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Using a model selection approach, this thesis proposes a constructive data-
and-theory-combined procedure to identify model structures in the frame-
work of a linear simultaneous equations system based on observed data. A
model structure is characterized by restrictions on the structural parameters.
To identify these restrictions two issues have to be taken into account: the
first is the problem of observational equivalence, i.e. different models may
have an identical density function, henceforth data cannot differentiate such
observationally equivalent models; the second is the identification of the re-
strictions on structural parameters. For the first problem we classify models
into different observationally equivalent classes and give necessary and suffi-
cient conditions for the uniqueness of observationally equivalent models. For
the second problem we take an approach based on the information criterion
and give a (strong) consistent criterion to identify the restrictions on the
structural parameters. We apply this model selection criterion to cointegra-
tion systems and provide a unified approach to analyzing linear simultaneous
equations systems and cointegration systems. The model selection criterion
is also used to identify the encompassing relations among different structural
models under mis-specification. Through constructive use of the model se-
lection criterion, we may get the most parsimonious structural model that
is compatible to the data among the models under investigation. However,
all conclusions conducted from the model selection criterion are valid only
asymptotically. Nevertheless, the relevance for practical applications of this
criterion is demonstrated by some simulation studies.
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1 Introduction

One of the most important tasks of empirical modeling of economic data is to
uncover the interpretable relations among variables that can either be used
to verify existing economic theories or can provide empirical evidence for a
new theory. In the context of an econometric model such relations are mani-
fested in the parameters and the restrictions on the parameters of the model.
Therefore, it is of great interest to construct an econometric model as a DGP
that can generate data that will have the same characteristics as the observed
data. In this way the observed data can be viewed as if they have been gen-
erated from this model and it follows that the relations among the variables
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described in this model can be regarded as empirically verified. There are
principally three approaches to constructing such an econometric model1:
The traditional Cowles Commission approach or the theory conducted ap-
proach; the atheoretical VAR approach or data conducted approach; and the
LSE approach or the data-and-theory combined approach.

1.1 Approaches to Building Econometric Models

1.1.1 The Theory Conducted Approach

The theory conducted approach was first developed by researchers of the
Cowles Commission. It is also called the Cowles Commission method. The
starting point of this approach is the theoretic foundation of a model. Usu-
ally an econometric model is seen as a linearized and estimable version of
a comprehensive derived economic theoretical model.2 The main focus of
econometric work is on the estimation of parameters.

According to this approach, a structural model consists of correctly specified
equations. The underlying premise is that suitable economic theoretical con-
sideration should provide enough identification conditions to specify a struc-
tural model that can approximate the real data generating process (DGP).
This approach enforces a model structure on a set of observed data and pays
little attention to the question whether the restrictions on the DGP implied
by the structural model are compatible with the data or not3.

1.1.2 The Data Conducted Approach

Sims (1980) criticized the ”incredible” identification restrictions of the struc-
tural models and showed vividly how serious this problem may be. He pro-
motes therefore VAR (vector autoregressive) models without any restrictions
on the density function of concerning variables. A VAR model provides here
a general statistic framework to describe the observed data. The estimated
model will describe the dynamic property of the DGP.

However, VAR models are usually much overparameterized4. Most of the
estimated parameters are insignificant to zero. And VAR models do not
provide intuitively interpretable relations among the variables. If VAR is
a suitable instrument to catch the dynamic property of the variables, it is
by no means a suitable instrument to understand the data i.e. to give the
theoretic interpretation to the parameters.

1See Granger (1990) for detailed discussion
2See Fair (1984) Powell and Murphy (1997) and Klein (1983) for detailed discussion.
3See Spanos (1990) for more discussion.
4See Amisano and Giannini (1997) p.2 for more discussion.
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1.1.3 The Data-and-Theory-Combined Approach

While the Cowles Commission method emphasizes the theoretic interpreta-
tion aspect of an empirical model, the VAR method focuses on the data
conformity of the empirical model. Both aspects are essential to empirical
economics. ”Theory without empirics is empty. Empirics without theory is
blind.”5 The theory and data combined approach developed by researchers
at the London School of Economics (LSE) combines these two aspects. This
approach starts from a general statistic model (it is usually a VAR model)
and formulates the economic theories in a set of statistically testable hy-
potheses and tests these hypotheses within the statistical model.6 If the
test results support these hypotheses, a more restrictive model will be con-
structed. In this way, a specific structural model may be conducted from a
general atheoretical model via a series of comprehensive statistic tests.

1.2 A Model Selection Approach to Structural Mod-
eling

Economic theories do not usually provide enough unambiguous identification
restrictions7 from which we can conduct a unique structural model. This
ambiguity in the economic theory leads to alternative structural models to
the same economic phenomenon. Furthermore competing economic theories
exist in many areas of economics at the same time.

The LSE approach tries to conduct an economic-theoretically founded econo-
metric model by statistical tests. In case of a statistical test the null hypoth-
esis and the alternative hypothesis are not symmetric. In the formulation
of a null hypothesis one has to put a great degree of confidence in it. It is
questionable whether one would have such confidence in such an economic-
theoretically conducted hypothesis, while other competing theories exist.8

Statistical tests are rather for confirmative study than for explorative study.
Furthermore, this kind of test approach may result in contradictory conclu-
sions that two or more rival models could be supported by observed data at
the same time.

To overcome these difficulties we adopt the model selection approach to con-
struct an econometric model, where all alternative economic hypotheses are
treated equally.

As mentioned at the beginning, the task of empirical modeling is to uncover
the real DGP. This is unfortunately an unsolvable problem because the real

5Immanuel Kant - German Philosopher (1724 - 1804)
6For details see Hendry (1995).
7Hendry (1995) p. 5-9
8For detailed discussion of this point see Granger and White (1995)
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DGP of empirical data is usually too complex to be explicitly describable
by a traceable model. Hence, we are forced to approximate the real DGP
by a smaller well defined class of models and to develop a procedure to
approximate the real GDP by a model in this class. This procedure should
be able to identify the real DGP if the real DGP of the observed data were
really within this class of models. In case the real DGP is not within this
class this procedure should be able to choose the ”best” one from this class
as the closest approximation9 to the real DGP.

In the context of linear simultaneous equations systems, this class will be the
set of all possible linear simultaneous equations systems.

The basic idea in this thesis is to view the theory-conducted structural mod-
els as different set of restrictions on the unconstrained reduced form. Using
a model selection approach we can identify which set of restrictions are true.
Then we will choose the structural model from which this set of restrictions
are derived. In this way, we can get a structural model that is both theoret-
ically founded and compatible with the observed data. This kind of model
provides empirical evidence for the economic theory and gives a theoretical
understanding to the observed data.

1.2.1 Task of Structural Models and the Requirement

The statements of economic theories are mostly formulated as certain re-
lations among economic variables in the structural form.10 These relations
are expressed by the parameters that link these variables. Hence, structural
models provide a natural framework to present theories, to test theories and
to interpret data. The estimated parameters in a structural model are usu-
ally interpreted to reveal some ”behaviour constant”. Some questions arise
here: are there any alternative models that would describe the data equally
well? If yes, do the corresponding parameters in the alternative models have
the same value? If not, how should the parameters be interpreted?

It is well known that all exactly identified structural models will have the
same reduced form and hence the same goodness of fit to the data. Therefore
it is impossible to differentiate these models from the data. In case two rival
theories would correspond to two exactly identified structural models, we
would not be able to say which one is more appropriate based on the observed
data.

According to the requirement for falsifiability of a scientific theory, an eco-
nomic theory should be formulated as a testable hypothesis in a structural

9The measure of the closeness is Kullback-Leibler Information Criterion. See Chapter
8 for details.

10It means that these relations are among the interdependent variables.
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model if it is going to be tested in an econometric model. In the context
of model selection we rank alternative models. If we associate alternative
models with alternative economic theories, a test of economic theories can
be carried out by selection of models.

1.3 The Organization of this Thesis

Generally, the problem of identifying true structural models based on ob-
served data rests on two levels. On one level, it is to identify the true re-
strictions on the parameter of the density function using the observed data.
On the other level the problem is mapping the restrictions on the parameter
of the density function to the restriction on the structural parameters. The
former is a statistical issue, the latter is rather an algebraic issue.

In Chapter 2 we give a formal definition of structural models. We define
a simultaneous equations system on the unconstrained reduced form. A
structural model is taken as a possible representation of the simultaneous
equations system, in which some specific properties of data are outstanding.
In this context, building a structural model is realized by a proof of its
appropriateness as an alternative representation of the unconstrained reduced
form.

In Chapter 3 we discuss the problem of observational differentiability. The
existence of observational equivalence in a simultaneous equations system is
a well known problem in econometrics. This problem has two consequences
for statistical inference. The first consequence is for the estimatability of the
structural parameters. This is known as the identification problem of struc-
tural models. The solution is given by imposing a priori restrictions called
identification conditions on the structural parameters. This condition guar-
antees the uniqueness of the mapping from the parameters of density function
to structural parameters.11 the second consequence is for the observational
differentiability. Two identifiable models may still be observationally equiva-
lent. In this case one cannot differentiate these two models from the observed
data. This problem arises when one tries to identify true structural models
from observed data. It is not yet well discussed in the literature of econo-
metrics. We solve this problem by giving necessary and sufficient conditions
for observational differentiability.

After solving the observational differentiability problem we turn in Chapter 4
to the problem of identifying the true structure. We start with the maximum
likelihood (ML) principle. The ML-function can pick out false restrictions
on parameters but it suffers from the problem of overfitting, i.e. the more
parameters a model may have, the larger its likelihood function value will

11See Judge (1985) p. 574-581
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be. The AIC solves the problem by applying the principle of maximization
of the relative entropy. It leads to adding a penalty - the number of free
parameters - to the ML function. However, the AIC does not solve this
problem completely. It can be shown that the AIC is inconsistent12. We
discuss then the issue of consistent selection criteria and provide a general
condition for (weak) consistent selection criteria.

In Chapter 5 we develop a (strongly) consistent model selection criterion for
structural models. It turns out that this criterion is formally identical to the
Hannan-Quinn criterion for AR processes. This criterion will choose the true
model with probability one asymptotically.

In Chapter 6 we provide an alternative representation of a cointegration
system. Under this alternative representation, the consistent model selection
criterion provides a unified approach to analyzing simultaneous equation sys-
tems and a cointegration system.

In Chapter 7 we look at the problem of misspecification. We adopt the
pseudo-true value concept from White (1982) and Gourieroux and Monfort
(1984), and the encompassing concept from Hendry and Richard (1988) and
Gourieroux and Monfort (1996). We discuss the result of the consistent
model selection criterion under misspecification. The model selection cri-
terion provides an instrument to identify the parsimonious encompassing
relation. Hence, the model selection criterion will choose the most parsimo-
nious model that is the closest to the real DGP among all candidate models
asymptotically.

In Chapter 8 we study the performance of the consistent model selection cri-
terion for diverse constellation of model characters via simulation. We first
look at the small sample size performance of the criterion to see when the
asymptotical property prevails. Then we look at the sensitivity of this crite-
rion to choose the most parsimonious model. We illustrate the performance
of the criterion under nested, non-nested admissible models, as well as non-
admissible models. We also study the performance of the model selection
criterion for large scale models with up to 100 equations in a model.

12Shibata (1976)
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2 Structural Models

2.1 The General Setting of a Simultaneous Equations
Model

2.1.1 Reduced Form

We consider the following simultaneous equations system:

Yt = ΠXt + Vt for t=1,2,...T (2.1)

with the following assumptions:

• Yt ∈ RG×1 is a random variable called the endogenous variable.

• Xt ∈ RK×1 is called the predetermined variable with :

X ′
t = (Y ′

t−1, Y
′
t−2, ...YT−p, ξ

′
t)

ξt ∈ RKe × 1 is the exogeneous deterministic variable with:

plim
T→∞

∑T
t=1 ξtξ

′
t

T
= Mξξ′ .

where Mξξ is a nonsingular constant matrix.

• VT ∈ RG×1 is random disturbance. It is identically independently dis-
tributed as N(0, Ω)

• Xt and Vt are uncorrelated.

E(XtV
′
t ) = 0

• Π is a G×K matrix of parameters that satisfies the following stability
condition. We rewrite the model explicitly in the lags of Yt:

Yt = ΠXt + Vt = Π1Yt−1 + Π2Yt−2 + ... + ΠpYt−p + Πeξt + Vt

The stability condition is:

– max{|λi|; i = 1, 2, 3, ...GP} > 1
λi is the i-th root of the following equation:

|I − Π1λ1 − Π2λ
2 − ...− Πpλ

p| = 0

– The initial value of Yt is given.
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The equations system (2.1) with the assumptions above is called the uncon-
strained reduced form of a simultaneous equations system. The conditional
density function of the dependent variable Yt given Xt is:

f(yt|xt; Π, Ω) = (2π)−
G
2 |Ω|− 1

2 e−
1
2
(yt−Πxt)′Ω−1(yt−Πxt)

We denote the realization of Yt, Xt and Vt by yt, xt and vt respectively. For
a data set of T observations we stack all T observations into one equation:

yT − xT Π′ = vT

where yT = (y′1, y
′
2, ...y

′
T ) and xT = (x′1, x

′
2, ...x

′
T ) and vT = (v′1, v

′
2, ...v

′
T ).

The log likelihood function for these T observations is:

log LT (Π, Ω;yT ,xT )

=− TG

2
log(2π)− T

2
log |Ω| − 1

2
tr(Ω−1(yT − xT Π′)′(yT − xT Π′))

We know that the reduced form is seemingly unrelated (SUR)13, the maxi-
mum likelihood estimate( MLE) can be obtained by applying ordinary least
squares (OLS) to each single equation in (2.1)14.

2.1.2 Structural Form

If there exists a nonsingular G × G matrix B and a G ×K matrix Γ and a
set of a priori restrictions (this will be explained below) on B and Γ, such
that

B−1Γ = −Π, (2.2)

we can premultiply B to both sides of (2.1) and get:

BYt + ΓXt = Ut for t=1,2,...T (2.3)

with UT = BVT , E(Ut) = 0.E(UtUt
′) = BΩB′. The equations system (2.3)

is called the structural form of the simultaneous equations system. Often it

13See Theil (1971)
14See Hamilton (1994) p. 291-296
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is also called a structural model. According to the assumption we made for
the unconstrained reduced form (2.1), the structural equations system (2.3)
fulfills the conventional assumptions of simultaneous equations system.15

If no restrictions are placed on the structural parameters matrix (B, Γ),
(B, Γ) is unidentified in the sense that any matrix (B∗, Γ∗) which is sim-
ilarly unconstrained will also satisfy the condition (2.2) where B∗ = AB,
Γ∗ = AΓ and A is an arbitrary nonsingular matrix:

B∗−1Γ∗(AB)−1(AΓ) = B−1Γ = −Π. (2.4)

The number of parameters in (B, Γ) is G(G + K), while we have only GK
conditions in (2.2) to determine G(G + K) parameters. Obviously we need
a priori restrictions to identify (B, Γ). Identification conditions are fully
discussed in Schmidt (1976) p. 128-14516. In this thesis we consider only
identified structural models with zero restrictions and normalization restric-
tions17.

2.1.3 Implication of Structural Representation on the Reduced
Form

Exactly identified structural models have the same number of parameters
as the reduced form, they do not impose any restrictions on Π. Overidenti-
fied structural models have less free parameters than the reduced form, they
impose some restrictions on Π matrix. These restrictions can be demon-
strated in the following example:

Exapmple:




1 β12 β13

0 1 β23

β31 0 1







y1

y2

y3


 +




γ11 0 0 0
γ21 γ22 0 γ24

0 0 γ33 γ34







x1

x2

x3

x4


 =




u1

u2

u3


 .

For a simultaneous equations system as defined in (2.1) to have this structural
presentation the following equation must be satisfied:

BΠ = −Γ.

For the first row of the equation above we have:

15See Appendix A.1, Schmidt (1976) p. 120, Dhrymes (1993), and Theil (1971)
16See also Amemiya (1985) p. 231
17Normalization condition is that the diagonal elements of B are restricted to be unit;

zero restriction on (B, Γ) is that some other elements in (B, Γ) are assumed to be zero
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(
1 β12 β13

)



π11 π12 π13 π14

π21 π22 π23 π24

π31 π32 π33 π34


 = − (

γ11 0 0 0
)
.

For
(
1 β12 β13

)
to be uniquely identified the following sub matrix of Π

must satisfy the rank condition18:

rank




π12 π13 π14

π22 π23 π24

π32 π33 π34


 = 2

This rank condition implies that the elements in this submatrix cannot be
estimated freely. Exactly one element is determined by the others. Similarly,
the third equation is overidentified. It imposes also a restriction on the Π
matrix. The second equation is exactly identified, we can determined the
four structural parameters of the second equation from any Π. Hence, the
second structural equation does not impose any restrictions on the Π matrix.
2

Generally, zero restrictions of an overidentified structural model impose, ac-
cording to their positions in the (B, Γ) matrix, such rank constrains on the
corresponding sub matrix in Π. The number of restrictions imposed on Π
by (B, Γ) is the number of overidentification conditions on (B, Γ)19. Because
only zero restrictions on structural parameters are considered and the vari-
ance covariance matrix is assumed to be unconstrained, a structural model
as defined in (2.3) is fully determined by the restrictions on (B, Γ). Hence
we use (B, Γ) to represent a structural model in this thesis.

2.2 Model Selection Approach

2.2.1 Structural Form vs. Reduced Form

In the context of a theoretical framework one may derive the ”behaviour”
of economic agents and present these ”behaviours” in the structural form of
a simultaneous equations system (2.3). The attribute ”structural” refers to
an explicit description of how an action of economic agents - ”Yit” depends
directly on other actions ”Yjt” and on the given information Xt. The reduced
form (2.1) sums up all direct and indirect dependence of Yt on all predeter-
mined information Xt. ”Generally, the structural form is more revealing of

18See Frohn (1995) p. 169
19The number of overidentification conditions is the difference between the number of

zero restrictions in an equation and G− 1.
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the manner in which an economic system is operating. The reduced form
is less revealing.”20 In fact, the reduced form encompasses every structural
model. It can always be estimated without referencing any structural form.
An overidentified structural model imposes restrictions on the unconstrained
reduced form; it corresponds only to a specific reduced form. If an overi-
dentified structural model can encompass the DGP, the relation (2.2) will
be satisfied. (2.2) implies then restrictions on the unconstrained reduced
form Π. Hence, we can make a judgement about the appropriateness of a
structural model by testing the associated restrictions on the reduced form.

2.2.2 Model Selection Approach

The reduced form as defined in (2.1) provides a general framework to study
structural models. A structural form as described in (2.3) provides poten-
tially a more parsimonious alternative presentation of the real DGP and may
provide more interpretable facts of the observed data. If the real DGP can
be encompassed by such a structural model, the observed data should reveal
this property. Identify such structural model from the study of data is the
approach to structural modeling pursued in this thesis.

If we know a potential candidate of the structural model, we can test the
restrictions imposed on Π by this candidate model.

The question is how to find such candidates. There are principally two ways
to get such candidates. One way is per permutation and an automatical
search for such structural models21. Another way is to conduct alternative
structural models by theoretical reasoning. Because the ultimate motivation
of structural modeling is to understand and interpret the observed data,
often to understand them in a specific way, we will take the latter approach
to formulate possible potential candidates. 22 When we have a group of
candidate models, we will evaluate each candidate model by a model selection
criterion. The task is then to discover a parsimonious and interpretable
structural model (2.3) for a given reduced form (2.1).

20See Dhrymes (1993) p. 13-14
21See Hendry and Krolzig (2001) for different strategies of search
22Of course there is no guarantee that a theoretical founded model will encompass the

DGP. In case none of the candidates pass the proof, a new trail will be made, in this way
our knowledge about the phenomena will be accumulated.



3 OBSERVATIONAL DIFFERENTIABILITY 15

3 Observational Differentiability

In finding an overidentified structural model based on a given reduced form,
one question rises naturally: is the identified structural model unique if we
can identify it? In other words: are there overidentified models that will
induce the same restriction on Π? We are going to answer this question in
the following sections.

3.1 Definitions

We give at first a few definitions to formalize our discussion.

Definition 3.1 (Structure) A structure is a complete specification of the
parameters in the probability function of the variable concerned, say Yt.

We denote a structure by (B̄, Γ̄, Σ̄). For a structural model as defined in
(2.3), a structure is a point in the space of RG(G+K+(G+1)/2), i.e. a numeri-
cally specified (B̄, Γ̄, Σ̄). A structure corresponds uniquely to a numerically
specified reduced form, i.e. (−Π̄, Ω̄) = (B̄−1Γ̄, B̄−1′Σ̄B̄−1).

Definition 3.2 (True structure) A structure is called true structure, if
the data under investigation is generated by the density function specified by
this structure.

The corresponding reduced form is called true reduced form. We denote
the true structure by (B̄0, Γ̄0, Σ̄0) and the true reduce form by (−Π̄0, Ω̄0) =
(B̄−1

0 Γ̄0, B̄
−1′
0 Σ̄0B̄

−1
0 ).

Definition 3.3 (Model) A model is a set of all possible structures. A model
is characterized by the a priori restrictions on the parameter matrix (B, Γ).

Throughout this thesis we consider only zero restrictions on parameters in
the matrix (B, Γ). Different zero restrictions on the matrix (B, Γ) will be
treated as different models. Because free varying parameters in (B, Γ) are
complimentary to the zero restrictions (B, Γ), we define a model either by
the free parameters in the matrix (B, Γ) or the zero restrictions on (B, Γ).
The covariance matrix is considered to be unconstrained in this thesis. If
the number of restrictions on a model is r, the parameter space of the model
will be RG(G+K+(G+1)/2)−r. Such a model with r restrictions can generate
different structures that all fulfill the r restrictions.
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Definition 3.4 (Admissible to a structure) A model Mi is called admis-
sible with respect to a structure, if the model can generate a density function
that is identical to that specified by the structure.

For example, the unconstrained reduced form, that is a model with zero
restrictions on all off-diagonals of matrix B, is always an admissible model
to any structural model, because the true reduced form is always one point
in the set of all unconstrained reduced forms. If a model cannot generate a
density function that is identical to the true density function, the model is
said to be not admissible.

It is worthy to point out that it matters whether the parameter of the true
reduced form is contained in the parameter space of the reduced form of a
model Mi but not whether the true structural parameter is contained in the
structural parameter space of Mi.

For example, the unconstrained reduce form is admissible to the true struc-
ture of an overidentified interdependent model. Obviously, this true structure
must not be a point contained in the parameter space of the unconstrained
reduced form, because some of its off-diagonal elements in the B matrix may
not be zero.

