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1 Introduction

Data from life science is an application representative of domains for which a high
number of variables are available. As it is often the case in bioinformatics applications,
the dimensionality of data exceeds the number of samples available, resulting in a
low cardinality of samples and a sparse representation of the underlying process that
generated the data. Moreover, the functions to be approximated, where the samples are
generated or recorded from, are very complex. This puts new challenges in application
areas as e.g. meta-genome expression, micro-array analysis or Mass Spectrometry, as
well as in research, development and evaluation of task-adequate techniques. Machine
Learning offers a promising way to cope with these key issues.

Obstacles arising in these domains are four-fold: (a) finding an adequate and suitable
predictor, (b) improving the performance of prediction, (¢) reducing the number of
variables by feature selection for lowering time as well as the costs of computation and
(d) providing a basis for data mining purposes to get further insights into the data
generating process.

Since these high-dimensional vectors are supposed to contain redundant and inter-
dependent information, methods are needed, that are able to cope with this data and
tools that are capable to reduce dimensionality of feature space. The task of finding
a suitable subset of features is well-known as feature or variable selection and is one
of the central problems in machine learning [Blum and Langley, 1997]. Focusing on
relevant features that contribute to model the underlying task offers simpler models,
scalability and better generalization [Guyon and Elisseeff, 2003]. In addition, it reduces
computational costs.

1.1 Prediction of Peptide Peak Intensities

One challenging task in life sciences, more precisely in bioinformatics, is the predic-
tion of spectrum peak intensities from pre-computed molecular features, which would
pave the way to a better understanding of spectrometry data and improved spectrum
evaluation. This issue serves as an illustrative example throughout this thesis.

Mass Spectrometry (MS) is one of the key techniques in proteomics and life sciences
for the analysis and identification of proteins and peptides. Matrix-assisted laser des-
orption ionization (MALDI) is one of the most often used technique for the analysis
of whole cell proteomes in high-throughput experiments.
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In proteomics, proteins in a complex sample are aimed to be quantitatively charac-
terized or protein abundances in cells between different environmental states are com-
pared. The characterization of proteomes would be helpful for a better understanding
of the underlying cellular mechanisms. Opposed to labeling methods, label-free meth-
ods directly use peak heights to estimate peptide abundances.

There are different applications of MALDI-MS where the prediction of peak heights
(referred to as intensities) in the spectrum are needed for further improvements: Com-
monly, proteins are digested into smaller fragments, the peptides, which are then an-
alyzed by MS providing mass information. The peaks are detected at a certain mass
and provided as a list with their corresponding peak heights. These depend on the
ionizability of peptides and on the physiochemical properties. Protein identification is
commonly done by comparing the peak’s masses from a spectrum - the so called pro-
tein mass finger print (PMF) - to theoretical PMFs in a data base, generating a score
for each comparison. Different tools are available for this purpose. For an overview
see Shadforth et al. [2005]. These tools rarely use peak intensities, because there is
no model to calculate the theoretical PMFs directly. The use of peak intensities could
improve the reliability of protein identification without lowering the error rate, as was
shown by Elias et al. [2004] for tandem MS.

For the prediction of MALDI PMF there has been one study so far by Gay et al.
[2002], who applied different regression and classification algorithms. Tang and et al.
[2006] used multi-layer neural networks to predict peptide detectabilities (i.e. the fre-
quency with which peaks occur in spectra) in LC/MS ion trap spectra, which is a
related problem.

An algorithmic approach for peak intensity prediction is a non-trivial task because
of several difficulties: The extraction of PMF from spectra is a signal processing task
which can not be done perfectly. Data from this domain is always very noisy and
contaings errors introduced by preprocessing steps in the wet lab as well as in signal
processing. Misidentifications may even lead to wrong sequences. Intensity values
can be distorted due to the unknown scale of spectra. It is nearly impossible to
come by a large enough data set from real proteins where the content is known and
allows for absolute quantification. There is no perfect gold standard, because of the
not reproducible and non-unique relation between the observed peak height and the
peptide concentration in the sample.

To overcome these obstacles for the prediction of peak intensities in MALDI-TOF
spectra, a completely data-driven and model-free approach is applied. Techniques from
the field of machine learning and artificial neural networks are used in order to enhance
existing model-based approaches and provide therewith a higher reliability of protein
identification and label-free quantification. Based on a pre-selected training set of
peptide/peak intensity pairs, the goal is to model the non-linear relationship between
peptides and peptide peak heights only using the peptide sequence information and
the chemical properties. To apply an algorithmic approach, the given peptide string
representations are preprocessed and transformed into a numerical description of the
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chemical characterizations. Using these as input samples for training, the machine
learning techniques are applied to find a mapping of the peptides to their numerical
value describing the intensity. These models may provide a basis for further analysis
and facilitating interpretation of the underlying data generating process.

1.2 Bias and Variance and the Trade-Off

From a machine learning point of view, the problem can be stated as follows: Given
a training set T = {(x,¥y)n,n = 1,..., N}, consisting of input-output pairs: peptide
samples x,,, which are elements of feature space X = IR%", and real-valued outputs, i. e.
intensities, ¥, € IR inducing a regression problem. If labels are categorical or binary in
contrast to continuous targets, the learning task is classification. In some sense, every
classification task can be transformed into a regression problem, as an estimation of
the posterior class probabilities. Both are instances of supervised learning problems,
which are stated as “the search for algorithms that reason from externally supplied
instances to produce general hypotheses, which then make predictions about future
instances.” [Kotsiantis, 2007]. In unsupervised learning samples are unlabeled or no
label is accessible. The task is to hopefully discover meaningful clusters in which the
characteristics of the underlying data can be separated well. The majority of clustering
techniques requires a specification of the number of clusters a priori. For a lack of any
prior knowledge about the underlying data distribution, an optimal number of clusters
representing the data best has to be estimated e. g. by Silhouette Coefficient [Kaufman
and Rousseeuw, 1990] or the Gap Statistics introduced by Tibshirani et al. [2000].

The complex relationship between the specific tasks and the wide range of possible
architectures has led to vast research in designing and adapting problem-specific algo-
rithms, in the majority of cases resulting in single highly-complex predictors. However,
single learners typically suffer from computational, statistical as well as representa-
tional problems [Dietterich, 2002]. The single learner may fail in finding a successful
hypothesis when sufficient size of training data compared to the size of hypothesis
space is absent. A large amount of data makes it hard and inefficient for one learner
to approximate and requires the construction of batch algorithms. The computational
drawbacks arise from the difficulty in finding the best hypothesis. Many algorithms
employ local search or greedy heuristics and therefore may get stuck in local optima.
In some cases of applications it is nearly impossible to represent the true hypothesis
by the learning algorithm.

As it is well known from the theory of machine learning, every learner can be de-
composed into a bias and a variance term. The bias-variance trade-off is deduced
as the error accounting for the model complexity. The bias-variance decomposition
is formulated based on Hastie et al. [2001]. Assume the data arising from a model
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y = f(x) + ¢, where ¢ is the random error with E{e} = 0 and var{e} = 0.

E{(f(x) —y)*} = (B{f(®)} —v)* + E{(f(®) — E{f(%)})?} + var{e}
= bias(f(x))* +var(f(x)) +var{e}

The last term is the irreducible error and hence cannot be avoided or controlled.
The first term, the bias component, measures how much the expected value of the
estimate differs from the true mean target y. The second component is the variance,
the expected squared deviation of f(x) around its average. Minimizing both bias and
variance and controlling the trade-off is a hard task: Low bias can only be achieved at
the price of high variance [Geman et al., 1992] and vice-versa, but can be optimized
by means of regularization or cross-validation. The estimator’s model is built only on
the training samples, but desired to be capable to predict future, unseen samples from
the same source, namely to generalize well. This generalization ability is an essential
requirement and directly coupled to the “model complexity or "capacity* expressed
as the variance. An estimator which approximates very closely every of the training
samples may fail badly in predicting new samples and hence lead to bad generalization.
This undesired behavior called over-fitting with too complex approximating estimators
can be controlled by imposing a restriction to model complexity and variance.

Kotsiantis [2007] covers the best-known classification architectures in a review from
the vast amount of existing approaches. The algorithms are classified into six cat-
egories: Logic-based algorithms as e.g. Decision Trees [Quinlan, 1986], Perceptron-
based techniques [Rosenblatt, 1962; Rumelhart et al., 1987], statistical learning algo-
rithms, instance-based learning e. g. k-nearest neighbor (kNN) [Cover and Hart, 1967],
and Support Vector Machines (SVMs) [Vapnik, 1995]. All of these exhibit their own
strengths and weaknesses, and there does not exist one universal learning algorithm
for every purposes: Instead one has to select a learner appropriately to find a good
compromise between the limiting factors accuracy, the number of free parameters, the
speed of learning and prediction, the tolerance to missing values or redundant vari-
ables and the transparency. In terms of statistical inference, Wolpert and Macready
[1997] show that for both static and time-dependent optimization problems, the av-
erage performance of any pair of algorithms across all possible problems is identical.
They introduce the theorem under the name of "no free lunch“, which means if an
algorithm performs superior to some particular problems, the reverse must be true
over the set of all other problems.

1.3 Why apply Vector-Quantization Based
Self-Organizing Maps?

In the context of bioinformatics, the data puts new challenges and frequently occurs
sparse, noisy, unbalanced, with missing values and may be high-dimensional [Seiffert
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et al., 2006]. From this point of view, the use of Self-Organizing Maps (SOMs) as a
representative of prototype based classifiers and learning vector quantization [Kohonen,
1982] in this field of application is rarely recommended. Neural networks based on
gradient descending techniques may get stuck in local minima. Difficulties may arise
from the number of parameters to tune and to be set before training a single SOM.
For example the number of nodes supplied, are far from being uniform. As a rule of
thumb, the relation of the two grid sizes should be equal to the relation of the first
two principal components. On the other hand, the dimension of nodes along one grid
axis should be of the same order of magnitude as the number of variables.

Other architectures, as for example the SVM, are known to perform more robust
and insensitive against outliers, have excellent generalization abilities and show their
strength with high-dimensional input data [Burges, 1998]. SVMs are a class of learning
algorithms that are designed to implicitly transfer input feature vectors into a high-
dimensional space and calculate the optimal linear separating hyperplane. However,
it is difficult to interpret their models and parameter-tuning can be time-consuming.

But, in contradiction to the black box SVM, their transparency redounds to SOMs
advantage when one is more interested in comprehensibility than in the best learning
accuracy. Against this background, traditionally, decision trees are widely accepted
and applied in medicine and biology [Seiffert et al., 2006].

The prototype based method of SOM-type provides a promising approach to find a
set of clusters and characteristic prototypes representing the samples best according to
the statistical properties of the data. The SOM is one of the most popular and widely
used artificial neural network algorithm for clustering, classification, data mining and
visualization purposes. They are very efficient, allow fast training and adaptation to
additional data as well as low memory-usage and offer transparency. The formation of
SOMs as topographic maps is inspired by the organization of early sensory processing
in the cerebral cortex [Kohonen, 2001]. Similar functionalities or processing of exter-
nal stimuli are allocated in neighboring regions on the planar organized feature map.
They are designed to facilitate a mapping from a potentially high-dimensional input
space onto a lower-dimensional output space for dimension reduction. The topology
preserving projections offer enhanced visualizations [Ultsch, 1993, 2003a,b; Himberg,
2000; Vesanto, 1999] and references therein. They preserve topology in that sense that
if two nodes are located next to each other on the defined grid structure, they will
be caused to response to samples in input space that are likewise close to each other.
There are a lot of variations proposed extending the classical architecture of SOMs.
Martinetz et al. [1993] introduced the vector quantizing Neural Gas (NG), neglecting
the neighborhood preserving property of SOMs. The neurons are adapted according
to the ranking of the neurons depending on their distance to the presented sample in
the input space.

The task of mass spectrometry prediction and peptide prototyping corresponds to
the task of unsupervised clustering as well as classification and supervised prediction.
After assigning every input point to a prototype, a prediction of a real-valued output
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y has to be done. To solve this task, the SOM is extended by an additional layer
of nodes. Local Linear Maps (LLMs) [Ritter, 1991], a type of artificial neural net,
combine an unsupervised vector quantization (VQ) algorithm based on SOMs with
supervised linear learning principles. The LLM achieves global non-linearity by fitting
a set of local linear functions to the training data.

1.4 Why Ensemble Learning?

The drawbacks and difficulties in designing an adequate and appropriate predictor,
has led to change of paradigms in the recent years: Multiple learners supersede single
learners and solve the task at hand by dividing it into several sub-tasks in terms of a
divide-and-conquer approach. This new direction provides a new concept of improving
single predictors by combining them to an ensemble or committee of separately trained
simple machines.

Ensemble Learning (EL) was paid much attention in the literature recently. The
output of several learning algorithms is combined to build powerful learning machines.
This concept has been proven to increase predictive power over single base learners for
a great variety of classification and regression problems [Hansen and Salamon, 1990;
Krogh and Vedelsby, 1995; Breiman, 1996a; Dietterich, 2002]. Ensembles voting from
a set of different hypotheses cope with the drawbacks of statistical, computational
and representational problems [Dietterich, 2002] typically arising with single learning
algorithms. Given a set of observations X = {(x1,%1),...,(Xn,yn)}, the problem
in regression ensembles is to select a set of appropriate predictors H = {f1,..., f;}
from the base hypothesis space ‘H and to aggregate the outputs of the M base learners
to one ensemble prediction f(x) as a convex combination of the ensemble predictors
{f17"'7fM}‘

Krogh and Vedelsby [1995] proved that the ensemble error is guaranteed to be less
than or equal to the average quadratic error of the individual predictors. The expected
quadratic error of the ensemble can be decomposed into three terms similar to the bias-
variance decomposition for one single learner leading to the bias-variance-covariance
decomposition [Geman et al., 1992]. For regression tasks, the ensemble error rate is
given by simple averaging over the set of m = 1,..., M predictor outputs f,,, as in
Equation (1.1):

) Mo Mo )
ex) = (fx)—y)® = . 2 fm(x) = v)?> =Y 2 () = f(x))? (L.1)
m=1 m=1

On the right side of Equation (1.1), the first term is the average error of individual
predictors. The second term measures how much each single ensemble member diverges
from the ensemble output f, the so called diversity or ambiguity. It is determined by
both variance and covariance [Brown et al., 2005¢]. The higher the diversity, the lower
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is the ensemble error rate, if the mean component error is fixed. This leads to two
potentially conflicting targets: Balancing diversity against single predictor accuracy,
is the most critical and challenging task for ensemble methods. Maximizing only
diversity, may worsen prediction performance of every single learner. On the other
hand, focusing only on the minimization of the ensemble predictors, may lead to very
similar nets with low prediction error each, but also low ambiguity. In this worst case,
even a high quantity of very similar ensemble predictors brings no gain compared
to just one single learner. The success of ensembles is mainly brought with a shift
of diversity or complexity of the learning function from one learner to many. The
function to predict is approximated by a set of hypotheses rather than by just one
single hypothesis. As a consequence, in contrast to “classical learning architectures,
the concept of ensemble learning is rather based on forcing different hypotheses.

Regarding SOMs, training an ensemble or, more generally, a set of SOMs has been
proposed quite early by Fritzke [1994] allowing growing structures, hierarchically ar-
ranged structures [Miikkulainen, 1990] or a combination of both, as proposed by Dit-
tenbach et al. [2000], or by Multi-SOMs [Goerke et al., 2001]. EL offers by contrast to
these approaches a non-competing strategy of training the single networks. In the light
of new theory behind EL, in particular Negative Correlation Learning (NCL) [Liu and
Yao, 1999], the question arises if SOM EL can benefit from non-independent learning
when individual learning stages are interlinked by inter-SOM diversity error rates.
NCL allows to balance between single network accuracy and diversity controlled by
cooperation of neural networks, thereby dispensing with a sub-local accuracy for a
higher overall generalization ability.

1.5 Potential of SOM Ensemble Learning

In a first brief study [Scherbart and Nattkemper, 2008], we were able to show that
EL applied to SOMs has clear potential. SOM ensembles are found superior to other
VQ-algorithms in a regression application. We have proposed to take emphasis on
the sources of implicit diversity by combination of the two re-sampling methods Bag-
ging (bootstrap aggregating) [Breiman, 1996a] and Random Subspace Method [Ho,
1998] to enforce differences between the ensemble predictors, which is referred to as
inter-SOM diversity.

One interesting feature of the SOM architecture is that a single SOM can be seen
as an ensemble itself, where each node represents one classifier and a locally acting
function approximator. As a consequence, each SOM has a diversity feature represent-
ing the variances between the nodes and I refer to this as intra-SOM diversity. The
intra-SOM diversity is mainly controlled by the width of the Gaussian neighborhood
function. With a weak connectivity, one can expect a diverse SOM, but with high
generalization error. A strongly intra-connected SOM usually offers non-ambiguous
nets with low intra-SOM diversity. However, with SOMs applied as a classifier and
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reconsidered as an ensemble itself, we gain completely new perspectives in the context
of diversity and EL: If the quantification of intra-SOM diversity is accomplished, how
far is the intra-SOM diversity between the nodes inside each SOM affected by boosting
the inter-SOM diversity? How well do SOM ensembles perform at all with NCL? And
at last, do the prediction performances compare to other existing reference learners?

To shed light on that subjects, the new EL theories are introduced into the field
of SOM ensemble learning and I propose an ensemble architecture supplying LLMs,
namely the Local Linear Ensembles for Regression with Resampling And Negative
COrrelation Learning (LERRANCO). Nevertheless, in the context of EL, the base
precondition for the success of any ensemble is the application of weak learners. Typical
representatives of this category are decision trees, neural networks, nearest neighbors.
I can show that ensemble predictors of SOM-type with a small number of nodes also
fulfill the requirements. Moreover, with a committee of weak SOM learners the demand
for individually fine-tuned parameters fades into the background.

The proposed LERRANCO ensemble architecture offers simpler models, scalabil-
ity, efficiency and good generalization for regression as well as classification purposes.
This will be demonstrated for several regression benchmark datasets applied and one
challenging, high-dimensional, small and noisy dataset from proteomics. Focusing on
the SOMs inside an ensemble, the question arises how far the interplay between SOMs
and within SOMs succeeds. I will discuss to which extend boosting diversity affects
the prediction performance and give insights of the interrelation between diversity and
the sub-local accuracy inside SOMs.

To the best of our knowledge, there have been two works recently published on
this topic: Minku et al. [2009] demonstrated the usefulness of NCL in incremental
learning applied to neural networks of fixed size as well as to Self-Organizing Neural
Grove [Inoue and Narihisa, 2003] as an extension of the SOM. Prudhomme and Lallich
[2008] applied SOMs of size 20 x 20 for knowledge discovery purposes and NCL for
ensemble predictor selection, but without a randomization in their training samples.
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1.6 Outline

This thesis is organized as follows:

Chapter 2 introduces to the main issues at hand in the context of peak intensity
prediction and describes the background and computational methods applied. The
evaluation and analysis is presented towards a prediction of peak intensities with ma-
chine learning methods in a single learner setup. Special focus is laid on the issue of
using relevant features in modeling the non-linear regression task.

In Chapter 3 the concepts of Ensemble Learning are explained and how diversity
along ensemble predictors e.g. by Negative Correlation Learning, can be achieved.
Parameterized penalty functions are derived, which explicitly boost the diversity along
the ensemble predictors. Chapter 4 introduces to the proposed ensemble architecture
LERRANCO based on SOMs. The categorization of strategies to force accurate and
diverse ensemble predictors is subdivided into tmplicit and explicit ones, as well as
between and inside the ensemble predictors. A quantification of the diversity inside
each predictor is proposed.

Chapter 5 answers the question, if and how SOMs are suited as ensemble predictors.
The evaluation features special consideration placed on the factors which implicitly
force the diversity along the ensemble predictors. These general factors include the
type of training algorithm, the topology of the nets, the training data and the initial
conditions e. g. Gaussian neighborhood width.

In Chapter 6 the evaluation of the negatively correlated SOM ensembles as part-
adapting structures is presented. It will be discussed to which extend boosting diversity
explicitly by NCL affects the prediction performance and the sub-local accuracy inside
the SOMs. I can show how well SOM ensembles perform at all with NCL and that the
prediction performances are comparable or even superior to other existing reference
learners.

In Chapter 7 the challenging problem of aggregation is discussed, i. e. how to combine
predictors and on which to rely on.

Chapter 8 covers the challenges arising in the context of Ensemble Learning and
Feature Selection. With the objective of assessing the feature relevance or importance,
two approaches are examined, dependent either on an a priori or a posteriori assessment
of feature relevance.

This thesis is closed by Chapter 9 with a summary and discussion of the results.
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2 Peak Intensity Prediction in a
Single Learner Setup

Any protein is a compound of organic
molecules, which consists of a very long
chain or sequence of amino acids. Pep-
tides are short chains of amino acids.
The primary structure of any protein as
a polypeptide chain is described by its
unique string representation over the al-
phabet of 20 amino acids.

Mass spectrometry (MS) is a key tech-
nique for the analysis and identification
of proteins. In proteomics, proteins in a complex sample are aimed to be quantitatively
characterized or protein abundances in cells between different environmental states are
compared. Spectra provide mass, more precisely mass-to-charge ratio (m/z), informa-
tion as shown as an example in the figure on the right. The peaks are detected at a
certain mass and recorded as a list with their corresponding peak heights. After some
preprocessing steps, these peaks’ masses are used as input for a given task-specific
database. By comparing the list of peaks’ masses from the spectrum to theoretical
known patterns of proteins, the entire best-matching protein can be identified by a
database search. For details of the preprocessing and the peak extraction, I refer
to Timm et al. [2008]. Every matched peak corresponds to a peptide, which is a sub-
string of the best-matching protein sequence. The peptide peak heights, referred to as
intensities, depend not only on their abundance, but on their ionizability as a function
of their physiochemical properties and environment. A prediction of spectrum peak
intensities from pre-computed molecular features would pave the way to a better un-
derstanding of spectrometry data and improving the reliability of protein identification
and label-free protein quantitation.

To this end, one way to build a predictor is to model the non-linear relationship
between peptides and peak intensity values in mass spectra, only using the peptide’s
sequence information and its derived chemical properties. By the application of ma-
chine learning methods, the function which maps the peptide to an intensity value
does thus not demand an explicit formula.

In a supervised learning context, machine learning methods are applied to build
models that are trained to predict the correct output for a given input. The problem

Intensity
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can be stated as the search for algorithms that learn from data to find general hy-
potheses with insufficient knowledge about the data generating system. A predictor
is trained by presenting pairs of input-output data. From a machine learning point
of view, the regression problem of peak intensity prediction can be stated as follows:
Given an input dataset X = {(x,,¥yn),n =1,..., N}, consisting of N available input-
output pairs: peptide samples x,,, which are elements of feature space X = R%", and
real-valued outputs, i.e. the extracted corresponding intensities, y, € IR. In order
to assess the performance of the prediction model, the input dataset X is split into
two portions: the first portion T is used to train the predictor. The second portion
is used for testing and contains those samples {x, € X : x,, ¢ T,Vn € {1,...,N}},
which have not taken part in training. The quality of the resulting model is related
to the prediction capability on unseen test samples and is termed the generalization
performance.

For learning methods to be applicable, the peptide sequences, which are non-vector-
ial, need to be embedded into a numerical vector space. For each peptide sequence
n =1,..., N, numerical vectors x,, are calculated by the physico-chemical information
about the amino acids constituting the peptide solely derived from the peptide’s string
representation. Several paradigms exist to derive such feature or variable vectors x,,.
To describe an entire peptide sequence by a vector of chemical properties of fixed
length di;,, the amino acid specific values have to be cumulated to one entry. Hence,
the total amount in matters of a specific chemical feature is regarded for each pep-
tide sequence. Two different feature vectors are built in this work so as to reflect the
chemical characteristics of the peptide, namely Heur and AAindex. Amino acid fre-
quencies, typically used in bioinformatics, in conjunction with chemical features of the
peptides are used to create the heuristically selected d;;, =18-dimensional feature space
Heur. The second feature space, called AAindex, consists of d;, = 531 features. With
these two feature sets, two different numeric descriptions of the peptides’ sequences
are available as input data matrix X for the learning procedure. Often, the number of
features dj,, i. e. the number of columns of X, is also called the dimensionality of X.

In this chapter, I give a brief introduction to the problem at hand, and describe the
single learner setup to peak intensity prediction (PIP). The foundations are laid ac-
cording to the machine learning methods and specifications of the problem. I propose
to apply the Local Linear Map (LLM) as a vector-quantization (VQ)-based approach
(see 2.3.1 on page 15) to overcome the obstacles and derive transparent models for
peptide prototyping. Successful predictors are obtained by fitting sets of local linear
functions approximated by local experts (2.3.5 on page 26). Separately trained trans-
parent predictors based on SOMs can give good generalization results and come even
close in accuracy to other reference learning algorithms. The evaluation of experiments
are given as a proof of concept with comparable results to those obtained by v-Support
Vector Regression (see v-SVR, 2.3.2 on page 20). Given an estimation of feature rel-
evance a priori, an adaptation of feature space facilitates an improved peak intensity
prediction as proposed in 2.4.3 on page 40 for the LLM predictor. Having performed

12
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evaluations with regard to types of learning architectures, different setups of training
sets and feature sets, the priority objective is to decide which type of feature set has
greatest potential therewith in a general learner setup.

2.1 MS data

In this study one peptide dataset A of MALDI mass spectra is used. It consists of
66 spectra of 29 different proteins, with 16 of these proteins being present in multiple
spectra. Peak extraction steps include soft filtering, baseline correction, peak picking
and isotopic deconvolution in the corresponding raw spectra. The resulting list of
peaks is matched against masses derived from a theoretical tryptic digestion. For
preprocessing, normalization of the intensities is necessary, because spectra do not
have the same scale. For a MALDI spectrum the exact amount of protein sample
that leads to it is not known, nor it is possible to scale spectra belonging to the same
protein by the same amount.

These steps for A result in 857 matched peaks corresponding to 415 different pep-
tides. For further reading and details of preprocessing, I refer to Timm et al. [2008].
Subsequently, the natural logarithm of the intensities is applied to compute the final
intensity output values, s.t. y' = In(y + 1). The distorted intensity values become
approximately normal distributed and the error additive.

