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“Among the most important functions of language is the 
communication of perceptual experience. Language affords each of 
us the abilit y to have a private perceptual experience and then tell 
other people what we have seen or heard. […] While this is 
obviously an important linguistic capacity, we know very littl e 
about the process by which people ‘ transform’ their perceptions 
into language, nor about the processes by which people ‘ transform’ 
someone else’s description into an ‘understanding’ of a perceptual 
experience.”  

(Clark, Carpenter, & Just, 1973: 311) 
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1 Introduction 

Referring to objects in the outside world is one of the fundamental functions of 

language. Although there are simple ways of referring to an object by non-verbal 

means, such as pointing at it, speakers usually specify the objects they are referring 

to verbally, in order to talk about them and to make the object name available for 

further discourse (cf. Pechmann, 1984; Pechmann & Deutsch, 1982). Depending on 

the complexity of the situation, referring expressions may differ with regard to their 

degree of elaboration: If there is only one exemplar of a given object type, the 

object’s name should be suff icient to identify it; however, when speakers refer to an 

object in the context of several other objects, they often have to specify it by means 

of a set of features that clearly distinguishes it from the other objects (Olson, 1970). 

In order to assess the act of referring to an object, the referential communication task 

has been developed (Piaget, 1926). In this task, subjects are asked to name one of 

several multidimensional objects in such a way that a li stener will be able to uniquely 

identify the intended object. Multidimensionality, in experiments on referential 

communication, generally means variation between objects in terms of dimensions 

such as color, size, and object class1 (Danks & Schwenk, 1972; Eikmeyer & Ahlsén, 

1998; Ford & Olson, 1975; Herrmann & Deutsch, 1976; Olson, 1970; Pechmann, 

1989; Whitehurst, 1976). 

Until now, littl e effort has been spent on investigating the procedural aspects of 

the cognitive processes involved in the production of complex noun phrases in a 

referential communication task. Pechmann (1989, 1994; see also Pechmann & 

Zerbst, 1994) was the first to conduct experiments on referential communication 

using reaction times as a dependent variable. His research yielded important insights 

into the nature of the relevant cognitive processes and opened up new directions in 

the empirical research on referential communication.  

However, neither qualitative analyses of utterance structures nor reaction time 

measurements can fully capture the exact time course of the processes involved in 

generating complex noun phrases in a referential communication task, as they are 

                                                 
1 The term object class is used in the logical sense of the term class. Thus, the object class of cap, 

for example, contains elements like a large red cap, a small red cap, a blue, and a green cap, but no 
other object except for a cap. 
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solely based on the analysis of overt reactions. Eye tracking techniques, in contrast, 

permit more detailed analyses of the time-course of the conceptual preparation and 

the formulation processes preceding the overt reaction (Meyer, Sleiderink, & Levelt 

1998; Meyer & van der Meulen, 2000; Pechmann, 1989). Since they provide 

information about when and for how long objects in a display are viewed, they allow 

on-line measurements of the processes underlying referential communication, such 

as the evaluation of the referent object (target object) and its relation to the 

surrounding objects (context objects), the selection of properties of the target object 

to be verbalized and the formulation of the object’s specification. 

In the following, I will first give an introduction to the theoretical background of 

the investigation presented in this work and discuss open issues in empirical research 

on referential communication. Some of these issues were addressed in a series of 

experiments: Experiments 1 and 2 were designed to investigate the processes under-

lying stimulus discrimination and the relation between perceptual and linguistic en-

coding processes during the generation of complex object specifications. In Experi-

ment 3, the results from the first two experiments were extrapolated to more complex 

object configurations, in order to explore in more detail the perceptual and 

procedural determinants of the form of complex object specifications. The results 

will be discussed in a general framework in view of procedural aspects of language 

production, shedding a new light on previous findings and open issues in the research 

on referential communication.  
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2 Empirical Framework and Theoretical Background 

As indicated above, the procedural aspects of the cognitive processes involved in 

referential communication have not yet been explored in detail . The present work is 

embedded in two broad lines of empirical research: 

• The work is tightly linked to present research on speech production processes: In 

the 1990ies, most of the empirical work on the production of referring ex-

pressions was focused on naming simple objects. Lexical access was one of the 

major research fields that were investigated by various experimental paradigms, 

most of them using one-word utterances (see Levelt, Meyer, & Roelofs, 1999, for 

a review). Although the theoretical views on lexical access processes are still 

controversial, there seems to be a shift of interest towards more complex 

utterances that provide insight to coordinative lexical processes during the 

production of syntagms and phrases (Levelt & Meyer, 2000; Meyer, 1996, 1997; 

Schriefers, 1992, 1993; Schriefers, de Ruiter, & Steigerwald, 1999; see also 

Caramazza & Miozzo, 1997; Miozzo & Caramazza, 1999; Schriefers & Teruel, 

2000). The results obtained on lexical processes in complex utterance generation 

will have to be aligned with the wide range of empirical investigations on 

syntactic processes in sentence production (e.g., Bock, 1982; Bock, Loebell , & 

Morey, 1992; Griff in & Bock, 2000; Hartsuiker, Kolk, & Huiskamp, 1999).  

• The experiments tie in with previous investigations on the linguistic form of 

object specifications in referential communication. The referential communica-

tion task has been widely used in language acquisition research, and many 

investigations therefore focused mainly on the information that is conveyed by 

the observed specifications (Deutsch & Pechmann, 1982; Ford & Olson, 1975; 

Sonnenschein, 1982, 1985; Whitehurst, 1976; Whitehurst & Merkur, 1977). 

Similarly, studies on adults’ performance were primarily aimed at determining 

the impact of pragmatic variables, such as common ground, on the speaker’s 

object specifications. There are only a few studies that focused mainly on the 

form of the utterances; most of them are dated back to the 1970ies and 1980ies 

(Byrne, 1979; Deutsch & Pechmann, 1982; Herrmann & Deutsch, 1976; Martin, 

1969a; Olson, 1970; Pechmann, 1984; Danks & Schwenk, 1972). Extensive 

empirical research has been done in the framework of research projects on object 
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naming and on the variabilit y of referential object specifications at the 

Universities of Marburg and Mannheim, Germany (cf. Deutsch, 1994; Mangold-

Allwinn, 1994 for reviews and Herrmann & Deutsch, 1976; Mangold-Allwinn, 

Barattelli , Kiefer & Koelbing, 1995 for details).  

In this chapter, after a short survey of object reference and naming in referential 

communication, I will point out which processing stages can be assumed to underlie 

complex object descriptions, and how information is processed within and between 

these stages. After that, the empirical framework of the present work will be 

introduced, and methodological issues of eye tracking as experimental technique will 

be considered in detail .  

2.1 Object Reference and Naming in  

Referential Communication 

In the present work, a distinction is made between the terms “naming” and “object 

reference” in the following sense: Following Stachowiak (1978: 208) naming mainly 

occurs in “ fairly restricted situations” , such as introducing each other or teaching and 

testing. Naming is typically verbal and is commonly used in experiments on the 

processes underlying speech production (cf. Bock, 1996, for an overview). Object 

reference, in contrast, is much less restricted and is ubiquitous in everyday inter-

actions. Its general pragmatic aim is to identify a referent. Therefore, referring to 

objects is not necessarily verbal, and naming is but one special case of object 

reference. Pechmann and Deutsch (1982: 331) argue that, from a more general point 

of view, “object reference may be defined as an action by which one person tries to 

focus the attention of another person on a certain part of the environment.” As 

indicated at the beginning, there are multiple ways to refer to objects – the most 

obvious being pointing at something that both speaker and listener can see (see also 

Terrace, 1985, for an evolutionary perspective on (non-)verbal reference). Using a 

referential communication task that allowed both verbal and gestural reference to an 

intended object, Pechmann and Deutsch (1982) investigated how frequently children 

(aged two to nine years) and adults use pointing gestures as opposed to verbal 

descriptions. When pointing gestures served a referential function, children and 

adults used them about equally often. At the same time, they tended to reduce the 
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contextual detail of their verbal descriptions. However, when – due to spatial 

conditions – pointing was not suff icient for a successful identification of the intended 

object, the frequency of pointing decreased with age, while at the same time the 

frequency of adequate descriptions increased. The high frequency of ineffective 

pointing by younger children is not due to their diff iculties in assessing the 

functionality of the pointing gesture in relation to the given spatial configuration. It 

rather supports the view that children use non-verbal means of reference before the 

appropriate linguistic means have been acquired (see Clark, 1978).  

In the following, I will focus on genuinely verbal object reference only, i.e. 

reference to objects without the aid of pointing or other gestures.  

2.1.1 Cognitive Determinants of Object Reference 

The act of referring presupposes the abilit y to categorize perceptual data and to 

decide which features of the intended referent are relevant to identify it. Perceptual 

categorization or classification integrates two basic mechanisms, namely differentia-

tion and generalization of features. Correctly assessing which features of a referent 

are relevant to identify it, minimally requires that a speaker is able to differentiate the 

referent from potential alternatives. Note that, for a unique object specification, a 

speaker needs not necessarily limit his description to the minimally distinctive 

features (minimal distinctiveness), but may mention non-distinctive features as well 

(referential overspecifications). Beyond that, there may be multiple ways to 

(minimally) refer to an object on different levels of specification (degree of 

elaboration): In the context of a large red ball , a small green ball might be referred 

to as “ the green ball ” , “ the small ball ” , or “ the small green ball ” . Similarly, a male 

person might be named Daddy, Father, Heinz, Uncle, Love and by many other terms 

(Herrmann & Deutsch, 1976).  

The development of non-verbal cognitive abiliti es goes hand in hand with 

linguistic development. During language acquisition, children tend to overextend the 

semantic content of words or the use of syntactic rules (overgeneralizations; cf. E.V. 

Clark, 1973), which can be regarded as an instance of evolving differentiation and 

generalization processes. Haviland and Lempers (1984) found that children’s 

classification skill s contribute to their performance on referential communication 
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tasks. The impact of their performance on classification tasks requiring an 

understanding of common properties, such as a block-sorting task, a class-inclusion 

task, or a class-intension task, was highly dependent on age and vocabulary size. 

Similarly, Camaioni and Ercolani (1988) showed that comparison performance was 

significantly related to performance in referential communication tasks. In particular, 

young children with high comparison abiliti es performed similarly to older children 

with lower comparison abiliti es. Stachowiak (1978) reports studies that show that 

performance on the Token Test (de Renzi & Vignolo, 1962), which has proved to be 

a highly sensitive diagnostic tool for the detection of aphasic deficits, correlates not 

only with performance on language comprehension tests, as originally intended, but 

also with production tests (e.g. object naming). He argues that the Token Test, 

“although it concerns not the encoding but the decoding of the naming function, 

measures exactly these faculties” (Stachowiak, 1978: 214), i.e. the faculties to 

categorize and select features for the exclusion of referential alternatives.  

2.1.2 Pragmatic Determinants of Object Reference 

In everyday situations there are multiple pragmatic factors that determine object 

specifications during communication (Clark & Wilkes-Gibbs, 1986; Hupet & 

Chantraine, 1992). The common ground of the interlocutors plays an important role 

in deciding whether a message is informative or not (Fussell & Krauss, 1992; Horton 

& Keysar, 1996, 1998; Sodian, 1988; Sonnenschein, 1986, 1988). Young children’s 

failure to communicate an adequate and unambiguous manner is often attributed to 

their general diff iculties in giving up their own perceptual or conceptual perspective 

(egocentrism; cf. Piaget, 1954; see also Sonnenschein, 1988, for a broader account 

on the basis of general communicative skill s). In contrast, adult speakers tend to give 

redundant information in their object descriptions (referential overspecifications, see 

Pechmann, 1984).  

Pechmann (1984) investigated the origins of referential overspecifications taking 

into account the speakers’ discourse model. He identified two types of referential 

overspecifications, marked by means of prosodic stress: Endophoric overspecifica-

tions are related to the preceding discourse. Speakers may specify redundant features 

of an object in order to contrast it with an object that has been described immediately 
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before. Exophoric overspecifications, in contrast, are related to the set of contextual 

alternatives that are perceivable for both speaker and listener.2 In his analyses, 

Pechmann found that extra stress is given on endophoric, but not on exophoric 

overspecifications. Exophoric overspecifications have proved to help the listener 

identify the target object (Mangold, 1986; Sonnenschein, 1982, 1984). Some authors 

even proposed that speakers use referential overspecifications strategically, to help 

the listeners find the referent (Mangold & Pobel, 1988).3 Note, though, that 

particularly for the case of referential overspecifications, such pragmatic factors are 

closely intertwined with perceptual determinants of object reference: An important 

determinant of exophoric overspecifications seems to be the detectabilit y of features, 

which is determined by the types of dimension involved (relative vs. absolute) and 

the distribution of features in the field of contextual alternatives (Herrmann & 

Deutsch, 1976; Herrmann & Grabowski, 1994). The latter aspect has been proved to 

affect feature selection in minimal specifications, too: When two dimensions are 

equally adequate to minimally specify the referent, speakers tend to specify the 

dimension that is easier to detect (Herrmann & Deutsch, 1976). 

Speakers usually act according to conversational rules and conventions 

(Herrmann & Grabowski, 1994). Grice (1975) assumes that speakers, being co-

operative, conform to a set of conversational maxims. The maxims of quantity and 

manner state that a speaker should be brief but informative and avoid obscurity of 

expression and ambiguity. Adult speakers normally perform well i n terms of 

informativeness, since they are able to monitor their utterances with regard to 

ambiguities (for examples, see Eikmeyer & Ahlsén, 1998; Levelt, 1983). The maxim 

                                                 
2 For an ill ustration of the terms exophoric and endophoric overspecification, take, for instance, 

the following fictive dialogue on a set of three objects, a RED PLASTIC CUP (Object 1), a RED 

PORCELAIN CUP (Object 2) and a YELLOW PLASTIC CUP (Object 3). Imagine speakers A and B having 
the task to pack these objects into a box for removal. 

Speaker A: “Hand me the yellow plastic cup, please.”  
Speaker B: “No, we should take the red porcelain one first.”  

In the context of the two red cups, speaker A had to name the color only to refer unambiguously to 
object 3, i.e. he produces an exophoric overspecification of the material. Speaker B produces an 
overspecified utterance, too: Although it would be suff icient to name the material of object 2, being 
the only porcelain cup of the three objects, he names its color explicitly to contrast it with speaker A’s 
description of object 3 (discourse related endophoric overspecification).  

3 My own findings support the assumption that referential overspecifications are rather per-
ceptually determined than conceptually or linguistically planned. I will t ake up this issue in the dis-
cussion of the findings presented in this work. 
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of quantity, in contrast, is often neglected: Speakers tend to specify more than the 

minimally distinctive features of a referent (Dale & Reiter, 1995; Zhu 1995). Levelt 

(1989: 133) argues that Grice’s maxims are formulated too generally to be tested 

experimentally, but that “ there is more than one way to be cooperative in referring to 

objects. What violates the maxims from the exophoric point [object context] of view 

doesn’ t do so from the endophoric [discourse context]” (cf. Pechmann, 1984; see 

also Footnote 2).  

Mangold-Allwinn et al. (1995) developed a model of the process of generating 

complex object specifications, taking into account several pragmatic determinants of 

object specifications, such as the communicative aim of speaker and hearer and the 

discourse context. They sketch the processing stages in object reference and make 

predictions as to the time course of the ongoing processes. However, although the 

model is grounded on rich empirical evidence for the existence of the assumed 

processing stages, there is littl e evidence regarding the time course of the processing 

within and between these stages. Note though that this reflects a basic methodo-

logical problem: It is almost impossible to assess the time course of cognitive 

processes and to maintain natural settings at the same time. In most experiments, the 

influence of situational factors and contextual determinants has to be eliminated for 

the sake of empirical validity (see Rohlfing, Belke, Rehm, & Goecke; submitted). 

In the experiments presented in this work, the processes underlying object re-

ference were studied by combining experimental means typically used to investigate 

speech production processes in naming with a referential communication task. For 

the aforementioned methodological reasons discourse-related factors and the aspects 

of non-verbal means of object reference could not be considered.4 The present work 

thereby resumes a line of experimental research on the linguistic form of object 

specifications in referential communication tasks and – by working with measure-

ments of reaction times and eye movements – extends it to the field of behavioral re-

search on underlying processes and representations (cf. section 4 of this chapter). 

                                                 
4 In the terminology of Brennan and Clark (1996), this is an “ahistorical” approach to object 

reference, compared to “historical” accounts, which incorporate discourse related contextual factors. 
Note, however, that in the setting of a naming experiment with measures of procedural variables 
(reaction times, fixation times), establishing a ‘natural’ discourse context would undermine the 
empirical control of the experimental situation (see Rohlfing, Belke, Rehm & Goecke, submitted).  
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2.2 Perceptual, Conceptual, and Linguistic Encoding in 

Referential Communication 

In the following, I am going to present an outline of the processes underlying the 

generation of complex object specifications. As to include the broader framework of 

the present work, models of naming and speech production (Dell , 1986; Humphreys, 

Lamote & Lloyd-Jones, 1995; Levelt, 1989; Levelt, Roelofs & Meyer, 1999; 

Seymour, 1973) will be combined with models of object reference (Mangold-

Allwinn et al., 1995; Herrmann & Grabowski, 1994). Only few models of naming 

incorporate the complete process from the perceptual analysis of a stimulus to the 

articulation of its name (e.g., Hoffmann & Kämpf, 1985). Most of them focus either 

on the first stages of conceptual and lexical processing (Schade & Eikmeyer, 1998; 

Herrmann, 1982; Herrmann & Grabowski, 1994; Humphreys et al., 1995; 

Humphreys, Riddoch, & Quinlan, 1988; Mangold-Allwin et al., 1995) or on the later 

stages of linguistic encoding (Dell , 1986; Dell , Chang & Griff in, 1999; Levelt, 

Roelofs & Meyer, 1999; Roelofs, 1997b; Schade, 1999).  

During the last three decades, many different models of speech production have 

been developed (Fromkin, 1971; Garrett, 1975, 1988; Dell , 1986; Herrmann & 

Grabowski, 1994; Levelt, 1989; Schade, 1992, 1999). Three basic levels of 

processing are distinguished more or less explicitl y in all these models, namely the 

levels of conceptual preparation, grammatical and lexical encoding, and articulation 

(Levelt, 1989). As indicated above, these models do not incorporate the 

representations underlying the processes of perceptual analysis and conceptual 

preparation. In general, all models of speech production must meet two fundamental 

assumptions on the underlying processing mode: 

• Speech production proceeds from conceptual preparation via formulation to 

articulation.  

• Speech production is an incremental process (Kempen & Hoenkamp, 1987). All 

components of the model can work in parallel: While later processing stages are 

still working on the first elements of an utterance, earlier stages of processing can 

already prepare later parts of the utterance. 
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There is an extensive controversy as to whether the cognitive processes 

underlying naming and speech production work in a modular, cascaded, or 

interactive way (Dell, 1985; Goodglass, 1998; Harley, 1993; Humphreys et al., 1988, 

1995; Levelt et al., 1999; Schade, 1999). In the framework of the modular or discrete 

stages view, the processing components are assumed to work autonomously, and to 

minimally affect each other (informational encapsulation, cf. Levelt, 1989). With this 

assumption, the interaction between processing components is minimized. In cas-

caded processing, this strict informational encapsulation is given up, and early pro-

cessing components are assumed to potentially influence later processing stages. 

Information is transmitted to subsequent levels as soon as the processing at given 

level starts (Blanken, 1998; Coltheart, Curtis, Atkins, & Haller, 1993; Humphreys et 

al., 1988, 1995; Peterson & Savoy, 1998). Note, however, that in cascade models, the 

informational exchange between processing components is unidirectional, i.e., there 

is no feedback of information from one component to its predecessor (Humphreys et 

al., 1988). In interactive models, such a feedback of information is possible (Dell, 

1985, 1986; Humphreys et al., 1995): Here, a processing component can influence 

earlier components; in several models of lexical access, for instance, it is assumed 

that complex selection processes on the semantic and phonological levels of 

representation occur in a parallel and interactive way (Dell, 1985, 1986; Dell, 

Schwartz, Martin, Saffran, & Gagnon, 1997; Harley, 1984; Schade, 1992, 1999). 

In each class of models, additional assumptions have to be made to account for 

the fact that while language production is rapid and incremental, allowing for 

simultaneous processing on different levels, it is at the same time designed to pro-

duce utterances that are sequential and unfold over time. Modular models are 

inherently sequential, so here additional assumptions have to made as to how to 

accomplish the rapidity and simultaneity of processing during production. Cascaded 

and interactive activation models, by contrast, are inherently parallel; nevertheless 

they have to be able to produce sequential output in order to model the process of 

language production appropriately. 

In the following, I am going to present current models of object reference and 

speech production and refine these models with regard to the special case of object 

naming in a referential communication task. As articulatory processes are of minor 



2 Empirical Framework and Theoretical Background 

11 

interest for the present work, only the processes underlying the perceptual analysis of 

the (visual) input, conceptual preparation, and formulation will be discussed. Mind, 

though, that the resulting schema of representations and processing stages underlying 

the generation of complex referential expressions, as depicted in Figure 1, is not in-

tended to be a ‘model’ of the production process in the strict sense (see Schade, 

1999, for a review of the principles of modelli ng cognitive processes). Its main pur-

pose is to serve as a guideline to the considerations and experiments presented 

below, and to introduce the basic terminology used in the remainder of this work. 

2.2.1 Representations and Processing Stages 

Mangold-Allwinn et al. (1995: 223ff .) subdivide the processes involved in producing 

referential noun phrases in three stages, namely perceptual analysis, concept 

generation, and activation of lexical representations. Based on the terminology of 

Levelt (1989), I use the more general terms conceptual preparation and formulation 

for the latter two stages.5 Levelt’s “blueprint of the speaker” represents a 

comprehensive account of the processes underlying speech production (see Levelt, 

1989, 1999). Yet, it does not capture the details of conceptual preparation in 

referential communication (see also Hirst, 1999). Humphreys et al. (1988, 1995) 

provide a detailed account of the processes mediating between the perceptual 

analysis of object features, the identification of the object, and the activation of its 

name. I integrated the ideas proposed by Mangold-Allwinn et al. (1995) and 

Humphreys et al. (1988, 1995) with Levelt’s (1989) model of speaking, combining 

them to a general outline of the processing stages that can be assumed to be involved 

in the production of complex object specifications (see Figure 1).  

 

                                                 
5 Beyond terminological issues, the models by Mangold-Allwinn et al. (1995) and Levelt (1989) 

differ in varios aspects, such as the underlying notion of concepts in the two models. For the present 
work, Levelt’s model, being a procedural model of language production, will represent the narrower 
framework of the experimental investigation.  
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Figure 1. Processes and representational systems underlying the production of 
complex object specifications in a referential communication task (adapted 
from Humphreys et al. 1988, 1995; Mangold-Allwinn et al. 1995; Levelt, 
1989, 1999). 

 

2.2.2 Perceptual Analysis 

As indicated in Figure 1, the perceptual analysis of the input is primarily aimed at 

identifying the distinctive features of the object to be named. Following Herrmann 

and Deutsch (1976), I consider the object class – here: the shape of the target object – 

as one of these features. There is a rich diversity of features that can be employed in 

referential communication tasks (Herrmann & Deutsch, 1976); in the framework of 

the present work, however, I will focus on color, size and object class, as these are 

the features most commonly used in previous experiments (see section 3 of this 

chapter for a review). No detailed analysis of the visual processes underlying the 

perception of color, size and shape features of objects (see, e.g., Marr, 1982) is given 

at this stage, as for the present purposes it is suff icient to know how differences in 

these features are detected, and to what extent procedural aspects of the detection 
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process are relevant for later processing stages. There is extensive literature on the 

detection of multidimensional differences, most of which is based on the 

experimental paradigm of “same”-“different” judgments (see Farell , 1985, for a 

review). However, in most of the experiments of this paradigm artificial stimuli , such 

as geometrical shapes or non-objects, were used, which are probably processed diffe-

rently than outline drawings of objects (Boucart & Humphreys, 1992; Grill , 1971; 

see also chapter 3). Therefore, I explicitl y assessed the processes underlying 

multidimensional stimulus discrimination in a “same”-“different” decision experi-

ment, using the same objects as in a later experiment on referential communication 

(Experiments 1 and 2, cf. chapters 3 and 4). For reviews of previous theoretical and 

empirical research on the processes underlying two-dimensional shape recognition 

and the visual perception of color and size see, e.g., Logothetis & Sheinberg (1996) 

or Quinlan (1991). 

2.2.3 Conceptual Preparation 

In Levelt’s (1989, 1999) model of the speech production process, the stage of con-

ceptual preparation comprises several planning processes that are broadly subdivided 

into macro- and microplanning. I will not present those aspects of the macroplanning 

processes that are related to situational and discourse-related factors, as they are not 

in the focus of the present investigation. Yet, in the framework of the present work, 

an important aspect of macroplanning is the selection of information for making 

reference to objects (cf. Levelt, 1989: 129ff .).6 During microplanning a propositional 

form of the selected information is generated and lexical concepts are retrieved 

(Levelt, 1989).7,8  

                                                 
6 Another aspect subsumed under the macroplanning processes is the ordering of the information 

selected for expression. These ordering processes are particularly important for the generation of 
complex syntactic combinations of several referential expressions (Ferreira & Henderson, 1998; 
Levelt, 1981, 1982). For the case of referential noun phrases, however, only one referential expression 
is encoded and the ordering of words in the phrase is accomplished on the level of grammatical 
encoding (Schriefers et al., 1999; Schriefers & Teruel, 2000), rather than on the level of conceptual 
preparation.  

7 Note that the assumption of lexical concepts as terminal elements of conceptual preparation is 
highly controversial: Other than decomposed representations on the basis of combinations of primitive 
concepts, lexical concepts are non-decomposed representations of semantically complex words that 
are linked to the primitive conceptual features they are composed of (functionally decomposed 
representations; see Roelofs, 1992, 1997a for a theoretical and empirical review of this controversy).  
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As indicated above, Levelt’s model does not capture the details of the conceptual 

preparation processes for the case of referential communication. Humphreys et al. 

(1988, 1995) provide a detailed account of the encoding processes and the repre-

sentational formats mediating between the perceptual analysis of object features and 

the microplanning processes associated with the activation of lexical concepts. There 

is extensive evidence for the distinction between a Structural Description System and 

a Semantic System from neuropsychological, developmental, and behavioral studies 

(Coltheart, Inglis, Cupples, Michie, Bates, & Budd, 1998; Flores d’Arcais & 

Schreuder, 1987; Humphreys et al., 1988; Humphreys & Riddoch, 1999; Kelter, 

Grötzbach, Freiheit, Höhle, Wutzig, & Diesch, 1984; Sartori & Job, 1988). In picture 

naming, access to object names seems to proceed mainly via semantic 

representations. There is littl e evidence that phonological encoding processes in 

picture naming can be initiated without semantic mediation (Brennen, David, 

Fluchaire, & Pellat, 1996; Goodglass, 1998; Warrington, 1975), as it has been shown 

for word reading (Coltheart et al., 1993; Jacobs & Grainger, 1994; Plaut, 

McClelland, Seidenberg, & Patterson, 1996).  

For the purpose of the present work, I assume that not only the Semantic System 

but also the Structural Description System represent conceptual knowledge and are 

therefore involved in the conceptual preparation processes (Coltheart et al., 1998; 

Flores d’Arcais & Schreuder, 1987; Humphreys & Riddoch, 1988; Klix & Metzler, 

1982; Shalli ce, 1988).9  

                                                                                                                                          

In particular, it can be argued that the assumption of both lexical concepts and lemmas is redundant 
(see, e.g., Harley, 1999; Zorzi & Vigliocco, 1999).  

8 There may be language specific differences as to how and which information can be encoded in 
lexical concepts. Stachowiak (1978), for instance, distinguishes between referring via naming or 
“ labeling” vs. describing a referent. He argues that in spite of this formal distinction both types of 
reference can be represented in terms of logical predicates. This is obvious for the case of 
descriptions; for labels he suggests a predication like APPLIES. 

9 Humphreys et al. (1988) leave open whether both structural descriptions and semantic 
knowledge are represented in a prepositional format as part of a common conceptual system. Coltheart 
et al. (1998) assume that the semantic system consists of several subsystems, namely a “non-
perceptual” subsystem, that is independent of sensory modaliti es, and modality specific subsystems 
representing “perceptual-attribute” knowledge (see also McCarthy & Warrington, 1994). Among 
these, the subsystem for the visual modality may correspond to the structural description system 
proposed by Humphreys et al. (1988, 1995). 
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2.2.3.1 Structural Descriptions  

In the Structural Description System (see Figure 1), representations of object forms 

and structures are stored. A common diagnostic tool to tap the access to structural 

descriptions are object decision tasks, where participants are asked to judge whether 

objects are real or not (cf. Kroll & Potter, 1984). Non-objects may be created from 

real objects in such a way that object decisions require access to stored perceptual 

knowledge in any case (e.g., Humphreys et al., 1988).  

Structural similarity is generally defined on the basis of perceptual features.10 In 

the framework of the present work, I assume that color and relative size of a target 

object in a referential communication task are coded as part of its structural 

description. This process of “binding” features is often assumed to be accomplished 

by means of a master map of spatial locations (Treisman, 1988). Separately extracted 

features, such as color or orientation, are integrated via their common position at a 

particular location within this master map. However, more recent findings challenge 

this idea of spatial location as unique determinant of feature binding. They suggest 

an “account of object perception as the process of setting up and utili zing temporary 

‘episodic’ representations of real world objects” (object files or object tokens; cf. 

Kahnemann, Treisman, & Gibbs, 1992: 177; see also Gordon & Irwin, 1996, 2000; 

Prinzmetal, 1981; Yantis, 1992). Kanwisher and Driver (1992) give a comprehensive 

overview of the evidence on the role of object tokens in directing visual attention and 

feature binding (see also Driver, 2001, for a review of space-based vs. object-based 

accounts of selective visual attention). I will not discuss this issue in more detail 

here, as – for the present purpose – the main claim I want to make is that there are 

ways to link an object and its features to a complex structural description, and that 

this linking or feature binding takes place during the perceptual encoding of the 

target object in a referential communication task.11 The issue whether context objects 

                                                 
10 In the interactive activation connectionist (IAC) model of Humphreys et al. (1995), structural 

similarity is modeled by means of excitatory connections between similar, i.e. consistent, 
representations and inhibitory connections between inconsistent representations. 

11 As described in section 1 of this chapter, highly salient features of an object are often over-
specified, maybe to make it easier for the listener to identify the intended object. Weiß and Mangold 
(1997) present findings from a referential communication task that show that the color of an object is 
often not (over)specified when it is characteristic of the target object (e.g. yellow – banana). This 
result suggests that in some objects the color is an integral part of long-term memory structural 
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are processed similarly has to be left open. Schriefers (1990) provides evidence for 

the encoding of both a target and a context object in naming features of a target 

object. Participants were asked to judge the relative size or length of a target object 

in relation to a context object. The objects were presented simultaneously, and the 

target object was marked by means of a cross. Schriefers found that the overall 

size/length of the presented objects influenced the conceptual processing of the 

relative size/length of the target object. For the case of size (Experiment 5), the 

judgment “smaller” was given faster when both objects were small , than when both 

were large. Similarly, the answer “ larger” was given faster when the overall size of 

both objects was large. Schriefers interprets this result in terms of the congruency of 

absolute information from the overall size of both objects and relative information 

from the individual size of the target object. The facilit ating effect of the congruency 

of absolute and relative information suggests that both objects are processed 

conceptually at least on the level of structural descriptions.12 However, considering 

referential communication tasks with complex object displays including more than 

two objects (see, e.g., Pechmann & Zerbst, 1990), it might be more plausible to 

assume that the context objects only serve as a foil for the analysis of distinctive 

features in the target object. They would thus play a role in the perceptual analysis of 

the display, but not in the later processing stages (as in Schade & Eikmeyer, 1998; 

see also Eikmeyer, Schade, Kupietz, & Laubenstein, 1999).  

2.2.3.2 Semantic Representations 

Semantic representations specify conceptual, associative, and/or functional 

knowledge about objects. They are stored in the Semantic System. Evidence on the 

internal structure of the Semantic System comes from neuropsychological studies on 

                                                                                                                                          

descriptions of the object and is probably stored in a bundle of features associated to that object. 
Objects that do not have a characteristic color per se will probably be stored without any color 
information. When such an object is presented as colored drawing, the representations of the object 
features and its color are presumably activated and represented as separate units of processing that 
have to be bound to form a whole (see above).  

12 In another experimental condition, the cross that marked the target object was presented 1500 
ms after the objects had appeared on the screen and the main effect of consistency vanished for 
reaction times. Schriefers (1990) argues that in this POST-condition subjects had had enough time to 
reject “absolute size as inadequate information” so that it did not interact with the naming of the 
relative size any more (ibd.: 130). 
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disorders of semantic memory in patients with brain lesions or Alzheimer’s disease 

(Chertkow, Bub, & Caplan, 1992; Coltheart et al., 1998; Garrard, Perry, & Hodges, 

1997; McCarthy, & Warrington, 1994)13. Such disorders may indicate deficits to 

access or retrieve information; in Alzheimer’s disease, however, the disorder may 

also be due to a breakdown within semantic memory itself (cf. Garrard et al., 1997; 

Harley, 1998). Disorders of semantic memory after focal cerebral lesions often have 

been reported to selectively affect specific categories, such as animate vs. inanimate 

things (see Caramazza, 1998, and Saffran & Schwartz, 1994, for reviews). 