Definition 3.5 (Admissible to a model) A model Mi is called admissi-
ble with respect to another model Mj, if the model Mi is admissible to any
structures that are contained in Mj.

In this sense, Mi is admissible with respect to Mj, if the parameter space of
the reduced form of Mj is contained in the parameter space of the reduced
form of Mi.

Definition 3.6 (Observationally equivalent models) Two models are called
observationally equivalent, if they are admissible with respect to each other.

Obviously, two observationally equivalent models can generate identical den-
sity functions. Therefore, for any set of data their maximum values of re-
spective likelihood functions will be the same. That is why they are called
observationally equivalent. Two observationally equivalent models will have
the same number of zero restrictions, because they impose the same restric-
tion on Π.

Definition 3.7 (True model) A model M0 is called a true model if it is
admissible to the true structure and contains the same number of zero re-
strictions as the number of zeros in the true structure.
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According to this definition a true model must not be unique. If M0 is a
true model then the observationally equivalent models of M0 will also be
true models. (Compare Proposition 3.8) This definition is justified by the
property that if a true model has observationally equivalent models, we can-
not differentiate from which one of the observationally equivalent models the
observed data may be generated. Hence they are all equally true if we judge
them according to the data.

Admissible models with respect to M0 may have a different number of free
parameters. Among a set of admissible models with respect to M0 there
must be a model with a minimum number of free parameters. Models with
minimum number of free parameters are called the most parismonious model
within this admissible set.

M0 is itself an admissible model with respect to M0. It is also the most
parsimonious model among all admissible models with respect to M0

23.

3.2 observationally equivalent Models

To describe the property of observationally equivalent models we have the
following propositions.

Proposition 3.8 If Mi is admissible with respect to Mj and has the same
number of free parameters as Mj, then Mj and Mi are observationally equiv-
alent .

Proof:

Mj imposes a set of restrictions on the unconstrained reduced form Π. The
number of restrictions are Zj − G(G − 1), where Zj is the number of zero
restrictions in model Mj. Because Mi has as many zero restrictions as Mj, it
imposes also Zj −G(G− 1) restrictions on the unconstrained reduced from.

Now Mi is admissible with respect to Mj: it implies the Zj − G(G − 1)
restrictions imposed by Mi are the same as those restrictions on Π imposed
by Mj. In other words the derived reduced form of Mi and Mj are the same.
Because both Mj and Mi are identifiable, there is a 1-1 mapping between
(Bj, Γj) and Πj, and between (Bi, Γi) and Πi = Πj. It follows that there
exists a 1-1 mapping between (Bj, Γj) and (Bi, Γi). In other words, for any
density function generated by (Bi, Γi) there exists a (Bj, Γj) that generates
the same density function. This means Mj is admissible with respect to Mi.
2

From the Proposition 3.8 above we have the following statements:

23See next section.
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• Two structural models are observationally equivalent, if they induce
the same restrictions on the unconstrained reduced form.

• All models in the most parsimonious admissible group with respect to
M0 are observationally equivalent to M0.

• Observationally equivalent models have the same number of zero re-
strictions.

• Observationally equivalent models are admissible with respect to each
other.

Proposition 3.9 (Exact identification and linear transformation) If
a model is exactly identified, there exists a linear transformation for each
structure of the model, such that the number of zeros remains unchanged
after this transformation.

Proof:

Suppose we have a exactly identified structural model:

BYt + ΓXt + Ut

Premultiply the equation by B−1 so that we get the reduced form:

Yt = −B−1ΓXt + B−1Ut

According to the definition of exact identification the number of zero restric-
tion in the structural form is G(G − 1) and the number of zero restrictions
in the reduced form is also G(G − 1). Because B is a full rank matrix B−1

corresponds to a linear transformation. (In case the B is a unit matrix, then
a linear transformation that eliminates an element in the Γ matrix will add
one zero restriction into Γ matrix but at same time reduce one zero restric-
tion in the B matrix. This linear transformation keeps the number of zeros
unchanged after the transformations.) 2

Corollary 3.10 If one equation in a structural model is exactly identified,
there exists a linear transformation of the model that transforms this equation
into a new one and keeps the number of zero restrictions in this equation
unchanged.

Proposition 3.11 (Observational equivalence and linear transformation)
Two different models (Bi, Γi) and (Bj, Γj) are observationally equivalent , if
and only if
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• The number of zero restrictions in both model are equal: Zi = Zj

• For any structure (B̄i, Γ̄i) in (Bi, Γi) there exists a structure (B̄j, Γ̄j) in
(Bj, Γj) such that (B̄j, Γ̄j) = A(B̄i, Γ̄i) where A 6= I.

Proof:

Necessity:

Because (Bi, Γi) and (Bj, Γj) are observationally equivalent, it follows that
the number of zero restrictions are the same in both models and for any given
structure (B̄i, Γ̄i) there exists a (B̄j, Γ̄j) such that their density function are
identical. This implies that

B̄−1
i Γ̄i = B̄−1

j Γ̄j

We find a A = B̄−1
j B̄−1

i , Suppose that A would equal I we would have
B̄j = B̄i and Γ̄j = Γ̄i. This would contradict the assumption that (Bi, Γi)
and (Bj, Γj) are different models. Hence A 6= I.

Sufficiency:

suppose that for (B̄i, Γ̄i) there exists a structure (B̄j, Γ̄j) such that (B̄j, Γ̄j) =
A(B̄i, Γ̄i) and A 6= I. It follows then that the density of the structure (B̄j, Γ̄j)
will be the same as that of the structure (B̄i, Γ̄i):

B̄−1
j Γ̄j = (AB̄i)

−1(AΓ̄i) = B̄−1
i Γ̄i

This means that model (Bj, Γj) is admissible with respect to model (Bi, Γi).
Since they have the same number of zero restrictions following proposition
3.8 they are observationally equivalent.

Corollary 3.12 For a structural model, if we can always find a linear trans-
formation to transform the structural model into another structural model
and this transformation keeps the number of zeros unchanged, then these two
models are observationally equivalent .

Corollary 3.13 For two exactly identified models there always exists a full
rank linear transformation that transforms any given structure of one model
into a structure of another model.

Corollary 3.14 Two observationally equivalent models have the same max-
imum likelihood function values for a given set of data.
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Proof: See Frohn (1995) p. 179 2

For example, all exactly identified models are observationally equivalent ,
because they correspond to the same unconstrained reduced form and hence
have the same likelihood for any given set of data.

Following are a few more examples. These models all have 6 equations and
6 predetermined variables.

Example 1:




1 β12 0 0 0 0 γ11 γ12 0 0 0 0
0 1 β23 0 0 0 γ21 0 γ23 0 0 0

β31 0 1 0 0 0 0 γ32 γ33 0 0 0
0 0 0 1 β45 0 0 0 0 0 γ45 γ46

0 0 0 0 1 β56 0 0 0 γ54 0 γ56

0 0 0 β64 0 1 0 0 0 γ64 γ65 0




is observationally equivalent to :




1 0 β13 0 0 0 γ11 γ12 0 0 0 0
β21 1 0 0 0 0 γ21 0 γ23 0 0 0
β31 0 1 0 0 0 0 γ32 γ33 0 0 0
0 0 0 1 β45 0 0 0 0 0 γ45 γ46

0 0 0 0 1 β56 0 0 0 γ54 0 γ56

0 0 0 β64 0 1 0 0 0 γ64 γ65 0




These are two models with seemingly unrelated blocks. These two models
are characterized by their partially exactly identified sub-block in the system,
namely the first three equations; when we neglect the zero blocks in the first
three equations we would have a three equations system of exactly identified
equations. We know from proposition 3.9 and the Corollary of proposition
3.11 that for any given parameters in the first three equations there always
exists a linear transformation that transforms these three equations into a
structure of first three equations of the second model. Then, according to
proposition 3.11 two models are observationally equivalent.

2

Example 2:




1 β12 0 0 0 0 γ11 γ12 0 0 0 0
0 1 β23 0 0 0 γ21 0 γ23 0 0 0

β31 0 1 0 0 0 0 γ32 γ33 0 0 0
0 0 β43 1 β45 0 0 0 0 0 γ45 γ46

β51 0 0 0 1 β56 0 0 0 γ54 0 γ56

0 β62 0 β64 0 1 0 0 0 γ64 γ65 0
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is observationally equivalent to :




1 β12 0 0 0 0 γ11 0 γ13 0 0 0
0 1 β23 0 0 0 γ21 γ22 0 0 0 0

β31 0 1 0 0 0 0 γ32 γ33 0 0 0
0 0 β43 1 β45 0 0 0 0 0 γ45 γ46

β51 0 0 0 1 β56 0 0 0 γ54 0 γ56

0 β62 0 β64 0 1 0 0 0 γ64 γ65 0




These are two models with recursive blocks. Also here we have a partially
exactly identified sub-block: the first three equations. Similarly we can get
the second model by a corresponding linear transformation within the three
first equations of the first model.

2

Example 3:




1 β12 0 0 0 β16 γ11 γ12 0 0 0 0
0 1 β23 0 0 β26 γ21 0 γ23 0 0 0

β31 0 1 0 0 β36 0 γ32 γ33 0 0 0
β41 β42 0 1 β45 β46 0 0 0 0 γ45 γ46

0 0 β53 0 1 β56 0 0 0 γ54 0 γ56

β61 0 0 β64 0 1 0 0 0 γ64 γ65 0




is observationally equivalent to :




1 β12 0 0 0 β16 γ11 0 β13 0 0 0
β21 1 0 0 0 β26 0 γ22 γ23 0 0 0
0 β32 1 0 0 β36 0 γ32 γ33 0 0 0

β41 β42 0 1 β45 β46 0 0 0 0 γ45 γ46

0 0 β53 0 1 β56 0 0 0 γ54 0 γ56

β61 0 0 β64 0 1 0 0 0 γ64 γ65 0




These two models are overidentified interdependent models. Also here, we
have a partial exactly identified sub block in the first three equations. Sim-
ilarly, we can always get the second model from a linear transformation in
the first three equations of the first model. 2

Doing model selection, we make the judgement: from which model a given set
of observed data are generated. It is impossible to make such a judgement
between two observationally equivalent models, because the likelihood of
two observationally equivalent models are exactly the same. Hence, from
observed data we can only identify the observationally equivalent group. If
we identify a single model from the observed data, this model should not
have any observationally equivalent models but itself. This is the motivation
for the definition of observational differentiability.
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3.3 Observational Differentiability

Definition 3.15 (Observational Differentiability) A model is called ob-
servationally differentiable, if it has no observationally equivalent models but
itself.

An observational differentiable model can be identified from the observed
data. Just as the concept of identification guarantees the uniqueness of pa-
rameter estimation, the concept of observational differentiability guarantees
the uniqueness of a solution for model selection. It is of interest now to ask
the question: what is the condition for model to have no observationally
equivalent models?

To conduct a condition for observationally differentiable models, we introduce
the concept of partial identification. In an identifiable structural model,
not every variable would appear in one equation, otherwise this equation
would not be identified. If we look at a part of a model, say g ≤ G equations,
usually not every variable of the model appears in this partial model with
g equations. If we apply the identification criterion i.e. the rank condition
and the order condition to this partial model and take only those variables
into account that appear in this partial model, we may assess whether each
equation is underidentified, exactly identified, or overidentified within this
partial model.

Example:




1 β12 0 0 0 0 γ11 γ12 0 0 0 0
0 1 β23 0 β25 0 γ21 0 γ23 0 0 0

β31 β32 1 0 0 0 γ31 γ32 γ33 0 0 0
0 0 0 1 β45 0 0 0 0 0 γ45 γ46

0 0 0 0 1 β56 0 0 0 γ54 0 γ56

0 0 0 β64 0 1 0 0 0 γ64 γ65 0




The first three equations consist of a partial model. The variables (y4t, y6t, x4t, x5t, x6t)
do not appear in this partial model. The first equation is partial overiden-
tified, the second is partially exactly identified and the third is partially
underidentified.

Corresponding to a partial model, there is a zero block in the matrix (B, Γ).
The number of rows of this zero block corresponds to the number of equations
in the partial model, the number of columns of this zero block is the number
of variables that are excluded from this partial model.

Theorem 3.16 (Conditions for the existence of observationally equivalent models)
If and only if there exists a partial exactly identified equation i in the model,



3 OBSERVATIONAL DIFFERENTIABILITY 23

the model has observationally equivalent models. Formally this condition can
be stated as follows:

zgi −mgi = g − 1

zgi : the number of zeros in the i-th equation of a partial model.

mgi : the number of columns of the zero block of the partial model.

g : the number of rows of the zero block of the partial model.

Proof:

Necessity:

Suppose a Model (B̃, Γ̃) is observationally equivalent to (B, Γ)

According to 3.11 for any given structure of (B, Γ) there exists a full rank
matrix A 6= I such that

A(B̃, Γ̃) = (B, Γ),

where (B̃, Γ̃) is the observationally equivalent structure with respect to the
structure (B, Γ).

Without loss of generality, we assume that the diagonal elements of A are
not zero24.

We denote the number of zeros in the i-th equation of the model (B, Γ) by
Zi and the number of zero of the i-th equation of (B̃, Γ̃) by Z̃i.

Because the total number of zeros in the observationally equivalent models
are equal, we can find some equation i, with: Zi ≥ Z̃i.

For this i-th equation of the structure (B, Γ) we have:

Ai(B̃, Γ̃) = (B, Γ)i

Denote the columns of the matrix (B̃, Γ̃) that correspond to the zero elements
in (B, Γ)i by (B̃44, Γ̃∗∗)i.

It holds:

24Because A is of full rank, the determinant of A does not equal to zero, i.e. at least one
product that consists of elements of A from different rows and columns of A is nonzero.
We can rearrange the rows of A according to the order of the column index of the factors
of this product and get a matrix whose diagonal element are not zero. The rearrangement
of rows of A will not change its observationally equivalent property.
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Ai(B̃
44, Γ̃∗∗)i = 0 (3.5)

where (B̃, Γ̃)i is a G×Zi matrix, and Zi > G− 1 (owing to the identification
condition for (B, Γ)).

Because a matrix A 6= I must exist, it follows that the equations system
(3.5) must have a non-zero solution Ai. This implies that the following rank
condition must be satisfied:

rank(B̃44, Γ̃∗∗)i ≤ G− 1. (3.6)

If (B̃44, Γ̃∗∗)i contains a pure zero row for all i = 1, 2, ..., G, then (B̃, Γ̃)
and (B, Γ) are identical models, because they have the same number of zeros
and at the same position. (B̃, Γ̃) and (B, Γ) may differ only in the order of
equations in the system.

Because (B̃44, Γ̃∗∗)i is a G×Zi matrix, the rank of (B̃44, Γ̃∗∗)i would be G
if there were no zero block in it.

If (B̃44, Γ̃∗∗)i does not contain a pure zero row for some i, and the rank
condition 3.6 must be satisfied, then (B̃44, Γ̃∗∗)i must contain a (l̃i × m̃i)
zero block, such that

Rank(B̃44, Γ̃∗∗)i = (G− l̃i) + (Zi − m̃i) ≤ G− 1.

where l̃i is the number of rows and m̃i is the number of columns of the zero
block in (B̃44, Γ̃∗∗)i.

This rank condition can equivalently be put as:

Zi + 1 ≤ l̃i + m̃i

We observe that in calculation of Ai(B̃
44, Γ̃∗∗)i = 0 the rows in the l̃i × m̃i

zero block of (B̃44, Γ̃∗∗)i correspond to the nonzero elements in Ai, while the
rows outside the zero block corresponds to the zero elements in Ai. Hence,
the i-th equation must be within the zero block, because aii 6= 0.

Denote the number of rows of the zero block in (B̃, Γ̃) by l̃ and the number
of columns by m̃.

Because Zi ≥ Z̃i, it follows

l̃ + m̃ ≥ l̃i + m̃i ≥ Zi + 1 > Z̃i + 1.

Note that Z̃i > m̃ there exists a g̃ with 0 < g̃ < l̃ such that it holds:
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g̃ + m̃ = Z̃i + 1,

or equivalently:

Z̃i − m̃ = g̃ − 1.

This is the condition for partial exact identification.

Sufficiency: If there exists a partial system with a partial exactly identi-
fied equation in this system, then a linear transformation within this partial
system that transfers this exactly identified equation into the reduced form
(and then to other structural forms) will lead to an observationally equivalent
model. 2

Corollary 3.17 (Condition for observational differentiability) If there
is no partial exactly identified equation in a structural model, the model is
observationally differentiable.

The condition for observational differentiability makes it possible for us to
check if we can identify a unique most parsimonious model from the observed
data.
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4 Model Selection Problems

4.1 Basic Assumptions of the Model Selection Prob-
lem

4.1.1 Model Selection without Misspecification

The model selection problem for structural models can be described as fol-
lows: given a set of well defined candidate models {Mi, i = 0, 1, 2, ...C} = M
and a set of given data of exogeneous variable {ξt}T

t=1 and a set of observed
data of endogenous variable {yt}T

t=1 that is generated from one of these mod-
els, the problem is to find out the true model that generated the data.

We assume:

• The unconstrained reduced form is within the candidate models, so
that we have always at least one admissible model.

• The unconstrained reduced form is correctly specified, i.e. the lags of
the predetermined variables are correctly specified.

• The true model is within the set of candidate models under considera-
tion.

• The data are infinite many. This assumption is because we are also
interested in the asymptotic property of the model selection problem.

4.1.2 Model Selection with Misspecification

In the context of model selection for structural models misspecification may
take two different forms. Firstly, the basic settings of the model are not
correct, the lags of the predetermined variables may be incorrect, the distri-
bution of the disturbance may be nonnormal, etc. Secondly, the true model
may not be included in the set of alternative models or the restriction on the
true structure may have a form other than zero restrictions.

We will discuss the misspecification problem in section 5.

4.2 Principles for Model Selection

4.2.1 The Maximum Likelihood Principle

Structural econometric models are defined as linear simultaneous equations
models with normal disturbance. In this parametric setting, a natural ap-
proach to identifying the true model is using the maximum likelihood prin-
ciple. We may calculate the maximum likelihood function value for each
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alternative model. The large value of the likelihood function should provide
evidence for appropriateness of the model.

In the case of iid observations Jensen’s inequality and the law of large num-
bers provide a justification for the application of the maximum likelihood
principle25. For the model selection problem of structural models we are
actually dealing with dependent observations. Jensen’s Inequality is not di-
rectly applicable. We have its asymptotic counterpart26:

lim
T→∞

1

T
E log LT (θ0) > lim

T→∞
1

T
E log LT (θ) for θ 6= θ0 (4.7)

where log LT (θ0) is the log likelihood function as defined in (B.25), evaluated
at the true parameter θ0 = (B̄0, Γ̄0, Σ̄0) and θ = (B, Γ, Σ).27

Under general assumptions of structural models (See A.1) the maximum
likelihood estimate (MLE) is (strongly) consistent28, and the law of large
number (LLN) holds for the log likelihood function. This implies that for an
admissible model (Bi, Γi, Σi) we have:

plim
T→∞

1

T
log LT (B̂i, Γ̂i, Σ̂i) = lim

T→∞
E

1

T
log LT (B0, Γ0, Σ0)

For a nonadmissible model (Bj, Γj, Σj), MLE will converge to the pseudo true
parameter (B̄j, Γ̄j, Σ̄j) that is different from the true parameter (B0, Γ0, Σ0).

plim
T→∞

1

T
log LT (B̂j, Γ̂j, Σ̂j) = lim

T→∞
E

1

T
log(LT (B̄j, Γ̄j, Σ̄j)

It follows from (4.7):

plim
T→∞

1

T
log LT (B̂i, Γ̂i, Σ̂i) > plim

T→∞

1

T
log LT (B̂j, Γ̂j, Σ̂j)

or equivalently for T > T0:

P

(
1

T
log LT (B̂i, Γ̂i, Σ̂i) >

1

T
log LT (B̂j, Γ̂j, Σ̂j)

)
→ 1 (4.8)

25See Amemiya (1985) p. 115
26For proof see appendix Lemma 2.9
27This condition is a basic condition for the application of the maximum likelihood esti-

mation. It is known as the asymptotically identifiable condition, or identifiable uniqueness.
See Davidson and Mackinnon (1993a) p.259 and Pötscher and Prucha (1997) p.16 for de-
tails. For proof of this condition for structural models see Lemma 2.9.

28See (2.4) for proof.
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Hence all nonadmissible models will ultimately have a smaller likelihood func-
tion value than admissible models. Under the assumption that the true
model is in the set of candidate models, the reduced form (2.1) is an ad-
missible model with respect to the true model. Therefore we can identify
nonadmissible models by comparing their average likelihood with that of the
unconstrained reduced form.

For all admissible models under investigation MLE will converge to the true
parameter and their average likelihood function will converge to the same
value. Thus we can identify all admissible models by comparing their likeli-
hood to that of the unconstrained reduced form. In this way we can find the
group of admissible models from the candidate set. But, we cannot use the
average log likelihood function value to identify the true mode M0. Because
the average log likelihood function value cannot differ it from the other ad-
missible ones. What is even worse is that the more overparameterized models
will have larger average maximum likelihood than the parsimonious models
in finite sample, because their maximum is chosen from a larger domain than
the parsimonious ones.

We observed that both M0 and the unconstrained reduced form are admissi-
ble models with respect to the true structure (B̄0, Γ̄0); the difference is only
that the number of free parameters of M0 is not larger than that of the re-
duced form. This relation holds not only between M0 and the unconstrained
reduced form but also between M0 and all other admissible models with re-
spect to M0. Hence we will find the true model M0 by looking for the most
parsimonious admissible model. If the solution is unique then we find the
unique true model. If the solution is not unique, then we will have many
true models which are indifferentialable from the observed data.

The well known Akaike information criterion29 seems to provides a solution
to this problem.

4.2.2 AIC Principle

To overcome the problem of model selection by maximum likelihood, AIC
maximizes the relative entropy over all alternative models.

AIC results in a modification of the maximum likelihood criterion by sub-
tracting the number of the free parameters of the model from the maximum
of the log likelihood function30.

AIC = log LT (B̂i, Γ̂i, Σ̂i)− Ji

29See Akaike (1973)
30For an interesting derivation of AIC see Tong (1990)
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It seems that this criterion may solve the problem of overfitting: if the first
terms in AIC were equal, the second terms would become decisive and AIC
would prefer the model with less parameters.

However, this intuition does not work asymptotically because the first term
in the AIC converges to infinity with the growing sample size, while the
second term remains constant. The difference in the first terms of the AIC
may overwhelm the difference in the second terms. It is shown that the AIC
is not consistent in the sense that the AIC will choose the overparameterized
model with positive probability31.

