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1. Introduction

1. INTRODUCTION

Multimedia is widely used in human-human and human-machine communication. In
the context of educational practice, multimedia is regarded as a powerful tool for
presenting learning materials, as compared with the traditional text-oriented medium.
The primary advantage of multimedia presentations (MPs) is that information can be
presented in different codes (e.g., verbal and non-verbal) and in different modalities
(e.g., in visual and auditory formats) at the same time. Aside from the diverse ways
of displaying information, some multimedia learning environments also allow
learners to interact with the media. In light of these advantages, it appears convincing
that multimedia can deliver information more effectively as well as motivate learners
to engage themselves more deeply in the learning process. This has led to a general
conviction that multimedia is superior to traditional learning media in every respect.
However, during the last decade, empirical studies on the effects of MPs on learning
have yielded inconclusive results. In some cases, learning has been promoted by
deploying MPs, whereas in some other cases learning did not improve or was even
impaired by deploying MPs.

After reviewing the most important theories and empirical studies dealing

with the role of MPs in learning, I feel motivated to investigate the following issues:

1. How do different MPs influence the way in which people process
information?
Under which conditions do the various kinds of MPs facilitate learning?

3. How do different modalities for presenting information interact with regard to

the cognitive load on the side of the recipients?

Many researchers in educational psychology focus on examining the
relationship between MPs and learning outcomes while ignoring how people process
multimedia information. However, in my view, we cannot completely understand the
role of MPs in learning without more closely examining the cognitive side of
information processing. Consequently, this thesis does not just restrict itself to
investigating learning performance, but also aims to provide detailed analyses of the
effects of MPs on information processing. The technique employed in order to study
the way in which people process multimedia materials is eye-tracking. Eye
movements give insight into how people allocate their attention among the different

components of a multimedia display in order to integrate information from various
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sources. Thus, eye-movement data enable us to reconstruct the cognitive processes
by which people utilize multimedia materials.

Another motivation for this work was to empirically discern the
characteristics of effective MPs. In order to establish a factual basis that would
answer the question regarding under which conditions the various kinds of MPs
would facilitate learning, I not only collected findings from a number of published
studies, but also conducted two experiments in which diverse ways of presenting
information were systematically varied.

Finally, I intend to clarify the influence of MPs on the efficiency of
information processing in the recipient’s working memory. To this end, I shall
provide theoretical and empirical arguments against the claim that information

processing becomes more efficient when more modalities are involved in MPs.

1.1 Some terminological preliminaries

There is no standard definition of “multimedia” to be found in the literature. In
general, the term “multimedia” refers to an integrated use of text, pictures, video, and
audio. Weidenmann (1997) has pointed out that media should be objects, technical
devices, or configurations in which information is stored and transmitted. In his
view, multimedia is characterized by an integrated use of technical devices such as a
PC and video recorder. According to Mayer and Sims (1994), “multimedia” involves
the use of more than one presentation medium. Based on their understanding,
presentation media comprise, for example, animation and narration. In my opinion,
however, a medium is a carrier of information. Thus it is not necessarily tied to a
technical device as suggested by Weidenmann because a PC can also play videos
without the need for a video recorder. It appears to me that what is generally termed
“multimedia” pertains to the way in which information is presented, rather than to
the devices that are involved.

Typically, multimedia-based information is presented in different codes (e.g.,
text and graphics) and in different modalities (e.g., auditory and visual). Multimodal
presentations involve information that has to be perceived by different sensory
channels. Verbal information, for instance, can be rendered as visual (written) or
auditory (spoken) text. However, a problem arises in that moving pictures (e.g.,
animation or videos) and static pictures (e.g., illustrations or diagrams), though
belonging to the same modality, convey information in different ways. I regard
motion or animation as a subcategory of visually-based information. In order to

avoid terminological confusion and to distinguish between the two ways of
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presenting pictorial information, I shall use the term “modality” to refer to visual or
auditory presentation, while using the term “presentation mode” to refer to the way
in which information is presented. That is, static and moving pictures are taken as
two different presentation modes of pictures that fall under the same modality.
Finally, for the sake of convenience, I shall use the term “multimedia presentation”
to refer to a presentation that is either multicodal or both multicodal and multimodal.

The same rationale underlies my use of the term “multimedia information”.

1.2 Structure of the thesis

The thesis in hand mainly consists of two parts. The first part (from Chapter 2 to
Chapter 6) refers to the theoretical background to my research topic, and the second
part (Chapter 7 and Chapter 8) contains new empirical data on multimedia learning.
Altogether, the thesis is structured as follows:

e In Chapter 2, I shall provide an overview of theories concerned with the
mental representation of verbal and pictorial information.

e In Chapter 3, I shall elucidate how human memory is structured and how the
memory systems encode, store, and retrieve multicodal and multimodal
information.

e In Chapter 4, I shall review theories and empirical studies regarding learning
with text and pictures, and examine the conditions under which pictures
facilitate learning.

e In Chapter 5, I shall introduce theories of multimedia-based learning that are
widely referred to in instructional design.

e In Chapter 6, I shall explain the connections between eye movements and the
underlying cognitive processes. In so doing, I shall discuss a few studies that
have investigated eye movement behavior during learning using multimedia
materials.

e In Chapters 7 and 8, I shall report on two experiments which I have
conducted to investigate the determinants of multimedia learning.

e In Chapter 9, I shall give a few conclusions and possible applications of this

research.
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2. MENTAL REPRESENTATIONS OF VERBAL AND
PICTORIAL INFORMATION

In the field of cognitive science, there are different theoretical approaches that try to
explain how information is mentally represented. However, in light of the complex
and flexible way in which human cognitive systems operate, the mystery of mental
representations has not been completely solved. In this chapter, I shall introduce
different theories concerning mental representations of verbal and pictorial

information.

2.1 Mental representations of verbal information

2.1.1 The propositional model

When reading or listening to a text, people mentally represent the text they perceive.
These mental representations consist of different levels (cf. Kintsch, 1994): 1) The
surface level: A text is represented by its phonetic, phonological, graphemic, or
lexical features. 2) The propositional level: This includes the syntactic and semantic
characteristics of a text. “Propositions can be viewed as semantic molecules that
represent the meaning of a text in a rudimentary way.” (Rickheit and Sichelschmidt,
1999: 23). The propositional representation of a text describes how those semantic
molecules are structured in the recipient’s mind. 3) The situation model (or discourse
model) level: The situation model is “the representation of the situation described by
the text, rather than the text itself.” (Kintsch, 1994: 731). That is, readers or listeners
may elaborate with additional information that goes beyond the information
explicitly given in the text. According to Kintsch (1994), a situation model is not
necessarily propositional but might be procedural, abstract, or take the form of a
mental image. With respect to text comprehension, the propositional and situational
representations are the most crucial ones which I would like to address further.

The propositional model proposed by Kintsch (1974, 1978) deals with the
cognitive processes of comprehension and memorization of text. The model assumes
that the meaning (i.e. the semantic base) of a text is represented by an ordered list of
propositions. A proposition contains a predicate (i.e. a relational concept) and one or

more arguments. Predicates may be verbs, adjectives, adverbs, conjunctions,
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prepositions, or quantifiers. Arguments may be concepts or other propositions, which
perform different semantic functions such as agent, recipient, object, goal, etc. The
sentence “Mary gave John a book but he lost it,” for example, has three propositions
(Kintsch, 1994: 726):

GIVE (agent: MARY, recipient: JOHN, object: BOOK)
LOSE (agent: JOHN, object: BOOK)
BUT (GIVE (MARY, JOHN, BOOK), LOSE (JOHN, BOOK))

The propositions that represent the meaning of a text are ordered
hierarchically. The superordinate proposition is shared by several arguments, each of
which in turn is shared by some other subordinate propositions within the hierarchy.
Kintsch and van Dijk (1978) suggested that the text base be processed in cycles
because of the limited capacity of working memory. They assumed that working
memory can only process n; propositions or chunks of propositions at a time, where
n; is contingent upon text and reader/listener characteristics. The working-memory
buffer, which holds the most relevant parts of the text base in its current state of
development, is of limited size s. In each processing cycle, n,new propositions and s
propositions in the memory buffer are involved, by which connections between the
new propositions and those held in the buffer are searched. If any connection is
found, the new propositions are added to the previous propositional structure. If none
is found, recipients have to search for propositions stored in long-term memory (or
eventually re-read the text), or else they must draw appropriate knowledge-based
inferences. Propositions that are currently processed in a processing cycle may be
stored in long-term memory and reproduced later. An example that demonstrates the
processing cycles is taken from Kintsch and van Dijk (1978: 376). The text shown

below is an excerpt from a research report entitled “Bumperstickers and the Cops™:

“A series of violent, bloody encounters between police and Black Panther Party
members punctuated the early summer days of 1969. Soon after, a group of black
students I teach at California State College, Los Angeles, who were members of
the Panther Party, began to complain of continuous harassment by law
enforcement officers. Among their many grievances, they complained about
receiving so many traffic citations that some were in danger of losing their driving
privileges. During one lengthy discussion, we realized that all of them drove
automobiles with Panther Party signs glued to their bumpers. This is a report of a
study that I undertook to assess the seriousness of their charges and determine
whether we were hearing the voice of paranoia or reality. (Heussenstam, 1971, p.
32)”

Figure 1 shows the proposition list for the text. Figure 2 demonstrates the
processes of cyclical construction for the coherence graph. Figure 3 depicts the
complete coherence graph in which the number of boxes shows the number of extra

cycles required in processing.
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During each cycle, a subset of s relevant propositions is selected and held
over in the buffer for the next processing cycle. In effect, the most relevant
propositions (usually those that are high in the hierarchy) will participate in
processing cycles more frequently, i.e. be often activated in the working-memory.
This can explain why those propositions are remembered better than the less relevant
ones (those that are low in the hierarchy).

There are, however, some serious limitations of Kintsch and van Dijk’s
(1978) propositional model. First, the referential identity of argument concepts was
taken as the basis for the coherence relationships within a text. Nevertheless, the
referential identity does not guarantee coherence. For example, “His favorite animal
is the dog. Dogs are a kind of mammal. Cats and dogs are enemies.” This is a string
of sentences that share a common referent (dog), but that cannot be regarded as a
coherent text. Secondly, the model does not clearly explain how and to what extent
inferences are drawn. Besides, drawing inferences should not be viewed as ‘the last

resort’ for establishing coherence because recipients do often use their knowledge
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during text processing to infer information that goes beyond the text. Thirdly, the
propositional model is able to describe the microstructure (i.e. local structure) of a
text. However, for a longer text, it fails to describe the macrostructure (i.e. global
structure) appropriately. Kintsch (1994) has pointed out that “Understanding a text is
not just a matter of understanding each phrase and sentence and linking them
together in a coherent network. It also has a global processing component.” (Kintsch,
1994: 733). The global coherence of a text involves discourse understanding, that is,
building a model of the situation described by the text. To construct a situation
model, the pragmatic and social context must be considered as well. Nonetheless, the
discourse understanding in the propositional model is only restricted to the semantic
level.

To account for those problems, Kintsch (1988) proposed the construction-
integration model. According to this model, text comprehension begins by
constructing a network of the representational units (i.e. concepts) and their
interrelationships as stipulated by the text. The processes of construction are not
necessarily precise. For instance, words or sentences with ambiguous meanings (e.g.,
homonyms: ‘bank’) are initially represented by their possible meanings in the
network at the same time. The construction process is followed by the integration
process, which is postulated as a process of spreading activation within the network.
Through this mechanism, strongly interconnected parts in the network (i.e.
contextually relevant concepts) are strengthened, whereas isolated parts (i.e.
contextually irrelevant concepts) are deactivated (Kintsch, 1994). Consequently, any
contextually inappropriate meanings of the ambiguous words or sentences are
filtered out during the integration processes, which serve as the context effect on text
comprehension. While the schema theories assume that the schemata (scripts or
frames) existing in knowledge control the context-sensitive operation in constructing
the situation model in the first place, the construction-integration model assumes that
context sensitivity of knowledge activation is “an uncontrolled, bottom-up process,
determined only by the strength of the associations between items in long-term
memory and the text.” (Kintsch, 1994: 733).

As to the processing cycles, the model assumes that when a new sentence is
processed, the most strongly activated proposition(s) from the previous sentence is
(are) always held in the focus of attention (or short-term memory buffer) to maintain
the coherence of the network. This is based on the assumption that information kept
in the focus of attention is linked to its related information in long-term memory. In
this case, the connected information in long-term memory becomes readily available

for further processing. According to Ericsson and Kintsch (1995), the effective
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capacity of working memory could therefore be increased, which they have termed
“long-term working memory”.

The construction of macrostructure is assumed to be carried out strategically.
The mental representation of the macrostructure of the text in readers’ or listeners’
minds might or might not correspond to the author’s intention, depending on their
individual comprehension strategies or goals. All in all, the construction-integration
model has taken the context effect and inference during text comprehension into
account. The model allows the construction of a macrostructure as well as a situation
model of the discourse.

Of course, this model is only one of the several theoretical approaches to the
issue of mental representations of verbal information. Other theoretical approaches
such as schema theories are concerned with how knowledge in long-term memory
affects the cognitive processes during the construction and reproduction of

information. In the following section, I shall briefly outline the schema theories.

2.1.2 Schema theories

In contrast to the propositional model, schema theories argue in favor of top-down
processing components. Schema theorists maintain that semantic memory is
structured in schemata, which are much larger knowledge structures than
propositions. “Schemata may be viewed as hierarchically ordered, abstract,
stereotypical representations of objects or states of the world which provide empty
slots to be specified in individual contexts.” (Rickheit and Sichelschmidt, 1999: 26).
These organized knowledge structures are essential for information processing
because they influence the way in which people comprehend, interpret, and
remember information.

Empirical evidence supporting schema theory was first brought out by
Bartlett (1932). He showed his subjects a North American Indian folk tale and found
that when subjects recalled the story, they either omitted the part that did not fit their
prior expectation or schemata, or distorted some unfamiliar situations described in
the story (reported in Baddeley, 1997). Following Bartlett (1932), a schema is an
organized structure of our knowledge and expectations of a certain aspect of the
world. When learning or remembering new information, people elaborate the
meaning of the to-be-learned information with the help of schemata. If the new
information is not compatible with the schema, distortions occur.

Some other theoretical terms such as ‘story grammar’ (Rumelhart, 1975),
scripts (Schank and Abelson, 1977), or frames (Minsky, 1975) are similar to the

concept of schema. A story grammar refers to the rules describing the structure
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underlying a story, which influences how people remember a story. It was proved in
a study by Thorndyke (1977) that 1) the violation of story grammar leads to poor
recall of the story; 2) propositions that are essential to comprehension tend to be
better recalled; 3) there is an interaction between the text structure and the
importance of propositions. In the less structured text, important propositions are not
better recalled (reported in Baddeley, 1997). Frames and scripts, on the other hand,
refer to knowledge structures that represent conventions of social events, for example
being in a restaurant. Such knowledge structures are important to discourse
understanding, and help people to behave appropriately in social situations. Similar
to schemata, scripts are organized in a hierarchical order. In a study by Bower et al.
(1979), it was found that people tended to recall information that was not explicitly
uttered in the story, but which was consistent with the script. This result is analogous
to Bartlett’s finding.

Taken together, the schema theories attempt to explain how knowledge is
structured in long-term memory and how those structures affect people as they
process and remember new information. The notion of schema does not only apply to
describing knowledge structures in memory, but is also used in some learning
theories (see Chapter 3, Section 3.4.1). The functions of schema in information
processing include: 1) selection: Only the information that is relevant to the existing
schemata will be incorporated; 2) abstraction: Only the meaning (not the form) of
information is processed; 3) interpretation: The information to be processed is
interpreted in regard to the already existing schemata; 4) integration: The processed
information will be either connected to or absorbed by the existing schemata
(Thorndyke and Yekovich, 1980; Alba and Hasher, 1983; cited in Rickheit and
Strohner, 1993).

2.2 Mental representations of pictorial information

The format of mental representations of pictorial information (i.e. mental images) is
still controversial. There has been debate regarding the nature of mental images. Two
opposing theoretical approaches are the analogical versus the propositional
approaches. The debate is concerned with whether mental images are like pictures
(or percepts) that are analogous to what we see, or whether they are represented as
propositions. An example of these two different formats of mental representation is

shown in Figure 4.
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Figure 4: Properties of propositional and quasi-pictorial formats
(Taken from Kosslyn, 1980: 31)

Empirical evidence in favor of the analogical approach was provided by
Kosslyn (1973, 1980) and Shepard (Shepard and Metzler, 1971). In a series of
studies, Kosslyn (1980) asked his subjects to mentally scan the pictures they had just
studied and to report whether they saw the target items (given by the experimenter)
on their mental images. He found that subjects typically required more time to give
an answer when their current view point on the mental image and the target item
were a great distance apart (the distance effect), or when the target item was
embedded in a very small image (the size effect). Based on those findings, Kosslyn
suggested that subjects in those experiments indeed used their “mind’s eye” to scan
their mental images, which must be analogical in nature. If mental images were
represented propositionally, the reaction time should not have been affected by the
distance or the size. Similarly, Shepard and Metzler (1971) showed their subjects a
pair of three-dimensional objects on each occasion (see Figure 5) and asked them to
judge whether they were the same objects. Since the objects were portrayed in
different perspectives, subjects had to mentally rotate one of the objects to make a

decision. The results indicated that the reaction time was a linearly increasing
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function of the angular difference in the orientations of the two objects portrayed in

the stimuli, which also favors the analogy view.

Figure 5: Examples of the stimuli used for mental rotation tasks
(Taken from Shepard and Metzler, 1971: 702)

In contrast to the propositional approach, Pylyshyn (1973, 1979, 1981) argued
that mental images are propositional in character because the human mind only
employs propositional representations which are abstract and are not tied to any
particular sensory modality (cf. Douglas and Brian, 1992). The ‘“depictive”
representations are taken as “general reasoning adherents” (Pylyshyn, 2001:4) that
accompany a set of underlying processes that operate upon spatial information in
terms of discrete propositions. That is, the “picture-like” mental imagery that people
experience is not constructed automatically when processing pictorial information.
The proponents of the propositional approach criticize that the observations made by
the proponents of the analogical approach are dubious because their research
methods confound the results that they obtained. Pylyshyn (2001, 2002) claimed that
subjects in Kosslyn’s experiments experienced “seeing an image with the mind’s
eye,” which was only based on an illusion. “...the experiments were revealing what
subjects believed about what would happen if they were looking at a certain scene
and not the inherent nature of an imagery medium or mechanism.” (Pylyshyn, 2001:
2). In other words, the fact that subjects reported using depictive mental images to
perform the task was an illusion elicited by the experimenter’s instruction.

Besides, the effects commonly attributed to imagery can be explained on a
propositional basis as well. For instance, the distance effect observed by Kosslyn
(1980), did not necessarily result from mentally scanning a quasi-pictorial imagery.
The same effect can also be explained by propositional representations if one
considers the following example (see Figure 6). According to the distance effect, it is
assumed that if one were mentally focusing on the left end of the speedboat, it would
take less time to see the motor than to see the porthole, and less time to see the
porthole than to see the anchor. Nonetheless, subjects could possibly construct

propositional representations of the speedboat, like the one shown in Figure 7. The
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greater the distance between the subject’s focus and the target object, the more links

that must be traversed to reach the target in the graph.

Figure 6: An example of the line drawings used as stimuli by Kosslyn (1973).
(Taken from Kosslyn, 1980: 36).
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Figure 7: A propositional representation of the drawing of the speedboat.
(Taken from Kosslyn, 1980: 39)

Furthermore, the mental images that subjects formed are not supposed to be
analogous to the visual stimuli, but are rather constructed based on their knowledge
of the world. ““...both “mental scanning” and “mental rotation” transformations can
be critically influenced by varying the instructions given to subjects and the precise
form the task used and that the form of the influence is explainable in terms of the
semantic content of subjects’ beliefs and goals—that is, that these operations are
cognitively penetrable by subjects’ beliefs and goals.” (Pylyshyn, 1981: 16).

The imagery debate has continued for about two decades. Kosslyn (1994)
tried to use neuropsychological evidence to support the analogy claim. It was found
that the primary visual cortex (Area 17) is activated when generating visual images,
and that during imagery, a retinotopic, quasi-pictorial display is generated on the
surface of the visual cortex. That is, mental images should be in a depictive form,
just like in a two-dimensional picture. Pylyshyn (2001, 2002) argued that this kind of
two-dimensional retinotopic imagery is only literal. It does not represent the form of
the functional mental representations involved in vision because the visual inputs we

perceive from the world are substantially more complicated than a two-dimensional
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picture. For example, how people mentally rotate a three-dimensional object cannot
be accounted for by a two-dimensional projection on the primary visual cortex. In
other words, the neuropsychological evidence does not further enhance our
understanding of the nature of mental images.

The imagery debate has not come to an end. In general, the propositional
approach does not deny that people would deploy depictive mental images to
perform certain tasks such as solving problems involving geometric displays. As
Pylyshyn stated, “This is not a case of believing that images do not exist or are
“epiphenomenal”. It is a question of whether theories of mental imagery that posit
2D displays or “depictive representations” are empirically correct, or perhaps even
coherent.” (Pylyshyn, 2001: 3).

In my opinion, the ultimate solution has yet to be found, probably because we
cannot precisely measure or trace how the human brain processes information
through any currently available methods or technical instruments. In my opinion,
mental images could comprise both analogical as well as propositional
representations, and whether or not imagery is more analogical or more propositional
might be contingent upon the nature of the tasks people are dealing with. Moreover,
even though mental images are penetrable by tacit knowledge, so that what people
“see” does not correspond to what they perceive in reality, it is not necessary to
reject the usefulness of depictive representations. For example, when performing a
mental-rotation task, I personally believe that we need both analogical and
propositional representations because we must use our knowledge (the propositional
representations) to rotate an object mentally, but we cannot simply rotate something

without “picturing” its shape.

2.3 Dual coding theory

Dual coding theory (DCT) was proposed by Allan Paivio (1967, 1969, 1971, 1986).
The theory was developed from a large number of studies on the role of imagery in
associative learning. The imagery debate just mentioned was originally elicited by
DCT. Based on the findings of those studies, DCT assumes that:

1) Human memory consists of modality-specific components for information
processing. Information is represented in memory in a multimodal fashion, which is
in contrast to the view that information is represented by abstract, amodal
propositions.

2) DCT proposes two separate subsystems for human cognition. One specializes in

the representation and processing of nonverbal information, whereas the other
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specializes in the representation and processing of language (see Figure 8). “...the
language system is peculiar in that it deals directly with linguistic input and output
(in the form of speech or writing) while at the same time serving a symbolic function
with respect to nonverbal objects, events, and behaviors. Any representational theory
must accommodate this functional duality.” (Paivio, 1986: 53). As to the nonverbal
system, it deals with information in different modalities—visual, auditory, haptic,
gustatory, olfactory, and affective— DCT research was, however, more focused on
the visual one.

3) The representational units of the verbal and visual systems are supposed to be
“modality-specific perceptual-motor analogues.” (Paivio, 1991: 258). The units are
hierarchically organized structures. The concept of ‘unit’ is similar to that of ‘chunk’,
which is flexible in size. The representational units of the visual system are called
imagens, whereas those of the verbal system are called logogens. Imagens are mental
images that are analogous to the events they denote. The concept “logogen” was first
used by Morton (1969). It was taken as a word template or feature pattern that
accounts for word-recognition performance. Morton (1979) further postulated
modality-specific logogens (visual vs. auditory logogens) and distinguished input-
from output-logogens. The concept of logogens used in DCT, however, is broader
and more flexible. The terms “imagens and logogens serve mainly to distinguish the
underlying (hypothetical) cognitive representations from their expressions as
consciously experienced images and inner speech, or overt behaviors such as
drawing and speech.” (Paivio, 1986: 59). Both imagens and logogens can function as
“integrated informational structures or response generators for some purposes.”
(Paivio, 1986: 59). Information in the verbal system is processed sequentially,
whereas information in the visual system is processed in parallel.

4) Verbal and nonverbal systems are independent. During representational
processing, logogens are directly activated by linguistic inputs, and imagens are
directly activated by nonverbal inputs through representational connections.
However, the systems are interconnected by referential links, so that the activation
from one representational unit to the other(s) between systems is possible. In light of
referential processing, “verbal and nonverbal codes corresponding to the same object
can have additive effects on recall.” (Paivio, 1991: 259).

5) Pictures are recalled better than words (picture superiority), and concrete words or
sentences are recalled better than abstract words or sentences (concreteness effect)
because pictures and concrete words or sentences are coded both in verbal and
imaginal formats in memory (the conceptual-peg hypothesis). Dual coding facilitates
recall because one representational unit in a system may trigger the activity of the

corresponding one in another system through the referential connection. It should be
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noted that the interunit processing is optional. That is, Paivio did not claim that
picture naming or imagining concrete words or sentences is automatic even though it

is highly likely to occur under some circumstances (cf. Paivio, 1986: 62).
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Figure 8: Verbal and nonverbal symbolic systems of dual coding theory.
(Taken from Paivio, 1991: 152).

Although the principles and assumptions of DCT are supported by a number
of empirical studies, they are not without controversy. For example, the recall of
concrete sentences was better than that of abstract sentences in general. According to
DCT, the better recall of concrete sentences is attributed to the integrative memory
induced by imagery. However, Marschark and Paivio (1977) found that when recall
was successful, the memory of abstract sentences was also integrated (or holistic).
Moreover, the picture superiority effect is questionable because it was found that the
imaged words were recalled about as well as named pictures (Paivio, 1991). That is,
the difference in recall between pictures and words was dependent on the
experimental instructions. Finally, the propositional approach criticizes the
assumption of modality-specific mental representations suggested by DCT. As I have
mentioned in the previous section, the propositional approach assumes that all kinds
of information are represented in a unitary form—as propositions—in the human
mind. Despite these criticisms, DCT seems to have survived and has been regarded

as the dominant theory for explaining the effects of pictorial aids on learning.
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2.4 Mental model

The term “mental models” was first used by Craik (1943) in the sense that “the mind
constructs ‘“small-scale models” of reality to anticipate events, to reason, and to
underlie explanation.” (Wilson and Keil, 1999: 525). Though the term ‘“mental
models” is widely used, the definitions of mental models are vague and quite diverse
in different research fields. According to Johnson-Laird (1989), a mental model is to
be understood as a representation of a body of knowledge that meets the following
conditions:
1) The structure of a mental model corresponds to the structure of the situation it
represents;
2) A mental model can comprise elements that correspond to perceptible entities
or abstract notions;
3) Unlike other forms of mental representations, a mental model does not
contain variables. Instead, it employs tokens representing a set of individuals.
Two broad classes of mental models have been proposed by Johnson-Laird (1983):
physical and conceptual:
1. Physical models represent physical things or states of affairs and are accessible to
empirical observation. Physical models contain a finite set of entity or property
tokens, and a finite set of relations between them. Types of physical models are as
follows:
e Relational models represent entities and their properties.
e Spatial models represent spatial relations between entities with properties.
e Temporal models represent changes in entities with properties.
e Kinetic models represent ongoing change and movement of entities (like
mental simulation).
e Dynamic models represent alteration and movement in regard to causal
contingencies.
e Imaginal models are an observer-centered representation of the visual
characteristics of an underlying spatial or kinetic model.
2. Conceptual models represent abstractness and truth or fiction. They are able to
explain phenomena such as negation, conjunction and disjunction. Types of
conceptual models are, for example, as follows:
e Monadic models represent entities with their properties, and statements in
terms of the existence and identity of entities.
e Relational models represent a finite set of abstract relations between entities.

e Metalinguistic models represent entities that represent linguistic expressions.
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e Set-theoretical models represent specific or vague quantification. Numbers
that cannot be easily visualized can be represented by a corresponding

propositional label.

In the context of discourse comprehension, mental models are regarded as
“dynamic cognitive representations of the contents of an utterance on the part of the
recipient” (Rickheit and Sichelschmidt, 1999: 24). To mentally set up a
corresponding structure in light of the situations described by the verbal discourse, it
is assumed that mental models may consist of analogical components such as “quasi-
pictorial images” (cf. Rickheit and Sichelschmidt, 1999). Nevertheless, unlike mental
images, mental models are not bound to specific sensory modalities and are capable
of representing abstract notions (Schnotz, 2002). In addition, mental models are
assumed to contain new information that is not explicitly uttered in the discourse but
is inferred by the recipients.

Unlike the propositional approach according to which text comprehension is
carried out by sequentially connecting lists of propositions, the mental model
approach assumes that text comprehension is based on the construction of a mental
model of the facts described by the text. In other words, mental models may go
beyond the text base or the propositional representation of a text, respectively. In the
construction of a mental model, the information given in the text is integrated with
the recipient’s knowledge which initially plays an important role in text
comprehension. That is, due to the recipient’s prior knowledge, certain expectations
are already imposed on the way in which he or she interprets the text. In addition, it
is assumed that the processes of mental-model construction are incremental. The
initially-built mental model is assumed to be constantly modified and elaborated in
the course of text processing (cf. Schnotz, 1988).

There is some empirical evidence supporting the mental model approach. For
example, some studies showed that subjects had difficulty in understanding a text
properly when the topic from the proceeding text was suddenly changed or when
referential connections between sentences were not clear, so that subjects failed to
establish a coherence between the sentences. (Lesgold et al., 1979; Collins et al.,
1980; Sanford et al., 1980; Sanford and Garrod, 1981, 1982; Schnotz, 1985). In those
studies, the difficulty of text comprehension was typically revealed by the prolonged
reading time measured in the passage of the text, where subjects encountered the
problems just mentioned. The theorists of the mental model approach argue that the
prolonged reading time indicates that subjects had to draw inferences with the help of
their knowledge in order to understand the text because the information provided in

the text was not sufficient for text comprehension. In contrast, the propositional
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approach fails to explain why the reading time was prolonged and how recipients
should draw inferences to solve the comprehension problems.

Moreover, evidence supporting the view that a mental model can comprise
analogical components corresponding to the structure of the objects and events it
represents came from the studies conducted by the proponents of the analogical
approach to imagery (Kosslyn, 1980; Shepard and Metzler, 1971; Shepard and
Cooper, 1982; Moyer, 1973; Moyer and Landauer, 1967; Paivio, 1975). Since I have
explained the view of this approach in Section 2.2, I will not repeat it here. Some
other studies provided evidence indicating that subjects could remember the
superficial structure of an ambiguous text very well without really understanding the
meaning of the text. In contrast, subjects could remember the meaning of an
unambiguous text very well but not the superficial structure of the text. (Bryant and
Trabasso, 1971; Trabasso et al., 1975; Mani and Johnson-Laird, 1982; Perrig und
Kintsch, 1985). This indicated that subjects could construct an adequate mental
model of a text only when the text provided unambiguous information. When the text
information was ambiguous, the construction of the mental model was hindered
because there were many possible mental models that could be built into the same
text at the same time. Subjects, however, could not know which mental model was
correct. Therefore, they were unlikely to build an adequate mental model (cf.
Schnotz, 1988).

All in all, the mental model approach seems to be more capable of explaining
text comprehension in comparison to the propositional approach because it includes
analogical and dynamic mental representations and also takes the influence of
recipients’ knowledge with regard to information processing into account. In some
respects, the concept of mental models is quite similar to that of schema. The
differences between these two concepts seems to be that mental models refer to a
more concrete form of mental representation than schemata because mental models
can be regarded as a kind of “filled” schemata. Mental models do not have variables,
whereas schemata do.

2.4.1 Mental models and multimedia learning

There are different assumptions concerning how people constructed a mental model
when they process multimedia learning materials comprising texts and pictures. The
cognitive theory of multimedia learning proposed by Mayer and his colleagues
(Moreno & Mayer, 2000a; Mayer and Moreno, 2002a, 2002b) suggests that people
initially build a mental representation of text information, which is termed word

base, and a mental representation of picture information, which is termed image
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base. And then, a verbal mental model for texts and a pictorial mental model for
pictures are constructed separately. Subsequently, the verbal and the pictorial mental
models are supposed to be integrated in their working memory. The prior knowledge
stored in long-term memory is assumed to be actively involved in the integration
processes as well (for more details see Chapter 5, Section 5.2).

In contrast to Mayer’s theory, Schnotz and Bannert (1999) proposed an
integrative model of text and picture comprehension which provides a more plausible
and elaborated explanation concerning how text and picture information is mentally
represented during information processing. An outline of this model is depicted by
Figure 9. According to this model, the mental representation of texts and of pictures
follows quite different principles because texts and pictures are based on different
sign systems. The mental representation of texts is descriptive in nature, whereas that
of pictures is depictive in character. The interaction between descriptive
representations is based on symbol processing, whereas the interaction between
depictive representations is based on structure mapping. The processes of processing
text and picture information are both “...based on an interaction of bottom-up and
top-down activation of cognitive schemata that have both a selective and an
organizing function.” (Schnotz, 2002: 108).

In the processing of text information, a recipient builds a mental
representation of the text surface structure, and generates a propositional
representation of the semantic content, based on which a mental model is then
constructed. In the processing of picture information, a recipient builds a visual
mental representation of the picture, and represents the picture’s semantic content by
means of a mental model and a propositional representation of the subject matter
shown in the picture. “When a mental model has been constructed, new information
can be read from the model through a process of model inspection. The new
information gained in this way is made explicit by encoding it in a propositional
format. The new propositional information is used to elaborate the propositional
representation. In other words, there is a continuous interaction between the
propositional representation and the mental model.” (Schnotz, 2002: 110). Moreover,
it is assumed that an interaction between the text surface representation and the
mental model, and between the visual representation of the picture and the

propositional representation may occur (see the dotted arrows in the diagram).
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Figure 9: Schematic illustration of an integrative model of text and picture

comprehension. (Taken from Schnotz, 2002: 109).

To sum up, an essential idea proposed by the integrative model of text and
picture comprehension is that both texts and pictures can generate internal mental
representations that are descriptive as well as depictive. During information
processing, a number of interactions occur between text processing and picture
processing at different processing levels, so that the propositional representation of
texts can affect the construction of a mental model of pictures and vice versa. In my
view, this is one point that distinguishes this model from Mayer’s theory as well as
from DCT. In Mayer’s theory, the constructions of a verbal and a pictorial mental
model are carried out separately. The theory does not allow for interactions between
the verbal and the pictorial mental model during the processes of construction. In
addition, the theory does not exactly explain how the integration of a descriptive and

a depictive mental model can be performed. Similarly in DCT, the mental
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representation of verbal as well as pictorial information is initially carried out
separately. Besides, DCT includes neither the top-down cognitive processes of
information processing nor the notion of mental model construction. According to
DCT, a representational unit of the verbal system may trigger the corresponding
unit(s) of the nonverbal (i.e. the visual) system through the referential connection,
and vice versa. Therefore, using texts and pictures together should facilitate learning
because the verbal and the pictorial coding have an additive function in memory.
However, DCT fails to explain why using texts and pictures together does not always
prove to be beneficial for learning, and why different visual displays can lead to
different learning results. In contrast, this can be elucidated by the integrative model
of text and picture comprehension.