Consequently, the diagnostic tools to assess semantic disorders are designed to test 

categorical knowledge. The tests usually cover the whole range of input and output 

channels to assess potential modality specific impairments, too (see Garrard et al., 

1997, for a li st of examples). 

In the framework of category specific impairments, selectively preserved color 

naming has been reported before (Mummery, Patterson, Hodges, & Price, 1998; 

Robinson & Cipolotti, 2001), indicating that concepts for colors and natural kinds are 

represented in dissociated cortical areas (see also Damasio, McKee, & Damasio, 

1979 on cases of selectively impaired color naming). Several positron emission 

tomography studies provide additional evidence for distinct neural correlates for 

processing colors and color names (Martin, Haxby, Lalonde, Wiggs, & Ungerleider, 

1995; Price, Moore, Humphreys, Frackowiak, & Friston, 1996).  

Additional specializations can be found within the semantic network for objects 

(e.g., in terms of animacy; see also Rosch, 1973, 1975a; Loftus, 1975). In the 

framework of the present investigation, however, this will be of minor importance, as 

the colors and objects used in the experiments presented below are only prototypical 

instances of objects and their attributes (cf. Rosch, 1973, 1975a, 1975b; Rosch & 

Mervis, 1975). Therefore, I assume that in these experiments the differences between 

the conceptual and semantic representations of objects and attributes will not affect 

the retrieval of lexical concepts during conceptualization (Levelt, 1989; Roelofs, 

1992).  

                                                 
13 As indicated above, I assume that the modality specific visual subsystem, that Coltheart et al. 

propose to represent perceptual attribute knowledge, corresponds to the structural description system 
proposed by Humphreys et al. (1988), while the “non-perceptual system” is comparable to the 
“Semantic System” proposed here. 
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Lexical concepts constitute the input to the formulation stage that will be 

depicted in the following.  

2.2.4 Formulation 

During formulation, the selected lexical concepts are given syntactic and morpho-

phonological shapes. It is commonly assumed that these encoding processes are 

linked to and have access to distinct lexical representations, referred to as lemmas 

and lexemes (Bock & Levelt, 1994; Levelt et al., 1999). While lemmas comprise 

(semanto-)syntactic lexical information, lexemes are lexical representations of 

phonological forms.14 In the following, I will give a brief outline of the formulation 

processes in complex noun phrase production.  

2.2.4.1 Grammatical Encoding 

Complex noun phrases, as well as other syntactic structures, are commonly viewed 

as syntactic frames with slots or rules for the ordered insertion of lexical items with 

certain syntactic specifications (Dell , 1986; Schade, 1999; Schade & Eikmeyer, 

1998). Bock and Levelt (1994) assume four main processes in grammatical encoding 

(see also Garrett, 1988): 

• During lexical selection, different classes of lemmas (e.g., adjectives vs. nouns) 

are accessed depending on the respective slots in the noun phrase. As indicated 

above, lemmas carry the grammatical information associated with individual 

lexical concepts. 

• During function assignment, each lemma is assigned a syntactic role and the 

respective grammatical information is accessed. In a complex noun phrase like 

das rote Auto (the red car), an adjective (rot) is assigned the syntactic role of an 

attribute of the head noun Auto. Accordingly, the relevant grammatical 

information is retrieved: In the present example, the lemmata of the correct 

inflectional ending -e for nominative, singular, neuter adjectives and the lemma 

                                                 
14 Note that in the original terminology as introduced by Kempen and Huijbers (1983) the lemma 

comprises not only syntactic, but also semantic information. As outlined above, Levelt et al. (1999) 
represent this semantic information in the form of lexical concepts, defining a “new” notion of a 
lemma as lexical representation of syntactic information (see Levelt et al., 1999; Zorzi & Vigliocco, 
1999).  
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of the correct definite determiner das for nominative, singular, neuter nouns 

would have to be retrieved for the definite noun phrase.  

• During constituent assembly, a “control hierarchy for phrasal constituents” is set 

up (ibd.: 947). In the present example of a German definite noun phrase, this 

hierarchy reflects the syntactic dependencies between head noun and determiner 

and adjective(s) in the noun phrase and controls the correct sequentialization of 

the elements in the noun phrase (see Schade, 1992, 1999, and Eikmeyer & 

Schade, 1991 for a connectionist account of such sequentialization processes).  

• During inflection the lemmas of the determiner of the head noun and the 

inflectional endings of the adjectives are inserted (see Bock & Levelt, 1994; 

Lapointe & Dell , 1989, for detailed accounts).  

The assumption of these four stages and their functional and positional purposes 

is primarily motivated by analyses of speech errors. The actual process of 

grammatical encoding has to be conceived of as being highly incremental, allowing 

for simultaneous processing of different pieces of information on different 

processing levels (see Levelt et al., 1999; Schade, 1999; Schade & Eikmeyer, 1998). 

Individual stages of processing are diff icult to isolate since they are closely time-

locked. Along with encoding processes in one domain, activation is built up in other 

domains: During lemma access, for instance, the retrieval of the head noun of a noun 

phrase will activate corresponding function words going along with the word class 

NOUN, such as lemmas for the definite and indefinite article. 

Following the procedural localist connectionist model of noun phrase production 

by Schade and Eikmeyer (1998), the processes underlying grammatical encoding of a 

complex object specification, such as das rote Auto (see above) can be outlined as 

follows: Based on representations built up on the conceptual level (→ object space) 

and the level of structural descriptions (→ feature space), the lemma node of Auto 

(car) and the feature nodes rot (red) and definite will be activated in the target space. 

In addition, a network of control nodes will be activated in the control space, 

corresponding to the structural frame of a complex noun phrase (DET – ADJ(COL) – 

NOUN). The lemma of Auto (car) passes its activation on to the morphological stem 

of Auto and the corresponding category nodes for its gender (neuter), number 

(singular) and case (nominative). Likewise, the lemma rot activates the 
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morphological stem of the adjective rot. Definite activates all forms of the definite 

article (der, die, das). Similarly, each of the grammatical category nodes passes its 

activation on to grammatical morphemes that fit its description. In the end, the article 

der and the inflectional ending –e should be most activated and will t hus be selected. 

The network of control nodes accomplishes the correct sequential selection of word 

and morpheme forms (lexemes) according to the structural frame, namely the 

definite article, the adjective and its inflectional suff ix and the noun, yielding the nun 

phrase das rot-e Auto. 

Except for lexical access processes, the time-course of grammatical encoding 

processes in complex noun phrases has not been well explored yet. Schriefers et al. 

(1999) assessed the relative durations of lemma retrieval processes for nouns vs. 

color adjectives in complex noun phrase production. Depending on the number of 

nouns in the response set, they obtained prolonged lemma retrieval times for nouns, 

but not for adjectives. They conclude that their participants operated with “ two 

separate ‘subvocabularies’ or response sets, one containing the adjectives and one 

containing the nouns” (ibd.: 717; see also Eikmeyer et al., 1999; Schade, 1999 for a 

corresponding connectionist implementation).  

Beyond these syntactic aspects, complex inflectional rules have to be met for the 

production of a definite noun phrase (see above): In German noun phrases the 

definite determiner and adjective attributes are inflected according to the gender of 

the head noun. This implies that although the head noun is the last element in a 

complex referential noun phrase, its gender has to be accessed early during the 

formulation process to select the correct syntactic gender for the determiner (see 

Miozzo & Caramazza, 1999; Schriefers & Teruel, 2000; but see Schade & Eikmeyer, 

1998 for an alternative account)15. 

                                                 
15 Caramazza and colleagues assume that languages can be classified into early- vs. late-selection 

languages according to the timing of the selection of the determiner. The timing of these selection 
processes was tapped by using the picture-word interference paradigm, using gender-incongruent 
distracters. For German noun phrases, Schriefers & Teruel (2000) found an early gender interference 
effect suggesting that German is an early-selection language. Using plural noun phrases that are 
inflected identically across genders, however, Schriefers (2000) did not obtain a gender interference 
effect, which suggests that there may exist an intralanguage variabilit y (see also LaHeij, Mak, Sander, 
& Will eboordse, 1998).  
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2.2.4.2 Phonological Encoding 

During the phonological encoding of a German complex noun phrase, the lexemes of 

the noun and the adjective stems are retrieved. In addition, the phonological form of 

the definite determiner (der, die or das) and of the inflectional endings of the 

adjectives are retrieved (-e for all singular, nominative, definite determiner NPs). I 

will not go into detail on the selection and sequential ordering of phonemes, as this is 

of minor importance for the present study (cf. Dell , 1986; Levelt et al. 1999; Schade, 

1999 for comprehensive accounts).  

2.2.5 Processing Modes in Conceptual Preparation and Formulation 

The timing of perceptual, semantic, grammatical and phonological encoding is still a 

matter of substantial controversy on theoretical and empirical grounds. In the fol-

lowing, I will briefly outline the modes of informational exchange between pro-

cessing stages (cf. Figure 1).  

As outlined above, speech production is commonly agreed to be an incremental 

process (Kempen & Hoenkamp, 1987), but there is considerable disagreement about 

whether a given part of an utterance is processed in discrete stages, in a cascaded or 

an interactive processing mode. In the following, I want to present an argument for 

cascaded and partially interactive processing in the model presented in Figure 1.  

Speakers often begin to speak before they have completed the visual exploration 

of the whole set of context objects (Pechmann, 1989). The occurrence of overt 

repairs and postnominal adjectival attributes (such as “ the yellow shirt, the big one”; 

cf. Eikmeyer & Ahlsén, 1998; Eikmeyer et al., 1999; Schade & Eikmeyer, 1998) 

suggests that during the linguistic encoding of the target object, the visual 

exploration continues and the perceived information is continuously transmitted 

(“cascaded”) to the conceptual and linguistic encoding stages (see Arrow [1] in 

Figure 1). 

With regard to the processes on the level of structural descriptions and semantic 

representations, Humphreys et al. (1988) argued for a cascaded processing mode (see 

Arrow [2a] in Figure 1; cf. Humphreys et al., 1995, for a short review of the main 

results in support of this view). In a picture naming experiment, Humphreys et al. 

(1988) found stronger frequency effects for structurally dissimilar objects, than for 
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structurally similar objects. They concluded that the mode of informational exchange 

between semantic and phonological encoding processes is cascaded, too (see Arrow 

[3a]). From a representational point of view, recurrent connections from the semantic 

system to the structural description system are indispensible for tasks like answering 

questions about viusal attributes of objects or drawing to dictation (Arrow [2b] in 

Figure 1; see Coltheart et al., 1998). From a procedural viewpoint, however, it is not 

clear yet, whether the informational exchange between the two representation 

systems is bi-directional (see Chertkow et al., 1992, Sartori & Job, 1998, for 

discussions). In the local connectionist implementation of their model, Humphreys et 

al. (1995) therefore used bi-directional links between the three levels of representa-

tion (ibd.: 557; see also Humphreys, Riddoch & Price, 1997; Humphreys, Price & 

Riddoch, 1999).  

The assumption of interactive processing between the levels of semantic and 

lexical encoding would be in line with the general view that lexical concepts and 

lemmas interact bi-directionally (Schriefers, 1990; Bock & Levelt, 1994; Levelt et 

al., 1999)16. In view of the time course of semantic and phonological encoding 

processes in lexical access, however, the cascade processing view as opposed to the 

assumption of discrete stages or the interactive processing view is highly 

controversial (Arrow [3b] in Figure 1; see Damian & Martin, 1999, Dell et al., 1997; 

Dell, Chang, & Griffin, 1999; Peterson & Savoy, 1998; Levelt et al., 1999; see also 

Schriefers et al., 1999). 

As the empirical status of recurrent connections in the later processing stages is 

still open, I largely adopted the cascade processing view for the model depicted in 

Figure 1 and included recurrent connections (dashed arrows) only tentatively,. 

                                                 
16 In particular, this allows for the possibility that speech production and comprehension share the 

same lexicon. 
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2.3 Open Issues in Referential Communication 

As indicated at the beginning, previous research on referential communication has 

mainly focused on the information on the object, that is conveyed in a noun phrase. 

In several Indoeuropean languages with prenominal adjectives (German, English, 

Dutch, Swedish), analyses of the form of the noun phrases and the order of mention 

of the properties included in the object specifications revealed a high frequency of 

overspecifications of color and a canonical order effect for color and size adjectives: 

A substantial proportion of utterances included color specifications, although color 

was not a minimally distinctive feature (Eikmeyer & Ahlsén, 1998; Pechmann, 1984, 

1989, 1994), and in about 85 % of all complex noun phrases including a size and a 

color specification, size was named before color (Danks & Schwenk, 1972; 

Eikmeyer & Ahlsén, 1998; Ford & Olson, 1975; Herrmann & Deutsch, 1976; Martin, 

1969a, 1969b; Olson, 1970; Pechmann, 1984, 1989). In the following sections, these 

phenomena and their theoretical implications will be reviewed in more detail . 

2.3.1 Color Overspecifications  

Referential overspecifications include more than the minimal set of distinctive 

features (Ford & Olson, 1975; Garmiza & Anisfeld, 1976; Herrmann & Deutsch, 

1976; Deutsch & Pechmann, 1982; Whitehurst, 1976). In experiments incorporating 

color and size as differential dimensions, most of the redundant utterances include 

overspecifications of color (Eikmeyer & Ahlsén, 1998; Herrmann & Deutsch, 1976; 

Pechmann, 1989; Schriefers & Pechmann, 1988). This phenomenon has generally 

been viewed as a result of the high perceptual salience of the color dimension. Two 

more specific accounts of referential overspecifications have been developed that 

will be presented in the following.  

2.3.1.1 Incrementality 

Pechmann (1984, 1989, 1994) and Schriefers and Pechmann (1988) interpret over-

specifications of color as evidence for an incremental processing mode between the 

stages of conceptualization and grammatical encoding: “The speaker could start his 

description even before the visual scanning and the conceptual planning for his 

description is completed, i.e. before he has identified the features that discriminate 
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the target object from the context objects” (cf. Schriefers & Pechmann, 1988: 174). 

In a study on the viewing behavior of participants during a referential communica-

tion task, Pechmann (1989) observed that, indeed, participants started to articulate 

their utterances before they had seen all objects. In a referential communication study 

in German and Swedish, Eikmeyer and Áhlsen (1998) registered a considerable pro-

portion of utterances where speakers specified the color before, but the size after the 

noun, saying, for instance, das gelbe Hemd, das große (‘ the yellow shirt, the big 

one’ ; see above). Similarly, they observed overt repairs, such as das gelbe, das 

GROSSE gelbe Hemd (‘ the yellow, the BIG yellow shirt’) . Their findings nicely 

demonstrate that the linguistic planning processes seem to be continuously 

monitored, such that incoming perceptual information can effectuate modifications 

of the utterance in preparation. The incremental character of the production of object 

specifications thus seems to be an elegant account of referential overspecifications. 

Note, however, that this account cannot explain the strong syntactic preference to 

name the size before the color. It would rather predict the non-canonical order to 

occur more often. This inconsistency will be addressed in more detail i n section 

2.3.2.2. 

2.3.1.2 Economy  

Whitehurst (1976) argued that color overspecifications occur because speakers apply 

a principle of least effort on the evaluation of the detected differences (see also 

Pechmann, 1994; Pechmann & Zerbst, 1994). It may cost less effort to specify any 

detected feature of the referent than to explicitl y assess the distinctiveness of each of 

these features, or – in other words: “While contrastive descriptions are eff icient in 

terms of words they may be ineff icient in terms of the effort to appropriately analyze 

the stimulus array.” (Whitehurst, 1976: 478). In the framework of the present in-

vestigations, I assumed that the analysis of distinctive features in a referential com-

munication task can be reduced to multiple “same”-“different” decisions. In 

Experiment 1 (see chapter 3), I used the “same”-“different” paradigm to assess the 

processes underlying the detection of differences in color, size, or object class in 

multidimensional stimulus discrimination. Combining the stimuli used in Experi-

ment 1 with a referential communication task, I then assessed perceptual determi-
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nants of referential overspecifications (Experiment 2). The results will be discussed 

in chapter 4.  

2.3.2 Canonical Order of Prenominal Adjectives 

The canonical order of color and size adjectives is surprising in view of incremental 

theories of speech production: Although color is the more salient feature and is thus 

available for the verbalization process much earlier than size, size is often named 

before color in complex noun phrases. This holds for several languages with 

prenominal adjectives, such as German, Dutch, English or Swedish (Eikmeyer & 

Ahlsén, 1998; Martin & Molfese, 1972; Deutsch & Pechmann, 1982). It is found not 

only in naming tasks, but also in acceptabilit y ratings (Danks & Glucksberg, 1971; 

Martin, 1969b). Until now, two pathways have been followed to account for this 

canonical order effect, which will be presented in more detail i n the following.  

2.3.2.1 Ordering Rules 

In the 1970ies, a rather descriptive visuo-semantic approach to the internal structure 

of noun phrases was developed on the basis of qualitative analyses of utterances and 

of the attributes verbalized in the object specifications (Byrne, 1979; Ertel, 1971; 

Hetzron, 1978; Martin, 1969b; see also Sichelschmidt, 1989, for a review). The 

dimensions were classified according to their perceptual and semantic properties, 

such as intrinsicality, absoluteness, or definiteness of denotation. The definitions of 

these terms are often rather vague and their denotation can be mediated at best by 

means of examples: 

• Intrinsicality (Byrne, 1979: 73): “For example, […] of the ‘simple’ modifiers 

[…], the ones that refer to kinds or species refer to the most intrinsic properties of 

objects, more so than adjectives which quali fy in terms of colors or shapes” . In 

this sense, attributes, such as “wooden”, that depict the material an object is made 

of are more intrinsic than color or size attributes. 

• Definiteness of denotation (Martin, 1969b: 472): “Adjectives which denote the 

same property regardless of the meaning of the modified noun are […] more 

definite in denotation than adjectives which denote different properties in the 

context of different nouns.”  
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• Absoluteness (Martin, 1969a: 700) is “a logical correlate of the definiteness of 

denotation” . Martin (ibd.: 702) gives the following operational definition: 

“Adjective absoluteness was explicitl y defined in terms of the relative number of 

comparisons required for the choice of a given adjective”. Note, though, that 

absoluteness, in the strict sense of the term, refers to dimensions that are inherent 

to an object and do not require any comparison to other objects for a correct 

identification. 

Generally speaking, the more absolute, intrinsic, and definite a dimension is, the 

closer it will be placed to the noun.17 This holds for both, prenominal and post-

nominal ordering, e.g. in Spanish (see also Greenberg, 1963).18  

Based on such descriptive analyses, many grammars of the respective languages 

incorporate these findings in the form of ordering rules in idiomatic style (cf. Bache, 

2000; Eichinger, 1991; Hetzron, 1978; Seiler, 1978; Zifonun, Hoffmann & Strecker, 

1997). Note, however, that inverted adjective order phrases are not ungrammatical 

and – as indicated above – do occur to a certain extent in referential object descrip-

tions (Greenberg, 1963; Hetzron, 1978; Pechmann, 1994; Pechmann & Zerbst, 1995; 

Teyssier, 1968): “ […] the speaker will not hesitate to ‘violate’ a convention which, 

in many cases, is proclaimed as a grammatical rule only because it reflects 

preponderant usage (Hörmann, 1981: 266 as quoted in Sichelschmidt, 1986: 146).  

                                                 
17 Danks & Schwenk (1972; see also Danks & Glucksberg, 1971) formulated a “pragmatic 

communication rule” to account for ordering preferences in prenominal adjective order. They claimed 
that ordering effects should follow a principle of relative relevance of the adjectival predications and 
thus predict high frequencies of inverted adjective orders in specific situational contexts. Although 
they present empirical findings that seem to verify these predictions, Richards (1975) re-analyzed 
these findings and showed that there is no conclusive evidence of the pragmatic communication rule. 
In addition, data from her own experiments clearly contradict the pragmatic communication rule 
(Richards, 1975, 1977). 

18 Comparative investigations even suggest that “ the adjective ordering principle based on the 
semantic classification of the quali fications is a universal, because it is attested in such a distribution 
in several languages that no mutual influence is to be suspected. Yet it is not a strong universal that 
must manifest itself everywhere” (Hetzron, 1978: 175; see also Foorman, 1983; Foorman & 
Kinoshita, 1983; Sobin, 1984). 
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Developmental studies show that children acquire knowledge on the meaning of 

adjectives separately from knowledge about ordering rules (Foorman, 1983; 

Richards, 1979). Kemmerer (2000) showed that, accordingly, semantic knowledge of 

adjective meanings and knowledge of adjective ordering rules can be selectively 

impaired in aphasic speakers. On the whole, these results suggest that speakers have 

knowledge of the internal semantic structure of complex noun phrases. It still 

remains unresolved, though, how this knowledge is represented (see below) and 

when and how it enters the production process. 

2.3.2.2 Procedural Principles 

Pechmann (1994) argues that assuming a system of learned rules for the sequence of 

all classes of adjectives would imply that we were to store a vast number of possible 

combinations. This would be incompatible with the idea of grammar as a set of 

abstract rules. Pechmann investigated the canonical order effect via a procedural 

approach to noun phrase production (see also Pechmann, 1989; Pechmann & Zerbst, 

1995; Schriefers & Pechmann, 1988). The occurrence of referential overspecifica-

tions suggests that the transfer of information from conceptualization to formulation 

is incremental. Early color information is transferred immediately to the formulator. 

Pechmann investigated whether whole noun phrases are the units of incremental 

production on the level of grammatical encoding, or whether their internal 

grammatical and phonological structure is built up incrementally. The canonical 

order of color and size adjectives suggests that the grammatical structure of the noun 

phrase as a whole is planned before phonological encoding processes are initiated.19  

In one of his experiments, Pechmann (1994) registered more inverted adjective 

orders when more context objects were present in the display. He interpreted this 

finding as an effect of time pressure that was more prominent in more complex 

situations and assumed that these inverted adjective orders might be a result of 

incremental processing. Accordingly, he hypothesized that the reaction times 

                                                 
19 As indicated in section 2.2.4.1 (see also footnote 15), German is an early-selection language, 

and for the correct selection of the determiner and the inflectional suffixes for the prenominal 
adjectives, the gender of the head noun has to be accessed. Thus, the phonological encoding of the 
first elements in the noun phrase can only start when the last element in the phrase has been retreived 
on the level of lexical access. 
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associated with non-canonical adjective order phrases, where color is named first, 

should be shorter than those associated with canonical adjective order phrases. 

However, the data revealed the opposite: Although size was named first in the 

canonical order phrases, the reaction times for these phrases were significantly 

shorter than for the non-canonical phrases. Pechmann concluded that the processing 

mode between the conceptual stage and later formulation stages was partly incremen-

tal or even strictly serial and that noun phrases were produced as units of incremental 

production on the level of grammatical encoding (cf. Pechmann, 1994; Pechmann & 

Zerbst, 1994). Pechmann and Zerbst (1995) report similar findings on the effects of 

canonical syntactic structure on the duration of grammatical encoding during the 

production of SVO- v. OVS-sentences. Both structures are acceptable and occur in 

spontaneous speech. OVS-sentences, however, are used in few pragmatically and 

contextually constrained situations only, i.e., they are marked and occur substantially 

less often than the unmarked SVO-sentences. Pechmann and Zerbst propose that 

processing times might be affected by the markedness of the syn-tactic structure of 

the utterance. They leave open, however, how the knowledge about the markedness 

of specific structures is represented in the speakers’ minds. 

2.3.2.3 Effects of Task Difficulty 

As indicated above, Pechmann (1994) found that the number of context objects 

influenced the occurrence of non-canonical adjective orders and assumed that these 

inverted adjective orders might be a result of the incremental noun phrase production 

under conditions of increased time pressure. Pechmann and Zerbst (1990) reported 

parallel results in a referential communication task with variations of the number of 

context objects and of the detectabilit y of color differences: A larger number of 

context objects and less detectable color differences led to a significant increase of 

inverted adjective orders. This seemed to contradict the hypothesis of the incre-

mentality of noun phrase generation: Although color was less detectable, it was spe-

cified more often in initial position.  
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To conclude, a comprehensive account of the occurrence of inverted adjective 

orders and the discrepancy in processing times between canonical and inverted 

adjective order phrases should incorporate effects of task diff iculty. The origin of 

inverted adjective orders might lie in a combination of the canonical order 

constraints and the incremental nature of the production process. In case of increased 

task diff iculty, participants might not take into account any semanto-syntactic 

constraints but articulate the object’s features in the order of detection.20 In 

Experiment 3 (see chapter 5), this hypothesis was addressed by including a variation 

of task diff iculty. 

                                                 
20 In order to account for the finding that the number of inverted adjective orders increases when 

the color difference is less detectable, one would have to assume that speakers detect or attend to color 
differences first. Evidence on perceptual grouping and search strategies in visual search might support 
this view (cf. Carter, 1982; Cave, 1999; Cohen & Shoup, 1997; Feldman, 1999; Treisman, 1982; 
Treisman & Gelade, 1980). 
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2.4 Methodical Considerations 

Previous studies on referential communication, which mainly focused on the degree 

of elaboration and the form of object specifications, were based on qualitative 

analyses of utterance structures. A first attempt to approach the processes underlying 

referential communication by means of procedural measures was made by Pechmann 

(1989, 1994). Reaction times, as they were measured by Pechmann, have proved as a 

useful tool to track the time course of generating one-word utterances (Levelt, 

Schriefers, Vorberg, Meyer, Pechmann, & Havinga, 1991; O’Seaghdha & Marin, 

1997; Schriefers, Meyer, & Levelt, 1990). In the framework of the referential 

communication task, however, reaction times fail to capture the exact time-course of 

the processes underlying the generation of complex object specifications. Unlike 

simple naming tasks, the referential communication task is hard to control for the 

duration of perceptual processes preceding the linguistic processing of the stimulus; 

in fact, the perceptual processes are an integral part of the task and are thus of 

interest for procedural investigations, too (Sanders, 1993).21 Tracking participants’ 

eye movements in a referential communication task can draw a more complex 

picture of both perceptual and linguistic processes underlying the production of 

complex object specifications. 

In the following, I will present some fundamentals on eye movements in informa-

tion processing and attention, which are essential for understanding the rationale of 

using eye monitoring as an experimental technique. I will t hen give a brief outline of 

the use of eye tracking techniques in empirical research on language perception and 

production and discuss alternative methods.  

 

 

 

 

                                                 
21 Pechmann (1994; see also Pechmann & Zerbst, 1994) adopted the following solution: To locate 

a difference in RTs that he had obtained in the naming latencies for CSO- and SCO noun phrases he 
conducted a series of experiments to test each processing stage separately. Note, however, that such a 
strategy implies considerable variation between tasks, which makes it diff icult to compare the results 
on individual processing stages. 
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2.4.1 Eye Movements and Information Processing 

When we process visual information during reading or scene perception we conti-

nually move our eyes. These movements are called saccades.22 The stable states 

between two saccades are commonly referred to as fixations. Typical variables ob-

served in empirical research on visual processing are fixation durations and locations 

and saccade lengths and locations or landing points (Liversedge & Findlay, 2000). 

Particularly saccade length and fixation duration have proved to be good parameters 

of task characteristics (cf. Rayner, 1984, 1998).  

It is commonly assumed that during a saccade, visual information processing is 

reduced, because the eyes move that rapidly that nothing but a blur would be 

perceived (saccadic suppression; Matin, 1974). Nevertheless, we do not perceive the 

world in chunks of f ixations, but as being stable (Carlson-Radvanski & Irwin, 1995; 

Irwin, 1991; McConkie & Currie, 1996). This seems to be in part due to backward 

and forward masking of information during saccadic movements (Brooks, Impelman, 

& Lum, 1981; see also Henderson, Pollatsek, & Rayner, 1987; Pollatsek, Rayner & 

Colli ns, 1984). In addition, there are short term memory representations retaining 

visual information across saccades (transsacadic memory; Carlson-Radvanski & 

Irwin, 1995). It is still unresolved whether – apart from saccadic suppression of 

visual processing – cognitive processing is suspended during saccades, too. For the 

time being, it seems plausible to assume that, particularly in higher order processes, 

some processing occurs during saccades (Henderson, Dixon, Petersen, Twill ey, & 

Ferreira, 1995; Irwin, 1998; Matin, Shao, & Boff , 1993; Rayner, 1998). 

With regard to eye movement analyses in higher order cognitive processes there 

is some controversy as to what might be the best measure of processing time (see 

Rayner, 1998, for a review). In research on object processing and naming, gaze 

duration has proved to be a useful tool to measure processing times. It includes the 

sum of the durations of all successive fixations on one object (Just & Carpenter, 

1980; Henderson, Pollatesek & Rayner, 1987; 1989). Sums of gaze durations, e.g. 

when the eyes return to an object, are commonly referred to as (total) viewing times. 

                                                 
22 Other types of movements are pursuit eye movements, which are characteristic of tracking tar-

gets in motion, and vestibular eye movements, occurring when head or body movements have to be 
corrected for to maintain a stable direction of vision (see Rayner, 1998). 
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2.4.2 Eye Movements and Visual Attention 

Understanding the interrelations of eye movements and visual attention is an 

essential prerequisite for an appropriate interpretation of the data from eye movement 

experiments on cognitive processing. The crucial point is how attentional allocation 

and cognitive processes are associated with oculomotor behavior, such as fixations or 

saccades. The following principles have been proved to hold:  

• Saccades are obligatorily coupled to shifts of attention (Deubel & Schneider, 

1996; Remington, 1980); more specifically, attention precedes a saccade to a 

given location in space (Hoffmann & Subramaniam, 1995; Kowler, Anderson, 

Dosher, & Blaser, 1995).  

The opposite, however, does not hold:  

• Shifts of attention are not obligatorily coupled to saccades, i.e., we can shift the 

focus of attention without moving our eyes (covert orienting; Posner, 1980; see 

Liversedge & Findlay, 2000, for a recent review). From a physiological point of 

view, however, it should be noted that although covert allocation of attention is 

not necessarily coupled to explicit eye movements, there is a considerable 

anatomical overlap of the neural correlates of overt and covert shifts of attention 

(Corbetta & Shulman, 1998; Remington, 1980; see also Posner, 1992, for a 

concise overview).  

Attentional capacity is commonly assumed to operate either in parallel and 

distributed over the complete visual field or selectively at a particular focus of 

attention (Duncan, 1980; Hoffmann, 1979; Treisman, 1977; Treisman & Gelade, 

1980). Visual search processes, for instance, are often considered to proceed from a 

parallel (preattentive) scan to a focused (attentional) serial search for few selected 

likely targets (feature detection and integration; see, e.g., Cave & Wolfe, 1990; 

Duncan, 1980; Hoffman, 1979; Treisman & Gelade, 1980; Treisman & Souther, 

1985)23. Binding features to objects and naming them is associated with selective 

allocation of attention to the referent. Nevertheless, regions in the surroundings of 

                                                 
23 Note, however, that although these accounts, among them the feature integration theory 

(Treisman, 1988; Treisman & Gelade, 1980) was highly influential, the allocation of different 
attentional processes to distinct levels of processing has often been challenged by conflicting findings 
and alternative models (cf. Cave, 1999; Driver, 2001; Duncan & Humphreys, 1989; Mordkoff, Yantis, 
& Egeth, 1990; Wolfe, Cave, & Franzel, 1989). 
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the focus of attention can be previewed parafoveally (cf. Henderson, Pollatsek, & 

Rayner, 1987, 1989; Henderson, 1992a, 1992b; Remington, 1980). Note, however, 

that the allocation of attention to foveal and parafoveal areas seems to be largely 

dependent on the overall difficulty of the task. Selective attention is dependent on 

capacity limitations (Henderson & Ferreira, 1990; Rayner, 1986) and some authors 

argue that foveal visual processing requires huge attentional resources so that only 

little attention can be allocated to parafoveal visual input (Henderson & Ferreira, 

1993). Meyer, van Elswijk, and Tily (2001) investigated parafoveal preview effects 

in a naming task. They found that when several objects were named in a sequence 

there could be some visual and conceptual processing of upcoming targets, but for 

the retrieval of lexical information the objects have to be fixated. In higher order 

cognitive processes, such as scene perception or picture naming, fixation or gaze 

durations are therefore often alleged to reflect foveal but not parafoveal processing 

demands (cf. Henderson & Ferreira, 1993; Liversedge & Findlay, 2000).  

2.4.3 Eye Tracking in Research on Cognitive Processes 

There is a long tradition of using eye-tracking techniques in cognitive science, 

ranging from investigations of attentional allocation in visual perception (see above) 

to experiments on higher-order cognitive processing such as scene perception, 

reading, language comprehension, and language production (cf. Rayner, 1992, 1998; 

Tanenhaus & Spivey-Knowlton, 1996; Meyer, Sleiderink, & Levelt, 1998; to give 

one example of each domain). Findings from the latter two areas will be presented 

and discussed in the following.  