4.2.3 Consistent Criterion

A model selection criterion is defined as a function Φ : (RG)N×M→ R, M
is the set of all candidate models. (RG)N is the space of the random variable
YT , and a model Mi will be selected by the criterion if

Φ(YT ,Mi) ≥ max
Mj∈M

Φ(YT ,Mj)

A model selection criterion is called consistent, if it has the following prop-
erty32:

lim
T→∞

P

(
Φ(M0,YT ) ≥ max

Mj∈M
Φ(Mi,YT )

)
= 1

The rationale behind this definition is that for a consistent criterion the
probability to choose the true model will converge to 1 with growing sample
size.

Based on the discussion in the last sections we know that the penalty added
to the likelihood function in the AIC is too small from the point of view of
a consistent criterion. Hence the AIC will choose overparameterized models
with positive probability. We need to increase the penalty on the number of
parameters to get a consistent criterion. The value of the maximum likelihood
function values depends, on one hand, on the number of parameters k and,
on the other hand, on the number of observations T . A penalty that may
have a consistent property will depend on both T and k.

To stimulate the discussion we modify the penalty term in the AIC by a
product of a function in T and k to see which kind of property the penalty
should have so that we can have a consistent selection criterion. We denote
this modified criterion as S.

31See Shibata (1976)
32Compare Schlittgen and Streitberg (1999)
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S = log LT (B̂i, Γ̂i, Σ̂i)− f(T )ki

We look at the difference of S values between a model Mi with ki parameters
presented by (Bi, Γi, Σi) and the true model M0 with k0 parameters presented
by (B0, Γ0, Σ0) to see how can we get a consistent criterion:

1

T
(S0 − Si) =

1

T
log LT (B̂0, Γ̂0, Σ̂0)− 1

T
log LT (B̂i, Γ̂i, Σ̂i)− f(T )

T
(k0 − ki)

If Mi is nonadmissible, the first difference on the RHS will converge to a pos-
itive number. If f(T )

T
converges to zero, the criterion S will choose the true

model asymptotically. If Mi is admissible with respect to M0, the first differ-
ence on the RHS will converge to zero. If f(T )

T
converges more ”slowly” than

the difference in likelihood, the second term will be dominant, the criterion
will be positive, and it chooses also the true model asymptotically.

Theorem 4.1 (Consistent model selection criterion) Suppose that M0

is the true model with k0 free parameter, Mi ∈ M is one of the candidate
models with ki free parameters. Suppose furthermore:

• A1: The true model is within the candidate set.

• A2: The likelihood function satisfied the condition given in (4.7)

• A3: The log likelihood ratio between M0 and an admissible Mj has a
well defined asymptotic distribution over (0, +∞): limT→∞(log LT (θj)−
log LT (θ0)) → D(k0, kj) D(k0, kj) is density function over (0, +∞).

An information criterion:

Φ(Mi,YT ) = LT (θ̂i)− f(T )ki (4.9)

is consistent if and only if it holds:

lim
t→∞

f(t) = +∞ (4.10)

lim
t→∞

f(t)

t
= 0. (4.11)
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Proof:

Sufficiency:

Supposed model Mi is not admissible with respect to the true M0, we calcu-
late the difference of the selection criterion between Mi and the true model
M0:

log LT (θ̂0)− f(T )k0 − log LT (θ̂i) + f(T )ki

= T
(

LT (θ̂0)
T

− LT (θ̂i)
T

+ f(T )
T

(ki − k0)
)

P [log LT (θ̂0)− f(T )k0 > log LT (θ̂i)− f(T )ki] = P

(
LT (θ̂i)

T
− LT (θ̂0)

T
<

f(T )

T
(ki − k0)

)

To show the consistence of the criterion (4.9), we need only to show that the
probability of the RHS of the equation above converges to unit. Because Mi

is not admissible, it follows from A2 and (4.8): for T →∞ and some δ > 0:

plim
T→∞

1

T
log LT (θ̂0) ≥ plim

T→∞

1

T
log LT (θ̂i) + δ.

Using the condition (4.11) we have for T →∞:

plim
T→∞

(
1

T
log LT (θ̂0)− 1

T
log LT (θ̂i)

)
≥ δ > lim

T→∞
f(T )

T
= 0.

It follows then:

lim
T→∞

P (Φ(M0,YT > Φ(Mi,YT )) = 1

If now Mi is admissible with respect to M0, it holds k1 > k0.

We look at the following event:

log LT (θ̂i)− f(T )ki > log LT (θ̂0)− f(T )k0 ⇐⇒ log LT (θ̂i)− log LT (θ̂0) > f(T )(ki − k0)

Because A3 and f(T ) →∞ for T →∞, for any ε > 0 there exists a T0 such
that for T > T0:
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P [D(k1, k0) > f(T )(k1 −K0)] < ε/2

and

P [log LT (θ̂i)−log LT (θ̂0) > f(T )(k1−K0)]−P [D(k1, k0) > f(T )(k1−K0)] < ε/2.

Combine the two inequalities above, we have:

P [log LT (θ̂i)− log LT (θ̂0) > f(T )(ki − k0)] < ε

or equivalently

lim
T→∞

P [log LT (θ̂0)− f(T )k0 > log LT (θ̂i)− f(T )ki] = 1.

Necessity:

For an admissible model Mi with ki > k0,

lim
T→∞

P [log LT (θ̂0)− f(T )k0 > log LT (θ̂i)− f(T )ki] = 1

implies:

lim
T→∞

P [log LT (θ̂i)− log LT (θ̂0) > f(T )(ki − k0)] = 0. (4.12)

From (A3) we have

lim
T→∞

P [2(log LT (θ̂i)− log LT (θ̂0)) > J ] > 0 for any J > 0. (4.13)

If f(t) would be bounded from above, we could find an L such that f(t) ≤
L = J/(ki − k0).

lim
T→∞

P [log LT (θ̂i)− log LT (θ̂0) > f(T )(ki − k0)]

≥ lim
T→∞

P [log LT (θ̂i)− log LT (θ̂0) > L(ki − k0)]

= lim
T→∞

P [log LT (θ̂i)− log LT (θ̂0) > J ]

= P [D(k1, k0) > J ]

> 0
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This contradicts (4.12). Hence it must hold f(t) →∞ for t →∞.

For any non-admissible model Mi, the consistent criterion:

lim
T→∞

P [log LT (θ̂0)− f(T )k0 > log LT (θ̂i)− f(T )ki] = 1.

implies:

P lim
T→∞

[
1

T
log LT (θ̂0)− 1

T
log LT (θ̂i) > − 1

T
f(T )(ki − k0)] = 1.

If 1
T
f(T ) would have a lower bound c with 1

T
f(T ) > c , we could construct

such a true structural (B̄, Γ̄, Σ̄) ∈ M0 by fixing a parameter in M0, say βk so
close to zero such that the difference of the average likelihood between M0

and Mi that is achieved by the set that βk to zero is smaller than c(ki − k0):

1

T
log LT (θ̂0)− 1

T
log LT (θ̂i) < c(ki − k0).

This contradicts to the consistency of the criterion: it follows for t →∞:

1

T
f(T ) → 0.

2

In the practical application the penalty function f(T ) has to be concretely
specified. The BSC and HQ criteria for linear regression models and ARMA
models are two examples of such consistent criterion.

The BSC criterion:

BSC = log LT (B̂i, Γ̂i, Σ̂i)− ki log T

The HQ criterion:

HQ = log LT (B̂i, Γ̂i, Σ̂i)− 2 ∗ C ∗ ki log log T with C > 1

The rate of convergence to zero of the penalty term f(T )/T is essential for the
property of the selection criterion. A penalty that does not converge to zero
may choose the nonadmissible models, while a penalty that converges to zero
too fast may choose overparameterized models. Slower rates of convergence
give a bigger penalty to the number of parameters and hence tend to choose
a model with less parameters, while fast rate of convergence give smaller
penalties and hence tend to prefer models with more parameters.
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4.2.4 Inconsistence of AIC

The penalty added to the AIC is a constant f(T ) = 1. It follows from
the theorem above that the AIC is inconsistent for ARMA model selection.
The two conditions (4.10) and (4.11) can be interpreted as conditions of
consistency in selection against non-admissible and against admissible models
respectively. More precisely, we know that 1/T → 0 as T → ∞, hence the
penalty of the AIC does not violate the consistent condition in selection
against non-admissible models i.e. the probability for the AIC to choose
a model that is too short converges to zero; but it violates the consistent
condition in selection against admissible models. Therefore the AIC tends
to choose longer models33.

4.3 Hypothesis Test vs. Model Selection Criterion

4.3.1 Two Aspects of One Stochastic Process

We consider a stochastic process, say, Brownian motion {Wt}∞1 . To study
the property of Wt we may look at the distribution of the process at time t.
The distribution of Wt at time t describes the distribution of the realizations
of different paths of the stochastic process at time t.

Wt ∼ N(0, t)

W 2
t

t
∼ χ2(1)

Based on these hypothetical distributions and realizations of Wt, we may
make statistical inferences on the underlying stochastic property of Wt.

Another way of studying the stochastic process is to follow one path of Wt

and look at how the path can be described. The iterated law of logarithm is
one such result:

lim sup
T→∞

Wt

(2T log log T )0.5
= 1

lim inf
T→∞

Wt

(2T log log T )0.5
= −1

In these two equations it is understood that ultimately the Brownian mo-
tion will be bounded within the area described by (−(2T log log T )0.5(1 +
ε), (2T log log T )0.5(1 + ε)).

33See Schlittgen and Streitberg (1999) p. 335 -338 for more discussion.
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Based on these hypothetical bounds and the realization of Wt we can also
make statistical inferences on the underlying property of Wt.

For empirical studies, especially for econometric analysis, the second aspect
is more relevant, because economic time series are usually not repeatable.
Most economic data are a single realization path of a stochastic process.
Hence, statement based on such a single realization is more relevant for the
analysis.

4.3.2 χ2 Test vs. Consistent Criteria

In the context of model selection, these two aspects of a stochastic process
lead to two different approaches to model selection: the approach based on
statistical tests and the approach of consistent criteria.

Suppose that the likelihood ratio between an admissible model Mi and the
true model M0 is distributed as follows: (Here M0 has k0 parameters and
Mi has ki parameters and we take M0 as Mi under r restrictions on the
parameter.)

2(log LT (θi)− log LT (θ0)) ∼ W 2
1T /T + W 2

2T /T + ... + W 2
rT /T (4.14)

where Wit is Brownian motion, r is the number of restrictions imposed by
M0 on Mi and T is the number of observations.

We may view this likelihood ratio as a stochastic process. If we look at the
distribution of this likelihood ratio at time T , it is χ2 distributed:

2[log LT (θ̂i)− log LT (θ̂0)] ∼ χ2(r)

The expression above is the well known result of the likelihood ratio test.

In the framework of the likelihood ratio test, we look at the realization of
this test statistics and compare it with a critical value chosen at a significant
level, say, α = 0.05. We will reject M0, if the realized statistic is larger than
the critical value, otherwise we will not reject M0 and chose M0 as the true
model.

If we look at the path of stochastic process, we have:

P
(
WiT < (2T log log T (1 + ε))

1
2 , for T large enough

)
= 1

P
(
W 2

iT /T < (2 log log T (1 + ε)), for T large enough
)

= 1
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We add all r Brownian motions together:

P
(
W 2

1T /T + W 2
2T /T + ... + W 2

rT /T < (2r log log T (1 + ε)), for T large enough
)

= 1.

Using (4.14) we have:

P
(
(log LT (θ̂i)− log LT (θ̂0) < r(1 + ε) log log T ), for T large enough

)
= 1

P
(
(log LT (θ̂)− k0C log log T > log LT (θ̂i)− kiC log log T ), for T large enough

)
= 1

So we can define the model selection criterion:

Φ(i) = log LT (θ̂i)− Cki log log T

where C > 1. This criterion Φ(i) is strongly consistent. This means that
if there are enough data on a single path, the criterion will choose the true
model with probability 1. This strongly consistent criterion implies consis-
tency in probability. Hence, if Mi is not admissible with respect to M0 this
criterion will not choose Mi.

Now we may compare the two approaches from both conceptual and practical
aspects. Conceptually, the test approach looks at the distribution under H0,
and controls the first type error, i.e. the probability to reject the true model.
Some problems are associated with this approach:

The conclusion from non-rejection of M0 to the claim that M0 is the true
model is based on a very strong confidence in M0. In the case of the existence
of alternative models it is very questionable why one model should have such
strong confidence.

Once this procedure is applied to alternative models, one may get conflicting
results that more than one model can be claimed to be the true model.

Furthermore, this procedure will have a small probability to reject the true
model, and it provides no information about the probability to choose a false
models or an overparameterized model.

The approach of consistent criterion look at the likelihood function value
with a suitable penalty. All models are treated equally, and ranked with the
selection criterion. If we have enough data we will choose the true model
with probability 1. The problem with this approach is that the conclusion
hold only asymptotically.
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Practically, we may compare the χ2 test approach with the approach of
consistent model selection criterion through comparing their conclusion with
respect to the final conclusion on the model selection for practically relevant
numbers of observations and numbers of restrictions.

The value of 2 log log T will converge to ∞, hence for sufficiently large T we
always have:

2(log LT (θi)− log LT (θ0)) < χ2(r) < 2r(1 + ε) log log T

This means that if the χ2 test will accept M0 the consistent criterion will
also choose M0. This can be seen as the preference of consistent criterion for
parsimonious models against the χ2 test.

This tendency prevails even for practical relevant numbers of observations.
For 50 < T < 2000 2 log log T is between (2.72, 4.05) The ratio of the critical
value for a significance level of 0,05 to the degree of freedom of χ2 distribution
is χ2(r)/r < 2.6 for r > 2

Hence we have for most case ( r > 2, T > 50):

2 (log LT (θi)− log LT (θ0)) < χ2(r)0.05 = r

(
χ2(J)0.05

r

)
< 2r(1+ε) log log(T ),

or equivalently

log LT (θi)− ki(1 + ε) log log T < log LT (θ0)k0(1 + ε) log log T.

This means that in most cases if χ2 test will accept M0 the consistent criterion
will also choose M0.

The reason is that to achieve consistency the model selection criterion puts
a higher penalty on the likelihood function. Consequently, it prefers a more
parsimonious model comparing to χ2 test. The rejection of the false model
is controlled by the f(t)/t → 0.
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5 A Model Selection Criterion for Structural

Models

In the last chapter we have provided a general condition for consistent model
selection criterion. In this chapter we are going to give a strongly34 consistent
model selection criterion for the model selection problem of structural models.

5.1 A Consistent Selection Criterion for Multiple Re-
gression Models

We consider a regression model:

Yt = Xtβ + Ut

where Yt ∈ R is a dependent variable called the regressant, Xt ∈ Rk is a deter-
ministic independent variable called the regressor. Ut is random disturbance
with Utiid ∼ N(0, σ2). We have T observations of Yt and Xt denoted by a
T × 1 matrix y, and T × k matrix x respectively. Accordingly, T realizations
of Ut is denoted by a T × 1 matrix u.

There are many potential regression models characterized by different re-
gressors. A regression model can be presented by its regressors Xit. T × ki

matrix xi is the observations matrix of model Mi. The number of parameters
is denoted by ki. We assume that the real DGP can be described by a true
model M0 whose regressors denoted by X0t is only a subset of Xt. The task
is to find a strongly consistent model selection criterion to select the true
model.

As discussed in Chapter 3, models that do not include all the true regres-
sors will have a lower average value at the maximum of likelihood function
according to Jensen’s inequality. Hence Φ(i) = 1

T
log LT (βi) + o(1) will not

choose these models. The models that include the true regressors will have
asymptotically the same average value at maximum likelihood and we have
to look for a penalty that is of order o(1) but is larger than the difference of
the two average likelihood function values at upon comparison.

We look at the difference between the log likelihood of the true model M0 with
x0 as regressor and an admissible model denoted as M1 with x1 = (x0, x11)
as regressors. Obviously, it holds that k0 < k1. For T observations we have:

y = x0β0 + u for M0 (5.15)

34For the definition of strong consistency see Schlittgen and Streitberg (1999)
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y = x1β1 + u = x0β10 + x11β11 + u for M1 (5.16)

For M0 the log likelihood function evaluated at the maximum likelihood
estimate β̂0 is:

log LT (β̂0) = −T

2
− T

2
log(

2π

T
)− T

2
log(e′0e0),

with e′0e0 = (y − x0β̂0)
′(y − x0β̂0)

For M1 the log likelihood function is:

log LT (β̂1) = −T

2
− T

2
log(

2π

T
)− T

2
log(e′1e1),

with e′1e1 = (y − x1β̂1)
′(y − x1β̂1).

The difference between the two likelihood functions is35:

2(log LT (β̂1)− log LT (β̂0)) = T (log(e′0e0)− log(e′1e1)) (5.17)

= T
1

ẽ′ẽ
(e′0e0 − e′1e1) (5.18)

with ẽ′ẽ ∈ (e′0e0, e
′
1e1), such that the equality above holds.

According to the Kolmogorov strong law of large number we have: limT→∞ e′1e1/T =
σ2 and limT→∞ e′0e0/T = σ2. It follows: limT→∞ ẽ′ẽ/T = σ2.

Insert this into (5.18), we have:

2(log LT (β̂0)− log LT (β̂1))
a.a.s∼ e′0e0 − e′1e1

σ2
(5.19)

a.a.s∼ is defined in appendix (2.8). It reads asymptotically almost surely. We
are now going to calculate the order of

e′0e0 − e′1e1

σ2
.

e′0e0 = (y − x0β̂0)
′(y − x0β̂0)

= (y − x0(x
′
0x0)

1x′0y)′(y − x0(x
′
0x0)

1x′0y)

= y′(I − x0(x
′
0x0)

−1x0)y

= y′M0y

= (x0β̂10 + x11β̂11 + e1)
′M0(x0β̂10 + x11β̂11 + e1)

= e′1e1 + (x11β̂11)
′M0(x11β̂11)

35The second equality is due to Taylor expansion
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Under the assumption β11 = 0 it holds36:

β̂11 = (x′11M0x11)
−1x′11M0u

Insert this into the equation above, we get:

e′0e0 − e′1e1 = (x11β̂11)
′M0(x11β̂11) = u′M0x11(x

′
11M0x11)

−1x′11M0u = u′Au
(5.20)

Divide both sides of (5.20) by σ2 we have:

e′0e0 − e′1e1

σ2
= (u/σ)′A(uσ). (5.21)

The matrix A = M0x11(x
′
11M0x11)

−1x′11M0 is indempotent with rank k11

trA = tr(M0x11(x
′
11M0x11)

−1x′11M0) = tr((x′11M0x11)
−1(x′11M0x11)) = tr(Ik11)

Recall that u is the realization of U ∼ N(0, σ2IT ), (U/σ)′A(U/σ) is χ2(k11)
distributed.37 Insert this result into (5.19) we get the classic result:

2(log LT (β̂1)− log LT (β̂0)) ∼ χ2(k11) (5.22)

The matrix (x′11M0x11)
−1 is positive definite; there exists an orthogonal ma-

trix P, such that (x′11M0x11)
−1 = P ′DP , D being the diagonal k11 × k11

matrix of the eigenvalues of (x′11M0x11)
−1.

We have:

(x′11M0x11)
−1 = P ′D′ 12 D

1
2 P

(x′11M0x11) = P−1D− 1
2 D′− 1

2 P ′−1

D
1
2 P (x′11M0x11)P

′D′ 12 = I (5.23)

Insert (5.23) into the difference of the standardized residuals (5.21)we get:

e′0e0 − e′1e1

σ2
= (D

1
2 Px′11M0(u/σ))′(D

1
2 Px′11M0(u/σ)) (5.24)

36See Frohn (1995) p. 30
37See Schmidt (1976) p. 11 for proof.
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We observe that D
1
2 Px′11M0(U/σ) is a linear transformation of the iid stan-

dard normal distributed vector (U/σ), and hence it is a normally distributed
random vector.

E(D
1
2 Px′11M0(U/σ)) = 0

V ar(D
1
2 Px′11M0(U/σ)) (5.25)

= D
1
2 Px′11M0E(u/σ)(u/σ)′M0x11P

′D′ 12 (5.26)

= D
1
2 Px′11M0x11P

′D′ 12 (5.27)

= I (5.28)

We denote (U/σ) by V and the k11 × T matrix D
1
2 Px′11M0 by Φ and insert

them into (5.24):

e′0e0 − e′1e1

σ2
(5.29)

= (D
1
2 Px′11M0(u/σ))′(D

1
2 Px′11M0(U/σ)) (5.30)

= (ΦV )′(ΦV ) (5.31)

=




Φ1V
Φ2V

...
Φk11




′ 


Φ1V
Φ2V

...
Φk11


 (5.32)

=

k11∑
j=1

(ΦjV )2 (5.33)

=

k11∑
j=1

(
T∑

t=1

ΦjtVt)
2 (5.34)

∑T
t=1 ΦjtVt is the j-th component of vector ΦV and from (5.25) and (5.31)we

know that
∑T

t=1 ΦjtV ∼ N(0, 1).

Therefore,

T∑
t=1

ΦjtVt

√
T ∼ N(0, T ) (5.35)

Now
∑T

t=1 ΦjtVt is a partial sum of a martingale difference sequence with
independent normal increment. The law of iterated logarithm (LIL)38 holds
for this partial sum.

38Stautt, 1970, A Martingale Analogue of Kolmogorov’s Law of Iterated Logarithm,
Wahrscheinlichkeitstheorie und Verw. Gebiet, Vol. 15, p. 279-290.
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lim sup
T→∞

∑T
t=1 ΦjtVt

√
T

(2T log log T )
1
2

= 1

lim inf
T→∞

∑T
t=1 ΦjtVt

√
T

(2T log log T )
1
2

= −1

These two equalities are interpreted: for any ε > 0 the partial sum of the
martingale difference sequence

∑T
t=1 ΦjtVt

√
T lies with probability one in-

finitely often in the interval (−2T log log T (1+ε), 2T log log T (1+ε)) and only
finitely often in the interval (−∞,−(2T log log T (1+ε))0.5)∪((2T log log T (1+
ε))0.5,∞).

We have:

P

(
T∑

t=1

ΦjtVt

√
T < (2T log log T (1 + ε))

1
2 , for T large enough

)
= 1

P




(
T∑

t=1

ΦjtVt

√
T

)2

< (2T log log T (1 + ε)), for T large enough


 = 1

2(log LT (β̂0)− log LT (β̂1))
a.a.s∼ 1

T

k11∑
j=1

(
T∑

t=1

ΦjtVt

√
T

)2

It follows:

P
(
(log LT (β̂0)− log LT (β̂1) < k11C log log T, for T large enough

)
= 1

with c = (1 + ε).

