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1 Introduction 
 

Chemical synthesis has made enormous contributions to the development of mankind in 

the last century. In our daily life we are using so many synthetic materials; one of most 

commonly used synthetic material is plastic. Another very important aspect of synthetic 

chemistry is medicine. The pharmaceutical industry worldwide is growing tremendously. The 

main task of the pharmaceutical industry is the cost effective chemical synthesis of naturally 

occurring as well as modified biologically active compounds. For example, atorvastatin and 

simvastatin is a member of the drug class of statins, used for lowering cholesterol level and 

thereby preventing cardiovascular diseases. Atorvastatin is currently marketed by the 

pharmaceutical company Pfizer as Lipitor® and is the best selling drug (for year 2005) in the 

world. 

 

N

HO
COOH

N

H

O

OH

F O

OHO

O
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H

Atorvastatin Simvastatin  
Figure 1: Examples of biologically active compounds. 
 

In order to shorten the chemical steps for the synthesis of biologically active compounds, 

development of new methodologies in organic synthesis are obvious. These new methodologies 

are also very important for the synthesis of target molecules for the biological testing. In 21 

century, world is concerned about the environmental pollutions. Unfortunately chemical 

industry is the one of the leading pollutant to the environment due to its toxic waste and use of 

environmentally hazardous chemical reagents. Uses of environmentally benign methods for the 

chemical synthesis are the central issues, which leads to the new branch of chemistry as “Green 

Chemistry.”1
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Use of solar energy for the chemical synthesis has invented a new tool for organic 

chemist.2,3 Use of artificial light (using UV lamps) increased the usefulness of this new branch 

of chemistry. Photochemical reactions are favorite reactions for formation of medium to large 

sized rings. The most commonly used one is (2+2) cycloaddition beside higher order 

cycloadditions including the photochemical variant of the DIELS ALDER reaction.4 

Photochemical radical cyclization reactions are very important in organic chemistry5,6 due to the 

selectivity of the reactions and easy setup procedures.6,7 In photochemistry most of the research 

has been carried out only in the restricted area of singlet and triplet initiated reactions. In 

addition so many advances has been made in the Di-π-methane rearrangement,8,9 PATERNÓ-

BÜCHI reaction10,11 and NORRISH-YANG photocyclization.12 Lots of modifications can be carried 

out for the development of new methodologies using photochemistry. 

 

Nature is synthesizing so many complex molecules inside plants, animals and human 

beings. To synthesize these molecules chemically, we require high synthetic skills and new 

methodologies. Inside plants, complex compounds are synthesized mostly using terpene units as 

a starting material. The complete mechanism for the formation of these products inside the 

plants is still unclear. Biochemists are suggesting the mechanism of their formation via complex 

cascade reactions.13,14 Mother nature is carried out these transformation very easily using 

different reagents which are only available in plants. Taxol™ is also well known naturally 

occurring product which is showing very good anti-cancer property.15 The ‘texaoids’ have 

became known for their novel core and unusual tricyclo[9.3.1.0.]pentadecane framework,16 

which has proven to be a significant challenge to the synthetic chemists.17,18 Following are some 

interesting natural products. 

 

 



 1 Introduction 3 
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Figure 2: Structures of natural products. 
 
It was a great achievement for the organic chemistry, in which cascade cyclization reaction was 

carried out chemically. These cascade reactions are also called “Domino reactions.” Domino 

reaction is a process involving two or more bond forming transformations (usually C-C bonds), 

which takes place under the same reaction conditions without adding additional reagents and 

catalysts, and in which the subsequent reactions result as a consequence of the functionality 

formed in the previous step.19,20 This type of reaction would allow the minimization of waste, 

since the amount of solvents, reagents, adsorbents and energy would be dramatically decreased, 

compared to stepwise reactions. Often, these domino reactions are accompanied by dramatic 

increases in molecular complexity and impressive selectivity. Thus, these reactions would allow 

an ecologically and economically favorable chemical production. Bu3SnH-AIBN reagent can be 

used for such kind of reactions. PATTENDEN et al. examined the scope for and extensive range of 

complementary radical-mediated cascade processes from polyene precursors in the synthesis of 

variety of polycyclic ring systems, including taxiods and steroids (Scheme 1).21 This is really an 

interesting cyclization reaction in which 3-6 consecutive rings were generated in one step. 
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PhSe OH
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Scheme 1: Novel cascade of seven radical-mediated 6-endo-trig cyclizations. 
 

The Sn(IV) mediated intramolecular cascade cyclizations are commonly used in organic 

synthesis. The use of environmentally toxic tin metal makes the reaction less attractive to the 

chemist. There are also some other reagents reported in literature like metal salts which can be 

used for such kind of cyclization, their uses are limited due to the lack of selectivity, nature and 

further reaction with different functional groups. The search of mild alternative method for 

cascade cyclization is obvious. Photoinduced Electron Transfer reactions commonly called 

“PET” reactions can be the best alternatives. MATTAY et al. studied PET reactions in detail and 

published several reports which are really very important for basic understanding.22 First time it 

was proved by DEMUTH et al. that cascade reactions could be carried out under PET 

conditions.23,24 Such a PET triggered cascade cyclizations were found to mimic the parent 

nonoxidative enzymatic processes which in turn have originally been proposed to proceed via 

cationic intermediates, generated upon enzymatic protonation and anti-MARKONIKOV addition 

of water. These transformations are ultimately giving access to the hitherto shortest biomimetic 

synthesis of steroidal skeleton in enantiomeric pure form. In PET conditions the combination of 

sensitizers and co-sensitizers were used. In first step the solution of starting material (reactant) 

and sensitizer is excited using particular wavelength, the excited molecules donates electron to 

the sensitizer and forms radical cation. The so formed radical cation could be used for intra- and 

intermolecular cyclization. The detailed mechanism will be discussed in results and discussion 

section. 

 



 1 Introduction 5 

There are varieties of biologically active naturally occurring molecules, which are having 

quinone functionality.25 Some of these compounds are having high biological activity and were 

used as medicines in the form of plant extract for centuries. Alkanin, Shikonin and their 

derivatives, found in most of the many traditional medical plants of the Boraginaceae family 

(mainly in the genusof Alkanna, Lithospermum), have been used as natural purple dyes as a 

medicine since ancient times in China, Japan, and Europe. 26 Structures of some medicinally 

important compounds are shown as follows (Figure 3). 

 

O

O

O

R

O
O

OH

Kalafungin R= Me
Frenolicin B R = Pr

O

O

OH R R'

OH

Alkanin R = H, R' = OH
Shikonin R = OH, R' = H  

Figure 3: Structures of Alkanin, Shikonin, Kalafugin and Frenolicin. 
 

Due to their high chemical reactivity and polyoxygenated nature, most of the biologically active 

acylated quinones or hydroquinones are challenging synthetic targets. The synthesis of acylated 

quinone is the key step in synthesis of such a biologically active quinonoid molecules. 

Generally, the common method used for acylation is ‘FRIEDEL-CRAFTS’ acylation method using 

AlCl3 reagent and acid chloride.27 This method can not be used directly due to the fact that we 

could not control the regioselectivity of the reaction. In addition, many compounds do not 

tolerate the high reactivity of strong acids such as AlCl3. Due to these facts the search for an 

alternative method is a real challenge. The selective photoacylation of quinone could be the 

mildest method for the synthesis of such kind of intermediates. The first photo-acylation of 

quinone has been carried out by KLINGER in 1888, who exposed solutions of the starting 

materials to natural sunlight over long periods of time.28 During last few decades lots of progress 

has been made in this area, most of the reports concern the photoacylation of ortho quinones but 

reports about the photoacylation of 1,4-naphthoquinones remain rare. MATTAY et al. first time 

introduced a concept of “Photo FRIEDEL-CRAFTS” acylation reaction of 1,4-naphthoquinones 

(Scheme 2).29  
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Scheme 2: Photo FRIEDEL-CRAFTS acylation of 1,4-naphthoquinones. 
 

In a typical reaction, the argon flushed solution of 1,4-naphthoquinone and aldehyde in benzene 

was irradiated using 419 nm until starting material is completely converted. After completion of 

the reaction the solvent was removed under reduced pressure and crude reaction material was 

purified with column chromatography. KRAUS et al. reported the photochemical acylation 

reactions of 1,4-naphthoquinones using medium pressured mercury lamp.30 They observed only 

formation of acylated hydroquinone as a sole product in good yields. MATTAY et al. were 

carried out photoacylation of 1,4-naphthoquinones with aldehyde using specific wavelength of 

419 nm. The selection of particular wavelength for such a reaction was just to reduce the further 

decomposition of products formed and to minimize side reactions. With this modified 

procedures, in some cases they observed formation of a bis-acylated product along with a mono-

acylated product. Furthermore, when 5-methoxy-1,4-naphthoquinone (methyl juglone) was used 

for photoacylation reaction, in some cases the reaction proceeded with formation of a 

regioselective mixture. The varieties of combination of photoacylation reaction of substituted 

naphthoquinones with aliphatic as well as aromatic aldehydes, reveal us to conclude that indeed 

these reactions preceded with the formation of acylated hydroquinones along with in some cases 

bis-acylated products. Surprisingly, we did not observe the formation of bis-acylated products 

when aliphatic aldehydes were used. For the first time we observed formation of an ester as a 

side product in a photoacylation reaction, in addition esters were not formed when aliphatic 

aldehydes were used, the only exception was acrolein.  

The photoreaction of 2-substituted-1,4-naphthoquinone and aromatic as well as aliphatic 

aldehydes proceeded with formation of acylated quinone as a sole product. This is a novel 

reaction which affords only formation mono-acylated quinone as a product in good yields.  

These reactions proceeds with high regioselectivity and proved to be extremely useful 

method for the synthesis of 2-substituted quinone molecules (Scheme 3).31 The detailed 

mechanism for the formation these products will be discussed in results and discussion section.  
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Scheme 3: Photoacylation of 2-substituted quinones with aldehydes. 
 

There are some interesting naturally occurring biologically active compounds (Figure 4) 

which are bearing same structural framework which can be synthesized directly by 

photoacylation reaction of 2-substituted quinone with respective aldehyde or the important key 

intermediate for their synthesis can be synthesized by phoacylation reactions.  

 

n = 3: Vitamin K1
n = n: Vitamin K2

O

O

n

 
 

Figure 4: Structure of Vitamin K. 
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2 Objectives 
 

To develop an entirely new synthetic methodology in organic chemistry is a real challenge. In 

order to carry out organic transformations in environmentally friendly manner, the selection of 

reagent is very important issue. The photochemistry is an environmentally benign tool for the 

carrying out organic transformation in facile way. The usefulness of this method is due to its 

easy reaction setup and high selectivity. We studied photochemical reactions for the synthesis of 

key intermediate for total synthesis of biologically active compounds. Our present work is 

emphasized on following points: 

 

1. Photoinduced Electron Transfer (PET) Initiated Intramolecular Cyclization of 

Cyclopropyl Silyl Ethers: 

a) Synthesis of different substituted cyclopropyl silyl ethers. 

b) PET induced cyclization of synthesized cyclopropyl silyl ethers. 

 

2. Photoacylation of Substituted 1,4-Naphthoquinones with Aldehydes: 

a) Photoacylation of 1,4-naphthoquinones with aromatic and aliphatic aldehydes. 

b) Photoacylation of 5-methoxy-1,4-naphthoquinones with aromatic and aliphatic 

aldehydes. 

c) Photoacylation of 2-methoxy-1,4-naphthoquinones with aliphatic aldehydes. 

d) Photochemical one pot synthesis of 2-acylated 2-methyl-1,4-naphthoquiones. 
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3 Introduction to the Electron Transfer (ET) 

3.1 General Introduction 
 

In organic chemistry, reaction mechanism are largely described as two-electron centered. 

Electron movements are pictured as taking place two by two in familiar curved arrow 

mechanisms, notions of one-electron organic chemistry did not enjoy much acceptance in the 

past. Free radicals have certainly part of the organic chemist’s mechanistic arsenal for long time. 

The most fundamental definition of a redox process involves transfer of electrons: the removal 

of one or several electrons from the species is called oxidation, whereas any gain of one or 

several electrons is called reduction. These definitions are best adaptable to the transformations 

involving metal-containing species where it is easy to keep the track of the valency change at 

metal center. Metal ion mediated oxidation and reduction of organic compounds were used for 

electron transfer mechanism.32 A classical example is SANDMEYER reaction where Cu(I) plays 

an important role (Equation 1). 

 

ArN2
+ + CuI → Ar. + N2 + CuII

Equation 1: General expression for SANDMEYER reaction. 
 

The research work by KOCHI et al. pioneered reaction between metal ion oxidants and 

alkylmetals or hydrocarbons settled many problems in the organic chemistry.33  

 

In synthetic organic chemistry, reactive species such as radical cations, radical anions 

and radicals are generated by the process of electron transfer. This process can be simply 

described by using terms Donor (D) and Acceptor (A). The species which donates (transfers) an 

electron is donor (D) and which accept an electron is acceptor (A) (Equation 2).  

 

D  +  A  D  +  A  

D  +  A  D  +  A  

D  +  A  D  +  A   
 

Equation 2: General equation for formation of radical cation, radical anion and free radicals. 
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Mechanistically, electron transfer takes places when the energies of (D A) reaches to the 

same as energy as activated (D+ · A- ·). The energy diagram shows the DA and D+ · A- · for the 

competing electron transfer and polar pathways (Figure 5). Because of the strong electronic 

interaction between D and A in the transition state of the polar process, this is generally favored 

over the ET process.34 The electronic interaction take the form of either group transfer, as in the 

SN2 transition state or group coupling, as in the nucleophilic addition process (Equation 3). 

Thus the difference between electron shift promoted ET and polar process is: the ET process 

resulted in little change in bonding (D and A simply gives D+ · A- ·), whereas polar process give 

a product that is fundamentally different from D+ · A- ·. 

 

Nu   + O ONu C ONu

 
 
Equation 3: The nucleophilic addition process. 
 

E*polar

Reaction Coordinate 

E 

(D A) 

E*ET (D+ · A- ·) 

(D+ – A-) 

 
Figure 5: Schematic diagram showing ET and polar pathways.  
 
Thus in general a polar pathway would be favored over ET, unless factors reversing this 

preference are at hand. PROSS has analyzed this problem in detail and concluded that the 

following factors should work in favor of ET process35 : 

1. Strong donor-acceptor pairing which will move the avoided crossing toward the 

initial step. 

2. Steric interactions between D and A which will decrease the probability of group 

coupling between D+ · A- ·. 
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3. Low bond strength between D+ ─A- which will decrease the likelihood of groups 

coupling between D+ · and A- ·. 

4. Strong delocalization of the radical centers of D+ · and A- ·. 

In case of electron transfer between neutral organic reactants, the initial ion pair consists of 

oxidized donor and reduced acceptor. Very often we use the generic term charge transfer 

intermediate to describe these ion pairs. Radical ions are charged intermediates having an odd 

number of electrons.  

According to the MARCUS Theory36 of electron transfer (R. A. MARCUS received Noble 

prize in Chemistry, 1992), in the excited state, the solvent provides the GIBBS free energy 

necessary to make the energies of electron on donor and acceptor equal. The point when these 

energies are equal is transition state, after this only electron transfer takes place. In order to 

reach the transition state, the FRANK-CONDON principle requires the energy level between 

which the electron is to be transferred. This requirement is satisfied by increasing the energy of 

the system, until the energy levels match each other, by bond and the solvent reorganization, 

associated with the bond and solvent reorganization energy λ. Bond reorganization involves 

bond stretching and/or compression, angle deformation and torsional movements, whereas 

solvent reorganization involves solvent-induced changes in electrostatic environment around the 

reactant. MARCUS derived a parabolic express for the free energy of activation ∆G*.36 

 

∆G* = Free energy of activation
∆G = Standard free energy; ∆G = -R  T   lnK
λ = Reorganization energy 

 

∆G* = 
λ
4 1  + 

∆G 
λ

2

*

**
 

Equation 4: Expression for the free energy of activation ∆G*. 
 

Electron transfer (ET) is reversible reaction, in which back electron transfer (BET) can take 

place. The rate constant of electron transfer can be calculated by using following equation: 

A +  D A +  D
kET

kBET

K = 
kET

kBET

k = A   exp 
∆G* 

kB T
-*
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Equation 5: Rate constants of electron transfer. 
 

By introducing values of ∆G* in the above equation, the equation for rate constants of electron 

transfer in solution can be written as: 

 

 

kET = A   exp 
(∆G + λ)2

4 kB  T
-*

 
Equation 6: Rate of electron transfer in solutions. 
 

The MARCUS theory predicted that the rate constants of electron transfer should pass through 

maximum when standard energy is changed in a series of reactions. The plot of ln KET Vs -∆G 

predicted to be shaped like a downward parabola, the rate constant increases as ∆G decreases. 

The –∆G < λ defines the normal region of electron transfer and when ∆G < –λ called inverted 

region of electron transfer. At ∆G = –λ, the electron transfer reaction has zero activation barrier. 

3.2 Photoinduced Electron Transfer (PET) 
 

Electron transfer initiated by the absorption of light plays an important role in many 

chemical processes. When an organic molecule is irradiated using an appropriate wavelength of 

light, it undergoes excitation leading to the ejection of an electron (oxidation), which is accepted 

by a suitable acceptor molecule. This process is termed Photoinduced Electron Transfer (PET).  

The biological photosynthesis is one of the simple examples of this kind in which sunlight is 

harnessed for the growth and nourishment of plants. PET involves formation of positively and 

negatively charged ion species separated within the reaction centre and is also called charge 

separation.  

 

PET plays a key role in several emerging technologies, such as semiconductor 

photocatalysis, artificial photosynthesis, silver halide photography, spectral sensitization and 

xerography.34 Photoinduced electron transfer is of great interest to organic chemists concerned 

with synthesis of novel organic compounds that may be difficult to synthesize by other routes. 

We are very much interested to explore this field of research in detail. 

When ground state molecules absorb visible or ultraviolet light, the electron in the highest 

occupied orbital undergoes transition to the unoccupied orbital lying at higher energies. In case 

of organic molecules photochemical excitation of electron donor (D) and electron acceptor (A) 

molecules lead to well defined changes in their redox properties e. g. A (D) becomes even 
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stronger acceptor (donor). After photochemical excitation in solutions, donor goes to the excited 

state and encounters complex with acceptor in a solvent cage. As a result of electron transfer, 

ionic pairs formed via a solvent separated ion pairs (SSIP) and exciplex (Figure 6).37 Both the 

mechanism involves initial formation of encounter complex. Photoinduced electron transfer 

between two spherical organic molecules takes place via several collisions. One of these 

collisions will have thermodynamically allowed electron transfer, which lead to the formation of 

charged ionic pairs such as radical cation and radical anion. If these ions are initially formed 

inside solvent cage they are termed geminate ions (the Latin geminus means “twin-born”). The 

coulombic forces draw these ions in a close proximity; these ions are called contact ions. Since 

the close proximity of ions, the electron may return to the donor yielding no net change. At the 

same time the polar solvent can rearrange and subsequently stabilize the ion pairs and may 

prevent the back electron transfer to the donor. The solvent molecules can penetrate the ions and 

form solvent separated ion pairs. In some cases these ions separate from each other in such a 

way that is no more correlation with each other. In this case these separated ions are free to enter 

the cage of other ions or free to participate in chemical transformations, this process is called ion 

dissociation or charge separation.37  

 

encounter complex             SSIP                        free ions

encounter complex           EX                         free ions
D* + A D+ + A- [D+ A-]* 

Electron trasnfer via a solvent seperated ion pair (SSIP)

Electron trasnfer via an exciplex (EX)

D* + A D+ + A- D*        A      [D+        A-]  

D*       A 
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D* A D* A 

D* 

A 

D+ A– D+ A–

D+ A–

Electron Transfer 

CIP or Exciplex SSIP 

Ion dissociation 

Free Ions 

Separation distance  
 

 

Figure 6: Classification of photoinduced electron transfer in solution. 
 

The solvent plays a very important role for the charge separation. It has been proved that 

using polar solvent we can achieve the expected solvent separated radical ionic pairs and favor 

the photoinduced electron transfer. The polar solvents surround the ions and penetrate the space 

between the ions, which blocks the Coulombic field and allow the ions to move further, in this 

way it blocks the back electron transfer.  

The feasibility of producing radical ions via photoinduced electron transfer can be predicted by 

using the well known WELLER equation.22,38 A simplified version is given below (Equation 7).  
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∆G = Eox    (D)     Ered  (A)       ∆Eexcit  +  ∆Ecoul 1/2 1/2

Eox    (D) = Half oxidation potential of donor; Ered   (A) = Half reduction potential of acceptor
∆Eexcit = Excitation energy of the electronically excited species (either A or D)
∆Ecoul = Coulombic interaction in the given solvent

1/2 1/2

 
Equation 7: Simplified version of WELLER equation.  
 

The equation can be used to calculate the degree and the direction of charge transfer, even in 

system of incomplete electron transfer, since only parameters that are experimentally accessible 

were employed.  

 

3.2.1 Rates of electron transfer and quantum efficiency of 
photoinduced electron transfer process 

 

The calculation of yields of the generation of ion pairs during photoinduced electron 

transfer will give more information and is necessary for the photochemist. There are several 

approaches in which we can just compare the rate of electron transfer kel. From rates of electron 

transfer we can get information about the velocity of the reaction. In photochemical processes 

there are different competing processes to the electron transfer. The other competing processes 

are emission and radiationless deactivation (kd), energy transfer (ken), other photochemical 

pathways (kother) (Equation 8). The quantum efficiency for the generation of ions is defined as 

фIP.37 

фIP =  
kel  

kel + ken + kd + kother  

Equation 8: Quantum efficiency for generation ion pairs. 

 

The quantum yield, Ф, is the amount of species formed (ns) divided by number of moles of 

photons (quanta) absorbed (nq) by the reaction system (Equation 9).  

Ф =  
ns  

nq

Equation 9: Quantum yield. 
 

 



18 3 Introduction to the Electron Transfer  

The another useful expression is the τIP, the life time of the ion pair formed by electron transfer 

(Equation 10)  

τIP =  
1 

kret

Equation 10: Life time of the ion pair.  
 

Where kret is the rate of electron return, in which an electron returns to its origin generating the 

original ground state reactants, which is different than back electron transfer (BET). In back 

electron transfer acceptors returns its electron to the donor and goes to the excited state. Electron 

return process is known as non productive, because it destroys the ion pairs. The photochemists 

are carrying out further research for maximizing the quantum yields and life time for ions pairs. 

The Figure 7 shows the rates of electron transfer and electron return. 
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Figure 7: An energy diagram showing rates of electron transfer and electron return. 
 

3.2.2 Sensitizers and co-sensitizers 
 

Most often sensitizers were employed to speed up the photoinduced electron transfer 

reaction. These sensitizers get excited at an appropriate ultraviolet light, some electronic changes 

take place during excitation and lead to change in their redox property, which increases their 

activity. The sensitizer can be good electron donor as well good electron acceptor. Sensitizers 

are used in catalytic amounts and at the end are regenerates after each cycle. The schematic 
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representation of sensitizer catalyzed photoinduced electron transfer is shown as follows (Figure 

8). 

 

hv

hv D
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Sens ET

ET

P

D

P

 
Figure 8: Simple sensitized process. 
 

In this process, Sensitizer (Sens) gets electronically excited and accepts an electron from the 

donor molecule (D) which is a reactant. After gain of an electron, sensitizer forms radical anion  

(Sens·–) and donor forms radical cation (D·+). The so formed radical cation can be cyclized via 

intra- or intermolecular pathway leading to the formation of product radical cation (P·+), which 

after electron transfer (ET) from sensitizer and hydrogen transfer from solvent molecules forms 

neutral product. In some cases use of combination of sensitizer and co-sensitizer can afford good 

reaction transformation. The commonly used sensitizers are shown in (Figure 9). 
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Figure 9: Structures of commonly used sensitizers. 
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In some cases, use of co-sensitizer along with sensitizer favors the photoinduced electron 

transfer reaction. In this case first electron transfer takes place from co-sensitizer to sensitizer 

leading to the formation of sensitizer radical anion and co-sensitizer radical cation. Subsequent 

electron transfer from substrate regenerates the co-sensitizer and forms radical cation of 

substrate which cyclizes further to afford product. The acceleration of the reaction is presumably 

due to the better charge separation, however back electron transfer plays a minor role. The 

schematic representation of co-sensitizer process is as shown in (Figure 10). 

Sens

Sens*

Sens

Cosens

Cosens

Substrate

Substrate

hv

e

 
Figure 10: Co-sensitization process. 39  
 

Generally, selection of co-sensitizer is also an important issue, the normally used sensitizers are 

biphenyl, phenanthrene as shown in Figure 11. 

 

Biphenyl Phenanthrene  
Figure 11: Structures of commonly used co-sensitizers. 
 

3.2.3 Generation of radical anions via photoinduced electron transfer 
 

Photoinduced electron transfer chemistry has successfully established in Organic 

Chemistry for the generation of radical anions by photoinduced reduction of organic molecules. 

This is an interesting example of ‘Umpolung’, in which one can reverse the polarity the 

reactants.40 In recent years, photochemically induced radical anionic cyclization has been 

consequently applied for the construction of various polycyclic compounds. By activating only 

one reactant (acceptor molecule) under mild conditions, starting from neutral compounds, e. g. 

suitable substituted α-cyclopropyl ketones, the reductive PET reaction leads to the formation of 
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ketyl radical anion and the corresponding donor radical cation. 41 For reductive PET reaction, 

triethyl amine (TEA) is used as electron donor sensitizer. By using 254 nm source in 

acetonitrile, the TEA gets electronically excited and donates an electron to the acceptor 

substrate, which leads to the formation of radical cation at TEA and radical anion at substrate 

molecule. For reductive PET reactions, in most cases ketone is used as a starting material. 

COSSY et al. reported detailed mechanism of PET initiated electron transfer to the 

cyclopropylketones.42 On irradiation of ketone 3 in presence of TEA in acetonitrile, fast electron 

transfer takes place leading to the formation of contact ion pair (Scheme 4). The radical anion B 

most probably has a pKa in the range of ~10 and the triethylamine amine radical cation C has a 

pKa of ~8 in water.43 Therefore the radical anion B is basic enough to deprotonate the amine 

radical cation. The proton transfer can take place if ion pair is previously formed.44 The radical F 

can then abstracts a hydrogen atom from solvent or TEA to produce ketone 4 and radical E. The 

ketone can be further reduced to alcohol 5 by a second electron transfer either by amino radical 

or from second molecule of TEA. 

 

 



22 3 Introduction to the Electron Transfer  

O

O

N

H

hv, Et3N, or F 

3

A B C

CH3CN

E

N

O

O

O

4 F

OH O

N

Polymers

5 G H

NEt3

hv, Et3N

E

OH

D

N

hv, Et3N

Et3N

 
 

Scheme 4: Reductive PET of cyclopropyl ketone using TEA as donor.  
 

The addition of LiClO4 salt was found to be quite beneficial.45 By using one equivalent of 

LiClO4 and ten equivalents of TEA, the yields of ketone can be optimized and formation of 

alcohol 5 can be terminated.46 The radical anion so formed via PET initiated electron transfer 

reaction can be used for several intra- and intermolecular reactions. 

COSSY et al. have reported that bicyclic tertiary cycloalkanols can be synthesized from 

δ,ε-unsaturated ketones in good yields, initiated by photoreductive electron transfer (PET) from 

triethylamine (TEA) in acetonitrile or by photoionization in pure hexamethylphosphoric 

triamide (HMPA).47 This methodology has also been successfully used for the synthesis of 
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natural products48 and biologically active N-heterocyclic molecules such as (±)-

isooxyskyanthine.47b,49 In all these cases, intramolecular cyclization of δ,ε-unsaturated radicals 

have been proven to be synthetically useful method for the construction of five-membered fused 

carbocyclic and heterocyclic structures. One of the interesting cyclizations is shown below 

(Scheme 5). 

O O

H

H

7 (70%)
ds ratio 5.5:1

hv, Et3N 
LiClO4 / CH3CN

6
 

 
Scheme 5: PET initiated ring opening followed by cyclization.  
 

COSSY and co-workers used PET initiated reductive cyclization method for the synthesis of 

natural product (±)-hirsutene.a,50

8

H

H

O H

H
H

HO H

H
H

hv, Et3N
CH3CN

(±)-Hirsutene
9 (58%) 10

 
Scheme 6: Synthesis of (±)-hirsutene using PET reaction.a,  

 

The synthesis of novel linearly fused triquinane system 13 (Scheme 7) was first time 

reported by BISCHOF and MATTAY.51 This novel method includes the PET initiated ring opening 

of cyclobutane ring in 11, which leads to the formation radical anion. The presence of ester 

group plays an important role in the stabilization of the radical. The formation of keto-ester 

compound 12 has not been observed, but the possibility of formation linear triquinane product 

13 via δ-hydrogen abstraction of keto-ester 12 can not be ruled out completely. 
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Scheme 7: Synthesis of novel linear triquinane via PET. 
 

Specifically fused five membered ring triquinanes and propellanes represent an important 

class of natural products and belong to the polyquinane family.52 Recently, TZVETKOV and 

MATTAY carried out reductive PET initiated cyclopropyl ring opened tandem intramolecular 

cyclization reactions of different substituted α-cyclopropyl indenones and 

hexahydropentalenones, which leads to the formation of propallane and angular triquinane 

systems.41 Several preconditions are required for carrying out such a kind of reactions: (i) both 

the cyclopropyl group and the unsaturated substituent have to be cis to each other and (ii) the 

side chain with suitable length has to be in the α-position to the cyclopropane unit. Following 

are the interesting examples of such a cyclization (Scheme 8). 
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Scheme 8: PET induced cyclization of cyclopropyl ketones.   
Reagents and PET conditions: hv 254 or 300 nm, Et3N (5 eq.), LiClO4 (1 eq.), CH3CN. 
 
When a cyclopropyl ketone 14 was irradiated under reductive PET fully cyclized product 15 in 

46% yield and non cyclized product 16 in 3% yield were isolated. The cyclopropyl ketone 17 

under reductive PET afforded fully cyclized ketone 18 in 74% as an only one exo-isomer. 

3.2.4 Generation of radical cations via photoinduced electron transfer 
reactions of silyl enol ethers. 

 

When a solution of silyl enol ether was irradiated using sensitzers such as DCA, DCN and 

chloroanil53, the electron rich double bond is easily oxidized to afford the radical cation.54 The 

primary product (radical cation) formed after photoinduced electron transfer in the presence of 

nucleophile leads to the mesolytic cleavage of Si-O bond affording the α-keto radical, which 

undergoes intramolecular cyclization depending upon the type of tether present. MATTAY et al. 

described the PET initiated oxidation of silyl enol ether leading to the radical cation which 

undergoes intramolecular reactions.55 The silyl enol ether 19 was irradiated in presence of DCA 

as a sensitizer, the reaction afforded novel tricyclic ketone 20 in 26% yield. 
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20 (26%)

Me3SiO O
H

H

H

H

DCA
CH3CN

19  
Scheme 9: PET initiated cyclization of silyl enol ether.  
 

In above case (Scheme 9) reaction follows the 6-endo-trig cyclization way. Later they 

discovered that the reaction mode (5-exo or 6-endo) can be controlled just by addition some 

amount of alcohol, which makes the mesolytic cleavage of Si-O facile. In addition, using 

alcoholic solvents yields of the reaction are improved (Scheme 10).39 When a PET reaction of 

silyl ether 21 was carried out in pure acetonitrile, the reaction afforded 6-endo-trig cyclized 

bicyclic ketone product 22. The same reaction in presence of isopropanol afforded 5-exo-trig 

cyclized products 23 and 24 as a stereoisomeric mixture in 20% yield. 

OSiMe3 O
H

H

OSiMe3

22 (26%)

+ DCA*
- DCA

CH3CN/iPrOH
        (17:3)

O
H

H

CH3
O

H

H

CH3

+

23 (11%) 24 (9%)

CH3CN

21  
Scheme 10: PET initiated reaction in CH3CN/iPrOH.   
 

In most of the cases they observed only formation of cis isomers of the products. That’s 

why the method represents an important tool for stereoselective synthesis of polycyclic 

compounds. BUNTE, MATTAY et al. studied these reactions carefully and carried out quantum 

chemical calculations. These investigations revealed that the reactions follow radical cation 

pathway.56
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The PET initiated reaction can be used for the construction of polycyclic compounds 

with high stereoselectivity. For the first time, by using this method consecutive four rings were 

prepared which leads to the formation of steroidal framework.57  

 

OSiMe3MeO

MeO
H

H
O

H

H
MeO

H
O

H

H
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CH3CN/CH3CH2CN (3:1)

+

25

26 27  
Scheme 11: PET initiated stereoselective cyclization of silyl enol ether.  
 