The study by Schnotz and Bannert (1999) clearly demonstrated that the way
in which information is visualized influences the way in which learners form their
mental model. In this study, subjects were asked to study a learning material
concerned with time differences on the earth. The learning material comprised texts
and diagrams. Two visualization forms were compared in terms of their effects on
learning. One visualization form depicted the earth’s surface as a “flying carpet” that
moves along the time axis (see Figure 10), whereas another visualization form
showed the earth as a sphere (or circle) that rotates within a shell of different time
states (see Figure 11). The results showed that subjects who learned with the “flying-
carpet” diagram outperformed subjects who learned with the “circle” diagram in time
difference tasks. In contrast, subjects who learned with the “circle” diagram
outperformed subjects who learned with the “flying-carpet” diagram in regard to
circumnavigation tasks. These results were in line with the predictions of the
integrative model of text and picture comprehension: 1) The mental representation of
pictorial information is generated as a mental model which preserves the structure of
the depicted information. Different forms of visualization lead to different mental
models. 2) A mental model may facilitate the performance of one kind of task while
impairing the performance of another kind of task. It depends on what information
can be read from the mental model. “If a learner tries to solve a task and the
respective model has an inappropriate structure, it is either impossible to read off the
required information, or the model allows to read off different propositions that
contradict each other.” (Schnotz and Preuf3, 1999: 149). As the study showed, the
mental model constructed for the “circle” diagram was not appropriate for solving
the time difference tasks, and the mental model built for the “flying-carpet” diagram

was not suitable for solving the circumnavigation tasks.
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Figure 10: The “flying carpet” diagram
(Taken from Schnotz and Preul3, 1999: 145).
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Figure 11: The “circle” diagram
(Taken from Schnotz and Preul3, 1999: 145).

In my opinion, the model proposed by Schnotz and Bannert (1999) provides a
better explanation of text and picture comprehension than do DCT or Mayer’s theory
because the model is able to explain why different visualization forms have different
effects on learning, and how knowledge is acquired and organized in learners’

memory during the construction and elaboration of their mental models.
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2.5 Summary

This chapter provides an overview of theories that are concerned with how verbal
and pictorial information is represented in the human mind. According to the
different theoretical approaches, mental representations of verbal and pictorial
information can be conceived as propositional networks or mental models. The
fundamental issue here is whether all kinds of information are represented as
propositions or as modality-specific codes. The propositional approach claims that
there are only propositional representations in human memory. However, the debate
on mental imagery indicates that it is still unclear whether mental images are
depictive or descriptive (propositional) in nature. Dual coding theory suggests that
there are modality-specific mental representations that are interconnected via
referential links between different subsystems in memory. The mental model
approach tries to incorporate propositional, analogical, and schema approaches.
However, the definitions of mental models still remain vague and are quite diverse in

different research disciplines.
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3. HUMAN MEMORY AND INFORMATION
PROCESSING

The structures and the functions of human memory have been investigated for a long
time in different disciplines such as psychology, neuropsychology, physiology as
well as cognitive science. In spite of the long-standing research and the employment
of sophisticated instruments for measuring mental activities, scientists to date have
not been able to unravel all the mysteries concerning human memory. There have
been many different approaches to modeling human memory with respect to the
types of information that is stored, the way in which information is perceived,
encoded, stored, and retrieved, or simply the duration of information storage in
memory. In this chapter, I shall briefly introduce the structure and the different
categories of human memory while mainly concentrating on the structure of working

memory and elucidating its functions in information processing.

3.1 Categories of human memory

Human memory systems have been categorized in many different ways. Various
conceptual dichotomies such as long-term/short-term memory (Miller, 1956; Brown,
1958; Peterson & Peterson, 1959; Broadbent, 1958; Atkinson and Shiffrin, 1968;
Cowan, 1988, 2000), primary/secondary memory (Waugh and Norman, 1965),
semantic/episodic memory (Tulving, 1972, 1983, 1993, 1995, 2001), implicit/explicit
memory (Graf and Schacter, 1985; Schacter, 1987; Graf, 1994; Duffy, 1997), and
declarative/nondeclarative memory (Squire, 1987; Squire and Zola, 1996;
Eichenbaum, 1997), etc. have been used to classify human memory. Tulving (1995)
has combined these dichotomies and proposed a more general scheme of human
memory, which contains at least five major categories of memory system, whereby
each system may contain several subsystems (see Table 1).

Procedural memory (or nondeclarative memory) involves knowledge
about how to perform an action. “The operations of procedural memory are
expressed in the form of skilled behavioral and cognitive procedures independently
of any cognition” (Tulving, 1995: 840). The skillful performance of many motor or
non-noetic tasks such as driving a car, riding a bike, or getting dressed and so on

relies mainly on procedural memory. Priming is a kind of perceptual learning, which
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is expressed in enhanced re-identification of objects that one has already encountered

before. “A perceptual encounter with an object on one occasion primes or facilitates

System Other terms Subsystems Retrieval
Procedural Nondeclarative Motor skills Implicit
Cognitive skills
Simple conditioning
Simple associative
learning
Perceptual Priming Structural description Implicit
representation Visual word form
system Auditory word form
Semantic Generic Spatial Implicit
Factual Relational
knowledge
Primary Working Visual Explicit
Short-term Auditory
Episodic Personal Explicit
Autobiographical
Event memory

Table 1: Major categories of human learning and memory (Tulving, 1995: 841)

the perception of the same or a similar object on a subsequent occasion, in the sense
that the identification of the object requires less stimulus information or occurs more
quickly than it does in the absence of priming” (Tulving, 1995: 841). Priming and
procedural memory are essential to human beings in order to survive in their
environment. According to Tulving, these two memories are probably
phylogenetically very early forms which also develop early in human infants.
Primary memory is commonly referred to as short-term memory or working
memory. It is responsible for the registration, organization, and storage of incoming
information for a short period of time. Semantic memory refers to the factual
information or the general knowledge of the world. It represents our knowledge
system and enables “cognitive operations on the aspects of the world beyond the
reach of immediate perception” (Tulving, 1995: 841). Semantic memory and

episodic memory are sometimes termed declarative memory or propositional
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memory. Episodic memory contains recollections of personally experienced events
in the past. According to Tulving (1995: 841), “Episodic memory enables individuals
to remember experienced events as embedded in a matrix of other personal
happenings in subjective time. It depends on but also transcends the range of the
capabilities of semantic memory.” Conscious awareness, which is also referred to as
auto-noetic consciousness, plays an important role in describing the memory of past
happenings.

The differentiation between implicit and explicit memory, according to
Markowitsch (1999), does not refer to different memory systems but to different
forms of memory or the way in which these two kinds of memory are retrieved.
Implicit memory refers to the expression of what a person has learned without
necessarily recollecting when, how, or where learning had occurred. In contrast,
explicit memory specifies the expression of what the person is consciously aware of
as a personal experience (Douglas and Brian, 1992; Tulving, 1995). The retrieval of
procedural, priming, and semantic memories are based on implicit operations while
that of primary and episodic memories is carried out by means of explicit operations.

To account for the relationship between memory systems and memory
processes (encoding, storage, and retrieval), Tulving has proposed the SPI model.
SPI stands for serial, parallel, and independent; encoding is serial, storage is parallel,
and retrieval can be independent. This model assumes that the relations among
different systems are process specific. “Different systems are dependent on one
another in the operations of interpreting, encoding, and initial storing of information.
Once encoding has been completed, different kinds of information about the same
initial event are held in various systems in parallel... Access to different kinds of
information about a given event is possible in any system independently of what
happens in other systems” (Tulving, 1995: 844).

Aside from the memory categories proposed by Tulving, there are some other
important categories of human memory, which are based on different criteria such as
the duration of retaining information or the way in which information is received.
Regarding memory as a function of duration, we can subdivide memory into a short-
term memory system and a long-term memory system. The former can retain
information only for a short period of time (a matter of seconds or, at most, a few
minutes) and the latter can store information permanently. In considering the
function of memory as a system for storing and retrieving information received
through our senses, we can classify the memory systems according to different
senses (visual or auditory memory, for example).

The storage of visual and auditory information in human memory has been

well investigated in a number of laboratory experiments, while the storage of
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olfactory, tactile, or gustatory information has not been well explored. However, it
may be assumed that, for each kind of sensory information, there is a corresponding
memory system. When people receive different sensory input from their environment
simultaneously, different sensory registers work in parallel and hold information in
the same form in which it is received for a few milliseconds. Neisser (1967) termed
the memory systems responsible for storing visual and auditory input over a matter
of milliseconds as iconic and echoic memory accordingly. Following Baddeley
(1997), however, these two kinds of short-lived memories should be regarded as a
part of the processes involved in perception. Both of the memories seem to be able to
prolong the initial stimulus to enable later processing to be carried out by the
corresponding short-term visual and auditory memory systems. Further processing
involves the manipulation and the integration of the sensory-based information with
information from other sources and the information stored in long-term memory.
This should be performed by means of the working memory system (see Section
3.3). It should be noted that even with long-term storage, the representation of
sensory-based information in memory may still retain sensory characteristics. Such
memory involves the recollection of faces, scenes, voices and tunes.

The question of how human cognitive systems process and store information
over shorter or longer periods of time is a core issue in any discussion on learning.
Short-term memory, which is also termed working memory by some theorists, is
particularly relevant for the acquisition of new information. A slight difference
between short-term and working memory, however, is that short-term memory
focuses on the duration of information storage while working memory focuses more
on the processing of new information. In the following subsections, I shall describe

these two memory systems in more detail.

3.2 Short-term memory

Based on our daily experiences, we all know that the amount of information
we can keep in mind at a time is actually very limited. For instance, if you ask
somebody’s phone number or e-mail address, it is very difficult to remember it
without writing it down. If you cannot take notes in this situation, you will probably
try to repeat it a couple of times (aloud or sub-vocally) as a precaution against
forgetting. This strategy is termed rehearsal. If rehearsal fails, the information will
be wiped out from memory. Indeed, some information can be remembered only for a

short period of time whereas other information is retained for life (your own name,
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for example). The memory that lasts briefly is therefore termed short-term memory

(STM), while its counterpart is termed long-term memory (LTM).

3.2.1 Debate on memory as a unitary or dichotomous system

There has been debate about whether it is necessary to regard STM and LTM as two
separate memory systems. Theorists who support the view of memory as a
dichotomous system have argued that information in STM can be rapidly forgotten if
rehearsal is prevented. That is, without rehearsal, memory traces automatically fade
away after a short period of time. The frace decay phenomenon was demonstrated in
several classical studies (Brown, 1958; Peterson and Peterson, 1959). In one of these
studies, Peterson and Peterson (1959) showed their subjects consonant trigrams such
as ‘khv’, followed by numbers such as ‘567°. The subjects were asked to repeat the
number and then to count backwards from it in threes (567, 564, 561, 558...) until
receiving a signal, whereupon they should repeat the consonants. In this study, the
rehearsal of consonants was prevented by the counting task, which led to rapid
forgetting. Based on this result, Peterson and Peterson argued that short-term
forgetting results from trace decay, whereas long-term forgetting results from
interference. In the research literature, two types of interference have been discussed:
proactive interference and retroactive interference. Proactive interference occurs
when new learning is disrupted by old habits, while retroactive interference occurs
the other way round. According to the interference theory, “forgetting reflects the
disruption of the memory trace by other traces, with the degree of interference
depending on the similarity of the two mutually interfering memory traces”
(Baddeley, 1997: 32-33). The forgetting demonstrated in the study by Peterson and
Peterson (1959) was not attributed to interference because remembering consonants
and counting are quite different tasks. Consequently, they suggested that STM and
LTM should be two separate systems.

However, some theorists have argued that STM should be regarded as a
portion of LTM that is constantly activated (Melton, 1963; Anderson, 1983; Ericsson
and Kintsch, 1995). That is, STM and LTM depend on the same unitary system. This
view is based on the assumption that the loss of information in STM does not result
from trace decay but from interference. In addition, a long-term learning effect can
be observed in short-term memory tasks as well. In a task involving the immediate
recall of sequences of random numbers, a sequence of random numbers was
repeatedly shown in every three trials. Though subjects were not aware of this fact,
the probability of recalling that particular sequence of numbers gradually increased.

Melton’s (1963) findings showed that LTM is also involved in short-term memory
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tasks; however, that does not necessarily falsify the dichotomous-system view.
Actually, several studies have yielded evidence against the unitary-system view.
According to Baddeley (1995, 1997), the major arguments against the unitary-system
view of memory are as follows:

1) In a free recall task, where subjects are asked to memorize a list of unrelated
words, the first few items and the last few items are remembered particularly
well, if recall is tested immediately (the primacy and recency effect). If recall
is delayed, the recency effect disappears while recall of the first few items is
unaffected. This result suggests that the recency items are held in a temporary
short-term store, while earlier items are recalled from the long-term store
(Glanzer and Cunitz, 1966; Glanzer, 1972).

2) When subjects attempt to recall strings of consonants, the errors they make
are acoustically similar to the target items, which suggests that short-term
storage is acoustically based (Sperling, 1960; Conrad, 1964). When recalling
a group of words that are similar in either sound or meaning, the acoustic
similarity effect still shows in immediate recall. However, after a filled delay,
a semantic similarity effect occurs while the acoustic similarity effect
disappears. This indicates that the short-term store relies on acoustic or
phonological coding while the long-term store is more dependent on semantic
codes (Baddeley, 1966a, 1966b).

3) Neuropsychological evidence indicates a double dissociation between the
impairment of STM and LTM. There are patients whose STM is intact, while
their LTM is grossly impaired (Milner, 1966; Baddeley and Warrington,
1970). Other patients, however, show the opposite impairment of memory
(Shallice and Warrington, 1970). This is powerful evidence in favor of the

view that STM and LTM are separate systems.

3.2.2 Measurement of short-term memory span

The main function of STM lies in temporary storage and manipulation of
information. Since STM has a very limited capacity, many studies have investigated
the constraints on information processing that result from these capacity limits. The
seminal paper regarding the span of STM was written by Miller (1956), who
concluded that the span of absolute judgment (the sensory channel capacity for
making unidimensional judgments such as tones, auditory loudness, and saltiness,
etc.) contains about 7 different stimuli, while the span of immediate memory
comprises 7 plus or minus 2 chunks of information. Chunking is a strategy people

use to group or organize information into familiar units or chunks, so that more
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information can be remembered at a time. For example, a string of letters
‘ACRAZYDRCAT’ is difficult to remember, but it becomes easier if it is chunked
into ‘A CRAZY DR CAT’. Nevertheless, the range of a chunk remains unclear,
which, in my view, renders any reasonable assessment of the absolute amount of
information which can be held in STM impossible. Recently, Cowan (2000) has
argued that, under stricter and better-controlled experimental conditions (where
rehearsal and long-term memory cannot be used to combine stimulus items into
chunks of an unknown size, nor can storage mechanisms that are not capacity-
limited, such as sensory memory, allow the capacity-limited storage mechanism to be
refilled during recall), the ‘pure STM capacity limit’ comprises only about 4 chunks
on average. In my opinion, regardless of whether the span of STM is maintained to
comprise 4 or 5 to 9 chunks, we should not take these ‘magical numbers’ too
seriously. These numbers simply reflect the fact that the capacity of STM is limited. I
question the applicability of such an approach because, in real life, the amount of
information that can be held in STM at a time certainly depends on the
characteristics of the information per se, on its integration into context, and how or to
what extent chunking is employed as an information processing strategy. Certainly,
all these factors will affect the magical number. Meanwhile, as long as the range of
any single chunk of information cannot be determined precisely, magical numbers

are of little help in finding out how much information can actually be held in STM.

3.2.3 Short-term memory model

STM has so far been characterized as a memory system that is separate from LTM
and that has limited capacity for briefly storing information. Atkinson and Shiffrin
(1968) proposed a memory model to further elucidate the function of STM storage in
information processing (see Figure 1). According to this model, there are three types
of memory store: sensory registers, a short-term store, and a long-term store.
Information is first simultaneously processed by a number of sensory registers that
forward information into the short-term store. The short-term store is regarded as a
limited capacity working memory that is assumed to enable temporary storage and
manipulation of information and to carry out some control processes such as
rehearsal and retrieval from the long-term store. The longer an item is maintained in
the short-term store, the greater the probability that it will be transferred into the
long-term store. In other words, the more frequently an item is rehearsed, the more
likely it will be recalled. It should be noted that information processing in this model

is executed in a serial manner. The short-term store serves as a kind of ‘gateway’
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between the sensory registers and the long-term store. Without the short-term store,

information cannot be transferred into or out of the long-term store.

Environmental
Input

v

Sensory registers

Visual

Auditory

Haptic

v

Short-term store
(STS)

Temporary working memory

Control processes:

Reh;arsal >
Coding Response output

Decision
Retrieval strategies

v ]

Long-term store
(LTS)
Permanent
memory store

Figure 1: The short-term memory model of Atkinson and Shiffrin (1968)
(Taken from Baddeley, 1997: 44)

There is, however, evidence against Atkinson and Shiffrin’s model. The
assumption that long-term learning is contingent on the duration of maintaining
information in the short-term store has proved to be poorly supported in a number of
studies. In addition, the model is not able to explain the double dissociation between

the impairment of STM and LTM, since any deficit in relation to STM will
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inevitably lead to a deficit in relation to LTM as well. Furthermore, according to the
model, the short-term store is regarded as a capacity limited unitary system. In the
light of this assumption, a trade-off should be observed when performing a
concurrent task. That is, the performance in relation to one task should be severely
impaired by the other, since the two tasks are supposed to share the same resource
from the unitary short-term store.

This assumption was challenged by Baddeley and his colleagues (Baddeley
and Hitch, 1974; Baddeley, 1986). With a dual-task paradigm, the subjects were
required to rehearse digits (ranging from 0 to 8 places in length), while concurrently
performing a reasoning task (verifying a series of sentences such as A follows B —
BA (true), B is not preceded by A — AB (false)). The results showed that the
concurrent digit load did to some extent impair performance in the sentence-
verification task. Nevertheless, this impairment, according to Baddeley, was far from
dramatic. With a concurrent load of 8 digits, the subjects’ performance did not
deteriorate much, which provides evidence countering the predictions based on the
view that working memory is a single unitary store. On the other hand, the accuracy
of retrieval from LTM proved to be independent of the concurrent digit load
(Baddeley et al, 1984). Based on these findings, Baddeley argued that “the limit of
digit span may be set by one of a number of subsystems, leaving other components
of working memory relatively unimpaired.” Short-term memory, or working
memory, according to Baddeley and Hitch’s view (1974), should not be a unitary

system but rather a multi-component system.

3.3 Working memory

The development of the concept of working memory has a long history (see Logie,
1996; Baddeley, 2001). The term ‘working memory’ was first used by Miller et al.
(1960). It refers to the memory that is supposed to control the capacity of information
processing. It has access to consciousness and is responsible for the temporary
storage of information, for decision making, and for the execution and coordination
of plans (cf. Richardson, 1996). Although working memory has been defined in
many different ways, there is a common denominator among the various definitions:
working memory plays a central role in information processing, and it has a limited
capacity for temporary storage and manipulation of information.

The working memory model proposed by Baddeley and Hitch (1974), a

simplified representation of which is given in Figure 2, assumes that working

32



3. Human Memory and Information Processing

memory consists of three components: a controlling attentional system (termed the

central executive) that supervises and coordinates (at least) two subsidiary systems.

Visuo-spatial Phonological

sketch pad loop

Central
executive

Figure 2: The working memory model of Baddeley and Hitch (1974)

The functions of the two subsystems—the phonological loop and the visuo-spatial
sketchpad—are well explored, while the function of the central executive is less
clearly expounded. In the following subsections, I shall explain the functions of the

two subsystems and discuss the role of the central executive.

3.3.1 The phonological loop

According to Baddeley (1997), the phonological loop consists of two components, a
phonological store that is able to hold speech-based information for about 2 seconds,
and an articulatory control process based on inner speech. The articulatory control
process can transform printed material into phonological codes and refresh the
information held in the phonological store by subvocal rehearsal. It is assumed that
the phonological loop plays an important role in language comprehension, first or
foreign language acquisition, acquiring vocabularies, and learning to read. Empirical
evidence pertinent to the phonological loop is provided by a number of studies. The
evidence can be summarized as follows (Baddeley, 1997):
1. The phonological similarity effect
The phonological similarity effect shows in the impaired performance of
immediate serial recall of items that are similar in terms of the sound or
articulatory features. The impairment in recall is believed to result from
interference based on phonological coding. However, whether the similarity
effect occurs at the level of sound, phonemes, or articulatory commands
remains unclear.
2. The unattended speech effect
It is found that when visually presented numbers are accompanied by

irrelevant speech (spoken in a foreign language), recall performance for the
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numbers is worse than when no speech is presented. The same effect is also
found when auditory words or nonsense syllables, are presented in the
background, whereas presenting noise does not cause this effect. This
suggests that the access to the phonological store by speech or speech-based
sound is automatic, which therefore damages the recoding of visually
presented digits.

3. The word-length effect
The word length effect is manifested in the fact that immediate memory span
is affected by the spoken duration of the words presented. Memory span is
shorter when sequences of words have long vowels and are spoken slowly.
Apparently, memory span reflects the number of items that can be uttered in
about two seconds.

4. Articulatory suppression
The operation of the phonological loop is disrupted by overt or covert
repeated articulation of an irrelevant item. For example, when subjects are
required to repeat the word the while trying to remember sequences of digits,
the span of digits they can retain is reduced substantially. “This is assumed to
occur because the articulation of an irrelevant item dominates the articulatory
control process, hence preventing it from being used either to maintain
material already in the phonological store, or convert visual material into a
phonological code” (Baddeley, 1997: 58).

3.3.2 The visuo-spatial sketch pad

The visuo-spatial sketch pad (VSSP) is responsible for setting up and manipulating
mental images. Similar to the phonological loop, the VSSP can be fed either directly
through visual perception or indirectly through the generation of a visual image.
There has been, however, debate on the characteristics of information stored in the
VSSP. First, there is controversy regarding whether the mental representation of
visual input is analogous to its original form or if it is a kind of propositional
representation which is descriptive in nature. Second, the debate is concerned with
whether the mental imagery has a visual or a spatial basis. Since the representational
format issue has been discussed in Chapter 2, I shall focus on the issue concerned
with the visual or spatial basis of representations here.

Brooks (1967) conducted a pioneering study to tackle this issue. He presented
subjects with a 4x4 matrix and specified one of the squares as the starting square.

The subjects were then asked to repeat back sequences of sentences (see Figure 3).
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3| 4
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Spatial material

In the starting square put a 1.

In the next square to the right put a 2.

In the next square up put a 3.

In the next square to the right put a 4.

In the next square down put a 5.
In the next square down put a 6.

Nonsense material

In the starting square put a 1.

In the next square to the quick put a 2.
In the next square to the good put a 3.
In the next square to the quick put a 4.
In the next square to the bad puta 5.
In the next square to the bad put a 6.

In the next square to the slow puta 7.
In the next square to the bad put an 8.

In the next square to the leff put a 7.
In the next square down put an 8.

Figure 3: Example of stimulus material used in Brooks’ experiments on the
visuo-spatial sketchpad (Taken from Baddeley, 1997: 75)

There were two conditions: under one condition, sentences were used that required
some imagery-based strategy, while under the other condition the sentences required
rote verbal rehearsal. Under the spatial condition, words such as ‘left’, ‘right’, “up’,
and ‘down’ were used in the instruction, whereas under the non-spatial condition,
those words were substituted accordingly by ‘slow’, ‘quick’, ‘good’, and ‘bad’ to
ensure that the encoding was carried out by verbal rehearsal. The sentences were
presented in either an auditory or visual manner. The results showed that auditory
presentation was helpful for the spatial condition, while visual presentation was
beneficial for the non-spatial condition. Brooks assumed that sentences remembered
on the basis of visual imagery use the same resource for visual perception, while
sentences maintained by rote verbal rehearsal employed the same systems that are
also used in auditory perception.

In a further experiment, Baddeley (1975, 1980) used the dual-task method to
examine whether the processing strategy evoked by the Brooks matrix task is visual
or spatial in nature. He combined the Brooks task with either a pure visual task that
involved judging the brightness of a large screen, or with a pure spatial task that
involved tracking the position of a pendulum via auditory signals. The results clearly
showed that the spatial matrix task was mostly impaired by the tracking task,
whereas the verbal matrix task was mostly disrupted by the visual task, which
indicates that the processing strategies elicited by the Brooks task rely on spatial

encoding rather than on visual encoding.
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There is another line of evidence indicating that the VSSP probably
comprises two separate components: one visual and one spatial. Neurological
research investigating the function of a monkey’s brain suggests a “what” and a
“where” pathway in the monkey’s visual system. The human brain is believed to be
structured in a similar way (see Figure 4). The “what” pathway involves a set of
brain areas going from the primary visual area (the occipital lobe) into the temporal
lobe, which is responsible for recognizing particular visual patterns, shape, color, and
speed of movement. The “where” pathway includes the brain areas going from the
primary visual area into the parietal lobes. Those areas are concerned with the
location of an object in the visual world (Posner and Raichle, 1999). Moreover,
neuropsychological evidence shows double dissociation between the impairment
associated with processing visual and spatial information. For example, there are
patients who are able to recognize objects, but cannot locate them, whereas some
other patients are capable of localizing an object, but not of recognizing it.

According to the evidence mentioned above, it seems plausible to consider
the VSSP as a system comprising two separate components. In my opinion, it is still
hard to say whether the visual imagery is visual or spatial in nature. The strategies
elicited by the Brooks task, for example, could be primarily spatial because the
construction of the imagery relies on the spatial configuration. Nevertheless, it is
hard to believe that there was no visual component involved in this process at all.

“where” pathway

“what” pathway
Figure 4: The “what” and “where” pathways in the visual system
(Taken from Posner and Raichle, 1999: 15)
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On the other hand, the mental image stored in the VSSP at the end could be visual
(i.e. a visualized matrix pattern or a curve going through the eight positions in the
matrix). Therefore, mental imagery in some cases is actually both visual and spatial.
In addition, I would like to point out that we should be careful about interpreting the
results of experiments employing the dual-task method, since the characteristics as
well as the appropriateness of the concurrent task determine the degree of
interference with the primary task. This in turn will certainly influence our judgment
on the nature of mental imagery. Thus, results of the dual-task method will
sometimes be inconclusive. In light of the Brooks task, does the fact that the
brightness judgment task did not disrupt the spatial matrix task really exclude the
possibility that the mental imagery could have a visual basis? I personally doubt it.
Indeed, some theorists (including Baddeley) also recognize this problem.

Finally, the role of the VSSP in verbal learning is examined. According to the
dual coding theory of Paivio (1969, 1986, 1991), concrete words, in contrast to
abstract words, are easier to remember because they are highly imaginable. If the
words to be learned can be encoded both visually and verbally, the recall of those
words will be better than if the words are encoded only verbally. Visual imagery
mnemonics is the method employed to enhance learning and memory by creating
mental images to represent the words and imagining those images interacting.
Baddeley et al. (1975) investigated whether the VSSP is necessary for setting up
images when subjects use visual imagery mnemonics to learn a list of words. If so, a
concurrent spatial disrupting task should reduce the positive effect of highly
imaginable words on recall performance. Their results indicated that the concurrent
spatial task impaired the recall of both concrete and abstract words to roughly the
same degree. Baddeley et al. concluded that the imaginability effect is not dependent
on setting up an image in the VSSP, but rather is contingent upon long-term semantic
memory.

Logie (1986) demonstrated the unattended picture effect on learning word
lists using either a visual imagery strategy or a verbal rehearsal strategy. He showed
his subjects colored patches appearing at regular intervals on a screen. The subjects
were asked to learn word lists while looking at the screen but ignoring whatever they
saw. The results showed that there was a significant decrement in learning
performance in the case of the subjects who used a visual imagery strategy, but there
was no such effect for the subjects who used a verbal rehearsal strategy. This
suggests that visual information has obligatory access to the VSSP, which disrupts
the use of a visual imagery strategy.

To sum up, the VSSP is assumed to set up and manipulate depictional mental

representations. This system controls the use of visual imagery strategies but is not
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responsible for the imaginability effect on recall. Evidence from neuropsychological
studies suggests separate visual and spatial components of imagery (cf. Baddeley,
1997).

3.3.3 The central executive

The central executive was first postulated by Baddeley and Hitch (1974) as an
attentional controller that supervises and coordinates the subsidiary systems in
working memory. The function of the central executive was, however, not very well
explored at that time; it was only characterized as “a limited capacity pool of general
processing resources” (Baddeley, 2001: 855). Later, Baddeley (1986) adopted a
concept from the SAS (supervisory attentional system) model proposed by Norman
and Shallice (1986) (see Figure 5). According to the model, human actions are
controlled by a series of schemata and habits, so that well-learned skills or routine
tasks such as driving a car are carried out automatically. The SAS, a capacity limited
attentional system, comes into play when a conflict occurs between the automatic
action plan and the stimuli in the environment. It is assumed that the SAS is able to
plan a solution by combining information from long-term memory with existing
stimuli. The evidence of the SAS is supported by the data shown as
absentmindedness in normal subjects and the disturbance of attentional control in

patients with frontal lobe deficits.
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Figure 5: A simplified version of the Norman and Shallice (1986) model

The concept of the SAS used as the basis of the central executive function has
been further improved by Baddeley and his colleagues (Baddeley, 1996). In an

attempt to fractionate the central executive, which was only vaguely conceived of as
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a capacity limited attentional controller, they conducted a series of studies to
examine the executive function of normal subjects and patients with Alzheimer’s
disease or dysexecutive syndromes. In the experiments, a dual-task paradigm was
employed where subjects had to perform a pursuit tracking task, which relies on the
visuo-spatial sketchpad, plus a digit span task, which depends on the phonological
loop. It turned out that in comparison to normal subjects including elderly and young
people, the performance of the patients with Alzheimer’s disease was significantly
worse. However, when the two tasks were performed independently, there was no
evidence that those patients’ performance was differently affected by increasing task
difficulty. Since Alzheimer patients are characterized by an impairment of episodic
memory and attentional deficits, the difference in single and dual task performance
suggests a separable executive capacity to allocate attention to coordinate two tasks
(see Baddeley et al., 1991, 2001; Logie et al., 2000). It is important to bear in mind
that, with normal subjects, a performance decrement in dual tasks is quite normal; it
indicates that the capacity to coordinate information from the slave systems is limited
(Bourke et al., 1996; Baddeley, 1997).

In addition to the capacity to coordinate two tasks, Baddeley (1996, 2001)
suggested that the central executive also has the capacity to: 1) switch retrieval
strategies used for the random generation task; 2) to selectively focus attention on
one stimulus and inhibit the disrupting effect of others, which is based on the
assumption that “anything that limited attentional capacity would impair
performance” (Baddeley, 2001: 856); and 3) to hold and manipulate information
from long-term memory, which is reflected in the working memory span (Daneman
and Carpenter, 1980). Yet it remains an open question whether the central executive
should be regarded as “a single coordinated system that serves multiple functions, a
true executive, or a cluster of largely autonomous control processes—an executive
committee” (Baddeley, 1996: 26). In a recent article, Baddeley (2001) has suggested
that the central executive involves the capacity to focus attention as well as the
capacity to divide and switch attention (Baddeley et al., 2001), but it has no capacity
for storing information (Baddeley and Logie, 1999) and might not be much involved
in retrieval from long-term memory (Baddeley et al., 1984; Craik et al., 1996). As to
the last assumption, retrieval from LTM was tested by means of a dual-task
experiment. Subjects were required to perform a demanding secondary task while
learning or retrieving lists of words. The concurrent load from the secondary task did
affect learning, but it had little effect on recall.

In Baddeley’s working memory model (1986), the central executive is
supposed to be capable of combining the information from working memory with

that from LTM. Yet the functions of the central executive described so far have not

39



3. Human Memory and Information Processing

yielded any concrete information about how the central executive and LTM interact.
There are some other phenomena that cannot be well explained by the current model
provided that the central executive is purely an attention system without any storage
capacity of its own (Baddeley, 1996; Baddeley and Logie, 1999). Firstly, some
patients with dense amnesia have been able to use a chunking strategy to perform
well in a task involving immediate recall of prose. Secondly, the model does not
explain how and where the central executive combines the verbal and the visual
information from the two subsystems. To overcome these problems, Baddeley (2000)
has modified his model by adding a fourth component— the episodic buffer—to the
working memory system (see Figure 6).

The episodic buffer is assumed to be the place where information from the

subsystems of working memory and that from LTM are integrated. “It is assumed to
be episodic in the sense that it holds integrated episodes or scenes and to be a buffer
in providing a limited capacity interface between systems using different codes”
(Baddeley, 2001: 858). The integration of different codes from the two subsystems
and from LTM is explained by assuming that the buffer uses a kind of common code.
It is capable of chunking information and storing it coherently in a multimodal
fashion. Moreover, the episodic buffer is supposed to depend heavily on the central
executive because there is no direct link between the buffer and the phonological
loop as well as the visuo-spatial sketchpad. The integration of information from the
two subsystems and that from LTM is still mainly controlled by the central
executive. In my opinion, the buffer does exist because it provides a workspace
where the integration of information as well as the influence of LTM in the process
of information processing (e.g., chunking) may take place and also provides a
temporary storage for the integrated information. With the assumption of an episodic
buffer, the problems of the previous model can be solved.
It is further assumed that information is retrieved from the buffer through conscious
awareness. “This allows multiple sources of information to be considered
simultaneously, creating a model of the environment that may be manipulated to
solve problems and plan future behavior” (Baddeley, 2001: 858). The episodic
buffer, in my view, takes over some functions that previously had been implicitly
ascribed to the central executive. Therefore, the buffer may actually be regarded as a
fraction of the central executive which carries out the information processing but
leaves other executive functions to the central executive. “The executive is now
assumed to be a purely attentional system whose role extends beyond memory
function, whereas the episodic buffer is assumed to be purely mnemonic in
character” (Baddeley, 2001: 858).
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Figure 6: The revised working memory model
(Taken from Baddeley, 2000: 421)

Another noteworthy update to Baddeley’s working memory model is that
there are direct links between the phonological loop and the long-term verbal
memory as well as between the visuo-spatial sketchpad and the long-term visual
memory. Evidence that supports this assumption is based on studies which show that
knowledge or previous experience stored in LTM is also involved in the processing
of information within the subsystems of working memory. For example, non-words
that resemble English in their phonotactic structure are easier to remember than those
differing from English (Baddeley, 1996; Adams and Gathercole, 1995; Baddeley et
al., 1998), which suggests that the working of the phonological loop is sensible to
LTM retrieval. Moreover, the links between the two subsystems and LTM indicate
that the transmission of information between them can be carried out directly without
a bypass through the episodic buffer or the central executive. That is, the interface
function between working memory and LTM is not exclusively taken over by the
central executive as suggested in the previous model, nor is it solely controlled by the
episodic buffer.

As an addendum to my outline of Baddeley’s model of working memory, I
would like to point out that there are several alternative accounts of working memory
to be found in the literature (see Miyake and Shah, 1999). However, 1 have
concentrated on Baddeley’s model because it is widely accepted, well supported both
by psychological and by neurophysiological evidence, and is relevant for the purpose
of my study. Its recent developments emphasize the role of LTM in information
processing, a point that has largely been ignored before. In my opinion, the greatest

challenge in memory research is to find the boundary between working memory and
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LTM. This is an issue that needs to be solved in the future. In the following section, I

shall address the role of LTM in learning.