Note that k11 = k1 − k0, we have equivalently:

P
(
log LT (β̂0)− k0C log log T > log LT (β̂1)− k1C log log T, for T large enough

)
= 1.

So we can define
Φ(i) = log LT (β̂i)− Cki log log T

as the model selection criterion. This is exactly the same as the HQ criterion.
For any C > 1 this criterion is strongly consistent.
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5.2 A Consistent Selection Criterion for Structural Mod-
els

For the model selection problem for structural models as defined in Chapter
4. We have:

BiYt + ΓiXt = Ut i=0,1,2,...C

(Bi, Γi) ∈M. M is the set of all candidate models under consideration. We
assume the true model (B0, Γ0) is an element in this set. (For the unique-
ness of selection we need to assume that the true model is observational
differentiable.)

The procedure to find a consistent selection criterion is similar to the case of
the multiple regression model.

We treat structural models as alternative representations of the restrictions
imposed on the unconstrained reduced form. For all nonadmissible structural
models the maximum of average log likelihood function values will be strictly
smaller than that of admissible models, asymptotically. Hence, a model
selection criterion that is dominated by (average) log likelihood function will
not choose nonadmissible models. For all admissible models the maximum of
their average log likelihood function will converge to the same value. Thus we
have to find a penalty function f(T )/T that will converge to zero as T →∞
and will converge to zero more slowly than the log likelihood ratio between
an admissible model and the true model. (The difference in log likelihood is
the same as log likelihood ratio.)

We assume that true model M0 imposes only linear restrictions (zero restric-
tions) on the parameter of admissible models within the set of candidates.
The likelihood ratio test theory says the likelihood ratio between M0 and Mi

is χ2 distributed. This provides a hint that this difference can be seen as the
quadratic form of some martingale sequences (MG)39. If we find such MG
sequence we may apply the LIL to assess their rate of convergence. Based on
the results of the LIL we may construct a consistent model selection criterion.

Without loss of generality we look at the relation between true model M0 and
an admissible model M1. We will carry out the exposition in the following
steps.

1. Treat true model M0 as M1 under linear restriction Rθ = 0 and apply
Lagrange multiplier method to get the MLE under restriction.

2. Derive an asymptotically equivalent quadratic form for the log likeli-
hood ratio between M0 and M1.

39See last section for example.
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3. Show the components in the quadratic form are MG sequences

4. Apply the LIL to the MG sequences and to assess their rate of conver-
gence

5. Construct a strongly consistent model selection criterion for structural
models

The log likelihood function for model M1 is:

lT (θ)

= log LT (B1, Γ1, Σ1;yT ,xT )

= −TG

2
log(2π) + T log ‖B1‖ − T

2
log |Σ1| − 1

2
tr(Σ−1

1 (yT B′
1 + xT Γ′1)

′(yT B′
1 + xT Γ′1))

where θ = vec(B1, Γ1, Σ1), θ is the vector of all unspecified unknown param-
eters in the matrix (B1, Γ1, Σ1). We denote the number of free parameters
in M0 and M1 by k0 and k1 respectively. θ is a k1 × 1 vector. We assume
that the parameters of M0 can be obtained through a linear restriction on
them:40:

Rθ = r. (5.36)

We denote the partial derivative of the log likelihood function with respect
to the parameter vector as follows:

dT (θ) =
∂lT (θ)

∂θ

DT (θ) =
∂2lT (θ)

∂θ∂θ′

Further we denote θ̂ the MLE under constraint (5.36) and θ̃ the MLE with-
out constraint. Hence, θ̂ and θ̃ correspond to the MLE for M0 and M1

respectively.

40Generally the relation between parameters of an admissible model and parameters
of a true model is not linear. Therefore the restriction on θ will be nonlinear. However,
under some regularity conditions of the restricting function such as twice differentiable and
uniformly continuous around the true parameter θ, we can get the same conclusion as in
the case of a linear restriction. In the presentation here we consider only linear restriction
for simplicity. the nonlinear case is considered in the appendix.
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Now we look at the difference of the log likelihood functions by Taylor ex-
pansion of the log likelihood function at the unconstrained estimate:

log LT (θ̂) = log LT (θ̃) + dT (θ̃)(θ̂ − θ̃) +
1

2
(θ̂ − θ̃)′DT (b(θ̂, θ̃))(θ̂ − θ̃)

for some b(θ̂, θ̃) ∈ (θ̂, θ̃), such that the equality above holds

Because dT (θ̃) = 0, it follows

2(log LT (θ̃)− log LT (θ̂)) = −(θ̂ − θ̃)′DT (b(θ̂, θ̃))(θ̂ − θ̃) (5.37)

From the Taylor expansion of the first derivative of the log likelihood function
we have:

dT (θ̂) = dT (θ̃) + DT (b(θ̂, θ̃))(θ̂ − θ̃)

b(θ̂, θ̃) ∈ (θ̂, θ̃) in the last two equations above are not the same, but we are
only interested in the asymptotic behaviour of b(θ̂, θ̃)s, which will converge
to the same value. We use the same expression for each to keep notation
simple.

Because dT (θ̃) = 0 we get:

(θ̂ − θ̃) = DT (b(θ̂, θ̃))−1dT (θ̂)

Now we look at the Lagrange function for the constrained maximization
problem:

ψ(θ, λ) = lT (θ) + λ′(Rθ).

We derive the Lagrange function with respect to θ and λ and set them to
zero:

Rθ = 0

∂lT (θ)

∂θ
+

∂λ′Rθ

∂θ
= 0

Let λ̂, θ̂ be the solution of the maximization problem. Then they satisfy the
following equations:

Rθ̂ = 0 (5.38)

dT (θ̂) + R′λ̂ = 0 (5.39)
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Insert these two equations into the log likelihood ratio (5.37) we have:

2(log LT (θ̃)− log LT (θ̂)) = −λ̂′RDT (b(θ̂, θ̃))−1DT (b(θ̂, θ̃))DT (b(θ̂, θ̃))−1R′λ̂

Under the assumption that the restriction (5.36) on the parameter vector θ is
true, both θ̂ and θ̃ will converge to the true parameter θ0, and consequently
b(θ̂, θ̃) will also converge to θ0. Therefore

(
1

T
DT (b(θ̂, θ̃))

)−1 (
1

T
DT (b(θ̂, θ̃))

)(
1

T
DT (b(θ̂, θ̃))

)−1

will converge to D̄(θ0)
−1 = E( 1

T
DT (θ0))

−1, if the law of large number holds

for 1
T
DT (b(θ̂, θ̃)). Actually we have the following theorem:

Theorem 5.1 Under the assumptions on the structural model as defined in
Appendix (A.1) we have:

2
(
lT (θ̃T )− lT (θ̂T )

) a.a.s∼ − λ̂′√
T

RD̄(θ0)
−1R′ λ̂√

T
(5.40)

Proof: See appendix theorem 2.8

The matrix −RD̄(θ0)
−1R′ is an r × r symmetrical positive definite matrix

with r = k1 − k0. There exists an orthogonal r × r matrix P , such that
−RD̄(θ0)

−1R′ = P ′DP , D being the r× r diagonal matrix of the eigenvalues
of −RD̄(θ0)

−1R′.

Insert this into the log likelihood ratio we get:

2
(
lT (θ̃T )− lT (θ̂T )

)

a.a.s∼ − λ̂′√
T

RD̄(θ0)
−1R′ λ̂√

T

=

(
D

1
2 P

λ̂√
T

)′ (
D

1
2 P

λ̂√
T

)

=







d1 0 . . . 0

0 d2 0
...

... . . .
. . . 0

0 . . . 0 dr







P1

P2
...

Pr




λ̂√
T




′ 





d1 0 . . . 0

0 d2 0
...

... . . .
. . . 0

0 . . . 0 dr







P1

P2
...

Pr




λ̂√
T




=
r∑

j=1

(
djPj

λ̂√
T

)2
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According to Crowder (1976):

(−D̄(θ0))
− 1

2 R′ λ̂√
T
→ N(0, Ir)

− λ̂√
T

′
RD̄(θ0)

−1R′ λ̂√
T
→ χ2(r)

λ̂√
T
→ N(0,−(RD̄(θ0)

−1R′)−1)

We have:

lim
T→∞

E(D
1
2 P−1 λ̂√

T
) = 0

lim
T→∞

V ar(D
1
2 P

λ̂√
T

) = lim
T→∞

D
1
2 PE(

λ̂√
T

λ̂√
T

′
)P ′D

1
2

= D
1
2 P (RD̄(θ0)

−1R′)−1P ′D′ 12

= Ir

It follows:41

djPj
λ̂√
T
→ N(0, 1)

and
djPjλ̂ → N(0, T ).

Now we look at λ̂ and show this is a partial sum of the martingale difference
sequence.

Following the notation of Amemiya (1985) 42, we derive the log likelihood
function with respect to the unspecified elements of B, Γ and Σ respectively:

∂ log LT

∂Γ′
= −x′T (yT B′ + xT Γ′)Σ−1,

41Compare (5.35)
42Amemiya (1985) p. 233
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∂ log LT

∂B′ = TB′−1 − y′T (yT B′ + xT Γ′)Σ−1,

and

∂ log LT

∂Σ
= −T

2
Σ−1 +

1

2
Σ−1(yT B′ + xT Γ′)′(yT B′ + xT Γ′)Σ−1.

We evaluate the first derivative at the true parameter (B0, Γ0, Σ0)

∂ log LT (θ0)

∂Γ′
= x′TuT Σ−1

0 = x′T−1uT−1Σ
−1
0 + xT uT Σ−1

0 ,

∂ log LT (θ0)

∂B′ = TB′
0
−1−y′TuT Σ−1

0 = B′
0
−1

(T−1)I−y′T−1uT−1Σ
−1
0 +B′

0
−1−y′T uT Σ−1

0

.

∂ log LT (θ0)

∂Σ
= −T − 1

2
Σ−1

0 +
1

2
Σ−1

0 (yT−1B
′
0 + xT−1Γ

′
0)
′(yT−1B

′
0 + xT Γ′0)Σ

−1
0

−1

2
Σ−1

0 +
1

2
Σ−1

0 (yT B′
0 + xT Γ′0)

′(yT B′ + xT Γ′0)Σ
−1
0 .

We calculate the conditional expectation.

ET−1
∂ log LT (θ0)

∂Γ′

= ET−1x
′
T1

(uT−1)Σ
−1
0 + ET−1X

′
T UT Σ−1

0

= x′T−1(yT−1B0
′ + xT−1Γ0

′)Σ−1
0

=
∂ log LT−1

∂Γ′

∣∣∣
θ0

,

ET−1
∂ log LT (θ0)

∂B′

= B′
0
−1

[ET−1((T − 1)I − (yT−1B0)
′uT−1Σ

−1
0 ) + ET−1(I − (yT B′

0)
′uT Σ−1

0 )]

= (T − 1)B′−1
0 − y′T−1uT−1Σ

−1
0 + ET−1(I − (uT − xT Γ′0)

′uT Σ−1
0 )

= (T − 1)B′−1
0 − y′T−1uT−1Σ

−1
0

=
∂ log LT−1

∂B

∣∣∣
θ0

,
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and

ET−1
∂ log LT (θ0)

∂Σ

= −Et−1

(
T − 1

2
Σ−1

0 +
1

2
Σ−1

0 (yT−1B
′ + xT−1Γ

′)′(yT−1B
′ + xT Γ′)Σ−1

)

+ET−1(−Σ−1
0 +

1

2
Σ−1

0 (YT B′ + XT Γ′)′(YT B′ + XT Γ′)Σ−1)

=
T − 1

2
Σ−1

0 +
1

2
Σ−1

0 (yT−1B
′
0 + xT−1Γ

′
0)
′(yT−1B

′
0 + xT Γ′0)Σ

−1
0

=
∂ log LT−1

∂Σ

∣∣∣
θ0

Hence dT (θ0) is MG. We summarize this result in the following Theorem.

Theorem 5.2 (Martingale property of the first derivative) For the struc-
tural model as defined in (A.1), the first derivative of the log likelihood func-
tion evaluated at the true parameter is a martingale.

From the expansion of the first derivative of the log likelihood function at
the constrained estimate θ0 we get:

dT (θ̂) = dT (θ0) + DT (b(θ̂, θ0))(θ̂ − θ0).

(θ̂ − θ0) = DT (b(θ̂, θ0))
−1(d(θ̂)− d(θ0))

Combine (5.36) and (5.38) we have:

R(θ̂ − θ0) = RDT (b(θ̂, θ0))
−1(dT (θ̂)− dT (θ0)) = 0.

RDT (b(θ̂, θ0))
−1dT (θ̂) = RD(b(θ̂, θ0))

−1dT (θ0)

Insert (5.39):R′λ̂ = −dT (θ̂) into the equation above and solve for λ̂, we get:

λ̂ = −(RDT (b(θ̂, θ0))
−1R)−1RDT (b(θ̂, θ0))

−1dT (θ0)

=

(
−R

[
1

T
DT (b(θ̂, θ0))

]−1

R

)−1

R

[
1

T
DT (b(θ̂, θ0))

]−1

dT (θ0)

It suggests that λ̂ will converge to a linear combination of dT (θ0) and is itself
a martingale. For this result we have the following theorem:



5 A MODEL SELECTION CRITERION FOR STRUCTURAL MODELS50

Theorem 5.3 (Martingale property of the Lagrange multiplier) Under
the assumption of the structural model as defined in Appendix (A.1), it holds

λ̂√
T

a.a.s∼ (−RD̄(θ0)
−1R′)−1

RD̄(θ0)
−1dT (θ0)√

T
(5.41)

Proof: See Appendix Lemma 2.7.

2

Therefore djPjλ̂ is a MG sequence. The LIL can be applied to djPjλ̂. The

log likelihood ratio is the sum of djPjλ̂, for j = 1, 2, ...r. We can find the
rate of convergence of the log likelihood ratio. For this result we have the
following theorem:

Theorem 5.4 (LIL for likelihood ratio) Under the assumption of the struc-
tural model as defined in (A.1) with the condition of Lemma 2.14 in the
appendix, we have

P (log LT (θ̃)− log LT (θ̂) < r(1 + ε)2 log log T, for T large enough) = 1,

Proof: See Appendix Theorem 2.3. 2

Recall that r = k1 − k0. We can rearrange the equation above and get:

P (log LT (θ̃)− k1(1 + ε)2 log log T < log LT (θ̂)− k0(1 + ε)2 log log T )) = 1.

So we can define

Φ(Mi) = log LT (θ̂i)− Cki log log T

with any C = (1 + ε)2 > 1 as the model selection criterion. This criterion
is strongly consistent. That means that we can identify the true model with
probability 1, as long as we have enough observations along a single path of
realization. This criterion is exactly the same as the HQ criterion. Combine
the result above and the fact that this criterion will not choose the non-
admissible models. We summarize this result in the following theorem.

Theorem 5.5 (Consistent model selection crtierion) For structural mod-
els defined in Appendix A.1, the model selection criterion:

Φ(Mi) = log LT (θ̂i)− Cki log log T (5.42)

is strongly consistent for the model selection problem defined in Chapter 4.
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6 Model Selection for Cointegration Systems

6.1 An Alternative Representation of Cointegration
Systems

Cointegration systems have been used to handle the economic variables with
stochastic trends in a structural model. The advantage of a cointegration sys-
tem is that it models the long term relation and the short term adjustment
mechanism simultaneously. For a more detailed discussion of cointegration
system see Engle and Granger (1987), Hargreaves (1994), Johansen (1995)
and Charemza (1997). In the error correction representation of cointegration
system the cointegration relations are interpreted as long term equilibrium
relations among the variables and the dynamic of I(0) variables are inter-
preted as short term adjustment mechanisms. Without loss of generality we
consider only cointegration system with 1 lag in the short term dynamics.

∆yt = ξ1∆yt−1 + α + ξ0yt−1 + εt

where yt is N × 1 vector ξ1 is a N ×N matrix and εt is iid ∼ N(0, Ω). The
log likelihood function of the cointegration system above is:

log L = −NT

2
log(2π)− T

2
log |Ω|

−1

2

T∑
t=1

(∆yt − ξ0yt−1 − α− ξ1∆yt−1)
′Ω−1(∆yt − ξ0yt−1 − α− ξ1∆yt−1)

In this error correction form of a cointegration system, we apply Johansen’s
auxiliary regressions and get43:

ût = ∆yt − π̂0 − π̂1∆yt−1

v̂t = yt − θ̂0 − θ̂1∆yt−1.

We look at the concentrated likelihood function44 where we take ξ0 and Ω as
known and maximize the log likelihood function with respect to (α, ξ1).

43See Johansen (1991) and Hamilton (1994) p. 642
44For the motivation of the concentrated likelihood function see Koopmans and Hood

(1953).
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log LT (ξ1, α|ξ0, Ω)

= −NT

2
log(2π)− T

2
log |Ω|

−1

2

T∑
t=1

(∆yt − ξ0yt−1 − α̂(ξ0) + ξ̂1(ξ0)∆yt−1)
′Ω−1(∆yt − ξ0yt−1 − α̂(ξ0)− ξ̂1(ξ0)∆yt−1)

Because the log likelihood function above can be seen as a SUR with ∆yt −
ξ0yt−1 as a dependent variable and (1, ∆yt−1) as regressors, the MLE is iden-
tical to the OLE that is characterized by the conditions that the following
residual vector must have a sample mean of zero and be orthogonal to ∆yt−1:

[∆yt − ξ0yt−1]− α̂∗(ξ0)− ξ̂∗1(ξ0)∆yt−1.

Notice that the OLS residuals ût and v̂t each satisfy these conditions and
therefore the vector ût − ξ0v̂t also has a mean of zero and is orthogonal to
∆yt−1. Moreover, ût − ξ0v̂t is of the form:

ût−ξ0v̂t = ∆yt−π̂0−π̂1∆yt−1−ξ0(yt− θ̂0− θ̂1∆yt−1) = −α̂∗(ξ0)− ξ̂∗1(ξ0)∆yt−1

with α̂∗(ξ0) = π̂0 − ξ0θ̂0 and ξ̂∗1(ξ0) = π̂1 − ξ0θ̂1

The concentrated log likelihood function is found by replacing α by α̂∗(ξ0)
and ξ1 by ξ̂∗1(ξ0):

log LT (Ω, ξ0) = −NT

2
log(2π)− T

2
log|Ω| − 1

2

T∑
t=1

[(û1 − ξ0v̂t)
′Ω−1(û1 − ξ0v̂t)]

The task is now to find a ξ0 and an Ω that maximize the concentrated
log likelihood function above. This problem is equivalent to the following
regression problem:

ût = ξ0v̂t + εt

with εt iid N(0, Ω).

The Johansen procedure treats a cointegration system by restricting ξ0 =
BA′ where A and B are N ×h matrices and h is the number of cointegration



6 MODEL SELECTION FOR COINTEGRATION SYSTEMS 53

relations with h < N . Then the problem is solved by the calculation of the
canonical correlation.

We can represent equivalently the cointegration system in an alternative way:

ξ0 = B∗A∗′

B∗ =




b11 0 . . . 0
b21 b22 . . . 0
... . . .

. . .
...

bN1 bN2 . . . bNN




A∗′ =




1 a12 . . . . . . a1N

0 1 a23 . . . a2N
... 0

. . . . . .
...

...
. . . . . . 1 aN−1N

0 . . . . . . 0 1




A cointegration system with h < N cointegration relations can be represented
by restricting the unspecified elements on the last N − h columns of B∗ and
on the last N − h rows of A∗ to zero.

For instance a cointegration system with h = N − 1 cointegration relations
can be represented through the following restriction:

H(N − 1) : bNN = 0

A cointegration system with h = N−2 cointegration relations can accordingly
be represented through the following set of null restrictions:

H(N − 2) : bNN = 0, bN−1N−1 = 0, bN−1N = 0, aN−1N = 0.

The equivalence of the ξ0 = B∗A∗′ and ξ0 = BA′ can be shown as follows:

We partition A as

A′ = [A′
1, A

′
2]

B =

(
B1

B2

)

Because A has rank h, A1 is invertable. We have:
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ξ0 = BA′ = B[A′
1, A

′
2] = BA′

1A
−1′
1 [A′

1, A
′
2] = BA′

1[I, A−1′
1 A′

2]

BA′
1 is an N × h matrix with rank h. B1A

′
1 is an h × h matrix with rank

h. Hence, we can transform B1A
′
1 into a lower triangular matrix. We denote

this transformation matrix by C, C−1 then it is an upper triangular matrix.

ξ0 = BA′ = BA′
1CC−1[I, A−1′

1 A′
2] =

(
B1A

′
1C

B2A
′
1C

)
[C−1, C−1A−1′

1 A′
2] = B∗A∗′

The last equality is because B1A
′
1C is a lower triangular matrix and C−1 is an

upper triangular matrix with units on the diagonal. With ξ0 = B∗A∗′ we look
at a special cointegration relation represented by A∗′yt = [C−1, C−1A−1′

1 A′
2]yt

and the corresponding adjustment matrix B∗.

6.2 Structural Models and Cointegration Systems

Recall the model selection problem for structural models:

Yt = ΠXt + Vt

with Vt iid N(0, Ω) and Π = −B−1Γ where the B−1 and Γ are subject to
some zero restrictions. The task is to find the true model that may have
generated the observed data from a group of model candidates.

Comparing the model selection problem with the problem of cointegration
analysis, we will find these two problems are extremely similar.

The cointegration analysis problem can be stated as follows:

ût = ξ0v̂t + εt

with εt iid N(0, Ω) and ξ0 = B∗A∗′ where the B∗ and A∗′ are subject to some
null restrictions. The task is to find out the true model (i.e. identifying the
number of cointegration relations h) that may have generated the observed
data from a group of model candidates. These candidates are characterized
by different set of null restrictions on the matrices B* and A* : H(N-1),H(N-
2), ... H(1) and H(0). H(0) is the model without cointegration relations.

In this way we can translate the cointegration analysis problem into a model
selection problem:
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Suppose that the observed data are generated by one of the model candidate
characterized by a set of null restrictions H(h). The task is to find a consistent
model selection criterion that will identify the true cointegration model.

The difference between the structural model selection problem and the coin-
tegration analysis problem is that in the cointegration analysis we have non-
stationary variables as regressors, while in the structural model selection we
have only stationary variables.

Due to the non-stationary regressors the likelihood ratio between a restricted
model and that of the unrestricted model are no longer always asymptotically
χ2 distributed. However, according to Johansen, the likelihood ratio has
a well defined distribution asymptotically. Hence, we can apply the weak
convergence model selection criterion to the cointegration problem to identify
the true model, i.e. to identify the number cointegration relations.