The silyl enol ether 25 under PET condition using DCA sensitizer afforded the formation of only 

1:1 ratio of epimeric pair 26 and 27 in 27% yield (Scheme 11). In this case only two 

diastereomeric products were formed from the diastereomeric starting material although five 

stereogenic centers are generated in one step.  

 

3.2.5 Generation of radical cations via oxidative PET of olefins 
 

Radical cations can also be generated via oxidative photoinduced electron transfer of 

olefins. The so formed radicals can be used intra- or intermolecular reactions. 

 

R
+      A

R
+       A

hv

 
 

Equation 11: Radical cations via PET of olefins. 
 

 



28 3 Introduction to the Electron Transfer  

When a solution of olefin in presence of sensitizer is irradiated in acetonitrile solvent, 

electron transfer takes place, which affords the radical cation of the olefin and radical anion of 

the acceptor (Equation 11). In some cases back electron takes place from acceptor, which leads 

to tripl

electron transfer initiated intramolecular 

cyclizations of substituted polyalkenes (Scheme 12).23 The polyalkene 28 under PET condition 

afforded only fully cyclized product 29 in 25% yield. 

et excited state of olefins which undergoes cycloaddition reactions.58 The detailed study 

about the photoinduced reactions of olefins has been recently reported by GROTA.59,60

DEMUTH et al. have studied photoinduced 

CN

CN

HO

H

H

CN

NC

29 (25%)

CN

CN

hv, biphenyl,
CH3CN/H2O (4:1)

28  
 

n of protic solvents favors the radical 

cyclization, which ends up with the 5-exo-trig mode of cyclization.61 The mechanistic 

illustrations of his experiments are shown in Scheme 13. 

Scheme 12: PET induced intramolecular cyclization of polyalkenes. 
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Scheme 13: Mechanistic investigation by DEMUTH et al.  
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3.2.6 Generation of radical cation from cyclopropyl silyl ether via 
photoinduced electron transfer  

 
When a solution of cyclopropyl silyl ether was irradiated under PET conditions, the 

cyclopropyl silyl ether was easily oxidized. The electron transfer takes place leading to the 

formation of radical cations. RINDERHAGEN and MATTAY used a simple system to study this 

novel type oxidation reaction initiated by PET.62 The so formed radical can be used for intra- 

and intermolecular reactions. The primary results of their research are shown below. Irradiation 

of cyclopropyl silyl ether 30 in presence of sensitizer forms radical cation which leads to the ring 

opening of cyclopropane ring. There are two possibilities of ring opening, via endo cleavage or 

exocyclic cleavage. The newly invented method is useful for ring expansion reactions followed 

by trapping of the radical by using electron deficient olefins such as acrylonitrile. Surprisingly 

when trapping acrylonitrile was used only formation of endocyclic radical was observed, which 

leads to the formation 33. In absence of trapping agent two products 31 and 32 were isolated, 

which are derived from endocyclic as well as exocyclic ring opening. The study regarding 

generation of β-keto radical and their intra- and intermolecular addition reaction has been 

already published by RINDERHAGEN and MATTAY (Scheme 14).63  
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Scheme 14: PET initiated ring opening of cyclopropyl silyl ethers. 
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It was proven for the first time that these kinds of reactions can be used for construction 

of polycyclic compounds. When the solution of cyclopropyl silyl enol ether was irradiated at 

λ = 419 nm, in presence of DCA as a sensitizer in acetonitrile. The cyclopropyl ring opening 

takes place leading to the formation of endocyclic radical, which undergoes intramolecular 

cyclization depending upon presence of tether. Finally polycyclic compounds are formed. Some 

interesting examples of this kind of reactions are shown below (Scheme 15).64,65 The 

cyclopropane 34 afforded entirely angular triquinane compound 35 in 66% yield. The irradiation 

of compound 36 leads to the formation of ring opened non-cyclized ketone 37, endocyclized 

ketone 38 and exocyclized ketone 30. This reaction affords the non-cyclized product 37, but still 

the complete cyclization process is dominant. 

34

36

OSiMe3

O

H

35 (66%)

hv, DCN

CH3CN

OSiMe3 O

37 (15%) 38 (6%) 39 (30%)

+ +
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O
H
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O
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Scheme 15: PET initiated synthesis of polycyclic compounds.,  
 

3.2.7 Generation of radical cations using cyclopropyl amines via PET 
 

Cyclopropyl amines after PET initiated electron transfer lead to the formation of radical cations. 

The cyclopropyl ring opening affords the β-imino radical, after hydrolysis, ring enlarged product 

is formed. CHA et al. reported the facile ring opening of cyclopropyl amine initiated via 

photoinduced electron transfer using DCB as a sensitizer.66 The simple ring opening reaction is 

summarized in Scheme 16. 
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Scheme 16: Ring opening of amino cyclopropanes. 
 

CHA et al. were unable to trap the radical using electron deficient olefins, but they 

successfully carried out the intramolecular radical cyclization reaction using different alkene 

tethers. In general, when amino cyclopropane 40 was irradiated under PET conditions using 

DCB as a sensitizer the β-imino radical is generated, this radical can be used for intra-molecular 

reactions or just directly after hydrolysis the β-keto ester 41 is formed. The reaction affords the 

formation of polycyclic compounds with 5-exo-trig cyclization. This selectivity is completely 

depending on the presence of protic solvents. They reported reactions in CH3CN/H2O or 

CH3CN/MeOH. An interesting example of such a kind is shown in Scheme 17. 
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Scheme 17: PET initiated intramolecular cylizations of aminocyclopropanes. 
 

In case of cyclopropyl amine 42 under PET conditions, the fully cyclized product 43 is isolated 

in 30% yield, whereas the 40% of unreacted starting material (sm) is recovered back from the 

reaction mixture. 
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4 Results and Discussion 

4.1 Photoinduced Electron Transfer Reactions of Cyclopropyl Silyl Ethers 

4.1.1 Introduction 
 

Since almost three decades radical cascade reactions (also called domino reactions) have often 

been used for synthesizing polycyclic compounds.67, , , ,68 69 70 71 Still the tin hydride method 

introduced by GIESE et al. is one of the mostly applied method to perform radical chain 

processes despite some disadvantages. In order to circumvent toxic tin reagents and to facilitate 

the working-up procedures, for example, electron transfer activation has been introduced to 

generate radical or radical ions.71b,72 In these reactions metal salts are generally used as oxidizing 

and reducing agents, respectively.  

4.1.2 Facile ring opening reaction with FeCl3 
 

The cyclopropyl silyl enol ethers can be easily oxidized by metallic salts as Fe(III), Mn or Ag(I) 

via single electron transfer reactions (SET). The advantages of such reagents are availability and 

their high reactivity. The main disadvantages for using these reagents are: these metal ions are 

not good electron acceptors in the reaction mixture and in addition to this they act as LEWIS acid 

as well. This limit makes the compatibility with some functional groups and makes the 

elucidation of the mechanism more difficult. The ring of cyclopropyl silyl ethers can be 

achieved with FeCl3 salt.73 This method is useful for ring enlargement and follow up cyclization 

reactions. The schematic explanation of this reaction is as follows. The mechanism of this kind 

of reaction is not fully understood but thought to proceed via β scission of the cyclopropyl 

alkoxy radical followed by intermolecular chlorine abstraction by the β-keto radical (Scheme 

18). e. g. when 44 was treated with FeCl3 solution, reaction proceeds with the formation of 

chloro-ketone 45. The cycloheptenone 46 can be prepared by treating 45 with NaOAc. 
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Scheme 18: Ring opening of cyclopropyl silyl enol ether using FeCl3. 
 

BOOKER-MILBURN et al. have studied cyclopropyl silyl enol ethers for intramolecular radical 

cyclization.74 The treatment of cyclopropyl silyl ether 47 with DMF solution of ferric chloride 

(2.2 eq.) yielded the trans fused chloro ketone 48 in 64% yield as a single diastereomer (Scheme 

19). 

OSiMe3 O

Cl

H

H

FeCl3
DMF

48 (64%)47  
Scheme 19: Intramolecular radical cyclization initiated by FeCl3.b

 

Another way to generate radical ions is possible by the photoinduced electron transfer (PET).75 

This procedure has several advantages: metal reagents and other toxic compounds are avoided, 

the working-up procedures are often very easy, and in general, photochemistry certainly 

provides powerful methods for a new and sustainable chemistry.76,77  

 

4.1.3 Photoinduced electron transfer reactions of cyclopropanone 
acetals 

 

Upon oxidative photoinduced electron transfer (PET) the cyclopropane ring opens and 

forms a reactive β-keto radical which undergoes intramolecular cyclization. The oxidative ring-

opening reactions of cyclopropanone acetals with carbonyl compounds via PET have been 
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already studied by OKU and co-workers (Scheme 20).77 They carried out reaction of 2-

phenylcyclopropane acetal 49 with symmetrically substituted unsaturated diester (e.g. diethyl 

formulate 50) in the presence of phenanthrene or pyrene and Mg(ClO4)2 in oxygen free 

acetonitrile, the solution was irradiated at λ = 280 nm (Scheme 20).77c The cyclopropane ring 

opening takes place affording β-carbonyl radical, which reacts in an intermolecular fashion 

affording dimer 52 and coupled product 51. In absence of additive Mg(ClO4)2 no reaction was 

observed. The role of Mg(ClO4)2 can be explained in terms of its stabilization effect on the 

radical anion derived from diester suppressing the back electron transfer.78
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51 (50%)

52 (17%)  
Scheme 20: PET reactions of cyclopropyl ether by OKU et al.c

4.1.4 Photoinduced electron transfer reactions of cyclopropyl silyl 
ethers79 

 

When a solution of cyclopropyl silyl enol ether and DCA was irradiated at 419 nm, the 

facile ring opening of cyclopropane ring takes place leading to the β-keto radical. The 

endocyclic radical can isomerize to exocyclic radical and vice versa. The so formed radical can 

be further cyclized in 1,5-exo or 1,6-endo manner depending on the type of tether used. 
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Scheme 21: PET initiated ring opening of cyclopropyl silyl enol ether. 
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All these reactions have in common that the redox properties of molecules are changed upon 

excitation, i.e. both the electron donating as well as electron accepting behavior of the excited 

species are drastically enhanced. This leads either to oxidative PET or to reductive PET 

processes. The reaction works very well in presence of sensitizers and co-sensitizers.  

Here we will present some further examples of PET initiated radical/radical cationic 

cascade reactions of bicyclic cyclopropyl silyl ethers functionalized by unsaturated side chains 

leading to polycyclic compounds. We were especially interested in checking the suitability of 

alkyne and arene groups in comparison of simple alkenes (Scheme 22). 
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Scheme 22: Photoinduced cyclopropane ring opening: a general scheme. 
 

4.2 Synthesis of Cyclopropyl Silyl Ethers 
 

The silyl enol ethers were prepared by the copper catalyzed conjugate addition of various 

GRIGNARD’S Reagent (GR) to the enones followed by trapping of the enolates with 

trimethylsilyl chloride (Scheme 23). The stereochemistry at the newly formed tertiory carbon is 

not analysed due to the unstable nature of the product. The addition of propargyl magnesium 

bromide catalyzed by CuI to 2-cyclohexenone did not afford the expected product, however, use 

of the procedure developed by LEE afforded the propargylated silyl enol ether in good yield.80 In 

general, the corresponding bromides were used for the preparation of GR. In case of benzyl 

bromide we observed only the formation of 1,2-diphenyl ethane. This problem was 

circumvented by using benzyl chloride. The 1:1 mixture of diethyl ether/THF proved to be the 

best solvent for the preparation of GR and conjugate addition reactions. The selective 

cyclopropanation of respective silyl enol ethers in presence of alkenes or alkyne were 

successfully carried out using diethylzinc, methylene iodide and methylene chloride as the 
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solvent of choice. The stereochemistry of cyclopropanated product was not checked due to the 

higly air sensitive nature of product. The cyclopropyl silyl ether reacts with moisture leads to the 

formation of cyclopropanol product, so they were always kept cold and stored under 

argon/nitrogen atmosphere. Unfortunately, our cyclopropanation conditions were not suitable for 

related cyclopropanation of tert-butyl dimethyl silyl enol ethers, but we found that the 

corresponding trimethyl silyl enol ether 63 could be cyclopropanated in 75% yield (Scheme 23). 
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Scheme 23: Synthesis of cyclopropyl silyl ethers.  
Reagents and conditions: a) Mg turnings, dry THF/diethyl ether 0 °C; b) CuI, TMS-Cl, 
–78 °C, Et3N, RT; c) Et2Zn, CH2I2, CH2Cl2, RT, 12 h; d) In metal, propargyl bromide, dry THF, 
RT 1 h, Me2S, TMSOTf, 3h; e) Et2Zn, CH2I2, CH2Cl2, 2 days; f) Mg turnings, 4-bromobut-1-
ene, dry THF/diethyl ether, 0 °C; g) CuI, TMS-Cl, –78 °C, 3 h, Et3N, RT; h) Et2Zn, CH2I2, 
CH2Cl2, 2 h. 
 

In case of 2-phenyl-1-bromo ethane 67, we did not observe any formation of GR. To 

overcome this problem we converted the less reactive bromide to the iodide 68 by refluxing it 

with NaI in acetone (Scheme 24). The primary alkyllithium was readily prepared at –78 °C (dry 

ice-acetone bath) under an atmosphere of dry argon by addition of 2.2 molar equivalents of 

commercial tert-butyllithium (t-BuLi) in pentane to an approximately 0.1 M solution of 68 in 

dry n-pentane/diethyl ether (3:2 by volume).81 The CuI catalyzed conjugate addition of this 
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organolithium compound to 2-cyclohexenone in presence of TMS-Cl afforded silyl enol ether 69 

(Scheme 24). 

+54
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Scheme 24: Synthesis of cyclopropyl silyl ether 70.  

T; b) CuI, TMS-Cl, –78 °C, Et3N, RT; c) 

he 3-substituted enones were prepared from the reaction of vinylogous ester 71 with 

GR pre

Reagents and conditions: (a) t-BuLi, THF, –78 °C to R
Et2Zn, CH2I2, CH2Cl2, 12 h; d) NaI, acetone, reflux 2 h, (72%). 

 

T

pared from corresponding bromides or chlorides (Scheme 25). The enone 72 is a very 

important intermediate in pharmaceutical industry, besides of several filed patents and to the 

best of our knowledge no one has reported its actual synthesis. We prepared enone 72 by the 

reaction of 3-ethoxy-2-cycloheptenone 7164,65 and benzyl magnesium chloride in 91% yield. 

Treatment of enone 72 with lithium diisopropyl amide (LDA) in presence of TMS-Cl afforded 

its silyl enol ether 73, which was cyclopropanated to 74 in 81% yield, using Et2Zn, CH2I2 in 

CH2Cl2. 
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Scheme 25: Synthesis of cylclopropyl silyl ether 74. 

thyl ether, 0 °C, 3 h; b) LDA, TMS-Cl, 

R 

Reagents and conditions: a) Mg turnings, dry THF/die
dry THF, –78 °C to RT, 2 h; c) Et2Zn, CH2I2, CH2Cl2, 12 h. 
The cyclohexenone 75 was synthesized by treatment of 3-ethoxy-2-cyclohexenone and G

prepared from 4-bromo-2-methyl-1-butene and subsequent acid hydrolysis (Scheme 26).82 

Treatment of 75 with methyllithium under our previously developed conditions gave enol ether 
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76 in 75% yield. The cyclopropanation of 76 with Et2Zn, CH2I2 in various solvents resulted in 

the mixture of products 77a-c in poor yields (Scheme 26). 
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Scheme 26: Synthesis of cyclopropyl silyl ethers 77a-c and 80. 

S-Cl, 3 h, Et3N, RT; b) Et2Zn, 

owever, the enol ether 79 was prepared in good yield by copper catalysed conjugate addition 

Reagents and conditions: a) CuI, MeLi, 0 °C, 10 min, –78 °C, TM
CH2I2, CH2Cl2; c) Mg turnings, THF/diethyl ether, 0 °C; d) CuI, TMS-Cl, –78 °C, Et3N, RT; e) 
Et2Zn, CH2I2, CH2Cl2, 12 h. 
 

H

of GR as shown in Scheme 26. The silyl enol ether 79 could be cyclopropanated to 80 in 65% 

yield by using our standard conditions. 
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4.3 Photoinduced Electron Transfer Initiated Cyclizations of Cyclopropyl 
Silyl Ethers 

 

The deoxygenated solutions of respective cyclopropyl silyl ethers in dry acetonitrile 

containing the PET sensitizer dicyanoanthracene (DCA) were irradiated in a Rayonet 

photochemical reactor using 419 nm lamps. All the reactions were monitored by GC or GC-MS.  

 

O
H
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n( ) n( )

60: n = 1
61: n = 2

81: n = 1 (20%)
82: n = 2 (11%)

a

 
Scheme 27: Photoinduced electron transfer reaction of 60 and 61. 
Reagents and conditions: a) DCA, acetonitrile, irradiated for 12 h at 419 nm. 
 

The irradiation of 60 and 61 in dry acetonitrile resulted in the formation of tricyclic 

products 81 and 82 with high stereoselectivity (Scheme 27). The cyclopropane ring opening (cf. 

Scheme 22) and their cyclization can be explained as follows: the sensitizer DCA gets 

electronically excited at 419 nm and thus is enabled to oxidize the substrate to its radical cation. 

Exocyclic cyclopropane ring opening leads to the formation of a β–keto radical which further 

cyclizes to the tricyclic products. The last step is the elimination of a hydrogen atom to retain the 

aromatic ring. Surprisingly we observed only formation of cis isomers. The structure and 

stereochemistry were assigned using modern NMR techniques such as 1H COSY, HMBC, 

HMQC and NOESY. The cyclopropane 59 under PET condition leads to the formation of non-

cyclized ring enlarged products 83 and 84 (Scheme 28). In this case cyclopropyl ring opening 

takes place via endocyclic cleavage, indicating the formation of the thermodynamically favored 

more stable secondary radical. Obviously the formation of a new strained polycyclic product is 

energetically disfavored. 
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Scheme 28: PET reaction of cyclopropane 51 and 70. 
Reagents and conditions: a) DCA, acetonitrile, irradiated for 12 h at 419 nm. 
 

Irradiation of 70 leads to the exocyclic ring opened noncyclized product 85 as well. In 

this case intra-molecular cyclization was not observed due to the large distance between 

exocyclic radical and phenyl ring (Scheme 28). To explain the two contrasting ring opening 

results from very similar structures, we propose that both processes involve the endocyclic ring 

opening (cleavage of bond “b”, see Scheme 29) as first step followed by a reversible ring-

closure process. If n = 1 or 2 and m = 1 or 2 (as in case of 60, 61 and 70), reclosure could 

became more facile leading to a cyclohexylmethyl radical which attack the phenyl ring 

depending on the chain lengths of its tether. If n = 0 (as in case of 59) the formation of ring 

enlarged product is favored leading to 83 and the α-β unsaturated ketone 84 respectively. The 

structure of cyclopropane radical cations and their reactivity has been already discussed by 

ROTH and co-workers.83 Further mechanistic investigations are underway using flash laser 

photolysis and quantum chemical calculations and will be published separately.84
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Scheme 29: Cleavage of exocyclic (a) and endocyclic (b) C-C bond. 
 

In accordance with this rationalization treatment of 66 and 80 under PET conditions leads to the 

cleavage of bond “b”, the formed cyclic radical undergoes 5-exo-trig cyclization affording 

products 86 and 87 (Scheme 30). In these cases the final step is saturation of the radical, which 

takes places either by direct abstraction of hydrogen from solvent molecule or by reduction to 

the corresponding anion by the sensitizer radical anion followed up by protonation (e.g. by 

traces of water in the highly hygroscopic acetonitrile). The stereochemistry at ring junction is 

cis, and was confirmed by NOESY analysis. 
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Scheme 30: Synthesis of cis fused bicyclic ketones 86 and 87. 
a) DCA, acetonitrile, irradiated for 12 h at 419 nm 
 

In case of 74 we observed formation of the bicyclic product 88 as only one isomer (31%) in 

which both substituents are cis to each other (Scheme 31). This is not surprising for products 

which contain a bicyclooctenone substructure because of the high ring strain of the 

corresponding trans products. In addition we observed some traces of product 89, which 

indicates that the second cyclization step is energetically disfavored. The propargyl substituted 

compound 64 was irradiated under PET conditions affording the bicyclic product 90 via 6-endo 
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cyclization. If the cyclopropane ring would have opened in a endocyclic way, the formed 

secondary radical must cyclize in a 5-endo mode which is known to be “disfavored” according 

to the BALDWIN-BECKWITH rules.85,86
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Scheme 31: Cylization of cyclopropane 74 and 64. 
Reagents and conditions: a) DCA, acetonitrile, irradiated for 12 h at 419 nm. 
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4.4 Conclusion 
 

Various new ring-fused cyclopropyl silyl ethers with benzylic, olefinic or acetylenic side 

chain have been synthesized in good yields. We have also been able to demonstrate that the PET 

induced ring opening of cyclopropyl silyl ethers is quite suitable for the production of polycylic 

compounds with high stereoselectivity. PET oxidative initiated reactions of these cyclopropyl 

silyl ethers lead to β-carbonyl radical cationic species and β-keto radicals, respectively, which 

can be used for the construction of polycyclic compounds.64 The termination step is supposed to 

be either a hydrogen radical transfer from the solvent (acetonitrile) or a stepwise electron 

transfer/protonation by traces of water in the solvent. 
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5 Photoacylation of Quinones 

5.1 Introduction 
 

Quinonoid compounds are very important molecules in medicinal chemistry. There are 

several biological active compounds having quinonoid structural framework. Quinonoid 

compounds have been used for centuries as medicines and coloring pigments. The most 

commonly used coloring pigment for drawing designs on hand and coloring hairs is mehandi, it 

is used in India as well as Arabian countries for centuries. Chemically it is nothing but 2-

hydroxy naphthoquinone. The structures of important quinonoid compounds are as follows 

(Figure 12). 
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Figure 12: Naturally occurring quinonoid compounds: Vitamin K, Desmethylbiquinone Q287 
and Embelin.88

 

Vitamin K is also one of the important compound for human beings as well as for animals which 

denotes a group of 2-methyl-naphthoquinone derivatives. They are needed for the 

posttranslational modification of certain proteins, mostly required for blood coagulation. H. 

DAM and E. A. DOISY shared the 1943 Noble Prize for medicine for their work on vitamin K. 

They found that vitamin K plays very important role in blood coagulation. They experimentally 

proved that the lack of vitamin K leads to the severe blood hemorrhage in chicken.89  
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There are some other biologically active quinonid compounds such as Trisquinones 

(Conocurvone). Conocurvone is having three quinone molecules attached with each other with 

some specific order. This compound shows exceptionally high and selective anti-HIV activity in 

a variety of cellular in vitro tests as reported. (Figure 13).90
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Trimeric naphthoquinone Conocurvone 
Figure 13: Structure of Conocurvone. 
 

Synthesis of natural derivatives of quinone as well as its new analogues could lead to a new 

source for biologically active compounds.  

O

O

O

O

Acequinocyl  
Figure 14: Structure of Acequinocyl.  
 

Acequinocyl91 was used as an insecticide in early 1940s and has a naphthoquinone structural 

framework (Figure 14). In conclusion the quinonoid compounds are very important biologically 
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active molecules and general method development for their chemical synthesis is necessary. Due 

to the polyoxygenated nature of these compounds its synthesis is a great challenge. We explored 

a new route for synthesis of key intermediates which leads to important precursors for synthesis 

of biologically active quinoniod compounds. By using photochemistry, we studied extensively 

the photoacylation of substituted 1,4-naphthoquinones with a variety of aldehydes. This novel 

method leads to an easy access for mono-acylated hydroquinone as well quinone products and is 

called Photo-FRIEDEL-CRAFTS acylation reaction. This method is regarded as an 

environmentally benign method as we use only a solution of starting materials for irradiation 

and we can reuse the solvent. In this way we can avoid the use of hazardous and 

environmentally polluting reagents which is the main aim of ‘Green and Sustainable Chemistry.’  

 

5.2 History of Photoreactions of Quinones92 
 

Photoreactions of quinones were first comprehensively studied by KLINGER in 1886. He 

irradiated a solution of 9,10-phenanthrenquinone 91 in ether using a natural sunlight (Scheme 

32). The reaction yielded photoreduced dihydroquinone 92.93  
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Scheme 32: Photoreaction by KLINGER. 
 

This photoreduction reaction increased his interest in this area and he tried to optimize 

this reaction by changing solvents. He substituted the ether solvent with acetaldehyde. He was 

astonished to see the results of this reaction. The reaction proceeded with the formation of 

monoester of phenanthrenhydroquinone in 94 in good yields.94  
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Scheme 33: Reaction of aldehyde and with phenanthrenone by KLINGER. 
 

He observed formation of monoester with both aliphatic as well as aromatic aldehydes. 

In some cases he observed formation of acylated hydroquinone as a side product.  

SCHÖNBERG et al. reported on similar photoreactions. He used cyano substituted orho-

naphthoquinones 95. His result shows that the formation of monoester product depends on the 

type of aldehyde used.95 In case of aromatic aldehydes as well as cinnamaldehyde, monoester 

products were isolated, whereas with aliphatic aldehyde such as acetaldehyde 93 and 

propanaldehyde 96 the formation of acylated hydroquinones 97 and 98 as major products was 

observed. So he concluded that the by changing substituent on the quinone moiety, partly the 

chemoselectivity can be controlled. 

95
 

O

O

NC

R H

O

OH

NC

OR

OH

+
Sunlight
benzene

97: R = Me (40%)
98: R = Et   (17%)

93: R = Me
96: R =  Et  

Scheme 34: Photoacylation of cyano-ortho-naphthoquinone by SCHÖNBERG.  
 

5.3 Mechanism for the Formation of Monoesters and Acylated Quinones 
 

The mechanistic study carried out by BRUCE et al. is very important for the understanding of the 

products formed in the course of irradiation. They carefully studied the photoinduced acylation 

of para-benzoquinone 99 with aldehyde 93.96 This reaction afforded two major products: mono-

acylated product 101 and hydroquinone 102. The minor product monoester 103 (0.6%) was also 

additionally formed in the reaction (Scheme 35). In their further experiments, they demonstrated 

that the acylated hydroquinone was unambiguously not formed from monoester via Photo-Fries 

rearrangement.97
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Scheme 35: Mechanistic study by BRUCE and CUTTS.  
 
When parallel reactions of benzoquinone were irradiated at -78°C and 15°C, both results gave 

the formation of acylated compound 101 in 72 and 76% yield. With this experiment BRUCE 

concluded that an in-cage controlled radical combination might play a minor role. To verify this 

assumption he carried out irradiation reaction of 99 and 93 in presence of scavengers 1,1-

diphenylethylene, the reaction afforded the thermally unstable trapping product 100 in 39% 

along with small amounts of 101. 

After extensively studying further reactions, BRUCE concluded that the chemoselectivity 

of the acylation of para-quinones is influenced by three main factors.98
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1. The nucleophilicity of the acyl radical99 : with decreasing nucleophilicity of the 

derived acyl radical, the formation of the monoesters becomes favorable.  

2. The redox properties of quinone100 : quinones with high reductive potential gave 

their esters. 

3. When the balance between redox properties of quinone and acyl radical are in 

favor, the thermal electron transfer (ET) can occur affording corresponding acyl 

cation and quinone radical anion which leads to the formation of monoester 

product. 

The general mechanism for the formation of monoester as well acylated hydroquinone in case of 

paraquinone is schematically represented as follows (Scheme 36): When a solution of quinone 

is irradiated in presence of aldehyde, the quinone gets excited into singlet which after inter 

system crossing (ISC), forms its triplet state, subsequent abstraction of hydrogen from the 

aldehyde leads to the formation of QH radical and acyl radical. At this stage if the radicals are 

surrounded by solvent molecules (in solvent cage), just the combination of radicals leads to the 

formation of acylated product. In another case if the radicals are not in close contact (out of 

solvent cage), the free acyl radical may attack a quinone molecule in its electronic ground state 

or undergoes electron transfer followed by recombination to the monoester. 
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Scheme 36: In-cage and out-of-cage mechanism for acylated and O-acylated product. 
 

The possibility of nucleophilic addition of acyl radical to the ground quinone yielding acylated 

quinone also can not be ruled out completely. 
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6 Results and Discussion 

6.1 Background: Photoacylation of Quinones 
 

Acylated naphthoquinone derivatives based on 5-hydroxy-1,4-naphthoquinone (Juglone) 

or Naphthazarine represent an important class of natural products.25,30, ,101 102 Due to their high 

chemical reactivity and polyoxygenated nature, most of the biologically active acylated quinones 

or hydroquinones are challenging synthetic targets. A versatile pathway for the synthesis of 

these molecules is the photochemical acylation of quinones with aldehydes. The reaction was 

also developed as an example of environmentally friendly and benign ‘Green Photochemistry’.29 

This extremely useful photoreaction was discovered by KLINGER in 1886, who exposed 

solutio

 especially 

interes

ns of the starting materials to natural sunlight over long periods of time.93,94 During the 

last few decades, a number of additional reports appeared in the literature,92,98,103 but most of the 

studies focused on unsubstituted 1,2- or 1,4-quinones.104, , ,105 106 107 In contrast, however, reports 

based on 2- or 5-substituted 1,4-naphthoquinones remained rare.92, ,108 109 In order to fill this gap, 

we have studied photochemical acylation reactions of 2-methyl-, 2-methoxy- and 5-methoxy-

1,4-naphthoquinone with different aliphatic as well as aromatic aldehydes. 

In earlier work reported by OELGEMOELLER and MATTAY,109 they were

ted in the isolation of the main products, acylated hydroquinones, which often simply 

precipitated during the reaction and were isolated by filtration.109 They did not check for any 

further products which may have remained in the reaction mixture. Therefore, main goal of the 

present study was the identification and isolation of all the products formed during the course of 

the photoacylation. For comparison, we furthermore reinvestigated some of our previously 

reported experiments.29,108,109 In order to avoid prolonged irradiation times of up to 5 days, 

which were often required for our early multigram runs, we have used more dilute solutions of 

the reactants. We have furthermore replaced the high-pressure Hg-lamp (λmax > 200 nm / 300 nm 

using quartz / Pyrex glass) with RPR 4190 Ǻ lamps (λmax = 419 ± 15 nm) fitted in a Rayonet 

photochemical chamber reactor. 1,4-Naphthoquinone and 2-methyl-1,4-naphthoquinone were 

commercially available and were used after recrystallization. 5-Methoxy-1,4-naphthoquinone 

and 2-methoxy-1,4-naphthoquinone were synthesized from the corresponding 

hydroxynaphthoquinones Juglone and Lawsone according to the method of GARDEN and 

THOMSON.110
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6.2 Photoacylations Involving 1,4-Naphthoquinone 
 

By using the modified procedure described above the 1,4-naphthoquinone 104 was 

irradiated in the presence of several aliphatic and aromatic aldehydes until GC analysis showed 

complete conversion of the quinone (Scheme 37). The reaction mixtures obtained were carefully 

separated using flash chromatography and, whenever necessary, the products were further 

purified by HPLC. In line with our earlier findings, aliphatic aldehydes only gave the acylated 

hydroquinones 106a-c in fair to good yields. 
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Scheme 37: Photoacylation reaction of 1,4-naphthoquinones with aliphatic aldehydes. 
 
Table 1: Results showing photoacylation reactions of 104a-c with 105a-c yielding products 
106a-c. 
 

Entry R-group Time (h) 106 (%) 

a (CH2)2-CH3 15 60 

b (CH2)10-CH3 12 35 

c CH-(CH3)2 12 21 
 

When a solution of 104 and aliphatic aldehyde 105a-c in benzene was irradiated at λ = 419 nm, 

the reaction yielded solely formation of acylated hydroquinone. Any other formation of products 

like monoester was not observed. In this way reaction of butyraldehyde 105a with 104 afforded 

acylated hydroquinone 106a in 60% yield. Mechanistically the formation of this product can be 

explained as follows (Scheme 38). 
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Scheme 38: In-cage mechanism for the formation of acylated hydroquinone. 
 

As discussed in the mechanism part, two different mechanisms may be considered for the mono-

acylated product formation, in-cage mechanism and out-of-cage mechanism. Certainly it is 

difficult to clearly differentiate between the mechanisms involved in the reaction. But we believe 

that in case of aliphatic aldehydes, as we observed only formation of single acylated product, 

reaction may have proceeded through in-cage way. In addition the possibility of formation of 

product via out-of-cage can not be completely ruled out.  

In contrast with aliphatic aldehydes, when acrolein was used as an aldehyde, the reaction 

proceeded with the formation monoester product 108 along with acylated product 107.  
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Scheme 39: Photoreaction of 104 with acrolein, yielding ester 107 and acylated compound 108. 
 

