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1 Introduction

When an animal or a “sighted” robot moves around, the image of the environ-
ment moves on its retina or camera sensor accordingly. These characteristic image
movements, constituting the so-called “optic flow”, contain information about
both the ego-motion of the system and the spatial structure of the surrounding.
For many animals the correct interpretation of the optic flow is essential for the
control of ego-motion. Especially fast flying insects depend to a high degree on
the visual control of their flight manoeuvres.

Obstacle avoidance, for instance, is only possible for these animals by the use
of visual information. Also for the estimation of flight speed and heading di-
rection, vision is important. Wind sensing only gives information of the relative
movements between the animal and the surrounding air volume. Sensing the
absolute trajectory above ground based on wind cues is impossible, because the
ego-motion of the animal is superimposed by the movements of the surround-
ing air in these signals. Furthermore, airborne insects are very likely incapable
of sensing the gravity field which means that they cannot use it to control their
orientation in space. Dipteran insects (flies, mosquitos) are equipped with me-
chanical sensing organs (halteres) registering self-rotations of the animal, but this
system is limited to relatively high dynamic stimulation and cannot sense slow
drift movements (Hengstenberg et al., 1986; Nalbach, 1994).

Even for longterm navigation the optic flow can be useful. For bees the estima-
tion of distance flown is thought to be derived from the integration of optic flow
(for review see Srinivasan and Zhang, 2003).

The analysis of optic flow is a complicated task, which is not yet satisfactorily
solved for technical systems. While it is relatively straightforward to compute
the ego-motion parameters of a mobile system from the local image velocities,
the reliable correct estimation of these velocities from real-world images causes
problems. Approaches to control mobile robots on optic flow information are
characterised by a high computational effort and are often restricted to certain
types of environment. In contrast to that, animals are clearly capable of analysing
the visual information in real time and within almost arbitrary environments.
While they evolved in differently structured environments, flies can easily deal
also with artificial environments created by man.

That small flying insects successfully navigate based on optic flow information us-
ing a relatively small group of a few thousand neurons, makes it likely that these
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1 Introduction

animals developed very efficient mechanisms for this task. It is therefore inter-
esting for technical applications to investigate the solutions that nature found
for this problem and to use them as a blueprint or at least as inspiration for the
development of technical systems.

An important animal model for the investigation of mechanisms of optic flow
processing in the neurobiology and biological cybernetics is the blowfly. Different
species have been investigated, the most prominent are Calliphora vicina, a red-
eyed blowfly and Lucilia sericata, a greenish sheep fly. Besides these, a much
smaller fly has been used for behavioural studies, Drosophila melanogaster, which
is also an important model organism in genetical research.

The mechanisms of motion information processing implemented in the visual
system of these animals are known in such detail, that an algorithmic model
exists which can easily be simulated by technical systems (Kern et al., 2001a).
See chapter 2 for an overview.

Most research on visual processing has been done using very simple and artificial
stimuli in the past. Using simple stimuli was an important precondition for the
systematic analysis of the processing mechanisms. It is a traditional method of
system analysis to describe a system by its responses to a defined set of test
signals. However, it is not trivial that the mechanistic models formulated on the
basis of these simple signals are responding in a realistic way also to the more
complex signals encountered by the visual system in a behaving animal.

The rapid development of computer hardware recently made it feasible, to use
stimuli that are, with respect to dynamics and spatial structure close to signals
that a fly is confronted with in unrestricted behaviour. These stimuli are created
by reconstructing the retinal images a fly has seen in a video recorded behavioural
experiment. By recording the neural activities caused by replaying these images
to a fly in an electro-physiological experiment, the internal neural states of the
behaving animal can be estimated (Kern et al., 2001b). By replaying the same
image sequences to a simulated computer model and by comparing the model
output and the electrophysiologically determined responses, the validity of the
model derived from the system analysis for more realistic input can be tested (see
Chapter 4). It turns out, that the model simulation can reproduce the responses
of the cells of an animal with an unexpected degree of fidelity, although the very
same traces were suspected to be in disaccordance to the model on first sight.

For the understanding of the visual control for behaviour, the knowledge of the
processing done in the sensory part of the visual system is only a first building
block. Based on the simulation model and behavioural experiments, the transfor-
mation of the sensory signals to the actual reactions of the animal can be studied.
As for any system acting in a closed loop and thereby in a recurrent dynamic sit-
uation, it is hard for humans to judge hypotheses formulated for the coupling.
Already very simple designs can show very complex and unexpected emergent
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1.1 Structure of the thesis

properties, as a simple model (Boeddeker et al., 2003) for the chasing behaviour
of the fly shows. A simulation environment that facilitates the test of hypotheses
is therefore a valuable tool for this research.

1.1 Structure of the thesis

The first part of this thesis (chapter 2) gives an overview of the fly motion vision
system.

Chapter 3 describes technical preconditions for the replay of behaviourally gen-
erated optic flow. Section 3.1 describes a software system for the reconstruction
of flight paths from video camera data. Section 3.2 discusses the software neces-
sary for the virtual reconstruction of the retinal images the fly has received during
flight. Section 3.3 focusses on a specialised display device that allows the replay
of computer generated image sequences to the fly’s almost omni-directional and
very fast vision system.

In chapter 4, the algorithmic model of the fly motion vision system is described
in detail and the validity of this model for behaviourally generated optic flow
is tested by comparison of the simulation results to the responses measured in
electrophysiological experiments.

Chapter 5 gives a first example for the control of behaviour based on the sensory
information processed by this model. By simulation of a small feed-forward neu-
ronal system, this activity can be correlated to certain features of the behaviour.

The thesis closes in a conclusion and an outlook given in chapter 6.

1.2 Contribution

With this thesis I contribute a simulation framework for closed-loop simulation
of the optic-flow based navigation of a blowfly. Hypotheses drawn from phys-
iological and behavioural analysis of the fly nervous systems can be tested for
sustainability by these simulation experiments. As part of the framework I im-
plemented a model of the sensory processing of visual motion stimuli. While the
computational structure of this model was taken from literature and is known
as one of the most influential computational models in neuroscience, this the-
sis contributes a systematical parameterisation and quantitative analysis of the
model for the response to behaviourally generated stimuli.

Tools for the quantitative analysis of behavioural experiments and for the replay
of naturalistic visual motion stimuli in physiological experiments had to be devel-
oped as a prerequisite of this analysis. Several contributions to this development
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1 Introduction

are also part of this thesis. This new replay approach revealed that neurons
previously assumed to mostly code rotational self-motion of the animal signal
information on translational motion and thus indirectly also on the 3D layout of
the environment. This finding also is reproduced by the model neurons when
stimulated with the same set of stimuli.

The sensory module parameterised to quantitatively reproduce the measured re-
sponses of sensory neurons in the fly’s visual system forms the input stage to a
simple navigational system challenged in closed-loop simulations with the task
to avoid the walls of a virtual flight arena. The ability of the system to solve
this task under certain conditions shows that the depth information coded in the
responses of the sensory neurons can be successfully decoded and used for nav-
igational purposes, on the one hand. That the virtual fly fails under seemingly
similar conditions a real fly can easily deal with, shows that certain extensions of
the sensory and the controller module are necessary. However, the framework
presented here is designed modular so that such extensions can be introduced
and tested easily.

4



2 Processing of optic flow: Fly
neuroethology

Neuroethology is a young science field that aims at understanding the neural
mechanisms underlying animal behaviour. For the understanding of the visual
control of locomotion behaviour, the blowfly is a classical model organism. This
chapter gives a short overview of research results in this context. The fly mainly
exploits the retinal image movements, the so-called “optic flow” for the control
of locomotion. Thus the first section describes some basic properties of optic
flow. In the following section, the neuronal system analysing the optic flow
pattern is sketched. The typical flight behaviour of blowflies and the resulting
effects on the neuronal representation of self motion is outlined. A short review
of the research dealing with robots inspired by the fly visual system closes this
chapter.

2.1 Optic flow

During ego-motion of an animal or a vision equipped robot, the image of the en-
vironment moves on its visual sensors in a characteristic way. These movements
are usually referred to as “optic flow”. The term “optic flow” was introduced
to vision science by Gibson (1950), a psychologist dealing with depth percep-
tion. Gibson observed that the retinal image movements caused by ego-motion
of an observer carry information about the spatial layout of the environment. He
suggested that this information source is used by biological systems for depth
perception, detection of moving objects and ego-motion estimation.

2.1.1 Basic types of optic flow

Any movement of an observer can be decomposed into a rotation, given by the
rotation axis and the rotation angle, and a translation given by the direction
and the translational distance. Two basic types of optic flow are generated by
translations of the observer, on the one hand, and by rotations, on the other
hand (figure 2.1).

The optic flow generated by rotation does not carry information on the spatial

5



2 Processing of optic flow: Fly neuroethology

Translation Rotation

ba

Figure 2.1: The two principal locomotion types generate different optic flow pat-
terns. Translation (a) generates flow with low velocities for distant objects and
large velocities for objects close to the observer. Rotation (b) generates image
velocities independent of the distance of objects.

layout of the environment, but causes rigid global movements in the visual field.
The direction of image motion is perpendicular to the rotational axis in any point
of the visual sphere. The local velocities of this flow field do not depend on
the distance of an observed object (figure 2.1b), but on the viewing direction of
the observed point with respect to the rotational axis. The velocity is zero if the
viewing direction is along the rotational axis. It increases with increasing angular
difference to this axis with a maximum for viewing directions perpendicular to
the rotational axis (see figure 2.2).

For optic flow generated by a pure translation, the direction of image motion
only depends on the direction of motion of the observer. Any point in the visual
field moves parallel to the direction of the ego-motion. But the local velocities
in this case depend on both the viewing direction and the distance of the ob-
jects viewed in this direction. For a viewing direction equal to the locomotion
direction, the image velocity is zero. This point in the visual field is often referred
to as the “focus of expansion”, abbreviated FOE. For a given environmental dis-
tance, the image velocity is maximal, if the viewing direction is perpendicular
to the locomotion direction (figure 2.2). For any point in the visual field, the
image velocity depends inversely on the distance between the observer and the
environment. This means that objects close to a moving observer seem to move
faster than distant objects (figure 2.1a).

Note, that all these properties of the optic flow depend on the assumption that
the environment is fixed. Moving objects in the environment also cause retinal
image motion, but the direction and velocity of this motion is determined by
the relative motion of object and observer, not by the observer’s motion alone.

6



2.1 Optic flow

The existence of moving objects in a scene complicates the task of self-motion
estimation, on the one hand. On the other hand, the discontinuities in retinal
motion resulting from the object motion can be exploited to segregate objects
from the stationary background.

−75°

180°0°−180° −90° 90°

75°

0°

b

a

FOC

FOE

FOC

FOE

AOR

AOR
−180° −90° 0° 90° 180°

−75°

0°

75°

Figure 2.2: The optic flow generated by pure rotation (a) about a rotational axis
“AOR” and by a pure translation (b) in the direction indicated by the arrow.
The focus of expansion “FOE” and the focus of compression “FOC” of the flow
field indicate the direction of movement in the case of pure translation. The
right-hand panels show the flow field in a cylindrical projection. Note, that
the polar points (FOE, FOC in b) are mapped to the entire x-axis in this pro-
jection at an elevation of 90◦ (not shown in the panels). Note also that the
local retinal velocities in certain parts (squares in the cylindrical plot) of the
visual field are almost identical for both movements. (Modified from Krapp
and Hengstenberg, 1996)

2.1.2 Reconstruction of self-motion parameters

To investigate the possibility of reconstructing the self-motion and the spatial
structure from the image movements, Koenderink and van Doorn formulated a
simple mathematical model (Koenderink and van Doorn, 1987). In this approach,
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2 Processing of optic flow: Fly neuroethology

the environment is represented by a set of three dimensional “fiducial points” Di

in a coordinate system centred in the position of an observer. The projections
of these points to a (unit) sphere are given by di = Di

|Di| . The motion of these
projected points on the sphere can be computed for a given translation T and a
rotation R as follows:

pi =
δdi

δt
= pT

i + pR
i = −T (T · di)di

|Di| − R × di (2.1)

where R is a vector directed along the rotational axis and encoding the angular
velocity in its length, T a vector pointing in the direction of the translation and
coding the velocity in its length. · denotes the scalar product and × the vector
product.

Note that the distance of the environmental point |Di| appear only in the flow
component determined by the translation vector. The equation further represents
that the rotational (pR

i ) and translational (pT
i ) components of the flow field are

additive. This property of the 3D situation is preserved in the 2D projection.

The reconstruction of the self-motion parameters R and T as well as the dis-
tances Di from the optic flow field encountered by the system can be defined as
a minimisation problem: Given a set of image points di moving at (measured) ve-
locities pi, determine the R′, T ′ and |D′

i| minimising the differences between the
measured velocities and the velocities expected from equation 2.1. This problem
can be solved for a minimal number of 5 fiducial points, but the numerical error
is reduced with increasing number of local velocity measurements (Koenderink,
1986).

Principal limits

The translational component of the optic flow is defined by the ratio of the trans-
lational velocity and the distances to objects in the environment (equation 2.1).
This has an important consequence for the reconstruction of translational veloc-
ity and the distance profile of a scene. If both of these parameters cannot be
estimated from another data source, only a relative profile can be reconstructed
and absolute values can be computed from the optic flow neither for the trans-
lational velocity nor for absolute distances (Dahmen et al., 2001). If one of these
parameters, either the absolute distance of one object or the absolute velocity
is known or can be measured independently from other modalities, the absolute
values of the other parameters can be calculated.

If the position of the fiducial points in the 3D environment can be assumed as
fixed, at least the time-course of the translation velocity can be reconstructed
from the optic flow. Furthermore, the time to contact with some object in the

8



2.1 Optic flow

environment can be calculated from optic flow. Neuronal circuits that seem to
extract this parameter from the flow were found in pigeons (Sun and Frost, 1998)
and locusts (Blanchard et al., 2000; Gabbiani et al., 2001).

Realistic motion sensors usually view a limited part of the visual sphere. Rotations
and translations can generate very similar local motion patterns in such a limited
field of view. In figure 2.2 the boxes show a 30◦ × 30◦ field of view in which
the local velocities caused by the different movements are almost the same. For
the reconstruction of self-motion parameters, a wide field of view therefore is a
prerequisite (Dahmen et al., 1997).

The aperture problem

The first step in the reconstruction of the self-motion parameters is the mea-
surement of the local image velocities. Regardless of the technique used for this
analysis, a theoretical problem arises for the correct detection of the local motion
direction, the so-called “aperture problem” (Hildreth, 1984). If a moving straight
edge is viewed through a small aperture, only the motion component perpen-
dicular to that edge can be measured. Motion along the edge is “invisible” for
the local analysis. Figure 2.3 illustrates this for a linear edge viewed through an
aperture and for the velocities measurable through apertures on a moving circular
arc.

Detectablility

Theoretically, the projection of any visible point of the environment moves on the
retina, when an observer moves. However, if a scene contains homogeneously
coloured (and lighted) objects, some regions of the retinal image have no con-
trast, making a detection of the retinal velocity impossible.

In an environment containing objects of different distances from an observer oc-
clusions also make the unambiguous velocity detection impossible in the retinal
region containing the edges of a closer object when translational movements
result in relative motion of the objects.

2.1.3 Technical approaches

The technical approaches to the exploitation of optic flow for navigation can be
divided into two processing steps. First, the optic flow field has to be computed
from a sequence of images. In a second step, these local velocity estimations are
used to reconstruct the self-motion parameters of a moving agent.

9



2 Processing of optic flow: Fly neuroethology

d

c

b

A

E

Figure 2.3: A moving straight edge (E) viewed through a small aperture (A) is
shown in the left figure. Only the motion component perpendicular to the
edge (c) can be measured in this situation. Other motion directions (like b,d)
cannot be discriminated. For a moving circle (right figure), local velocity mea-
surements also can give only the motion component perpendicular to the edge
(true motion directions are gray, detectable motion directions black). Figure
adapted from Hildreth (1984).

Computation of local velocities in technical systems

Different approaches exist for computing optic flow fields in technical systems.
These approaches differ in the way they compute the estimates of the local image
velocities. Besides the aperture problem, the estimation techniques need to deal
with sensor noise, luminance changes, occlusions, and problems arising from
partially transparent objects in the scene. All these effects complicate the robust
estimation of local velocities.

Some algorithms for the optic flow estimation are based on tracking of image
features over some consecutive images (e.g. Ballard and Brown, 1982). To do
this, the algorithm must automatically find some image locations with proper-
ties that allow the detection and matching in subsequent frames (Chellappa and
Zheng, 1995). While this approach may be robust with respect to pixel noise and
can avoid the aperture problem, it cannot deliver a dense optic flow field. To
generate these from the sparse local estimates, interpolation is necessary (Brady
and Wang, 1992).

Other algorithms try to estimate local velocities on the basis of the spatio-tem-
poral luminance function. Most of these algorithms, in computer science liter-
ature called “differential techniques” are based on a scheme also known as the
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2.1 Optic flow

“gradient motion detector” to biologists and psychologists. From the temporal
development of the three dimensional image function I(x, y, t) during motion,
the so-called optic flow constraint can be derived:

δI

δx
ux +

δI

δy
uy +

δI

δt
= 0, (2.2)

where u = (ux, uy) is the sought-after local image velocity. This equation relates
the spatial and temporal gradients of the luminance function to the velocity.
The optic flow constraint is ill-posed, because it contains two unknowns in one
linear equation, which is the mathematical equivalent of the aperture problem
(Bab-Hadiashar and Suter, 1998). The algorithms based on this constraint thus
have to use additional constraints to overcome this problem. They can roughly
be split into two groups. One approach is to use a global smoothness assump-
tion (i.e. that the velocities and motion directions change smoothly across the
visual field), the other approach assumes local constancy (i.e. that neighbouring
points have similar velocities and directions of motion). These two approaches
are viewed by most authors as opposing, although recently they were combined
into one algorithm (Bruhn and Weickert, 2005). For a review of different algo-
rithms see e.g. Bab-Hadiashar and Suter (1998); Barron et al. (1994); Beauchemin
and Barron (1995).

All these algorithms have to deal with the problem that the estimation of the
local image gradients is very sensitive to pixel noise. Thus, the optic flow fields
computed from the image function usually are noisy themselves. If they are used
for the estimation of self-motion parameters, it can be advantageous to thin out
the flow field using some confidence measure (Dev et al., 1996; Stöffler et al.,
2000; Vázques et al., 1994).

Recently, Calow et al. developed a space variant filtering method inspired by the
receptive fields of motion sensitive neurons in the mammalian cortex to improve
the quality of noisy optic flow estimates. They demonstrate, that this filtering
process can reduce the noise in the output of a computer vision algorithm such
that the reconstruction of the heading direction of a moving camera gets more
stable. However, as the authors point out in Calow et al. (2004), the method
may not lead to more correct estimates of the real flow field.

Reconstruction of the motion parameters

Most technical approaches try to compute the self-motion parameters from the
local motion measurements by some kind of (least squares) fit of the estimated
flow field to the theoretical flow field resulting from these parameters.

11



2 Processing of optic flow: Fly neuroethology

Koenderink and van Doorn (1987) present an iterative algorithm solving this
problem. They derive a set of coupled equations, that can be solved numerically.
Starting from an initial setting of the rotation and the translation, they iteratively
improve the estimate by applying the equations. Dahmen et al. (1997) obtain the
initial estimates by assuming zero translation when calculating the first estimate
of rotation. For the initial translation estimate they assume the rotation to be
zero and the fiducial points to be placed at equal distances.

Other algorithms were proposed to compute the parameters in one step. For
a comparison of different approaches to solve the reconstruction of ego-motion
parameters see for example Tomasi et al. (1996).

Starting from the iterative algorithm of Koenderink and van Doorn (1987), Dah-
men et al. (1997, 2001) derived also a “one-shot” mechanism to estimate the
self-motion parameters using a filtering approach. The filters they derived show
interesting similarities to the receptive fields found in wide-field motion sensi-
tive neurons in the fly (see also section 2.2.3). It was shown that under certain
assumptions these receptive fields are indeed optimal filters for the extraction of
self-motion parameters from an optic flow field (Franz and Krapp, 1998).

A filter-based estimator cannot infer the relative distances of individual fiducial
points. Thus, assumptions about the typical distribution of distances must be
made for the construction of the filters (Franz and Krapp, 1998). This also implies
that the estimate is worse if the assumed distance statistics differ significantly
from the real environment in a certain situation.

Based on distance statistics obtained from a given environmental situation, the
filters can be optimised for the self-motion estimation in that surrounding. This
was implemented and tested using a robotic system in an office environment
(Franz and Chahl, 2002). A similar approach was also used for flight control of a
simulated air vehicle (Neumann, 2004).

2.2 The blowfly visual system

The part of the blowfly visual system processing the optic flow can be divided
into three modules (figure 2.4). The first module, the peripheral elements of the
system located in neuropiles called retina and lamina are not strictly specialised
in optic flow processing, but may also form the input stage of other parts of the
visual system.

The second module, assumed to be located in the neuropile called medulla, cal-
culates local motion information from fluctuations in the activity of neighbouring
peripheral elements. In contrast to other visual information like light intensity,
the velocity of an image cannot directly be represented by information obtained
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2.2 The blowfly visual system

at only a single point in the retinal image. By measuring the intensity of a single
dot of the image over time, directed image motion cannot be separated from
undirected brightness changes.

Neurons of the so-called lobula complex, the third module, integrate the local
motion signals spatially, coding wide field motion by their activity. Each of these
integrating neurons, the so-called tangential cells, extracts different aspects of
optic flow from the local motion field. Most of these neurons respond to wide-
field motion in their receptive field, while others signal motion discontinuities
and are thought to play a role in object detection and figure-ground segmen-
tation (Borst and Egelhaaf, 1993b; Borst and Haag, 2002; Egelhaaf et al., 2002;
Hausen and Egelhaaf, 1989). Furthermore, the tangential cells are coupled in a
complex recurrent network presumably narrowing the selectivity of the response
to certain optic flow patterns (Cuntz et al., 2003; Haag and Borst, 2003, 2004).

Retina

Lamina

Medulla

Lobula

Lobula Plate

Central Brain
Structures

Decending
Neurons

Figure 2.4: Schematic drawing of the fly brain seen in a horizontal cross section.
The photoreceptor cells in the eye form the retina. The signals of these cells are
propagated retinotopically (conserving spatial neighbourhood) through lamina
and medulla where a column can be found for each ommatidium of the eye.
The output neurons of the optic flow processing system are located in the
lobula plate. The colours show the neuronal modularisation of optic flow pro-
cessing: Yellow areas do non-motion-specific per-ommatidium preprocessing,
in the red area local motion detection is expected to take place, and the blue
areas contain spatially integrating neurons. (modified from Hausen, 1984)

An extraordinarily detailed functional model exists for the motion vision system
of a fly. This model was developed based on numerous experimental findings
from electro-physiological studies and observations of behaving animals. It is
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2 Processing of optic flow: Fly neuroethology

one goal of this thesis to elaborate this model to account for the complex re-
sponses of an important output element of the third module to natural optic
flow experienced by freely flying blowflies. The following sections summarise the
structure of the system is and sketch the modelling approaches for the different
neuronal modules. Details of the model are discussed in chapter 4.

2.2.1 Peripheral elements

Retina

The input stage for the whole visual system is formed by the components of the
eye. Insects have compound eyes that are constructed from many small omma-
tidia, each of which contains a lens and only a few photoreceptors (e.g. eight in
the blowfly’s eye). Each of these ommatidia is directed to a different point in the
environment, the directions of the optical axes of neighbouring ommatidia differ
by a few degrees.

The ommatidia of a blowfly form a basically hexagonal pattern. Only at a few
points, this pattern shows anatomical irregularities changing the number of om-
matidial rows between parts of the ommatidial lattice. The spatial resolution and
the angular distance between the points in space viewed by neighbouring om-
matidia changes systematically with the retinal position (Petrowitz et al., 2000).

Typically, a single ommatidium does not provide a spatially resolved image, but
records the mean light intensity radiated by a single small area in the environ-
ment. Thus, the neural image is not composed of numerous small spatially re-
solved overlapping images as suggested by some popular illustrations, but is spa-
tially discretised by the retina into as many discrete image elements, as omma-
tidia are present in the eye. Neighbouring elements of this spatially discretised
image receive light from neighbouring points in the environment. This arrange-
ment is preserved through the following stages in the processing, an architectural
property called “retinotopy”.

The photoreceptors contain light sensitive pigments that are photochemically
split by incoming photons starting a cascade of chemical reactions that finally
change the conductance of the cell’s membrane and thereby cause a change
in the cell’s membrane potential. Thus, the photoreceptors finally encode the
luminance of the incoming light by their membrane potential. In insect photore-
ceptors an increase in luminance is encoded by a depolarisation1 of the photore-
ceptor membrane (Hardie, 1985; Laughlin, 1984).

1A resting neuron typically shows a negative in-cell polarisation of some ten millivolts. The
response to an input signal is usually named relative to this resting potential. “Depolarisation”
thereby denotes a more positive, “hyperpolarisation” a more negative polarisation compared
to the resting potential.
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2.2 The blowfly visual system

Flies are equipped with 8 photoreceptors per ommatidium. Two of these pho-
toreceptors (labelled R7 and R8) are located behind each other along the op-
tical axis of the ommatidium. They are sensitive to different wavelengths, or
colours of light. Along with this potentially colour resolving system, 6 additional
photoreceptors have different optical axes (labelled R1 through R6) and form a
monochromatic system which is the input for the motion detection module. For
each of these photoreceptors, five photoreceptors in neighbouring ommatidia
have the same optical axis. This redundant equipment with photoreceptors in-
creases the sensitivity of the system and reduces the noise of the pooled signal
under low light conditions.

Lamina

The photoreceptors R1–R6 form synapses to neurons called large monopolar cells
(LMCs) in the first visual neuropile, the lamina. The lamina contains a column
of neurons for each ommatidium in the retina. Each lamina column contains
differently responding LMCs numbered successively.

In a circuit called “neural superposition” the information of photoreceptors view-
ing the same point in space are pooled in one lamina column (figure 2.5). As a
result, a one-to-one relation of ommatidia on the eye’s surface and the elements
of the neural image in the lamina is created. Spatial neighbourhood among the
input channels is conserved, the lamina columns are fed by photoreceptor inputs
retinotopically.

It is still an open question, which of the lamina elements form the input to the
local motion detectors. Some authors discuss separate on-off channels as the in-
put to the motion detection system (Douglass and Strausfeld, 2001). Candidates
for these cells are the LMCs L3 and L4 of the lamina (Jansonius and van Hateren,
1991, 1993)).

The majority of authors however assumes the LMCs L1 and L2 to be the input
elements of the local motion detection system (for discussion see Egelhaaf and
Borst, 1993). A depolarisation in the photoreceptors R1–R6 causes these LMCs
to hyperpolarise, the “sign” of the neural response to light is reversed. These
LMCs react to a step of light intensity with a short transient response component,
forming a kind of temporal high-pass filter (figure 2.6). While the response of a
perfect high pass filter to a step input would decline to zero after this initial peak,
the steady state response of an L1/L2 LMC also encodes the luminance level at
least in the dark-adapted eye (Juusola et al., 1996).

For the model presented in chapter 4, L1 and L2 are assumed to be the relevant
input units, when LMCs are mentioned below, the LMCs L1 and L2 are referred
to.
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2 Processing of optic flow: Fly neuroethology

Figure 2.5: Schematic circuitry of
neural superposition. The signals
of all photoreceptors in neighbour-
ing ommatidia that receive parallel
incoming light from a given light
source (e.g. blue rays) are pooled
in a single lamina column (blue cir-
cle). The spatial neighbourhood of
the light directions and photorecep-
tors is conserved at the level of the
lamina (retinotopical projection).

Retina

Lamina

Figure 2.6: Responses of a photore-
ceptor and a large monopolar cell
(LMC) to luminance steps at dif-
ferent luminance levels. The sig-
nals of the photoreceptor is a low
pass filtered version of the light sig-
nal. The LMC response shows high
pass characteristics, but a low gain
DC component is transfered, too.
The sign of the signal is reversed
between Photoreceptor and LMC.
Figure taken from Laughlin (1984).
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2.2 The blowfly visual system

2.2.2 Local elementary motion detection

The neural circuitry underlying elementary motion detection is still unknown. The
second visual neuropile, the medulla, is most likely the site where these circuits
are located. The cells in this region of the brain are known anatomically, but only
very few studies on their physiology exist (Douglass and Strausfeld, 2001).

Based on behavioural experiments with the beetle Chlorophanus Hassenstein and
Reichardt proposed an algorithmic model of the mechanism of local motion de-
tection in insects (Hassenstein and Reichardt, 1956). Originally proposed in the
1950s, the model is still used in a very similar form and is probably the most
successful cybernetical model at all.

This model, the so-called correlation motion detector2, codes motion informa-
tion by correlating the temporal signal of one input channel with the time-shifted
signal of a neighbouring channel. The signals of one input channel are compared
with the delayed signals of a neighbouring channel via multiplication. The time
shifting is usually achieved by a linear temporal low-pass filter. Such a circuit is
direction selective but responds to both motion and global luminance changes
(flicker). To make the circuit insensitive to flicker, the multiplication output is
subtracted from that of a mirror symmetrical circuit.