3.4 Long-term memory and learning

LTM refers to the memory system which holds information for a lifetime.
Information stored in LTM comprises diverse kinds of knowledge, which we have
acquired and keep on acquiring, such as semantic knowledge, episodic knowledge,
and procedural knowledge. However, LTM does not only serve as a knowledge base
where information can be stored and retrieved, but it also plays a crucial role in
information processing. In fact, the knowledge stored in LTM is organized in a
particular way, which may influence how we acquire new knowledge. In the
following, I shall introduce the most important approaches to semantic memory and

elucidate the role of LTM in learning.

3.4.1 Models of semantic memory
3.4.1.1 Network models

Several classical empirical studies have shown that when subjects were asked to
learn a list of words and then recall as many words as they could, they did not recall
the words according to their order in the list, but tended to recall the words clustered
by content, for example man-woman, bread-butter, etc. Moreover, subjects’ recall
performance was enhanced when the words to be learned were organized in
categories (Jenkins and Russel, 1952; Deese, 1959; Tulving, 1962; Bower et al.,
1969). Research on semantic memory was in the beginning focused on investigating
how the concepts of single words are structured. An example of the classical
approach to semantic memory is the hierarchical model proposed by Collins and
Quillian (1969; 1972). The model assumes that the concepts in LTM are organized
in a hierarchical network consisting of nodes and links, with each node
corresponding to a concept, and each link designating the relationship between two
nodes (see Figure 7). For example, the concept LIVING BEING is associated with
subordinate categories ANIMAL and PLANT. The concept ANIMAL in turn is
associated with mammal, and bird, etc., while mammal is associated with cat, dog,
cow, etc. Empirical evidence supports this assumption; people can verify the

sentence “A robin is a bird” more quickly than the sentence “A robin is an animal,”
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conceivably because the pathway between ‘robin’ and ‘bird’ is shorter than that
between ‘robin’ and ‘animal’ in the network. However, evidence to the contrary can
also be found. Firstly, people can verify “A robin is a bird” faster than verifying “A
penguin is a bird.” The hierarchical model is not able to explain why more typical
instances of a category are verified more quickly than the less typical ones. Secondly,
“A chicken is an animal” is verified more quickly than “A chicken is a bird.” The
hierarchical model is not able to explain why some levels in the network seem to be
more accessible than others. Thirdly, it takes longer to falsify “A bat is a bird” than
to falsify “A bat is a plant,” though the pathway between ‘bat’ and ‘bird’ is shorter
than that between ‘bat’ and ‘plant’. As a result, the concepts in LTM are not

organized in a strictly hierarchical fashion.

Living being
is-a \-a
Animal Plant
s—a/ N
Mammal Bird
AT N
Dog Lion Robin Canary

Figure 7: Hierarchical network model (after Douglas & Brian, 1992: 221)

An alternative model that attempts to solve the problems just mentioned is the
feature comparison model of Smith, Shoben, and Rips (1974). According to this
model, a concept consists of a set of semantic features. The essential features of the
concept are called defining features while others that are less defining but generally
true are called characteristic features. It is assumed that the more similar two
instances in a category are, the more characteristic features they share. Although the
feature comparison model is able to account for the phenomena that are incompatible
with the hierarchical model, a central problem of this model lies in how those
features are defined. Moreover, the model postulates two stages of decision processes
when judging whether an item (e.g., a robin) belongs to a category (e.g., a bird). The
first stage is supposed to roughly compare all the features without considering how
defining the features are. The judgment is dependent upon the degree of the feature
overlap. If the feature overlap is intermediate, a second stage is required to compare
the defining features. In my opinion, it is difficult to define all the semantic features

as well as to set up the defining features of a concept. I also believe that it is not
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plausible that the defining features are not compared in the first stage. Since they are
essential to a concept, they should be included in the first stage of comparison.
Collins and Loftus (1975) pro-posed a refined network model, which is quite
flexible and allows for different types of relations between concepts in comparison to
the hierarchical model (see Figure 8). In this revised model, there is no strict
hierarchy in the network. Instead, memory is determined by the interconnection
between the concepts. Apart from the ‘is-a’ links, there are some other types of links
such as ‘is-not-a’, ‘can’, and ‘can-not’. On the other hand, the links also differ in
terms of ‘the importance’. The most crucial links are supposed to be traversed more
quickly, which can explain why the response to the prototype of a category is faster

than that to the atypical instances.

Animal
is-a 1s-a
Mammal
is-a 1s-a is-a
Cat Lion
Bat Flies Robin Penguin
can can has-a I
Red Breast can-not

Figure 8: An example of a spreading-activation network model
(based on Douglas & Brian, 1992: 229)

Through these alterations, the effect of semantic relatedness, which refers to
the prolonged reaction time when determining the relationship between two concepts
sharing many common features, is explained by a spreading-activation search
mechanism. It assumes that when two concepts are activated, the activation spreads
throughout the network until the two initial concepts are linked. There are several
intersections where the initial activation meets in the network. Evidence from all
these intersections is then summed until a threshold is reached to give a response. It
takes more time to falsify the sentence “A bat is a bird” because ‘bat’ and ‘bird’ have
some features in common, which leads to more intersections (with positive or
negative evidence) they need to be evaluated, and hence, require more time. In
addition, spreading activation can account for the priming effect of the lexical

decision tasks. When subjects are asked to decide whether the letter strings are
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words, the reaction time of a letter string (e.g., doctor) is shorter if a semantically-
related word (e.g., nurse) has been shown in the previous trial. This is because the
first word has partially activated the concepts related to the second word through its
spreading activation, which in turn facilitates the activation of the second word. As
we can see, the spreading activation network model is able to explain a wide range of
data, and it also allows the use of prior knowledge and the computation of
information that was not stored (Douglas and Brian, 1992). Nevertheless, the model
has been criticized for being very complex and for neglecting the interaction between
the concepts and the real world (Baddeley, 1997).

In the last decade, powerful network models have been based on different
principles as the more traditional semantic networks have been developed. These
models are termed PDP (parallel distributed processing) or connectionism models
(McClelland and Rumelhart, 1986; McClelland et al., 1986). In a connectionist
network, the nodes or units are connected by weighted links. The strength of the flow
of activation from the given unit to another one is a function of its weight. A simple

example of a PDP network is depicted by Figure 9.

Output unit

Hidden unit

Input units

0  Sample inputs

1

Figure 9: An example of a PDP network with a hidden unit
(Rumelhart and McClelland, 1986; taken from Baddeley, 1997: 260)

In contrast to semantic network models, a concept in a connectionist network
model does not correspond to a particular node but is represented as a pattern of
activation over the whole network. That is, concepts are distributed throughout the
network, i.e. encoded as a set of connection weights. The advantages of connectionist
networks are as follows: 1) The network allows partial inputs to retrieve partial

outputs. 2) The network is capable of learning. When an error occurs, the network

45



3. Human Memory and Information Processing

can adjust the connection weights to produce the correct output (backward error
propagation). 3) The same set of weights can be used for remembering specific
information and learning abstractions (Douglas & Brian, 1992). All in all, the
connectionist approach is more powerful than the semantic networks approach in
modeling human memory and learning because of the parallel distributed processing
mechanism. However, the development of connectionism does not ensure progress in
our understanding of how the human brain processes information. As a matter of
fact, there is a basic problem concerning cognitive adequacy. From an engineering
point of view, as long as the network can produce the correct output, it does not
matter whether the way in which the network operates is consistent with the way in
which the human brain operates. From the viewpoint of cognitive science, however,
it most certainly does (Baddeley, 1997). Baddeley (1997: 272) suggested that in the
future “it will probably be necessary to blend connectionist approaches with more
rule-based models, using the empirical methods of experimental psychology to

evaluate and shape such developments.”

3.4.1.2 Schema theories

There is another family of theoretical approaches which follows from the assumption
that semantic memory comprises structures that are much more comprehensive than
the simple concepts proposed by network models. These approaches suggest that
people remember information in terms of existing structures which is termed schema.
According to Bartlett (1932), “A schema is a structure that organizes large amounts
of information into a meaningful system... A schema is a stereotype specifying a
standard pattern or sequence of steps associated with a particular concept, skill, or
event. Schemata are types of plans we learn and use during our environmental
interactions” (Schunk, 1996: 168). As I have mentioned in Chapter 2, the study by
Bartlett (1932) showed that when people tried to recall the story, they often distorted
or ignored the parts of the story that were not compatible with their past experiences.
This indicates that people actively use the schemata stored in their memory to
reorganize or reconstruct the events (effort after meaning).

An essential notion of schema was proposed by Piaget (1952). In Piaget’s
view, a schema is “a completely coordinated set of physical actions and cognitive
functions, a set that worked together in its totality to respond to every perceived
experience that could be related to the schema.” (Piaget, 1952: 237). Schemata are
assumed to develop only for the situations, events or patterns that occur repeatedly.
Two functions are ascribed to schemata: 1) Assimilation: The new experience is

changed to fit the schema and its altered features are then incorporated into the
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schema. 2) Accommodation: When assimilation fails, the schema has to adapt itself
to accommodate the situation it is trying to assimilate. In the course of learning, new
information is checked against a schema, which may be specified, extended or
modified to accommodate the new information.

Both Bartlett’s and Piaget’s notions of schema still lack specificity in terms of
what schemata exactly contain and how they are exactly developed and structured.
Minsky (1975) suggested that a useful schema theory can only be established if the
following issues have been addressed: 1) how people select an appropriate schema
from their memory to deal with a given situation; 2) how schemata are interrelated to
each other and are retrieved as needed; 3) how a schema is modified and created; and
4) how the memory store changes as a result of learning (cf. Marshall, 1995). None
of these issues have been fully addressed to date. However, schema theories play an
important role in regard to learning and memory.

For example, schema theories explain why experts can more efficiently
acquire new knowledge related to the domain in which they specialized than can
novices. The reason for the difference between experts and novices lies in the

amount of their prior domain knowledge (or schemata).

“Perhaps the largest source of individual differences in memory performance is difference in
knowledge in a particular domain. It is much easier to remember something if we have a
framework in which to embed that new knowledge... There is clear evidence that the ability
to acquire new facts about some domain depends a great deal on what one already knows.
For example, Spilich, Vesonder, Chiesi and Voss (1979) found that people who knew more
about baseball were much better able to remember descriptions of baseball games.... For the
facts that were not relevant to the game, the groups showed no difference in recall. Thus,
having prior knowledge allows one to understand (and remember) the relevant information
better..., this previous knowledge allows one to interpret new information more easily to
make it meaningful, to incorporate it into what one already knows, and to retrieve it easily
using prior retrieval schemes.” (Douglas & Brian, 1992: 208-209).

Ausubel (1963, 1968, 1977) also pointed out that learning is more effective when

new information bears a relation to knowledge in memory. Hence, the amount and

the accessibility of prior knowledge in terms of established schemata should

influence learning results and learning efficiency.

3.4.2 Implications for learning

The models of semantic memory all suggest that the semantic knowledge in LTM
has a well-organized structure, which is to be described not as a strict hierarchy, but
probably more as a network of interrelated concepts. The empirical evidence
supports the ideas that well organized material is easier to learn than poorly-
organized material, and that learners tend to organize the learning materials in terms

of their pre-existing knowledge. Basically, the strategies people employ to enhance
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learning mainly follow the principle that the information to be learned should be
accommodated into their schematic world knowledge. Once a connection between
the new and the old information is established, the probability of retaining the new
information is increased. However, if there is no apparent link between the new and
the old information, inferential and elaborative strategies can be employed to
enhance recall. Mnemonics, for example, is a strategy for improving memory
performance by associating the information to be remembered with something
familiar, for instance a visual image or a verbal feature such as rhyme or rhythm.
Moreover, the advantage of associative learning is supported by Paivio’s (1991)
dual-coding theory, which suggests that information can be better remembered if it is
encoded both verbally and visually because activating one form of a concept in
memory will activate the corresponding one as well. The spreading-activation
network models excellently simulate the idea that the more connections between a
given concept and the others, the more likely it is that the concept will be recalled.
Taken together, the implications for learning are, in my view, the following:

1. The basic principle of learning (meaningful material) is accommodating the
new information under pre-existent schemata.

2. The pre-existent schematic knowledge of experts is qualitatively and
quantitatively different from that of novices.

3. Materials that are organized in such a way that their structure can easily be
mapped to the structure of the relevant schemata (of a particular learner) are
easy to learn.

4. Poorly organized materials require additional processing such as inferences
and elaboration to enable schema consumption; these processes make for
additional cognitive workload.

5. Modality plays a major role in these additional processing requirements

because working memory is a capacity-limited, modality-specific system.

3.5 Summary

This chapter began by introducing different categories of human memory and the
characteristics of each category of memory. Various theories of how information is
processed in human memory were subsequently presented. There has been debate on
whether working memory and long-term memory are two separable memory
systems. Evidence from experimental psychology and neuropsychological studies is
in favor of a separation between the two systems. The processing of new information

in working memory was mainly discussed with respect to Baddeley’s working
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memory model. With respect to learning, both working memory and long-term
memory determine the performance of learning. In light of the way in which
knowledge is stored and organized in long-term memory, it is suggested that

associative and organized learning are more effective.
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4. LEARNING WITH TEXTS AND PICTURES

In Chapter 2 and Chapter 3, respectively, I explained the theories concerned about
mental representations of verbal and pictorial information and how human memory
systems encode, store, and retrieve multicodal and multimodal information. When
putting those theories into actual educational practice, however, these theories were
not always found to be true. For instance, based on the dual coding theory, presenting
pictures together with texts should be beneficial for learning, but this has not been a
consistent finding. Therefore, it is necessary to examine under which conditions the
theories are applicable, and to discern why the theories do not always hold true. In
this chapter, I shall deal with the issue of learning with text and pictures. Principles
and reasons concerning how, which, when, and why pictures facilitate learning will
be explained.

According to the dual coding theory (Paivio, 1986, 1991) as well as the
integrative model of text and picture comprehension (Schnotz and Bannert, 1999),
presenting pictures together with text can facilitate learning because pictures help
learners to construct mental models that are essential for comprehending the
information to be learned and thereby enlarge the retrieval possibility of this
information. This assumption was confirmed in many empirical studies. However, in
some studies pictures did not prove to be beneficial. The reason for this lies in that
the effects of pictures on learning are influenced by many other factors such as the
nature of the information to be learned, the instructional method, the way in which
text and pictures are presented, the learner characteristics, etc. In addition, the
method for assessing learning outcomes should be considered because, depending on
the assessment method, the same pictures might or might not have a positive effect
on learning.

Mayer (1993) explained learners’ cognitive processes in processing learning
material with the help of Atkinson and Shiffrin’s (1968) memory model (cf. Chapter
3). He postulated four essential cognitive processes of learning in human memory
systems: selecting, organizing, integrating, and encoding (see Figure 1). Selecting
refers to paying attention to the relevant information in the instruction. Organizing
establishes the relationship between relevant information pieces. Integrating relates
the incoming information with knowledge in long-term memory. Finally, encoding
refers to the process of storing the new information in long-term memory.
Furthermore, Mayer proposed a research framework comprising some other factors

that affect learning from text and pictures (see Figure 2). In the following
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subsections, I shall address the issue—when, why, and how pictures facilitate

learning—according to this framework.

Learner's cognitive system

arganizing m
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Figure 1: The cognitive approach to research on learning from text and
pictures (Taken from Mayer, 1993: 260)
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Figure 2: A framework for research on learning from text and pictures
(Taken from Mayer, 1993: 264)

4.1 Types and functions of pictures

The functions of pictures are contingent upon the type of text they accompany.
Pictures used in storybooks, according to Fang (1996), may help readers to “1)
establish the setting; 2) define/develop the characters; 3) extend/develop the plot; 4)
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provide a different viewpoint; 5) contribute to the text’s coherence; and 6) reinforce
the text.” (Carney and Levin, 2002: 6). In the context of education, pictures in
textbooks serving in text processing are categorized by Levin (1981, Levin et al.,
1987) as follows:

=  Decoration: Pictures are simply used to decorate the page. They have little or
nothing to do with the text content.

» Representation: Pictures are employed to represent part or all of the text
content, which is the most frequently used picture type.

» Organization: Pictures give a structural framework of the text content (e.g., a
map).

= [nterpretation: Pictures elucidate the difficult text content.

= Transformation: Pictures serve as mnemonic aids.

Mayer (1993) proposed four types of pictures, which are basically derived from
Levin’s categorization. He also investigated the percentage of use of these picture
types and how these pictures influence learners’ cognitive processes (see Table 1). It
should be noted that Mayer’s classification only pertains to pictures in textbooks
serving to teach scientific concepts, for example, how a car’s braking system or a
bicycle tire pump works. Therefore, the functions described here are not applicable

to the pictures used to depict concepts other than this kind.

Type of illustrations Percentage of Definition Cognitive processes
surveyed affected
illustrations
Decorative 23% fill space on page none
without enhancing
message of passage
Representational 62% portray a single selecting
element
Organizational 5% depict relations selecting &
among elements organizing
Explanative 10% explain how a selecting, organizing
system works & integrating

Table 1. Four types of illustrations (Taken from Mayer, 1993: 265)

Peeck (1993) suggested that pictures are able to decorate the page, excite the
learner, explain difficult concepts, expand the written narrative, and affect
intellectual skills and processes. Finally, Carney and Levin (2002) regarded pictures
as adjunct aids for the processing of text information. They help learners to perceive,

understand, and remember the information to be learned.
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4.1.1 Static versus dynamic visual displays

When considering the presentation modes of pictures, we can roughly classify them
into two categories: static and moving pictures, or in broad terms: static and dynamic
visual displays. The former term refers to still graphics such as diagrams, charts,
illustrations, etc. that do not involve any motion, whereas the latter term refers to the
displays of any type of pictorial and graphical movement including “continuous
motion as in films, television, and interactive video discs, graphical animations in
computer-based instruction (CBI), such as simulations of chemical processes,
electronic behaviors, and pop-in arrows, labels, etc.” (Park and Hopkins, 1993: 427).
Theoretical assumptions concerning the superiority of dynamic visual
display (DVD) over static visual display (SVD) are based on that DVDs can direct
learners’ attention to the relevant information in the instructions, and that “DVDs
provide a convenient means of visually representing imaginable events, actions, and
ideas which change over time. They can make complex cognitive tasks more
concrete and easy to understand by providing motion and trajectory attributes.” (Park
and Hopkins, 1993: 430). In contrast, SVDs are less efficient in presenting the
processes of dynamic events changing over time. Consequently, it is assumed that
“representing concepts and tasks involving motion with animation triggers the
student’s automatic ability of the visual system to induce apparent motion and
directly encode them into the imaginal subsystem of memory, while static
representation requires the student’s ability and effort to form mental images of the
task’s dynamic nature by connecting and integrating discretely presented
information” (Rieber and Kini, 1991, cited in Park and Hopkins, 1993: 430).

Some empirical studies demonstrated the superiority of DVDs in conveying
instructions in procedural tasks such as knot tying or machine gun disassembling
(Silverman, 1958; Roshal, 1961; Spangenberg, 1973). However, some other studies
could not find any positive effects of DVDs employed to instruct procedural skills.
Park and Hopkins (1993) reviewed 27 studies that investigated the effects of DVDs
versus those of SVDs and only found 15 of them demonstrated the benefits of DVDs.
Their explanation for the inconsistencies was two-fold. First, the DVDs did not
successfully direct learners’ attention to the relevant information. Second, individual
differences between learners such as prior knowledge, experience, learner aptitude,
etc. determined whether DVDs were useful or not (more details about this point are
given in Section 4.4). Based on the review of research findings regarding the effects
of DVDs, they recommended using DVDs in relation to the following conditions: 1)
demonstrating sequential actions in a procedural task; 2) simulating causal

relationships among the components of complex systems; 3) demonstrating visually
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invisible system functions and behaviors such as blood flow in the human body or

current in electronic systems; 4) providing a visually motional cue, analogy or

guidance to show time-dependent processes; and 5) directing attention to the

essential information to be learned (cf. Park and Hopkins, 1993: 444).

4.2 How and why pictures facilitate learning

With the description of the functions of pictures, the reasons why pictures may

facilitate learning are already partially explained. Here I shall summarize the various

reasons that I found in the literature. Pictures may facilitate learning because they

can:

help learners to focus their attention on relevant information in the learning
material (Mayer, 1989, 1993; Levin and Mayer, 1993);

motivate learners to study the accompanying text (Peeck, 1993; Schnotz,
2002);

induce more elaborate processing of text information depicted by the
illustrations (Peeck, 1987, 1993);

help to clarify and interpret difficult text content (Bransford and Johnson,
1972; Bock, 1978);

reduce interference and/or decay in memory of the material concerned and
facilitate retrieval (Rusted, 1984);

help to construct mental models (Weidenmann, 1988; Hegarty and Just, 1989;
Mayer and Gallini, 1990; Glenberg and Langston, 1992; Shah et al., 1999);
help to build connection between verbal and nonverbal information and
therefore increase the retrieval potential for the illustrated text content
(Paivio, 1986; Mayer and Anderson, 1991);

present information in a more concrete and concise way (Levin and Mayer,
1993);

help to organize the text information (Levin, 1981, Levin et al, 1987; Mayer,
1993);

serve as mnemonic aids to enhance the memory of the learned material
(Levin, 1981);

effectively increase recall when they depict the type of information for which
the text itself invites processing (Waddill et al., 1988; Waddill and McDaniel,
1992).
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4.3 When pictures help learning

As I mentioned earlier, pictures are not always useful for learning in practice because
whether or not pictures foster learning is contingent upon many factors that interact
with each other. According to Mayer (1993), pictures can only exert a positive effect
on learning when three conditions are met. First, the type of text and pictures must
match each other well. Second, they must be used to instruct the learners who can
benefit from the support of pictures. Third, an appropriate test must be employed to
assess learning performance. It goes without saying that both text and pictures must
be of good quality in presenting and explaining the information to be learned.
Explanative text, for example, requires explanative pictures. Other types of pictures
such as decorative, representational or organizational pictures are certainly not
appropriate for this purpose, and therefore no positive effect can be expected.
Learner characteristics as well as the assessment method, on the other hand, are quite

important factors that I would like to address separately.

4.4 Learner characteristics
4.4.1 Prior knowledge

The first learner factor that should be considered is the amount of prior knowledge.
In Chapter 3, I have explained the role of prior knowledge in learning. The more
knowledge a learner has about the relevant domain, the more efficiently he or she can
process new information without resorting to pictorial aids. Consequently, it is
assumed that learners with high prior knowledge might not benefit from pictures as
much as learners with little prior knowledge because as experts, unlike novices, they
can easily connect the new information to their prior knowledge and construct
appropriate mental models simply on the basis of text information.

This assumption was confirmed by the study of Mayer and Gallini (1990). In
a series of three experiments, students were required to learn how a brake system, a
pump system, and electric generators work. The instructions were given by means of
four different conditions: only text, text plus static illustrations of the device with
labels for each part, text plus static illustrations of the device with labels for each
major action, and dynamic illustrations (depicting the ‘on’ and ‘off” states of the
device) with labels for each part and each major action. Students’ learning outcomes
were assessed on the basis of conceptual recall, non-conceptual recall, problem-

solving tests, and verbatim recall. The results showed that learners with low prior

55



4. Learning with Texts and Pictures

knowledge were sensitive to the instructional conditions. Their performance in
problem-solving transfer was enhanced when the instruction was conveyed by means
of dynamic illustrations with labels for parts and actions. Learners with high prior
knowledge, in contrast, were not sensitive to the instructional conditions in terms of
their performance in problem-solving transfer.

A study by Kunz et al. (1989, reported in Najjar, 1996) found that there was a
positive correlation between the use of pictures in text and the comprehension level
of students with low prior knowledge. Similar results were found in Mayer and Sims’
study (1994). They argued that “students who possess domain-specific knowledge
may not need visual aids with text because they can generate their own familiar
analogical representations as they read or listen to an explanation of a system” (p.
400). Rieber and Kini (1995) pointed out that novices are often poor in allocating
their attentional resources and in organizing the information appropriately.
Accordingly, pictures could help them to focus attention on the relevant information
and to organize the material properly (Bennett and Dwyer, 1994).

ChanLin (1998) investigated the effects of different visual treatments (no
graphics, static graphics, and animated graphics) on acquiring procedural and
descriptive knowledge with students having either a high or low prior knowledge
level. The results showed that high prior knowledge (HPK) students outperformed
low prior knowledge (LPK) students in acquiring both descriptive knowledge and
procedural knowledge. In terms of learning descriptive knowledge (e.g., facts about
the basic unit of growth hormone gene and its composition), the effect of visual
treatments on the performance of LPK students was not significant. However, they
tended to learn better with graphics (either static or animated) than without graphics.
HPK students, on the other hand, only benefited from animation. When acquiring
procedural knowledge (e.g., processes for building a polypeptide chain), LPK
students who received different visual treatments did not differ in their performance,
while HPK students learned better only when they received static graphics. This
study provides evidence against the assumption that LPK learners stand to benefit
more from visual aids than HPK learners and against the counterevidence that
animation stands to facilitate the comprehension of a procedural text more than a
descriptive text (Large et al., 1996, reported in ChanLin, 1998).

In my view, the graphics or animation most likely did not help LPK students
in learning because the information to be processed (especially in terms of the
procedural knowledge) was very complicated per se. Consequently, LPK students’
performance could not simply be improved by any visual treatment (Large, 1996).
The unexpected result that HPK students acquired descriptive knowledge more easily

with animation and procedural knowledge more easily with static graphics could be
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explained by the different nature of animation used in this study. ChanLin assumed
that the animation for conveying descriptive knowledge served mainly as a
mnemonic device to enhance memorization. Although it only demonstrated the
information described in the text without any explanatory function, it still helped
HPK students to better remember the information. The animation for depicting
procedural knowledge could be redundant for HPK students, and thus, it might
interfere with memorization. Another possibility is that the pace of the animation
might not correspond to HPK students’ internal pace for processing the information
depicted in the animation, which could be an obstacle to learning. In contrast, static
graphics allow students to process the information at a variable pace, and thereby

facilitate learning.

4.4.2 Spatial ability

In addition to prior knowledge, learners’ spatial ability may also determine whether
they can benefit from pictures. Spatial ability refers to the capacity to process visual
information in general. It has been further defined in various ways. In the broadest
sense, spatial ability involves “spatial sense, spatial perception, visual imagery,
spatial visualization, visual skills, spatial reasoning, mental rotations, and visual
processes” (ChanLin, 2000: 230). Spatial visualization is the ability to mentally
manipulate objects in two or three dimensions and to imagine the changing
configurations of objects stemming from this manipulation (Mayer and Sims, 1994),
which is supposed to be an important indicator of conceptual performance in
scientific and mathematical learning (ChanLin, 2000). According to Sternberg
(1990), spatial visualization concerns the ability to visualize shapes, the rotation of
objects, and how pieces of a puzzle would fit together (cited in Mayer & Sims,
1994). High spatial-ability (HSA) people are able to mentally perform visual-spatial
operations easily and rapidly while low spatial-ability (LSA) people cannot.

In relation to learning materials containing text and pictures, HSA learners
are generally assumed to benefit more from the supplement of visualization because
they are capable of extracting the meaning of pictures. On the contrary, LSA learners
would find it difficult to understand the pictorial information. This assumption was
confirmed in a study by Mayer and Sims (1994). When animation was presented
simultaneously with a narration explaining either how a bicycle tire pump or the
human respiratory system works, only HSA students could benefit from this type of
presentation condition but LSA students could not. Mayer and Sims explained this
result on the basis of a dual-coding theory (see Figure 3). When visual and verbal

information is in working memory at the same time, HSA learners can devote more
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cognitive resources to establish referential connections between propositional and
depictional representations of the state of affairs conveyed in the learning material,
while LSA learners must allocate more cognitive resources to building
representational connections between the pictorial information and its mental
representation. Hegarty and Sims (1994) found similar evidence indicating that
visual representations seem to be more helpful to subjects with relatively good

visualization.
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Figure 3: The dual-coding model of multimedia learning
(Taken from Mayer and Sims, 1994: 390)

Nevertheless, counterevidence was found in a study by Hays (1996). He
examined whether different graphic presentations (no graphics, static graphics, and
animated graphics) exert a different effect on the comprehension of learners with
LSA and of learners with HSA. The results indicated that, in terms of short-term
comprehension, LSA subjects receiving animation in the instruction performed better
than did other LSA subjects receiving other graphic presentation-conditions. The
level of their short-term comprehension was as high as that of the HSA subjects who
received animation in the instruction. Long-term comprehension, however, was
independent of the subjects’ spatial ability. This indicates that LSA subjects can
benefit as much from animation as can HSA subjects.

ChanLin (2000) investigated how different visual treatments (no graphics,
static graphics, or animation) combined with (visual) text influence students with
HSA or LSA in acquiring descriptive and procedural knowledge in the field of
physics. The descriptive knowledge consisted of a recital of facts or the description
of objects or events. An example of the learning material concerning descriptive

knowledge is depicted in Figure 4. The procedural knowledge was concerned with
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the construction of the problem-solving procedures. Figure 5 provides an example of

this learning material. The subjects’ grade level, as well as prior physics and

mathematics scores were used as covariates.

“Force Vector” refers to the amount of force with
a direction. When two forces are acting on an
object, a single force vector then forms, which is
called “Resultant”. One resultant can be formed
from many different pairs of force vectors. Thus,
if you make a parallelgram out of it, you could
say that the resultant is equivalent to the diagonal
and the force vectors become the sides.

Bl i

L T

Figure 4. Example of using graphics for
descriptive content (taken from ChanLin,
2000: 232)

When a cart weighing 20 kg is pushed upward
along a slanted surface with an angle of 37° from
horizontal, how much force (Fw) is needed to
move the cart upward? (Suppose the abrasion
from the slanted surface is 0).

Rule 1: When the neighboring sides of a
parallelogram are perpendicular to each other, the
parallelogram is rectangular.

Rule 2: When the angles of a triangle are 37°,
53°, and 90°, then the ratios of the sides opposite
those angles will be 3:4:5.

Solution:
Step 1: The resultant F (20kg) can be formed by
the following pair of force vectors:
Fa is paralleled downward to the slant surface.
Fb is perpendicular to the slant surface.
Step 2: F is 20 kg, and the angle formed by Fa and
the resultant F is 53° (90°-37°) (According to rule
1 and step 1)
Step 3: Apply rule 2 to get Fa
Fa:Fb: F=3:4:5,
Fa=3/5F=3/5*20=12kg
Step 4: If Fw is more than 12 kg, then you will be
able to pull the cart upward.

Figure 5. Example of using graphics for
procedural content (taken from ChanLin,
2000: 232)

The results showed that the visual treatments only had a significant effect on

the acquisition of procedural knowledge but not on the acquisition of descriptive

knowledge. Students who were shown graphics or animation outperformed those

who had received only text. Spatial ability, however, did not have a significant effect

on acquiring descriptive or procedural knowledge in this study. ChanLin assumed

that the effects of spatial ability might be tempered by factors within the training and

instructional setting. “The use and training of various spatial strategies also serves as
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a function of gaining experiences of solving problems in descriptive and procedural
knowledge” ( ChanLin, 2000: 236).

Separate analyses were carried out to examine the effects of visual treatments
among students within each level of spatial ability. The results showed that, when
acquiring descriptive knowledge, HSA students who received text and animation
performed better than other HSA students who received only text in the instruction,
whereas the performance of LSA students was independent of visual treatments. In
terms of the acquisition of procedural knowledge, LSA students who received static
graphics outperformed the other LSA students who received only text in the
instruction, whereas HSA students were insensitive to the visual treatments.

All in all, the relationship between spatial ability and learning performance
seems to be inconclusive. In my view, spatial ability alone might not be a reliable
indicator for predicting a learner’s ability to benefit from visual aids because of
interactions with some other factors such as the amount of prior knowledge, the
instructional method, the way in which text and pictures are presented, or even the
method used for assessing performance. Mayer and Sims (1994), for example,
suggested that low-experience, HSA students are the most likely to benefit from
animation synchronized with a narration. Hays (1996) pointed out that people differ
in the use of their spatial ability to create internal visualization. “If one does not use
spatial abilities to create spatial visualization and form spatial representations of a
particular concept, then one will only have a verbal/linear representation of the
concept” (p. 149), which may not be sufficient for a complete comprehension. Young
students might not know when and how to best use their spatial ability, while HSA
learners might not use their spatial ability to transfer the perceived information into
long-term memory. Peeck (1993) indicated that “merely asking or telling learners to
pay attention to pictures in illustrated text is unlikely to induce more, or more
intensive picture inspection than what would otherwise occur on the basis of the
nature of the text, pictures, learner characteristics, and their interaction” (p. 233).
Consequently, it is necessary to assume that people do not automatically use their
spatial ability to process pictorial information, unless they are appropriately
instructed and well controlled by learning activities (Peeck, 1993).

In my view, although we can not use spatial ability to predict learners’
performance, spatial ability still affects the efficiency in learning pictorial
information to a certain extent. As long as the effect of spatial ability is significant,
we should take this factor into account if we intend to investigate the effects of

multimedia presentations on learning.
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4.4.3 Other characteristics

Some theorists assume that reading ability or comprehension skill may determine the
extent to which illustrations promote a person’s learning performance. However, the
theories at this point are inconsistent. One view is that poor readers are less capable
of processing textual information. Illustrations might help them to comprehend the
information to be learned. Another view is that poor readers might have difficulty in
finding relevant information in the pictures and in integrating information from text
and pictures (Peeck, 1993). It appears that whether or not a learner can benefit from
visual aids is based on his/her capacity to extract meaning from pictures, an ability
commonly termed visual literacy. Beyond reading ability, age itself is assumed to be
correlated with one’s visual literacy. Young children seem to be less adept, in
comparison to adults, at directing attention to the essential parts of pictures, and they
are less efficient and systematic in inspecting pictures (Peeck, 1987). Moreover,
Dretzke (1993) found that “...with increasing age it becomes more difficult for
adults of relatively lower verbal ability to process effectively the information
presented in complex pictorial interaction.” (Dretzke, 1993: 499, cited in Carney and
Levin, 2002).

4.5 Measurement and assessment methods

There are different types of tests that can be employed to measure learning outcomes,
such as retention tests (including immediate recall, delayed recall, free recall, and
cued recall), multiple-choice tests, operational or problem-solving tests, and testing
in the visual mode. Peeck (1993) suggested that testing should not only be limited to
a certain type of test but should also incorporate different testing procedures in order
to assess the effect of using visual aids more thoroughly.

As to the nature of learning outcomes, there are various dimensions to be
assessed. In general, the assessment, according to Levin (1989), involves
understanding, remembering, and applying. In other words, it must measure how
well learners have comprehended and remembered the information they learned, as
well as the learners’ ability to apply the new information to solve problems. In a way,
similar to Levin, Mayer (1993) suggested that learning performance can be measured
in terms of the recall of the main elements and relations in the text (i.e. conceptual
retention) as well as the recall of isolated facts or recognition of the verbatim
wording of sentences (i.e. non-conceptual retention), or the answers to open-ended

questions that require inferences (i.e. problem-solving transfer). Since different
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methods may yield different patterns of results, which in turn can influence the
interpretation of the role of text and pictures in learning, it is recommended that
researchers exercise caution when choosing appropriate methods for testing learning
performance.