Following BRUCE’S suggestions (cf. Scheme 36) most probably in this case, the formed of acyl 

radical could transfer its electron to the quinone affording acyl cation and quinone radical anion, 

nucleophilic attack of quinone radical to the acyl cation takes place yielding O-acylated 

compound (monoester). In this case, out-of-cage as well as in-cage mechanisms would be 

simultaneously involved.  

In case of aromatic aldehydes such as p-CN- and p-MeO- benzaldehyde 109a and 109b, the 

acylation reaction is proceeding with high selectivity. The reaction afforded solely formation of 

acylated product 110 (Scheme 40; Table 2).  
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Scheme 40: Photoacylation of quinone 104 with aromatic aldehydes. 
 
Table 2: Photoreactions with aromatic aldehydes. 
 

Entry R-group Time (h) 110 (%) 
a CN 96 20 
b MeO 63a 25 

 a Traces of ester was observed as an impurity in NMR 
 

In case of aromatic aldehydes it was observed that the formation of photoproducts was 

slightly dependent on the para-substituents at the aromatic ring. It was observed that the reaction 

of p-methyl benzaldehyde afforded the formation of ester 114a as a side product (5%) along 

with acylated product 112a in 61% (Scheme 41; Table 3).  
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In addition, when p-chloro-benzaldehyde 111b was used as reactant, the reaction 

afforded a new product which is the bis-acylated product 113b along with formation of mono-

acylated 112b and monoester product 114b. Surprisingly in this reaction, we observed formation 

of all theoretically possible products, which indicates that in one reaction medium the respective 

products can be formed in different pathways. 
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Scheme 41: Photoacylation of 104 yielding mono-, diacylated and ester products. 
 
Table 3: Isolated yields of the acylated products. 
 

Entry R-group Time (h) 112 (%) 113 (%) 114 (%) 

a p-Me-C6H4 12 61 – 5 

b p-Cl-C6H4 12 17 11 9 

c Ph 18 34 12 – 
 

In other words, in the same reaction medium different pathways are involved affording 

products. In this particular reaction in-cage and out-of-cage reaction pathways are involved. 

BRUCE and co-workers had already reported formation of diacylated product via thermal 

oxidation/reduction equilibrium between the monoacylated product and initial quinone, followed 

by rapid, secondary acylation of the intermediately generated acylated quinone.98b MATTAY and 

co-workers also observed formation of diacylated products and they studied the photoacylation 

of 1,4-naphthoquinone with benzaldehyde carefully and concluded that bis (acylation) 
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proceeded (at least partly) by secondary photoacylation of the monoadduct and the 

corresponding aldehyde. Furthermore, it can be speculated that whether the stability or polarity 

of the intermediately formed acyl radical might play an additional role in the formation of 

bisacylated product. 29a  

With acrolein and aromatic aldehydes, the formation of the monoacylated hydroquinones 

107, 110 and 112 was still the dominant process. In case of acrolein, 4-methyl- and 4-

chlorobenzaldehyde, however, the corresponding monoesters 108, 114a, 114b were obtained in 

5-9% yield. The bisacylation products 113b and 113c were furthermore formed in significant 

yields of 11-12% during photolysis of 104 with either benzaldehyde or 4-chlorobenzaldehyde, 

respectively. The isolation of the monoesters was surprising, since 1,4-naphthoquinone was 

known to undergo C-acylation exclusively.106b In contrast, 1,4-benzoquinone often yields 

mixtures of analogue C- and O-acylation products105 and this differing behavior was explained 

on the basis of the nucleophilicity of the acyl radicals and the redox properties of the quinone 

and the acyl radicals.99,100 BRUCE and coworkers postulated that the formation of esters (O-

acylation) proceeds via an inter-molecular electron transfer (ET) from the acyl radical to the 

ground state quinone, followed by combination of the resulting ionic species and hydrogen 

scavenging.105b In contrast, TAKUWA assigned the chemoselectivity of the photoacylation of 1,2-

naphthoquinones to the nucleophilic character of the acyl radical intermediates, which decreases 

in the order of CH3Ċ=O > CH2=CHĊ=O > PhĊ=O.107f Our findings are in general agreement 

with both explanations since we observed O-acylation only for the more electrophilic acrolein 

and aromatic aldehydes. The redox potentials of aromatic acyl radicals furthermore differ by 

about 500 mV from those of their aliphatic counterparts.99 

6.3 Photoacylations Involving 5-Methoxy-1,4-Naphthoquinone 
 

We have furthermore studied photoreactions of 5-methoxy-1,4-naphthoquinone (methyl juglone) 

115 with different aliphatic and aromatic aldehydes (Scheme 43; Table 4 ). Main aim of this 

project was the identification and isolation of possible O-acylation products. The formation of 

esters was indeed observed for p-chlorobenzaldehyde. In comparison with the results obtained 

for 1,4-naphthoquinone 104 itself, aromatic aldehydes bearing an electron withdrawing group at 

the 4-position obviously ease the O-acylation pathway thus supporting BRUCE’S postulated ET 

mechanism.105b

When a solution of methyl juglone was irradiated in presence of isobutyraldehyde, p-

MeO and p-Me substituted benzaldehyde the regioselective mixture of acylated products were 

formed (Scheme 42). Due to the unsymmetrical quinone molecule two possible regioisomers are 
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expected to be formed. At this stage it is difficult to speculate the factors affecting the 

regioselectivity. It can be possible to control the regioselectivity of the photoacylation reaction, 

by using different additives and / or carrying out the reaction in confined spaces. The formation 

of two different regioisomers by photoacylation process is as follows. 

 

Regioisomer A

Regioisomer B 

O

O

OMe O

O

OMe1 * O

O

OMe3 *

hv ISC

R H

O

OH

O

OMe

R

O

+

OH

O

OMe

R

O

+

OH

OH

R

O

OMe

R H

O

O

OH

OMeO

OH

OMe

R

O

+R

O

+

OH

OH

R

OOMe

In-cage
or
Out- of-cage

In-cage
or
Out-of-cage

 
Scheme 42: Formation of regioisomers via photoacylation. 
 
Surprisingly we did not observe formation of an ester when acrolein was used as aldehdyde 

(Scheme 43; Table 4). It shows that formation of esters is depending on the nucleophilicity of 

quinone radical anion and also redox potential of quinone and aldehyde in which the thermal ET 

can take place. The photoacylation reactions of 115 with aliphatic and aromatic aldehydes 116 

are summarized in Scheme 43 and Table 4.  
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Scheme 43: Photoreaction of methyl juglone with aldehydes 116a-e. 
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Table 4: Isolated product yields for photoacylation of methyl juglone with aldehydes. 
 

Entry R-group Time (h)a 117 (%)b, c

a CH(CH3)2 15 37 

b CH=CH2 12 15 

c Ph 53 30 

d p-MeOC6H4 18 34 

e p-MeC6H4 15 66 
a Until starting material is consumed. b Regioselectivity is not determined.c Regioisomeric mixture. 

 

When a solution of methyl juglone 115 was irradiated in presence of p-CN-benzaldehyde 118, 

surprisingly only one regioisomer 119 was isolated in 12% yield along with reduced methyl 

juglone 120 in 13% (Scheme 44). It was difficult to assign the chemical structure only by using 

NMR techniques due to fact that only the position of -OMe group was altered in both 

regioisomers. After careful analysis of 2D NMR techniques the structure of hydroquinone 119 

was assigned to 3-benzoylated hydroquinone.  
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Scheme 44: Formation of only one regioisomer 119. 
 

In addition the structure of 119 was confirmed unambiguously by single crystal X-ray analysis 

(Figure 15). The phenyl ring of the benzoyl group is non–coplanar with hydroquinone moiety 

(dihedral angle 52.3o) and the methoxy group is pointing to the opposite side to the hydroxyl 

group.  
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a

b

c

O

H

N

C 
Figure 15: X-ray structure of 119. 
 

 
Figure 16: Unit cell of compound 119. 
 

When a solution of methyl juglone 115 and p-chloro-benzaldehyde 121 in benzene was 

irradiated using λ = 419 nm, the reaction afforded formation of nearly all theoretically possible 

products such as mono-acylated hydroquinone 122 in 22%, diacylated hydroquinone 123 in 7%, 

monoester 124 in 11% and reduced methyl juglone 120 in 8% (Scheme 45). The mechanism 

involved might be rationalized as follows: The monoacylated product is formed via in-cage or 

out-of-cage. As we discussed earlier the diacylated product is formed via secondary 

photoacylation in which first monoacylated product is getting oxidized and methyl juglone is 
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getting reduced. The formation of monoester proceeds via attack of methyl juglone radical anion 

to the acyl cation.  
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Scheme 45: Photoreaction of 115 with p-chloro-benzaldehyde. 
 

Surprisingly we observed only formation of only one regioisomer. For the structure 

determination we used 1D and 2D NMR techniques. The structures of the diacylated product 

123 and the ester 124 were confirmed by single crystal X-ray analysis (Figure 17). 

Unfortunately, the attempts to crystallize monoacylated product 122 failed, and therefore the 

exact position of the acyl substituent remained unsolved. 
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a

c

Cl

O

H

C  
Figure 17: X-ray structure of diacylated compound 123. 
 

 
Figure 18: Unit cell of compound 123. 
 

The ester 124 was allowed to crystallize in solution of 1:3 acetone/n-hexane for one week at +7° 

C. The X-ray structure shows that benzoate and methoxy groups are on same side. In addition an 

acetone molecule is located in vicinity to the chloro group of aromatic ring. 
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a 
b

c 

Cl
O
H
C

Figure 19: Systematic view of X-ray structure of 124. 
 

The unit cell of the ester compound 124 shows the arrangement of molecules in crystal lattice. 

The molecules are arranged in head to head arrangement in accordance with chloro group. The 

acetone molecules can be seen in the centre of two ester molecules, most probably it is having 

hydrogen bonding ‘O’ of the methoxy group. 

 

 
Figure 20: Unit cell packing of compound 124. 
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6.4 Photoacylations Involving 2-Methoxy-1,4-Naphthoquinone 
 

To avoid the formation of bisacylation products, we have selected 2-methoxy-1,4-

naphthoquinone 125 as model substrates. This compound additionally provides a convenient 

access to quinonoid antibiotics based on compound 125111 such as 2-dodecanoyl-3-hydroxy-1,4-

naphthoquinone112 (Figure 21) or pesticides such as the important acaricide Acequinocyl (Figure 

14),91 respectively. Best to our knowledge, only one brief example of a photoacylation involving 

129 has been reported so far by SCHENCK and KOLTZENBURGH.113 To fill this gap we studied 

photoacylation reactions of 2-substituted 1,4-naphthoquinones 125 and 129.  

O

O

OH

O

DHN  
Figure 21: Structure of 2-dodecanoyl-3-hydroxy-1,4-naphthoquinone (DHN).  

 

For our first test reaction we selected 2-methoxy-1,4-naphthoquinone 125. We irradiated 

a solution of 125 and butyraldehyde 105a in benzene. The reaction was continued until starting 

material was totally consumed. After purification of the crude product via column 

chromatography we isolated two products in approximately 2:1 ratio. The NMR analysis of the 

pure products revealed the isolated products are the monoacylated hydroquinone 126 in 24% 

yield and its oxidized derivative monoacylated quinone 127 in 11% yield (Scheme 46). We were 

astonished to see the acylated quinone as product pointing to the main questions: is this product 

being formed in the reaction or it is just oxidized from the primary photoproduct hydroquinone? 

If is formed via oxidation of primary photoproduct then second question is: where it got 

oxidized? The possibility of oxidation of primary photoproduct in the reaction medium is 

completely ruled out, otherwise we would have observed formation of diacylated tetra-keto 

product. We postulated that the oxidation of acylated hydroquinone is taking place during the 

work up. To confirm it, we checked the stability of acylated hydroquinone 126 in solid state as 

well as in solution. These experiments show that in solution the hydroquinone 126 remains 

stable but get easily oxidized to the corresponding quinone 127 in solid state. 
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125 105a  
Scheme 46: Photoacylation of 2-methoxy-1,4-naphthoquinone with butyraldehyde. 
 

When dodecanal 105b was used as an aldehyde, only one product was isolated in 23% 

yield. The NMR analysis shows that this compound is an acylated quinonone 128 (Scheme 47). 

Surprisingly in this reaction only the acylated quinone is formed instead of a mixture of the 

primary acylated hydroquinone and its quinone derivative. As discussed previously the quinone 

is formed by oxidation during the work up procedure. Obviously electron donating groups at the 

2-position of 1,4-naphthoquinone facilitates the aerial oxidation process.114  

125

105b

O

O

OMe

+

O

O O

OMe

128 (23%)

hv419 nm

benzene
Dodecanal

 
Scheme 47: Synthesis of quinone 128 via photoacylation. 
 

To confirm the additional effect of electron donating group at the 2-position of 

naphthoquinone, we tested some other reactions using 2-methyl-1,4-naphthoquinone 129. It will 

be really interesting to check some other reactions using different aliphatic as well as aromatic 

aldehydes. Additionally, the acylation of 129 will provide a convenient access for the synthesis 

of intermediates for biologically active compounds such as potent antimalarials ‘M5’ (Figure 

22).115

O

O

Me

CO2H

M5  
Figure 22: Structure of potent antimalarial M5. a  
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Irradiation of 2-methyl-1,4-naphthoquinone 129 with various aliphatic as well as 

aromatic aldehydes 130 gave the corresponding acylated quinones 131 in moderate yields of 23-

49% (Scheme 48; Table 5). The ‘hydroquinones’ formed initially are obviously oxidized during 

work-up. In contrast to the parent 1,4-naphthoquinone 104, no ester formation was observed. 

Thus, this method represents a highly selective pathway to 2-acyl-3-methyl-1,4-

naphthoquinones. As an exception small amounts of ester were detected as an impurity in the 

NMR when the reaction was carried out using p-MeO-benzaldehyde 130d.  

O

O

CH3

H R

O

+

O

O

R

O

CH3
hv419 nm

benzene

129 130 131  
Scheme 48: Photoacylation of 2-methyl-1,4-naphthoquinone. 
 
Table 5: Isolated yields for the photoreaction of 2-methyl-1,4-naphthoquinone 
 

Entry R-group Time (h)a 131 (%) 

a CH(CH3)2 18 36 

b C11H23 12 39 

c Ph 18 23 

d p-MeOC6H4 12 42 

e p-MeC6H4 12 35 
a Until starting material is consumed. 

 

An exceptional case was the reaction of 129 with butyraldehyde leading to the unusual 

tri-keto compound 133 in 10% yield in addition to 49% of the acylated quinone 132 (Scheme 

49).  
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Scheme 49: Photoacylation of 2-methyl-1,4-naphthoquinone 129 with butyraldehyde 105a. 
 

The formation of 133 may be best explained by the following in-cage scenario: hydrogen 

transfer from the aldehyde to the excited quinone 129* leads to the corresponding semiquinone 

radical pair A and B. Radical combination with the acyl radical followed by tautomerization and 

oxidation (in case of 132) affords the observed products 132 and 133.116 An alternative out-of-

cage attack of the acyl radical to a ground state quinone 129 would lead preferentially to the 

acylated quinone 132 via the most stable radical intermediate. The structure of 133 was 

unambiguously confirmed by 2D-NMR techniques such as 1H–1H COSY, 1H–13C HMBC and 

HSQC analysis respectively. In Figure 23, we can clearly differentiate between the signals of 

aliphatic CH2 and signal for CH2 cyclic. Two separate doublets were observed for cyclic CH2 

and respective correlation was seen in HMBC spectra.  
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Figure 23: HMBC spectra of tri-keto compound 133. 
 

Steric hindrance by the methyl group in position 2 of quinone 129 would furthermore prevent 

such an addition. Thus, the isolation of 133 suggests that an in-cage mechanism is indeed 

operating, at least in part. Further mechanistic investigations will be carried out using either 

thermally or chemically generated acyl radicals. 

 

6.5 Conclusion 
 

In conclusion, the photochemical acylation of 1,4-naphthoquinones proceeds with the 

formation of acylated hydroquinones or quinones as major products in moderate to good yields. 

In contradiction to the literature, monoesters are additionally isolated in some cases and their 

formation seems to depend on the nucleophilicity and the redox behavior of the acyl radical 

intermediates and the redox properties of the quinone. The photoacylation protocol could be 

used for the straight-forward preparation of synthetically important precursors to the quinonoid 

pharmaceuticals and agrochemicals. 
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7 Summary 
 

The central theme of the research presented in this thesis is dealing with the use of photochemical 

irradiation methods for the synthesis of cyclic organic compounds as well as synthesis of acylated 

quinones.  

 

Photochemical methods are environmentally benign methods, by making use of these methods we 

can carry out synthesis of organic compounds in an environmentally friendly manner.  

 

The photochemical irradiation of cylcopropyl silyl ether offered an anthracenoid compound 81 in 

one step in a stereoselective manner.  

 

O
H

H

OSiMe3

n( ) n( )

60: n = 1
61: n = 2

81: n = 1 (20%)
82: n = 2 (11%)

PET

 
cf. Scheme 27: Photoinduced electron transfer reaction of 60 and 61. 

 

The formation of cis products is the specialty of the photoinduced reaction. In most of the cases it is 

observed that the cyclization proceeds always with the formation of cis cyclized products. The 

reaction also proceeds smoothly when seven membered cyclopropyl ether 61 was used. In above 

cases, the ring opening of cyclopropane takes place affording an exocyclic radical which cyclizes 

with aryl moiety affording fully cyclized thermally favorable product.  

 

In case of an alkene tether, the reaction followed through the formation of an endocyclic 

radical, which undergoes 1,5-exo-trig mode of cyclization, yielding cis fused bicyclic [5.3.0] 

compounds 86 and 87. 
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66: R = H
80: R = Me

OSiMe3

R

O H

H

R

86: R = H (10%)
87: R = Me (14%)

PET

 
cf. Scheme 30: Synthesis of cis fused bicyclic ketones 86 and 87. 

 

In order to check the possibility of an endo cyclization we substituted the side chain with a methyl 

group, which should increase the steric hindrance of the corresponding 6-exo attack. However, even 

in this case (80) we did not observe formation of an endo-cyclized product.  

 

The PET reaction of cyclopropane 74 yields entirely bicyclooctanone derivative 88 along with 

minor traces of compound 89. The endocyclic cyclopropane ring opening followed by 1,5-exo 

cyclization forms the bicyclic compound with α-keto radical, instead of getting cyclized to 89 the 

radical intermediate after proton transfer forms the compound 88 in 31%. 

OSiMe3

74

PET H

O

H

O

+

88 (31%) 89 (Traces)  
cf. Scheme 31: Cylization of cyclopropane 74. 

 

Compound 89 can be detected only as an impurity in the NMR. About stereochemistry: as observed 

previously only cis ring fused product was isolated.  

In contrast, the PET reaction of substituted cyclopentane derivative afforded solely non-cyclized 

product. The reaction proceeds with the endocyclic cyclopropane ring opening yielding β-keto 

radical, which after H-transfer forms mono-substituted cyclohexanone 83.  
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OSiMe3

+
OO

51 83 (8%) 84 (12%)

PET

 
cf. Scheme 28: PET reaction of cyclopropane 51. 

In addition to this the radical intermediate after loss of hydrogen afforded substituted the 

cyclohexenone 84. Eventually the formation of a fully cyclized more strained compound is 

thermodynamically unfavored. 

 

In conclusion, various new ring-fused cyclopropyl silyl ethers with benzylic, olefinic or acetylenic 

side chains have been synthesized in good yields. We have also been able to demonstrate that the 

PET induced ring opening of cyclopropyl silyl ethers is quite suitable for the production of 

polycylic compounds with high stereoselectivity. This method can be used as an alternative for the 

synthesis of fused cyclic compounds. In some cases ring enlarged products were isolated indicating 

that this method is suitable for the production of 4-substituted cyclohexanone and cyclohexenone 

derivatives. 

 

Photoacylation of quinones with aldehydes leads to a new alternative method for ‘FRIEDEL-

CRAFTS’ acylation reaction. In order to generalize this reaction variety of aldehyde quinone pairs 

were studied in great detail. Aromatic as well as aliphatic aldehydes were used for such reactions. 

The reaction of 1,4-naphthoquinone with aliphatic aldehydes afforded entirely mono-acylated 

products. In case of acrolein we observed formation of an ester product. This was first surprise to 

us. In literature it is known that the 1,4-naphoquinones never afford esters.  
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Scheme 50: Summary of photoacylation reaction of 1,4-naphthoquinone. 
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Table 6: Summary of photoacylation reaction of 1,4-naphthoquinone. 
 

Aldehydes (R) A (Yield) B (Yield) C (Yield)

 CH(CH3)2  21% – – 

 (CH2)10-CH3  35% – – 

 (CH2)2-CH3 60% – – 

 CH=CH2 18% – 7% 

 Ph 34% 12% – 

 p-MeO-C6H4 25% – – 

 p-CN-C6H4 20% – – 

 p-Cl-C6H4 17% 11% 9% 

 p-Me-C6H4 61% – 5% 

 

In case of aromatic aldehydes the formation of acylated products were observed as well. In case of 

p-Cl-benzaldehyde, a diacylated product was isolated along with ester formation. With of p-Me-

benzaldehyde the formation of a mono-acylated product is still the dominant process over ester 

formation. 

In case of 2-methoxy-1,4-naphthoquinone, formation of acylated quinone was observed in 

addition to the acylated hydroquionone. This method provides an easy access to the synthesis of 

acylated quinonoid compounds. 
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Scheme 51: Summary of photoacylation reaction of 2-methoxy-1,4-naphthoquinone 
 
Table 7: Summary of photoacylation reaction of 2-methoxy-1,4-naphthoquinone. 
 

Aldehyde (R) D (Yield) E (Yield) 

(CH2)2-CH3 24% 11% 

(CH2)10-CH3 – 23% 

 

In the above case we neither isolated a diacylated product nor an ester. Probably, the presence of 

the methoxy group prevents the bisacylation reaction and, in addition, it facilitates the formation of 

the acylated quinone. 
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Scheme 52: Summary of photoacylation reaction of 2-methyl-1,4-naphthoquinone. 
 
Table 8: Summary of photoacylation reaction of 2-methyl-1,4-naphthoquinone. 
 

Aldehyde (R) F (Yield) 
Ph 23% 

p-Me-C6H4 35% 

p-MeO-C6H4 42% 

CH(CH3)2 36% 
 

In case of 2-methyl-1,4-naphthoquinone, it was expected that there will be no formation of 

diacylated products and esters. In addition the reaction was expected to yield only acylated 

quinones instead of acylated hydroquinones, due to the presence of methyl group. The reaction 

went well as expected and only acylated quinone products were isolated.  

The reaction entirely afforded the formation of acylated quinone as a sole product when 

aliphatic and aromatic aldehydes were used. This method gives an easy access to the synthesis of 

acylated quinones. 

Surprisingly, the reaction with butyraldehyde afforded the unusual tri-keto compound 133 

along with the acylated quinone. This gives some information about mechanisms involved in the 

reaction.  
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cf. Scheme 49: Photoacylation of 2-methyl-1,4-naphthoquinone 129 with butyraldehyde 105a. 

In summary, photochemical reactions can be a good alternative for the synthesis of acylated 

quinonones and acylated hydroquinones. Certainly, by using this method the synthesis of key 

intermediates for total synthesis of biologically active quinonoid compounds can be carried out. 
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8 Experimental 

8.1 General Methods and Instruments  
 

• Thin Layer Chromatography (TLC) 

Silica gel coated on aluminum plate with florescent indicator form Merck silica gel size 

60, F254, layer thickness 0.25 mm and Macherey & Nagel SIL G/UV254.  

Aluminiumoxide coated on aluminum plate (0.20 mm with fluorescent indicator) from 

Macherey & Nagel ALOX N/UV254. 

Detection: UV-Lampe, Desaga 360/254 nm, Heidelberg; Iodide chamber and ethanolic 

solution of  molybdatephosphoric acid (20%) and after heating with hot gun. 

 

• Column Chromatography  

Silica gel MN-60 (Mesh size 40-63 µm and 63-200 µm) from Macherey & 

Nagel, Nagel & Co., Düren, Germany. 

Aluminiumoxide (AlxOy)-neutral (Mesh Size 50-200 µm, Activity 1) from Macherey & 

Nagel, Nagel & Co., Düren, Germany. 

 

• Analytical Gas Chromatography (GC) 

Shimadzu GC-17A: Application software Version 3.2 with software Class VP 4.2, 

Shimadzu AOC-20i Auto injector and Shimadzu GC-2010 with application software 

GC-solution 2.10.00 (2001), Shimadzu AOC-20i Auto injector. 

Capillary Column: 

GC-17A: Hewlett-Packard 2 (Length: 25 m, Inner diameter 0.2 mm, Thickness 0.33 µm) 

GC-2010: Hewlett-Packard 5 MS (Length: 25 m, Inner diameter 0.2 mm and thickness 

0.33 µm). 

Flow gas: Nitrogen with pressure 1.0 bar.  

Constant Temperatures: Detector Temperature: 300°C and Injector Temperature: 280°C. 

Variable Column Temperature Program Methods 

Method 1: Temperature program: from 50°C with 5°C/min to 80°C and then 10°C/min to 

280°C and wait at 280°C for 4 minutes. Total rum time 30 minutes. 

Method 2: Temperature program: At 75°C wait for 5 minutes, then with 10°C/min to 

280°C and wait for 4.5 minutes at  280°C. Total run time 30 minutes. 
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Method 3: Temperature program: Start at 150°C with 10°C/min to 280°C and wait at 

280°C for 17 minutes. Total run time 30 minutes. 

• Preparative Gas Chromatography (prep GC) 

Instrument: Hewlett-Packard Gas chromatography 5890 Series-II with automatic fraction 

collector and automatic sample injector Hewlett- Packard 7673. 

Capillary Column: Hewlett-Packard HP5 (Length: 30 m, Inner diameter: 0.53 mm, 

thickness: 50 µm). Flow gas: hydrogen with pressure 0.4-0.5 bar. 

Coolant for fraction collector: Liquid nitrogen. 

 

• Analytical GC/MS 

Instrument: Shimadzu GC-17A/MS QP 5050A with software Class 5000 V 2.0 and 

LabSolutions GCMSsolution V 1.02 from Shimadzu. The measurement with chemical 

ionization (CI-mode) was carried out by using Isobutane as a CI-Gas, and for electronic 

ionization (EI-mode) was carried out using Ionic charge of 70 eV.  

Capilary column: Hewlett-Packard 5MS (Length: 25 m, Inner diameter: 0.2 mm, 

Thickness: 0.33µm). Flow gas: Helium with pressure: 0.95 bar. 

Temperature programme: 

Constant Temperatures: Detector Temperature: 300°C and Injector Temperature: 280°C. 

Variable Column Temperature Program Methods: 

Method 1: Temperature from 50°C with 5°C/min to 80°C, then with 10 °C/min to 280°C 

and wait for 4 minutes at 280°C. Total rum time: 30 minutes. 

Method 2: Temperature program: At 75°C wait for 5 minutes, then 10°C/min to 280°C 

and wait for 4.5 minutes at 280°C. Total run time 30 minutes. 

Method 3: Temperature program: From 150°C with 10°C/min to 280 °C and then wait at 

280°C for 17 minutes. Total run time: 30 minutes. 

 

• HPLC  

Pump: Merk Hitachi, L-6250 

Detector: Merk Hitachi, UV-Vis, LaChrom L-7420 

Normal Column: Merck LiChrospher Si 60 with precolumn Merck LiChrospher Si 60. 

 

• IR Spectroscopy 

Perkin-Elmer Gitter-IR-Spekrometer 841 oder FT-IR ATI Matson Genesis Series. 
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Sample measurements: The liquid samples are used as it is for the IR measurements and 

a thin film was obtained by dropping liquid sample on a NaCl plate. The IR spectra for 

solid sample were reported using its KBr window. The IR absorption bands were 

measured in wave numbers (
~
ν ) in cm-1. 

 

• Nuclear Magnetic Resonance Spectroscopy (NMR) 
1H NMR 

Instruments: Bruker AM 250 (250.133 MHz), DRX 500 (500.132 MHz), with internal 

standard: CDCl3 (7.24 ppm), DMSO-d6 (2.49 ppm), CD2Cl2 (5.32ppm) and acetone-d6 

(2.05 ppm).  

Measurement temperature: 300 K. 

The chemical shifts (δ) are given in ppm and are uncorrected. The coupling constants (J) 

are given in Hz. The multiplicity of signals are given in are as follows: s = Singlet, d = 

doublet, t = triplet, q = quartet and m = multiplate. 
13C NMR 

Instrument: Bruker AM 250 (62.896 MHz) and DRX 500 (125.772 MHz), internal 

standard: CDCl3 (77.0 ppm), DMSO-d6 (39.50 ppm), CD2Cl2 (53.5 ppm) and acetone-d6 

(29.8 ppm) 

Measurement temperature: 300 K. 

Sample preparation for 1D and 2D NMR spectroscopy 

Organic compounds (7-21 mg) were dissolved in deutorated solvents in a NMR tube and 

submitted for analysis. For 2D NMR analysis such as 1H-1H COSY, HMBC, HSQC, 

NOE, NOESY, the NMR tube containing dissolved product was flushed with argon gas 

for removal of oxygen and immediately sample was submitted for analysis. For 

evaluation of 1D NMR spectrum, Bruker 1D NMR software program was used. 2D 

NMR spectra were further evaluated using software program Bruker X-Win NMR 

version 2.6 and 3.1 and print out were made using Bruker X-Win NMR plot 2.6.  

 

• Kugelrohr Distillation 

Kugelrohr distillation was carried out using instruments Büchi GKR 5. The rotating 

round flasks were cooled using dry ice. 
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• Solvents 

Acetone, Benzene, Chloroform, Dichloromethane, Ethanol, Methanol and i-Propanol 

were purchased as an Analytical Grade reagent form Baker chemicals and was used for 

reactions without further purification. 

Acetonitrile (Analytical Grade) was stored over the 4 Å molecular sieves under argon 

atmosphere and used for the photochemical reactions. 

Ethyl acetate, cyclohexane, diethyl ether n-pentane, dichloromethane were received as 

technical grade and used for the extraction of reaction mixture after distillation.  

Ethyl acetate used for column chromatography was filtered through column of aluminum 

oxide after distillation. 

Dry THF prepared by first distillation over KOH, and then again distilled over LiAlH4 

under argon atmosphere using triphenyl methane as an indicator.  

Dry diethyl ether was prepared by first distilling over KOH and then again distilled over 

LiAlH4, under argon atmosphere. 

 

• Mass Spectrometry 

Instrument: Micromass VG Autospec X oder Bruker FT-ICR APEX III (7.0 T). 

Mass spectroscopic measurements were carried out using EI and CI standard sources. In 

EI mode using 8 kV and CI mode 6kV ions were accelerated. The software program used 

was OPUS software Version 3.6 from Micromass (1998).  

 

• Photochemical Reaction 

Photoreactor: Rayonet Chamber RPR-100, by Southern New England Ultraviolet 

Company, Brandford, USA with in build “Merry-Go-Round”. In this photoreactor, we 

can irradiate all the reaction tubes at the same conditions. This reactor is ventilated in 

such a way that the internal temperature of the reactions remains constant between 35-

37°C. 

Light Sources: 16 tube lamps RPR-4190Å (Emax ~ 419 nm, Pyrex irradiation tubes used). 

 

• Melting point 

Instruement: Büchi B-540 (< 100 °C ± 0.3°C, < 250°C ± 0.5°C, < 400°C ± 0.8°C) 

All given melting points are uncorrected. 
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• Ultrasonic bath 

Ultraschallbad (ultrasonic bath) Bandelin Sonorex Super RK 255 H, from. Bandelin, 

Berlin, Germany. 

 

 

• UV/VIS-Spectroscopy 

Instrument: Perkin-Elmer UV/VIS-Spektrometer Lambda 40 with software program 

WinLab Version 2.70.01 and WinLab Version 1.1 (1997) from. Perkin-Elmer Co. 
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8.2 General Procedures 

8.2.1 General Procedure A: Synthesis of silyl enol ethers with CuI mediated 1,4-
addition on enones. 

 

To a stirred suspension of magnesium metal (Mg), catalytic amount of iodine crystals and dry 

THF/diethyl ether (1:1 by volume) were added corresponding bromide or chloride (1.2 eq.) in 

such that the solution was slightly boiling, after addition the solution was heated under reflux for 

1h. This GR was added to the previously cooled suspension of CuI (1eq.) in THF. The reaction 

temperature was maintained 0 °C for 10 min and then cooled to –78 °C by using dry ice-acetone 

bath. The solution of corresponding enones and TMS-Cl in dry THF were added dropwise and 

stirred for 3 h. Triethyl amine was added and reaction mixture was brought to room temperature 

(RT), reaction was monitored by GC-MS. Solvents were removed under high vacuum; n-

pentane was added and the mixture was quickly filtered. The solvent was evaporated under 

reduced pressure and the crude product was used immediately for the next reaction. 