2.4.3.1 Eye Movements and Speech Perception 

Along with the development of fine-grained eye tracking tools, eye movements were 

extensively investigated in reading research (see Rayner, 1998, for a review). In the 

last decade, however, eye tracking has also been increasingly used in research on 

spoken-language comprehension (see Tanenhaus & Spivey-Knowlton, 1996; 

Tanenhaus, Magnuson, Dahan, & Chambers, 2000). The paradigm has proved a use-

ful tool to study syntactic ambiguity resolution (e.g. in garden path sentences; see 

Eberhard, Spivey-Knowlton, Sedivy, & Tanenhaus, 1995) and the influence of visual 

context (Eberhard et al., 1995; Tanenhaus, Spivey-Knowlton, Eberhard, & Sedivy, 
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1995a, 1995b) and real-world knowledge (see Tanenhaus et al., 2000) on auditory 

comprehension. The processing of both written and auditory stimulus material has 

been found to work immediately, in an incremental and rapid manner (cf. Eberhard et 

al., 1995; Just & Carpenter, 1980; Spivey, Tyler, Eberhard, & Tanenhaus, 2001; 

Tanenhaus et al., 1995a, 1995b; see also Cooper, 1974, for a remarkably early work 

in this field).  

The immediacy of syntactic and semantic processing has been extensively 

studied in an instruction paradigm that is similar to the referential communication 

task. Eberhard et al. (1995; see also Tanenhaus et al., 1995a, 1995b) investigated the 

time course of processing complex referential expressions in instructions such as 

‘Touch the starred yellow square’ . Depending on the display, the referent could be 

uniquely identified after having heard the first, middle or last element of the noun 

phrase.24 As expected, the later the disambiguating information was given, the longer 

it took participants to detect (here: fixate) the referent,. When the mean eye move-

ment latency was measured from the onset of the disambiguating word instead of the 

onset of the utterance, the latencies in the late condition were considerably faster 

compared to the other two conditions, suggesting that “as the noun phrase unfolded, 

the information from each word was used to reduce the candidate set of blocks to just 

the two potential referents, which were then distinguished by the last word of the 

noun phrase” (ibd.: 417; see also footnote 21). Sedivy, Tanenhaus, Chambers, and 

Carlson (1999) provide analogous evidence on the processing of scalar adjectives, 

such as “ tall ” . Convergent findings were obtained in other studies on eye movements 

during auditory language comprehension, showing that linguistic and visual pro-

cessses are closely time-locked and allow an immediate integration and 

disambiguation of information from either side (Spivey et al., 2001; Tanenhaus et al., 

1995a, 1995b; see also Allopenna, Magnuson & Tanenhaus, 1998 on the time-course 

of lexical access processes). In the next section, I will present findings on the relation 

between viewing and naming objects, suggesting that here, too, lexical and visual 

processing is closely time-locked. 

                                                 
24 In the first case, there was only one starred element in the display. In the second case, all 

elements of the display were starred, but only one was yellow. In the third case, two of the four 
elements were starred and yellow but only one of them was a square. 
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2.4.3.2 Eye Movements and Speech Production 

Meyer, Sleiderink, & Levelt (1998) were the first to systematically investigate eye 

movements during object naming. They asked participants to name two objects 

presented side by side in a noun phrase conjunction, such as ‘scooter and hat’ . On the 

basis of previous findings on scene perception and object recognition, they 

hypothesized that participants would fixate the objects they wanted to name in order 

to identify them and to find their names. The viewing times observed for the first 

object turned out to be synchronized with the time needed to find the phonological 

form of the first object name. Similar results were obtained in an experiment using 

complex noun phrases for the description of the first object (‘ the big red scooter and 

the hat’ ; see Levelt & Meyer, 2000). In addition, phonological priming of the object 

to be named first proved to not only facilit ate naming but to also diminish viewing 

times on the first object (Meyer & van der Meulen, 2000). On the whole, these 

results suggest that fixating an object until the phonological form of its name is 

retrieved is obviously sufficient to name it. As indicated above, Meyer et al. (2001) 

showed that “when several objects are named, peripheral objects may undergo some 

visual and conceptual processing, but lexical access to their names only begins after 

fixation” . Thus, fixating an object is apparently necessary to access linguistic 

information.  

Applying the eye tracking technique to sentence production, Griff in and Bock 

(2000) investigated the time course of sentence formulation in describing simple 

events. They compared the eye movements observed under different task conditions 

(simple inspection, detection of the “victim” in each picture, and extemporaneous 

and prepared description of the event). The results suggest that speakers obviously 

first apprehend the event structure of the scene and identify agent and patient of the 

action. During the linguistic formulation process, the eye movements were closely 

linked to the order of mention, irrespective of variations in the material, e.g. in terms 

of orientation (agent left / agent right), or sentence structure (active / passive).  

In a variant of the referential communication task, Eberhard (2000) had 

participants describe movements of objects on an array of 5x5 squares. In analogy to 

Griff in and Bock, she, too, presents examples of trials where participants first shortly 

preview the objects or locations involved in the movement. When formulating the 
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movement description they do not necessarily need to refixate these objects and 

locations, as the results from Meyer and colleagues would suggest: When 

formulating a contrastive description, for instance, they rather tend to fixate the 

contextual alternative. 

To conclude, eye tracking can be regarded as an important tool to gain insight to 

the processes preceding an overt reaction – not only in spoken language 

comprehension and reading but also in language production. As Meyer and 

colleagues have shown (Meyer et al., 1998, 2001; Levelt & Meyer, 2000; Meyer & 

van der Meulen, 2000), eye movements and fixations apparently reflect linguistic 

planning processes. Note, however, that the linkage between eye movements and 

linguistic planning processes may be task-dependent (Eberhard, 2000). The studies 

by Eberhard (2000) and Bock and Griff in (2000) suggest that also non-linguistic 

conceptual processes can be traced by means of eye movement analyses.  

2.4.4 Other Research Tools 

At the beginning of this chapter, the disadvantages of reaction times for procedural 

investigations of referential communication were briefly outlined and the benefits of 

eye tracking in measuring processing times prior to an overt responsewere described. 

Beyond the measurement of eye movements, there are several other methods to 

assess processes preceding the production of a (naming) response.  

During the decade of the brain (former US-President George Bush, 1990; Presi-

dential Proclamation 6158) the availabilit y of brain-imaging techniques for studying 

cognitive processing has substantially changed empirical research in cognitive 

science. Earlier research on the neuroanatomical substrates of language and cognition 

had been restricted to neuropsychological studies of impaired performance. Brain-

imaging techniques opened up new potentials for obtaining on-line data on where 

and when brain activity occurs in both normal and impaired cognitive processing.  

There are two broad classes of functional brain imaging techniques.  

• Haemodynamic methods measure changes in the regional cerebral blood flow 

(rCBF) in the brain. Increases in metabolism are generally considered to indicate 
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an increased neural activity.25 The haemodynamic methods commonly used are 

PET (positron emission tomography) and fMRI (functional magnetic resonance 

imaging).  

• Electrophysiological methods allow direct measures of neural activity via 

electromagnetic fields, which can be detected non-invasively with electrodes 

mounted on specific regions of the head. Via an EEG (electroencephalogram), 

the electric component of the electromagnetic field can be recorded over time. 

Similarly, the magnetic component can be registered with an MEG 

(magnetoencephalogram). A frequent method to measure electromagnetic 

impulses in response to a stimulus or impulse are event related potentials or 

magnetic fields (ERPs and ERFs in the EEG and MEG, respectively).  

I will not describe the rationale and the functionality of these methods in detail 

(see Rugg, 1999 for an overview). Generally speaking, haemodynamic methods have 

proved to have a high spatial but a poor temporal resolution. Electrophysiological 

methods, in contrast, have a poorer spatial but a good temporal resolution. 

Brown and Hagoort (1999) and Gazzaniga (2000) provide comprehensive 

surveys of the use of brain-imaging techniques in cognitive science. In the field of 

language processing, functional brain imaging has been predominantly used in 

research on language comprehension (cf. Brown & Hagoort, 1999, for reviews). 

Language production is more diff icult to investigate with brain imaging studies. 

EEG-recordings will only work in silent naming or other related tasks (e.g., van 

Tourennout, Haagort, & Brown, 1997, 1998), as the muscle activity associated with 

overt naming massively distorts the EEG-signal. Combining overt naming with 

MEG-recordings, in contrast, has proved to be feasible and useful in gaining fine-

grained temporal and spatial information on processing stages during lexical access 

(Levelt, Praamstra, Meyer, Helenius, & Salmelin, 1998; Lounasmaa, Hämäläinen, 

Hari, & Salmelin, 1996; Salmelin, Hari, Lounasmaa, & Sams, 1994). Beyond these 

electrophysiological studies, PET has been used to identify the neural substrates of 

object recognition and naming (see, e.g., Price et al., 1996).  

                                                 
25 Note, however, that “a change solely in the timing of the activity of a set of neurons (e.g. from 

asynchronous to synchronous firing) will have littl e or no haemodynamic counterpart, despite the 
likely significance of such a change” (Rugg, 1999: 19). 
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3 Determinants of Multidimensional Stimulus 

Discrimination 

As indicated in section 2.3, I assumed that the analysis of distinctive features a in 

referential communication task can be reduced to multiple “same”-“different” 

decisions between two objects, the target object and each context object. In Experi-

ment 1, I used the “same”-“different” decision task to assess the time course of 

detecting differences in color, size, and/or object class. In the present chapter, I will 

first introduce the “same”-“different” paradigm and discuss previous findings and 

their relevance the present investigation. The results from Experiment 1 will be 

discussed in terms of both their relation to previous research on ”same”-“different” 

judgments and their significance for the present work on referential communication. 

3.1 “Same” -“ Different” Judgments 

Since the pioneering work of Egeth (1966) on the visual perception of multi -

dimensional stimuli , considerable effort has been devoted to establishing the 

processes underlying multidimensional stimulus discrimination. Over the last 30 

years, a multitude of studies especially on the “same”-“different” paradigm has 

accumulated (Allport, 1971; Bamber, 1969; Besner & Coltheart, 1976; Bindra, 

Donderi, & Nishisato, 1968; Donderi & Case, 1970; Donderi & Zelnicker, 1969; 

Egeth, 1966; Hawkins, 1969; Jolicoeur & Besner, 1987; Linsday & Lindsay, 1966; 

Mill er, 1978, Mill er & Bauer, 1981; Nickerson, 1969, 1971, 1972; Sekuler & Nash, 

1972; Snodgrass & Townsend, 1980). In the visual “same”-“different” decision task, 

participants are asked to judge two stimuli as being same or different. The stimulus 

pairs can be presented either together or successively (simultaneous vs. sequential 

presentation). Depending on the task, participants are asked to base their decision 

either on all dimensions of the stimuli or only on some of them while disregarding 

others (conjunctive vs. disjunctive judgments, see Farell , 1985). Much of the 

previous experimental work in this area has been directed at testing models of the 

processes underlying “same”-“different” judgments for multidimensional stimuli (see 

also Farell , 1985, for a review of the extensive evidence dated from the early 70ies). 

Classes of models have been defined using two basic parameters as introduced by 

Egeth (1966): processing time (exhaustive vs. self-terminating) and processing mode 
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(serial vs. parallel mode vs. template matching). 

In the following, same and different are used to refer to the experimental 

conditions, i.e. the stimulus category of a given object pair. The notation “same” and 

“different” will be used for response types, i.e. for both potential response 

alternatives and actual responses made by subjects during the experiment (see Farell , 

1985). 

3.1.1 Methodical Problems 

There is extensive evidence on the visual discrimination of multidimensional stimuli , 

but the findings seem to be rather inconsistent. In order to correctly evaluate them, 

several factors must be considered: Many “same”-“different” decision experiments 

were based on artificial stimuli constructed with regard to model-based predictions 

(Allport, 1971; Bamber, 1969; Brunel & Ninio, 1997; Egeth, 1966). These stimuli 

must be carefully distinguished from non-artificial stimuli . In the case of objects, as 

they will be used in the present series of experiments, there are semantic and 

linguistic associations connected to their form that can become activated even at a 

very early stage of visual processing (cf. Boucart & Humphreys, 1994). Therefore, 

transferring experimental results from one domain to the other may lead to a serious 

fallacy.  

Beyond that, the “same”-“different” experiments conducted before have to be 

carefully inspected with regard to the mode of presentation (simultaneous vs. sequen-

tial) and the task involved (disjunctive vs. conjunctive judgments; see Farell , 1985).  

3.1.2 Previous Findings 

Although the reaction time data obtained in previous experiments could be used to 

draw inferences about the timing of the decision process, the results obtained under 

different task conditions differ widely, especially with regard to the decision 

latencies for the basic stimulus conditions same and different (cf. Farell , 1985; Grill , 

1971 for criti cal reviews). Earlier findings provide evidence for a self-terminating 

search during the decision, i.e. an answer on a different trial should be possible, as 

soon as a difference in any dimension has been detected. “Same” decisions, on the 

contrary, would have to be made on the basis of an exhaustive search, considering all 

dimensions to be judged. Contrary to this prediction, “same” answers were often 
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faster than “different” answers (cf. Bamber, 1969; Downing, 1970; Entus & Bindra, 

1970; Farell , 1985; Grill , 1971; Hawkins, 1969; Nickerson, 1965, 1967). It turned 

out, however, that this so-called fast-“ same” phenomenon occurred only in 

experiments with specific methodical features in the sense of the above classification 

in terms of task conditions and modes of presentation (cf. Farell , 1985). Further 

investigations revealed that for multidimensional conjunctive judgments, “ ‘same’ 

judgments are faster than the slowest class of ‘ different’ judgments (for which a 

single dimension is criti cal)” (cf. Farell , 1985: 423). This pattern, in turn, could be 

explained on the basis of the inherent properties of the dimensions involved. The 

degree of codabilit y of the dimensions appeared to be particularly influential (Bindra 

et al., 1968; Farell , 1985): According to a definition offered by Bindra et al., 

codabilit y “ refers to the property of a stimulus that enables most Ss to categorize it in 

absolute terms, without reference to another (e.g., standard) stimulus. […] By this 

definition, stimuli such as colors […] are codable, and stimuli such as […] line 

length are noncodable.” (ibd.: 129). Note that being codable or noncodable is an 

inherent property of a dimension, whereas the discriminabilit y of difference 

conditions is part of the experimenter’s manipulation (cf. also Bindra et al., 1968). 

Nevertheless, codabilit y is often confounded by discriminabilit y: Size, for example, 

as – by definition – noncodable dimension, can be more or less discriminable. I will 

therefore consider the notion of codabilit y not as a binary distinction between 

codable and noncodable dimensions, but as a continuum between highly codable 

classes of dimensions (absolute dimensions) and less codable classes of dimensions 

(relative dimensions).26  

Taking into account all methodological differences between experiments, the 

results can be re-evaluated and reduced to a few basic hypotheses on the structural 

and temporal properties of the decision process in a conjunctive “same”-“different” 

judgment:  

1. The search for differences in different object pairs is self-terminating, whereas 

the identity check on same object pairs is exhaustive. In conjunctive judgments, 

the overall  reaction time to same stimuli i ncludes a check of all dimensions and 

                                                 
26 This definition is also in accordance with the definition of absoluteness, as provided in section 

2.3.2.1 (see also Martin, 1969a,b).  



3 Determinants of Multidimensional Stimulus Discrimination 

41 

is usually longer than the reaction time to different stimuli (Downing, 1970; 

Downing & Gossman, 1970; Egeth, 1966; Farell , 1985; Hawkins, 1969). 

2. There is a codabilit y effect for the detection of the difference dimensions in 

different stimuli (Bindra et al., 1968; Farell , 1985): Relative stimuli are processed 

substantially more slowly than absolute dimensions. The notion of codabilit y can 

explain both the relation among processing times for different conditions and the 

relation between the different conditions and the same condition. 

3. The dimensions to be judged in conjunctive search can be processed in parallel. 

Detection times for differences in less codable, relative dimensions are longer 

than reaction times to same stimuli , which suggests that the exhaustive check of 

all dimensions for giving a “same” answer is accomplished in a parallel way (see 

Farell , 1985). 

3.2 Experiment 1 

In Experiment 1, I wanted to replicate the findings listed above for the type of stimuli 

used in the present investigation. Other than in previous studies I used non-artificial 

stimuli i n the form of line drawings of real objects. Different stimulus pairs varied in 

terms of object class, and/or color, and/or size. Participants were instructed to press 

the “different” -button, as soon as they detected a difference in one of the three 

dimensions, and to press the “same”-button if the two objects were identical with 

regard to all three dimensions. Using these dimensions, I was able to draw a within-

subjects comparison of the processing differences between highly codable absolute 

features (object class and color) and less codable relative features (size), and between 

form (size, object class) and color features (cf. Garner & Felfoldy, 1970, Santee & 

Egeth, 1980; Watanabe, 1988a). I chose a low ratio for the size dimension (5:4). If 

the ratio had been very high (say 50 : 1), the small and large stimuli can easily be 

identified on the basis of their absolute sizes, and size ceases to be a relative 

dimension. Bundesen and Larsen (1975) and Larsen and Bundesen (1978) showed 

that the detection times for size differences got shorter with increasing size ratios. 

Such correlations of codabilit y and discriminabilit y are ubiquitous and have to be 

taken into account when effects of codabilit y are considered: Choosing more 
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discriminable size ratios makes the size dimension more codable, if not even 

absolute. 

3.2.1 Predictions 

By means of the experimental setting outlined above, I was able to analyze effects of 

the basic response types “same” and “different” on the structure of eye movement 

patterns and the duration of processing and fixation times. Similarly, I wanted to 

explore the effects of the numbers and types of differences, as these were of 

particular interest in view of the present investigation. I predicted that structural 

differences between viewing patterns should be positively correlated with quanti-

tative differences in processing times. On the basis of the general hypotheses stated 

above, I derived the following predictions on the decision process in a conjunctive 

“same”-“different” judgment: 

3.2.1.1 Effects of the Basic Response Types “ Same” v s. “Different”  

Previous experiments on “same”-“different” judgments have provided substantial 

evidence that the parallel processing mode and the degree of codabilit y have a strong 

impact on the relation between processing times for same and different types of 

different stimuli (Bindra et al., 1968; Farell , 1985). Therefore, I predicted that stimuli 

differing in color or object class, as absolute and highly codable dimensions, should 

be associated with faster processing times than same stimuli . Similarly, the 

complexity of the viewing patterns, i.e. the number of glances at the objects and the 

number of regressions to an object viewed before, should increase for same stimuli . 

Size, on the contrary, being a less codable, relative dimension, should be associated 

with slower reaction times and more complex viewing patterns than same stimuli .  

3.2.1.2 Effects of the Number of Differences in Different Stimuli  

On the basis of f indings on self-terminating search effects in conjunctive “same”-

“different” judgments (Bamber, 1969; Egeth, 1966; Farell , 1985; Hawkins, 1969; 

Snodgrass & Townsend, 1980), I predicted that the detection times in a two- or three-

dimensional difference condition should be determined by the fastest reaction time to 

any of the single dimensions involved. Usually this will be the dimension yielding 

the shortest reaction time in a one-dimensional difference condition. Similarly, the 
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difference dimension that is easiest to detect should determine the viewing patterns 

and viewing times for multidimensional differences. 

3.2.1.3 Effects of the Types of Differences in Different Stimuli 

For one-dimensional differences, I predicted an effect of codabilit y on the eye 

movement patterns. Differences in relative features, such as size, should be 

associated with complex viewing patterns and glances to and fro both stimuli , 

because the size discrepancy can only be detected by means of a reference system 

that identifies one object as being smaller or bigger than the other. By contrast, in 

case of a difference in an absolute dimension, li ke color, the “same”-“different” 

decision can be drawn by first retaining the structural description of the first object 

and then comparing the memorized information with that extracted from the second 

object (cf. Carlson-Radvansky & Irwin, 1995). This strategy should be associated 

with rather simple viewing patterns. According to Boucart and Humphreys (1992, 

1994, 1997), the processing times for form differences are longer than those for color 

differences. Therefore, the processing times for object class differences should be 

longer than those for color differences.  

As outlined above, the processing times for multidimensional difference 

conditions can be predicted on the basis of the self-terminating search effect: The 

detection times for multidimensional differences should be determined by the fastest 

reaction time to any of the single dimensions involved. Thus, in a multidimensional 

difference condition the dimension with the highest degree of codabilit y should 

determine the relative complexity of the viewing pattern and the total reaction time. 

Closely connected to the analysis of reaction times to multidimensional 

differences is the empirical validity of models incorporating serial vs. parallel 

processing modes. As outlined above, experimental findings on “same” vs. 

“different” decision times support parallel models because “same” answers for 

identical stimuli can be given faster than “different” answers for difference dimen-

sions of low codabilit y (see Farell , 1985, for a review of the argumentation). In the 

present experiment, I therefore expected the processing times for identical stimulus 

pairs to be faster than those for stimulus pairs differing in size. However, although all 

dimensions are processed in parallel, identical stimuli have to be checked exhaustive-
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ly with regard to all dimensions, whereas “different” answers can be based on a self-

terminating search. Therefore, I predicted faster reaction times to different stimuli 

differing in absolute and highly codable dimensions such as color or object class than 

to same stimuli . 

3.2.2 Method 

3.2.2.1 Participants 

12 female and 5 male students of the University of Bielefeld took part in the 

experiment. All participants were right-handed. The experiment took about 40 

minutes and the subjects were paid DM 8,- for their participation. 

3.2.2.2 Stimuli 

108 pairs of stimuli were created from combinations of the dimensions object class, 

color, and size. Based on German category norms (Mannhaupt, 1983), typical 

representatives of three categories (animals, household furniture, clothing) were 

selected to form the three levels of the dimension object class (Katze (cat), Lampe 

(lamp), Hose (trousers)). The objects were semantically and visually dissimilar and 

were matched in terms of grammatical gender, number of syllables of their names, 

and concreteness. Line drawings for each object were taken from the Snodgrass and 

Vanderwart collection (1980). Nine copies of each object were prepared varying in 

color (red, blue, yellow) and size (small , medium, large), resulting in 27 

multidimensional objects.  

By combining the objects to pairs, 54 same and 54 different pairs were created. 

The group of different object pairs was composed of three subsets of 18 pairs each, 

containing items with one-, two-, and three-dimensional differences respectively. 

The groups of one- and two-dimensional differences each consisted of three 

subgroups with six pairs each (cf. Figure 2).  

In sum, there were seven groups of difference types, namely color (C), object 

class (O), and size (S) in the one-dimensional group (three sets of six pairs each), 

color and size (CS), color and object class (CO), and size and object class (SO) in the 

two-dimensional group (three sets of six pairs), and the group of stimulus pairs 

varying in all three dimensions (CSO; one set of 18 pairs). Object pairs differing in 
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size were created by combining medium-sized objects with large and small objects in 

equal shares. When two objects of a pair did not differ in size, they were both 

medium-sized. The ratio between the sizes of two objects differing in size was 

always 5 : 4, i.e., the same ratio was applied for large and medium objects (1.25 : 1) 

and medium and small objects (1 : 0.8). The objects were scaled to fit into a frame of 

3.01° x 3.14° (medium), 3.77° x 3.94° (large), and 2.41° x 2.51° (small ), 

respectively, with a mean distance from the screen of 60 cm.  

 

 

 

 

 

 

 

 

 

Figure 2. Construction of stimulus pairs. 
 

For the analysis of the eye movement data, I needed to find a measurable 

criterion to identify the point in time when the decision had been taken and the 

button press was initiated. I therefore positioned the two objects used for the decision 

task at the top left and right corners of the display and added a small symbol at the 

bottom. Participants were instructed to first do the decision task on the two objects at 

the top of the screen, and to decide then whether the symbol at the bottom was a plus 

or a cross. The answers were given verbally by saying “Plus” when there was a plus, 

and saying nothing when there was a cross. I chose different answer modaliti es for 

the two tasks in order to minimize interference effects. Participants were asked to do 

the two tasks one after the other as quickly as possible. This should force them not to 

stick to the first task until the end of the motor reaction but to start with the second 

task as soon as the decision on the first task was made. Proportionally distributed 

among the conditions, one sixth of all object pairs was combined with a plus, the rest 

was combined with a cross. The plus/cross symbol was centered at the bottom of the 

screen. The two objects were positioned in the upper corners of the screen with a 
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distance of 2.52° from the borders of the screen and a distance of 7.81° from each 

other (see Figure 3, for an example). 

 

Figure 3. Example of the arrangement of the object pair and the symbol at the 
bottom in an item display (condition S). Note that the scales and ratios 
given above are not accurately sketched. 

 
Although a differentiation between target and context object seems superfluous 

in case of a display with only two objects, there were several reasons to maintain this 

distinction for the present experiment: To control for effects of preferred scanning 

patterns, two items were constructed of each stimulus pair. In one item the target 

object was displayed in the upper left and the context object in the upper right corner, 

and in the other item the positions of the objects were switched. The stimulus set thus 

consisted of 216 items. The target object was always the object, to which the 

participants’ f irst gaze was guided by means of a fixation point presented 

immediately before the stimulus display at the target position. In order to implement 

size as a relative dimension in size-discrepant object pairs, the target object was 

always assigned to a medium size level, so that its relative size could be varied by 

choosing either a smaller or a bigger context object. 
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3.2.2.3 Design 

The experiment consisted of three nested within-subjects factors, namely R-Type (2) 

with the correct Response Types “same” and “different” , D-Number (3) with the 

number of differences involved in different object pairs, and D-Type with seven 

levels. The levels corresponded to the difference types described above. The items 

were assigned proportionally to six blocks with each block consisting of 18 same and 

18 different stimulus pairs. The different pairs of a block included one item of each 

of the one- and two-dimensional conditions and three items of the three-dimensional 

condition. In all blocks, 1/6th of the same and different stimulus pairs was combined 

with a plus, the rest with a cross. In half of the same stimulus pairs and half of the 

different stimulus pairs of each block the fixation point and the target object were 

positioned on the left and the context object on the right; in the remaining stimuli the 

positions of target and context object were reversed. The order of experimental 

blocks was randomized. Within each block, the items were pseudo-randomized for 

each subject. Successive items never contained identical stimuli at one or both object 

positions of the item display.27 

3.2.2.4 Apparatus 

The experiment was controlled by a Compaq Pentium 4000 computer. The items 

were presented on a Sony Triniton 20’’ monitor. Reaction times were registered with 

pushbuttons, assigning different buttons to the same and the different condition. Via 

an SMI HW-EyeLink-HM eye tracking system participants’ eye movements were 

monitored with a sampling rate of 250 Hz. Onset and offset times and coordinates of 

all fixations were extracted from the data recorded by the eye tracker. 

                                                 
27 This allows for the possibilit y that two items of the same or the different condition may follow 

each other. However, results of previous experiments (Krueger, 1973; Nickerson, 1973; Willi ams, 
1972) suggest that the effects of the immediacy of individual stimulus elements are even stronger than 
those of the recency of response types. Therefore, I randomized the items with regard to the stimuli 
occurring within the items rather than the conditions they belong to. 
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3.2.2.5 Procedure 

Prior to the experiment, participants received written instructions on the two decision 

tasks (“same”-“different” ; “plus”-“cross”) and on the function of the fixation point. 

They were asked to do each task as fast and accurately as possible. Then the 

headband of the eye tracker was mounted and the system was calibrated. A set of 

nine same and nine different trials of all difference types and difference numbers was 

included in a practice block preceding the experimental blocks. All participants first 

practiced the sequential execution of the two tasks and got used to the display and the 

assignment of response categories to the two buttons. On the first 1000 ms of each 

trial, a fixation point was presented in the upper left or right corner of the screen 

depending on the position of the upcoming target object. Immediately following, the 

object pair was presented together with the symbol at the bottom of the screen for 

3200 ms. Reaction times were measured from the onset of the stimulus display until 

a button was pressed. Reactions to the “same”-“different” decision task that took 

longer than 1800 ms were registered as time-outs. During each trial, participants’ eye 

movements were recorded. The verbal reactions to the “plus”-“cross” decision task 

were monitored during the experiment, but they were not analyzed any further. 

3.2.2.6 Analysis 

Distinct stimulus areas within the display were defined in pixels, resulting in one 

stimulus area each for the upper left corner, the upper right corner, and the symbol at 

the bottom of the screen. All fixations lying inside the contours of an object or less 

than 1.25° away from it were scored as object fixations. In addition, I defined a 

fixation area positioned between the two stimuli , as this area might be of special 

importance during the comparison of the objects. For each stimulus area, all fixations 

were extracted; onset and offset of the fixations, their durations, and their coordinates 

were registered. The onset times of f ixations starting before and ending after stimulus 

onset were recoded by zero. Depending on the position of the target object, fixations 

on the two objects were coded as target and context object fixations respectively. 

When participants had turned away from an object, the viewing duration of the 

current fixation block was computed as difference between the offset of the last 

fixation and the onset of the first fixation on the object. Such blocks of consecutive 
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fixations on an object will be termed “gazes” and their duration “gaze duration” . 

Note that this definition of gaze duration differs from the one given in section 2.4.1 

(see Just & Carpenter, 1980; Henderson, Pollatsek and Rayner, 1987, 1989) that does 

not include the duration of the saccades within a fixation block. Viewing patterns 

were defined on the basis of the temporal order of gazes on the target object (T), the 

context object (C), the symbol at the bottom of the screen (x) and the intermediate 

region between the two objects (B). Eleven different viewing patterns were defined, 

namely (1) T → C → x, (2) T → C → T → x, (3) T → C → T → C → x, (4) T → x 

→ C/T/B, (5) B → T/C/x, (6) x → T → C, (7) x → C → T, (8) C → T → x, (9) C → 

T → C-x, (10) C → T → C → T → x, (11) C → x → T/C/B, accounting for 96 % of 

the eye tracker data. 

Statistical analyses were run over both subjects and items as random factors. An 

item was defined as one instantiation of a difference type, i.e., each of the 216 

stimulus displays was regarded as an item. I will report F1-statistics (using subject 

variation) and F2-statistics (using item variation). It is possible to obtain significant 

results in separate F1- and F2-statistics, but a non-significant F-value in an ANOVA 

including both subject and item variance (Raaijmakers, Schrijnemakers, & 

Gremmen, 1999; H.H. Clark, 1973). I computed Fmin-values based on the F1- and 

F2-statistics. All significant results presented below yielded significant Fmin-

statistics. 

3.2.3 Results 

The data from Experiment 1 were analysed with regard to error rates, viewing 

patterns, viewing times and reaction times. 

3.2.3.1 Error Analysis 

The data from 88 trials (2.4%) were discarded, because participants pressed the 

wrong button (21 trials, 0.6%), or did not react in time (67 time-outs, 1.8%). The 

analysis of the error rates revealed neither significant effects of the factor R-Type, 

nor of the factors D-Number and D-Type. Error rates were not systematically related 

to the viewing patterns. 
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3.2.3.2 Analysis of Viewing Patterns 

The analysis of viewing patterns was restricted to trials with valid reaction times. 

Viewing patterns starting from the context object (266 trials = 7.7%), from the 

symbol at the bottom of the screen (6 trials = 0.2%), or from the intermediate area 

between the two objects (151 trials = 4.4%) were discarded from the analysis. The 

remaining valid viewing patterns starting from the target object (3026 trials = 87.7%) 

mainly consisted of viewing patterns with fixations on the target object and the 

context object (T → C → x: 1936 trials = 56.1%, T → C → T → x: 701 trials = 

20.3%, T → C → T → C → x: 83 trials = 2.4%). 306 trials (= 8.9%) were associated 

with a direct viewing pattern (T → x), i.e. only the target object, but not the context 

object was fixated before the gaze was shifted to the symbol at the bottom of the 

screen. The intermediate region between target and context object turned out to be of 

minor importance, as the registered fixations were almost exclusively single fixations 

of short duration that occurred during the subject’s change of gaze from one object to 

the other. They were not included in the analysis of viewing patterns, but were taken 

into account in the analysis of total viewing times (see below). 

I classified the viewing patterns with regard to the complexity of the exploration 

into simple vs. complex patterns. All patterns with at least one gaze at each object 

were classified as complex viewing patterns. The complex patterns were further 

classified according to their extensiveness into patterns without regressions (T-C-x) 

and patterns with regressions to an object fixated before (T-C-T-x and T-C-T-C-x, 

respectively). Table 1 summarizes the relative frequencies of all pattern types. As 

Table 2 shows, the analysis of the complexity and the extensiveness of the viewing 

patterns revealed significant effects of the factors R-Type, D-Number, and D-Type 

on the viewing patterns.  

3.2.3.2.1 Effects of R-Type 

The proportion of complex patterns and of patterns with regressions was significantly 

larger under the same than under the different condition (cf. Tables 1 and 2). 

Participants obviously checked both objects exhaustively, i.e. with regard to all di-

mensions, when making a “same” decision. In contrast, a “different” decision was 

apparently based on any difference that was detected.  
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Table 1. Relative frequencies of the different viewing patterns in percent, broken 
down by the factors R-Type, D-Number, and D-Type. 