Learner characteristics and assessment methods are the factors that can have
an effect on learning outcomes that is independent of the effect of how learning
material is presented. When examining the effects of multimedia presentations on
learning, such factors must be considered in order to eliminate their disruptive
effects.

4.6 Summary

This chapter has dealt with the issue of learning with texts and pictures. I began by
introducing different types of pictures in terms of their functions as well as the
relevant presentation modes. Furthermore, I have summarized the findings from the
literature concerning how, why, and when pictures foster learning. Based on the
framework for research on learning from texts and pictures proposed by Mayer
(1993) in conducting research on this topic, I have elucidated the role of learner
characteristics and methods for assessing learning performance. Since a number of
factors in parallel can determine whether using pictures when giving instruction is
beneficial to learning, researchers should take all of these factors into account in

order to investigate the pure effects of using pictures on learning.
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5. COGNITIVE ASPECTS OF PROCESSING
MULTIMEDIA INFORMATION

In this chapter, I will introduce the current theories of multimedia learning which
place emphasis on cognitive processes, specifically the cognitive load theory
(Sweller et al., 1990; Sweller and Chandler, 1991, 1992) and the cognitive theory of
multimedia learning (Mayer, 1993, 1997; Moreno and Mayer, 2000; Mayer and
Moreno, 2002a, 2002b). As we shall see, these theories are mainly derived from the
dual coding theory and from theories of human memory. Since this thesis focuses on
the effects of multimodal presentations on processing multicodal information, a
series of studies that have investigated these effects will be discussed in the light of
the two theories. However, due to the diversity of the factors that determine the
effectiveness of multimedia-based learning, the current theories warrant further

study.

5.1 Cognitive load theory

The cognitive load theory (CLT) proposed by Sweller and his co-workers (Sweller et
al., 1990; Chandler and Sweller, 1991; Sweller, 1993, 1994; Sweller et al., 1998) is
an instructional theory that considers information processing in human memory as a
crucial determinant of the effectiveness of learning. The main assumption of CLT is
that since new information must be processed in working memory before it can be
stored in long-term memory and since the capacity of working memory is limited,
learning will be impaired if the information-processing capacity of working memory
is overstrained. It is therefore advisable to design instructional materials in such a
way that they can be processed within the capacity of the learner’s working memory.

CLT suggests a series of measures that can be implemented by instructional
designers to promote learning. For example, the use of goal free problems and
worked examples rather than traditional problem-solving tasks may reduce working
memory load and facilitate schema acquisition and automation by learners (Sweller,
1988; Sweller, 1993; Marcus et al., 1996). Since these recommendations do not
directly deal with multimedia learning, I shall not address them further. Instead, I
will introduce different types of cognitive loads and the various measures used to

eliminate them.
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5.1.1 Levels and types of cognitive load

It is assumed that the level of cognitive load is determined by causal as well as
assessment factors (see Figure 1) (Paas and van Merrienboer, 1993, Kirschner,
2002). Causal factors can be learner characteristics (e.g., cognitive abilities), task or
environmental demands (e.g., task complexity or noise from the environment),
and/or interactions between the two. Assessment factors consist of three measurable
aspects: mental load, mental effort, and performance. Mental load is engendered by
the task and environmental demands. Mental effort refers to the cognitive exertion
learners devote to the task. Learners’ performance is affected by mental load, mental

effort, and causal factors.
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Figure 1: Factors determining cognitive load
(Taken from Kirschner, 2000: 4)

CLT discriminates between three types of cognitive load induced by
instruction: intrinsic cognitive load, germane cognitive load, and extraneous
cognitive load. The intrinsic cognitive load refers to the inherent complexity of the
information to be processed, or the degree of interconnection among the elements of
information. It is assumed that complex information involves a high level of element
interactivity, whereby a single element of information cannot be learned independent
of other elements. The germane cognitive load results from the construction of
schemata and their storage in long-term memory. The extraneous cognitive load is
imposed on the recipient by the manner in which information is presented (Sweller
and Chandler, 1994; Sweller et al., 1998; Kirschner, 2002). Recently, Valcke (2002)

has proposed a subset of germane cognitive load, termed meta-cognitive load, which
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is concerned with the meta-cognitive monitoring abilities of one’s own learning
processes (see Figure 2). In addition, Valcke has pointed out that prior knowledge
should be taken into account in CLT because it influences the efficiency of schema
acquisition and the ability to engage in meta-cognitive monitoring.

According to CLT, intrinsic and extraneous cognitive load should be
minimized while germane cognitive load should be increased. This could be
accomplished by optimizing the learning materials, provided that the total cognitive
load does not exceed the information-processing capacity of working memory
(Bannert, 2002; Kirschner, 2002). Diminishing intrinsic and extraneous cognitive
load prevents learners from diverting their attention to irrelevant information,
whereas increasing germane cognitive load encourages learners to consciously deal

with schema construction.
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Figure 2: An updated model for CLT suggested by Valcke
(Taken from Valcke, 2002:150)

5.1.2 Measures for reducing intrinsic cognitive load

Measures to reduce intrinsic cognitive load have been investigated by Pollock et al.
(2002). They found that complex learning material which is high in element
interactivity can only be understood if elements are incorporated in a schema. Due to

the limitation of working memory, processing all elements simultaneously to

65



5. Cognitive Aspects of Processing Multimedia Information

construct the schema induces working-memory overload. However, the element
interactivity can be artificially reduced by presenting material as isolated elements.
The results of their study showed that subjects learned more efficiently when the
complex material was presented as isolated elements in the first phase and as a whole

in the second phase than when the material was presented as a whole in both phases.

5.1.3 Measures for reducing extraneous cognitive load

It is assumed that the effects of extraneous cognitive load are more likely to be
observed only when the intrinsic cognitive load is high. If not, the extraneous
cognitive load is unlikely to give rise to severe problems in learning, since the overall
demand on working memory in this case is not extensive (Sweller, 1993, 1994). CLT
proposes several methods to reduce or eliminate the extraneous cognitive load that
are relevant to the influence of multimedia presentations on learning. Three effects
connected to this kind of cognitive load are the split-attention effect, the redundancy
effect, and the modality effect. In the following paragraphs, I shall introduce these
effects and the measures by which they may be reduced.

5.1.3.1 The redundancy effect

According to CLT, redundant information in instruction induces extra, unnecessary
cognitive load because learners must devote some attentional resources to process the
redundant information and therefore fewer cognitive resources are left to process the
relevant information. The redundancy effect generally occurs when different sources
of simultaneously presented information are comprehensible in isolation and when
each source conveys similar information but in a different format (Kalyuga et al.,
1999; Kalyuga, 2000). For example, when a textual and a graphical instruction
present roughly the same information, and both of them are intelligible in isolation, it
is advisable to remove one of the sources to avoid the unnecessary cognitive load
(Cooper, 1998).

Kalyuga, Chandler, and Sweller (1999) found that subjects who received a
diagram combined with auditory text as instruction outperformed those subjects who
received the same diagram with the same text presented both in auditory and visual
format at the same time. The redundant textual information did have a negative effect
on learning. Kalyuga (2000) further assumed that this redundancy effect might not
occur if the redundant sources of information are presented successively with some
delay in between because successive presentation does not force learners to process

different sources of information at the same time. That is, learners’ cognitive
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resources are not diverted to processing irrelevant information. Moreover, Kalyuga et
al. (1998, 2000) found that when considering learners’ levels of expertise,
experienced learners required only diagrams while less experienced learners required
diagrams with additional integrated textual information to understand the learning
material. Therefore, whether a source of information is redundant or not is contingent
upon the learners’ requirement. Mayer, Heiser, and Lonn (2001) compared the
learning performance of students receiving computer-based instruction containing
either animation with narration or animation with narration and on-screen text.
Again, students trained by means of animation and narration performed better in the
problem-solving transfer test than did students who received redundant text in
instruction.

In my view, it is normal for the information presented in the form of text and
pictures to be similar because they refer to each other. Nevertheless, it is difficult to
say how similar the textual and pictorial information should be to consider one of
them redundant. What about the mnemonic function of pictures, when pictures are
used to help with memorizing while simply presenting the same information as that
given in the text? Surely, whether or not a particular source of information is
redundant can only be judged by the learners but not by the instructors, since the
judgment by the instructors might differ from that by the learners. Levels of expertise
or of prior knowledge could be good indicators used to predict learners’ needs.
However, they could be a danger when the instructor’s’ estimates of the learners’

ability are incorrect.

5.1.3.2 The split-attention effect

The split-attention effect occurs when learners must divide their attention among
different sources of information that must be mentally integrated to achieve
comprehension. According to CLT, when text and pictures are presented that are not
intelligible in isolation and are separated in space or time, learners must often search
for the relevant information in the pictures that corresponds to the text (or vice versa)
in order to establish the connections between the textual and pictorial information.
This kind of search imposes extra cognitive load on working memory and is believed
to impair learning. To circumvent the split-attention effect, it is suggested that text
should be physically integrated into the pictures or presented auditorily (Sweller et
al., 1990; Chandler and Sweller, 1992; Sweller and Chandler, 1994; Cooper, 1998;
Kalyuga et al., 1999). In the first case, the physical integration of text and pictures
can avoid unnecessary visual search between text and pictures, so that the attentional

resource can be focused on learning. The same idea is used for the second case. If
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text is presented auditorily, CLT assumes that it does not only avoid unnecessary
visual search, but it can also increase the effective capacity of working memory to
enhance the efficiency of information processing, which relates to the modality effect
that will be addressed later.

Sweller and his colleagues (Sweller et al., 1990; Chandler and Sweller, 1991,
1992) conducted a series of experiments to investigate the effects of split or
integrated format of instruction on learning. Using instructional materials concerned
with electrical engineering, biology, or geometry, they presented instructions
comprised of either only diagrams or both text and diagrams, whereby the text and
diagrams were not comprehensible in isolation. When the split-format was used, text
was shown either over, below, or next to the diagram. When the integrated-format
was used, text was displayed directly in the corresponding positions in the diagram.
The results of their experiments were consistent with the hypothesis that subjects
performed better when text was integrated with diagrams. A series of studies by
Mayer and his co-workers demonstrated the split-attention effect elicited by temporal
separation of text and pictures. They found that subjects who received animation
synchronized with narrations as instructional material performed substantially better
in problem-solving tests than did subjects who received animation with narrations
presented either before or after the animation (Mayer & Anderson, 1991; Mayer &
Sims, 1994; Mayer et al., 1999). This finding suggests that when animation and
narration are presented concurrently, learners are more capable of constructing
referential connections between verbal and pictorial information because both
sources of information are held in working memory at the same time. An interesting
result of the study by Mayer et al. (1999) was that presenting narration before or after
animation was proved to impair learning when the narration as well as the animation
contained much information. Nonetheless, when the narration and the animation
were divided into small portions, the effect of the successive presentation did not
differ significantly from that of the concurrent presentation. Mayer et al. concluded
that “it is not necessary that corresponding visual and verbal segments be presented
concurrently (i.e. in physical contiguity) but rather that they be held in working
memory at the same time (i.e. in cognitive contiguity)” (Mayer et al., 1999: 643).

It is noteworthy that the physical integrated-format of instructions did not
promote learning when the accompanied text information was redundant. The study
by Chandler and Sweller (1991) demonstrated clearly that when a diagram was self-
explanatory (e.g., a diagram explaining the flow of blood around the heart, lungs, and
body, which is labeled with the names of the essential components; see Figure 3),
integrating explanatory texts into the diagram was superfluous. However, when using

numbers instead of labels in the diagram (see Figure 4), so that it became
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unintelligible without the explanatory texts, the positive effect of the integrated

format of instruction (see Figure 5) could be restored.
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Figure 5: The text was integrated in the diagram. The circled numbers were not
shown in the experiment. (Taken from Chandler & Sweller, 1991: 326).

Moreover, the split-attention effect is also found when people must mentally
integrate multiple sources of information described in a text. Chandler and Sweller
(1992) indicated that the conventional structure of reports of experiments, which has
a strict sequential format — introduction, method, results, and discussion — induces
split-attention effect and impedes understanding. “The cognitive effort required to
mentally integrate various sections of a research report is essential only because of
the conventional structure used. With a different structure in which various sections
are physically integrated, the requirement to mentally integrate material may be
reduced” (Chandler and Sweller, 1992: 240). In another study (Chandler and Sweller,
1996), a split-attention effect could be observed when concurrently using a manual
and a computer to learn how to use a software package. Students studying the manual
alone outperformed those who studied the manual while practicing each step of the
instructions on the computer (reported in Cooper, 1998). To put the findings
together, split attention will occur “whenever a learner needs to simultaneously
attend to two or more sources of instruction or activities” (Cooper, 1998: Section
5.9).

In my opinion, physical integration of text and pictures can certainly help
learners to match the textual information with the pictorial one and thereby eliminate
unnecessary visual search. The problem is that the inherent complexity of
information to be processed will not be reduced by this manipulation. On the other
hand, there will be a technical problem in terms of presenting text fragments in a
picture if the picture contains many objects densely arrayed in space. If electronic
instead of printed documents are employed in the instruction, mouse-over (i.e. a pop-
up message balloon appears when the mouse pointer is moved over an element) or
mouse-out (i.e. the message balloon disappears when the mouse pointer is moved out
of the element) events are a possible choice to be considered to avoid this problem.
Alternatively, learners may be allowed to decide whether the labels (or pop-up
messages) should stay after they are displayed. Whether these alternative
presentations would have the same positive effect needs to be examined. Kalyuga et
al. (1999) proposed another two measures to overcome the split-attention effect. One
was to color elements of a diagram in the same colors as corresponding textual
elements. The results of their study showed that subjects receiving color-coding
format did perform considerably better than did subjects in the control condition. The
other one was to use dual-modality presentation, which will be subsequently

discussed.
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5.1.3.3 The modality effect

The modality effect observed in the framework of CLT is based on the assumption
that working memory, as suggested by Baddeley (1986, 1992, 1997), comprises at
least three components: a central executive and two subsidiary slave systems, namely
the phonological loop and the visuo-spatial sketchpad. According to the CLT,
presenting both text and pictures visually induces the split-attention effect, whereas
presenting text auditorily together with pictures may circumvent this problem by
increasing the effective capacity of working memory, since both auditory and visual
channels are used to process the information. “In a split-attention situation,
increasing effective working memory by using more than one modality produced a
positive effect on learning, similar to the effect of physically integrating separate
sources of information” (Kalyuga et al., 1999: 353).

There are several studies that demonstrate the modality effect. The study by
Mousavi, Low, and Sweller (1995) showed that students who learned geometry
worked examples substantially better when the instructional material was presented
in audio-visual format in comparison with that presented in visual-only format.
Similar results were found in the study by Kalyuga et al. (1999) using instructional
material concerned with solder and light-switching circuitry. A series of studies by
Mayer and his colleagues (Mayer and Moreno, 1998, 2002b; Moreno & Mayer,
1999; Mayer et al., 1999) also found that subjects who received animation (showing
the process of lightning formation or how a car’s braking system works) with
concurrent narration outperformed the subjects who received animation with
concurrent on-screen text in terms of recalling the content, in matching named
elements in the illustration, and when engaged in problem-solving tests. They
concluded that displaying animation with on-screen text gives rise to the split-
attention effect. The advantage of presenting animation with concurrent narration
was that learners could attend to and hold both verbal and pictorial information at the
same time, which facilitated the integration of both sources of information.

Nevertheless, some studies indicate several limitations of the modality effect.
Tindall-Ford, Chandler, and Sweller (1997) found that the modality effect was only
obtained for instructions with high element interactivity but not for those with low
element interactivity. They argued that material with low element interactivity which
imposes low cognitive load did not show the modality effect because increasing
effective working memory was irrelevant when the information to be processed did
not overstrain the capacity of working memory. Furthermore, Kalyuga et al. (1999)

assumed that auditory text would not be effective if it is too long or complex, which
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might overburden working memory because “auditory information is fleeting and
difficult to retrieve once heard” (Kalyuga et al., 1999: 368). In contrast, visual text
has the advantage of being permanent and thus can be referred to repeatedly. In
relation to the redundancy effect, auditory text should not be effective if the same
text is presented visually at the same time (Kalyuga, 1999, 2000).

Some interesting findings were obtained in the study of Jeung, Chandler, and
Sweller (1997). They conducted experiments to examine under what conditions dual
modality presentation (DMP) using an audio-visual format for instructions is
superior to single modality presentation (SMP) using a visual-only format. The
results showed that when a diagram presented together with (auditory or visual) text
was visually high-demanding, DMP was not superior unless a visual aid (flashing)
was used to guide learners’ visual attention. On the contrary, when the diagram was
visually easy to process, DMP was beneficial. Jeung et al. (1997) concluded that the
increased effective working memory capacity provided by DMP would only enhance
learning if mental resources were not devoted to extensive visual based search in
order to coordinate auditory and visual information.

In my view, there is paradox in the modality effect. First, presenting
information in different modalities at the same time, according to CLT, is supposed
to circumvent the split-attention effect. However, there is virtually no reason to
assume that only attending to visual text and pictures would cause split-attention
while processing auditory and visual information simultaneously would not. Second,
the results presented in the study by Jeung et al. imply that working memory was
overburdened by the complex pictorial information or extensive visual search,
respectively; thus working memory was less able to process the auditory information.
The only plausible explanation for this is that the central executive of working
memory is actually responsible for the integration of verbal and pictorial
information, but not one of the two subsystems (cf. Chapter 3) because the
performance of the phonological loop would not be impaired by the visuo-spatial
sketchpad if the two systems were not coordinated by the central executive.
However, Mousavi, Low, and Sweller (1995) argued against the view that the
integration of verbal and pictorial information is controlled by the central executive.
Instead, they suggested that “more working memory resources are available for
coordination when a dual-presentation mode is used because more information is
likely to be held in both auditory and visual working memory rather than just in one”
(Mousavi et al., 1995: 332). Their argument, in my opinion, is a fallacy in that it
equates the amount of information held in the two subsystems as the amount of

information that can be processed by working memory at the same time. If their
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argument were true, DMP would always be more efficient than SMP, which is not
the case as shown in the study by Jeung et al.

Finally, I would like to point out a well-established fact that there is a trade-
off between the performances of two tasks carried out concurrently because the
attentional resources are limited. Yet, the trade-off phenomenon disappears when the
two tasks are performed successively. In my view, SMP does not impose the same
amount of cognitive load on working memory as does DMP. With SMP, information
is actually processed serially, since one cannot read the text and view the pictures at
the same time. Therefore, under certain circumstances, DMP could be even worse
than SMP because as more information is processed simultaneously, it becomes
more likely that the working memory (or the central executive) will be overloaded.
In other words, in certain situations, DMP contributes not to overcoming, but rather

to inducing the split-attention effect.

5.2 Cognitive theory of multimedia learning

The cognitive theory of multimedia learning proposed by Mayer and his colleagues
(Mayer, 1993, 1997; Moreno & Mayer, 2000a; Mayer and Moreno, 2002a, 2002b) is
a combination of dual coding theory, cognitive load theory, and constructivist
learning theory. Therefore, the theory assumes that: a) humans have separate systems
for representing verbal and non-verbal information (adopted from dual coding
theory); b) working memory has two independent subsystems — an auditory and a
visual working memory (stemming from Baddeley’s working memory model); c)
both auditory and visual working memory are very limited in capacity (cognitive
load theory); and d) meaningful learning occurs when learners actively select and
organize the information in each memory into coherent representation, build
connections between them, and integrate the information with the already existing
knowledge in long-term memory (adopted from the constructivist learning theory
and the dual coding theory). A schema of this theory is given in Figure 6.

The theory provides several principles for designing instructional material,
which partially overlap with the principles suggested by CLT. Since I have addressed
these principles in the previous section, I shall only briefly discuss them here and
instead focus on the cognitive aspect of processing multimedia information that this

theory proposes.
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Figure 6: Depiction of a cognitive theory of multimedia learning
(Taken from Moreno and Mayer, 2000a)

According to the theory, the principles for instructional design are as follows

(Mayer, 1997; Moreno, Mayer, 2000a; Mayer and Moreno, 2002a, 2002b):

1.

The multiple representation principle: It is better to present text and pictures
together rather than text or pictures alone (Mayer, 1989; Mayer and
Anderson, 1991, 1992).

The spatial contiguity principle: Text and pictures should be presented close
to each other rather than separately (Moreno and Mayer, 1999).

The temporal contiguity principle: Text and pictures should be presented
simultaneously rather than successively (Mayer and Anderson, 1991, 1992;
Mayer and Sims, 1994; Mayer et al., 1999).

The coherence principle: Irrelevant words, sounds or videos should be
excluded. Instructions should be concise (Mayer et al., 2001; Moreno and
Mayer, 2000c).

The redundancy principle: 1t is better to present animation and narration
rather than animation, narration, and on-screen text (Mayer et al., 2001).

The modality principle: When presenting text and pictures together, it is
better to present text auditorily (Mayer and Moreno, 1998; Moreno and
Mayer, 1999).

The personalization principle: 1t 1is better to give explanations in
conversational rather than formal style, i.e. using personal pronoun such as
“I” and “you” in the text. The study by Moreno and Mayer (2000b)
demonstrated that students performed better when explanations were
presented in conversational style rather than formal style.

The split-attention principle: Presenting animation and on-screen text
simultaneously induces the split-attention effect, whereas it would not occur
if text were presented auditorily (see Figure 7). Moreno and Mayer (2000a)

assumed that when animation is combined with visual text, “students try to
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represent both the animation and the on-screen text in visual working
memory. Although some of the visually-represented text eventually may be
translated into an acoustic modality for auditory working memory, visual

working memory is likely to become overloaded.” (p. 3).

I believe that the argument depicted by the split-attention principle, similar to
the one proposed by CLT, is based on an incorrect interpretation of the processes of
information processing in working memory. It is incompatible with the views of the
dual coding approach. Although visual text is perceived by the eyes, it does not mean
that the text has to be processed or stored in the visual working memory. Simply
because visual text comprises verbal information by nature, there is no reason to
assume that it should be processed by the visual memory, which is in fact responsible
for processing non-verbal information (i.e. pictorial information). The mental
representation of visual text certainly does not comprise visual images because
people do not treat a text simply as strings of letters without meaning. Consequently,

the argument concerning the split-attention principle does not seem to be plausible.
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Figure 7: The split-attention principle interpreted by Moreno & Mayer (2000a).
The information-processing processes of Group AN (animation +narration) and

Group AT (animation + on-screen text) are contrasted.
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5.3 Summary

In this chapter, I introduced and discussed two current theories concerning cognitive
aspects of processing multimedia information. Both the cognitive load theory as well
as the cognitive theory of multimedia learning have proposed several principles for
instructional design, which are widely used in educational practice. Despite the
empirical evidence, there are some fallacies in both theories, especially in terms of
the split-attention and the modality effects. Further research is certainly required to

clarify these issues.
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6. EYE-MOVEMENT RESEARCH

A promising way of investigating human visual cognition is to observe people’s eye-
movement behavior while they are performing cognitive activities. Research on
reading and scene perception, for example, necessitates eye-movement data to infer
underlying cognitive processes. To examine the effects of multimedia presentations
on information processing, it is useful to track the viewers’ eye movements to find
out how they allocate their attention to integrate the various sources of information.
In this chapter, I will introduce some important eye-movement variables
usually measured in eye-tracking experiments and their connections with cognitive
processes. Afterwards, I shall report on some studies that are concerned with how

people coordinate text and picture information with their eyes.

6.1 Essential eye-movement variables

The most frequently measured eye-movement variables are the positions of fixations,
the number of fixations, the fixation duration, the saccade length, and the pupil sizes.
A fixation occurs when a person looks at something with his/her eyes keeping still.
The region of this “point of regard” covers the foveal (the central 2° of vision), the
parafoveal (5° on either side of the fixation point), and the peripheral (beyond the
parafovea) areas. The clearest vision is in the fovea, and acuity degrades outward
toward the periphery. Due to the constraints of sight acuity, it is necessary to move
our eyes to the object that we want to see more clearly. When the eyes move from
one fixation point to another, this rapid movement is referred to as a saccade. A
saccade length is therefore the (spatial) distance between two successive fixations.
The fixation duration refers to the amount of time focused on a specific location. The
length of a saccade or a fixation duration depends on many factors, such as the
viewer’s intention, the task the viewer has to perform (reading, visual search, scene
perception, etc.), the physical (color, size or shape of the objects or characters) and
semantic features of the visuals to be regarded or the text to be read, etc. Generally
speaking, the fixation duration usually lasts for 200 to 300 ms. A typical saccade
length of reading is 2° and that of scene perception is 5° visual angles on average (cf.
Rayner, 1998). An overview of typical values for fixation duration and saccade

length in reading, visual search, scene perception, music reading, and typing is given
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in Table 1. Rayner (1998) pointed out that the values mentioned below were taken

from a number of sources and could vary due to an assortment of factors.

Task Mean fixation duration Mean saccade size
(ms) (degrees)

Silent reading 225 2 (about 8 letters)

Oral reading 275 1.5 (about 6 letters)
Visual search 275 3
Scene perception 330 4
Music reading 375 1
Typing 400 1

Table 1: Approximate values of mean fixation duration and saccade
length in different tasks (Taken from Rayner, 1998: 373)

Pupil size, or the diameter of the pupil respectively, is associated with the
intensity of cognitive activation. Several studies provide clear evidence that task-
evoked pupillary dilation is an indicator of mental effort, and is a function of the
processing load required to perform the cognitive task (Kahneman & Beatty 1966,
Kahneman 1973, Beatty 1982).

The eye-movement variables mentioned above are crucial elements for
investigating a viewer’s cognitive processes while he/she is performing a specific
task. In the following section, I will give more information regarding the mental

processes underlying these eye-movement variables.

6.2 Eye movements and cognitive processes

Generally speaking, people tend to look at the location to which their attention is
directed. Therefore, the positions of eye fixations can reveal the focus of attention.
However, based on our daily life experiences, we know that this is not always the
case. We can easily shift our attention without moving our eyes. Does this mean that
eye movements cannot reveal our mental processes? Certainly not, because when we
are performing a cognitive task, such as reading, inspecting a picture or working at a
computer, etc., we must focus our attention on the task and therefore direct our eyes
to the place where we can get the required information. In this case, gaze positions

and attention are closely related.

78



6. Eye-Movement Research

The control of eye movements, including where to look, for how long and
where/when to move our eyes next, is based on “bottom-up” as well as “top-down”
mental processes. The former is driven by the physical characteristics of the visual
display (data driven), so that specific color or size of objects as well as motion, for
example, attracts our eyes. The latter, in contrast, is driven by higher-level cognitive
processes (schema driven), so that it manifests a viewer’s intention or viewing
strategies. Both the top-down and the bottom-up mental processes underlying the
eye-movement behavior are important for examining strategies or difficulties in
learning. In terms of the top-down processes, we can observe when and where people
direct their attention to information and, therefore, we can infer how they process this
information. For the bottom-up processes, we can discern the components in the
visual display — independent of its relevance to the information to be processed — that
best attract people’s visual attention, which provides useful guidelines for designing

multimedia learning material.

6.2.1 Eye movements in reading and language processing

Research on eye movements in reading and language processing indicate that eye
tracking is a promising technique for investigating moment-to-moment cognitive
processing activities. The number of studies concerning eye movements in language
processing and reading is so vast that it is beyond the scope of this thesis to review
them in detail. Instead, I will describe the fundamental eye-movement behavior in
relation to reading and the processing of auditory language.

Remembering that viewing patterns vary from case to case as well as from
person to person, eye-movement patterns in reading are, in comparison to those of
scene perception, relatively predictable. The general characteristics of eye
movements in reading have been examined in many studies. When people are
reading sentences, the fixation duration on average is about 250 ms. When reading
English text, saccade length is on average 7 to 9 characters in size (typically 7-9
characters downstream from left to right) (Liversedge and Findlay, 2000). The
number of characters that a reader can process in the fovea is termed the visual span,
whereas the perceptual span comprises the number of characters that a reader can
process beyond the foveal region. “The perceptual span is asymmetrical about the
point of fixation, being extended towards the direction in which the reader progresses
through the text. For English readers the perceptual span is about four characters to
the left and 15 characters to the right of fixation.” (Liversedge and Findlay, 2000: 10,
cf. Rayer et al., 1980; Rayner et al., 1982). Fixation duration on a word depends on

the lexical, syntactic, semantic, and of course, the visual features of the word. For
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example, longer, low-frequency or semantically ambiguous words are fixated longer
than others. Word skipping, on the other hand, is also quite a normal phenomenon.
Contextual constraint, word frequency, and word length are the most influential
factors for word skipping. Words that are highly constrained by the preceding
context are skipped more frequently than words that are not constrained. High-
frequency words are skipped more often than low-frequency words (Rayner & Well,
1996; Rayner, 1998). Short words are more likely to be skipped than long words
(Brysbaert & Vitu, 1998).

Sometimes regressions are made when readers encounter semantic or
syntactic difficulties in a sentence such as “The horse raced past the barn fell.”
Readers are said to have been ‘garden-pathed’ as they initially analyzed the syntax of
a sentence incorrectly. In this case, regressive saccades are carried out to re-read the
text in order to amend the inappropriate analysis. The number of regressions that
readers make is strongly affected by text difficulty (Rayner, 1998). Moreover, it is
more likely that readers will regress to a word on the current line than to words on
previous lines (Duffy, 1992; Ehrlich & Rayner, 1983). When readers regress further
back in text, they usually make quite accurate saccades to the area of text where they
had problems, which indicates that readers often have good spatial memories for the
text region they had trouble with (Kennedy, 1983, 1992; Kennedy & Murray, 1987).

The eye-mind hypothesis of Just and Carpenter (1987) suggests that readers
try to interpret each word of a text immediately as they encounter it, rather than use a
wait-and-see strategy. The interpretation of each word occurs while the word is being
fixated. When listening, the strategy of immediate interpretation is employed as well.
“The clearest evidence for the immediacy strategy and the eye-mind hypothesis is
that the time spent looking at a word is strongly influenced by the characteristics of
that word” (Just and Carpenter, 1987: 41). As mentioned earlier, fixation duration is
positively related to word length but inversely related to word frequency. Thus,
readers spend relatively more time reading long or low-frequency words. In addition,
gaze duration (the sum of consecutive fixation durations on an item) is unusually
long on a word that is semantically or syntactically difficult or anomalous, indicating
that the semantic and syntactic analyses of each word occur while the word is being
fixated (Just and Carpenter, 1987).

The immediacy strategy reflected in the eye movements when people are
listening to spoken language is also observed in the studies of Tanenhaus et al.
(1995, 1996). In their studies, subjects were required to follow auditory instructions
to manipulate real objects. According to their findings, subjects made a saccadic eye
movement to the target object instantly after hearing sufficient information in the

verbal instruction, which indicates the incremental processing of spoken language.
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On the other hand, visual context clearly influenced the processing of the auditory
instruction. When displaying another candidate object that has a similar name to or
some common features with the target object, it took subjects more time to identify
the target. When there was no alternative candidate referent presented in the visual
context, subjects were able to identify the target object before hearing the end of the
word. Moreover, the same syntactically ambiguous phrase was interpreted differently
in accordance with the different visual contexts. The studies of Tanenhaus et al.
(1995, 1996) demonstrate that the auditory verbal input is very rapidly integrated
with the information given in the visual context, and that the visual context imposes a

strong influence on the earliest moments of language processing.

6.2.2 Eye movements and scene perception

Eye-movement patterns in scene perception are not nearly as predictable as eye
movements in reading. The reasons for the difficulty in predicting viewing patterns
in scene perception are: a) The array of information in a picture is distributed in the
display. It is not simply a sequential alignment of information presented in a text. b)
It is hard to define any grammatical structures of the information depicted in a
picture and therefore we are not able to predict what a viewer will look at first and
how or in what kind of viewing sequences he/she will scan the picture. c) A picture
can display different visual information, such as color, shape, texture, orientation,
motion, etc. simultaneously, with each having a different effect on eye movements.
Because of these difficulties, the findings of studies concerned with eye movements
in scene perception are often controversial.

In general, people can already get the gist of a scene during the first fixation.
Subsequent fixations on the picture are probably strongly guided by this initial
impression. The time required for getting the gist of a scene is probably within the
first 100 ms following the onset of the scene (Biederman et al., 1974, Loftus, 1983).
For such a rapid acquisition, a large amount of peripheral processing is required.
Nelson and Loftus (1980) examined the useful field of view in terms of the
acquisition of substantive information during picture viewing. They pointed out that
the majority of essential information within a fixation on a scene was drawn from the
foveal area (about 2 degrees of visual angle) while less useful information was being
acquired from fairly far into the periphery. The probability of correct picture
recognition was about 60% in the peripheral region, which is not as high as that in
the foveal region (85-90%) but is still above the chance level.

Some studies indicate that viewers tend to quickly get the gist of a scene and

then move their gaze to the informative area. The term ‘informative area’ refers to
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something that is unexpected, surprising, distinctive or has a low probability of
occurring, such as features that do not fit the impression of the scene or the viewer’s
schema for whatever the scene depicts (Mackworth & Morandi, 1967; Loftus &
Mackworth, 1978). One example from the study by Goodman and Loftus (1981)
depicted a fishing scene. In the normal version, the fisherman was pulling a fish out
of the water, while in the unusual version the fisherman was pulling a portrait out of
the water. In comparison to the fish, the portrait attracted many more fixations.
Loftus (1983) supposed that this kind of improbable feature in a scene would be
fixated earlier, more often, and with longer duration.

Furthermore, Loftus et al. (1982) examined how fixation duration was
distributed during scene perception. In an experiment, subjects saw a single picture
for two seconds in a free-viewing situation. The (unpublished) data (reported in
Loftus, 1983) showed that the first fixation on a picture was shorter than subsequent
fixations. Fixation duration of the second or third fixation was the longest, which
probably corresponds to searching or viewing the unusual feature. From the fourth
fixation on, fixation declined monotonically. Some other recent studies also
confirmed the finding that important or interesting objects in a scene are fixated more
and for longer than less important ones, but they did not replicate the finding that
semantically inconsistent objects were fixated earlier than consistent objects
(Kristjanson & Antes, 1989; Christianson et al., 1991; Rayner, 1998).

The findings of Loftus et al. (1982) can describe the temporal distribution of
fixations during scene perception, but they are not able to predict how viewers move
their eyes to scan the information from the scene. Difficulty in forecasting the scan
patterns in scene perception lies in the scan paths being more or less idiosyncratic.
Studies about the effects of viewers’ intentions on their viewing patterns yield some
information regarding the area of the scene to which viewers’ attention is allocated.
A study by Yarbus (1967) clearly demonstrated how a viewer’s intention influences
the way in which he/she inspects a picture. Subjects were shown pictures like the one
in Figure 1. When a subject was asked to estimate the ages of people, most fixations
were located on the faces of the people (see Figure 2). When a subject was asked to
judge the material circumstances of the family, many fixations were on furniture and
women’s clothing (see Figure 3). By contrast, when a subject was asked to examine
the picture without any special intention, the viewing patterns differed from those
with special viewing intentions (see Figure 4).