 

8.2.2 General procedure B: Synthesis of silyl enol ether by LDA 
 

The solution of diisopropyl amine in dry THF was placed in an oven dried apparatus under 

argon atmosphere and cooled to 0 °C. n-BuLi (1.6 M in hexane) were added dropwise, the 

stirring was continued for next 25 min and the reaction mixture was cooled to –78 °C using dry 

ice-acetone bath, followed by addition of respective enones in dry THF. The solution was stirred 

for 1 h and neat TMS-Cl was added. The solution was brought to RT and stirred for an 

additional hour at this temperature (monitored by GC-MS). After removal of solvent under 

reduced pressure, the residue was diluted with n-pentane. The precipitate of lithium chloride was 

removed by filtration; the solvent was removed under vacuum. The product was used 

immediately for next reaction. 

 

8.2.3 General procedure C: Cyclopropanation of silyl enol ethers  
 
The respective silyl enol ether was placed in dry apparatus under argon atmosphere, dry 

dichloromethane was added. The solution was cooled to 0° C using ice bath, diethyl zinc (1.0 M 

in hexane) was added. After stirring for 10 min, the solution of diiodomethane in dry THF was 

added dropwise, the reaction mixture was warmed to RT and stirred for 2−24 h. The conversion 

was monitored by Gas Chromatography (GC), after complete consumption of starting material; 
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the solution was carefully washed with saturated aqueous ice-cold solution of ammonium 

chloride until complete dissolution of zinc salt. The aqueous phase was separated and extracted 

two times with diethyl ether; collective organic layers were washed with water and dried over 

sodium sulphate. The solvent was evaporated and the residue was purified with kugelrohr 

distillation. 

 

8.2.4 General procedure D: PET oxidative reaction 
 

The solution of cyclopropyl silyl ether and PET sensitizer DCA in dry acetonitrile was placed 

into a dry Pyrex tubes (diameter 12 mm, length 20 cm, capacity 12 mL). Flushed with argon for 

25 min and irradiated for 12−24 h using 419 nm lamps. After complete consumption of starting 

material (monitored by GC and GC-MS), solvent removed under vacuum and the residue was 

purified by silica gel column chromatography (EtOAc/Cyclohexane ). 

 

8.2.5 General Procedure E: Synthesis of 3-substituted enones by reaction of 
vinylogous ester with GR 

 

The GR was prepared analogously to the general procedure A, under argon atmosphere, the 

vinylogous ester in dry THF was added dropwise to the solution of GR at 0 °C. After addition, 

the reaction mixture was brought to RT and stirred for additional hour. Water was added and 

reaction mixture was acidified with dilute HCl, solution was stirred for next 1 h. The ether phase 

was separated and aqueous phase was extracted with ether. The collective ether phases were 

washed with aq. NaHCO3,, brine and dried over Na2SO4, concentrated under reduced pressure. 

The residue was purified by silica gel column chromatography (EtOAc/cyclohexane). 
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8.3 Synthesis of Silyl Enol Ethers 

8.3.1 Synthesis of 3-benzyl-1-trimethylsilyloxylcyclopent-1-ene (56)d  
OSiMe3

Molecular Formula: C15H22OSi
Molecular Weight:    246.42
Exact Mass:               246.1439

 
Following general procedure A, Cyclopentenone 53 (820 mg, 10 mmol) was treated with GR 

prepared from benzyl chloride (2.9 mL, 25 mmol) and Mg turnings (610 mg, 25 mmol) in 

presence of CuI (1.90 g, 10 mmol) and TMS-Cl (1.5 mL, 12 mmol), gave silyl enol ether 56 

(1.254 g, 70%).  

GC-MS (EI, 70 eV): m/z (%) = 246 (1), 155 (100), 139 (4.5), 115 (1), 91 (6) 75 (10). 

8.3.2 Synthesis of 3-benzyl-1-trimethylsilyloxylcyclohex-1-ene (57) 
OSiMe3

Molecular Formula: C16H24OSi
Molecular Weight:    260.45
Exact Mass:               260.1596

Following General procedure A, Cyclohexenone 54 (1.705 g, 17.77 mmol) was treated with GR 

prepared from benzyl chloride (5.1 mL, 44.7 mmol) and Mg turnings (911 mg, 37.3 mmol) in 

presence of CuI (3.376 g, 17.7 mmol) and TMS-Cl (2.2 mL, 17.7 mmol), gave 57 (3.755 g, 

77%).  

GC-MS (EI, 70 eV): m/z (%) = 260 (1), 245 (6), 169 (100), 153 (4), 139 (1), 128 (2), 115 (4), 

91 (31), 75 (32), 65 (14). 

 

8.3.3 Synthesis of 3-benzyl-1-trimethylsilyloxylcyclohept-1-ene (58) 
OSiMe3

Molecular Formula: C17H26OSi
Molecular Weight:    274.48
Exact Mass:               274.1752

 
Following General procedure A, Cycloheptenone 55 (550 mg, 5 mmol) was treated with GR 

prepared form benzyl chloride (1.4 mL, 12.5 mmol) and Mg turnings (305 mg, 12.5 mmol) in 

presence of CuI (950 mg, 5 mmol) and TMS-Cl (0.8 mL, 6 mmol), gave 58 (150 mg, 70%).  

GC-MS (EI, 70 eV): m/z (%) = 274 (1), 184 (100), 167 (2), 141 (1), 115 (1.4), 103 (1), 91 (9), 

73 (56). 
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8.3.4 Synthesis of 3-propargyl-1-trimethylsililoxylcyclohex-1-ene (63) 
OSiMe3

Molecular Formula: C12H20OSi
Molecular Weight:    208.38
Exact Mass:               208.1283  

To a stirred solution of 54 (145 mg, 1.5 mmol) in dry THF (3 mL) were added successfully 

dimethyl sulfide (0.1 mL, 1.95 mmol) and TMSOTf (366 mg, 1.65 mmol) at –78 °C under a 

argon atmosphere. After 10 min, organoindium reagent generated in situ from indium metal 

(344 mg, 1.65 mmol) and propargyl bromide (0.55 mL, 4.7 mmol) in THF at room temp was 

added and mixture was stirred at –78 °C for 30 min. The reaction mixture was quenched with 

saturated aqueous solution of NaHCO3. The aqueous layer was extracted with ether (3 × 25 mL) 

and combined organic layers were washed with water, brine and dried with sodium sulphate, 

filtered and concentrated under reduced pressure, gave 63 (204 mg, 65%).  

GC-MS (EI, 70 eV) ): m/z (%) = 208 (M+, 1), 168 (41), 150 (2), 110 (1), 96 (1), 78 (3), 72 

(100), 61 (3), 44 (22). 

8.3.5 Synthesis of 3-(but-3-enyl)-1-trimethylsilyloxylcyclohex-1-ene (65)b  
OSiMe3

Molecular Formula: C13H24OSi
Molecular Weight:    224.42
Exact Mass:               224.1596

 
Following general procedure A, 54 (960 mg, 10 mmol) was treated with GR prepared from 1-

bromo-3-butene (2.970 g, 22 mmol) and Mg turnings (536 mg, 22 mmol) in presence of CuI 

(1.90 g, 10 mmol) and TMS-Cl (2.8 mL, 22 mmol ), gave silyl enol ether 65 (1.20 g, 54%).  

GC-MS (EI, 70 eV): m/z (%) = 224 (M+, 2), 170 (26), 152 (12), 136 (2), 114 (4), 100 (19). 
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8.3.6 Synthesis of 3-(2-phenylethyl)-1-trimethylsilyloxylcyclohex-1-ene (69) 

Me3SiO
Molecular Formula: C17H26OSi
Molecular Weight:    274.48
Exact Mass:               274.1752

 
Solution of 2-phenyl-1-iodo ethane 68 (1.919 g, 8.27 mmol) was placed in a dry apparatus 

equipped with argon balloon, magnetic needle and septum 15 mL dry  

n- pentane/diethyl ether (3:2 by volume) was added. The solution was cooled to –78 °C by using 

dry ice-acetone bath, the stirrer was started and solution of t-BuLi (1.160 g, 18.2 mmol) in n-

pentane was then added dropwise via argon flushed syringe. Stirring was then continued at –78 

°C for additional 5 min, the cooling bath was then removed and mixture was allowed to warm 

and stand at RT for 1h to consume the unreacted t-BuLi. The mixture was then added dropwise 

to a solution of CuI (826 mg, 4.35 mmol) in dry diethyl ether at 0 °C, stirring was continued for 

10 min and then solution was cooled to  

– 78 °C. The solution of cyclohexenone 54 (391 mg, 4.35 mmol) and TMS-Cl (0.8 mL, 

6.525 mmol) were added via syringe. Reaction was monitored by GC and workedup as reported 

in general procedure A, gave silyl enol ether 69 (692 mg, 62%).  

GC-MS (EI, 70 eV): m/z (%) = 274 (M+, 1), 183 (100), 156 (2), 144 (5), 129 (6), 117 (2), 105 

(3), 91 (13), 85 (2), 73 (59). 
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8.3.7 Synthesis of 6-benzyl-1-trimethylsilyloxyl-1,6-cycloheptadiene (73) 
OSiMe3

Molecular Formula: C17H24OSi
Molecular Weight:    272.46
Exact Mass:               272.1596  

Following general procedure B, Enone 72 (70 mg, 0.35mmol) was treated with LDA prepared 

from diisopropyl amine and (42 mg, 0.42 mmol) and n-Butyllithium (0.3 mL, 0.38 mmol) in 

presence of TMS-Cl (0.06 mL, 0.52 mmol). Gave enol ether 73 (85 mg, 90%).  

GC-MS (EI, 70 eV): m/z (%) = 272 (M+, 52), 257 (17), 181 (9), 165 (13), 153 (9), 141 (3), 128 

(3), 115 (4), 91 (35), 73 (100). 

 

8.3.8 Synthesis of 3-methyl-3-(3-methylbut-3-enyl)-1-trimethylsilyloxylcyclohex-1-
ene (76) 

OSiMe3

Molecular Formula: C15H28OSi
Molecular Weight:    252.47
Exact Mass:               252.1909

 
CuI (695 mg, 3.698 mmol) was taken in a dry 25 mL round bottom flask; 10 mL of dry diethyl 

ether was added and solution was cooled to 0 °C using ice bath and MeLi (168 mg, 7.681 mol) 

was added. The stirring was continued for additional 10 min and then solution was cooled to –78 

°C using dry ice acetone bath. The solution of 54 (500 mg, 3.048 mmol) and TMS-Cl (0.6 mL, 

6.096 mmol) in 5 mL dry diethyl ether was added via syringe. The reaction was monitored by 

GC and reaction mixture was worked up using general procedure A, gave silyl enol ether 76 

(570 mg, 75%).  

GC-MS (EI, 70 eV): m/z (%) = 252 (M+, 1), 237 (4), 183 (100), 170 (6), 162 (2), 118 (2), 105 

(3), 91 (5), 73 (80). 
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8.3.9 Synthesis of 3-(3-methylbut-3-enyl)-1-trimethylsilyloxylcyclohex-1-ene (79) 
OSiMe3

Molecular Formula: C14H26OSi
Molecular Weight:    238.45
Exact Mass:               238.1752

Following general procedure A: 54 was treated with GR prepared form 4-bromo-2-methyl-1-

butene (5.02 g, 33.7 mmol) and Mg turnings (720 mg, 30 mmol) in presence of CuI (2.850 g, 

15 mmol) and TMS-Cl (2.3 mL, 18 mmol), gave enol ether 79 (2.80 g, 83%).  

GC-MS (EI, 70 eV): m/z (%) = 238 (1), 182 (52), 170 (8), 147 (8), 105 (4), 73 (100), 52 (2) 

 

8.4 Synthesis of Cyclopropyl Silyl Ethers 

8.4.1 Synthesis of 4-benzyl-1-trimethylsilyloxylbicyclo[3.1.0]hexane (59)d 
OSiMe3

Molecular Formula: C16H24OSi
Molecular Weight:     260.45
Exact Mass:               260.159644

 
Following gerneral procedure C; To a stirred solution of silyl enol ether 56 (2.429 g, 

9.87 mmol) in 10 mL dichloromethane, was added diethyl zinc (30.2 mL, 23.6 mmol). Solution 

was cooled to 0 °C using ice bath and neat CH2I2 (3.277 g, 12.2 mmol) was added dropwise over 

a period of 15 min, reaction mixture was brought to RT and stirred for 12 h. Reaction was 

monitored by GC and usual workup gave 59 (1.90 g, 74%) as colorless oil.  

GC-MS (EI, 70 eV) ): m/z (%) = 260 (M+, 2), 245 (4), 231 (6), 169 (98), 142 (10), 127 (11), 103 

(91), 79 (17), 73 (100). 
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8.4.2 Synthesis of 4-benzyl-1-trimethylsilyloxylbicyclo[4.1.0]heptane (60) 
OSiMe3

Molecular Formula: C17H26OSi
Molecular Weight:    274.48
Exact Mass:               274.1752

Following general procedure C, To a stirred solution of silyl enol ether 57 (1.49 g, 5.38 mmol) 

in 5 mL dichloromethane, was added diethyl zinc (14.4 mL, 11.3 mmol). Solution was cooled to 

0° C using ice bath and neat CH2I2 (2.821 g, 10.56 mmol) was added dropwise over a period of 

15 min, reaction mixture was brought to RT and stirred for 12 h and usual workup gave 60 

(980 mg, 66%) as colorless oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 0.15 (9H, s), 0.30 (1H, dd, J = 5.6, 5.6 Hz), 0.83 − 0.89 (1H, 

m), 0.90 − 0.99 (3H, m), 1.55 − 1.64 (1H, m), 1.65 − 1.75 (2H, m), 1.84 (1H, ddd, J = 5.0, 13.8, 

5.6 Hz), 2.18 (1H, dd, J = 3.7, 13.2 Hz), 2.70 (1H, dd, J = 7.8, 8.0 Hz), 2.81 (1H, dd, J = 7.5, 

7.5 Hz), 7.19 (3H, dd, J = 7.5, 7.5 Hz), 7.27 (2H, dd, J = 8.1, 6.9 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 1.40 (CH3), 19.00 (CH2), 21.00 (CH2), 24.29 (CH), 26.88 

(CH2), 31.98 (CH2), 39.64 (CH), 44.35 (CH2), 57.41 (Cq), 125.72 (CH), 128.14 (Cq), 128.96 

(CH), 140.00 (CH) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 274 (M+, 1), 259 (3), 246 (5), 245 (2), 231 (9), 185 (10), 184 

(60), 183 (100), 169 (11), 156 (15), 155 (26), 142 (13), 130 (17), 129 (9), 93 (13), 91 (25). 

IR (neat): =
~
ν 2928, 2862, 1704, 1453 cm-1. 
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8.4.3 Synthesis of 4-benzyl-1-trimethylsilyloxylbicyclo[5.1.0]octane (61) 
OSiMe3

Molecular Formula: C18H28OSi
Molecular Weight:    288.51
Exact Mass:               288.1909  

Following general procedure C, To a stirred solution of silyl enol ether 58 (1.37 g, 5 mmol) in 

5 mL dichloromethane, was added diethyl zinc (14.4 mL, 11.3 mmol). Solution was cooled to 0 

°C using ice bath and neat CH2I2 (1.53 g, 5.629 mmol) was added dropwise over a period of 15 

min, reaction mixture was brought to RT and stirred for 12 h, usual workup gave 61 (1.0 g, 

70%) as a colorless oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 0.05 (9H, s), 0.25 (1H, m), 0.50 − 0.70 (1H, m), 0.94 (2H, dd, 

J = 4.3, 2.5 Hz), 1.03 (2H, dd, J = 10.6, 10.6 Hz), 1.49 − 1.60 (2H, m), 1.63 − 1.77 (1H, m), 

1.88 (1H, d, J = 13.8 Hz), 2.10 − 2.25 (2H, dm, J = 14.4 Hz), 2.40 (1H, dd, J = 8.1, 8.1 Hz), 

2.56 (1H, dd, J = 6.9, 6.9 Hz), 7.15 (3H, ddd, J = 1.2, 4.3, 6.2 Hz), 7.25 (2H, dd, J = 7.5, 

8.7 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 1.20 (CH3), 24.97 (CH), 28.09 (CH2), 31.78 (CH2), 38.34 

(CH), 38.86 (CH2), 43.12 (CH2), 44.48 (CH2), 69.65 (Cq), 125.64 (CH), 128.14 (CH), 129.32 

(CH), 141.32 (Cq) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 288 (M+, 3), 273 (3), 259 (6), 231 (5), 197 (71), 184 (12), 170 

(39), 157 (26), 144 (29), 130 (11), 114 (5), 91 (23), 73 (100).  

IR (neat): =
~
ν 2932, 2368, 2344, 1702, 1456 cm-1. 

HRMS (EI+): found m/z 288.19093, calcd for C18H28OSi M+ 288.19094. 
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8.4.4 Synthesis of 4-(prop-2-ynyl)-1-trimethylsilyloxylbicyclo[4.1.0]heptane (64) 
OSiMe3

Molecular Formula: C13H22OSi
Molecular Weight:    222.40
Exact Mass:               222.1439  

Following general procedure C, To a stirred solution of silyl enol ether 63 (150 mg, 

0.433 mmol) in 2 mL dichloromethane, was added diethyl zinc (2.2 mL, 1.03 mmol). Solution 

was cooled to 0°C using ice bath and neat CH2I2 (211 mg, 0.793 mmol) was added dropwise 

over a period of 15 min, reaction mixture was brought to RT and stirred for 2 days, usual 

workup gave 64 (120 mg, 75%) as colourless oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 0.13 (3H, s), 0.18 (6H, s), 0.82 − 0.93 (1H, m), 1.15 − 1.35 

(2H, m), 1.68 − 1.78 (3H, m), 1.90 − 1.99 (3H, m), 2.12 (2H, tt), 2.20 − 2.30 (2H, m) ppm.  
13C NMR (125 MHz, CDCl3): δ = 0.90 (Si-(CH3)3), 22.08 (CH2), 22.58 (CH2), 25.00 (CH2), 

35.18 (CH2), 33.41 (CH), 33.99 (CH), 38.04 (CH), 69.21 (Cq), 84.10 (Cq) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 222 (M+, 1), 206 (7), 154 (2), 131 (3), 116 (2), 93 (5), 77 (2), 72 

(100). 

IR (neat): =
~
ν 2929, 2866, 1715, 1686 cm-1. 

8.4.5 Synthesis of 4-(but-3-enyl)-1-trimethylsilyloxylbicyclo[4.1.0]heptane (66)b  
OSiMe3

Molecular Formula: C14H26OSi
Molecular Weight:    238.45
Exact Mass:               238.1752

 
Following general procedure C; To a stirred solution of silyl enol ether 65 (223 mg, 1 mmol) in 

2 mL dichloromethane, was added diethyl zinc (2.9 mL, 2.32 mmol). Solution was cooled to 0° 

C using ice bath and neat CH2I2 (264 mg, 0.9 mmol) was added dropwise over a period of 15 

min, reaction mixture was brought to RT and stirred for 2 days, usual workup gave 66 (200 mg, 

84%) as a colorless oil.  

GC-MS (EI, 70 eV): m/z (%) = 238 (M+, 2), 194 (8), 183(9), 166 (3), 155 (3), 142 (3), 132 (2), 

126 (4), 114 (3), 104 (2), 90 (5), 74 (30), 72 (100), 67 (6), 59 (5), 44 (14). 
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8.4.6 Synthesis of 4-(2-phenylethyl)-1-trimethylsilyloxylcyclohex-1-ene (70) 

Me3SiO

Molecular Formula: C18H28OSi
Molecular Weight:    288.51
Exact Mass:               288.1909  

Following general procedure C, To a stirred solution of silyl enol ether 69 (652 mg, 

2.525 mmol) in 2.5 mL dichloromethane, was added diethyl zinc (7.6 mL, 6.04 mmol). Solution 

was cooled to 0 °C using ice bath and neat CH2I2 (1.362 g, 5.10 mmol) was added dropwise over 

a period of 15 min, reaction mixture was brought to RT and stirred for 2 days, usual workup 

gave 70 (545 mg, 36%) as a colorless oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 0.14 (9H, s), 0.85 − 0.86 (1H, m), 1.10 − 1.40 (2H, m), 1.50 − 

1.65 (6H, m), 1.80 − 1.90 (1H, m), 1.96 − 2.10 (2H, m), 2.40 − 2.55 (1H, m), 2.60 − 2.70 (1H, 

m), 7.16 (2H, dd, J = 6.2, 7.0 Hz), 7.27 (2H, dd, J = 7.0, 8.0 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 20.48 (CH2), 27.14 (CH2), 29.13 (CH2), 30.48 (CH2), 33.55 

(CH2), 34.55 (CH), 34.97 (CH2), 51.00 (Cq), 125.57 (CH), 125.63 (Cq), 128.27 (CH), 128.32 

(CH) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 288 (M+, 6), 184 (17), 183 (100), 144 (4), 127 (3), 91 (14), 75 

(18). 

IR (neat): =
~
ν 2920, 28235, 1704, 1453 cm-1. 
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8.4.7 Synthesis of 3-benzyl-1-trimethylsilyloxylbicyclo[5.1.0]oct-2-ene (74) 
OSiMe3

Molecular Formula: C18H26OSi
MolecularWeight:     286.49
Exact Mass:               286.1752

 
Following general procedure C, To a stirred solution of silyl enol ether 73 (118 mg, 

0.433 mmol) in 2 mL dichloromethane, was added diethyl zinc (1.3 mL, 1.03 mmol). Solution 

was cooled to 0 °C using ice bath and neat CH2I2 (117mg, 0.438 mmol) was added dropwise 

over a period of 15 min, reaction mixture was brought to RT and stirred for 12 h, usual workup 

gave 74 (100 mg, 81%) as a colorless oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 0.19 (1H, dd, J = 1.8, 5.0 Hz), 0.70 − 0.77 (1H, m), 0.78 − 

0.83 (1H, m), 0.85 − 0.97 (2H, m), 1.50 − 1.68 (1H, m), 1.74 − 1.86 (2H, m), 2.18 − 2.28 (1H, 

m), 3.15 (2H, d, J = 3.8 Hz), 5.55 (1H, s), 7.03 (2H, dd, J = 2.0, 7.0 Hz), 7.13 (2H, dd, J = 5.0, 

7.0 Hz), 7.18 (1H, dd, J = 7.5, 6.9) ppm.  
13C NMR (125 MHz, CDCl3): δ = 1.32 (CH3), 21.24 (CH2), 22.55 (CH2), 25.42 (CH), 28.33 

(CH2), 31.07 (CH2), 45.76 (CH2), 57.60 (Cq), 126.04 (CH), 127.37 (CH), 128.19 (CH), 128.98 

(Cq), 129.11 (CH), 139.59(Cq) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 286 (20), 271 (14), 257 (15), 244 (8), 196 (20), 195 (100), 179 

(7), 167 (12), 91 (35), 73 (83).  

IR (neat): =
~
ν 2929, 2863, 1706, 1662, 1455, 1376 cm-1. 

HRMS (EI+): found m/z 286.17528, calcd for C18H26OSi M+ 286.17529. 
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8.4.8 Synthesis of 4-(3-methylbut-3-enyl)-1-trimethylsilyloxylbicyclo[4.1.0]heptane 
(80) 

OSiMe3

Molecular Formula: C15H28OSi
Molecular Weight:    252.47
Exact Mass:               252.1909

 
Following general procedure C, To a stirred solution of silyl enol ether 79 (133 mg, 

0.561 mmol) in 2 mL dichloromethane, was added diethyl zinc (0.6 mL, 0.49 mmol). Solution 

was cooled to 0°C using ice bath and neat CH2I2 (135 mg, 0.505 mmol) was added dropwise 

over a period of 15 min, reaction mixture was brought to RT and stirred for 12 h, usual workup 

gave 80 (91 mg, 65%) as a colourless oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 0.12 (9H, s), 0.30 (1H, t, J = 3.5 Hz), 0.80 − 0.98 (3H, m), 

1.30 (2H, td, J = 7.3, 7.0 Hz), 1.41 − 1.68 (4H, m), 1.70 (4H, ddd, J = 6.2, 5.4, 4.2 Hz), 2.00 

(3H, ddd, J = 6.8, 7.2, 7.7 Hz), 4.68 (2H, s) ppm.  
13C NMR (125 MHz, CDCl3): δ = 1.43 (CH3), 18.95 (CH2), 21.20 (CH2), 22.50 (CH2), 24.80 

(CH), 31.20 (CH2), 35.60 (CH2), 36.30 (CH2), 37.80 (CH), 57.23 (Cq), 109.00 (CH2), 146.00 

(Cq) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 252 (M+, 2), 195 (17), 183 (14), 196 (4), 162 (4), 155 (2), 143 

(5), 107 (26), 93 (7), 79 (7), 75 (26), 73 (100), 55 (10).  

IR (neat): =
~
ν 2917, 2873, 1558 cm-1. 

HRMS (EI+): found m/z 252.18994, calcd for C15H28OSi M+ 252.19094. 
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8.5 Synthesis of Enones 

8.5.1 Synthesis of 3-benzyl-2-cycloheptene-1-one (72)  
O

Molecular Formula: C14H16O
Molecular Weight:    200.28
Exact Mass:               200.1201

 
Follwing general pocedure E, Under argon atmosphere 3-ethoxy-2-cycloheptene-1-one 71 

(500 mg, 3.246 mmol) was treated with GR prepared from benzyl chloride 62 (449 mg, 

3.57 mmol) and Mg turnings (85 mg, 3.5 mmol) in THF/ether (1:1 by volume). The crude 

product was purified using silica gel column chromatography (25% EtOAc in cyclohexane) 

afforded enone 72 (590 mg, 91%).  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 1.64 − 1.70 (2H, m), 1.71 − 1.78 (2H, m), 2.34 (2H, t, 

J = 6.2 Hz), 2.56 (2H, t, J = 6.4 Hz), 3.46 (2H, s,), 5.94 (1H, s), 7.15 (2H, d, J = 7.0 Hz), 7.28 

(1H, ddd, J = 4.0, 7.0, 8.0 Hz), 7.29 (2H, dd, J = 2.0, 8.0 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 21.28 (CH2), 25.17 (CH2), 32.31 (CH2), 42.25 (CH2), 47.09 

(CH2), 126.77 (CH), 128.58 (CH), 129.09 (CH), 130.61 (CH), 137.58 (Cq), 160.09 (Cq), 204.07 

(C=O) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 200 (M+, 7), 129 (13), 115 (11), 109 (100), 92 (1), 91 (21), 81 

(46), 79 (22), 81 (46), 79 (22), 67 (14), 65 (36). 

IR (neat): =
~
ν  2939, 2865, 1658, 1492, 1454, 1265 cm-1. 
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8.6 Photoinduced Electron Transfer Initiated Intramolecular Cyclization of 
Cyclopropyl Silyl Ethers 

8.6.1 Cis-3,4,4a,9,9a,10-Hexahydro-1(2H)-anthracenone (81)117 
O

H

H

Molecular Formula: C14H16O
Molecular Weight:   200.28
Exact Mass:              200.1201

 
Following general procedure D, The solution of cyclopropane 60 (200 mg, 0.72 mmol) and 

DCA (55 mg, 0.24 mmol) in 120 mL dry acetonitrile was filled into Pyrex irradiation tubes, 

flushed with argon for 20 min and irradiated for 12 h using 419 nm lamps. The residue was 

purified by silica gel column chromatography (9% EtOAc in cyclohexane) to afford 81 (29 mg, 

20%).  

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 1.54 (1H, dddd, J = 3.7, 3.7, 3.7, 3.1 Hz), 1.74 (1H, tttt, 

J = 4.0, 3.7, 4.0, 4.0 Hz), 1.82 − 1.93 (1H m), 2.04 (1H, dq, J = 1.2, 1.2 Hz), 2.11 (1H, qq, 

J = 2.8, 2.9 Hz), 2.40 (2H, dddd, J = 5.6, 6.9, 6.2, 6.2 Hz), 2.46 − 2.53 (1H, m), 2.69 (1H, dd, 

J = 11.9, 11.9 Hz), 2.92 (1H, d, J = 10.0 Hz), 2.96 (2H, t, J = 2.8 Hz), 7.04  (1H, dd, J = 2.5, 

6.2 Hz), 7.10 (2H, ddd, J = 7.2, 5.4, 1.8 Hz), 7.16 (1H, dd, J = 2.5, 3.1 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 26.05 (CH2), 28.63 (CH2), 32.69 (CH2), 37.79 (CH2), 40.74 

(CH2), 41.91 (CH2), 50.82 (CH), 125.72 (CH), 125.91 (CH), 128.42 (CH), 129.30 (CH), 135.04 

(CH), 135.04 (Cq), 135.36 (Cq), 211.80 (C=O) ppm.  

2D NMR analysis (1H-COSY, HMBC, HMQC and NOESY); 

4

3
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H

HMBC correlations of C-6 (50.82) to H-6 (δ 2.40), C-4 (41.91) to H-4 ( 2.50), C-1 (40.74) to H-

1 (1.82–1.93), C-10 (37.79) to H-7 & H-10 (2.69 & 2.96), C-2 (32.69), to H- 2 (1.54 & 2.04), C-

7 (28.63) H-7 (2.96), C- 3 (26.05), H- 3 (1.54; 1.74; 2.04; 2.11). NOESY correlation of H-6 and 

H-1 leads to the assignment of cis ring fusion.  

GC-MS (EI, 70 eV): m/z (%) = 200 (M+, 100), 185 (27), 167 (24), 154 (47), 142 (21), 129 (59), 

115 (17), 91 (13), 77 (18). 

IR (KBr): =
~
ν  2377, 2320, 1718, 1689, 1519 cm-1. 
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8.6.2 (5aR,10aS)-5,5a,7,8,9,10,10a,11-Octahydro-6H-cyclohepta[b]naphthalene-6-
one (82) 

O
H

H

Molecular Formula: C15H18O
Molecular Weight:   214.31
Exact Mass:              214.1357

 
Following general procedure D, The solution of cyclopropane 61 (200 mg, 0.69 mmol) and 

DCA (30 mg, 0.131 mmol) in 120 mL dry acetonitrile was filled into Pyrex irradiation tubes, 

flushed with argon for 20 min and irradiated for 12 h using 419 nm lamps. The residue was 

purified by silica gel column chromatography (9% EtOAc in cyclohexane) to afford 82 (23 mg, 

16%).  

 

1D NMR analysis (1H, 13C, 13C-DEPT);  
1H NMR (500 MHz, CDCl3): δ = 1.37 (2H, ddd, J = 12.5, 10.0, 9.8 Hz), 1.46 − 1.70 (3H, m), 

1.71 − 1.80 (2H, m), 1.81 − 2.10 (1H, m), 2.41 (2H, ddt, J = 6.3, 6.3, 2.0 Hz), 2.51 − 2.60 (2H, 

m), 2.65 (2H, dt, J = 11.0, 8.0 Hz), 2.84 (2H, ddd, J = 16.0, 16.2, 11.5 Hz), 7.09 (3H, ddd, 

J = 8.0, 3.0, 4.0 Hz), 7.26 (1H, dd, J = 6.9, 3.7 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 25.79 (CH2), 32.74 (CH2), 35.79 (CH2), 35.52 (CH), 37.75 

(CH2), 41.19 (CH2), 44.22 (CH2), 54.92 (CH), 125.92 (CH), 128.25 (CH), 128.47 (CH), 128.58 

(CH), 135.16 (Cq), 136.31 (Cq), 215.64 (C=O) ppm.  

2D NMR analysis (1H-COSY, HMBC, HMQC and NOESY) 

SQC correlation of C-7 (54.92) to H-7 (2.51-2.60), C-5 (41.19) to H-5 (2.54), C-2 (41.19) to 

-1 and H-7 lead to the assignment of cis ring fusion.  

67 (3), 157 

1
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H

H-2 (2.50-2.65), C-11 (35.75) to (1.81-2.10 & 2.40-2.70 & 2.84), C-8 (32.74) to H-8 (2.84), C-3 

(25.79) to H-3 (1.54 & 2.10).  

NOESY correlation between H

GC-MS (EI, 70 eV): m/z (%) = 214 (M+, 90), 210 (6), 199 (20), 181 (26), 172 (11), 1

(15), 155 (17), 142 (28), 129 (100), 115 (35), 91 (15), 80 (10), 77 (16).  

IR (KBr): =
~
ν  2925, 2857, 1690, 1454 cm-1. 