In its original formulation the model was composed of linear temporal filters
and a multiplication stage (figure 2.7). In more recent publications the model
is usually simplified by removing most of the linear filters proposed in the orig-
inal publications. A version reduced to the functionally essential components is
shown in figure 2.8.

One key feature of this motion detection scheme is that, while it signals the
direction of motion very accurately, it does not code image velocity unambigu-
ously. The response of the detector is ambiguous in various ways. With increas-
ing velocity, the response reaches an optimum and declines afterwards. Stimulus
parameters unrelated to velocity, such as spatial wavelength composition and
contrast of the moving pattern, acceleration and higher derivatives of the ve-
locity, change the level of reaction, too. This makes it practically impossible to
reconstruct the image velocity from the detector’s reaction. Nevertheless, all
these ambiguities can also be found in the behavioural responses of animals and
in the signals recorded from motion sensitive neurons (for review see Egelhaaf
and Borst, 1993).

2In the literature, the correlation motion detector is sometimes called “Reichardt detector”, re-
ferring to one of its inventors.
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2 Processing of optic flow: Fly neuroethology

Figure 2.7: Generalised elementary
structure of the original correla-
tion motion detection model. The
model is composed from linear fil-
ters (D, F , H, and S) and a mul-
tiplication. Note that the model is
composed of two mirror symmet-
rical subunits. (Redrawn from Re-
ichardt and Varjú, 1959)
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simple version of the correlation de-
tector. A motion signal is computed
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put channel and the delayed signal
of a neighbouring channel l2(t) =
s2(t − ∆t) by multiplication m1(t) =
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2.2 The blowfly visual system

2.2.3 Tangential cells: Optic flow filters

In the third visual neuropile of the fly, the lobula plate, approximately 50 indi-
vidually different neurons exist that are identifiable in each fly both anatomically
and by their response profile. These cells spatially integrate the signals of local
motion detectors and are subsumed as the group of “tangential cells”. Each of
these tangential cells is present only once in each half of the mirror symmetrically
organised visual system.

Different subgroups of these cells can be distinguished by the response mode of
the cells and their spatial integration properties. Some cells respond specifically
to local irregularities in the optic flow, signalling the presence of small moving
objects. Other elements integrate local motion estimates of large areas of the
visual field, responding best to wide-field motion caused by ego-motion of the
animal (Borst and Egelhaaf, 1993b; Borst and Haag, 2002; Egelhaaf et al., 2002;
Hausen and Egelhaaf, 1989). This latter group can be subdivided into cells that
are presynaptic to other tangential cells and elements that are most likely output
elements of the motion vision system. These cells show signals that are superpo-
sitions of graded polarisation changes and action potentials of variable amplitude
(Haag et al., 1997; Hausen, 1982a,b)).

The group of output neurons contains 13 individually characterised cells for each
eye or visual lobe. Three of them, the so-called HS-cells respond to horizontal
motion. They are distinguished by an appended letter that denotes the position
of the receptive field: HSN (north) responds to horizontal motion in the dorsal3,
the HSS (south) in the ventral and the HSE (equatorial) in the fronto-lateral field
of view (Hausen, 1982a,b).

The ten VS-cells respond predominantly to vertical downward motion in different
portions of the visual field. These cells are distinguished by appending numbers,
counting the cells by the equatorial position of their receptive field from ante-
rior to posterior (Hengstenberg, 1982; Hengstenberg et al., 1982). Across the
receptive field of these cells both the local sensitivity to motion and the local
orientation4 of the motion detectors are changing (Krapp et al., 1998).

The receptive fields of the VS-cells look very similar to velocity fields caused by
self-rotation of the animal, if the local preferred directions within their receptive
fields are plotted in a cylindrical plot (Krapp et al., 1998, 2001). This led to the
conclusion, that these cells act as rotation detectors. Nevertheless they react not
very selectively to rotations individually and must be combined by a subtraction
of the particular opposing neuron in the other hemisphere to create elective

3To describe the position of the receptive field of a neuron independently from the orientation
of the animal, it is useful to adopt some anatomical terms: “Dorsal” denotes the back and
“ventral” the belly, “anterior” the head and “posterior” the tail end and “lateral” refers to the
sides of the animal.

4In the literature this local orientation is often called the “local preferred direction”.
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2 Processing of optic flow: Fly neuroethology

rotational sensors (Karmeier et al., 2003, 2005). While self-rotation about a
given axis may be the best, or “matched” stimulus for a neuron, the same neuron
is also strongly excited by optic flow generated by translation. The VS1-cell for
example shows a receptive field that is similar to the velocity field caused by
rotation of the animal about the horizontal short axis of the body (pitch), but is
also driven to depolarised membrane potentials by the optic flow experienced
during lift translation.

2.3 Blowfly behaviour

The behaviour of blowflies was closely investigated in the context of motion vi-
sion. The small size of the animals allows investigating the behaviour in the
laboratory. In different studies, the animals were analysed in relatively uncon-
strained behavioural situations. For example flies were video recorded while the
animals walked freely in cylindrical setups (Kern et al., 2001a,b)) or flew in flight
tunnels (Kern et al., 2000). In other experiments, the fly carried small copper
coils that could be located within a alternating magnetic field while flying in a
cubic cage (Schilstra and van Hateren, 1999; van Hateren and Schilstra, 1999).
Recently, high speed video equipment was used to record the trajectories of flies
flying outdoors (Boeddeker et al., 2005).

In contrast to these relatively unrestrained situations, fly behaviour was also anal-
ysed in experiments where the animal was in a fixed position. For this purpose,
flies were glued with wax to the axis of a device measuring the forces the fly
produces by flapping their wings stationary (Götz, 1983). These forces can be
recorded and analysed in an open-loop fashion, or can be used to control the
stimulus (Kimmerle and Egelhaaf, 2000; Kimmerle et al., 1997). In these sim-
ulated closed-loop experiments flies are for example able to compensate global
motion or to fixate objects (Reichardt and Poggio, 1976; Warzecha and Egelhaaf,
1996).

Using these techniques, the walking and flight behaviour of the blowfly was anal-
ysed and described. Some of the results are summarised in the following.

2.3.1 Optomotor response

If an insect is rotated about the vertical axis (yaw) by external forces, it responds
with an active compensatory rotation into the opposite direction. The quantita-
tive analysis of this behaviour, often interpreted to serve the stability of a straight
walk or flight, was the basis for the motion detection model described in sec-
tion 2.2.2. The experimental paradigm of this analysis was a beetle walking on a
Y-maze globe in the centre of a rotating patterned drum (see figure 2.9). Depend-
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2.3 Blowfly behaviour

ing on the rotational direction and velocity, the beetle showed different turning
preferences at the branches of the globe (Hassenstein and Reichardt, 1956).

Figure 2.9: A tethered beetle walking on a Y-maze
globe. Based on experiments like this the algo-
rithmic model for the elementary motion detec-
tion was formulated in the 1950’s. (figure from
Borst, 2000)

Other experimental paradigms reveal the same behaviour. Flies walking inside
of a rotating striped cylinder show a preference for turns following the motion
of the pattern (Götz and Wenking, 1973). In stationary flight in such a cylinder,
a constant torque in the direction of the motion can be measured (Götz, 1983;
Reichardt and Poggio, 1976).

A behaviour similar to this so-called optomotor response of insects can be found
in one or the other form almost universally throughout the animal kingdom. The
eye movements of vertebrates including humans in such a situation are inter-
preted similarly.

A possible mechanistic explanation is the generation of the compensatory ro-
tation on the basis of the difference in the responses of neurons sensitive to
horizontal motion. This hypothesis is supported by the finding that the yaw ro-
tation force generated by a tethered flying fly shows a similar dependence on
pattern velocity as the responses of tangential neurons. Another support for the
hypothesis is the finding that unilaterally blinded flies show a slight preference
to turn towards the open eye. It could be shown, that this preference on aver-
age generates an optic flow pattern which causes a zero response in the output
tangential neurons which are assumed to control this particular behaviour. With
the other neuron not responding because their input is cut of, this leads to a zero
difference signal (Kern et al., 2000).

21



2 Processing of optic flow: Fly neuroethology

2.3.2 Characteristics of blowfly flight

Flies show a characteristic pattern of motions in free flight behaviour. Although
they are able to fly slow continuous turns while chasing targets (Boeddeker et al.,
2003), they seem not to do this in normal cruising flight or in obstacle avoidance
tasks. Instead, their flight trajectory is characterised by straight segments in-
termitted by sharp fast turns, commonly referred to as body saccades. These
saccades last only for a few milliseconds, but having rotational velocities up to
several thousand degrees per second, they can change the orientation of the fly
by up to 90 degrees in this short time (Schilstra and van Hateren, 1999; van
Hateren and Schilstra, 1999). The head is actively rotated in advance to the body
movement so that these turns appear to be even shortened with respect to the
gaze. In the initial phase of the turn, the head compensates for the turn which
leads to a stabilisation of the prior gaze direction at the onset of the turn. The
head then actively shifts to the new gaze direction, again compensating for the
turn in its last phase so that the new gaze direction already is maintained before
the body stops turning. This behaviour can be interpreted as an active vision
strategy stabilising the gaze rotationally as much as possible (Schilstra and van
Hateren, 1998b). By such a gaze stabilisation the rotational and translational
components of the optic flow are largely segregated at the level of behaviour.

In blowflies, these sharp turns in body orientation and gaze are not obviously
reflected in the trajectory of the body’s centre of weight. Due to sideward drift
after a body saccade, presumably caused by the inertia of the fly, the trajectories
look relatively smooth and do not have the sharp corners that could be expected
from the rapid changes in body orientation (van Hateren et al., 2005).

It is not clear so far, what triggers a body saccade. In a study analysing the
saccades of Drosophila melanogaster5, Tammero and Dickinson come to the con-
clusion that fronto-lateral image expansion triggers the saccades (Tammero and
Dickinson, 2002a,b)). This can be interpreted as an avoidance of approaching
objects.

When flying in a flight tunnel, blowflies avoid the situation that their gaze is
parallel to their actual flight direction. This is suggested, because the fly seems to
initiate a saccade as soon as the sideward drift component of the body trajectory
becomes negligible (Kern, personal communication).

The saccadic flight mode of blowflies may be of advantage for the optic flow
analysis by separating of the rotational and the translational optic flow compo-
nent on a behavioural basis. Simulation experiments supporting this hypothesis
are discussed in chapter 5.

5Drosophila melanogaster is a small fruit fly.
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2.4 Information coded in tangential cell responses

2.3.3 Tunnel centring

Flies (or bees) flying in an elongated tunnel tend to fly in the centre of this
tunnel. In an environment containing obstacles, they tend to keep roughly equal
distances to these.

This behaviour can be explained by the active balancing of the optic flow experi-
enced on the two eyes. If the animal gets closer to an object, the flow generated
on the corresponding eye, gets faster due to the dependence of the translational
flow component on object distance. This hypothesis is supported by the finding
that the insect shifts to a more lateral position in the tunnel if one of the walls is
moving itself (for a review see Srinivasan and Zhang, 2003).

2.4 Information coded in tangential cell responses

As described in section 2.2.3 the tangential cells are believed to extract parame-
ters of self-motion from the optic flow field based on their receptive field struc-
ture (Hausen, 1982a,b; Hausen and Egelhaaf, 1989; Krapp et al., 2001). One
particularly well analysed output cell of the visual system, the HSE neuron re-
sponding to visual wide-field motion is depolarised by front-to-back motion in
the ipsilateral6 visual field and hyperpolarised during motion in the reverse direc-
tion (Egelhaaf et al., 2002). Although HSE also responds to forward translation,
it was concluded to specialise in encoding rotations around the vertical axis of
the head (yaw) (Horstmann et al., 2000), because it receives excitatory input also
from the contralateral eye during back-to-front motion via the identified H1- and
H2-neurons (also form the group of tangential cells). Responses to natural optic
flow, however, cast doubt on this conclusion.

Retinal image sequences a blowfly had seen in a behavioural experiment were
reconstructed and used as stimuli for an electrophysiological analysis of the cell’s
responses to optic flow with a spatial and temporal statistics close to the nat-
ural situation. The velocity profile of yaw rotations in these stimuli reflects the
blowfly’s saccadic flight style (see section 2.3.2, figure 2.10). The cell briefly
hyperpolarises during saccadic turns evoking null-direction motion. In contrast
to expectations from responses to conventional stimuli it does not consistently
depolarise, but often hyperpolarises slightly, during preferred-direction saccades
(see figure 2.11).

Many of the larger depolarisations are in fact not evoked during preferred-direc-

The text of section 2.4 is a shortened version of the one previously published in Kern et al.
(2005b).

6The two vertically separated mirror-symmetrical halves of the brain or the halves of the visual
sphere are named with respect to an observed neuron to be “ipsilateral” (same side) or “con-
tralateral” (opposite side).
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2 Processing of optic flow: Fly neuroethology

Figure 2.10: Down-view of a flight tra-
jectory (dotted line), with head po-
sition and orientation shown every
50ms (time colour coded: start red,
finish green). Figure redrawn from
Kern et al. (2005b)

Figure 2.11: Saccade triggered aver-
ages, calculated from the mean
responses of HSE for preferred-
direction (black) and null-direction
(red) saccades (63 different sac-
cades). Vertical line denotes time
of saccade peak velocity. Figure re-
drawn from Kern et al. (2005b) −4
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tion saccades, but between saccades (positive response level before saccades in
figure 2.11).

This surprising feature is not caused by the possibility that the angular veloci-
ties during saccades are too large to be perceived by the motion vision system.
When the neuron is stimulated exclusively with the original rotations without
any superimposed translation, pronounced depolarising response peaks during
preferred-direction saccades occur. From the considerable difference between
the responses plotted in figures 2.13b and 2.13c it follows that the translational
optic flow component has a major impact on the neuronal response profile,
even though it is much smaller than the rotational component evoked by sac-
cades. Since between saccades blowflies keep their gaze stable apart from small-
amplitude, broad-band yaw rotations (figure 2.12a, 2.14), they may gather useful
information about the outside world from the translational optic flow compo-
nents that dominate at low frequencies in inter-saccadic intervals. For example,
knowledge of sideward translation may be used by the animal for obtaining range
information in the frontal visual field through motion parallax, or in the lateral
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Figure 2.12: a. Head yaw velocity (black) and total optic flow (green) during the
flight shown in figure 2.10. Positive velocities denote leftward turns, PD for
the right HSE. b. Membrane potential of a right HSE in response to this flight.
Note that the cell is mainly depolarised inbetween saccades indicated by the
vertical lines. Figure redrawn from Kern et al. (2005b)

visual field by gauging image expansion there. HSE-cells may thus be tuned to
provide behaviourally relevant information on the animal s self-motion especially
between saccades.

To test this hypothesis, Kern et al. (Kern et al., 2005b) analysed the inter-saccadic
response segments by masking the saccadic segments of stimulus and response.
The similarity between the original self-motion parameters and the estimated
ones based on a linear reconstruction approach is quantified by the coherence, a
measure that varies between 0 (i.e. both signals are unrelated) and 1 (i.e. perfect
reconstruction) (van Hateren and Snippe, 2001).

Whereas the coherence of the inter-saccadic yaw velocity and the neuronal re-
sponse was significant only between approximately 20Hz and 60Hz, there was
considerable coherence between sideward velocity and the neuronal responses
at low frequencies (figure 2.15). Surprisingly, the coherence was much smaller for
the forward velocity of the fly although HSE responds well to constant-velocity
front-to-back motion of the retinal image (Hausen, 1982a,b; Horstmann et al.,
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2 Processing of optic flow: Fly neuroethology
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Figure 2.13: a. Head yaw velocity (black) and total optic flow (green) b. Average
membrane potential of the right HSE (N=6 cells, n=17 responses). c. As b, with
rotations only (position of fly fixed in centre of cage; N=6, n=11). Broken lines
denote resting potential, red vertical lines indicate peak times of preferred-
direction saccades, magenta lines those of the null-direction saccades. Figure
redrawn from Kern et al. (2005b)
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Figure 2.14: Properties of the inter-saccadic stimulus for the trajectories. a. Prob-
ability density function of yaw velocity (red), sideward (black), and forward
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ward is perpendicular to the head’s plane of symmetry. Sideward and forward
velocities were converted to angular velocities by multiplying by the nearness
(= inverse distance) averaged over the trajectories and over the receptive fields
of the neurons. b. Power spectra of yaw velocity (red), sideward (black), and
forward (blue) angular velocity. Figure redrawn from Kern et al. (2005b)

2000). The coherence with the other self-motion parameters (upward velocity,
pitch and roll) was negligible. It can be concluded from these results that HSE
might make use of the difference in frequency content of rotations and trans-
lations (figure 2.14b) to provide information on both optic flow components in
adjacent frequency bands (figure 2.15). This is possible because the inter-saccadic
yaw velocities are smaller by an order of magnitude than during saccades (com-
pare figures 2.12a and 2.14a). Hence, the saccadic gaze strategy may be viewed
as a specialisation that enables the extraction of translatory optic flow amidst
rotatory optic flow that would otherwise dominate the response if smooth yaw-
rotations were used exclusively for steering.
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By combining the responses of the HSE-cells from both halves of the brain, the
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2 Processing of optic flow: Fly neuroethology

specificity of the inter-saccadic responses to the translational optic flow compo-
nents can be enhanced. The summation of the responses almost exclusively signi-
fies forward velocity (figure 2.16a), whereas the difference between the responses
almost exclusively signifies the sideward and yaw velocities (figure 2.16b). The
latter signals can be separated by low-pass and band-pass filtering, respectively.
It is not known whether the blowfly actually uses such a processing scheme, but
it is clear that the information on yaw, forward, and sideward velocity can be
extracted by simple operations that can also be interpreted in neuronal terms.
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Figure 2.16: Coherence of stimulus parameters with combined HSE responses,
inter-saccadic parts of stimulus and response only. a. Average coherence of
yaw (red), sideward (black) and forward (blue) velocity with the summed re-
sponses of right and left HSE (N=5). b. As a, for the subtracted responses of
right and left HSE. Figure redrawn from Kern et al. (2005b)

Since translational optic flow depends on the distance of the animal to objects
in its environment (see section 2.1), the dependence of the neuronal responses
on translation velocity is likely to reflect the spatial relation of the animal to its
surroundings. This prediction is supported by experiments in which the optic
flow of a given flight trajectory was tested not only for the original flight arena
but also for virtual flight arenas of increasingly larger size (Kern et al. (2005b)).

Although the cell experiences the largest optic flow during saccades, it may en-
code behaviourally relevant information especially between saccades. Since be-
tween saccades blowflies keep their gaze stable apart from small, broad-band
yaw rotations, they may gather useful information about the outside world from
the translational optic flow components that dominate at low frequencies in
inter-saccadic intervals. Indeed, between saccades neuronal signals provide rich
information about the spatial relation of the animal to its surroundings.

A possible approach to test these hypotheses for sustainability is to analyse hy-
pothetical control schemes based on HSE responses in a closed loop simulation.
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2.5 Fly inspired robots

Some initial results of such simulation experiments are shown in chapter 5.

2.5 Fly inspired robots

The promising research on the fly’s optic flow processing inspired several re-
searchers to implement robot systems that adopt part of the mechanisms studied
in the fly. These systems show that the bionic7 application of the optic flow
processing strategy of the fly nervous system can be advantageous to mobile
robots. While most of these robots are not intended to be a model of the fly,
they provide evidence that the functional hypotheses drawn from neuroscience
are sustainable.

Common to the existing systems is a mismatch to the fly in respect to the dynam-
ics of the movements. Most fly inspired robots are classical mobile robots using
the differential force generated by two wheels for steering and driving. Most of
these system do not claim to be models for the flight behaviour of insects, but
are engineering applications of the principles discovered in flies.

The following sections describe several of the fly inspired robots. This overview
is not meant to be complete.

2.5.1 Franceschini

One of the first robots implementing a navigational system inspired by optic flow
processing of the fly is the robot built by Franceschini and coworkers in the early
’90s (Franceschini et al., 1992). This robot was equipped with a segmented vi-
sual system, implementing the basic properties of the blowfly elementary motion
detection in discrete analog hardware. Based on this motion detection system,
the robot was able to steer through a cluttered environment and avoid obstacles
while approaching a target defined by a beacon.

This system implements two sets of motion detectors, one system viewing the
side and a second system monitoring the frontal part of the visual field. The inter-
detector angles are varied with the position of the input elements in a sinusoidal
fashion compensating for the properties of a forward translational flow field.

While it was not a primary goal of the project to mimic insect behaviour in detail,
the system uses a special saccadic strategy to separate the rotational from trans-
lational components of the optic flow. The system was programmed to move
straight forward for a portion of time, integrating the received motion signals

7This term is formed from the words BIOlogy an techNIC and denotes adaptation of design prin-
cipals from biology in technical systems.
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2 Processing of optic flow: Fly neuroethology

and than turn away from so-detected obstacles in a sharp turn. This movement
strategy is similar to the saccadic gaze strategy observed in blowfly behaviour.

2.5.2 Coombs

Roberts and Coombs (1993) built a robot using motion information from two
peripheral views to implement the centring behaviour observed in bees and flies.
This robot moves in the centre of a tunnel and avoids obstacles by balancing the
flow experienced on both sides.

The basic idea for the system is inspired by insect neuroethology, but the imple-
mentation is far from being a model for the insect neuronal system. The system
uses so-called gradient motion detectors showing properties different from the
properties of biological motion detection. The local motion signals are not spa-
tially integrated but the maximum velocity is extracted from the motion image.

Nevertheless, this system also uses compensatory camera rotations to behavi-
ourally separate the rotational and the translational components of the optic
flow.

2.5.3 Harrison and Webb

Harrison and Koch (1999) designed an analog VLSI8 implementation of the blow-
fly motion detection system. The chip integrates the entire motion pathway from
an adaptive photoreception stage to the spatial integration of correlation-type
motion detectors. This chip was tested in an electrophysiologist setup showing
similar responses to rotating stripe patterns as the horizontal tangential cells of a
fly (Harrison and Koch, 2000).

The chip was used as an “eye” of several robots. It served to implement an
optomotor-balance behaviour which was able to correct for systematic biases in
the robot’s motor system. In an integration with auditory and olfactory systems,
the chip was tested also in a multi-modal robot system (Webb and Harrison,
2000; Webb et al., 2004). In this system, a looming sensor derived from the
optomotor-chip was used to implement frontal object avoidance.

2.5.4 Huber

Huber et al. (1999) implemented a simple one-dimensional model of the fly mo-
tion vision system and used the spatially integrated horizontal image motion sig-
nals to control small robots in simulation and desktop experiments. The system

8“V”ery “L”arge “S”cale “I”ntegration refers to a class of (analog) microchips.
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2.6 Summary

was shown to have the capability of an optomotor stabilisation of the image. Fur-
thermore, the system showed fixation behaviour in the presence of an isolated
black stripe similar to a behaviour also observed in walking flies.

2.5.5 Neumann

Neumann implemented a fly inspired flight control system for an autonomous
helicopter tested in a simulation environment (Neumann, 2004). The system
used optic flow information for optomotor heading stabilisation, altitude con-
trol and obstacle avoidance. While he used correlation-type motion detectors
for local motion detection and created wide-field optic flow filters inspired by
fly tangential cells, the spatial layout of these filters were optimised for the dif-
ferent tasks. The sensor detecting unintended yaw rotations (e.g. induced by
control noise or wind) is an equatorial ring of horizontal motion detectors. The
filter signalling ground proximity is formed by detectors oriented along the local
movement directions of an expansion flow field in the downward half-sphere.
Obstacle detection is accomplished by fronto-laterally oriented expansion detec-
tors with a single focus of expansion frontal to the system.

Roll and pitch of the system are controlled visually on the basis of statical images,
a system which is inspired by the dorsal light reflex of insects stabilising their
upright posture in a natural environment, too.

2.5.6 Reiser

Based on the experimental results of previous studies on flight behaviour of
Drosophila melanogaster (Tammero and Dickinson, 2002a,b), Reiser and Dick-
inson implemented a saccadic wall avoiding system on a robotic arm positioning
a camera in a cylindrical environment (Reiser and Dickinson, 2003). This system
uses optic flow analysed by fronto-lateral expansion detectors with one focus of
expansion on each side. The saccades the system initiates to avoid the walls of
the arena are triggered by a threshold operation on the signals of these expansion
detectors. The direction of the saccade is chosen to turn away from the side on
which the threshold was hit, the angular amplitude of the saccades is not de-
termined by the optic flow, but is drawn from a random distribution. With this
approach, the camera can travel inside the cylinder, visually avoiding the walls.

2.6 Summary

This chapter introduced the basic concepts and scientific results that form the
basement of the developments described in the remaining parts of the thesis.
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2 Processing of optic flow: Fly neuroethology

Starting from the definition of “optic flow” and the discussion on the informa-
tion coded in these retinal image movements, the neuronal apparatus in the fly
brain extracting the behaviourally relevant signals was sketched. The saccadic
turns observed in the blowfly flight behaviour are responsible for the very spe-
cific dynamics of the stimuli the system is confronted to in free flight. Recent
results on the information extracted from such behaviourally generated stimuli
by the output neurons of this system leads to the hypothesis that depth infor-
mation may be coded in the signals of the HSE-neurons previously assmued to
primarily serve as rotation detectors. A very brief summary about existing tech-
nical applications of this approach to optic flow processing were given in the last
part of the chapter.

The following chapter describes tools for the further analysis of the neuronal sys-
tem outlined above. The experimental results on the response of tangential cells
to naturalistic image sequences cited in section 2.4 were already derived aided
by the FliMax (see section 3.3). These same results represent the benchmark for
the calibration of a quantitative simulation model for the sensory system (see
chapter 4). This model implements the optic flow processing neuronal system
sketched above. The simulated neuronal responses of this model then form the
input variables for the closed-loop simulation of a hypothetical control system
discussed in chapter 5.
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3 Technical tools for the analysis of fly
visual navigation

This chapter describes technical tools needed for the analysis of the visual naviga-
tion system of flies using behaviourally generated optic flow stimuli. Such stimuli
are formed by the image sequence a fly has seen during a free-flight behavioural
experiment. These sequences can be reconstructed, if the flight trajectory of
the fly is known quantitatively. The retinal image sequence can be generated by
computer graphics from this trajectory, if a detailed 3D-model of the experimen-
tal setup exists. Otherwise a panoramic imaging device can be used to record
the retinal images in the original environment in which the flight was recorded
(Boeddeker et al., 2005).

The first step for the creation of such stimuli in both cases is the quantitative
analysis of the animal’s behaviour. Section 3.1 describes “Flytrace”, an image
processing system designed for the quantitative reconstruction of 2D trajectories
from video sequences recorded in behavioural experiments with walking and
flying blowflies. In the following, the term “trajectory” comprises both the time-
dependent position of the fly and the orientation of its body axis. Based on
two of these 2D trajectories obtained from different viewing directions and the
knowledge of the cameras’ positions and viewing directions, the 3D-trajectory of
the fly can be reconstructed.

Once the trajectory of an animal is known, the retinal images can be recon-
structed from a 3D-model of the experimental setup by computer graphics meth-
ods. Section 3.2 describes software used to generate retinal images from the
trajectory data. The reconstructed retinal images are either fed into a model of
the visual pathway which is described in chapter 4 or replayed to a fly while
recording the tangential cell responses to these image sequences.

Flies have almost omni-directional vision and extraordinarily fast photorecep-
tors demanding for a high-frequency presentation of the image sequences on
an almost panoramical display. Section 3.3 introduces “FliMax”, a specifically
designed display device for the replay of these image sequences to a fly in an
electro-physiological replay experiment.

To evaluate the further processing of this sensory information by the fly, the
sensory-motor coupling must be analysed. This can be done with an input-
output analysis, if the responses of sensory neurons and the motor output can
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be recorded for the same stimuli. The motor output of a flying fly is a complex
motion pattern of the flapping wings. Two parameters of this pattern, the wing-
beat amplitude and frequency for the two wings can be recorded with a setup
described in section 3.4.

A more indirect approach to analyse the sensory-motor coupling is the attempt
to mimic the behaviour of a fly in a closed loop simulation of a virtual agent
using the model of the sensory neurons described in chapter 4 as its input. The
software needed for such experiments is described in section 3.5, the results are
presented in chapter 5.

3.1 Recording the flies behaviour

For the creation of behaviourally generated stimuli, the trajectory of a walking or
flying animal must be reconstructed. Two principally different approaches have
been taken to record such trajectories.

The animals can be equipped with small search coils that register time-varying
magnetic fields generated by a set of field coils surrounding the cage in which
the fly is flying (figure 3.1). Such a technique has been established for the blowfly
by Schilstra and van Hateren (1998a). A disturbance of the fly’s behaviour by the
additional load of the coils and the attached cables could not be observed, but
cannot be excluded completely.

This tracking with miniature coils is only applicable in relatively small setups.
Also, the setup must not have too many obstacles because of the wire connect-
ing the search coils with the recording equipment. On the other hand the fly’s
position and orientation in space can be recorded with high temporal and spa-
tial resolution using search coils. Also the tracking of the fly’s head is currently
only possible using coils. The flight data used for the calibration of the model
described in chapter 4 was generated in this setup.