Another issue of eye movements in scene perception is the relationship
between memory performance and the number of fixations made on the picture.
Boynton (1960) pointed out that when people have limited time to look at a picture,

good searchers make many brief eye fixations, whereas relatively poor searchers
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Figures 1 to 4. (Taken from Yarbus (1967)

make fewer fixations with longer duration. Loftus (1972) found that the more
fixations a person makes on a picture, the better the recognition memory in relation
to that picture. According to Loftus’s point of view, information about the picture is
transferred to memory in discrete chunks, with each chunk corresponding to an eye
fixation. Thus, the greater the number of information chunks, the greater the
likelihood of correct recognition. However, Tversky (1974) found that more fixations
on words was associated with better verbal recall, while fewer and longer fixations
on the picture was associated with better picture recognition. The contradictory
findings of the studies by Loftus and Tversky are probably due to the different
stimuli used in their experiments. Tversky (1974) assumed that longer fixation
duration yields more information per fixation. “Such a scanning pattern, where
breadth is sacrificed for depth, might be efficacious in the recognition task, whereby
success required discrimination between pairs of pictures with many features in
common. If the stimuli are highly differentiated and easily distinguishable, like those
stimuli used in Loftus’s study, cursorily skimming each stimulus may instead be
advantageous” (Tversky, 1974: 278).

6.2.3 The connection between mental workload and eye movements

“Pupillometrics” is a term invented by Hess (1965) to describe a research field

(started in 1960) that encompasses the effects of psychological influences, perceptual
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processes, and mental activities upon the pupil size. The method used to measure
pupil response is referred to as pupillometry. Both positive and negative affect states
exert their influence on pupillary dilation. Extreme fear, for example, evokes a
manifestly enlarged pupil as a reaction to the fright, whereby the dilation persists
even if intense light is shone into the eye. The pupil size actually changes constantly
when we are awake. It is never stationary except during sleep. The pupil is highly
sensitive and reactive to a number of factors, such as: 1) changes in environmental
illumination; 2) closure of the eyelids; 3) accommodation to far and near vision; 4)
general anesthesia, narcotic drugs, and other substances affecting the autonomic
nervous system; and 5) specific types of neurological and brain damage, etc. (cf.
Hess, 1972).

It has been known in psychophysiology that pupils will increase in size
during mental activities. Several empirical studies have investigated the relationship
between pupillary dilation and mental effort. The results of those studies indicate that
the magnitude of pupillary dilation is positively related to the mental effort required
to perform a cognitive task. Kahneman (1973) proposed three criteria for any
physiological indicator of processing load: “1) It should be sensitive to within-task
variations in task demands produced by changes in task parameters; 2) it should
reflect between-task differences in processing load elicited by qualitatively different
cognitive operations; 3) it should capture between-individual differences in
processing load as individuals of different abilities perform a fixed set of cognitive
operations” (Beatty, 1982: 276). In his capacity theory of attention, task-evoked
pupillary response is justified as the physiological measure of processing load, which
reveals the state of mental effort and arousal.

Kahneman and Beatty (1966) examined the task-evoked pupillary response in
short-term memory tasks. One of the tasks was the digit span task, where strings of
three to seven digits were aurally presented at the rate of 1 per second followed by a
2-second pause. After the pause, the subjects were asked to repeat the digit string at
the same rate. The results showed that the pupillary diameter increased with the
presentation of each digit, reaching a maximum in the pause preceding the report.
During the report, the papillary diameter decreased with each digit spoken, reaching
baseline levels after the final digit. The magnitude of the peak pupillary dilation was
a monotonic function of the number of items held in memory. A similar pupillary
function was also obtained when a string of items was recalled from long-term
memory. Another short-term memory task varied in terms of the difficulty of the to-
be-remembered items that required subjects to recall four digits, four unrelated
nouns, or transform a four-digit string by adding one to each item. The results

indicated that pupil diameter increased along with the items’ difficulty.
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Peavler (1974, reported in Beatty, 1982) investigated pupillary response in
digit-span tasks in relation to the limited capacity of short-term memory. Five, nine
or thirteen digits were randomly shown to subjects. During the presentation of the
digit strings, pupil size increased as the number of digits was raised from 1 through
7. Interestingly, at the seventh or eighth digit, the pupillary response reached an
asymptote. No further dilation could be observed afterwards. Since Miller (1956) had
argued in his famous study that the capacity of short-term memory for processing
strings of unrelated digits was restricted to approximately 7 plus or minus 2 items,
the result of Peavler’s study suggested that further increases in task demands could
not evoke more pupillary dilation because the short-term memory was filled to
capacity.

In addition to short-term memory tasks, some other studies examined the
pupillary response during language processing or reasoning tasks. The results
indicated that when subjects were required to judge pairs of words as similar or
different in meaning, the pupils dilated twice as much in relation to the difficult
target words. Ahern (1978, reported in Beatty, 1982) employed Baddeley’s
Grammatical Reasoning Task (Baddeley, 1968) to investigate pupillary response in
sentence processing. Subjects were asked to verify a series of sentences which
described the order of two successive letters—A and B—, for example, A follows B —
BA (true); B is not preceded by A — AB (false). The grammatical complexity differed
in the syntax: active-affirmative, active-negative, passive-affirmative, and passive-
negative. In this task, pupillary dilation increased with the length and complexity of
sentences. Just and Carpenter (1993) explored the intensity of processing load during
sentence comprehension by measuring pupillary response. Simpler and more
complex sentence types were compared. The two more complex sentence types
tested in the experiments were 1) object-relative center-embedded sentences and 2)
filler-gap sentences. An example of the first complex sentence type is: The reporter
that the senator attacked admitted the error. By contrast, the simpler, subject-relative
sentence type is: The reporter that attacked the senator admitted the error. Filler-gap
constructions refer to sentences containing a wh-phrase (the filler) that is associated
with the empty category where its constituent would occur in the canonical version
of the sentence (immediately after the verb). An example of a more complex filler-
gap sentences is: The confused police didn’t know which leader the rioters followed
noisily down the street after the meeting. The simpler sentence with a similar
structure in which the constituents appear in a canonical order is: The confused police
didn’t know whether the rioters followed the leader noisily down the street after the
meeting. The results of this study showed that the pupil began to dilate at the point in

the sentence where a syntactic complexity was first encountered, reaching a maximal

85



6. Eye-Movement Research

diameter about 1.3 seconds later. The gaze duration at this point was raised as well,
indicating the immediate response to the demand for the syntactic processing.

The relationship between mental workload and eye movements can also be
revealed by the saccadic extent. In a study by May et al. (1990), the effect of auditory
task load on the extent of the saccadic eye movement was examined. Subjects were
asked to perform one-, two-, and three-channel counting tasks during free viewing.
As the complexity of tone counting increased, the range of the saccadic extent
significantly decreased. In addition, several studies have reported shrinkage of visual
field as a result of increasing mental workload. Macworth (1965) proposed that the
shrinkage of the functional field of view (a radius of about 2 to 4 degrees
surrounding the point of fixation), serves to prevent an overload of the processing
system when more information is available than can be processed. He referred to this
narrowing of visual field as ‘tunnel vision’. Aside from the effect of mental workload
on the size of the visual field, Rantanen and Goldberg (1999) also investigated how
the shape of the visual field changes as the mental workload increases. Subjects were
required to count three different tones (presented in random order) of a certain
frequency, while their visual field was measured. The size of visual field was
reduced (by 14%) as the complexity of the tone counting task increased to its highest
level, whereby the shape of the visual field became more irregular and smaller, with

a more vertically shortened and horizontally elongated form.

6.3 Analysis of gaze positions during learning with text and pictures

Although many eye-movement studies have been conducted on reading or scene
perception, studies concerned with how viewers integrate verbal and pictorial
information presented by multimedia are still sparse. Only in the last decade have
researchers performed studies dealing with this topic. Some of those studies engage
in qualitative analyses of eye movements. The advantage of qualitative research is
that a viewer’s cognitive processes for integrating verbal and pictorial information
can be studied on the basis of the viewer’s gaze trajectories as a whole. However,
there are also some disadvantages of this kind of research. First, the analysis of eye-
movement data is very time consuming because the amount of data for each subject
is quite large if the time spent on viewing the learning material is several minutes
long. Hence, most of the experiments were conducted with only a few subjects.
Second, the analysis of viewers’ gaze trajectories is a very challenging work,
especially when the material comprises a series of complex pictures (static or

moving) and the text is presented in different modalities (visual or auditory). Specific
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software is required for the analysis of such eye-movement data. Third, the viewing
patterns differ from person to person. Consequently, the generalization of
qualitatively-analyzed eye-movement patterns is a difficult task to achieve.

The quantitative studies, on the contrary, are carried out with more subjects,
whose description of eye-movement behavior can be more generally applicable.
Nonetheless, quantitative eye-movement data may only yield information regarding
the allocation of subjects’ attention to different visual components or to how the
mental workload changes as the quantity as well as the quality of the information to
be processed is altered, but can hardly demonstrate the temporal and spatial
distribution of attention in real time. To investigate the cognitive processes of
multimedia-based learning, from my point of view, both the quantitative and the

qualitative aspects of eye-movement behavior should be taken into account.

6.3.1 Studies concerning eye movements in text and picture integration

Hegarty (1992) investigated how learners coordinate information from text and
diagrams to construct a mental model of a mechanical system. Subjects were asked
to process information regarding a series of pulley systems. The eye-fixation data
showed that the comprehension process was largely text directed. Subjects usually
read a small section of the text and then inspected the corresponding components in
the diagram, suggesting that the construction of a mental model is an incremental
process. Moreover, the eye-movement behavior showed that subjects tended to shift
their gaze toward the diagram at the ends of sentences or clauses. It appears that they
had built an initial representation of each clause they read, keeping those
representations in a temporary buffer and then checking them against the diagram
when the buffer was full. After the subjects read the sentences describing the
kinematics of the pulley system, they spent more time inspecting the diagram,
whereby they (according to Hegarty’s assumption) probably tried to animate the
components of the pulley system that were initially represented as static components
in their mental models. When the subjects had finished reading the whole text, their
final inspection of the diagram tended to be longer and more global than before. In
contrast, for subjects who read the text and viewed the diagram alternately, the
diagram inspection was shorter and more focused on the components about which
they had most recently read.

In another experiment, Hegarty examined individual differences in processing
text and diagrams. Subjects with high ability (spatial as well as mechanical abilities)
were contrasted with those with low ability. The results indicated that the low-ability

subjects inspected the diagram more frequently and read fewer clauses between
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diagram inspections. In addition, Hegarty and Just (1989) found that when text was
difficult to understand, subjects with high ability compensated for the difficulty in
the text by taking more time to view the diagram, whereas low-ability subjects spent
less time inspecting the diagram because they were less able to extract information
from it. Similarly, when some information was missing from the text, low-ability
subjects spent less time inspecting the diagram since they lacked prior knowledge of
the domain which would have helped them process the diagram.

Faraday and Sutcliffe (1997) conducted four studies to investigate learners’
attention and comprehension of multimedia presentations. In the first study, they
employed an eye-tracking system to observe the viewing processes for different
visual components, such as labels, and static and moving objects in a multimedia
display. Subjects were asked to view an animation showing DNA repair by photo-
reactivation, while their eye movements were measured. The text accompanying the
animation was presented auditorily. According to Faraday and Sutcliffe, the subjects
tended to shift their gazes to the object that had just appeared in the animation and
tracked the object’s path till the end of the movement. On the other hand, when a
motion and a label were presented in different places at the same time, some of the
subjects failed to attend to the label because their attention was totally directed
toward the moving object, while some other subjects ignored the motion. In general,
the presentation elements received more visual attention if they were referred to in
the speech track.

In the second study, subjects with high- and low-domain knowledge were
compared in terms of their comprehension of the same multimedia presentation. The
comprehension was assessed by a free recall test. The number of propositions that
were correctly recalled served as a measure of recall accuracy. The difference in
recall between the two subject groups was not significant. High-domain knowledge
subjects generally recalled a bit more than their counterparts. Propositions that were
given only in speech or in animation were generally poorly recalled, whereas
propositions in speech reinforced by labels were well recalled.

Faraday and Sutcliffe improved their design further by adding more text
captions and additional speech cues to reinforce the captions or more complex
motions, and by modifying certain parts of the animation by changing the color and
shape of the objects involved. In the third study, they tested the recall of the re-
authored version of the multimedia presentation only with low-domain knowledge
subjects. Significant improvement in recall was found, in comparison to those low-
domain knowledge subjects who viewed the previous version. To ensure that the
positive effect of the re-authored version was not simply caused by adding extra

information to the original version, they conducted a fourth study by testing the text-
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speech only version with another subject group with low-domain knowledge. The
text script originated from the third study and was accompanied by a matching
speech track. The recall performance of text-speech only group was then compared
with those of the second study and the third study. The results showed that the
performance of the text-speech group was substantially worse than that in the third
study, but did not differ from that in the second study. Faraday and Sutcliffe regard
this result as a confirmation that the positive effect of the re-authored version did not
only result from the additional information presented in the text captions and the
speech track. The modification of the animation was also vital for the
comprehension.

In my view, there are problems with the design of the fourth study. The fact
that the recall performance of the text-speech only group was considerably worse
than that in the third study is not necessarily due to the effect of the modified
animation, but could also be attributed to the absence of animation. The fact that the
text-speech only group did not outperform the group in the second study cannot be
regarded as evidence in favor of the view that the additional verbal information did
not support the recall performance, since subjects in the second study could view the
animation as an additional resource. A better way of specifying the effect of
redesigning the animation and adding verbal information would be to conduct a
study using the same text and speech employed in the third study and the original
animation in the fourth study, instead of using a text-speech only version.

Despite the minor shortcomings in their research methodology, the studies by
Faraday and Sutcliffe still provide some design guidelines that might be useful for
producing multimedia learning material, such as: 1) Use animation with care, since
motion can capture learners’ attention in a positive as well as a negative way. 2)
Avoid displaying several presentation items at the same time, but gradually reveal
labels and objects to control viewing order. 3) Speech cues should be synchronized
to the corresponding labels, which may support the integration of information. Allow
enough reading time after cueing a label. 4) Speech and animation can be used to
emphasize information; 5) An object and its label should appear together to improve
identification. 6) Animation should be cued by speech. Complex or important
information given in speech could be reinforced by inserting a caption concurrently.

Furthermore, it is necessary to note that there are only a few studies that
qualitatively analyze subjects’ gaze positions while they are viewing moving
pictures. Technically, it is actually difficult to get accurate gaze positions when the
visual stimuli are not static because there will be a shift between the measured gaze
positions and the real gaze positions if the eye fixations are plotted on a scene of the

moving pictures. Therefore, it is very hard to qualitatively analyze gaze trajectories.
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The eye-tracking system Faraday and Sutcliffe used in their experiment was a
pupilometer system with a temporal resolution of 20 Hertz. The raw data of gaze
positions were time-sliced into four 5 second parts, and the fixations close to each
other were regarded as fixation clusters. The eye-movement data in relation to the six
subjects were gathered together to construct a mixed trace. In my opinion, the
accuracy of the measurement of gaze positions in their study cannot be very high
because the time slice of each animation section was large. Therefore, the fixation
graph they developed could only roughly outline where subjects’ visual attention was
located in the scene. Another problem is that when subjects use different viewing
strategies to inspect the same visual stimuli, there are actually no common viewing
patterns among the subjects. The meaningfulness of constructing a common scan
path to represent subjects’ viewing patterns is dubious.

Narayanan and Schrimpsher (2000) developed more sophisticated software
for aggregating and analyzing learners’ eye movements while they were learning the
Quicksort algorithm displayed by a system referred to as HalVis (Hypermedia
Algorithm Visualization), which contains five different views. Each view (or section,
respectively,) provides information on different levels of the algorithm (detailed or
fundamental) presented in text, graphics, animation, or a combination thereof. They
used an ISCAN ETL-400 eye tracker with a temporal resolution of 60 Hertz. An eye
fixation is identified if it is within a 20x20-pixel square and lasts for at least 100 ms.
The software module GRIP (Gaze Recognizing and Information Processing)
implemented in C++ is used for analyzing the eye-movement data. GRIP is able to
deliver specified data about fixations on the display regions occupied by different
visual components in various screens (such as text, static pictures or animation) when
a learner is indeed interacting with those components. The software provides time
stamps giving the chronological order of viewing. In addition, GRIP can aggregate
and reduce the voluminous raw eye-tracking data. Successive fixations at the same
location are added up into gazes. A jump is computed as the visual attention shifts
from one visual component to another. Data, such as the total time a learner gazed at
a visual component when it was visible or active, or the percentage of this time that
was related to the total visible/active time of this component, etc. can also be
computed.

The results of this study showed that the component the subjects viewed most
frequently was concerned with the questions about the algorithm, which they could
answer while also receiving feedback from HalVis. Besides the questions, it was
animation that attracted the most attention. The textual explanation of the algorithm
that was shown alongside the animation also received much attention. Gaze shifts

from text to a graphical component (static or running animation) and vice versa could
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often be observed. According to Narayanan and Schrimpsher, when gazes switch
back and forth between different visual components representing the same
information, this indicates that learners are trying to integrate different
representations to construct their mental models. On the other hand, if the frequency
of gaze shifts is high, it suggests that there is a comprehension bottleneck. In my
view, a high frequency of gaze shifts between the visual components could also
simply result from the characteristics of the visual components. Gaze shifts between
a running animation and text, for example, need to be executed quickly if the
animation and the text are presented at the same time. Another possible explanation
is that the to-be-integrated information is either complex or large in terms of amount.
More gaze shifts are mandatory, but that does not necessarily give rise to a
comprehension problem. The learning performance should be evaluated together
with the eye-movement data to find out whether there is actually a “comprehension
bottleneck™ and what could be its cause. Unfortunately, there is no information about
learning performance mentioned in their paper.

Finally, I would like to point out that it is very time consuming and
challenging work to analyze the voluminous eye-movement data produced in a
multimedia-based learning scenario. The study by Narayanan and Schrimpsher
(2000) has provided a means to overcome this difficulty. In addition, the method they
employed for the quantitative analysis has attempted to yield more fine-grained
descriptions of the eye-movement behavior during learning, which is carried out by
analyzing the chronological order of viewing different visual components in different
sections of the learning tool. Since each section contains different concepts of the
topic to be learned, the observed eye movements can demonstrate how the learners

integrate information from different sources to understand the specific concepts.

6.4 Summary

In this chapter, I introduced the eye-movement variables that are usually measured in
the eye-tracking experiments. Those variables are: the number of fixations, the
fixation duration, the positions of fixations, the saccade length, and the pupil sizes.
The cognitive processes underlying the eye-movement behavior are elucidated with
respect to reading, scene perception, and mental workload. Due to the voluminous
data, recent eye-movement research that investigates how people mentally integrate
multimedia information has employed more sophisticated software to compute the

data in a manner that can be more easily analyzed and interpreted.
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7.1 Introduction

In Chapters 4 and 5, I reviewed a number of studies that are concerned with the
effects of multimedia presentations (MPs) on learning. It appears that research
investigating the issue has overall yielded inconclusive results. Thus, more research
is required to systematically investigate the advantages or disadvantages of MPs in
education. Several studies have examined the influence of MPs on learning scientific
concepts, such as the working of some mechanical device, or the meteorological
conditions for a thunderstorm or the like. Other studies have investigated the effects
of using MPs for teaching mathematics, physics, biology, chemistry, and medicine,
etc. However, with a change in the multimedia-application purpose, the effects of
MPs on learning may sometimes be quite different.

The current research is a kind of basic research, the objectives of which are to
investigate: 1) whether moving pictures are superior to static pictures in conveying
information that involves a series of sequences of actions (i.e. procedural tasks),
movement of objects, or changes in a state of affairs over time; and 2) whether
presenting information in different modalities (e.g., audio-visual format) is indeed
beneficial for information processing.

To find answers to these questions, I conducted an experiment in which
subjects were asked to learn how to assemble a three-dimensional puzzle on a
computer. I not only investigated the effects of different MPs on learning but also
used eye-tracking techniques to examine subjects’ information-processing strategies
during learning. In Sections 7.2 and 7.3, I shall give detailed information about the

variables, design, and hypotheses in regard to this experiment.

7.2 Variables

7.2.1 Independent variables

The information examined here was both verbal and pictorial in kind. Accordingly,
the learning materials were presented using texts and pictures in different modalities
simultaneously. To systematically examine the effects of different MPs on learning

efficiency, a 2 (text mode) by 2 (picture mode) factorial design was used in this
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experiment. The two levels of the factor text mode were ‘written’ and ‘spoken’
whereas those of picture mode were ‘static’ and ‘moving’. The presentation modes of
text and picture were cross-combined. In combination, there were altogether four

experimental conditions of the learning materials:

e Condition (written/static);
e Condition (written/moving);
e Condition (spoken/static);

e Condition (spoken/moving).

Further two independent variables that determine eye-movement behavior
were analyzed: the number of propositions in the texts, and the number of objects in
the pictures. Finally, subjects’ spatial ability and prior experience with similar 3D
puzzles were also taken into account. They were used as covariates in the statistical

analysis for assessing the learning efficiency.
Spatial ability

With regard to the learning task in this experiment, the specific ability facilitating
perception and comprehension of the information to be learned would be the spatial
ability. 1t refers to the ability to process spatial information, which should affect the
efficiency of learning instructions involving assembly and sequences of actions. To
measure subjects’ spatial ability, I have used the Cube Folding Test developed by
Meili (1955). In this test, subjects were given a number of drawings each of which
depicted a cube or a block unfolded or unwrapped. Subjects’ task was to imagine
how to fold the pattern to form a cube or block, and then mark the square opposite
the square marked with ‘u’ and mark those edges that would touch the marked edges
on the pattern if folded. A sample item is given in figure 1. Subjects’ achievements in

the Cube Folding Test should be regarded as a valid measure of their spatial ability.
Prior experience with similar 3D puzzles
To roughly estimate subjects’ prior experience with similar 3D puzzles, subjects

were asked to rate the amount of their experience on a four-point scale (very much,

much, a little, none).
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Question Answer
U
u —+ L -1
D nrCon—

Figure 1: A sample item from the Cube Folding Test

7.2.2 Dependent variables

According to the conventional methods for measuring learning outcomes, subjects
can, for example, be asked about the content of the learning materials. Multiple
choice tests, free recall, and problem solving tests are frequently employed methods.
The first two methods measure how well or to what extent subjects can remember the
information after learning, whereas problem-solving tests measure to what extent
subjects can apply the information they just learned to solve certain problems. For
example, if subjects have learned how a mechanical system works, a typical
problem-solving test might include questions concerning trouble-shooting. Since the
solution to the cube puzzle is concerned with the description of sequential or
successive actions, it is, in my opinion, not appropriate to ask subjects to verbally
recall the content of those instructions. The easier and the more appropriate way to
assess subjects’ performance in this experiment is to ask them to perform the actions
described in the instructions, i.e. to assemble the puzzle.

The main dependent variable used for assessing the learning outcomes was
learning efficiency, which was defined as follows: Learning Efficiency = The score
subjects achieved in the assembly task / (the learning time + the task time) (for more
details see Section 7.5.1). The reason why I took learning time and task time into
account was that most of the studies that examine the effects of MPs on learning
have ignored time as a parameter in efficiency in information processing. However, a
particular MP might lead to the best learning result at the cost of learning time. In my
view, a really good MP should be able to present information in a way in which
learners can easily process the information in the least amount of time. As to the task
time, I assume that the better a subject has comprehended the information, the less

time he or she will require to retrieve the information for performing the task.
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In addition to learning efficiency, the time subjects spent to learn each
instructional section (section time) and the frequency with which they repeated each
section (section frequency) were analyzed. Moreover, as an empirical approach to
learning strategies, I investigated subjects’ eye movements in order to analyze the
underlying cognitive processes regarding how subjects process the information in the

learning materials.

Eye-movement variables and information processing strategies

With the help of eye-tracking techniques, subjects’ information-processing behavior
can be observed on-line. By measuring eye movements, it is possible to track
subjects’ focus of attention during stimulus inspection, and thus, I am able to
reconstruct their learning strategies and learning processes. For example, a subject’s
eye movement trajectories can indicate at what time and in which order the subject
has been paying attention to various elements within the learning materials.

All in all, the eye-movement variables measured in this experiment included:
the number of fixations, the fixation duration, the fixation rate, the number of gaze
changes between the text and the picture regions, and the percentage of time spent on
the text vs. the picture region of the instructional display. I examined how these eye-
movement variables were influenced by the experimental conditions, text mode,
picture mode, the number of propositions, objects, and visits to the same section.

Generally speaking, the number of fixations is positively related to the
amount of visual information to be processed and the time taken to inspect the
stimuli. A high density of fixations can be taken to indicate that the subject is
examining a particular area with particular care. Long fixation duration or large pupil
size is a sign of great mental effort (Velichkovsky, 1995). Due to the limitations in
terms of the function of the eye-tracker employed in this experiment, the
measurement of pupil size is, however, problematic if I want to compare the pupil
sizes between subjects. Since the SMI EyeLink Eye-Tracking System is a video-
based eye-tracking system, the pupil sizes measured by this system are affected by
the distance between the eye cameras and a subject’s eyes. The closer the cameras
are set to the eyes, the larger the pupil sizes will be. The variation in the distances
between the eye cameras and the eyes cannot be controlled very well because the eye
cameras are adjusted manually. Due to this limitation of the eye-tracking system,
pupil sizes cannot yield plausible information about the intensity of mental workload,
and therefore were not analyzed in this experiment.

Moreover, the fixation rate, which is defined as the number of fixations per

second, can yield information about the speed of a subject’s eye movements. The
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number of gaze changes between (written) text and picture regions shows how often
subjects switched their gaze positions between those regions in order to integrate the
textual and pictorial information. Finally, the percentage of time subjects spent on
reading the texts vs. inspecting the pictures gives information about how intensely

subjects paid attention to each source of information.

7.3 Hypotheses

In regard to the influence of picture mode, I assume that moving pictures should be
superior to static pictures in enabling subjects to construct an appropriate mental
model of the assembly procedures. Subjects in moving-picture conditions should
outperform subjects in static-picture conditions. As to the influence of text mode, I
assume that the modality effect would hold because both the text and the picture
information involved in the instructions is not highly complicated. When the effects
of text modes and picture modes are combined, I assume that subjects in Condition
(spoken/moving) should learn most efficiently because moving pictures can best
demonstrate the procedures to be learned, and spoken texts can facilitate information
processing. Subjects in Condition (spoken/static) should outperform subjects in
Condition (written/static) because of the modality effect. Moreover, due to the
advantage of moving pictures, subjects in Condition (written/moving) should

outperform subjects in Condition (written/static).
Eye-movement hypotheses

The information processing strategies of the subjects should be revealed by their eye-
movements. | assume that with static pictures and written texts, subjects’ eyes will
switch between viewing the text and the picture regions of the display more often
than subjects who view video clips and written text. In the first case, subjects can
easily integrate information across fixations directed at the text and the pictures,
whereas in the second case, subjects would miss some information from the video
clips while attending to the text. To avoid any loss of important information, subjects
will probably view the videos and read the text separately.

Furthermore, the speed of eye movements, or the fixation rate, to be precise,
should be affected by the spoken text: it should be slower than when subjects view
the pictures without having any auditory input simultaneously. When processing
spoken texts with static pictures, subjects’ eye movements should be slower than

when processing written texts with static pictures, because the way in which subjects
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inspect the pictures should be influenced by the content of spoken text (provided that
subjects pay attention to it).

The number of fixations should be positively related to the number of
propositions in the texts and to the number of objects depicted in the pictures because
the more information that is to be processed, the more fixations are required to
establish the appropriate referential links. The fixation rate, which refers to the
number of fixations per second, should be positively related to the number of objects
as well because many brief eye movements are supposed to be more efficient for
scanning a large number of objects. If so, the inverse should hold for fixation

duration.

7.4 Method

7.4.1 Subjects

The subjects were 48 students from different departments at the University of
Bielefeld. Their ages ranged from 19 to 39. They were paid for their participation in
this experiment. All subjects had German as their first language, and not one of them
was color-blind. Most of them did not have any experience with similar puzzle

games.

7.4.2 Materials

The learning materials demonstrated the procedures for assembling a 3D cube
puzzle. They were divided into 10 sections each of which was presented as a web
page on a computer screen. The first section included a brief overview of the puzzle.
In each successive section, one particular step in the solution to the puzzle was
presented in detail. According to the sequential nature of the procedures, the 10 web
pages were linked in a linear fashion, so that subjects could study the solution step by
step. Subjects were free to jump to the previous section or to the next section by
means of a mouse click on one of the two navigation buttons displayed in the bottom
right corner of the screen. The display was set to 640x480 pixels in true color (24
bit).

Corresponding to the four presentation conditions, four different layouts of

the materials were prepared. Examples are given in Figures 2 to 5:
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1.

Condition (written/static)

For this condition, there were two photographs at the top of every page. Each
photograph was 265x230 pixels in size. The photograph on the left side showed
the state of the puzzle parts before they were assembled. The photograph on the
right side showed the state after assembly. A small arrow between the two
photographs indicated the order in which they should be viewed. Below the
photographs there was a written text which explained the action shown by the

photographs.

Condition (written/moving)

For this condition, there was a video window 300x260 pixels in size at the top of
the screen. A control bar with two buttons was below the video window. By
clicking on these buttons, subjects could start, stop, or replay a video clip
depicting the assembly of particular parts of the cube in close correspondence to
the photographs used in Condition (written/static). The same texts as in

Condition (written/static) were shown below the video window.

AEpls
I

Schrift 2: Nehmen Sie die beiden griinen E-formigen Klammern und
stecken Sie sie symmetrisch an die beiden Seiten des gelben Klotzes in die
Offungen des quadratischen hinein, wobei die Liicken der griinen
Klammern nach vorne gerichtet sein miissen.

]

Figure 2: An example of the materials shown in Condition (written/static)
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Ei C:AYING-HUANWUERFELAEXPIBSO HTH - Microsoft Internet Explorer

Figure 3: An example of the materials shown in Condition (written/moving)

3. Condition (spoken/static)
For this condition, the same photographs as in Condition (written/static) were
used in the corresponding places. In contrast to Condition (written/static),
however, the texts were presented auditorily. As soon as a page was loaded, a
sound file presenting the spoken text would run automatically. In order to set the
volume, or to replay or stop the spoken text, the subjects could use a control bar
located below the photographs.

Figure 4: An example of the materials shown in Condition (spoken/static)

4. Condition (spoken/moving)
For this condition, the same video clips as in Condition (written/moving) were

employed. In contrast to Condition (written/moving), however, the text was
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presented auditorily, synchronized with the video clip. The video clip with the

spoken text would play automatically as soon as a page was loaded. In addition,

subjects could replay or stop the video clip by means of a control bar with two

buttons below the video window.

[ C:AYING-HUAVWUERFELAEXP1DS0.HTM - Microsoft Internet Explorer HEER
File Edt ‘iew Go Favoites Help

iz

Figure 5: An example of the materials shown in Condition (spoken/moving)

7.4.3 Apparatus

An SMI EyeLink Eye-Tracking system was used to measure subjects’ eye

movements. The video-based system consists of two standard computers and an eye-

tracker headset.

The first computer (“Subject PC”) is used for displaying stimuli. It has a
Pentium 166 processor and comes with a 20” CRT monitor. Each corner of
the monitor is marked by an infrared LED (light emitting diode). The learning
materials and the stimuli for calibration were displayed on the subject’s
monitor.

The second computer (“Operator PC”) is used for recording the data
received by the cameras and for calculating any eye movement parameters. It
is equipped with a Pentium 133 processor and a 17" CRT monitor. On that
screen, the operator can monitor the subjects’ eye movements while the
experiment is running, thus allowing the operator to decide about re-
calibration in the course of the experiment. The subject PC and the operator
PC are linked by an Ethernet-Link. The operator PC is responsible for
recording data received by eye- and head-cameras, and for computing the

gaze positions, saccade length, and fixation duration, etc.
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- The eye-tracker headset (see Figure 6) supports three miniature digital
infrared cameras. One camera (the “head camera”) is directed at the subject’s
monitor; it receives the signals from the four infrared LEDs. Two more
cameras (the “eye cameras”) that are directed at the subject’s eyes yield

digital images of the pupils, which can be analyzed by the hardware and

1

software in the operator PC.

Figure 6: The eye tracker headset of the SMI EyeLink System (Pomplun (1998))

With the help of the LEDs in the corners of the subject’s monitor and the
head camera attached to the eye tracker headset, the position of the subject’s head
can be calculated relative to the monitor. The eye cameras attached to the headset
yield information about the position of the subject’s pupils, so that, in effect, the
pupil positions can be computed relative to the positions of the LEDs on the monitor.
The spatial precision of the gaze position measurement lies within the range from
0.7° to 0.9°, and the temporal resolution of the system is 250 Hz. A scheme of the
SMI EyeLink eye tracking system is depicted in Figure 7.

Prior to eye tracking, the system has to be calibrated. The calibration yields
reference data for the computation of gaze positions. Calibration proceeds as follows:
a dot is presented successively at nine different positions on the subject’s monitor,
and the subject has to fixate this dot as accurately as possible every time it appears

on the screen.
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Figure 7: Scheme of the SMI EyeLink System (adapted from Pomplun (1998))

In order to reconstruct the subjects’ gaze trajectories ‘a posteriori,” that is, to
determine when and where subjects had been looking, their eye movements had to be
projected onto the stimuli they viewed at that time. In doing so, their eye movements
were synchronized with the stimuli by means of a video recording system for tapping
the sequences of the stimuli and a software specially developed for this purpose. An
AVER KEY interface was employed to convert the signals delivered by the graphic
card of the subject PC into video signals, so that a VISCA recorder (video system
control architecture; SONY CVD-1000) could be used to videotape the sequences of
the stimuli on a Hi-8 video cassette.

The program used to synchronize eye movements with the videotaped stimuli
was VIPER (Clermont, 1995). With the help of VIPER, researchers can observe a
subject’s eye movements which are shown as two cursors (one for the left eye and
one for the right eye) moving across the stimuli. Although it is impossible to evaluate
the observation of eye movements via videos in a quantitative way, the visualization
of eye movements on a videotape provides the best way of obtaining qualitative data

that give an impression of the dynamics of attention.
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7.4.4 Procedure

Subjects were randomly assigned to the four experimental conditions. They were

asked to learn the materials to such a degree that they felt they could successfully

solve the cube puzzle. The results of their learning were tested immediately after

they finished learning. While they were studying the materials, their eye movements

were measured and recorded on a videotape.

The course of an experimental session (maximally 60 minutes) can be

roughly divided into four phases:

Phase I: Subjects were given all the parts of the cube and 10 minutes to solve
the puzzle on their own. The purpose of this phase was to let the subjects
become acquainted with the puzzle and to get an idea of the problem they had
to solve. Those who were unable to solve the puzzle were allowed to proceed
to Phase 2.