HRMS (EI found m/z 214.1347, calcd for C+): 15H18O M+ 214.1359. 
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8.6.3 4-Benzylcyclohexanone (83)118 and 4-benzyl-2-cyclohexen-1-one (84)119 
 

Foll ge ol) and 

CA (25 mg, 0.109 mmol) in 60 mL dry acetonitrile was filled into Pyrex irradiation tubes, 

owing neral procedure D, The solution of cyclopropane 59 (100 mg, 0.384 mm

D

flushed with argon for 20 min and irradiated for 12 h using 419 nm lamps. The residue was 

purified by silica gel column chromatography (9% EtOAc in cyclohexane) to afford products 83 

(6 mg, 8%) and 84 (9 mg, 12%).  

Ketone (83)  

O
Molecular Formula: C13H16O
Molecular Weight:   188.27
Exact Mass:              188.1201  

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl δ = 1.20 − 1.37 (1H, m), 1.42 (2H, dq, J = 4.3, 3.7 Hz), 1.99 (3H, 

 2.40 (4H, m), 2.60 (2H, d, J = 6.9 Hz), 7.15 (2H, d, J = 6.9 Hz), 7.20 

(1H, t, J = 7.2 Hz), 7.28 (2H, t, J = 7.2 Hz) ppm.  

C NMR (150 MHz, CDCl ):  = 26.91 (CH ), 38.14 (CH), 40.76 (CH2), 42.19 (CH2), 126.11 

.  

2D NMR analysis (

7

3): 

−td, J = 3.1, 4.3 Hz), 2.20 

13
3 δ 2

(CH), 128.35 (CH), 129.01 (CH), 140.36 (Cq), 211.20 (C=O) ppm
1H-COSY, HMBC, HMQC). 
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HMBC correlation of C-8 (140.36) to H-7 (2.60), C-7 (42.19) to H-1 (1.99), C-1 (38.14) to H-6 

 H-2 (1.42) & H-5; H-2 (2.20-2.40) & H-7 (2.60), C-4 (211.20), to H-5; H-3; (2.20-2.40) & H-&

7 (2.60); H-6. COSEY correlation of H-2 to H-1; H-13; H-9 and H-1 to H-6; H-7 and H-2.  

GC-MS (EI, 70 eV): m/z (%) = 188 (M+, 1), 187 (7), 186 (50), 168 (60), 129 (8), 127 (2), 115 

(4), 91 (100), 77 (6), 74 (1.2), 65 (54), 63 (13).  

IR (KBr): =
~
ν  1718, 1654 cm-1. 
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Enone (84):  

O
Molecular Formula: C13H14O
Molecular Weight:    186.25
Exact Mass:               186.1044  

1D NMR analysis (1H, 13C, 13C-DEPT);  
1H NMR (500 MHz, CDCl3) δ = 1.66 (1H, tdd, J = 4.7, 4.3, 5.0 Hz), 1.99 (1H, dtd, J = 4.3, 5.0, 

4.7 Hz), 2.27 (1H, dtd, J = 5.0, 4.5, 5.0 Hz), 2.42 (1H, tt, J = 4.8, 4.8 Hz), 2.65 (2H, dd, J = 8.5, 

5.4 Hz), 2.72 (1H, ddd, J = 10.3, 5.3, 1.5 Hz), 5.92 (1H, dd, J = 1.8, 10.2 Hz), 6.77 (1H, dt, 

J = 2.0, 10.0 Hz), 7.13 (2H, d, J = 6.9 Hz), 7.18 (1H, dd, J = 1.8, 7.4 Hz), 7.26 (2H, dd, J = 1.8, 

7.3 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 28.62 (CH2), 36.79 (CH2), 37.95 (CH), 40.90 (CH2), 128.60 

(CH), 128.56 (CH), 129.05 (CH), 129.31 (CH), 138.80 (Cq), 153.80 (CH), 199.70 (C=O) ppm.  

IR (KBr): =
~
ν  1716, 1673 cm-1. 

 

2D NMR analysis (1H-COSY, HMBC, HMQC):  
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HMBC correlation of C-8 (138.80), to H-7 (2.65), H-9; H-13 (7.13), C-2 to (37.95) H-1a (1.66); 

H-1b (1.99), H-6a & H-6b (2.42); H-7 (2.65); H-3 (5.92) & H-4 (6.77), C-5 (199.70) to H-1; H-

6; H-4.  

GC-MS (EI, 70 eV): m/z (%) = 186 (M+, 33), 168 (4), 158 (1), 129 (5), 127 (2), 115 (3), 91 

(100), 79 (2), 77 (4), 65 (37), 51 (11). 
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8.6.4 2-Methyl-3-(2-phenylethyl)-cyclohexanone (85) 
O

Molecular Formula: C15H20O
Molecular Weight:   216.32
Exact Mass:              216.1514

 
Following general procedure D, The solution of cyclopropane 70 (100 mg, 0.347 mmol) and 

DCA (45 mg, 0.19 mmol) in 50 mL dry acetonitrile was filled into Pyrex irradiation tubes, 

flushed with argon for 20 min and irradiated for 12 h using 419 nm lamps. The residue was 

purified by silica gel column chromatography (9% EtOAc in cyclohexane) to afford 85 (23 mg, 

30%).  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz, CDCl3): δ = 0.99 (3H, d, J = 6.2 Hz), 1.31 (1H, dd, J = 12.8, 3.4 Hz), 1.36 

(1H, dd, J = 12.5, 3.1 Hz), 1.40 (1H, dd, J = 5.0, 1.8 Hz), 1.43 (1H, dd, J = 13.1, 3.1 Hz), 1.58 − 

1.72 (2H, m), 1.94 (1H, dt, J = 13.0, 3.0 Hz), 2.05 − 2.15 (1H, m), 2.33 (1H, sep, J = 6.2 Hz), 

2.46 (1H, dddd, J = 1.8, 1.8, 1.8, 2.5 Hz), 2.60 (2H, t, J = 7.8 Hz), 7.15 (3H, dd, J = 6.0, 

6.9 Hz), 7.26 (2H, ddd, J = 4.0, 7.0, 5.0 Hz) ppm. 
13C NMR (125 MHz, CDCl3) δ = 14.35 (CH3), 31.98 (CH2), 32.98 (CH2), 34.87 (CH2), 39.86 

(CH), 44.87 (CH2), 48.23 (CH2), 125.83 (CH), 128.25 (CH), 128.38 (CH), 142 (Cq), 212.80 

(C=O) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 216 (M+, 20), 131 (10), 115 (11), 111 (65), 104 (14), 92 (23), 91 

(100), 79 (7), 77 (10), 65 (13), 56 (8), 55 (30). 

IR: (KBr): =
~
ν  3391, 2961, 2932, 2866, 1710, 1452, 1070, 1452, 1070, 1070 cm-1. 
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8.6.5 (3S,3aR,8aS)-3-Methyloctahydroazulen-5(1H)-one (86)120 

O H

H

Molecular Formula: C11H18O
Molecular Weight:   166.26
Exact Mass:              166.1357

 
Following general procedure D, The solution of cyclopropyl silyl ether 66 (150 mg, 0.63 mmol) 

and DCA (48 mg, 0.21 mmol) in 60 mL dry acetonitrile was filled into Pyrex irradiation tubes, 

flushed with argon for 20 min. and irradiated for 12 h using 419 nm lamps. The residue was 

purified by silica gel column chromatography (9% EtOAc in cyclohexane) to afford 86 (10 mg, 

10%). 

 

1D NMR analysis (1H, 13C, 13C-DEPT);  
1H NMR (500 MHz, CDCl3): δ = 0.80 (3H, d), 1.15 − 1.35 (4H, m), 1.50 − 1.55 & 1.85 − 1.95 

(2H, m), 1.60 − 1.70 & 2.45 − 2.58 (2H, m), 1.75 − 1.88 (2H, m), 1.09 − 1.95 (1H, m), 2.02 − 

2.10 (1H, m), 2.10 − 2.20 (1H, m), 2.35 − 2.45 (2H, m).  
13C NMR (125 MHz, CDCl3): δ = 16.07 (CH3), 24.86 (CH2), 32.12 (CH2), 32.53 (CH2), 36.14 

(CH2), 37.64 (CH), 44.04 (CH2), 44.28 (CH), 45.26 (CH2), 45.88 (CH), 215.20 (C=O) ppm.  

2D NMR analysis (1H-COSY, HMBC, HMQC and NOESY):  

7
6 1

2

34

5 10

9
811O H

H

12

 

HMBC correlation of C-6 (215.20) to H-4 (1.50-1.55) & H-5; H-7 (1.75-1.95), & H-7 (2.30-

2.50), C-12 (16.07) to H-9 & H-10 (1.15-1.35), H-1 & H-2 (1.75-1.85), H-8 (2.10-2.20).  

NOESY correlation between H-12 to H-1 & H-2 lead to the assignment of cis ring fusion.  

GC-MS (EI, 70 eV): m/z (%) = 166 (M+,1), 165 (14), 123 (15), 121 (46), 110 (11), 107 (24), 

94 (60), 80 (55), 78 (40), 67 (82), 55 (94), 41 (100). 

IR (KBr): =
~
ν  1653, 1507 cm-1. 
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8.6.6 (3aS,8aS)-3,3-Dimethyloctahydroazulen-5(1H)-one (87)  

O H

H

Molecular Formula: C12H20O
MolecularWeight:    180.29
Exact Mass:               180.1514

 
Following general procedure D, The solution of cyclopropyl silyl ether 80 (120 mg, 

0.476 mmol) and DCA (48 mg, 0.21 mmol) in 60 mL dry acetonitrile was filled into Pyrex 

irradiation tubes, flushed with argon for 20 min and irradiated for 12 h using 419 nm lamps. The 

residue was purified by silica column chromatography (9% EtOAc in cyclohexane) to afford 87 

(12 mg, 14%).  

 

1D NMR analysis (1H, 13C, 13C-DEPT);  
1H NMR (500 MHz, CDCl3): δ = 0.75 (3H, s), 0.96 (3H, s), 1.26 − 1.32 (2H, m), 1.38 − 1.46 

(1H, m), 1.45 − 1.50 (2H, m), 1.57 & 2.50 (2H, m), 1.60 & 2.40 (1H, m), 1.68 − 1.78 (2H, m), 

1.87 − 1.95 (2H, m), 1.98 − 2.10 (1H, m), 2.24 (1H, dd, J = 16.4, 12.0 Hz), 2.48 − 2.52 (1H, m) 

ppm.  
13C NMR (125 MHz, CDCl3): δ = 22.31 (CH3), 27.84 (CH2), 27.93 (CH3), 30.5 (CH2), 37.02 

(CH2), 40.30 (CH2), 43.65 (CH2), 44.70 (Cq), 44.17 (CH2), 46.69 (CH), 51.28 (CH), 215.18 

(C=O) ppm.  

NMR analysis (1H-COSY, HMBC, HMQC and NOESY) 

8
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9
113O H

H
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HMBC correlation of C-1 (217.18) to H-8 & H-6 (2.20-2.52), C-2 (51.28) to H-11 & H-12 

(0.75, 0.96), H-3a (2.49); H-8 (2.20-2.48), C-3 (46.69) to H-11 & H-12; H-4 (1.42-1.50), H-10 

(2.00), H-8.  

NOESY correlation between H-3 and H-2 and H-11 lead to the assignment of cis 

stereochemistry of the molecule.  

GC-MS (EI, 70 eV): m/z (%) = 180 (M+, 10), 165 (8), 152 (3), 147 (11), 136 (13), 124 (20), 120 

(11), 109 (23), 94 (24), 90 (8), 79 (20), 70 (30), 66 (60), 40 (100), 38 (32).  

IR (KBr): =
~
ν  1690, 1540 cm-1. 

HRMS (EI+): found m/z 180.15086, calcd for C12H20O M+ 180.15142. 
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8.6.7 3a-Benzyl-hexahydropentalen-2-one (88)121 

H

O

Molecular Formula: C15H18O
Molecular Weight:    214.31
Exact Mass:               214.1357

 
Following general procedure D,  The solution of cyclopropyl silyl ether 74 (160 mg, 

0.56 mmol) and DCA (52 mg, 0.228 mmol) in 96 mL dry acetonitrile was filled into Pyrex 

irradiation tubes, flushed with argon for 20 min and irradiated for 17 h using 419 nm lamps. The 

residue was purified by silica gel column chromatography (9% EtOAc in cyclohexane) to afford 

88 (36 mg, 31%).  

1D NMR (1H, 13C, 13C-DEPT);  
1H NMR (500 MHz, CDCl3): δ = 1.38 (1H, ddd, J = 5.0, 11.7, 6.4 Hz), 1.50 (1H, ddd, J = 7.5, 

12.5, 6.5 Hz), 1.65 − 1.80 (4H, m), 1.90 − 2.10 (2H, m), 2.25 − 2.45 (3H, m), 2.65 (1H, d, 

J = 13.1 Hz), 2.69 (1H, d, J = 13.1 Hz), 6.79 (2H, dd, J = 1.5, 6.9 Hz), 7.16 (1H, dd, J = 7.2, 

4.7 Hz), 7.22 (2H, dd, J = 1.9, 6.5 Hz) ppm.  
13C NMR (125 MHz, CDCl3): δ = 23.86 (CH2), 32.52 (CH2), 37.82 (CH2), 44.44 (CH2), 45.46 

(CH2), 48.95 (CH2), 51.79 (Cq), 126.37 (CH), 128.20 (CH), 130.02 (CH), 138.62 (Cq), 219.87 

(C=O) ppm.  
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2D NMR analysis (1H-COSY, HMBC, HMQC and NOESY) 

HMBC correlation of C-7 (219.87) to H-6 & H-8 (1.90-2.10; 2.25; 2.45), C-10 (138.62) to H-9 

(2.65), C-1 (44.44) to H-3 & H-2 (1.70) & H-8 (1.90-2.09) and to H-9. NOESY correlation 

between H-9 & H-1a leads to the assignment of cis ring fusion.  

GC-MS (EI, 70eV): m/z (%) = 214 (M+, 16), 149 (11), 123 (34), 117 (5), 95 (100), 81 (81), 67 

(23), 65 (30). 

IR (KBr): =
~
ν  2947, 2868, 1737, 1660, 1450, 1405, 1166 cm-1.  
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8.6.8 3,4,4a,5,8,8a-Hexahydro-1-(2H)-naphthalenone (90)122 
O

Molecular Formula: C10H14O
Molecular Mass:       150.22
Exact Mass:               150.1044  

Following general procedure D, The solution of cyclopropyl silyl ether 64 (100 mg, 0.45 mmol) 

and DCA (25 mg, 0.109 mmol) in 60 mL dry acetonitrile was filled into Pyrex irradiation tubes, 

flushed with argon for 20 min and irradiated for 17 h using 419 nm lamps. The residue was 

purified by silica gel column chromatography (9% EtOAc in cyclohexane) to afford 90 (10 mg, 

15%).  
1H NMR (500 MHz, CDCl3): δ = 1.40 − 2.45 (10H, m), 2.55 (1H, dd, J = 6.9, 7.5 Hz), 2.75 

(1H, dd, J = 4.3, 7.5 Hz), 4.87 (2H, t, J = 1.2 Hz) ppm.  

GC-MS (EI, 70 eV): m/z (%) = 150 (M+, 13), 134 (11.4), 121 (19.5), 106 (24), 91(35), 79 (100), 

77 (76), 52 (43), 40 (32). 

IR (KBr): =
~
ν 1720, 1666 cm-1.  

 

8.7 General Procedure F: Irradiation of Quinones with Aldehydes 
 

Standard photochemical experiment: A solution of 1 mmol of the naphthoquinone and 9 mmol 

of aldehydes in 60 ml of dry benzene was split over 5 Pyrex tubes (capacity 12 ml). The tubes 

were degassed with argon and irradiated using a Rayonet photochemical reactor. The reaction 

was continued until GC analysis indicated complete consumption of the quinone starting 

material. The combined solutions were evaporated under vacuum and the crude residue was 

purified by flash column chromatography, followed, if require, by preparative HPLC. 
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8.8 Photoacylation of 1,4-Naphthoquinones with Aliphatic Aldehydes 

8.8.1 1-(1,4-Dihydroxy-naphthalen-2-yl)-butan-1-one (106a)a 

O

OH

OH

Molecular Formula: C14H14O3
Molecular Weight:    230.26
Exact Mass:               230.0942

 
Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 1.30 g (18 mmol) of butyraldehyde 105a in 100 ml of benzene for 12 h. The crude product 

was purified with flash column chromatography (silica gel, 30% EA in CH) gave 273 mg (60%) 

of 1-(1,4-dihydroxy-naphthalen-2-yl)-butan-1-one 106a as brown solid, mp 144-145 °C. 

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR 500 MHz; CDCl3/acetone-d6 1:1) δ = 0.94 (3H, t, J = 7.2 Hz, -CH2CH3), 1.70 (2H, q, 

J = 7.5 Hz, CH2CH3), 2.86 (2H, t,  J = 7.2 Hz, -COCH2), , 7.30 (1H, s, OH), 7.44 (1H, dd, 

J = 8.1, 6.9 Hz), 7.54 (1H, dd, J = 7.5, 7.5 Hz), 8.08 (1H, d, J = 8.7 Hz), 8.33 (1H, d, J = 8.1 

Hz), 13.62 (1H, s, OH) ppm.  
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 13.5 (CH3), 17.7 (CH2), 40.2 (CH2), 104.6 

(CH), 121.6 (CH), 125.7 (CH), 125.9 (Cq), 128.9 (CH), 129.0 (Cq), 143.6 (Cq), 156.3 (Cq), 205.7 

(C=O) ppm. 

MS (EI): m/z (%) = 230 (M+, 85%), 215 (3), 212 (13), 202 (3), 197 (35), 187 (100), 131 (15), 

105 (13), 87 (1), 69 (1), 43 (14). 

IR (KBr): =
~
ν  3410, 2967, 1662, 1630, 1596, 1463, 1384, 1292, 1202, 1138, 1073, 768, 

731 cm-1. 
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8.8.2 1-(1,4-Dihydroxy-naphthalen-2-yl)-dodecan-1-one (106b) 

O

OH

OH

Molecular Formula: C22H30O3
Molecular Weight:    342.48
Exact Mass:               342.2194

 
Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 3.32 g (18 mmol) of dodecanal 105b in 100 ml of benzene for 12 h. The crude product was 

purified with flash column chromatography (silica gel, 30% EA in CH) gave 240 mg (35%) of 

1-(1,4-dihydroxy-naphthalen-2-yl)-dodecan-1-one 106b as a yellow solid mp 128–129 °C.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 0.81 (3H, t, J = 6.9 Hz, CH3-CH2), 1.10–1.30 

(16H, m), 2.93 (2H, t, J = 7.5 Hz, CH2-CH2), 7.10 (s, 1H, Ar-H), 7.48 (1H, dd, J = 8.1, 1.2 Hz), 

7.57 (1H, dd, J = 8.1, 1.2 Hz), 8.13 (1H, d, J = 8.1 Hz), 8.33 (1H, d, J = 8.7 Hz), (2H, s, for 

2×OH not observed) ppm.  
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 13.0 (CH3), 23.6 (CH2), 23.7 (CH2), 28.4 

(CH2), 28.6 (CH2), 28.7 (CH2), 28.8 (CH2), 28.9 (CH2), 29.0 (CH2), 29.1 (CH2), 30.3 (CH2), 

31.0 (CH2), 37.8 (CH2), 103.7 (CH), 111.2 (Cq), 121.3 (CH), 123.2 (CH), 125.0 (Cq), 125.3 

(CH), 128.2 (CH), 128.8 (Cq), 143.5 (Cq), 154.8 (Cq), 205.4 (C=O) ppm.  

MS (EI): m/z (%) = 342 (M+, 100%), 325 (5), 324 (12), 239 (5), 225 (3), 215 (14), 202 (31), 

199 (5), 197 (12), 187 (54), 173 (10), 160 (5), 131 (10), 115 (2), 105 (8), 77 (6), 55 (11), 43 

(11). 

IR (KBr): =
~
ν  3358, 2956, 2920, 2850, 1635, 1580, 1468, 1401, 1378, 1293, 1240, 1137, 1076, 

879, 767 cm-1. 

HRMS (EI+): found m/z 342.21883, calcd for C22H30O3 M+ 342.21949. 
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8.8.3 1-(1,4-Dihydroxy-naphthalen-2-yl)-2-methyl-propan-1-one (106c) 

O

OH

OH

Molecular Formula: C14H14O3
Molecular Weight:    230.26
Exact Mass:               230.0942

 
Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 1.30 g (18 mmol) of isobutyraldehyde 105c in 100 ml of benzene for 12 h. The crude 

product was purified with flash column chromatography (silica gel, 30% EA in CH) gave 96 mg 

(21%) of 1-(1,4-dihydroxy-naphthalen-2-yl)-2-methyl-propan-1-one 106c as a brown thick oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 1.21 (6H, d, J = 6.9 Hz, CH(CH3)2), 3.45 (1H, sep, J = 6.7 

Hz), 5.49 (1H, s, OH), 7.55 (1H, dd, J = 1.2, 6.9 Hz, Ar-H), 7.64 (1H, dd, J = 1.2, 7.5 Hz), 8.09 

(1H, d, J = 8.1 Hz), 8.43 (1H, d, J = 8.1 Hz), 13.92 (1H, s, OH) ppm.  
13C NMR (125 MHz; CDCl3) δ = 19.1 (2×CH3), 35.1 (CH), 105.3 (CH), 110.5 (CH), 121.5 

(CH), 124.5 (CH), 126.2 (Cq), 126.4 (CH), 129.3 (Cq), 129.7 (CH), 142.9 (Cq), 158.0 (Cq), 209.9 

(C=O) ppm. 

MS (EI): m/z (%) = 230 (M+, 14%), 229 (7), 228 (39), 227 (5), 213 (8), 211 (13), 210 (53), 200 

(6), 188 (5), 186 (45), 172 (4), 159 (13), 158 (82), 130 (35), 104 (11), 102 (42), 76 (25), 43 (49). 

IR (KBr): =
~
ν  3430, 2974, 1630, 1598, 1476, 1396, 1303, 1214, 1041, 822, 768 cm-1. 
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8.8.4 1-(1,4-Dihydroxy-naphthalen-2-yl)-propenone (107) and acrylic acid 4-
hydroxy-1-naphthalen-1-yl ester (108) 

 

Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 1.01 g (18 mmol) of acrolein in 100 ml of benzene for 15h. The crude product was purified 

with flash column chromatography (silica gel, 30% EA in CH) and HPLC gave 76 mg (18%) of 

1-(1,4-dihydroxy-naphthalen-2-yl)-propenone 107 as brown solid, mp 162–163 °C and 30 mg 

(7%) of acrylic acid 4-hydroxy-1-naphthalen-1-yl ester 108 as thick brown oil.  

 

 

 

107:  

O

OH

OH

Molecular Formula: C13H10O3
Molecular Weight:    214.22
Exact Mass:               214.0629

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 5.90 (1H, dd, J = 1.8, 8.7 Hz), 6.50 (1H, dd, J = 1.8, 15.0 Hz, 

CH2=CH), 7.12 (1H, s, Ar-H), 7.28 (1H, dd, J = 10.6, 6.2 Hz, CH2=CH), 7.49 (dd, 1H, J = 1.2, 

8.4 Hz), 7.60 (dd, 1H, J = 1.2, 7.2 Hz), 8.13 (d, 1H, J = 8.1 Hz), 8.37 (1H, dd, J =12.5, 8.1 Hz, 

CH=CH2), 14.04 (2H, s, 2×OH) ppm. 
13C NMR (125 MHz; CDCl3) δ = 103.4 (CH), 121.5 (CH), 123.4 (CH), 125.0 (Cq), 125.5 (CH), 

128.8 (CH), 129.2 (CH2), 129.7 (Cq), 130.3 (CH), 143.8 (Cq), 157.6 (Cq), 192.6 (C=O) ppm.  

MS (EI): m/z (%) = 214 (M+, 100%), 212 (36), 191 (1), 188 (2), 187 (15), 186 (17), 184 (23), 

171 (4), 157 (16), 149 (7), 139 (4), 130 (13), 155 (6), 105 (12), 95 (5), 85 (6), 77 (20), 55 (45). 

IR (KBr): =
~
ν  3416, 1735, 1663, 1631, 1593, 1390, 1297, 1253, 1150, 1073, 767, 720 cm-1. 

HRMS (EI+): found m/z 214.06234, calcd for C13H10O3 M+ 214.06299.  
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108:  

O

OH

O

Molecular Formula: C13H10O3
Molecular Weight:    214.22
Exact Mass:               214.0629

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 5.93 (1H, s, OH), 6.10 (1H, d, J = 10.6 Hz, CH=CH2), 6.45 

(1H, dd, J = 10.6, 6.9 Hz, CH=CH2), 6.54 (1H, d, J = 8.1 Hz, Ar-H), 6.72 (1H, d, J = 17.5 Hz, 

CH=CH2), 6.99 (1H, d, J = 8.1 Hz), 7.44 (2H, dd, J = 6.9, 7.2 Hz), 7.74 (1H, d, J = 8.1 Hz), 

8.07 (1H, d, J = 8.1 Hz) ppm. 
13C NMR (125 MHz; CDCl3) δ = 107.7 (CH), 117.8 (CH), 120.8 (CH), 122.2 (CH), 125.14 

(Cq), 125.5 (CH), 126.9 (CH), 127.3 (Cq), 127.6 (CH2), 133.1 (CH), 139.6 (Cq), 149.8 (Cq), 

165.6 (C=O) ppm. 

MS (EI): m/z (%) = 214 (M+, 10%), 161 (10), 160 (93), 159 (19), 149 (1), 131 (14), 123 (1), 

111 (1), 109 (2), 97 (2), 79 (1), 69 (2), 57 (4), 55 (47), 51 (6), 43 (20).  

IR (KBr): =
~
ν  3415, 1723, 1633, 1589, 1400, 1257, 1176, 1147, 1065, 981, 805, 767, 748 cm-1. 

HRMS (EI+): found m/z 214.06277, calcd for C13H10O3 M+ 214.06299. 
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8.9 Photoacylation of 1,4-Naphthoquinones with Aromatic Aldehydes 

8.9.1 4-[(1,4-Dihydroxy-2-naphthyl)carbonyl]benzonitrile (110a) 
OH

OH O

CNMolecular Formula: C18H11NO3
Molecular Weight:    289.29
Exact Mass:               289.0738

 
Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 2.36 g (18 mmol) of p-cyanobenz aldehyde in 100 ml of benzene for 96h. The crude product 

was purified with flash column chromatography (silica gel, 30% EA in CH) gave 116 mg (20%) 

of 4-[(1,4-dihydroxy-2-naphthyl)carbonyl]benzonitrile 110a as yellow solid, mp 146–149 °C 

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; acetone-d6/DMSO-d6) δ = 6.84 (1H, s, Ar-H), 7.65 (1H, dd, J = 7.8, 2.1 

Hz), 7.75 (1H, dd, J = 2.1, 8.1 Hz), 7.93 (2H, d, J = 8.1 Hz), 8.04 (2H, dd, J = 2.1, 8.1 Hz), 8.20 

(1H, d, J = 8.1 Hz), 8.44 (1H, d, J = 8.7 Hz), 9.10 (1H, s, OH), 13.29 (1H, s, OH) ppm.  
13C NMR (125 MHz; acetone-d6/DMSO-d6) δ = 106.9 (CH), 112.5 (Cq), 118.6 (Cq), 123.2 

(CH), 124.8 (CH), 126.5 (Cq), 127.4 (CH), 130.2 (2×CH), 130.7 (CH), 130.8 (Cq), 133.10 

(2×CH), 143.0 (Cq), 145.7 (Cq), 158.17 (Cq), 200.3 (C=O) ppm. 

MS (EI): m/z (%) = 289 (M+, 100%), 288 (24), 273 (1), 263 (1), 243 (1), 231 (2), 215 (1), 204 

(2), 187 (20), 186 (35), 177 (2), 160 (1), 151 (1), 144 (3), 132 (2), 131 (15), 115 (1), 102 (40), 

88.0 (2), 77 (16). 

IR (KBr): =
~
ν  3450, 2230, 1682, 1635, 1598, 1403, 1250, 1034, 998 cm-1. 
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8.9.2 (1,4-Dihydroxy-naphthalen-2-yl)-(4-methoxyphenyl)-methanone (110b) 
OH

OH O

OMeMolecular Formula: C18H14O4
Molecular Weight:    294.31
Exact Mass:               294.0892

 
Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 2.49 g (18 mmol) of p-methoxybenzaldehyde in 100 ml of benzene for 63h. The crude 

product was purified with flash column chromatography (silica gel, 30% EA in CH) gave 

146 mg (25%) of (1,4-dihydroxy-naphthalen-2-yl)-(4-methoxyphenyl)-methanone 110b as 

brown solid, mp 93–96 °C 

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 3.80 (3H, s, OMe), 6.91 (2H, d, J = 7.5 Hz, Ar-

H), 6.93 (1H, s, Ar-H), 7.38 (1H, d, J = 4.3 Hz), 7.48 (1H, d, J = 7.2 Hz), 7.57 (1H, d, 2H, 

J = 1.8, 8.1 Hz), 7.66 (2H, d, J = 6.9 Hz), 8.13 (1H, d, J = 8.1 Hz), 8.38 (1H, d, J = 8.1 Hz), 

13.39 (s, 2H, OH) ppm.  
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 54.9 (OMe), 107.0 (CH), 111.4 (Cq), 113.0 

(2×CH), 117.8 (Cq), 125.7 (CH), 128.9 (CH), 131.0 (2×CH), 143.3 (CH), 156.8 (Cq), 162.0 (Cq), 

199.0 (C=O) ppm. 

MS (EI): m/z (%) = 294 (M+, 12%), 186 (3), 158 (2), 152 (3), 136 (8), 135 (100), 107 (6), 104 

(3), 92 (8), 77 (13), 76 (4), 63 (3). 

IR (KBr): =
~
ν  3410, 2929, 1731, 1668, 1601, 1514, 1255, 1169, 1027, 844, 766 cm-1. 
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8.9.3 (1,4-Dihydroxy-naphthalen-2-yl)-p-tolyl-methanone (112a) and 4-methyl-
benzoic acid 4-hydroxy-naphthalen-1-yl ester (114a) 

 

Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 2.16 g (18 mmol) of p-methylbenzaldehyde 111a in 90 ml of benzene for 12 h. The crude 

product was purified with flash column chromatography (silica gel, 30% EA in CH) gave 

340 mg (61%) of (1,4-dihydroxy-naphthalen-2-yl)-p-tolyl-methanone 112a as brown solid, mp 

128–129 °C and 30 mg (5%) of 4-methyl-benzoic acid 4-hydroxy-naphthalen-1-yl ester 114a as 

brown solid, mp 166–167 °C. 

112a: 

OH

OH O

MeMolecular Formula: C18H14O3
Molecular Weight:    278.31
Exact Mass:               278.0942

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 2.38 (3H, s, Ar-Me), 6.93 (1H, s, Ar-H), 7.26 

(2H, d, J = 8.1 Hz), 7.52 (1H, t, J = 7.5 Hz), 7.57 (2H, d, J = 7.5 Hz), 7.62 (1H, t, J = 7.8 Hz), 

8.16 (1H, d, J = 8.1 Hz), 8.39 (1H, d, J = 8.1 Hz), (2H, s, 2×OH, not observed) ppm. 
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 20.4 (CH3), 106.5 (CH), 111.1 (Cq), 121.4 

(CH), 123.3 (CH), 125.0 (Cq), 125.4 (CH), 128.0 (2×CH), 128.4 (2×CH), 128.6 (CH), 134.9 

(Cq), 141.2 (Cq), 143.2 (Cq), 156.0 (Cq), 199.8 (C=O) ppm. 

MS (EI): m/z (%) = 278 (M+, 81%), 263 (3), 187 (15), 186 (100), 158 (8), 139 (2), 131 (6), 130 

(28), 119 (16), 105 (4), 102 (18), 91 (29), 76 (97).  

IR (KBr): =
~
ν  3342, 1437, 1729, 1686, 1604, 1512, 1426, 1300, 1260, 1168, 1026, 845, 772, 

615 cm-1. 
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114a:  

O

OH

O

CH3Molecular Formula: C18H14O3
Molecular Weight:    278.31
Exact Mass:               278.0942

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 2.47 (3H, s, Ar-Me), 6.55 (1H, d, J = 7.9 Hz, 

Ar-H), 7.03 (1H, d, J = 7.9 Hz), 7.35 (2H, d, J = 7.9 Hz), 7.45 (2H, ddd, J = 6.7, 6.7, 6.7 Hz), 

7.78 (1H, d, J = 7.5 Hz), 8.01 (1H, s, OH), 8.07 (1H, d, J = 7.5 Hz), 8.21 (2H, d, J = 7.9) ppm. 
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 21.7 (CH3), 107.9 (CH), 118.0 (CH), 120.9 

(CH), 122.3 (CH), 124.8 (Cq), 125.2 (CH), 126.5 (Cq), 126.81 (CH), 127.5 (Cq), 129.4 (2×CH), 

130.1 (Cq), 130.3 (2×CH), 139.8 (Cq), 144.7 (Cq), 149.9 (Cq), 166.4 (C=O) ppm.  