2.2 Benchmark Datasets

In this thesis, I use five different (synthetic as well as real-world) benchmark datasets
to allow a general comparison to other regression and ensemble architectures applied
to these problems. These are Friedman, Boston, Forestfires [Asuncion and Newman,
2007], NO2 and two challenging small and noisy (high-dimensional) datasets from
proteomics named Heur and AAindex [Scherbart et al., 2007b; Timm et al., 2008].
All datasets are of small size and low-dimensional, except for the last one, AAindex,
where the dimensionality exceeds the number of available samples as it is often the
case in bioinformatics applications. Aside from Friedman dataset, randomly selected
10% of the input samples are put aside for testing and the remaining 90% are used to
build the predictors. Only for the synthetic dataset of type Friedman, 200 randomly
generated samples are used to build the predictors and 2000 for testing. All features
are centered and normalized by variance prior to training. To overcome the distortion
of target values as it is the case in the Forestfires data, the response variable y is
transformed following Cortez and Morais [2007] according to y’ = In(y + 1).

In the following, the benchmark datasets are presented briefly and a survey of the
size and the training/testing ratios is given in Table 2.1.

13
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Friedman This artificial data set has ten independent variables uniformly distributed
over [0,1], while only five out of these ten are used to define y [Friedman, 1991].

y = 10sin(m - zy - x3) + 20(23 — 0.5)? + 1024 + 55 + e, where e is N(0,1).

Boston This data set consists of 506 input samples and 13 input variables, concerning
housing values in suburbs of Boston [Asuncion and Newman, 2007].

Forestfires This data set is collected to provide a basis for a prediction of the burned
area of forestfires, in the northeast region of Portugal, by using meteorological
and other data of 12 variables and 517 instances [Cortez and Morais, 2007].

NO2 The data are a subsample of 506 observations from a data set with seven vari-
ables, that originate in a study where air pollution at a road is related to traffic
volume and meteorological variables, collected by the Norwegian Public Roads
Administration [Vlachos, 2005].

AAindex It consists of 372 (input,output) pairs corresponding to peptides and their
recorded intensity values in mass spectrograms. For all peptide sequences, nu-
merical representations are derived by physico-chemical information about the
amino acids constituting the peptide yielding a 531-dimensional input feature
space. The feature vectors are attributes taken from the amino acid index
database [Kawashima et al., 1999] extended by peptide length, mass, and num-
bers and fractions of acidic, basic, polar, aliphatic and arginine residues.

Heur As for AAindex, it consists of the same 372 samples corresponding to peptides
and their observed peptide peak intensities. It is built by amino acid frequencies,
together with different types of characterization that are assumed to be relevant
for MALDI ionization and additional features that are chosen in an ad hoc feature
forward selection. For details about the selected features and the feature selection
process, see [Timm et al., 2008].

Dataset # variables # Training # Test

Friedman#1 10 200 2000
Boston 13 506 10%
Forestfires 12 517 10%
NO2 7 450 10%
AAindex 531 372 10%
Heur 18 372 10%

Table 2.1: Dataset Survey
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2.3 Towards Peak Intensity Prediction with Machine
Learning methods

Given the datasets of peptide characterizations, several machine learning algorithms
can be applied to solve the task of peak intensity prediction. The ones employed here
are Local Linear Maps (2.3.1) - with different VQ-algorithms supplied as (Growing)
Neural Gas (GNG, NG), Self-Organizing Maps (SOMs) as well as Fuzzy C-means- clus-
tering (FCL) - and v-Support Vector Regression (see 2.3.2) for comparison purposes.
The evaluation process is described in 2.3.3 including model selection and assessment.
Based on the issues in handling data prior to learning covered in 2.3.4, the results (see
2.3.5) of the different learning algorithms are evaluated in terms of these issues to
model the non-linear relationship between peptide and corresponding peak heights.

2.3.1 Local Linear Map (LLM) - VQ-based approach

Local Linear Maps (LLMSs) [Ritter, 1991] are a representative of prototype based clas-
sifiers and learning vector quantization [Kohonen, 1982]. They provide an attractive
option for the type of task at hand as Sharkey et al. [1997] underlined for neural
networks in general, when data is noisy, where explicit knowledge about the task is
not available, when fast and incremental learning is demanded. The prototype based
method of VQ-type provides a promising and transparent approach to find a set of
clusters and characteristic prototypes best representing the samples according to the
statistical properties of the data.

For determining peptide prototypes and learning the mapping into the output, i.e.
intensity, space, I use the Local Linear Map (LLM)-architecture. The LLM, as a
mixture of linear experts, combines unsupervised vector quantization algorithm for
computing a voronoi tessellation of the input space X and derives implicit models for
characterizing peptides and feature analysis. The second step consists of supervised
adaptation of the neural network and prediction of peaks’ intensities. A LLM is com-
posed of n; nodes, where each node v;,7 = 1,...,n; consists of the prototype vectors
win € IRd‘“, which are used to adapt to the input data x,, € ]Rdi“,n =1,...,N.

Vector quantization with SOM A Self-Organizing Map (SOM) consists of a set of
ny regular ordered nodes v;,2 = 1,...,n; , which are connected to each other via
a two-dimensional grid structure, defining a neighborhood between the nodes and a
topology in feature space.

In the unsupervised training phase of SOMs, the learning procedure changes the
weights of the prototype vectors wi® according to a Gaussian neighborhood function
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he with width o decreasing over grid distance r;(x,,n;) around the winning node v:

Awin = é". h, (ri(xp,my)) - (xn — Wi“)
ho(ri(xnvnl)) = exXp (_%) . (21)
7i(Xn, 1) = dp(k,i)
K = argmin {lIxn — w;n||} (2.2)

The grid distance d,(k, 7) is defined between two indices along the grid structure, where
p indicates the type of metric used. With p = 1, applied in this work, the distance
used is Manhattan- or Minkowski distance as a common choice, while with p = 2,
it corresponds to the Euclidean distance. The learning rate ¢ and the size of the
neighborhood o should decrease with training steps [Kohonen, 2001]. Depending on
the number of epochs t,,4, the learning rate €™ is decaying exponentially from initial
value € to a final value € and the size of the neighborhood o decays from o; to o;:

(L) = €n. (ﬁ) . ot) = o4 ("f) . (2.3)
€; ag;

Good results were found for rapid learning with € = 0.5, ei]? = 0.01, o; = 2.0 and
of = 0.4 for t < ¢4, and keeping €n = ei]? = 0.01, 0 = 0y = 0.4 fixed for the rest
of the learning process (tmar <t < 2 - tymaz). A simulation sequence of a SOM for a
ring-shaped uniform probability distribution is shown in Figure 2.1.

Figure 2.1: Self-Organizing Map simulation sequence for a ring-shaped uniform prob-
ability distribution. Image is taken from Fritzke [1997] for 0, 2500, 10000
and 40000 training epochs.

I also applied Neural-Gas (NG) clustering [Martinetz et al., 1993], Growing Neu-
ral Gas (GNG) [Fritzke, 1994], and Fuzzy C-means (FCL) [Bezdek, 1981] clustering
instead of SOM in the input space for comparison.
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Vector quantization with NG With NG, the distance between input pattern x,, and
prototype v; yields a ranking among the neural gas nodes. The learning procedure
changes the weights according to the ranking of the prototypes® r;(x,,n;), such that

Awiin — EiIl . h)\ (Ti(xn;nl)) . (Xn _ W;’n)
with  hy (ri(xn, 1)) = exp (-L;@) )

Following the proposal of Martinetz et al. [1993] the parameters ei“ = 0.5, eif“ = 0.01,
A; = 10 and Ay = 0.5 were used to reach a good adaption and convergence of the
nodes to the data. As for SOMs in Equation (2.3), € is decaying from €;" to €} for
t < tmaes and kept constant € = eif’-‘ = 0.01, if tpae <t < 2-tmae- A decays from

accordingly from an initial value \; to As:
t
Ap Frer
At) = N | =5 .
) (/\z‘ )

The simulation sequence of a NG for a ring-shaped uniform probability distribution is
shown in Figure 2.2.

.
. ..
- o~ . st .
reT e, o . o v, et S RO VIR N
e, L I / ASTY . e * . e,
+ e oS + s .
Sy e . e N Pt * e
* . - RXS s el Tt
.. * . . . . P . *
. 0 I3 Tt . ..
. . p4 i shsl s .
. ¢ *e * . *. e
. » s . r . .
& . .t LA .t
" . . .
. Pt . % . * EAE e
) e e ‘J " e . . et
‘e f "' % . . .* .. ., "
:: KA ot ..Oo.;"o..’.' ..o’ S ot
AR tee ot teeate

Figure 2.2: Neural Gas simulation sequence for a ring-shaped uniform probability dis-
tribution. Image is taken from Fritzke [1997] for 0, 2500, 10000 and 40000
training epochs.

Vector quantization with GNG GNG includes a growth process of successively in-
serting nodes according to local error measures. Starting initially with two nodes, an
edge is initialized connecting the winner node and the second nearest node. The edges
between the nodes define a direct topological neighborhood N of the nodes. Itera-
tively, the prototype vectors wi® of the winner node, according to Equation (2.2), and
its direct topological neighbors are updated by fractions e® and €” respectively.

Awt = €. (xn, — W)

Aw = " (x, — W) Vi € N,,.

IThe parameter X is used here for traditional reasons. This is a different A than in NCL 3.3.2 on
page 52. For sake of clarity, it will be used as long as it is unambiguous in context.
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Edges older than a certain number of training steps a,,q, are removed. For every node,
a local error variable FE; is hold to store the squared distance between input sample
x, and the best-matching prototype vector wi*. A new node r is generated after a
predetermined number of learning steps 7 as shown below in Figure 2.3. The node ¢ is
the one with the maximum accumulated error after 7 steps. The new node r is inserted
and interpolated between the node ¢ and the node p with maximum accumulated error
in the direct neighborhood of ¢q. The squared distance of the new inserted node 7 is
then interpolated and reduced by a factor of (:

RS
2

in (E _E)
By = |xp—w?|? = (1)~

2

In addition, the edge between g and p is replaced by the two edges connecting r with
q and p. The error variables of all nodes are reduced by a factor n:

Figure 2.3: Growing Neural Gas: Insertion of a new node r in GNG network

This process is repeated until a stopping criterion is fulfilled. The parameters as
proposed by Fritzke [1994] are adopted to € = 0.1, ¢® = 0.001, ¢ = 0.5, = 0.0005,
deletion of edges after a number a,,,, = 88 of training steps and 7 = 600 constant
over the number of learning epochs ¢ = 40.

The images of the simulation sequences for a ring-shaped probability distribution as
given for GNG in Figure 2.4 are taken from Fritzke [1997]. This work is recommended
to the interested reader for a comprehensive and illustrative comparison and discussion
of the before-mentioned VQ-based learning methods.

Vector quantization with FCL  As in fuzzy logic, one assumes “soft” partitions instead
of hard partitions. Hence, each sample has a certain degree of membership belonging
to each node or assigned cluster. The degree of membership is formalized as a matrix
U € RV*™ with N rows and n; columns. Every entry u,; of U assigns each sample
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Figure 2.4: Growing Neural Gas simulation sequence for a ring-shaped uniform prob-
ability distribution. Image is taken from Fritzke [1997] for 0, 2500, 10000
and 40000 training epochs.

Xp,n = 1,..., N its membership to cluster ¢ € (1,...,n;). The degree of fuzzification
for each sample equals 1 and furthermore all clusters are non-empty:

ny N
Zum- =1, VYn and Zum > 0, Vi.
i=1 n=1

Similar to k-means [Macqueen, 1967; Hartigan and Wong, 1979], the nodes are pulled
towards the centroid of a cluster, but the centroid is determined as the weighted
mean of all samples according to their degree of membership. wu,; is thus inverse
to the distance to the centroid W%n according to fuzzification parameter p > 1 and
normalized:

N
Wi_n — Zn:l UpiXn
v N
Zn:l U’Zi
1
Upi =
i I — win| ) *
j=1 Hxn - Wln”

The degree of membership is weighted by the exponent p > 1. Good results are found
with 1 < u < 2.5 [Pal et al., 1996].

Supervised training of local linear mappings After unsupervised adaptation and
tessellation of the input space, the VQ-based approaches, for example the SOM, are
extended to a LLM [Ritter, 1991] by an additional supervised trained layer of nodes,
such that each node consists of a triple v; = (wi® wo A;). The vectors wout €
Reut approximate the distribution of the target values y € R%ut. The matrices
A; € RInxdowt zre locally trained linear maps from the input to the output space.

An input sample x,, is mapped to an output by the corresponding local expert v
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2 Peak Intensity Prediction in a Single Learner Setup

according to the winner-takes-all (WTA)-rule:
C(xn) = Wi + AT (x, — W),
AWM (x) = € hig (Y — C(xn)) (2.4)
AAi(xn) = € hip - (g — C(xn)) - |<|’;:+>T (2.5)

i

The weights w9 and the linear maps A, are changed iteratively by the gradi-
ent descent learning rules given by Equations (2.4),(2.5). The learning step widths
e M et € [0;1] for updating neighbors and o are decreased during training.

Good learning results are achieved with €2t = 0.3, ¢ = 0.3, both decreasing
exponentially over the number of learning epochs to a final value of e‘}“t = e? = 0.01
analogously to the unsupervised training and keeping 63’0‘“ = e? = 0.01 fixed for the
rest of the learning process (tmae <t <2 - tmaz)-

A schematic representation of the LLM is shown in Figure 2.5.

Local Linear Map

-

*/
\—'/unsupervised clustering linear mapping Cx) =wet +A(x- wn)

Figure 2.5: Schematic representation of SOM and supervised trained linear mappings
to output space by LLM. The prototype vectors approximate to the input
data while unsupervised clustering. Subsequently, the local linear map-
pings from input to output space are trained.

The concept of approximating nonlinear functions by fitting simple models to lo-
calized subsets of the data is related to other regression approaches like Locally-
Weighted Regression (LOESS) [Cleveland and Devlin, 1988] and to radial basis func-
tions (RBF) [Millington and Baker, 1990]. Hastie et al. [2001] demonstrated the use-
fulness of locally linear function fitting as well.

In the remainder, the type of VQ the LLM is based on is indicated by LLMgowm,
LLMNg, LLMGNG and LLMFCL.

2.3.2 p-Support Vector Machine

Support Vector Machines (SVMs) are a class of learning algorithms that are de-
signed to implicitly transfer input feature vectors into a high-dimensional space and
calculate the optimal linear separating hyperplane [Vapnik, 1995]. For a classifica-
tion task, SVMs minimize the generalization error by maximizing the “margin” as the
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2.3 Towards Peak Intensity Prediction with Machine Learning methods

largest possible distance between the hyperplane separating the samples on either side
of the two induced classes. The non-trivial problem of finding an optimal separating
hyperplane is illustrated in Figure 2.6. In the case of linear separable data, samples

Figure 2.6: Two classes separating hyperplanes H1 and H2 for linear separable data.
The dots are samples of two classes as indicated by the color (black/white).
As shown in this example, finding a linear separating hyperplane may be
a trivial task, but far from being uniform. Both hyperplanes, H1 as well
as H2, denoted as black solid lines are optimal in that sense that the two
classes are separated well. Only H2 maximizes the margin, i.e. the largest
possible distance between the hyperplane separating the samples on either
side. The support vectors lying at the border of the margin are marked
bold and describe the hyperplane.

are classified according to which side of the separating hyperplane w”x + b = 0 they
lie, i. e. the decision is done by fw ,(x) = sgn(wTx+b), where w is a vector of weights
and b the intercept. Its solution to the optimum separating hyperplane can be found
by solving a convex quadratic programming problem:

minimize

slwl?

subject to  y,(wix, +b)>1, n=1,...,N

The solution W is completely described as a linear combination of a subset of input
training instances x,,, which lie at the border of the margin and are called the Sup-
port Vectors (SVs). Hence, the model complexity of an SVM is independent of the
dimensionality of training data.

In some cases, the convex optimization problem is not feasible or one wants to allow
for some relaxation of errors. This is addressed by the “soft margin” loss function
introducing slack variables £, and leading to the formulation:

N
minimize  1|w|? JrCan
n=1
subject to  yn(Wwix, +b)>1—-¢&,, n=1,...,N
and &, >0
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2 Peak Intensity Prediction in a Single Learner Setup

C is a regularization parameter controlling the trade-off between the size of the margin
and the tolerance for accounting errors. This optimization problem can be solved
in its dual formulation by quadratic programming, such that a classification can be
performed by:

f(x) = sgn({w,x) +b)

N
= sgn <Z TnYn (Xn, X) + b)

n=1

N
where w = E TnYnXn
n=1

where sgn indicates the sign function and < .,. > the dot product.

Nonlinear classification is achieved by applying the so called “kernel trick” [Aizerman
et al., 1964]: The training samples are transformed by a map  : R% — F intoa high-
(possibly infinite) dimensional feature space, where a linear separation corresponds to a
nonlinear separation in the original input space. For any training data, this separation
is possible as long as the transformed feature space is of sufficient dimensionality.
The algorithm only depends on the dot products (w,x) in F. Without explicitly
calculating nor knowing the mapping @ itself, the product is replaced by a class of
functions, the kernel functions, such that K(x,x’) = ®(x) - ®(x’). There exist a broad
variety of kernels, which fulfill the conditions for kernels as characterized by Mercer
[1909]. Examples of popular kernels are:

K(x,x) = (x,x')¢ (Polynomial kernel)
12

K(x,x') = exp _x=x” (Gaussian kernel)
202

K(x,x') = exp (—yrer|x — x||*) (Radial-Basis Functions kernel)

K(x,x') = tanh(a(x,x") +¢),a > 0,c <0 (Sigmoid kernel)

Support Vector Regression (SVR) Similar to the “soft margin” loss function, Vap-
nik [1995] introduced the e-SV regression, which corresponds to the e-insensitive loss
function:

0 if |¢g] <e
— f(x)]. = -
y= 100l = Iel. {l (- ot
This way, the function f(x) is approximated by allowing errors smaller than ¢ and the
function is as flat as possible [Smola and Schélkopf, 2003]. Figure 2.7 shows an example
of an e-insensitive SVR. The prediction performance may crucially depend on the
choice of e. Scholkopf et al. [1999] proposed a modification of e-SVR that automatically
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2.3 Towards Peak Intensity Prediction with Machine Learning methods

Figure 2.7: Example shows an e-insensitive SVR. Errors which are smaller than ¢ are
ignored, i.e. samples that lie inside the tube with width ¢ around the
approximated linear function. Samples that are outside the tube, have
errors of || — .

minimizes € such that at most a fraction of instances lie outside the tube with radius
¢, namely the »-SVR. By including ¢ as a variable of the optimization problem, the
tube is allowed to adapt automatically to the data. The primal optimization problem
is reformulated with an extra term for v > 0,C > 0:

n=1

N
minimize %HWH2 +C- <Z/€ + 4 Z(fn + 5;))

subject to (Wl x, +b) —y, <e+&,
Yn — (Wixy +b) <+ &
& >0,e>0.

Hence, with 0 < v < 1 the number of SVs can be pre-specified, as the v is an upper
bound on the fraction of errors as well as a lower bound on the fraction of SVs. It offers
good robustness to outliers, for it is a generalization of an estimator for the mean of a
random variable, which throws away the largest and smallest examples (a fraction of
at most v/2 of either category). It estimates the mean by taking the average of the
two extremal ones of the remaining examples [Scholkopf et al., 1999].

In this work, the evaluations of SVR are grounded on the package 1071 [Dimitri-
adou et al., 2009] available for R [R Development Core Team, 2008] used as interface
to the widely used SVM library 1ibsvm [Chang and Lin, 2001].

2.3.3 Evaluation

About 10% of the centered and normalized data are used for validation and are put
aside. The remaining dataset is used to train the LLM and to find the best parameter
set using 10-fold Cross-Validation (CV). Therefore, the remaining dataset is split into
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2 Peak Intensity Prediction in a Single Learner Setup

ten portions and one set is used for testing performance of the selected model. It was
ensured that peptides from one spectrum as well as peptides occurring in more than
one spectrum are found in only one of the portions.

Model selection A grid search over the parameter space P = (nl, eA) is performed to

determine the optimal parameters for learning. The remaining learning param-
eters for the LLM are set to initial values €°"* = 0.3,¢™ = 0.5 decreasing over
training steps. A 10-fold-CV is done for each parameter set. For every point in
the parameter space the prediction accuracy for every training/test set is deter-
mined by the squared Pearson-correlation coefficient r? and the root mean square
error (RMSE) of the test set. The choice of the best parameter set is made by
the best mean 12 over all 10 test sets while training the learning algorithm.

Pearson’s correlation coefficient The Pearson correlation coefficient (Ryy~) is de-

fined between two random variables Y and Y’ measuring similarity and strength
of the linear relationship of two series of samples.

cov(Y,Y")
var(Y)var(Y’)

RYY/ =

where cov is the covariance and var the variance. Ryy- is estimated by:
Zi(Yi — ?)(Yil _ ?)
VY - VR () - V)2

N

1 Z(Y;_?)(YIZ’_W)
_Nfli:1 Sy - Sy
where Y or Y’ denotes the mean of ¥ and Y,
1 & 1 &
dsy = —— ) (Y;-Y)? = —— ) Y/ -Y)?
vy = TP e = g 307

as a scaled version of covariance between Y and Y’. For the correlation coefficient
r applies 1> < 1. With r = 1 (r = —1) the random variables are perfectly
(negative) correlated, and with r next to 0, the series of samples ¥ and Y’
indicate a weak linear relationship and are orthogonal to each other.

Root Mean Squared Error (RMSE) The RMSE is an error measure for the mean
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2.3 Towards Peak Intensity Prediction with Machine Learning methods

Model assessment The final model with the optimal parameters is chosen. To vali-
date its prediction (generalization) error on new data, the validation set is used,
which has not taken part in training.

2.3.4 lIssues in Data Handling Prior to Learning

In many application areas, obstacles have to be overcome with regard to uncertain
samples, missing values, high variance in the features or samples, etc. Jointly, these
may have a dramatical impact on the prediction performance and put new challenges
in the application of machine learning algorithms. In the context of the prediction of
peak intensities, the major issues can be specified arising mainly from the imperfect
identification routines.

Missing values The identification process in preprocessing is followed by the extrac-
tion of peptides, where the best matching proteins constituting to the extracted
peptides are identified. Under this presumption of having identified each protein
correctly, the resulting list of peptides is matched against theoretically derived
peptides. Hence, there exist non-observed peptides in spectra where no intensity
value is extractable. Missing values in features or target values is an often occur-
ring problem in machine learning. One possible solution would be to discard the
affected samples, thereby reducing the size of the training set. But especially for
small datasets, this limits the search space of the predictor in finding the true
hypothesis. Depending on context, other strategies are possible like replacing the
missing values with zero or according to some aggregation. In this study, both
approaches are examined: First, all of the non-observed peptides are discarded
and second, the missing peptides are incorporated solely in the unsupervised
vector quantization step.

Multiple recordings/samples Most of the peptides in the data set occur multiple times
in different spectra with different intensity values, which means the real-valued
samples (x;,¥:), (x;,y;) in the input space, 3i,7, s.t. x; = x; : y; # y;. In
the remainder, I refer to them as “duplicates”. Due to limitation of the training
data, outliers (potential noisy peptides) are eliminated by mapping each peptide
to one unique value, the a-trimmed mean of all intensities per distinct peptide
with @ = 0.25. The a-trimmed mean is defined as the mean of the center
100% — 2 - 100% of an ordered list. In the case of less than four peptides in the
list, a simple mean is taken. This way, a more reliable approximation is hopefully
achieved.

Under-sampled instances Peptides, which do not carry much information or being
noisy, should not be regarded in the learning process or at least should be less
weighted. At about 50% of the peptides are represented only once in the data.
These are referred to as “singles”. In fact, their intensities show a wide spread
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2 Peak Intensity Prediction in a Single Learner Setup

distribution and may be not valuable regarding signal-to-noise-ratio. Hence, one
might come up with another competing strategy and regard the singles as samples
being under-sampled. The LLM-predictor is capable to perform an alternative
mapping of the duplicate samples for the a-trimmed mean. It seems to be a
reasonable strategy to take the duplicates more into account for the learning
process.

Variance of features As features typically differ in their variance, one input with a
large variance will have a higher impact on the resulting predictor compared
to others with low variance. When distance functions, e.g. Euclidean distance,
are applied, it is essential to relate the variance of features to their relevance.
The features d = 1, ..., d;sy should be therefore rescaled and standardized to zero
mean Xy and standard deviation o(x4) of one:

std _ Xd —Xa
X T (xa)

2.3.5 Results

A series of experiments are performed in order to measure the performance of the
previously described regression architectures under various aspects. First, the predic-
tion capability is assessed to test how successful the prediction of peak intensities with
machine learning methods can be performed when supplying the 18-dimensional se-
lected subset of features Heur. The four VQ-based approaches of LLM-type, LLMgng,
LLMng, LLMsom and LLMpcy,, are applied in direct comparison. The performance
is assessed also for the high-dimensional dataset with 531 features. The v»-SVR and
the linear least squares model (LM) (see Section 2.4.1.1 on page 38) are used for
comparison purposes.

The following results are evaluated for two subsets of the entire data set A supplied
with variable set Heur. The first set, denoted by Heurty;, contains the peptides
mapped by a-trimmed mean, whereas the second set, Heurp,, contains all peptides
including these ones, which occur in multiple spectra, referred to as duplicates. The
validation set of Heurry consists of 44 items and for Heurpy, of 73 items. One
advantage of the LLM is that is capable of dealing with the duplicates straightforward.

2.3.5.1 Peptide Prototyping

A display of the prototype vectors resulting from the NG training allows a profiling of
the peptides. In Figure 2.8, a resulting parallel coordinates plot for multivariate data
is used to plot the six prototype vectors in case of Heurpyp. A set of parallel axes is
drawn for each feature, where for each feature the range of values (from min to max,
from bottom to top respectively) covered by the prototypes is shown.

The correlation of input space is reflected in the prototype distribution of Figure 2.8.
We can see that some of the features ("VASM830103’WILM950102’’FINA770101’,
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Figure 2.8: Parallel coordinates plot for six prototypes in case of Heurpy, dataset. For
every feature the range of values covered by the prototypes is shown.

’ARGP820102’) show a correlation to the mass, while no such tendency can be ob-
served for the other features. 'OOBM850104’, '/ROBB760107’ and "M’ show the least
similarity to any other feature. If we look at prototype O and 4, it can be seen that
they cover contrary outmost areas in data space in almost all features except the three
mentioned ones. The prototypes 2 and 4 are near to each other for almost all features,
except for the three mentioned features and ’arginin _count’ as well as ’GB500’ (the
last two being highly correlated), where they split up to almost the extremes. Similar
behavior can be observed for the prototypes 1 and 3.