6.3 A (weak) Consistent Model Selection Criterion for
Cointegration Systems

In Chapter 4 we have given a sufficient and necessary conditions for a (weak)
consistent model selection criterion log LT (θ̂i)− f(T )ki:

lim
t→∞

f(t) = +∞ (6.43)

lim
t→∞

f(t)

t
= 0 (6.44)

Now we verify the conditions of the consistent model selection criterion for
the case of a cointegration system.

Sufficiency:

Supposing that the true number of cointegration relations is h, we calculate
the difference between the selection criterion values for H(h) and H(h− i):

log LT (B̂h−iÂ
′
h−i)− f(T )kh−i − L(B̂hÂ

′
h) + f(T )kh

= T ( 1
T
(log LT (B̂h−iÂ

′
h−i)− 1

T
L(B̂hÂ

′
h)) + f(T )

T
(kh − kh−i)

Because the MLE (B̂hÂ
′
h) is consistent45, the MLE for model H(h) will con-

verge to the true parameter of H(h). H(u − i) is not admissible; its corre-
sponding average log likelihood function value will be smaller than that of
H(h)46.

45See Johansen (1995) p. 180.
46For proof compare Appendix Lemma 2.9.
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plim
T→∞

1

T
log LT (B̂hÂh)

= lim
T→∞

E
1

T
LT (BhAh)

> lim
T→∞

E
1

T
LT (Bh−iAh−i)

= plim
T→∞

1

T
log LT (B̂h−iÂh−i)

P

(
1

T
log LT (BhA

′
h) >

1

T
log LT (Bh−iA

′
h−i)

)
→ 1

Using the condition (6.44) we have for T →∞:

P

(
1

T
log LT (B̂hÂ

′
h)−

f(T )

T
kh >

1

T
log LT (B̂h−1Âh−i

f(T )

T
kh−i)

)
→ 1.

It follows then

P
(
log LT (B̂hÂh)− f(T )Jh > log LT (B̂h−iÂ

′
h−i)− f(T )kh−i

)
→ 1.

Now we compare H(h) with H(h + i),

According to Johansen (1995), we have:

2(log LT (B̂h+iÂ
′
h+i)− log LT (B̂hÂ

′
h)) → d(.)

d(.) has its mass over (0, +∞). Hence the conditions for the (weak) consistent
criterion are satisfied. The model selection criterion:

log LT (θ̂i)− f(T )ki.

is consistent for the selection of the number of cointegration relations.

6.4 Calculation of the Consistent Selection Criterion
for Cointegration System

Direct calculation of the criterion value for each candidate models (H(h);
h = N-1, N-2, ... 0) is not trivial. It is therefore more convenient to use
the calculation from the canonical correlation analysis to get the maximum
likelihood function values for each model. For f(T ) we can use BSC or HQ
criterion: f(T ) = log(T ) or f(T ) = log log(T ) respectively.
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7 Model Selection in the Case of Misspecifi-

cation

7.1 Source of Misspecification

In the construction of a structural model we try to mimic the real DGP by an
empirical model. Principally two kinds of misspecification may be involved:
firstly, the real DGP is contained in the unconstrained reduced form, while
the true model (and its observational equivalence) is not within the set of
candidates. In this case the unconstrained reduced form provides a correctly
specified model, and the structural model candidates consider only a part
of the restrictions of the real DGP. Secondly, the DGP is not contained in
the unconstrained reduced form, i.e. the reduced form is misspecified and
henceforth all the structural models are misspecified. We discuss how the
model selection criterion works in these two cases in the following subsections.

7.2 The Case of the Correctly Specified Reduced Form

It is a special feature of the structural model selection problem that all de-
rived reduced forms of the structural models in the candidate set are nested
in the unconstrained reduced form, in the sense that any derived reduced
form of an overidentified structural model can be seen as the unconstrained
reduced form under the corresponding restrictions imposed by the overiden-
tified model, specifically, in the case of linear dependence in a sub-matrix
of Π (see Chapter 2). All observationally equivalent structural models have
the same derived reduced form. An overidentified structural model is then
correctly specified if its associated restrictions on the true parameter of the
reduced form Π0 are correct. Therefore in order to check whether a struc-
tural model is correctly specified, we only need to check if Π0 satisfies these
restrictions imposed by the structural model.

Proposition 7.1 For the case of the correctly specified unconstrained re-
duced form, if a structural model Mi characterized by (Bi, Γi) is chosen by
the consistent model selection criterion:

log LT (B̂i, Γ̂i)−kiC log log T > log LT (Π̂)−kπC log log T for all T > T0

then the restrictions imposed by this structural model are correct, where ki

and kπ are the number of the parameters in the structural model and the
unconstrained reduced form respectively.
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Proof:

We rearrange the inequality above and get:

0 <
1

T
log LT (Π̂)− 1

T
log LT (B̂−1

i Γ̂i) < C(kπ − ki)
1

T
log log T

The first inequality is because the maximum of the structural model is se-
lected within the parameter range of the reduced form. Because the Σi matrix
is unconstrained, the log likelihood function depends on (Bi, Γi) only through
(B−1

i Γi). We write the argument B̂−1
i Γ̂i in the log likelihood function of the

structural model to make the comparison to the unconstrained reduced form
more clear.

As T →∞ we have:

0 ≤ lim
T→∞

1

T
E log LT (Π̂)− lim

T→∞
1

T
E log LT (B̂−1

i Γ̂i) ≤ 0

It follows

plim
T→∞

1

T
log LT (Π̂) = plim

T→∞

1

T
log LT (B̂−1

i Γ̂i)

Because the unconstrained reduced form is correctly specified, the conver-
gence of the log likelihood is uniformly in parameter and the limit of the
average log likelihood function has a unique maximum at the true parame-
ter, we have47

Π0 = plim
T→∞

Π̂ = plim
T→∞

B̂−1
i plim

T→∞
Γ̂i = B−1

0 Γ0 (7.45)

This means that the true parameter value Π0 satisfies the restrictions imposed
by the structural model (Bi, Γi). In other words the restrictions associated
with the model Mi are true.

2

Corollary 7.2 Assume that two models (Bi, Γi) and (Bj, Γj) are selected
against the unconstrained reduced form by the model selection criterion for
all T > T0, if we can find a structural model denoted by (Bi∪j, Γi∪j) so con-
structed such that it unifies the restrictions of both models in it, it will also
be selected by the model selection criterion.

47For details see Davidson and Mackinnon (1993b) p. 255
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Obviously, the restrictions associated with the model (Bi∪j, Γi∪j) are true and
it has more restrictions than (Bi, Γi) or (Bj, Γj), hence the selection criterion
will prefer (Bi∪j, Γi∪j) to (Bi, Γi) or (Bj, Γj).

This property of the model selection criterion provides us possible strategies
to construct a structural model.

In the case we have several well specified structural models, we may use the
model selection criterion to combine the features from different models to get
a more parsimonious model which has all the properties of other models.

Because the restrictions associated with a structural model are the union of
the restrictions imposed by each equation of the structural model, we may
investigate the appropriateness of each structural equation separately.

In the case we have a structural model that is not supported by data ac-
cording to the model selection criterion, we may detect the failure by sub-
stituting some potential ”problem-making equations” by the corresponding
reduced form equations and calculate the model selection criterion for this
substituted model. If the model is now supported by data, then we have
identified the problem.

A more constructive way of using this property is to specify the structural
model step by step. We may specify one or more structural equations and
check their data compatibility by comparing the values of the model selection
criterion between the unconstrained reduced form and the structural model
that consists of those specified structural equations and other equations of
a reduced form. If this part of the structural model is shown to be data
compatible then we may add another part of structural equations to the
model by replacing the corresponding equations of the reduced form. In this
way a structural model can be constructed step by step and at the end we
can have a structural model that is theoretically well founded and conforms
with the data.

7.3 The Case of the Misspecified Reduced Form

Generally, the DGP of empirical data is unknown. The determinants of the
real DGP of economic data are nonlinear, dynamic, time varying and multi-
dimensional. It is far too complex to be described completely in a structural
model. A structural model is an empirical model that tries to capture the
basic features of interest in the data. It is therefore not reasonable to assume
that the DGP is contained in the unconstrained reduced from. In this case we
are facing the issue of approximating the unknown real DGP by a parametric
family of the structural models48.

48For a detailed discussion of encompassing see Dhaene (1997)
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Suppose that the real DGP can be described as a parametric family W =
{Wα|α ∈ ΩW ⊂ Rm} and a structural model by another parametric family
G = {Gθ|θ ∈ ΩG ⊂ Rn}. What we are going to do is to approximate W with
G. The quality of the approximation can be described by the distance be-
tween the distribution of the real DGP and the distribution of the structural
model. This distance can be described by the Kullback Leibler Information
Criterion. The problem is to find a mapping of W into G that associates
with each distribution Wα ∈ W a distribution Gθ ∈ G that is the closest to
Wα within the family of G.

7.3.1 Maximum Likelihood Estimation under Mis-specification

Consider a T × 1 random vector YT taking its value in A ∈ RG×T with
distribution Wα. Given another distribution Gθ over A, the distance between
Wα and Gθ is provided by the Kullback-Leibler Information Criterion that
is defined:

I(Wα, Gθ) = EWα log
w(YT ; α)

g(YT ; θ)
.

EWα denotes the expectation relative to Wα. w(YT , α) is the density of Wα,
and g(YT , θ) is the density of Gθ.

I(Wα, Gθ) = EWα log w(YT , α)− EWα log g(YT ; θ) ≤ 0

The last inequality is according to Jensen’s inequality. This distance depends
on the entropy of the distribution of Wα and the relative entropy of Gθ with
respect to Wα.

If we take Wα as the real DGP and Gθ as an empirical model, then the
quality of the empirical model depends only on the expected log likelihood
function value of the model relative to the real DGP. The larger the expected
log likelihood function the better the model quality.

Now the number of the observations T may go to infinity. The distance
between Wα and Gθ is given:

Ī(Wα, Gθ) = lim
T→∞

EWα

1

T
log

w(YT , α)

g(YT ; θ)

We have:

Ī(Wα, Gθ) = lim
T→∞

EWα

1

T
log w(YT , α)− lim

T→∞
EWα

1

T
log g(YT , α) ≤ 0



7 MODEL SELECTION IN THE CASE OF MISSPECIFICATION 61

Hence Ī(Wα, Gθ) can also be interpreted as the distance between w(Y∞, α)
and g(Y∞, θ).

For a given value α that describes the real DGP, denote the solution of the
following maximization problem by θα:

θα = arg min
θ∈ΩG

Ī(Wα, Gθ)

θα is that parameter whose corresponding distribution is the closest to the
real DGP within the family of G(θ) for θ ∈ ΩG. θα is defined as the pseudo
true parameter.49Equivalently we have:

θα = arg max
θ∈ΩG

lim
T→∞

EWα

1

T
log g(YT , α)

Now we consider the maximum likelihood estimation in the model G:

θ̂ = arg max
θ∈ΩG

log g(yT , θ).

g(yT , θ) corresponds to the likelihood function of model G. Because logarithm
is a monotone function, the MLE can be obtained by the maximization of
the log likelihood function. We write it in the conventional way:

θ̂ = arg max
θ∈ΩG

log LT (θ;yT ,xT ).

Under regularity assumptions, if the DGP fulfills the condition of ULLN and
the condition of identifiable uniqueness, the pseudo-true maximum likelihood
estimator of θ will converge to the pseudo-true parameter θα Wα-almost sure
or in probability.50 The pseudo-true parameter plays here the same role of
true parameter in the theory of maximum likelihood estimation without mis-
specification. In the case of approximating the real DGP by a structural
model we have:

plim
T→∞

θ̂ = plim
T→∞

arg max
θ∈Ωg

1

T

T∑
t=1

log LT (θ; YT , XT )

= arg max
θ∈Ωg

lim
T→∞

1

T
EWα log LT (θ; YT , XT )

= θα

49This definition was first introduced in Sawa(1978), then further developed by
White(1982)

50For details see Pötscher(1995)
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7.3.2 Encompassing

In scientific fields, a more advanced theory should be able to account for or
explain the results obtained by other, competing theories. This idea moti-
vated the conception of encompassing for comparing two empirical models.
If a model can account for the results of another it is said to encompass
the latter model.51 Following Hendry(1995) and Courieroux-Monfort(1995)
we define for given ΞT = {ξt}∞t=1 and for each real DGP D an encompass-
ing relation as a binary relation on the candidate set M which involves the
comparison of βD and βαD

52.

Definition 7.3 (Encompassing) For all (F ,G) ∈ M × M with F =
{Fα| α ∈ ΩF ⊂ Rm} and G = {Gθ| θ ∈ ΩG ⊂ Rn}, F encompasses G
relative to D and ΞT , denoted by FEΞT

D G, if and only if

θD = θαD
.

If θD 6= θαD
we write F NEΞT

D G. If F is a subset of G and FEΞT
D G, then F

is said to parsimoniously encompasses G.

The definition is justified by the properties that result from it. FEΞT
D G im-

plies the property that the closest approximation to D by G coincides with
the closest approximation by G to the closest approximation to D by F .
Encompassing is a formalization of the idea that, looking at G from D, one
observes the same thing as looking at G from D through F

7.3.3 The Properties of Encompassing

Property 1 {D}EΞT
D G.

Proof: This result follows directly from the definition of encompassing.

This is the fundamental property of a DGP that the performance of a model,
no matter how poorly misspecified, is completely determined by the DGP.

Property 2 If D ∈ F , then FEΞT
D G.

Proof: If D ∈ F , then D = FαD
. It follows θD = θαD

.

This property implies that if a model is correctly specified it encompasses
every model. In a correctly specified model the MLE will converge to the
true parameter.

Property 3 If D∈̄F , then

51Hendry-Richard(1982,1983,1990), Mizon(1984), Mizon-Richard(1986) Smith(1993)
White(1994) Courieroux-Monfort(1995)

52This and next two subsections are mainly due to the results in Dhaene (1997).
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∃G : F ⊂ G and D ∈ G → F NEΞT
D G

Proof: Let D∈̄F ⊂ G and D ∈ G. Then D = GθD
and FαD

= GθαD
6= D It

follows that GθD
6= GθαD

.

This property states that if F is misspecified, there are always models which
F does not encompass. In other words, any correctly specified model contains
enough information to invalidate any misspecified models.

Property 4 If F ⊂ G then

FEΞT
D G ↔ FαD

= GθD
↔ Ī(D,F) = Ī(D,G)

Proof:

If F ⊂ G, then FαD
= GαD

. Therefore FαD
= GθD

is equivalent to
GθαD

= GθD
. That is FEΞT

D G. Therefore Ī(D,G) = Ī(D,GθD
) iff FEΞT

D G.

This property gears the principle of parsimony and the concept of encompass-
ing. It tells us a more specific model will encompass a more general model if
the specific one approximates the DGP equally well as the more general one.
If a submodel has all the desired properties of the a comprehensive model,
we only need to consider the submodel. Intuitively, if G is a valid reduction
of the DGP and F parimoniously encompasses G then F is a valid reduction
of the DGP.

Property 5 F ⊃ G does not imply FEΞT
D G.

Property 6 FEΞT
D G is not transitive.

Proof of property 5 and 6: This proof is an example given in Gourieroux and
Monfort (1996).

7.4 Encompassing Relation and Model Selection Cri-
terion

The concept of encompassing is designed to implement a progressive research
strategy: a modeling strategy in which knowledge is gradually accumulated
as codified. Following Hendry(1995) such a strategy will require:

• Reflexivity: FEΞT
D F .

• Anti-symmetry: FEΞT
D G and GEΞT

D F imply that F is equivalent to G.

• Transitivity: FEΞT
D G and GEΞT

D H imply that tFEΞT
D H.
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Property 6 documents that encompassing does not generally have transi-
tivity. However, parsimoniously encompassing does satisfy the transitivity
requirement.

Proposition 7.4 If F ⊂ G ⊂ H, then FEΞT
D G and GEΞT

D H imply that
FEΞT

D H.

Proof: From FEΞT
D G it follows according to property 4:

Ī(D,F) = Ī(D,G) = Ī(D,H)

hence FEΞT
D H.

The parsimonious encompassing implies that a model F with fewer param-
eters can explain equally well as a model with more parameters G. This is
a valid reduction. If the initial information set G is enlarged to H, and the
parsimonious encompassing still results, then model F explains more data
information. This is the basis for a progressive research strategy.

7.5 The Consistent Model Selection Criterion and Par-
simonious Encompassing

In the context of a model selection problem, each structural model corre-
sponds to a derived reduced form that is a subset of the unconstrained re-
duced form. Hence, an overidentified structural model corresponds to a more
parsimonious model relative to the reduced form. If the consistent model se-
lection criterion will select a structural model for all T > T0 the structural
model will approximate the DGP equally well as the unconstrained reduced
form. This implies a parsimonious encompassing.

Proposition 7.5 We denote the unconstrained reduced form by Mrd. If a
structural model denoted by Mi = (Bi, Γi) is chosen by the consistent model
selection criterion:

log LT (B̂−1
i Γ̂i)−kiC log log T > log LT (Π̂)−kπC log log T for all T > T0

then the structural model encompasses the unconstrained reduced form parsi-
moniously, where ki and kπ are the number of the parameters in the structural
model and the unconstrained reduced form respectively.
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Proof: Following (7.45) we have:

Ī(D, Mi) = Ī(D,Mre).

Because of Mi ⊂ Mrd and Property 4, we have MiEΞT
D Mrd. 2

Intuitively, if the consistent criterion chooses a structural model, this struc-
tural model will approximate the real DGP equally well as the unconstrained
reduced form. In addition, a structural model is usually overidentified; it con-
tains fewer parameters than the unconstrained reduced form. Such a specific
model that can explain the data information equally well with fewer pa-
rameters and provide a specific interpretation of the data means progress in
understanding the data.
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8 A Modeling Procedure to Construct a Struc-

tural Model

8.1 Encompassing in Structural Modeling

From the discussion in the last section we know that it is a specific feature of
structural modeling that a structural model’s derived reduced form is nested
in the unconstrained reduced form. Two implications are involved in this
specific feature. The unconstrained reduced form provides here a benchmark
for the evaluation of the structural model. If the consistent model selec-
tion criterion chooses a structural model against the unconstrained reduced
form, the structural model will encompass the unconstrained model parsi-
moniously. The structural model will account all the results obtained by the
unconstrained reduced form. If the model selection criterion does not choose
a structural model for large T , then the structural model may not encompass
the unconstrained reduced form. It means some features of the DGP that
can be explained by the unconstrained reduced form will not be explained
by the structural model. This implies some deficits of the structural model
in understanding the real DGP. Therefore the model selection criterion pro-
vides a useful instrument to construct/evaluate a structural model. The
power of this instrument is limited, however, by the unconstrained reduced
form, because the model selection criterion must compare the criterion value
of a structural model with that of the unconstrained model. Hence if the
unconstrained model is badly specified, the structural model will fit the data
equally badly. Therefore a good reduced form is the necessary condition for
a good structural model. This section gives instructions for the specification
of a structural model; namely, we should start with the investigation of the
reduced form. Only a satisfactory reduced form may lead to a satisfactory
structural model.

8.2 A Modeling Procedure

In order to sum up what has been discussed in the previous sections and
merge the information into a constructive way of model building, we suggest
the following procedure:

• Describe the phenomena

• Construct economical theoretical models for the phenomena under in-
vestigation.
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• Determine the unconstrained reduced form according to the theoretic
models and check if the reduced form has captured all the features of
interest in the data. If the reduced form is not satisfactory, rethink
theoretical model and reconstruct the reduced form.

• Specify structural equations and compose a partial structural model
through the substitution of the reduced form equations by specified
structural equations.

• Calculate the model selection criterion values for the partially specified
structural model and for the unconstrained reduced form respectively.
Check the appropriateness of the restrictions implied by comparing the
structural model by the criterion value of the structural model with
that of the unconstrained reduced form.

• Repeat the last step until all the equations of the reduced form are
replaced by structural equations and the whole structural model is
completely specified.

If the procedure above can be completed, we will arrive at a structural model
that is intuitively interpretable with respect to the economic hypotheses used
to formulate the structural form and is supported by the empirical data.
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9 Simulation Studies

9.1 Stationary Data

9.1.1 General Setting of Simulations

The model selection conclusions drawn from the consistent model selection
criterion hold only asymptotically. In the empirical research we have always
only a limited number of observations. To investigate the performance of the
model selection criterion for empirical modeling in finite sample we conduct
the following simulation studies.

The main focus of the simulation is to see when the asymptotic property
prevails. The performance of the criterion in the following context will also
be of interest:

• Number of equations in the model and its impact on the performance
of model selection criterion

• Number of correctly specified restrictions and ability of the criterion to
identify the most parsimonious model

• Ability to identify false restrictions

• Number of exogeneous variables and its impact on the criterion

• Model with non-stationary data

According to the targets listed above the following simulations are imple-
mented. It is far from an exhaustive exploration of the performance of the
consistent criterion for structural models but simply an illustrative demon-
stration of the performance of the model selection criterion for a few gener-
ated examples. The main feature of the simulated examples are listed in the
following table.

No. Number of Number of Number of Number of Number of Critical
Equations Ex.Variabl. Pred.Variabl. c. Restrict. f. Restrict. Point

1 9 9 18 126 0 31
2 9 9 18 127 1 120
3 9 9 18 127 1 630
4 9 9 18 126-121 0 280
5 9 9 18 125 0
6 9 9 18 124-126 0 100
7 20 20 40 720 0 60
8 80 20 100 7520 0 90
9 3 20 100 1 1 25
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The base case we look at is a structural model with 9 equations, i.e. G = 9.

We assume that the number of predetermined variable and the number of
exogeneous variables increases proportionally with the number of equations
in the simultaneous equation system.

y1,t = β1,GyG,t + γ1,1x1,t + γ1,2x2t + δ1,1y1,t−1 + u1,t

...

yi,t = βi,i−1yi−1,t + γi,ixi,t + γi,i+1xi+1,t + δi,iyi,t−1 + ui,t

...

yG,t = βG,G−1yG−1,t + γG,GxG,t + γG,1x1,t + δG,GyG,t−1 + uG,t

The we generate data by drawing iid random numbers from N(0, 5) for ut

and and iid random numbers from N(0,5) for xt. The starting value of y0 is
set to zero. The parameters are set as follows:

β(i, j) =

{
0.3 for i 6= j,

1 for i=j.

γ(i, j) =

{
0.3 for i 6= j,

1 for i=j.

δ(i, j) =

{
0 for i 6= j,

0.3664 for i=j.

Then we calculate the value of the selection criterion respectively for different
numbers of observations, namely for T = 19, 20, 21,...60,...1500 to see when
in this parameter setting the asymptotic property prevails for the specified
structural model and the reduced form.