MS (EI): m/z (%) = 278 (M+, 15%), 159 (3), 131 (2), 120 (11), 119 (100), 105 (3), 91 (32), 89 

(3), 77 (7), 65 (9). 

IR (KBr): =
~
ν  3443, 2924, 2858, 1734, 1708, 1608, 1386, 1257, 1178, 1081, 1017, 756 cm-1. 

HRMS (EI+): found m/z 278.09434, calcd for C18H14O3 M+ 278.09429. 
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8.9.4 (4-Chloro-phenyl)-(1,4-dihydroxy-naphthanlen-2-yl)-methanone (112b), [3-(4-
chloro-benzoyl)-1,4-dihydroxy-naphthalen-2-yl]-(4-chloro-phenyl)-methanone 
(113b) and 4-chloro-benzoic acid 4-hydroxy-naphthalen-1-yl ester (114b). 

 

Following the general procedure F, irradiation of 316 mg (2 mmol) of 1,4-naphthoquinone 104 

and 2.52 g (18 mmol) of p-chlorobenzaldehyde 111b in 100 ml of benzene for 12 h Brown solid, 

mp 200–201 °C;. The crude product was purified with flash column chromatography (silica gel, 

30% EA in CH) gave 100 mg (17%) of (4-chloro-phenyl)-(1,4-dihydroxy-naphthanlen-2-yl)-

methanone 112b as brown solid, mp 200–201 °C, 100 mg (11%) of [3-(4-chloro-benzoyl)-1,4-

dihydroxy-naphthalen-2-yl]-(4-chloro-phenyl)-methanone 113b as yellow solid, mp 178-180 °C 

and 53 mg (9%) of 4-chloro-benzoic acid 4-hydroxy-naphthalen-1-yl ester 114b as brown solid,  

mp 189–190 °C. 112b:  

OH

OH O

ClMolecular Formula: C17H11ClO3
Molecular Weight:    298.73
Exact Mass:               298.0396

 
1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 6.92 (1H, s, Ar-H), 7.46 (3H, m, Ar-H), 7.63 

(1H, dd, J = 8.1, 3.1 Hz), 7.79 (4H, m, Ar-H), 9.93 (2H, s, 2×OH) ppm.  
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 106.0 (CH), 122.3 (CH), 124.2 (CH), 126.4 

(CH), 128.4 (CH), 129.4 (2×CH), 129.7 (Cq), 130.5 (CH), 130.9 (2×CH), 134.9 (Cq), 136.9 (Cq), 

137.4 (Cq), 140.5 (Cq), 144.2 (Cq), 199.1 (C=O) ppm.  

MS (EI): m/z (%) = 298 (M+, 84%), 297 (10), 296 (8), 281 (3), 263 (3), 261 (19), 234 (3), 207 

(6), 189 (2), 186 (100), 178 (3), 159 (3), 158 (11), 141 (14), 139 (41), 112 (3), 111 (25), 105 (6), 

102 (18), 77 (12), 74 (4).  

IR (KBr): =
~
ν  3386, 2859, 1919, 1693, 1675, 1588, 1575, 1387, 1208, 1093, 840, 816 cm-1. 

HRMS (EI+): found m/z 298.03797, calcd for C17H11ClO3 M+ 298.03967.  
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113b:  

OH

OH

O

O

Cl

Cl

Molecular Formula: C24H14Cl2O4
Molecular Weight:    437.28
Exact Mass:               436.0269

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; acetone-d6/DMSO-d6) δ = 6.96 (4H, dd, J = 1.2, 8.1 Hz, Ar-H), 7.11 (4H, 

d, J = 8.1 Hz), 7.74 (2H, dd, J = 3.1, 3.1 Hz), 8.40 (2H, m, Ar-H), 12.12 (2H, s, 2×OH) ppm.  
13C NMR (125 MHz; acetone-d6/DMSO-d6) δ = 110.0 (Cq), 124.1 (2×CH), 128.0 (2×CH), 128.5 

(Cq), 129.3 (4×CH), 130.0 (4×CH), 137.3 (Cq), 138.0 (Cq), 153.8 (Cq), 195.6 (C=O) ppm.  

MS (EI): m/z (%) = 437 (M+, 6%), 436 (22), 423 (3), 418 (100), 383 (3), 325 (2), 290 (4), 263 

(3), 233 (3), 205 (2), 192 (2), 187 (4), 178 (2), 174 (11), 140 (18), 112 (10), 104 (2), 77 (4), 75 

(10).  

IR (KBr): =
~
ν  3401, 1685, 1622, 1589, 1401, 1285, 1025, 1007, 842 cm-1. 

HRMS (EI+): found m/z 436.02499, calcd for C24H14Cl2O4 M+ 436.02691.  
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114b:  

O

OH

O

ClMolecular Formula: C17H11ClO3
Molecular Weight:    298.73
Exact Mass:               298.0396

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 6.86 (1H, d, J = 8.1 Hz, Ar-H), 7.11 (1H, d, 

J = 8.1 Hz), 7.42 (2H, ddd, J = 3.5, 3.5, 3.5 Hz), 7.52 (2H, dddd, J = 1.8, 2.5, 1.8, 2.5 Hz), 7.72 

(1H, dddd, J = 3.7, 3.1, 1.2, 3.1 Hz), 8.20 (2H, ddd, J = 1.8, 1.8, 2.5 Hz), 8.24 (1H, ddd, J = 2.5, 

1.2, 3.1 Hz), 8.93 (1H, s, OH) ppm.  

 13C NMR (125 MHz; acetone-d6/DMSO-d6) δ = 106.3 (CH), 117.5 (CH), 120.0 (CH), 121.9 

(CH), 124.4 (CH), 124.7 (Cq), 125.9 (CH), 126.8 (Cq), 127.4 (Cq), 128.2 (2×CH), 130.8 (2×CH), 

138.42 (Cq), 139.10 (Cq), 150.5 (Cq), 163.7 (C=O) ppm.   

MS (EI): m/z (%) = 298 (M+, 16%), 159 (3), 158 (2), 141 (2), 140 (32), 138 (100), 131 (3), 113 

(6), 111 (19), 105 (3), 103 (4), 77 (7), 74 (2).  

IR (KBr): =
~
ν  3419, 1737, 1660, 1593, 1399, 1258, 1090, 1014, 755 cm-1. 

HRMS (EI+): found m/z 298.03797, calcd for C17H11ClO3 M+ 298.03967. 
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8.9.5 (1,4-Dihydroxy-naphthalen-2-yl)-phenyl-methanone (112c) and (3-benzoyl-
1,4-dihydroxy-naphthalen-2-yl)-phenyl-methanone (113c)a 

 

Following the general procedure F, irradiation of 320 mg (2.1 mmol) of 1,4-naphthoquinone 

104 and 2.0 g (18.9 mmol) of benzaldehyde 111c in 44 ml of benzene for 24h. The crude 

product was purified with flash column chromatography (silica gel, 15% EA in CH) gave 

246 mg (34%) of (1,4-dihydroxy-naphthalen-2-yl)-phenyl-methanone 112c as yellow solid; mp 

125°C and 90 mg (12%) of (3-benzoyl-1,4-dihydroxy-naphthalen-2-yl)-phenyl-methanone 113c 

as yellow solid, mp 144-145°C.  

 

112c:  

OH

OH O

Molecular Formula: C17H12O3
Molecular Weight:    264.28
Exact Mass:               264.0786

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 6.85 (1H, s, Ar-H), 7.43 (2H, dd, J = 6.9, 7.5 

Hz), 7.50 (2H, dd, J = 7.5, 7.5 Hz), 7.65 (2H, dd, J = 6.9, 1.2 Hz), 7.85 (1H, dd, J = 6.9, 1.8 

Hz), 8.11 (1H, d, J = 8.1 Hz), 8.48 (1H, d, J = 8.1 Hz), 9.98 (1 H, s, OH), 13.53 (1H, s, OH) 

ppm.  

 13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 107.9 (CH), 121.7 (CH), 124.5 (CH), 126.5 

(CH), 128.2 (CH), 128.8 (2×CH), 128.9 (CH), 129.7 (CH), 130.0 (CH), 133.9 (Cq), 138.1 (Cq), 

138.6 (Cq), 142.7 (Cq), 158.6 (Cq), 192.0 (C=O) ppm.  

MS (EI): m/z (%) = 264 (M+, 100%), 247 (3), 234 (3), 207 (3), 189 (4), 186 (70), 179 (2), 159 

(4), 158 (11), 131 (13), 105 (49), 77 (87). 

IR (KBr): =
~
ν  3431, 3075, 1677, 1596, 1451, 1391, 1331, 1299, 1254, 1172, 1015, 769 cm-1. 
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113c:  

OH

OH

O

O

Molecular Formula: C24H16O4
Molecular Weight:    368.39
Exact Mass:               368.1048

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 7.35–7.70 (10H, m, Ar-H), 7.83 (2H, m, Ar-H), 8.21 (2H, m, 

Ar-H), 9.60 (2H, s, 2×OH) ppm.  
13C NMR (125 MHz; CDCl3) δ = 118.7 (2×CH), 119.9 (2×C), 125.2 (2×CH), 128.1 (2×CH), 

129.3 (2×CH), 131.1 (2×C), 136.5 (2×CH), 141.4 (2×C), 159.2 (2×C), 200.9 (2×C=O) ppm.  

MS (EI): m/z (%) = 368 (M+, 95), 350 (100), 289 (7), 263 (2), 233 (2), 205 (3), 178 (5), 152 (2), 

105 (27), 77 (51), 51 (18), 39 (2). 

IR (KBr): =
~
ν  3300, 3060, 1730, 1620, 1590, 1490, 1440, 1240, 1170, 1030, 1010, 990, 830, 

750, 690 cm-1. 
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8.10 Photoacylation of Methyl Juglone with Aliphatic Aldehydes  

8.10.1 1-(1,4-Dihydroxy-5-methoxy-naphthalen-2-yl)-2-methyl-propan-1-one and 1-
(1,4-dihydroxy-8-methoxy-naphthalen-2-yl)-2-methyl-propan-1-one (117a) 

OH

OH

OMe

Molecular Formula: C15H16O4
Molecular Weight:    260.29
Exact Mass:               260.1048

O
 

Following the general procedure F, irradiation of 188 mg (1 mmol) of 5-methoxy-1,4-

naphthoquinone 115 and 652 mg (9 mmol) of 116a in 60 ml of benzene for 12 h. The crude 

product was purified with flash column chromatography (silica gel, 30% EA in CH) gave 

regioisomer A 35 mg (14%) and regioisomer B 59 mg (23%). 117a as brown oil.  

 

Regioisomer A:  

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 1.29 (6H, d, J = 6.9 Hz, CH(CH3)2), 3.60 (1H, sep, J = 6.7 Hz, 

CH(CH3)2), 4.09 (3H; s, OMe) 7.02 (1H, d, J = 7.5 Hz, Ar-H), 7.10 (1H, s), 7.43 (1H, dd, 

J = 8.1, 8.1 Hz), 8.11 (1H, d, J = 8.1 Hz), 8.82 (1H, s, OH), 13.58 (1H, s, OH) ppm.  
13C NMR (125 MHz; CDCl3)19.1 (CH(CH3)2), 35.2 (CH(CH3)2), 56.3 (OMe), 106.2 (CH), 

108.0 (CH), 112.2 (Cq), 118.1 (CH), 119.5 (Cq), 125.9 (CH), 127.9 (Cq), 145.4 (Cq), 155.2 (Cq), 

155.5 (Cq), 210.4 (C=O) ppm.  

MS (EI): m/z (%) =  260 (M+, 100%), 242 (27), 232 (4), 228 (7), 227 (40), 218 (13), 217 (99), 

199 (9), 189 (31), 174 (25), 159 (3), 135 (3), 129 (5), 118 (10), 102 (6), 90 (3), 87 (2), 75 (4), 63 

(46). 

IR (KBr): =
~
ν  3401, 2969, 1645, 1612, 1473, 1401, 1279, 1217, 911, 825, 750, 553 cm-1. 

HRMS (EI+) found m/z 260.10344, calcd for C20H30O3 M+ 260.10486.  

 

Regioisomer B:  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 1.10 (6H, d, J = 6.9 Hz, CH(CH3)2), 3.37 (1H, sep, J = 6.7 Hz, 

CH(CH3)2), 3.99 (3H, s, OMe), 6.88 (1H, d, J = 8.1 Hz, Ar-H), 7.09 (1H, s), 7.48 (1H, t, J = 8.1 

Hz), 13.90 (2H, s, 2×OH) ppm.  
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13C NMR (125 MHz; CDCl3) δ = 19.0 (CH3), 36.05 (CH), 56.2 (OMe), 106.8 (CH), 106.9 (CH), 

112.4 (Cq), 114.7 (CH), 116.7 (Cq), 129.8 (CH), 131.7 (Cq), 143.1 (Cq), 157.8 (Cq), 159.0 (Cq), 

209.8 (C=O) ppm. 

MS (EI): m/z (%) = 260 (M+, 32%), 218 (13), 217 (100), 202 (10), 190 (2), 174 (4), 161 (3), 

146 (4), 131 (5), 129 (3), 118 (9), 103 (3), 102 (5), 77 (3), 63 (31).  

IR (KBr): =
~
ν  3401, 2965, 1656, 1627, 1586, 146, 1382, 1047, 912, 811, 755 cm-1. 

HRMS (EI+) found m/z 260.10344, calcd for C20H30O3 M+ 260.10486. 

 

8.10.2 1-(1,4-Dihydroxy-5-methoxy-naphthalen-2-yl)-propenone or 1-(1,4-dihydroxy-
8-methoxy-naphthalen-2-yl)-propenone (117b) 

Molecular Formula: C14H12O4
Molecular Weight:    244.25
Exact Mass:               244.0735

OH

OH

MeO

O
 

Following the general procedure F, irradiation of 188 mg (1 mmol) of 5-methoxy-1,4-

naphthoquinone 115 and 504 mg (9 mmol) of acrolein in 60 ml of benzene for 12 h. The crude 

product was purified with flash column chromatography (silica gel, 30% EA in CH) gave 36 mg 

(15%) of either 1-(1,4-dihydroxy-5-methoxy-naphthalen-2-yl)-propenone or 1-(1,4-dihydroxy-8-

methoxy-naphthalen-2-yl)-propenone 117b as brown oil. 

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 3.94 (3H, s, OMe), 6.73 (1H, d, J = 8.0 Hz), 

6.80 (1H, d, J = 8.0 Hz), 7.18 (1H, t, J = 8.0 Hz), 7.39 (1H, s, Ar-H), 7.75 (3H, dd, J = 8.0, 7.6 

Hz), 9.52 (1H, s, OH), 10.96 (1H, s, OH) ppm.  
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) 55.0 (OMe), 107.6 (CH), 108.3 (CH), 115.5 (CH), 

125.1 (2 × CH), 126.1 (Cq), 126.7 (Cq), 129.4 (CH), 134.9 (Cq), 136.3 (Cq), 140.6 (Cq), 156.2 

(Cq), 158.0 (Cq), 194.1 (C=O) ppm.  

MS (EI): m/z (%) = 244 (M+, 4%), 228 (5), 203 (14), 190 (18), 185 (24), 183 (2), 173 (10), 159 

(11), 145 (4), 131 (31), 115 (24), 102 (12), 91 (3), 77 (13), 58 (12), 55 (22). 

IR (KBr): =
~
ν  3451, 2925, 2846, 1716, 1653, 1594, 1441, 1285, 1249, 1171, 1079, 1038, 

722 cm-1. 
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8.11 Photoacylation of Methyl Juglone with Aromatic Aldehydes 

8.11.1 (1,4-Dihydroxy-5-methoxy-naphthalen-2-yl)-phenyl-methanone and (1,4-
dihydroxy-8-methoxy-naphthalen-2-yl)-phenyl-methanone (117c) 

Molecular Formula: C18H14O4
Molecular Weight:    294.31
Exact Mass:               294.0892

OH

OH

OMe

O
 

Following the general procedure F, irradiation of 188 mg (1 mmol) of 5-methoxy-1,4-

naphthoquinone 115 and 954 mg (9 mmol) of benzaldehyde 116c in 60 ml of benzene for 53h. 

The crude product was purified with flash column chromatography (silica gel, 30% EA in CH) 

gave regioisomer A 48 mg (16%) and regioisomer B 40 mg, (14%) 117c.  

 

Regioisomer A:  

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) 4.05 (3H, s, OMe), 6.93 (1H s, Ar-H) 7.02 (1H, d, 

J = 7.5 Hz), 7.42 (1H, dd, J = 8.1, 8.1 Hz), 7.49 (2H, dd, J = 7.5, 7.5 Hz), 7.53 (2H, ddd, 

J = 7.5, 1.2, 8.1 Hz), 7.70 (2H, dd, J = 6.9, 1.2 Hz), 8.14 (1H, d, J = 7.5 Hz), 8.78 (1H, s, OH), 

13.23 (1H, s, OH) ppm.  
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 56.3 (OMe), 109.2 (CH), 118.2 (CH), 126.0 

(CH), 127.8 (Cq), 128.0 (Cq), 128.3 (2×CH), 128.9 (2×CH), 130.2 (CH), 131.6 (CH), 133.2 (Cq), 

133.6 (Cq), 138.0 (Cq), 145.1 (Cq), 155.8 (Cq), 201.2 (C=O) ppm.  

MS (EI): m/z (%) = 294 (M+, 21%), 263 (6), 246 (6), 216 (3), 189 (6), 116 (4), 105 (100), 78 

(3), 77 (40), 51 (8).  

IR (KBr): =
~
ν  3405, 1710, 1595, 1488, 1393, 1260, 1241, 1220, 1044, 889, 822 cm-1. 
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Regioisomer B:  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 3.99 (3H, s, OMe), 6.57 (1H, d, J = 7.8 Hz, Ar-

H), 6.91 (1H, s), 7.39 (2H, dd, J = 7.5, 1.2 Hz), 7.46 (2H, dd, J = 7.8, 1.2 Hz), 7.70 (2H, ddd, 

J = 6.9, 1.2, 6.9 Hz), 7.76 (1H, d, J = 8.1 Hz), 8.80 (1H, s, OH), 11.91 (1H, s, OH) ppm. 13C 

NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 56.2 (OMe), 106.5 (CH), 109.6 (CH), 115.2 (CH), 

116.1 (Cq), 118.2 (Cq), 128.1 (2×CH), 129.3 (2×CH), 130.5 (Cq), 131.9 (CH), 138.4 (Cq), 143.1 

(Cq), 158.2 (Cq), 199.1 (C=O) ppm. 

MS (EI): m/z (%) = 294 (M+, 21%), 293 (10), 292 (45), 291 (14), 278 (5), 276 (6), 275 (30), 

264 (5), 263 (5), 247 (3), 246 (3), 217 (3), 201 (4), 189 (4), 159 (4), 116 (5), 106 (8), 105 (100), 

104 (4), 101 (4), 88 (3), 77 (52). 

IR (KBr): =
~
ν  3407, 2940, 1735, 1600, 1449, 1395, 1261, 1070, 1047, 888, 704 cm-1. 
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8.11.2 (1,4-Dihydroxy-5-methoxy-naphthalen-2-yl)-(4-methoxy-phenyl)-methanone 
and (1,4-dihydroxy-8-methoxy-naphthalen-2-yl)-(4-methoxy-phenyl)-
methanone (117d) 

OH

OH

OMe

Molecular Formula: C19H16O5
Molecular Weight:    324.33
Exact Mass:               324.0997

O

OMe

 
Following the general procedure F, irradiation of 188 mg (1 mmol) of 5-methoxy-1,4-

naphthoquinone 115 and 1.22 g (9 mmol) of p-methoxybenzaldehyde 116d in 60 ml of benzene 

for 18h. The crude product was purified with flash column chromatography (silica gel, 30% EA 

in CH) gave regioisomer A 60 mg, (19%) as light orange solid, mp 132–134 °C and regioisomer 

B 50 mg, (15%) as brown solid, mp 172–175 °C 117d.  

 

Regioisomer A:;  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 3.88 (3H, s, OMe), 4.05 (3H, s, OMe), 6.56–

7.03 (4H, m, Ar-H), 7.44 (1H, dd, J = 8.1, 8.1 Hz, Ar-H), 7.74 (2H, dd, J = 1.8, 8.7 Hz), 8.12 

(1H, d, J = 8.7 Hz), 8.77 (1H, s, OH), 13.14 (1H, s, OH) ppm. 
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 55.4 (OMe), 56.3 (OMe), 108.6 (CH), 109.4 

(CH), 113.6 (2×CH), 118.1 (CH), 118.9 (Cq), 120.2 (Cq), 125.9 (CH), 131.6 (2×CH), 132.3 (Cq), 

145.0 (Cq), 152.4 (Cq), 155.3 (Cq), 162.6 (Cq), 199.6 (C=O) ppm.  

MS (EI): m/z (%) = 324 (M+, 25%), 323 (3.2), 321 (3.4), 293 (2.5), 217 (6.2), 216 (45.8), 201 

(2.0), 189 (3.8), 188 (9.0), 174 (3.1), 161 (2.7), 160 (17.8), 152 (17.8), 145 (3.8), 136 (8.9), 135 

(8.9), 131 (2.9), 118 (2.9), 107 (7.0), 92 (11.3), 77 (14.9).  

IR (KBr): =
~
ν  3359, 2937, 2835, 2366, 1728, 1605, 1463, 1395, 1258, 1171, 1073, 1028, 888, 

780, 752 cm-1. 

HRMS (EI+): found m/z 324.09930, calcd for C19H16O5 M+ 324.09977.  
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Regioisomer B:  

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 3.75 (3H, s, OMe), 3.92 (3H, s, OMe), 6.81 

(4H, dddd, J = 2.5, 10.6, 8.7, 7.5 Hz, Ar-H), 7.34 (1H, ddd, J = 8.1, 5.6, 2.5 Hz), 7.72 (3H, dd, 

J = 8.7, 1.8 Hz), 7.69 (1H, s, OH), 11.18 (1H, s, OH) ppm.  
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 55.1 (OMe), 55.9 (OMe), 105.8 (CH), 109.6 

(CH), 113.2 (2×CH), 115.5 (CH), 127.5 (CH), 130.0 (Cq), 131.0 (Cq), 131.7 (2×CH), 132.6 (Cq), 

135.6 (Cq), 144.2 (Cq), 151.0 (Cq), 157.6 (Cq), 162.6 (Cq), 196.9 (C=O) ppm. MS (EI): m/z (%) 

= 324 (M+, 7%), 323 (13), 322 (60), 321 (3), 307 (4), 294 (7), 291 (3), 251 (2), 188 (5), 187 (3), 

152 (2), 147 (3), 136 (9), 135 (100), 116 (3), 107 (9), 104 (3), 101 (2).  

IR (KBr): =
~
ν  3414, 1664, 1599, 1510, 1406, 1259, 1169, 1050, 988, 824, 761 cm-1. 

HRMS (EI+): found m/z 324.09930, calcd for C19H16O5 M+ 324.09977. 

 

8.11.3 (1,4-Dihydroxy-5-methoxy-naphthalen-2-yl)-p-tolyl-methanone and (1,4-
dihydroxy-8-methoxy-naphthalen-2-yl)-p-tolyl-methanone (117e) 

OH

OH

OMe

Molecular Formula: C19H16O4
Molecular Weight:    308.33
Exact Mass:               308.1048

O

Me

 
Following the general procedure F, irradiation of 188 mg (1 mmol) of 5-methoxy-1,4-

naphthoquinone 115 and 1.08 g (9 mmol) of p-methyl-benzaldehyde 116e in 60 ml of benzene 

for 15h. The crude product was purified with flash column chromatography (silica gel, 30% EA 

in CH) gave regioisomer A 140 mg (46%) as brown solid, mp 166–169 °C and regioisomer B 

60 mg (20%) as brown solid, mp 205–206°C 117e. 

 

Regioisomer A:  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 2.43 (3H, s, Me), 4.05 (3H, s, OMe), 6.96 (1H, s, Ar-H), 7.02 

(1H, d, J = 7.5 Hz), 7.29 (2H, d, J = 8.1 Hz), 7.42 (1H, t, J = 8.1 Hz), 7.63 (2H, d, J = 7.5 Hz), 

8.12 (d, 1H, J = 8.1 Hz), 8.76 (1H, s, OH), 13.20 (1H, s, OH) ppm.  
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13C NMR (125 MHz; CDCl3) δ =21.6 (CH3), 56.3 (OMe), 104.5 (Cq), 108.8 (CH), 109.4 (CH), 

118.2 (CH), 125.9 (CH), 126.4 (Cq), 127.7 (Cq), 128.8 (2×CH), 129.3 (2×CH), 130.2 (Cq), 135.3 

(Cq), 142.3 (Cq), 145.11 (Cq), 155.6 (Cq), 200.9 (C=O) ppm.  

MS (EI): m/z (%) = 308 (M+, 100%), 293 (5.0), 247 (3), 247 (9), 216 (63), 201 (7), 189 (8), 188 

(14), 174 (6), 173 (14), 160 (27), 145 (8), 130 (2), 120 (8), 118 (6), 102 (6), 91 (38), 65 (12).  

IR (KBr): =
~
ν  3427, 1737, 1608, 1465, 1395, 1236, 1213, 1073, 888, 776, 749 cm-1. 

HRMS (EI+): found m/z 308.10440, calcd for C19H16O4 M+ 308.10486.  

 

Regioisomer B:  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; acetone-d6/DMSO-d6) δ =2.37 (3H, s, Me), 4.01 (3H, s, OMe), 6.90 (2H, s, 

2×OH), 6.94 (2H, dd, J = 3.1, 8.1 Hz, Ar-H), 7.24 (2H, d, J = 8.1 Hz), 7.47 (1H, t, J = 8.1 Hz), 

7.65 (2H, d, J = 8.1 Hz), 7.79 (1H, t, J = 8.4 Hz) ppm.  
13C NMR (125 MHz; acetone-d6/DMSO-d6) δ = 20.1 (Me), 55.0 (OMe), 105.3 (CH), 107.6 

(CH), 114.5 (CH), 114.9 (CH), 116.0 (CH), 127.0 (CH), 127.7 (CH), 128.4 (CH), 135.12 (Cq), 

141.4 (Cq), 143.6 (Cq), 150.7 (Cq), 157.1 (Cq), 196.8 (C=O) ppm.  

MS (EI): m/z (%) = 308 (M+, 100%), 307 (8), 293 (7), 289 (4), 275 (3), 265 (3), 261 (3), 250 

(3), 237 (3), 221 (2), 217 (12), 188 (39), 171 (8), 160 (3), 146 (3), 130 (5), 119 (38), 102 (5), 91 

(37), 65 (12).  

IR (KBr): =
~
ν  3424, 1671, 1604, 1585, 1471, 1297, 1274, 1199, 1051, 1006, 821, 766 cm-1. 

HRMS (EI+): found m/z 308.10440, calcd for C19H16O4 M+ 308.10486. 
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8.11.4 4-[(1,4-Dihydroxy-8-methoxy-2-naphthyl)carbonyl]benzonitrile (119) and 5-
methoxy-naphthalene-1,4-diol (120) 

 

Following the general procedure, irradiation of 188 mg (1 mmol) of 5-methoxy-1,4-

naphthoquinone 155 and 1.18 g (9 mmol) of p-cyanobenzaldehyde 118 in 90 ml of benzene for 

12 h, followed by flash column chromatography (silica gel, 30% EA in CH) gave 39 mg (12%) 

of 4-[(1,4-dihydroxy-8-methoxy-2-naphthyl)carbonyl]benzonitrile 119 as brown solid, 186–188 

°C and 27 mg (13%) of 5-methoxy-naphthalene-1,4-diol 120.  

119:  

OH

OH

OMe

O

CNMolecular Formula: C19H13NO4
Molecular Weight:    319.32
Exact Mass:               319.0844

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; acetone-d6) δ = 4.17 (3H, s, OMe), 6.68 (1H, s, Ar-H), 7.33 (1H, d, J = 7.5 

Hz), 7.58 (1H, t, J = 8.1 Hz), 7.94 (2H, d, J = 8.1 Hz), 8.04 (2H, d, J = 8.1 Hz), 8.09 (1H, d, 

J = 8.1 Hz), 8.91 (1H, s, OH), (1H, s, OH, not observed) ppm.  
13C NMR (125 MHz; acetone-d6) δ = 57.0 (OMe), 108.7 (CH), 110.8 (CH), 113.6 (Cq), 115.7 

(Cq), 118.1 (CH), 118.7 (Cq), 127.8 (CH), 128.2 (Cq), 130.2 (2×CH), 131.2 (Cq), 133.2 (2×CH), 

142.7 (Cq), 146.8 (Cq), 156.4 (Cq), 156.9 (Cq), 200.6 (C=O) ppm.   

MS (EI): m/z (%) = 319 (M+, 74%), 189 (45), 161 (14), 130 (100), 103 (16), 76 (10).  

IR (KBr): =
~
ν  3412, 2365, 1718, 1599, 1386, 1348, 1286, 1260, 1105, 1077, 1051, 1015 cm-1. 

HRMS (EI+): found m/z 319.08504, calcd for C19H13NO4 M+ 319.08446. 
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120:123  

OH

OH

OMe

Molecular Formula: C11H10O3
Molecular Weight:    190.20
Exact Mass:               190.062994

 
1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 3.48 (3H, s, OMe), 4.00 (1H, s, OH), 4.06 (1H, 

s, OH), 6.78 (1H, d, J = 7.5 Hz, Ar-H), 6.85 (1H, d, J = 8.1 Hz), 6.93 (1H, dd, J = 8.1, 1.2 Hz), 

7.30 (1H, dd, J = 8.1, 8.1 Hz), 8.30 (1H, dd, J = 1.8, 8.1 Hz) ppm. 
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 55.5 (OMe), 106.5 (CH), 107.8 (CH), 115 

(CH), 119.0 (CH), 125.4 (CH), 129.4 (Cq), 129.6 (Cq), 130.6 (Cq), 132.3 (Cq), 152.1 (Cq) ppm. 
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8.11.5 (4-Chloro-phenyl)-(1,4-dihydroxy-5-methoxy-naphthanlen-2-yl)-methanone 
or (4-chloro-phenyl)-(1,4-dihydroxy-8-methoxy-2-naphthanlen-2-yl)-
methanone (122), [3-(4-chloro-benzoyl)-1,4-dihydroxy-8-methoxy-naphthalen-
2-yl]-(4-chloro-phenyl)-methanone (123), 4-chloro-benzoic acid 4-hydroxy-8-
methoxy-naphthalen-1-yl ester (124) and 5-methoxy-naphthalene-1,4-diol 
(120) 

 

Following the general procedure F, irradiation of 188 mg (1 mmol) of 5-methoxy-1,4-

naphthoquinone 115 and 1.26 g (9 mmol) of p-chlorobenzaldehyde 121 in 60 ml of benzene for 

12 h. The crude product was purified with flash column chromatography (silica gel, 30% EA in 

CH) gave 76 mg (22%) of either (4-chloro-phenyl)-(1,4-dihydroxy-5-methoxy-2-naphthanlen-2-

yl)-methanone or (4-chloro-phenyl)-(1,4-dihydroxy-8-methoxy-2-naphthanlen-2-yl)-methanone 

122 brown solid, mp 173–176 °C, 34 mg (7%) of [3-(4-chloro-benzoyl)-1,4-dihydroxy-8-

methoxy-naphthalen-2-yl]-(4-chloro-phenyl)-methanone 123 as brown solid, mp 144–146 °C, 

38 mg (11%) of 4-chloro-benzoic acid 4-hydroxy-8-methoxy-naphthalen-1-yl ester 124 as 

brown solid mp 177–179 °C and 15 mg (8%) of 5-methoxy-naphthalene-1,4-diol 120.  

122:  

OH

OH

OMe

Molecular Formula: C18H13ClO4
Molecular Weight:    328.75
Exact Mass:               328.0502

O

Cl

 
1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CD2Cl2) δ = 4.07 (3H, s, OMe), 6.85 (1H, s, Ar-H), 7.10 (1H, d, J = 8.1 

Hz), 7.48 (1H, d, J = 8.1 Hz), 7.52 (2H, dd, J = 1.8, 8.1 Hz), 7.69 (2H, dd, J = 8.7, 1.8 Hz), 8.12 

(1H, d, J = 7.5 Hz), 8.80 (1H, s, OH), 13.05 (1H, s, OH) ppm.  
13C NMR (125 MHz; CD2Cl2) δ = 56.8 (OMe), 108.9 (CH), 109.5 (CH), 113.3 (Cq), 118.2 

(CH), 126.7 (CH), 128.9 (2×CH), 130.9 (2×CH), 131.9 (Cq), 136.8 (Cq), 138.2 (Cq), 145.9 (Cq), 

156.0 (Cq), 156.2 (Cq), 200.2 (C=O) ppm.   