The six prototypes take three to five levels for each feature, two or more prototypes
sharing the same region. ’OOBMS850104’ and 'KHAGS800101’ show the most even
distribution of prototypes. Thus the prototypes share ranges in certain features and
split up for others, achieving a separation in data space: For a data point that is
similar to two prototypes sharing their space for a set of features, other features decide
to which prototype it is assigned to.

2.3.5.2 Predicting Peaks’ Intensities

For comparison purposes, the prediction capabilities of the LLMy¢ for the two datasets
Heurmn and Heurpyp are evaluated as described in Section 2.3.3 on page 23. A grid
search is performed over all parameters P = (nl, eA) and that parameter set is chosen,
which yields the best mean r? of the training/test sets. For the exact results of r?
and RMSE see Table 2.2. From the results it is clear that peak intensities can be
characterized and predicted by the use of the heuristically selected feature set with high
prediction accuracy. A minimum RMSE on the test set is achieved with n; = 3 nodes
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Test Valid

Dataset n r2 ave(r?) a2 (r?) RMSE r2 RMSE

3 0.6773 0.4341 0.1811 1.14 0.1611 1.748
Heurryg 6 0.6318 0.4391 0.1421 1.173 0.1148 1.838

10 0.6003 0.3845 0.1881 1.19 0.157 1.774

3 0.647 0.433 0.1462 1.429 0.1972 1.4516
Heurpyp 6 0.6168 0.4286 0.1356 1.576 0.2195 1.4294

10 0.5659 0.3599 0.1549 1.72 0.137 1.5169

Table 2.2: Comparison of capabilities of the LLMyg for variable set Heur in predicting
intensities for the studied datasets Heurry and Heurp,,. The evaluation
was done for K = 3,6 and 10 prototypes. The resulting performances are
given by the best r2, the mean (r?) and o2(r?) of all 10 test sets and the
corresponding error RMSE, as well as for the validation set.

for Heurryr, while the RMSE on the validation set is minimized by a model trained
on Heurpy, with n; = 6 nodes. It can be observed that considering the entire data
set including duplicates instead of a a-trimmed mean mapped data set yields higher
correlations and a better generalization performance only on the small validation set.
The issue of a meaningful evaluation of this small validation set is addressed later in
the Discussion, see 2.3.6 on page 33. The LLM provides an alternative way of mapping
the a-trimmed means by mapping each of the duplicate intensities to one unique target
value. An example of the prediction of duplicates is given in Figure 2.9a.

2.3.5.3 Comparison Prediction Performance of SOM to Neural Gas

For a comparison of the prediction and generalization performance of LLMgoy and
LLMng, the studied dataset Heurry is evaluated. Due to the difference of topology
of these learning methods, iteration is performed over a number of nodes specified by
ng. The SOMs topology is kept fixed as n; = ny x 2, and its performance is compared
to the one of NG with n; = ng - 2 nodes.

In Figure 2.10 on page 30 the results of the prediction accuracy determined by r?
and RMSE with LLMgom and LLMyg for data set Heurry are summed up. Both,
LLMgsom and LLMyg, yield a similar behavior with respect to the prediction perfor-
mance. As the number of nodes increases (n; > 4, where the optimum is reached),
the clustering error for both learning paradigms decreases, while the prediction error
and correlation for the ten test sets also decrease and increase for the validation set.
Furthermore, it can be observed that though a worse clustering error of SOM-learning,
the prediction error for the ten test sets as well as for validation is smaller than that
of NG-learning and yields better prediction performance. The number of nodes n; is
a critical size due to over-fitting of the training data.
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K=6, 10 test sets

predicted

K=6, 10 test sets

K=6, validation set

predicted

predicted

(a) NG, trained on Heurp,,
test set prediction

(b) NG, trained on Heurpy
test set prediction

(c) NG, trained on Heurpy
validation set prediction

Figure 2.9: Scatterplots of LLMyg trained on dataset Heur with n; = 6 nodes. The
first two plots show the predicted 10 test sets, while for (a) the NG model
was trained accounting duplicates, i.e. Heurpy,. The second model in (b)
was trained on Heurry;, while for (¢) the same model is used to predict
the small validation set.

2.3.5.4 Subsampling of Peptides

Up to now, the missing peptides, i.e. those for which no intensity value is extracted,
have not been accounted for. The entire set of peptides is subsampled by excluding
those missing peptides. By mapping the duplicate samples to one target value by the
a-trimmed mean the size of the available training samples is yet further reduced. The
LLM is capable of dealing with the duplicates straightforward, and, moreover, allows
to incorporate those peptides with missing target values. For these peptides solely the
vectorial description in the input space is available. To account these for, the training
sets used to build the LLM models can be extended by the missing peptides in the
unsupervised clustering step. In order to explore if the subsampling of training set size
is beneficial, evaluations are performed over the training sets induced by the inclusion
of the missing values as well as by the inclusion of the duplicates. Thus, training in
this setup is performed on the entire set of extracted peptides without subsampling.
The generalization performance of the derived predictors trained in this manner is
compared to those trained on the a-trimmed mean target values (with subsampling).
Furthermore, each of the resulting models is used to predict the a-trimmed mean
target values in either case.

As an example, the resulting scatterplots are shown in Figure 2.11 on page 32. For
the corresponding left figures the target values are plotted against the predicted values
for the Heur as well as the AAindex dataset. These are compared to those models
resulting from a training without subsampling of peptides. In both cases of feature
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Figure 2.10: Results of the prediction accuracy for Heurry;. Iteration is done over n; =
1,...,18 number of nodes, with n; = 2 x n, (LLMsom), and n; = 2 - n,
(LLMng) nodes respectively. (a): For every evaluation the results of the
mean performance of the test sets is plotted as well as the performance of
the validation set. The best mean test correlation is yielded by a 2 x 2-
LLMgoMm- While the prediction accuracy for the ten test sets decreases,
the prediction accuracy for validation set increases proportional to the
number of nodes. (b): It can be stated that the clustering error for SOM
tends to be worse than for NGas. (c¢): The prediction error increases for
LLMgom and LLMpg in case of test sets to the same degree, whereas
the prediction error of the validation set for the LLMgon is much smaller
than that for LLMyg.
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sets, though, the extension of the training sets leads to a deterioration in terms of
generalization performance and correlation.

If trained on the duplicates, the LLM predictor models perform an alternative map-
ping of the duplicate samples for the a-trimmed mean. It seems to be reasonable to
take the duplicates more into account for the learning process. To test to which extend
the under-sampled peptides are of importance with regard to prediction performance,
an additional factor to the learning algorithm is introduced

€ = e f(peptidegec), where €€ {ei“,eout,eA}

such that single occurring peptides are penalized and the duplicates are more heavily
weighted, ensuring that not the whole learning process itself is slowed down. The func-
tion of the peptide occurrence is evaluated with regard to the parameters sp, sg, S3,
such that f(peptideocc, s1,52,83) = — exp(—peptideoec/s1)%2 + s3. Several combina-
tions of s1, s9, s3 are tested and the best evaluated function of peptide occurrence is
found with s; = 0.3,s5 = 0.25 and s3 = 1.2.

2.3.5.5 Comparison Prediction Performance of Feature Sets

The influence of the two feature sets Heur and A Aindex is compared for the LLMgna,
LLMnNg, LLMgonm and LLMgpcy, to the reference learning architectures v-SVR as well
as LM. In Table 2.3 the resulting generalization performances are listed for the two
feature sets available. These are given with regard to the training based on the inten-
sities mapped by a-trimmed mean as compared to the entire set of duplicates in case
of the LLM-variants.

LLM based on
feature set GNG NG SOM FCL v-SVR LM

AAindexty  12.97 1.2 1.16 1.91 1.03 1.11
Heurty 1.65 1.06 1.03 1.10 1.06 1.16

AAindexpyp,  23.26 1.19 1.18 1.48 1.09 1.15
Heurpyy 3.57 1.41 1.40 1.66 1.07 1.18

Table 2.3: Prediction accuracy in terms of testing RMSE of applied regression archi-
tectures LLM, v-SVR and LM - trained on AAindex feature space (531
dim). Results are also given for the Heur feature space (18 dim).

It can be observed that the applied learning architectures differ strongly in their
performance. This trade-off may be due to two main reasons: First of all, the number
of variables (531) even exceeds the number of available peptides in the dataset (372).
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Heur, trained on trimmed means Heur, trained with missing and duplicates

predicted
predicted

et -
(a) Heur dataset trained with (left) and without (right) subsam-
pling.

AAindex, trained on trimmed means

AAindex, trained with missing and duplicates

predicted

target target
12 = 0329 — RMSE = 1162 "2 = 0376 — RMSE = 1543

(b) AAindex dataset trained with (left) and without (right) sub-
sampling.

Figure 2.11: Scatterplots of LLM prediction on (a) Heur and (b) AAindex dataset.
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Notice that prediction is done over all ten testing sets for 10-fold CV.
The left column of figures corresponds to the prediction of models trained
with subsampled peptides by the a-trimmed mean. The figures on the
right show the predictions of models trained without subsampling peptides
and incorporating the entire set of samples including missing values and
the duplicates.
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Best prediction and generalization performance is observed for the SVR, while the
LLM shows only a slight worse accuracy regarding Heur feature space. The linear
model (LM) shows a clear over-fitting and lacks of the generalization on new peptides.
A comparison between the peptide and feature representations is summarized by the
following order according to the RMSE:

Heurty < AAindexTM < AAindeXDup < HeurDup

These observations suggest that the relationship between the peptide feature vectors
and the intensity target values is apparently nonlinear.

2.3.6 Discussion

The results show that the LLMgon-approach combining data mining and supervised
learning yields similar results in the prediction accuracy compared to the v-SVR. Thus,
the LLM benefits from supplying SOMs compared to NG due to their topology preserv-
ing characteristic. A low number of local experts and locally trained linear mappings
facilitate to successfully model the non-linear relationship between the peptides and
their peak heights. The SOM topology characteristic allows for a two-dimensional
representation of the input space. The visual inspection of the prototypes reveals
that the peptides can be grouped around a set of approximately six profiles. Those
seem to have individual mappings to the peak intensity, which can be discussed with
biochemical experts.

From the results it is clear that the peptide intensities can be modeled and predicted
by the use of the heuristically selected subset of features with a high prediction accu-
racy. It can be observed that considering the entire data set including the duplicates
instead of the a-trimmed mean mapped dataset yields lower correlations and a worse
generalization performance. The alternative mapping for the a-trimmed mean by the
prototypes is non-beneficially distorted due to the noise with high variance and out-
liers. This is reflected for both features spaces, AAindexp,, and Heurp,, including
the duplicates, in a decrease in accuracy, while the former has a slight advantage. A
mapping of the non-linear relationship from the peptides’ numerical representations
to the target values presupposes some characteristics or variables, which seem to be
underrepresented in the Heur description.

A direct quantitative comparison of the prediction performance of the duplicates and
the a-trimmed mean predictor models in terms of test RMSE is non-feasible. As the
duplicate samples are mapped to one unique value by the a-trimmed mean procedure,
the duplicate entries in target values are still accounted for when evaluating errors
of models used to predict the duplicates. Due to the small size of samples available,
there is no separated test set applicable for all variations of the peak intensity dataset.
Therefore, the performance of models is assessed via cross-validation. The duplicates’
errors in predictions intrinsically exhibit a significant higher amount of deviations of
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2 Peak Intensity Prediction in a Single Learner Setup

the target values as the a-trimmed means. Only a qualitative comparison is allowed
here but no quantitative, as this is a critical task due to the incoherency of the results
when evaluating the errors. The correlations between the peptide intensity values and
their « -trimmed means, as depicted in Figure 2.12, may be interpreted as an “upper
bound” for the accuracy achievable.
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Figure 2.12: Between peptide correlations: Scatterplot of duplicates (log(intensity +
1)) against trimmed mean target values (mean(log(intensity + 1), =
0.25)).

The investigation of the treatment of single occurring peptides, which amount 50%
of the entire data, did not issue a precise statement. Therefore a comparison to data
sets with more multiple spectra per protein would be helpful.

An assessement in terms of generalization performance of models used to predict
the validation set might not be meaningful since it contains 43 peptide samples with
even high variance. The fact that some test sets performance is worse (especially for
dataset Heurry) than the performance of the chosen validation set, can be explained
by the static choice of the set. The different portions of Heurry set yield a wide spread
of correlation, resulting in high standard deviation of r? over all the portions. There
are test sets that seem significantly worse in prediction performance over all training
sets. There exists a positive correlation to the number of test set samples. To this
end, I proceed with an exclusion of the validation set and concentrate on assessing the
model generalization performance by averaging over the test sets’ performance.

2.3.7 Conclusions

The Local Linear Map based on SOM-VQ is considered for prediction of peak intensi-
ties with comparable results [Scherbart et al., 2007b] to those obtained by v-Support
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Vector Regression (SVR) [Timm et al., 2006]. In addition, Neural Gas clustering in-
stead of SOM in the input space is applied for comparison [Scherbart et al., 2007a]
providing a basis for peptide prototyping and visualization. Other than for example
SVR, the LLM can be used for data mining once adapted in a straightforward manner.
Both architectures have been proposed to model the non-linear relationship between
peptide and peak intensities. This method is still in an early phase: A proof of con-
cept has been conducted and published in [Timm et al., 2008]. Peak intensities can be
predicted with significant correlations, but application tests are yet to come.

It turns out that the performances strongly depend on the choice of the feature
space. The non-linear relationship between peptides and their peak intensities is mod-
eled with a minimum RMSE of 1.03 in case of the 18-dimensional selected subset of
features chosen in an ad-hoc forward feature selection. Due to the known curse of di-
mensionality and to the VQ-based approach acting in Euclidean space, the LLM shows
difficulties in high-dimensional spaces. For the high-dimensional dataset AAindex, the
v-SVR is the only learning architecture, which is capable to extract useful information
to build successful predictor models with high prediction performance.

The priority objective is to decide, which type of feature set has greatest potential
therewith in a general learner setup. I believe that, based on the high-dimensional fea-
ture space named AAindex, an improved prediction is possible even for the LLMgom-
Consequently, I concentrate in the remaining of this thesis on the AAindex features
and the target intensity values calculated by the a-trimmed mean.

2.4 Improved Peak Intensity Prediction by Adaptive
Feature Weighting

Predictors may strongly benefit from a reduction of features, thereby defying the curse
of dimensionality, offering reduced time and space complexity as well as an improved
performance. Conversely, features being highly redundant and correlated to others, can
considerably degrade the process of learning. The task of deciding which features to
use to build successful models is one of the central problems in machine learning [Blum
and Langley, 1997]. The selection of relevant features contrasts with the selection of
useful variables?, as many redundant, but relevant variables, may be excluded [Guyon
and Elisseeff, 2003]. Blum and Langley [1997] give a good overview and discuss the
various definitions and notions of usefulness and relevance.

To explore the potential from focusing on relevant features that contribute to the
non-linear peptide/peak intensity relation, a regression based combination of feature
weightings and a linear predictor is proposed in [Scherbart et al., 2008]. The regression
approach of LLM is extended to provide simpler models and better generalization if
trained on the high dimensional dataset AAindex.

2The terms *features’ and ’variables’ are used here without distinction and interchangeably.
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The two-step regression approach includes an adaptive regression based feature
weighting by four learning architectures individually, therewith four different model
specific estimations of feature relevance are obtained. Subsequently, the estimated
feature weightings of the dj, features are used for scaling the input vectors in a re-
training step with an independent predictor, i.e. with the LLM. The performance
when accounting for the assessed weighting of features and subsequent re-training is
compared to an approach integrating weighting and filtering of features. I show that
the overall performance is improved as compared to using the entire feature set. The
LLM-regression benefits from a re-weighting of features according to the model specific
estimation of feature relevance.

A schematic description of the proposed two-step regression architecture is depicted
in Figure 2.13.

Regression Feature Weightings
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Figure 2.13: Graph depicting the proposed architecture schematically. Given the MS
data, the proposed architecture is based on a two-step regression ap-
proach: Four different models (Linear Least Squares, Random Forest,
Partial Least Squares, Bagged Trees) are derived to be evaluated accord-
ing to their corresponding model specific metric for estimating the contri-
bution of each feature. Each of the model specific estimations of feature
relevance is integrated into a common data structure Z for the application
of subsequent filtering of features. These scaled feature weightings Z are
then used as input to form a new prediction model of LLM-type.
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2.4.1 Assessing the Feature Relevance

Feature Selection covers the problem of selecting an appropriate subset of features,
which are most likely to be relevant to predictor models. Classic feature selection
steps include heuristic search (forward selection, backward elimination, stepwise selec-
tion) and successively adding or eliminating attributes by an adequate strategy. The
approaches can be divided into filters and wrappers. Filter approaches use general
characteristics (e.g. correlation) of the data provided to select a subset of features,
independently of the chosen learner. Wrappers score subsets of features by a metric
according to the estimated accuracy of a given learning machine.

To reflect feature relevance as a numerical value, an estimation of the feature rel-
evance is done by four different regression models, which are trained on the entire
feature space. Each of the four applied architectures comprises an internal model de-
pendent metric as measure of quality. The feature weights are set proportionally to
the assessed change in accuracy (via correlation, MSE), e.g. to the decrease in error
when permuting the features. The greater the decrease in performance when leaving
a certain feature out, the higher is the assigned degree of relevance of the feature. The
model dependent metrics evaluation to assess the feature relevance is offered by the
R package caret [Kuhn, 2008]. Each of the G = 4 estimations is interpreted as the
feature relevance Z € IRE*%n a5 assessed by Linear Models, Partial Least Squares,
Random Forests and Bagged Trees. The feature relevance is calculated according to:

Linear Models (LM) Absolute value of t-statistic for each model parameter [Kuhn,
2008].

Partial Least Squares (PLS) The feature relevance measure is based on the weigh-
ted sums of the absolute regression coefficients. The weights are a function of
the reduction of the sums of squares across the number of PLS components
and are computed separately for each outcome. Therefore, the contribution
of the coefficients are weighted proportionally to the reduction in the sums of
squares [Kuhn, 2008].

Random Forest (RF) For regression, the MSE is computed on the out-of-bag data (see
3.3.1.1 on page 51) for each tree, and then the same is computed after permuting
a variable. The differences are averaged and normalized by the standard error.
If the standard error is equal to O for a variable, the division is not done [Liaw
and Wiener, 2002].

Bagged Trees (BT) The same methodology as a single tree is applied to all trees and
the total relevance is returned.
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2.4.1.1 Linear Least Squares

Linear least squares is the most widely used method for regression. A linear model is
fit of the form

din

f(x) = bo+ > xib; = X"b

i=1
where x; are the variables, b; are called the coefficients and by the intercept. Written in
matrix notation, X is here a (N 4 1) X d;,, matrix with the first row filled up with ones,
i.e. the column 4 of X corresponds to (1,21, ...,y ). Linear Least Squares |Wilkinson
and Rogers, 1973; Chambers and Hastie, 1992] finds a solution to the fit, i. e. coefficients
bi, i =0,...,dn, such that the residual sum of squares (RSS) is minimized:

N
argmin RSS = argminZ(yi—f(xi))Q = argmin|jy — f(x)||?
b b = b
where b = (XTX)71 Xy

2.4.1.2 Partial Least Squares

Partial Least Squares (PLS) was first introduced by Wold [1966]. PLS regression
searches for a set of components (called latent vectors) that perform a simultaneous
decomposition of X and y with the constraint, that these components explain as much
as possible of the covariance between X and y [Abdi, 2007]. The input data matrix
X e RY*4n is decomposed as follows:

X = QPT with QTQ =1

with I the identity matrix, Q the so called loading matrix and the columns of Q are
the latent vectors. y is estimated as:

y = QBC”

where B is a diagonal matrix corresponding to the “regression weights” and C is the
“weight matrix” of the dependent variables. This way, with Q a generalization to
principal component analysis is performed. In this work, the function plsr of the R
package pls [Wehrens and Mevik, 2007] is used.

2.4.1.3 Random Forests

Breiman [2001] proposed Random Forests (RF) as a combination of decision tree pre-
dictors for classification as well as regression tasks. Random Forests are defined as
“a collection of tree-structured classifiers {f(x,0,,), m = 1,...} where the {0,,} are
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independent identically distributed random vectors and each tree casts a unit vote for
the most popular class at input x” [Breiman, 2001].

A Random Forest is built by several random trees, each of them constructed in-
dependently. The nodes of each tree are split by the best presented variable of a
randomly selected subset of variables. Typically, only with a third of the entire vari-
ables is randomly sampled for each node. RFs are explained and discussed in more
details in 3.3.1.3 on page 52 in the context of Ensemble Learning (Chapter 3) and
Bagging (3.3.1.1 on page 51). The evaluation of RFs is based on the implementation
in the randomForest package by Liaw and Wiener [2002].

2.4.1.4 Bagged Trees

Bagged Trees (BT) are built by a bundle of decision trees similar to Random Forests.
Bagging was proposed by Breiman [1996a] to get more stable trees. Each of the
trees is constructed independently of randomly drawn samples of the size N, the so
called bootstrapped samples, thereby approximately containing 63% of the original
instances. The outputs of the trees are then aggregated by majority vote in case of
categorical outputs (classification) or by simple averaging the numerical outputs in
case of regression.

The decision trees in this function are computed using the implementation in the
rpart R-package [Therneau et al., 2009].

2.4.2 Evaluation

Performance assessment is done similarly to the previous evaluations. In the remainder,
the validation set is completely excluded from the evaluation due to the static choice
of the set and in order to keep the results comparable and consistent.

Model selection A grid search over the parameter space is performed to determine
the optimal parameters for learning. For every point in the parameter space
the prediction accuracy for every training/test set is determined by the RMSE
of the test sets over all portions of 10-fold cross-validation. From the set of
input vectors, a randomly sampled subset of instances of appropriate size, e.g.
10%, is excluded from the training set and is used to built up the test set for
each iteration. The choice of the best parameter set is made by the best mean
performance over 20 iterations.

Feature Weighting The G final models LM, RF, PLS, BT are evaluated by the cor-
responding model specific metric for estimating the contribution of each feature.
Each of these G methods contributes one vector or row z4,g = 1,...,G to the
entire matrix Z of feature weightings with dj, columns.

Filtering of Feature Weightings A filtering approach discards feature weightings be-
low a certain threshold. The cut-off value is determined by the ¢% most relevant
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features, where ¢ € {95,90,70}. These features are chosen, which make up ¢% of
the total sum of relevance (SoR), where the SoR is given as SoR(g) = 272‘1 Zgl.
Having sorted each row z, of Z in descending numerical order, these features
1...,j are selected, where j is determined by argmin; Y7/_, 2y > 0.9 - SoR(g).

Retraining of LLM model These feature weightings z, (scaled up to be in range of
[0,1]) are then used to scale the input variables to X = z, - x. A new model
of LLM-type is built based on the optimal parameters determined in the model
selection step with the input vectors X.

2.4.3 Results

The prediction and generalization performance of the LLM predictor is compared when
applying different approaches of weighting and filtering of the features. The degree of
feature relevance z, is estimated by the four regression architectures LM, PLS, RF and
BT. As an example, the resulting assessed relevance of features is shown for AAindex
data in Figure 2.14, when a selection of features is performed to account for the 25
most relevant features on average.
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Figure 2.14: Levelplot of AAindex feature relevance, which are estimated by the under-
lying model specific metrics by LM, RF, PLS and BT. For the graphical
representation, a selection is performed to account for the 25 most rel-
evant features on average. Darker gray values indicate a higher feature
relevance. The LM assessed relevance of features apparently takes on a
special position.

Evaluation is performed for the AAindex dataset as well as for the smaller Heur
dataset. To make the results comparable, exactly one predictor is used as reference
learning architecture, namely the LLMgoy, for retraining on the derived feature space.
For clarity of notation, I will only refer to LLM for the LLMgoy in the remaining.
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2.4.4 Weighted Feature Space

The regression models of the learning architectures are evaluated in terms of general-
ization performance (MSE) as well as their estimation of the contribution of features to
the corresponding final model taking the entire, non-weighted feature space as input.
The reference results are summarized in Table 2.4 for both the AAindex and Heur
feature spaces and the regression architectures LM, LLM and v-SVR given in the last
three columns.

The estimated contributions of features z, from the G' model specific metrics are
used to re-build the model of LLM-type with the input vectors x based on the optimal
parameters determined in the model selection step. A comparison in Table 2.4 of
the resulting performances when introducing a feature weighting shows clearly the
increase in accuracy for all derived estimations of feature relevance applied to the
LLM and AAindex feature space. While an improvement of prediction performance
can be observed for the LLM_ compared to standard LLM trained on the entire 531
dimensional AAindex feature space in all cases, this improvement does no longer hold
true for the small feature set Heur. In this case, a re-weighting of features by any
specific model is disadvantageous. Using the linear predictor LM as a feature weighting
method, the estimation of features contributing leads to a decrease in accuracy of the
LLMjy,y trained on the re-weighted A Aindex feature space. The feature weighted-LLM

LLMy;m LLMgy LLMprs LLMpr LLM SVR LM
AAindex 1.12 1.01 1.03 1.01 1.33 1.03 1.11
Heur 1.22 1.03 1.09 1.04 1.03 1.06 1.16

Table 2.4: Prediction accuracy in terms of testing RMSE of regression models of LLM-
type - retrained on A Aindex feature space (531 dim) incorporating the input
vectors scaled by the feature weightings. The three last columns are given
as reference accuracy in feature spaces without scaling. Results are also
given for the Heur feature space (18 dim).

trained on the high-dimensional A Aindex feature space beats the non-weighted models
of LLM-type trained on AAindex feature space in general. It outperforms the v-SVR
in terms of generalization performance for the test set. The LLMgp and LLMpyg
models trained on AAindex feature space yield the major improvement of prediction
performance.

2.4.5 Weighted and Filtered Feature Space

In an effort to integrate the individual filter algorithms they are combined into a meta-
filtering approach. Analogously to the ensemble learning approach, one is interested in
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a skillful combination of multiple predictors generated. The integration of the different
estimations of feature relevance may happen in multiple ways as a meta-filtering, by
taking the minimum, the maximum, the product or the mean for each feature over
all considered embedded methods. Having a closer look at the distribution of the
feature weightings, there is a small number of features accounted as highly relevant,
while a few features are estimated to contribute to the predictor model to very low
degree. They may be regarded as less important and carrying not much information.
It seems reasonable to apply a filtering on the resulting estimated feature weightings
prior to retraining the LLM, therewith discarding feature weightings below a certain
threshold. The cut-off value is determined by the ¢% most relevant features, where
¢ € {95,90,70}.