The calculation of the criterion value is done by applying OLS to the uncon-
strained reduced form because the maximum likelihood estimate coincides in
this case with the OLS estimate. For the structural model we apply iterative
3SLS to get the maximum likelihood estimate of the structural parameters,
and the function value. The results are presented in the following graphs.

We demonstrate the results of simulation basically through plotting two pairs
of variables. The first pair are the criterion values for the unconstrained re-
duced form (CCU) and for the structural form (CCR) respectively. The
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second pair are the log likelihood function values of the unconstrained re-
duced form (LOGLKHU) and of the structural form (LOGLKHR) respec-
tively. Through plotting them against the number of observations, we can see
when the asymptotic property of the selection criterion becomes significant.
In some cases we plot all four variables together in one graph to show how
the penalty term works.

9.1.2 Simulation 1: True Structural Form vs. the Unconstrained
Reduced Form

In simulation 1 we are interested in when the model selection criterion can
identify the correctly specified structural mode against the unconstrained
reduced form. The result is depicted in the following graphs.
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Figure 1: A True Structural Form vs. the Reduced Form (Sim. 1) CCU is
the value of the model selection criterion of the unconstrained reduced form.
CCR is the value of the model selection criterion of the structural form.

The first graph in the top left corner shows that for this 9 equations system
the consistent property prevails already at 30 observations. The graph in the
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to right corner shows that the log likelihood of an unconstrained model is
significantly larger within this observation range.

These next two graphs above show the asymptotic behaviour of the consistent
criterion and the log likelihood function for this model.

9.1.3 Simulation 2,3: False Restrictions

While simulation 1 shows that the correctly specified structural model will
be identified by the consistent criterion against the unconstrained reduced
form, simulation 2 demonstrates that a misspecified model will be identified
by the consistent criterion. The data used in simulation 2 are generated by
the same DGP as in simulation 1 with γi,j = 3.0 for i, j = 1, 2, ..G. The
structural model under investigation is obtained by restricting the coefficient
of x1,t in the G-th equation to be zero: γG,1 = 0. Hence we have a misspecified
equation in the model:

yG,t = βG,G−1yG−1,t + γG,GxG,t + γG,1x1,t + δG,GyG,t−1 + uG,t.

The simulation result is depicted in the following graphs.

50 100 150
-35.0

-32.5

-30.0

-27.5

-25.0

-22.5
CCR
CCU

50 100 150
-33

-30

-27

-24

-21

-18

-15

-12

-9
LOGLKHR
LOGLKHU



9 SIMULATION STUDIES 72

250 500 750 1000 1250 1500
-35.0

-32.5

-30.0

-27.5

-25.0

-22.5
CCR
CCU

250 500 750 1000 1250 1500
-33

-30

-27

-24

-21

-18

-15

-12

-9
LOGLKHR
LOGLKHU

Figure 2: Misspecified Model vs. the Unconstrained Reduced Form (Sim. 2)
CCU is the value of the model selection criterion of the unconstrained reduced
form. CCR is the value of the model selection criterion of the misspecified
structural model.

This case shows that even when only one true regressor is missing in the 9
equations system the consistent criterion can identify this misspecification
already at a sample of 110 observations. The two graphs on the second row
show the asymptotic behaviour of the criterion and the log likelihood. The
average log likelihood of the misspecified model will converge to a lower level
than that of the unconstrained reduced form that converges to the expected
log likelihood of correctly specified models.

However, in some cases, especially when the misspecification is not very
serious, for instance, if a parameter with a small value is set to be zero it will
need a large number of observations to identify this kind of misspecification.

To see this effect we modify the DGP in simulation 2 by changing the value of
γi,j = 0.3. In this case the true DGP is not greatly violated by the restriction
γG,1 = 0.0, and hence much more data are needed to identify this small false
restriction. The result is shown in the following graph:
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Figure 3: Misspecified Model vs. the Unconstrained Reduced Form (Sim.3)
CCU is the value of the model selection criterion of the unconstrained reduced
form. CCR is the value of the model selection criterion of the misspecified
structural model. LOGLKHU is the value of the average log likelihood of
the unconstrained reduced form. LOGLKHR is the average log likelihood
function value of the structural model.

9.1.4 Simulation 4: Selection of the Most Parsimonious Model

Among a group of nested admissible models (including the unconstrained
reduced form) the model selection criterion will choose the most parsimonious
model i.e. that one that is nested in all other models. To see the behaviour
of the model selection criterion in this case we construct the following nested
admissible models.

Model 1 is the true model, i.e. the data that are used to estimate and evaluate
all alternative models are generated from this model. For the generation of
data, the parameter settings are the same as in the simulation 1.

Model 1:

y1,t = β1,GyG,t + γ1,1x1,t + γ1,2x2t + δ1,1y1,t−1 + u1,t

...

yi,t = βi,i−1yi−1,t + γi,ixi,t + γi,i+1xi+1,t + δi,iyi,t−1 + ui,t

...

yG,t = βG,G−1yG−1,t + γG,GxG,t + γG,1x1,t + δG,GyG,t−1 + uG,t

Model 2:
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y1,t = β1,9y9,t + γ1,1x1,t + γ1,2x2t + δ1,1y1,t−1 + u1,t

...

yi,t = βi,i−1yi−1,t + γi,ixi,t + γi,i+1xi+1,t + δi,iyi,t−1 + ui,t

...

y9,t = β9,8y8,t + γ9,9x9,t + γ9,1x1,t + δ9,9y9,t−1 + γ9,8x8,t + u9,t

Model 3:

y1,t = β1,9y9,t + γ1,1x1,t + γ1,2x2t + δ1,1y1,t−1 + u1,t

...

yi,t = βi,i−1yi−1,t + γi,ixi,t + γi,i+1xi+1,t + δi,iyi,t−1 + ui,t

...

y8,t = β8,7y7,t + γ8,8x8,t + γ8,1x1,t + δ8,8y8,t−1 + γ8,7x7,t + u8,t

y9,t = β9,8y8,t + γ9,9x9,t + γ9,1x1,t + δ9,9y9,t−1 + γ9,8x8,t + u9,t

...

Model 6:

y1,t = β1,9y9,t + γ1,1x1,t + γ1,2x2t + δ1,1y1,t−1 + u1,t

...

yi,t = βi,i−1yi−1,t + γi,ixi,t + γi,i+1xi+1,t + δi,iyi,t−1 + ui,t

...

y4,t = β4,3y3,t + γ4,3x4,t + γ4,1x1,t + δ4,4y4,4 + γ4,3x3,t + u4,t

...

y8,t = β8,7y7,t + γ8,8x8,t + γ8,1x1,t + δ8,8y8,t−1 + γ8,7x7,t + u8,t

yG,t = βG,8y8,t + γG,GxG,t + γG,1x1,t + δG,GyG,t−1 + γG,8x8,t + uG,t

Model 2, Model 3,... and Model 6 each add one more exogeneous variable
to the structural model. Therefore, Model 1 is nested in Model 2 which is
nested in Model 3, which, in turn, is nested in Model 4, and so on. Model 6
nested Model 1 to Model 5. In addition, we also consider the unconstrained
reduced from that nests, by definition, every structural models.
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The data are generated by Model 1. Hence all models listed above are ad-
missible, because they all nest Model 1.

The estimation technique is the same as in the last subsection. We apply
OLS to the unconstrained reduced form and iterated 3SLS to MLE for each
models and then calculate the values of the selection criterion for each model
respectively. The result of the simulation is shown in the following graphs:
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These graphs show that in comparison to the unconstrained reduced form all
6 models are much better. Since T = 35 the model selection criterion will
choose these admissible structural models. Among the structural models the
differences are not very large. For T > 125 the selection criterion will clearly
identify the most parsimonious model - the Model 1.

9.1.5 Simulation 5: Non-nested Admissible Models

While the selection criterion induces an ordering in the nested models, there
is no such order in comparing between non-nested models. Simulation 5
should demonstrate this fact.



9 SIMULATION STUDIES 76

The data are generated by the model as in simulation 1 with γi,j = 0.9. 6
different admissible structural models are constructed. Model 1 is the true
model. Model 2 is constructed by adding an additional regressor xG−1,t to
the equation G of the true model. Model 3 is constructed by adding an
additional regressor xG−2,t to the equation G− 1 of the true model,... Model
6 is constructed by adding xG−5 to the equation G− 4. Except for Model 1,
each model has one unnecessary regressor, but they are not nested in each
other. The following graphs show the value of the model selection criterion
for the 5 structural models.
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Figure 4: No Order in Non Nested Admissible Models (Sim. 5) CCR(i) is
the value of the model selection criterion of Model i.

From the last two graphs we see that even for T > 1450 the order of the
criterion value for each model changes. We look at the graph on the left side.
The criterion value for model 2 is the second largest, while in the graph on
the right side the criterion value for model 2 is the largest. The order of the
values for other models changes too.
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9.1.6 Simulation 7,8: Middle Scale Simultaneous Equations

To assess the impact of the model scale on the performance of the model
selection criterion, we study a model with 20 equations. The data generation
process is the same as the simulation 1 with G = 20. We compare the
model selection criterion value of the correctly specified structural model with
the unconstrained reduced form. The following graphs show the simulation
result.
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Figure 5: Model Selection Criterion in Case of Middle Scale Models (Sim.
7). CCU is the criterion value of the unconstrained reduced form. CCR is
the criterion value of the structural model.

This simulation result shows that for T > 60 the model selection criterion
will choose the correctly specified structural model. We observe that the
average log likelihood of the structural model is almost constantly for 60 <
T < 80, while the log likelihood of the reduced form decreases very fast for
60 < T < 80. The reason is that for a middle scale model with G = 20
and 40 predetermined variables, 60 observations may give a perfect fit. This
overfitting decreases with the increase in the number of observations. Hence,
the average log likelihood decreases very fast from T = 60 to T = 80.

For structural models with 4 explanatory variables in each equation, T = 60
provide already enough observations to obtain a stable result. Hence the
average log likelihood of the structural model is almost constant.

For large scale structural models with 80 equations we do the same simula-
tion. The data are generated by the model specified as in simulation 1 with
G = 80 and the number of exogeneous variables is 20. Each structural equa-
tion has 4 explanatory variables. We compare the structural model with the
unconstrained reduced form. The result is shown in the following graphs.
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Figure 6: Selection Criterion in the Case of Large Scale Models with a Lim-
ited Number of Exogeneous Variables (Sim. 8)

The same phenomenon as in the case of a middle scale model is observed here.
The unconstrained reduced form needs at least 200 observations to overcome
the problem of overfitting, while the asymptotic property prevails already
with 200 observations for the correctly specified structural model. Hence, the
value of selection criterion for the structural model keeps almost constantly.
The value of the selection criterion for the unconstrained reduced form will
be very large at the beginning due to overfitting; it decreases sharply owing
to the decrease of overfitting with the increase in the number of observations.
The penalty is also large at the beginning. Due to the decrease of the penalty
term, the log likelihood of the reduced form will take typically a ”V” form,
then converge to the limit of the average log likelihood.
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9.2 Nonstationary Data

9.2.1 Cointegrated Systems

The DGP for the cointegration system is as follows

∆xt = a11xt + a12yt + a13zt + c11∆xt−1 + c12∆yt−1 + c13∆zt−1 + u1t

∆yt = a21xt + a22yt + a23zt + c21∆xt−1 + c22∆yt−1 + c23∆zt−1 + u2t

∆zt = a31xt + a32yt + a33zt + c31∆xt−1 + c32∆yt−1 + c33∆zt−1 + u3t

with a11 = −0.001, a12 = −0.001, a13 = −0.0005, β1 = −.10, a21 = 0.15, a22 =
−0.2, a23 = 0.2, β2 = .10a31 = β1a11 + β2a21, a32 = β1a12 + β2a22, a33 =
β1a13 + β2 ∗ a23c11 = 0.02, c12 = −.03, c13 = −0.01, c21 = 0.0, c22 = 0.0, c23 =
0.03, c31 = −0.03, c32 = 0.04, c33 = 0.05

This is a cointegration system with one cointegration relation. In the coin-
tegration analysis we investigate the system for 1,2 or no cointegration re-
lations. The following graphs are the result of the simulation. CCN is the
criterion value for no cointegration, CCU is the criterion value for 2 cointegra-
tion relations and CCR is the value of selections criterion for 1 cointegration
relation.
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Figure 7: Selection Criterion in the Case of Cointegration Systems (Sim. 9).

In the graph we see that the curve CCR is always above CCN and CCU,
hence the model selection criterion clearly identifies the single cointegration
relation in the system.
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10 Concluding Remarks

Structural models provide a natural framework to interpret economic data
and to understand economic phenomenon. They were not popular for nothing
during 50s and 60s. Owing to methodological weaknesses structural models
as proposed by the Cowles Commission school were under fierce attack in
the 70s and 80s53. This thesis proposes an alternative way to understand
structural models, namely, a structural model is taken as an parsimonious
specific representation of the general statistical model - the unconstrained
reduced form.

Taking this approach, one has to solve the problem of observational equiv-
alence and model selection. These two issues are the center pieces of this
thesis. The existence of observationally equivalent models make the statis-
tical inference on the structural models irresolute. The concept of identifi-
cation was introduced to solve the problem of parameter estimation due to
observational equivalence. We introduce the concept of observational dif-
ferentiability to characterize the uniqueness of model selection. This thesis
gives necessary and sufficient conditions of observational differentiability and
answers the question, when a structural model is unique.

For model selection we use the information approach based on the log likeli-
hood function and give a general condition for the (weak) consistent model
selection criterion. This consistent criterion provides an alternative way to
test the restriction imposed by structural models. It can be interpreted as
a test against all possible alternative hypotheses. The probability of type II
error for any alternative hypothesis will converge to zero, because the prob-
ability to choose a false model converges to zero. The probability of a type
I error will also converge to zero. This is the consequence of a consistent
criterion.

We further provide the strong consistent criteria for multiple regression mod-
els and for structural models. The strong consistency is of great importance
for econometrics. Strong consistency is a statement based on a single real-
ization path of a stochastic process. In the empirical economic research we
have usually only a single realization path. Therefore, this kind of strong
consistency is more relevant than the weak consistency.

Further research work along this line of structural modeling can be conducted
in two ways. One way is to assess the practical applicability of the consistent
model selection criteria and gain experience with testing the restrictions im-
posed by structural models; the other way is to develop strong consistence
criterion for nonlinear restriction on parameters and variables, because all
structural models are genuinely nonlinear. Either way there is still a much
work to be done.

53See Leamer (1983), Lucas (1976)
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A Structural Models

Conventional assumptions about a structural simultaneous equations system
are as follows:54

BYt + ΓXt = Ut for t=1,2,...T (A.1)

1: B is a nonsingular G × G parameter matrix and is normalized such that
all the elements on the diagonal equal unit. Γ is a G×K parameter matrix.

2: Yt ∈ RG×1 is a random variable called the endogenous variable.

3: Xt inRK×1 is called the predetermined variable with :

X ′
t = (Y ′

t−1, Y
′
t−2, ...YT−p, ξ

′
t)

ξt is the exogenous deterministic variable with:

plim
T→∞

∑T
t=1 ξtξt

T
= Mξξ.

4: UT is identically independently distributed as N(0, Σ)

5: Xt and Ut are uncorrelated.

E(XtU
′
t) = 0

6: We rewrite the model explicitly in the lags of YT :

BYt + ΓtXt = BYt + Γ1Yt−1 + Γ2Yt−2 + ... + ΓpYt−p + Γξξt + Ut

The stability condition is: max{|λi||i = 1, 2, 3, ...GP} > 1
λi is the i-th root of the following equation:

|B + Γ1L
1 + Γ2L

2 + ... + ΓpL
p| = 0

6b: The initial value of Yt is given.

54Compare Dhrymes (1993) p. 12



B PROOF 83

B Proof

B.1 Notations and Probability Space

Notations
r.v. = random variable∣∣∣∣A

∣∣∣∣ = maxij |aij|, where A = (aij)ij

Variables
Let t represent the time and t = 1, 2, · · · . Let the random variables Yt ∈ RG×1

represent endogeneous variables at t. Let the vector ξt represent the exoge-
neous variables at t. Let Xt = (Yt−1, · · · , Yt−p, ξt) represent the predeter-
mined variables. Let yt and xt be one realization for Yt and Xt respectively.
yt and xt can be observed. Throughout the text we will always write capital
letters for r.v’s and lower case for one realization.

Model
Let Θ ⊂ RM be the parameter set. Θ is compact.

We consider the model
yt = F (xt, θ) + vt, (B.2)

where vt is a realization for Vt. The random variable Vt ∈ RG×1 represents
noises/innovations with a density function φθ(v) depending on θ. Moreover,
Vt, t ∈ N are i.i.d. and

∫
v φθ(v)dv = 0, ∀θ ∈ Θ. The initial conditions

Y0 = y0, · · · , Y1−p = y1−p are known. We note y0 = (y0, · · · , y1−p).

Probability Space
The stochastic in this model comes from Vt. We let Ω = (RG)N be the
sample space for the model, because it describes all possible realizations of
Vt, t ∈ N. A sample point in this space is ω = (v1, v2, · · · ). The probability
measure Pθ on Ω is determined by φθ(v) the density function of Vt and their
independence.

Maximum Likelihood Estimation (MLE)
We introduce, at first, likelihood functions. The likelihood function is defined
as the joint density function of variables of relevance 55. Here the endogenous
variable Yt is such a variable. Let yT = (y1, · · · , yT ) be the observations
of Yt over T . According to the model (B.2) yT is determined by a given
sequence of exogeneous variables ΞT = (ξ1, · · · , ξT ) and a sample point ωT =
(v1, · · · , vT ). We denote LT (θ;yT |ΞT ,y0) as the likelihood function of YT =
(Y1, · · · , YT ) with respect to θ given ΞT and y0. We show

55See Hendry (1995) p.371.
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Theorem 2.1

LT (θ;yT |ΞT ,y0) =
T∏

t=1

φθ

(
yt − F (xt, θ)

)
. (B.3)

Proof
We show it step by step.
We know x1 = (y0, · · · , y1−p ξ1) is given. So the density function of Y1|x1 is
φθ

(
y1 − F (x1, θ)

)
and therefore L1(θ;y1|Ξ1,y0) = φθ

(
y1 − F (x1, θ)

)
.

Let ψ2(x2|Ξ2,y0) be the density function of X2|y0,Ξ2 . Because in X2 =
(Y1, y0, · · · , y2−p, ξ) only Y1 is a random variable, then the density function of
X2 is the same as the density function of Y1 ψ2(x2|Ξ2,y0) = φθ

(
y1−F (x1, θ)

)
.

It is clear that the (conditional) density function of Y2 given X2 = x2 is
φθ

(
y2 − F (x2, θ)

)
, ∀x2. Therefore the joint density function of (Y1, Y2) given

Ξ2,y0 is given by

L2(θ;y2, |Ξ2,y0) = φθ

(
y2 − F (x2, θ)

)
φθ

(
y1 − F (x1, θ)

)
.

We continue in the same way and get (B.3).
2

By observation we obtain yT and (ΞT ,y0). We assume yT is one realization
of YT which obeys the model (B.2) with some unknown θ0 ∈ Θ◦, where Θ◦

represent the interior of Θ. We call θ0 the true parameter. The maximum
likelihood method is to infer θ0 based on yT (given ΞT ,y0). The maximum
likelihood estimator is defined by

θ̂(yT |ΞT ,y0) = arg max
θ∈Θ

LT (θ;yT |ΞT ,y0).

Let lT (θ;yT |ΞT ,y0) = ln LT (θ;yT |ΞT ,y0). We assume that lT (θ;yT |ΞT ,y0)
has a continuous third differential with respect to θ, ∀T and ∀yT , ΞT . Let
dT (θ;yT |ΞT ,y0) = ∂

∂θ
lT (θ;yT |ΞT ,y0) and DT (θ;yT |ΞT ,y0) = ∂2

∂θ∂θ′ lT (θ;yT |ΞT ,y0).
In the following text we consider that the data are generated based on some
fixed exogeneous variables ΞT and initial points y0. So sometimes we will
omit them if it does cause confusion.

B.2 The Law of Iterated Logarithm for Martingales

Let Ft be the σ-algebra generated by U1, · · · , Ut. Let (Zt)t∈N be a (multidi-
mensional) (P, (Ft)t∈N) martingale and ∆Zt = Zt −Zt−1. The variation of a
martingale (Zt)t∈N is defined by

V (ZT ) =
T∑

t=1

E[∆Zt ·∆Z ′
t|Ft−1].
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Theorem 2.2 (Corollary 4, p.220, Wang, (1993)) Let (Zt)t∈N be now a one
dimensional martingale. Let σ2

t = E[∆Z2
t |Ft−1] and V (Zt) =

∑T
t=1 σ2

t . If

(W1)
lim

T→∞
V (ZT ) = ∞ a.s., (B.4)

(W2) there is a δ > 0, such that

sup
t

E
[|∆Zt|2+δ|Ft−1

]

σ2+δ
t

< ∞ a.s., (B.5)

(W3) and for a α with 0 < α < 1

σ2
T = o(V (ZT )α), (B.6)

then

P

(
lim

T→∞
ZT√

2V (ZT ) ln ln V (ZT )
= 1

)
= 1. (B.7)

B.3 The Asymptotically Behavior of Likelihood Ratios

Here we test the null restrictions on the parameters

H0 : {R1(θ) = 0, · · · , Rr(θ) = 0.}

Let R(θ) =
(
R1(θ), · · · , Rr(θ)

)
. Let θ̂(yT ) be the ML-estimators with respect

to the restriction R(θ) = 0. According to the Lagrange multiplicator method
we will maximize the object function

Ψ(θ, λ) = lT (θ;yT ) + R(θ)λ,

where λ = (λ1, · · · , λr)
′. Let λ̂ be the maximizer. Then the following equa-

tions are satisfied:

R
(
θ̂(yT )

)
= 0 (B.8)

dT

(
θ̂(yT )

)
+ Ṙ

(
θ̂(yT )

)
λ̂ = 0 (B.9)

In order to denote the subspace of the parameter space satisfying H0 we
reparameterize θ with

θ = h(η),

where the dimension of η equals M − r. η represents the free parameters
under the restriction R(θ) = 0. Thus R(h(η)) = 0, ∀η. Let η0 denote
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the true parameter under the reparametrization h(η0) = θ0. Moreover, we

assume that dh

dη
exists and is continuous in some neighborhood of η0.