A different approach is to record the flight with cameras and reconstruct the tra-
jectory from the recorded image sequences. With the camera approach the flies
can be observed in almost arbitrary environments. Although the space viewed by
the cameras is also limited, they can be placed in an open and even outdoors en-
vironment (Boeddeker et al., 2005). Obstacles cause problems in this approach
only if they disturb the view of a camera on the fly. Another advantage of the
approach is that the animals do not need to be prepared in any way.

The positions of the fly can be reconstructed from image sequences at least as
precisely as with the coil technique (Boeddeker et al., 2003; Schilstra and van
Hateren, 1998a). The reconstruction of the yaw- and pitch-orientation of the
body from images are possible, but the achievable precision depends on the ori-
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3.1 Recording the flies behaviour

a b

c

Figure 3.1: The setup for magnetic tracking of flying blowflies. The flies carry
small sets of three orthogonally arranged coils (b) on their head an thorax
(a) while flying between six field coils (c) generating a time-varying magnetic
fields. The induced currents are measured by a computer via thin copper
wires. The position and orientation of the fly can be reconstructed from these
signals at high temporal and spatial resolution. (Photos: J. H. van Hateren,
http://hlab.phys.rug.nl/)

entation of the fly with respect to the camera’s viewing direction. If the camera,
for example, records the fly in side-view, the reconstruction of the pitch angle
is much more precise than if the fly is flying towards the camera. The recon-
struction of the roll-orientation cannot be estimated robustly because even the
optimal back-view of a flying fly is almost circular if the wings cannot be detected
in the image. The orientation of the head cannot be resolved in an image show-
ing a significant section of the environment without actively tracking the fly with
pan/tilt cameras (see section 6.1.2).

The trajectory is defined by an N × 6 matrix for N time steps. For each time step
the 3 Cartesian coordinates and 3 angles defining the orientation of the fly in
space have to be computed.

The basis of the reconstruction are 2D image sequences recorded either by stan-
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dard video cameras or special high speed digital cameras. To reconstruct the 3D
data, at least two different synchronously recorded views are necessary. From
each of these image sequences the individual 2D positions and directions of the
animals are extracted as described in the following section 3.1.1. In a second
reconstruction step the 2D information is integrated to 3D-positions and direc-
tions, while the perspective distortions of the images have to be considered. This
second step is described in section 3.1.2.

3.1.1 2D image processing

The 2D image processing is done by a digital image processing system specifi-
cally designed for the detection of small moving objects in front of a stationary
background. Figure 3.2 gives an overview of the image processing steps and an
example of the images to be processed by the system.

All algorithms used for 2D image processing are from the standard toolbox of
digital image processing as described in text books like Jähne (1997) or Sonka
et al. (1999).

Computer-aid in favour of elaborated automatics

In his diploma thesis Lutterklas (1996) described a system for analysing the 2D
image data. For the local analysis of the single images his system already used
most of the methods detailed below. Based on the local analysis the system tried
to assign each detected region to the trajectory of an individual fly automatically.
This was done by constructing a graph of possible trajectories that was assessed
globally to find the most plausible ones.

For the experimental everyday work this system was of only limited use, be-
cause inevitable detection failures could blow up the graph so that the system’s
performance got unacceptable or ruined the result completely. His original im-
plementation also did not allow the user to correct the detection failures in a
convenient way prior to the construction of the graph.

One major design goal for a new implementation and extensions of the original
system was therefore to provide the user with automatic processing up to a help-
ful degree. Automatic processing needed to be interruptable and restartable at
any point to ease the correction of errors early in the process. Automatics should
be an aid for the user of the system and should not prohibit manual intervention.

During re-implementation and testing it turned out that it is possible in most
cases to create correct trajectories with pure local processing of adjacent images
and an acceptable amount of user interaction. Therefore the global assessment
of possible trajectories was not re-implemented in the currently used system.
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3.1 Recording the flies behaviour

Image sources

Two different sources of image sequences have to be handled by the software.

Until recently, the behavioural data have been recorded with standard black and
white video equipment (Boeddeker et al., 2003; Kern et al., 2000, 2001a). These
cameras provide the images in an interlaced PAL video signal that is digitised
using a black and white frame grabber (Data Translation DT3155) from analog
video tape after the experiments are finished. The shutters of the two cameras are
synchronised and the video timer signal inserted in both camera images makes
the manual identification of matching frames possible. The images are stored in
sequentially numbered TIFF files by the grabber software.

As a result of the interlacing the effective temporal resolution of these sequences
is 50 Hz although only 25 full frames are transfered to the hardware. Therefore
the software must treat the two fields of each frame as images for adjacent time
steps. The drawback of this procedure is, that the pixels in these fields have a 1:2
aspect ratio. This can be corrected by repeating each line of the image twice and
doing all processing on this enlarged image, but this correction would be gained
by a significant loss of performance, since the corrected images are doubled in
size and all per-pixel processing is done redundantly on the data. Furthermore,
operations on neighbouring pixels are distorted in the vertical direction by the
repetition of scan lines. When the processing is done on the raw fields, the aspect
ratio has to be respected at all stages of processing. In the current implementa-
tion the software uses the fields for all internal processing, doing the doubling of
lines only for displaying purposes.

A more up-to-date method of image acquisition is to record the data using digital
full frame cameras. The newer results shown below are recorded with two digital
full frame cameras (Redlake MotionPro) providing 500 black and white frames
per second at a resolution of 1024×1024 pixels. While these images are of
much better quality with respect to resolution and pixel noise compared to those
obtained from PAL videotape, the sheer amount of image data1 provided by this
setup poses a strong urge for further optimisation of the processing.

Regardless of the source the images used for the processing are gray level images
digitised at a intensity resolution of 8 Bit per pixel.

For the digital high speed cameras, the image sequences are stored in an un-
compressed AVI format by the camera software. Compression with a standard
algorithm for image sequences is provided by the software, but this feature is not
used in order to avoid artifacts introduced by lossy compression.

Both cameras are controlled by a common computer ensuring the synchronous
recording of the sequences and common starting times for the two sequences

1The two cameras record 1000MBytes raw image data each second.
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after opening regionsbackground difference binary image

input image

Figure 3.2: Example for the image processing steps. On top a large part of the
input image (a fly flying in a flight tunnel) is shown as seen from above. Below
the individual processing results are shown. From left to right: The background
image calculated as the mean of 10 input images, the difference image, the
binarised version of the difference image, the binary image preprocessed by
the opening method and the outline of the region and its orientation indicated
by green lines.
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3.1 Recording the flies behaviour

recorded in an experiment.

Object-background discrimination

In the experimental setups the cameras are mounted at fixed positions. Therefore
it can be assumed that the background is an invariant image component through-
out a sequence. This eases the discrimination of background and object, the
object can be extracted by simply subtracting the mostly invariant background
image.

Background image

The background image can easily be derived from the sequence by pixel wise
calculation of the mean of a representative sample of single images.

Depending on the individual experiment it can be useful to limit the background
image calculation to a part of the sequence. For instance, if an animal sits at a
fixed location for the majority of the images and flies away later, a background
image calculated from the complete sequence would show the sitting animal,
leading to a result where the sitting animal is detected as an additional object
when the fly has started and the object undetected in the section showing the
sitting fly.

The user chooses as a first step of the analysis which part of the sequence should
be the basis of the background calculation and how many images should be used.
The background image is then calculated as

Ibg(x, y) =
1
N

N−1∑
n=0

I(x, y, tmin + n
(tmax − tmin)

N
)

Where tmin defines the beginning, tmax the end of the section, and N the number
of images used. I(x, y, t) is the intensity function of the complete sequence and
Ibg(x, y) is the calculated background image.

The user can alternatively choose to use a stored background image. Using a
single frame of the empty scene is possible, but the calculation of the mean
has the additional advantage that the pixel noise of the camera is reduced in the
resulting background image to a large degree which causes a significant reduction
of background noise in the difference images.
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Difference image

For each time step t a difference image D(x, y, t) is calculated from the back-
ground image and the (preprocessed) image taken at that time step:

D(x, y, t) = |I(x, y, t) − Ibg(x, y)|

Using the absolute value of the difference causes the object to be represented by
positive values in the resulting image regardless of the polarity of the intensity
difference between background and object. A white object on a black back-
ground or a black object on a white background are both represented by the
same difference values. The values of the difference image thus represent the
contrast between the background and the current image at each position.

Binary image

In the next step, the difference image is converted to a binary image by a thresh-
olding operation.

B(x, y, t) = 0 if I(x, y, t) < T

= 1 otherwise

The threshold T is chosen by the user or can be calculated from a representative
difference image using the following iterative algorithm (see e.g. Gonzales and
Woods, 2002). This algorithm is sometimes referred to as “midpoint method”
for threshold selection.

1. Set the initial threshold value to

T0 =
(max(I(x, y)) − min(I(x, y)))

2

This is a good initial value for the threshold under the assumption that the
maximum intensity value lies within an object while the minimum value is
from the background.

2. For each iteration step t do a binarisation using Tt and compute the mean
gray level of the two segments of the image
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3.1 Recording the flies behaviour

µ0
t =

∑
(i,j)|I(i,j)<Tt

I(i, j)

n0

µ1
t =

∑
(i,j)|I(i,j)≥Tt

I(i, j)

n1

where n0 and n1 are the number of elements in the segments.

3. Calculate a new threshold value

Tt+1 =
µ0

t − µ1
t

2

4. Iterate Steps 2 and 3 until the new threshold is close to the previous

|Tt+1 − Tt| < ε

The parameter of this break condition should be small, but not too small to
prevent oscillations. ε = 5 lead to reasonable results.

This automatic selection of a threshold causes problems in the case that no pro-
nounced object is present in the binarised frame. The algorithm then chooses the
threshold to lie within the background noise which results in a binary image with
many very small regions. This can be detected by calculating the mean intensity
of the binary image, which should be I(x, y) � 0.5 when only few small objects
are segmented from the background.

Processing of the binary image

Two situations can make a further preprocessing of the binary image advanta-
geous. If the contrast between object and background is bad or changing within
the object region, frayed edges of the object may result, that add noise to the
further processing steps. If the background is not completely time-invariant (for
example caused by moving leaves in an outdoor environment), many small re-
gions of background noise may appear in the difference image.

Both effects are reduced by applying a morphological operation to the binary
image called “opening”. A morphological operation changes the form of regions
in a pixel image. In a binary image this can be achieved by convolution with a
filter mask. Two basic operations can be defined for a square mask consisting of
ones Jähne (1997). The dilating operator is defined as
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B′(x, y, t) =
R∨

a=−R

R∨
b=−R

B(x + a, y + b, t)

The Dilatation sets a pixel in the resulting image to one if at least one of the
original pixels beyond the mask are one. All regions in the image are extended
by R pixels by application of this operation. The opposite, the eroding operator
is defined as

B′(x, y, t) =
R∧

a=−R

R∧
b=−R

B(x + a, y + b, t)

The erosion sets a pixel in the resulting image to one if all pixels of the original
image beyond the mask are one. This operation decreases the size of each region
in the image by R pixels. Regions smaller than the mask is removed completely.
Thin structures of the image are removed if their width is smaller than R.

The opening operation is created by application of both operators in iteration.
First all small regions are removed by erosion of the image and afterwards the
original size of the remaining regions is reconstructed by dilation.

Segmentation

Using a simple recursive region growing method, the binary image is segmented:

1. Find a white pixel not yet assigned to a region in the binary image by linear
search.

2. Label this pixel to be part of the new region in a second binary label image.

3. For each of the 4 neighbouring pixels (up, down, left, and right): If the pixel
is white and not labelled as region, recurse to step 2

Note that by using only 4 neighbouring pixels, the algorithm has the tendency
to find convex regions and to detect separate regions, if two white blobs are
neighbours only via diagonally neighbouring pixels. In the top-view of a fly this
can lead to the separation of the wings into individual regions. These regions are
eliminated by later plausibility checks (see below). Detecting the fused region
as one region (i.e. by using the neighbourhood of 8 pixels) would make the
detection of the body orientation more unreliable.

Several parameters are calculated to characterise each region. The size is given by
the number of pixels contained in the region. The centre of gravity is calculated
as the mean of the pixel locations.
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The orientation and the eccentricity of the object are calculated using a momen-
tum based approach described in Jähne (1997) is applied. For the object region
a set of moments is defined as

mp,q =
n∑

i=1

(xi − 〈x〉)p(yi − 〈y〉)q

where (〈x〉, 〈y〉) is the centre of gravity of the region and n the number of pixels
of the region 〈〉 brackets denote the expected value.

The second order moments (p + q = 2) form an inertial tensor of the region. The
orientation φ and the eccentricity ε are defined as

φ =
1
2

arctan
2m1,1

m2,0 − m0,2

and

ε =
(m2,0 − m0,2)2 + 4m2

1,1

(m2,0 + m0,2)2

The angle φ gives the orientation of an ellipse fitted to the region. The eccentric-
ity ε is a measure of the roundness of the region, varying between 1 for a line and
0 for a circular object.

The set of detected regions is pruned using different criteria, which are defined
and parameterised by the user. Regions that do not match all these criteria are
not processed further. Criteria are:

• A region of interest defined by a polygon. Regions must contain at least
one pixel lying inside of this polygon.

• A range of expected region sizes.

• A range for the expected eccentricity.

Trajectory detection

To reconstruct the 2D-trajectories of more than one fly, the correspondence of
regions in adjacent images must be detected.

For any moving object in a sequence of images sampled at a sufficiently high
frame rate it can be assumed that the parameters describing corresponding re-
gions in adjacent images do not change significantly. It is unlikely that a fly travels
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a large distance within a few milliseconds or turns faster than a few 1000
◦
s . By

using the differences between the region parameters as a cost function, it is pos-
sible to treat the correspondence search as a minimisation problem.

The cost function cr1,r2 for a pair of regions r1 and r2 is defined as a linear com-
bination of changes in the regional parameters for a pair of regions.

cr1,r2 = λp|p(r1) − p(r2)| + λo|o(r1) − o(r2)| + λs|s(r1) − s(r2)| + λe|e(r1) − e(r2)|

where p(r) is the position, o(r) the orientation, s(r) the size, and e(r) is the
eccentricity of region r. The coefficients λx weight the parameter differences.
These weights have to be adjusted by the user to match the plausible amounts
of change in the different parameters for a certain experimental setup.

When a fly is only visible for the camera in parts of the sequence, or noise regions
are generated by the 2D processing, the number of trajectories can change from
frame to frame. Thus it is necessary to define costs for the appearance and the
disappearance of objects. These costs are independent from the position and the
region parameters. An object can disappear or appear anywhere in the image
when it is occluded by some fixed object in part of the sequence.

For n trajectories detected in frame t and m objects present in frame t + 1 many
possible continuations have to be considered. Each trajectory from a set of tra-
jectories T1, T2, . . . Tn and the corresponding regions rT1 , rT2 , . . . rTn of frame t
must be continued with one of the regions r1, r2, . . . rm detected in frame t+1 or
terminated at frame t. For the first trajectory m + 1 continuations are possible,
because any of the objects in frame t + 1 can be the successor of this trajectory
or the trajectory can be terminated in frame t + 1. For the second trajectory m
continuations are possible, if the first trajectory has a successor in frame t + 1,
but if it is terminated, again m + 1 continuations exist for the second. Thus, in
the worst case, n ∗ (m + 1) possible continuations must be tested. The costs of
any of these continuation possibilities is the sum of the pair costs.

The worst case complexity of the search for the cost minimal continuation is
O(n2), because in a typically n and m are of similar size. However, a simple
search strategy can reduce the average complexity significantly.

The implementation of the search algorithm iteratively generates the possible
continuations for the n trajectories in frame t. In each iteration step one partly
generated continuation is extended. Only a fraction of all possible continuations
is evaluated by extending only the continuation candidate that is associated with
the least costs until the least costs are associated with a complete continuation.

• Calculate the costs for all possible continuations of the first trajectory to
initialise a list L of partly generated continuations.
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• Repeat:

– Pick from L the continuation b currently associated with the least costs

– If this continuation is complete, it is the one with globally least cost. b
is the final result.

– Remove b from the list L

– Calculate the costs of all possible continuations of b and insert them
into L

In the best case, if the costs for the correct continuation are lower than the costs
for any other extension of the first trajectory, the complexity of this algorithm
is O(n). For the average case, the complexity depends on the choice of the
coefficients of the cost function. A general prediction of the average complexity
is therefore not possible.

3.1.2 Reconstruction of the 3D trajectory

When two cameras record the behaviour of an animal from at least two views,
the trajectory of the animal can be reconstructed in all three dimensions from the
2D trajectories extracted in the image processing.

Precondition of this reconstruction is the knowledge of the camera parameters,
namely the position, the viewing direction, and the viewing angle of each camera
(C1, C2, figure 3.3). Based on this information, the positions of an animal in the
camera images (P1, P2) gives the direction of two straight lines (g1 = C1 + tR1,
g2 = C2 + uR2) in the 3D coordinate space. These lines should intersect in the
position (F ) of the fly if the position of the 2D images of the fly could be detected
perfectly. Several sources of imperfections in the recording chain and in the
detection of the regions in the digitised images inevitably cause a slight deviation
of the lines in the real system. These imperfections are caused for example by
small errors in the calibration of the camera parameters, optical distortions of the
camera optics, noise in the signal path of the image or sampling of binarisation
artifacts. The midpoint of the shortest distance between these lines D can be
calculated by solving the following 3D set of simultaneous linear equations (C1 +
tR1 + D = C2 + uR2) with two unknown variables t and u (Boeddeker et al.,
2003).

The orientation of the fly

Having a sufficiently large volume in view of the cameras for the observation
of interesting manoeuvres of the fly makes it necessary to work with images
which show the fly only in a very small part of the image. Seen at the resulting
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Figure 3.3: Sketch of the calculation
of the fly’s position F from the 2D
image coordinates P1 and P2 and
the calibrated camera positions C1

and C2. See text for details. Fig-
ure adapted from Boeddeker et al.
(2003).
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resolution, a fly appears to be a cigar shaped body. The 2D projections are more
or less elongated blobs. If the fly is oriented perpendicular to the optical axis
of the camera, the orientation can be reconstructed with high precision. When
its main body axis has a small angle to the optical axis, the orientation of the fly
cannot be safely reconstructed from the camera image, the projection of the fly’s
body is more or less circular.

Since flies tend to fly with a more or less horizontally oriented body, the image of
a vertically oriented camera viewing the experimental setup from above or below
does show the yaw orientation of the fly. However, this image cannot be used to
reconstruct the pitch and the roll angle of the fly. A horizontally oriented camera
recording a side view of the setup shows the pitch angle only, if the fly’s flying
course is almost perpendicular to the camera axis.

For the rendering of the retinal images, the yaw, pitch, and the roll angle of
the head have to be reconstructed. However, what the cameras record, is the
orientation of the body. The head is not discriminable in a useful resolution in
images recorded by cameras viewing the whole experimental setup.

From experiments done by van Hateren and Schilstra (1999) it is known, that the
roll and pitch components of the body movements are compensated by appropri-
ate head movements almost completely in free flight. Even in so-called “banked
turns”, the head does almost only do a yaw rotation, while the body does change
it’s roll orientation by angles of up to 90◦. Based on these experiments, it is justi-
fied to assume constant pitch and roll orientation of the head during flight. This
makes the difficult reconstruction of roll and pitch angles dispensable.

The experiments of Schilstra and van Hateren show also that the time course of
the yaw angle of the body and the head is somewhat different in fast turns. In
such a turn, the head does a slightly quicker rotation than the body (van Hateren

46



3.2 Rendering

and Schilstra, 1999).

To assume that the head is perfectly aligned with the body in respect to the
yaw orientation and perfectly stabilised with respect to the pitch and roll angle,
introduces small errors to the reconstructed flight trajectory (For details see Kern
et al., 2005a). However, to reconstruct the head orientation directly would make
a higher resolution of the fly necessary. This could be done either by recording
the behaviour with cameras providing a much higher spatial resolution or by real
time tracking of the fly with cameras mounted on pan-tilt motors, which would
make a smaller viewing angle possible (see also section 6.1.2).

3.2 Rendering

The retinal images a fly has seen in a behavioural experiment can be reconstructed
from the 3D-trajectory and a virtual model of the experimental setup. The vir-
tual construction of the experimental setup is straightforward, since the setups
are designed from simple geometric forms covered with computer generated tex-
tures that can be directly reused in the virtual setup. Several computer graphics
systems are available that allow the reconstruction of such setups.

3.2.1 Computer Graphics

The generation of realistic 2D images from 3D geometrical information and tex-
ture images is addressed by the field of computer graphics. The standard al-
gorithms are part of several freely available software libraries. There are two
principally different approaches to the generation of 2D images. One approach,
called raytracing, is based on modelling the physics of the light rays falling into
the camera. For this technique, the light rays falling into a camera are inversely
traced back to their origin, a light source. While this technique yields very real-
istic results, the approach is relatively costly in its computational effort. Another
approach is to explicitly calculate the planar perspective projection of flat poly-
gons approximating the 3D model while keeping track of the depth of these
polygons relative to the camera in order to create correct occlusions. In a second
step called “shading”, these projected polygons are filled with colours according
to the light- and viewing direction of the 3D segments. One popular implemen-
tation of this technique is the OpenGL library created by SGI. The computational
effort of this technique is less demanding compared to the raytracing algorithm.
Furthermore, modern computer graphics hardware accelerates this approach. On
top of OpenGL, SGI developed the high level object oriented library Open Inven-
tor to facilitate the handling of complex three-dimensional scenes.

OpenInventor contains a specification of a high level scene description language.
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For the reconstruction of retinal images, this language is used to describe the
experimental setup geometrically and to describe the mapping of the texture
images to this geometry. The resulting description file is interpreted by OpenIn-
ventor and transformed to bitmap views of the scene via OpenGL. The position
and viewing direction of the virtual camera for each time-step is generated from
the trajectory.

The trajectory is defined by a N × 6 matrix for N time steps where the first three
columns define the x, y and z coordinates of the position of the fly in the setup,
the following two columns define the viewing direction of the camera. The sixth
column defines the rotation angle of the camera about its optical axis.

For panoramical rendering applications it can be helpful to render the image not
with a single camera pointing tangentially to the trajectory, but with a set of
cameras with different viewing directions relative to the trajectory (see sections
3.2.2 and 3.3.3). Therefore a projection list defines the camera positions and
viewing directions relative to the trajectory positions, the viewing angle of the
camera, the size of the rendered image and a filename for the definition of a
subsampling grit. Figure 3.4 illustrates the data flow in the renderer.

Scene parser

OpenInventor Camera generation

Subsampling

Lowpass filter

OpenInventor/OpenGL

Rendering

}
radius 10

Sphere {

#Inventor ...

...

0 1 9 0 0 0

0 1 8 0 0 0 0 0 0 0 0 0

0 10 0 0 0 0

0 0

10 10

15 15

virtual
setup

camera:
position & direction

Texture Trajectory Projections

Filter positions

Geometry

bitmap

Figure 3.4: The processing done by the rendering component. The geometrical
description, the textures, the projection list and a trajectory file are parsed.
For each point in the trajectory and each projection a bitmap of the scene is
rendered and a set of low pass filters is applied to the bitmap.
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3.2.2 Spherical rendering

This section describes in detail the rendering for for the model of the tangential
cells described in chapter 4.

d

a b c

Figure 3.5: Different renderings of the same environment. (a) the box used
for flight experiments by Schilstra and van Hateren (Schilstra and van Hateren,
1998b) viewed from outside, back wall removed to show the inside. (b) The
six textures forming the renderer input. (c) A frontal view from the cockpit of
the fly viewing one corner of the cube. (d) The same view as shown in (c) in a
cylindrical projection generated by spherical rendering.

For modelling purposes it is useful to describe the arrangement of input ele-
ments by their viewing directions. In a raytracing system, this could be done
very directly by generating the traced rays based on a list of viewing directions.
However, with a rendering algorithm based on planar perspective projection like
OpenGL, the spherical projection must be approximated by several planar projec-
tions. By calculating 6 views of a scene with orthogonal image planes, the entire
environment can be mapped (figure 3.5b). By intersection of the resulting cube
formed by the six images with the viewing directions of the simulated ommatidia,
a spherical rendering can be achieved (figure 3.5d).

A similar, but independently developed approach to solve the problem of spher-
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ical rendering was taken by Neumann for the simulation of a biomorphic heli-
copter control system (Neumann, 2002, 2004). Neumann points out that for the
intersection different from the center of the cube’s sides, the circular Gaussian
filter needs to be distorted to get a correct mapping of the environment to the
input element (figure 3.6, Neumann, 2002).

However, this implies to compute a different filter mask for each position on
the planar projection. To keep the rendering system simple, the renderer de-
scribed in this thesis applies a circular Gaussian filter to the planar image at each
intersection point. This leads to a correct result only in the centre of the planar
projections, the small error introduced by applying circular filters at each position
was accepted here.

Figure 3.6: Illustration of the distor-
tion of a circular filter by the per-
spective projection to a cube (cut of
a cone by the face of the cube). To
get correct subsampling results for
all viewing directions, filters have to
be distorted appropriately. Figure
adapted from Neumann (2002)

3.3 Specialised display device for flies: FliMax

Flying insects see the world through the fastest eyes found in the animal king-
dom. The power spectra of light adapted photoreceptors of a blowfly (Calliphora
vicina) show corner frequencies of up to 119 Hz (Tatler et al., 2000). These pho-
toreceptors show distinct responses to pairs of flashes even if these are separated
by only a few milliseconds.

To stimulate these eyes appropriately, a variety of elaborated techniques have
been applied. For the first experiments on insect motion vision relatively simple
mechanical stimulation equipment was used, mostly rotating drums covered with
some regular pattern. This method practically limits the image motion to rota-
tional movements. Translational motion can be presented to the animal only for
a short period of time by actually moving the setup. To overcome this drawback,

Parts of the Text in section 3.3 was previously published in Lindemann et al. (2003).
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mechanical projectors were developed that could be used to present approxima-
tions to both rotational and translational patterns to the fly (Götz, 1968). In later
experiments, electronic display devices were used. Using special purpose digi-
tal image synthesisers and high frequency cathode ray displays, moving patterns
could be presented to the fly at appropriately high display refresh rates (Borst
and Egelhaaf, 1987).

In replay-experiments which were done using a standard VGA monitor operat-
ing at 100Hz for the presentation (Kern et al., 2001b), a time-locking of action
potentials to the refresh frequency of the image could be documented, while ex-
periments with simpler stimuli that were presented on a cathode ray tube display
operating at 186Hz did not show such effects (Warzecha et al., 1998).

Another challenge for the presentation of naturalistic optic flow is the nearly
panoramic vision of the animals. With their large compound eyes they have an
almost omni-directional view. Only a small part of the visual environment is
masked by the body of the fly. To stimulate large parts of this visual field, sev-
eral cylindrical devices were developed that display patterns on an array of light
emitting diodes (LEDs). These devices present pattern sequences at high tempo-
ral resolution, but they are usually limited to a certain set of patterns. The device
used by Kimmerle et al. (2000) can show one-directional striped patterns by se-
lectively switching on complete rows of LEDs. A device introduced by Strauss
et al. (1997) can present arbitrary patterns constructed from 9 luminance levels.

To be able to replay arbitrary behaviourally generated stimuli to the fly on a
panoramical screen and with the appropriate update frequency, FliMax (see figure
3.7) was developed. The hard and the software of this device is described in the
following.

3.3.1 Design principles of FliMax

FliMax is able to present arbitrary patterns at a luminance resolution of 256 lev-
els. It covers most of the visual field of a blowfly (see figure 3.8), presenting the
image sequence at an update rate of 370Hz.

FliMax displays each frame of an image sequence by the luminance of 7168 light
emitting diodes (LED), mounted on the inner surface of the device. A fly placed
in the centre of the device thus views the LEDs directly.

Geometric design

An ideal stimulator should present the images on a spherical surface where the
image elements would be located at equidistant positions. On the other hand,
the most convenient layout for electronic circuits is a flat printed circuit board
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Figure 3.7: Photograph of the FliMax.

(PCB). In FliMax the sphere is approximated by an icosahedron, while 14 of the
20 triangles forming the complete solid are used. The isosceles triangles haven
a base length of approximately 30cm, the inscribed sphere of the icosahedron
has a diameter of 44.8cm. The diameter of the round LEDs is 5mm, the emitting
wavelength is 567nm. The angle of emittance as specified by the manufacturer
is 60◦, but measurements on individual LEDs indicate only 35◦ (full width at half
maximum) emittance angle. The central LEDs of a triangle are separated spatially
by 2.3◦ visual angle seen from the centre of the device, the angular resolution
changes to 1.5◦ towards the edges of the triangles. For mechanical reasons, the
separation of the LEDs on the edges of neighbouring triangles is different for
different pairs of triangles and is larger than the separation within each triangle.
This makes the edges of the triangles visible as dark lines. Because these lines
are fixed in the visual space, they should not alter the responses of the large field
motion sensitive neurons.