MS (EI): m/z (%) = 328 (M+, 41%), 326 (13), 216 (12), 189 (19), 160 (6), 139 (100), 111 (27),, 

75 (14).  

IR (KBr): =
~
ν  3380, 2865, 1912, 1689, 1670, 1590, 1386, 1209, 1090, 850 cm-1.  

HRMS (EI+): found m/z 328.05053, calcd for C18H13ClO4 M+ 328.05024.  
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123:  

OH

OH

O

O

OMe

Cl

Cl

Molecular Formula: C25H16Cl2O5
Molecular Weight:    467.31
Exact Mass:               466.0374

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; acetone-d6) δ = 4.19 (3H, s, OMe), 7.32 (3H, dd, J = 8.1, 5.0 Hz, Ar-H), 

7.46 (2H, d, J = 8.1 Hz), 7.66 (3H, ddd, J = 8.1, 8.7, 1.8 Hz), 7.80 (2H, d, J = 8.7 Hz), 8.00 

(1H, d, J = 8.7 Hz), 9.54 (1H, s, OH), (1H, s, OH, not observed) ppm.   
13C NMR (125 MHz; acetone-d6) δ = 57.1 (OMe), 109.4 (CH), 117.3 (CH), 119.5 (Cq), 120.2 

(Cq), 129.1 (4×CH), 129.3 (CH), 130.0 (Cq), 131.6 (2×CH), 132.0 (2×CH), 138.2 (Cq), 138.5 

(Cq), 138.8. (Cq), 139.0 (Cq), 147.6 (Cq), 157.9 (Cq), 194.9 (C=O), 197.6 (C=O) ppm.  

MS (EI): m/z (%) = 466 (M+, 10%), 450 (3), 433 (2), 396 (1), 206 (4), 189 (5), 139 (17), 111(9) 

75 (2), 43 (100). 

IR (KBr): =
~
ν  3426, 1737, 1641, 1599, 1463, 1439, 1397, 1257, 1225, 1170, 1072, 1011 cm-1. 

HRMS (EI+): found m/z 466.0377, calcd for C25H16Cl2O5 M+ 466.03747.  
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124:  

 

O

OH

O

Cl

OMe

Molecular Formula: C18H13ClO4
Molecular Weight:    328.75
Exact Mass:               328.0502

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3/acetone-d6 1:1) δ = 3.59 (3H, s, OMe), 6.94 (1H, d, J = 4.4 Hz), 

6.96 (1H, d, J = 4.4 Hz) 7.04 (1H, d, J = 8.1 Hz), 7.40 (1H, t, J = 8.1 Hz), 7.66 (2H, d, J = 8.7 

Hz), 7.88 (1H, d, J = 8.7 Hz), 8.21 (2H, d, J = 8.7 Hz), 9.18 (1H, s, OH) ppm.   
13C NMR (125 MHz; CDCl3/acetone-d6 1:1) δ = 56.0 (OMe), 107.4 (CH), 108.6 (CH), 115.8 

(CH), 120.1 (CH), 120.6 (Cq), 126.2 (CH), 128.3 (Cq), 129.7 (2×CH), 130.3 (Cq), 132.4 (2×CH), 

139.6 (Cq), 140.0 (Cq), 151.9 (Cq), 156.0 (Cq), 165.6 (C=O) ppm. 

MS (EI): m/z (%) = 328 (M+, 18%), 216 (8), 189 (7), 138 (19), 110 (5), 83 (2), 58 (46), 43 

(100). 

HRMS (EI+): found m/z 328.048390, calcd for C18H13ClO4 M+ 328.05023. 

IR (KBr): =
~
ν  3627, 2324, 2296, 1778, 1652, 1583, 1485, 1246, 1091 cm-1. 

 

120:123 See previously described analytical data for compound 120.  

 

8.12 Photoacylation Reactions of 2-Methoxy-1,4-Naphthoquinone 

8.12.1 1-(1,4-Dihydroxy-3-methoxy-naphthalen-2-yl)-butan-1-one (126) and 2-
butyryl-3-methoxy-1,4-naphthoquinone (127) 

 

Following the general procedure F, irradiation of 188 mg (1 mmol) of 2-methoxy-1,4-

naphthoquinone 125 and 576 mg (8 mmol) of butyraldehyde 105a in 60 ml of benzene for 12 h. 

The crude product was purified with flash column chromatography (silica gel, 30% EA in CH) 

and HPLC gave 63 mg (24%) of 1-(1,4-dihydroxy-3-methoxy-naphthalen-2-yl)-butan-1-one 126 

brown solid, mp 109–110 °C and 29 mg (11%) of 2-butyryl-3-methoxy-1,4-naphthoquinone 127 

as brown solid, mp 144-146 °C.  
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126:  

O

OH

OH

OMeMolecular Formula: C15H16O4
Molecular Weight:    260.29
Exact Mass:               260.1048

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 0.93 (3H, t, J = 7.2 Hz, CH3-CH2), 1.75 (2H, m), 3.80 (3H, s, 

OMe), 5.59 (1H, s, OH), 7.46 (1H, dd, J = 7.2, 1.2 Hz, Ar-H), 7.63 (1H, dd, J = 1.2, 7.2 Hz), 

8.08 (1H, d, J = 8.1 Hz), 8.37 (1H, d, J = 8.1 Hz), 13.8 (1H, s, OH) ppm. 
13C NMR (125 MHz; CDCl3) δ = 13.9 (CH3), 18.3 (CH2), 44.2 (CH2), 62.3 (OMe), 108.8 (CH), 

121.4 (CH), 123.1 (Cq), 124.5 (CH), 125.5 (CH), 128.4 (Cq), 129.9 (Cq), 135.9 (Cq), 138.4 (Cq), 

157.3 (Cq), 206.3 (C=O) ppm.  

MS (EI): m/z (%) = 260 (M+, 94%), 258 (52), 257 (6), 246 (36), 231 (34), 230 (57), 227 (57), 

217 (27), 209 (14), 199 (19), 190 (66), 181 (11), 174 (16), 163 (22), 159 (13), 128 (12), 115 

(21), 105 (37), 89 (22), 79 (4), 71 (77).  

IR (KBr): =
~
ν  3427, 2964, 2937, 2365, 1708, 1679, 1626, 1600, 1570, 1454, 1399, 1332, 1772, 

1216, 1124, 1046, 911, 729 cm-1. 

 

127:  

O

O

O

OMeMolecular Formula: C15H14O4
Molecular Weight:    258.27
Exact Mass:               258.0892

 
 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 0.97 (3H, t, J = 7.2 Hz, CH3-CH2), 1.71 (2H, m), 2.72 (2H, t, 

J = 7.5 Hz), 4.10 (3H, s, OMe), 7.73 (2H, m, Ar-H), 8.04 (2H, m) ppm.   
13C NMR (125 MHz; CDCl3) 13.6 (CH3), 16.6 (CH2), 46.8 (CH2), 61.4 (OMe), 126.1 (CH), 

126.5 (CH), 130.0 (Cq), 130.9 (Cq), 131.1 (Cq), 133.7 (CH), 134.5 (CH), 155.3 (Cq), 181.4 

(C=O), 183.7 (C=O), 202.0 (C=O) ppm.   
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MS (EI): m/z (%) = 258 (M+, 4%), 257 (1), 243 (8), 230 (6), 228 (9), 215 (100), 209 (1), 187 

(71), 173 (10), 167 (5), 149 (4), 129 (4), 104 (23), 89 (7), 87 (2), 76 (21), 71 (13). 

IR (KBr): =
~
ν  3441, 2699, 2877, 2359, 1709, 1662, 1581, 1440, 1274, 1071, 902, 735 cm-1. 

HRMS (EI+) found m/z 258.08939, calcd for C15H14O4 M+ 258.08921. 

 

8.12.2 2-Dodecanoyl-3-methoxy-1,4-naphthoquinone (128) 

O

O

O

OMe
Molecular Formula: C23H30O4
Molecular Weight:    370.49
Exact Mass:               370.2144

 
Following the general procedure F, irradiation of 188 mg (1 mmol) of 2-methoxy-1,4-

naphthoquinone 125 and 1.69 g (9 mmol) of dodecanal 105b in 60 ml of benzene for 12 h. The 

crude product was purified with flash column chromatography (silica gel, 30% EA in CH) gave 

85 mg (23%) of 2-dodecanoyl-3-methoxy-1,4-naphthoquinone 128 as thick brown oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 0.85 (3H, J = 7.2 Hz, CH3-CH2), 1.23 (m, 16H), 2.70–2.75 

(3H, t, J = 7.2 Hz), 4.09 (3H, s, OMe), 7.71 (ddd, 2H, J = 1.2, 7.5, 6.9 Hz), 8.03 (2H, ddd, 

J = 1.2, 6.9, 8.7 Hz) ppm.  
13C NMR (125 MHz; CDCl3) δ = 14.1 (CH3), 22.6 (CH2), 23.12 (CH2), 29.0 (CH2), 29.3 (CH2), 

29.4 (CH2), 29.5 (CH2), 29.6 (CH2), 31.8 (CH2), 45.0 (CH2), 61.4 (OCH3), 126.1 (CH), 126.5 

(CH), 130.9 (CH), 131.1 (CH), 133.7 (CH), 134.5 (CH), 155.2 (Cq), 157.2 (Cq), 181.4 (C=O), 

183.8 (C=O), 202.2 (C=O) ppm.  

MS (EI): m/z (%) = 370 (M+, 51%), 358 (1), 355 (4), 342 (22), 328 (3), 281 (11), 267 (3), 245 

(5), 230 (70), 215 (100), 202 (13), 190 (10), 188 (14), 187 (58), 174 (5), 173 (13), 163 (6), 157 

(4), 147 (2), 130 (2), 155 (4), 105 (11), 101 (5), 91 (5), 77 (8), 69 (9), 57 (16). 

IR (KBr): =
~
ν  2925, 2854, 2365, 1710, 1679, 1647, 1599, 1460, 1369, 1332, 1300, 1270, 

1217 cm-1. 

HRMS (EI+): found m/z 370.21447, cald for: C23H30O4 M+ 370.21441. 
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8.13 Photoacylation Reactions of 2-Methyl-1,4-Naphthoquinone 

8.13.1 2-Isobutyryl-3-methyl-1,4-naphthoquinone (131a) 

Molecular Formula: C15H14O3
Molecular Weight:    242.27
Exact Mass:               242.0942

O

O

O

Me

 
Following the general procedure F, irradiation of 344 mg (2 mmol) of 2-methyl-1,4-

naphthoquinone 129 and 1.30 g (18 mmol) of isobutyraldehyde 130a in 90 ml of benzene for 

18h. The crude product was purified with flash column chromatography (silica gel, 30% EA in 

CH) gave 170 mg (36%) of 2-isobutyryl-3-methyl-1,4-naphthoquinone 131a as brown oil.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 1.18 (6H, d, J = 7.5 Hz, CH(CH3)2), 2.05 (3H, s, Me), 2.96 

(pentate, 1H, J = 6.9 Hz, CH(CH3)2), 7.79 (1H, dd, J = 3.7, 8.7 Hz, Ar-H), 8.02 (2H, dd, 

J = 8.7, 3.1 Hz), 8.08 (1H, ddd, J = 8.7, 1.2, 5.6 Hz) ppm.  
13C NMR (125 MHz; CDCl3) δ = 17.3 (2×CH3), 20.9 (CH3), 41.6 (CH), 126.1 (CH), 126.5 

(CH), 131.2 (Cq), 131.7 (Cq), 134.0 (2×CH), 143.2 (Cq), 145.4 (Cq), 183.6 (C=O), 184.9 (C=O), 

207.7 (C=O) ppm. 

MS (EI): m/z (%) = 242 (M+, 76%), 241 (5), 227 (12), 216 (4), 214 (8), 199 (74), 188 (21), 174 

(75), 159 (13), 143 (16), 115 (100), 104 (35), 89 (22), 76 (51) 

IR (KBr): =
~
ν  2971, 1699, 1662, 1595, 1465, 1382, 1328, 1290, 1260, 998, 780,  

705 cm-1. 
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8.13.2 2-Dodecanoyl-3-methyl-1,4-naphthoquinone (131b) 

O

O

O

Me
Molecular Formula: C23H30O3
Molecular Weight:    354.49
Exact Mass:               354.2194

 
Following the general procedure F, irradiation of 344 mg (2 mmol) of 2-methyl-1,4-

naphthoquinone 129 and 3.32 g (18 mmol) of dodecanal 130b in 100 ml of benzene for 12 h. 

The crude product was purified with flash column chromatography (silica gel, 30% EA in CH) 

gave 280 mg (39%) of 2-dodecanoyl-3-methyl-1,4-naphthoquinone 131b as yellow solid, mp 

91–92 °C.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 0.84 (3H, t, J = 6.9 Hz, CH2CH3), 1.10–1.30 (16H, m; -

(CH2)8-), 2.05 (3H, s, Me), 2.70 (2H, t, J = 7.5 Hz), 7.71 (2H, dd, J = 3.1, 9.4 Hz, Ar-H), 8.01 

(2H, dd, J = 3.1, 9.3 Hz) ppm.  
13C NMR (125 MHz; CDCl3) δ = 13.1 (CH2CH3), 14.0 (CH2), 22.6 (Me), 22.9 (CH2), 29.1 

(CH2), 29.2 (CH2), 29.3 (CH2), 29.4 (CH2), 29.5 (CH2), 31.8 (CH2), 44.2 (CH2), 126.1 (CH), 

126.5 (CH), 131.5 (CH), 131.6 (Cq), 134.0 (CH), 134.1 (Cq), 142.4 (Cq), 145.0 (Cq), 183.4 

(C=O), 185.0 (C=O), 204.0 (C=O) ppm.  

MS (EI): m/z (%) = 354 (M+, 57%), 339 (12), 255 (16), 241 (13), 227 (20), 214 (100), 201 (28), 

186 (16), 174 (89), 143 (13), 115 (47), 105 (14), 91 (5), 76 (17), 71 (17), 43 (61).  

IR (KBr): =
~
ν  2917, 2851, 1704, 1666, 1595, 1464, 1377, 1326, 1292, 1145, 1117, 720 cm-1. 

HRMS (EI+): found m/z 354.21890, calcd for C23H30O3 M+ 354.21949. 
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8.13.3 2-Benzoyl-3-methyl-1,4-naphthoquinone (131c) 

Molecular Formula: C18H12O3
Molecular Weight:    276.29
Exact Mass:               276.0786

O

O

O

Me

 
Following the general procedure, irradiation of 344 mg (2 mmol) of 2-methyl-1,4-

naphthoquinone 129 and 1.91 g (18 mmol) of benzaldehyde 130c in 100 ml of benzene for 18h, 

followed by flash column chromatography (silica gel, 30% EA in CH) gave 126 mg (23%) of 2-

benzoyl-3-methyl-1,4-naphthoquinone 131c. 

Pale yellow solid, 146–147 °C;  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 2.04 (3H, s, Me), 7.47 (dd, 2H, J = 7.8 Hz, Ar-H ), 7.61 (1H, 

dd, J = 7.5, 1.2 Hz), 7.73 (2H, m,), 7.88 (2H, dd, J = 7.5, 1.2 Hz), 8.05 (1H, ddd, J = 1.2, 2.5, 

7.8 Hz), 8.15 (1H, ddd, J = 1.8, 1.2, 7.5 Hz) ppm. 
13C NMR (125 MHz; CDCl3) δ = 13.5 (Me), 126.3 (CH), 129.0 (2×CH), 129.1 (2×CH), 131.5 

(Cq), 131.8 (Cq), 134.0 (CH), 134.1 (CH), 134.5 (CH), 135.6 (Cq), 143.9 (Cq), 144.3 (Cq), 183.3 

(C=O), 184.7 (C=O), 193.6 (C=O) ppm.  

MS (EI): m/z (%) = 276 (M+, 73%), 275 (24), 248 (3), 247 (11), 233 (3), 219 (3), 202 (2), 191 

(2), 189 (2), 171 (4), 143 (2), 116 (2), 115 (15), 106 (7), 105 (100), 89 (5), 78 (4), 67 (5). 

IR (KBr): =
~
ν  1676, 1657, 1629, 1596, 1450, 1378, 1291, 1274, 1238, 1179, 976, 777, 712, 

688, 674 cm-1. 

HRMS (EI+): found m/z 276.07792, calcd for C18H12O3 M+ 276.07864. 
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8.13.4 2-(4-Methoxy-benzoyl)-3-methyl-1,4-naphthoquinone (131d) 

Molecular Formula: C19H14O4
Molecular Weight:    306.32
Exact Mass:               306.0892

O

O

O

Me OMe

 
Following the general procedure F, irradiation of 344 mg (2 mmol) of 2-methoxy-1,4-

naphthoquinone 129 and 2.45 g (18 mmol) of p-methoxybenzaldehyde 130d in 100 ml of 

benzene for 12 h. The crude product was purified with flash column chromatography (silica gel, 

30% EA in CH) gave 254 mg (42%) of 2-(4-methoxy-benzoyl)-3-methyl-1,4-naphthoquinone 

131d pale yellow solid, mp 140–142 °C.  

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; acetone-d6) 1.98 (3H, s, Me), 3.89 (3H, s, OMe), 7.05 (2H, dd, J = 1.8, 8.7 

Hz, Ar-H), 7.80 (1H, dd, J = 8.7, 1.8 Hz), 7.87 (2H, m), 8.02 (2H, dd, J = 1.8, 8.7 Hz), 8.12 

(1H, dd, J = 1.8, 6.9 Hz) ppm.  
13C NMR (125 MHz; acetone-d6) δ = 13.5 (CH3), 56.0 (OMe), 115.1 (2×CH), 126.8 (2×CH), 

127.0 (CH), 129 (Cq), 130.0 (Cq), 132.4 (CH), 133.07 (Cq), 134.8 (CH), 134.9 (CH), 145.2 (Cq), 

165.5 (Cq), 184.2 (C=O), 185.3 (C=O), 192.4 (C=O) ppm.  

MS (EI): m/z (%) = 306 (M+, 37%), 305 (4), 291 (3), 289 (2), 277 (3), 275 (6), 263 (2), 200 (7), 

135 (100), 116 (2), 115 (7), 110 (2), 104 (3), 92 (11), 78 (2), 65 (2).  

IR (KBr): =
~
ν  1731, 1668, 1596, 1570, 1509, 1457, 1422, 1330, 1291, 1260, 1247, 1175, 1018, 

832, 763, 706, 511 cm-1. 

HRMS (EI+): found m/z 306.08924, calcd for C19H14O4 M+ 306.08921. 
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8.13.5 2-(4-Methyl-benzoyl)-3-methyl-1,4-naphthoquinone (131e) 

Molecular Formula: C19H14O3
Molecular Weight:    290.32
Exact Mass:               290.0942

O

O

O

Me Me

 
Following the general procedure F, irradiation of 344 mg (2 mmol) of 2-methyl-1,4-

naphthoquinone 129 and 2.16 g (18 mmol) of p-methylbenzaldehyde 130e in 100 ml of benzene 

for 12 h, followed by flash column chromatography (silica gel, 30% EA in CH) gave 203 mg 

(23%) of 2-(4-methyl-benzoyl)-3-methyl-1,4-naphthoquinone 131e as pale yellow solid, mp 

193–194 °C. 

 

1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CD2Cl2) δ = 2.02 (3H, s, Me), 2.42 (3H, s, Me), 7.31 (2H, d, J = 7.5 Hz, 

Ar-H), 7.79 (4H, ddd, J = 1.8, 2.5, 7.5 Hz), 8.04 (1H, dd, J = 1.8, 6.9 Hz), 8.14 (1H, ddd, 

J = 1.8, 1.2, 7.5 Hz) ppm.  
13C NMR (125 MHz; CD2Cl2) δ = 13.6 (CH3), 21.9 (CH3), 126.5 (CH), 126.8 (CH), 129.4 

(2×CH), 130.1 (2×CH), 131.9 (Cq), 132.2 (Cq), 133.2 (Cq), 134.9 (CH), 134.5 (CH), 144.1 (Cq), 

144.7 (Cq), 146.2 (Cq), 183.8 (C=O), 185.1 (C=O), 193.4 (C=O) ppm.  

MS (EI): m/z (%) = 290 (M+, 61%), 289 (9), 276 (4), 261 (5), 247 (4), 200 (2), 120 (9), 119 

(100), 115 (11), 104 (3), 91 (43), 65 (16).  

IR (KBr): =
~
ν  1669, 1654, 1601, 1410, 1331, 1292, 1273, 1239, 1181, 1121, 975, 861, 762, 

742, 708, 620, 534 cm-1. 

HRMS (EI+): found m/z 290.09361, calcd for C19H14O3 M+ 290.09429. 
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8.13.6 2-Butyryl-3-methyl-1,4-naphthoquinone (132) and 2-butyryl-2-methyl-2,3-
dihydro-1,4-naphthoquinone (133) 

 

Following the general procedure F, irradiation of 344 mg (2 mmol) of 2-methyl-1,4-

naphthoquinone 129 and 1.30 g (18 mmol) of butyraldehyde 105a in 100 ml of benzene for 12 h. 

The crude product was purified with flash column chromatography (silica gel, 30% EA in CH) 

gave 233 mg (49%) of 2-butyryl-3-methyl-1,4-naphthoquinone 132 light yellow solid, mp 76–79 

°C and 48 mg (10%) of 2-butyryl-3-methyl-2,3-dihydro-1,4-naphthoquinone 133 as colorless 

oil. 

132:  

Molecular Formula: C15H14O3
Molecular Weight:    242.27
Exact Mass:               242.0942

O

O

O

Me

 
1D NMR analysis (1H, 13C, 13C-DEPT); 
1H NMR (500 MHz; CDCl3) δ = 0.98 (3H, t, J = 7.5 Hz, CH2CH3), 1.72 (2H, q, J = 7.3 Hz, 

CH2CH3), 2.06 (3H, s, Me), 2.69 (2H, t, J = 7.5 Hz, -COCH2-), 7.72 (2H, dd, J = 3.1, 8.7 Hz, 

Ar-H), 8.03 (1H, ddd, J = 3.1, 2.5, 8.7 Hz), 8.08 (1H, ddd, J = 2.5, 8.7, 5.6 Hz) ppm.  
13C NMR (125 MHz; CDCl3) δ = 13.1 (CH3), 13.6 (CH2), 16.4 (Me), 46.1 (CH2), 126.1 (CH), 

126.5 (CH), 133.5 (Cq), 134.0 (CH), 134.1 (CH), 135.6 (Cq), 142.4 (Cq), 145.6 (Cq), 183.4 

(C=O), 185.0 (C=O), 203.9 (C=O) ppm.  

MS (EI): m/z (%) = 242 (M+, 80%), 228 (4), 227 (23), 200 (20), 199 (95), 196 (2), 174 (12), 

171 (100), 143 (21), 116 (12), 115 (69), 89 (17), 89 (16), 76 (18), 67 (16), 58 (14), 43 (36).  

IR (KBr): =
~
ν  2961, 2935, 2875, 2362, 1702, 1663, 1594, 1458, 1375, 1326, 1289, 1151, 1006, 

958, 793, 703 cm-1. 

HRMS (EI+): found m/z 242.09425, calcd for C15H14O3 M+ 242.09429.  
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133:  

Molecular Formula: C15H16O3
Molecular Weight:    244.29
Exact Mass:               244.1099

O

O

Me

O

 
 

1D NMR analysis (1H, 13C, 13C-DEPT) and 2D NMR analysis (1H-COSY, HMBC, HMQC and 

HSQC); 
1H NMR (500 MHz; CDCl3) δ = 0.68 (3H, t, J = 7.2 Hz, CH2CH3), 1.36–1.46 (2H, m), 1.58 

(3H, s, CCH3), 2.30 (1H, ddd, J = 17.9, 7.8, 6.2 Hz), 2.46 (1H, ddd, J = 17.9, 7.7, 6.6 Hz), 2.73 

(1H, d, J = 16.9 Hz, CCH2), 3.36 (1H, d, J = 16.3 Hz, CCH2), 7.69 (2H, dddd, J = 1.2, 5.6, 8.1, 

5.6 Hz, Ar-H), 7.98 (1H, dd, J = 6.9, 1.8 Hz), 8.06 (1H, dd, J = 1.8, 6.9 Hz) ppm.  
13C NMR (125 MHz; CDCl3) 13.2 (CH3), 16.8 (CH2), 20.0 (CH3), 39.2 (CH2), 46.8 (CH2), 65.0 

(Cq), 126.6 (CH), 127.1 (CH), 133.8 (Cq), 134.1 (CH), 134.6 (CH), 135.2 (Cq), 193.4 (C=O), 

195.3 (C=O), 206.8 (C=O) ppm. 

MS (EI): m/z (%) = 244 (M+, 16%), 228 (3), 201 (5), 185 (12), 175 (14), 174 (100), 159 (91), 

159 (9), 149 (11), 131 (6), 128 (5), 117 (4), 105 (10), 91 (5), 76 (14), 71 (45), 55 (2), 43 (66).  

IR (KBr): =
~
ν  2963, 2934, 2874, 1687, 1665, 1594, 1458, 1379, 1286, 1265, 1216, 978 cm-1. 

HRMS (EI+): found m/z 244.10967, calcd for C15H16O3 M+ 244.10994. 
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9 X-Ray Analysis 

9.1 4-(1,4-Dihydroxy-8-methoxy-naphthalene-2-carbonyl)-benzonitrile 
(119) 

 

The compound 119 was crystallized from 1/1 mixture of acetone/n–hexane at 280 K. The red 

crystals appeared after one week with mono–clinic crystal system.  

 

Measurement device  Nonius KappaCCD  

Empirical formula  C19 H13 N O4  

Formula weight  319.30  

Temperature  100(2) K  

Wavelength  0.71073 A  

Crystal system, space group  Monoclinic P 21/c  

Unit cell dimensions  a = 9.2250(2) A alpha = 90 deg. 

b = 10.5760(3) A beta = 104.2370(15) deg.  

c = 15.4410(4) A gamma = 90 deg.  

Volume  1460.21(6) A3  

Calculated density (Z)  4, 1.452 Mg/m3  

Absorption coefficient  0.103 mm-1  

F(000)  664  

Crystal size, colour and habit  0.29 × 0.28 × 0.07 mm3, red fragment  

Theta range for data collection  2.98 to 27.49 deg.  

Index ranges  -11<=h<=11, -13<=k<=13, -20<=l<=19  

Reflections collected / unique  22523 / 3332 [R(int) = 0.034]  

Completeness to theta  = 27.49     99.6%  

Absorption correction  multi-scan 

Max. and min. transmission  0.9928 and 0.9707  

Refinement method  Full-matrix least-squares on F2  

Data / restraints / parameters  3332 / 0 / 269  

Goodness-of-fit on F2  1.025  

Final R indices [I>2sigma(I)]  R1 = 0.0392, wR2 = 0.1027 [2817]  

R indices (all data)  R1 = 0.0472, wR2 = 0.1096  

Largest diff. peak and hole  0.295 and -0.207 e.A-3  

Remarks  Hydrogens were refined isotropically. 
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Table 9: Atomic coordinates (Å × 104) and equivalent isotropic displacement parameters (Å2 × 
103) for (119). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
 

 x y z U(eq)

O(1) 
O(2) 
O(3) 
O(4) 
N(1) 
C(1) 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C(11) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 
C(17) 
C(18) 
C(19) 

4013(1) 
3767(1) 
-627(1) 
-249(1) 
3869(1) 
3792(1) 
3661(1) 
3395(1) 
3267(1) 
3374(1) 
3634(1) 
3792(1) 
3339(1) 
2553(1) 
2824(1) 
2117(1) 
2477(1) 
1796(1) 
720(1) 
380(1) 
1067(1) 
762(1) 
1492(1) 
-1072(2)

3346(1)
3797(1)
7981(1)
7539(1)
6440(1)
6092(1)
5654(1)
4374(1)
3969(1)
4840(1)
6117(1)
6528(1)
4344(1)
5035(1)
4730(1)
5432(1)
5175(1)
5846(1)
6769(1)
7053(1)
6396(1)
6648(1)
5988(1)
8862(2)

3967(1)
5568(1)
5618(1)
4032(1)
-407(1) 
285(1) 
1152(1)
1280(1)
2112(1)
2808(1)
2671(1)
1844(1)
3713(1)
4284(1)
5188(1)
5761(1)
6694(1)
7239(1)
6893(1)
5996(1)
5394(1)
4451(1)
3931(1)
6210(1)

31(1) 
26(1) 
34(1) 
31(1) 
31(1) 
25(1) 
23(1) 
25(1) 
25(1) 
22(1) 
22(1) 
23(1) 
23(1) 
21(1) 
22(1) 
22(1) 
25(1) 
27(1) 
27(1) 
25(1) 
22(1) 
23(1) 
22(1) 
40(1) 
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Table 10: Bond lengths (Å).  
 

Bond Bond length (Å) Bond Bond lengths (Å) 
O(1)-C(8) 
O(2)-C(10) 
O(2)-H(2) 
O(3)-C(15) 
O(3)-C(19) 
O(4)-C(17) 
O(4)-H(4) 
N(1)-C(1) 
C(1)-C(2) 
C(2)-C(7) 
C(2)-C(3) 
C(3)-C(4) 
C(3)-H(3) 
C(4)-C(5) 
C(4)-H(4A) 
C(5)-C(6) 
C(5)-C(8) 
C(6)-C(7) 
C(6)-H(6) 
 

1.2383(15) 
1.3503(14) 
0.97(2) 
1.3779(15) 
1.4346(16) 
1.3715(14) 
0.91(2) 
1.1484(16) 
1.4490(16) 
1.3962(17) 
1.3990(18) 
1.3858(17) 
0.960(16) 
1.4001(17) 
0.976(15) 
1.3973(17) 
1.5009(16) 
1.3896(16) 
0.981(15) 
 

C(7)-H(7) 
C(8)-C(9) 
C(9)-C(10) 
C(9)-C(18) 
C(10)-C(11) 
C(11)-C(12) 
C(11)-C(16) 
C(12)-C(13) 
C(12)-H(12) 
C(13)-C(14) 
C(13)-H(13) 
C(14)-C(15) 
C(14)-H(14) 
C(15)-C(16) 
C(16)-C(17) 
C(17)-C(18) 
C(18)-H(18) 
C(19)-H(19A) 
C(19)-H(19B) 
C(19)-H(19C) 

0.979(14) 
1.4668(16) 
1.3940(16) 
1.4174(16) 
1.4300(16) 
1.4224(16) 
1.4241(16) 
1.3667(18) 
0.964(15) 
1.4008(19) 
0.951(16) 
1.3750(17) 
0.935(17) 
1.4289(16) 
1.4383(16) 
1.3602(17) 
0.973(14) 
1.019(19) 
1.029(19) 
0.999(19) 
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Table 11: Bond angles (deg). 
 