As an example, the filtering approach for zgr with respect to the different values
of ¢ € {95,90,70} discards the first 225 features if ¢ = 95%, the first 286 in case of
¢ = 90%, and a total of 384 corresponding to ¢ = 70% if sorted in descending numer-
ical order. Hence, the number of dimensions of the input samples used to form the
LLMpt predictor, is reduced to a quantity of {306,245,147}. The precedent filtering
of feature weights leads to a slight worse prediction performance of the subsequent
applied LLMpt. The corresponding results are given regarding the LLMpt for in
terms of testing RMSE by {1.013,1.034,1.064}. With a rising filtering threshold, the
prediction performance keeps constant, while the generalization performance decreases
for any of the prior applied feature relevance estimators.

2.5 Discussion

One of the most important questions in conjunction with finding a model for predicting
peak intensities is the representation of the peptides. A suitable feature space is
the precondition for the success of any machine learning method. An a priori given
estimation of the feature relevance might provide a helpful ranking of the features. The
two-step regression approach benefits from the precedent weighting of the euclidean
input space as offered by the model specific metrics. RFs and BTs combine decision
trees using Bagging and are members of a complementary class of algorithms opposed
to the class of neural networks, the LLM belongs to. The assessed relevance of features
contributing to the models of RFs and BTs is used to re-scale the features as input for
a subsequent training with the LLM. This facilitates a promising and suitable way of
improving the peak intensity prediction.

The statistics of the variable relevance estimation based on the model specific met-
rics by LM, RF, PLS and BT, are evaluated and listed in Table 2.5. To summarize the
statistics and the distribution of the feature relevances, a few features are contributing
to the linear model LM and only 28 are used. In contrast to the LM, the non-linear
regression models RF, PLS as well as BT, rank many features as contributing less to
their built model. These observations mainly rely on the mean relevance and the num-
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Statistics LM RF PLS BT
# features > 0 28 530 530 393
Entropy 4.26 7.57 8.32 8.06
Total Sum of Relevance (SoR)  718.976 1753.31 3936.29 6121.71
# features: SoR > 0.9 20 232 318 245

Table 2.5: Statistics on feature relevance estimated by LM, RF, PLS, BT specific
metrics, scaled up in the interval [0,100]. The sum of relevance over
all 531 features (SoR) is calculated as 2721 zg for a certain model g €
{LM,RF,PLS, BT}. The last row accounts for the number of most rele-
vant features, which make up 90% of SoR, i.e. arg min; Z{:I zg1 > 0.9-SoR.

ber of features, which make up approximately 90% of the total sum of relevance (SoR).
As stated in Guyon and Elisseeff [2003], a variable that is completely useless by it-
self can provide significant performance improvement when taken with others. Two
variables that are useless by themselves can be useful together.

Our results indicate that combined decision trees models, as by RF or BT, give a
beneficial hint of the usefulness of the variables.

2.6 Conclusions

In this chapter, special focus is laid on the issue of using relevant features in model-
ing the non-linear relationship between peptides and the peptide peak heights. The
regression architecture of LLM-type is extended to account for a priori given assess-
ments of degrees of feature relevance. These are estimated based on their contributions
to different predictor models. The regression based combination of estimated feature
weightings and a linear predictor provides simpler models, better generalization and
reduced computational costs. A comparison between the two peptide feature repre-
sentations shows better performance for the high-dimensional AAindex feature space
in general. We got the major improvement in the performance of regression models
when retraining is performed on the accounted estimated feature relevance by Partial
Least Squares and Bagged Trees. These model dependent feature weightings methods
perform a skillful scoring of the features in combination with the LLM. Though many
features were supposed to be relevant to low degree, integrating a filtering of the fea-
ture weightings prior to the retraining of the LLM leads to a decrease in the prediction
accuracy. Hence, a vast subset of features accounts less for successful peak intensity
prediction models, but still carry that much useful information that discarding them
deteriorates the prediction performance. The most relevant AAindex features found
amongst others were estimated gas-phase-basicity, fractions of arginine residues, acidic,
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basic and polar.

2.7 Contribution to OpenMS - An Open-Source
Framework for Mass Spectrometry

OpenMS is an open-source framework for mass spectrometry, available at http://
open-ms.sourceforge.net. We contributed a published module named PeakIntensi-
tyPrediction (PIP) to the project. The implemented classes, PeakIntensityPredic-
tor and AAindex, transform the peptide sequence into the corresponding vectorial
chemical feature space. Based on these features, a mapping is performed by the in-
corporated model that has been adapted with the LLM (1 x 3 nodes) and returns
the predicted peptide intensity. For a detailed overview of the contributed module
and OpenMS in general, I refer to http://www-bs2.informatik.uni-tuebingen.
de/services/OpenMS-release/html/tutorial_pip.html.
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3 Ensemble Learning

“For every complex problem, there is a solution that is simple, neat, and
wrong.” Henry Louis Mencken (1880-1956).

Ensembles have been studied in a wide range of areas and found consideration
under various names like committee, collections, mixture of experts, classifier systems
or multiple classifiers amongst others. Numerous methodologies are still part of the
active research for increasing the precision and accuracy by an adequate integration
or combination of predictors over single predictors.

In contrast to “classical learning architectures, the function to predict is approx-
imated by a set of hypotheses rather than by just one single hypothesis. The con-
cept of ensemble learning (EL) is based on voting from a set of different solutions
or hypotheses. Ensembles cope with the drawbacks of statistical, computational and
representational problems typically arising with single learning algorithms Dietterich
[2002]. Given a set of samples X, the problem in regression ensembles is to select a
set of appropriate predictors H = {f1,..., fm} from the base hypothesis space H
and to aggregate the outputs of the M base learners by a convex combination to one
ensemble prediction. Every learning algorithm corresponds to one point in 4. The
hypothesis space H is made up by all possible hypotheses, and the task is to identify
the best hypothesis A* in H.

The construction of accurate and diverse hypotheses overcomes the statistical prob-
lems arising from the limited access to the underlying distribution of data. The ag-
gregation of a set of hypotheses reduces these restrictions. A sufficient number of dif-
ferent starting initializations reduces the risk to get stuck in local minima and hence
the computational issue. By a linear combination of the hypotheses, the representa-
tional drawback is coped with an expansion of the space of representable functions.
However, ensembles bare some shortcomings or weaknesses as the demand for an in-
creasing amount of storage and computation and the loss of simple and comprehensible
structures.

How can we construct ensembles? From the various methods that have been devel-
oped many can be applied to any kind of predictor in general. The common issues in
ensemble system design are:

How to generate the training sets? One straightforward way to manipulate the set

of hypotheses accessible to a learner is to supply each learner with a slightly
altered different training set in an effort to generate diverse ensemble predic-

45



3 Ensemble Learning

tors. Diverse hypotheses are explored by the (re-)sampling methods: Cross-
validation (CV) like sampling methods can be described as dividing the training
set into several disjoint subsets and leaving out one portion at a time. Resam-
pling methods form predictor models with different training subsets of the avail-
able samples. Bagging is one method to build such, where each training set is
drawn randomly, but with replacement, from the original training set of samples.
Boosting [Freund and Schapire, 1996] directly reassesses the distribution of the
samples by incrementally re-weighting, and hence emphasizing on, those train-
ing samples that were mis-classified by subsequent models. Other re-sampling
methods supply each predictor with all IV of the original samples, but each with
a different subset of variables as with the Random Subspace Method (RSM).

Which learning algorithm to employ? The choice of learning algorithm is a crucial
step and contrary to the credo for single predictors: Unstable and weak learners
are necessary to achieve improved accuracies.

How many predictors are sufficient? To make it short, there is no unique answer.
This issue strongly depends on the type of algorithm applied and on how diverse
the ensemble predictors are. An ensemble of highly redundant or correlated
predictors may be replaced by one single predictor without losings.

How to assess models? Learning models may vary in their assessment and algorith-
mic-specific methods applied. Examples are the distance measure used, the type
of kernel or the type of learning function and the direct quantification of diversity
as in Negative Correlation Learning (NCL).

How to combine the predictors’ output? Having trained the predictors, the strate-
gies employed for combining the outputs of the single predictors to form an
ensemble output can be sub-divided into either an unweighted aggregation, i.e.
simple averaging as proposed for Bagging, or by a weighted aggregation, e.g. by
some measure of accuracy or variance. Other strategies are gating networks [Jor-
dan, 1994] or stacked generalization [Wolpert, 1992].

3.1 Reasons for the Success of Ensembles

Forcing different hypotheses is a common issue in ensemble learning. As already men-
tioned, balancing the diversity against the predictor accuracy, is the most critical and
challenging task for ensemble methods. Maximizing only diversity, may worsen the
prediction performance of every single learner. The success of the ensembles is mainly
brought with a shift of diversity or complexity of the learning function from one learner
to many.
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3.1.1 Weak Learners

The base precondition for the success of any ensemble are accurate and diverse pre-
dictors [Hansen and Salamon, 1990]. They prove the necessary condition of weak
learners. Under the presumption of independent errors, a classifier is called accurate,
if the chances of each classifier to predict new values correctly are slightly better than
random guessing. This can be formally described as the probability of k£ out of M
classifiers voting wrong, given a likelihood of (1 — p) for the correct classification:

MY (1 = pyr-r,
()

By induction it can be shown, that provided p < 1/2, with an increasing M the
ensemble error rate decreases.

3.1.2 Unstable Learners

Breiman [1996a] gives a formalization when bootstrap aggregation works well: He
denotes this as instability of learning algorithms, when small changes in the training
set cause large changes in predictions. Examples of unstable procedures are neural
networks, decision trees, regression trees and subset selection in linear regression, while
k-nearest neighbors is stable. The variance is reduced, while the bias is left unchanged.

These characterizations of weak and unstable learners have helped to understand
why and when ensembles improve generalization performance compared to any of the
individual predictors.

3.1.3 History of Ensembles

The first work on ensembles and combining classifiers might be published by Dasarathy
and Sheela [1979] to an ensemble system dividing the input space supplying several
classifiers. Hansen and Salamon [1990] introduced ensembles of neural networks, which
benefit from similar configured neural networks thereby reducing the variance among
networks. Schapire [1990] showed the strength of weak learnability, in which the learner
is only required to perform slightly better than guessing. In probably approximately
correct (PAC) sense, a weak learner is as strong as a model in which the learner’s error
can be made arbitrarily small. This work has helped to establish ensemble systems
and Schapire’s boosting procedure paved the way to one of the most popular family
of algorithms in machine learning - AdaBoost [Freund and Schapire, 1995, 1996].
The first study of regression ensembles with neural networks was published by Per-
rone and Cooper [1993] showing a guaranteed improvement by averaging in functional
space. Hashem [1994] derived optimal linear combinations of neural networks. The first
experimental study on combining regressors using Boosting was published by Drucker
[1997]. Avnimelech and Intrator [1999] extended the Boosting algorithm to regression
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3 Ensemble Learning

problems. Carney and Cunningham [1999] proposed to estimate the set of weights
and the number of hidden units in neural network ensembles based on out-of-bag error
estimates.

Empirical studies and comparisons of the popular ensemble methods Bagging and
Boosting can be found in Quinlan [1996]; Maclin [1997]; Bauer and Kohavi [1998];
Opitz and Maclin [1999]; Dietterich and Fisher [2000] or Breiman [1998]. In 1997,
Dietterich [1997] points out Ensemble Learning as one of the four current directions
in research activities. A good and comprehensive overview of the recent methods in
ensemble learning is provided by Polikar [2006]. In the year 2000 the first workshop
on "Multiple Classifier Systems* was held, which meanwhile has well-established as a
forum for the issues in ensemble system design.

3.2 Assessing Ensemble Error

For regression tasks, the ensemble output is given by a weighted combination of the
single predictors’ output f,,,m =1,...,M:

flx) = Zwmfm(x), where w,,, > O,z:wm =1, VYm=1,...,M.

Analogously to the case of one predictor, the ensemble error rate is defined as the
squared error between the desired target value y and the predicted value f(x) yielding
the ensemble prediction error:

éx) = (F(x)—p)?

The expected error in predicting a single sample x can be decomposed into a bias- and
a variance term. This decomposition is well known as the bias-variance trade-off when
controlling the model complexity and also holds true for the ensemble vote f':

E{(f -y} = (B{f} —v)* + E{(f - BE{f})*}
= bias(f)? +var(f).
Often, a simple averaging over the ensemble predictors’ outputs f,, is used according
to wy, = 1/M. This is used interchangeably - if unambiguous.

3.2.1 Bias-Variance-Covariance Decomposition

The expected quadratic error of the ensemble can be decomposed into three terms
similar to the bias-variance decomposition for one single learner leading to the bias-

n the remainder, T will omit the input vectors f(x) to f.
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variance-covariance decomposition [Geman et al., 1992]:

E{(f =)} = (B{f} -9’ + B{(f - E{/D*}
= bias(f)? + var(f)

— 1 1
bias. + MW—}— (1 — M) covar (3.1)

With this concept the expected error of the ensemble is composed of a fraction of the
variance as well as of the covariance along the ensemble predictors, when the following
three components are defined as:

bias = 5 S (B{fu} ) (32)

= 4 Y B — B{n})} (33)

T = 3 2 3 P — BN ~ EUD) (3.4)
m jAm

The components are the averaged bias (3.2), the averaged variance (3.3) and the
covariance (3.4) between the ensemble predictors.

3.2.2 Ambiguity Decomposition

Krogh and Vedelsby [1995] first presented the decomposition of the ensemble error rate
and gave the definition of the ensemble ambiguity. They proved that the ensemble error
rate is less or equal to the mean squared error e,, of the individual predictors. The
ensemble ambiguity a on a certain sample is determined by

i =S wnly—fu)? = (y— )’

= Zwmem —eé, wheree,, = (y— fm)2
m

e = (y—f)?
Z Win€m — . (3.5)

On the right side of Equation (3.5), the first term is the average error of individual
predictors. The term @ measures how much each single ensemble predictor diverges
from the ensemble output f, the so called diversity or ambiguity. The higher the
diversity, the lower is the ensemble error rate, if the mean predictor error is fixed.
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3 Ensemble Learning

To find out about the relation of the bias-variance-covariance decomposition (3.1)
to the ambiguity decomposition (3.5), an additional term is introduced. Brown [2004]
introduced the term 2, which connects both components, diversity and mean predictor
€error:

B{(T =9} = bias(])? + var(]) £ 9
= B o~ fn) — 57 S — ) £ 9

m m

. 1 1
= bia52 + MW+ (1 - M) covar +

Q = var + % Z(E{fm} - E{f})Q}

B S0~ fu)?) = Bias” 49
Bl Yl =9} = 0= v+ (1 57 ) o (30

_ (1 . ;4) (va — zovam) + - (B} - BN

The diversity is determined by both variance and covariance. The 2 term reflects the
strong interaction between the diversity and the remaining parts of the error [Brown,
2004].

3.3 Assessing Diversity

In the previous section, I have listed different definitions how to explicitly quantify
diversity (Equation (3.5) and (3.6)) - all arising from the decomposition of the ensemble
error rate to the two terms:

— M M —
e = (yff)Q = Zwm(yffm)zfzwm(fmff)z (37)
m=1 m=1
= MSEMap — DIV. (38)

The first, MSEp,p, is the mean squared error per every single predictor, and second,
DIV, measures how much each single ensemble predictor diverges from the ensemble
output f, the diversity.
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3.3.1 Strengthening the Effect by Diverse Predictors

Brown [2004] studied where the diversity arises from and formalized a taxonomy for
creating diversity. The approaches encouraging diverse hypotheses differ in the way the
ensemble error diversity is quantified and integrated in the training process - implicitly
or explicitly. One way to manipulate the set of hypotheses accessible to a learner is
to supply each learner with a slightly altered different training set to generate diverse
ensemble predictors. While Bagging (3.3.1.1) is one implicit method to build altered
learners, other re-sampling methods supply each predictor with all IV patterns, but
with different subset of variables as in RSM (3.3.1.2). Every learner is presented only
a subtask of the entire learning task and the learning is restricted to the information
presented. Boosting directly reassesses the distribution of the samples and rather could
be classified as a heuristically acting explicit method. A typical example for an explicit
method is NCL, see Section 3.3.2. Only NCL directly takes the quantified ensemble
error diversity into account.

3.3.1.1 Bagging

“Bagging goes a way toward making a silk purse out of a sow’s ear,
especially if the sow’s ear is twitchy.“ Breiman [1996a]

One well-studied and intuitive way of combining the ensemble predictors is sim-
ple averaging (w,, = 1/M). The method of Bagging, as the short form of bootstrap
aggregating, was introduced by Breiman [1996b]. He proposed aggregating a set of
predictors generated from bootstrapped samples T1,...,Tj;. From the original set
of N training samples, N samples are randomly selected with replacement. These M
bootstrap training sets T, (m =1,..., M) are the training bases for the constructed
predictors f(x, T,,) = f,n(x) that are used to form the bagged predictor f. He showed
empirically as well as theoretically that Bagging improves the generalization perfor-
mance for any kind of predictor, which fulfills instability. There exists evidence that
this kind of aggregation, i.e. averaging from bootstrapped samples, constrains the
complexity, moreover, reduces the variance while having same bias. The training sets
T,, contain about a fraction (1 —1/M)™ 2 0.63 of the original N samples. Therefore
about one-third of the patterns are left out in every bootstrapped sample and are called
"out-of-bag" (OOB) data. The OOB estimates are given by the aggregation over the
predictors f,,, which do not contain sample (x,y) € T,,. These OOB estimates tend
to overestimate the test error rate, since the prediction is based on only one-third of
the M predictors. The error rate decreases with an increasing number of predictors
in the ensembles. The OOB data can be used for form accurate estimates for im-
portant quantities like error, strength, correlation and feature relevance as discussed
by Breiman [1996b].
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3 Ensemble Learning

3.3.1.2 Random Subspace Method

The Random Subspace Method (RSM) [Ho, 1998] was proposed for classifiers of
multiple trees constructed in randomly chosen subspaces of size K. FEach predic-

tor m = 1,..., M is presented a subset K,, of size K of the entire set of features
{1,...,din}. This way, for each predictor a randomly sampled vector K,, is con-
structed independent of the past random vectors (Ki,...,K;,_1).

3.3.1.3 Random Forests

Breiman [2001] proposed Random Forests (RF) as a combination of decision tree pre-
dictors for classification as well as regression tasks. Random Forests are defined as
"a collection of tree-structured classifiers {f(x,0,,), m = 1,...} where the {6,,} are
independent identically distributed random vectors and each tree casts a unit vote for
the most popular class at input x“ [Breiman, 2001]. RFs are designed to minimize
the correlation between the predictors while maintaining strength. The first portion
of randomness is injected by the bootstrap aggregating, i.e. Bagging, such that the
predictors {f(x,0,)} are built independent of the past random vectors 61, ...,60,,—1.
With Bagging, the random vectors 64, ...,0); are the bootstrapped training sample
sets Tq,...,Tp. A RF is built by several random trees, each of them constructed
independently. Second, the nodes of each tree are split by the best presented variable
of a randomly drawn subset of variables for each node, as proposed for the RSM. Typ-
ically, each node is presented only a third of the entire variables. For classification, the
aggregated output is taken as a majority vote. The average over all predictor outputs
is taken for regression.

This class of procedures gives good accuracy, is robust to outliers and noise, faster
than Bagging with all variables and can easily be scheduled in parallel.

3.3.2 Negative Correlation Learning

Liu and Yao [1999] introduced the term Negative Correlation Learning (NCL). In NCL,
the error function e, of the ensemble predictors is extended by an additional penalty
term to balance between the accuracy of individual predictors and the quantified di-
versity:
€m = %(fm - y)2 - ’Y(fm - f)2

v is a parameter controlling the penalty for a high correlation of the individual predic-
tors errors and thereby enforcing the diversity or negative correlation in errors. One
varies between the extremes of a single predictor (v = 0) and a fully connected ensem-
ble (v = 1), where each predictor is influenced by each of the others. Thus, with the
penalty strength parameter -, the degree of diversity within the model is specified,

which could be referred to as the model complezity. For a good overview on the theory
behind NCL, I recommend Brown et al. [2005¢].
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3.3.3 Parameterizing Penalty Functions

There are several penalty functions discussed in the literature, though the connection
between the often used and competitive f-penalty and the y-penalty is "not as well
understood” as noted by Brown et al. [2005b]. These penalties are given by:

f-penalty: e} = L(fo —9)2 +7(fu — ) > (fi = ) (3.9)
i

= (fm =9 —(fm — f)? 3.10)

y-penalty: e = L(fm —v)> +9(fm—v) > (fi—v) (3.11)
j#m

Equation (3.9) can be transformed to Equation (3.10), for the following holds true:
Si=H = =Um—D.
Jj#Fm

The gradients of the penalty functions are after some transformations given by:

(1)
f-penalty: ({?;fm = (fm—y)—~ {2 (1 — 1) (fm — f)} (3.12)

j#m
= 1=-Nfm—-y)+Af-y)
26(1)
Laf;" = 1—)\(1—%)
865721)
y-penalty: of. (fm = 9) + XD (i —v) (3.13)
m j#m
M
= (fm—y)+ /\[(Z(fj =) = (fm —v)]
= (fm =) +AM(f —y) = (fm — v)] (3.14)
= 1=Nfm—y) +AM(f—y)
82652)
afz
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3 Ensemble Learning

where

A= 2y(1- )

is the strength parameter and relates the ensemble size M to the penalty. To derive
Equation (3.14) from its previous line, I just use the fact that uniform weights are
assumed. Therefore, the following holds true:

D Fi—y)=M-(f-y.
J
Both penalty functions can be evaluated separately. But they are connected through
a simple weighting in the derived gradients. I join the both decompositions by intro-
ducing the parameter T and define the T-penalty:

oeX

m
Ofm
The upper equations can be derived by setting T to T =1 (3.12) or T = M (3.13)
and thus varying between the extremes of f- and the y-penalty. We are now given a
family of parameterized functions, aside from A\, depending on the new parameter T.

Any predictor f, = > Wgm@gm is given as a linear combination of internal (non)-
linear functions ¢. According to the argumentation of Brown et al. [2005c], one can
derive an upper bound for the strength parameter \: It has to be ensured that every

e

entry of the diagonal corresponding to the gth weight of the mth predictor, 55, has
am

T-penalty: = (1=XN(fm—y) +AY(f —y). (3.15)

to be positive-valued. Otherwise all of the entries of the corresponding Hessian matrix
could not be positive-definite. Applied to the T-penalty, this leads to the following
derivations:

0 < 9%l [ 0 0ell Ofm 0  Ofn ] 0ek
5‘w§m o | OWqm Ofm | Owgm OWgm OWgm, | Ofm
[ 0

A fm +[ 9 0fm}aem

6wqm ﬁwqm 6wqm afm

- (L= N — ) + AT(F = yﬂ

| Qwgm

T
= <¢qm - )\qum + )\MQSqm) ¢qm

T
= ¢qm - A (¢qm - M¢qm):| ¢qm

[ T
e
0?%el
= Pam

af3,
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& 0< {1—)\(1—]\5)] o

M
P > AR, (M_T)

M
2
. rgm
A< (M T
am M
M
A 1
= < Uo7 (3.16)
To the upper bound of A does apply:
o0 ifY = M
ifT =1
M M—1 '
A< 7T 2 - 1 (3.17)
— -
M2 -1 M
1 ifY =0
Recall the ensemble error rate as
- 1
€ens = (f_y)2 = (M;fm_y)Q'
With A = 1 in a fully connected ensemble, a single-unit-like ensemble, we achieve:
O€ens 12 . 1
= —(f- fY = —
Oy~ M (f=v i M
oeX 667}1 O€ens
mo= = M= ifY =1 3.18
O~ |0y 0k (3.18)
Oe de
mo_ M2 ens YT = M
Ofm Ofm

What does this mean for T and A? The corresponding situation depends on the chosen
value of parameter T giving the derived upper bound for X as illustrated in Figure 3.1.
The more Y is next to zero, the smaller is the possible range of A. If T is next to
M, the possible range of A gets unbounded. The discussed problem that arises when
the parameter T actually goes to M, is mainly a computational one. It can no longer
be guaranteed to find an optimal strength parameter A, when theoretically no upper
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3 Ensemble Learning

bound (A < o0) is given. However, as Brown et al. [2005b] already stated for T = M
corresponding to the y-penalty function in Equation (3.13), a larger T leads to an
increase in speed and allows a faster convergence due to the steepness of the error
landscape. This behavior can be explained due to:

%ef, M-7
1A (M)

of2
1
1—A 1_M2> lfT:M
—J1-AX 1—]\14) ifY =1

PPN NN

A, upper bound

—_

O NWROIONPONSNWRNION®OW

o

M, number of ensemble members

Figure 3.1: Upper bound of A given by M and Y € {57, 1,2,3,5,10,20}.
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4 LERRANCO Architecture

This chapter introduces to the proposed ensemble architecture LERRANCO using Lo-
cal Linear Maps (LLMs) based on SOMs. LERRANCO is the acronym for Local Linear
Ensembles for Regression with Resampling And Negative COrrelation Learning.

Since in many application areas the issue of learning speed is as important as the
issue of prediction accuracy [Jordan and Jacobs, 1998], I propose to combine SOMs
to an ensemble structure. Regarding Self-Organizing Maps (SOMs), training an en-
semble or, more generally, a set of SOMs has been proposed quite early by Fritzke
[1994], allowing growing structures, hierarchically arranged structures [Miikkulainen,
1990] or a combination of both, as proposed by Dittenbach et al. [2000], or by Multi-
SOMs [Goerke et al., 2001]. Ensemble Learning offers by contrast to these approaches
a non-competing strategy of training the single networks.

4.1 Related Work on SOM Ensemble Learning

Ensembles of SOMs have primarily been studied in the context of ensemble methods
for clustering and are still part of active research. SOMs have been shown to be one of
the most popular tool for clustering, classification, data mining and visualization pur-
poses due to its topology preserving property. Though, with SOM ensembles one loses
the comprehensible and interpretable structures, facilitating analysis and enhanced
visualizations, as it is for any other learning architecture applied. We are faced with
the problem of finding an appropriate consensus scheme for clustering of prototypes
in ensembles. We can not hope for a consistent common clustering over the inde-
pendently trained predictors, which would just require some aligning or re-labeling of
clusters. This issue can be handled by mapping the total set of resulting prototypes
onto a subsequently applied SOM approximating as a secondary clustering. But this
process increases computational costs and we cannot rely on a comprehensible map or
visualization.