Electronical design

For electronic purposes the 14 triangles are combined to 7 pairs (rhomboids) that
are identical electronical modules. Electrically, each rhomboid carries a square
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Figure 3.8: Plot (cylindrical projection) of the regions of the visual field covered
by the FliMax (grey). The white lines between the grey areas indicate the edges
of the triangular modules of the device. Figure adapted from Petereit (2002)

matrix of 1024 LEDs in 32 rows of 32 columns. Figure 3.9 shows the principal
schematics of these rhomboids. The rhomboids are identical except from an
individual address which is used to control the sequential update.

Electronically, FliMax is designed as a special VGA output device which can be
driven by a standard VGA card. The VGA signal is interpreted by the electronics
of the device designed and implemented by Paul Meyer and Udo Witte. The VGA
signal fed into the electronics is composed of three colour channels (red, green,
blue) and two synchronisation signals. The VGA writes an image of 224 rows
with 128 pixels each. These are synchronised by one vertical sync impulse per
update cycle and 224 horizontal sync impulses within each update cycle. A third
synchronisation signal is carried by the blue colour channel, which is toggled
between minimal and maximal intensity every 4 pixels. This creates a square
wave pixel clock signal on the blue line with sixteen periods in each horizontal
sync period. (see also figure 3.10).

The resulting three sync impulses are used by a programmable logic to generate
an addressing of individual LEDs on the device given by a rhomboid address
(0..7), a row address (0..32) by counting of the hsync pulses and a column address
(0..16) by counting pixel clock periods. The whole counting process is reset by
the vsync pulse. The rows of each rhomboid are split into two groups of 16 LEDs
fed by the red and the green colour signal, respectively. In each clock tick of the
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Figure 3.9: The principle schematics of one module of FliMax. The logical circuit
drawn left and above of the LED matrix controls the update sequence. The
LEDs updated to values coded by the either red and green VGA signal are
draw red or green accordingly. The stronger colour is used for LEDs mounted
on the first triangle, the lighter colour for the LEDs mounted on the second
triangle. Each of the matrix elements in the left part represents a sample and
hold circuit as drawn to the right.

pixel clock (blue colour signal), a pair of LEDs is updated according to the voltage
present at the red and the green signal lines.

The individual LEDs are each accompanied by a sample and hold circuit that
stores the luminance value between updates. In between the updates the lu-
minance of the LEDs is held constant on this stored luminance level. Thus the
device is illuminated constantly if the updates are done with identical images, in
contrast to the situation found with cathode ray tubes, where each point on the
surface is emitting light only for a short time after the update.
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"Red"

"Blue"

HSync

VSync

Figure 3.10: A timing diagram for the VGA signals used by FliMax. The “blue”
colour signal of the VGA is used as a pixel clock. The “red” and “green” signals
encode the luminance levels of a pair of LEDs in an analogous voltage signal.
The gray stripes indicate the VGA pixel clock Each LED is associated with 8
pixels in the VGA memory. The VSync pulse initialises an update cycle, the
HSync pulse marks the start of a row of LEDs.

3.3.2 Software

The Software driving the FliMax can be separated into two parts. The first com-
ponent has to initialise the VGA adapter in an appropriate way, the second com-
ponent has to write the images into the VGA memory synchronously with the
Vsync pulses generated by the hardware.

For both parts, different implementations exist. A first implementation of the
software was developed as an MS-DOS application. This operating environment
has two advantages for this purpose. First, the direct access to the hardware,
namely the VGA registers is easy, because MS-DOS does enforce the separation
of driver functionality and application code. The second advantage results from
the fact that MS-DOS has no preemptive multitasking which eases the devel-
opment of real time code very much, if the system’s interrupts are disabled. To
keep the programming effort tolerable, an old fashioned software interface to the
VGA hardware was used, which limits the performance of FliMax. As a result, the
device cannot display the full 256 luminance levels of the VGA signal but only 8
of these selected by a lookup table. This implementation was used for all exper-
iments described in this thesis. Nevertheless, the system is not described here
in detail because a new better implementation exists and will be used for future
experiments (For details on the MS-DOS based system see Lindemann et al.,
2003).

This second implementation is based on the Linux operating system. This ap-
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proach has the advantage that existing driver code can be used for the initialisa-
tion purpose, which eases the use of the capabilities of modern VGA adapters.
Only with these capabilities, the full performance of the FliMax is achievable.
The drawback of this approach is the limited real-time capability of the standard
Linux kernel.

VGA initialisation

The initialisation is done by defining the same image geometry and timing us-
ing the frame buffer special device, a software interface to the video hardware
provided by the Linux kernel. The colour mode of the hardware is set to 24bit
true colour, allowing to specify the LED’s intensity on the green and red colour
channel in 256 steps. The displayed image geometry is set to 224 by 1128 pixels
at a frame rate of 370Hz resulting in a pixel clock value of 28MHz.

Modern graphics hardware is capable to read from an arbitrary section of the
VGA memory when generating the image signals. By changing the pointer to the
starting address between two updates, double-buffering can be implemented.
For this purpose, the virtual resolution of the image is set to 448 lines of 128
pixels, doubling of the true geometry in the vertical expansion. Thus the code
transferring the images has to complete the update of the hidden buffer within
the period between two VSync pulses.

The blue colour component of the whole buffer is initialised to create the pixel
clock pattern on the associated colour signal.

3.3.3 Rendering for FliMax

For FliMax 14 different camera images are computed for each position in the
trajectory, one image for each of the triangles forming the device. The orientation
of each camera is calculated from the 3D-coordinates of the triangle corners in
the device. The rendered images have to be sub-sampled using a triangular grid
of sampling points. This is done by applying a Gaussian filter centred at the
according LED position. All filters have the same width which approximates the
spatial resolution of the blowfly eye (Petrowitz et al., 2000; Smakman et al.,
1984), i.e. their width at half-maximal amplitude is 1.75◦.

Simulations using a model of fly photoreceptors (van Hateren and Snippe, 2001)
and a preliminary model of fly LMCs (second order neurons presumably in the
motion pathway) indicated that flickering artifacts can be observed at moving
edges and textures. To reduce these spatial aliasing and resolution artefacts in
the 370 frames presented per second in the FliMax, the trajectory for the replay
is sixfold oversampled to this rate in time, having 2220 positions per second.
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This oversampling is removed from the generated image sequence by averaging
six subsequently rendered frames for each displayed frame, leading to a motion
blurring in image positions with large image velocities.

The result of this process is a sequence of 370 images per second prepared for the
replay to an animal in an electrophysiological experiment in FliMax. These images
contain 24Bit true colour luminance values for each LED position of which only
the green channel is further processed. For each reconstructed image the (green)
intensity values are converted to the format expected by the replay software.

Replay of rendered images

Following the initialisation, the software has to update the video memory timed
by the vertical synchronisation pulses generated by the graphics hardware. In
addition to that, the same program has to generate a trigger pulse and a time
reference signal for the computer recording the electrophysiolocial data in an
experiment (figure 3.11).

The images rendered for the presentation on FliMax are converted into the for-
mat of the video memory and stored in a custom file format. This file format
stores the 7168 luminance values of each FliMax frame. The redundant format
for the video memory is generated on the fly by the replay software. The format
is extendable to compress the update sequence by storing only the luminance
values of the LEDs changing luminance between two updates, a technique used
in simple animation file formats like the so-called “flic file format” (Kent, 1993).

It then iteratively updates the hidden part of the video memory and shifts the
pointer referencing the displayed buffer triggered by the VSync pulses signalled
by the VGA hardware. For each memory update, a byte code signalled on the
parallel port of the computer driving FliMax is incremented as a control signal for
the correct timing of the replay.

The least significant bit is recorded alongside the electrophysiological signals and
allows to check for the exact relative timing of FliMax updates and neuronal
events, on the one hand, and to monitor the timing precision and duration of
the update process of FliMax on the other hand.

3.3.4 Experiments with FliMax

This section describes first experiments conducted with FliMax as the stimulation
device. They had the purpose to prove that the results obtained with the de-
vice are compatible to the knowledge about the neurons collected using simpler

The experiments described in section 3.3.4 were done by Dr. Roland Kern and Christian
Michaelis.
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Figure 3.11: The experimental setup with FliMax in an electrophysiological replay
experiment. One PC having two display adapters serves for the replay of the
stimuli on the FliMax. Via a digital line, it triggers the acquisition of electro-
physiological signals on a second PC and provides a timing reference signal to
be recorded concurrently for analysis purposes.

stimulation equipment. Furthermore the comparison of the results shows that
the high update frequency and the sample and hold properties of FliMax improve
the signal quality significantly by almost completely avoiding stimulation-induced
frequency peaks in the power spectrum of the neuronal response.

Conventional wide-field gratings

Simulated conventional grating stimuli were used for experimentation to test
whether the responses obtained with FliMax differ in any obvious way from those
obtained with stimulus devices used in previous studies, such as mechanically
moving drums or monitor screens. Figure 3.12 displays a sample record of an
HSE-cell response (see section 2.2.3 for a description of HSE cells) to constant
velocity motion in the preferred direction and subsequently in its null direction.
The record shows the typical features of HSE-cell responses: They are charac-
terised by graded de- and hyperpolarisations relative to the resting potential. On
average, the depolarisation during preferred direction motion is 15.2mV (number
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3.3 Specialised display device for flies: FliMax

of average responses N = 12) and the hyperpolarisation during null direction
motion is 8.4mV (N = 12). These values are in the range of responses that were
published in earlier accounts (Hausen, 1982b).
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Figure 3.12: Responses of the HSE-
cell stimulated by FliMax displaying
grating patterns. The pattern moved
initially at a constant velocity for
one second in the cell’s preferred di-
rection and then for another second
in the null direction During the last
second the pattern is stationary. The
graded depolarisations during pre-
ferred direction motion are super-
posed by small-amplitude spike-like
depolarisations (see also bottom di-
agrams). The spike-like depolarisa-
tions are large when they are gen-
erated as rebound spikes after a hy-
perpolarisation of the cell (bottom
right).

Rapid spike-like depolarisations superimpose the graded depolarisations. These
spikelets vary in amplitude to a large extent. They may hardly be discerned
in some preparations, but they may also reach amplitudes of full-blown spikes
in other preparations. Spikelets superimposed on large graded depolarisations
tend to be smaller than those generated at the resting level of the cell as, for
instance, just after the release from hyperpolarisation elicited by null direction
motion (figure 3.12). These features of spikelets are well documented (Haag
and Borst, 1998; Hausen, 1982a) and the consequence of the activation and
inactivation properties of voltage-dependent sodium channels (Haag et al., 1997;
Hengstenberg, 1977).

In conclusion, as judged by the responses to classical grating patterns FliMax
appears to be fully appropriate as a visual stimulation device.
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Optic flow generated by walking flies

The membrane potential of HSE-cells fluctuates in a complex manner when the
cell is stimulated with image sequences as are seen by a fly walking around in its
environment. The characteristics of the membrane potential fluctuations elicited
by behaviourally generated optic flow and what they may encode about the an-
imal s self-motion and/or the layout of the surroundings have been analysed in
previous accounts. It was concluded that the HSE-cell encodes the direction of
turns of the walking animal largely independent of the spatial layout and tex-
ture of the environment. Only when the animal is very close to an object, the
neuronal responses are affected by it (Kern et al., 2001a,b). These previous anal-
yses were limited by the fact that image sequences were presented on a monitor
screen that covered only part (though a large one) of the cell’s receptive field. All
displays with a cathode ray tube (CRT) do not show a still image but iteratively
flash each pixel at the frame rate. In contrast, FliMax presents a constant image
between different updates as long as the image does not move. Moreover, for
technical reasons stimulation was based in previous studies on a 100 Hz video
player (Kern et al., 2001b). Although the frame rate was much higher than that
of conventional video players, it led to some time-locking of the neuronal re-
sponse to the frame rate. With FliMax now was tested whether the responses of
HSE-cells may differ when they are elicited by the same image sequences. The
responses will be related, as in previous studies (Kern et al., 2001a,b), to the
rotational velocity component of the optic flow generated by yaw movements of
the fly. Image sequences generated by walking flies were presented to the same
set of flies in two alternative ways:

(i) The device operates at an update rate of 370 per second, but the images were
exchanged, as in earlier experiments with a computer monitor, at 100 exchanges
per second; this procedure implies that each frame was presented 3–4 times.

(ii) The device operates at an exchange rate of 370 per second. The image se-
quences were linearly interpolated so that image exchanges could be done at a
rate of 370 frames per second.

As is obvious from the examples shown in figure 3.13c and d the time course of
the responses to both types of image sequence are virtually the same. Moreover,
these responses do not differ in any pronounced way from the time course of
the responses that were obtained in the previous study with a monitor screen
as stimulus device (compare traces in figure 5c with c and d). Only the overall
response amplitudes that were obtained with FliMax are somewhat larger than
those obtained with a conventional stimulus device. Notwithstanding, this com-
parison shows that the general results of the previous study are still valid and
that the same conclusions as were drawn in the previous study would have been
drawn on the basis of the improved visual stimulator.
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Figure 3.13: Responses of the HSE-cell to behaviourally generated optic flow as
experienced by a walking fly. (a) Angular velocity of the fly as a function of
time (left) and walking track within the arena (right). The orientation of the
fly’s body axis is shown only at three instants of time; positive (negative) val-
ues denote counter-clockwise (clockwise) turns. (b) Section of the average
response of 8 HSE-cells stimulated with a computer monitor at a frame rate of
100 Hz (upper diagram) (Data taken from Kern et al., 2001b). Average power
spectrum of individual response traces have a pronounced peak at 100 Hz and
at integer multiples of this frequency (see asterisks; bottom diagram). (c) Av-
erage response of 15 HSE-cells stimulated by FliMax at a rate of 370 Hz; the
effective image exchange rate was 100 Hz (upper diagram). The corresponding
average power spectrum of the individual response traces has a peak at 100 Hz
which is, however, much smaller than the peak shown in B (bottom diagram).
(d) Average response of 11 HSE-cells stimulated by FliMax at a rate of 370 Hz;
the image exchange rate was 370 Hz (upper diagram). The corresponding av-
erage power spectrum of the individual responses does not show any obvious
peak at 100 Hz or 370 Hz (bottom diagram).
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Despite these similarities on the time scale at which the responses were analysed
in the previous study, the temporal structure of the responses on a time scale
of milliseconds depends on the way the image sequences were presented. This
feature can be seen in the power spectra of the responses (figure 3.13B D, bottom
row). As is characteristic of fly HS neurons (Haag et al., 1997; Warzecha et al.,
1998) the responses contain most of their power at frequencies below 10 Hz. The
attenuation of high-frequency components is a consequence of time constants
that are an inevitable constituent of movement detectors (Egelhaaf and Borst,
1993). However, the power spectrum of the responses obtained in the previous
study with stimuli generated on a monitor screen reveals pronounced peaks in
the power spectrum at 100 Hz, i.e. at the refresh rate of the monitor as well as
the exchange rate of the image frames, and at higher harmonics of this frequency
(figure 3.13B, lower panel). These peaks are much reduced when the same image
sequences are shown without CRT flashing, but still at an exchange rate of 100
Hz (figure 3.13C, lower panel). This finding suggests that the time-locking of the
neuronal responses has to be attributed mainly to the flashing of conventional
monitors and not so much to the rate of the image exchange. When the frame
exchange rate is increased to 370 Hz, the maximum that is possible with FliMax,
no distinct peak is discernible at this frequency in the power spectrum or at half
this frequency (figure 3.13D, lower panel), which is the resulting frequency for
the least significant bit.

These findings allow to draw the following conclusions. (i) Even if the responses
time-lock to the update and/or frame rate of the motion stimulus on a fine time
scale, the responses are virtually indistinguishable on a coarser time scale. (ii)
Exchange rates of 185/370 Hz as are possible with FliMax are fully appropriate
to elicit the illusion of smooth motion in fly motion sensitive neurons.

3.4 Recording stationary flight behaviour: FlyView

For the investigation of optic flow based flight control, analysing the sensory
system is essential, but only the first step. The sensory motor coupling can be
investigated with the methods of systems analysis, if the behavioural reactions of
the animal to certain visual stimuli are known. In a freely behaving fly, the motor
system is not only affected by visual inputs, but also by signals from various other
sensory modalities that are fused with the visual information. For a systems
analysis, it is useful to be able to record the behavioural responses to only one
of these modalities, i.e. to the visual stimulation. In open-loop experiments the
input-output organisation of the sensory motor coupling can then be studied.
Assuming that the main input to the sensory-motor interface are the tangential
cells (see section 2.2.3 for details), this could lead to hypothesis of the further
processing of the tangential cell output.
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3.4 Recording stationary flight behaviour: FlyView

Fly behaviour was successfully analysed in open-loop experiments previously. If
the animals are tethered by attaching their thorax to a support, they usually start
to flap the wings if their legs are free. In such a situation, the fly does not get
mechanical or visual feedback of the forces generated by the flapping wings or
the neck muscles, if the head is fixed in relation to the thorax. However, when a
tethered flying fly is confronted with visual motion stimuli, it responds to these
motions by characteristic changes in the flight forces.

A method for recording these flight forces is to attach the fly to a electro-
mechanical device measuring one component of the flight force, either torque
about one axis or one translatory force component, while actively compensat-
ing for this force. Such devices were built in the 1960s to record forces gener-
ated by a tethered fly. Figure 3.14 shows the functional principal of an electro-
mechanical torque compensator. Several studies with such setups characterised
the responses of a tethered fly to moving patterns simulating rotational or trans-
lational optic flow (Götz, 1983; Reichardt and Poggio, 1976). In other studies
the movement of the patterns were controlled in a simulated closed-loop by
the forces measured by the compensator (Kimmerle et al., 1997; Reichardt and
Poggio, 1976; Warzecha and Egelhaaf, 1996).

A second approach to quantify the behavioural response of a tethered flying fly
to optic flow stimuli is to record the wingbeats directly. Such a technique was
established for the fruit fly (Drosophila melanogaster). The device works by illu-
minating the flapping wings with infrared spotlights from above the fly. The light
is received by specifically masked photodiodes beneath the fly. Depending on
its position relative to the mask, the wing occludes differently sized parts of the
mask. The modulation in the intensity registered by the photodiodes thus en-
codes the positional change of the wing (Götz, 1987). Amplitude and frequency
of the wingbeat can easily be extracted from the signal. These parameters were
found to covary systematically with the yaw force generated by the tethered fly-
ing fruit fly (Lehmann and Dickinson, 1997).

This section describes an implementation of a wingbeat analyser based on a digi-
tal highspeed camera and the adaptation of the method to the behavioural anal-
ysis of blowflies.

3.4.1 Implementation of a wingbeat analyser

The fly was viewed from below with a camera. Instead of the standard CCD sen-
sors used in most video cameras, this camera uses a CMOS image sensor (FUGA
15d, C-Cam Technologies). This CMOS image sensor implements a randomly
addressable array of photo diodes. The chip basically behaves like a 256KByte
memory chip. When the computer interface applies a row- and column-address,
the chip converts the analog signal of the respective photodiode with it’s on-chip
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Figure 3.14: Functional principal of the torque compensator. The main functional
unit is a rotor constructed from two coils attached to two tungsten filaments.
For small rotations, these filaments form a very good bearing for the rotor.
The system senses and actively compensates for the torque generated by the
fly in the following way: A high frequency (HF) current causes and alternating
magnetic field. This induces a HF current in the sensing coil depending in
phase and amplitude on the orientation of the coil relative to the field (lower
part of the system). Based on this current, a controller circuit generates a
low frequency (LF) compensatory current which stabilises the coils relative to
a permanent magnet (upper part of the system). (Figure adapted from Götz,
1964)

A/D converter to an 8-Bit digital value transfered to the computer.

Because address changes can only be applied with a limited frequency, the trans-
fer of a full frame is relatively slow compared to standard cameras; the typical
frame rate for full frame transfers is below 20 Hz. However, if only a small subset
of the pixels needs to be transfered for an application, the transfer rate for these
image parts is extremely high.

For the application discussed here, only a ring of a few pixels needs to be in-
spected to reconstruct the position of the wings over time. With 50-100 pixels
forming the sampled ring, transfer rates of 2kHz are no problem.

To get a reliable reconstruction of the wing trajectory, the transfer of the individ-
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Figure 3.15: Design of the wing-
beat analyser previously used for the
recording of fruit fly wingbeat am-
plitude and frequency. The fly is illu-
minated by infrared spotlights. The
light is received by photodiodes be-
neath the fly. The flapping wing
covers part of a specifically designed
mask, causing different degrees of
occlusion depending on the wing
position. The visual stimulus is gen-
erated by a special purpose pro-
jector, the angular position of the
stimulus is controlled by the servo
motor. Figure redrawn from Götz
(1987).

ual samples must be timed precisely. To get a sample rate of 2kHz, a transfer of
the pixels must be initiated every 0.5ms. To achieve reliably a constant sampling
frequency, the time-critical part of the software is implemented as a hard real-
time thread in the rtLinux extension of the Linux operating system (see figure
3.16).

A circular sampling grid for the data recording was defined by the experimenter.
For both wings, the centre point of a semi-circle was defined manually on the
image of the fly’s thorax, the number of samples and the radius of the sampling
circle was chosen identically for both wings (figure 3.17).

Data processing

The data recorded by the CMOS camera can be stored in an image showing the
samples of the two semicircles in a row for each time-step. An example for such
a 2D image is shown in figure 3.18.
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Figure 3.16: Software architecture
of the wingbeat recording system.
A reliable fixed frequency of acqui-
sitions is achieved by running the
time-critical part of the software as a
real-time thread in the rtLinux oper-
ating system. For initialisation, full
frame acquisition and the user inter-
face, the standard Linux kernel in-
terface is used.
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Figure 3.17: Screen-shot of the user interface: The fly is visualised in false colour
in front of the bright (red) background. The user has to place the semicircular
sampling grit (yellow and blue crosses). The samples are acquired at the chosen
frequency and stored to sequentially numbered files.
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Figure 3.18: An example of the data recorded by the CMOS
camera. The image contains the 2D sampling for each
time-step in one row, adjacent time-steps in consecu-
tive rows. The trace of both wings is clearly visible as a
sinusoidal dark line. The image was normalised in con-
trast for printing purposes.

To reconstruct the wing trajectory from the recorded data, the position of the
wing on the circular sampling grid must be extracted from the image. This is
done for the two wings individually. This process involves five steps:

1. 2D-Blurring to reduce the pixel noise in the data

2. Threshold binarisation

3. Row by row segmentation

4. Interpolation of missing data points

5. Calculation of wingbeat frequency and amplitudes

The blurring of the input data was done using a 3×3 Gaussian convolution filter
to reduce the effect of single noise pixels. For the edge pixels, the image was
extended by one pixel of medium gray level (128).

For thresholding, a fixed threshold of 125 was used. This is a possible approach
in this system, because prior to data recording the parameters for the on-chip
A/D conversion were set so that the background intensity had a constant value
across experiments.

In the segmentation step, the centre of each group of “black” pixels in the binary
image was computed. For lines with more than one region, a simple heuristic was
applied to select the correct one. To detect the correct region in the presence
of noise regions, a linear prediction calculated from the two prior time steps was
successful.
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Additional regions can appear in the binary image either as noise pixels or when
the fly extends one leg into the view of the camera. In the case of a leg in
the camera view, this approach has a clear drawback. The position of the leg is
typically kept constant by the fly over several wingbeats. Thus, if the algorithm
mistakenly selects the leg region in at least two images, the linear prediction is
close also to the leg region, trapping the heuristic as long as the leg is visible for
the camera. To avoid this situation, the prediction needs to favour the moving
wing region in the presence of an additional region at a fixed position. The very
simple heuristic of calculating the prediction to lie between the prior position of
the wing and the central pixel in the semicircle was chosen.

A more sophisticated approach would be to dynamically fit the data to a sine
function. This would favour the correct region both in the presence of noise
pixels or when a leg is visible to the camera. This was not implemented, because
the simpler heuristic worked sufficiently well on the inspected data samples.

In the interpolation step, the wing position was linearly interpolated for time
steps in which no regions were detected, if for the nearest neighbours the posi-
tions were detected.

For the calculation of wingbeat frequency and amplitudes, the local maxima and
minima of each trajectory were detected. The frequency was computed for each
period from the temporal distance of the maxima. The difference of the minimum
and the maximum in each period was interpreted as the amplitude. For both
values, an acceptance range was defined for off-line detection of mistakes in the
trajectory reconstruction.

3.4.2 Torque compensator versus FlyView

To test, whether the yaw forces of blowflies can be estimated on the basis of
the wingbeat amplitude, the wingbeat analyser was combined with an electro-
mechanical torque compensator in a classical optomotor experiment.

The flies were attached to the torque compensator in the centre of a cylindrical
setup carrying vertical rows of LEDs, displaying a binary coded horizontal pattern.
By continuously updating this LED array with a stripe pattern, a rotating drum can
be simulated (Kimmerle et al., 2000). This simulated drum rotated with constant
velocity into different directions in subsequent 5 second periods. The optomotor
response to this movement causes the fly to generate on average constant yaw
force in the direction following the movement.

Figure 3.19 shows exemplarily the results obtained from the wing tracking. The
amplitude difference of the two wings shows opposing constant values for seg-
ments of 5 seconds each, the pattern expected for the yaw torque. The syn-
chronously recorded signal of a yaw torque compensator shows that this differ-
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ential amplitude signal has qualitatively the same time-course as the yaw torque
(figure 3.20). Numerous such experiments co-recording the yaw force and the
amplitude difference of several different animals revealed that the amplitude dif-
ference is proportional to the yaw force in any recording, even if the animal
generates yaw forces not obviously coupled to the stimulus.
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Figure 3.19: Example of the signals recorded in a wing-tracking experiment. The
amplitudes of the two wings (a, b) and especially the amplitude difference (c)
is coupled to the stimulus (movement direction indicated by arrows on the x-
axis). The frequency is almost constant over the recording time. Amplitudes in
a,b were normalised for plotting. The raw data was averaged over segments of
5ms.

3.4.3 Wingbeats in simulated translatory flight

To characterise the sensory-motor coupling of the fly in a situation different from
the simple optomotor test stimulus of the rotating drum, the wingbeat analyser
was mounted within FliMax and the wingbeats of the fly during simulated trans-
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Figure 3.20: The amplitude difference
in comparison to the simultaneously
recorded yaw torque. Both signals
were normalised for plotting.
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latory flight in a flight tunnel were recorded. The tunnel was a realistic model
of a flight arena used in behavioural experiments. In these experiments, the flies
cruised freely in the same environment at velocities around 1m

s , which was the
simulated speed presented in the FliMax (Kern, personal communication).

These experiments were unsuccessful basically in three respects.

1. No obviously stimulus-coupled component of the wingbeat pattern was
detected in the data collected in these experiments. Neither the frequency,
nor the amplitudes showed consistent patterns coupled to the stimuli.

2. The flies reacted to the situation of the simulated translation in an un-
expected way: Most of the animals simply stopped to flap their wings sta-
tionary when translational optic flow started. Another frequent observation
was that the flies extend their legs in response translatory motion, a move-
ment pattern previously interpreted to be a landing response (Borst, 1986).
Several changes in the stimulus did not stop the flies from showing these
responses. The velocity of the simulated translation was varied over a wide
range of speeds and different dynamics for the onset of movement were
used (e.g. ramp or step functions). Furthermore, air was blown in flight
direction on the fly to stimulate the mechanosensory system in addition to
the visual system.

3. Although the wingbeat analysis is principally capable to record the yaw
forces generated by each single flapping of the wings, no pattern was found
that indicated the saccadic rotations.

The absence of saccade-like events in the wingbeat signals is most likely the basic
problem of this approach. The movement pattern of a saccadic turn is resulting
in a yaw turn on the whole, but the fly does not steer a yaw turn, but steers a
banked turn (Schilstra and van Hateren, 1999). Such a turn can be viewed as
a combination of rotations: Initially, the fly rolls towards the inner side of the
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intended turn. Following this roll, the fly has to steer a combination of yaw and
pitch to change the flight direction. If the roll has an amplitude close to 90◦, the
yaw component in this movement is zero in fly body coordinates. After steering
the turn, the body rolls back into the normal horizontal flight orientation.

Like in the wingbeat analysis, saccadic events were never observed in blowflies
flying tethered to a yaw torque compensator (Martin Egelhaaf, personal commu-
nication). In contrast, such events were detected in both the yaw torque and
the wingbeats recorded in fruit flies (Heisenberg and Wolf, 1984) suggesting that
these flies steer the saccadic turns in a different way.

Principally, all six degrees of freedom of the flight forces should be predictable
from the wingbeats. While it should in principle be possible to reconstruct more
parameters from the camera images obtained in the setup described above, the
analysis of the complex aerodynamical mechanisms in fruit flies (Dickinson et al.,
1999; Lehmann and Dickinson, 2001) suggest that a prediction of the resulting
forces is by no means trivial. A first attempt to predict flight forces of fruit flies
from the movement pattern of their wings based on a quantitative analysis of
the force generation in aerodynamically scaled experiments was described by
Schenato et al. (2001).

3.5 Closed loop simulation of a virtual blowfly

Hypotheses how the responses of motion sensitive neurons are coupled to the
behavioural output can be evaluated in a closed loop simulation. Therefore the
rendering process and the simulation model of the sensory neuronal system need
to be coupled to a module implementing the formalised hypothesis for the be-
havioural control. A physical model of the fly can then calculate the movements
of the animal resulting from the forces generated by the neuronal system. To
close the loop, the new position is passed to the renderer for the generation of a
new retinal image. Figure 3.21 sketches such a simulation loop.