 

 Viewing patterns 

 Complexity Extensiveness 

  
simple 

 
complex 

no 
regressions 

one/two 
regressions 

R-Type     

Same 5.3 94.7 63.0 37.0 

Different 15.3 84.7 80.2 19.8 

D-Number /  
D-Type 

    

1-dim. 
differences 

 9.2 90.8 68.5    31.5 

C 13.3 86.7 80.0 20.0 

S  2.2 97.8 46.6 53.4 

O 12.9 12.9 84.4 15.6 

2- dim. 
differences 

15.2 84.8 86.5 13.5 

CO 18.9 81.1 86.5 13.5 

CS 11.0 89.0 84.3 15.7 

SO 15.7 84.3 89.0 11.0 

3- dim. 
differences 

21.8 89.2 87.2 12.8 

CSO 21.8 69.2 87.2 12.8 

 

3.2.3.2.2 Effects of D-Number and D-Type 

The observed proportions of viewing patterns under the two- and three-dimensional 

conditions correspond to those observed under the color and object class condition in 

the one-dimensional group. Participants apparently based their “different” response 

on the dimensions that were easiest to detect (self-terminating search; cf. Table 1). 

Analyses of the factor D-Type for the subgroups of one-, two-, and three-dimen-

sional differences showed significant effects for the group of one-dimensional 
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differences only. Size was associated with significantly more complex viewing 

patterns than color or object class. The latter conditions, in turn, did not differ from 

each other. With regard to the groups of two- and three-dimensional differences there 

were no significant differences (see Table 1). 

 
Table 2. ANOVA results: Effects R-Type, D-Number and D-Type on the complexity 

(simple vs. complex) and extensiveness (no regressions vs. one or more 
regressions) of the viewing patterns. 

 

 Subjects Items 

 df F1 df F2 

 Complexitya 

R-Type 1,16 15.01** 1,214  6.27*** 

D-Number 2,32  8.61** 2,106  7.56** 

D-Typec 6,96  6.80*** 6,102  7.15*** 

D-Typed  2,32 12.12*** 2, 33  7.08** 

 Extensivenessb 

R-Type 1,16 17.60** 1,214 17.72*** 

D-Number 2,32  8.18** 2,106  7.93** 

D-Typec 6,96 21.31*** 6,102 39.34*** 

D-Typed  2,32 16.23*** 2, 33 10.29*** 

 
Note. a The analyses are based on the relative frequencies of complex viewing pat- 

    terns observed for each subject/item and each respective condition 
          b  The analyses of extensiveness are based on the relative frequencies of  

viewing patterns without regressions observed for each subject/ item under 
the respective conditions 

          c   overall effect of the factor D-Type 
          d   effect of the factor D-Type within the group of one-dimensional differences 
          ** p < .01, *** p < .001 

3.2.3.2.3 Summary 

The analysis of viewing patterns supports the main hypotheses. Corresponding to 

exhaustive as opposed to self-terminating search strategies for same versus different 

stimuli, the viewing patterns under the same condition were significantly more 

complex than those under the different condition. Within the different condition, 

differences in size as a relative feature were associated with significantly more 
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regressions than differences in the more codable features object class and color. 

Recall , however, that this effect of codabilit y may be confounded with effects of 

discriminabilit y.  

The comparison of viewing patterns between the difference types with one as 

opposed to two or more difference dimensions provides evidence for a self-

terminating search strategy: In the conditions with two- or three-dimensional 

difference types, the frequencies of simple viewing patterns and of patterns without 

regressions were nearly identical to those registered under the highly codable one-

dimensional difference types (color and object class). This seems to be due to the 

easy detectabilit y of color and object class differences, which can be processed faster 

than differences in size. Obviously size, being part of the conditions SC, SO, and 

SCO, was not processed after a difference in color or object class had been detected, 

as it did not influence the viewing patterns under these conditions in any way.  

3.2.3.3 Analyses of Viewing Times and Reaction Times 

In order to conduct analyses of viewing times, I defined the following parameters:  

VT(T) := viewing time of the target object, defined as sum of the 

duration of the first gaze at the target object and all 

regressions to it; 

VT(C) := viewing time of the context object, defined as sum of the 

duration of the first gaze at the context object and all 

regressions to it (VT(C) was = 0 for direct viewing patterns 

without any gaze at the context object); 

VTtot := VT(T) + VT(C) (fixations on the area between target and 

context object were included if they had occurred prior to the 

first fixation on the plus/cross); 

For each dependent variable, processing times within a given condition that 

deviated by more than two standard deviations from the respective participant’s and 

item’s mean were replaced by estimates following the procedure recommended by 

Winer (1971). The proportion of replaced values was below 5 % for all variables. 

Figure 1 displays the results for the same condition and all different conditions.  
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Figure 3. Mean values for RT, VTtot, VT(T), and VT(C), displayed for the same 
condition and each of the different conditions. Dashed lines for VTtot 
indicate that VTtot is no direct measure of processing time but represents 
the sum of VT(T) and VT(C). 

 
As outlined above, only the viewing times preceding the first fixation on the icon 

at the bottom of the screen were evaluated. The similarity of the results obtained for 

reaction times and total viewing times (dashed lines in Figure 1) can be regarded as 

an index of the high validity of total viewing times as an indicator for the processing 

time for the objects. Recall that I had included the second task to be able to 

differentiate between overall processing times (measured as total viewing times) and 

reaction times (measured as the moment of the button press). In an ANOVA over the 

difference between total viewing times and reaction times including all different 

conditions and the same condition, I obtained no significant effects of condition. The 

time period between total viewing time and reaction time can thus be interpreted as 

(constant) motor latency.  

3.2.3.3.1 Effects of R-Type 

As Table 3 shows, participants reacted significantly faster to different than to same 

object pairs (F1(1,16) = 10.97, p < .01; F2(1,214) = 23.58, p < .01). The total time 

taken to explore the whole display was significantly shorter for different than for 

same object pairs (F1(1,16) = 10.24; p < .01; F2(1,214) = 16.11, p < .01). 

Considering the viewing times of the target and the context objects separately, the 

effect of the factor R-Type reached significance only for the context object (F1(1,16) 
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= 16.39, p < .01; F2(1,214) = 20.78, p < .01), but not for the target object (both Fs < 

1).  

 
Table 3. Mean processing times and standard deviations by subjects for each 

response type 
 

 RT VT(T) VT(C) VTtot 

same 

M 

SD 

 

863 

142 

 

340 

 64 

 

299 

 67 

 

644 

111 

different 

M 

SD 

 

800 

142 

 

337 

 84 

 

264 

 81 

 

605 

129 

 
These results are in line with the findings on the exploration patterns for same vs. 

different object pairs, showing fewer simple viewing patterns and more extensive 

viewing patterns with regressions for the same than for the different condition. 

Subjects were faster in judging two objects as being “different” , than they were in 

judging two objects as being “same”: For a “different” decision they did not have to 

scan both objects exhaustively with regard to all dimensions, but could make a 

decision as soon as they had found a difference. Because of the larger proportion of 

simple patterns under the different condition, the context object was looked at less 

often than under the same condition, yielding shorter mean viewing times of the 

context object. I had expected to find a similar effect of the smaller number of 

regressions under the different condition on the viewing times of the target object. 

Contrary to that prediction, however, the extensiveness of the viewing patterns was 

not to directly correlated to the viewing times of the objects in the display. I assumed 

that this might be due to differences between the individual duration of single gazes 

within a complex sequence of gazes at both objects. More detailed analyses revealed 

structural differences between the patterns with vs. without regressions. The findings 

are attached in Appendix A on “Structural Differences between Viewing Patterns” . 
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3.2.3.3.2 Effects of D-Number 

The factor D-Number exhibited significant effects on all dependent variables, except 

for the viewing times of the target object (F1(2,32) > 16, p < .001; F2(2,106) > 7, p < 

.01 for RT, VT(C), and VTtot). As Table 4 shows, reaction times and viewing times 

were significantly longer for one- than for two- and three-dimensional differences. 

Paired comparisons revealed significant differences between the processing times of 

one- and two-dimensional difference types (t1(16) > 4.6, p < .001; t2(71) > 2.5, p < 

.01 for RT, VT(C), and VTtot) and of one- and three-dimensional difference types 

(t1(16) > 5.9, p < .001; t2(71) > 3.4, p < .001 for RT, VT(C), and VTtot). Two- and 

three-dimensional difference conditions did not differ significantly. This finding 

supports the notion of a self-terminating search strategy in visual discrimination. The 

detection times of multidimensional differences appeared to be determined by an 

easily detectable dimension and were independent of the number of differences 

involved (cf. Table 4) 

 
Table 4. Mean processing times and standard deviations by subjects for one-, two-, 

and three-dimensional difference types 
 

 RT VT(T) VT(C) VTtot 

1-dim. differences 

M 

SD 

 

868 

146 

 

348 

 73 

 

305 

 75 

 

656 

125 

2-dim. differences 

M 

SD 

 

785 

145 

 

332 

 91 

 

254 

 84 

 

592 

135 

3-dim. differences 

M 

SD 

 

745 

136 

 

331 

 99 

 

232 

101 

 

567 

139 

 
I had predicted that the differences between viewing patterns in terms of 

complexity and extensiveness should be related to differences in processing times. 

The relative complexity of the observed viewing patterns was correlated with the 

viewing times of the context object (see above), but there were no effects of the 

relative extensiveness of the patterns on the viewing times of the target object. For 
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further analyses of this result, please refer to Appendix A (“Structural Differences 

Between Viewing Patterns” .) 

3.2.3.3.3 Effects of D-Type 

The main effect of the factor D-Type was significant for RT, VT(T), VT(C), and 

VTtot (F1(6,96) > 7.7, p < .001; F2(6,102) > 5.7, p < .001 for all variables). As 

Table 5 and Figure 1 show, the processing times for size differences were slower 

than for all other difference types. The remaining difference types did not differ 

substantially from each other.  

 
Table 5. Mean processing times and standard deviations by subjects for each 

difference type 
 

 RT VT(T) VT(C) VTtot 

C 

M 

SD 

 

824 

154 

 

319 

 75 

 

280 

 80 

 

603 

135 

S 

M 

SD 

 

986 

190 

 

415 

 79 

 

359 

 73 

 

779 

131 

O 

M 

SD 

 

786 

139 

 

303 

 95 

 

269 

110 

 

575 

151 

CO 

M 

SD 

 

789 

185 

 

333 

95 

 

237 

107 

 

574 

120 

CS 

M 

SD 

 

780 

133 

 

334 

 76 

 

269 

 80 

 

613 

134 

SO 

M 

SD 

 

786 

148 

 

334 

126 

 

254 

102 

 

590 

167 

CSO 

M 

SD 

 

745 

136 

 

331 

 99 

 

232 

101 

 

567 

139 
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I conducted separate Analyses of Variance for three groups of difference types, 

namely the group of one-dimensional differences (S, C, O), the two-dimensional 

differences (CO, CS, SO), and finally the group of more-than-one-dimensional 

differences, consisting of the difference types CO, CS, SO, CSO. As I had expected – 

given the self-terminating search effect reported above – I did not obtain any 

significant results with regard to the two last-mentioned groups, but only for the 

group of one-dimensional differences (F1(2,32) > 11.8, p < .001; F2(2,34) > 6.2, p < 

.001 for RT, VT(T), VT(C), and VTtot).  

Within the group of one-dimensional differences the predicted effects of the 

different degrees of codabilit y of absolute and relative dimensions were confirmed: 

Size was processed significantly more slowly than color (t1(16) > 4.7, p < .001; 

t2(32) > 2.5, p < .01 for all variables) and object class (t1(16) > 3.9, p < .01; t2(32) > 

3.3, p < .01 for all variables). Contrary to my initial expectation, color and object 

class did not differ significantly from each other (cf. Table 5). For the “same”-

“different” decision process, the absoluteness of a dimension seemed to be more 

crucial than the color vs. form aspect. Dunnet tests (p < .05) that were conducted to 

determine the relation between the individual one-dimensional difference conditions 

and the two- and three-dimensional conditions, revealed significant differences 

between size and the multidimensional conditions only. All multidimensional 

differences were processed as fast as one-dimensional color or object class 

differences.  

3.2.3.3.4 Additional Analyses of Codability Effects 

As outlined at the beginning of this chapter, Bindra et al. (1968) introduced the 

notion of codabilit y in order to explain the inhomogeneous pattern of results for same 

vs. different stimuli and the fast-“ same” phenomenon. They showed that the 

observed discrepancies were due to the fact that same stimuli were processed more 

slowly than stimuli differing in absolute dimensions but faster than stimuli differing 

in relative dimensions. In line with Bindra and colleagues, I obtained significantly 

slower processing times for stimulus pairs differing in size than for identical stimulus 

pairs (Dunnet tests, p < .05 for RT, VT(T), VT(C), VTtot; see also Figure 1). In the 

remaining comparisons (same vs. C / O / CO / CS / SO / SCO), the “same” 

processing times were slower than the respective “different” processing times. For 
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RTs, Dunnet tests (p < .05) revealed significant differences between the same 

condition and each of the remaining stimulus conditions except for color (O, CO, CS, 

SO, CSO). The analyses of VT(C) and VTtot showed significant differences between 

same and CO and same and CSO only. For the viewing times of the target object, I 

obtained no significant differences between the same condition and the remaining 

difference types.  

These findings are in line with a parallel processing mode (Allport, 1971; 

Bamber, 1969; Bindra et al., 1968; Donderi & Case, 1970; Donderi & Zelnicker, 

1969; Downing & Gossman, 1970; Egeth, 1966; Hawkins, 1969): If the identity 

check of all dimensions for a “same” decision had been conducted in a serial manner, 

the processing times would have been even longer than those for a “different” 

decision in size-discrepant shapes. 

3.2.3.3.5 Summary 

The results of the analysis of viewing times and reaction times clearly confirm the 

assumption of a self-terminating search strategy that is based upon a codabilit y 

effect. Color and object class as absolute dimensions were processed significantly 

faster than size as a relative dimension, and they therefore determined the processing 

times for multidimensional differences. Effects of color vs. form processing did not 

influence processing times of color and object class differences (cf. Boucart & 

Humphreys 1992, 1994, 1997). What seems to determine the reaction time to a 

difference in object class is the absoluteness of the object class dimension, but not 

the fact that it is a form dimension. 

3.3 Visual Discrimination of Multidimensional Stimuli 

The present findings provide evidence from both viewing patterns and processing 

times in support of the hypothesis that conjunctive “same”-“different” decisions on 

two objects are made through parallel, self-terminating processes. Participants looked 

for differences as long as necessary to detect one and checked the dimensions 

exhaustively only if the stimuli were identical. Thus, for multidimensional stimuli , 

decision times as well as viewing times and viewing patterns were determined by the 

difference dimension that was easiest to detect (self-terminating search). Ease of 

detection is closely connected to codabilit y: Differences in absolute and highly 
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codable dimensions, such as color or object class, were detected faster than 

differences in size as a relative dimension. Note, however, that the effects of 

codability may be confounded with discriminability effects. The comparison of color 

and object class differences did not reveal any effects of color vs. form processing. 

What did seem to be relevant for the decision process was the absoluteness of the 

object class difference but not the fact that it was a difference in form. The relative 

processing times registered for same as opposed to different object pairs support the 

notion of a parallel processing mode.  

In the next chapter, I will outline the use of the findings from Experiment 1 in 

view of experimental findings on the referential communication paradigm. I will 

extrapolate the present findings and argue that they account for overspecifications in 

referential noun phrase descriptions as perceptually grounded phenomenon.  
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4 Determinants of Referential Overspecifications 

In the referential communication task, speakers have to refer to multidimensional 

objects in the context of other multidimensional objects by specifying a set of 

features that clearly distinguish the intended object from the surrounding objects. In 

chapter 2, I introduced the empirical phenomenon of referential overspecifications: 

Speakers often utter features of the object to be specified that are redundant in view 

of a minimally contrastive specification (Eikmeyer & Ahlsén, 1998; Herrmann & 

Deutsch, 1976; Schriefers & Pechmann, 1988; Pechmann, 1989). Following 

Whitehurst, I want to argue that it is the availabilit y of features that determines the 

form of an object specification: “While contrastive descriptions are eff icient in terms 

of words they may be ineff icient in terms of the effort to appropriately analyze the 

stimulus array.” (Whitehurst, 1976, p. 478). Provided that the analysis of distinctive 

features in a referential communication task can be reduced to multiple “same”-

“different” decisions, I will account for the high frequency of overspecifications in 

referential communication on the basis of the effects of self-terminating search and 

codabilit y obtained in Experiment 1 and the incrementality of speech production 

processes (Pechmann, 1989; Schriefers & Pechmann, 1988). 

I consider the case of minimal specifications first. Here, the process of referring 

to an object in a referential communication task can be reduced to three main stages 

of the production process:  

1. detecting differences between target object and context object(s),  

2. evaluating detected differences with regard to their distinctiveness, and  

3. verbalizing the minimally distinctive features by means of a complex noun 

phrase, e.g. “ the large green lamp”.  

The “same”-“different” experiment presented in chapter 3 revealed the main 

characteristics of the first stage. In chapter 2, findings on how speech production 

processes work and how the verbalization stage might be modeled were presented 

(Bock & Levelt, 1994; Dell , 1986; Schade & Eikmeyer, 1998; Levelt, 1989; Levelt, 

Roelofs, & Meyer, 1999; Schade, 1999). Yet, there are no detailed accounts of the 

second stage, i.e. the evaluation of stimulus dimensions with regard to their 

relevance.  



4 Determinants of Multidimensional Object Specifications 

62 

A review of the literature on “same”-“different” judgments reveals a number of 

investigations on the processes involved in making “same”-“different” decisions on 

one dimension while disregarding a second dimension (Ballesteros & Manga, 1996; 

Besner & Coltheart, 1976; Bundesen & Larsen, 1975; Dixon & Just, 1978; Jolicoeur 

& Besner, 1987; Krueger, 1973; Mill er & Bauer, 1981; Sekuler & Nash, 1972; 

Watanabe, 1988a). In order to model the processes underlying such complex decision 

tasks, Krueger (1978) presented the “noisy-operator theory” , and Mill er and Bauer 

(1981) developed the “relevance rechecking model” , which was modified by 

Watanabe (1988a). These models all assume two basic stages: The first serves for 

difference detection only, whereas the second involves decisions on the relative 

relevance of the detected features. Krueger and Watanabe assumed that during the 

first stage, some irrelevant features could be filtered out, though not all . While 

Krueger explained the insuff icient early filtering on the basis of noise, Watanabe 

presented a more detailed analysis of the mechanisms involved. He investigated the 

influence of the relation between relevant and irrelevant stimulus dimensions in 

terms of their relative degree of integrality (Garner, 1974; Garner & Felfoldy, 1970; 

Lockhead, 1972; Watanabe, 1988a, 1988b). In two highly integral dimensions, li ke 

orientation and form, the irrelevant dimension exerts a strong influence on the 

judgment of the relevant dimension. In contrast, two dimensions with a low degree of 

integrality (separable dimensions, e.g. color and form) can easily be attended to 

selectively and judged independently of each other. In his experiments, Watanabe 

(1988a, 1988b) found low degrees of integrality for color and size and for color and 

form, but high degrees of integrality for orientation and size. He specified the 

relevance rechecking model by Mill er and Bauer as follows: If the dimensions 

involved in a “same”-“different” decision task with one relevant and one irrelevant 

dimension are separable, “ the information coming from this irrelevant dimension 

should be filtered out at the first stage” (Watanabe, 1988a, p. 141).  

The (modified) relevance rechecking model can be used to derive predictions on 

the availabilit y of stimulus dimensions for the description of a multidimensional 

target object in the context of other multidimensional objects. Note, however, that in 

the experiments cited above on the effect of irrelevant differences on “same”-

“different” judgments of relevant dimensions, subjects were explicitl y instructed 
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which dimension they had to disregard. For the production of minimal specifications 

of multidimensional objects in a referential communication task, the evaluation of 

relevant vs. irrelevant dimensions is part of the naming task. Nevertheless, the 

(modified) relevance rechecking model can be used to approximate the evaluation 

processes in the analysis of complex object displays in referential communication, as 

I want to propose it here. 

4.1 Experiment 2 

To accomplish a precise assessment of the relation between the processes of 

detection and naming, I ran a naming experiment on the basis of the stimulus 

material used in Experiment 1. 

4.1.1 Predictions 

Taking into account Watanabe’s (1988a, 1988b) findings in combination with the 

self-terminating search effect and the large impact of codabilit y on the “same”-

“different” decision latencies obtained in Experiment 1, I derived the following 

hypotheses: 

1) Differences in relative dimensions, such as size, that co-occur with differences in 

absolute dimensions, such as color or object class, should be filtered out at the 

first stage. After being filtered, these dimensions are – as I will t erm it – 

functionally invisible in view of higher order processes. Note, however, that they 

are – in principle – visible and perceivable. 

2) Differences in absolute dimensions have to be rechecked at the second stage with 

regard to their relevance. 

In view of experiments on referential communication, minimal specifications can 

only be produced on the basis of both stages within the relevance rechecking model. 

This implies a rather large cognitive effort. Although a minimal specification would 

fulfill basic communication rules, such as Grice’s (1975) maxim to be minimal, it is 

usually not necessary to produce minimal specifications but to produce unambiguous 

specifications. Thus, Hypothesis 2 can be modified as follows: 
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2a) It may cost less effort to specify irrelevant differences in absolute dimensions 

      than to explicitl y ignore them (“principle of least effort” , “economy principle”;  

      cf. Whitehurst, 1976; Pechmann, 1994).  

Based on hypotheses 1 and 2a) I predicted that overspecifications of size as a 

relative dimension should occur rather seldomly, whereas color as an absolute 

dimension should be overspecified more frequently. Previous experiments had 

shown precisely this pattern of results (cf. Eikmeyer & Ahlsén, 1998, for a review); 

however, these experiments provide only littl e evidence on the procedural origin of 

referential overspecifications. 

4.1.2 Method 

4.1.2.1 Participants 

7 male and 10 female students of the University of Bielefeld, who had not attended 

Experiment 1, took part in the experiment. They were all were right-handed and 

spoke German as their mother tongue. The experiment took about 50 minutes and the 

subjects were paid DM 10,- for their participation. 

4.1.2.2 Stimuli and Design 

To provide as much accordance as possible with Experiment 1, the stimulus material 

and the randomization procedure were the exactly the same as in Experiment 1. The 

design was identical, too, though not all of the factors were relevant for the purpose 

of the present experiment. 

4.1.2.3 Apparatus 

The experiment was controlled by a Compaq Pentium 4000 computer. The items 

were presented on a Sony Triniton 20’’ monitor. All verbal reactions were recorded 

on DAT-tapes. Reactions to the “plus”-“cross” decision task were registered with a 

pushbutton panel.  

4.1.2.4 Procedure 

Participants were asked to name the target object in a way that a li stener would be 

able to identify it on the display. The target object was marked by the fixation point 
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preceding the object display. The whole set of items of the detection task was used, 

including all same items. Participants were asked to say “same” when the two objects 

were identical and to name the target object when the objects differed. The “plus”-

“cross” decision task was now carried out using a pushbutton panel to avoid 

interference between the naming task and the “plus”-“cross” decision task. Partici-

pants were instructed to push the left button if there was a plus and to do nothing if 

there was a cross. 

Prior to the experiment, participants received written instructions on the naming 

task and the “plus”-“cross” decision task. They were asked to do each task as fast 

and accurately as possible. A set of nine same and nine different trials of all types 

and numbers was included in a practice block preceding the experimental blocks and 

all participants first practiced the sequential execution of the two tasks. On the first 

1000 ms of each trial the fixation point was presented in the upper left or right corner 

of the screen depending on the position of the target object. Immediately following, 

the two stimulus items were presented together with the symbol at the bottom of the 

screen for 4000 ms. Verbal reactions were recorded on a DAT-tape and verbal 

reaction times were measured by means of a voice key. Reactions that took longer 

than 2500 ms were registered as time-outs. The pushbutton reactions to the “plus”-

“cross” decision task were monitored, but were not analyzed any further. 

4.1.3 Results 

All verbal reactions were transcribed and coded as to the number and the types of 

attributes specified in the noun phrases. As Table 6 shows, color was overspecified 

substantially more often than size. Color was also overspecified when it was merely 

present, but not varied between the objects (Conditions S, O, SO). However, the 

presence of an irrelevant difference in color in conditions CO and SCO lead to 

substantially higher rates of overspecifications, about 80%, compared to the condi-

tions without irrelevant color variation (cf. Table 6). The comparison of conditions C 

and CO with regard to the frequencies of color overspecifications revealed a 

significant difference (F1(1,17) = 8.74, p < .001; F2(1,46) = 35.88, p < .001). Size, 

in contrast, was hardly ever overspecified.  
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In condition CS, when minimal specifications included either color or size (Det-

C-N, Det-S-N), color was specified more often than size (Det-C-N: 128 utterances; 

Det-S-N: 17 utterances). A Wilcoxon Signed Ranks Test for related samples showed 

that this difference was highly significant (p = .00016, T+ = 152, z = 3.57, N = 18; 

because of the sample size (N > 15) the sum of ranks was transformed to a z-value; 

cf. Siegel & Castellan, 1988).  

170 of all utterances included both color and size specifications. Most of them 

were utterances of the type SCN (152 utterances; 89.41%); the rest were inverted 

order phrases (18 CSN-phrases; 10.59%). 

 
Table 6. Percentages of specification types and overspecifications for each 

Difference Type (D-Type) 
 

   Specification Types (%)  

D-
Type  

Minimal 
Specification  

Example  
 

Overspecifications  

   

Min.  
Spec.  

C S C & S  

C the black ball  
  

100  – – – 

S the large ball  
  

61.8  38.2  – – 

O the ball  
  

33.5  66.5  – – 

CO the ball  
  

19.8  80.2  – – 

CS 
the black ball  

the big ball    

68.1  
9.0  

22.9  – 

SO the ball  
  

30.7  59.8  2.0  6.5  

CSO the ball  
  

20.1  74.3  0.2  5.4  

 

4.2 Early Perceptual Origin of Referential Overspecifications  

In sum, the findings presented above support the hypotheses developed on the basis 

of the relevance rechecking model and the principle of “ least effort” : Size-

differences, co-occurring with differences in absolute dimensions, such as color or 

object class, are filtered out early during the detection process and are thus 
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functionally invisible in view of the formulation process. The relative detectabilit y of 

color as opposed to size differences directly influences the selection of prenominal 

adjectives and thus determines in large parts the form of the object specifications. 

The filter mechanisms for size and color are based on purely perceptual effects, i.e., 

the formation of referential overspecifications originates already on the level of 

visual perception. 

As indicated in section 2.3.1.1, Pechmann (1989, 1994) and Schriefers and 

Pechmann (1988) stressed the importance of the incremental character of speech 

production processes for an account of referential overspecifications. If speakers 

always waited for the results of a complex evaluation of all dimensions with regard 

to their relevance for a minimal object specification, they would have to postpone the 

initiation of speech production processes, too. Thus, by planning and producing their 

utterances incrementally, speakers are able to initiate articulation processes earlier 

and to thereby produce fluent utterances. Pechmann (1989) suggested that speakers 

use color as an absolute dimension strategically: As soon as the first piece of 

information is available, linguistic encoding processes are initiated, while, at the 

same time, the relevant contextual alternatives are inspected in more detail . Thus, it 

is “characteristic of such a strategy that the speaker articulates features of the target 

before he has determined whether they are distinguishing or not” (Pechmann, 1989, 

p. 98) 

The incremental processing mode in speech production seems to be an elegant 

explanation for referential overspecifications. Yet it cannot account for the canonical 

order of adjectives in complex noun phrases: In canonical order phrases, size is 

named before the color, although color is detected earlier than size (see chapter 3). In 

Experiment 3, presented in the next chapter, I addressed this inconsistency. In this 

experiment, I also assessed effects of task-diff iculty on the occurrence of inverted 

adjective orders (see section 2.3.2.3). 
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5 Determinants of Prenominal Adjective Order 

In section 2.3.2, I had introduced the phenomenon of the canonical adjective order in 

complex noun phrases and had presented two approaches to account for this 

phenomenon, the visuo-semantic and the procedural approach. The findings from 

Experiments 1 and 2 provide evidence for both approaches: Following the argument 

of Pechmann (1989, 1994) and Schriefers and Pechmann (1988), the large number of 

color overspecifications is due to the incremental mode of processing between 

conceptual preparation and grammatical encoding. At the same time, the data are 

readily explicable in the framework of the visuo-semantic approach on the basis of 

the relative detectabilit y of color and size differences on the one hand and the 

relative effort associated with filtering out irrelevant color information on the other.  

Experiment 3 was designed to investigate the canonical order effect on the basis 

of the results from Experiments 1 and 2. By means of eye movement analyses, I 

wanted to track the time course of the evaluation of distinctive features of the target 

object and the subsequent linguistic encoding processes more complex situations 

than in the two-objects situation.  

5.1 Extrapolation to the Multiple-Objects Situation 

In Experiment 2, only two objects were used. In this situation, it is enough to name 

either color or size or none of them; there is no condition  in that both dimensions 

have to be named in order to minimally specify the target object (see Chapter 4, 

Table 6). The aim of Experiment 3 was to extrapolate from this two-object situation 

to a more complex situation, including relevant differences in color and size. In view 

of the quality of the eye tracker data, however, it was necessary to keep the number 

of objects within the display as small as possible. As the focus of Experiment 3 lay 

on the relative order of color and size adjectives, I decided to leave object class 

differences out of consideration. In German, the object class is specified definite 

noun phrases anyway, independent of other object classes being present or not. There 

is no such construction as “ the red one” in English, and although it is correct to say 

“der/die/das Rote” in order to refer to one of several colored exemplars of an object, 

such an utterance would be elli ptic. 
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5.2 Experiment 3 

Three exemplars of an object with different colors and/or sizes were presented on 

each trial. In the following, the object exemplars presented in the display will be 

referred to as objects. The superordinate object type will be termed object class. Like 

in Experiment 2, one of the three objects was marked as target object by means of a 

fixation point preceding the object display at the position of the target object. 

Participants were asked to name the target object either a) in such a way that a 

listener would be able to identify it (neutral instruction group) or b) in a minimal 

way, i.e. to name the minimally distinctive features alone (minimal instruction 

group).  

By including a minimal instruction group, I wanted to assess indirectly the 

relative facilitation that is achieved by applying the principle of least effort, i.e. by 

overspecifying redundant features instead of producing minimal specifications. As 

the results from Experiments 1 and 2 have shown, there is a strong effect of visual 

perception on the form of the object specifications. According to the findings 

obtained so far, size discrepancies coinciding with color discrepancies in one object 

are often filtered out early, and color is specified although it is not minimally 

distinctive. Under the minimal instruction, these overspecifications of color are 

incorrect, i.e. participants will have to evaluate each detected difference with regard 

to its relevance. By including a minimal instruction group, I varied the relative task 

difficulty between participants. On the basis of previous findings on the effects of 

task difficulty on the occurrence of inverted adjective orders (cf. chapter 2.3.2.3), I 

predicted that the increased task demands in the minimal instruction group should 

lead to the production of more inverted adjective orders. The analysis of the eye 

movements and processing times in the minimal instruction group might then allow 

inferences about the procedural origin of such inversions of the canonical adjective 

order. 

5.2.1 Overview of the Experiment 

Three experimental conditions were used that differed with regard to the minimal 

specification of the target object: In all conditions, color and size variations were 
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present in the display. Between conditions, the combination of the target object with 

color and/or size-discrepant context objects was varied systematically (cf. Table 7):  

• In condition SCO, both color and size had to be specified in order to refer 

unambiguously to the target object. 

• In condition CO, color was the minimally distinctive feature of the target object; 

size was varied irrelevantly. 

• In condition SO, size was the minimally distinctive feature of the target object, 

and color was varied irrelevantly. 

 
Table 7. Example of the construction of object displays for conditions SCO, CO and 

SO 
 

 SCO 
CO  

(S irrelevant)  
SO  

(C irrelevant)  

Minimal 

speci -

fication  

der kleine 
rote Ball  

(the small red 
ball)  

der rote Ball  

(the red ball)  

der kleine 
Ball  

(the small 
ball)  

    

Example  

   

Objects   TO   CF    SF   TO   CF    SF   TO   CF    SF  

TO vs.  CO  TO  – C    – S  TO  – C   – CS  TO  – CS   – S 

 
Note. All objects belong to the same object class; all objects differ with regard to 

color and/or size. 
 

Sixteen objects of different semantic categories were chosen for the construction 

of experimental items. Half of the object names were monosyllabic; the other objects 

had disyllabic names. To rule out gender effects, masculine, female and neuter 

exemplars were selected of each semantic category. The objects with their German 

names are listed in Table 8, together with the respective semantic categories (cf. 

Mannhaupt, 1983) and gender types.  

 

��� ������
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Table 8. Objects and object names in German 
 

Sem. 
Category  

mal e feminine  neuter  

Tools  hammer Hammer saw Säge knife  Messer  

Furniture  chair  Stuhl  lamp  Lampe bed  Bett  

Animals  dog  Hund cat  Katze  pig  Schwein  

Toys  ball  Ball  doll  Puppe wheel  Rad 

Garment  shoe  Schuh  
cap  

trousers  
Mütze  
Hose 

shirt  Hemd 

 
For the construction of experimental items, nine objects of each object class were 

constructed by means of systematic variations of color and size. Three colors (red, 

blue, yellow) and three sizes (small , medium, large) were used; their German names 

are given in Table 9. In order to model size as a relative dimension, the target object 

was assigned a medium size only, and size discrepant context objects were assigned 

either a smaller or a larger size. In accordance with experiments 1 and 2, the ratio 

between the sizes of the target object and any size discrepant context object was 4 : 5 

and 5 : 4, respectively. Objects were scaled to fit into frames of 3,01° x 3,14° (large), 

2,41° x 2,51° (medium) and 1,92° x 2,01° (small ) with an approximate distance of 60 

cm from the screen. 