What it makes so hard or even impossible to cope with are indeed some stochas-
tic elements imposed by the design of SOMs: First of all, the prototype vectors are
randomly initialized either linear in input space or along the first principal compo-
nents. The second element is the random order, in which the samples are presented
while training. However, this is a necessary condition for successfully applying SOMs
in general. The commonality of clusterings is hampered arguably the most by the
techniques, which boost the diversity along the ensemble predictors. Some ways of
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overcoming this dilemma between commonality and essential diversity in SOM ensem-
bles are discussed in the literature. Petrakieva and Fyfe [2003] examine how some
constraints on the initial conditions of SOMs help to give clusters, which are compa-
rable from net to net. They investigate to force the commonality by incrementally
constraining the centers of the second and subsequent SOMs to the positions of the
centers learned by previous SOMs. An alignment procedure by matching pairs of clus-
ters, whose number of overlapping samples is the largest, is examined by [Jiang and
hua Zhou, 2004; Zhou and Tang, 2006]. Georgakis and Li [2005] fused several SOMs
into one final map incrementally by merging the nodes of one SOM onto previous
SOMs at each time. Doing so, any topology and neighborhood along the single SOMs
is destructed.

4.2 Proposed LERRANCO Architecture

Nevertheless, in all of these approaches the set of single predictors has been acting
independently of each other. In the light of new theory behind EL, in particular
NCL, the question arises if SOM EL can benefit from non-independent learning when
individual learning stages are interlinked by inter-SOM diversity error rates.

In order to transfer the common core issues in ensemble construction into the special
context of LERRANCO architecture, its necessary to pick up the general context as
mentioned at the beginning of the previous Chapter 3:

How to generate the training sets? Inspired by the advantages of the RF architec-
ture, the ideas of building powerful estimators with part-adapting structures
are adopted. The proposed ensemble architecture LERRANCO integrates the
resampling methods Bagging (3.3.1.1) and RSM (3.3.1.2).

Which learning algorithm to employ? The initial issue was to model the non-linear
relationship between peptides and their intensities in mass spectra. The SOM
has been shown to be a valuable tool for this modeling purpose with major
advantage due to its topology preserving characteristic, its fast training and its
low memory-usage.

The answers to the two preceding core questions are evaluated and discussed in
details in Chapter 5.

How to assess models? NCL allows to balance between the single predictor accuracy
and diversity, controlled by the cooperation among the SOMs, for improved
generalization performance. With the NCL strength parameter A, one varies
between the extremes of independently acting predictors and a fully-connected
ensemble. The evaluation of the integration of the NC penalty term is addressed
in Chapter 6.

How to combine the predictors’ output? The aggregation by averaging is probably
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the most simple and widely used method to form an ensemble predictor and is
covered in Chapter 7.

A schematic description of the proposed LERRANCO architecture is depicted in
Figure 4.1. It includes the following steps according to the listed Algorithm 1:

Vi V2 V3 S vd M bootstrapped training sets Ty, of size NxK

Figure 4.1: Schematic overview of proposed LERRANCO ensemble architecture. First
step is the training set generation (sub-sampling). The second component
is the training of the SOMs. The LLM performs a fitting of locally trained
linear mappings based on the M SOMs. Third component is the explicitly
quantification of diversity between the predictors taken into account by
NCL. The outputs are combined to form the ensemble prediction f.

LERRANCO(T, M =100, K < d;,, T =1, A =1, VQ("SOM", 2 x 5, 0 = 2.0)).

The architecture requires the number M of LLM predictors. For each network
m =1,..., M, the bootstrapped samples are created with replacement of size N from
training data T € R™*%=, In addition, a random subset of features K,, of size K
(without replacement) is taken. With K < dj,, the entire learning task given by
T ¢ RV*K is sub-sampled and each predictor acts in a randomly sampled subspace
of size K. Each of the M LLM models are used to carry out the presented sub-task T,
of size N x K given by all the samples (x,,, y,,) contained in T,,. The LLM predictors
may be based on any of the VQ-based approaches, like GNG, NG, FCL or SOM. The
weights of each node are updated according to the gradient descent procedure. The
width of the step is determined in accordance to NCL. The remaining two parameters
T and A concern NCL (3.3.2 on page 52 and 3.3.3 on page 53) and define the type and
strength of NCL. The ensemble predictors are evaluated and aggregated to form the
ensemble prediction by simple averaging.

A publicly available R package providing my implementation of the LERRANCO
architecture is found here Scherbart [2009].
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Algorithm 1 LERRANCO(T € R % M = 100, K < dip, T = 1, A\ = 1,
VQ("SOM", 2 x 5, 0 = 2.0))

Require: Training set T = {(x1,91),..., (XN, yn)} with di, features
Require: M, the number of predictors in the ensemble
Require: K, the size of random subspaces (K < di,)
Require: T, the parameter inducing the type of penalty function for Negative Cor-
relation Learning (NCL), default is T = 1
Require: )\, the parameter for NCL, depends on T (0 < A < 1)
1: for m =1 to M for each network do
2:  Create bootstrapped samples T,, with replacement of size N from the training

data T
3:  Take a random subset of features K, of size K (without replacement)
4: end for
5: Train LLM models fi,..., fas with (Tl, I(l)7 RN (TM, KM):

(=2

: for n =1 to N for each training sample (x,,y,) € T do
7. for m =1 to M for each network if and only if (x,,,y,) € T, do

8: Find winner node « € {1,...,n;} which is located closest to sample x,,:
k = argmin; {||x, — wi"[|}
9: Map sample x,, to output value by winner node x as a winner-take-all rule:
fm(xn) = Culxn) = W' + A, (Xn - WLH)
10: Evaluate ensemble members and aggregate to ensemble prediction by averag-
ing:

FO0) = 17 S Fnxa)

11: Determine mean error (MSE) for each ensemble member:
€m = (fm(xn) _yn)2
12: Determine gradient descent step in accordance to NCL:
ey -
S 0] = (L= M) finl)) + XY i — Fx)
13: Perform a single update for the weights of nodes v; = (wi?, wout A;):
Aw'"(x,) = €™ hig - (x5 — Win)

AW () = | 52

afm(xn)}
m)T

6A . hio_ . {86771 (Xn):| (xn—Wi

AA;(xn) O fm e P

14:  end for
15: end for
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4.3 Accurate and Diverse Ensemble Predictors

Sharkey [1996] subdivides the factors in efforts to obtain diverse ensembles of neural
networks into initial conditions, the training data, the topology of the nets and the
training algorithm. However, I agree with Brown et al. [2005a] that the taxonomy
is valid for the majority of methodologies emphasizing on diversity and allows to
categorize them. But with NCL, none of the above mentioned categorizations can
be applied. The categorization of diversity strategies is adopted and extended in this
thesis as follows:

1. In this approach, the hypothesis space is directly connected to the positions of

the nodes v; = (wi?, wou A;). The diversity along the ensemble predictors in
my architecture arises first of all from the random starting initialization of the
nodes v;. Hence, the starting point in hypothesis space is determined for time

t=0: wo = (T, Ki), where K,,, is the subset of variables randomly chosen.

2. The set of accessible hypotheses is restricted to the information accessible to the
learner. This is enforced by aggregation of the resampling techniques Bagging
and RSM, thereby altering the training sets and presenting each single network
a separate subtask of the entire learning task.

3. The intra-member or intra-SOM diversity is a intrinsic property of the SOM,
as a single SOM can be seen as an ensemble itself. Though the weights are
not equally distributed, they rather depend on the distance of sample x,, to its
closest prototype wi. That is,

fm(xn) = szm¢zm(xn) = thaczm(xn) (4].)

with Y hi; = 1land hig > 0Vi=1,...,m.

When varying the width o of the Gaussian neighborhood function, h;,, which
refers to the short form of Equation (2.1) on page 16, the connectivity of nodes is
changed. With a weak connectivity, one can expect diverse SOM nodes, inducing
a VQ similar to k-Means, but with high prediction error. On the other hand,
a strongly intra-connected SOM should offer non-ambiguous nodes with a low
intra-SOM diversity. The nodes while supervised training are adapted according
to:

Oen,
Ofm
Oen,
Ofm

AWM (x,) = € hyg - [ (xn)}
)T

(Xn):| (o 7Wiin

: in 12
in
||xn w;

AAZ(XTL) = EA . hig . |:
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den,
where ae%(xn) = (Yn — fn(xn))

and e, = %(yn_fm(xn))2

et €A denote the learning step widths.

4. The methods that explicitly encourage diversity can be interpreted as a directed
traversal of hypotheses space. In case of NCL the ensemble members interact
and are forced to follow different trajectories in hypotheses space. I emphasize
on noting this to be a inter-member strategy:

geT:<xn> = (1= X)W = Fn(0)) + XY (g = F(x2))

Introducing a strong focus on the explicitly quantifying and boosting diversity along
the SOMs enforces the variances between the ensemble predictors and will be referred
to as inter-SOM diversity (DIVipter) in the remainder.

The diversity arises over a combination of several factors: We have to discriminate
between implicit and explicit, as well as between inter- and intra-SOM diversities.
The first is the ezplicit diversity forcing impact by NCL on inter-SOM level. By the
combination of the two resampling methods Bagging and RSM the diversity between
SOMs is enforced implicitly. One interesting feature of the SOM architecture is that a
single SOM can be seen as an ensemble itself, where each node represents one classifier
and a locally acting function approximator. As a consequence, each SOM has a di-
versity feature representing the variances between the nodes and I refer to this as the
intra-SOM diversity (DIViyes). The third factor is the implicit diversity inside the
SOMs controlled by the width ¢ of the Gaussian neighborhood function correspond-
ing to the connectivity of nodes. The intra-SOM diversity is affected by the explicit
forcing of the diversity along the ensemble predictors by NCL.

This distinction of diversity boosting factors is outlined in the following Table 4.1.

Diversity implicit explicit
inter-SOM  Bagging, NCL
RSM
intra-SOM initial conditions, inter-SOM diversity due to
weights, NCL
topology, o

Table 4.1: Diversity boosting factors in the LERRANCO architecture.

The factors promoting diversity in the proposed ensemble architecture are of ma-
jor influence on the trajectory through the hypothesis space schematically depicted
in Figure 4.2. The entire hypothesis space (dashed line) is restricted to the set of
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accessible hypotheses indicated by the solid line. Every SOM-predictor corresponds
to a point in the space H approximating the true hypothesis with an extended region
of coverage (intra-SOM diversity). The traversal through H is forced by the learning
procedure incorporating NCL, such that the aggregation of hypotheses finds the best
approximating ensemble hypothesis.

/ hypotheses space

accessible hypotheses

e true hypothesis f
o hypothesis f1, m
intra-diversity

NCL

Figure 4.2: Schematic representation of the hypothesis space and the diversity.

4.4 Quantification of Intra-SOM Diversity

To address the issue, if and to which extent the diversity between the SOMs is propa-
gated to the nodes of each single SOM, an auxiliary quantification is required. Under
the presumption of an aggregation by the winner-take-all rule (see Equation (2.2) on
page 16), only the entire error rate MSETes; or MSEpap, is accessible.  The exact
amount of intra-SOM diversity cannot be assessed directly as proposed for an ensem-
ble to quantify the DIVi,er (see Equation (3.7) on page 50), unless the requirement
of equally distributed weights (w; = 1/n;) is imposed. This allows to quantify the
intra-SOM diversity for one single SOM after decomposing the error rate of each SOM

according to the ensemble error rate for all nodes i = 1,...,n; of SOM number m:
m BN 2 RS 2 2
DIVintra = 771 Z(sz - fm) = ’l”Tl Z(y - sz) - (y - fm) (42)
i=1 i=1
| M
DIVintra = M DIthra (43)
m=1

The estimated amount of intra-SOM diversity can now be assessed via Equation (4.3)
on page 63 representing the variances between the nodes.
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4 LERRANCO Architecture

4.5 Related Work on SOM Ensemble Learning with
NCL

There have been two works recently published on this topic: Minku et al. [2009]
demonstrate the usefulness of NCL applied to neural networks with focus on incre-
mental learning algorithms. They compare the performance of ensembles of fixed size
to an incrementally growing ensemble as well as to Self-Organizing Neural Grove [In-
oue and Narihisa, 2003] as an extension of the SOM. In case of the growing networks,
initially starting with just one network, a new network is inserted per each incoming
data set. The strength parameter v for NCL was chosen in their study to be 0.390625,
based on preliminary executions and uniform over all data sets.

Prudhomme and Lallich [2008] use NCL for ensemble selection and apply SOMs of
size 20 x 20 for knowledge discovery purposes, but without a randomization in their
samples while training. A randomization in samples after each epoch while training is
the most probable way to overcome the shortcomings of learning the samples by heart.
For classification purposes, a population of 100 maps is trained each with a random
subset of variables of size v/d;,. From this population, they employ genetic algorithms
to find the subsets of maps, which optimize the ensemble error rate, resulting in best
subsets of size M = 35 to M = 45.

4.6 Conclusion

In this chapter, I propose a neural network ensemble architecture based on Self-
Organizing Maps (SOMs), namely the Local Linear Ensembles for Regression with
Resamp-ling And Negative COrrelation Learning (LERRANCO). T introduce the con-
cepts of Negative Correlation Learning (NCL) into the field of SOM ensemble learning.
NCL allows to balance between the single network accuracy and the diversity controlled
by the cooperation along the ensemble networks thereby dispensing with a sub-local
accuracy inside each SOM. The categorization of diversity strategies is adopted and
extended in this thesis to distinguish the diversity in SOM ensembles arising over a
combination of four factors: The first factor is the explicit diversity forcing impact
by NCL on inter-SOM level. By combining the two resampling methods Bagging and
RSM the diversity between SOMs is enforced implicitly. The third factor is the implicit
diversity inside the SOMs controlled by ¢ corresponding to the connectivity of nodes.
The intra-SOM diversity is affected implicitly by the inter-SOM diversity due to NCL.
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5 SOMs as Accurate and Diverse
Ensemble Predictors

Given the bias-variance-covariance decomposition, diversity is the characteristic factor,
since the ensemble error decreases as the diversity increases. If SOMs are suited at
all to fulfill the theoretically posed requirements of weak and unstable algorithms as a
basis for ensemble learning, will be verified in this chapter.

The characterizations of weak and unstable learners help to understand why and
when SOM ensembles improve the prediction performance compared to any of the
other VQQ-based approximations in input space as basis for Local Linear Maps, like
(Growing) Neural Gas and Fuzzy-C-means clustering (see 2.3.1 on page 15). I show
which parameters are of major influence on the ensemble error rate and the diversity in
SOM ensembles. Using the proposed method the resulting accuracies are comparable
to those obtained by other reference architectures. When employing the re-sampling
methods, it is expected that every single predictor adapts to different parts of the same
learning task.

In this chapter, special consideration is placed on the factors which implicitly pro-
mote the diversity along the ensemble predictors. The evaluation is subdivided into
the factors as recommended by Sharkey [1996]:

Training algorithm The type of VQ-algorithm (GNG, SOM, NG and FCL) the Local
Linear Map is based on, is addressed in Section 5.2.

Topology of the nets In Section 5.3, the ensemble size M is varied in order to explore,
how many predictors are sufficient.

Training data The application of resampling techniques Bagging and RSM by a vari-
ation in the size K of the randomly subsampled feature spaces is examined in
Section 5.4.

Initial conditions In Section 5.5, the effect of the grid size of each SOM and of the
Gaussian neighborhood width on the ensemble prediction performance is evalu-
ated.

The resulting generalization performances of the proposed ensemble are compared
to Random Forests, Multi Layer Perceptron (MLP)-based ensembles as well as to the
v-SVR for several benchmark datasets.
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5 SOMs as Accurate and Diverse Ensemble Predictors

5.1 Evaluation

I use five different benchmark datasets, synthetic as well as real-world ones to allow
a general comparison to other ensemble architectures. These datasets are introduced
in Section 2.2 on page 13. LLMs based on GNG, NG, SOM and FCL are applied
for comparison purposes of the prediction performance. The output of M = 100
predictors are combined and aggregated by simple averaging and the reported results
in terms of the mean squared error (MSEres;) for the accounted test sets are averaged
over 50 repetitions. The test sets have not taken part in training. Except for the
Friedman dataset, 10% of the samples are randomly selected and put aside for testing.
The remaining 90% are used to build the predictors. For the Friedman dataset, 2200
samples are newly generated in each iteration. QOut of these, 200 randomly selected
samples are used to build the predictors and 2000 for testing. All features are centered
and normalized (see Section 2.3.4 on page 26) prior to training.

The single predictors are built and combined by a call to LERRANCO(T, M = 100,
K <dpn, T=1, A =0, VQ(.)). M bootstrap training sets T,, (m = 1,..., M) are
the training bases for the constructed predictors f(x, Ty, K,,) = fim(x) that are used
to form the bagged ensemble predictor f. Any predictor is constructed with uniform
parameters, e.g. VQ("SOM", 2 x 5, ¢ = 2.0). The internal parameters of the LLM
algorithm were set to €™ = [0.5,0.01], e°"* = €A = [0.3,0.01] decreasing exponentially
over t;,q, = 40 learning epochs. The prototype vectors are initialized to lie along the
first principal components and the samples in T,,, are randomly shuffled while training.
The degree of fuzzification in case of FCL is set to pu = 2.

For each of the datasets, three non-linear regression architectures, RandomForests
(RF), MLP-based ensembles as well as the v-SVR are also applied for comparison.
The v-SVR (see 2.3.2 on page 20) generalizes an estimator for the mean of a random
variable discarding the largest and smallest samples (a fraction of at most /2 of either
category). Other parameters that have to be chosen are the regularization parameter C
and parameter ygpr controlling the width of the radial basis kernel function. For the v-
SVR, a grid search runs over C' € {e=3,e71,... e!3} and ygpr € {e 13, e, ... €%}
in steps of €2, and v € {0.2,0.3,...,0.8} in steps of 0.1 to determine the best pa-
rameter set using 10-fold cross-validation. The RF performance is evaluated with
M = 500 trees grown and di,/3 randomly sampled features as candidates for each
node split (see 3.3.1.3 on page 52). The MLP results are given by M = 10 with six
hidden nodes and a linear kernel.

5.2 Training Algorithm
The applied VQ-based clustering algorithm is supposed to be the key element for

the success of ensembles. The VQ-algorithms differ inherently in their objectives of
approximating the distribution of the samples in input space. For example, with GNG
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5.2 Training Algorithm

successively new nodes are inserted, if necessary, according to local error measures.
The distribution of the training samples in input space is not inevitably related to
the distribution in output space. Hence, the chance of over-fitting may be increased
as opposed to a predetermined, fixed number of nodes as for NG, SOMs or FCL. On
the other hand, this may be advantageous if different subtasks of the learning task
demand and benefit from an adaptation with different numbers of nodes. Larger nets
are not expected to be classified as weak learners as the variance is increased.

At first the number of nodes n; or the size of the grid in case of the SOM is varied,
while the remaining parameters are kept fixed with default values. For NG or FCL,
a grid search runs over reasonable network sizes 2 < n; < 15. The two-dimensional
grid of each SOM is expanded from (1 x 2) up to (5 x 7). The optimal network
size is determined by the minimum test error rate over 20 repetitions. Next to the
number of nodes n; approximating the training data presented, the parameter grid
search runs over the size K of the randomly sampled feature subsets by RSM. Apart
from the high-dimensional dataset AAindex, K is varied from about one third of the
entire dataset dimensions d;, incrementally in steps of 1 up to K = d;,. In case of
AAindex, the grid search runs over K € {10, 15,20, 25, 30, 50,100, 531}. Randomly
selected variables uniformly distributed build up the training sets (T,,,K,,) of size
N x K as re-sampled bases for the regressors f(x, T.,,K;,) = fm(x). Every ensemble
predictor is generated with only a subset of training samples and a feature subset of
size K.

We are interested in further insights into the interdependencies between the eval-
uated parameters of the proposed LERRANCO-architecture combining Bagging and
RSM and the resulting test error rate as well as in the diversity. It is worth to recall
that the ensemble error rate € is given by the difference between the mean error per

map and the diversity, denoted by € = (y — f)?> = MSEnap — DIVinter-

The results are listed in Table 5.1, where the test error is given in terms of MSEr
for the evaluated four LLM-variants based on GNG, NG, SOMs and FCL in direct
comparison to RF, MLP-ensembles and the v-SVR as reference. The best parameter
set with minimum MSEres over grid search parameters (n;, K) in case of the LLM
and over the v-SVR, parameters (v, yrpr,C) is found in Table 5.2. In Table 5.1 per
each dataset the corresponding optimal accuracy of the generalizing learning architec-
ture is marked bold. If comparing solely the different LLM-variants, the SOM-based
ensemble algorithm apparently outperforms the others. In case of Friedman, Forest-
fires and AAindex the LERRANCO regression ensembles based on SOMs yield the
best generalization performance compared to every other applied ensemble method.
Only the v-SVR has an advantage over the LERRANCO models for the Friedman and
AAindex data. For the other data sets the LERRANCO based on SOMs performs with
comparable results to the reference learning architectures. To this end, the evaluations
in the remainder of this chapter are given for LERRANCO ensembles based on SOMs.
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5 SOMs as Accurate and Diverse Ensemble Predictors

MSE Test LERRANCO based on
Dataset GNG NG SOM FCL RF MLP** p-SVR
Friedman 6.2 5.4 5.2 7.6 5.7% 7.7 5.1
Boston 11.7 11.7 11.3 14.87 10.2* 23.2 10.5
Forestfires 4.2 4.1 4.0 4.1 4.6 4.3 4.2
NO2 0.28 0.27 0.26 0.26 0.22 0.30 0.25
AAindex 1.37 1.05 1.04 1.09 1.26 1.20 1.03

Table 5.1: Test error (MSE), averaged over 50 iterations. * Results are taken from
Breiman [2001]. ** The MLP results are given by M = 10 with six hidden

nodes.
LERRANCO based on
GNG NG SOM FCL v-SVR
Dataset n; n; n; n; v ~rpr C
Friedman 14 5 2X%X6 2 0.2 -5 9
Boston 32 5 2x5 4 0.2 -3 3
Forestfires 31 6 1x2 4 0.2 3 11
NO2 32 5 1x4 6 0.2 -3 1
AAindex 23 7 2% 2 3 0.6 -11 9

Table 5.2: Optimal parameter set for LERRANCO, i.e. the number of nodes with
minimum test error (MSE), averaged over 50 iterations. For GNG, the
number of nodes is averaged over the predictors.
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5.3 Topology of Networks

In this section, the focus is on the “complexity” of ensembles. The ensemble size M
is varied in order to explore how many predictors are sufficient. Given the previously
determined optimal grid sizes for the SOM algorithm in Table 5.2, they are kept fixed
as constants.

If predictors in an ensemble share common properties of the learning task at hand,
i.e. they exhibit only low diversity or high similarity, no gain in accuracy is anticipated
when increasing the quantity of ensemble predictors as compared to just one single
learner. If the individual ensemble predictors are diverse at a sufficient level, they
are expected to cover different sub-tasks and hence a growing number of ensemble
predictors is expected to yield an appreciable improvement in ensemble accuracy.

In Figure 5.1 the MSEres is plotted against the number of ensemble predictors
M € {1,2,10, 20, 30,40, 50, 60, 70, 80, 90, 100} for Friedman, Boston, NO2 and AAin-
dex data. Note that the feature vectors are subsampled by RSM for each ensemble
predictor with K € {5,10} for the Friedman data (a), K = 8 for the Boston (b), K =5
for the NO2 data (c) and K = 25 in case of the AAindex data (d), as denoted in the
header title of the plots. Having trained LERRANCO ensembles on the Friedman data
with all K = 10 available features, the dashed curve in (a) indicates that a growing
number M > 1 of predictors has little impact on the accuracy in terms of MSErest.-
This is explained by the low diversity between the individual predictors trained with
only small deviations in the training sets induced by Bagging. In contrast to that, if
K is set to K < djy,, the error rate curves of MSETes¢ with regard to M show that the
most significant reduction is achieved with ensemble sizes of up to M = 20. Beyond
this point, the slope of MSEre: is still negative with a growing number of ensemble
predictors. Apart from some statistical deviations, the lowest ensemble MSErq is
achieved for M — 100.

Therefore, the number of ensemble predictors M > 1 is necessary but not sufficient
for ensembles succeeding over single predictors. One can rather deduce gain in diver-
sity, e.g. by RSM, as premise for improving the accuracy of ensembles with M > 1.

5.4 Training Data

With Bagging, an implicit diversity enforcing function approximation is applied. Tra-
versing through the hypothesis space, only one of the targets accuracy and diversity
can be tuned, which is in contrast to NCL, where one tries to find explicitly the “right”
balance between these targets. The amount of diversity, which is brought into the
ensembles only due to training with the bootstrapped samples, is not yet considered.

The effect of the diversity implicitly promoting method on the MSE e is evaluated.
To approve Bagging as a suitable training set generation method, the resulting ensem-
ble generalization capabilities are compared to those obtained without bootstrapping,
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Figure 5.1: MSE ey for LERRANCO models based on SOMs when varying number
of ensemble members M.

i.e. T, =T;, Vj,m € {1,..., M}. The resulting performances are given in Figure 5.2
on page 72, where the MSETes; is shown with regard to a varying size K of randomly
selected subspaces for each ensemble predictor. The dashed lines correspond to the
ensemble versions trained without bootstrapping. Even if the non-bootstrapped en-
sembles error rate curves are close to those including bootstrapping in some cases, the
application of Bagging induces a clear advantage due to the gain in diversity.

5.4.1 Size of Random Subspaces

As stated in Section 5.3 on page 69, the diversity along the ensemble predictors and the
implicitly forced negative correlation in errors is a premise for the success of ensembles.
One substantial component of the LERRANCO architecture is the RSM, which forces
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the diversity by sub-sampling the features available for each ensemble member. To
address the issue of the relation between MSETes; and the number K of randomly
selected subsets of features, the following Figure 5.2 is given. The relationship of K
and the MSE . for each of the datasets and ensembles of size M = 100 is analyzed.
Apart from the NO2 data, ensembles have considerable advantage from splitting the
entire task into several sub-tasks by RSM. The aggregation of part-adapting predictors
leads to a better adaptation and a lower MSE ., in general. The ensembles error rate
curves exhibit the lowest MSEes¢ for K < dj,. If the number K of randomly sampled
features is too small though, the individual predictors are no longer capable to extract
the relevant information for modeling the sub-task appropriately.

