obtain P(Cnc) ≤ 8e−b1n
0.2

where b1 > 0 is a constant only
depending on l.

• In subsection 4.3, we show that

P(Dnc(δ)) ≤ 2n0.6

(
1

1 + 3δ

)n(1+3δ)/2l

.

• In section 4.4, we show that

P(Gnc(δ0)) ≤ 4e−b6n
0.2

,

where b6 > 0 is a constant only depending on l and δ0.
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• In subsection 4.5, we show that

P(Jnc(δ0) ≤ e−θn

where θ > 0 only depends on l and δ0.

• In the proof of lemma 4.6.2, we prove that

P (Enc(ε2)) ≤ w(n)e−ϑn

where ϑ > 0 is a constant only depending on l and δ0 and w(n) is a poly-
nomial in n.

With the above bounds, we find that if 0 < β < 0.2 does not depend on n, then

P(Dnc(δ0)) + P(Gnc(δ0)) + P(Jnc(δ0)) + P(Cnc) + P(Enc(ε2)) (A.0.9)

is smaller than e−n
β

for n large enough. Or alternatively, taking 0 < β < 0.2
small enough but not depending on n, we have that the expression A.0.9 is smaller
than e−n

β
for all n. Applying this to the bound A.0.8, yields:

P( E[L̃n − Ln|X, Y ] ≥ ε) ≥ 1− P(F nc(q0))− e−n
β

,

where β > 0 does not depend on n. This finishes the proof of theorem 2.1.3.
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