Bond Bond angle (deg) Bond Bond angle (deg)

C(10)-O(2)-H(2) 
C(15)-O(3)-C(19) 
C(17)-O(4)-H(4) 
N(1)-C(1)-C(2) 
C(7)-C(2)-C(3) 
C(7)-C(2)-C(1) 
C(3)-C(2)-C(1) 
C(4)-C(3)-C(2) 
C(4)-C(3)-H(3) 
C(2)-C(3)-H(3) 
C(3)-C(4)-C(5) 
C(3)-C(4)-H(4A) 
C(5)-C(4)-H(4A) 
C(6)-C(5)-C(4) 
C(6)-C(5)-C(8) 
C(4)-C(5)-C(8) 
C(7)-C(6)-C(5) 
C(7)-C(6)-H(6) 
C(5)-C(6)-H(6) 
C(6)-C(7)-C(2) 
C(6)-C(7)-H(7) 
C(2)-C(7)-H(7) 
O(1)-C(8)-C(9) 
O(1)-C(8)-C(5) 
C(9)-C(8)-C(5) 
C(10)-C(9)-C(18) 
C(10)-C(9)-C(8) 
C(18)-C(9)-C(8) 
O(2)-C(10)-C(9) 
O(2)-C(10)-C(11) 

104.5(12)  
117.39(10)  
107.2(13)  
178.81(13)  
121.12(11)  
119.01(11)  
119.87(11)  
119.25(11)  
119.4(9)  
121.3(9)  
120.14(12)  
119.9(9)  
119.9(9)  
120.15(11)  
121.50(10)  
118.12(11)  
120.11(11)  
119.2(9)  
120.7(9)  
119.23(11)  
120.6(8)  
120.2(8)  
121.25(11)  
117.89(10)  
120.85(10)  
119.14(11)  
119.52(10)  
121.31(10)  
122.82(11)  
117.01(10) 

C(9)-C(10)-C(11) 
C(12)-C(11)-C(16) 
C(12)-C(11)-C(10) 
C(16)-C(11)-C(10) 
C(13)-C(12)-C(11) 
C(13)-C(12)-H(12) 
C(11)-C(12)-H(12) 
C(12)-C(13)-C(14) 
C(12)-C(13)-H(13) 
C(14)-C(13)-H(13) 
C(15)-C(14)-C(13) 
C(15)-C(14)-H(14) 
C(13)-C(14)-H(14) 
C(14)-C(15)-O(3) 
C(14)-C(15)-C(16) 
O(3)-C(15)-C(16) 
C(11)-C(16)-C(15) 
C(11)-C(16)-C(17) 
C(15)-C(16)-C(17) 
C(18)-C(17)-O(4) 
C(18)-C(17)-C(16) 
O(4)-C(17)-C(16) 
C(17)-C(18)-C(9) 
C(17)-C(18)-H(18) 
C(9)-C(18)-H(18) 
O(3)-C(19)-H(19A) 
O(3)-C(19)-H(19B) 
H(19A)-C(19)-H(19B) 
O(3)-C(19)-H(19C) 
H(19A)-C(19)-H(19C) 
H(19B)-C(19)-H(19C) 

120.16(11)  
120.44(11)  
119.92(11)  
119.63(10)  
119.78(12)  
120.1(8)  
120.1(8)  
121.05(11)  
120.9(10)  
118.0(10)  
120.15(11)  
119.1(10)  
120.7(10)  
123.11(11)  
121.38(12)  
115.51(11)  
117.14(10)  
118.70(10)  
124.16(11)  
116.88(10)  
120.04(11)  
123.08(10)  
122.19(11)  
118.2(8)  
119.6(8)  
110.1(11)  
109.5(10)  
112.0(15)  
104.9(10)  
111.8(15)  
108.4(15)  

 
Symmetry transformations used to generate equivalent atoms. 
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Table 12: Anisotropic displacement parameters (Å2 × 103) for (119). The anisotropic 
displacement factor exponent takes the form -2 π2 [ h2 a*2 U11 + ... + 2 h k a* b* U12]  
 

 U11 U22 U33 U23 U13 U12

O(1) 
O(2) 
O(3) 
O(4) 
N(1) 
C(1) 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C(11) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 
C(17) 
C(18) 
C(19) 

38(1) 
29(1) 
36(1) 
34(1) 
38(1) 
27(1) 
22(1) 
29(1) 
27(1) 
20(1) 
21(1) 
22(1) 
23(1) 
21(1) 
20(1) 
21(1) 
26(1) 
32(1) 
29(1) 
22(1) 
21(1) 
22(1) 
24(1) 
47(1) 

28(1)
26(1)
39(1)
35(1)
31(1)
24(1)
27(1)
25(1)
22(1)
25(1)
24(1)
23(1)
22(1)
22(1)
21(1)
23(1)
26(1)
31(1)
31(1)
27(1)
23(1)
23(1)
24(1)
41(1)

26(1) 
22(1) 
26(1) 
25(1) 
25(1) 
24(1) 
20(1) 
22(1) 
24(1) 
20(1) 
20(1) 
23(1) 
22(1) 
20(1) 
23(1) 
21(1) 
22(1) 
20(1) 
24(1) 
26(1) 
21(1) 
22(1) 
19(1) 
33(1)

5(1) 
4(1) 
-8(1) 
3(1) 
1(1) 
-2(1) 
1(1) 
-3(1) 
-1(1) 
1(1) 
-2(1) 
0(1) 
0(1) 
-1(1) 
1(1) 
0(1) 
2(1) 
-2(1) 
-8(1) 
-5(1) 
-3(1) 
1(1) 
1(1) 
-11(1)

9(1) 
5(1) 
4(1) 
6(1) 
10(1)
7(1) 
6(1) 
7(1) 
6(1) 
4(1) 
4(1) 
5(1) 
4(1) 
4(1) 
3(1) 
4(1) 
4(1) 
7(1) 
10(1)
4(1) 
5(1) 
3(1) 
4(1) 
9(1) 

10(1) 
6(1) 
14(1) 
14(1) 
2(1) 
1(1) 
2(1) 
0(1) 
0(1) 
3(1) 
1(1) 
1(1) 
1(1) 
-1(1) 
-2(1) 
-5(1) 
-5(1) 
-10(1) 
-7(1) 
-1(1) 
-4(1) 
1(1) 
0(1) 
15(1) 

 
Table 13: Hydrogen coordinates (Å × 104) and isotropic displacement parameters (Å2 × 103) for 
(119).  
 

 x y z U(eq) 
H(2) 
H(4) 
H(3) 
H(4A) 
H(6) 
H(7) 
H(12) 
H(13) 
H(14) 
H(18) 
H(19A) 
H(19B) 
H(19C) 

4100(2) 
-610(2) 
3315(17) 
3066(16) 
3736(16) 
3996(14) 
3209(16) 
2067(17) 
224(18) 
1247(15) 
-1710(2) 
-140(2) 
-1640(2) 

3430(2) 
7920(2) 
3769(15)
3081(15)
6730(14)
7418(14)
4539(14)
5723(16)
7198(16)
6167(13)
8418(18)
9270(18)
9530(18)

5076(14)
4459(14)
807(10) 
2207(10)
3159(10)
1747(9) 
6942(9) 
7869(11)
7264(11)
3293(10)
6568(12)
6616(12)
5811(12)

63(6)  
63(6)  
33(4)  
29(4)  
29(4)  
22(3)  
25(3)  
37(4)  
40(4)  
26(4)  
54(5)  
51(5)  
50(5)  

 

 



144 9 X-ray Analysis  

9.2 [3-(4-Chloro-phenyl)-1,4-dihydroxy-8-methoxy-naphthalen-2-yl]-(4-
chloro-phenyl)-methanone (123) 

 
Measurement device  Nonius KappaCCD  
Empirical formula  C25 H16 Cl2 O5  
Formula weight  467.28  
Temperature  100(2) K  
Wavelength  0.71073 A  
Crystal system, space group  Orthorhombic P c a 21  
Unit cell dimensions  a = 23.137(10) A   alpha = 90 deg.  
  b = 13.597(5) A    beta = 90 deg.  
  c = 6.740(3) A   gamma = 90 deg.  
Volume  2120.4(14) A3  
Z, Calculated density  4,  1.464 Mg/m3  
Absorption coefficient  0.343 mm-1  
F(000)  960  
Crystal size, colour and habit  0.24 × 0.20 × 0.01 mm3, colourless plate  
Theta range for data collection  3.04 to 25.00 deg.  
Index ranges  -27<=h<=25, -16<=k<=15, -8<=l<=7  
Reflections collected / unique  16606 / 3581 [R(int) = 0.0566]  
Completeness to theta  = 25.00     99.2%  
Absorption correction  None  
Max. and min. transmission  1.000000 and 0.654534  
Refinement method  Full-matrix least-squares on F2  
Data / restraints / parameters  3581 / 1 / 292  
Goodness-of-fit on F2  1.070  
Final R indices [I>2sigma(I)]  R1 = 0.0511, wR2 = 0.1111 [2880]  
R indices (all data)  R1 = 0.0749, wR2 = 0.1255  
Absolute structure parameter  0.17(10)  
Largest diff. peak and hole  0.423 and -0.352 e.A-3  
Remarks   
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Table 14: Atomic coordinates (Å × 104) and equivalent isotropic displacement parameters 
(Å2 × 103) for (123). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
 

 x y z U(eq)

Cl(1) 
Cl(2) 
O(1) 
O(2) 
O(3) 
O(4) 
O(5) 
C(1) 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C(11) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 
C(17) 
C(18) 
C(19) 
C(20) 
C(21) 
C(22) 
C(23) 
C(24) 
C(25) 

5194(1)
3263(1)
4911(1)
4340(1)
1788(1)
2416(1)
3673(1)
4981(2)
5204(2)
5044(2)
4658(2)
4438(2)
4599(2)
4523(2)
3934(2)
3878(2)
3323(2)
3278(2)
2743(2)
2238(2)
2272(2)
2818(2)
2880(2)
3425(2)
3479(2)
3353(2)
3119(2)
3071(2)
3274(2)
3484(2)
3526(2)
1222(2)

4429(1) 
5399(1) 
211(2) 
-1398(2)
-508(2) 
1054(2) 
1980(2) 
3356(3) 
3163(3) 
2300(3) 
1641(3) 
1862(3) 
2716(3) 
673(3) 
243(3) 
-761(3) 
-1226(3)
-2260(3)
-2698(3)
-2122(3)
-1117(3)
-619(3) 
432(3) 
854(3) 
1891(3) 
2773(3) 
2678(3) 
3485(3) 
4388(3) 
4519(3) 
3708(3) 
-975(3) 

6821(2)
7430(2)
1839(5)
3121(4)
3532(4)
3084(4)
330(4) 
5568(7)
3680(8)
2728(7)
3643(6)
5538(7)
6542(7)
2666(6)
2874(6)
3143(6)
3400(6)
3564(6)
3712(6)
3682(6)
3551(6)
3412(6)
3161(6)
2850(6)
2041(6)
3295(6)
5205(7)
6475(7)
5806(7)
3885(8)
2611(7)
3347(7)

52(1) 
48(1) 
32(1) 
30(1) 
29(1) 
29(1) 
32(1) 
36(1) 
37(1) 
28(1) 
25(1) 
27(1) 
30(1) 
27(1) 
25(1) 
23(1) 
23(1) 
26(1) 
29(1) 
29(1) 
25(1) 
24(1) 
24(1) 
25(1) 
22(1) 
23(1) 
28(1) 
30(1) 
35(1) 
38(1) 
33(1) 
35(1) 
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Table 15: Bond lengths (Å). 
 

Bond Bond length (Å) Bond Bond lengths (Å) 

Cl(1)-C(1) 
Cl(2)-C(22) 
O(1)-C(7) 
O(2)-C(9) 
O(3)-C(14) 
O(3)-C(25) 
O(4)-C(16) 
O(5)-C(18) 
C(1)-C(2) 
C(1)-C(6) 
C(2)-C(3) 
C(3)-C(4) 
C(4)-C(5) 
C(4)-C(7) 
C(5)-C(6) 
C(7)-C(8) 
C(8)-C(9) 
 

1.756(4)  
1.757(5)  
1.230(5)  
1.376(4)  
1.392(5)  
1.460(4)  
1.367(4)  
1.244(5)  
1.397(7)  
1.404(6)  
1.387(6)  
1.408(6)  
1.408(6)  
1.505(6)  
1.394(6)  
1.489(5)  
1.383(5)  
 

C(8)-C(17) 
C(9)-C(10) 
C(10)-C(11)
C(10)-C(15)
C(11)-C(12)
C(12)-C(13)
C(13)-C(14)
C(14)-C(15)
C(15)-C(16)
C(16)-C(17)
C(17)-C(18)
C(18)-C(19)
C(19)-C(20)
C(19)-C(24)
C(20)-C(21)
C(21)-C(22)
C(22)-C(23)
C(23)-C(24)

1.442(5)  
1.442(5)  
1.415(6)  
1.430(5)  
1.376(6)  
1.407(6)  
1.372(5)  
1.437(5)  
1.446(5)  
1.401(5)  
1.516(5)  
1.496(6)  
1.402(6)  
1.410(5)  
1.396(6)  
1.390(6)  
1.394(7)  
1.401(6)  
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Table 16: Bond angles (deg). 
 

Bond Bond angle (deg) Bond Bond angle (deg)
C(14)-O(3)-C(25) 
C(2)-C(1)-C(6) 
C(2)-C(1)-Cl(1) 
C(6)-C(1)-Cl(1) 
C(3)-C(2)-C(1) 
C(2)-C(3)-C(4) 
C(5)-C(4)-C(3) 
C(5)-C(4)-C(7) 
C(3)-C(4)-C(7) 
C(6)-C(5)-C(4) 
C(5)-C(6)-C(1) 
O(1)-C(7)-C(8) 
O(1)-C(7)-C(4) 
C(8)-C(7)-C(4) 
C(9)-C(8)-C(17) 
C(9)-C(8)-C(7) 
C(17)-C(8)-C(7) 
O(2)-C(9)-C(8) 
O(2)-C(9)-C(10) 
C(8)-C(9)-C(10) 
C(11)-C(10)-C(15) 
C(11)-C(10)-C(9) 
C(15)-C(10)-C(9) 
C(12)-C(11)-C(10) 
C(11)-C(12)-C(13) 
 

117.5(3)  
122.7(4)  
119.4(4)  
117.8(4)  
118.9(4)  
120.3(4)  
119.4(4)  
120.5(4)  
119.8(4)  
121.4(4)  
117.3(4)  
120.7(3)  
119.5(3)  
119.5(3)  
119.6(3)  
119.0(3)  
121.4(3)  
123.2(3)  
114.6(3)  
122.1(3)  
120.9(3)  
120.7(3)  
118.4(3)  
120.1(4)  
120.4(4)  
 

C(14)-C(13)-C(12) 
C(13)-C(14)-O(3) 
C(13)-C(14)-C(15) 
O(3)-C(14)-C(15) 
C(10)-C(15)-C(14) 
C(10)-C(15)-C(16) 
C(14)-C(15)-C(16) 
O(4)-C(16)-C(17) 
O(4)-C(16)-C(15) 
C(17)-C(16)-C(15) 
C(16)-C(17)-C(8) 
C(16)-C(17)-C(18) 
C(8)-C(17)-C(18) 
O(5)-C(18)-C(19) 
O(5)-C(18)-C(17) 
C(19)-C(18)-C(17) 
C(20)-C(19)-C(24) 
C(20)-C(19)-C(18) 
C(24)-C(19)-C(18) 
C(21)-C(20)-C(19) 
C(22)-C(21)-C(20) 
C(21)-C(22)-C(23) 
C(21)-C(22)-Cl(2) 
C(23)-C(22)-Cl(2) 
C(22)-C(23)-C(24) 
C(23)-C(24)-C(19)

120.5(4)  
123.2(3)  
121.6(4)  
115.2(3)  
116.6(3)  
119.3(3)  
124.0(3)  
116.5(3)  
122.6(3)  
120.8(3)  
119.8(3)  
120.6(3)  
118.2(3)  
121.0(3)  
117.0(3)  
121.7(3)  
119.5(4)  
121.3(3)  
118.9(4)  
121.4(4)  
117.9(4)  
122.1(4)  
119.0(4)  
118.9(3)  
119.5(4)  
119.4(4)  

Symmetry transformations used to generate equivalent atoms. 
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Table 17: Anisotropic displacement parameters (Å2 × 103) for (123). The anisotropic 
displacement factor exponent takes the form -2 π2 [ h2 a*2 U11 + ... + 2 h k a* b* U12].  
 

 U11 U22 U33 U23 U13 U12
Cl(1) 
Cl(2) 
O(1) 
O(2) 
O(3) 
O(4) 
O(5) 
C(1) 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C(11) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 
C(17) 
C(18) 
C(19) 
C(20) 
C(21) 
C(22) 
C(23) 
C(24) 
C(25) 

51(1) 
45(1) 
18(1) 
18(1) 
16(1) 
14(1) 
26(2) 
31(2) 
20(2) 
15(2) 
16(2) 
17(2) 
24(2) 
22(2) 
17(2) 
18(2) 
17(2) 
25(2) 
32(2) 
25(2) 
22(2) 
23(2) 
21(2) 
21(2) 
11(2) 
14(2) 
19(2) 
18(2) 
27(2) 
36(3) 
20(2) 
14(2) 

34(1) 
26(1) 
31(2) 
28(2) 
36(2) 
33(2) 
38(2) 
23(2) 
29(2) 
28(2) 
28(2) 
26(2) 
28(2) 
28(2) 
29(2) 
26(2) 
27(2) 
29(2) 
24(2) 
33(2) 
30(2) 
28(2) 
29(2) 
27(2) 
29(2) 
23(2) 
26(2) 
25(2) 
25(2) 
18(2) 
32(2) 
53(3)

71(1)
73(1)
48(2)
45(2)
36(2)
39(2)
32(2)
53(3)
61(3)
43(3)
31(2)
38(2)
39(3)
32(2)
28(2)
26(2)
24(2)
26(2)
30(2)
29(2)
22(2)
22(2)
22(2)
28(2)
26(2)
32(2)
38(2)
47(3)
52(3)
60(3)
45(3)
37(2)

-18(1)
-11(1)
-9(2) 
1(1) 
-1(1) 
5(1) 
4(1) 
-12(2)
0(2) 
-1(2) 
7(2) 
2(2) 
2(2) 
4(2) 
1(2) 
1(2) 
-4(2) 
-2(2) 
0(2) 
1(2) 
-1(2) 
2(2) 
-3(2) 
0(2) 
2(2) 
9(2) 
5(2) 
2(2) 
0(2) 
4(2) 
4(2) 
-1(2) 

-11(1)
12(1) 
5(1) 
-2(1) 
-2(1) 
-2(1) 
2(1) 
-7(2) 
-1(2) 
-4(2) 
-1(2) 
-6(2) 
-4(2) 
-3(2) 
-3(2) 
-2(2) 
0(2) 
-3(2) 
0(2) 
2(2) 
-2(2) 
-4(2) 
-1(2) 
-1(2) 
-2(2) 
-3(2) 
-2(2) 
2(2) 
7(2) 
4(2) 
5(2) 
0(2) 

-9(1)  
2(1)  
0(1)  
2(1)  
-2(1)  
1(1)  
-1(1)  
3(2)  
1(2)  
4(2)  
3(2)  
-3(2)  
5(2)  
0(2)  
-1(2)  
3(2)  
0(2)  
1(2)  
-5(2)  
-8(2)  
0(2)  
-4(2)  
3(2)  
-1(2)  
1(2)  
-1(1)  
-1(2)  
2(2)  
7(2)  
0(2)  
-1(2)  
-10(2)
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Table 18: Hydrogen coordinates (Å × 104) and isotropic displacement parameters (Å2 × 103) for 
(123). 
 

 x y z U(eq)
H(2) 
H(4) 
H(2) 
H(3) 
H(5) 
H(6) 
H(11) 
H(12) 
H(13) 
H(20) 
H(21) 
H(23) 
H(24) 
H(25A) 
H(25B) 
H(25C) 

4640
2111
5460
5197
4173
4456
3617
2715
1870
2991
2905
3598
3669
1208
921 
1158

-1092
735 
3614 
2153 
1420 
2858 
-2654
-3392
-2432
2051 
3418 
5154 
3787 
-1359
-469 
-1412

2792
3294
3060
1453
6146
7831
3572
3835
3753
5643
7757
3444
1300
2117
3319
4482

46  
43  
44  
34  
32  
36  
32  
34  
35  
33  
36  
45  
39  
52  
52  
52 
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9.3 4-Chloro-benzoic acid 4-hydroxy-8-methoxy-naphthalen-1-yl ester (124) 
 

Measurement device  Nonius KappaCCD  
Empirical formula   C18 H13 Cl O4 + 0.5 C3 H6 O 
Formula weight  357.77  
Temperature  100(2) K  
Wavelength  0.71073 A  
Crystal system, space group  Monoclinic C 2/c  
Unit cell dimensions  a = 27.3490(9) A   alpha = 90 deg.  
  b = 15.8590(3) A    beta = 95.3230(15) deg.  
  c = 7.7140(3) A   gamma = 90 deg.  
Volume  3331.35(18) A3  
Z, Calculated density  8,  1.427 Mg/m3  
Absorption coefficient  0.254 mm-1  
F(000)  1488  
Crystal size, colour and habit  0.30 × 0.30 × 0.06 mm3, Colourless plate  
Theta range for data collection  2.97 to 27.48 deg.  
Index ranges  -35<=h<=35, -18<=k<=20, -10<=l<=9  
Reflections collected / unique  26091 / 3812 [R(int) = 0.044]  
Completeness to theta   = 27.48     99.8%  
Absorption correction  multi-scan 
Max. and min. transmission  0.9849 and 0.9276  
Refinement method  Full-matrix least-squares on F2  
Data / restraints / parameters  3812 / 0 / 291  
Goodness-of-fit on F2  1.030  
Final R indices [I>2sigma(I)]  R1 = 0.0368, wR2 = 0.0882 [2860]  
R indices (all data)  R1 = 0.0572, wR2 = 0.0967  
Largest diff. peak and hole  0.223 and -0.298 e.A-3  
Remark  Hydrogens were refined isotropically. 
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Table 19: Atomic coordinates (Å × 104) and equivalent isotropic displacement parameters 
(Å2 × 103) for (124). U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.  
 

 x y z U(eq) 
Cl(1) 
O(1) 
O(2) 
O(3) 
O(4) 
C(1) 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C(11) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 
C(17) 
C(18) 
O(5) 
C(19) 
C(20) 

25(1) 
2315(1)
2470(1)
4431(1)
2429(1)
652(1) 
983(1) 
1482(1)
1643(1)
1304(1)
806(1) 
2170(1)
2971(1)
3249(1)
3748(1)
3954(1)
3680(1)
3912(1)
3649(1)
3151(1)
2912(1)
3173(1)
2166(1)
0 
0 
362(1) 

1240(1)
343(1) 
1120(1)
1003(1)
2581(1)
1083(1)
1640(1)
1522(1)
847(1) 
292(1) 
405(1) 
731(1) 
1117(1)
454(1) 
400(1) 
1023(1)
1746(1)
2411(1)
3107(1)
3185(1)
2551(1)
1802(1)
3341(1)
4729(1)
3957(1)
3481(1)

31(1) 
3343(1) 
1004(1) 
3566(2) 
2468(1) 
567(2) 
-58(2) 
385(2) 
1451(2) 
2065(2) 
1623(2) 
2053(2) 
1614(2) 
1166(2) 
1775(2) 
2841(2) 
3262(2) 
4268(2) 
4621(2) 
4032(2) 
3069(2) 
2637(2) 
2801(2) 
2500 
2500 
1555(3)

38(1)  
30(1)  
25(1)  
39(1)  
31(1)  
29(1)  
30(1)  
27(1)  
24(1)  
26(1)  
29(1)  
24(1)  
24(1)  
26(1)  
29(1)  
29(1)  
27(1)  
34(1)  
36(1)  
32(1)  
28(1)  
25(1)  
35(1)  
38(1)  
34(1)  
43(1) 
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Table 20: Bond lengths (Å)  
 

Bond Bond length (Å) Bond Bond length (Å) 

Cl(1)-C(1) 
O(1)-C(7) 
O(2)-C(7) 
O(2)-C(8) 
O(3)-C(11) 
O(3)-H(3) 
O(4)-C(16) 
O(4)-C(18) 
C(1)-C(2) 
C(1)-C(6) 
C(2)-C(3) 
C(2)-H(2) 
C(3)-C(4) 
C(3)-H(3A) 
C(4)-C(5) 
C(4)-C(7) 
C(5)-C(6) 
C(5)-H(5) 
C(6)-H(6) 
C(8)-C(9) 
C(8)-C(17) 
C(9)-C(10) 

1.7434(15)  
1.2061(17)  
1.3527(17)  
1.4067(17)  
1.3695(18)  
0.85(2)  
1.3591(17)  
1.4396(18)  
1.384(2)  
1.391(2)  
1.386(2)  
0.948(18)  
1.397(2)  
0.968(17)  
1.392(2)  
1.485(2)  
1.385(2)  
0.926(17)  
0.923(18)  
1.363(2)  
1.4238(19) 
1.403(2)  

C(9)-H(9) 
C(10)-C(11) 
C(10)-H(10) 
C(11)-C(12) 
C(12)-C(13) 
C(12)-C(17) 
C(13)-C(14) 
C(13)-H(13) 
C(14)-C(15) 
C(14)-H(14) 
C(15)-C(16) 
C(15)-H(15) 
C(16)-C(17) 
C(18)-H(18A) 
C(18)-H(18B) 
C(18)-H(18C) 
O(5)-C(19) 
C(19)-C(20)#1 
C(19)-C(20) 
C(20)-H(20A) 
C(20)-H(20B) 
C(20)-H(20C) 

0.936(16)  
1.373(2)  
0.959(16)  
1.424(2)  
1.423(2)  
1.426(2)  
1.359(2)  
0.961(17)  
1.399(2)  
0.945(19)  
1.380(2)  
0.967(17)  
1.4419(19)  
0.987(16)  
0.963(18)  
1.025(18)  
1.225(3)  
1.488(2)  
1.488(2)  
0.98(2)  
0.92(2)  
0.91(3)  
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Table 21: Bond angles (deg). 
 

Bond Bond angle (deg) Bond Bond angle (deg)

C(7)-O(2)-C(8) 
C(11)-O(3)-H(3) 
C(16)-O(4)-C(18) 
C(2)-C(1)-C(6) 
C(2)-C(1)-Cl(1) 
C(6)-C(1)-Cl(1) 
C(1)-C(2)-C(3) 
C(1)-C(2)-H(2) 
C(3)-C(2)-H(2) 
C(2)-C(3)-C(4) 
C(2)-C(3)-H(3A) 
C(4)-C(3)-H(3A) 
C(5)-C(4)-C(3) 
C(5)-C(4)-C(7) 
C(3)-C(4)-C(7) 
C(6)-C(5)-C(4) 
C(6)-C(5)-H(5) 
C(4)-C(5)-H(5) 
C(5)-C(6)-C(1) 
C(5)-C(6)-H(6) 
C(1)-C(6)-H(6) 
O(1)-C(7)-O(2) 
O(1)-C(7)-C(4) 
O(2)-C(7)-C(4) 
C(9)-C(8)-O(2) 
C(9)-C(8)-C(17) 
O(2)-C(8)-C(17) 
C(8)-C(9)-C(10) 
C(8)-C(9)-H(9) 
C(10)-C(9)-H(9) 
C(11)-C(10)-C(9) 
C(11)-C(10)-H(10) 
C(9)-C(10)-H(10) 
O(3)-C(11)-C(10) 
 

115.07(10)  
109.2(15)  
117.05(12)  
121.66(14)  
119.23(11)  
119.11(12)  
119.31(14)  
120.6(10)  
120.1(10)  
119.81(14)  
122.4(9)  
117.8(10)  
120.06(14)  
118.29(12)  
121.52(13)  
120.41(14)  
120.1(10)  
119.5(10)  
118.75(14)  
121.4(11)  
119.8(11)  
123.73(13)  
123.86(13)  
112.41(11)  
117.90(12)  
122.07(13)  
120.02(12)  
120.71(13)  
118.2(10)  
121.0(10)  
119.35(14)  
122.8(9)  
117.8(9)  
123.38(13)  
 

O(3)-C(11)-C(12) 
C(10)-C(11)-C(12) 
C(13)-C(12)-C(11) 
C(13)-C(12)-C(17) 
C(11)-C(12)-C(17) 
C(14)-C(13)-C(12) 
C(14)-C(13)-H(13) 
C(12)-C(13)-H(13) 
C(13)-C(14)-C(15) 
C(13)-C(14)-H(14) 
C(15)-C(14)-H(14) 
C(16)-C(15)-C(14) 
C(16)-C(15)-H(15) 
C(14)-C(15)-H(15) 
O(4)-C(16)-C(15) 
O(4)-C(16)-C(17) 
C(15)-C(16)-C(17) 
C(8)-C(17)-C(12) 
C(8)-C(17)-C(16) 
C(12)-C(17)-C(16) 
O(4)-C(18)-H(18A) 
O(4)-C(18)-H(18B) 
H(18A)-C(18)-H(18B) 
O(4)-C(18)-H(18C) 
H(18A)-C(18)-H(18C) 
H(18B)-C(18)-H(18C) 
O(5)-C(19)-C(20)#1 
O(5)-C(19)-C(20) 
C(20)#1-C(19)-C(20) 
C(19)-C(20)-H(20A) 
C(19)-C(20)-H(20B) 
H(20A)-C(20)-H(20B) 
C(19)-C(20)-H(20C) 
H(20A)-C(20)-H(20C) 
H(20B)-C(20)-H(20C) 

115.36(12)  
121.27(14)  
120.16(14)  
120.53(14)  
119.30(12)  
119.60(16)  
121.3(10)  
119.1(10)  
121.57(15)  
118.5(12)  
119.9(11)  
120.64(14)  
116.2(10)  
123.2(10)  
123.79(13)  
115.98(12)  
120.23(14)  
117.13(13)  
125.42(14)  
117.43(12)  
103.9(9)  
111.2(10)  
109.4(14)  
111.3(10)  
110.8(13)  
110.1(14)  
120.48(11)  
120.48(11)  
119.0(2)  
110.8(12)  
111.7(14)  
101.0(18)  
111.8(16)  
112.3(18)  
109(2) 

Symmetry transformations used to generate equivalent atoms. 
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Table 22: Anisotropic displacement parameters (Å2 × 103) for (124). The anisotropic 
displacement factor exponent takes the form -2 π2 [h2 a*2 U11 + ... + 2 h k a* b* U12]. 
 

 U11 U22 U33 U23 U13 U12

Cl(1) 
O(1) 
O(2) 
O(3) 
O(4) 
C(1) 
C(2) 
C(3) 
C(4) 
C(5) 
C(6) 
C(7) 
C(8) 
C(9) 
C(10) 
C(11) 
C(12) 
C(13) 
C(14) 
C(15) 
C(16) 
C(17) 
C(18) 
O(5) 
C(19) 
C(20)  

30(1) 
30(1) 
27(1) 
28(1) 
39(1) 
30(1) 
37(1) 
32(1) 
30(1) 
34(1) 
31(1) 
31(1) 
26(1) 
31(1) 
30(1) 
27(1) 
34(1) 
40(1) 
52(1) 
49(1) 
37(1) 
35(1) 
48(1) 
29(1) 
28(1) 
40(1) 

38(1)
30(1)
24(1)
39(1)
23(1)
29(1)
27(1)
25(1)
22(1)
21(1)
26(1)
17(1)
24(1)
21(1)
24(1)
29(1)
23(1)
32(1)
28(1)
23(1)
24(1)
21(1)
25(1)
33(1)
34(1)
41(1)

44(1) 
30(1) 
24(1) 
50(1) 
34(1) 
27(1) 
26(1) 
26(1) 
20(1) 
25(1) 
28(1) 
24(1) 
21(1) 
26(1) 
32(1) 
31(1) 
24(1) 
29(1) 
30(1) 
27(1) 
23(1) 
21(1) 
35(1) 
52(1) 
37(1) 
48(1)

-2(1) 
8(1) 
2(1) 
-11(1)
-1(1) 
-5(1) 
2(1) 
2(1) 
-3(1) 
-1(1) 
-2(1) 
-3(1) 
3(1) 
-2(1) 
-2(1) 
-1(1) 
0(1) 
-2(1) 
-6(1) 
-2(1) 
3(1) 
2(1) 
4(1) 
0 
0 
-5(1) 

-7(1) 
3(1) 
5(1) 
-2(1) 
10(1)
-3(1) 
3(1) 
6(1) 
3(1) 
-1(1) 
1(1) 
5(1) 
4(1) 
4(1) 
6(1) 
4(1) 
7(1) 
5(1) 
5(1) 
13(1)
10(1)
8(1) 
12(1)
4(1) 
-5(1) 
3(1) 

2(1)  
2(1)  
1(1)  
-1(1)  
5(1)  
2(1)  
8(1)  
2(1)  
2(1)  
-1(1)  
-5(1)  
2(1)  
-1(1)  
-2(1)  
2(1)  
-3(1)  
-5(1)  
-7(1)  
-10(1)  
0(1)  
1(1)  
-2(1)  
13(1)  
0  
0  
6(1)  
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Table 23: Hydrogen coordinates (Å x 104) and isotropic displacement parameters (Å2 x 103) for 
(124).  
 

 x y z U(eq) 
H(3) 
H(2) 
H(3A) 
H(5) 
H(6) 
H(9) 
H(10) 
H(13) 
H(14) 
H(15) 
H(18A) 
H(18B) 
H(18C) 
H(20A) 
H(20B) 
H(20C) 

4570(8)
873(6) 
1727(6)
1413(6)
576(6) 
3096(6)
3928(6)
4254(6)
3812(7)
2955(6)
1832(6)
2307(6)
2156(6)
595(7) 
217(8) 

516(9) 

562(14) 
2096(11)
1900(10)
-145(10) 
55(10) 
24(10) 
-86(9) 
2364(11)
3555(12)
3670(10)
3239(10)
3823(11)
3441(11)
3866(12)
3238(14)
3071(15)

3220(3)
-790(2) 
0(2) 
2800(2)
2050(2)
480(2) 
1450(2)
4660(2)
5240(3)
4280(2)
2230(2)
2270(2)
4110(2)
1070(3)
560(3) 

2230(3) 

68(7) 
41(5) 
34(4) 
33(4) 
39(5) 
31(4) 
25(4) 
41(5) 
48(5) 
36(4) 
32(4) 
40(5) 
39(5) 
53(6) 
70(7) 
85(8) 
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