While this loop could principally be implemented in a single simulation applica-
tion, it has several advantages to split the loop into separate software modules.
First, this separation allows to reuse parts of the loop for other purposes. The
rendering, for example, is needed to generate stimuli for electrophysiological ex-
periments and for the sensory model under open loop conditions. Second, the
separation of modules makes it easy to experiment with different variants of the
individual parts of the loop. Third, a modularised simulation software is better
maintainable.

In the system described here, the different modules of the loop are implemented
as separate Linux processes. These processes are designed to read their input
from the standard input and writing their results to standard output. This allows
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Figure 3.21: Modules of the closed
loop simulation system.
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the coupling of the modules using simple Unix-pipes2 This design separates the
different modules perfectly, but it also introduces additional computational effort
by creating the necessity of continuous process switching during a simulation run.
Passing the intermediate results from one module to the next via the operating
system is costly, too.

The Unix shell3 allows to concatenate several commands using pipes, but it does
not provide a mechanism to close a loop of processes. A special file type, the so-
called named pipes or FIFOs, provided by most modern Unix systems can be used
to close the loop: The input for the first module in the loop (i.e. the renderer) is
taken from the FIFO, while the last module of the loop writes its output to the
FIFO. To initialise such a loop, either the first process must generate the initial
output without input, or the last module must generate the first output without
input.

Details on the implementation of the sensory-motor interface module and results
for experiments with this software framework are presented in chapter 5.

3.6 Summary

The tools presented in this chapter enable the analysis of the visual behavioural
control of the blowfly using naturalistic stimuli. The work flow starts by analysing
a video recording of a behavioural experiment quantitatively using the described
computer vision system. The resulting trajectory can be used to reconstruct what
the fly has seen during the behaviour with the computer graphics module. By
the FliMax stimulation device the reconstructed image sequence is displayed to

2Unix-pipes are a operating system concept: When processes A is coupled to process B via a pipe,
the standard output of process A is used as the standard input of process B by the operating
system.

3The command-line interfaces to the Unix operating system is called “shell”.
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Figure 3.22: The structure of the clcore-program implementing a framework for
closed loop simulation of a sensor/actor loop. Clcore initialises the system
by starting several child processes and controls the data flow between these
processes. In each time-step, several sensors get the momentary position in
the simulated environment. Based on this, the sensor signals are computed
by external processes, collected by clcore, and passed to an actor process and
a control process. The actor updates the environmental position while the
control process checks for stop conditions like collisions with the environment
or time out events. Comuncation between the processes is done via Unix
pipes.

another fly while the neuronal responses are recorded and can be analysed later
on. Alternatively, the wingbeats of a tethered flying fly in response to these
images can be recorded by the described wingbeat analyser with the current
limitations discussed above. Hypotheses derived from this analysis can then be
tested for sustainability by closed-loop simulation of a virtual fly in the closed-
loop simulation framework.

Recent results obtained by replay of behaviourally generated optic flow in the
FliMax were already cited in section 2.4. Another experimental study using the
computer vision system described above to analyse free flight behaviour under
open-air conditions and the FliMax for replay of the stimuli was published by
Boeddeker et al. (2005). Results from a closed-loop simulation experiment are
discussed in chapter 5. The experiments using the wingbeat analyser were unsuc-
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cessful for reasons discussed above. However, they showed that the technique
is generally applicable to blowflies and no principle problem arose that would
prevent further refinement of this approach.
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For many animals including humans the optic flow generated on the eyes dur-
ing locomotion is an important source of information about self motion and the
structure of the environment. The blowfly has been used frequently as a model
system for experimental analysis of optic flow processing at the micro-circuit
level. This chapter describes a model of the computational mechanisms imple-
mented by these circuits in the blowfly motion vision pathway. While this model
was originally proposed on the basis of simple experimenter-designed stimuli, it
is shown below that it is also capable to quantitatively predict the responses to
the complex dynamic stimuli a blowfly encounters in free flight. In particular,
the model visual system exploits the active saccadic gaze and flight strategy of
blowflies in a similar way as does its neuronal counterpart (see section 2.4). The
model circuit extracts information about translation velocity in the inter-saccadic
intervals and thus, indirectly, about the three-dimensional layout of the environ-
ment. Stepwise dissection of the model circuit reveals, which of its components
are essential for these remarkable features. When accounting for the responses
to complex natural stimuli the model is much more robust against parameter
changes than when explaining the neuronal responses to simple experimenter-
defined stimuli. In contrast to conclusions drawn from experiments with simple
stimuli, optimisation of the parameter set for different segments of natural optic
flow stimuli do not indicate pronounced adaptational changes of these parame-
ters during long-lasting stimulation.

Locomotion generates complex patterns of retinal image movements, the so-
called optic flow (see section 2.1). In blowflies, the neuronal computations un-
derlying optic flow processing have been analysed in great detail: The outputs
of local motion sensitive elements are spatially pooled by large-field neurons,
the so-called tangential cells (TCs) that respond best to different patterns of
optic flow (reviews: Borst and Haag, 2002; Egelhaaf et al., 2002; Egelhaaf and
Warzecha, 1999; Hausen, 1984; Krapp et al., 2001). One particular TC, the HSE-
cell, is commonly assumed to encode yaw rotations of the animal and to be
involved in the control of visually guided behaviour (Haag et al., 1997; Hausen,
1982a,b; Horstmann et al., 2000; Krapp et al., 2001).

In free flight blowflies execute series of saccadic turns with angular velocity peaks
of up to several thousand degrees per second; between saccades the gaze is

Text and figures of this chapter were previously published in similar form in Lindemann et al.
(2005).
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kept rather stable (Schilstra and van Hateren, 1999, 1998b; van Hateren and
Schilstra, 1999). As a consequence of this saccadic gaze strategy the rotational
optic flow component is essentially squeezed into the saccades and can thus be
separated from the translational component. Hence, if HSE would act also for
natural stimuli as a sensor for yaw-rotations, it should encode mainly the time
course of saccadic turns.

Using behaviourally generated optic flow as visual stimuli, recent electrophysio-
logical experiments showed that during saccades the system operates far beyond
this linear range. The angular velocity of retinal image motion nevertheless can
be reconstructed faithfully from the responses of TCs if the velocities and velocity
changes are relatively small (Bialek et al., 1991; Egelhaaf and Reichardt, 1987;
Haag and Borst, 1997). Moreover, HSE was concluded to encode behaviourally
relevant information between saccades where the translational optic flow dom-
inates at low frequencies (Kern et al., 2005b). In the inter-saccadic intervals
HSE provides rich information about translational optic flow and thus, indirectly,
about the spatial layout of the animal’s surroundings. These results stress that
the functional significance of neuronal mechanisms can only be assessed when
the system is analysed under natural operating conditions.

The mechanisms underlying visual motion computation have been accounted for
by an algorithmic model. Local motion detectors of the correlation type are spa-
tially pooled by integrating elements meant to represent the motion sensitive
TCs, such as HSE (reviews: Borst and Egelhaaf, 1989, 1993a; Egelhaaf and Borst,
1993). Although various elaborations of the basic model of the blowfly mo-
tion pathway can explain the neuronal responses to conventional experimenter-
defined motion stimuli (Borst et al., 1995; Harris and O’Carroll, 2002; Reisenman
et al., 2003), it is not obvious, whether these models are also sufficient to explain
the neuronal responses to complex natural optic flow. The properties of blowfly
TCs were shown to change as a result of stimulus history (Borst et al., 2003; Har-
ris et al., 1999a,b; Maddess and Laughlin, 1985; Reisenman et al., 2003), which
further complicates the analysis of responses to natural optic flow.

As a new challenge for the model of blowfly motion vision, natural optic flow is
used as stimulus for this analysis. The intention is to find out whether the model
still can be regarded as a viable basis for explaining visual motion computation.

4.1 Model structure and analysis methods

The following sections introduce the algorithmic structure of the model and dis-
cuss the relevant parameters and their initial setting. Methods for the analysis
of the simulated data and the comparison to their electrophysiological measured
counterparts are also described below.
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4.1.1 Spatial eye model

The input images of the visual motion pathway are sampled by Gaussian shaped
spatial low-pass filters (σ = 2◦). The output of these filters form the input to the
photoreceptors that are equally spaced at 2◦ along the elevation and azimuth1 of
the eye. The array of photoreceptors forms a rectangular grid in the cylindrical
projection with 51 rows and 86 columns. The model visual field covers −50◦ ≤
ϕ ≤ 120◦ in azimuth and −50◦ ≤ θ ≤ 50◦ in elevation for the right HSE. For
the left HSE the mirrored input field covers −120◦ ≤ ϕ ≤ 50◦ in the azimuth.
Zero degrees correspond to the frontal equatorial direction. Receptive fields of
HSEs include contralateral input conveyed by spiking TCs (Hausen, 1984). This
geometry of the receptor array represents only a rough approximation to the
retinal mosaic found in flies (Petrowitz et al., 2000).

4.1.2 Model of the spatio-temporal processing

The model of the spatio-temporal processing done by the blowfly motion vi-
sion pathway can be subdivided into three functional modules. The first module
pre-processes luminance changes at the input by elements corresponding to the
photoreceptors and their postsynaptic elements. The second module is built by
local elementary motion detectors that are fed by the pre-processed luminance
signals. In the third module, the motion detector outputs are weighted and spa-
tially pooled by elements corresponding to the dendrites of TCs. For each of
these modules, several different model elaborations were proposed in the litera-
ture or will be proposed here.

Peripheral pre-processing

The temporal properties of the peripheral elements are modelled in two different
ways (figure 4.1a,b).

In the basic model, the photoreceptors and the second-order neurons, the so-
called Large Monopolar Cells (LMCs), are jointly modelled as a single first-order
linear low-pass filter with a fixed time constant of τp = 8ms, approximating
the corner frequency measured for the response of blowfly photoreceptors to
white noise luminance fluctuations (Juusola et al., 1995; van Hateren and Snippe,
2001). The output of this low-pass filter is inverted to account for a sign inver-
sion observed between the signals of photoreceptor and LMC (Laughlin, 1994).

1The position of a point on a sphere can be described by giving two angles and the radius of
the sphere (spherical coordinates). In the biological literature these angles are the called eleva-
tion (vertical angular deviation in the from the equator of the sphere) and azimuth (horizontal
position in projection on the equator).
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Figure 4.1: Schematic of the model of the peripheral parts of the visual motion
pathway of the blowfly in the basic and elaborated variation. The basic mod-
ules are labelled by white boxes, their elaborated counter parts by grey ones.
(a) Impulse response of the low-pass filter approximating the dynamical prop-
erties of the photoreceptors, (b) impulse response of the LMC/photoreceptor
linear filter, (c) the basic correlation type motion detector (lp: first-order linear
low-pass filter, M: algebraic multiplication), (d) the high-pass filter elaboration
of the motion detector (hp: first-order high-pass filter).

Figure 4.1a shows the impulse response of this filter:

hp(t) = − 1
τp

e
−t
τp (4.1)

This peripheral module will be called “LP” throughout this paper. All linear fil-
ters were modelled by stepwise discrete integration of the differential equations
describing their temporal properties. For the low-pass filter this leads to the
recursive implementation

l(xt) = l(xt−1) +
1
τ
(xt − l(xt−1)) (4.2)
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with l the output of the filter, xt the input at timestep t. l(x0) = 0 is used as
initial value.

As an elaboration of the peripheral temporal filtering, a linear filter kernel derived
from a white-noise analysis of the LMCs of the fly was applied (module called
“LMC” below and in figures). The filter kernel shown in figure 4.1b was defined
by (James, 1990) as

hlmc(t) = a1 exp(
−(ln( t

τ1
))2

2σ2
1

) + a2 exp(
−(ln( t

τ2
))2

2σ2
2

), (4.3)

where a1 = 1.06, τ1 = 12ms, σ1 = 0.197, a2 = 0.167, τ2 = 21ms, σ2 = 0.345. For
these values the function qualitatively fits the linear component of the blowfly
LMC response as measured by (Juusola et al., 1995) at approximately the bright-
ness conditions of the electrophysiological analysis (Kern et al., 2005b). In the
model implementation, the first 50ms of this kernel were sampled with a sam-
pling frequency of 1kHz and applied to the brightness values by discrete convo-
lution.

Elementary motion detectors

For the basic model, the elementary motion detectors are simple correlation-
type motion detectors composed of a first-order linear low-pass filter and an
arithmetic multiplication of the low-pass filtered signal originating from one pho-
toreceptor and the unfiltered signal originating from a neighbouring horizontally
displaced photoreceptor. The motion detector consists of two mirror symmetri-
cal subunits (basic motion detector “BMD”, see figure 4.1c). The time constant
of the temporal low-pass filter in the basic motion detector was set initially to
τlp = 35ms to get a steady-state velocity tuning of the simulated TC with an op-
timum at 5Hz temporal frequency (the quotient of angular velocity and spatial
wavelength of the stimulus pattern), matching the previously described steady-
state properties of HSE (Hausen, 1982a).

An elaborated version of the motion detector circuit (elaborated motion detector
“ElMD”) incorporates a first-order linear high-pass filter (impulse response

h(t) = δ(t) − 1
τhp

e
−t
τhp ), (4.4)

with δ(t) a Dirac pulse at t = 0) into the second input branch of the multiplier
O’Carroll et al. (figure 4.1d, 1997). The discrete implementation of the high-pass
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filter is

h(xt) = xt − l(xt−1) (4.5)

with h the filtered signal, xt the filter input at timestep t, and l(xt) the lowpass
filter defined in equation 4.2.

This elaboration was previously shown to account for a better fit of transient
responses to a motion step. It also allows for an elegant mechanism of adaptation
by dynamically adjusting the high-pass time constant (Borst et al., 2003).

Local sensitivities

The weights of the different movement detectors that subserve the visual field are
set according to the spatial sensitivity distribution of the HSE-cell. More precisely,
the weight field for the spatial integration is determined by a two-dimensional
Gaussian function (equation 4.6; figure 4.2a, shown for the right HSE only) fitted
to the local sensitivity distribution of HSE (Krapp et al., 2001). For the retinal
positions given by the eye model, the sensitivity weights are computed as

w(ϕ, θ) =

⎧⎨
⎩e

−( 1
σθ

θ)2
e
−( 1

σϕ+
(ϕ−ϕc))2 if ϕ > ϕc,

e
−( 1

σθ
θ)2

e
−( 1

σϕ− (ϕ−ϕc))2 otherwise,
(4.6)

where ϕ denotes the azimuth and θ the elevation angle. The receptive field centre
is on the eye’s equator (θ = 0) at ϕc = 15◦ for the right and at ϕc = −15◦ for the
left HSE. The angular width of the receptive field is defined for the elevation by
σθ = 33◦ and for the azimuth by σϕ+ = 102◦, σϕ− = 45◦ for the right HSE. For
the left cell the values are interchanged (σϕ+ = 45◦, σϕ− = 102◦). Note that the
contralateral input is conveyed to HSE via spiking TCs from the contralateral eye
(Hausen, 1984). Calculating the contralateral input in the way described here,
is a simplification of this circuit, ignoring the nonlinearities introduced by the
spike generation. Since the contralateral input of HSE is much weaker than the
ipsilateral one (Hausen, 1982a; Krapp et al., 2001) this simplification is regarded
appropriate for the current purposes.

Spatial pooling

In the basic model, the spatial pooling corresponding to the dendritic tree of
the HSE-neuron is modelled as a linear weighted summation of the elementary
motion detector outputs (linear integration “LIN”, figure 4.2b). The outputs of
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a

b c

Figure 4.2: Schematic of the spatial integration modules of the model. (a) The
weight field of the local sensitivity distribution of the right model HSE (contour
plot in cylindrical projection; brighter areas indicated greater sensitivities) is the
same for all model variations; left HSE mirror symmetric, (b) linear dendritic
summation of positive and negative detector output, (c) circuit representation
of the more elaborated passive membrane model (g0:leak conductance of the
pooling neuron, ge, gi: excitatory and inhibitory synaptic conductances driven
by the output of the multiplication after rectification, E0, Ee, Ei: corresponding
reversal potentials).

the mirror symmetrical subunits of the movement detectors are subtracted from
each other.

V LIN
m = se − si (4.7)

where

sx =
∑
ϕ,θ

w(ϕ, θ)mx(ϕ, θ) (4.8)

are the weighted sums of the outputs me,mi of the motion detector subunits.

As an elaboration, the summation of the outputs of the two types of motion de-
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tector subunits are interpreted as the conductances of excitatory and inhibitory
synapses on the integrating cell (Borst et al., 1995). The resulting membrane po-
tential of the integrating element is calculated by the electrical equivalent circuit
of a one-compartment passive membrane patch (“MEM”, figure 4.2c).

V MEM
m =

g0E0 + geEe + giEi

g0 + ge + gi
(4.9)

E0 denotes the resting potential of the cell, Ee, Ei denote the reversal potentials
of the excitatory and inhibitory synapses, respectively, g0 indicates the leak con-
ductance of the membrane, ge, gi indicate the conductances of the excitatory and
inhibitory synapses (figure 4.2c).

For further simplification of equation 4.9, the resting potential of the model neu-
ron is set to E0 = 0mV. This setting does not change the relative fluctuations of
the membrane potential. ge, gi are given by the summated outputs of the two
types of motion detector subunits after weighting them according to spatial sen-
sitivity distribution of HSE (see above). The leak conductance g0 and the ratio of
the synaptic reversal potentials Ei

Ee
are free parameters of the model. These two

parameters were determined by an optimisation procedure (see section 4.1.2).

A further type of nonlinearity is introduced to the model (system) by the transfer
characteristics of the synapses between movement detector output and integrat-
ing element. The postsynaptic conductances are calculated as

gx =
∑
ϕ,θ

w(ϕ, θ)r(mx(ϕ, θ)), (4.10)

where r(x) is the synaptic transfer function. For the present analysis, the synapses
are assumed to have rectifying characteristics:

r(x) =

{
x, if x > 0
0, otherwise.

(4.11)

The multiplication stage of the detector subunits of the elaborated version of the
motion detector (ElMD) can have both positive and negative outputs, because
the high-pass filter removes the constant positive offset of the input signals result-
ing from the mean luminance of the stimulus. Thus, both positive and negative
values are present at the input of the multiplier. As a consequence of the rectifi-
cation nonlinearity (equation 4.11) these negative values cannot lead to negative
postsynaptic conductances ge, gi in the postsynaptic neuron, too. Negative values
would cause numerical problems if the denominator of equation 4.9 gets close
to zero.
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The integrating neuron has also temporal filtering properties (MEM+C). The mem-
brane capacitance Cm of the neuron and the input resistance

Rin =
1

gin
=

1
g0 + ge + gi

(4.12)

form a low-pass filter which can be approximated by a first-order linear low-pass
filter (Koch, 1999). gin represents the overall input conductance of the integrat-
ing model cell, g0 the leak conductance, ge and gi the conductances controlled by
the excitatory and the inhibitory detector subunits, respectively. The corner fre-
quency of this low-pass filter depends on the input resistance and the membrane
capacitance of the cell. The input resistance is the sum of the leak conductance of
the cell and the synaptic conductances. With the synaptic conductances varying
in time, the input conductance and thus also the corner frequency

fTC =
1

τTC
=

1
RinCm

(4.13)

depends on the presynaptic input. Without synaptic input, the corner frequency
is minimal, the input resistance drops for any synaptic input. The lower bound
for the corner frequency is

f0 =
1
τ0

=
g0

Cm
(4.14)

The membrane capacitance can thus be calculated from the minimal corner fre-
quency as

Cm = τ0g0 (4.15)

Thus, the corner frequency of the neuron with a given synaptic input (equation
4.13) can be rewritten to

fTC =
1

τTC
=

g0 + ge + gi

τ0g0
, (4.16)

eliminating the explicit occurrence of Cm from equation 4.13.

Optimisation of both parameters with respect to the difference function drms (de-
fined in section 4.1.6) by systematic variation leads to τ0 = 30ms and g0 = 1100
(dimensionless for reasons discussed below). The average difference between
model and experimental data is drms = 2.83mV. During stimulation with be-
haviourally generated optic flow the corner frequency is much lower, however
varies only little as a function of the input resistance (τTC = 12.1 ± 5.9ms, mean

83



4 Model

standard deviation). The value of the corner frequency during motion stimulation
has the same order of magnitude as the for time constant of 1.82ms measured for
the HSE neuron by (Borst and Haag, 1996). Note, however, that the cell is mod-
elled here as a one-compartment neuron, although the cell may have different
passive properties in the dendritic and the axonal regions.

Since the model performance improves only slightly by introducing a variable
corner frequency, the properties of this filter are for convenience approximated
by applying to the integrated signal a first-order low-pass filter with a constant
corner frequency.

Parameter settings

For all model versions, several parameters were optimised by stepwise variation
to fit the model HSE response to the natural, i.e. behaviourally generated stimuli.
The time constants of the temporal filters in the motion detector (τlp, τhp) were
optimised first. For the optimal parameterisation of the motion detectors, the
leak conductance (g0) and the ratio of the synaptic reversal potentials ( Ei

Ee
) of the

nonlinear spatial integration model, as well as the time constant of the low-pass
filter of the integrating element (τTC) were subsequently optimised. Because
neither the number nor the typical conductance change of the input synapses
are easily measurable, the leak conductance g0 can be parameterised only with
arbitrary units, the values given below depend on the scaling of the input con-
ductances and the number of modelled input channels chosen. However, the
input resistance of HSE typically measured in electrophysiological experiments
lies in the range of 5MΩ (Borst and Haag, 1996).

The optimal parameter settings for the elaborated model are τlp = 10ms, τhp =
60ms, g0 = 500, Ei

Ee
= −0.95, τTC = 8ms. Here a parameter set is regarded optimal

when it minimises the difference measure defined below. It was also counter-
checked that the optimal setting for the time constants does not depend on the
parameterisation of the integrating neuron.

4.1.3 Stimuli

Free-flight data recorded by (Schilstra and van Hateren, 1999; van Hateren and
Schilstra, 1999) were used to generate the optic flow stimuli used in this anal-
ysis. The data were recorded using miniature coils attached to the head of a
blowfly flying in a cubic flight arena. Based on these data, on the spatial lay-
out of the flight arena and on the textures covering the arena walls, the retinal
image sequences were reconstructed by computer graphics at a temporal resolu-
tion of 1000Hz for the model simulations and 370 Hz for the electrophysiological
experiments (for details on stimulus generation see chapter 3).
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4.1.4 Electrophysiological Data

The reconstructed optic flow was replayed to flies using th high-speed panoramic
display device FliMax (for details see section 3.3) and the resulting neuronal re-
sponses of HSE-neurons were recorded intracellulary. Three different flight trajec-
tories were used. The input of the mirror symmetrical contralateral HSE-cell was
simulated by presentation of mirrored versions of the stimuli. For the resulting 6
stimuli, between 12 and 35 sweeps of data were recorded.

The HSE-neuron responds to image motion with graded membrane potential
changes superimposed by action potentials (Haag et al., 1997; Hausen, 1982a,b).
The graded potentials are thought to represent the postsynaptic signals in the
HSE-cell as corresponding to the pooled outputs of the local motion detectors in
the model. Therefore, the action potentials were attenuated in the electrophys-
iological data - which are not generated by the model - by applying a Gaussian
convolution mask (σ = 2ms) to the individually recorded signals. From the result-
ing low-pass filtered responses an average over sweeps was calculated for each
stimulus (example for the averaged data shown in figure 4.3). The model in its
current version does not include neuronal noise. Therefore the model responses
will be compared to the averaged neuronal responses, because these reflect best
the stimulus-induced response component by averaging out signal components
that are not related to the stimulus.

Figure 4.3: Example flight path and
3D-model of the experimental
setup of a behavioural recording,
from which the optic flow was
reconstructed. Colour code of flight
time: red (start) to green (finish).
The model-texture was reduced in
contrast for printing. Figure from
Kern et al. (2005b).

4.1.5 Steady-state stimuli

To evaluate the model responses to classical stimuli, constant velocity stimuli
were generated by virtually rotating the model for one second at a constant ve-
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locity in a cylindrical setup covered with a sinusoidal pattern (spatial wavelength
10◦). Like the HSE-cell, the model responds to such a stimulus with a tran-
sient response followed by a mostly constant reaction. The level of this so-called
steady-state was computed as the mean over the last 500ms of this period.

4.1.6 Difference measure

To quantify the difference between neuronal and model responses, the root mean
squared difference of the signals was used.

The model does not contain all latencies present in the neuronal system but
mostly the phase shifts introduced by the various temporal filters. Only the filter
kernel used for the simulation of the temporal properties of photoreceptor and
LMC introduces a true latency. Therefore, a temporal shift of the model response
was introduced to correct for the latency. The size of this shift was determined
for each model variant by cross-correlation of the neuronal and model signal.

Since the model response is not automatically scaled to the physiological range
of membrane potentials, it was scaled by a factor f that minimises the mean
squared difference between the temporally shifted model responses m(t) and
the electrophysiological signals e(t).

drms =

√√√√ 1
N

N∑
i=1

(e(ti) − fm(ti))2, (4.17)

where

f =

∑
i1

Ne(ti)m(ti)∑
i1

Nm(ti)2
. (4.18)

For a given combination of model parameters, typically f varies by approximately
10% of its value across the responses to different stimuli.

To assess the inter-trial variability of the cellular responses, the square-root of the
squared difference between the individual response traces (with spikes removed
as described above) and the average electrophysiological response is calculated.
This inter-trial difference is on average drms = 2.6 ± 0.8mV (mean ± standard
deviation).
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4.1.7 Saccade-triggered average responses

An interesting qualitative feature of the behavioural data are the sharp saccadic
changes in gaze approximately every 100ms (Schilstra and van Hateren, 1999;
van Hateren and Schilstra, 1999). Therefore, the prototypic responses of both
the electrophysiological and the model data to the saccadic yaw velocity was
calculated. To do that, local maxima and minima above a threshold of 400◦s−1

in the yaw velocity trace were localised. Segments lasting from 50ms before
and 100ms after the maximum were aligned with respect to their maxima and
averaged across trials. These prototypic event-triggered average responses serve
as a qualitative benchmark for the model performance.

4.1.8 Coherence analysis

The coherence between two signals is a frequency-dependent measure of the
linearity of the relation between these signals. A coherence of γ2 = 1 means
that one signal can be constructed perfectly from the other signal with a linear
filter. Lower values indicate noise or a nonlinear relationship between the signals.
As in the experimental analysis by Kern et al. (2005b), the coherence for the
model and the neuronal data for the inter-saccadic segments of the responses
was calculated.

Masking out saccades

Masks selecting saccadic segments in stimulus and response were obtained by
gating a region surrounding saccades. Like the segments used for the saccade
triggered averages the masks were centred on the peaks in the total angular
velocity of the head during a saccade. The region was large enough to include all
parts of both saccadic stimulus and corresponding response. Saccades that were
close together were merged to reduce boundary effects. Edges of the masks were
tapered with a 12.5ms cos2-taper to reduce spectral leakage biasing the coherence
estimate at high frequencies. The inter-saccadic mask, used for suppressing the
saccadic stimulus and response, equals one minus the saccadic mask. Masked
data consisted of gated data intermitted with blocks of zeroes. Although the
mask shapes the power and cross spectra of the masked data, this shaping occurs
in a similar way for all spectra in the numerator and denominator of the definition
of coherence. Consequently, the mask by itself does not generate coherence for
uncorrelated data, as was checked in control computations with uncorrelated
noise. The coherence of masked data include the zero blocks, and therefore
should be regarded as belonging to the entire masked signal, not just to its inter-
saccadic part (gated signal).
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Calculation of the coherence function

Coherence between a stimulus parameter (e.g. yaw velocity) and model response
was calculated according to the previous experimental study (Kern et al., 2005b)
as

γ2
b =

|Psr|2
(PssPrr)

, (4.19)

with Psr the cross spectral density of stimulus and response, Pss the power spec-
tral density of the stimulus, and Prr that of the response. Spectra were calculated
by periodogram averaging of 50% overlapping data segments, with each peri-
odogram the discrete Fourier transform of a cos2-tapered zero-mean data seg-
ment of 256ms, extended by zero-padding to 512ms. Results were not strongly
dependent on segment length. Segments from all flights used as a stimulus for a
particular cell were included in the periodogram averaging. Bias in the coherence
estimate was corrected (van Hateren et al., 2002) by

γ2 =
n

n − 1
γ2 − 1

n − 1
, (4.20)

with n the total number of segments.

For calculation of the model coherence, additive noise with a power density
of 0.03mV2

Hz was assumed, similar to the densities measured in HSE (see also
Warzecha et al., 1998).

4.2 Simulation results

The model described above was evaluated to answer different questions. First,
is the model response to behaviourally generated stimuli comparable to the re-
sponse of the neurons? If so, which components of the model are essential?
What are the optimal settings for the parameters? How critical is the choice of
parameter values and how do these values compare to the parameters used to
emulate the responses simpler stimulation? Finally, can the recent results on the
information content of the HSE responses be reproduced by the model?