A natural choice of η is a subset of θ and let the rest of the parame-
ters be functions of η. To obtain this we simply need to find r parame-
ters, say, under rearrangement of the parameters, θ(M−r+1), · · · , θ(M), such
that ∂R

∂θ(M−r+j) (θ0) 6= 0,∀j = 1, · · · r. Then, following the implicit func-

tion theorem, the parameter θ(M−r+j) can be represented as a function of
η = {θ(1), · · · θ(M−r)} ∀j = 1, · · · , r and ∂θ(M−r+j)

∂η
exists and is continuous in

some neighborhood of θ0.

The constrained likelihood function can be rewritten as lT (θ;yt) = lT (h(η);yT ).
We let gT (η;yT ) = ∂

∂η
lT (h(η);yT ) and GT (η;yT ) = ∂2

∂η∂η′ lT (h(η);yT ) be the
differentials of the log likelihood function subject to restrictions. Let η̂ be
the maximizer of lT (h(η);yT ). Then gT (η̂;yT ) = 0 and h(η̂) = θ̂(yT ) satisfies
the equations (B.8) and (B.9).

The theorem about likelihood ratios (e.g. Godfrey (1988) ) states that
the limit distribution of the likelihood ratio lT

(
θ̃(YT )) − lT (θ̂(YT )

)
is χ2-

distribution under some conditions. The following theorem characterizes
furthermore the limit barrier of the likelihood ratios. As proof for likelihood
ratios we need the law of large numbers for averages of likelihood functions.
It is worthy to note that the limits of the averages in our theorem depend on
Ξ = (y0, ξ1, ξ2, · · · ). The expectations in the following equations are taken
with respect to Pθ0 and “a.s.” means Pθ0−a.s. Now we state at first the
conditions of the theorem:

The conditions

(A1) ∀θ ∈ Θ,∃ l̄(θ, Ξ), such that

lim
T→∞

1

T
ElT (θ;YT |Ξ) = l̄(θ, Ξ)

and l̄(θ, Ξ) has one unique maximum at θ0 over Θ.

(A2) The convergence in (A1) holds locally uniformly, i.e. ∀θ ∈ Θ◦,∃N (θ) ⊂
Θ◦, such that

lim
T→∞

sup
θ′∈N (θ)

∣∣ 1

T
ElT ((θ;YT |Ξ)− l̄(θ′, Ξ)

∣∣ = 0.

(A3) The strong law of large number holds locally uniformly, i.e. ∀θ ∈
Θ◦, ∃N (θ) ⊂ Θ◦, such that

lim
T→∞

sup
θ′∈N (θ)

∣∣ 1

T
lT (θ;YT |Ξ)− 1

T
ElT (θ;YT |Ξ)

∣∣ = 0 a.s. .
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(A4) ∀θ ∈ Θ,∃D̄(θ, Ξ), such that

lim
T→∞

1

T
DT (θ;YT |Ξ) = D̄(θ, Ξ) a.s. .

D̄(θ, Ξ) is continuous in θ. D̄(θ0, Ξ) is invertible.

(A4’) ∀η, ∃Ḡ(η, Ξ), such that

lim
T→∞

1

T
GT (η;YT |Ξ) = Ḡ(η, Ξ) a.s. .

Ḡ(η, Ξ) is continuous in η. Ḡ(η0, Ξ) is invertible.

(A5) The convergence in (A4) and (A4’) holds locally uniformly, i.e. ∀θ ∈
Θ, ∃N (θ), such that

lim
T→∞

sup
θ′∈N (θ)

∣∣∣∣ 1

T
DT (θ′;YT |Ξ)− D̄(θ′, Ξ)

∣∣∣∣ = 0 a.s. .

(A6) E[dt(θ0;Yt)] = 0,∀t and moreover (dt(θ0;Yt))t∈N is a martingale. It
exists V̄d(Ξ) ∈ RM×M , such that

lim
T→∞

V (dT (θ;YT |Ξ))

T
= V̄d(Ξ) a.s.,

where V denote the variation of a martingale.

(A6’) E[gt(η0;Yt,Xt)] = 0, ∀t and moreover (gt(η0);Yt,Xt)t∈N is a martin-
gale. It exists V̄g(Ξ) ∈ RM×M , such that

lim
T→∞

V (gT (η;YT |Ξ))

T
= V̄g(Ξ) a.s..

(A7) For any α ∈ RM×1, the weighted martingale
(
α′(dt(θ0;YT |Ξ))

)
, t ∈ N

satisfies the assumptions (W2) and (W3).

(A7’) For any α ∈ RM×1, the weighted martingale
(
α′(gt(η0;YT |Ξ))

)
, t ∈ N

satisfies the assumptions (W2) and (W3).

(A8)
V̄d(Ξ) = −D̄(θ0, Ξ).

(A9) D̄(θ, Ξ) is differentiable and

sup
θ∈Θ

∣∣∣∣ ∂

∂θ
D̄(θ, Ξ)

∣∣∣∣ < ∞
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(A10) The convergence in (A5) is “fast” in the sense that there exists a con-
stant c, such that

lim
T→∞

supθ′∈N (θ)

∣∣∣∣ 1
T
DT (θ′;YT |Ξ)− D̄(θ′, Ξ)

∣∣∣∣
√

ln ln T/T
≤ c a.s.

(A11) The second differential d2
R

dθdθ′
exists and is continuous in the neighbor-

hood of θ0.

Theorem 2.3 Let r be the number of the hypothesis H0. If the hypothesis
H0 is true and all the conditions (A1) - (A11) and (A4’) - (A7’)are satisfied,
then for such Ξ we have

lim
T→∞

(
lT (θ̃T ;YT |Ξ)− lT (θ̂T ;YT |Ξ)

)

r ln ln T
≤ 1 a.s. .

Remark. We compare our conditions with those in Godfrey(1988) p.6-13.
Our idea of how to represent the log likelihood ratio is exactly the same
as Godfrey’s. The difference is that he uses the central limit theorem (for
martingales) to obtain the limit distribution of the log likelihood ratio, while
we use the law of iterated logarithm (LIL) (for martingales) to obtain the
barrier for the log likelihood ratio. Thus we need the conditions (A6) and
(A7) instead of his conditions (viii).

Since the LIL requires a.s.-convergence, whereas the central limit theorem re-
quires only convergence in distribution, we must add conditions such that all
convergences in probability in his proof can be formulated as a.s.-convergences.
This is why we require the a.s.-convergence in (A3) and (A4) and addition-
ally the speed of the convergences in (A9) and (A10).

The condition (A8) corresponds Godfrey’s (4.4) on p.6 which say something
about the relationship between the first and second differentials of lT

In the proofs we abbreviate θ̃(YT ) θ̂(YT ) as θ̃T , θ̂T .

Lemma 2.4 If the assumptions (A1), (A2) and (A3) are satisfied, then the
ML-estimators are strongly consistent:

lim
T→∞

θ̃T = θ0 a.s.,

lim
T→∞

θ̂T = θ0 a.s..

For the proof see Frydman (1980).
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Lemma 2.5 If the assumptions (A1) - (A7) and (A4’) - (A7’) and (A11)
are satisfied, then there exist c1 and c2, such that

lim
T→∞

∣∣∣∣√T (θ̃T − θ0)
∣∣∣∣

√
ln ln T

≤ c1 , (B.10)

lim
T→∞

∣∣∣∣√T (θ̂T − θ0)
∣∣∣∣

√
ln ln T

≤ c2 . (B.11)

Lemma 2.6 If (A1)-(A7), (A4’) - (A7’),(A9) and (A10)- (A11) are satis-
fied, then there exists c3 and c4, such that

lim
T→∞

∣∣∣∣ 1
T
DT

(
b(θ̃, θ̂)

)− D̄(θ0)
∣∣∣∣

√
ln ln T/T

≤ c3 a.s. , (B.12)

lim
T→∞

∣∣∣∣ 1
T
DT

(
b(θ̃, θ0)

)− D̄(θ0)
∣∣∣∣

√
ln ln T/T

≤ c4 a.s. , (B.13)

We introduce a new notation. Let AT
a.a.s∼ BT mean limT→∞

∣∣∣∣AT −BT

∣∣∣∣ = 0
P -a.s., where “a.a.s” represents “asymptotically almost surely”.

We abbreviate dR

dθ
(θ) as Ṙ(θ), dR

dθ
(θ0) as Ṙ0, and also D̄(θ0) as D̄0.

Theorem 2.7

λ̂√
T

a.a.s∼ (− Ṙ′
0D̄

−1
0 Ṙ0

)−1
Ṙ′

0D̄
−1
0

dT (θ0)√
T

(B.14)

Proof
Using the Taylor expansion we have

1√
T

dT (θ̂T ) =
1√
T

dT (θ0) + D̄(θ0)
√

T (θ̂T − θ0) + δ1,T , (B.15)

where

δ1,T =
( 1

T
DT (b(θ̂T , θ0)− D̄(θ0)

)√
T (θ̂T − θ0).

Using (B.20) and (B.12) we can have

lim
T→∞

∣∣∣∣δ1,T

∣∣∣∣ ≤ lim
T→∞

c
(ln ln T )√

T
= 0 a.s..

Thus we have

1√
T

dT (θ̂T )
a.a.s∼ 1√

T
dT (θ0) + D̄(θ0)

√
T (θ̂T − θ0). (B.16)
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Multiplying the both sides of the equation above with Ṙ′
0D̄

−1
0 and using (B.8)

we have

1√
T

Ṙ′
0D̄

−1
0 dT (θ̂T )

a.a.s∼ 1√
T

Ṙ′
0D̄

−1
0 dT (θ0) +

√
TṘ′

0(θ̂T − θ0). (B.17)

We show here the last term above limT→∞
√

TṘ′
0(θ̂T − θ0) = 0 P -a.s.. Since

R(θ̂T ) = 0, R(θ0) = 0, we can find a θ∗T between θ̂T and θ0 such that

0 = R(θ̂T )−R(θ0) = Ṙ(θ∗T )′(θ̂T − θ0).

Then for i = 1, 2, ...r

√
T

dRi

dθ′
(θ0)(θ̂T − θ0) =

(dRi

dθ′
(θ0)− dRi

dθ′
(θ∗T )

)√
T (θ̂T − θ0)

= (θ∗T − θ0)
′

︸ ︷︷ ︸
≤ c
√

ln ln T/T P -a.s.

d2Ri

dθdθ′
(θ∗∗T )

︸ ︷︷ ︸
≤K P -a.s.

√
T (θ̂T − θ0)︸ ︷︷ ︸

≤c̃
√

ln ln T P -a.s.

→ 0 a.s.. (B.18)

Replacing dT (θ̂T ) in the equation (B.16) using (B.8) we have

− 1√
T

Ṙ′
0D̄

−1
0 Ṙ(θ̂T )λ̂

a.a.s∼ 1√
T

Ṙ′
0D̄

−1
0 dT (θ0).

Because of the strong consistency of θ̂T and continuity of Ṙ(θ), it follows
that limT→∞ Ṙ′

0D̄
−1
0 Ṙ(θ̂T ) = Ṙ′

0D̄
−1
0 Ṙ(θ0) P -a.s.. It follows, therefore56

λ̂√
T

a.a.s∼ (− Ṙ′
0D̄

−1
0 Ṙ(θ̂T )

)−1
Ṙ0D̄

−1
0

dT (θ0)√
T

.

From (A6) and (A7) we have dT (θ0)√
T

≤ c
√

ln ln T . Moreover, with the same

reason as in the equation (B.18) we have the P -a.s. convergence Ṙ′
0D̄

−1
0 Ṙ(θ̂T ) →

Ṙ′
0D̄

−1
0 Ṙ0 with the speed

√
ln ln T/T . Therefore

(
Ṙ′

0D̄
−1
0 Ṙ(θ̂T )

)−1
Ṙ0D̄

−1
0

dT (θ0)√
T

a.a.s∼ (
Ṙ′

0D̄
−1
0 Ṙ0

)−1
Ṙ0D̄

−1
0

dT (θ0)√
T

.

2

56Let AT and BT be one-dimensional r.v.’s for T ∈ N. Let a and b be two finite constants.
If limT→∞AT = a P -a.s. and limT→∞BT = b P -a.s., then limT→∞AT BT = ab P -a.s..
Therefore

(
Ṙ(θ0)′D̄(θ0)−1Ṙ(θ̂T )

)−1
(
Ṙ(θ0)′D̄(θ0)−1Ṙ(θ̂T )

λ̂√
T
− Ṙ(θ0)′D̄(θ0)−1 dT (θ0)√

T

)

→ S · 0 = 0 a.s..
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Theorem 2.8

2
(
lT (θ̃T )− lT (θ̂T )

) a.a.s∼ − λ̂′√
T

Ṙ′
0D̄

−1
0 Ṙ0

λ̂√
T

(B.19)

Proof of Theorem 2.8
From lemma 2.5 we have

lim
T→∞

∣∣∣∣√T (θ̂T − θ̃T )
∣∣∣∣

√
ln ln T

≤ c1 + c2 (B.20)

Using Taylor expansion we obtain

2
(
lT (θ̂)− lT (θ̃)

)
=2 dT (θ̃T )︸ ︷︷ ︸

=0

(θ̂T − θ̃T )

+
√

T (θ̂T − θ̃T )′D̄0

√
T (θ̂T − θ̃T ) + δ2,T ,

(B.21)

where

δ2,T =
√

T (θ̂T − θ̃T )′
( 1

T
DT (b(θ̃, θ̂))− D̄(θ0)

)√
T (θ̂T − θ̃T ).

Using (B.20) and (B.12)

lim
T→∞

∣∣∣∣δ2,T

∣∣∣∣ ≤ lim
T→∞

c
(ln ln T )

3
2√

T
= 0 a.s..

Now consider another expansion

1√
T

dT (θ̂T ) =
1√
T

dT (θ̃T )︸ ︷︷ ︸
=0

+D̄(θ0)
√

T (θ̂T − θ̃T ) + δ3,T , (B.22)

where

δ3,T =
( 1

T
DT (b(θ̂T , θ̃T )− D̄(θ0)

)√
T (θ̂T − θ̃T ).

Using again (B.20) and (B.12) we have also

lim
T→∞

∣∣∣∣δ3,t

∣∣∣∣ ≤ lim
T→∞

c
(ln ln T )√

T
= 0 a.s..

Multiplying both sides of the equation (B.22) with (−D̄0)
−1/2 and using (B.9)

it follows that

(−D̄0)
1
2

√
T (θ̂T − θ̃T )

a.a.s∼ 1√
T

(−D̄0)
− 1

2 dT (θ̂T ) = − 1√
T

(−D̄0)
− 1

2 Ṙ(θ̂T )′λ̂.

(B.23)
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Following Theorem 2.7 we have

λ̂√
T
≤ c̃

√
ln ln T ,

for some c̃ and with the same reason as in (B.18) the speed of the convergence
Ṙ(θ̂T ) → Ṙ0 is

√
ln ln T/T . Therefore, it follows that

D̄−1
0 Ṙ(θ̂T )

λ√
T

a.a.s∼ D̄−1
0 Ṙ0

λ√
T

. (B.24)

Using (B.21) (B.23) and (B.24) we can obtain

2
(
lT (θ̃T )− lT (θ̂T )

) a.a.s∼ −
√

T (θ̂T − θ̃T )′D̄0

√
T (θ̂T − θ̃T )

a.a.s∼ λ̂′√
T

Ṙ′
0(−D̄0)

− 1
2 (−D̄0)

− 1
2 Ṙ0

λ̂√
T

.

2

Proof of Theorem 2.3
Following (A8), −D̄(θ0) = V̄d is positive definite. Therefore V̄

1
2

d is well-
defined.

Let S = −Ṙ′
0D̄

−1
0 Ṙ0 ∈ Rr×r. Then S is positive definite and we have S

1
2

well-defined.

Using Theorem 2.7 and Theorem 2.8 we can get

2
(
lT (θ̃T )−lT (θ̂T )

) a.a.s∼ λ̂′√
T

S
λ̂′√
T

a.a.s∼ (
S−

1
2 Ṙ′

0V̄
−1
d

dT (θ0)√
T

)′(
S−

1
2 Ṙ′

0V̄
−1
d

dT (θ0)√
T

)
.

Let
ZT = S−

1
2 Ṙ′

0V̄
−1
d dT (θ0)

and Z
(i)
T be the i-th component of ZT . It is clear that (ZT ), T ∈ N is a

martingale and

lim
T→∞

V (ZT )

T
= S−

1
2 Ṙ′

0V̄
−1
d lim

T→∞
V (dT (θ0))

T
V̄ −1

d Ṙ0S
− 1

2 = S−
1
2 SS−

1
2 = Ir×r a.s. .

Therefore

lim
T→∞

V (Z
(i)
T )

T
= lim

T→∞
(V (ZT ))(ii)

T
= 1 a.s. .

Together with (A7), (Z
(i)
T ), T ∈ N satisfies the conditions in Theorem 2.2,

then applying the theorem we can have

1 = lim
T→∞

Z
(i)
T /
√

T√
2

V (Z
(i)
T )

T
ln ln

V (Z
(i)
T )

T
T

= lim
T→∞

Z
(i)
T /
√

T√
2 ln ln T

a.s. .
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Thus, for ε > 0, for P -a.s. ω such that for T ≥ Ti(ω),

(
Z

(i)
T (ω)

)2

T
< 2(1 + ε) ln ln T,

for all i = 1, · · · r. Therefore for P -a.s. ω we have

2
(
lT (θ̃T (ω))− lT (θ̂T (ω))

) a.a.s∼
r∑

i=1

(
Z

(i)
T (ω)

)2

T
< 2r(1 + ε) ln ln T,

for T ≥ maxi=1,··· ,r Ti(ω).
2

B.4 Likelihood Ratios for Structural Models

Now we consider structural models. We have an unconstrained reduced form
as defined in (2.1):

Yt = ΠXt + Vt

The parameter of the reduced from satisfies a set of restrictions imposed by
the following overidentified structural form as defined in (2.3):

BYt + ΓXt = Ut,

where
Π ∈ RG×K are parameters of the unconstrained reduced form.
B ∈ RG×G, Γ ∈ RG×K are structural parameters and it holds that BΠ0 = −Γ,
Yt ∈ RG×1 represents the endogeneous variables,
ξt are exogeneous variables,
X ′

t = (Y ′
t−1, · · · , Y ′

t−p, ξ
′
t) ∈ R1×K represent the predetermined variables,

Vt is the disturbance of the reduced form and is i.i.d. N(0, Ω0)-distributed,
Ut = BVt represents the disturbances of the structural form and is i.i.d.
N(0, BΩ0B

′)-distributed, and
θ = (Π, Ω). BΠ0 = −Γ implies restrictions on θ : {R1(θ) = 0, · · · , Rr(θ) =
0.}
The conditional density function is

l(θ, yt|xt) =− G

2
ln 2π − 1

2
ln det Ω

− 1

2
(yt − Πxt)

′Ω−1(yt − Πxt).

(B.25)
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We also assume that the reduced form has the following dynamics:

Yt = φ1Yt−1 + · · ·+ φpYt−p + φeξt + B−1Ut

and φ1, · · · , φp are given such that the autoregressive part is stationary 57.
Let L represent the lag operator. We rewrite the dynamics as

φ(L)Yt = φeξt + B−1Ut.

Because of the stationarity we have the inverse of φ(L) , say ψ(L), and we
get

Yt = ψ(L)φeξt︸ ︷︷ ︸
ξ̃t

+ ψ(L)B−1Ut︸ ︷︷ ︸
Ỹt

. (B.26)

That means that we can divide our process linearly into two parts: ξ̃t repre-
sents the total historical effect of the exogenous variable at t and Ỹt represents
the autoregressive part of the process. For technical reasons we assume ξt = 0
for t ≤ 0.

In order to prove that the likelihood ratios for structural models have a limit
barrier r ln ln T we must check the conditions (A1)-(A10) for the structural
models.

Let ∆Π = Π− Π0. We rewrite the log likelihood function as58

l(θ, yt|xt) = −G

2
ln 2π +

1

2
ln det Ω− 1

2
tr

(
Ω−1(vt −∆Πxt)(vt −∆Πxt)

′) .

(B.27)

Let A = Ω− 1
2 ∆Π. Following Theorem 2.1 we obtain the likelihood function

and we take the average

1

T
ln LT (θ;yt|Ξ) =

1

T

T∑
t=1

l(θ, yt|xt)

=− G

2
ln 2π − 1

2
ln det Ω

− 1

2
tr (Ω−1

∑T
t=1 vtv

′
t

T
) + tr (Ω−1∆Π

∑T
t=1 xtv

′
t

T
)

− 1

2
tr (A

∑T
t=1 xtx

′
t

T
A′).

(B.28)

57we mean that the roots of

|IGλp − φ1λ
p−1 − · · · − φp| = 0

satisfy |λ| < 1, see Hamilton (1994)
58 tr (AB) = tr (BA), if AB and BA are well defined.
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First we want to consider the convergence in (A1). We take the expectation
in both sides of the equation above:

1

T

T∑
t=1

El(θ, Yt|Xt) =− G

2
ln 2π − 1

2
ln det Ω

− 1

2
tr (Ω−1 1

T

T∑
t=1

E[ VtV
′
t ]︸ ︷︷ ︸

constant w.r.t t

) + tr (Ω−1∆Π
1

T

T∑
t=1

E[XtV
′
t ]︸ ︷︷ ︸

=0

)

− 1

2
tr (A

1

T

T∑
t=1

E[XtX
′
t] A′).

(B.29)

For the convergence we need only to consider the last term. If there exists a
constant matrix X2 such that

lim
T→∞

1

T

T∑
t=1

XtX
′
t = X2 a.s.,

then using Jensen’s inequality 59 we have

lim
T→∞

1

T

T∑
t=1

E[XtX
′
t] = X2.

Therefore we have a well-defined limit of average log likelihood

l̄(θ, Ξ) = c− 1

2
ln det Ω− 1

2
tr (Ω−1Ω0)− 1

2
tr (AX2A′), (B.30)

where c = −G
2

ln 2π and we can show

Lemma 2.9 l̄(θ, Ξ) has a unique maximum at θ0.

Proof is given in the next section.

Now we consider the locally uniform convergence w.r.t parameter in the

assumption (A2). It is easy to obtain because the term −1
2

tr(A
∑T

t=1 XtX′
t

T
A′)

is a product of the parameter A and the average
∑T

t=1 XtX′
t

T
.

Below, we want to consider the convergence in the assumption (A3). To do
this is to prove

lim
T→∞

∑T
t=1 VtV

′
t

T
= Ω0 a.s.

59E| 1T
∑

XtX
′
t −X2| ≥ |E[ 1

T

∑
XtX

′
t]−X2|
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and

lim
T→∞

∑T
t=1 XtV

′
t

T
= 0 a.s. .

The first limit is simply the result from the strong law of large number. For
the second limit we need the strong law of large number of Mcleish(1975).