Phase 2: This was the information processing phase. During this phase,
subjects had to learn how to solve the cube puzzle on a computer. While the
subjects were studying the instructions, their eye movements were recorded.
Basically, there was no time limit for this phase. Subjects could browse the
instructional sections at their own pace; they were allowed to view each
section for as long and as frequently as they liked. As soon as the subjects felt
that they had learned how to solve the problem sufficiently well, they had to
notify the experimenter to end this phase. The overall time a subject required
for learning was recorded as his or her learning time.

Phase 3: This was the test phase. During this phase, subjects were given all
the cube parts again. They had to assemble them as quickly and correctly as
possible in line with the instructions they had been given in Phase 2. The time
for assembly was limited to 15 minutes. Altogether, there were nine
operations to be performed to assemble the cube. Each correctly performed
operation scored one point. The maximum score was 9 points. Aside from the
assembly score, the time a subject took to assemble the cube was also
recorded.

Phase 4: During this phase, some secondary data were collected. First,
subjects’ spatial ability was tested by using the Cube Folding Test, which
took about 10 minutes. Secondly, a questionnaire was administered to the

subjects.

In the questionnaire, demographical details such as age, sex, and subject of study

were ascertained. Then, the following questions were to be answered:
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1. How would you rate the comprehensibility of the texts you have read or
heard? (Very easy/ Easy/ Medium/ Difficult/ Very difficult)

2. How would you rate the comprehensibility of the pictures or the videos you
have seen? (Very easy/ Easy/ Medium/ Difficult/ Very difficult)

3. What has been crucial to you in understanding the solution? (The texts/ The
graphics/ Both)

4. What has supported you the most in memorizing the solution? (The texts/
The graphics/ Both)

5. How much experience did you already have with similar 3D-puzzles? (Very
much/ Much/ Not so much/ None)

7.5 Results

7.5.1 Learning efficiency

In order to assess the learning outcomes, I would like to first of all define suitable
criteria for the assessment. Since there was no time limit for studying the materials in
this experiment, subjects’ learning performance could not be judged only based on
their assembly score. What is more appropriate is an achievement index that assesses
the subjects’ learning efficiency. In so doing, I have taken the following criteria into

consideration:

- The score for assembling the cube (C_score)
- The time used for learning the instructions (LT)
- The time taken for assembling the cube (AT)

Due to the negative correlation between AT and the C _score (r =- 0.779; p <

0.001), it is more appropriate to measure learning efficiency as follows:
Learning efficiency (LE) = C_score/(LT+AT)

That is, learning efficiency was therefore high if the C score was high while both
learning time (LT) and assembly time (AT) were short.

It should be pointed out that the maximum time for assembly was 15 minutes.
However, some subjects aborted the assembly task because they could not remember
any further information from the materials to complete the cube. In this case, their

C _score was registered as they aborted the task, and their AT was automatically
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registered as 15 minutes because their performance would not have improved even if
they had had more time for doing the task.

In addition to the experimental conditions, two further factors should be taken
into account as well, namely, subjects’ spatial ability and the amount of experience
gained with similar 3D-puzzle games. These factors were entered as covariates in an
analysis of covariance for examining the effect of MPs on learning efficiency.
According to the ANCOVA, subjects’ spatial ability and prior experience were
equally distributed among the four experimental conditions.

Figure 8 shows the learning efficiency as a function of the experimental
condition. Simple factor effects revealed that text mode had a significant effect on
learning efficiency (F(1; 42) = 11.006; p < 0.005): LE was higher for spoken-text
conditions (mean LE = 0.009) than for written-text conditions (mean LE = 0.007). In
contrast, the effects of picture mode and the interaction between text mode and
picture mode were not significant. However, this pattern of results was in line with a
tendency towards an interaction between text mode and picture mode (F(1; 42) =
2.672; p = 0.11), which indicates that the effect of text mode on learning efficiency
was more or less dependent upon the accompanying picture mode. Therefore, the
superiority of spoken texts was applicable only to moving pictures but not to static
pictures.

Pairwise comparisons using t-tests revealed that the mean learning
efficiency of Condition (spoken/moving) was significantly higher than that of
Condition (written/static) (t(22) = -2.365; p < 0.05), Condition (written/moving)
(t(22) = -2.773; p < 0.05), and Condition (spoken/static) (t(22) = -2.271; p < 0.05).
The differences between Condition (written/static) and Condition (written/moving),
Condition (written/static) and Condition (spoken/static), and between Condition

(written/moving) and Condition (spoken/static) were not significant.
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Figure 8: Learning efficiency as a function of experimental condition
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7.5.2 Learning time

While the learning efficiency gives information about how efficiently subjects have
learned, the learning time can show us how much time subjects have spent in
processing the learning materials to achieve that performance. Figure 9 shows the
mean learning time for the four experimental conditions. Condition (written/moving)
had the longest learning time on average (mean = 675.263 sec) whereas Condition
(spoken/moving) had the shortest such time (mean = 505.904 sec). The mean
learning time was independent of text mode and picture mode. However, the
interaction between text mode and picture mode was significant (F(1; 44) = 4.780; p
< 0.05). Pairwise comparisons using t-tests showed that the learning time in relation
to Condition (spoken/moving) was significantly shorter than that for Condition
(written/moving) (t(22) = 2.104; p < 0.05) and Condition (spoken/static) (t(22) =
2.724; p < 0.05).
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Figure 9: Mean learning time as a function of experimental condition

In order to outline the learning processes, I analyzed two dependent variables:
the section time and the section frequency. The reason why I analyzed these two
variables was that the total learning time of a subject was not able to reveal the
policy related to how the subject devoted time to study a particular instructional
section, or how frequently he/she needed to repeat (rehearse) each section, in order to
memorize it well. To investigate the extent to which the information processing was
exactly influenced by the presentation conditions or by the quantity or quality of the
information to be learned, analyses of the section time and the section frequency

were deemed to be essential.
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7.5.3 Mean section time

This variable is concerned with the time subjects on average spent learning an
instructional section. Factors affecting this variable were the presentation conditions,
the number of propositions, the number of objects, and the number of visits to that
section. Both between-conditions and within-condition analyses were carried out.
Between-conditions analyses made it possible to relate any differences between
presentation conditions to specific structural details concerning the multimedia
information, whereas within-condition analyses were suited to revealing specific

details regarding the course of information processing.
7.5.3.1 Between conditions analyses

First, the mean section time for the four experimental text-picture conditions was

compared. Figure 10 shows the mean section time as a function of experimental
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Figure 10: Mean section time by condition

Both text mode (F(1; 1328) = 5.297; p < 0.05) and picture mode (F(1; 1328)
=73.110; p < 0.001) as well as the interaction between them (F(1; 1328) = 40.826; p
< 0.001) had a significant effect on the mean section time. When written texts or
moving pictures were presented, the mean section time was longer. Post-hoc
comparison using Bonferroni tests showed that the mean section time of Condition
(written/moving) was significantly longer than that of the other conditions, whereas
the mean section time of Condition (written/static) was the shortest among the four

experimental conditions.
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Figure 11 depicts the mean section time as a function of section. By
comparing the mean section time between the four conditions separately for each
section, significant differences could be found in sections S0, S1, S2, S3, S7, S8 and
S9. This means that the presentation mode mostly took effect in the first and the last

sections of the learning material.
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Figure 11: Mean section time as a function of experimental

condition, by section
7.5.3.2 Within-condition analyses

The analysis of the mean section time within each condition indicated that there were
some significant differences in the mean section time between sections for Condition
(written/static) (F(9; 440) = 2.201; p < 0.05), Condition (spoken/static) (F(9; 335) =
3.968; p < 0.001), and Condition (spoken/moving) (F(9; 250) = 3.203; p < 0.005).
The Bonferroni tests revealed that the differences for Condition (spoken/static) were
between SO and S1, SO and S7, and S5 and S7, whereas those for Condition
(spoken/moving) were between S5 and S7, and S7 and S9.

7.5.3.3 Effect of the number of propositions
The criteria used for counting the number of propositions were developed by Kintch

(1974), which can be regarded as a valid measure of the semantic content of a text.

Word categories regarded as constituting a proposition were verbs, adjectives,
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adverbs, conjunctions, prepositions, and quantifiers. Table 1 shows the number of

propositions in each section.

SO S1 S2 S3 S4 S5 S6 S7 S8 S9

11 5 15 14 15 14 16 12 11 11

Table 1: Number of propositions of the ten instructional sections

Figure 12 shows the mean section time as a function of the number of
propositions. The number of propositions had a significant effect on the mean section
time (F(5; 1326) = 7.233; p <0.001). Due to the large variance between the values, it
seemed appropriate to divide them into two conditions (few propositions (5, 11, or
12) vs. many propositions (14, 15, or 16)) to find out the general characteristics of

the relationship that holds between the number of propositions and the mean section
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Figure 12: Mean section time as a function of the number of propositions

A t-test showed that subjects took significantly less time to learn the sections
that contained few propositions (mean = 18.827 sec) than those containing many
propositions (mean = 21.962 sec) (t(1330) = -3.526; p < 0.001). Altogether, the data
indicated that, the higher the number of propositions, the higher the mean section
time. Pairwise comparisons by means of Bonferroni tests revealed that significant
differences in the mean section time existed between propositions 5 and 14, 5 and 15,
11 and 12, 12 and 14, 12 and 15, 12 and 16.
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7.5.3.4 The effect of the number of objects

The number of objects shown in the pictures can be considered to be an indicator of
the complexity of the pictorial information. The method used for counting the objects
in the diverse sections was as follows. Each part of the puzzle was counted as an
object. If a part of the puzzle was fitted into another part or other parts, then the
aggregated parts were regarded as one object. The number of objects was obtained
by counting the objects that were to be seen in the pictures or video clips. The
procedure for counting objects in the static pictures, however, differed slightly from
that in relation to the video clips. In the static-picture version, there were two
pictures in each section. The number of objects in a section was calculated by adding
the number of objects in those two pictures. In the moving-picture version, the
subjects saw how the parts of the puzzle were assembled in action. In this case, the
number of objects in a section was obtained by counting the objects initially shown
in the video clip. Tables 2 and 3, respectively, show the number of objects in the

static and the moving pictures of each section:

SO S1 S2 S3 S4 S5 S6 S7 S8 S9

13 6 6 5 3 3 3 3 5 3

Table 2: The number of objects in each section of the static-picture version

SO S1 S2 S3 S4 S5 S6 S7 S8 S9

12 4 4 3 2 2 2 2 3 2

Table 3: The number of objects in each section of the moving-picture version

Figure 13 gives the mean section time as a function of the number of objects.
The effect of the number of objects on the mean section time was significant (F(6;
1325) = 15.337; p < 0.001). It needs to be borne in mind that the number of objects
was dependent on picture mode: objects 5, 6, and 13 occurred only in the static
pictures, whereas objects 2, 4, and 12 occurred only in the moving pictures.
Therefore, the effect of the number of objects should be analyzed separately for static

and for moving pictures.
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Figure 13: Mean section time as a function of the number of objects

By taking picture mode into account, the data showed that, for static pictures,
there was a strong tendency (F(3; 791) = 2.397; p = 0.067) towards a positive
relationship between the number of objects and the mean section time. For moving
pictures, the number of objects had a significant effect on the mean section time (F(3;
533) = 3.121; p < 0.05). The mean section time increased as the number of objects
increased. Pairwise comparisons by means of Bonferroni tests indicated that
significant differences existed between objects 2 and 3, 2 and 5, 2 and 6, 3 and 4, 3
and 12,4 and 5,4 and 6, 5 and 12, 6 and 12.

7.5.3.5 The effect of the number of visits to the same section

Finally, the number of visits to the same section, i.e. the frequency with which a
subject viewed the same section, had a significant effect on the mean section time
(F(11; 1320) = 74.827; p < 0.001). The data are given in Figure 14. The mean section
time decreased as the number of visits increased. It appears that subjects spent more
time processing information during their first encounter with the learning materials.
In their successive visits to the same section, subjects possibly concentrated only on

the information they wanted to rehearse in order to memorize the materials.
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7.5.4 Mean section frequency

This variable is a measure of how often a section was viewed by the subjects
on average. Figure 15 shows the mean section frequency as a function of
experimental condition by section. The results of the ANOVA indicated that the
mean section frequency was independent of the experimental condition. The simple
factor effect of picture mode had a significant effect on the mean section frequency
(F(1; 36) = 78.733; p< 0.001), in that all of the sections were viewed more frequently
when static pictures were shown. Text mode had no effect on the mean section
frequency.

It should be pointed out that the difference in the mean section frequency
between static and moving pictures was most pronounced for Sections 4 and 5. This
could be due to the fact that the texts of Sections 4 and 5 described a particular step
in the assembly procedure, which could not be depicted very well by static pictures.
In S5, the puzzle parts that were fitted together in S4 had to be first of all turned 90°
to the left. After that, the rest of the puzzle parts could be assembled. Since the
perspective for depicting the cube changed from S4 to S5, subjects who could not
easily follow the change shown in the static pictures conceivably had to view S4 and

S5 more often to understand or integrate the information.
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The number of propositions had no effect on the mean section frequency. In
contrast, the number of objects did have such an effect (F(6; 33) = 6.609; p < 0.001).

Figure 16 depicts the mean section frequency as a function of the number of objects.

Again, the presentation mode of pictures has to be considered because it affects the
interpretation of the data. The results showed that for both static (t(18) = 3.626; p <
0.005) and moving pictures (t(18) = 3.395, p < 0.005), the mean section frequency

decreased as the number of objects increased.
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7.5.5 Analyses of eye-movement data
7.5.5.1 Number of fixations

Figure 18 shows the mean number of fixations as a function of experimental
condition. The results of the ANOVAs showed that text mode (F(1; 1328) = 31.301;
p < 0.001), picture mode (F(1; 1328) = 14.036; p < 0.001), and the interaction
between text mode and picture mode (F(1; 1328) =48.190; p < 0.001) had significant
effects on the mean number of fixations. The mean number of fixations was larger
when written text rather than spoken text was presented, and when moving rather
than static pictures were presented. Pairwise comparisons using Bonferroni tests
showed that the mean number of fixations for Condition (written/moving) was

substantially larger than that for Conditions (written/static), (spoken/static), and

1T
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Figure 18: Mean number of fixations as a function of experimental condition
7.5.5.1.1 Between conditions analyses
Figure 19 depicts the mean number of fixations for each instructional section for
each of the four experimental conditions. When the mean numbers of fixations

between conditions were compared section by section, significant differences
between conditions were found in S0, S1, S2, S4, S5, S7 and S8.
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7.5.5.1.2 Within-condition analyses

In the within-condition analyses, significant differences in the number of fixations
between sections were found for all experimental conditions: Condition
(written/static) (F(9; 440) = 2.028; p < 0.05); Condition (written/moving) (F(9; 267)
= 1.982; p < 0.05); Condition (spoken/static) (F(9; 335) = 3.813; p < 0.001); and
Condition (spoken/moving) (F(9; 250) = 4.243; p < 0.001). These differences were
more likely to result from the number of objects rather than from the number of
propositions, because some differences existed between the sections that had the

same number of propositions.

7.5.5.1.3 The effect of the number of propositions

The number of propositions exerted a significant influence on the mean number of
fixations (F(5; 1326) = 6.696; p < 0.001) (see Figure 20). Due to the large variance, it
again seemed sensible to compare sections with few propositions with sections with
many propositions in order to assess the general nature of the relationship. A t-test
(t(1330) = -2.448; p < 0.05) indicated that, on the whole, the mean number of

fixations was positively related to the number of propositions.
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7.5.5.1.4 The effect of the number of objects

The data are given in Figure 21. The mean number of fixations also depended on the
number of objects (F(6; 1325) = 7.598; p < 0.001). Specifically, pairwise
comparisons by means of Bonferroni tests showed that significant differences in the
mean number of fixations existed between sections with 2 and 5, 2 and 12, 3 and 12,
4 and 5, 5 and 12, 5 and 13, and 6 and 12 objects, respectively. Again, in regard to
picture mode, a series of t-tests (static pictures: t(793) = -1.761; p = 0.07; moving
pictures: t(535) = -2.725; p < 0.01) indicated that the general effect of the number of
objects on the mean number of fixations was positive: the larger the number of

objects, the larger the number of fixations.
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Figure 21: Mean number of fixations as a function of the number of objects
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7.5.5.1.5 The effect of the number of visits to the same section

Figure 22 shows the data. The number of visits to the same section also had a
significant effect on the mean number of fixations (F(11; 1320) = 69.265; p <0.001).
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Figure 22: Mean number of fixations as a function of the

number of visits to the same section

The mean number of fixations decreased with an increase in the number of visits to
the same section. According to Bonferroni tests, the mean number of fixations during
the first and the second visits was significantly higher than that during the third visit

or later.

7.5.5.2 Fixation duration in the text and in the picture region

The fixation duration in the text region was independent of the experimental
condition. Figure 23 shows the mean fixation duration in the picture region as a
function of experimental condition. The effect of text mode was not significant,
whereas that of picture mode was significant (F(1; 44) = 32.610; p < 0.001). The
mean fixation duration in the picture region was significantly longer when moving
pictures were presented. There was a strong tendency towards a text mode x picture
mode interaction (F(1; 44) = 3.517; p = 0.067). Pairwise comparisons by means of t-
tests showed that the fixation duration in the region for moving pictures was

significantly longer when text was presented auditorily (t(22) = 2.588; p < 0.05).
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7.5.5.3 Fixation rate

The fixation rate was defined as the number of fixations per second. The data are
shown in Figure 24. According to the ANOVAs, text mode (F(1; 1328) = 181.924; p
<0.001) as well as picture mode (F(1; 1328) = 184.484; p < 0.001) had a significant
effect on the mean fixation rate. The interaction between text mode and picture mode
was not significant. That is, the mean fixation rate was independent of the

experimental condition.
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Figure 24: Mean fixation rate as a function of experimental condition

The mean fixation rate was higher when static rather than moving pictures
were displayed, and when written rather than spoken texts were presented. Pairwise
comparisons by means of Bonferroni tests indicated that the mean fixation rate of

Condition (written/static) was significantly higher than those of the other conditions,
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whereas the mean fixation rate of Condition (spoken/moving) was significantly

lower than those of the other conditions.
7.5.5.3.1 Within-condition analyses

In the within-condition analyses significant differences between sections were found
only in Condition (written/moving) (F(9; 267) = 3.739; p < 0.001) and Condition
(spoken/moving) (F(9; 250) = 2.368; p < 0.05). For Condition (written/moving), the
Bonferroni tests showed that the mean fixation rate in SO was significantly higher
than that in S2, S4, S5, S6, S7, or S8. Likewise, for Condition (spoken/moving), the
mean fixation rate in SO was substantially higher than that in S3, S4, or S5. Figure 25

presents the data.
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Figure 25: Mean fixation rate as a function of conditions, by section

7.5.5.3.2 The effect of the number of propositions

Figure 26 shows the mean fixation rate as a function of the number of propositions.
The number of propositions had a significant effect on the mean fixation rate (F(5;
1326) = 2.764; p < 0.05). By comparing sections with few ( 5, 11, 12) propositions
with sections with many (14, 15, 16) propositions, the results indicated that the mean
fixation rate was inversely related to the number of propositions in general (t(1330) =
3.205; p < 0.005).
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Figure 26: Mean fixation rate as a function of the number of propositions
7.5.5.3.3 The effect of the number of objects

Figure 27 shows the mean fixation rate as a function of the number of objects. The
number of objects had a significant effect on the mean fixation rate (F(6; 1325) =
26.197; p <0.001). Again, picture mode was considered in the analysis of the general
effect of the number of objects. The results showed that the mean fixation rate was
positively related to the number of objects in general. For static pictures, there was a
tendency towards the existence of a positive relationship between the mean fixation
rate and the number of objects (t(793) = -1.81; p = 0.07). For moving pictures, the
mean fixation rate increased as the number of objects increased (t(535) =-3.134; p <
0.005).
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Figure 27: Mean fixation rate as a function of the number of objects
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7.5.5.3.4 The effect of the number of visits to the same section

The number of visits to the same section did not exert a significant influence on the
mean fixation rate. Within-condition analyses, however, revealed an influence of the
number of visits to the same section for Conditions (written/static) and
(spoken/static) but not for Conditions (written/moving) and (spoken/moving). Figure
28 shows the mean fixation rate as a function of the number of visits to the same
section as a function of experimental condition. The Bonferroni tests showed that, for
Condition (written/static), the fixation rate during the first visit was higher than that
during the second and the third visit. For Condition (spoken/static), the fixation rate
during the first visit was higher than that during the fourth and the fifth visit; in
addition, the fixation rate during the second and the third visit was higher than that
during the fifth visit.
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Figure 28: Mean fixation rate as a function of experimental condition,

by the number of visits to the same section

7.5.5.4 Number of gaze changes between the text and picture regions

It goes without saying that the analysis of gaze changes between the text and picture
areas of the instructional display can be performed only for those conditions that
include written texts, i.e. Condition (written/static) and Condition (written/moving).
A t-test did not show any significant difference between Condition (written/static)
and Condition (written/moving) in terms of the number of gaze changes between the

text and picture regions.
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7.5.5.5 The percentage of time spent in the picture versus the text region

The data are given in Figure 29. Again, this comparison could only involve
Conditions (written/static) and (written/moving). First, it must be pointed out that the
percentage of time subjects spent viewing the text and the pictures did not add up to
100% because subjects also spent some time looking at the other components on the
instructional display, such as the control bar and the forward and backward buttons.
According to the t-tests, there was no significant difference between the two
conditions in terms of the percentage of time spent in the picture region, whereas the
difference in terms of the percentage of time spent in the text region was significant
(t(22) = -2.504; p < 0.05): Subjects in Condition (written/static) spent a significantly
larger proportion of their time reading the text than did subjects in Condition
(written/moving).
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Figure 29: Percentage of time spent in the text region as a function of

experimental conditions involving written texts
7.5.6 Questionnaire results

In addition to measuring subjects’ learning efficiency and eye-movement behavior, I
also inquired into subjects’ rating of the comprehensibility of texts and pictures. The
rating was conducted on the basis of a five-point scale: 1 for very difficult, 2 for
difficult, 3 for medium, 4 for easy, and 5 for very easy. The results showed that
47.917% of the subjects rated text comprehensibility as easy (median = 4), while
60.417% of the subjects rated picture comprehensibility as easy (median = 4) as well.
After considering the presentation modes for both texts and pictures, the results

indicated that most of the subjects in written-text conditions rated text
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comprehensibility between medium and easy (median = 3.5; 41.667% for ‘medium’;
45.833% for ‘easy’), whereas most of the subjects in spoken-text conditions rated its
comprehensibility as easy (50%; median = 4). In contrast to text comprehensibility,
picture comprehensibility was rated as easy (median = 4), both in the static- and the
moving-picture conditions.

As to the question of whether the texts, the pictures or both of them were the
crucial elements for understanding, the results showed that 58.333% of the subjects
regarded pictures as essential elements for understanding the instructions, and 87.5%
of the subjects regarded pictures as crucial elements for memorizing the instructions.
Furthermore, 58.333% of the subjects in spoken-text conditions considered both texts
and pictures as crucial to understanding, whereas 79.167% of the subjects in written-
text conditions considered pictures as essential to understanding. 75% of the subjects
in moving-picture conditions regarded pictures as the crucial element for
understanding, and 54.167% of the subjects in static-picture conditions regarded both
texts and pictures as crucial. The medium that subjects chose to support the
memorization of instructions was rather consistent. Most of the subjects chose
pictures as the primary memory aid regardless of the text and picture presentation

modes adopted in the instructions.

7.6 Discussion

The main objective of this experiment was to investigate the influence of MPs on
learning efficiency in a multimedia-based learning scenario. In addition, subjects’
eye-movement behavior during learning was also observed to facilitate a more
detailed analysis of information-processing strategies. In the following sections, I
will start with a discussion of the connection between MPs and learning efficiency.
Later, I shall discuss the information-processing strategies and the eye-movement

behavior.

7.6.1 MPs and learning efficiency

It was hypothesized that moving pictures are superior to static pictures in presenting
information about sequences of actions (procedural tasks), movements of objects, or
changes in a state of affairs over time, and that, if the modality effect is true,
presenting information in different modalities should facilitate the efficiency of
information processing. Consequently, instructions comprising moving pictures and

spoken texts should lead to the highest learning efficiency. The results indeed
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showed that subjects in Condition [spoken/moving] achieved the highest learning
efficiency. However, this result did not directly confirm the hypotheses mentioned
above because it should be interpreted in line with a tendency toward a text mode x
picture mode interaction.

In terms of the learning efficiency, the result was not consistent with the
prediction that moving pictures are superior to static pictures because picture mode
did not exert an effect on learning efficiency. The reasons for this result could be:
first, there was no time limit for learning, whereby the effect of moving pictures was
possibly weakened; second, the procedures for assembling the puzzle were sliced
into several sections, and most of the sections did not comprise complicated actions
except Sections 4 and 5. As a consequence, static pictures were, for the most part, as
effective as moving pictures in demonstrating the assembly procedures.

Nevertheless, when the mean section frequency was considered, the
advantages of moving pictures were revealed to be as follows: subjects in moving-
picture conditions repeated the instructional sections less often than did subjects who
received static pictures. It appears that information conveyed by moving pictures was
easier to remember. Besides, a local effect was found in Sections 4 and 5 where
subjects in static-picture conditions substantially repeated these two sections more
frequently because more complicated assembly procedures and rotations of the
puzzle parts were involved. Subjects processing static pictures had to mentally
simulate the operations and rotate some puzzle parts in order to understand the
instructions properly. In other words, complicated inferences had to be drawn, which
led to higher section frequency for the two sections. Moving pictures, in contrast,
could easily demonstrate the operations and the rotations of the puzzle parts as a
continuous action. As a result, subjects could easily read off the actions they had to
perform in relation to the puzzle parts from moving pictures, which was thus more
efficient than inferring the actions from static pictures that only depicted the puzzle
states before and after the operation.

Furthermore, the hypothesis that the dual-modality presentation leads to
higher information-processing efficiency was only partly confirmed in this
experiment. The superiority of the dual-modality presentation over the single-
modality one was only restricted to moving-picture conditions. When moving
pictures and written texts were shown, subjects failed to process both sources of
information simultaneously. The video recordings of subjects’ eye movements
indicated that they were actually not able to read the text and watch the video at the
same time, and they could hardly switch their gaze positions between the text and
picture regions while the video clip was playing. Thus, the verbal and pictorial

information was processed successively, which led to low learning efficiency.
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Overall, the results with regard to the learning efficiency were consistent with the
hypothesis that subjects should learn most efficiently if the learning materials are
presented in the form of spoken texts and moving pictures rather than written texts
and moving pictures. However, this result, in my opinion, is not necessarily
attributed to the split-attention effect because the fact that moving pictures with
written texts led to lower learning efficiency could also be explained by the strong
structural interference induced by the given MP, which simply impeded the
processes of text-picture integration.

Furthermore, it is interesting that subjects who received static pictures did not
benefit from the dual-modality presentation at all. The eye-movement data revealed
that subjects who had to process written text with static pictures integrated text and
picture information by means of relatively rapid eye movements between text and
pictures, which led to the same learning efficiency as achieved by subjects who had
to process spoken text with static pictures. This could result from the fact that the
pictorial information in this case was relatively easy to process. Thus, it did not
impose an overload on the visuo-spatial sketchpad, so that working memory (or CE)
could easily integrate the verbal and the pictorial information. Alternatively, the
findings could also come about if the pictorial information was very difficult to
process. Based on the study conducted by Sweller et al. (1997), if the information
conveyed in a diagram is visually demanding, there are not enough resources
available in working memory to integrate the information from pictures and spoken
texts. As a consequence, the dual-modality presentation is not superior to the single-
modality one. Thus to find out under which circumstances learners can really benefit
from a dual-modality presentation, further research is required. A follow-up

experiment is designed to address this issue.

7.6.2 Information-processing strategies

In an attempt to reconstruct subjects’ information-processing strategies, I examined
the effects of the following factors on the mean learning time, the mean section time,
and the mean section frequency: 1) the four experimental conditions, including the
analyses of simple factor effects—text mode and picture mode; 2) the number of
propositions in the texts; 3) the number of objects in the pictures (separately for static
vs. moving pictures); and 4) the number of visits to the same section.

The learning time in relation to Condition (spoken/moving) was the shortest
among the four experimental conditions, whereas the learning efficiency for this
condition was the highest. This result indicates that spoken texts combined with

moving pictures, in comparison to the other MP-conditions, could convey the
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information to be learned most efficiently. Since there were no significant
differences in the mean learning time and in the mean learning efficiency for the
other conditions, the analyses of the mean section time and mean section frequency
may yield more detailed information about the differences in the information-
processing strategies and the amount of cognitive effort underlying those strategies.

The mean section time was affected by different MPs: For instance, the mean
section time was longer when written texts or moving pictures were presented.
Subjects in Condition (written/moving) took more time to process the information
presented in a section than did subjects in the other conditions. Since subjects in
Condition (written/moving) could not watch the video and read the text
simultaneously, a long section time did not come as a surprise. However, the mean
section time for Condition (written/static) was the shortest among the conditions,
though subjects could not read the text and view the pictures at the same time either.
When comparing the mean fixation rate and the mean section frequency of the four
conditions, it was found that subjects in Condition (written/static) had the highest
mean fixation rate and the highest mean section frequency, whereas subjects in
Condition (written/moving) had a lower mean fixation rate and almost the lowest
mean section frequency. This indicates that subjects in Condition (written/static),
who were by no means constrained in terms of the time they allocated to the learning
materials, required many brief fixations to process the information presented in a
section, including frequent gaze changes between the text and the static pictures;
however, they had to return to the sections more frequently in order to memorize the
information.

It should be noted that the mean section time for subjects in Conditions
(written/moving), (spoken/moving), and (spoken/static) was to a certain extent
contingent upon the time required for playing the video clips or the speech track. In
other words, there was a ‘base time’ which, for technical reasons, could not be
shortened. This most probably resulted in a longer mean section time for Conditions
(written/moving), (spoken/static), and (spoken/moving). It follows that the mean
section time alone does not constitute a valid parameter for information processing,
but must rather be considered in the light of other, additional variables such as the
mean section frequency and some eye-movement variables. Consider the relationship
between the mean section time and the mean section frequency. The mean section
frequency was negatively correlated with the mean section time (r = -0.583; p <
0.001). That is, although the subjects in Conditions (written/moving), (spoken/static),
and (spoken/moving) required more time to view a section, they did not repeat each

section as often as the subjects in Condition (written/static). That is the reason why
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the mean learning time in relation to Conditions (written/static), (written/moving),
and (spoken/static) did not differ.

Apart from the experimental conditions, the number of propositions, the
number of objects and the number of visits to the same section were also analyzed as
factors affecting the mean section time and the mean section frequency. Both the
mean section time and the mean number of fixations were positively related to the
number of propositions and the number of objects because the more information that
was to be processed in a section, the longer was the period of time that subjects
needed to spend on that section, and subjects would require more fixations to scan
the information. The mean section frequency, on the other hand, was independent of
the number of propositions but inversely related to the number of objects. In line
with this result, I have assumed that the mean section frequency was not determined
by the quantity of the information to be processed but rather by the quality of that
information. In terms of the number of objects, a reason for this could be that SO,
which gave the introduction to the learning materials, comprised the largest number
of objects. It was, however, repeated the least because it was not quite relevant for
learning in this case.

As to the number of visits to the same section, this was inversely related to
the mean section time and the mean number of fixations. Specifically, the first two
visits required more time and more fixations when compared with the later ones.
Conceivably, subjects spent more time during the first two visits because they were
dealing with new information. However, during later visits, the information could be
accommodated under an already established schema. In other words, the main
objective of the later visits was to rehearse the learning materials. Based on the
assumption that the rehearsal should require less cognitive effort than the
establishment of a new cognitive schema required during the first two visits and that
the cognitive effort should have gradually declined as the number of rehearsals
increased, a decrease in the mean section time and the mean number of fixations

could be expected as the number of visits to the same section increased.

7.6.3 Interpretation of eye-movement data

a) Number of fixations:
The mean number of fixations was larger when visual text or moving pictures
were presented. This result is mainly due to Condition (written/moving) where
subjects received written text with moving pictures. The mean number of fixations
for Condition (written/moving) was particularly high because subjects usually

read the text and watched the video clips successively and because more time was
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needed to watch a video clip being played than to inspect static pictures.
Furthermore, the number of fixations was positively related to the number of
propositions as well as to the number of objects shown in the pictures. Both the
number of propositions and the number of objects are parameters of the amount of
information to be processed. Thus, the data are consistent with the hypothesis that
the more information that is to be processed, the more fixations that are required.
In addition, the number of fixations was inversely related to the number of visits
to the same section, which indicates that, during repeated visits to a section,
subjects probably concentrated only on viewing the relevant information in order
to learn it by heart. Hence, they used less time as well as fewer fixations to view

each instructional section.

b) Mean fixation duration in the picture region:

The mean fixation duration in relation to moving pictures was longer than that in
relation to static pictures. This might indicate that more intensive information
processing was involved when subjects perceived moving pictures. However, this
phenomenon could also result from the fundamental differences in eye
movements in exploring the static and the moving pictures in this experiment.
Since subjects did not often have to move their eyes in order to follow the actions
shown in the video clips, their fixation duration could be prolonged accordingly.
In contrast, when subjects were viewing static pictures, they had to move their
eyes quite often in order to pick up the information scattered in the pictures.
Therefore, fixation duration in this case tended to be short.

Nevertheless, another possibility that cannot be ruled out is that the eye-
tracker might not be able to measure very slight eye movements (smooth pursuit)
precisely, and it may tend to merge the fixations in rapid succession. Thus the
interpretation of long fixation duration in moving pictures is actually very
problematic. What this comes down to is that, with moving pictures, fixation
duration cannot be regarded as a valid indicator of keeping a moving object in
focus.

Moreover, the mean fixation duration in relation to moving pictures was
longer when text was presented auditorily rather than visually. The reason why
the mean fixation duration was significantly shorter when written text was
presented was that subjects often switched their gaze between the text and the
video regions when the video was not playing. As a consequence, part of the
fixations in the video region were very short when the gaze positions changed

rapidly between the written text and the still video element, which in turn led to a
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shorter mean fixation duration in relation to this condition. This was not the case

when text was presented auditorily.

Fixation rate:

The mean fixation rate was higher when written texts or static pictures were
presented. In the first case, subjects often switched their gaze positions between
text and pictures in order to integrate the verbal and pictorial information. In the
second case, the subjects’ eyes were free to inspect the photographs. The speed of
the subjects’ eye movements was therefore higher because it was not constrained
by any movement shown in the visual display.