5.5 Initial Conditions

The application of the SOM requires several parameters to be set and some difficulties
may be encountered from tuning them. Among the grid size, the type of initialization
of prototype vectors, the number of epochs, the initial and final value of learning rates
as well as of the Gaussian neighborhood width, the size of the parameter space is even
enlarged when applying the LLM. In the context of EL, the question crops up, if the
complexity of the search over the parameters is raised. A fine-tuning of each parameter
individually for each SOM inside an ensemble would mean an infeasible effort needed in
practice. Actually I can show that the demand for individually fine-tuned parameters
fades into the background with ensembles of SOMs. Moreover, the SOMs profits from
the necessary requirement of weak learners in EL. Improved prediction accuracies are
obtained with the parameters set according to rules of thumb. This will be illustrated
for the two main parameters, the grid size and the Gaussian neighborhood width, o,
and their impact on MSET. and the diversity.

5.5.1 Grid Size

To determine the effect of grid sizes, the number of nodes of each SOM is varied while
the other parameters of the SOM as well as of the architecture are kept fixed. The
call to LERRANCO is done by (T, M = 25, K < din, ¥ =1, A = 0, VQ("SOM",
ny, o = 2.0)). Reasonable network sizes are tried and the two dimensional SOM-grid
is expanded from (1 x 2) up to (5 x 7). The optimal network size is determined by
the best test error rate over 10 iterations. Evaluation is done over varying K and grid
sizesn; =2 x14,i=1,...,6 as in Figure 5.3 as an example given for the Friedman and
AAindex data. Best ensemble accuracy is obtained by K = 9 and n; = 2 X 5 in case
of Friedman data (a) and by K = 50, n; = 2 x 2 for AAindex data (b). Note that o
was set to the initial value of 2.0 for all M = 25 ensemble predictors uniformly.
Increasing the size of the networks leads to a loss in generalization performance,
since every net gets too specialized to the presented subtask. As expected, powerful
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Figure 5.2: MSE e for LERRANCO models based on SOMs when varying size K of
randomly selected subspaces for each ensemble member.
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Figure 5.3: Test error rate (MSETes;) when varying K and the number of nodes ny, i. e.
grid size for SOMs. Best ensemble accuracy is obtained by K = 9 in case
of the Friedman data and with K = 50 for the AAindex data. Note that
o was set to an initial value of 2.0 for all ensemble predictors uniformly.

ensembles are generated with small nets of low complexity, i.e. a low number of nodes
(n; = 3 up to =~ 10). At least for the small data sets, roughly speaking, this means
that the gain in diversity is abrogated by the increase in MSEp,p.

5.5.2 Gaussian Neighborhood Width

To apportion the effect of o to the MSE e, the initial connectivity of nodes o is varied
from 0.4 to 5.0. o decays from o; to o exponentially with the training steps. Towards
the end of the training process, only slight locally adaptations are done according to
the small learning rate and a variation of the final oy has low effect.

In Figure 5.4 the results are given for the dataset Friedman (and AAindex) in terms
of MSE e for K = 10 (K = 25). For the Friedman data, there exist clear minima
with ¢ =~ 0.4,...,1.0, where the error rates MSEres, (a) and MSEw,, (b) show its
lowest values. This is explained by the increase in diversity between the ensemble
predictors (b). For ¢ > 1.5 the MSEn,, basically constitutes to the MSEreg;. In case
of AAindex data (c), a relation between MSErest and o is not apparent. With o > 2,
a state of saturation is reached due to the small number of nodes supplied in this case
(2 x 2) and hence an initial 0 = 2.0 should be a suitable choice.
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5.6 Discussion

With the concept of EL, ensembles of SOMs provide considerable advantage from the
aggregation of part-adapting structures. If and only if the ensemble predictors are
diverse enough, the MSE ¢ may be improved when adding more ensemble members.
It turns out that a quantity of M = 100 is a good compromise between the result-
ing ensemble test error rate and the effort needed for additional storage capacities.
The drawbacks arising from the increased capacities needed to store the M ensem-
ble predictor models, as compared to single predictors, are reduced by actually lower
capacities of each individual ensemble predictor.

By the application of the re-sampling methods, Bagging and RSM, the size or com-
plexity of the training sets are reduced significantly, see Figure 5.2 on page 72. An
exact quantitative evaluation of the complexity and of the computation time for the
LERRANCO architecture is discussed later in Section 6.8 on page 95. The effective
reduction in the number of SOM internal parameters is very attractive in practice.
The computational effort is reduced dramatically with the parameters set uniformly
over all ensemble predictors and the prediction capabilities are enhanced at the same
time. The critical parameters left are merely the grid size and the number of randomly
sampled subspaces used for training. If the number of randomly sampled features K
is too small though, the predictors are no longer capable of extracting the relevant
information for modeling the particular sub-task at hand. Subject to the restrictions
in that situation, the application of Bagging, i.e. leaving out approximately 36% of
the samples, even more stresses the lack of information as well as the effect of noise.

Each model’s complexity is tweaked to a low number of nodes, i.e. small grid sizes,
conform to the postulation of weak and unstable learners (see Figure 5.3). With a
small width of neighborhood function, the connectivity between the nodes inside of
each SOM is reduced and the individual nodes are forced to specialize locally. This
way, the ensemble accuracy is improved by forcing the diversity along each individual
predictor (see Figure 5.4).

In Figure 5.5 on page 76 scatterplot-matrices are depicted with regard to the pa-
rameters K and n;. The resulting MSErest, MSEpap and DIVigee, are reported for the
datasets Friedman, Boston, AAindex and NO2. Over all evaluated datasets, roughly
speaking, the size K of subspaces randomly sampled is a counterpart to the number
of nodes n; with regard to MSEw,, and the diversity among the ensemble predictors.
When forcing the locality of the approximating predictors by lowering K, the increase
in DIViper comes at the cost of the sub-local accuracy in terms of MSEy,,. The op-
posite holds true for the number of nodes n; supplied: By a higher number of nodes,
the commonality along the predictors is reduced, i. e. DIViyter is boosted, when forcing
the local specialization of approximating SOMs. For an improvement of ensemble per-
formance, the parameters K and n; have to be balanced against each other in order
to compensate the deterioration of MSEy,, for an increase of diversity among the
ensemble predictors. The specialization of the ensemble predictors locally adapting to
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Figure 5.5: Scatterplot-matrices for datasets Friedman, Boston, NO2 and AAindex.
The terms MSETest, MSEnap and DIViyer are recorded regarding the size
K of features sampled and the number of nodes n; each SOM is trained
with. The fields of the matrix are colored with gray values, reflecting
the correlation between the according measures, K and n;. Correlation
values r € [0, 1] are mapped to gray values (white (no correlation) to light
gray(|r] = 1)). The upper panels show the exact r. The lower K, the higher
is the resulting DIVjpter- The increase in DIViyte, comes at the cost of the
sub-local accuracy in terms of MSEnyp.
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5.7 Conclusion

the sub-tasks facilitates the ensemble to achieve a higher overall generalization ability.

5.7 Conclusion

The output of several LLMs based on SOMs is aggregated to build powerful part-
adapting learning machines. This concept has been shown to increase the predictive
power over single base learners. The proposed ensemble architecture LERRANCO
is applied to different benchmark data sets and compared to Random Forests, MLP-
based ensembles as well as to the »-SVR regarding the generalization performance with
comparable results. It turns out that LLM ensembles supplying SOMs are appropriate
and succeeding ensemble predictors.

In this Chapter, a special focus is placed on the factors, which implicitly force the
diversity along the ensemble predictors. It is explored how the ensemble prediction
performance is affected by these factors, which include the type of training algorithm,
the topology of ensembles, the resampling method for the training set construction and
the initial conditions like the grid size. Powerful ensembles are shown to be generated
with small nets of low complexity.

The number of ensemble predictors M >> 1 is necessary but not sufficient for im-
proving the accuracy of ensembles over single base learners. A quantity of M = 100
is a good compromise between the resulting ensemble test error rate and the effort
for additional storage capacities. The usefulness of combining Bagging with Random
Subspace is demonstrated in terms of the diversity and the MSEres. It turns out
that the factors mostly increasing the diversity and predictive power are the supplied
VQ-method, among the number of variables building Random Subspaces, followed by
the number of ensemble members. A small width of neighborhood can be identified
to be a significant factor in order to boost the diversity implicitly inside each SOM
predictor.

When aggregating part-adapting structures, the gain in diversity should be the
main focus of attention as a premise for successful ensembles. The diversity along
the ensemble predictors exhibits a high correlation to the mean error per predictor
(MSEpap). Consistent to the observations made by Zenobi and Cunningham [2001],
the most successful ensembles are found each presented only a subset of features.
Therewith, the predictors are forced to locally specialize or to discriminate in these
local regions of the input space. These characterizations of locally specialized learners
help to understand how the SOM ensembles succeed.

The potential of SOMs to Ensemble Learning is mainly exploited by an effective
reduction in the models’ complexity according to the number of parameters, the size
of each SOM and the dimensionality of input space for each SOM.
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6 Negatively Correlated SOM
Ensembles

Up to now, I examined SOM ensembles acting
independently of each other. The single predic-
tors successfully are forced to follow different
trajectories implicitly by the re-sampling meth-
ods Bagging and RSM. With the LERRANCO
architecture by employing NCL, a shift is per-
formed towards interlinking individual learning
stages including a term penalizing correlation
in errors. NCL allows to balance between the
single network accuracy and the diversity con-
trolled by the cooperation of predictors, thereby
dispensing with a sub-local accuracy for a higher
overall generalization ability. Boosting the di-
versity explicitly this way, the formed bagged
predictor f ranges from an aggregation of inde-
pendent predictors to a fully connected network
as a single, complex learning unit. Focusing
on the SOMs inside an ensemble, the question
arises, how far the interplay between SOMs and within SOMs succeeds. To this end,
an explicit distinction between the inter- and intra-SOM diversity is carried out.

'{= f'f_:u: e
(Ss)

6.1 LERRANCO Evaluation

The prediction performance of the proposed SOM-based ensemble architecture LER-
RANCO is evaluated as described in Section 5.1 on page 66. For each of the benchmark
datasets, also two complementary non-linear regression architectures, RF as well as
v-SVR are applied for comparison. The RF performance is evaluated with M = 500
trees grown and d;, /3 randomly sampled variables as candidates for each node split.
Unless otherwise stated, the parameters of LERRANCO are set uniformly over all
single ensemble predictors to LERRANCO(T, M = 100, K < dip, T =1, A = 1,
VQ(.)). Any LLM predictor is constructed with uniform parameters of VQ("SOM",
n;, ¢ = 2.0). The internal parameters of the LLM algorithm were set to " =
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6 Negatively Correlated SOM Ensembles

[0.5,0.01],e®" = A = [0.3,0.01] and o = [2.0,0.4] decreasing exponentially over
tmaz = 40 learning epochs. In preliminary experiments (see Table 5.2 on page 68), I
determined LERRANCO performing best, if the training is based on SOMs with n;
nodes according to the grid sizes of 2 x 6 for Friedman, 2 x 5 for Boston data, 1 x 2 for
Forestfires, 1 x4 for NO2 and 2 x 2 for the AAindex dataset. M resampled training sets
(Th, Kin),m = 1,..., M, are the training bases for the constructed predictors. The
outputs of the M = 100 predictors are combined and aggregated by simple averaging.

The presented results are limited to the f-penalty, (Equation (3.9) on page 53)
corresponding to T = 1 to restrict the upper bound for NCL. X € [0.0,1.0] is sampled
coarsely to intervals of 0.1. In the regions of special interest, i.e. A € [0.9,1.0], the
search is refined to intervals of 0.01. The generalization performance is measured in
terms of mean squared test error (MSEr.) for the accounted test sets, which have
not taken part in training.

6.2 Results

All of the reported results of the prediction performance of the SOM ensemble ar-
chitecture LERRANCO and the reference regression architectures are averaged over
50 repetitions. The evaluation of the prediction performance in terms of MSEreg is
summarized in Table 6.1 for the corresponding optimal parameters K, A and ¢. The
results in Table 6.1 marked with a (T) are taken from Breiman [2001], who trained
RFs on transformed versions of the Friedman and the Boston dataset. He proposed
to transform the original training data to a randomly linear combined feature space
of higher dimension (d{, = 25). This way, every newly derived variable is made up
of two others, such that e.g. variable X3 is combined by 0.2 - x® + 0.5 - x2, where d
denotes a column of the training set T with N samples, i.e. x? = (214, ...,7xq)7 with
de {1,...,din}.

Without NCL (i.e. A = 0), the LERRANCO ensembles based on SOMs outperform
RFs regarding test error rate except for the Boston and NO2 data. With NCL (A > 0),
the generalization performance is further improved and hence forcing a fully connected
ensemble. LERRANCO exhibits comparable or even superior generalization ability to
RF or v-SVR, while only in case of NO2 dataset the RF MSEre; is smaller. The re-
sulting scatterplots of LERRANCO predictions on the evaluated (benchmark) datasets
and the corresponding estimated density distributions are shown in Figure 6.1. The
densities were estimated by Fast Fourier Transform and a Gaussian kernel density
estimation (for details see 7). These predictions are performed with the optimal pa-
rameters of (K, A), which turn out to be (5,1.0) in case of the Friedman data, (8,0.97)
for the Boston, (9,0) for Forestfires, (6,0.9) for NO2 and (25,0.9) for the AAindex
data.

Next to NCL, the size K < di, of the randomly sampled feature subsets set ap-
propriately has a major effect on the decrease in MSE .. In Figure 6.2 the exact
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6.2 Results

LERRANCO RandomForest v-SVR
MSE Test A=0 =1 p-value
Friedman 5.2 3.9 ok [k 71 (5.71) 5.1
Boston 11.3  10.1 / 10.7  (10.2%) 10.5
Forestfires 4.0 4.1 */ 4.6 4.2
NO2 0.26 0.24 -/ 0.22 0.25
AAindex 1.04 1.02 */ 1.16 1.03

Table 6.1: Mean Squared Test error (MSEr. ), averaged over 50 iterations for LER-
RANCO, RF and v-SVR. Results marked with (*) are taken from Breiman
[2001] with randomly linear combined feature space of higher dimension
(di, = 25). The corresponding best results are listed for LERRANCO en-
sembles of size M = 100, K < din, A =0 (no NCL) or A — 1. A two-sided
t-test is applied to show the statistical significance of results regarding LER-
RANCO compared to (RF/v-SVR). The p-value (confidence level of 0.95)
is indicated by (*/*), where the symbols ("*#! ki 1k 2w w ) corre-
spond to cut-points (0,0.001,0.01,0.05,0.1,1).

resulting error rates for the datasets Friedman, Boston, Forestfires, NO2 and A Aindex
are given when varying values of strength parameter A with NCL and the size K of
the randomly selected subspaces. The LERRANCO ensemble models exhibit a sharp
decrease in MSEres; when boosting the diversity explicitly by an increased A over
all datasets, except for the Forestfires dataset. Thus, the ensembles based on SOMs
demonstrate a pronounced improvement of the generalization performance with NCL.
Especially the prediction of the Friedman test sets benefits from NCL in combination
with RSM: While a priori only five of the available d;;, = 10 variables are used to define
the target value y, the smallest MSETes is actually found with K = 5 and A = 1,
showing an enormous impact of boosting the diversity explicitly. The sole exception
from that improvement due to NCL is the dataset Forestfires. LERRANCO ensem-
bles based on SOMs with grid sizes of 1 x 2 each outperform every other diversity
encouraging approach.

The influence of NCL-parameter A\ regarding inter-SOM diversity is discussed in
more details in the next Section. The choice and the role of ¢ affecting the intra-SOM
diversity is analyzed in Section 6.4.
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Figure 6.1 (previous page): Scatterplots of evaluated benchmark datasets predicted by

LERRANCO, i.e. the test target values y are plotted as
points against the predicted vectors for Friedman, Boston,
Forestfires, NO2 and AAindex data. The right columns
show the corresponding estimated density distributions.
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6.3 Inter-SOM Diversity

6.3 Inter-SOM Diversity

With A > 0, the positive correlations in the errors are penalized hence diverse ensemble
members are enforced. In fact, boosting the NCL strength i.e. A — 1 significantly
improves the prediction performance for all datasets except for the Forestfires data.
This states a high correlation between the quantified diversity and the reduction of
MSETest. In Table 6.2, the exact correlation coefficients between the quantified inter-
SOM diversity (DIVipger) and A (MSEres respectively) are denoted. The Pearson
correlation coefficients (r) corroborate the theory behind NCL of forcing the diversity
of the single ensemble predictors except for the NO2 dataset. Here, the low correlation
between diversity and MSETes: appears due to a high variation in MSEre with A.

Correlation r  r(A,DIVigter) 1r(DIVipters MSETest)

Friedman 0.83 —0.84
Boston 0.80 —0.67
Forestfires 0.75 0.43
NO2 0.79 —0.06
AAindex 0.81 —0.63

Table 6.2: Table of Pearson correlation coefficients r between DIV, and NCL
strength parameter A or MSEr.s showing a high absolute correlation. The
higher A, the higher is the reduction of MSEreg, due to the boosted diversity
between the individual ensemble predictors.

When enforcing the inter-SOM diversity along the ensemble predictors, the ques-
tion crops up, to which extent this effects the nodes inside each single SOM. In the
next subsection, the issue of the relationship between the inter-SOM and intra-SOM
diversity is addressed.

6.4 Intra-SOM Diversity

The intra-SOM diversity (DIVinr,) arises mainly over the combination of two factors:
The first factor is the explicit diversity forcing impact by NCL, while the implicit
diversity inside the SOMs is not under control of NCL, but controlled by the width
o of the Gaussian neighborhood function. To apportion the effect of this intrinsic
intra-SOM diversity to the test error rate, I vary the initial connectivity of nodes o
from 0.4 to 5.0. In Figure 6.3 the results are given for dataset Friedman (a),(b) (and
AAindex in (c)) in terms of MSEqes for K =5 (K = 25) and A =1 (A = 0.9). For
the Friedman data, there exist clear minima with ¢ ~ 1.0,...,2.5, where test error
rates show its lowest values (a). The inter-SOM diversity DIVi,e, and MSEy,, are
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6 Negatively Correlated SOM Ensembles

apparently related to o (b). For the AAindex dataset, the generalization error rate is
mostly far from being influenced by the connectivity of nodes (c). With o > 2, a state
of saturation is reached due to the small number of nodes supplied in this case (2 x 2).

Friedman | MSE Test | K=5, A=1 Friedman | MSE Map + DIV | K=5, A=1
o ]
2 4 ® ] — MSE Map
--- Div -7
e > R -
g o e _ -
[ w6 % o | . 4
w s © o
2 v | w -
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o = 84 I
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Figure 6.3: Test error rate (MSEres) when varying intra-SOM diversity by width of
Gaussian neighborhood function o € [0.4, 5] for ensembles of size M = 100

To explore, if and to which extent the DIV, is propagated to the nodes within each
single SOM, the DIVi,;,s for one single SOM is assessed according to Equation (4.3)
on page 63. The estimated amount of DIVipt., represents the variances between the
nodes. A positive absolute relation between A, the inter- and intra-SOM diversity
can be figured out as shown in Figure 6.4. The given scatterplot-matrices present
the correlations between A, MSEvest, MSEwMap, DIVipter as well as DIVipya for the
evaluated LERRANCO ensembles of size M = 100. The correlation between each pair
of combination is reported by the exact correlation values r in the upper panels. In
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6.5 Dynamics of Boosted Negatively Correlated SOMs

the lower panels, the r values are mapped to gray values. White panels correspond
to no correlation and dark gray panels indicate highly correlated combinations. As a
consequence of boosting the diversity on the inter-SOM level, the MSEpz,;, is increased
as the term directly connecting DIVj,ter and DIViyea- The evaluation of Boston data
regarding intra-SOM diversity exempts from the positive correlation between A and
DIVinira, as well as the MSEres of Forestfires data does.

6.5 Dynamics of Boosted Negatively Correlated
SOMs

In contrast to many other learning architectures, the SOM delivers a deeper insight
into the operations and approximations of the input and output space. It facilitates the
inspection of the prototype vectors, the error rates while training, the distributions, the
locally trained linear mappings and so on. In general, ensemble architectures provide
no such way and lack more or less of comprehensibility. Nonetheless, an assessment of
the relevance of features is feasible as mentioned for an example for RFs in Section 2.4.1
on page 37.

But in context of NCL, several questions are left open about the dynamics among
the predictors. Liu and Yao [1999] as well as Brown [2004] give thankful impulsions and
investigations on how to include the quantified diversity term in the learning process.
Not only experimentally, but also from a theoretically point of view, NCL has proven to
be a valuable concept in ensemble learning. What actually happens inside the ensemble
is to some extend reflected by the proposed quantification of DIVy,,. However, the
effective dynamics on the interplay among the ensemble predictors over the progress
of training and over the strength of NCL is not yet considered. In the following, it
will be explored how the distributions of MSETes; and the internal diversity measures,
DIVinter and DIViyra, among the predictors are affected by A.

6.5.1 Dynamics in Time

Eastwood and Gabrys [2007] exploit the dynamics and the behavior of predictors of
MLP-type when applying NCL. They derive an optimal value for the NCL-strength
parameter in terms of v* = (1—4;)~*. This is a varied expression of the upper bound
y=2-A1- ﬁ) [Brown et al., 2005a] corresponding to A = 1. The upper bound of A
does not protect against over-fitting, because the introduced complexity may not be
appropriate for the particular problem [Eastwood and Gabrys, 2007]. They captured
the deviance when lambda exceeds the upper bound and the learning exaggerates the
variance in predictors as forced by A > Aupper-

Similar to their analysis, I report the evaluations of the internal error measure
MSE}},, recorded while the training proceeds for the Friedman dataset as an example
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Figure 6.4 (previous page): The terms MSEtes;, MSErap, DIVinter and DIVinga are
recorded regarding NCL-parameter A € [0,1] for all
datasets. The lower panels of the matrix are colored
with gray values, reflecting the correlation between the
according measures or \. Correlation values r € [0,1]
are mapped to gray values (white (no correlation) to dark
gray(Jr] = 1)). The upper panels show the exact r. The
higher A, the higher is the reduction of MSETe; due to an
increasing amount of diversity inside the SOMs.

in Figure 6.5. The internal measure MSEy},,, is given by

M
1
MSEMap = E MSEMap = M E (y_fm)2 (61)
m=1

The change in MSEyy,,, is recorded for three major situations of interest depicted: To
which extend the predictors are internally affected by NCL, when analyzing the state
among the ensemble predictors being fully connected, i.e. A = 1, is compared to the
situation, where the predictors are acting independently (A = 0). In order to monitor
the third situation of interest, the predictors are analyzed, if the cooperation among
them is stressed to a higher level than A = 1, s.t. the upper bound of X is exceeded.
From the total amount of M = 25 predictors, ten of those are randomly selected and
their learning progress is recorded over the total number of ¢,,,, = 40 epochs. The
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6 Negatively Correlated SOM Ensembles

results are captured as shown in Figure 6.5, for the situations when A = 0, i.e. no
NCL is applied in (a) and (d), second, if A =1 (b),(e), as well as A = 1.01 (A = 1.02
respectively) in (c),(f). Note that only the first 20 training epochs are outlined to
focus on the beginning of training. The figures in the upper row (a)-(c) correspond to
K = 10, while the Figures in the lower row (d)-(f) correspond to K = 5. If the total
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Figure 6.5: MSEwmy,, for Friedman data changing over training time for ten randomly
sampled SOMs. Evaluation of the mean squared error per SOM (MSEnap)
for Friedman data changing over training time ¢. Varying A € {0,1,1.01},
shows a deviant behavior for the error rates per SOM over number of
training epochs.

set of features (K = di, = 10) is used and A = 0 (a), the high error gradients lead to
a fast convergence in learning for all individual predictors in the same manner. They
are not forced to follow different trajectories and hence they do not differ significantly
in their errors. All the single predictors are trained on the same subtask, while the
only statistical elements are introduced due to the random initialization of the weights
and the positions as well as due to the random permutation of the training samples
per epoch. Forcing negatively correlated errors of the predictors with A = 1 in (b), the
ten randomly selected LLMs in the ensemble show similar characteristic error rates as
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for no NCL in (a).

In contrast to that, the application of RSM with sub-sampling the features for each
predictor, s.t. K = 5, leads to a rise in diversity and a deviation in MSEy,;, along the
predictors (d). The effect is amplified by NCL and an increasing A up to the upper
bound of A =1 in (e). This way, the MSEn,p is increased globally for all SOMs and
a higher variation in errors is observed.

When A exceeds its upper bound in the last column of the Figure (f), (c), however,
the amount of variance introduced by NCL is above the critical value and the predictors
and therefore their MSEw,,, are disrupted after some few epochs.

6.5.2 Dynamics in A

The situation concerning the dynamics in MSEy,, over training has been considered
for the accounted states of NCL-strength with respect to A = 0 and A = 1. To provide
insights, how the measures of MSEwap, DIVinter and DIVigg:, are distributed internally
along the ensemble predictors, the cooperation between the individual predictors is var-
ied over the NCL strength parameter A € [0, 1]. In Figure 6.6, violin plots are shown,
which combine boxplots and a kernel density estimation [Adler, 2005]. The stated
violinplots are given for the datasets Friedman, Boston and AAindex for ensembles
with M = 25 predictors. Every single boxplot corresponds to the distribution of a
certain vector of values, one of (MSEwmap, DIVinter, DIVintra), recorded for all M pre-
dictors inside an ensemble as a function of the actual chosen of A. Hence, a violinplot
consists of ten single boxplots. Each violinplot accounts for one of the occurring rates
(MSEMap, DIVinter, DIVintra). Note that the y-axis is logarithmized resulting in non-
equidistant breaks. As expected, the error and diversity measures vary fundamentally
over \: When boosting NCL with A = 0 up to A = 1, the critical measures increase
nearby exponentially and the distributions are shifted towards the maximum. Ensem-
ble predictors with only low diversity are found in ensembles, which are trained with
a small A\, and vice versa. The ensembles with strongly forced NCL yield maximum
MSEnap, DIVipter and DIVip, along all the predictors.