4.2.1 Performance of the model of the blowfly visual motion pathway

The responses of the basic model (modules LP-BMD-LIN) to behaviourally gener-
ated optic flow fit qualitatively the time course of the experimentally determined
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neuronal signals (figure 4.4a). For segments dominated by saccadic turns in-
ducing null-direction motion (null-direction saccades; see figure 4.4a, left zoom
box), the neuronal response is matched quite well by the model. The deviations
of the model from the neuronal response are more pronounced in segments char-
acterised by a more constant activation of the HSE-cell, as observed during se-
quences with saccades inducing preferred-direction motion (preferred-direction
saccades), (figure 4.4a, right zoom box). This characteristic can be found consis-
tently for all analysed motion sequences. The overall difference between model
and neuronal responses is drms = 5.6 ± 0.8mV on average. For the example seg-
ment governed by null direction saccades, the difference drops todrms = 4.3mV;
for the example segment governed by preferred-direction saccades, the differ-
ence between model and neuronal responses goes up to drms = 5.6mV.

For the most elaborated model (modules LMC – ElMD – MEM+C) with an op-
timised parameter set for natural, behaviourally generated stimuli, the model
performance is considerably better compared to the performance of the basic
model (figure 4.4b). The time course of the neuronal responses is matched more
closely and the overall difference between model and neuronal response drops
to drms = 2.9 ± 0.3mV. The most prominent improvement can be observed for
segments dominated by preferred-direction saccades. The difference for the ex-
ample segment shown in figure 4.4b (right zoom box) drops to drms = 2.3mV.
For segments characterised by null direction saccades, the improvement in per-
formance is less. For the example segment shown in figure 4.4b (left zoom box)
the difference is reduced to drms = 2.4mV. In other response segments the fit is
slightly worse resulting in the higher average drms.

In conclusion, the model of the fly visual motion pathway can account quite well
for the complex time course of the neuronal responses to behaviourally gener-
ated optic flow, though fidelity depends on the model version. For the elabo-
rated model the rms difference between model and neuronal responses is in the
order of the inter-trial difference between experimentally determined neuronal
responses which amounts to drms = 2.6 ± 0.8mV.

4.2.2 Steady state tuning of the model

Conventionally, the steady-state velocity tuning is regarded as an important char-
acteristic of the fly motion detection system. If the fly motion detection system
is stimulated with a sinusoidal pattern moving at constant velocity, the output
gets almost constant after an initial transient response (Egelhaaf and Borst, 1989;
Hausen, 1982a,b). The steady-state response amplitude was found to depend
on the temporal frequency of the input (the ratio of angular velocity and spa-
tial wavelength of the stimulus pattern). It increases with increasing temporal
frequency, reaches an optimum around 5Hz and then decreases again (Hausen,
1982b).
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Figure 4.4: Example of a model response (grey lines) of the basic (a) and the elab-
orated (b) model in comparison to the neuronal response (black lines). Zoomed
from the response traces are segments dominated by saccades inducing pre-
ferred (right boxes) and null direction motion (left boxes), respectively. The
yaw velocity of the fly’s head is shown in the traces above the response. The
model response was shifted in time by 22.5 ms to correct for neuronal delays
not present in the model.
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Since most of the elaborations of the model of the visual motion pathway dis-
cussed below affect the steady-state velocity tuning, these effects are discussed
here in some detail before looking at the results obtained for natural stimulation.

While the bell shape of the tuning curve is an inherent feature of the mechanism
of motion detection, the position of the optimum of the curve is determined by
the systems parameters. For the basic detector, the tuning can be computed an-
alytically (Borst et al., 2003). Without an additional filter in the input channels,
a time constant of 35ms has to be chosen to get an optimum at 5Hz (figure 4.5,
black line). Additional filters in the input channels shift the optimum. A low-pass
filter used for pre-filtering the retinal input shifts the optimum towards lower
frequencies, a band-pass filter, such as an LMC, has the opposite effect (figure
4.5a). To recalibrate the response to a peak at 5Hz with the LMC as peripheral
element, the time constant of the low-pass filter in the movement detector has
to be larger than without LMC (approx. 55ms vs. 35ms). The additional high-pass
filter in the elaborated detector (ElMD) has no effect on the temporal frequency
optimum, if the time constants of the high-pass and the low-pass filters are equal
(Borst et al., 2003). If the time constant of the high-pass filter is larger than that
of the low-pass, the tuning gets broader and becomes double peaked for very
large time constant differences (i.e. τhp >> 6τlp). The experimentally determined
steady-state tuning of TCs is also broader than the tuning of the basic motion
detector (Hausen, 1982b). In contrast, the optimal time constants found for nat-
ural optic flow in all variants of the model cause a steady-state tuning with a
peak at much higher frequencies (figure 4.5b). This finding indicates that either
the system properties change with the stimulus dynamics, or that some system
component shaping the steady state tuning is not covered in the present model.
It should be noted, however, that the difference between model and neuronal
responses to behaviourally generated optic flow increases by only approximately
10-15% when the movement detector time constants is changed from the op-
timal values to values that also fit the experimentally determined steady-state
velocity tuning (see below; figures 4.6 and 4.7c).

4.2.3 Significance of the model components

To assess which of the model elaborations are the main determinants of the
model performance in response to behaviourally generated optic flow, the basic
model was elaborated in various steps, eventually resulting in the most elabo-
rated LMC – ElMD – MEM+C model. The consequences of the different model
elaborations on the model performance are cumulated in figure 4.6.
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Figure 4.5: Responses of the model of the blowfly visual motion pathway to
constant velocity motion and to behaviourally generated optic flow. (a) The
theoretical steady-state tuning for constant velocity motion of the basic mo-
tion detector (BMD) without peripheral elements (black line), with a periph-
eral low-pass filter in the input line of the movement detector (LP, dark grey
squares) and the LMC kernel (light grey circles). (b) The steady state tuning of
optimal parameterised model variants 3 (black triangles), 4 (dark grey crosses),
and 7 (light grey diamonds).

Motion detector and peripheral variants

Elaborating the motion detector with a high-pass filter does not change the
model performance (ElMD) compared to the basic model, if the same filter time
constants (here τlp = τhp = 35ms) are used for both filters as has been proposed
previously (Borst et al., 2003) (figure 4.6, variants 1 and 2).

Optimising the low-pass filter time constant of the basic motion detector to fit
the responses to natural optic flow leads to a time constant value smaller than
expected from the steady-state responses (compare variants 3 (τlp = 10ms) and 1
(τlp = 35ms) in figure 4.6). Note that this time constant value may not strictly be
the optimal one because no clear minimum in the root mean squared difference
of the signals is found within the variation range (figure 4.7). Smaller values
however would result in numerical problems by getting too close to the sampling
interval of the simulation.
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Figure 4.6: Average differences between the neuronal and the model responses
for the various variants of the model. Variants shown are (using the labels from
figures 4.1, 4.2, extended by the parameter(s) for the motion detector time
constant(s)): (1) LP – BMD – LIN, (2)LP – ElMD – LIN, parameters match the
steady-state tuning of the cell; same time constant for the motion detector
low-pass and high-pass filters (τlp = 35ms, τhp = 35ms), (3) LP – BMD – LIN
(τlp = 10ms), (4) LMC – BMD – LIN (τlp = 15ms), (5) LMC – ElMD – LIN,
different time constants of motion detector low-pass and high-pass filter (τlp =
10ms, τhp = 60ms), (6) LMC – ElMD – MEM, (7)LMC – ElMD – MEM+C.
For each variant, the circle indicates the mean, the horizontal lines show the
median, the box includes the upper and lower quartiles, and dashed lines show
maximum and minimum rms of the responses to 6 stimuli.
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Figure 4.7: Dependency of the drms difference between model and neuronal re-
sponses on the time constant of the basic model with a low-pass in the input
lines to the motion detectors (black line; variant 1 in figure 4.6) and a LMC ker-
nel (grey line; variant 4 in figure 4.6) as peripheral element. Note the ordinate
scale, indicating that within a realistic range the rms error does not depend
much on the time constants.

An optimal time constant shorter than the expected one for the steady-state
tuning is also obtained if the retinal input is pre-processed by the LMC filter
(variant 4 in figure 4.6). Then, however, the optimal time constant of the low-
pass filter in the elementary motion detector shifts to τlp = 15ms consistent with
the effect of the LMC bandpass characteristics observed in the steady-state case.
With the optimised time constants of the movement detector low-pass filter the
performance of the model improves compared to the initial parameterisation
(figure 4.6, compare variants 3, 4 with variants 1,2).

Interestingly, the nature of peripheral pre-processing (i.e. simple low-pass filter
or LMC) does not much affect the model performance for natural optic flow, as
long as the movement detector low-pass filter is optimised for the respective
type of pre-processing. However, even deviations from the respective optimal
time constants by more than a factor of two affect the performance of either
model only slightly (figure 4.7).

Figure 4.8 shows the dependence of the rms difference between the model and
the experimentally determined responses on both the low- and the high-pass
filter time constants of the elaborated detector (ElMD; average rms difference
for all behaviourally generated stimulus sequences). The smallest difference is
located at τlp ≈ 10ms and τhp ≈ 100ms. However, this parameter setting would
lead to double-peaked steady-state velocity tuning curves of the detector. Since
double-peaked steady-state velocity tuning curves have never been described for
the HSE-neuron of the blowfly, although the velocity optimum is relatively broad
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and the temporal frequency tuning almost flat between 1Hz and 10Hz (Hausen,
1982b), we used τlp = 10ms and τhp = 60ms for the model response plotted in
figure 4.4b. These settings lead to only an insignificantly larger difference value
as compared to the combination of optimal time constants (figure 4.8).

Figure 4.8: Dependency of the drms

difference between model and neu-
ronal responses on the two time
constants of the elaborated motion
detector. Average rms for all 6 stim-
uli is plotted as a contour plot.

Spatial integration

All improvements gained from elaborations in the peripheral elements and the
detector time constants are small compared to the performance increments achieved
by introducing into the model the non-linear spatial pooling of TCs (figure 4.6,
variant 6). Introduction of this non-linearity reduces the difference between
model and neuronal response to about 2/3 (figure 4.6 compare variants 5 and
6).

The optimal parameterisation of the non-linear spatial pooling was determined
by systematic variation of the parameters g0, the leak conductance of the cell,
and the ratio of the reversal potentials of the negative and the positive inputs of
the cell Ei

Ee
(figure 4.9). Whereas the model performance does not much depend

on the leak conductance g0, the ratio of the reversal potentials Ee and Ei has a
prominent effect. The optimal ratio is Ei = −0.95Ee largely irrespective of the
leak conductance g0.

For any value of g0 < 103 the performance does not change much, but has a
weak minimum at g0 = 500 (figure 4.10). For this value also the dependency
of the steady-state response of the model on the pattern size fits corresponding
experimental results (Egelhaaf, 1985; Haag et al., 1992; Hausen, 1982b) reason-
ably well (figure 4.11), ensuring that the responses are relatively invariant against
changes in pattern size and density. It should be noted that this gain control relies
critically on the increase of the input conductance of the neuron with increasing
number of activated input channels and, thus, on the relationship of the leak con-
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Figure 4.9: Consequences of sys-
tematic parameter variation of the
membrane model of the pooling
neuron. Contour plot of the rms
difference between model and neu-
ronal responses depending on g0,
Ei
Ee

. Average rms of 6 stimuli is
coded in grey levels.

ductance and the synaptically controlled conductances of the cells. This feature
requires that the movement detector output is largely independent of the back-
ground luminance, because otherwise the background luminance dominates the
synaptic conductances irrespective of whether the stimulus pattern is stationary
or moving. Elimination of the effects of background luminance is accomplished
in the model by either a band-pass filter in the peripheral visual system (LMC
in figure 4.1) and/or a high-pass filter in one branch of the movement detector
(ElMD in figure 4.1). Hence, although these two elaborations of the model of
the visual motion pathway do not directly affect the model performance under
natural stimulus conditions, they are necessary for the nonlinear integration at
the level of the model output cell to become operative.

Figure 4.10: Rms difference between
model and neuronal responses as a
function of g0 only, Ei

Ee
= −0.95.

Temporal properties of the TCs

Post-processing of the model response by a low-pass filter improves the model
performance only slightly (figure 4.6, compare variants 6 and 7). For the coher-
ence analysis, this model component was even disadvantageous (see below).
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Figure 4.11: Steady-state response
of the elaborated model (variant 7
in figure 4.6) as a function of pat-
tern size hinting at the gain con-
trol properties of the model neuron
(see text). Pattern modulated sinu-
soidally at 10, 15, and 20Hz tempo-
ral frequency, leak conductance set
to g0 = 500.

4.2.4 Adaptation of the visual motion pathway during stimulation
with natural optic flow?

The blowfly visual motion pathway has been concluded in several studies to
adapt to the prevailing stimulus conditions. This conclusion is based on ex-
periments demonstrating that the responses to particular test stimuli, such as
an instantaneous retinal image displacement, are affected by stimulus history.
Part of the adaptational changes described for the neuronal responses could be
explained by assuming activity-dependent changes of several model parameters
(Borst et al., 2003). If motion adaptation takes place within some hundreds of
milliseconds, the optimal parameter set of the model HSE-cell should change
during ongoing motion stimulation. Adaptive changes during stimulation with
behaviourally generated optic flow, would lead to a different optimal parameter
set for the beginning and the end of neuronal responses to a stimulus trace. To
check this potential consequence of motion adaptation, the parameter set of the
model was optimised separately to match the initial and a later segment of the
neuronal responses.

The optimal sets of filter time constants for the initial 0.5s and the last 1.5s of the
3.5s response trace did not reveal any consistent difference across stimuli. Figure
4.12a shows the average difference for all stimuli between model and neuronal
response in dependence of the low- and high-pass time constants for the ini-
tial response segment, figure 4.12b displays this difference for the late response
segment. Direct comparison of the optimal parameters found for segments of
the individual responses to the six stimulus sequences did not reveal a consistent
tendency, either (figure 4.12c). This graph only suggests a weak tendency for the
low-pass filter time constant towards shorter values in the later segment.

Another adaptational effect found in TCs is a change in the response gain during
ongoing stimulation (Harris et al., 2000). This effect is reflected in the model re-
sponses by an increase of the optimal scaling factor f (see section 4.1.6) between
the initial and the late response segment. For an optimal fit, this factor has to be
on average 20% larger for the later stimulus segment than for the first 500ms of
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Figure 4.12: Consequences of variations of for the elaborated model (variant 7
in figure 4.6) for an early and a late segment of the stimulus trace. Average
rms difference between the model and the neuronal responses to 6 stimuli is
coded in grey levels for the first 0.5s (a), and the last 1.5s (b) of each stimulus.
(c) Optima for the time constants obtained when the model is parameterised
separately for the different stimulus sequences. Circles show the optima for the
first 0.5s, crosses those for the last 1.5s of the stimulus duration. The optima
for a common stimulus are connected by arrows.
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the presentation. However, the fit quality for the initial segment is slightly worse
than for the later segment for all stimuli even with this lower scaling factor.

4.2.5 Coding properties of the model HSE-neuron

The quantitative difference measure that was used to relate the model and the
experimentally determined neuronal responses facilitates the comparison of the
different model variants. A difference between the model response and the av-
erage neuronal response almost as small as the inter-trial difference of individual
neuronal responses indicates a good fit of the model to the electrophysiolog-
ical responses. However, even such small residual deviations between model
and original responses do not necessarily imply that the model covers the im-
portant coding properties of the neuronal response. In particular, it is not clear,
whether the remaining deviations are relevant with respect to what is encoded
by the neuron about the animal’s self-motion or the spatial relation between the
fly and objects in the outside world. Therefore, two particularly relevant cod-
ing properties of the HSE-cells were selected that were recently inferred from
electrophysiological responses to behaviourally generated optic flow (Kern et al.,
2005b) and try to reproduce these characteristics from the model responses.

4.2.6 Responses to saccades

The first characteristic pertains to the responses of the HSE-cells to the optic
flow evoked by saccades, i.e. the abrupt changes in gaze. Figure 4.13a shows
the average responses of the HSE-neuron to saccadic turns into the preferred
and null directions that occur during free flight. HSE responds with a transient
hyperpolarisation to saccades inducing null direction motion on the retina as
would be expected from a neuron encoding yaw rotations of the animal. In
contrast to expectations, it does not respond with a strong depolarisation to
saccades inducing preferred direction motion, but with a small drop in membrane
potential following a small transient depolarisation. This behaviour is also found
in the responses of the model (figure 4.13b). The responses of the elaborated
model to saccades inducing null direction and preferred direction motion are
remarkably similar to the corresponding neuronal response. Interestingly, already
the responses of the basic model to saccades (figure 4.13c) lead to the same
conclusions as the neuronal responses, although the similarity of the model to
the neuronal response is slightly smaller than for the elaborated model. This
finding suggests that the main reason for HSE-cells not encoding faithfully the
time course of yaw rotations during saccades is the non-linear velocity encoding
of the local movement detectors, rather than of the non-linear spatial pooling at
the level of the tangential cells.
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Figure 4.13: Saccade triggered averages of the neuronal data (a) in comparison to
responses of the elaborated model (b) and the basic model (c). Responses to
saccades inducing preferred (null) direction motion are plotted in grey (black).
Experimental data taken from Kern et al. (2005b).

Coherence of the model response with self-motion parameters

The HSE-neuron shows pronounced depolarisations between saccades, although
then the optic flow experienced by the eyes is much smaller than during sac-
cades. Therefore, HSE has been concluded to encode behaviourally relevant
information especially between saccades (Kern et al., 2005b). Between sac-
cades blowflies keep their gaze stable apart from small-amplitude, broad-band
yaw rotations and may thus gather useful information about the outside world
from the translational optic flow components that dominate at low frequencies
of the response in the inter-saccadic intervals. Indeed, this could be shown for
the sideward translation by determining the optimal linear filter to estimate the
time-dependent sideward velocity from the neuronal responses. How well the
real sideward velocity of the blowfly corresponds to the estimated one and, thus,
is reflected in the neuronal responses, is quantified by the coherence function
which varies between 0 (i.e. both signals are unrelated) and 1 (i.e. perfect re-
construction). There is considerable coherence between sideward velocity and
the neuronal inter-saccadic responses at low frequencies up to about 20Hz. This
coherence is even enhanced when the difference signal between HSE-neurons
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in the right and left halves of the brain is taken into account (figure 4.14). The
coherence between the inter-saccadic yaw velocity and the neuronal response is
significant only at frequencies between approximately 20Hz and 60Hz (for details
see Kern et al., 2005b). Applying the same analysis to the responses of the elabo-
rated model (LMC – ElMD – MEM) leads to similar results (figure 4.14c). Since the
coherence of individual neuronal responses and the different self-motion param-
eters was calculated in the experimental study (Kern et al., 2005b) the noise in
their membrane potential fluctuations was approximated by adding to the model
response individual noise traces with the variance of the noise corresponding to
the experimentally determined values (see section 4.1.8). At low frequencies,
the coherence between the sideward velocity and the difference response of the
right and left model HSE-neuron is similar to the coherence found for the neu-
ronal response. The coherence between yaw velocity and model response is also
significant in a frequency range above 20 Hz, although it is somewhat smaller
than the coherence found in the neuronal data. Hence, the elaborated model
can account well for one of the most decisive coding features of real HSE-cells.

Figure 4.14: Coherence between the inter-saccadic segments of the neuronal re-
sponses (a), the responses of the elaborated model without the TC lowpass (b),
and the responses of the basic model (c) to the yaw velocity[r3] (grey) and the
sideward velocity (black). For the computation of the coherence, noise was
added to the model responses (details see text).
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The basic model generally shows significantly smaller coherences (figure 4.14b)
than the elaborated model (figure 4.14c). Nonetheless, the coherences have
similar frequency dependence for both model versions. Hence, the model of
the fly visual motion pathway reveals, in a similar way as the experimentally
determined responses, that the pair of HSE-cells represents information on both
sideward and yaw velocity at the same time in adjacent frequency bands. This
characteristic is rendered possible because the inter-saccadic yaw velocities are
smaller by an order of magnitude than the yaw velocity during saccades. Hence,
both the experimental results and the model simulations suggest that saccades
should be viewed primarily as a specialisation in steering behaviour that enables
the fly to extract translatory optic flow amidst rotatory optic flow. If only smooth
yaw-rotations, instead of saccadic turns, were used for steering the latter would
dominate stimulus and response all the time. Since the translational optic flow
component depends on the distance to objects in the environment, the HSE-
neurons and their model counterpart, thus, provide indirectly information about
the three-dimensional layout of the environment.

4.2.7 Texture independent responses

The motion sequences that were used for the electrophysiological experiments
(Kern et al., 2005b) and the model simulations shown so far are characterised by
the dynamical features as are characteristic of retinal image displacements in free
flight. Moreover, they were obtained in a flight arena covered with the images of
natural scenes. To test how relevant the textural properties of the environment
are for shaping the responses to motion sequences with natural dynamics, the
textural properties of the flight arena were changed, when reconstructing the im-
age sequences, while leaving the dynamics of optic flow unaltered. The textures
on the arena walls were replaced by random dot patterns (composed of black
and white squares of 1.6cm x 1.6cm) and vertical sinusoidal gratings (3.64cm per
period). This analysis was motivated by the pronounced texture dependence of
the steady-state responses of blowfly TCs (Eckert and Hamdorf, 1981).

The average difference between the responses of the elaborated model and the
HSE-cell obtained with the natural texture and those obtained with the random
dot texture are very similar. Moreover, the difference between the different
model responses obtained with either wall texture is also in the same range.
For sinusoidal gratings the differences are slightly larger. A noticeable qualita-
tive difference between the response to the sinusoidal grating and to the original
texture is a double peaked response to null direction saccades, similar to what
was previously described for sinusoidal variation of high-velocity simple stimuli
(Egelhaaf and Reichardt, 1987).

The numerical values for the comparison of HSE and model counterpart for dif-
ferent wall textures are given in table 4.1.
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Table 4.1: Difference values for responses to differently textured stimuli

model original model random dot model sine-wave
neuron original 2.9 ± 0.3mV 2.9 ± 0.4mV 4.5 ± 1.9mV
model original – 2.6 ± 0.3mV 3.8 ± 0.9mV

The robustness of the HSE response to variations of the environmental texture
was also tested in an electrophysiological control experiment where the natu-
ral texture covering the flight arena was exchanged between the different walls
(Kern, personal communication). However, the predictions of the model indi-
cate that this robustness might extend to much more pronounced changes in the
textural patterns.

Taking into account that the difference measure ignores differences is scaling a
small difference value may hide a pronounced difference in amplitude. However,
such differences could be reduced by incorporating saturation nonlinearities in
the model.

4.3 Summary and Discussion

The optic flow generated on the eyes of blowflies in free flight is characterised
by peculiar dynamical properties. These are the consequence of the saccadic
gaze strategy, i.e. a flight style that is characterised by rapid saccadic turns of
head and body interspersed with segments of basically straight gaze (Schilstra
and van Hateren, 1999; van Hateren and Schilstra, 1999). By this active vi-
sion strategy the main rotational components of the optic flow are separated
from the translational components. In recent electrophysiological experiments
on the motion-sensitive wide-field HSE-neuron of the blowfly it could be shown
that the visual motion pathway seems to exploit the saccadic gaze strategy by
extracting information about the translational optic flow components and thus
about the three-dimensional layout of the environment from the inter-saccadic
intervals (Kern et al., 2005b). This finding was surprising, since on the basis
of experiments with conventional experimenter-designed stimuli HSE had been
concluded to be a detector of yaw-rotation of the animal. This chapter shows by
model simulations that the relevant features of the responses of the HSE-neuron
to natural optic flow can be reproduced on the basis of relatively simple com-
putations. In particular, the model does not encode the time course of the yaw
velocity during saccades in a linear way, in contrast to the hypothesis that the
HSE-cell acts as a yaw detector. Moreover, in the inter-saccadic intervals the
model provides, in a similar way as the HSE-cell, information about translational
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optic flow. This finding suggests that the saccadic gaze strategy may facilitate the
encoding of behaviourally relevant information about the spatial structure of the
surrounding.

The model of the blowfly’s visual motion pathway is an elaborated version of
a model already proposed before on the basis of systems analysis with con-
ventional experimenter-designed stimuli (Borst et al., 1995, 2003; Egelhaaf and
Borst, 1989; Egelhaaf et al., 1989; Kern et al., 2000, 2001a). It is composed
of many retinotopically arranged motion detectors extracting local motion infor-
mation and the subsequent spatial pooling of their outputs. The spatial pooling
stage is thought to correspond to the dendritic tree of the HSE-neuron. Starting
from a basic model, various model elaborations were introduced and the conse-
quences of these elaborations on the response to behaviourally generated stimuli
were documented.

Already a very basic version of the model that linearly summates the outputs
of simple versions of correlation-type movement detectors reproduces, at least
qualitatively, essential features of the neuronal responses to natural optic flow.
Elaborations of the basic model improve the performance. However, only small
improvements are gained by introducing temporal filters in each input channel
of the model to approximate the dynamical properties of the peripheral visual
system. Even the introduction of an additional temporal filter into the motion
detector which changes the model dynamics in response to conventional motion
stimuli considerably (Borst et al., 2003) leads to only a small improvement of the
response to behaviourally generated motion stimuli. In contrast, implementing
the nonlinear spatial integrating properties of the HSE-neuron improves tremen-
dously the fit of the model response to its experimental counterpart. These non-
linearities of spatial pooling, together with the opponent organisation of the
output of local motion detectors, were previously discussed as the basis of a gain
control mechanism that makes the responses of HSE and other blowfly motion
sensitive tangential cells (TCs) relatively invariant against changes in texture size
(Borst et al., 1995) and texture density (Kern et al., 2001a), while still allow-
ing them to encode changes in pattern velocity. This gain control mechanism
requires that the movement detector output is largely independent of the back-
ground luminance as is accomplished in the model by either a band-pass filter
in the peripheral visual system and/or a high-pass filter in one branch of the
movement detector. Hence, although these two temporal filters on their own do
not directly affect the model performance under the natural stimulus conditions
tested here, they are necessary for the nonlinear integration at the level of TCs to
become operative.

In contrast to expectations based on results with conventional motion stimuli
that the HSE-cell represents a detector for self-rotation, both the HSE-cell and
its model counterpart do not represent the yaw velocity during saccades in a
linear and not even in a monotonic way. In particular, saccades leading to pre-
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ferred direction motion do not depolarise the cell. This characteristic feature
was obtained already with the basic model and, thus, can be concluded to be a
consequence of the nonlinear encoding of pattern velocity inherent to the local
motion detectors when pattern velocity and accelerations get large (Egelhaaf and
Reichardt, 1987; Haag and Borst, 1997). Rather than interpreting this feature as
a limitation of the fly motion detection system, it can be interpreted as advanta-
geous in the context of encoding of natural optic flow. Since during saccades the
motion vision system operates beyond its linear range, it can resolve the much
smaller translational optic flow component between saccades and thus provide
information about the spatial layout of the environment. If the motion vision
system would encode the entire angular velocity range in a linear way, the trans-
lational responses would be negligible and could hardly be resolved given the
limited operating range of neurons and the noisiness of neuronal signals (review:
Warzecha and Egelhaaf, 2001).

Surprisingly, the performance of the model is much less sensitive to parameter
changes if confronted with complex behaviourally generated optic flow than if
the much simpler experimenter-designed stimuli are employed. This leads us to
the somewhat paradoxical conclusion that simple experimenter-defined stimuli
may facilitate the precise estimation of system parameters, whereas, on the other
hand, the precision of these parameters apparently does not matter much to ac-
count for the responses to behaviourally relevant stimulus features. This general
conclusion appears to pertain to two additional aspects that are important from
a functional point of view discussed subsequently.

1. Whereas the encoding properties of the model rely largely on the specific
dynamical features of behaviourally generated optic flow, it could be shown
that it is relatively invariant to changes in the environmental texture. This
finding may be surprising, given the fact that for simple constant-velocity
stimuli the responses of blowfly TCs are known to depend strongly on the
textural properties (Dror et al., 2001; Eckert and Hamdorf, 1981). How-
ever, from a functional point of view it appears to be appropriate that the
neuronal encoding of self-motion and of the spatial relationship of the an-
imal to its environment is as independent as possible from the accidental
textural properties of the environment.

2. It is generally agreed that many features of TC responses depend on stim-
ulus history and that the resulting changes in neuronal response properties
may be regarded as adaptive. However, neither the underlying mechanisms
nor the functional significance of most of these phenomena have yet been
clarified. Adaptive processes have been studied by very different stimu-
lus paradigms and conceptual approaches. Adaptive changes to motion
stimulation are suggested by experiments using brief displacements of the
stimulus pattern or constant velocity stimulation (Borst and Egelhaaf, 1987;
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de Ruyter van Steveninck and Bialek, 1988; Harris et al., 1999a,b, 2000;
Kurtz et al., 2000; Maddess and Laughlin, 1985), but also time-varying ve-
locity fluctuations (Brenner et al., 2000; Fairhall et al., 2001). Here that the
optimal motion detector time constants required for explaining the neu-
ronal responses to natural optic flow were found to be smaller than the
time-constants estimated on the basis of the steady-state velocity tuning.
However, the optimal time-constants were almost identical for the initial
segment and later segments of the responses to natural optic flow. This
finding would either imply a very quick adaptation to the dynamical stim-
ulation (see e.g. Fairhall et al., 2001) or could hint at additional filters in
the neuronal system that are missing in the current model. It should be
noted, however, that the model performance in explaining the neuronal re-
sponses to behaviourally generated optic flow changes only little by shifting
the movement detector time constants from the optimal values to values
that also fit the experimentally determined steady-state velocity tuning (see
figures 4.6, 4.7 and 4.8). In contrast to the time constants in the visual mo-
tion pathway, the gain of the system decreases slightly during prolonged
stimulation with behaviourally generated optic flow. This finding is in ac-
cordance with experimental evidence for changes in contrast sensitivity of
the visual motion pathway (Harris et al., 2000).