The effects of the number of propositions as well as the number of objects on
the fixation rate gave rise to interesting insights regarding the relationships
between mental effort and eye-movements. The fixation rate was inversely related
to the number of propositions, but positively related to the number of objects.
That is, if a scene contained many objects, subjects tended to scan these objects
using many brief fixations. In contrast, if a text contained many propositions,
subjects tended to process it by means of a few long fixations. Conceivably, a part
of the mental resources was devoted to setting up the propositional text base, and,

therefore, the speed of eye movements was reduced.

d) Number of gaze changes between the text and the picture regions:

The number of gaze position changes between the text and picture regions did not
vary between conditions. However, the video recording of the stimuli that were
overlaid with the subjects’ gaze trajectories revealed that subjects seldom shifted
their gaze positions between the text and the video while the video was still
playing. Typically, subjects viewed the video clip and read the text separately, but
often switched their gaze positions between the text and the video when the video
was not playing, i.e. when the video stopped in its last frame after it had been
played. Although the last frame of the video only showed the final state of the
puzzle parts assembled according to a certain procedure, subjects tended to use it
as an aid to establish referential links between the text and the video information.
The eye-movement behavior of subjects in Condition (written/moving) was
different from that observed by d’Ydewalle et al. (1987) in their studies in which
subjects were asked to watch a movie. d’Ydewalle et al. found that, despite the
fact that a partial loss of the information from the image would be caused by
alternating between viewing the image and reading the subtitles, subjects
automatically read the subtitles regardless of whether this was necessary for

understanding the movie. Obviously, people use different strategies to integrate
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verbal and pictorial information depending on the situation. When watching TV or
seeing a movie, a partial loss of the pictorial information can easily be
compensated for; it in no way impairs the understanding of the movie. In an
experiment in which subjects are required to learn multimedia instructions with
little allowance for redundancy, skipping any pictorial or verbal information can
be a serious obstacle to comprehension and, therefore, may impair learning. As a
consequence, subjects in this study did not alternate between watching the video

and reading the text.

e) The percentage of time spent in the picture versus the text region:
There was a difference between Condition (written/static) and Condition
(written/moving) in terms of the percentage of time spent in the text region:
subjects in Condition (written/static) spent proportionally more time reading the
text than did subjects in Condition (written/moving). This indicates that subjects
in Condition (written/static) paid more attention to the textual information than
did subjects in Condition (written/moving). Conceivably, subjects in Condition
(written/moving) relied less on the information presented by the written texts
during learning, because the integration of text and video information was
difficult per se. The subjects therefore preferred studying the videos to the texts.
In fact, the preferences of those subjects were confirmed by their answers to the
questionnaire: all of the subjects used the videos as the crucial element in
understanding the instructions, and almost all of the subjects used the videos to

memorize the instructions.

7.6.4 Observations based on the questionnaire results

Subjects who had been given moving pictures as instructions regarded pictures as the
crucial element for understanding, whereas subjects who had been given static
pictures as instructions regarded both the texts and the pictures as crucial. Subjects
who received spoken texts regarded both texts and pictures as crucial elements for
understanding, whereas subjects who received written texts regarded pictures as the
crucial element for understanding. The medium that most of the subjects used to

memorize the instructions was pictures.

7.6.5 Further issues to be addressed

According to the results of Experiment 1, it is still unclear whether the split-attention

effect and the modality effect are valid. To further investigate this issue, I attempt to
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reexamine those effects from the perspective of Baddeley’s working memory model.
As I have argued in Chapter 5, the claims made in relation to the split-attention effect
and the modality effect are based on an incorrect interpretation of the processes of
information processing in working memory. Both dual coding theory and Baddeley’s
working memory model do not support such claims. Consider, for instance,
Baddeley’s working memory model. Presenting both verbal and pictorial information
visually should not overburden the visuo-spatial sketchpad because verbal
information should not be processed by the visuo-spatial sketchpad but rather by the
phonological loop. On the contrary, it is assumed that the dual-modality presentation
would be more likely to induce a split-attention effect in comparison with the single-
modality presentation because the attention will have to split only when different
sources of information are processed at the same time. With dual-modality
presentation, working memory has to process verbal and pictorial information
simultaneously. This is not the case with single-modality presentation. In the next
chapter, I shall report on a follow-up experiment designed to examine the validity of
the split-attention and dual modality effects.
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8. EXPERIMENT 2

The objective of this experiment is to examine the role of working memory in
learning in terms of the way in which the learning materials are presented. I attempt
to find out: 1) under which circumstances the dual-modality (auditory plus visual)
presentation (DMP) is indeed superior to the single-modality (only visual)
presentation (SMP) when learning materials are presented in the form of diagrams
(static pictures) combined with visual or auditory text; and 2) whether using
animation as a guide for visual attention and/or as an aid for constructing mental
models can successfully reduce the load imposed by the complex diagrams on the
visuo-spatial sketchpad, and therefore release working memory (or CE, respectively)

from being overloaded by DMP.

8.1 Hypotheses

According to the cognitive load theory, learning does not occur if the capacity of
working memory is exceeded. The overload of working memory may either result
from the complexity of the content of information or the inappropriate display of
learning material. Based on that, if the complexity of the content of information is
held at a non-demanding level while the presentation mode of information varies in
complexity, the connection between the cognitive load engendered by the
instructional display and learning efficiency can be better revealed.

By keeping the complexity of verbal information at the same (non-
demanding) level, I assume that DMP can only be beneficial if the visual information
is neither very low- nor very high-demanding. Since the visual (pictorial) and the
auditory (verbal) information should be integrated by the central executive unit (CE)
in working memory before they are forwarded to long-term memory, the processes of
integrating information can be impaired if CE is overloaded. Consequently, if the
pictorial information is highly complicated, DMP, of course, is no better than SMP
given that both presentations would overburden working memory anyway. However,
another possibility that should not be ruled out is that DMP is more likely to overload
working memory than SMP because the former actually imposes a heavier load on
CE by inducing it to process visual and auditory information simultaneously.
Secondly, if the diagram is very easy, DMP is not necessarily superior to SMP,
because the total visual demand in relation to both conditions is low. For the SMP
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condition, I assume that subjects can use rapid eye movements to coordinate textual
and pictorial information, and thereby, perform as well as the subjects in the DMP
condition.

Moreover, I expect that using animation can be advantageous to learning 1) if
the information to be learned is involved in sequences of action (e.g., movements of
objects) or alteration of a state of affairs, etc., 2) if the visual display of the learning
material is visually highly-demanding, and 3) if the animation is presented with
auditory text together. In the first case, animation should help learners to build
mental models required for understanding the information. In the second case,
animation should be able to guide learners’ visual attention, and as a consequence,
can lessen the cognitive load on the visuo-spatial sketchpad. Finally, in the third
case, animation combined with written text should produce strong structural
interference (one cannot view an animation and read a text at the same time) and
diminished learning performance, whereas this is not the case when animation is
synchronized with auditory text.

As to the eye-movement behavior, I predict that picture complexity or the
number of objects, respectively, will influence the speed of learners’ eye movements.
The more objects that are depicted in a picture, the faster the eye movements should
be because this is a more efficient way of scanning the scattered objects that convey
the relevant pictorial information required for the comprehension of the instructions.
Accordingly, the large number of fixations, the short fixation duration, the high
fixation rate, and long saccades are associated with rapid eye movements when
subjects inspect a static picture with a large number of objects. When animation is
presented, I assume that visual distractors in this case should not distract learners’
visual attention very much, since learners are more likely to follow the motion and
concentrate on the relevant information than pay attention to any irrelevant objects in
the picture. Thus, the number of fixations, the fixation rate, and saccade length are
not necessarily related to the number of objects.

Text mode, on the other hand, should affect the speed of eye movements as
well. T assume that the fixation rate should be lower if auditory text is presented
because learners have to process the verbal and pictorial information simultaneously.
The attentional resource will be split during information processing, and, therefore,
eye movements should slow down. This can be revealed by longer fixation durations,
a lower fixation rate, and shorter saccade length compared to those experimental
conditions in which text is presented visually.

The percentage of time that learners spend viewing a picture should be
positively related to the number of objects, since the more information that is to be

processed in the picture, the more learning time is required. Moreover, the number
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of gazes changing between the text and the picture regions should be influenced by
the picture complexity as well as by the number of propositions. As picture
complexity intensifies, the number of gazes switching between the text and picture
regions should increase because the integration of the textual and pictorial
information is hindered by complex pictorial information. More changing of gazes
can make the establishment of referential connections between textual and pictorial
information easier. Similarly, the number of gaze changes should be positively
related to the number of propositions, since the more information that is conveyed by
the text, the less likely it is that learners will remember all of the textual information
at one time. Hence, the integration of text and picture information can be carried out
more easily if subjects frequently switch gazes between the text and the pictures.
When animation is presented, it is difficult to integrate textual and pictorial
information by switching gazes because learners will always lose some information
in animation when they are reading the text. Therefore, there should be less gaze

changes between the text and picture regions when animation is displayed.

8.2 Variables and Design

8.2.1 Independent variables

The effects of picture complexity and text mode, especially the interaction of these
two factors on learning were investigated. A 4 (picture complexity) by 2 (text mode)
factorial design was applied. The factor picture complexity was varied in three levels
— simple, medium, and complex — for the static pictures, and in an additional level —
animation. Certainly, it is very difficult to define the criteria for judging picture
complexity because a multitude of factors (both qualitative and quantitative) may
exert an influence on picture complexity. The criteria I employed in this experiment
were the number of objects shown in the picture and the visual complexity of the
objects per se. In the simple diagrams, only simple objects that were absolutely
necessary for explaining the information to be learned were shown in the picture. In
the medium diagrams, a larger number of simple objects were used for depicting the
same information. Additionally, five to six irrelevant simple objects were added to
the picture to intensify the pictorial complexity. Their function should be regarded as
that of visual distractors. In the complex diagrams, not only visually more
complicated objects but also more visual distractors were employed. Finally, in the
additional level, I used animation in the complex diagrams to examine whether

animation could successfully guide learners visual attention, and thus, reduce the
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load on the visuo-spatial sketchpad as well as enhance learning results. Another
factor text mode had two levels: visual and auditory. Together with the four picture

types, eight experimental conditions were created:

Condition (simp-visu): simple diagrams with visual texts
Condition (simp-audi): simple diagrams with auditory texts
3. Condition (med-visu): diagrams with medium complexity
combined with visual texts
4. Condition (med-audi): diagrams with medium complexity
combined with auditory texts
Condition (comp-visu): complex diagrams with visual texts
Condition (comp-audi): complex diagrams with auditory texts

Condition (ani-visu): animation with visual texts

AN

Condition (ani-audi):  animation with auditory texts

In addition to picture complexity and text mode, the effects of the number of
propositions in the texts, and the number of objects (including two subsets: the
number of relevant objects and the number of visual distractors) in the pictures were
also examined.

It should be noted that subjects’ prior knowledge related to the information to
be learned in the instruction is likely to affect their learning behavior and learning
efficiency. Since the main task of the subjects was to learn the movement rules of
seven Chinese-chess pieces, those who had expertise in playing European chess
could certainly learn the rules more quickly and easily, independent of the display of
the instructions. As a consequence, those who had expertise in playing chess or

games involving similar rules were excluded from participation in this experiment.

8.2.2 Dependent variables

8.2.2.1 Learning variables

The dependent variable for assaying learning outcomes was the error rate. Besides,
the learning time, the task time, the time subjects spent on studying each instructional
section (the mean section time), and the frequency of each instructional section that
was viewed by subjects (the mean section frequency) were investigated in relation to
the learning processes.
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8.2.2.2 Eye-movement variables

The following eye-movement variables were analyzed:
e The number of fixations
e The fixation duration
e The fixation rate
e The saccade length
e The number of gaze changes between the text and the picture regions

e The percentage of time spent in the picture region and in the text region

8.3 Method

8.3.1 Subjects

The participants (N = 40) were students at the University of Bielefeld between the
ages of 18 and 38. All subjects were native German speakers and had no or only a
little experience of playing chess or games with similar rules to chess. They were

paid for their participation in this experiment.

8.3.2 Materials

The learning material was concerned with the movement rules of Chinese-chess
pieces. Since there were seven different pieces in Chinese chess, all of the
instructions were divided into 7 instructional sections. Every section was edited in
HTML and presented by means of a program called V-Designer on the computer
screen (of the subject PC) with a high color, 16-bit resolution of 1024x768 pixels.

The V-Designer program developed by Thomas Clermont (2001) is a control
program for the eye-tracker system. It provides a user-friendly visual programming
environment, which enables inexperienced programmers to create their own control
program for the implementation of eye-tracking experiments. Moreover, V-Designer
is Microsoft-Windows based, so that standard Windows hardware and software
interfaces are accessible. Multimedia presentations of experimental stimuli such as
video or sound are supported as well. Most important of all, V-Designer provides a
solution to the typical problem of timing in Windows environments by implementing
an independent timing function, which gives a highly accurate account of run-time
behavior (Koesling, Clermont, and Ritter, 2001).
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For the first six experimental conditions, each section of the learning material
contained a diagram (static picture), a text presented either visually or auditorily, and
the links connecting to other sections as well as a link to end the learning program.
The diagram was located in the upper part of the screen whereas the links were
embedded at the bottom. The visually-presented text was located in between. Unlike
the first experiment, there was no control-bar for subjects to pause or stop playing the
auditory text. Yet, subjects could simply press any key on the keyboard to replay the
auditory text.

Examples of the learning material can be found in Figure 1 to Figure 5. All
the diagrams were 800x600 pixels in size. On the left part of the diagram, there was
a drawing (200x200 pixels in size) of a Chinese-chess piece with its name beneath it.
In the simple diagrams, only one possible move (based on the movement rules) for
every single Chinese-chess piece was visualized. A blue dot symbolized the starting
position of the piece whereas the end-position was marked by a black circle. The
blue arrows indicated the direction as well as the length of a possible movement. The
links to other instructional sections were put in a table, conveyed by the small

drawings (50x50 pixels in size) of the chess pieces with their names above them.
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Der General bewegt sich in einem Zug eine Einheit horizontal ader
vertikal in beliebiger Richtung. Er darf die mit griinen Linien
markierte Zone nicht verlassen.
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Figure 1: An example of an instructional section of Condition (simp-visu).

Every section contains a simple diagram and a visual text.

In the diagrams with medium complexity, all the possible moving directions
from a starting point are visualized. Besides, there were 5 or 6 visual distractors
depicted by gray dots in every diagram. The gray dots represent some other pieces
on the chess board, and they are additionally used to distract subjects’ attention, and

therefore, enhance picture complexity.
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Figure 2: An example of an instructional section of Condition (med-visu).

For the complicated diagrams used in complex diagrams, small drawings of
the chess pieces instead of the dots were employed. Not only were all possible
movements visualized but also more visual distractors were presented in the

diagrams.
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Figure 3: An example of an instructional section of Condition (comp-visu).
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Figure 4: An example of an instructional section of Condition (comp-audi).

In this condition, subjects were given auditory text.

For the last two experimental conditions, I employed animation for
displaying the movement rules. Again, animation was presented with either visual or
auditory text. The same number of visual distractors shown in Condition (comp-visu)
and Condition (comp-audi) were fitted in the background of the display of animation

as well. Figure 5 shows an example of an instructional section of Condition (ani-
visu).
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Figure 5: An example of an instructional section of Condition (ani-visu).
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The chess piece for which the rules were described by the instruction was marked
with a blue circle every time in its starting position shortly before it moved to a
possible position on the chess board. The animation showed how the piece moved to
all the possible positions that it could potentially reach in one move from its current
position. In some instructional sections, the positions to which a chess piece was not

allowed to move were signaled by inserting red crosses in the referential positions.

8.3.3 Apparatus

The same SMI EyeLink eye-tracking system as in Experiment 1 was used to measure
subjects’ eye movements. There was, however, a change in the hardware of the
subjects’ PC which contained an AMD Athlon 600 MHz processor and a new
graphics card (ELSA ERAZOR III). With the aid of the new graphics card, the
stimuli viewed by the subjects during the experiment were delivered directly in the
form of video signals to the VISCA recorder, so that the sequences of stimuli viewed
by each subject could be videotaped. The synchronization of eye movements and the

video was again carried out by the Viper program.

8.3.4 Procedures

On arrival, subjects were asked about their experiences of playing chess or games
similar to chess, so that the number of subjects with different amounts of experience
(chess experts were excluded) could be balanced between conditions. Subsequently,
basic information about Chinese chess as well as their respective tasks were
introduced to subjects. After calibrating the eye-tracker, another instruction
concerning how to use the learning environment was shown on the screen of the
subjects’ PC. Subjects were asked to learn the movement rules of Chinese-chess
pieces on the computer with concentration. There was no time limit for learning, but
subjects were asked to learn the information as quickly as they could. When the
subjects finished learning, they were given a test to assess their learning results and
another test to roughly estimate their prior knowledge of chess. In addition, they had
to fill out a questionnaire which comprised more or less the same questions as did
the one used in the first experiment.

There were eight questions in the test for assessing subjects’ learning results.
Each question tested the movement rules of a Chinese-chess piece. For example, the
question for testing the rules regarding the elephant is shown in Figure 6. Subjects

were asked to mark the piece or pieces which was/were threatened by the blue
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elephant. There were two questions about the piece “soldier” because the rules were
different depending on which zone the soldier was in.

The test for estimating prior knowledge of chess consisted of six questions.
Subjects had to write down the definition of the following six specialist terms
regarding chess: blitz tournament, en passant, ELO, castling, gambit, and fictitious
attack. The score a subject achieved in this test was supposed to be positively

correlated to his or her prior knowledge about chess.

8.4 Results

8.4.1 Assessment of learning results

First, I would like to discuss the method for assessing the subjects’ learning results.
In Experiment 1, I employed “learning efficiency” as the measurement of subjects’

learning performance. The learning efficiency was calculated by:

Learning efficiency = C_score/(LT+AT)

that is, the correct scores subjects achieved in assembling the cube puzzle divided by
the time subjects spent learning the instructions on the computer and the time taken
to assemble the puzzle. In the current experiment, I use the error rate to assess the
learning results instead of learning efficiency because the error rate was shown to be
independent of any reaction time components: neither the correlation between the
learning time and the error rate (r = -0.095, n = 40, p = 0.56) nor that between the
task time and the error rate (r = 0.241, n = 40, p = 0.134) was found to be significant.
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Figure 6 : A sample question used in the test for assessing learning
results. All three rules about the elephant were tested in a question.

8.4.1.1 Error rate

Figure 7 depicts the mean error rate of the eight experimental conditions. The audio-
visual conditions were presented in the gray color, while the visual-only conditions
were presented in black. The results of the ANOVA showed that both picture
complexity and text mode had no significant effect on the error rate. However, the
interaction between picture complexity and text mode was significant (F(3; 32) =
5.948; p < 0.005). Moreover, subjects’ experience of chess or similar games exerted
no effect on the error rate.

Post hoc pairwise comparison using Fisher’s Least-Significant-Difference
tests (LSD tests) showed that the differences between Condition (comp-visu) and
Condition (comp-audi), Condition (comp-visu) and Condition (ani-visu), Condition
(comp-audi) and Condition (ani-audi) as well as Condition (ani-visu) and Condition

(ani-audi) were significant.
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Figure 7: Mean error rate as a function of experimental condition.

These results only partially correspond to the hypotheses that the DMP
conditions should not outperform the SMP conditions if the pictorial information is
visually very easy or very highly-demanding. There was no significant difference in
the error rate between Condition (simp-visu) and Condition (simp-audi), but the
difference between Condition (comp-visu) and Condition (comp-audi) was
significant according to the LSD test. When the mean error rates for Condition
(comp-visu) and Condition (comp-audi) were compared, the mean error rate for
DMP (Condition (comp-audi): mean = 55.5%) was significantly higher than that for
SMP (Condition (comp-visu): mean = 30.7%). The explanation for this result could
possibly be that there was interference between the visual and auditory information
processing. Since the total amount of information coming from the visual and
auditory channels exceeded the capacity of the CE, subjects failed to process visual
and auditory information simultaneously. Consequently, the integration of visual and
auditory information could have been damaged.

According to the hypotheses, the DMP should be superior to the SMP if the
demand for pictorial information is at a medium level. However, the difference in the
error rate between Condition (med-visu) and Condition (med-audi) was not
significant, though the error rate in relation to Condition (med-audi) was slightly
lower than that for Condition (med-visu). The error rate for Condition (ani-visu) was
the highest among all the experimental conditions and was substantially higher than
that for Condition (ani-audi), which was consistent with the results derived in

Experiment 1.
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8.4.1.2 Learning time

Figure 8 depicts the learning time and task time for each of the eight experimental
conditions. Picture complexity exerted a significant effect on the learning time (F(3;
672) = 2.881; p < 0.05), whereas text mode did not. The mean learning time for
materials with medium picture complexity was significantly shorter than for those
with simple pictures. There was a tendency towards an interaction between picture
complexity and text mode (F(3; 672) = 2.271; p = 0.079). In addition, the prior
experience with chess or similar games tended to have a slight influence on the
learning time as well (F(2; 37) = 2.809; p = 0.07). Subjects without prior knowledge
of chess or similar games tended to take more time learning than subjects with a
small or medium amount of prior knowledge. Furthermore, the correlation between
learning time and task time was significant (r = 0.43; n = 40; p < 0.01). Learning

time was positively correlated with task time.
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Figure 8: Mean learning time and mean task time as a function

of the experimental condition

The correlation between the learning time and the error rate was not
significant. Moreover, it is inevitable that there is always a certain amount of base
time required for playing a sound or video file. Thus, the learning time in the case of
the audio-visual as well the as animation conditions should be potentially longer than
that in the case of the visual-only conditions where static pictures are shown.
Nevertheless, the Bonferroni tests pointed out that there was no significant difference
in the learning time between the experimental conditions. Since subjects were
allowed to view the instructions as long as they wanted, the effect of experimental

conditions on the learning time might not have been transparent. As a consequence,
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the effect of experimental conditions on the learning time should be better uncovered
by the time that subjects spent in learning each single instructional section (section

time).

8.4.2 Mean section time

Figure 9 conveys the mean section time as a function of the experimental condition.
According to the ANOVA, there was no simple effect of either picture complexity or
text mode, but the interaction between these two factors was significant (F(3; 672) =
5.596; p < 0.005). The results of Bonferroni tests indicated that the mean section

time for Condition (med-visu) was significantly shorter than that for the other

conditions.
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Figure 9: Mean section time as a function of the experimental

condition
The mean section time calculated in accordance with instructional sections is

shown in Figure 10 and Figure 11. In the between-group analysis, the difference in

the mean section time was not significantly affected by the experimental conditions.
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There were significant differences in the learning time between the
instructional sections (F(6; 673) = 10.689; p < 0.001). According to the Bonferroni
tests, the mean section time of the Section ‘soldier’ was significantly longer than that
of the other sections, whereas the mean section times of the Sections ‘guard’ and
‘chariot” were significantly shorter than those in relation to the Sections ‘horse’,
‘cannon’, and ‘soldier’. The cause of the differences in the mean section time could be

the number of propositions, which will be analyzed subsequently.
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In addition to picture complexity and text mode, other factors such as the
number of propositions in the texts and the number of objects in the pictures may
also influence the section time. Since the number of objects comprises the number of
visual distractors as well as the number of relevant objects, and each of them might
have a different influence, it is better to examine the effect of the two different object
types separately. I, therefore, first give an overview of how the quantity of those
factors was distributed in the instructional sections. Tables 1 to 4 depict the number
of propositions, objects, visual distractors and relevant objects in each of the

corresponding sections.

Chinese- ) )
. general | guard | elephant | chariot | horse | cannon | soldier
chess pieces

Number of
. 11 9 11 9 14 11 13
propositions

Table 1: The number of propositions in the corresponding instructional section

Conditions

(simp-visu/-audi) (med-visu/-audi) (comp-visu/-audi) (ani-visu/-audi)

Chinese- number of number of number of number of
chess objects objects objects objects
pieces
general 2 10 15 11
guard 2 10 15 11
elephant 4 10 16 12
chariot 2 10 15 11
horse 5 15 20 12
cannon 4 11 16 13
soldier 3 15 16 9

Table 2: The number of objects in the respective instructional section
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Conditions

(simp-visu/-audi) (med-visu/-audi) (comp-visu/-audi) (ani-visu/-audi)

general 0 5 10 10
guard 0 5 10 10
elephant 0 5 10 10
chariot 0 5 10 10
horse 0 5 10 10
cannon 0 5 10 10
soldier 0 5 8 8

Table 3: The number of visual distractors in the relational instructional section

Conditions

(simp-visu/-audi) (med-visu/-audi) (comp-visu/-audi) (ani-visu/-audi)

Chinese- number of number of number of number of
chess relevant objects | relevant objects | relevant objects | relevant objects
pieces
general 2 5 5 1
guard 2 5 5 1
elephant 4 6 6 2
chariot 2 5 5 1
horse 5 10 10 2
cannon 4 6 6 3
soldier 3 10 1

Table 4: The number of relevant objects in the respective instructional section

Again, I adopted the same definitions of propositions developed by Kintsch
(1974) as the criteria to count the number of propositions. Word categories regarded
as predicates are verbs, adverbs, adjectives, conjunctions, prepositions, and
quantifiers. The number of objects includes figures that refer to the positions of the
relevant and the non-relevant (visual distractors) chess pieces on the chess board.
The relevant objects are the objects that carry relevant meaning for elucidating the

movement rules. On the contrary, the visual distractors represent some other chess
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pieces which are irrelevant to the movement rules. In the diagrams that are of
‘simple’ and ‘medium’ complexity, for instance, the figures regarded as objects
consist of blue and gray dots as well as black circles. The blue arrows and the red

crosses are included in the number of objects.

8.4.2.1 The effect of the number of propositions

The data are given in Figure 12. According to the ANOVA, the effect of the number
of propositions on the mean section time was significant (F(3; 676) = 20.465; p <
0.001). The results indicated that the mean section time was positively related to the

number of propositions.
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Figure 12: Mean section time as a function of the number of propositions

On the other hand, the effect of the number of objects, the number of visual
distractors, and the number of relevant objects on the mean section time was also
examined. It should be mentioned that I used ‘quantity’ instead of the absolute
number of visual distractors as well as of relevant objects because the amount of
them was varied regularly between the levels of picture complexity. Accordingly, the
absolute number in this case is not important but it is only the variation in the
amount that is of interest. For the sake of convenience, I distinguished three levels of
the quantity of visual distractors and the quantity of relevant objects. For the quantity
of visual distractors, the three levels were ‘no’ (0), ‘medium’ (5), and ‘high’ (10). As
to the quantity of the relevant objects, the ‘low’ quantity corresponded to 1 to 3
objects, ‘medium’ contained 4 to 5, while ‘high’ consisted of 6 to 10 objects.

Moreover, it should be noted that the picture mode (static vs. animated) will
influence the effects of the number of objects, the quantity of visual distractors as

well as the quantity of relevant objects. The number of objects in animation, for
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example, affects section time in a different way than it does when static pictures are
used. Since subjects’ visual attention is attracted or guided by the motion, the effect
of the number of objects or the visual distractors, respectively, on the mean section
time is probably much weaker than that in static pictures. Thus, to avoid
contamination of the data analysis, it is better to distinguish the effect of static-
picture conditions from that of the animation conditions. In this experiment, I have
mainly evaluated the effects of these factors in relation to the static-picture
conditions. This principle is also employed with regard to the ongoing evaluations of
the effects concerning those factors. In addition, if there is an interaction between the
effects of text mode and picture complexity, there is also probably an interaction
between text mode and the number of objects to be expected, because picture
complexity is partly defined by the number of objects. This should also be taken into
account when analyzing the effects of the number of objects, the quantity of visual

distractors, and the quantity of relevant objects.

8.4.2.2 The effect of the number of objects

Figure 13 depicts the mean section time as a function of the number of objects. The
results showed that the effect of the number of objects on the mean section time for
static-picture conditions was significant (F(8; 516) = 5.852; p < 0.001): the mean
section time was positively related to the number of objects. Due to the large
variance between the values, the relationship between the mean section time and the
number of objects was not linear. According to the Bonferroni tests, significant
differences were found to exist between the 2/3, 2/16, 3/4, 3/10, 3/11, 3/15, 10/16
objects. In order to roughly estimate the general effect of the number of objects on
the mean section time, the number of objects was divided into two conditions at the
median (=10). A t-test (t(523) = -1.747, p = 0.081) showed that the mean section
time of the sections with few objects (< = 10) (mean = 15.508 sec) tended to be

shorter than that of the sections with many objects (> 10) (mean = 17.124 sec).
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Figure 13: Mean section time as a function of the number of objects

in the static-picture conditions

The quantity of the visual distractors had no effect on mean section time,
whereas the effect of the quantity of relevant objects was significant (F(2; 522) =
3.697; p < 0.5). The data relating to the quantity of the relevant objects are shown in
Figure 14. When the text mode was considered, the effect of the quantity of relevant
objects was only significant when auditory text (F(2; 260) = 9.142; p < 0.001) was
presented. The Bonferroni tests pointed out that the difference between ‘medium’

and ‘high’ was significant.
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Figure 14: Mean section time as a function of the quantity of

relevant objects, when text was presented auditorily
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8.4.2.3 The effect of the number of visits to the same section

The factor ‘the number of visits to the same section’ was also investigated in
connection with the mean section time. Figure 15 depicts the mean section time as a
function of the number of visits to the same section. It stands to reason that mean

section time was inversely related to the number of visits to the same section.
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Figure 15: Mean section time as a function of the number of

visits to the same section

8.4.3 Mean section frequency

Since subjects were free to view a section as often as they wanted, it is also important
to examine whether factors like picture complexity, text mode, the number of
propositions, the number of objects, and the quantity of visual distractors determine
how often a subject views a certain instructional section.

Figures 16 and 17 show the mean section frequency as a function of
experimental condition. The results indicated that picture complexity had a
significant effect on the mean section frequency (F(3; 672) = 16.839; p < 0.001).
Mean section frequency was significantly lower when animation was presented.
Among the conditions where static pictures were displayed, the differences in the
mean section frequency were not significant. In addition, there was a strong tendency
that indicated that the mean section frequency was lower when auditory text was
presented (F(1; 672) = 3.680; p = 0.055). The interaction between picture complexity
and text mode was also significant (F(3; 672) = 68.550; p < 0.001). According to the
Bonferroni tests, the mean section frequency of Condition (simp-visu) and Condition

(comp-audi) were significantly higher than that of the other conditions, whereas the
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frequency of Condition (comp-visu) and Condition (ani-audi) were substantially
lower.

R
W

0,5 - -

Mean section frequency
(]
|

(]
]

T T T T T T T
simp- simp- med- med- comp- comp- ani- ani-
visu audi visu audi visu audi visu audi

Condition
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8.4.3.1 The effect of the number of propositions

The data are given in Figure 18. The mean section frequency was significantly
influenced by the number of propositions (F(3; 521) = 35.732; p < 0.001). The data
indicated that mean section frequency declined as the number of propositions
increased. According to the Bonferroni tests, significant differences lay between the
9/11, 9/13, 11/13, 11/14, and 13/14 propositions.
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Figure 18: Mean section frequency as a function of the number

of propositions

8.4.3.2 The effect of the number of objects

The data are depicted in Figure 19. The mean section frequency was significantly
influenced by the number of objects (F(8; 516) = 4.077; p < 0.001) but not by the
quantity of visual distractors or the quantity of relevant objects. The Bonferroni tests
showed that significant differences existed between the 2/3, 3 /4, 3/15, 3/20, and 4/5
objects. Again, due to the large variance in the values, the relationship between the
mean section frequency and the number of objects was not linear. I therefore divided
the number of objects into three conditions: low (= 2, 3, or 4 objects), medium (= 5,
10, or 11 objects), and high (= 15, 16, or 20 objects). The Bonferroni tests showed
that the significant difference was only between ‘low’ (mean = 2.677) and ‘medium’
(mean = 2.444).
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Figure 19: Mean section frequency as a function of the number

of objects in the static-picture conditions

8.4.4 Analyses of eye-movement data

To investigate the dynamics of subjects’ visual attention, i.e. the viewing strategies
for integrating the pictorial and textual information, quantitative as well as
qualitative analyses of eye-movement data were carried out. In the first part of this
section, I will first of all focus on the quantitative evaluations. Afterwards, the

qualitative analyses of some subjects’ viewing patterns will be described.

8.4.4.1 Quantitative analyses of eye-movement data

The evaluations are mainly focused on how subjects’ fixation duration, the number
of fixations, the fixation rate, and saccade length vary along with the factors —
picture complexity, text mode, the number of propositions, the number of objects, the
quantity of visual distractors, and the quantity of relevant objects. The analyses of
every dependent variable consist of two parts. In the first part, I investigate the
effects of picture complexity and text mode on the eye-movement variables in a more
general way, so that the evaluation of the effects is concerned with the eye
movements in regard to all components of the instructional sections that comprise
text, pictures, and control buttons. In the second part, more detailed analyses are
implemented so that the effects of all of the factors mentioned above are examined
separately for the picture as well as for the text region (if text was presented visually)
on the display of the instructional sections. It should be noted that the effects relating
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to the number of objects are analyzed separately for static pictures and for animation,

in order to avoid contamination.
8.4.4.1.1 Mean fixation duration

Figure 20 depicts the mean fixation duration as a function of picture complexity. The
effect of picture complexity (F(3; 672) = 23.446; p < 0.001) on the mean fixation
duration was significant. The Bonferroni tests indicated that the mean fixation
duration of picture complexity for ‘simple’ as well as ‘animation’ were significantly
higher than those for ‘medium’ and ‘complex’. The difference between ‘simple’ and

‘animation’ was not significant.
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Figure 20: Mean fixation duration as a function of picture complexity

Text mode (F(1; 672) = 124.215; p < 0.001) and the interaction between
picture complexity and text mode (F(3; 672) = 13.688; p < 0.001) also had a
significant effect on the mean fixation duration. The mean fixation duration was
significantly longer when auditory text was presented (mean = 272.042 ms) than
when visual text was shown (mean = 228.744 ms). The effect of the interaction
between picture complexity and text mode as depicted in Figure 21 indicated that
animation plus auditory text produced considerably longer fixation duration than did
other experimental conditions. When auditory text was presented, the mean fixation
duration was much longer than when text was presented visually, with the result that
the mean fixation durations of audio-visual conditions were always longer than those
of visual-only conditions. The Bonferroni tests pointed out that the mean fixation
durations of Condition (ani-audi) and Condition (simp-audi) were significantly

longer than those of the other conditions.
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Figure 21: Mean fixation duration as a function of experimental condition
Mean fixation duration in the picture region

Mean fixation duration in the picture region was significantly influenced by
picture complexity (F(3; 672) = 39.181; p < 0.001) and text mode (F(1; 672) =
107.561; p <0.001) as well as by the interaction between these two factors (F(3;
672) = 8.294; p < 0.001). The effect of picture complexity clearly showed that
mean fixation duration in the picture region was drastically longer when pictures
were animated. As to the effect of text mode, the mean fixation duration in the
picture region was significantly longer (mean = 280.887 ms) when auditory text
rather than visual text was presented (mean = 233.599 ms). Due to the effect of
the interaction between picture complexity and text mode, when static pictures
and visual text were shown, there was no significant difference in the mean
fixation duration in the picture region. Yet, when static pictures were combined
with auditory text, significant differences could be observed. Figure 22 shows
the mean fixation duration in the picture region when text was presented
visually. According to the Bonferroni tests, ‘animation’ was significantly higher
than the other conditions, while there were no significant differences between
‘simple’, ‘medium’, and ‘complex’. Figure 23 depicts the mean fixation
duration in the picture region when text was presented auditorily. The
Bonferroni tests showed that ‘simple’ was significantly higher than ‘medium’

and ‘complex’. ‘Animation’ was significantly higher than the other conditions.
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The effects of the number of propositions, objects and the quantity of visual
distractors as well as relevant objects on the mean fixation duration in the picture

region were also examined:

The effect of the number of propositions

The mean fixation duration in the picture region was independent of the number of

propositions.