 
Table 9. Colors, sizes, and their names 
 

Colors  Sizes  

red  rote  small  kleine  

blue  blaue  large  große  

yellow  gelbe    

 
Note. Size and color names are given in their inflected form as it is used in singular, 

nominative, definite noun phrases. In contrast to the infinite forms of the 
adjectives, the inflected forms are all disyllabic. The forms are the same for all 
gender types. 

 
In order to create the experimental items, three objects of one object class were 

combined. One of the three objects was constructed as the target object (TO in the 

following); the other two objects were context objects (cf. Table 7). In relation to the 
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target object, the first context object was color discrepant in all conditions and the 

second context object was size discrepant from the TO. They will be called color foil 

(CF) and size foil (SF) in the following. However, depending on the conditions, the 

CF and the SF could incorporate additional differences in size or color: 

• In condition SCO, the CF was color-discrepant from the TO, and the SF was 

size-discrepant from the TO. In this constellation, both color and size had to be 

named in order to specify the target object minimally (cf. Table 7). 

• In condition CO, the CF was color-discrepant from the TO. The SF differed from 

the TO in terms of both color and size. As can be inferred from Table 7, it would 

be sufficient to name the color of the TO in order to refer to it minimally; size 

was thus varied irrelevantly in this condition.  

• In condition SO, the SF was size-discrepant from the TO and the CF differed 

from the TO in terms of both color and size. As Table 7 shows, it would be 

enough to name the size of the TO for a minimal specification, i.e., in this 

condition color was varied irrelevantly. 

As outlined above, color and size were varied in all conditions. However, it never 

occurred that more than two colors and two sizes were present in a given display: If 

both context objects differed from the TO in terms of color (size), the colors (sizes) 

of the context objects were identical (cf. conditions CO (SO) in Table 7). 

The three objects were aligned from left to right. In order to vary the relative 

position of the TO within the object alignment, three main array types were defined, 

namely one with the TO on the left, one with the TO in the middle and one with the 

TO on the right. Within these main array types, the positions of the context objects 

were varied, too, resulting in a balanced set of six array types (see Figure 5). The 

relations between TO, CF and SF in the respective conditions and array types are 

illustrated in Figure 5. Each object occurred twice in each position within the array, 

with the TO in the middle in array types 3 and 4, the CF in the middle in array types 

1 and 6, and the SF in the middle in array types 2 and 5. Note that array types 1 and 

6, 2 and 5, and 3 and 4 are each mirror images of each other.  
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Figure 5. Overview of Array Types after the complete randomization in each 

condition 
 

Under each condition, three items were constructed from each object class. Each 

item was then assigned to a different main array type. As two array types were 

available for each main array type, eight combinations of selected array types were 

possible. The combinations were assigned randomly to the 16 object classes, such 

that each combination of array types occurred twice within one condition. 

5.2.2 Hypotheses and Predictions 

As outlined above, the findings of experiments 1 and 2 had revealed a strong 

influence of early visual perception processes on the selection of prenominal 

adjectives for a multidimensional object specification. In particular, the effects of 

codability and self-terminating search and the functional invisibility of size turned 

out to be important determinants of the form of the object specifications (cf. sections 

3 and 4). Based on these features, the following hypotheses should hold with regard 

to the present investigation:  
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H1 The easy detectability of differences in color (→ codability effect) leads to 

an early perceptual grouping of the three objects of the display with regard to 

the color of the TO: Only those objects that are of the same color as the TO 

will be considered; color discrepant objects will not be evaluated any further 

(→ self-terminating search; functional invisibility of size; see Experiments 1 

and 2). Within the remaining objects of the same color as the TO, size 

discrepancies will then be considered to generate an unambiguous 

conceptual representation of the target object specification. 

H2a Size differences, co-occurring with color differences in one object, will be 

filtered out early during perception (→ functional invisibility of size; see 

Experiment 2). 

H2b Size differences co-occurring with color differences in one object will be 

disregarded if no minimal specification is required (→ principle of least 

effort; see Experiment 2). Otherwise, color-discrepant objects have to be 

explicitly rechecked with regard to their size. 

H3 Due to increased task difficulty, there should be more inverted adjective 

order phrases in the minimal instruction group than in the neutral instruction 

group (see section 2.3.2.3). 

On the basis of these hypotheses, the following predictions were derived for the 

neutral und the minimal instruction group: 

5.2.2.1 Neutral Instruction Group 

Because of the early perceptual grouping (→ H1), color discrepant context objects 

should be associated with shorter viewing times and fewer glances at them than 

context objects of the same color as the TO. The latter should be viewed longer for a 

more detailed comparison in view of differences in size. Context objects that differ 

from the TO in both color and size should be regarded as briefly as color discrepant 

objects because the size discrepancy should be filtered out early (→ H2a + H2b). 

Therefore, no overspecifications of size were expected in condition CO. Because of 

the high degree of codability of the color dimension and its easy detectability, 

reaction times under condition CO should be considerably shorter than under 

conditions SCO and SO. In the latter two conditions, size was a minimally distinctive 
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feature and should be detected more slowly than the color differences in condition 

CO (→ H1). There should be a high rate of color overspecifications in condition SO, 

as the detected color difference in the CF will not be rechecked with regard to its 

relevance (→ H2a + H2b).  

Because of the linear alignment of the objects, the object in the middle position 

of the array should be fixated more often. Such effects of the array type on the 

number of glances and the viewing times should occur for the TO in array types 3 

and 4, for the CF in array types 1 and 6 and for the SF in array types 2 and 5 (cf. 

Figure 5).  

5.2.2.2 Minimal Instruction Group  

In the minimal instruction group, participants were not allowed to produce 

overspecifications. In condition CO, this should not be associated with additional 

effort compared to the neutral instruction group, as it should be easy to filter out the 

irrelevant size discrepancy in the SF in this condition (H1, H2a + H2b; see above). In 

condition SO, however, the CF, which is color- and size-discrepant from the TO, will 

have to be inspected more thoroughly than in the neutral instruction group, as for a 

minimal specification of the TO the relevance of the detected color difference in CF 

has to be rechecked (H2a + H2b). This additional effort might be regarded as indirect 

evidence for what is gained by applying the principle of least effort and producing an 

overspecified utterance.  

The minimal instruction should increase the difficulty of the task. On the basis of 

previous findings on the effect of task difficulty on the occurrence of inverted 

adjective order phrases significantly higher rates of non-canonical adjective order 

phrases were predicted for the minimal in comparison with the neutral instruction 

group (→ H3; cf. Pechmann, 1994; Pechmann & Zerbst, 1990, 1995). 

Parallel to the neutral instruction group, effects of the array type on the number 

of glances and the viewing times should occur for the TO in array types 3 and 4, for 

the CF in array types 1 and 6 and for the SF in array types 2 and 5 (cf. Figure 5). 
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5.2.3 Method 

5.2.3.1 Participants 

34 subjects took part in the experiment. All participants were undergraduate students 

at the University of Bielefeld and were native speakers of German. The instruction 

groups consisted of 17 participants each and were matched with regard to age and 

gender. The experiment took about 45 minutes and all participants were paid DM 8,- 

for taking part. 

5.2.3.2 Stimuli 

The construction of the stimulus material for each condition and array type has been 

described above. As in Experiments 1 and 2, a fixation point was presented prior to 

the object display at the position of the upcoming TO (left, middle, right). 

Participants were asked to look at the fixation point and to name the object that 

would appear at the position of the fixation point. In order to be able to distinguish 

the exploration processes associated with the naming task from those that were 

uncritical in view of utterance generation processes, a second task was added to the 

naming task. As in Experiments 1 and 2, the three objects were aligned at the top of 

the screen and an additional symbol (plus or cross) was integrated at the bottom of 

the display. Participants were asked to first name the TO (minimally) and to then 

decide, whether the icon at the bottom of the screen was a plus or a cross. As in 

Experiment 2, the reaction to the “plus”-“cross” decision task was given non-

verbally by means of a pushbutton panel. A plus was assigned to one fourth of the 

items of each condition; the rest was combined with a cross. In order to force 

subjects to make a distinct eye movement away from the object display and to 

prevent preview effects on the icon at the bottom of the screen, the icon and the three 

objects were positioned in maximum distance: The three objects were aligned at the 

top of the screen and the symbol was centered at the bottom of the screen. The 

positions of the three objects were determined irrespectively of the size differences 

by the midpoints of the respective imagery frames (see above). These frames were 

positioned in such a way that the distance between the three objects amounted to 

2,53°. The distance between the left- and rightmost objects from the edges of the 
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screen was fixed to 1,53°, viewed from a mean distance of 60 cm from the screen. 

5.2.3.3 Design 

Three nested within-subjects factors were included in the experiment, namely 

Condition (3) with the levels SCO, CO and SO, Number of Syllables (2) and Array 

(6). The factor Instruction (2) with the levels neutral and minimal was varied 

between subjects. The experimental items were assigned proportionally to four 

blocks of 36 items, each block including 12 items of each experimental condition. A 

practice block with 12 items was constructed to precede the experiment. Four 

additional practice blocks with three items each were created to precede the 

individual blocks during the experiment. 

The order of main experimental blocks was varied individually for each subject 

within a given instruction group. Within each block, the order of items was pseudo-

randomized for each subject. The objects included in two successive items always 

differed with regard to object class and semantic category. In addition, the position 

pattern, i.e. the alignment of TO, CF and SF, was never the same for two successive 

items. 

5.2.3.4 Apparatus 

The experiment was controlled by a Compaq Pentium 4000 computer. The items 

were presented on a Sony Trinitron 20’’ monitor. During the experiment, the 

participants’ eye movements were recorded via an SMI HW-Eye-Link-HM eye 

tracking system with a sampling frequency of 250 Hz. For the analysis of the data 

recorded by the eye tracker, onset and offset times and pixel coordinates of all 

fixations were extracted. Verbal reactions were recorded on a DAT-tape and verbal 

reaction times were measured by means of a voice key. The pushbutton reactions to 

the “plus”-“cross” decision task were monitored, but were not analyzed any further. 

5.2.3.5 Procedure 

Prior to the experiment, participants were asked to read an instruction on the naming 

task and the “plus”-“cross” decision task. They learned about the composition of the 

display and the index function of the preceding fixation point. Participants were 

asked to do the two tasks one after the other, and to do each task as fast and 
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accurately as possible. They were explicitl y informed that the display time of each 

item would be suff icient to do the two decision tasks successively. Then the 

headband of the eye tracker was mounted and the system was calibrated. In an initial 

practice block, all participants practiced the sequential execution of the two tasks and 

familiarized themselves with the structure of the display. Each trial started with the 

presentation of the fixation point in the upper left/middle/right position of the display 

for 1500 ms, depending on the respective position of the target object. Immediately 

afterwards, the three objects were presented together with the symbol at the bottom 

of the screen for 5000 ms in the neutral instruction group or for 5300 ms in the 

minimal instruction group. The voice key was activated on the onset of the stimulus 

display and was triggered as soon as it registered a sound. When the naming latency 

was longer than 3000 ms, the reaction was coded as time-out. Reactions to the 

“plus”-“cross” decision tasks were monitored during the experiment, but they were 

not included in the later analysis. 

5.2.3.6 Analysis 

All verbal reactions were transcribed and coded with regard to their form. Only those 

noun phrases were further analyzed that specified the target object correctly 

according to the respective condition. In the neutral condition, this included all 

overspecifications of the target object; in the minimal condition overspecifications 

were coded as errors. On the basis of the DAT-recordings of the utterances, 

erroneous trigger reactions of the voice key were corrected for by means of a digital 

audio editor. In order to prepare the eye tracker data for statistical analyses, stimulus 

areas were defined within the display, with one stimulus area each for the objects on 

the left, middle and right position of the object alignment at the top of the screen and 

for the icon at the bottom of the screen. All fixations lying within the contours of an 

object or less than 1.2° away from it were scored as fixations on that object. For each 

area, all fixations were extracted from the onset until the end of the recording of the 

eye tracker. The onset and offset times and the coordinates of each fixation were 

extracted, and fixation times were computed. Onset times of f ixations beginning 

before stimulus onset and ending during the stimulus presentation were recoded by 

zero. Only those fixations that preceded the first fixation on the icon at the bottom of 
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the screen were used for the analysis.  

Depending on the array types involved, the display areas were coded as 

belonging to the TO, the CF or the SF. For each object, the fixations extracted from 

all it ems were collected. The resulting fixation data for all objects were merged. 

When participants had turned away from an object, the viewing duration of the 

current fixation block was computed as difference between offset of the last fixation 

and the onset of the first fixation. As in Experiment 1, such blocks of consecutive 

fixations on an object will be termed “gazes” and their duration “gaze duration” (see 

chapter 3; Experiment 1). Viewing patterns were defined on the basis of the order of 

gazes on the TO, the CF and the SF. As there was a large diversity of observed 

viewing patterns, they could not be assessed directly for a statistic analysis of the eye 

tracker data, li ke it had been conducted in Experiment 1. Therefore, several meta-

variables were computed: For TO, CF and SF, the individual number of glances at 

these objects was extracted (N(TO), N(CF) and N(SF) in the following), and the 

overall number of glances during the exploration (N(tot)) was computed as their sum. 

In addition, the variable N(obj) was introduced to indicate how many of the three 

objects of the display were fixated during the exploration process. Beyond the 

analysis of viewing patterns, analysis of processing times were conducted. Therefore, 

the viewing time of each object, VT(TO), VT(CF) and VT(SF), was computed as 

sum of all gaze durations.  

As expected, the results of the statistical analyses of viewing times were parallel 

to those obtained in the analyses over the meta-variables to capture the viewing 

patterns. To keep the main body of the text readable, I will i nclude the statistical 

analyses for viewing times only; the statistical analysis of viewing patterns via the 

meta-variables defined above is given in Appendix B. 

In order to specify more exactly the processes associated with planning and 

generating the object specification and articulating the utterance, separate analyses 

were run over viewing patterns and processing times before utterance onset and 

during articulation. All glances that were registered before utterance onset were 

subsumed under the first period of time, also including glances that started before 

utterance onset and ended during articulation. All other glances were subsumed 
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under the articulation period (cf. Figure 6).28 

 

Figure 6. Timing of a trial: Definition of dependent variables 
 

For the statistical analyses of viewing patterns and processing times, ANOVAS 

were run over the variables defined above. Separate ANOVAS were run for each 

instruction group, including the factors Condition (3), Number of Syllables of the 

name of the object class (2), and Array (6). In the neutral instruction group, 

ANCOVAS were run, integrating the variable utterance length as a covariate. As 

Table 9 shows, the inflected forms of the adjectives in the noun phrase were all 

disyllabic. Therefore, utterance length was coded as number of adjectives in a noun 

phrase. In addition, ANCOVAS were run over the whole set of data, including the 

between-subjects factor Instruction. The factor Number of Syllables of the noun was 

included in all AN(C)OVAS. Since neither the main effect of this factor nor its 

interactions with the other factors turned out to be significant in any of the analyses, 

it will not be mentioned in the following presentation of results. All AN(C)OVAS 

were run over subjects and items and additional Fmin statistics were computed to 

control for artifacts induced by the separate consideration of F1- and F2-values (see 

chapter 3; cf. H.H. Clark, 1973; Raaijmakers, Schrijnemakers & Gremmen, 1999). 

When presenting analyses of processing times, I will report both F1- and F2- 

statistics. AN(C)OVA results presented below as being significant yielded significant 

Fmin statistics. In order to inspect the data with regard to differences between levels 

                                                 
28 The results of the analysis of the viewing times before utterance onset and the analysis of total 

viewing times (including all gazes until participants turned to the icon at the bottom of the screen; see 
Figure 6) turned out to be parallel: All significant effects that appeared in the first also emerged in the 
latter. 

Picture 
Onset

Utterance 
Onset

Viewing Time 
before Utterance Onset

End of 
Utterance

Total Viewing 
Time

 each including individual 
viewing times of
TO, CF, and SF.

Viewing Time 
during articulation
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of individual factors, paired t-tests between (adjusted) means were run for subjects 

and items. In the neutral instruction group, subject and item means were adjusted for 

effects of utterance length and corresponding t-values were computed according to 

Winer (1971). AN(C)OVA results and paired comparisons between levels of the 

factor Condition will be presented in the text; for the sake of readability, however, 

the results of paired t-tests between array types will be given in tabular form in 

Appendix B.  

As described in Experiment 1, only the data obtained until the first gaze at the 

symbol at the bottom of the screen were evaluated. As outlined above, separate 

analyses were run over viewing patterns and processing times before utterance onset 

and during articulation. Note that all glances that were registered before utterance 

onset were subsumed under the first period, including glances that started before 

utterance onset and ended during the articulation. All other glances were subsumed 

under the articulation period.  

5.2.4 Results 

The data from Experiment 3 were analysed with regard to error rates, specification 

types and utterance structures, reaction times, viewing patterns, and viewing times.  

5.2.4.1 Error Analysis 

5.2.4.1.1 Neutral Instruction Group 

10.2 % of the answers were coded as errors: The data of 247 trials had to be excluded 

because subjects had not reacted in time (8 time-outs, 0.3 %), had hesitated before or 

during the articulation (133 trials, 5.5 %), had misnamed the color, size, or object 

class of the target object (93 trials, 3.9 %), or had underspecified the target object (13 

trials, 0.5 %). In addition, 38 trials (1.6 %) had to be discarded because of technical 

errors.  

5.2.4.1.2 Minimal Instruction Group 

The error rate was significantly higher in the minimal than in the neutral instruction 

group (F1(1,32) = 6.43, p < .05; F2(1,143) = 16.73; p < .001). Note, however, that in 

the minimal instruction group, overspecifications were coded as errors, too. Overall, 
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15.2 % of the data in the minimal instruction group were excluded as errors. The data 

of 7.7 % were excluded as time-outs (15 trials, 0.6 %), as hesitations (103 trials, 4.2 

%), as misnamings (53 trials, 2.2 %) or as underspecifications (17 trials, 0.7 %). 8.2 

% of the answers were coded as overspecifications of color (130 trials, 5.3 %) or size 

(70 trials, 2.9 %). For one participant of the minimal instruction group the exclusion 

of erroneous answers led to a rate of less than 40% correct answers in condition SO. 

Therefore, the data from this subject had to be excluded yielding an overall rate of 

18.1 % of missing values of for the analyses of processing times. 

5.2.4.2 Specification Types and Utterance Structures 

5.2.4.2.1 Neutral Instruction Group 

In the neutral instruction group, overspecifications of size in condition CO occurred 

in 26.7 % of the trials. In contrast, 87 % of all specifications under condition SO 

included an overspecification of color, i.e., color was overspecified significantly 

more often than size (F1(1,16) = 30.41; p < .001; F2(1,94) = 79.01; p < .001). Only 

0.9 % of all specifications including color and size specifications were inverted 

adjective order phrases. These results are in line with previous findings and agree 

with the predictions. 

5.2.4.2.2 Minimal Instruction Group  

In the minimal instruction group no overspecifications were allowed. Nevertheless, 

overspecifications of color did occur, accounting for nearly one third of all errors 

under this condition (see above). Many participants reported after the experiment that 

they had had serious difficulties in realizing that in some cases (in condition SO), the 

color was irrelevant and size alone had to be specified. As illustrated in Figure 7, 

participants obviously needed some time to overcome the strong saliency of the 

irrelevant color discrepancy. A more detailed analysis of the rate of overspecifica-

tions of color over the four experimental blocks revealed a significant decrease over 

time (χ2
 0.001, 3 = 92.35). 

Compared to the neutral instruction group, the rate of inverted adjective orders in 

specifications including both dimensions increased significantly from 1.1 % to 8.1 % 

(F1(1,32) = 32.94, p < .05; F2(1,47) = 45.47; p < .001). This finding can be 



5 Determinants of Prenominal Adjective Order 

83 

interpreted as an effect of increased task difficulty (cf. Pechmann, 1994; Pechmann 

& Zerbst, 1990, 1995 for comparable findings). I will address the effects of the high 

saliency of the color dimension and the influences of task difficulty in more detail in 

the General Discussion (see chapter 6). 
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Figure 7. Rates of overspecifications of color and size in conditions SO and CO 
 

5.2.4.3 Reaction Times 

5.2.4.3.1 Neutral Instruction Group 

An ANCOVA over reaction times including the factors Condition, Syllable and 

Array revealed a significant main effect for Condition (F1(2,31) = 4.57, p < .05, 

F2(5,107) = 13.27, p < .001). Participants reacted faster in conditions SO and CO 

than in condition SCO (cf. Figure 8); the difference between SO and SCO was 

significant (t1(31) = 3.18, p < .01; t2(140) = 2.37, p < .01). Whereas the observed 

reaction times in conditions SCO and CO corresponded to the predictions, the 

reaction times under condition SO were unexpectedly short. Because of the easy 

detectability of the color discrepancies in condition CO, I had predicted that reaction 
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times under condition CO should be shorter than under conditions SCO and SO. In 

the latter two, reaction times were predicted to be similar, since in both conditions, 

size, being a less codable dimension than color, was a distinctive feature. Contrary to 

the prediction, though, the RTs under condition SO were shorter than under 

conditions SCO and CO. I do not have an explanation for this effect at this point. 
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Figure 8. Mean reaction times (ms) by conditions for the neutral and the minimal 
instruction group. 

 

5.2.4.3.2 Minimal Instruction Group 

The main effect of Condition was highly significant (F1(2,30) = 46.06, p < .001, 

F2(2,108) = 182.56, p < .001). Paired comparisons between conditions revealed 

significantly faster reaction times in condition CO than in conditions SCO (t1(30) = 

8.92, p < .001; t2(94) = 19.42, p < .001) and SO (t1(30) = 5.34, p < .001; t2(94) = 

9.82, p < .001). The latter two differed significantly, too (t1(30) = 5.24, p < .001; 

t2(94) = 10.38, p < .001). Note, however, that the required reaction to condition SCO 

in the minimal instruction group included two adjectives, whereas the minimal 

specification of the target object in conditions SO and CO included one adjective 

only. Thus, the significant difference between conditions SCO and SO may in part be 

due to effects of utterance length.  

5.2.4.3.3 Neutral vs. Minimal Instruction Group 

The ANCOVA over both instruction groups including the between-subjects factor 

Instruction and the within-subjects factors Condition and Array did not reveal a 

significant main effect of any of these factors. The interaction of Instruction and 
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Condition, however, turned out to be highly significant (F1(2,61) = 23.63, p < .001; 

F2(2,107) = 95.14, p < .001): As predicted, the instruction type did not affect 

reaction times in condition CO. Reaction times in SO and SCO, however, were 

slower in the minimal than in the neutral instruction group (see Figure 8). 

5.2.4.4 Viewing Patterns 

As indicated above, I will confine to presenting a descriptive analysis of the viewing 

patterns. The results of the detailed statistical analysis is included in Appendix B. For 

the descriptive analysis of the patterns, tree diagrams of successive transitions 

between the objects were drawn for each condition. Since the relative position of the 

TO in the array might have affected the viewing patterns, separate trees were drawn 

for each main array type. The trees are organized as follows (see Figures 9a/b to 

11a/b): There are six to eight strata that represent successive transitions from one 

object to the next. In each stratum, the proportion of transitions between objects is 

represented as lines of proportional thickness with thicker lines for higher 

percentages of transitions within the stratum. Recall that the fixation point at trial 

onset specified the location of the TO. Therefore all subjects looked at the TO first 

and all tree diagrams have the TO at the topmost position. The proportion of tran-

sitions to the symbol at the bottom of the screen is represented in each stratum. Note 

that the transitions within a stratum are not computed as conditional probabilities. 

They are computed as relative frequencies of the overall number of transitions 

observed in a stratum. To illustrate the relation between the overall numbers of 

transitions observed in different strata, each stratum is shaded from white to dark 

gray according to the overall number of patterns including a transition on that 

stratum. This implies an illustration of the mean length of patterns observed under a 

given condition, too. A pattern consisting of five transitions (including the transition 

to the symbol at the bottom of the screen) will thus be included in strata 1 to 5.  

For each pattern, the number of transitions until utterance onset was computed. In 

the trees in Figures 9 to 11, the strata that are framed in black include 25 % to 75 % 

of all utterance onsets. The rest of the utterance onset was registered in an earlier or a 

later stratum. 
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Figure 9. Viewing Patterns in condition SCO in the neutral instruction group (a) and the minimal instruction 

group (b) 

 80% < f ≤ 100%
70% < f ≤  80%
60% < f ≤  70%
50% < f ≤  60%

70% < f ≤  85%
55% < f ≤  70%

 85% < f ≤ 100% 40% < f ≤  55%
25% < f ≤  40%
10% < f ≤  25%
 0% < f ≤  10%

40% < f ≤  50%
30% < f ≤  40%
20% < f ≤  30%
10% < f ≤  20%
 1% < f ≤  10%

SFSF TO

CF SF +/x

TO CFSF

CF SF

TO CFSF

TO TO

CF SF

+/x

+/x

+/x

CFTOTO CF SF

+/x

+/x

+/x

TO

TO

CF SF +/x

TO CFSF

CF SF

TO CFSF

TO TO

CF SF

+/x

+/x

+/x

CF

SF

TOSF TO CF SF

TO +/x

+/x

+/x

TO

CF SF +/x

TO CFSF

CF SF

TO CFSF

TO TO

CF SF

+/x

+/x

+/x

TOTO CF SF

TO +/x

+/x

+/x

TO

CF SF +/x

TO CFSF

CF SF

TO CFSF

TO TO

CF SF

+/x

+/x

+/x

SF

TO

CFCF

TO

SF

CF SF

TO +/x

CF SF TO +/x

+/x

+/x

TO

CF SF +/x

TO CFSF

CF SF

TO CFSF

TO TO

CF SF

+/x

+/x

+/x

CF

SF

TO

CF

SF

CF

TO

SF

CF SF

TO

TO CFSF SF TO +/x

+/x

TO

CF SF +/x

TO CFSF

CF SF

TO CFSF

TO TO

CF SF

+/x

+/x

+/x

CF

TOSF

TO

CF

SF

CF

TO

SF

CF SF

TO +/x

TO CFSF SF SFTO +/x

+/x



5 Determinants of Prenominal Adjective Order 

87 

 a b 
T

O
 o

n 
le

ft 
po

si
tio

n  

  

T
O

 o
n 

m
id

dl
e 

po
si

tio
n  

 
 

 

T
O

 o
n 

rig
ht

 p
os

iti
on

 

 
 

 
 Percentages of transitions within a stratum Overall percentage of patterns in a stratum 
 
 

 

 

 

 

 

 

 

 

 
Figure 10. Viewing Patterns in condition CO in the neutral instruction group (a) and the minimal instruction 

group (b) 
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Figure 11. Viewing Patterns in condition SO in the neutral instruction group (a) and the minimal instruction 

group (b) 
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5.2.4.4.1 Neutral Instruction Group 

In all conditions, only few glances were registered after utterance onset. As can be 

inferred from the color of the later strata, transitions within the object display during 

articulation were registered for less than 40 % of all patterns. Thus, in most of the 

cases participants must have turned to the “plus”-“cross” decision task soon after 

utterance onset. 

In condition SCO, participants first turned to the SF, which had the same color as 

the TO, and then to the TO in most of the cases (Figure 9a). When they had turned to 

the CF first, they did not turn to the TO until they had also looked at the SF. When 

the TO was in the middle of the display, they first turned to the TO, then to the SF, 

and then back to the TO. Overall , there was no effect of the position of the TO on the 

viewing patterns; however, participants tended to fixate fewer objects before 

utterance onset, when the TO was in the middle of the array, than when it was on the 

left or right position.29 The results for condition SO were parallel to those for 

condition SCO (cf. Figure 11a). However, on average, the number of glances before 

utterance onset was lower in condition SO than in condition SCO. This might in part 

account for the finding that reaction times were shorter under condition SO, than 

under condition SCO. In condition CO (Figure 10a), the overall viewing patterns and 

the patterns observed until utterance onset were shorter than in conditions SCO and 

SO. They were shortest when the TO was in the middle of the display. In condition 

CO, there was no preference to fixate either the CF or the SF first.  

As predicted for conditions SCO and SO, there seem to be perceptual grouping 

effects at a very early stage of processing: Because of the easy (peripheral) 

detectabilit y of the color discrepancy in the CF, participants either did not look at 

that object at all , or only once before turning to the SF, which had the same color as 

the TO in conditions SCO and SO. This implies, however, that in condition SO, size  

differences, co-occurring with a color difference in the CF, were filtered out early,  

                                                 
29 The analysis of the meta-variables, defined to capture the basic characteristics of the viewing 

patterns, showed that there were more effects of the Array type on viewing patterns than just the effect 
of the middle position of the TO in Array types 3 and 4. The results of the more detailed analyses of 
the viewing patterns are described in Appendix B. 
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too, which accounts for the high frequency of overspecifications of color in condition 

SO (see above). 

5.2.4.4.2 Minimal Instruction Group 

Parallel to the neutral instruction group, there were only few patterns of a length that 

exceeded the strata including most of the utterance onsets. There was no preference 

to turn to the SF or to the CF first in either condition (cf. Figures 9b, 10b, and 11b). 

In conditions SCO and SO, participants tended to first look at each object at least 

once before they started to speak. When the TO was in the middle of the display, 

they often first looked at either the CF or the SF, returned to the TO and then looked 

at the other context object (SF or CF, respecitvely). In condition CO (Figure 10b), 

the overall viewing patterns and the patterns observed until utterance onset were 

shorter than in conditions SCO and SO and were shortest when the TO was in the 

middle of the display. 

5.2.4.4.3 Neutral vs. Minimal Instruction Group 

In all conditions, the viewing patterns were longer for the minimal than for the 

neutral instruction group. In condition CO, there were no other differences between 

the instruction groups. In conditions SCO and SO, in contrast, the utterance onsets 

were registered substantially later for the minimal instruction group. As predicted, 

participants in the neutral instruction group obviously grouped the objects with 

regard to the color of the TO at a very early stage of processing and preferred to first 

turn to the SF rather than to the CF. By contrast, there was no evidence for grouping 

on the basis of early color information in the minimal instruction group. Rather, 

participants in the minimal group looked at each object (in the order of their 

appearance) and evaluated all objects before they started to speak. In particular, they 

thus evaluated the color discrepant objects with regard to potential size differences to 

find out whether the detected color discrepancy was relevant for a minimal 

description of the TO. This additional effort observed under the minimal instruction 

can be interpreted as indirect evidence for what is gained by applying the principle of 

least effort in the neutral instruction group: Here, participants overspecified the color 

in condition SO because they apparently did not evaluate the color discrepancy in the 

SF in view of its relevance. 
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5.2.4.5 Viewing Times before Utterance Onset 

5.2.4.5.1 Neutral Instruction Group 

The results of the ANCOVAS of the viewing times of each object before utterance 

onset are given in Table 8. There were significant main effects of Condition and 

Array on the viewing times of the CF and the SF. The viewing times of the TO 

displayed a significant effect of Array only. The interaction of Condition and Array 

was significant for VT(TO) and VT(SF).  

 
Table 8. Effects of Condition (C) and Array (A) for the neutral instruction group: 

ANOVA results for the viewing times of each object before utterance onset 
 

 Subjects Items 

 df F1 df F2 

VT(TO)     

C 2,31   1.03 2,107    .88 

A 5,79  16.49*** 5,107  21.59*** 

C x A 10,159   2.89** 10,107   2.55** 

VT(CF)     

C 2,31  11.68*** 2,107   8.27*** 

A 5,79  33.78*** 5,107  76.51*** 

C x A 10,159   1.43 10,107   1.80 

VT(SF)     

C 2,31   3.93* 2,107   2.15* 

A 5,79  21.49*** 5,107  48.89*** 

C x A 10,159   1.98* 10,107   2.26* 

 
Note. * p < .05; ** p < .01, *** p < .001 
 

As Figure 12a shows, the viewing times of the TO were significantly longer in 

array types 3 and 4, when the TO was in the middle of the object display, than in the 

other array types (see Appendix C, Table C1). Table C2 of Appendix C summarizes 

the results of the separate analyses of each array type in each condition for VT(TO). 

The interaction is obviously due to the fact that there was a significant difference 
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between array types 3 and 4 for condition SO, but not for conditions SCO and CO. 

The viewing times of the CF were significantly longer in condition SCO than in 

condition SO (t1(31) = 1.91, p < .05; t2(140) = 1.95, p < .05). The CF was regarded 

significantly longer in condition CO than in conditions SCO (t1(31) = 2.71, p < .01; 

t2(140) = 10.51, p < .005) and SO (t1(31) = 4.29, p < .005; ; t2(140) = 10.47, p < 

.005). The short viewing times observed under SCO and SO correspond to the 

finding that many viewing patterns registered under these conditions included at 

most one, if not even no glance at the CF before utterance onset (cf. Figure 12a, 

Figures 9a and 11a). As Figure 12a and Table C1 in Appendix C show, the CF was 

looked at significantly longer in array types 1 and 6, when it was positioned in the 

middle of the object display. 