Lemma 2.10 If Yt is stationary and there is a constant matrix Ξ2 such that
the following moment condition

lim
T→∞

1

T

T∑
t=1

ξtξ
′
t = Ξ2 (B.31)

is satisfied, then

lim
T→∞

∑T
t=1 XtV

′
t

T
= 0 a.s. ,

by using the strong law of large number for mixingale in Mcleish (1975).

The discussion of the locally uniform convergence w.r.t parameter in the
assumption (A3) is also because of the product form of the parameter and
the average in (B.28).

Now we want to consider the convergence of the second differentials of the
log likelihood in the assumptions (A4) and (A5). Let ωij be the component
at ij position in Ω−1 and ωi· be the i-th row in Ω−1. Let βij and βi· be those
in B−1. It is easy to calculate the first differentials of l:

∂l(θ, yt, xt)

∂πij

= xjtω
i·(yt − Πxt), (B.32)

and the second differentials:

∂2l(θ, yt, xt)

∂πij∂πkn

= −ωikxjtxnt (B.33)

Therefore if limT→∞ 1
T

∑T
t=1

(
Yt

Xt

)(
Y ′

t X ′
t

)
can converge to a constant

matrix P -a.s., then we can have the P -a.s. convergences for the averaged
second differentials as stated in the assumption (A4).

Lemma 2.11 If the conditions in the lemma 2.10 are satisfied, then there
exists a constant matrix Z(Ξ) ∈ R(G+K)×(G+K) depending on Ξ = (ξ1, ξ2, · · · )
such that

lim
T→∞

1

T

T∑
t=1

(
Yt

Xt

)(
Y ′

t X ′
t

)
= Z(Ξ) a.s. . (B.34)
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Now we show that
(

∂l(θ,Yt,Xt)
∂γij

∣∣
θ0

)
t∈N is martingale difference process ∀i, j.

Using (B.32) it is easy to see that

Et−1

[∂l(θ, Yt, Xt)

∂πij

∣∣
θ0

]
= XjtEt−1[ω

i·Vt] = 0.

Therefore dt(θ0)t∈N is a martingale.

Now we want to show that

lim
T→∞

V (dT (θ0))

T
= lim

T→∞
1

T

T∑
t=1

Et−1

[
dT (θ0)dT (θ0)

′] = V̄d a.s. .

(B.35)

Et−1

[ ∂l

∂ωij

(θ0)
∂l

∂ωkn

(θ0)
]

= XjtXntω
ik .

Therefore, if (B.34) is satisfied, then we can have the convergence (B.35).

Lemma 2.12 The assumption (A7) (for LIL Theorem of Wang) is satisfied
for the stationary structural model.

Lemma 2.13 If the assumptions in the lemma 2.10 are satisfied, then the
assumption (A8) holds for the structural model.

Lemma 2.14 Assume that the Ỹt is stationary.
If limT→∞ 1

T

∑T
t=1 ξtξ

′
t = Ξ2, and moreover there exists a constant c̃ such that

lim
T→∞

∣∣∣∣ 1
T

∑T
t=1 ξtξ

′
t − Ξ2

∣∣∣∣
√

ln ln T/T
≤ c̃ , (B.36)

then for the structural model there exists a constant c such that

lim
T→∞

∣∣∣∣ 1
T

∑T
t=1

(
Yt

Xt

)(
Y ′

t X ′
t

)− Z(Ξ)
∣∣∣∣

√
ln ln T/T

≤ c a.s. . (B.37)

To summarize the discussions above, we have the following theorem:

Theorem 2.15 If the assumptions in the lemma 2.14 are satisfied, then the
conditions (A1) - (A10) hold.
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B.5 Proofs

Proof of the lemma 2.5:
Using Taylor development we have

1√
T

dT (θ̃T ) =
1√
T

dT (θ0) +
1

T
DT

(
b(θ̃T , θ0)

)√
T (θ̃T − θ0), (B.38)

where b(θ̃T , θ0) is a vector between θ̃T and θ0 satisfying the equation above.

The first step is to prove that

lim
T→∞

1

T
DT

(
b(θ̃T , θ0)

)
= D̄(θ0) a.s. .

Because of the continuity of D̄(θ0), we can find a neighborhood N (θ0) such
that

sup
θ∈N (θ0)

∣∣∣∣D̄(θ)− D̄(θ0)
∣∣∣∣ < ε/2.

Following the strong consistency in Lemma 2.4 there exists T1(ω) for P-a.s.
ω such that

θ̃T ∈ N (θ0) ∀T ≥ T1(ω).

According to (A5) we can find N ′(θ0) such that

lim
T→∞

sup
θ∈N ′(θ0)′

∣∣∣∣ 1

T
DT (θ)− D̄(θ)

∣∣∣∣ = 0.

Therefore, for this ε, we can find T2(ω) for P-a.s ω such that for T ≥ T2(ω)

sup
θ∈N ′(θ0)

∣∣∣∣ 1

T
DT (θ, ω)− D̄(θ)

∣∣∣∣ ≤ ε/2.

As a result, for this ε for P-a.s ω we can find T ≥ T1(ω) ∨ T2(ω) such that

∣∣∣∣ 1

T
DT (b(θ̃T , θ0))− D̄(θ0)

∣∣∣∣

≤
∣∣∣∣ 1

T
DT (b(θ̃T , θ0))− D̄(b(θ̃T , θ0))

∣∣∣∣ +
∣∣∣∣D̄(b(θ̃T , θ0))− D̄(θ0)

∣∣∣∣ ≤ ε.

The first step is proved.

Using (B.38), the fact that dT (θ̃T ) = 0, the invertibility of D̄(θ0), and the
strong convergence in step 1, we can have

√
T (θ̃T − θ0) =

[− 1

T
DT (b(θ̃T , θ0))

]−1 1√
T

dT (θ0). (B.39)



B PROOF 99

Under the conditions (A6) and (A7) we can apply the Theorem 2.2 for
(dt(θ0))t∈N to obtain

P

(
lim

T→∞
d

(j)
T (θ0)√

2V (d
(j)
T (θ0)) ln ln V (d

(j)
T (θ0))

= 1

)
= 1. (B.40)

where d
(j)
T (θ0) is the j-th element of dT (θ).

Using (A6) and let vjj =
(
V̄

)
jj

, then we have

1 = lim
T→∞

d
(j)
T (θ0)/

√
T√

2
V (d

(j)
T (θ0))

T
ln ln

V (d
(j)
T (θ0))

T
T

= lim
T→∞

d
(j)
T (θ)/

√
T√

2vjj ln ln T
a.s. ,

which means for some ε, for P-a.s. ω

d
(j)
T (θ0(ω))√

T
≤ (1 + ε)

√
2vjj ln ln T , (B.41)

for T great enough (depending on ω).

Now using step 1 and (B.41) we have

∣∣∣∣√T (θ̃T − θ0)
∣∣∣∣ ≤ M

(∣∣∣∣− D̄(θ0)
−1

∣∣∣∣ + ε
)
(1 + ε)

√
2 max

j
vjj ln ln T .

So we proved the first statement of the lemma. With the same argument we
can prove ∣∣∣∣ηT − η0

∣∣∣∣
√

ln ln T/T
≤ c̃.

Using

θ̂T − θ0 = h(η̂T )− h(η0) =
dh

dη′
(η∗t )(η̂T − η0),

and also the strong consistency of η̂T (h is invertible following the implicit

function theorem) and continuity of dh

dη
in neighborhoods of η0, the second

statement is also proved.
2

Proof of Lemma 2.6:
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Using the triangle inequality for the norm we have

∣∣∣∣ 1
T
DT b(θ̃T , θ0)− D̄0

∣∣∣∣
√

ln ln T/T

≤
∣∣∣∣ 1

T
DT (b(θ̃T , θ0))− D̄(b(θ̃T , θ0))

∣∣∣∣
√

ln ln T/T︸ ︷︷ ︸
≤ K , because of the condition (A10)

+

≤
∣∣∣∣dD̄

dθ
(θ∗)

∣∣∣∣∣∣∣∣b(θ̃T ,θ0)−θ0

∣∣∣∣
︷ ︸︸ ︷∣∣∣∣D̄(b(θ̃T , θ0))− D̄0

∣∣∣∣
√

ln ln T

≤ K̃,

because
∣∣∣∣dD̄

dθ
(θ∗)

∣∣∣∣ ≤ K1 for T large enough and

∣∣∣∣b(θ̃T ,θ0)−θ0

∣∣∣∣
√

ln ln T
≤ c2 from

Lemma 2.5.
2

Proof of Lemma 2.9:
For any B, we choose Γ = B(B−1

0 Γ0), then ∆Π = (−B−1Γ + B−1
0 Γ0) = 0,

also A = 0. That means, for any B, we can choose Γ such that the third
term on the right hand side of the equation (B.30) equals zero.60 Since the
Ω is unconstrained, for the maximum of l̄ in (B.30) we need only to decide
Ω.

Let Q be the probability measure of N(0, Ω) and q : RG → R+ be the density
function of Q. Let Q0 be the P-measure of N(0, Ω0). Then

EQ0 [ln q(·)] =
1

2
ln det Ω− 1

2
tr (ΩΩ−1

0 ).

Now using Jensens inequality, EQ0 [ln q(·)] has it’s unique maximum at Ω0.
2

In order to prove Lemma 2.10, We quote at first the definition of mixingale
in Mcleish (1975).

Definition 2.16 A sequence of one-dimensional r.v. is called mixingale, if
there exist sequences of positive constants (cn)n∈N and (ϕm)m≥0 with lim ϕm =
0, such that

E
[
En−m[Xn]2

] ≤ ϕmcn

E
[
(Xn − En+m[Xn])2

] ≤ ϕm+1cn.

60At this point the problem of observational differentiability can be seen clearly: the
MLE is uniquely identified only by Π0. From Π0 to (B, Γ) is the problem we have discussed
in Chapter 3.



B PROOF 101

Theorem 2.17 (Strong law of large number for mixingales) ( (1.6) The-
orem, p.831, Mcleish(1975) and (1.9) Corollary p.832 )
Let Xt, t ∈ N be a mixingale with constants (cn)n∈N and (ϕm)m≥0 defined
above. If (i)

∑∞
i=1 c2

i /i
2 < ∞ (ii) ∃ak > 0, k ∈ N such that

∑∞
k=1 ak < ∞

and (iii)
∑∞

k=1 ϕ2
k(a

−1
k − a−1

k−1) < ∞, then

lim
T→∞

∑T
t=1 Xt

T
= 0 a.s. .

2

Proof of Lemma 2.10
Recall that there are two kinds of variables collected in Xt = (Yt−1, · · · , Yt−p, ξt).
Without loss of generality we consider here only one-dimensional processes.

Consider the convergence of 1
T

∑T
t=1 ξtVt. This is a case of the strong law of

large number (SLLN) for independent r.v’s. Using Theorem 5.4.1 p.124 and
Corollary p.125 in Chung (1974) we know for independent r.v’s Xt

∞∑
t=1

E[X2
t ]/t2 < ∞ ⇒ lim

T→∞
1

T

T∑
t=1

Xt = 0 a.s.. (B.42)

We know that ξtVt are independent under t and E[(ξtVt)
2] = ξ2

t σ
2. We will

use the following lemma.

Lemma 2.18 Let qt, t ∈ N be a sequence.

lim
T→∞

1

T

T∑
t=1

q2
t < ∞ ⇒

∞∑
t=1

q2
t

t2
< ∞ .

(Without proof).

Because limT→∞ 1
T

∑T
t=1 ξ2

t = Ξ2, then

limT→∞
∑T

t=1
E[(ξtVt)2]

t2
= limT→∞

∑T
t=1 σ2 ξ2

t

t2
< ∞. Using the theorem of

Chung (B.42) it follows 1
T
ξtVt → 0 a.s..

Consider now the convergence of 1
T

∑T
t=1 Yt−kVt, k = 1, · · · , p. We apply

at first the linear decomposition of Yt in (B.26) and consider
∑

Ỹt−kVt

T
and∑

ξ̃t−kVt

T
separately, where

Ỹt =
∞∑
i=0

ψiVt−i, ξ̃t =
∞∑
i=0

ψiξt−i

For the convergence of
∑

ξ̃t−kVt

T
, use the following lemma.
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Lemma 2.19 Assuming that the dynamic of Ỹt is stationary. Then

lim
T→∞

1

T

T∑
t=1

ξ2
t = Ξ2 ⇒ lim

T→∞
1

T

T∑
t=1

ξ̃2
t < ∞.

(Without proof.)

The condition limT→∞ 1
T

∑T
t=1 ξ̃2

t < ∞ leads to

limT→∞ 1
T

∑T
t=1 ξtVt = 0 a.s.. The reason is the same as in the discussion

about the convergence of 1
T

∑T
t=1 ξtVt above.

We consider now
∑

Ỹt−kVt. We note at first that Ỹt is mixingale with c2
n =

(EV 2
t )2/(1 − λ2) and ϕ2

m = λ2m, where λ maximal absolute eigenvalue of
dynamics 61 is a value 0 < λ < 1. We choose ak = k−2, then it can be
checked that these cn, ϕm, ak satisfy the conditions in the theorem. Therefore
1
T

∑T
t=1 Ỹt−kVt = 0 a.s. .

2

Proof of Lemma 2.11
Following the linear decomposition for Yt, we rewrite the terms in the r.h.s.
of (B.34) as the following

1

T

T∑
t=1

Yt−k1Yt−k2 =
1

T

T∑
t=1

Ỹt−k1Ỹt−k2 +
1

T

T∑
t=1

Ỹt−k1 ξ̃t−k2

+
1

T

T∑
t=1

Ỹt−k2 ξ̃t−k1 +
1

T

T∑
t=1

ξ̃t−k1 ξ̃t−k2 ,

where k1 = 0, · · · , p, k2 = 0, · · · p.

1

T

T∑
t=1

Yt−kξt =
1

T

T∑
t=1

Ỹt−kξt +
1

T

T∑
t=1

ξ̃t−kξt ,

and
1

T

T∑
t=1

ξtξt .

Therefore we should discuss three kinds of convergences

(i) limT→∞ 1
T

∑T
t=1 Ỹt−k1Ỹt−k2 = c, a.s. because (Ỹt−k1Ỹt−k2)t∈N is strictly

stationary 62 and is therefore ergodic by the ergodic theorem (Theorem
6.21) on p.113 in Breimen(1992).

61See Hamilton (1994), p.259
62See Hamilton (1994) p.46
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(ii) limT→∞ 1
T

∑T
t=1 Ỹt−kξ̃t = c, a.s. by using the theorem of Mcleish with

ϕ2
m = λ2m and c2

n = ξ2
n(EV 2

n )2/(1− λ2).

The convergence of the series of the third kind is the assumption.
2

Proof of Lemma 2.12
at first we want to show that the linear combination of the first differentials
α′dt(θ0) satisfies (W2).
Recall

∂l(θ)

∂βij

∣∣
θ0

= −ȲjtWit(θ0) +
(
βji − VjtWit(θ0)

)

where the second term on the r.h.s has an expectation of zero.

We observe that the term α′dt(θ0) has the structure

I∑
i=1

Xitεit (B.43)

where Xt is Ft−1-measurable, (εit)i=1,··· ,I are i.i.d with Eεit = 0 and E|εit|2+δ <

∞. Let Zt =
∑I

i=1 Xitεit and σ2
t = Et−1Z

2
t , then

sup
t

Et−1|Zt|2+δ

σ2+δ
t

< ∞.

First we “orthogonize” Zt, i.e. we can find X̃it, ε̃it such that
∑I

i=1 Xitεit =∑I
i=1 X̃itε̃it and X̃it are still Ft−1 measurable, and ε̃it are uncorrelated under

i and also Eε̃it = 0, E|ε̃it|2+δ < ∞. Then

Et−1|Zt|2+δ

σ2+δ
t

=
Et−1

[|∑I
i=1 X̃itε̃it|2+δ

]
(
Et−1

[
(
∑I

i=1 X̃itε̃it)2
]) 2+δ

2

≤ I2+δ
∑I

i=1 Et−1[|X̃itε̃it|2+δ]
( ∑I

i=1 Et−1[(X̃itε̃it)2]
) 2+δ

2

≤ I2+δ

∑I
i=1 |X̃it|2+δE|ε̃it|2+δ

∑I
i=1 |X̃it|2+δ

(
E[ε̃2

it]
) 2+δ

2

≤ I2+δ max
i

E|ε̃it|2+δ

(
E[ε̃2

it]
) 2+δ

2

< ∞.

2

Proof of Lemma 2.13
We already showed in (B.35) that

lim
T→∞

1

T

T∑
t=1

Et−1

[∂l(θ0; Yt, Xt)

∂θi

∂l(θ0; Yt, Xt)

∂θj

]
= (V̄d)ij.
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Because the expectation of the l.h.s. converges to the same limit, it follows
that

(V̄d)ij = lim
T→∞

1

T

T∑
t=1

E
[∂l(θ0; Yt, Xt)

∂θi

∂l(θ0; Yt, Xt)

∂θj

]

=− lim
T→∞

1

T

T∑
t=1

E[
∂2l(θ0; Yt, Xt)

∂θi∂θj

] = −D(θ0)ij

2

Proof of Lemma 2.14
Analogous to the proof of Lemma 2.11 we simply need to consider the con-
vergence speed for the three types of series

∑
Ỹt−k1Ỹt−k2/T ,

∑
Ỹt−kξt/T and∑

ξtξt/T . Since the convergence speed of the third type is assumed, we only
need to consider the first and second types.

Let Zt represent Ỹt−k1Ỹt−k2 or Ỹt−kξt. The basic idea of this proof is to
represent Zt − E[Zt] as

Zt − E[Zt] = lim
N→∞

Zt − Et−N [Zt] = lim
N→∞

N∑
n=0

(
Et−n[Zt]− Et−n−1[Zt]

)
,

where E[Zt] = limn→∞ Et−N [Zt]. For any fixed n,
(
Et−n[Zt]−Et−n−1[Zt]

)
t∈N

is a martingale difference process. Then we can apply Theorem 2.2 to control
the convergence speed.

At first let Zt = Ỹt−k1Ỹt−k2 and ϕ
(n)
t =

(
Et−n[Zt]−Et−n−1[Zt]

)
. We consider

the case n ≥ k1 ∨ k2. After some calculation we get

ϕ
(n)
t = ψn−k1ψn−k2(V

2
t−n − E[V 2

t−n])

+
(
ψn−k2Et−n−1Ỹn−k1 + ψn−k1Et−n−1Ỹn−k2

)
Vt−n.

Let EV 2
t = σ2. Because of stationarity there exists c1

63 such that
∑∞

i=0 ψ2
i ≤

c1. Calculating the variation process V
(n)
T = V

( ∑T
t=1 ϕ

(n)
t

)

V
(n)
T

T
=

1

T

T∑
t=1

Et−n−1(ϕ
(n)
t )2

= 2ψ2
n−k1

ψ2
n−k2

σ4 + σ2ψ2
n−k2

1

T

T∑
t=1

Et−n−1[Ỹt−k1 ]
2

︸ ︷︷ ︸
→σ2

∑∞
i=1+n−k1

ψ2
i a.s.

+ 2σ2ψn−k2ψn−k1

1

T

T∑
t=1

Et−n−1[Ỹt−k1 ]Et−n−1[Ỹt−k2 ]

︸ ︷︷ ︸
→σ2

∑∞
i=1+n−k2

ψi+k2−k1
ψi a.s.

+σ2ψ2
n−k1

1

T

T∑
t=1

Et−n−1[Ỹt−k2 ]
2

︸ ︷︷ ︸∑∞
i=1+n−k2

ψ2
i a.s.

.

63see Hamilton (1994)
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The a.s. convergences above are obtained by applying the ergodic theorem.
Therefore

lim
T→∞

V
(n)
T

T
= V (n) ≤ σ4(1 + c1)(|ψn−k1|+ |ψn−k2|)2.

Because ϕ
(n)
t also has the product form (B.43), (W2) is satisfied, so we can

apply Theorem 2.2 to get

1 = lim
T→∞

∑T
t=1 ϕ

(n)
t√

2V
(n)
T ln ln 2V

(n)
T

= lim
T→∞

∑T
t=1 ϕ

(n)
t√

T2V
(n)
T /T ln ln(T2V

(n)
T /T )

= lim
T→∞

∑T
t=1 ϕ

(n)
t√

T2V (n) ln ln T
a.s.

Therefore

lim
T→∞

∑T
t=1 ϕ

(n)
t√

2T ln ln T
=
√

V (n) ≤ σ2
√

1 + c1(|ψn−k1|+ |ψn−k2|).

Because

T∑
t=1

(Zt − E[Zt]) =
T∑

t=1

lim
N→∞

N∑
n=0

ϕ
(n)
t = lim

N→∞

N∑
n=0

T∑
t=1

ϕ
(n)
t ,

then

lim
T→∞

lim
N→∞

N∑
n=0

∑T
t=1 ϕ

(n)
t√

T ln ln T
≤ lim

N→∞

N∑
n=0

lim
T→∞

∑T
t=1 ϕ

(n)
t√

T ln ln T
,

therefore

lim
T→∞

∑T
t=1(Zt − E[Zt])√

T ln ln T
≤ σ2

√
1 + c1

∞∑
n=0

(|ψn−k1|+ |ψn−k2|) = c < ∞.

Now for Zt = Ỹt−kξt we can easily have ϕ
(n)
t = ξtψn−kVt−n. It also has the

product form (B.43) and we can have V
(n)
T /T = σ2ψ2

n−k

∑
t ξ

2
t /T . Then

lim
T→∞

∑T
t=1(Zt − E[Zt])√

T ln ln T
≤

√
Ξ2σ

∞∑
n=0

ψ2
n−k < ∞.

2

Remark to the proof of Theorem 2.15
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We saw that in Theorem 2.3 the important properties for proving the LR
barrier are (i) the P-a.s. convergences of lT /T and its differentials, (ii) the
local uniformity w.r.t parameters of these convergences, and (iii) the control
of the convergence speed. After checking the conditions for the structural
model we summarize here which properties of the structural model lead to
the properties above. It is important that we decompose Yt into two parts:
the exogeneous part and the autoregressive part. The convergences of lT /T
and its differentials are only possible when the autoregressive part is station-
ary and the exogeneous part satisfies the moment condition (B.36). We used
three theorems of strong law of large number: for strict stationary processes,
for independent processes, and for mixingales. The local uniformity of the
convergences is due to the normal distributions of Ut. Thanks this all series
considered for convergences have a product form of parameters and the av-
erages which are P-a.s. convergent. For the control of convergence speed, we
use LIL Theorem for martingales. The conditions for this theorem can be
satisfied is because of the normal distribution of Ut and the stationarity of
(the autoregressive part of) the process.
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