6.6 Supporting Altered Penalty Functions

In Section 3.3.3 on page 53, a family of parameterized penalty functions is introduced.
Up to now, the LERRANCO ensembles are evaluated based on the f-penalty according
to T = 1 (see Equation (3.15) on page 54). To evaluate other than the previously
applied penalty function, four penalty functions are explored in this Section. The first
one is referred to as f- penalty given in Equation (3.9) on page 53 corresponding to
T = 1 and the second induced by T = 1/M (referred to as reciprocal-penalty). The
remaining two functions are given by the corresponding local versions of the former.
The gradient of the regular functions is extended by a local diversity propagation factor
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Figure 6.6: Violinplots showing dynamics in A, the derived errors and the quantified
diversity when applying various states of NCL-strength for the Friedman,
Boston and AAindex data and M = 25. Note that the y-axis is logarith-
mized resulting in non-equidistant breaks.

92



6.7 Discussion

h. according to:

with h, = exp (—@) .

The diversity is encouraged depending on the relative distance s of samples to each of
the M SOMs and propagated according to the Gaussian neighborhood function with
width of ¢ = M/3. This extension is based on the idea that samples leading to high
diversity of ensemble predictors are far away from samples with non-diverse ensemble
predictions. This way, cooperation between the SOMs is either allowed or suppressed.

From the results analyzed for the other remaining three penalty variants, as listed
in Table 6.3, no improvement in prediction performance was achieved. In neither case,
a sufficient justification is found to supply other than the f-penalty.

f-penalty reciprocal
MSEtest locallA —+1 X —1 local, A > 1
Friedman 4.28 8.739 9.121
Boston 10.777 19.419 16.02
Forestfires 4.667 4.549 4.353
NO2 0.249 0.276 0.279
AAindex 1.082 1.29 1.259

Table 6.3: Mean Squared Test error (MSE), averaged over 50 iterations. Results are
given for ensembles of size M = 100 and K =5 in case of Friedman, K =8
for Boston, K = 7 for Forestfires based on SOMs of grid size 1 x 2, K =5
in case of NO2 dataset and K = 25 for AAindex.

6.7 Discussion

The LERRANCO architecture provides a comfortable way to successful ensemble
learning with ensemble predictors sharing uniform internal parameters like network
size, learning rate and neighborhood width. As reported, powerful ensembles are
generated with very small nets (i.e. with small number of nodes). This may be ob-
served due to the fact that with larger nets the categorization as weak learners is no
longer valid, since every net gets too specialized to the presented subtask. As a rule
of thumb, setting the neighborhood connectivity parameter ¢ uniformly to the range
of approximately 2.0 up to 3.0 is a good choice for every of the evaluated datasets.
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6 Negatively Correlated SOM Ensembles

With randomly chosen values of o for every single SOM independently out of [0.4, 5],
the MSEes; rises above (4.149 in case of Friedman and 1.138 for AAindex data) the
bulk of uniformly set values in the same range. The actual chosen value of a learning
parameter is a subordinate factor - the prediction performance rather depends on raw
guessed but uniform learning parameters superseding separately fine tuned ones.

One interesting point to mention is the deviant role of the Gaussian neighborhood
width defined by o at the extremes of \: If A = 0, the minimum MSET.s is achieved
with a low connectivity of nodes according to ¢ < 1 for the Friedman data as an
example, see Figure 5.4a on page 74. On the other hand, if A = 1, the lowest MSEegt
is achieved approximately with o = 2, see Figure 6.3a on page 86. It seems that a
higher intra-connectivity among the nodes is needed to compensate for the boosted
inter-cooperation among the predictors.

The results show that the variation in feature sets facilitates the ensemble predictors
to cover diverse aspects of the learning task at hand. The rise in the diversity even
surmounts the loss of individual accuracy (MSEpa,) among the predictors. To this
end, the RSM has shown to be a substantial instrument for enhancing the ensemble
prediction as compared to using the entire feature set.

Friedman data takes on a special position: It is the only synthetic dataset and it
provides to be one of the showpiece where the considered effects are most likely to
occur and emerge. This may be observed due to its clear artificial origin and the
common error distribution. In contrast to the Friedman data, the error of the real-
world datasets is not under control.

The best generalization performance is achieved if the positive error correlations
between the single networks are penalized and A is next to 1. However, if supplying
SOMs with a minimum number of nodes, the intrinsic (i. e. A\ = 0) diversity necessitates
no further boosting of diversity by NCL, see Figure 6.4d on page 88. This applies in
the case of Forestfires data performing best with SOMs of minimum grid size (1 x 2).

The deviant behavior of Boston and Forestfires data, may be explained by the under-
lying statistical properties of the input space (two clusters in the latter case). With an
increasing A in the former case, see Figure 6.4c, the DIVjy,o decreases. This suggests
a reduction in the complexity of the input-output mapping the SOMs approximate.

With a large number of networks the theoretical upper bound of A (Equation (3.17)
on page 55) is conform with the previous statement by Liu and Yao [1999] that the
domain of A should be in [0,1]. However, this upper bound of X is not tight for all
datasets. I found narrowing the domain of A € [0.9, 1.0] optimal in that sense that, for
grid sizes greater than 1 x 2, the generalization error is minimized, when the SOMs
are fully interlinked. Beyond this point, stability is no longer guaranteed due to the
enormous rise in variance, see Figure 6.5 on page 90.

The analysis of supporting other penalty functions shows a clear advantage from
the application of the f-penalty induced by T = 1. Supplying LERRANCO with the
y-penalty function given by T = M, leads to a non-feasible learning process with too
steep gradients and therefore is inconvenient. This is somewhat surprising, because the
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y-penalty is found to be more successful on classification problems in some experiments
[Brown et al., 2005b].

6.8 Complexity and Computation Time
One drawback with ensembles results from the increased capacities needed to store the

models, which are linear in the ensemble size M. Basically, the amount of storage in
the LERRANCO architecture is made up of the capacities needed for the storage of

the n; - M prototype vectors (wil, where m = 1,..., M,i = 1...,n;), the matrices of
the linear mappings (A,,;) and the intercept vectors (w°ut). Therewith, the vector of

predicted values f,,(x) and the matrix of membership degree U are implicitly given
with the models. For each ensemble, the following capacities C' are required:

wi: (- M- K)
A (m-M-K)
wou (ng - M)
which sums up to: C = M -n (2K + 1)

Under the assumption of an uniform description length for the numbers, the space
needed to store an ensemble model with M predictors depends on the number of
nodes n; for each predictor, the size K of the subspaces and the number of training
samples N. The only essential information needed to store are the prototype vectors,
whose sizes are independent of the number of samples N. By contrast, the application
of a SVM requires a representation of the kernel matrix containing Csyyy = N X N
entries. For the Friedman data, this becomes to Csyy = 40,000, and Csyy = 111, 556
for the AAindex data.

Nonetheless, the question arises, how many nodes n; in a single predictor setup are
equivalent to n; nodes in an ensemble setup with M predictors with regard to C. In
order to compare these capacities C' to a single predictor case, the upper sum C' is
rearranged to solve for n; and substituting n; into, we get:

C
N
T ML 2K 1 1) (6:3)

To determine the exact capacities needed for LERRANCO ensemble models, let us

assume the following two situations:

1. Friedman dataset: With ensembles of size M = 100, and n; = 12 nodes per
predictor, training sample size of N = 200 and subsets of variables of size K = 5,
the space required would be C' = 13,200. In contrast to that, in a single predictor
setup, M equals 1 and furthermore no feature selection process is performed,
hence K amounts to K = 10. If M = 1, a single SOM with n; = 628 nodes
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6 Negatively Correlated SOM Ensembles

requires the equivalent storage capacities C'. Hence, with a single SOM of grid
size for example 25 x 25, the space under consideration is the same as for an
ensemble with M = 100 predictors with M - n; = 1200 nodes in total. For
analysis or visualization purposes, this order of magnitude is not uncommon.

2. AAindex dataset: The second example demonstrates that the ensembles’ capac-
ities mainly depend on K: With M = 100,n; =4, N = 334 and K = 25, we get
C = 20,400. Substituting this into Equation (6.3) on page 95, for M = 1 and the
entire input space of K = 531 dimensions, the same amount of space is required
as for a single SOM of size nj = 19, approximately a grid of 4 x 5 nodes. Here
the major improvement follows from the relation of the space required per node
by the ensemble feature subsets of size K < di,. The relation of capacities per
every ensemble node MLnl = (2K + 1) = 51 offers an advantage when compared

to the relation of capacities per single predictor node nQ = 1063.
l

The SOM ensembles can be easily scheduled in parallel and hence allow for fast train-
ing.

6.9 Conclusion

For several benchmark datasets the LERRANCO ensemble architecture outperforms
other reference learners like RandomForests or even v-Support Vector Regression. En-
semble learning benefits from SOMs in several ways: The preconditions for successful
ensembles are fulfilled with nets of low complexity, i.e. with a low number of nodes.
Hence, supplying ensemble component learners with SOMs eliminates the constraints
or disadvantages of many parameters to tune, rather offers good generalization with
parameters set according to rules of thumb.

NCL fully exploits the potential of SOM ensemble learning when the neural net-
works cooperate at highest level and stability is satisfied. I demonstrate the important
and correlative role of diversity among the ensemble predictors as well as inside the
predictors conforming the requirement of weak learners.

Due to the transparency of SOMs, I am able to shed light on the diversity emerging
over a combination of several factors:

The first is the explicit diversity forcing impact by NCL on inter-SOM level. The
more emphasis on covariance or diversity is ezplicitly placed by NCL, the more the
ensemble test error rate is reduced. All individual single networks are connected to
each other and interlinked as one single, complex learning unit. By the combination
of the two re-sampling methods Bagging and RSM the diversity between SOMs is en-
forced implicitly. Improved accuracy, speed and interpretability are achieved by the
application of RSM in either case. Third factor is the implicit diversity inside the
SOMs controlled by the width o of the Gaussian neighborhood function correspond-
ing to the connectivity of nodes. A single SOM can be viewed as an ensemble itself.
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As every SOM has a diversity feature representing the variances between the nodes, a
quantification of this intra-SOM diversity is defined in Equation (4.3) on page 63. The
inter-SOM diversity exhibits a highly positive correlation to the intra-SOM diversity.
The increase in error per every single SOM is ascribed to the nodes, which are topped
out at diversity and hence are specialized locally. In other words, the inter-SOM diver-
sity enforcing connection surpasses the intra-SOM connection linked via the Gaussian
neighborhood between the nodes. The diversity breaks up between these with greater
emphasis on the inter-SOM diversity.

The dynamics on the variances and the effect on the stability of learning of the
ensemble predictors are exploited over the progress of training. The total MSEy,,
and the diversities as well as the according distributions along the ensemble predictors
are identified to be positively correlated to the strength of NCL.

The capacities required to store the M models of the ensemble predictors are in-
dependent of the number of samples N. The numbers of nodes in a single predictor
setup are related to those in an ensemble setup with M predictors according to the
equivalent demand of storage capacities. This shows great advantage for the proposed
SOM ensembles in terms of memory-usage. With regard to the computation time,
ensembles provide an attractive option, since they can be easily scheduled in parallel.
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7 Aggregation of Hypotheses to
Ensemble Prediction

The challenging problem of aggregation is how to combine predictors and on which
to rely on. With Bagging, as the short form of bootstrap aggregating, two commonly
used aspects are covered in Ensemble Learning:

1. M bootstrap training sets are the training bases for the constructed regressors.

2. These regressors are used to form the bagged predictor, i. e. by simple averaging.

The predictors built on bootstrapped training sets have been shown to perform superior
(see 5.4 on page 69) compared to those built without bootstrapped training data.
Aggregation by averaging is probably the most simple and widely used method to
form an ensemble predictor. The reduction in error can be viewed as arising from a
reduction in variance due to the averaging over many hypotheses [Bishop, 1995].

In this chapter, the issue is addressed, if the assumption of the model averaging is
beneficial. One would expect to improve the ensemble accuracy if some predictors are
given greater weights than others. The question arises likewise from the perspective of
a single SOM, where the WTA-rule induces an aggregation performed along the local
experts.

7.1 Aggregation of Local Experts

The aggregated predictor f is formed by the weighted combination of the ensemble
predictors f,,. The output of every predictor m is the weighted sum of its local experts’
output Cin, i =1,...1n;:

.]F = Z Wm Z Wim Pim = Z Wm Z hio+«Cim

where o* denotes the Gaussian neighborhood width. Samples are mapped to an output
value by their corresponding local expert x according to the winner-takes-all (WTA)
rule, see Equation (2.2) on page 16. In the notation mentioned above, this can be
written as:
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0 :i#kK ]

1 1=k

Wim = hia* = 9(2) = {

Thus, the WTA rule induces a very rough bound at the tessellations of the local
experts. Therefore the locality of every single node is enhanced. In the following
Figure 7.1, the influence of the neighbors according to the strength-defining parameter
ox = {0.4,1.0,2.0} with increasing distance to node v, along the grid is demonstrated.
With a small ox = 0.4, only the winner node with index « and its direct topological
neighbor are affected. Thereby, the weights w;,, of the combination rule as induced
by ox = 0.4 are close to those induced by WTA-rule. The more o is increased, the
more are the topological neighbors 7 of v, accounted for.
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Figure 7.1: Strength of Gaussian Neighborhood depending on chosen o.

To analyze the effect of the WTA-rule to the ensemble accuracy, a smoothing of
the output function is forced by the smoothing parameter ox. In Figure 7.2, the
evaluation of MSEte for different combinations of A in steps of 0.1 and the smoothing
parameter ox € {0.2,0.4,0.6,0.8,1.0,1.5,2.0,3.0,4.0} is shown for Friedman, Boston
and AAindex data. Enlarging the influence between the topological neighbors inside
each SOM by o greater than 0.4, leads to a significant loss of prediction performance
for all of the evaluated datasets, as compared to the WTA-rule. Especially for highly
cooperating SOMs due to A — 1, a slightly increased width of the neighborhood leads
to a drastic deterioration in terms of MSEreg;.

7.2 Aggregation of Ensemble Predictors

The ensemble predictors are forced to cover contrary or diverse regions of the hy-
pothesis space. It turned out that averaging of “maximum” diverse hypotheses is a
succeeding combination strategy. Nonetheless, it is expected that there is a benefit
from an adjustment on which of predictors to rely on. An adequate combination of the
diverse hypotheses might figure out some “redundancy” in the hypothesis space. To
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Figure 7.2: MSETes; when varying smoothness of output function by parameter o
inside each SOM and strength parameter A for NCL. Evaluation is done
for M = 100 ensemble predictors for Friedman, Boston and AAindex data.

this end, the issue of reweighting the ensemble predictors by an adjustment propor-
tional to their error and diversity criteria is addressed here. The quantitative criteria
in terms of DIVipter, DIVintra and MSEp,,, allow us to adjust the weightings w,, of
the individual predictors according to:

(1) Weighting of ensemble predictor m by the individual mean error MSEy;, :

MSE};,.”
B )

wm(MSEMap) = ﬁ
Zj:l MSEMap

where MSE{1,, = (¥ — fm)?

The weights are set proportional to the individual MSEy;, , see Equation (6.1)
on page 89. This way, the ensemble prediction is severely formed by combining
those predictors, which exhibit the highest mean prediction error.

(2) Weighting of ensemble predictor m is set proportional to the individual inter-

diversity:
DIViT;LterB m £)2
wm(DIVinter) = ﬁ’ where DIVinter = (fm - f)
Zj:l DIViJnter

(3) Weighting of ensemble predictor m is set proportional to the intra-diversity:

DIVirﬁtraB m 1 e 2
wm(DIVintra) = ﬁ, where DIVintra = — Z(sz — fm)
Zj:l DIViJntra K i=1

where 3 is the exponent defining the strength of adjustment.
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Evaluation is performed over 20 repetitions with the same setup of LERRANCO
as described in Section 6.1. The decision, which predictors are used to form the
aggregated predictor f, relies on their individual weighting according to the criteria
(1) MSEMap, (2) DIViger and (3) DIViyya. The weightings w,, are scaled up to fulfill
the convex combination, s. t. the weights sum up to one and w,,, > 0, Vm. The MSErgg
is analyzed with respect to the different states of NCL, from A = 0 to A = 1.0 in steps of
0.1, and the strength of the adjusted weightings by MSEwap, DIVinger of the ensemble
predictors with respect to 8 € {0.1,0.2,0.5,1.0,2.0,5.0}. The results are summarized
in Figure 7.3 for the Friedman, Boston and AAindex data. 8 = 0 corresponds to
the traditional aggregation by averaging, while § = 5 emphasizes strongly on those
predictors, which exhibit high individual errors or diversity measures.

If the individual weights of the ensemble predictors are adjusted according to DIVipter
and DIVin, no precise statement can be given. In contrast to that, aggregation and
ranking of the predictors performed according to their individual MSEyp,p, seems to
be an appropriate strategy especially in case of Friedman data. With an increasing /3,
a minimum MSEre is reached even faster, i.e. with a smaller A. If the parameters
areset to S =1and A = 0.8 or § = 2 as A = 0.6, the ensembles used for the prediction
of the Boston as well as the AAindex data outperform those ensembles, which are
combined by averaging. In Table 7.1 on page 102 the exact resulting performances of
ensembles aggregated according to MSEy,, are compared to those, which are com-
bined by averaging. Actually, the ensembles aggregated according to MSEy,p, have
an advantage over the latter for any evaluated datasets except for the Friedman data.

LERRANCO RandomForest v-SVR
MSEtTest  Wm = 27 Wi (MSEnap)
Friedman 3.9 4.0 7.1 (571 5.1
Boston 10.1 9.5 10.7 (10.27) 10.5
Forestfires 4.0 3.9 4.6 4.2
NO2 0.24 0.22 0.22 0.25
AAindex 1.02 0.98 1.16 1.03

Table 7.1: Mean Squared Test error (MSEre ), averaged over 50 iterations for LER-
RANCO, RF and v-SVR. Results marked with (*) are taken from Breiman
[2001] with randomly linear combined feature spaces of higher dimension
(din = 25). The corresponding best results are listed for LERRANCO en-
sembles of size M = 100, K < dj,, either combined by simple averaging
(wm =1/M) or by aggregating according to the ranking of predictors indi-
vidually by MSEnap.
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Figure 7.3: Levelplot of MSETest when changing the aggregation to form the ensem-
ble predictors when varying the strength parameter A for NCL and the
strength of adjusted weightings by MSEwap, DIVinter as well as DIVipgrq
by 8. Evaluation is done for M = 100 ensemble predictors for the Friedman
(K =5), Boston (K = 8) and AAindex (K = 25) data.

7.3 Discussion

NCL provides a way of boosting the cooperation between the predictors explicitly and
therewith inside each SOM implicitly. The strength of connection between the SOMs
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surpasses that of the intra-connections as discussed in Section 6.7 on page 93. The
nodes are forced to be local specialists. Hence, if the cooperation inside each SOM is
enforced by a higher o, a loss in generalization accuracy is determined. In contrast
to the WTA-rule, forcing a more smooth output function neglects the diversity along
the topological neighbors of the small nets. Thus, the prediction of a certain sample
should be performed by its corresponding local expert according to the WTA-rule.

The choice of aggregation strategy for ensemble predictors is a more crucial one.
Next to Bagging, three complementary strategies are employed to adjust the aggrega-
tion of the predictors. The two strategies employing diversity criteria both fail with
regard to improving the ensembles’ performances as compared to simple averaging.
This is in direct contrast to the approach of ranking predictors by their individual
MSEwmap. For the Friedman data in Figure 7.3 on page 103, the evaluation of the
aggregation according to the MSE,p-criterion exemplarily indicates, that the impact
by NCL is emphasized by the effect of 3. The optimal trade-off between MSEy,, and
the diversity is reached with smaller values of .

Since the strong relationship between the terms MSEn,, and DIViper is known, it
is somewhat surprising that actually the ensemble accuracies can be improved by the
adjustment of the predictor weights by the MSEp,,-criterion for almost all datasets.
This superiority in prediction performance by adjusting the ensemble predictor weights
by means of the MSEy;,,,-criterion if compared to a fully-connected ensemble by means
of A — 1, is traced back to the stronger emphasis on the local specialized learners. This
indicates that the objective of diversity between the predictors is subordinate to the
local specialization of the ensemble predictors. But if the gain in accuracy justifies the
additional computational effort required, depends on the specific concern and problem
at hand.

The issue of aggregation of ensemble members is one of the main topics of recent
research activities. Many approaches can be found in order to select an appropriate
subset of predictors from the initial set and further to reduce the capacities needed to
store the models.

7.4 Conclusion

The WTA-rule imposes less constraints to form the prediction inside a SOM-based
ensemble predictor and hence should be the method of choice. The more the output
function is smoothed, the more are the variances and the local specializations between
the topological neighbors deregulated.

The adjustment of the ensemble predictor weights by means of MSEn,, used to the
aggregate the ensemble output provides a way towards an improvement of the general-
ization performance of ensembles. This superiority approves the strong emphasis put
on locally specialized predictors.
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In many application areas, datasets contain high numbers of dimensions with redun-
dant features. This redundancy is often a consequence of the lack of information about
which type of features should be used [Verleysen, 2003].

The samples of a dataset are situated in a d;,-dimensional space, where the points
are located in a dj -dimensional surface or sub-manifold with d;, < di,, corresponding
to the true dimensionality of the problem at hand. The so called intrinsic dimension-
ality is a common property of the problem, even if these real d -dimensional surface
is embedded in a higher-dimensional space with di, > dj,. The characteristic of the
intrinsic dimensionality d;, cannot be assessed directly, but has to be estimated. Sev-
eral approaches exist to determine the number of dimensions necessary to describe the
data. The probably most widely used method is the Principal Component Analysis,
also known as Karhunen-Loewe-Transformation, as a linear projection method. In
physics, one tries to assess the fractal dimension by statistical methods and determine
the number of coordinates required to specify a unique point in the data space.

The objective of higher accuracy, speed and more cost-effective learners is often
achieved with a reduction in the number of features by feature selection. Feature
selection thereby defies the curse of dimensionality. The computational as well as sta-
tistical problems are limited if a viable access to the most relevant or useful features
is provided. Hence, an estimation on the number of features essentially needed to
describe the underlying process, that generated the data, would be helpful and pro-
vide one step towards the selection of an appropriate subset of features and improved
prediction performance.

To let the abstract notion of feature relevance, importance or usefulness become more
concrete, a brief introduction is given to them: Various notions of feature relevance
exist in the literature, depending on the context and reference. Following Blum and
Langley [1997], one discriminates between:

Relevance to the target i.e. if there exists a pair of examples x, and x;, such that
they only differ in their assignment to feature k and y, # ys

Strong relevance to the sample/distribution similar to the previous notion, but x,
and x; are elements of the training set T.

Weak relevance to the sample/distribution is given, if it is possible to remove a sub-
set of features so that feature k becomes strongly relevant.
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Relevance as a complexity measure Given different models, not necessarily of the
same type, trained on T with d relevant features according to definition 1, this
model has the fewest relevant features out of all those whose error over T is least.

Incremental usefulness Given a sample of T, a learning algorithm £, and a feature
set K, feature k is incrementally useful to £ with respect to K if the accuracy of
the hypothesis that £ produces using the feature set {k U K} is better than the
accuracy achieved using just K.

8.1 Feature Relevance in the Context of Ensemble
Learning

When applying RSM, as a method for randomly selecting the subsets of features, the
curse of dimensionality is circumvented for ensembles. The randomization in feature
selection for individual predictors assures somehow to reduce the effects of redundancy.
This probability increases with a sufficient number of predictors. A completely useless
variable by itself can provide significant performance improvement when taken with
others, while two variables that are useless by themselves can be useful together [Guyon
and Elisseeff, 2003]. The chances of accomplishing successful predictor models are
thereby enhanced with a growing number of ensemble predictors built on subsampled
feature subsets.

The benefit from a viable access to the most relevant features is two-fold and provides
reduced computational effort and higher generalization as well as a basis for data
mining and visualization purposes. This challenging issue will be addressed in this
Chapter. In the context of Ensemble Learning and feature relevance, two approaches
are covered:

1. Given an estimation of feature relevance FR. a priori, subsample features with
respect to FR used to build the predictor model.

2. Given a built predictor model, estimate the relevance of features FR. a posteriori.

8.2 Random Weighted Subspace Method

Similar to the approach proposed in Section 2.4 on page 35, the LERRANCO archi-
tecture can be extended to account for a variation of the underlying feature sample
distribution.

Up to now, each ensemble predictor is trained on an uniformly sampled subset
of features. The features are assumed to be independent and identically distributed
(ii.d), so that the probability of choosing one feature is unique and constant.

To focus on the relevant features that contribute to the preceding regression model,
the estimated feature relevances z are used to define the underlying probability dis-
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8.2 Random Weighted Subspace Method

tribution of feature subsampling. This way, features that are presumably highly rel-
evant are more likely to be selected for the individual ensemble predictors. I name
this technique Random Weighted Subspace Method (RWSM). A schematic represen-
tation of proposed RWSM is shown in Figure 8.1. A preceded estimation of feature

Vi V2 v3 e Vg M bootstrapped training sets Ty, of size NxK

Figure 8.1: Schematic representation of proposed Random Weighting Subspace
Method

relevance by model specific metrics given a priori from Least-Angle- and Partial-Least-
Squares (PLS)-Regression [Wehrens and Mevik, 2007] is applied and interpreted here
as feature selection probability z scaled to [0.1, 1.0]. The least absolute shrinkage and
selection operator (Lasso) [Tibshirani, 1996] is a shrinkage and selection method for
linear regression using L; constraints. It minimizes the residual sum of squared errors,
s.t. the sum of the absolute values of the coefficients b = (bg, b1, ..., bg,,) is less than
a constant s:

N N din 2
argmin RSS = argmin Z(yn — f(x,))? = argmin Z (yn — by — Z Tpnaba
b b n=1 b n=1 d=1

din
subject toz |ba| < s
d=1

With s, the solutions are constrained versions of the least squares estimates (Sec-
tion 2.4.1.1 on page 38). An optimal solution to the Lasso method is tackled efficiently
with the Least-Angle-Regression procedure provided by the R package lars [Hastie
and Efron, 2007].

The corresponding estimated feature relevances are abbreviated and indicated by
Z1,.ss0 and zprg, where z denotes the a posteriori estimation of feature relevance in
general. The input variables are subsequently scaled to X = z - x.

In Table 8.1 the results are listed for the evaluated datasets Friedman, Boston,
Forestfires, NO2 and AAindex. LERRANCO models are built with M = 100 predic-
tors over 50 repetitions, while the randomly selected subsets of features are sampled
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according to the probability z as decided by PLS or Lasso models.