The viewing times of the size- (and color-) discrepant SF were significantly 

shorter in condition CO than in conditions SCO (t1(31) = 2.77, p < .005; t2(140) = 

6.61, p < .005) and SO (t1(31) = 3.09, p < .005; t2(140) = 6.16, p < .005). This is due 

to the more elaborate evaluation of size differences between the TO and the SF in the 

latter conditions that was not necessary for condition CO. In that condition, the SF 

was also color discrepant form the TO. The middle position of the SF in array types 2 

and 5 lead to a significant increase in viewing times (see Figure 12a and Appendix C, 

Table C1). The remaining array types differed among each other, too; however, there 

were no significant differences within mirror pairs of array types (1-6, 2-5, and 3-4). 

In order to explore the nature of the interaction of Condition and Array, individual 

analyses of array types were conducted for each condition. As Table C2 of Appendix 

C shows, condition CO displayed a mere effect of the middle position of SF in array 

types 2 and 5. In conditions SCO and SO, in contrast, the viewing times observed 

under the remaining array types differed significantly, too, and the effect of the 

middle position of the SF in array types 2 and 5 was less pronounced (cf. Figure 

12a). This is due to the fact that the SF, which differs from the TO in conditions SCO 

and SO in size, but not in color, always had to be analyzed independently of the array 

type in order to correctly specify the TO.  
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Figure 12. Mean viewing times (ms) of TO, CF, and SF before utterance onset by 

conditions and array types for the neutral instruction group (a) and the 
minimal instruction group (b). 
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As Figure 12a shows, the TO was looked at significantly longer than the CF and 

the SF. In order to analyze the relation between the viewing times of the CF and the 

SF in each condition, an additional ANCOVA was run over VT(CF) and VT(SF) 

including the within-subject factors Object and Condition. The effect of Object was 

significant (F1(1,15) = 12.41, p < .005; F2(1,140) = 39.08, p < .001). As the effects 

of Condition on VT(CF) and VT(SF) differed (see above), there was no significant 

main effect of Condition, but its interaction with Object was highly significant 

(F1(2,31) = 35.6, p < .001; F2(2,140) = 21.59, p < .001). In condition CO, the 

viewing times of the CF and the SF did not differ from each other, as both objects 

differed from the TO in the relevant color dimension. As predicted on the basis of the 

self-terminating search effect, the additional size discrepancy in the SF did not 

influence VT(SF). Paired t-tests showed that the SF was looked at significantly 

longer than the CF in conditions SCO (t1(16) = 3.61, p < .01; t2(47) = 7.45, p < .001) 

and SO (t1(16) = 5.6, p < .001; t2(47) = 6.89, p < .001). This corresponds to the 

prediction that – because of its color discrepancy from the TO – the CF is filtered out 

early in these conditions, whereas the SF and its potential size difference from the 

TO is explored in more detail .  

5.2.4.5.2 Minimal Instruction Group 

The viewing times of TO, CF and SF before utterance onset displayed significant 

effects of Condition and Array (cf. Table 9). The viewing times of the TO were 

significantly shorter in condition SO than in conditions SCO (t1(15) = 2.75, p < .05; 

t2(94) = 7.21, p < .001) and CO (t1(15) = 2.74, p < .05; t2(94) = 4.14, p < .001). This 

might be due to the increased task diff iculty in the minimal instruction group that 

affords a more thorough analysis of the object display, particularly in condition SO 

(cf. Figure 12b): Here, the “functionally invisible” size difference in the SF had to be 

detected to find out that the additional color discrepancy in the SF is not relevant for 

a minimal specification of the TO. In condition SO, participants therefore had to 

spend more time on evaluating the SF which may well have been at the expense of 

the energy they would normally spend on the TO. VT(TO) was significantly longer 

in condition SCO than in condition CO (t1(15) = 3.95, p < .001; t2(94) = 3.58, p < 

.001). Note that this may be largely caused by the longer utterances to be produced in 

SCO. The effect of Array turned out to be a mere effect of the middle position of the 



5 Determinants of Prenominal Adjective Order 

95 

TO in array types 3 and 4, leading to a significant increase of the viewing times in 

these array types (cf. Appendix C, Table C3). 

 
Table 9. Effects of Condition (C) and Array (A) for the minimal instruction group: 

ANOVA results for the viewing times of each object before utterance onset 
 

 Subjects Items 

 df F1 df F2 

VT(TO)     

C 2,30  11.46*** 2,108  74.98*** 

A 5,75  30.04*** 5,108  44.74*** 

C x A 10,150    .67 10,108    .95 

VT(CF)     

C 2,30  29.91*** 2,108 126.31*** 

A 5,75  26.74*** 5,108  73.29*** 

C x A 10,150   1.63 10,108   4.08** 

VT(SF)     

C 2,30  59.59*** 2,108  94.62*** 

A 5,75  22.76*** 5,108  53.43*** 

C x A 10,150   1.11 10,108   1.61 

 
Note. p < .05; ** p < .01, *** p < .001 
 

As Figure 12b shows, the viewing times of the color- (and size-) discrepant CF 

were significantly smaller for condition CO than for conditions SCO (t1(15) = 8.89, 

p < .001; t2(94) = 7.14, p < .001) and SO (t1(15) = 6.85, p < .001; t2(94) = 4.96, p < 

.001). This can be regarded as task-specific effect: Beyond the salient color 

difference between the CF and the TO, subjects had to carefully check the CF for 

possible size discrepancies in conditions SCO and SO. The significant effect of 

Array on VT(CF) was grounded on significant differences between the array types 

including the CF at the middle position (1 and 6) and the remaining array types (2 to 

5) (cf. Appendix C, Table C3). 

The size- (and color-) discrepant SF was looked at significantly shorter in 

condition CO than in conditions SCO (t1(15) = 6.84, p < .001; t2(94) = 6.75, p < 

.001) and SO (t1(15) = 21.3, p < .001; t2(94) = 7.82, p < .001). In condition CO, 
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participants had to detect the color discrepancy in the SF only, as the additional size 

discrepancy was irrelevant in view of a minimal specification of the TO. In 

conditions SCO and SO, in contrast, the additional size discrepancy had to be 

evaluated for a minimally distinctive object description. The main effect of Array on 

the viewing times of the SF was due to a significant increase of VT(SF) in array 

types 2 and 5, when the SF was in the middle of the display (cf. Appendix C, Table 

C3). Within the remaining array types, VT(SF) was significantly shorter for array 

types 3 and 4 than for array types 1 and 6, because in array types 3 and 4 the TO was 

in the middle and TO and SF were always “neighbored” (see Figure 5). By contrast, 

the TO and its SF were “disconnected” in array types 1 and 6 (cf. Appendix C, Table 

C3).  

In order to assess differences between the viewing times of the CF and the SF, an 

ANOVA with the within-subject factors Object and Condition was conducted. There 

were significant main effects of Object (F1(1,15) = 9.16, p < .01; F2(1,141) = 4.24, p 

< .05) and Condition (F1(2,30) = 60.28, p < .001; F2(2,141) = 60.25, p < .001). 

Their interaction was not significant. The comparison of VT(CF) and VT(SF) within 

experimental conditions revealed that in conditions CO and SO, the CF was viewed 

significantly longer than the SF (CO: t1(15) = 6.03, p < .001; t2(47) = 2.34, p < .05; 

SO: t1(15) = 2.91, p < .05; t2(47) = 2.16, p < .05). 

5.2.4.5.3 Neutral vs. Minimal Instruction Group  

The ANCOVA over both instruction groups including the factors Instruction, 

Condition, and Array (cf. Table 10) revealed significant main effects of Condition 

and Array for VT(TO) and VT(SF). This finding is in line with previous results from 

the separate analyses within each instruction group (see above). The main effect of 

Instruction was significant for VT(CF) only, with significantly longer viewing times 

of the CF in the minimal instruction group. The interaction of Instruction and 

Condition was significant for VT(CF) and VT(SF): In conditions SCO and SO, the 

viewing times increased significantly in the minimal instruction group, whereas they 

remained about the same in condition CO (cf. Figure 12). 
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Table 10. Effects of Instruction (I), Condition (C) and Array (A): ANOVA results for 
the viewing times of each object before utterance onset 

 

 Subjects Items 

 df F1 df F2 

VT(TO)     

I 1,30   1.72 1,107   5.42* 

C 2,61   6.28** 2,107  20.47*** 

A 5,154  41.87*** 5,107  59.82*** 

I x C 2,61   2.31 2,107   1.60 

VT(CF)     

I 1,30  14.49*** 1,107  18.53*** 

C 2,61   9.50 2,107    .07 

A 5,154  57.08*** 5,107 126.02*** 

I x C 2,61  34.04*** 2,107 126.03*** 

VT(SF)     

I 1,30   3.72 1,107   2.88 

C 2,61  44.80*** 2,107  72.28*** 

A 5,154  42.94*** 5,107  99.32*** 

I x C 2,61   7.81** 2,107  10.65*** 

 
Note. * p < .05; ** p < .01, *** p < .001 



5 Determinants of Prenominal Adjective Order 

98 

5.2.4.6 Viewing Times During Articulation 

Graphic displays of the mean viewing times during articulation were scaled 

according to mean utterance length (~ 600 ms). As Figure 13 shows, participants 

turned to the symbol at the bottom of the screen rather early during the articulation 

process.30  

5.2.4.6.1 Neutral Instruction Group 

There were no significant effects of Condition for either of the variables VT(TO), 

VT(CF) and VT(SF) during articulation. Array turned out to be significant for 

VT(CF) (F1(5,79) = 4.96, p < .001; F2(5,107) = 9.71, p < .001), and VT(SF) 

(F1(5,79) = 2.8, p < .05; F2(5,107) = 2.36, p < .05).  

Paired comparisons between array types for VT(CF) revealed significantly longer 

viewing times for array types 1 and 6 than for array types 2, 3 and 5, which is 

obviously due to the middle position of CF in array types 1 and 6. Similarly, VT(SF) 

was significantly larger in array type 5 than in array types 1, 3, 4 and 5 (cf. Figure 

13a and Appendix C, Table C4).  

An ANCOVA over VT(CF) and VT(SF) including the factors Object and 

Condition showed a significant effect of Object (F1(1,15) = 7.71, p < .05; F2(1,140) 

= 13.04, p < .001). The main effect of Condition turned out not to be significant, 

however, the interaction Object x Condition was significant (F1(2,31) = 4.78, p < 

.05; F2(2,140) = 7.03, p < .001). Paired comparisons revealed no significant dif-

ferences between VT(CF) and VT(SF) in condition CO but significantly longer 

viewing times for the SF in conditions SCO (t1(16) = 2.72, p < .05; t2(47) = 4.02, p 

< .001) and SO (t1(16) = 2.21; p < .05; t2(47) = 2.52, p < .05). This may account for 

both, the significant effect of Object and its interaction with Condition (cf. Figure 

13a). 

                                                 
30 In previous experiments (see Meyer et al., 1998; Levelt & Meyer, 2000), the participant’s gaze 

was lead off the object display by including another object to be named. Here, longer viewing times 
during articulation were observed. Thus, the short viewing times of the object display during 
articulation in the present experiment might be in part due to the selection of a non-linguistic task as 
distractor.  
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Figure 13. Mean viewing times (ms) during articulation by conditions and array 

types for the neutral instruction group (a) and the minimal instruction 
group (b). 
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5.2.4.6.2 Minimal Instruction Group  

The results of the ANOVA over the viewing times of individual objects during 

articulation are summarized in Table 10. They all displayed a significant main effect 

of Condition. Array was significant for VT(TO) only.  

Paired comparisons between conditions for each variable revealed significantly 

shorter viewing times in condition CO than in conditions SO and SCO for VT(TO), 

VT(CF), and VT(SF) (SCO-CO: t1(15) > 3.99, p < .001; t2(94) > 3.99, p < .001; SO-

CO: t1(15) > 2.65, p < .05; t2(94) > 3.06, p < .01 for VT(TO), VT(CF), and VT(SF)). 

A more detailed analysis of the effects of array types on VT(TO) is given in Table 

C5 of Appendix C. There was no relation between the identified significant 

differences and the systematic construction of array types (cf. Figure 13b). 

 
Table 11. Effects of Condition (C) and Array (A) for the minimal instruction group: 

ANOVA results for the viewing times of each object during articulation 
 

 Subjects Items 

 df F1 df F2 

VT(TO)     

C 2,30   8.25*** 1,108  32.49*** 

A 5,75   3.78** 5,108   5.48*** 

C x A 10,150   1.20 10,108   1.21 

VT(CF)     

C 2,30   8.43*** 1,108   7.23*** 

A 5,75   1.30 5,108   1.17 

C x A 10,150   2.09* 10,108   1.79 

VT(SF)     

C 2,30   7.50*** 1,108   8.41*** 

A 5,75   1.60 5,108   1.75 

C x A 10,150   1.39 10,108   1.08 

 
Note. * p< .05; ** p < .01, *** p < .001 
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A separate ANOVA over VT(CF) and VT(SF) revealed significant effects of the 

factors Object (F1(1,15) = 6.34, p < .05; F2(1,141) = 10.05, p < .001) and Condition 

(F1(2,30) = 9.84, p < .001; F2(2,141) = 4.53, p < .05). Paired comparisons between 

VT(CF) and VT(SF) within each condition revealed significantly longer viewing 

times of the SF in condition SO (t1(15) = 2.21, p < .05; t2(47) = 2.22, p < .05). Both 

objects were looked at significantly shorter in condition CO than in conditions SCO 

and SO (see above), which accounts for the significant effect of Condition in the 

ANOVA (cf. Figure 13b). 

5.2.4.6.3 Neutral vs. Minimal Instruction Group  

The ANCOVA over the data from both instruction groups revealed no significant 

effects of Instruction. There was a significant interaction of Instruction and Array for 

VT(TO) (F1(5,154) = 3.69, p < .01; F2(5,107) = 6.23, p < .001), which is probably 

due to the short viewing times of the TO in array types 1 and 2 in the minimal 

instruction group (cf. Figure 13). For VT(CF) there was a significant main effect of 

Array (F1(5,154) = 3.74, p < .01; F2(5,107) = 3.47, p < .01) and a significant 

interaction of Instruction and Condition (F1(2,61) = 4.81, p < .05; F2(2,107) = 5.9, p 

< .01): Whereas there were no significant differences between conditions in the 

neutral instruction group, conditions SCO and SO were associated with significantly 

larger viewing times of the CF than condition CO in the minimal instruction group 

(cf. Figure 13). For VT(SF), there was a main effect of condition (F1(2,61) = 7.48, p 

< .001; F2(2,107) = 6.98, p < .001) with the viewing times in conditions SCO and 

SO being significantly larger than in condition CO for both instruction groups (see 

above). 
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5.2.5 Discussion 

Experiments 1 and 2 provided evidence in support of strong perceptual influences on 

the choice of prenominal adjectives and the occurrence of redundant color 

specifications. The present findings allow more detailed conclusions as to how these 

influences become effective in a complex referential communication task: Because 

of the easy (peripheral) detectability of color differences in the object display, parti-

cipants of the neutral instruction group were able to selectively attend to the objects 

that had the same color as the TO. The analysis of viewing patterns and viewing 

times showed that when color discrepant objects were looked at at all before 

utterance onset, they were viewed only briefly and at an early stage of processing. 

After that, they were disregarded and only objects of the same color as the TO were 

inspected. As predicted, size differences co-occurring with color differences in one 

object were functionally invisible in view of the later object specification processes. 

Because of the self-terminating search effect (see Experiments 1 and 2), only the 

color discrepancy in the CF was evaluated for the object description while the 

additional size difference was filtered out. Following the principle of least effort, 

participants did not recheck the detected color discrepancy in the CF with regard to 

its relevance and produced overspecified object descriptions in most of the cases. In 

order to explore the effort of overruling this principle of least effort and to find out 

what is actually gained by its application, the minimal instruction group was con-

trasted with the neutral instruction group. Particularly in condition SO, which 

included an irrelevant variation of color, participants had obvious difficulties in 

specifying the TO minimally. The data show that during the course of the first 

experimental block, subjects had to overcome the strong perceptual influence of the 

early classification of the objects according to their color and had to check each ob-

ject with regard to discrepancies in both color and size. Corresponding to the 

prediction that the minimal instruction should increase the difficulty of the task, the 

overall error rates were higher under the minimal than under the neutral instruction 

group. Along with the aggravated task demands, the rate of inverted adjective orders 

in condition SCO increased significantly. As outlined above, participants of the 

minimal instruction group looked at each object at least once, before they produced 
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an utterance. This extensive visual exploration is associated with longer overall 

viewing times in the minimal instruction group – compared to the neutral instruction 

group – and probably induced serious time pressure on the linguistic processing of 

the visual input. Following Pechmann (1994) and Pechmann and Zerbst (1990, 

1995), the occurrence of inverted adjective orders under time pressure may result 

from applying the incremental mode of processing, i.e. from naming the adjectives 

according to their order of detection (color before size). 

Most of the perceptual processes described above apparently occurred at an early 

stage of processing, as the descriptive analysis of viewing patterns has shown (see 

section 5.2.4.4). Similarly, the linguistic planning of the whole noun phrase seems to 

be fully completed before articulation is initiated. There are no systematic effects of 

utterance length on the viewing times during articulation, as they would have to be 

expected on the basis of the findings by Meyer and colleagues (Levelt & Meyer, 

2000; Meyer et al., 1998; Meyer & van der Meulen, 2000): The longer the utterance, 

the longer should be the phonological encoding processes associated with it. Accor-

dingly, the viewing times of the target object to be named should depend on the 

complexity of the encoding processes. Instead, the analyses of viewing patterns and 

viewing times showed that during articulation, not only the target object, but also the 

context objects are viewed. This is in line with Eberhard (2000), who proved that 

when formulating a contrastive description, speakers tend to fixate the contextual 

alternative, instead of the target object. In addition, it may be plausible that, due to 

the higher affordances of the referential communication task compared to the naming 

tasks used by Meyer and colleagues, participants widely preplanned the object 

description prior to articulation. These preplanning processes might be comparable to 

the apprehension processes observed by Griff in & Bock (2000) in a sentence 

production task. 
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6 General Discussion 

The present findings provide important insights in the perceptual and linguistic 

encoding processes involved in the production of complex referential expressions. In 

the General Discussion of the results, I will first give a concise overview of the main 

results obtained in the complete series of experiments and subsequently discuss these 

findings in view of perceptual, linguistic, and procedural aspects of referential 

communication. 

6.1 Summary of Main Findings 

In Experiment 1, I assessed the processes underlying the comparison of the target 

object to its contextual alternatives, using the experimental paradigm of conjunctive 

“same”-“different” decisions. The results provide evidence for a parallel, self-termi-

nating comparison process. To make a “different” decision, participants looked for 

differences as long as necessary to detect one. As a consequence, processing times 

for multidimensional stimuli were determined by the difference dimension that was 

easiest to detect (self-terminating search), which is the dimension with the highest 

degree of codabilit y: Differences in absolute and highly codable dimensions, such as 

color or object class, were detected faster than differences in size as a relative 

dimension. The detection times for color and object class differences did not differ 

from each other; what seemed to be relevant for the decision process was the 

absoluteness of the object class difference and not the fact that it was a difference in 

form. 

The results of Experiment 1 did not provide any evidence on the evaluation of 

detected differences with regard to their relevance in view of higher order processes, 

such as referring unambiguously to multidimensional objects in a referential 

communication task. Reviewing the literature on “same”-“different” judgments, I 

evaluated investigations on the processes involved in making “same”-“different” 

decisions on one dimension while disregarding a second dimension. On the basis of 

the relevance rechecking model (Mill er & Bauer, 1981; Watanabe, 1988a) and the 

self-terminating search and codabilit y effects obtained in Experiment 1, I derived 

hypotheses on the evaluation of detected differences in a referential communication 

task. I predicted that due to the self-terminating search effect, size differences, co-



6 General Discussion 

105 

occurring with color differences in one object, would be filtered out early in the 

detection process. Therefore, irrelevant differences in size should not be over-

specified in a referential communication task. By contrast, irrelevant differences in 

color would have to be rechecked with regard to their relevance, in order not to 

produce an overspecified utterance. Following Whithurst’s principle of least effort 

(see Whitehurst, 1976; Pechmann, 1989, 1994), I predicted that in these cases, it 

would cost less effort to produce an overspecified utterance, than to explicitl y ignore 

the irrelevant difference in color. In a parallel assessment of the detection materials, 

participants overspecified the objects’ color substantially more often than their size. I 

concluded that, apparently, referential overspecifications of color have an “early” 

visual, rather than a “late” linguistic origin, since they are largely attributable to 

mechanisms of visual discrimination. The results can be regarded as evidence for an 

incremental processing mode between the stages of perceptual analysis and 

conceptualization.  

Experiment 3 was designed to assess in more detail the determinants of 

prenominal adjective order. The results show that perceptual grouping processes on 

the basis of early color information and the functional invisibilit y of size differences, 

co-occurring with color differences in one object, account for the high frequency of 

redundant color specifications. The data suggest that the information about color and 

size of the target object is available early enough for a simultaneous grammatical 

encoding of both dimensions under consideration of prenominal adjective ordering 

rules. The occasional occurrence of non-canonical adjective orders (color before 

size) under increased task demands is due to less effective perceptual grouping 

processes and time pressure. The referential noun phrase descriptions are then built 

up incrementally according to the order of detection of distinctive features. 

6.2 Perceptual Grouping on the Basis of  

Early Color Information 

Participants seem to group the object display with regard to color first, filtering out 

color discrepant objects in a very early stage of processing (Baylis & Driver, 1992; 

Duncan, 1980; Duncan & Humphreys, 1989; see also Cohen & Shoup, 1997; Mill er 

& Bauer, 1981; Treisman, 1982; Treisman & Gelade, 1980). Within the remaining 
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set of objects of one color, they then evaluate potential size differences. The early 

filtering of color discrepant objects leads to frequent color overspecifications (resul-

ting from disregarded size differences in color- and size-discrepant context objects; 

see Experiments 1 and 2). Supportive evidence of grouping processes is provided by 

the fact that in condition SCO of Experiment 3, VT(SF) was shorter when the objects 

of the same color (TO and SF) appeared next to each other. Parallel results were 

obtained in the analysis of viewing patterns before utterance onset (see Appendix B). 

This is in line with previous findings that spatial proximity of objects of the same 

color may be a powerful grouping factor (Baylis & Driver, 1992; Fox, 1998; Han, 

Humphreys, & Chen, 1999; Wertheimer, 1923; see also Jiang, Olson & Chun, 2000, 

for the importance of spatial configuration in color visual short term memory). 

In the minimal instruction group, participants had to check each difference 

between the TO and its context objects in view of its relevance. Perceptual grouping 

was rather counterproductive, as it led to an early filtering of color discrepant objects 

that had to be rechecked with regard to their size, in order to avoid an overspecified 

and thus erroneous object specification (e.g. in condition SO). The analysis of 

viewing patterns revealed that participants viewed each object at least once before 

starting to speak. Nevertheless, suppressing the early perceptual color grouping of 

the display seems to be rather diff icult, which is apparent in the high frequency of 

color overspecifications and participants’ descriptions of their diff iculties to register 

more than the color difference in color- and size-discrepant context objects.  

This ‘f unctional invisibilit y’ of size, as I termed it in the present work, is 

apparently closely related to attentional capture. Participants reported that they 

simply did not ‘see’ the size difference in color- and size-discrepant context objects. 

This is in line with findings that littl e or nothing is known about unattended stimuli 

on surprise retrospective questioning (‘ inattentional blindness’ ; see Mack & Rock, 

1998; Simons, 2000), and that early perceptual grouping and segmentation may 

involve preattentive processes (Mack, Tang, Tuma, Kahn, & Rock, 1992; Moore & 

Egeth, 1997). Note, though, that “ the poor knowledge shown may reflect poor 

explicit memory, rather than the absence of on-line processing when the unattended 

stimulus was presented” (Driver, Davis, Russell , Turatto, & Freeman, 2001: 67). As 

the experiments presented in this work do not allow any more detailed inferences as 
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to these issues I will not go into detail on aspects of attentional capture or awareness 

at this point, (see Driver et al., 2001, for a concise overview). It can be concluded, 

though, that the initial perceptual processes of grouping and structuring the display 

are a dominant feature of visual perception with strong impacts on the form of the 

specification of the target object.  

6.3 Semanto-Syntactic Principles vs. Procedural Constraints:  

A Trade-Off 

The viewing patterns and viewing times registered before utterance onset in the 

neutral instruction group show that the perceptual grouping processes occur rather 

early in the visual exploration process. Thus, in the normal and unhindered produc-

tion process, the information about both color and size should be available early 

enough to be incorporated in semanto-syntactic encoding processes. These encoding 

processes seem to be sensitive to adjective ordering rules, which will be considered 

in more detail in the following sections on representational principles underlying 

prenominal adjective order.  

As the analyses of viewing patterns and viewing times in the minimal instruction 

group showed, participants looked at more objects of the display and took more time 

to evaluate the display with regard to the minimally distinctive features of the TO. 

Therefore, the conceptualization of the relevant adjectives took longer. In some 

cases, participants apparently did not take the time to evaluate the size information 

before initiating the syntactic encoding of the noun phrase and thus could not apply 

the rules of canonical adjective ordering (size before color). Therefore, they aligned 

the adjectives incrementally, according to the order of detection (color before size) in 

these cases. This accounts for the high rate of inverted adjective order phrases in the 

minimal instruction group. 

Taken together, the data from both instruction groups provide evidence for the 

application of adjective ordering rules during the generation of complex noun 

phrases. Situational factors, such as task difficulty and time pressure, however, may 

force speakers to do without the ordering rules and to apply a purely incremental 

processing mode by mentioning the relevant dimensions in a non-canonical order 

according to their order of detection. Therefore, the process of generating complex 
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noun phrases can be characterized as a trade-off between visuo-semantic and 

procedural constraints. 

6.4 Representational Principles Underlying 

Canonical Adjective Order 

The descriptive accounts of prenominal adjective ordering on the basis of visuo-

semantic characteristics of dimensional adjectives suggest that speakers have some 

knowledge of adjective ordering rules. It is not clear, however, how these rules might 

be represented in the speakers’ minds, “so, eventually, we are faced with the problem 

with the rules behind the rules – those rules that guide a person in utili zing rules to 

construct or comprehend a string of attributive modifiers” (Sichelschmidt, 1986: 

146). 

According to early studies in the framework of the visuo-semantic approach, 

perceptual factors of the object and semantic properties of the relevant differences 

determine the form of the object specifications (see section 2.3.2.1). Thus, the 

representation of ordering rules may be based on rather abstract and feature-based 

knowledge of the order of ‘ types’ of (dimensional) adjectives. The ordering of color 

and size adjectives in complex noun phrases could be regarded as an instantiation of 

a more general rule that absolute features are positioned nearer to the noun than 

relative features (Bache 2000; Eichinger, 1991; Greenberg, 1963; Hetzron, 1978; 

Seiler, 1978). There are substantial similarities between the knowledge about these 

feature-based rules of adjective ordering and the knowledge of selection restrictions 

that govern the combination of verbs and their complements. Therefore, the represen-

tational basis of canonical adjective orders might be comparable to the “gramma-

tically relevant subsystem” proposed by Pinker (1989) for the acquisition of verb 

meanings and the semanto-syntactic restrictions associated with some of them. 

Kemmerer (2000) presents evidence in favor of this representational view on the 

basis of selective impairments of the knowledge about the linear order of adjectives 

in a noun phrase on the one hand, and the knowledge about their semantic features 

that are invisible to syntax on the other hand. 
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Richards (1979) provides evidence for the existence of an internal representation 

of adjective rules from a developmental point of view. In a cross-sectional study with 

English speaking children, she found that three-year-olds display strong ordering 

preferences for prenominal adjective order that are given up at age four and five but 

eventually return at age six. Instead of focusing on the form of the object descrip-

tions, four- and five-year-olds concentrate on the semantic contents of their descrip-

tions, which improves considerably at that age. The acquisition of adjective ordering 

rules might thus proceed in steps from pure ordering imitation (at the age of three) 

via the acquisition of the adjectives meanings and their grammatically relevant 

semantic features (at age four to five) to rule-governed competence in the field of 

prenominal adjective ordering (at age six). Similar developmental sequences from 

imitation via exploration and finally rule generation to rule-based linguistic 

competence are present in various areas of language acquisition (see, e.g., Pinker, 

1984, 1986; Shore, 1995; Tomasello, 2000). 

6.5 The Role of Monitoring in Referential Communication 

Pechmann (1989) tracked participants’ f ixation behavior during a referential 

communication task using more complex display types than the ones used in the 

present work. He found that speakers began to speak long before they had seen all 

objects. Thus, changes of the conceptualization of the target object may have to be 

made ad hoc, during articulation, on the basis of new context information. Studies 

that evaluated underspecified utterances and their overt repairs, such as “ the red ball , 

the small one” (cf. Eikmeyer & Ahlsén, 1998) provide evidence for monitoring 

processes during the production of object specifications that control for ambiguities 

in the object specifications. It is less obvious, however, whether there are correspon-

ding monitoring processes for redundancies in object specifications. Schriefers and 

Pechmann (1988; see also Pechmann, 1984, 1989, 1994) assume that referential 

overspecifications occur because of the incremental transfer of the early color 

information from conceptualization to formulation and that this transfer of informa-

tion is not monitored in view of redundancy. Dale and Reiter (1995; pp. 249f.) 

assume that speakers might believe that “extra-modifiers may be helpful” for the 

identification of the target object (see also Mangold & Pobel, 1988).  
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The findings presented in this work, however, suggest yet another account: 

Overspecifications of color apparently originate already at the level of visual 

processing of multidimensional differences (see Experiment 2 and 3), and the 

suppression of overspecifications, as it was required in the minimal instruction group 

in Experiment 3, is associated with considerable effort. Therefore, it seems to be 

more plausible that in most cases speakers simply do not realize that the detected 

difference in color is irrelevant in view of a minimal description of the target object.  
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7 Conclusion 

In the experiments presented in this work, eye movements were used to track the 

time course of the processes involved in the production of complex object 

specifications in a referential communication task. The results provide evidence for a 

strong perceptual influence on the form of complex object specifications. The 

analyses of viewing patterns and processing times even allow inferences as to the 

nature of these influences: Perceptual grouping processes on the basis of early color 

information largely determine the conceptualization of the target object description. 

They are apparently that rapid that they make the information on both color and size 

of the target object available early enough to enable the speaker to encode both 

dimensions according to canonical adjective ordering rules. Only in case of increased 

task demands, when the perceptual analysis of the object display is more complex 

and time-consuming, the features of the target object are encoded in the (temporal) 

order of their detection (color before size).  

There are detailed and comprehensive models and simulations of the speech 

production process (Dell , 1986; Levelt, Roelofs & Meyer, 1999; Schade & 

Eikmeyer, 1998). However, these models do not incorporate a component for the 

visual and conceptual processes preceding the linguistic encoding processes, but tend 

to treat them as ‘ lead in’ processes lying outside the domain of the model. Other 

models explicitl y deal with the visual-perceptual processes involved in object 

recognition but do not cover the linguistic planning processes involved in generating 

complex utterances (Humphreys et al., 1995). The current findings provide an 

empirical basis for more complete accounts of speech production and its relation to 

(visual) perception. They open up the potential to model utterance generation 

processes from the early visual extraction of multidimensional features of the input 

over conceptualization and linguistic encoding processes to the articulation of a 

referring expression. 
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9.1 Part A – Experiment 1:  

Structural Differences Between Viewing Patterns 

In this section, I provide additional results on processing times and reaction times 

associated with specific viewing patterns in Experiment 1 (cf. chapter 3). I had 

predicted that qualitative differences between viewing patterns in terms of com-

plexity and extensiveness should be related to quantitative differences in viewing 

times for target and context object. I obtained significant effects of the factors R-

Type and D-Number on both the complexity and the extensiveness of the viewing 

patterns. As predicted, VT(C) correlated with the complexity of the viewing patterns: 

The more direct viewing patterns were observed, the shorter were the viewing times 

of the context object (see section 3.2.3). However, the viewing times of the target 

object were not related to the relative extensiveness of the observed viewing patterns: 

Viewing patterns with a regression to the target object yielded a similar VT(T) as 

viewing patterns without regressions to the target object. This might be due to 

structural differences between the viewing patterns. Each pattern may be associated 

with different ways of extracting information and memorizing parts of the display in 

visual short-term memory (cf. Carlson-Radvansky & Irwin, 1995; Irwin, 1991, 1992; 

Zelinsky & Sheinberg, 1995, 1997). In the analyses described above, the viewing 

time of an object was defined as the sum of the first gaze at the object and all 

regressions to it. However, in view of structural differences within viewing patterns, 

analyses of individual gaze durations should be a more appropriate approach to the 

structural and temporal differences between viewing patterns. I assumed that more 

complex viewing patterns were associated with shorter gaze durations for the target 

object, whereas viewing patterns of less complexity should be associated with longer 

gaze durations.  