The information about distances to objects in the environment is not represented
very explicitly in both the responses of the HSE-cell and its model counterpart.
Can this information be used in a simple way for controlling visually guided be-
haviour? Since, for methodological reasons, it is hard to answer this question
experimentally, it will be one next step of the model analysis to incorporate the
model of the visual motion pathway into a closed-loop system and to assess
different strategies of decoding the HSE responses.

The following chapter describes the “Virtual Fly” tested in the behavioural task of
obstacle avoidance in 3D environments. In this way, the interpretation that the
HSE-cell extracts behaviourally relevant information about the three-dimensional
layout of the environment was challenged under closed-loop conditions.
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5 Simulating the virtual fly

To simulate the behaviour of a fly, the signals of the sensory neurons must be
transformed into motor signals to generate a behavioural reaction to the sensory
input. The physical properties of the motor elements and of the environment
determine, how these motor signals are transformed into movements of the fly.
To close the control loop, the sensory signals of a simulated system must then be
recalculated for the new position and orientation in the virtual environment.

By simulating the system in a closed control loop, hypotheses for the interpre-
tation of the functional significance of the responses of sensory neurons can be
tested. The ultimate goal of such an approach could be that the simulated system
behaves like the modelled animal. Note however, that even an almost perfect
emulation of natural fly behaviour would not be an evidence for similarities in
the computational structure of the systems. The simulations of a virtual fly thus
only show that the hypotheses implemented in the controller are sustainable.
Other approaches have to be taken to get deeper insights in the computational
structure of the neuronal circuits controlling the behaviour of the animal.

This chapter describes closed loop simulations of the flying virtual blowfly for
basic orientation behaviour. Some simple sensory-motor transformation circuits
are investigated in a simple wall-avoidance task.

5.1 Related work

Two basic behaviours are very likely controlled by the optic flow processing neu-
rons. One of these behaviours is the so-called optomotor response, observed
throughout the whole animal kingdom. When an animal is confronted with
global visual motion, it responds by a movement following this motion either
with its eyes, the head, or the entire body. This behaviour is usually interpreted
to help the animal to stabilise its retinal image, but may also play a role to main-
tain a straight path. In the latter functional context the brain is assumed to
balance the optic flow on both eyes (Götz, 1975a).

Another task that can be accomplished using optic flow information is the avoid-
ance of walls or objects. Like the optomotor response, this task can be solved
by balancing the optic flow on both sides of the animal. However, the correct
compensatory response to an asymmetry is inversed in both situations. While
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5 Simulating the virtual fly

the optomotor response is to turn towards the side of the larger progressive ve-
locity, the obstacle avoidance requires the avoidance of the large translatory flow
generated by a nearby object.

The fly seems to be able to resolve the apparent conflict between these tasks. A
good hypothesis for the sensory-motor coupling thus should also be able to solve
both tasks simultaneously.

5.1.1 Consequences of the nonlinear velocity encoding in tangential
cells

The inherently nonlinear encoding of image velocities by correlation-type mo-
tion detectors and thus in the responses of the fly tangential cells has important
consequences for the behavioural control based on these signals.

The bell-shaped response profile of the tangential cells causes differently signed
difference signals if a pair of cells is confronted with preferred direction motion
of different velocities. If the velocities are low, the cell confronted with the
faster movement will respond with a larger signal than the cell facing the slower
image movement. The sign of the difference is inversed if both velocities are
super-optimal for the elementary motion detectors. In this case, the response
of the cell encoding the faster movement will be lower than the response of the
cell stimulated with slower motion (Götz, 1975b). If a behaviour is coupled to
the difference of two tangential cell signals, the sign of the response thus can
change implicitly: A response following the direction of motion can turn into an
avoidance response by simply increasing the stimulus velocity. Because of this
inherent change in behaviour a further analysis of the optomotor control system
also in the context of the obstacle avoidance task seems to be interesting.

Figure 5.1: Implicit sign-reversal of
the differential motion detector re-
sponse resulting from the bell-
shaped steady-state velocity tuning
of correlation-type motion detec-
tors. A positive relative difference in
velocity may cause a positive (blue,
dashed arrows) or a negative differ-
ence in the response (red arrows)
depending on the absolute velocity
value.
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Another consequence of the detector properties is an inherent stability of control
systems based on these signals. If an instability occurs, the sensor signals of the
tangential cell increase to the cell’s maximum response leading to an accelera-
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tion. Beyond that point, however, the response amplitude is are automatically
reduced despite further acceleration of the movement. In effect, this stabilises
the system at a high but constant velocity (Warzecha and Egelhaaf, 1996).

5.1.2 Previous robots and simulations

In several studies fly-inspired optic flow algorithms were implemented in simula-
tion and on robotic platforms. Most of these systems use optic flow information
mainly to stabilise straight movement paths. This approach is inspired by the
very basic optomotor behaviour observed in many animals. By implementing a
fly-inspired motion vision system in analog VLSI (Harrison and Koch, 1999) and
integrating this circuit with a mobile robot, Webb et al. (2004) showed that such
a system can indeed make the robots course control robust against asymmetries
in its motor system. Huber et al. (1999) implemented a simulation model of the
fly visual system which reproduces the optomotor behaviour. In a real-world test
using a small robot (Khepera) and a panorama camera, the system additionally
shows an emergent fixation behaviour, similar to a behaviour also observed in
flies. Neumann (2004) designed and implemented a flight control system for a
simulated helicopter. Major parts of this controller are inspired by the fly motion
vision system, but the system is not thought to be a model of behaviour control
of flies.

Other systems use the distance information present in translatory optic flow to
implement obstacle avoidance. Franceschini et al. (1992) implemented a fly-
inspired motion vision system in analog hardware to create obstacle avoidance
behaviour of a robot. Interestingly, this robot was programmed to create straight
forward movements interleaved with short turns, a strategy similar to the sac-
cadic flight behaviour observed in free flying flies. In another robot experiment
Lewis (1998) also used a saccadic movement strategy, in this case called “zig-
zag behaviour”, to avoid obstacles while stabilising the gaze of the robot by an
optomotor response of the camera.

Starting from hypotheses drawn from quantitative behavioural experiments with
Drosophila, Reiser and Dickinson (2003) implemented a saccadic movement strat-
egy on a robotic system also exploiting optic flow information. This system was
shown to be able to avoid the walls of a cylindrical environment on the basis of
fronto-lateral looming sensors.

None of the systems mentioned above implements obstacle avoidance and the
optomotoric response jointly by continuously balancing the optic flow. Only a
few of these studies implemented both behaviours in one system. Both, Webb
et al. (2004) and Neumann (2004), use a continuous balancing of optic flow to
stabilise a straight course of their systems, but implement a frontal looming de-
tector to create an obstacle avoidance behaviour as an immediate sharp reaction
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if a criterion indicating a nearby obstacle is met. Lewis (1998) also combines a
optomotor response with obstacle avoidance. In his model, the saccadic obstacle
avoidance is controlled by the temporal derivative of the image sequence, giving
an non-directional selective estimate of the absolute optic flow.

The system described in the following sections implements a saccadic obstacle
avoidance response and a continuous optomotor behaviour based on the signals
of the HSE model neurons described in chapter 4.

5.2 Simulation system

The basic software architecture of the simulation system used for the virtual ex-
periments is outlined in section 3.5. The generation and processing of the im-
ages is done by the same software modules as for the replay analysis described in
chapter 4. In the following, two additional modules are introduced. The simu-
lated neuronal response has to be transformed to flight forces in a sensory-motor
coupling module. These flight forces must then be transformed to updates of the
system’s position and attitude in the virtual environment by a simplified physical
model of flight dynamics.

5.2.1 Sensory-motor interface

Two different types of sensory-motor coupling were used for the simulation ex-
periments. The first controller is a continuous coupling of the HSE signals to the
turning response of the virtual fly. This type of controller implements the clas-
sical hypotheses drawn from the optomotor experiments with a fly turning on
the spot in response to a purely rotating environment. The second controller
implements the saccadic flight mode observed in freely flying flies. This type
of controller generates short straight flight segments interleaved with sharp fast
turns mimicking the body saccades observed in flies.

Both controllers and their performance are described in detail in the following
sections.

5.2.2 Simulation of the physical environment

The neural motor commands of a flying fly are input to the wing beat controlling
muscles. For simulations with a model structure close to biology, these muscle
signals could be represented explicitly. The muscle activity then would control
the movement of the wing in the air and an aerodynamical model could deter-
mine the resulting forces. Such an approach requires not only detailed knowl-
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edge on the exact anatomical structure of the wing-beat apparatus, but also a
quantitative model of the aerodynamics of a beating wing at low Reynolds num-
bers. For the simulation of Drosophila flight, such a system was implemented by
Schenato et al. (2001). It predicts the forces generated by the beating wings.
The wing beat pattern is thereby specified using abstract parameters instead of
control muscle activity.

To keep the model simple, the simulation can use a short-cut by calculating not
muscle activity from sensory signals, but the resulting forces more directly. The
output of such a sensory-motor transformation and thus the input to the module
calculating the motions of the system is a six-dimensional vector for each time
step specifying the three translational and three rotational force components.

The movements of the virtual fly resulting from the generated forces are con-
strained by the physical properties of the environment. For a flying insect, the
forces actively generated by the animal add up with forces from gravity, air drag,
and inertia to the effective forces accelerating the animal at a given point in time
(figure 5.2). These forces have to be computed approximately to create realistic
motion dynamics for the virtual fly, especially taking inertia into account. It is
known from behavioural studies that after a sharp turn a fly drifts into the old di-
rection of flight for some tens of milliseconds. The optic flow resulting from this
sideward translation is supposed to be exploited by sensory neurons (see section
2.4).

drag thrust

gravity

lift

Figure 5.2: The translatory forces rel-
evant to a flying fly. The forces
generated by the fly, lift and thrust
are necessary to compensate for the
drag and the gravitational force. To
fly at a constant velocity, the re-
sulting generated force (red dashed
vector) must be equal to the force
resulting from drag and gravitation
(blue dashed vector).

Details on the modelling of the physical environment are given below in the
descriptions of the different experiments.
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5.3 Optomotor behaviour

One of the basic behavioural reflexes observed in many insects is the optomotor
turning response. This behaviour is interpreted to stabilise a straight path of
movement by compensating rotations either caused by external disturbance or
by internal asymmetries in the motor system.

For the horizontal plane, this behaviour can be achieved by levelling out the
image velocity the animal observes on both sides.

5.3.1 Controller: Optomotoric response

A simple optomotor controller couples the difference of two simulated HSE-cells
to the yaw moment generated by the system. Classical optomotor experiments
revealed a lowpass filter with a long timeconstant to be present in this control
loop (Egelhaaf, 1987; Warzecha and Egelhaaf, 1996). This is implemented in the
model by lowpass filtering the difference signal with the recursive filter defined
already in equation 4.2 for the sensory module.

The simplest way of coupling this signal to the yaw torque is a linear coupling
defined by a motor gain factor. To avoid possible problems with aliasing caused
by the time discretisation, the output yaw velocity of the system is limited to
a torque resulting in a rotational velocity of ±3000

◦
s . However, for reasonable

values of the motor gain, this yaw velocity is far beyond the dynamic range of the
transformed HSE signals.

Physics: Friction and inertia of a rotating fly

The coupling of the yaw moment to the angular yaw velocity of the virtual fly
must obey the principle physical constraints of friction and inertia a fly has to
deal with.

For the rotation, the frictional moment caused by air drag is commonly assumed
to depend linearly on the rotational velocity (Fry et al., 2003; Reichardt, 1973).
The consequence of a (yaw) torque can thus be described by the equation

T = Iω̇ + Fω (5.1)

where T is the torque moment, I the moment of inertia and F the frictional
damping constant. ω is the angular velocity and ω̇ is the angular acceleration.

If the moment of inertia I is very small compared to the frictional constant F ,
the system is dominated by friction, which means that the rotational velocity

112



5.3 Optomotor behaviour

HSE HSE

−

lp

rotational
moment

Figure 5.3: Controller circuit imple-
menting the optomotor response:
The differential signal of the sim-
ulated HSE neurons of both hemi-
spheres is filtered by a lowpass filter.
The yaw moment is proportional to
the filtered signal. To avoid numer-
ical problems, the velocity signal is
limited.

of the system gets proportional to the yaw torque after a very short time af-
ter a change in torque. This was in fact concluded from the measurement of
the moment of inertia and the estimation of the frictional constant by Reichardt
and Poggio (1976). They estimated the time constant of the resulting lowpass
filter, determined by the ratio I/F , as τ = 8ms. Consequently, in later experi-
ments simulating the flight of a tethered flapping fly the measured yaw torque
of a tethered flying fly was coupled proportionally to the rotational velocity of
the stimulation pattern (e.g. Warzecha and Egelhaaf, 1996) assuming that the
acceleration phases are short enough to be safely neglectable. In these closed-
loop experiments the flies were able to control the stimulus, suggesting that the
dynamical situation was close enough to real flight.

More recent estimations based on experiments with a scaled model of the wings
of Drosophila melanogaster beating in an oil tank suggest that the system is not
dominated by friction. In contrast to the older assumptions, the time constant
was estimated to be much larger (500ms < τ < 1s, Fry et al. (2003)).

For the optomotor system of the virtual fly, a neuronal lowpass filter with a time-
constant of τ = 750ms is assumed (Warzecha and Egelhaaf, 1996). Thus the
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dominant time constant in the system is this neuronal lowpass and thus this con-
stant is the relevant one for the dynamics irrespective of what the mechanical
constraints really are. To keep the simulation simple, the angular velocity is cou-
pled linearly to the output signal of the optomotor controller.

5.3.2 Results: Optomotor Controller

The optomotor controller was tested in two simulations. The classical experiment
is to observe the tracking behaviour in a system reduced to one rotational degree
of freedom. Additional to this, the behaviour of the system with constant forward
velocity was analysed.

Classical optomotor experiment

The optomotor controller (figure 5.3) was calibrated in the test situation of the
classical optomotor situation of a system in the centre of a rotating drum. In such
a situation, the system is able to control its rotational speed while being fixed in
position.

The virtual cylinder used for this experiment has a diameter of 930mm and a
height of 900mm. The axis of the cylinder is parallel to the yaw axis of the virtual
fly, the vertical position of the fly is at half height of the cylinder. If not stated
otherwise, the same cylinder is used for all simulations described below.

The optomotor controller has two parameters. These are the time constant of the
lowpass filter processing of the differential HSE signal, and the constant coupling
gain which determines the slope of the coupling function.

The time constant of the lowpass filter was set to 750ms. This value for the time
constant of the optomotor controller can be predicted from behavioural experi-
ments (Warzecha and Egelhaaf, 1996). This time constant is not very critical in
the case of steady state stimulation of the system with a constant velocity.

The coupling gain was varied systematically. As expected, this variation showed,
that the system is not able to compensate for the rotation of the stimulus if the
gain is very small (figure 5.4a, b). The system follows the movement of the drum
with a lower rotational velocity, which leads to a reduction of the relative rotation
of the drum with respect to the system. Beyond a critical value of the gain, the
system is able to compensate the rotation almost perfectly (figure 5.4c, d). If
the gain is much larger than this critical value, the system overcompensates and
shows oscillations in the relative velocity with a close to zero average (5.4e, f).
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Figure 5.4: Closed-loop performance of the optomotor controller shown in fig-
ure 5.3. The system has only one degree of freedom, yaw rotation. The plots
show the yaw velocity (left panel) and the resulting attitude (right panel) of
the system relative to the rotating environment (ω̇ = 10◦s−1) With a low cou-
pling factor (a,b) the system is not able to fully compensate the environmental
rotation. With an increased factor (c,d), the compensation performance gets
better. For a high factor (e,f) the system shows significant ringing in the com-
pensatory response.
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Optomotoric coupling for wall avoidance

When moving forward at a constant velocity, the optomotor circuit inherently
leads to a tendency to avoid an approaching wall in a cylindrical test environ-
ment. This can be explained by the implicit sign reversal of the response caused
by the velocity offset present in translational optic flow in the vicinity of objects
and the bell shaped tuning of the motion detection system.

However, the response is much too weak to generate a stable wall avoidance.
Figure 5.5 shows an example of this behaviour. For this simulation experiment,
the system was moved with a constant velocity of 1m

s .

If the coupling is inversed, the optomotor response drives the system on a cir-
cular trajectory, because the turning response to a small asymmetry in the input
increases the asymmetry in this situation. Although the nonlinear characteristics
of the motion detection system prevents an infinite angular acceleration, the sys-
tem is trapped in the circular movement. With such a movement pattern, the
translational components of the optic flow are masked by the large rotational
velocities, preventing a meaningful response to close objects. Once rotating, the
depth information present in the optic flow is practically not detectable.

Figure 5.5: Example of the small
wall avoidance tendency observed
in closed-loop simulation of the op-
tomotor system with a constant for-
ward velocity of 1m

s .

Compensation of motor asymmetries

The optomotor response is supposed to serve the stabilisation of a straight trans-
latory movement and to correct for external rotatory disturbances and asymme-
tries in the flight motor or walking apparatus. Consistent with other technical
implementations the system is able to correct for a motor bias in a combination
of translatory and rotatory self motion. For the example shown in figure 5.6 the

116



5.4 Saccadic behaviour

system was translated with a constant forward velocity of 1m
s . A superimposed

rotatory offset of 100
◦
s simulated the motor bias. The system compensates for the

rotatory offset to some extent, which leads to a larger radius in the resulting tra-
jectory than would result from the uncorrected bias. However, the compensation
is not perfect and the compensatory effect is combined with the wall avoidance
tendency also observed in unbiased systems.

Figure 5.6: Trajectory of virtual fly
with optomotor response (coloured)
in comparison with the trajectory of
a fly without this response (gray).
This example illustrated the stabil-
ising effect of the optomotor be-
haviour. The system compensates
partly for a rotatory velocity of 100

◦
s .

5.4 Saccadic behaviour

By introducing a saccadic motion pattern as observed in freely flying blowflies,
the system obtains wall avoidance behaviour. During the short saccadic turns
the optic flow is dominated by the rotational component while it mostly reflects
the translational movements of the fly and the distance to the environment in
the straight flight segments between saccades. Thus the behaviour effectively
separates the translational from the rotational components of the optic flow.
Balancing the flow observed by the animal in the intersaccadic parts of the flight
leads to an equalisation of distance to the environment.

For this part of the analysis, the properties of the saccadic system were evaluated
without the optomotor controller to investigate the performance of each system
separately.

5.4.1 Physics of the flight dynamics

Depending on which estimation of the mechanical time constant is correct for
the larger blowflies, the forces needed to steer a saccadic turn are different.
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If, on the one hand, the system is dominated by inertia, as suggested by Fry
et al. (2003), the flies would need to generate a large torque spike to initiate
a saccade and they would need to stop the turn actively by another opposing
torque transient. On the other hand, if friction dominates, as initially suggested
by Reichardt and Poggio (1976), the system would need to produce an almost
constant force during the whole turn.

To avoid the need to solve this problem, the forces are not modelled explicitly,
but the change in head orientation is implemented by application of a template
derived from measurements. For the generation of saccades, a fixed motor pro-
gram is assumed that generates a stereotypical velocity time course for the head
in every saccade. Indeed, the measurements done by van Hateren and Schilstra
(1999) show that the time course of the saccades are very constant over many
saccades. By generating rotations from a template mimicking the average time
course observed in these experiments, the rotatory movements are realistic in re-
spective of the question what forces need to be generated to create such move-
ments.

Figure 5.7 shows the template used for the saccades of the virtual fly in compar-
ison to the average behavioural data. The velocity template is a simple Gaussian
function (σ = 10.5ms) scaled to lead to a turning angle of 68◦. The data of van
Hateren and Schilstra (1999) show that the fly modulates both the duration (σ)
and the amplitude of the velocity time course to achieve different turning angles.
To keep the simulations described here simple, only a small range of turning an-
gles is used and for this range only the amplitude of the template is changed.
However, for larger variations the template should also be scaled with respect to
its duration.

5.4.2 Controller: Saccadic object avoidance

The controller implementing the saccadic flight mode is an adapted version of
the controller described by Reiser and Dickinson (2003). While their original
controller uses the signals of hypothetical fronto-lateral looming detectors as an
input, the version described here generates saccades based on the signals of the
model of HSE-neurons as described in chapter 4.

The controller is based on a state-machine with three distinct states (see figure
5.8).

In the first state, no yaw moment is generated. During the resulting straight
flight, a lowpass filtered response of both HSE signals is calculated separately
and a thresholding is applied to these signals. If one of the lowpass filtered
HSE signals hits the threshold, the controller switches to the second state, ini-
tiating the saccadic turn. The threshold value, originally modelled constant by
Reiser and Dickinson (2003), exponentially declines over time for the described
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Figure 5.7: Velocity template used for the rotational velocity during a saccade.
The template is a Gaussian velocity time-course fitted to the mean head trajec-
tory for ≈ 70◦-turns observed in coil-tracking experiments. Experimental data
redrawn from van Hateren and Schilstra (1999).

State 1:

threshold
adaptive

State 2:

rotation 
templatesuppression

saccadic
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fixed time:

45ms trigger
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fixed time:
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Figure 5.8: The controller circuit gen-
erating saccadic turns has three dis-
tinct states. The saccade is triggered
by a threshold operation (state 1).
To initiate the saccade, a rotational
velocity according to the template
shown in figure 5.7 is generated
(state 2). The system suppresses
new saccades for a fixed time imme-
diately after a saccade (sate 3).
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controller. Starting from a value above the dynamic range of the HSE signals it
asymptotically reaches a value below the typical depolarisation of HSE observed
in straight flight. This exponential decay modulates the probability of the gen-
eration of the next saccade: The longer the intersaccadic interval lasts, the more
probable gets the generation of the next saccade. For a given distance to objects
or walls, this also leads to regular generation of saccades within similar intervals,
as observed in free blowfly flight, without explicitly modelling an internal clock
for saccade generation.

Figure 5.9: Circuit controlling state 1
of the saccadic controller: The low-
pass filtered signal of each simulated
HSE neuron is compared to a thresh-
old value decreasing in time (see
text). The saccade is directed away
from the side reaching the thresh-
old.

HSE

lp

>?

HSE

lp

>?

torque template

left amplitude right

saccade

During the second state, the controller generates the yaw velocity of the saccadic
turn from the Gaussian template. The turning direction is determined by the
side of the HSE cell crossing the threshold. The sign of the turning direction
(towards or away from the triggering HSE) has to be clarified in a first simulation
experiment. To avoid nearby objects, the fly should avoid large image flows. But
due to the inherent ambiguities of the motion detection system this may mean
that the fly has to avoid the side of the HSE with the smaller response amplitude.

A scale factor s determining the amplitude of the Gaussian turn template is cho-
sen randomly from a range of 0.7 < s < 1.3. This results in saccadic angles from
the range of 68 ± 20◦. The second state has a fixed duration of 71ms.
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In the following third state, no new saccade can be generated. The duration of
this state is fixed to 45ms. A further function of this state is described in section
5.4.5

Blowflies fly their saccades not by turning around the yaw body axis, but by
a combination of roll and pitch (Schilstra and van Hateren, 1999; van Hateren
and Schilstra, 1999), leading to a banking like aeroplanes do in a sharp turn.
This directs the upward thrust generated by the wings towards the outer side
of the turn. At the end of a 90◦ saccade, the upward thrust thus is directed
against the prior flight direction counteracting the movement into the old flight
direction driven by inertia, now causing sideward drift. Immediately after the
turn, the fly rolls back into level flight. This behaviour is mimicked by the virtual
fly by generating sideward thrust directed to the outer side of the preceding turn
during the third state of the controller.

During all states, a constant forward thrust is generated by the virtual fly. The
thrust value is chosen to result in a maximum forward velocity of 1m

s in straight
flight.

To evaluate the properties of this controller it was combined with different phys-
ical modules and parametrised differently. Three variations of the simulation are
described in the following sections.

5.4.3 Simulation without inertia

In a first simulation experiment, the physical module does not model inertia
and friction explicitly, but generates a constant forward velocity tangential to
the system’s flight path and proportional to the forward thrust generated by the
controller. This variation may be close to the situation observed in Drosophila by
Tammero and Dickinson (2002b). These very small flies seem to be dominated
by friction so much that they can fly narrow turns without noticeably drifting
into the old flight direction. Consequently, this dynamical model is similar to the
physical model of Reiser and Dickinson (2003) which was intended to simulate
the experiments of Tammero and Dickinson (2002b).

The drift-free situation also fits almost perfectly the dynamics of a robotic vehicle
driving at constant speed. Such a system compensates for the drift movements by
the high drag forces generated by the wheels against lateral movements. How-
ever, this situation is clearly not a valid model for a flying blowfly which has to
deal with considerable drift movements following the saccadic changes in flight
direction.
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5 Simulating the virtual fly

Results

Without inertial drift effects modelled in the trajectory generation, the saccadic
flight mode leads to a reliable avoidance of the cylinder walls in the test environ-
ment when the fly turns towards the side of the HSE cell that is more depolarised
indicating that the system operates in the super-optimal part of the velocity tun-
ing curve. Simulation experiments with different saccade directions clearly show
that this turn direction is crucial for the performance of the system.

Although the amplitude of the saccades is drawn from a pseudo-random distri-
bution, such a system can successfully navigate for more than 4.75 seconds in
the test cylinder in 90% of the flights when the turn is directed towards the side
of the more depolarised HSE cell. Note that each run of the simulation results in
an individual flight path caused by the random selection of saccade amplitudes.

As a control, the saccadic controller was replaced by a module generating sac-
cades to random directions with the same average saccade frequency as observed
in the simulation experiments. Such a random walk is on average much shorter
(see gray histogram in figure 5.10) and can serve as a benchmark for the con-
troller.

To test whether the system performance is stable over different initial conditions,
the starting position within the cylindrical arena was varied. The rate of success is
almost invariant with respect to the starting position within the cylinder. Figure
5.10 shows histograms of the duration of the simulated flights.

If the turn direction is inversed, i.e. if the controller avoids the side of the more
depolarised HSE cell, the system is completely unable to avoid the walls of the
cylinder. In this case all simulated flights are shorter than the average random
flight generated as a control (see figure 5.11).

Figure 5.12 shows an example for the trajectory and the signals generated by the
system. Note that the system generates different trajectories for a given starting
position because the saccade amplitude is chosen pseudo-randomly. The turn
directions, in this example approaching the side of larger HSE depolarisation,
lead to an avoidance of the closer wall for almost all saccades.

Compared to the response to behaviourally generated optic flow (see section
2.4) the simulated HSE neurons show a more distinct response to the saccadic
turns (dashed lines in figure 5.12c). This may be caused by the large amplitude
of the saccades generated by the saccadic controller. The average amplitude is
70◦ which is in the range of the largest saccades observed in the behavioural
experiments (van Hateren and Schilstra, 1999). Smaller amplitudes were not
generated in the simulation with random amplitude selection and will be used
in future versions of the system coupling the saccade amplitude to the neuronal
signals, too.
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Figure 5.10: Histogram of the simulated flight duration of a saccadic flight con-
troller without inertia. Lower panels show the histograms of the duration of
100 flights for each of 4 different starting positions, the upper panel shows an
average of these histograms. The gray bars show the durations of 100 flights
with random saccade generation (direction, exact timing) as a reference. The
blue bars show the durations of the visually controlled flights.

5.4.4 Simulation with inertia

Translational physics: Air drag and inertia

Drag is a force generated by a body moving in a fluid, in this case by a flying
insect in the air. This force is generated by the friction between the body and
the surrounding medium. Its direction is opposite and parallel to the direction
of movement. The size of this force is determined by the velocity and the shape
and size of the body. Depending on the velocity, the size and form of the body
and the viscosity of the medium, different types of flow around the body can be
observed.

At low velocities, smooth and regular so-called laminar flow is observed. In this
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Figure 5.11: Histogram of the simulated flight duration of a saccadic flight con-
troller without inertia for 100 flight for each of 4 starting positions . The direc-
tion of the saccadic turns in inversed in comparison to figure 5.10. A controller
responding by avoidance of the more depolarised HSE cell is by far less suc-
cessful than the random saccade generation.

case, the viscous forces dominate and the drag depends linearly on the velocity.
For a sphere of radius r moving at velocity v, the drag in laminar flow can be
computed by Stokes’ law (Gerthsen and Volgel, 1997):

f laminar
d = −6πνrv (5.2)

where ν is the viscosity coefficient of the fluid.