Changing the underlying probability distribution of features randomly sampled
by RWSM with respect to zpg, takes the ensembles used to predict the the high-
dimensional AAindex data to a more successful generalization.

MSE Test LERRANCO RandomForest v-SVR
RWSM MX=0 X—1
Uniform 5.2 3.9 7.1 5.1
Friedman PLS 9.1 7.4 7.2 4.7
Lasso 4.6 4.6 7.2 4.7
Uniform 11.7 10.1 10.7 10.5
Boston PLS 14.3 114 11.5 11.3
Lasso 17.2 12.6 11.5 12.5
Uniform 4.0 4.1 4.6 4.2
Forestfires PLS 4.2 4.4 4.5 4.3
Lasso 4.6 4.2 4.7 3.9
Uniform 0.26 0.24 0.22 0.25
NO2 PLS 0.27 0.25 0.23 0.27
Lasso 0.26 0.24 0.22 0.26
Uniform 1.04 1.02 1.16 1.03
AAindex PLS 1.04 0.97 1.17 1.13
Lasso 1.06 1.06 1.15 1.05

Table 8.1: Mean Squared Test error (MSETes;) with respect to RWSM, averaged over
50 iterations for LERRANCO, RF and v-SVR. The corresponding best
results are listed for LERRANCO ensembles of size M = 100, K < di,,
A =0 (no NCL) or A — 1. With PLS and Lasso, variation of feature
selection probability for RSM as well as a scaling of the Euclidean space is
performed.
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8.3 Assessing the Feature Relevance based on OOB a
posteriori

LERRANCO ensembles offer to assess the feature relevance a posteriori in two ways:
Similar to the corresponding estimation of variable relevance based on RF models, its
contribution to the built ensemble model is either estimated by a permutation on the
features of the unseen input OOB-data (zoop). Or a permutation is performed on
the linear mappings (zia) as approximated by each SOM predictor. This variation
is covered in the next Section 8.4 on page 112. Both approaches assess the feature
relevance z based on the change in error rate when permuting features. The analysis
of feature relevance is grounded on the assumption that permuted features with no or
little effect on the error rate can be regarded as useless and are less contributing to
the ensemble model. Permuted features with enormous effect on the error rate are of
major relevance.

A sketch of the proceeding is given in Algorithm 2. The required arguments are
the trained models of predictors {fi,..., far} and their corresponding training sets
{(T1,K1), ... (T, Ku)} based on T. For the number np of iterations, the MSE on
out-of-bag data, here denoted as MSEgop, is computed for each individual predictor
fm- The permutation Xperm < Pmk(Xoop) is performed on the out-of-bag data xoop
for each predictor f,,. For a certain k, (p(X1x), .- -, P(XNoosk)) Means a permutation
in feature with index k£ € K,,, while the others 1,...,k — 1,k + 1,..., K are kept
unchanged. After calculating the MSEperm on OOB data with permuted feature k,
the change in error is determined and normalized by the number of OOB data samples
Noos.-

The evaluations zoop of the most relevant features contributing to the LERRANCO
models are given in Figure 8.2 for the datasets Friedman, Boston, Forestfires and
AAindex. Evaluation is shown for the 20 most relevant features regarding Friedman
data with K = 10 as well as K = 5, Boston (K = 8), Forestfires (K = 9) and AAindex
data (K = 25). For the Friedman data it is known by construction that only the
first five features contribute to the final output y. In case of the other datasets, as
real-world ones, this knowledge is missing for assessment and interpretation purposes.
Having LERRANCO trained on Friedman data with K = d;; = 10, i.e. without any
sub-sampling of features, the five most relevant features contributing to the model
are Vy, Vo, Vi, Vs, V3, exactly corresponding to those features, that make up the final
output. On the other hand, the irrelevant features (Vio, Vo, Vs, Vs, V7) are “noise” added
and actually correctly “classified”. If K is set to K = 5 on the Friedman data, the
resulting ranking of features is no longer that unique as before, but still the five features
Vi, Vo, V1, V3, Vi are found on top - only Vi is ranked slightly lower and positioned at
place number six.
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Algorithm 2 FeatureRelevanceOOB(M, {fi,...,fm}, {(T1,K1),...,(Ta, Kun)},
np)
Require: M, the number of models
Require: Trained LLM models {f1,..., far}
Require: Training samples {(T1,K1),..., (T, Kun)}
Require: np, the number of permutations
1: Init vector z for resulting relevances of length d;,
2: for m = 1 to M for each network do
3:  Get out-of-bag data for network m: xoop < {x, € T : x, ¢ T,,,Vn =
1,..., N}, where Noog denotes number of items |xcop|

4:  Get corresponding out-of-bag targets: yoop < {yn : Xn ¢ T, ¥n=1,...,N}
5:  Calculate MSEoop, the error per predictor on out-of-bag data:

MSEoos = (yoos — fm(xo0B))?
6: for k=1 to d, for each feature do
7: if k£ € K,, then
8: MSEperm < 0.0
9: for ¢t = 1 to np for each permutation do
10: Permute out-of-bag data xoop for fi,, s.t.

Pmk = (P(X1k); -+ - s P(XNoosk))
11: Perform prediction for model f,,, with Xperm ¢ Pmi(Xoos) on OOB data:
fm (Xperm)

12: ANISEperm = (y@B - fm(xperm))2
13: end for
14: Update Az[k] = (MSEperm/np — MSEoog)/Noos
15: Undo permutation: Xoop < P, %
16: end if
17:  end for
18: end for

19: return z/M
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Figure 8.2 (previous page): Feature Relevance zoop as estimated by LERRANCO en-
sembles with M = 100 based on the OOB data and change
in error rates when permuting features. The 20 most rele-
vant features are shown regarding (a) Friedman data with
K = 10 as well as (b) K = 5, (c) Boston (K = 8), (d)
Forestfires (K = 9) and (e) AAindex data (K = 25).

8.4 Assessing the Feature Relevance based on Linear
Mappings a posteriori

Every SOM ensemble predictor provides an additional way of assessing the feature
relevance. The second model specific metric in an approach to assess the feature
relevance a posteriori is based on the corresponding linear mappings learned (zyp).
The locally trained linear maps from the input to the output space are the matrices
A, e lei“Xd"“‘, where the matrices are vectors of length dy, since dyu: = 1.

In order to estimate the features’ contribution based on the linear mappings, the
previously presented lines 9 to 15 in Algorithm 2 on page 110 have to be modified.
The permutation performed previously is replaced by a permutation over the entries of
matrix A,,, with corresponding n; rows and K columns, where all individual vectors
A;;v = 1...,n; of predictor m are merged into the matrix A,,. One permutation
Pmk = (P(Amik), .-, P(Amn,k)) randomly shuffles the entries of one column %k of
each matrix A,,, if and only if £ € K,,,. Again, the MSEqop is computed on the
out-of-bag data for each predictor, and then the same computed (MSEpem) after
permuting column k in A,,. The differences are averaged and normalized.

112



8.5 Robustness of Feature Relevance

Algorithm 3 FeatureRelevanceLM (M, {f1,..., fm}, np, {(T1, K1), ..., (Tar, Kar)})

9: for ¢t = 1 to np for each permutation do
10: Permute linear mapping of f,,, s.t.
Pmk = (p(Amlk)7 ceey p(Ammk))
11: Perform prediction for model f,,(xoop) where A,k < Pmr OD XooB
12: ANISEperm = (YOOB — fm (XOOB))2
13: end for
14: Update Az[k] = (MSEperm/np — MSEcoB)/No0b
15: Undo permutation: A,, ; < p;}C

The estimations of features contributing to the LERRANCO models according to
the specific metric zyp; are given in Figure 8.3 for Friedman, Boston, Forestfires and
AAindex data.

When comparing this ranking of features ziy to the previous ranking according
to zoop as shown in Figure 8.2, there are some significant differences in the assess-
ment of feature contribution. For Friedman data, all five features V7 to V5 are posi-
tioned on top by zrm, while V; and V5 are erroneously displaced downwards by Vs. In
case of Boston data, the zpy; estimations with regard to features “nox”, “dist”, “age”,
“Istat” and “b” are complementary to those by zoop, while for the Forestfires data
the assessed feature relevances zoog are close to accordance with zyy;. In case of the
AAindex data, unanimously, great consensus exists for a number of eleven out of 20 fea-
tures (“SNEP660103”, “MITS020101”, “NISK860101”, “ROBB790101”, “AVBF000104”,
“SNEP660102”, “QIAN880102”, “FUKS010110”, “FINA910102”, “PONP800101”, “QI-
AN8801217).

8.5 Robustness of Feature Relevance

To find out about the impact on the resulting LERRANCO regression model if an a
priori feature relevance estimation is accounted for, two situations are considered for
Figure 8.4. For the Friedman data as well as for AAindex, a parallel coordinates plot
is given, where for every situation of interest the range of estimated feature relevances
is covered. The situations analyzed are the a posteriori assessed feature relevances

(a, first and second coordinate) zoop, zv assessed by LERRANCO models with
uniformly sampled features

(b, third coordinate) zpg assessed by a PLS model

(c, fourth and fifth coordinate) zwoos, zwinm assessed by LERRANCO models ac-
counting for the features being subsampled by the RWSM according to zps.-

This provides a way of assessing the impact of the RWSM according to zps to the
features contributing to the LERRANCO models.
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V10

Figure 8.3: Feature Relevance zp1 as estimated by LERRANCO ensembles with M =
100 based on the linear mappings and change in error rates when permuting
features. The 20 most relevant features are shown regarding (a) Friedman
data with K = 5, (b) Boston (K = 8), (c¢) Forestfires (K = 9) and (d)
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8.5 Robustness of Feature Relevance

The a posteriori estimated feature relevances, zoog and zy, are apparently strongly
connected for both datasets. Moreover, zoog, zZim as well as zwoop and zwry yield high
correlations for each of two considered situations as marked by the bold lines. The zpg
induces a contrary estimation of feature relevance if compared to the estimations based
on LERRANCO. Even with the disruptive factor introduced by zprs, the LERRANCO
models are capable of extracting the “right” features (zwoos, Zwim) in case of the
Friedman data. In case of the AAindex data, the models, which account for the zpg
a priori, stronger concentrate on a lesser number of features.

Friedman | Differences in Feature Relevances

relative feature relevance

I T T T 1
Z00B ZLM ZpLS ZW00B ZWLM
a posteriori a posteriori if zp| g given

AAindex | Differences in Feature Relevances

relative feature relevance

2008 ZM ZpLS ZW00B ZWLM

a posteriori a posteriori if zp| g given

Figure 8.4: Parallel Coordinates plots for the differences in the assessed feature rele-
vance a priori vs. a posteriori. in case of the Friedman and the AAindex
data. The situations analyzed are the a posteriori estimation of feature rel-
evance (a, first and second coordinate) zoog, zim assessed by LERRANCO
models with uniformly sampled features (b, third coordinate) zpig assessed
by a PLS model (c, fourth and fifth coordinate) zwoos, zwinm assessed by
LERRANCO models accounting for the features being subsampled by the
RWSM according to zps.
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8.6 Contribution of Features to Visualization

Ensembles bare some shortcomings as the aggregation over individual predictors causes
in general the loss of simple and comprehensible structures. To this end, a single
SOM predictor is preferable, since it offers transparency and enhanced visualizations.
These advantages seem to get lost in the context of EL, since every individual SOM
predictor on its own contains not as much information to derive a valuable picture.
Each SOM predictor represents only a small detail of the whole picture. With the
small nets or small number of nodes per each SOM adapting to a certain sub-task,
enhanced visualizations as U-matrix [Ultsch, 1993] are not appropriate choices. A
direct representation of the components, the mapping and the quality is the only we
can rely on. Having trained for an example a 2 x 2 SOM on the AAindex data, a
representation of each ensemble predictor can be derived as in Figure 8.5a. In this
Figure the codebook vectors, the corresponding predicted mappings of each node, as
given by w°Ut the counts of samples, this node is coding vector for, and the quality of
mapping, as defined by the mean quantization error, are represented. The left upper
prototype vector can be identified to cover lower ranges over the majority of features,
while the codebook in the right lower corner represents few samples with high feature
values. The according node mappings are well distinguished.

The number of ensemble predictors as well as the feature subsampling are coun-
terparts to the comprehensibility. As discussed in Section 4.1 on page 57, forcing
of commonality along the trained nets, can help to accomplish a consistent common
clustering over the independently trained nets.

Assembling the vast amount of SOM prototypes to an overall picture is one of the
major issues for visualization. One strategy to tackle the obstacles is to map the
total set of resulting prototypes onto one subsequently applied SOM approximating
as a secondary clustering. An example of a secondary clustering by a SOM of grid
size 30 x 40 is given in Figure 8.5¢ for the Friedman data. The number of nodes is
equal to the number of nodes M - 2 -6 in the ensemble setup corresponding to 1200

prototype vectors. The entries of the prototype vectors wir, € R%n corresponding to
node index i, where i = 1,...,n; for each predictor m = 1,..., M, are set to a value
of 0, if the feature with index k is not contained in the randomly sampled subset of
features K,,, for predictor m. Another example of a secondary clustering in presented
in Figure 8.5b. This SOM of size 20 x 20 approximates the resulting prototype vectors
of a LERRANCO model trained on the AAindex data. The plots correspond to the
representation suggested by Cottrell and de Bodt [1996] for SOMs and provided by
the R packages k1aR [Weihs et al., 2005] and som [Yan, 2004]. In these representations
(b),(c), the shape of each of the subsequent approximating prototypes depends on the
relative distance to its eight neighbors. The color code is modified in that way that
the approximated distribution of the target values (w{"*) is represented in a binned
(b = 20) version. But this process increases computational costs and we cannot rely
on a comprehensible map or visualization.
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Figure 8.5: Visualization of ensemble predictors. (a) shows the representations of a
single SOM (2 x 2) adapting to the AAindex data. In (b) an example
of a secondary clustering is given by a 20 x 20 SOM approximating the
prototypes of an LERRANCO ensemble model trained on AAindex. In
(c) a secondary clustering by a 30 x 40 SOM for the Friedman dataset is
presented.

A second effort to compensate the loss of comprehensibility is to benefit from the
ranking of features z in order to facilitate a visualization of the prototypes as in
Figure 8.6. This figure shows the prototype vectors for the five most relevant features
and the vectors approximating the distribution of target values w°“* with regard to
the benchmark datasets Friedman, Boston, Forestfires and AAindex.
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Figure 8.6: Main Components of ensembles prototypes for benchmark datasets Fried-
man, Boston, Forestfires and AAindex arranged in a scatterplot-matrix.
This figure shows the prototype vectors for the five most relevant features
according to zoog. The sixth component is given by the vectors approxi-
mating the distribution of target values w°U.
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8.7 Discussion

With ensembles, completely new challenges arise for feature selection and the task is
even harder than the classical feature selection but instead one needs to find a subset
of features promoting diversity along the ensemble predictors [Opitz, 1999].

The RWSM supplies a sampling of features according to a different probability
distribution than i.i.d.. By adjusting the feature sample distribution according to
zpis, one gets an advantage by RWSM in terms of MSEre; for the AAindex data.
This way, one achieves the highest precision of 0.97 for this dataset over all tested
methodologies.

For the other datasets, no improvement in accuracy can be observed. In case of
the small dimensional datasets, the RWSM imposes a skew in the information that is
presented to each predictor. As a result, the diversity between the subsets of features
and thus between the sub-tasks is reduced along the ensemble predictors. This may
be due to a lower fraction of redundant features, in contrast to the high-dimensional
AAindex data, which is supposed to contain many redundant and useless features.

The analysis of feature relevance with regard to the both methods zoog and zpy
applicable to LERRANCO models, has shown a strong indication of the robustness of
estimation. Both zoog and zry; are in agreement about the features’ contribution to the
model and thus none can be favorably pointed out. Only regarding the computational
effort, zry has an advantage, since M - K - n; permutations are required to shuffle the
entries of the linear maps, while zpog requires M - K - N permutations. Interesting
insights are expected from a qualitative investigation and analysis of the proposed
assessment of feature relevances. Though, further high-dimensional datasets and more
knowledge about them are needed for the semantic level of analysis.

Ensembles still demand for enhanced visualizations, as to compensate for the loss
of comprehensibility. With the application of re-sampling methods like Bagging and
RSM, the performance improvement comes at the cost of commonality. The difficulty
arises even for transparent ensemble predictors as proposed with LLMs based on SOMs.
The main issue comes with the problem of re-ordering the high amount of prototypes
as long as a topology is non existent between the predictors. To circumvent this lack
of commonality, some of the strategies discussed in Section 4.1 on page 57 might be
helpful.

8.8 Conclusion

Ensembles provide a way of globally handling the information presented and circum-
vent the curse of dimensionality. When applying the RSM, in context of EL two major
goals are accomplished: First, the effect of noise in data as well as the probability of
redundancy in the subsets of features is reduced. Second, a diverse set of accurate pre-
dictors is created. Moreover, the computational effort is reduced for high-dimensional
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data.

The RSM is amended to the Random Weighted Subspace Method (RWSM) in order
to benefit from an a priori given assessment of feature relevance. The estimated feature
relevances are used to define the underlying probability distribution of features being
randomly sampled. Especially for the high-dimensional AAindex data, the RWSM
facilitates an improved prediction performance.

In an effort to give a better understanding of the process that generated the data, the
proposed LERRANCO architecture provides two ways to assess the feature relevance
a posteriori. The features’ contribution to the built ensemble model is estimated
by a permutation performed either on OOB-data or on the local linear mappings
approximated by each SOM predictor. The analysis of feature relevance with regard
to both metrics has strongly indicated the robustness of estimation.

Assembling the vast amount of SOM prototypes in ensembles to an overall picture
is one of the major issues for visualization. One strategy for an enhanced visualization
is analyzed by mapping the total set of resulting prototypes onto one subsequently
applied SOM, which approximates as a secondary clustering. The visualization in the
form of a scatterplot-matrix benefits from the derived feature relevances in terms of
comprehensibility.
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9 Conclusions

In this thesis, the four main challenges arising exemplarily in bioinformatics applica-
tions are covered and coped with an ensemble architecture method offering a promising
way to the key issues stated in the introductory Chapter: (a) finding an adequate and
suitable predictor, (b) improving the performance of prediction, (¢) reducing the num-
ber of features and (d) providing a basis for data mining purposes.

Within this general context, the primary objective of this work is to address how
and why SOMs introduced into the field of Ensemble Learning succeed. To this end,
I propose the LERRANCO ensemble architecture combining the negatively correlated
SOM ensembles as part-adapting structures promoted by the resampling methods
Bagging and RSM.

9.1 How SOM ensembles succeed

The SOM demands for a compromise between the limiting factors accuracy, the number
of free parameters, the tolerance to redundant variables, the computational effort, the
storage capacities and the transparency.

In this thesis, I address the issue how and why SOMs introduced into the field of
Ensemble Learning succeed and if the weaknesses of SOM learning can be turned into
strengths. For regression task, the SOM is extended by an additional layer of nodes
to a Local Linear Map (LLM) by fitting a set of local linear functions to the training
data. The LERRANCO ensemble architecture is proposed to combine the negatively
correlated LLM ensembles based on SOMs as part-adapting structures with resampling
methods.

Ensembles voting from a set of hypotheses do not demand for highly accurate predic-
tors, but for diverse hypotheses aggregated to form the ensemble predictor. A growing
number of predictors is not the only universal mean of improving the ensemble per-
formance, but the diversity among the ensemble predictors.

The LERRANCO architecture forces the ensemble predictors based on SOMs to
cover different sub-tasks of the entire learning task at hand, in order to achieve a
sufficient level of diversity among the individual ensemble predictors. The results of
this thesis show a benefit from SOM ensembles and their topology preserving char-
acteristic when compared to other VQ-based approaches like (Growing) Neural Gas
or Fuzzy C-means clustering. SOMs are suited well to fulfill the theoretically posed
requirements of weak and unstable algorithms as basis for successful ensembles. The
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preconditions for successful ensembles are fulfilled with nets of low complexity, i. e. low
number of nodes. Ensemble predictors sharing the internal parameters uniformly
like network size, and the learning rates as well as neighborhood width set according
to rules of thumb, are found to yield the best performances. The critical parameters
left are the grid size and the size of randomly sampled subspaces used for training. The
potential of SOMs to Ensemble Learning is mainly exploited by an effective reduction
in the models’ complexity according to the number of free parameters, the size of
each SOM and the dimensionality of input space of each SOM. Using LERRANCO
I am able to achieve results outperforming other reference regression architectures
(Random Forests and SVR) when the individual predictors are fully-connected to a
single, complex learning unit.

9.2 Why SOM ensembles succeed

We have to distinguish the diversity emerging over a combination of four factors:
implicit and explicit, as well as between and within the ensemble predictors.

First factor is the explicit diversity forcing impact by NCL on inter-SOM level. By
a combination of the two resampling methods Bagging and RSM the diversity between
SOMs is enforced implicitly. The third factor is the implicit diversity inside the SOMs
controlled by o corresponding to the connectivity of nodes. The intra-SOM diversity
is affected implicitly by the inter-SOM diversity due to NCL.

Boosting the diversity explicitly by employing NCL, a shift is performed towards
interlinking individual learning stages including a term penalizing correlation in errors.
NCL allows to balance between single predictor accuracy and diversity, controlled by
the cooperation among the neural networks, thereby dispensing with a sub-local ac-
curacy for a higher overall generalization ability. The relation between two commonly
used penalty functions is identified leading to a family of parameterized functions. The
diversity forcing impact by NCL on inter-SOM level forces stronger connections along
the ensemble predictors. Enforcing the diversity explicitly succeeds until the ensem-
ble predictors are interlinked as one single, complex learning unit. The effective
dynamics on interplay among the ensemble predictors are exploited. To this end, the
positive relationship between NCL strength and ensemble diversity in general, i.e. for
DIVinter as well as DIV, exerts its fundamentally equally positive influence within
each ensemble.

By combining the two re-sampling methods Bagging and RSM the diversity be-
tween SOMs is enforced implicitly. The predictors adapt to different sub-tasks and
are capable to handle the information globally. Improved accuracy, speed and
interpretability are achieved by the application of RSM in either case. Therewith,
the predictors are forced to locally specialize or to discriminate in these local regions
of the input space. Predictors strongly benefit from a reduction of features thereby
defying the curse of dimensionality, offering reduced time and space complexity.
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9.3 Outlook

The generalization accuracy may be further improved by including a variation in the
feature sample distribution.

A single SOM can be seen as an ensemble itself. It enforces intrinsic intra-SOM
diversity by the width of the Gaussian neighborhood function. As every SOM has
a diversity feature representing the variances between the nodes, the quantification
of the intra-SOM diversity is introduced. The inter-SOM diversity exhibits a highly
positive correlation to the quantified intra-SOM diversity. The increase in error per
every single SOM is ascribed to the nodes, which are topped out at diversity. In
other words, the inter-SOM diversity enforcing connection surpasses the intra-SOM
connection linked via the Gaussian neighborhood between the nodes. The diversity
breaks up between these with greater emphasis on the inter-SOM diversity. A higher
intra-connectivity among the nodes by ¢ = 2.0 is needed so as to compensate the
boosted inter-cooperation among the predictors. These characterizations of locally
specialized learners help to understand why the SOM ensembles succeed.

SOM ensembles lack of the comprehensible structures and the topology along the
ensemble predictors, facilitating analysis and enhanced visualizations, as it is for any
other learning architecture applied. For visualization purposes, the vast amount of
SOM prototypes in ensembles has to be assembled to an overall picture. In order to
get further insights into the data generating process, a ranking of features according to
their estimated relevance is a beneficial hint. For this purpose, the feature relevance
is assessed a posteriori by two approaches with regard to the features’ contribution
to LERRANCO models. The first approach is based on a permutation of the OOB
samples, while the second uses a permutation of the locally linear mappings as ap-
proximated by the SOM predictors. The analysis of feature relevance with regard to
both metrics has strongly indicated the robustness of estimation.

With regard to the computation time, ensembles provide an attractive option, since
they can be easily scheduled in parallel. Moreover, conform to the small number of
nodes as well as the reduced size of ensemble feature subsets, ensembles offer the great
advantage of a fast and effective parallel computation. The capacities required to store
the M models of the ensemble predictors are independent of the number of samples
N. The reduction in the size of the ensemble feature subsets offers great advantage
for high-dimensional datasets. Next to the inherent parallelism, SOMs have a great
attraction for their capability of incremental learning.

9.3 Outlook

Ensemble Learning has shown great success and a vast amount of methodologies exist
in efforts to boost diversity. As it is underlined by Zhou [2009] in his invited plenary
talk at MCS’09, recently, only a few papers are published in the top machine learning
conferences with the topic of Ensemble Learning. He ascribes that to the easier tasks
being finished. In the forthcoming chapter of Brown [2010], he concludes that the gen-

123



9 Conclusions

eration and investigation of diverse models “is nowadays rather oversubscribed". The
focus of the recent challenges and activities is now on methods for non-standard data.
Examples of these are non-stationary data or challenges arising in semi-supervised
learning or incremental learning. Within this fields of applications, the proposed SOM
ensembles may show great promise.

9.4 Summary

In this thesis, I address the issue how and why Self-Organizing Maps (SOMs) intro-
duced into the field of Ensemble Learning succeed. SOM Ensemble Learning benefits
from non-independent learning when individual learning stages are interlinked by a
term penalizing positive error correlations along the ensemble predictors. For regres-
sion task, an extension of the SOM is used (Local Linear Map) by fitting a set of local
linear functions to the training data. The proposed LERRANCO ensemble architecture
combines the negatively correlated LLM ensembles based on SOMs as part-adapting
structures with the resampling methods Bagging and RSM. Using LERRANCO I am
able to achieve results outperforming other reference regression architectures. With
SOMs applied as a classifier and reconsidered as an ensemble itself, we gain completely
new perspectives in the context of diversity and Ensemble Learning: The total diver-
sity balances over a dynamic interplay of factors arising implicitly and explicitly, as
well as on inter- and intra-SOM level. The potential of SOMs to Ensemble Learning is
mainly exploited by an effective reduction in the models’ complexity according to the
number of free parameters, the size of each SOM and the dimension of input space.
The SOM predictors succeed with uniformly (internal) parameters set according to
rules of thumb. LERRANCO ensembles succeed with the highest generalization per-
formance when the SOM predictors cooperate at highest level and stability is satisfied.
By putting a strong emphasis on locally specialized predictors, improved accuracy, re-
duced time and space complexity are accomplished.
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