When testing this hypothesis, I could only include the first gaze at the target 

object (VT1(T) in the following), because for the case of simple viewing patterns I 

did not have any data on gaze durations for the context object. I compared simple 

and complex viewing patterns with and without regressions with respect to VT1(T). 

In addition, I compared total viewing times, overall reaction times, and viewing 

times of the target object between pattern types. The total viewing time for simple 

viewing patterns was computed on the basis of the former definition of viewing times 



9 Appendix 

134 

 

with VT(C) := 0 and VTtot = VT(T). The main types of viewing patterns (simple 

patterns, complex patterns with/without regressions) were coded as levels of the 

factor Pattern (3), which was analyzed in ANOVAs over each of the dependent 

variables VT1(T), VT(T), VTtot and RT. Except for one subject, who never applied 

the simple viewing pattern, all subjects could be included in the analysis of the 

respective patterns. For the item analysis I had to exclude 81 items that were 

associated with only two of the three patterns.  

 
Table A1. Mean durations of the first gaze at the target object, mean viewing times of 

the target object, mean total viewing times and reaction times obtained for 
each viewing pattern. 

 

 
complex pattern 

without 
regression 

complex pattern 
with one/two 
regressions 

simple pattern 

VT1(T) 

M 

SD 

 

284 

118 

 

262 

108 

 

447 

233 

VT(T) 

M 

SD 

 

284 

118 

 

484 

211 

 

447 

233 

VTtot 

M 

SD 

 

582 

199 

 

772 

254 

 

447 

233 

RT 

M 

SD 

 

774 

218 

 

915 

234 

 

789 

244 

 
The main effect of the factor Pattern was significant for each of the variables 

defined above (F1(2,30) > 16, p < .001; F2(2,270) > 17, p < .001 for VT1(T), VT(T), 

VTtot and RT). However, as illustrated in Figure A1, its influence on the respective 

variables differed (see Table A1).  

The duration of the first gaze at the target object (VT1(T)) was significantly 

shorter for the complex patterns with regressions than for those without (see Table 

A2). The simple viewing patterns were associated with significantly longer gaze 

durations than both types of complex viewing patterns. This is in line with the 

assumption that the gaze durations should become shorter with increasing 
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complexity and extensiveness of the viewing pattern. The overall viewing time of the 

target object (VT(T)) was significantly longer for simple patterns than for complex 

patterns without regression. At the same time, however, VT(T) was significantly 

longer for complex patterns with regressions than for those without. This is 

obviously due to the fact that for complex patterns with regressions, VT(T) includes 

the durations of the first gaze at the target object and all regressions to it.  
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Figure A1. Mean values for the respective values VT1(T), VT(T), VTtot, and RT, 
displayed for each viewing pattern. Dashed lines for VTtot indicate that 
VTtot is no direct measure of processing time but represents the sum of 
VT(T) and VT(C). Note that VT1(T) and VT(T) are identical for complex 
patterns without regressions, as well as VT1(T), VT(T), and VTtot are 
identical for simple viewing patterns. 

 

In sum, the analyses of the first gaze at the target object and its overall viewing 

time support the notion of structural differences between viewing patterns: The 

duration of the first gaze at the target became shorter the more explicit the viewing 

patterns got. This effect might occur because the very short first gazes at the target 

object were often too short to complete the processing, such that participants had to 

return to the target object later to extract all the information that they need. However, 

it may also be an effect of preplanning with regard to the complexity and 

extensiveness of the overall viewing pattern to follow.  
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Table A2. Paired comparisons between viewing patterns for the duration of the first 
gaze at the target object, the viewing time of the target object, total 
viewing time and reaction time.  

 

 pattern without 
regression  

vs.  
pattern with 
regressions 

_______________ 

pattern without 
regression  

vs.  
 

simple pattern 
_______________ 

pattern with 
regressions  

vs.  
 

simple pattern 
________________ 

 t1a t2b t1a t2b t1a t2b 

VT1(T)  2.90*  2.12* 6.06*** 7.51***  6.26***  7.64*** 

VT(T) 12.94*** 16.13*** 6.06*** 7.51***  1.89  2.65* 

VTtot  6.81*** 11.68*** 6.43*** 9.76*** 12.03*** 15.27*** 

RT  8.54***  7.46***  0.73  .65  5.43***  4.37*** 

 
Note. a df = 15  

b df = 135 
* p < .05; ** p < .01; *** p < .001 

 
The longest reaction times and total viewing times were associated with the 

complex viewing patterns with regressions and the shortest with the simple viewing 

patterns (see Table A1 and Figure A1). However, the difference between the reaction 

times obtained for simple patterns as opposed to those for complex patterns without 

regression did not reach significance (see Table A2). The finding that complex 

viewing patterns without regressions and simple patterns did not differ in total 

reaction times is interesting with respect to the idea of an early response generation 

based on partial output of visual processing (Mill er, 1982), as it implies that the time 

between the end of the extraction of visual information from the display and the 

button press was longer for the simple viewing patterns than for the complex viewing 

patterns, being associated with glances at both objects (see also Figure A1). This 

suggests that when using the complex viewing pattern without regressions, 

participants benefited from the additional information extracted during the longer 

and thorough exploration of the display. When finishing the exploration process, they 

were already apt to press the correct buttons. There is one caveat, however, that 

should be kept in mind when interpreting this pattern of results in terms of early 

response generation: The time between the end of the total viewing time and the 

reaction time coincided with the beginning of the processing of the second task. 

Subjects were told to first do the “same”-“different” decision and to decide then 
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whether the symbol at the bottom of the screen was a plus or a cross. The earlier 

subjects had come to a decision with regard to the “same”-“different” judgment, the 

earlier they started to process the second task. If they had not pressed the button yet, 

the second task might have interfered with the first one and might thereby have 

caused longer latencies between the end of the exploration of the object display and 

the button press. 
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9.2 Part B – Experiment 3:  

 Statistical Analysis of Viewing Patterns 

9.2.1 Viewing Patterns Before Utterance Onset 

As indicated in section 5.2.3.6, there was a large diversity of observed viewing 

patterns in Experiment 3, which could not be assessed directly for a statistic analysis. 

Therefore, several meta-variables were computed: For TO, CF and SF, the individual 

number of glances at these objects was extracted (N(TO), N(CF) and N(SF) and the 

overall number of glances during the exploration (N(tot)) was computed as their sum. 

Beyond that, the variable N(obj) was introduced to indicate how many of the three 

objects of the display were fixated during the exploration process. 

9.2.1.1 Neutral Instruction Group  

The results of the ANCOVAS over the meta-variables defined to analyze the 

observed viewing patterns are given in Table B1. There were significant main effects 

of Condition and Array for all variables. The interaction Condition x Array was 

significant for N(obj) and N(SF). 

The main effect of Condition for N(tot), the total number of glances at the object 

display, was based on a significant difference between SCO, being associated with 

the largest number of glances at the object display, and CO with the smallest number 

of glances (t1(31) = 2.98, p < .005; t2(140) = 9.01, p < .005). The more detailed 

analysis of differences between array types (see Appendix C, Table C6) revealed 

significantly less glances in array types 3 and 4 than in array types 1, 2, 5, and 6 (cf. 

Figure B1a). This is probably due to the central position of the target object in array 

types 3 and 4, which makes it easier to structure the whole object display with regard 

to color discrepancies between the target object and the context objects on the basis 

of an early peripheral preview. Array types 1 and 6 were associated with signi-

ficantly more glances at the object display than array types 2 and 5. As indicated in 

the analysis of viewing times, this may be due to the fact that in the latter array types, 

as well as in array types 3 and 4, the objects of the same color (TO and CF) are 

neighbored, whereas they are disconnected in array types 1 and 6 (see Figure 5 in 

section 5.2.1). This effect of neighborhood may be considered as additional evidence 

for perceptual grouping processes on the basis of early color information. 
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Table B1. Effects of Condition (C) and Array (A) for the neutral instruction group: 
ANOVA results for the number of glances at the objects and the number of 
viewed objects before utterance onset 

 

 Subjects Items 

 df F1 df F2 

N(tot)     

C 2,31   5.43** 2,107   6.41** 

A 5,79  28.30*** 5,107  26.84*** 

C x A 10,159    .95 10,107   2.51* 

N(obj)     

C 2,31   4.83** 2,107   5.67** 

A 5,79  25.36*** 5,107  38.29*** 

C x A 10,159   2.26* 10,107   2.01* 

N(TO)     

C 2,31  17.02*** 2,107  18.59*** 

A 5,79  10.65*** 5,107  20.81*** 

C x A 10,159   1.01 10,107    .80 

N(CO1)     

C 2,31   6.10** 2,107   5.94** 

A 5,79  40.96*** 5,107  89.20*** 

C x A 10,159    .71 10,107    .65 

N(CO2)     

C 2,31   6.81** 2,107   7.95*** 

A 5,79  22.40*** 5,107  54.65*** 

C x A 10,159   4.69*** 10,107   4.49*** 

 

Note. * p < .05; ** p < .01, *** p < .001 
 

The analysis of N(obj), the average number of objects of the display that are 

fixated during the exploration process, revealed a significantly higher number of 

fixated objects for condition SCO than for conditions CO (t1(31) = 2.47, p < .01; 

t2(140) = 4.81, p < .005) and SO (t1(31) = 2.85, p < .005; t2(140) = 5.43, p < .005). 

Paired comparisons between array types showed significant differences between 

array types 3 and 4 and the remaining array types (cf. Figure B1a and Appendix C, 

Table C6). As well as the corresponding finding for N(tot), this is due to the middle 
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position of the target object in these conditions. Array types 1 and 6, with the objects 

of one color class being disconnected, were associated with significantly larger 

averages of fixated objects than array types 2 and 5, where the objects of the same 

color were neighbored (see above). Because of the significant interaction of 

Condition and Array, array types were compared separately for each condition (see 

Appendix C, Table C7). Effects of color neighborhood and of the relative position of 

the target object occurred under conditions SCO and SO only. In these conditions, 

array types 3 and 4 were associated with significantly smaller averages than the other 

array types, and array types 1 and 6 were associated with significantly larger 

averages than array types 2, 3, 4 and 5 and. In condition CO, there was merely an 

effect of the central position of the TO with significantly smaller averages in array 

types 3 and 4 than in the other array types. The latter, however, did not differ among 

each other (cf. Figure B1a). 
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Figure B1. Mean overall number of glances and mean number of objects viewed 

before utterance onset by conditions and array types for the neutral 
instruction group (a) and the minimal instruction group (b). 
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N(TO), the number of glances at the TO was smallest in condition SO, differing 

significantly from conditions SCO (t1(31) = 3.84, p < .005; t2(140) = 3.10, p < .01) 

and CO (t(31) = 4.44, p < .005; t2(140) = 3.85, p < .005). The TO was looked 

significantly more often under condition CO than under condition SCO (t1(31) = 

1.75, p < .05; t2(140) = 1.85, p < .05). As Figure B2a shows, the middle position of 

the TO in array types 3 and 4 did not lead to more glances at it on these positions. 

Instead, the effect of the factor Array is grounded in significantly fewer glances at 

the TO in the array types 2 to 5, as opposed to array types 1 and 6 (see also Appendix 

C, Table C6). This phenomenon may again be caused by the neighborhood effect: In 

contrast to conditions 2 and 5, the objects of the same color are disconnected in 

conditions 1 and 6. 

The color- (and size-) discrepant CF was looked at significantly less often in 

condition SO than in conditions SCO (t1(31) = 2.37, p < .025; t2(140) = 3.84, p < 

.005) and CO (t1(31) = 2.64, p < .01; t2(140) = 2.98, p < .005). This is in line with 

the prediction that in condition SO, color discrepant objects are filtered out right 

from the start. As Figure B2a and Table C6 in Appendix C show, the CF was looked 

at significantly more often in array types 1 and 6, when it was positioned in the 

middle of the object display. 

The number of glances at the size- (and color-) discrepant SF was significantly 

smaller under condition CO than under conditions SCO (t1(31) = 3.69, p < .005; 

t2(140) = 4.08, p < .005) and SO (t1(31) = 3.47, p < .005; t2(140) = 3.09, p < .005). 

Parallel to the findings for the CF, the main effect of Array was based on a 

significant increase of the number of glances at the SF, when it was in the middle 

position (array types 2 and 5). In addition, there were significant differences between 

the remaining position types: The number of glances was significantly higher in 

array types 1 and 6, than in array types 3 and 4 (cf. Appendix C, Table C6). This is 

probably due to the fact that in the latter array types the objects of the same color 

(TO and SF) were neighbored (array types 3 and 4) and were thus easier to group 

with regard to their color, than when they were disconnected (array types 1 and 6). 

The significant interaction of Condition and Array was investigated by means of 

paired comparisons between array types within individual conditions (see Appendix 

C, Table C7). In condition CO, the effect of Array was solely based on the 

significant increase of the number of glances at the SF in array types 2 and 5 with SF 

in the middle position. All other array types did not differ from each other. In 
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conditions SCO and SO, in contrast, the effect of the middle position of SF in array 

types 2 and 5 was less pronounced. In addition, there were differences between array 

types 1 and 6 and array types 3 and 4 with significantly less glances at SF in 

conditions SCO and SO in the latter array types. Combining these findings with the 

analyses of the effects of Condition on the number of glances at SF, the results can 

be interpreted as follows: In condition CO, participants looked at the SF only 

seldomly, except for the cases in which it was positioned in the middle of the object 

alignment. Conditions SCO and SO, in contrast, included a relevant difference in size 

between the TO and SF. Therefore, participants looked at the SF significantly more 

often, independently of its relative position within the array, which accounts for the 

less pronounced effect of the middle position of SF in array types 2 and 5 under these 

conditions.  

As Figure B2a shows, the target object was looked at more often than the CF and 

the SF, which is obviously due to the fact that the TO is the object to be named. In 

order to assess the differences between CF and SF with regard to the respective 

numbers of glances, an additional ANCOVA was run over the data extracted from 

CF and SF including the within-subject factors Object (2) and Condition (3). The 

effect of Object was significant (F1(1,15) = 13.45, p < .005; F2(1,140) = 22.7, p < 

.001). As the effects of condition on N(CF) and N(SF) differed (see above), 

Condition did not have a significant main effect in this analysis, but the interaction of 

Object and Condition was highly significant (F1(2,31) = 42.57, p < .001; F2(2,140) 

= 14.36, p < .001). Paired t-tests revealed significant differences between the number 

of glances at the two objects in conditions SCO (t1(16) = 4.12, p < .001; t2(47) = 

5.90, p < .001) and SO (t1(16) = 5.75, p < .001; t2(47) = 5.34, p < .05). In these 

conditions, the CF was apparently filtered out early during the exploration process in 

favor of a more elaborate comparison of the SF and the TO. In condition CO, 

participants looked at the CF about as often as at the SF, as in both objects only the 

color discrepancy from the TO was relevant.  
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Figure B2. Mean number of glances at individual objects before utterance onset by 

conditions and array types for the neutral instruction group (a) and the 
minimal instruction group (b). 
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9.2.1.2 Minimal Instruction Group  

ANOVAS over the meta-variables defined to analyze the observed viewing patterns 

for the minimal instruction group revealed significant effects of Condition and Array 

for all dependent variables (cf. Table B2). The interaction of these factors was 

significant for N(obj) only. 

 
Table B2. Effects of Condition (C) and Array (A) for the minimal instruction group: 

ANOVA results for the number of glances at the objects and the number of 
viewed objects before utterance onset 

 

 Subjects Items 

 df F1 df F2 

N(tot)     

C 2,30 105.31*** 2,108 297.96*** 

A 5,75  26.54*** 5,108  31.33*** 

C x A 10,150   1.19 10,108   1.41 

N(obj)     

C 2,30  86.79*** 2,108 298.11*** 

A 5,75  45.65*** 5,108  43.34*** 

C x A 10,150   4.63*** 10,108   3.23*** 

N(TO)     

C 2,30  30.90*** 2,108 91.58*** 

A 5,75   5.48*** 5,108   8.89*** 

C x A 10,150   1.84 10,108   2.21* 

N(CF)     

C 2,30 101.90*** 2,108 239.57*** 

A 5,75  86.28*** 5,108 159.69*** 

C x A 10,150   1.50 10,108   2.25* 

N(SF)     

C 2,30 166.22*** 2,108 238.52*** 

A 5,75  73.76*** 5,108 127.54*** 

C x A 10,150    .93 10,108   1.03 

 
Note. * p < .05; ** p < .01, *** p < .001 
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As Figure B1b shows, participants needed on average 1.5 more glances at the 

object display in conditions SCO and SO, than in condition CO. This difference was 

highly significant (SCO-CO: t1(15) = 12.04, p < .001; t2(94) = 14.65, p < .001; SO-

CO: t1(15) = 13.31, p < .001; t2(94) = 13.31, p < .001). N(tot) was larger under 

condition SCO than under condition SO (t1(15) = 2.36, p < .05; t2(94) = 2.29, p < 

.05), which is in part due to the fact that longer utterances had to be produced under 

condition SCO. The more detailed inspection of the differences between array types 

(see Appendix C, Table C8) revealed significantly less glances in array types 3 and 4 

than in array types 1,2, 5 and 6. This effect is probably caused by the central position 

of the TO in array types 3 and 4, which makes it easier to judge peripherally which 

object might be relevant for the target object specification. 

The analysis of N(obj) revealed parallel results as the analysis of N(tot) (see also 

Figure B1b): In condition CO, significantly less objects of the display were fixated 

than in conditions SCO (t1(15) = 9.44, p < .001; t2(94) = 10.28, p < .001) and SO 

(t1(15) = 10.6, p < .001; t2(94) = 13.22, p < .001). Conditions SCO and SO differed 

significantly, too (t1(15) = 3.24, p < .01; t2(94) = 2.83, p < .01). The main effect of 

Array was grounded in the fact that less objects were fixated in array types 3 and 4 

with the TO in central position than in all other array types (cf. Appendix C, Table 

C8). In order to assess the significant interaction of Condition and Array for N(obj), 

individual analyses of the effect of Array were computed for each condition (see 

Appendix C, Table C9). Beyond the significant differences between array types 3 

and 4 and the other array types in all conditions, SCO and SO displayed significant 

differences between the array types 1 and 6 on the one hand and array types 2 and 5 

on the other. As outlined above, this may be due to the neighborhood effect in array 

types 2 to 5, which helped the perceptual grouping of color classes. In array types 3 

and 4, this neighborhood effect was combined with the effect of the central position 

of the TO. 

The number of glances at the TO was smallest in condition CO, which differed 

significantly from conditions SCO (t1(15) = 6.76, p < .001; t2(94) = 11.73, p < .001) 

and SO (t1(15) = 3.3, p < .005; t2(94) = 4.29, p < .001). The TO was fixated 

significantly more often under condition SCO than under condition SO (t1(15) = 

5.74, p < .001; t2(94) = 7.48, p < .001). In part, this effect can be attributed to the 

relative length of the answers required in condition SCO: Following findings by 

Meyer et al. (1998), the viewing times of an object to be named correlate with the 
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utterance length, as objects seem to be viewed, until the phonological form its name 

is found. The middle position of the TO in array types 3 and 4 lead to a significant 

increase of the number of glances at the TO (cf. Figure B2b and Appendix C, Table 

C8).  

The CF was looked at significantly less often in condition CO than in conditions 

SCO (t1(15) = 10.52, p < .001; t2(94) = 7.25, p < .001) and SO (t1(31) = 14.42, p < 

.001; t2(94) = 7.34, p < .001). This corresponds to the prediction that the CF, being 

color-discrepant from the TO, was filtered out early during the exploration process. 

As Figure B2b and Table C8 of Appendix C show, the CF was looked at 

significantly more often in array types 1 and 6, when it was positioned in the middle 

of the object display. 

Parallel to the findings for the CF, the number of glances at the SF was 

significantly smaller in condition CO than in conditions SCO (t1(15) = 13.95, p < 

.001; t2(94) = 7.05, p < .001) and SO (t1(15) = 22.62, p < .001; t2(94) = 8.80, p < 

.001). The latter two differed significantly for subjects, but not for items (t1(15) = 

2.29, p < .05; t2(94) = 1.47, p > .05). The main effect of Array was based on a 

significant increase of the number of glances at the SF in array types 2 and 5, when it 

was in the middle position of the array (cf. Appendix C, Table C8). In addition, array 

types 1 and 6 differed significantly from array types 3 and 4, which may be due to 

the central position of the TO in the latter array types and the potential preview 

effects from TO on the SF in these array types.  

As Figure B2b shows, N(TO) was larger than N(CF) and N(SF) in all conditions. 

In order to compare the CF and the SF with regard to the respective numbers of 

glances, an ANOVA was conducted including the within-subject factors Object (2) 

and Condition (3). The effect of Object was significant (F1(1,15) = 35.86, p < .001; 

F2(1,141) = 5.7, p < .05), as well as the effect of Condition (F1(2,30) = 192.6, p < 

.001; F2(2,141) = 89.72, p < .001). The interaction of these factors was not 

significant, as for both objects significantly less glances were registered in condition 

CO, than in conditions SCO and SO (see above). In all conditions, the SF was looked 

at significantly less often than the CF (SCO: t1(15) = 3.44, p < .01; t2(47) = 2.32, p < 

.05; CO: t1(15) = 5.59, p < .001; t2(47) = 2.42, p < .05; SO: t1(15) = 2.71, p < .05; 

t2(47) = 2.91, p < .01). 
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9.2.1.3 Neutral vs. Minimal Instruction Group  

In an ANCOVA over both instruction groups including the factors Instruction, 

Condition, and Array, the differences between instruction groups were analyzed. As 

Table B3 shows, there were significant main effects of the factors Instruction, 

Condition and Array for N(tot) and N(obj). In addition, the interaction of Instruction 

and Condition was significant, which is due to the fact that the increase of N(tot) and 

N(obj) from the neutral to the minimal instruction group was more prominent in 

conditions SCO and SO than in condition CO. As Figure B1 shows, the exploration 

of the display under conditions SCO and SO was more elaborate in the minimal, than 

in the neutral instruction group. 

Table B3. Effects of Instruction (I), Condition (C) and Array (A): ANOVA results 
for the total number of glances and the number of viewed objects before 
utterance onset 

 

 Subjects Items 

 df F1 df F2 

N(tot)     

I 1,30  11.74*** 1,107  33.34*** 

C 2,61  46.98*** 2,107  29.49*** 

A 5,154  62.06*** 5,107  40.90*** 

I x C 2,61  30.16*** 2,107 138.27*** 

I x A 5,154   4.08** 5,107   2.93* 

N(obj)     

I 1,30  11.64*** 1,107  29.16*** 

C 2,61  24.94*** 2,107  67.08*** 

A 5,154  49.63*** 5,107  63.10*** 

I x C 2,61  49.14*** 2,107  50.01*** 

I x A 5,154   1.87 5,107   2.97* 

 
Note. * p < .05; ** p < .01, *** p < .001 
 

The results of the ANOVA over N(TO), N(CF) and N(SF) revealed significant 

main effects for Instruction, Condition and Array and significant interactions 

between Instruction and Condition for all variables (cf. Table B4). For N(TO), this 

interaction was based on different relations among individual conditions for each 

instruction group: Whereas for the neutral instruction group more glances at the TO 
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were registered under condition CO than under condition SO, the opposite occurred 

in the minimal instruction group.  

 
Table B4. Effects of Instruction (I), Condition (C) and Array (A): ANOVA results 

for the number of glances at individual objects before utterance onset 
 

 Subjects Items 

 df F1 df F2 

N(TO)     

I 1,30   6.09* 1,107  12.25** 

C 2,61   4.49* 2,107   6.05** 

A 5,154  10.04*** 5,107  14.31*** 

I x C 2,61  29.23*** 2,107  82.10*** 

I x A 5,154   4.95*** 5,107  10.83*** 

N(CF)     

I 1,30  18.13*** 1,107  22.62*** 

C 2,61  16.87*** 2,107  22.24*** 

A 5,154 116.52*** 5,107 210.60*** 

I x C 2,61  80.85*** 2,107 149.22*** 

I x A 5,154   3.13* 5,107   8.06*** 

N(SF)     

I 1,30   9.45** 1,107  17.18*** 

C 2,61  94.34*** 2,107 115.83*** 

A 5,154  84.77*** 5,107 150.59*** 

I x A 2,61  20.60*** 2,107  26.11*** 

I x P 5,154   5.90*** 5,107  16.90*** 

 
Note. * p< .05; ** p < .01, *** p < .001 
 

For N(CF) and N(SF), the interaction of Instruction and Condition was based on 

a significant increase of the number of glances the objects in Conditions SCO and 

SO in the minimal instruction group, which did not occur for condition CO. This 

corresponds to the prediction that because of the high saliency of the color 

discrepancy no additional effort had to be spent to produce a minimal specification in 

condition CO. The interaction of Instruction and Array was significant for N(TO) 

and N(SF) (cf. Table B4). This was due to the stronger effect of the middle position 
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on the number of glances at the TO and at the SF in the minimal instruction group: 

As Figure B2 shows, the increase of the number of glances in array types 3 and 4 for 

N(TO) and array types 2 and 5 for N(SF) was more prominent in the minimal 

instruction group. I assume that this effect is a consequence of the more elaborate 

exploration of the display in the minimal instruction group: The more glances at the 

display are registered, the larger will be the relative increase of the number of 

fixations on the object in the middle position of the array. 

9.2.2 Viewing Patterns During Articulation 

9.2.2.1 Neutral Instruction Group 

ANCOVAS of N(tot), N(obj) and N(TO) revealed neither significant effects for 

Condition, nor for Array and their interaction (cf. Figures B3a and B4a).  
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Figure B3. Mean overall number of glances and mean number of objects viewed 

during articulation by conditions and array types for the neutral 
instruction group (a) and the minimal instruction group (b). 
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Array was significant for N(CF) (F1(5,79) = 5.97, p < .001; F2(5,107) = 10.63, p 

< .001), and N(SF) (F1(5,79) = 4.09, p < .005; F2(5,107) = 4.54, p < .001). Paired 

comparisons between individual array types for N(CF) revealed significantly more 

glances at the CF under array types 1 and 6 than under array types 2, 3 and 5 (see 

Figure B4a and Appendix C, Table C10). These differences were based on the effects 

of the middle position of the CF in conditions 1 and 6.  

The findings for the SF were similar (cf. Figure B4a): There was no significant 

effect of the middle position of the SF in array type 2, but in array type 5, leading to 

significantly more glances at the SF in this array type than in array types 1, 3, 4 and 6 

(cf. Appendix C Table C10).  

An additional ANCOVA over N(CF) and N(SF), including the factors Object and 

Condition, revealed a significant effect of Object (F1(1,15) = 6.68, p < .05; 

F2(1,140) = 9.41, p < .005) and its interaction with Condition (F1(1,31) = 3.34, p < 

.05; F2(2,140) = 4.68, p < .05). The main effect of Condition was not significant. 

Paired comparisons between the objects within individual conditions revealed 

significant differences between the CF and the SF in conditions SCO and SO with 

N(SF) being significantly larger than N(CF) (SCO: t1(16) = 2.33, p < .05; t2(47) = 

2.21, p < .05; SO: t1(16) = 2.12; p < .05; t2(47) = 2.04, p < .05). There were no 

significant differences between N(CF) and N(SF) for condition CO (cf. Figure B4a). 
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Figure B4. Mean number of glances at individual objects during articulation by 

conditions and array types for the neutral instruction group (a) and the 
minimal instruction group (b). 

 



9 Appendix 

152 

 

9.2.2.2 Minimal Instruction Group 

The results of the ANOVA over the metavariables defined to analyse differences 

between viewing patterns are summarized in Table B5. Except for N(obj), all 

variables were significantly affected by Condition. Array had significant effects on 

all variables, except for N(tot). The interaction of Array and Condition was 

significant for N(TO) and N(obj).  

As Figure B3b shows, the overall number of glances at the object display was 

significantly smaller for condition CO than for conditions SCO (t1(15) = 4.8, p < 

.001; t2(94) = 12.02, p < .001) and SO (t1(15) = 6.14, p < .001; t2(94) = 8.25, p < 

.001).  

The number of objects fixated during articulation did not differ significantly 

between conditions (see Figure B3b). Paired comparisons between array types 

revealed a significant decrease of N(obj) in array types 3 and 4, when the target 

object was in the middle of the object display (cf. Appendix C, Table C11). In order 

to assess the interaction between condition and Array, separate analyses of the effects 

of array types were conducted for each condition (see Appendix C, Table C12): For 

condition SCO, N(obj) was significantly smaller in array types 3 and 4 than in all 

other array types (cf. Figure B3b). For condition SO, this effect is significant for 

array type 3 only and in condition CO the effect nearly vanishes completely.  

The number of glances at the TO was significantly smaller in condition CO than 

in conditions SCO (t1(15) = 3.73, p < .001; t2(94) = 8.03, p < .001) and SO (t1(15) = 

5.54, p < .001; t2(94) = 6.15, p < .001). The effect of Array was grounded in 

significantly less glances at the TO in array types 1 and 2 than in all other array types 

(cf. Figure B4b and Appendix C, Table C11). Neither this effect nor the results of the 

more detailed assessment of the interaction of Condition and Array (see Appendix C, 

Table C12) can be explained on the basis of the systematic construction of array 

types.  
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Table B5. Effects of Condition (C) and Array (A) for the minimal instruction group: 
ANOVA results for the number of glances at the objects and the number of 
viewed objects during articulation. 

 

 Subjects Items 

 df F1 df F2 

N(tot)     

C 2,30 17.83*** 1,141  69.31*** 

A 5,75   1.35 2,141   1.83 

C x A 10,150   1.50 2,141   1.99* 

N(obj)     

C 2,30   2.35 2,108   4.15* 

A 5,75   7.85*** 5,108  11.45*** 

C x A 10,150   2.95** 10,108   3.32*** 

N(TO)     

C 2,30  11.32*** 1,141  41.27*** 

A 5,75   7.59*** 2,141   8.95*** 

C x A 10,150   3.01** 2,141   3.23*** 

N(CF)     

C 2,30  11.06*** 1,141  14.23*** 

A 5,75   4.04** 2,141   6.50*** 

C x A 10,150   1.35 2,141   1.49 

N(SF)     

C 2,30  14.48*** 1,141  42.65*** 

A 5,75   2.63* 2,141   7.78*** 

C x A 10,150    .80 2,141   1.43 

 
Note. * p< .05; ** p < .01, *** p < .001 
 

In contrast, N(CF) still displayed the effect of the middle position of the CF in 

array types 1 and 6 leading to a significant increase of N(CF) in these array types 

(Appendix C, Table C11). The CF was looked at significantly less often in condition 

CO than in conditions SCO (t1(15) = 4.36, p < .001; t2(94) = 4.50, p < .001) and SO 

(t1(15) = 3.09, p < .01; t2(94) = 3.97, p < .001). The same holds for the SF (SCO-

CO: (t1(15) = 4.76, p < .001; t2(94) = 9.37, p < .001; SO-CO: t1(15) = 4.9, p < .001; 

t2(94) = 5.74, p < .001). There was no significant effect of the middle position of the 
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SF in array types 2 and 5; the significant effect of Array was rather based on 

unsystematic differences between some array types (see Appendix C, Table C11). 

In an ANOVA over N(CF) and N(SF), the factor Object and its interaction with 

Condition was non-significant. The main effect of Condition, however, turned out to 

be significant (F1(2,30) = 16.35, p < .001; F2(2,141) = 39.37, p < .001), as in both 

variables, CO was associated with significantly less glances than SCO and SO. 