At higher velocities, vortices occur and disturb the flow. This flow type is called
turbulent flow. The drag in this type of flow depends on the squared velocity. In
turbulent flow, the drag force is

f turbulent
d = −1

2
cdρAv2 (5.3)
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Figure 5.12: Typical example for the trajectory and signals generated by the
closed loop simulation of the saccadic controller without inertia. (a) The tra-
jectory clearly shows the saccadic turns and perfectly straight movements in-
between. (b) The translational velocity is constant, the yaw velocity is derived
from the differently scaled saccadic templates. (c) The signals (dashed lines)
of the right (red) and the left (blue) HSE cell, the according lowpass filtered
signals (red and blue lines) and the threshold of the saccadic controller (black
line).
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5 Simulating the virtual fly

where A is the frontal area of the body, ρ the density of the medium and cd a
dimensionless coefficient depending on the form of the body. For a sphere, the
drag coefficient is typically cd = 0.45.

Information on the type of flow occurring in a certain situation is given by the
Reynolds number, defined as

Re =
ρvL

ν
(5.4)

where v is the velocity, L the length of the body, ν the fluid viscosity and ρ
the density of the fluid. For low Reynolds numbers, the flow is laminar. The
transition to turbulent flow is marked by the critical Reynolds number Re, de-
pending on the form of the body. This transition is not very sharp. For a wide
range of velocities, the flow is in a transitional state so that both mechanisms
are partly responsible for the drag experienced by the moving body. This is il-
lustrated by figure 5.13 showing measured drag coefficients for different bodies
plotted against the Reynolds number characterising the flow situation.

Figure 5.13: Drag coefficient cd of technical bodies in dependence of the Reynolds
number. Note that cd is not constant for small Reynolds numbers. Figure taken
from Nachtigall (2001)

A blowfly operates in this transitional range of Reynolds numbers. For a body
with a length L = 1cm moving at a velocity v = 1m

s , the Reynolds number in
air ( ν

ρ = 1.5110−5 m2

s , Nachtigall (1977)) is Re = 6622.5 being close to the range
of the transition to pure turbulent flow (see 5.13). Therefore it is not trivial to
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5.4 Saccadic behaviour

calculate the drag experienced by a fly at a given velocity.

Two different approaches lead to an estimation of the drag coefficient.

In his diploma thesis, Weiss (2005) made an attempt to measure the drag coef-
ficient of a fly body. To do this, he measured the velocity of a falling fly body
using high-speed video recordings. From the velocity, the weight and the size of
the fly, the drag coefficient can be calculated. He reports a drag coefficient of
cd = 1.6 for his experimental situation.

Another approach is to estimate the drag coefficient on the basis of observations
from behavioural experiments.

To keep flight altitude, half of the force generated by a flying fly must be directed
opposite to the gravitational vector (downwards in forward flight). In a constant
velocity flight, the drag must further be equal to the opposing (forward) force
generated by the animal. The maximal speed observed in free flying blowflies
is approximately 2.5m

s . The maximal translational force a blowfly can produce is
thought to be 2g (Schilstra and van Hateren, 1999) (where g refers the the grav-
itational force generated by the body). Following this, in a flight with maximal
velocity and at constant altitude, the drag equals the gravitational force of the
fly.

mg =
1
2
cdρAv2 (5.5)

With m = 70mg the mass of the fly and g = 9.81m
s2 the gravitational constant.

ρ = 1.29 kg
m3 is the density of air, A = 19.6mm2 the frontal area of the fly (circle

assumed with radius r = 2.5mm), and v = 2.5m
s the velocity of the fly.

The drag coefficient is the only unknown in the above equation and can be cal-
culated to be cd = 8.691 for the given values.

For the simulations described in the remainder of this chapter, a constant value
of cd = 8 was used. It should be noted, that the drag coefficient rises at low
velocities, thus the calculation of air drag with a constant drag coefficient under-
estimates the real drag.

Results

Taking the inertia into account resulting in drift movements following saccadic
turns, the model performance drops considerably. The system is still avoiding
the walls, but the flight duration is longer than 4.75 seconds only in 40% of the
simulated flights (figure 5.14). Furthermore, the performance varies strongly with
the starting position in the simulated cylinder. From a starting position close to
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5 Simulating the virtual fly

the cylinder wall, the system fails more frequently than if started in positions
further away from the walls.

The example drawn in figure 5.15 shows that the virtual fly generates new sac-
cades before the drift following the saccadic turn declines. The result is that
the virtual fly is almost constantly oriented perpendicular to the flight direction,
leading to a trajectory of sideward circular flight.

For these simulation experiments, the controller generated saccades towards the
side of the larger depolarised simulated HSE cell, as was observed to be the
successful direction in the simulations described above.
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Figure 5.14: Histograms of the flight durations observed with saccadic control
and simulation of the inertial forces (compare to figure 5.10).

5.4.5 Simulated banked turns

As an elaboration of the control system, active compensation for the drift move-
ments was added. This resembles the banked turns observed in the saccades of
freely flying flies. Following a saccade, the system generates a short translational
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Figure 5.15: Example trajectory and signals generated by the saccadic controller
with realistic physical modelling. After each saccadic turn, the virtual fly drifts
into the old flight direction. The drag is too small to stop this drift movement
before the next saccade is generated. This reduces the performance of the
system dramatically.
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force peak opposing the expected drift movement.

Controller extended to elicit banked turns

The controller generates a sideward thrust during the second state. If the fly
banks by 90◦, as observed in large amplitude saccades, it directs the upward
thrust sidewards. Further, the system may create additional thrust to actively
counteract the movement. The mean thrust generated by the system described
below was 1.5 times the gravitational force. This sideward thrust is also generated
during state 3 of the controller.

Results

This simple extension of the control mechanism leads to a significant improve-
ment of the system performance. Using this control scheme, the system success-
fully avoids th wall for more than 4.75 seconds in almost all simulated flights
(figure 5.16). This performance is invariant with respect to the starting position.
Even if started relative close to a cylinder wall, the virtual fly avoids the wall.

The example trajectory presented in figure 5.17 shows that the virtual fly suc-
cessfully compensates for the drift. The long axis of the system gets close to the
direction of flight between saccades. However, a residual misalignment of body
axis and flight direction causes non-zero sideward velocity of the system during
intersaccades as observed in the real fly.

5.4.6 Combining saccadic and optomotor control

The saccadic controller described above and the optomotor control system de-
scribed in section 5.3 can be combined by addition of the yaw moment generated
independently by each controller (figure 5.18. The optomotor controller could
stabilise the straight intersaccadic segments in such a combination. The com-
bination was simulated to check that the two mechanisms do not interact de-
structively and to test whether the optomotor controller can stabilise the straight
intersaccadic segments in presence of a rotational offset.

In simulated flights using this combination scheme of both controllers, the virtual
fly shows a performance comparable to the pure saccadic controller. Figure 5.19
shows the duration histogram of simulated flights using the combined controllers.
For this simulation experiment, a constant turning velocity of 10

◦
s was added to

the yaw moment generated by the controller. Such a situation could arise from a
small asymmetry in the motor or wing apparatus of the fly.
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Figure 5.16: Histograms of the flight durations observed with additional drift
compensation as observed in the banked turns of flies (compare to figure 5.14).

5.4.7 Different environment

A fly is capable to successfully navigate in different environments. For example,
flies are able to fly around in human buildings although these environments dif-
fer significantly from the natural surroundings in which the evolution of the fly
navigation system took place. A good model for the navigation system thus must
also be able to deal with a variety of environmental situations.

Additionally to the simple cylinder, the saccadic controller was tested in two
other environments.

Additional obstacle

The first test environment was simply derived from the cylindrical environment
by adding an additional obstacle. The obstacle was a cylinder with a diameter of
4.5cm. It was placed in the centre of the cylindrical flight arena. The texture of
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Figure 5.17: Example of a trajectory and signals of a saccadic controller compen-
sating for the drift movements by mimicking banked turns. Like in the prior
examples, plot b shows the velocities of the system and plot c shows the neu-
ronal signals and the threshold. Plot d additionally shows the forces generated
by the virtual fly. The constant forward thrust (red), the yaw moments (black),
and the sideward thrust compensating the drift (blue).
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Figure 5.18: A possible combination
scheme of the two controllers. The
yaw moments independently gener-
ated by both controllers are com-
bined by addition.

the obstacle is a copy of the one covering the surrounding walls, compressed in
one direction to the length of the smaller perimeter.

The performance of the system is reduced by the presence of the additional ob-
ject (figure 5.20). Only a fifth of the flights lasts longer than 4.75s. Compared to
the durations of the random flights, the controlled flights are just slightly longer.

From certain positions in the cylinder the system seems to navigate towards the
object instead of avoiding it. Such a behaviour could be interpreted as a fixation
behaviour or a targeted landing behaviour in a real animal. This behaviour leads
to a number of flights shorter than expected from random behaviour (lower left
Histogram in figure 5.20). An example for such a “fixation” flight is shown in
figure 5.22.

Living in a Box

A second test environment was a box like the one used in the experiments de-
scribed before in chapter 4. For the simulated flights, the length of the cube edge
was scaled to the diameter of the cylinder.

The cylinder setup and the box used in the experiments differ not only with
respect to the geometry but also to the textures covering the walls. Using the
same random dot texture as in the simulation experiments in the cylinder, the
performance of the system is comparable for both spatial layouts. Simulation
experiments with the box textured like the flight arena used by Schilstra and van
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Figure 5.19: Histogram for flight durations for the combination of saccadic control
and optomotor reflex.

Hateren (1998b) reveal that the change in texture is a critical one.

In this differently textured cube, the virtual fly cannot successively avoid the walls
although real flies successfully navigate in a much smaller version (Schilstra and
van Hateren, 1998b). All simulated flights are shorter than 4.5s and even slightly
shorter on average compared to random flights (figure 5.23). Again, the system
seems to fly towards the walls of the environment instead of avoiding them.

Changing the sign of the saccade directions so that the virtual fly avoids the side
of larger HSE depolarisation does not change the situation qualitatively. The
controlled flights in this case also are shorter than the random flights.

Depending on the starting position within the cube, the system hits a certain
part of the wall. Figure 5.24 shows the “landing” position in dependence of the
starting position of the system. The corners of the box seem to be a target of the
system in some cases. For a starting position in front of one wall (red asterisk),
the system turns around by 180◦ and flies towards the wall behind the virtual fly
in the starting direction.

134



5.4 Saccadic behaviour

0 1 2 3 4 5
0

50

100

0 1 2 3 4 5
0

50

100

0 1 2 3 4 5
0

50

100

0 1 2 3 4 5
0

50

100

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

20

40

60

80

100

flight duration[s]

fli
gh

ts
 [%

]

Figure 5.20: Histogram of the durations of simulated flights in presence of a
central obstacle in the cylindrical arena. The performance of the system is
reduced by the introduction of the additional object (compare to figure 5.16).
In certain positions within the arena the system tends to navigate towards the
object instead of avoiding it.
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Figure 5.21: Final positions of the
trajectories hitting the wall or the
object in a cylindrical environment.
The different symbols reflect the
starting point of the trajectories.
Symbols inside the cylinder mark
the start, symbols on the cylinder or
object walls mark the end of an tra-
jectory.
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Figure 5.22: Example trajectory for
the fixation behaviour of the system
in certain positions in the arena.
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Figure 5.23: Histogram of the flight durations observed in a box environment.
On average, the flights are shorter than the random flights in this environment.
The lower panels show the separate histograms for the 100 flights for each
starting position, the upper panel shows the joint histogram of all starting
positions.
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Figure 5.24: Positions of the vir-
tual fly hitting the wall of a cube
with low-contrast texture in depen-
dence of the starting positions. Each
colour/symbol is assigned to a cer-
tain starting positions, dashed ar-
rows indicate the starting directions.
Each symbol on the walls (dashed
box) indicates the end point of one
flight.

On first sight, this seems to contradict the finding that the responses of the model
to the behavioural trajectories are robust against changes in texture (see section
4.2.7). However, the difference measure defined in chapter 4 compares two
responses after optimally scaling one to the amplitudes of the other. To check
whether a difference in amplitude can cause the performance drop observed with
the natural scene texture, the simulation experiment was repeated with a halved
threshold value. This shortens the duration of the intersaccadic periods because
the lower threshold reaches the value of the lowpass filtered HSE signals earlier,
but it does not enhance the performance qualitatively.

Single-flight experiments with different other textures show that the system per-
forms well for most textures tested but fails for some textures similar to the natu-
ral textures used in the behavioural experiments. Furthermore, the performance
of the system for a given texture can be reduced dramatically by reducing the
contrast of this texture. This indicates that the contrast sensitivity of the sensory
system may cause these results. In contrast to the blowfly system, the sensory
module does not contain contrast saturation. Introducing such a saturation may
lead to a more robust behaviour of the system in low-contrast environments. A
recent study proposes a simple motion adaptation mechanism which is shown to
largely reduce the sensitivity of the sensory module for contrast changes (Shoe-
maker et al., 2005). Such a mechanism should be integrated in the sensory
module for further studies.

5.5 Summary and Discussion

The sections above describe the closed-loop simulation of a simple hypothetical
control scheme based on the responses of the sensory neuronal model discussed
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in chapter 4. The results show that visual navigation based on the signals of
HSE neurons is possible. Two different basic behaviours can be generated on
basis of these signals. On the one hand, the HSE responses can serve as input to
a module implementing the so-called optomotor response, on the other hand,
saccadic obstacle avoidance can be implemented based on these signals.

The results obtained with a continuous optomotor-like coupling show that an
optomotor controller parameterised to create a realistic response to pure rota-
tional stimuli is incapable of controlling a wall avoidance. It has been shown
in different studies, that such a circuit can correct for systematic asymmetries
of the motor system of a robot (Webb and Harrison, 2000; Webb et al., 2004).
A similar circuit also is able to implement some fixation reflexes as observed in
fly behaviour (Huber et al., 1999). Principally, obstacle avoidance can also be
achieved by balancing the optic flow on both sides of a translating animal.

However, it is unlikely that such a circuit generating continuous rotations will
show both the optomotor response and an obstacle avoidance behaviour for a
theoretical reason. During translational movement, both HSE cells are confronted
with front-to-back optic flow. If the translation is overlayed by a rotation, the
velocity of this flow is reduced on one and increased on the other eye. For
instance, for an overlayed turn to the right, the left eye is confronted by faster
flow than the right eye. A similar asymmetry is caused by a closer object on
one side of the system. If e.g. the left wall in a tunnel is closer than the right
one, the left side again faces a faster optic flow compared to the right side.
However, the appropriate response to both situations should have the opposite
sign. To compensate an overlayed turn, the system has to turn towards the side
confronted with the faster flow (the turn to the right in the example must be
compensated by steering leftward), while it must avoid this side for the wall
avoidance task (the close wall on the left side would be avoided by steering
rightward).

On the basis of spatially integrated horizontal flow information the system cannot
distinguish between the two situations described above. Nonetheless, the optic
flow fields differ between these situations. The focus of expansion, indicating the
direction of movement, is located frontally if the system translates forward. If this
situation is detected, the system can safely assume an asymmetry to indicate an
object and respond by avoidance of the larger flow. Otherwise, the system may
correct for the rotation causing the lateral position of the focus of expansion.

The closed-loop simulations using the saccadic control scheme show that this
behavioural paradigm can indeed separate the rotational and translational com-
ponents of the optic flow and thereby enable a controller to respond correctly
to the translational flow information coded in the signals of large-field motion
sensitive neurons. However, the sign of the successful turning response to an
asymmetry in the HSE signals shows, that the inherent ambiguities of the motion
detection system cannot be resolved by this approach either. A saccadic con-
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troller thus also has no chance to detect solely on the basis of these signals, if a
small response of the HSE neuron is caused by small translational flow and thus
by far distant objects or by very high velocities caused by nearby objects.

However, for future modelling attempts this observation could guide changes in
the controller design or controller strategy. The signals of additional sensors such
as the other HS or the vertically sensitive VS cells could be used by the controller
to distinguish between the two possible reasons for a low HSE response during
forward translation.

Furthermore, additional signals could be used to control other flight parameters
such as thrust, pitch or height above the simulated ground.

Another possible strategy for the system, completely different from the one de-
scribed above, could be to actively search for movements that maximise the re-
sponse of both HSE neurons. While this would lead the virtual fly into the vicinity
of objects on the one hand, it also keeps the system at a safe distance to these
objects. Both a large and a small distance would then cause the signal of the
HSE cell to drop beyond the maximal value, either because of low optic flow or
because of large velocities in their receptive fields.

The simple control scheme described above randomly chooses the amplitude of
the saccades. While this keeps the system simple, it is by no means a plausible
strategy for the fly. The saccadic amplitude could for example very well be gen-
erated from the differential HSE response. The larger the asymmetry in the signal
amplitudes, the larger a saccade could be.
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6 Summary, outlook and conclusion

The navigational system of the virtual fly presented in this thesis can be de-
composed into a sensory module and a sensor-motor coupling module. Both
modules were implemented and tested as described in the previous chapters.
Much of the knowledge used in this implementation was derived from the large
amount of literature published over five decades of research in the field of optic
flow processing in insect brains. A short overview of the knowledge relevant for
this theses is given in chapter 2.

Although the algorithms implemented in the sensory module described in chap-
ter 4 are described in detail in the literature, the response of a joint implementa-
tion of all these components to image sequences a fly is typically confronted to
in behaviour had to be tested.

Chapter 3 describes several technical tools necessary to generate such image se-
quences and to replay these sequences to a real fly to get a benchmark for the
calibration of the sensory model. The first step in this process is the quantita-
tive analysis of behavioural experiments which is aided by the computer vision
system presented in section 3.4. Using computer graphics methods the image
sequences a fly has seen can be reconstructed from the flight trajectory and a
3D-model of the experimental setup using computer graphics techniques as de-
scribed in section 3.2. These image sequences can then be replayed to the fly.
Because of the almost panoramic visual field of the fly’s facet eyes and its very
fast photoreceptors this replay necessitates a special purpose device, the FliMax
described in section 3.3, for presentation of these images.

The possibility to confront a fixated fly in an electrophysiological experiment with
image sequences that represent what a fly sees in a behavioural experiment re-
vealed that some of the conclusions drawn from experiments using more classical
stimuli were incomplete. These experiments revealed that cells previously inter-
preted to act mainly as rotational sensors also encode translational information
in their signals in a potentially useful form.

While these results were unexpected, the computational model of the sensory
pathway is able to reproduce these results quantitatively as shown in chapter 4.
The model described there has the long-known computational structure. How-
ever, this analysis is the first one calibrating the model parameters systematically
with respect to behaviourally generated stimuli. This analysis reveals that the
model is astonishingly robust against parameter changes when stimulated with
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behaviourally generated image sequences which again is an unexpected result be-
cause the same model is far less robust, if classical stimuli are used for the calibra-
tion. An important result of the model study was that the parameters determined
by classical stimulation lead also to a model response to behaviourally generated
stimuli that qualitatively fits the biological counterpart. Although these are not
the optimal parameters for this fit, this result makes clear that there is no obvious
adaptational change in the system properties between the different experimental
situations.

Based on the resulting sensory module, the implementation of hypothetical sen-
sor-motor coupling modules is possible. By a simple dynamical model of the
flight mechanics, the control loop is closed and flights of the virtual fly in a
simulation experiment are possible. Examples for such controller modules and
results of simulation experiments were described in chapter 5.

These simulation experiments show that the avoidance of obstacles and the sta-
bilisation of the flight direction using visual information coded in only two neu-
rons of the fly brain can indeed be concurrently mimicked by such a system. Nev-
ertheless, the experiments using a different wall texture or an additional object
also make clear that both the sensory module and the sensor-motor coupling are
still far from a perfect model of the fly neuronal system. Different extensions are
necessary to make the system more robust against changes of the environmental
structure. Furthermore, the system as described above is, so far, only capable to
steer in two of the six degrees of freedom a real fly successfully controls.

6.1 Outlook

The research tools and the simulation model discussed so far can be extended
in many respects. The following sections describe some possible directions of
further development.

6.1.1 Extension of the model system

The model system as presented in chapters 4 and 5 covers only a small part of
the known neuronal structures and the behavioural repertoire of the blowfly.

Additional sensory features

Additional to the HSE neuron modelled as described in chapter 4, the fly has at
least 12 other large-field motion sensitive output neurons in each visual hemi-
sphere. These cells are characterised anatomically and physiologically and they
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seem to be very similar in their overall structure and function to the HSE neuron.
They clearly differ in the positions of their receptive fields and in their preferred
directions of motion, but they seem to be comparable in respect to their com-
putational properties. Thus it should be straightforward to adapt the model to
these cells and to jointly compute the activity pattern of the whole ensemble
formed by these neurons.

While these wide-field neurons are thought to analyse the aspects of the optic
flow that reflect the self-motion of the animal, other neurons specialised on de-
tecting discontinuities in the flow flied are possible sources of information on
small objects in the visual field of the fly. Models of such neurons could further
extend the sensory module of the virtual fly.

Sensor-motor coupling

The sensor-motor coupling scheme described in chapter 5 is based on hypothe-
ses resulting from behavioural experiments. Without further insights into the
neuronal networks of the fly brain processing the tangential cell signals, no real
constraints exist for the computational structure of such a coupling.

Heuristic optimisation methods such as genetic algorithms and genetic program-
ming or machine learning paradigms could aid the design of such a coupling.

One possible approach could be to optimise the entire coupling mechanism with
respect to a certain task. For example, the task could be to avoid the walls
in a given environment. The coupling could then be modelled as an artificial
neural network which is optimised by reinforcement learning. The tangential cell
signals would be the input for the network, the forces generated by the virtual fly
would be the output. The duration of simulated flights using a candidate network
could be the “reward” used by the training algorithm to optimise the network.
Since the signals of the tangential cells may have crucial information in their
time structure which would lead to different interpretation of a given activation
pattern depending on the history of the signals, it might be useful to model the
controller with a method that allows such dependencies to be discovered.

Another approach to the design of the coupling mechanism could be to split the
controller and optimise the components individually. For example, the saccade
generating module of the controller discussed in chapter 5 could be replaced by
an artificial neural network which is optimised in a supervised learning paradigm
using experimental data. The data used for the calibration of the sensory model
(see chapter 4) could easily be used for such an optimisation. The input of the
network would then be the sensory neuronal signals (either of the HSE neurons
or of a simulated tangential cell ensemble) and the output to be learned would
be a representation of the timing, amplitude, and direction of saccades. If the
network is able to predict the saccades generated by the real fly from the signals
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of the sensory neuron, it could be used as a saccade generation module in the
controller of the virtual fly. Furthermore, an analysis of such a network could
give hints to neurophysiologists to search for certain couplings in the brain of the
real fly e.g. if only a part of the neuronal ensemble activity is evaluated by the
network.

6.1.2 Recording of behavioural data

Recording of behavioural data with fixed camera positions has the drawback, that
the camera images need to show the entire experimental setup.

An active camera system that tracks the movements of the animal, would al-
low the observation using smaller viewing angles and thereby would increase the
effective resolution of the animal in the camera image. This would allow the re-
construction of the head’s trajectory from a video sequence which is the relevant
trajectory for the analysis of optic flow processing.

Such a system could be constructed with relatively little effort using standard high
speed cameras mounted as a stereo camera system on a pan-tilt motor controlled
by a real-time vision system equipped with a camera viewing the entire setup (see
figure 6.1). This camera does not need to have the temporal resolution necessary
for the detailed analysis of behaviour, because the task of this system would only
be to ensure that the animal is in view of the high speed cameras throughout
the entire recording time. Since the position of the animal does not have to
be reconstructed very precisely for the control task, the spatial resolution of the
controlling could be low, making the real time image processing feasible.

6.1.3 FliMax in closed loop

The FliMax stimulation device was only used for replay experiments, so far. In
such experiments, the neuronal responses to a prepared set of stimuli can be
recorded. The resulting data are valuable material for the system analysis of the
neuronal circuits processing the stimuli.

However, the same device can be used for online stimulation in a simulated
closed loop experiment. In such an experiment either behavioural or neuronal
responses of an animal can be coupled to the temporal development of the stim-
uli. The electrophysiologically recorded signals of certain neurons or the reactions
of a tethered flying animal could be used as the input to a flight simulator in a
animal-computer hybrid.

The hardware described in section 3.3 allows such an approach, if the software is
extended appropriately. The Linux version of the driver code is already prepared
to display stimuli generated in real time. However, the current implementation
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Figure 6.1: Schematic draw-
ing of a possible active be-
havioural recording setup.
Based on the real time pro-
cessing of the images of
a low resolution and low
speed camera, the viewing
direction of a high speed
stereo recording system can
be controlled. The active
movements of the recording
cameras allow a small view-
ing angle and thereby a high
resolution of the observed
animal.

of the rendering process is far to slow for this task. A major acceleration of this
part of the software could be achieved by the use of the 3D acceleration offered
by modern graphics hardware.

Another precondition for simulated closed-loop experiments is the real time
recording of behavioural responses. The tracking of wing beats as described
in section 3.4 could be coupled to simulated movements of the animal. Prior
closed-loop experiments have already shown that flies show interesting behavi-
ours in such a setup.

6.1.4 Further development of the wingbeat analyser

The wing beat analysis could be extended in order to record wing beat param-
eters initiating the saccadic rotations observed in free flight. As discussed in
section 3.4.3, the current data analysis did not reveal a saccade-like event, but
the real fly obviously is able to initiate saccadic turns so that such an event must
be present in the wing beat pattern. One aspect of the pattern not yet analysed
is the rotation of the wing about its long axis. This rotation should cause mod-
ulations in the width of the wing as seen from the tracking camera and if these
can be extracted, they might be the key to saccadic turn initiation.
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6.2 Conclusion

Flies are more or less nothing but bothersome for most people. The artistic
flight manoeuvres of these animals and the amazing capabilities these animals
gain from their small brains make them even more annoying, because they make
it very difficult to catch a fly. Viewed from a different perspective, these small
flying animals are highly interesting creatures. With a brain weighing only a view
milligrams they solve several problems that are still challenging tasks for artificial
systems.

Flies are able to avoid obstacles in their flight path on the basis of visual infor-
mation. Simultaneously they use the same source of information to control their
orientation in respect to the environment and to stabilise their flight path. To
solve these problems, evolution developed algorithms that are amazingly robust
against changes in environmental structure. Flies are able to navigate not only in
a wide variety of natural habitats, but also in artificial environments like human
buildings.

The part of the neuronal system of the fly analysing this information is one of
the best known neuronal circuits in animal kingdom. The neuronal structures
of the fly motion vision system were analysed with behavioural as well as neu-
roanatomical and neurophysiological techniques over several decades. A detailed
algorithmic model for the computations implemented by this neuronal network
was derived in these studies.

For technical autonomous systems such a visual control is associated with a very
high computational effort. Visual navigation systems also typically rely on certain
structural features of the environment and thus lack the robustness observed in
biological systems. Some of these technical systems are already inspired by the
computational strategies flies use to analyse the visual information.

This thesis presents contributions to the attempt to mimic the fly navigation and
flight control in an artificial system here called the virtual blowfly. Building such
a virtual fly is interesting for biological research as a test-bed for hypotheses on
the computational structure of the fly neuronal system, on the one hand, and for
engineers constructing autonomous robots as a source of more inspiration, on
the other hand.
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Reichardt W, Varjú D (1959) Übertragungseigenschaften im Auswertesystem für
das Bewegungssehen. Zeitschrift für Naturforschung 14b: 674–689.

Reisenman C, Haag J, Borst A (2003) Adaptation of response transients in fly
motion vision. I: Experiments. Vision Research 43: 1291–1307.

Reiser MB, Dickinson MH (2003) A test bed for insect-inspired robotic control.
Philosophical Transactions of the Royal Society London A 361: 2267–2285.

Roberts K, Coombs D (1993) Centering Behavior Using Peripheral Vision. In: IEEE
Compter Society Conference On Computer Vision And Pattern Recognition,
pp. 440–445.

Schenato L, Deng X, Wu WC (2001) Virtual Insect Flight Simulator (VIFS): A Soft-
ware Testbed for Insect Flight. In: IEEE Int. Conf. Robotics and Automation,
pp. 3885–3892.

Schilstra C, van Hateren J (1998a) Using minitaure sensor coils for simultaneous
measurement of orientation and position of small, fast-moving animals. Journal
of Neuroscience Methods 83: 125–.

Schilstra C, van Hateren J (1999) Blowfly Flight and Optic Flow. I. Thorax Kine-
matics and Flight Dynamics. Journal of Experimental Biology 202: 1481–1490.

Schilstra C, van Hateren JH (1998b) Stabilizing gaze in flying blowflies. Nature
395: 654.

Shoemaker PA, O’Carroll DC, Straw AD (2005) Velocity constancy and models
for wide-field visual motion detection in insects. Biological Cybernetics .

Smakman JG, van Hateren JH, Stavenga DG (1984) Angular sensitivity of blowfly
photoreceptors: Intracellular measurements and wave-optical predictions.
Journal of Comparative Physiology A 155: 239–247.

Sonka M, Hlavac V, Boyle R (1999) Image Processing, Analysis and Machine Vi-
sion. 2nd ed., PWS Publishing.

Srinivasan M, Zhang S (2003) Motion Cues in Insect Vision and Navigation. In:
Chalupa LM, Werner JS, editors, The visual neurosciences, pp. 1193–1202,
MIT Press.
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