9.2.2.3 Neutral vs. Minimal Instruction Group 

The ANCOVA over both instruction groups including the between-subjects factor 

Instruction revealed a significant main effect of Condition for the total number of 

glances at the object display during articulation (F1(2,61) = 12.44, p < .001; 

F2(2,107) = 32.13, p < .001). For N(obj), the interaction of Instruction and Condition 

was significant (F1(2,61) = 4.22, p < .05; F2(2,107) = 9.49, p < .001): The increase 

of the mean number of viewed objects from the neutral to the minimal instruction 

group apparently occurred for conditions SCO and SO only, but not for condition CO 

(cf. Figure B3). Although Condition was significant in the separate analysis of the 

minimal instruction group only (see above), the analysis of the number of glances at 

individual objects revealed significant overall effects of Condition for N(TO) 

(F1(2,61) = 7.57, p < .001; F2(2,107) = 20.21, p < .001), N(CF) (F1(2,61) = 3.94, p 

< .05; F2(2,107) = 4.95, p < .01), and N(SF) (F1(2,61) = 9.83, p < .001; F2(2,107) = 

21.73, p < .001). Array was significant for all these variables, too (N(TO): F1(5,154) 

= 5.12, p < .001; F2(5,107) = 6.6, p < .001; N(CF): F1(5,154) = 9.51, p < .001; 

F2(5,107) = 15.25, p < .001; N(SF): F1(5,154) = 6.3, p < .001; F2(5,107) = 14.11, p 

< .001). The interaction of Instruction and Condition turned out to be significant for 

N(CF) (F1(2,61) = 3.21, p < .05; F2(2,107) = 5.69, p < .01), which is due to the 

selective increase of N(CF) from the neutral to the minimal instruction group in 

conditions SCO and SO only (cf. Figure B4). In addition, N(TO) displayed a 

significant interaction of Instruction and Array (F1(2,61) = 3.71, p < .05; F2(2,107) 

= 4.12, p < .01), which is obviously caused by the differences between the neutral 

and the minimal instruction group in array types 3 and 4. 
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9.3 Part C – Experiment 3: 

 Effects of Arr ay Type 

 
Table C1. Neutral instruction group: Results of paired t-tests between array types for 

the viewing times of each object before utterance onset 
 
Table C2. Neutral instruction group: Detailed analyses of array types within 

experimental conditions for VT(TO) and VT(SF) before utterance onset 
 
Table C3. Minimal instruction group: Results of paired t-tests between array types 

the viewing times of each object before utterance onset 
 
Table C4. Neutral instruction group: Results of paired t-tests between array types for 

the number of glances at CO1 and CO2 and the associated viewing times 
during articulation 

 
Table C5. Minimal instruction group: Results of paired t-tests between array types 

for the viewing times of the TO during articulation 
 
Table C6. Neutral instruction group: Results of paired t-tests between array types for 

the variables defined to analyze viewing patterns observed before 
utterance onset 

 
Table C7. Neutral instruction group: Detailed analyses of array types within 

experimental conditions for N(obj) and N(SF) before utterance onset 
 
Table C8. Minimal instruction group: Results of paired t-tests between array types 

for the variables defined to analyze viewing patterns observed before 
utterance onset 

 
Table C9. Minimal instruction group: Detailed analyses of array types within 

experimental conditions for N(Obj) before utterance onset 
 
Table C10. Neutral instruction group: Results of paired t-tests between array types 

for the number of glances at CF and SF during articulation 
 
Table C11. Minimal instruction group: Results of paired t-tests between array types 

for the variables defined to analyze viewing patterns observed during 
articulation and for the viewing times of the TO during articulation 

 
Table C12. Minimal instruction group: Detailed analyses of array types within 

experimental conditions for N(Obj) and N(TO) during articulation 
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9.3.1 Analysis of Viewing Times 

9.3.1.1 Viewing Times before Utterance Onset  

9.3.1.1.1 Neutral Instruction Group 

Table C1. Neutral instruction group: Results of paired t-tests between array types for 
the viewing times of each object before utterance onset 

 
  VT(TO)a VT(CF)a VT(SF)a  

1-2 t1a 

t2b 
 1.08 
  .42 

 6.74*** 
12.36*** 

 2.27** 
 5.74*** 

 

1-3 t1 

t2 
 4.79*** 
 6.37*** 

 7.34*** 
13.49*** 

 2.65*** 
 2.81*** 

 

1-4 t1 

t2 
 2.31** 
 5.58*** 

 6.16*** 
11.23*** 

 1.37 
 1.36 

 

1-5 t1 

t2 
  .95 
  .13 

 7.67*** 
12.89*** 

 3.94*** 
 8.17*** 

 

1-6 t1 

t2 
 1.35 
  .04 

  .73 
 1.51 

  .32 
  .26 

 

2-3 t1 

t2 
 5.86*** 
 5.95*** 

  .58 
 1.14 

 4.91*** 
 8.55*** 

 

2-4 t1 

t2 
 3.44*** 
 5.17*** 

  .44 
 1.12 

 3.67*** 
 9.92*** 

 

2-5 t1 

t2 
  .13 
  .28 

  .91 
  .54 

 1.65 
 1.43 

 

2-6 t1 

t2 
  .27 
  .45 

 6.00*** 
 9.84*** 

 2.59** 
 6.01*** 

 

3-4 t1 

t2 
 2.41*** 
 1.71* 

 1.03 
 1.26 

 1.24 
 1.26 

 

3-5 t1 

t2 
 5.72*** 
 6.25*** 

  .32 
  .60 

 6.57*** 
10.99*** 

3-6 t1 

t2 
 6.13*** 
 6.41*** 

 6.58*** 
10.98*** 

 2.32* 
 2.55** 

4-5 t1 

t2 
 3.31*** 
 5.45*** 

 1.36 
 1.64 

 5.33*** 
12.33*** 

4-6 t1 

t2 
 3.72*** 
 3.27*** 

 5.55*** 
 9.29*** 

 1.07 
 1.35 

5-6 t1 

t2 
  .41 
  .17 

 6.91*** 
10.39*** 

 4.25*** 
 9.45*** 

Note.  

t-values were 
computed on the 
basis of adjusted 
means (cf. Winer, 
1971) 
a df = 79 
b df = 137 

* p < .05;  
** p < .01;  
*** p < .005 
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Table C2. Neutral instruction group: Detailed analyses of array types within 
experimental conditions for VT(TO) and VT(SF) before utterance onset 

 
   VT(TO)a   VT(SF)a  

  SCO CO SO SCO CO SO 

1-2 t1a 

t2b 
1.36 
1.10 

 .63 
1.21 

1.08 
1.88* 

1.61 
1.73* 

5.77*** 
5.19*** 

2.27* 
3.22*** 

1-3 t1 

t2 
3.80*** 
3.23*** 

3.43*** 
3.27*** 

4.79*** 
5.02*** 

1.71* 
2.21** 

 .65 
 .23 

2.65*** 
3.67*** 

1-4 t1 

t2 
5.35*** 
3.95*** 

3.61*** 
3.45*** 

2.31* 
2.34* 

3.08*** 
3.66*** 

1.22 
1.93* 

1.37 
1.56 

1-5 t1 

t2 
 .75 
 .68 

 .93 
1.12 

 .95 
1.64 

2.79*** 
3.19*** 

5.71*** 
6.06*** 

3.94*** 
5.66*** 

1-6 t1 

t2 
 .54 
 .60 

 .43 
1.51 

1.35 
1.34 

 .36 
 .31 

 .31 
 .01 

 .32 
 .19 

2-3 t1 

t2 
2.43** 
2.12* 

2.81*** 
2.06* 

5.86*** 
6.91*** 

3.33*** 
3.94*** 

5.11*** 
5.42*** 

4.91*** 
6.89*** 

2-4 t1 

t2 
3.98*** 
2.85*** 

2.97*** 
2.24* 

3.44*** 
4.23*** 

4.71*** 
5.39*** 

6.99*** 
7.12*** 

3.67*** 
5.88*** 

2-5 t1 

t2 
 .61 
 .42 

 .29 
 .09 

 .13 
 .21 

1.17 
1.46 

 .05 
 .87 

1.65 
2.41*** 

2-6 t1 

t2 
 .82 
 .49 

 .20 
 .30 

 .27 
 .45 

1.98* 
2.04* 

5.45*** 
5.19*** 

2.59** 
3.41*** 

3-4 t1 

t2 
1.54 
 .72 

 .17 
 .18 

2.41** 
2.66*** 

1.37 
1.45 

1.87* 
1.70 

1.24 
1.01 

3-5 t1 

t2 
3.04*** 
2.55** 

2.51** 
2.15* 

5.72*** 
6.68*** 

4.51*** 
5.41*** 

5.06*** 
6.29*** 

6.57*** 
9.33*** 

3-6 t1 

t2 
3.25*** 
2.62** 

3.00*** 
1.75* 

6.13*** 
7.36*** 

1.34 
1.91* 

 .33 
 .23 

2.32* 
3.47*** 

4-5 t1 

t2 
4.59*** 
3.27*** 

2.67*** 
2.33** 

3.31*** 
4.01*** 

5.88*** 
6.86*** 

6.94*** 
7.99*** 

5.33*** 
8.32*** 

4-6 t1 

t2 
4.81*** 
3.38*** 

3.17*** 
3.30*** 

3.72*** 
3.87*** 

2.72*** 
3.51*** 

1.54 
1.07 

1.07 
1.46 

5-6 t1 

t2 
 .21 
 .07 

 .49 
 .39 

 .41 
 .67 

3.16*** 
3.68*** 

5.39*** 
6.06*** 

4.25*** 
5.86*** 

 
Note. t-values were computed on the basis of adjusted means (cf. Winer, 1971) 

a df = 79 
b df = 41 
* p < .05; ** p < .01; *** p < .005 
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9.3.1.1.2 Minimal Instruction Group  

Table C3. Minimal instruction group: Results of paired t-tests between array types 
the viewing times of each object before utterance onset 

 
  VT(TO) VT(CF) VT(SF) 

1-2 t1a 

t2b 
 1.42 
 1.14 

 5.56*** 
 4.98*** 

 3.72*** 
 4.28*** 

1-3 t1 

t2 
 5.32*** 
 4.81*** 

 5.95*** 
 6.78*** 

 4.24*** 
 2.76*** 

1-4 t1 

t2 
 5.85*** 
 5.18*** 

 5.95*** 
 5.35*** 

 2.87* 
 2.65* 

1-5 t1 

t2 
  .96 
 1.06 

 4.59*** 
 5.31*** 

 3.14** 
 3.10** 

1-6 t1 

t2 
  .57 
  .53 

  .48 
  .22 

 1.37 
 1.03 

2-3 t1 

t2 
 5.87*** 
 6.38*** 

 2.10 
 1.94 

 7.84*** 
 7.48*** 

2-4 t1 

t2 
 6.55*** 
 7.13*** 

  .86 
  .35 

 6.68*** 
 7.55*** 

2-5 t1 

t2 
  .10 
  .03 

  .33 
  .37 

 2.00 
 1.68 

2-6 t1 

t2 
  .76 
  .69 

 7.42*** 
 6.62*** 

 5.55*** 
 5.76*** 

3-4 t1 

t2 
  .06 
  .17 

 1.38 
 1.62 

  .24 
  .31 

3-5 t1 

t2 
 8.17*** 
 5.90*** 

 3.85** 
 2.56** 

 6.72*** 
 6.84*** 

3-6 t1 

t2 
 7.71*** 
 5.74*** 

10.36*** 
 9.88*** 

 2.26* 
 2.07* 

4-5 t1 

t2 
 7.13*** 
 6.42*** 

  .15 
  .02 

 7.37*** 
 6.97*** 

4-6 t1 

t2 
 7.67*** 
 6.36*** 

 6.48*** 
 7.27*** 

 4.42*** 
 2.12* 

5-6 t1 

t2 
  .84 
  .64 

 8.28*** 
 7.13*** 

 5.99*** 
 4.77*** 

 
Note. a df = 15 

b df = 46 
* p < .05; ** p < .01; *** p < .005 
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9.3.1.2 Viewing Times during Articulation 

9.3.1.2.1 Neutral Instruction Group 

Table C4. Neutral instruction group: Results of paired t-tests between array types for 
VT(CF) and VT(SF) during articulation 

 
  VT(CF) VT(SF)  

1-2 t1a 

t2b 
 1.85* 
 4.73*** 

 1.22 
 1.97* 

 

1-3 t1 

t2 
 2.00* 
 4.51*** 

  .12 
  .78 

 

1-4 t1 

t2 
  .75 
 1.51 

  .49 
  .63 

 

1-5 t1 

t2 
 1.58 
 2.92*** 

 2.72*** 
 2.66*** 

 

1-6 t1 

t2 
  .18 
  .45 

  .31 
  .35 

 

2-3 t1 

t2 
  .15 
  .21 

 1.12 
 1.18 

 

2-4 t1 

t2 
 1.08 
 1.91* 

  .74 
 1.33 

 

2-5 t1 

t2 
  .26 
  .18 

 1.46 
  .68 

 

2-6 t1 

t2 
 2.03* 
 4.27*** 

 1.57 
 2.32* 

 

3-4 t1 

t2 
 1.23 
 2.64** 

  .37 
  .15 

 

3-5 t1 

t2 
  .41 
  .40 

 2.59** 
 1.87* 

 

3-6 t1 

t2 
 2.18** 
 4.05*** 

  .44 
 1.14 

4-5 t1 

t2 
  .81 
  .41 

 2.21* 
 2.02* 

4-6 t1 

t2 
  .94 
 1.11 

  .82 
 2.01* 

5-6 t1 

t2 
 1.76* 
 3.46*** 

 3.03*** 
 3.01*** 

Note.  

t-values were computed on the basis 
of adjusted means (cf. Winer, 1971) 
a df = 79 
b df = 137 

* p < .05;  
** p < .01;  
*** p < .005 
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9.3.1.2.2 Minimal Instruction Group  

Table C5. Minimal instruction group: Results of paired t-tests between array types 
for the viewing times of the TO during articulation 

 
  VT(TO) 

1-2 t1a 

t2b 
 1.41 
 1.19 

1-3 t1 

t2 
 3.04** 
 3.43** 

1-4 t1 

t2 
 2.91* 
 2.89* 

1-5 t1 

t2 
 2.71* 
 2.38* 

1-6 t1 

t2 
 1.41 
 1.76 

2-3 t1 

t2 
 2.61* 
 2.75** 

2-4 t1 

t2 
 2.10 
 1.95 

2-5 t1 

t2 
 2.00 
 1.66 

2-6 t1 

t2 
  .97 
  .81 

3-4 t1 

t2 
 1.18 
 1.19 

3-5 t1 

t2 
 1.05 
  .98 

3-6 t1 

t2 
 1.93 
 2.01 

4-5 t1 

t2 
  .06 
  .10 

4-6 t1 

t2 
 1.06 
 1.02 

5-6 t1 

t2 
  .85 
  .95 

 
Note. a df = 15 

b df = 46 
* p < .05; ** p < .01; *** p < .005 

 



9 Appendix 

161 

 

9.3.2 Analysis of Viewing Patterns  

9.3.2.1 Viewing Patterns before Utterance Onset 

9.3.2.1.1 Neutral Instruction Group 

Table C6. Neutral instruction group: Results of paired t-tests between array types for 
the variables defined to analyze viewing patterns observed before 
utterance onset 

 
  N(tot) N(obj) N(TO) N(CF) N(SF) 

1-2 t1a 

t2b 
 3.74*** 
 4.29*** 

 3.41*** 
 4.56*** 

 4.84*** 
 7.34*** 

 7.79*** 
14.36*** 

 2.44*** 
 6.47*** 

1-3 t1 

t2 
 7.41*** 
 8.76*** 

 7.68*** 
10.22*** 

 3.05*** 
 4.88*** 

 8.12*** 
14.93*** 

 3.61*** 
 3.03*** 

1-4 t1 

t2 
 5.20*** 
 9.17*** 

 5.79*** 
10.68*** 

 2.59** 
 5.45*** 

 7.41*** 
13.76*** 

 1.75* 
 4.88*** 

1-5 t1 

t2 
 3.61*** 
 4.26*** 

 4.10*** 
 4.75*** 

 3.76*** 
 6.67*** 

 8.35*** 
14.91*** 

 2.55*** 
6.91*** 

1-6 t1 

t2 
 1.80* 
 2.09* 

 1.43 
 1.61 

 1.12 
 1.02 

 1.33 
 1.31 

 1.30 
  .77 

2-3 t1 

t2 
 3.64*** 
 4.51*** 

 4.25*** 
 5.65*** 

 1.80* 
 2.45** 

  .31 
  .57 

 6.03*** 
 9.51*** 

2-4 t1 

t2 
 1.57 
 1.41 

 2.51** 
 6.11*** 

 2.19* 
 1.89* 

  .22 
  .59 

 4.23*** 
11.36*** 

2-5 t1 

t2 
  .13 
  .04 

  .69 
  .18 

 1.09 
  .66 

  .53 
  .54 

  .11 
  .44 

2-6 t1 

t2 
 1.93* 
 2.16* 

 1.96* 
 2.65** 

 3.72*** 
 6.31*** 

 6.44*** 
11.26*** 

 3.74*** 
 7.24*** 

3-4 t1 

t2 
 2.07* 
 3.96*** 

 1.74* 
 1.94* 

  .39 
  .56 

  .53 
 1.16 

 1.79* 
 1.85* 

3-5 t1 

t2 
 3.78*** 
 4.46*** 

 3.56*** 
 5.47*** 

  .71 
 1.71* 

  .22 
  .02 

 6.14*** 
 9.95*** 

3-6 t1 

t2 
 5.58*** 
 6.66*** 

 6.22*** 
 8.31*** 

 1.91* 
 3.86*** 

 6.75*** 
11.82*** 

 2.29* 
 2.26* 

4-5 t1 

t2 
 1.71* 
 2.20* 

 1.81* 
 2.84*** 

 1.10 
 1.22 

  .76 
 1.14 

 4.34*** 
11.81*** 

4-6 t1 

t2 
 3.51*** 
 4.88*** 

 4.47*** 
 5.93*** 

 1.52 
 1.64 

 6.22*** 
11.80*** 

  .49 
  .96 

5-6 t1 

t2 
 1.80* 
 2.13* 

 2.65*** 
 2.83*** 

 2.62** 
 5.65** 

 6.98*** 
11.81*** 

 3.85*** 
 7.68*** 

Note. t-values were computed on the basis of adjusted means (cf. Winer, 1971) 
a df = 79; b df = 137; * p < .05; ** p < .01; *** p < .005 
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Table C7. Neutral instruction group: Detailed analyses of array types within 
experimental conditions for N(obj) and N(SF) before utterance onset 

 
   N(obj)   N(SF)  

  SCO CO SO SCO CO SO 

1-2 t1a 

t2b 
4.56*** 
3.91*** 

 .58 
1.29 

3.41*** 
3.27*** 

1.51 
1.46 

6.31*** 
7.27 

2.44*** 
4.76*** 

1-3 t1 

t2 
6.71*** 
5.84* 

5.07*** 
4.53*** 

7.68*** 
9.08*** 

1.94* 
2.06* 

 .34 
 .23 

3.61*** 
5.11*** 

1-4 t1 

t2 
8.19*** 
6.86*** 

6.13*** 
5.62*** 

5.79*** 
6.96*** 

4.29*** 
4.27*** 

1.48 
2.17* 

1.75 
1.84 

1-5 t1 

t2 
5.12*** 
4.48*** 

 .85 
 .75 

4.11*** 
4.09*** 

1.43 
1.12 

6.22*** 
8.21*** 

2.55** 
5.15*** 

1-6 t1 

t2 
1.65 
1.30 

1.15 
1.65 

1.43 
 .35 

 .45 
 .48 

 .05 
 .06 

1.30 
 .87 

2-3 t1 

t2 
2.14* 
1.93* 

4.49*** 
3.24*** 

4.25*** 
5.81*** 

3.45*** 
3.53*** 

5.96*** 
7.04*** 

6.03*** 
9.88*** 

2-4 t1 

t2 
3.62*** 
2.95*** 

5.56*** 
4.33*** 

2.51** 
3.69*** 

5.81*** 
5.74*** 

7.79*** 
9.45*** 

4.23*** 
7.61*** 

2-5 t1 

t2 
 .55 
 .58 

 .27 
 .53 

 .69 
 .81 

 .07 
 .34 

 .08 
 .92 

 .11 
 .38 

2-6 t1 

t2 
2.91*** 
2.60*** 

 .57 
 .36 

1.96* 
2.91*** 

1.96* 
1.94* 

6.25*** 
7.33*** 

3.74*** 
5.64*** 

3-4 t1 

t2 
1.47 
1.02 

1.07 
1.09 

1.74* 
2.12* 

2.35* 
2.21* 

1.83* 
2.41** 

1.79 
2.27* 

3-5 t1 

t2 
1.59 
1.35 

4.22*** 
3.77*** 

3.56*** 
4.99*** 

3.37*** 
3.19*** 

5.87*** 
7.97*** 

6.14*** 
9.27*** 

3-6 t1 

t2 
5.06*** 
4.53*** 

3.91*** 
2.87*** 

6.22*** 
8.72 

1.48 
1.59 

 .29 
 .29 

2.29* 
4.23*** 

4-5 t1 

t2 
3.07*** 
2.37*** 

5.29*** 
4.87*** 

1.81* 
2.87*** 

5.72*** 
5.39*** 

7.71*** 

9.38*** 

4.34*** 
8.00*** 

4-6 t1 

t2 
6.54*** 
4.36*** 

4.98*** 
3.69*** 

4.47*** 
4.83*** 

3.84*** 
3.21*** 

1.53 
1.35 

 .49 
1.23 

5-6 t1 

t2 
3.47*** 
3.18*** 

 .30 
 .89 

2.65*** 
3.73*** 

1.89* 
1.67* 

6.17*** 
8.26*** 

3.85*** 
6.23*** 

 
Note. t-values were computed on the basis of adjusted means (cf. Winer, 1971) 

a df = 79 
b df = 14 
* p < .05; ** p < .01; *** p < .005 
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9.3.2.1.2 Minimal Instruction Group  

Table C8. Minimal instruction group: Results of paired t-tests between array types 
for the variables defined to analyze viewing patterns observed before 
utterance onset 

 
  N(tot) N(obj) N(TO) N(CF) N(SF) 

1-2 t1a 

t2b 
 1.93 
  .63 

  .22 
  .08 

 2.60* 
 1.72 

11.68*** 
 6.78*** 

 8.91*** 
 6.19*** 

1-3 t1 

t2 
 6.78*** 
 3.15** 

 8.05*** 
 3.51** 

 2.33* 
 2.08* 

11.77*** 
 7.35*** 

 5.41*** 
 2.41* 

1-4 t1 

t2 
 5.89*** 
 2.89** 

 6.35*** 
 3.00** 

 1.24 
 1.08 

10.46*** 
 6.87*** 

 4.12*** 
 2.03* 

1-5 t1 

t2 
 1.52 
  .60 

  .47 
  .17 

  .57 
  .68 

10.42*** 
 6.57*** 

 8.65*** 
 5.50*** 

1-6 t1 

t2 
  .56 
  .49 

  .06 
  .24 

 1.42 
 1.05 

  .70 
  .65 

  .96 
  .24 

2-3 t1 

t2 
 5.49*** 
 3.09** 

 7.67*** 
 4.05*** 

 3.92*** 
 4.14*** 

  .60 
  .34 

10.15*** 
 8.81*** 

2-4 t1 

t2 
 5.74*** 
 2.76** 

 8.03*** 
 3.49*** 

 3.30** 
 2.63* 

  .04 
  .19 

12.96*** 
 9.03*** 

2-5 t1 

t2 
  .43 
  .04 

  .57 
  .12 

 1.74 
 1.09 

  .72 
  .33 

 1.71 
  .82 

2-6 t1 

t2 
 2.87* 
 2.35* 

  .54 
  .21 

 3.81** 
 3.22** 

12.87*** 
 8.80*** 

12.81*** 
 6.37*** 

3-4 t1 

t2 
  .75 
  .21 

 1.80 
  .54 

  .76 
  .68 

  .44 
  .13 

  .76 
  .60 

3-5 t1 

t2 
 7.68*** 
 3.12** 

 9.89*** 
 4.11*** 

 3.16** 
 2.95** 

 1.83 
  .70 

11.27*** 
 8.15*** 

3-6 t1 

t2 
 6.70*** 
 4.26*** 

 7.71*** 
 3.92*** 

 1.37 
 1.30 

14.33*** 
 9.69*** 

 2.79* 
 2.15* 

4-5 t1 

t2 
 6.49*** 
 2.78*** 

 6.83*** 
 3.55*** 

 2.68* 
 1.71 

  .68 
  .52 

10.96*** 
 8.32*** 

4-6 t1 

t2 
 6.95*** 
 3.90*** 

 7.89*** 
 3.39** 

  .46 
  .30 

 9.98*** 
 8.87*** 

 4.23*** 
 3.75*** 

5-6 t1 

t2 
 1.89 
 1.31 

  .34 
  .10 

 1.91 
 1.93 

11.63*** 
 8.58*** 

11.35*** 
 5.69*** 

 
Note. a df = 15 

b df = 46 
* p < .05; ** p < .01; *** p < .005 
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Table C9. Minimal instruction group: Detailed analyses of array types within 
experimental conditions for N(Obj) before utterance onset 

 
   N(Obj)  

  SCO CO SO 

1-2 t1a 

t2b 
  .63 
  .64 

 2.53* 
 2.44* 

 2.40* 
 4.41*** 

1-3 t1 

t2 
 4.45*** 
 6.84*** 

 6.73*** 
 5.16*** 

 4.65*** 
 7.21*** 

1-4 t1 

t2 
 6.53*** 
 6.62*** 

 7.17*** 
 2.83* 

 3.21** 
 5.41*** 

1-5 t1 

t2 
  .29 
  .68 

 2.98*** 
 2.53* 

 2.56* 
 2.42* 

1-6 t1 

t2 
  .05 
  .05 

 1.32 
  .72 

  .43 
  .48 

2-3 t1 

t2 
 4.85*** 
 6.68*** 

 7.74*** 
 9.28*** 

 2.98** 
 4.17*** 

2-4 t1 

t2 
 6.42*** 
 6.47*** 

 8.45*** 
 4.55*** 

 2.68*** 
 3.24*** 

2-5 t1 

t2 
  .25 
  .13 

  .14 
  .22 

  .04 
  .33 

2-6 t1 

t2 
  .72 
  .69 

  .97 
  .75 

 2.40* 
 3.20** 

3-4 t1 

t2 
  .73 
 1.15 

  .70 
 1.06 

  .27 
  .02 

3-5 t1 

t2 
 4.24*** 
 6.11*** 

 7.43*** 
 8.44*** 

 3.45** 
 3.71*** 

3-6 t1 

t2 
 5.11*** 
 6.68*** 

 5.32*** 
 6.99*** 

 4.53*** 
 6.36*** 

4-5 t1 

t2 
 4.15*** 
 5.72*** 

 7.56*** 
 4.50*** 

 2.48* 
 3.08** 

4-6 t1 

t2 
 5.35*** 
 6.65*** 

 7.00*** 
 3.70*** 

 3.12** 
 4.94*** 

5-6 t1 

t2 
  .25 
  .72 

 1.18 
  .89 

 2.40* 
 2.13* 

 
Note. a df = 15 

b df = 14 
* p < .05; ** p < .01; *** p < .005 
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9.3.2.2 Viewing Patterns during Articulation 

9.3.2.2.1 Neutral Instruction Group 

Table C10. Neutral instruction group: Results of paired t-tests between array types 
for the number of glances at CF and SF during articulation 

 
  N(CF) N(SF) 

1-2 t1a 

t2b 
 2.09* 
 3.24*** 

 1.50 
 2.28* 

1-3 t1 

t2 
 1.68* 
 2.11* 

  .65 
 1.51 

1-4 t1 

t2 
  .81 
 1.08 

  .65 
  .75 

1-5 t1 

t2 
 1.51 
 1.14 

 3.07*** 
 3.09*** 

1-6 t1 

t2 
  .17 
  .21 

  .13 
 1.09 

2-3 t1 

t2 
  .41 
 1.13 

  .84 
  .97 

2-4 t1 

t2 
 1.27 
 1.15 

  .83 
 1.72* 

2-5 t1 

t2 
  .58 
  .11 

 1.56 
  .61 

2-6 t1 

t2 
 2.26* 
 2.04* 

 1.63 
 1.58 

3-4 t1 

t2 
  .85 
 1.02 

  .01 
  .75 

3-5 t1 

t2 
  .17 
  .02 

 2.41** 
 2.58** 

3-6 t1 

t2 
 1.85* 
 1.90* 

  .78 
 1.61 

4-5 t1 

t2 
  .68 
 1.05 

 2.39** 
 2.34* 

4-6 t1 

t2 
  .99 
 1.39* 

  .80 
 1.19 

5-6 t1 

t2 
 1.67* 
 1.93* 

 3.20*** 
 4.20*** 

 
Note. a df = 15 

b df = 137 
* p < .05; ** p < .01; *** p < .005 
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9.3.2.2.2 Minimal Instruction Group  

Table C11. Minimal instruction group: Results of paired t-tests between array types 
for the variables defined to analyze viewing patterns observed during 
articulation and for the viewing times of the TO during articulation 

 
  N(Obj) N(TO) N(CF) N(SF) 

1-2 t1a 

t2b 
  .28 
  .43 

 2.01 
 1.66 

 3.77** 
 3.81*** 

 2.26* 
 3.30*** 

1-3 t1 

t2 
 2.85* 
 4.04*** 

 4.28*** 
 3.85*** 

 2.81* 
 2.85** 

 2.37* 
 2.68* 

1-4 t1 

t2 
 2.68* 
 2.67* 

 4.02*** 
 3.50*** 

 2.63* 
 2.16* 

 1.39 
 1.43 

1-5 t1 

t2 
  .79 
  .76 

 3.17** 
 2.04* 

 4.08*** 
 3.75*** 

 1.98 
 1.79 

1-6 t1 

t2 
  .93 
 1.05 

 1.45 
 1.26 

  .11 
  .01 

  .82 
  .42 

2-3 t1 

t2 
 3.43** 
 4.63*** 

 2.80* 
 2.65* 

  .97 
 1.11 

  .98 
  .86 

2-4 t1 

t2 
 2.80* 
 3.06** 

 2.58* 
 2.11* 

 2.39* 
 2.06* 

 1.63 
 2.00 

2-5 t1 

t2 
  .62 
  .33 

 1.04 
  .53 

  .28 
  .11 

  .81 
  .42 

2-6 t1 

t2 
  .67 
  .64 

  .09 
  .41 

 2.19* 
 3.08** 

 2.63* 
 3.57*** 

3-4 t1 

t2 
  .43 
  .54 

  .74 
  .73 

  .88 
  .90 

  .91 
 1.23 

3-5 t1 

t2 
 3.93*** 
 5.14*** 

 2.18* 
 2.12* 

 1.20 
 1.16 

  .45 
  .41 

3-6 t1 

t2 
 5.97*** 
 5.43*** 

 3.31** 
 2.96** 

 2.53* 
 2.31* 

 3.04** 
 2.99** 

4-5 t1 

t2 
 3.20** 
 3.37*** 

 1.77 
 1.52 

 1.90 
 2.05* 

 1.22 
 1.52 

4-6 t1 

t2 
 3.74*** 

 3.58*** 

 2.60* 
 2.47* 

 1.27 
 1.74 

 2.39* 
 2.77* 

5-6 t1 

t2 
  .25 
  .33 

  .75 
  .92 

 3.09** 
 3.08*** 

 2.64* 
 3.07** 

 
Note. a df = 15 

b df = 46 
* p < .05; ** p < .01; *** p < .005 
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Table C12. Minimal instruction group: Detailed analyses of array types within 
experimental conditions for N(Obj) and N(TO) during articulation 

 
   N(Obj)   N(TO)  

  SCO CO SO SCO CO SO 

1-2 t1a 

t2b 
 .24 
 .31 

1.65 
1.83 

1.63 
1.66 

 .46 
 .50 

1.60 
1.56 

2.57* 
2.16* 

1-3 t1 

t2 
2.09* 
3.31*** 

 .14 
 .08 

3.87** 
4.41*** 

2.55* 
3.73*** 

 .69 
 .28 

4.14*** 
5.05*** 

1-4 t1 

t2 
2.36* 
2.58* 

1.28 
1.84 

1.05 
 .97 

3.90*** 
3.30*** 

1.60 
1.95 

2.57* 
2.31* 

1-5 t1 

t2 
 .23 
 .57 

2.20* 
3.12** 

1.38 
1.41 

1.11 
1.09 

 .31 
 .13 

3.04*** 
2.59* 

1-6 t1 

t2 
 .50 
 .90 

2.04 
2.08 

 .45 
 .43 

 .51 
 .94 

 .21 
 .22 

4.29*** 
3.86*** 

2-3 t1 

t2 
2.38* 
3.53*** 

1.33 
1.86 

2.68* 
2.79* 

2.74* 
4.03*** 

1.17 
1.32 

2.54* 
3.01** 

2-4 t1 

t2 
2.90* 
2.74* 

2.61* 
3.36*** 

1.11 
 .64 

3.98*** 
3.58*** 

 .01 
 .12 

 .40 
 .48 

2-5 t1 

t2 
 .42 
 .85 

1.08 
1.06 

 .36 
 .30 

1.87 
1.50 

1.17 
1.52 

1.67 
 .75 

2-6 t1 

t2 
 .66 
1.20 

 .61 
 .28 

2.55* 
2.17* 

 .86 
1.47 

1.58 
1.70 

 .27 
 .23 

3-4 t1 

t2 
 .45 
 .28 

 .18 
1.97 

3.12** 
3.39*** 

 .28 
 .06 

1.24 
1.67 

2.59* 
2.34* 

3-5 t1 

t2 
2.49* 
2.65* 

 .75 
2.12 

3.07** 
3.11*** 

1.83 
2.57** 

 .33 
 .17 

1.73 
2.26* 

3-6 t1 

t2 
2.48* 
2.62* 

2.35* 
3.28** 

4.02*** 
4.66*** 

1.70 
3.55** 

 .52 
 .49 

2.74* 
3.58*** 

4-5 t1 

t2 
2.63* 
2.17* 

2.90* 
4.44*** 

 .55 
 .36 

2.50* 
2.32* 

1.38 
1.95 

 .68 
 .22 

4-6 t1 

t2 
2.22* 
2.21* 

2.46* 
3.55*** 

1.67 
1.29 

2.31* 
3.04** 

1.59 
2.09 

 .28 
 .74 

5-6 t1 

t2 
 .42 
 .24 

 .47 
 .71 

2.01 
1.74 

 .18 
 .48 

 .11 
 .36 

1.09 
1.08 

 
Note. a df = 15 

b df = 14 
* p < .05; ** p < .01; *** p < .005 

 