The effects of the number of objects, the quantity of visual distractors, and the

quantity of relevant objects

Since picture complexity was partially defined by the number of objects, and there
was an interaction between the effects of text mode and picture complexity on the
mean fixation duration in the picture region, an interaction between the effects of
text mode and the number of objects and between that of text mode and the quantity
of visual distractors or between that of text mode and the quantity of relevant objects
could be expected. The results showed that when text was presented visually, the
number of objects, the quantity of visual distractors and the quantity of relevant
objects had no effect, whereas the mean fixation duration in the picture region was
significantly influenced by these factors when text was presented auditorily (number
of objects: F(8; 254) = 3.565; p < 0.005; quantity of visual distractors: F(2; 260) =
12.288; p < 0.001; quantity of relevant objects: F(2; 260) = 11.426; p < 0.001). As

the results indicated, the mean fixation duration in the picture region was inversely
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related to the number of objects (see Figure 24), the quantity of visual distractors

(see Figure 25), and the quantity of relevant objects (see Figure 26).
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Figure 24: Mean fixation duration in the picture region as a
function of the number of objects in the conditions where

static pictures and auditory text were presented

Comparing the mean values of the number of objects <= 10 (mean = 277.175 ms)
with those > 10 (mean = 249.015 ms), a t-test (t(523) = 2.597, p < 0.05) showed that
the mean fixation duration in the picture region declined substantially as the number

of objects increased.
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Figure 25: Mean fixation duration in the picture region as a function
of the quantity of visual distractors. The Bonferroni tests showed
that mean fixation duration was significantly longer when no visual

distractors were displayed in the pictures.
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Figure 26: Mean fixation duration in the picture region as a
function of the quantity of relevant objects. According to the
Bonferroni tests, the mean fixation duration for the ‘low’ quantity

was significantly longer than for the ‘medium’ and ‘high’ quantity.

The effect of the number of objects on the mean fixation duration in
animation was also significant (F(3; 69) = 2.963; p < 0.05) when text was presented
auditorily. Mean fixation duration decreased as the number of objects in animation

increased (see Figure 27).
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Figure 27: Mean fixation duration in the picture region as a
function of the number of objects when animation and auditory

text were presented.

In keeping with the results conveyed above, it appears that, irrespective of

what kind of function the objects in the pictures had (relevant or not relevant), the
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mean fixation duration in the picture region always declined as the quantity of the

objects increased.
Mean fixation duration in the text region

The mean fixation duration in the text region was independent of the experimental
conditions. Besides, the number of propositions had no effect on the mean fixation

duration in the text region.
8.4.4.1.2 Mean number of fixations

The values of the mean number of fixations for each of the eight experimental
conditions are depicted in Figure 28. The ANOVA showed that the mean number of
fixations was not significantly influenced by picture complexity but by text mode
(F(1; 672) = 4.895; p < 0.05) and by the interaction between picture complexity and
text mode (F(3; 672) = 5.349; p < 0.005). The mean number of fixations was
significantly larger when text was presented visually. The results indicated that the
mean number of fixations in the visual-only conditions increased substantially when
picture complexity was strongly enhanced, whereas there was no significant
difference in the mean number of fixations in the audio-visual conditions. According
to the Bonferroni tests, significant differences were found to exist between
Condition (med-visu) and Condition (comp-visu), Condition (med-visu) and

Condition (ani-visu), as well as Condition (comp-visu) and Condition (ani-audi).
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Figure 28: Mean number of fixations as a function of

experimental condition
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Mean number of fixations in the picture region

Figure 29 depicts the mean number of fixations in the picture region for each of the
eight experimental conditions. The mean number of fixations in the picture region
was significantly influenced by picture complexity (F(3; 672) = 9.128; p < 0.001),
and text mode (F(1; 672) = 81.633; p < 0.001) as well as the interaction between the
two factors (F(3; 672) = 4.613; p < 0.005). The audio-visual conditions had
significantly more fixations in the picture region than did the visual-only conditions
when static pictures were presented. The difference was most pronounced with
materials of medium complexity. The Bonferroni tests showed that the mean number
of fixations in the picture region with ‘simple’ picture complexity was significantly
smaller than that with ‘medium’ or ‘complex’ picture complexity, and when there
was ‘animation’. More precisely, Condition (simp-visu) was significantly smaller
than the other conditions except for Condition (med-visu). Besides, significant
differences also existed between Condition (simp-audi) and Condition (med-audi),
Condition (med-visu) and Condition (med-audi), Condition (comp-visu) and
Condition (comp-audi). There was no significant difference in the mean number of
fixations in the picture region between audio-visual and visual-only conditions when

animation was presented.
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Figure 29: Mean number of fixations in the picture region as a

function of experimental condition.

The effect of the number of propositions

Figure 30 shows the mean number of fixations in the picture region as a function of

the number of propositions. The effect of the number of propositions was significant

162



8. Experiment 2

(F(3; 676) = 11.562; p < 0.001). As the results indicated, the mean number of
fixations in the picture region increased as the number of propositions increased.
This is actually a natural outcome when the text was presented auditorily because,
the longer the text, the longer subjects would inspect the pictures, and therefore, the
larger the number of fixations in the picture region. Interestingly, the number of
propositions was still positively related to the mean number of fixations in the picture
region, even though the text was presented visually (F(3; 340) = 3.125; p < 0.05).

The data were given in Figure 31.
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Figure 30: Mean number of fixations in the picture region as a

function of the number of propositions
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Figure 31: Mean number of fixations in the picture region as a
function of the number of propositions when text was

presented visually

The effects of the number of objects, the quantity of visual distractors, and the

quantity of relevant objects
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Figure 32 shows the effect of the number of objects on the mean number of fixations
in the picture region (F(8; 516) = 5.369; p < 0.001). The data clearly show that the
mean number of fixations in the picture region increased as the number of objects

increased.
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Figure 32: Mean number of fixations in the picture region as a

function of the number of objects

The quantity of visual distractors (F(2; 522) = 13.264; p < 0.001) (see Figure
33) and the quantity of relevant objects (F(2; 522) = 18.601; p < 0.001) (see Figure
34) also had an effect on the mean number of fixations in the picture region. The
mean number of fixations in the picture region was a positive function of the quantity

of visual distractors and the quantity of relevant objects.
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Figure 33: Mean number of fixations in the picture region as a

positive function of the quantity of visual distractors. The Bonferroni
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tests showed that the differences between ‘no’ and ‘medium’ as well

as ‘no’ and ‘high’ were significant.
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Figure 34: Mean number of fixations in the picture region as a
function of the quantity of relevant objects. The Bonferroni tests
showed that the quantity level ‘high’ was significantly greater than

the ‘low’ and ‘medium’ levels

The results concerned with the mean number of fixations in the picture region
are related to those to do with the mean fixation duration in the picture region. It
appears that the learning strategy that subjects employed was to examine the objects
in the pictures with short but many fixations. The objects of different functions
(relevant or non-relevant) did not influence the eye-movement behavior in different

ways.

Mean number of fixations in the text region

The mean number of fixations in the text region was independent of the experimental
conditions. However, the mean number of fixations in the text region was positively
related to the number of propositions (F(3; 340) = 5.388, p < 0.005). The data are
given in Figure 35. The Bonferroni tests showed that ‘9’ was significantly smaller
than ‘11° and “13’.
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Figure 35: Mean number of fixations in the text region as a

function of the number of propositions
8.4.4.1.3 Mean fixation rate

The fixation rate was calculated as the number of fixations divided by the viewing
time. The reason for analyzing the fixation rate is that the fixation rate can give
insight into how fast a subject was viewing or scanning the instructions, which
provides information relating to the subject’s strategies regarding information
processing and the eye-movement behavior triggered by different visual displays and
text modes.

Figure 36 shows the mean fixation rate as a function of experimental
condition. The results showed that the mean fixation rate was significantly
influenced by picture complexity (F(3; 670) = 25.069; p < 0.001), text mode (F(1;
670) = 168.649; p < 0.001), and the interaction between these two factors (F(3; 670)
=8.235; p <0.001). When pictures were static, the fixation rate for ‘medium’ picture
complexity was significantly higher than that for ‘simple’ complexity, whereas there
were no significant differences between ‘simple’ and ‘complex’ or ‘medium’ and
‘complex’. Moreover, the mean fixation rate declined significantly when animation
was presented. When text was presented visually, the fixation rate (mean = 4.086
fixations/sec) was significantly higher than when auditory text was presented (mean
= 3.399 fixations/sec). According to the Bonferroni tests, the fixation rate of
Condition (med-visu) was significantly higher while those of Condition (ani-audi)
and Condition (simp-audi) were substantially lower when compared with those of the
other conditions. Additionally, significant differences were also found between
Condition (simp-visu) and Condition (med-audi), Condition (med-audi) and

Condition (comp-visu).
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Figure 36: Mean fixation rate as a function of experimental condition.
Again, audio-visual conditions are gray in color, and the visual-only

conditions are black.
Mean fixation rate in the picture region

Figure 37 shows the mean fixation rate as a function of experimental condition.
Picture complexity (F(3; 668) = 28.584; p < 0.001) as well as text mode (F(1; 668) =
62.017; p < 0.001) had a significant effect on the mean fixation rate in the picture
region. The interaction between picture complexity and text mode was not
significant but still pointed to a tendency (F(3; 668) = 2,195, p = 0.087). When text
was presented auditorily, the mean fixation rate in the picture region (mean = 3.321
fixations/sec) was substantially lower than when the text was presented visually
(mean = 3.666 fixations/sec). The Bonferroni tests pointed out that Condition (ani-
audi) was significantly lower than other conditions. In addition, significant
differences were also found between Condition (simp-visu) and Condition (simp-
audi), Condition (comp-visu) and Condition (comp-audi), Condition (ani-visu) and
Condition (ani-audi), but not between Condition (med-visu) and Condition (med-
audi). On the other hand, the mean fixation rate in the picture region was
significantly lower when animation was presented. Figure 38 shows the effect of
picture complexity on the mean fixation rate in the picture region. The Bonferroni
tests showed that ‘animation’ was significantly lower than the other conditions.

Besides, ‘complex’ was significantly higher than ‘simple’.
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Figure 37: Mean fixation rate in the picture region of experimental condition
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The effect of the number of propositions

The number of propositions exerted no effect on the mean fixation rate in the picture

region.

The effects of the number of objects, the quantity of visual distractors, and the

quantity of relevant objects
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The number of objects (F(8; 254) = 3.58; p < 0.005), the quantity of visual
distractors (F(2; 260) = 11.356; p < 0.001) as well as the quantity of relevant objects
(F(2; 260) = 9.885; p < 0.001) had significant effects on the mean fixation rate in the
picture region when texts were presented auditorily. When texts were presented
visually, the effects of those factors were not significant. Figure 39 shows the effect
of the number of objects. The mean fixation rate in the picture region was positively

related to the number of objects.
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Figure 39: Mean fixation rate in the picture region as a function

of the number of objects

Figure 40 shows the effect of the quantity of visual distractors. The mean
fixation rate in the picture region was positively related to the quantity of visual
distractors. The Bonferroni tests indicated that the mean fixation rate was significantly

lower when there were no visual distractors presented in the diagrams.
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Figure 40: Mean fixation rate in the picture region as a function

of the quantity of visual distractors

Figure 41 shows the effect of the quantity of relevant objects. The mean
fixation rate in the picture region was also positively related to the quantity of relevant
objects. According to the Bonferroni tests, the mean fixation rate of ‘low’ was

significantly lower than those of ‘medium’ and ‘high’.
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Figure 41: Mean fixation rate in the picture region as a

function of the quantity of relevant objects
Mean fixation rate in the text region

The fixation rate in the text region was independent of the experimental conditions

and the number of propositions.
8.4.4.1.4 Mean saccade length

Figure 42 depicts the mean saccade length of the eight experimental conditions.
Picture complexity (F(3; 672) = 5.115; p < 0.005), text mode (F(1; 672) = 151.354; p
< 0.001) as well as the interaction between these two factors (F(3; 672) = 6.395; p <
0.001) had significant effects on the mean saccade length. Mean saccade length was
negatively related to picture complexity. However, the only significant difference lay
between the ‘simple’ and ‘medium’ levels of picture complexity. There was no
significant difference in saccade length between the ‘medium’, ‘high’ and
‘animation’ levels. When text was shown visually (mean = 139.015 pixels), mean

saccade length was significantly greater than when text was presented auditorily
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(mean = 107.101 pixels). Thus, the Bonferroni tests pointed out that the mean
saccade length in relation to the audio-visual conditions were significantly shorter
than those concerned with the visual-only conditions: the effect was most
pronounced between the conditions for which simple diagrams were used. The mean
saccade length of Condition (simp-visu) was significantly longer than that of the
other conditions.
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Figure 42: Mean saccade length as a function of experimental

condition

Mean saccade length in the picture region

Figure 43 demonstrates the mean saccade length in the picture region of the eight
experimental conditions. The mean saccade length in the picture region was not
affected by picture complexity but by text mode (F(1; 672) = 11.535; p < 0.005) and
by the interaction between picture complexity and text mode (F(3; 672) = 2.802; p <
0.05). Again, when text was presented auditorily (mean = 78.699 pixels), the mean
saccade length in the picture region was significantly shorter than when visual text
was presented (mean = 87.622 pixels). According to the Bonferroni tests, there was a

significant difference between Condition (simp-visu) and Condition (ani-audi).
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Figure 43 : Mean saccade length in the picture region as a function of

experimental condition

The effect of the number of propositions

The number of propositions had a significant effect on the mean saccade length in
the picture region. The mean saccade length in the picture region was inversely
related to the number of propositions. However, this significant effect was restricted
to when text was presented auditorily (F(3; 332) = 4.320; p < 0.01). When visual text
was shown, there was no significant difference in the mean saccade length in the

picture region. The difference in this effect was juxtaposed by Figures 44 and 45.
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The effects of the number of objects, the quantity of visual distractors, and the

quantity of relevant objects

The mean saccade length in the picture region was also significantly influenced by
the number of objects when text was displayed visually (F(8; 253) = 2.757; p < 0.05)
(see Figure 46). The Bonferroni tests indicated that the significant effect was
exclusively due to the number of objects ‘4’. This corresponds to the two
instructional sections (elephant and cannon) in Condition (simp-visu) and Condition
(simp-audi) in which the objects in the diagrams were more sparsely arrayed than
those in the diagrams of the other instructional sections. These arrangements

possibly triggered longer saccades when subjects were viewing these two sections.
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Figure 46: Mean saccade length in the picture region as a function

of the number of objects when text was presented visually

When text was presented auditorily, the mean saccade length in the picture
region was positively related to the number of objects (F(8; 254) = 5.946; p < 0.001)
(see Figure 47). A t-test (t(261) = -2.498; p < 0.05) showed that the mean value for
the sections with objects <= 10 (75.556 pixels) was significantly shorter than that for
the sections with objects > 10 (84.204 pixels). Moreover, the effect of the number of
objects on the mean saccade length in the picture region was not significant when
animation was presented. Nevertheless, there was a tendency that indicated that the
mean saccade length became larger as the number of objects increased (F(3; 151) =
2.329; p = 0.07).
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Figure 47: Mean saccade length in the picture region as a
function of the number of objects when text was presented

auditorily

Since the effect of the number of propositions on the mean saccade length in
the picture region was opposite to the effect of the number of objects, an important
question is which of the two factors had a stronger influence on subjects’ eye
movements. According to a multiple linear regression equation that captured the

relationship between these variables, the following results were obtained:

Mean saccade length = 110.395 - 3.405x(number of propositios) +
0.707x(number of objects)

The weight of the number of propositions (-3.405) was much larger than that in
relation to the number of objects (0.707), which indicated that the number of
propositions had a stronger effect on the mean saccade length in the picture region
than did the number of objects.

The effect of the quantity of visual distractors was not significant, whereas
the mean saccade length in the picture region was significantly affected by the
quantity of relevant objects when text was presented auditorily (F(2; 260) = 5.207; p
< 0.01) (see Figure 48). The mean saccade length in the picture region became larger
as the quantity of relevant objects increased. According to the Bonferroni tests, ‘low’

was significantly lower than ‘medium’ and ‘high’.
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Figure 48: Mean saccade length in the picture region as a

function of the quantity of relevant objects
Mean saccade length in the text region

The data are given in Figure 49. The mean saccade length in the text region was
significantly influenced by picture complexity (F(3; 340) = 7.410; p < 0.001). The
Bonferroni tests indicated that significant differences existed between Condition
(simp-visu) and Condition (ani-visu) as well as Condition (comp-visu) and Condition
(ani-visu). When pictures were static, there was no significant difference in the mean
saccade length in the text region, whereas the mean saccade length in the text region

became significantly longer when animation was presented.
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Figure 49: Mean saccade length in the text region of the

corresponding experimental conditions
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8.4.4.1.5 Number of gaze changes between the picture and the text region

This variable can yield information concerning how often subjects in the visual-only
conditions switch their gazes between the picture and the text region, which can
reveal their strategies for integrating the textual and pictorial information. The data
are shown in Figure 50. The results showed that picture complexity had a significant
effect on the mean number of gaze changes between picture and text (F(3; 340) =
4.221; p < 0.01). According to the Bonferroni tests, a significant difference was
found to exist between ‘medium’ and ‘animation’. The differences between ‘simple’,
‘medium’, and ‘complex’ were not significant. When animation was shown, subjects
switched their gazes between text and picture significantly more often (mean =
9.598) than when static pictures were displayed (mean = 7.378) (F(1; 342) =8.52; p
<0.01).
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Mean number of gazes changing between
the picture and the text region
=N
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Figure 50: Mean number of gaze changes between the picture

and the text region as a function of picture complexity
The effect of the number of propositions
The number of propositions had an effect on the mean number of gaze changes
between the picture and the text region (F(3; 340) = 4.648; p < 0.005) (see Figure

51). The Bonferroni tests pointed out that the significant difference was between ‘9’
and ‘11°.
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Figure 51: Mean number of gaze changes between the picture
and the text region as a function of the number of

propositions

Moreover, the number of objects, the quantity of visual distractors, and the
quantity of relevant objects had no effect on the mean number of gaze changes
between the picture and the text region.

8.4.4.1.6 Percentage of time spent in the picture region

This variable provided information concerning the percentage of time subjects spent
inspecting the pictures when they were learning an instructional section. It was
calculated by: (The sum of the fixation durations collected in the picture region) /
(The section time of the given section)*100%. The results showed that when text
was presented visually, the percentage of time spent in the picture region was
significantly influenced by picture complexity (F(3; 676) = 32.156; p < 0.001) (see
Figure 52).
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Figure 52: Percentage of time spent in the picture region as a

function of picture complexity

Subjects that received simple static pictures with visual text spent significantly less
time inspecting pictures than did subjects in other experimental conditions.
According to the Bonferroni tests, ‘simple’ was significantly less than ‘medium’,
‘complex’, and ‘animation’. Besides, ‘animation’ was significantly greater than

‘medium’.

The effect of the number of propositions

The percentage of time spent in the picture region was independent of the number of

propositions.

The effects of the number of objects, the quantity of visual distractors, and the
quantity of relevant objects

The number of objects had a significant effect on the percentage of time spent in the
picture region (F(8; 516) = 7.915; p < 0.001) (see Figure 53). The data showed that
the more objects there were in pictures, the more time subjects spent viewing these

pictures.
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Figure 53: Percentage of time spent in the picture region as a
function of the number of objects.

Moreover, the effects of the quantity of visual distractors (F(2; 522) = 30.683; p <
0.001) and the quantity of relevant objects (F(2; 522) = 18.593; p < 0.001) were also
significant. Figure 54 shows that the percentage of time spent in the picture region
was positively related to the quantity of visual distractors. The Bonferroni tests
indicated that ‘no’ was significantly lower than ‘medium’ or ‘high’. The difference
between ‘medium’ and ‘high’ was not significant. Overall, when the visual distractors
were absent, subjects spent substantially less time in the picture region than did
subjects that received visual distractors.
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Figure 54: Percentage of time spent in the picture region as a

function of the quantity of visual distractors
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Figure 55 depicts the effect of the quantity of relevant objects. The percentage of
time spent in the picture region was positively related to the quantity of relevant
objects. The Bonferroni tests showed that ‘low’ was significantly lower than
‘medium’ and ‘high’. The difference between ‘medium’ and ‘high’ was also
significant.
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Figure 55: Percentage of time spent in the picture region as a
function of the quantity of relevant objects

8.4.4.1.7 Percentage of time spent in the text region

This variable provides information regarding the percentage of time subjects spent
reading the text when they were learning an instructional section. It was calculated
by: (The sum of the fixation durations collected in the text region) / (The section
time of the given section)*100%. The percentage of time that subjects spent in the
text region was significantly affected by the experimental conditions (F(3; 340) =
7.827; p < 0.001). The data are depicted in Figure 56. Subjects that received
diagrams with ‘simple’ or ‘medium’ complexity spent significantly more time
reading text than did subjects that received complex diagrams or animation with
visual text. The Bonferroni tests showed that the differences between Condition
(simp-visu) and Condition (comp-visu), Condition (simp-visu) and Condition (ani-
visu), Condition (med-visu) and Condition (comp-visu) as well as Condition (med-
visu) and Condition (ani-visu) were significant. In addition, the number of

propositions had no effect on the percentage of time spent in the text region.
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Figure 56: Percentage of time spent in the text region of the
corresponding experimental conditions

8.4.4.1.8 Percentage of time spent in the picture versus in the text region

By comparing the percentage of time subjects spent inspecting the pictures with the
percentage of time that they spent reading the text, we can find out whether subjects
paid more attention to the pictures or to the written texts. Figure 57 depicts the data.
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Figure 57: Percentage of time spent in the picture vs. in the text
region. Percentage of time spent in the text region was marked in

black whereas that spent in the picture region was marked in gray.

Pairwise comparisons using t-tests showed that subjects in Condition (simp-visu)
(t(97) = -4.237; p < 0.001) spent substantially more time reading text than viewing
the pictures while subjects in Condition (comp-visu) (t(72) = 2.837; p < 0.001) and
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Condition (ani-visu) (t(81) = 5.477; p < 0.001) spent significantly more time viewing

pictures or animation than reading text.

8.4.4.2 Qualitative analyses of eye-movement data

As to the qualitative analyses of eye-movement data, which were carried out as case
studies, some subjects’ eye-movement trajectories were analyzed to investigate how
the subjects integrated the textual and pictorial information, and how their visual
attention was spatially and temporally distributed. In the following subsections, I
shall report on the eye-movement trajectories of three subjects: one subject was from
Condition (comp-audi); another one was from Condition (med-audi), and the other

one was from Condition (med-visu).

8.4.4.2.1 Case 1

The first example of a subject’s eye-movement trajectories is shown in Figure 58.
Each number represents a fixation position on the display of the given section in
chronological order. The subject was for the first time inspecting the complex
diagram and listening to the verbal instructions regarding the movement rules for the
Chinese chess piece referred to as a ‘cannon’. During this section there were all in all
56 fixations enumerated by their temporal order and plotted on the screen shot of the
Section ‘cannon’. The corresponding fixation durations are listed in Table 5. In
addition, a time line is given to align auditory and oculomotor events.

As the data showed, during the first 1305 milliseconds, the subject was
looking at the menu buttons. During that time three fixations were located at the
label ‘Kanone’, while the subject was hearing the words ‘die Kanone’ (the cannon).
The inspection of the diagram started at the fixation 8 (f. 8). From f. 20 to f. 28, the
subject looked at the horizontal direction, and then examined the vertical direction
from f. 29 to f. 40. While the auditory text was saying ‘zum Schlagen’ (to capture), a
longer fixation duration (f. 33: 552 ms) was observed at the critical position on the
diagram where a red flame signified that the cannon had captured the opponent’s
knight. Shortly after the second sentence ended, the subject successively considered
the ‘cannon’ positions at the bottom as well as in the middle of the diagram, and the
captured ‘knight’ of the opponent, which indicated that she was trying to understand
what the second sentence meant.

Furthermore, the most frequently fixated piece in the diagram was the
‘cannon’ in its starting position because a large number of fixations were directed at

this piece. This was one of the most crucial visual elements for understanding the
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information illustrated by the diagram. Besides, longer fixation durations were
especially observed in relation to the ‘cannon’ in the left end position (f. 22: 596 ms;
f. 41: 676 ms) as well as in regard to the captured ‘knight’ of the opponent (f. 14:
404 ms; f. 33: 552 ms), and the starting position (f. 28: 408 ms). On the other hand,
there were a small number of fixations located at some visual distractors that were
close to the relevant chess pieces. The other visual distractors that were a bit far from
the relevant pieces were simply ignored. That is, visual distractors did distract visual
attention under the condition that they were spatially near the relevant visual
elements.

To sum up, the eye-movement trajectories revealed the dynamics of the
subject’s visual attention while she was listening to the verbal instructions and trying
to integrate them with the pictorial information presented in a visually demanding
diagram. The relevant objects in the diagram received considerably more or longer
fixations than the visual distractors. The subject’s eye movements were affected by
the auditory text, which could be observed from her inspection of the relevant

objects that the auditory text referred to, shortly after she heard that text.
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Kanone

Figure 58: An example of a subject’s gaze trajectories, while the subject was hearing
the text and inspecting the complex diagram regarding the ‘cannon’.
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0 1305 (ms) 2804 (ms) 4165 (ms) 5228 (ms) 6137 (ms)

7405 (ms)

| | | | |
(f.1-7) (f. 8 - 12) (f. 13 -16) (£ 17-20) (f21-22)

(. 23 - 28)

Die Kanone bewegt sich in einem Zug beliebig viele Einheiten horizontal oder vertikal in beliebiger Richtung.
in any direction. )

(The cannon moves in one move  arbitrarily many units  horizontally or vertically

7405 (ms) 8209 (ms) 9060 (ms) 9487 (ms) 10260 (ms) 11501 (ms)
L]
(f. 29 -31) | (f.32-34) | (f. 35-36) | (f. 37 - 40) | (f. 41- 44)

( Pause ) Zum Schlagen muss sie  iber eine Figur springen.

( pause ) (To capture, it  must jump over a piece. )
Nr. of fix. 1 2 3 4 5 6 7 8 9 10 11 12
FD (ms) 144 108 184 188 48 72 96 268 96 232 140 192
Nr. of fix. 13 14 15 16 17 18 19 20 21 22 23 24
FD (ms) 100 404 312 228 196 196 300 320 192 596 108 300
Nr. of fix. 25 26 27 28 29 30 31 32 33 34 35 36
FD (ms) 216 148 200 408 176 144 156 148 552 228 168 316
Nr. of fix. 37 38 39 40 41 42 43 44 45 46 47 48
FD (ms) 188 352 172 192 676 140 216 288 272 308 144 264
Nr. of fix. 49 50 51 52 53 54 55 56
FD (ms) 112 176 272 256 152 240 212 268

Table 5 shows the fixation durations of the fixations depicted in Figure 58
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8.4.4.2.2 Case 2

The second example shows the eye-movement trajectories of another subject who was
viewing the diagram with medium complexity and listening to verbal instructions
regarding the movement rules for the ‘soldier’ for the first time. The eye-movement
trajectories are depicted in Figure 59, and the corresponding fixation durations are
shown in Table 6. Again, a time line is given to align auditory and oculomotor events.

Similarly, there was clear evidence of the influence of the auditory text on the
viewing patterns of the subject. The subject cast a very short glance at the menu button
‘Soldat’, while she was hearing the words ‘der Soldat’. She first looked at the starting
position of the ‘soldier’ (the blue dot below on the left in the diagram), the black circle
above it, and then shifted her fixation to the blue arrow (to the left of the blue dot), and
looked back to the starting position and upwards to the black circle again, when she was
hearing “eine Einheit vorwirts (one unit forwards).” At f. 25 (412 ms) and f. 29 (544
ms), she looked at the black circle above the starting position with long fixation
durations, while the zone of the opponent was just mentioned by the text because the
circle was located in the zone of the opponent. Finally, as the auditory text was saying
that the ‘soldier’ may never move backwards, her gazes were directed toward the black
circle with a red cross below the second starting position of the ‘soldier’ (the blue dot
above to the right in the diagram), and moved between the second starting position and
the black circles twice. Immediately after that, she switched her gazes to the blue arrow
below the first starting position of the ‘soldier’, and looked downwards toward the black
circle with a red cross. This shows clearly that the subject was trying to integrate the
verbal and the pictorial information that referred to each other.

In this example, the majority of the fixations were located around the first
starting position of the ‘soldier’, the blue arrows as well as the black circles above,
below, and to the left of it. There were only two short fixations located close to the
visual distractors, which indicated that the visual attention of this subject was not much
diverted by the visual distractors. Most of the time, the subject’s eye movements were
related to the verbal instructions. As soon as the information delivered by the auditory
text was processed, the subject’s eyes immediately reacted to it, which provided clear
evidence that the subject’s eye movements were closely time locked to the auditory text.
That is, the allocation of attention could well be observed based on the fixation positions
in such a learning situation. In addition, the instantaneous reaction of the eyes to the
auditory verbal input during a sentence also corresponds to the immediacy principle of

language processing proposed by Just and Carpenter (1980, 1987).

186



8. Experiment 2

However, it should be noted that the instant reaction of the eyes to the auditory
text could be observed more frequently if the visual input was not very complicated. By
comparing the eye-movement trajectories of case 1 with those of case 2, it was found
that there was some delay in the reaction of eyes to the auditory text when the diagram
was visually complicated. In this case, the subject usually reacted to the text shortly after
she heard the text, but not immediately. This is a typical PRP (psychological refractory
period) effect when a subject is performing a dual task. Due to the limited capacity of
working memory, a trade-off in attentional resource must take place when two tasks
have to be performed simultaneously. A longer delay in the reaction time of the second

task can be observed if the first task is cognitively demanding.

8.4.4.2.3 Case 3

The third example shows the eye-movement trajectories of a subject who was reading
the text and viewing the diagram with medium complexity. The eye-movement
trajectories are shown in Figure 60, and the corresponding fixation durations are given
in Table 7. The immediacy of language processing can also be observed in that the
subject switched her eyes from the text to the diagram instantly at the end of a phrase,
but not at the sentence boundary. The change in fixation positions was an indicator of
the integration of the textual and pictorial information. This activity was revealed at two
places. The first one was from f. 13 to f. 16. The subject read the first sentence until the
word ‘diagonal’, and then instantaneously moved her eyes to the diagram where the
starting position of ‘guard’ and the two blue arrows to the right of it were located. Her
fixation jumped back to the word ‘diagonal’ at f. 16, and the reading continued. From f.
28 to f. 31, the eye-movement trajectories clearly showed that the subject looked at the
green line (at f. 29) in the diagram immediately after she read the second sentence as far
as the words ‘mit griinen Linien markierte’ (marked with green lines).

Most of the fixations in the picture region were aimed at the starting position of
the ‘guard’ (the blue dot), the two blue arrows to the right of it, and the black circle
above to the right. Longer fixation durations could also be observed in these locations.
Since the instructions were all presented visually, the integration of text and picture

information required switching fixations between text and picture.
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Figure 59: An example of a subject’s gaze trajectories, while the subject was
hearing the text and inspecting the diagram with medium complexity
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0 1175 (ms) 2693 (ms) 4166 (ms) 4666 (ms) 5415 (ms) 6783 (ms) >
| | | | | | |
(f.1-6) (f. 7-10) (f. 11 -15) (f.16-17) (f. 18-19) (f. 20 - 25)
Der  Soldat bewegt sichin einem Zug eine Einheit vorwédrts. (P a u s e) Nachdem er in die Zone des Gegners
( The soldier moves in  one move one unit forwards.) (p a u s e) (After he has moved into his opponent’s zone,
6783 (ms) 7799 (ms) 8685 (ms) 9368 (ms) 10051 (ms) 10624 (ms) 11037 (ms) 12164 (ms)
13751 (ms)
| | | | | | ¢
(f. 26 - 28) (f. 29 - 30) (f. 31-32) (f. 33-35) (f.36-37) (f.38-39) (f.40-44) (f. 45 -50)
gegangen  ist, darf er sich auch eine Einheit nach links oder rechts bewegen, aber rickwirts.
he may also move one unit to the left or the right, but never backwards.)
Nr. of fix. 1 2 3 4 5 6 7 8 9 10 11 12
FD (ms) 292 132 136 180 224 268 372 196 336 340 204 304
Nr. of fix. 13 14 15 16 17 18 19 20 21 22 23 24
FD (ms) 260 168 232 232 328 264 208 276 260 160 212 212
Nr. of fix. 25 26 27 28 29 30 31 32 33 34 35 36
FD (ms) 412 136 116 332 544 208 256 260 308 240 256 176
Nr. of fix. 37 38 39 40 41 42 43 44 45 46 47 48
FD (ms) 420 192 200 204 220 148 236 380 148 288 344 204
Nr. of fix. 49 50 51 52 53 54 55 56 57 58 59 60
FD (ms) 728 312 96 184 492 176 192 292 96 80 80 124
Nr. of fix. 61 62 63 64 65 66 67
FD (ms) 564 240 244 240 404 208 336

Table 6 shows the fixation durations of the fixations depicted in Figure 59
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Wach

General Waclie Elefant Wagen Pferd Kanone Soldat

@OBHE

Figure 60: An example of a subject’s gaze trajectories, while the subject was
reading the text and inspecting the diagram with medium complexity
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Die Wache bewegt sich in einem Zug eine Einheit diagonal in beliebiger Richtung.

(The guard moves

Sie darf die mit griinen Linien markierten Zone nicht verlassen.

(He may not leave the zone marked by the green lines.)

in one move one unit diagonally in any direction.)

Nr. of fix. 1 2 3 4 5 6 7 8 9 10 11 12
FD (ms) 184 128 116 140 180 144 180 132 236 260 180 172
Nr. of fix. 13 14 15 16 17 18 19 20 21 22 23 24
FD (ms) 132 584 220 148 208 200 216 116 128 272 128 156
Nr. of fix. 25 26 27 28 29 30 31 32 33 34 35 36
FD (ms) 192 128 272 176 232 116 124 108 208 236 236 196
Nr. of fix. 37 38 39 40 41 42 43 44 45 46 47 48
FD (ms) 168 136 176 152 276 144 276 240 352 184 400 480
Nr. of fix. 49 50 51 52 53 54 55 56 57 58 59 60
FD (ms) 352 248 308 196 212 236 272 104 684 224 224 136
Nr. of fix. 61 62 63 64 65 66 67 68

FD (ms) 160 364 124 104 224 152 536 336

Table 7 shows the fixation durations of the fixations depicted in Figure 60
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8.4.5 Questionnaire results

The same questionnaire as in the previous experiment was employed in this experiment.
Subjects were asked to give their ratings of the comprehensibility of the texts and
pictures (diagrams or animations) presented in the learning materials. The ratings were
based on a five-level scale ranging from 1 (very difficult) to 5 (very easy). Besides,
subjects had to choose which element(s) (‘texts’, ‘pictures’ or ‘both’) gave them the
most help in understanding and memorizing the materials.

The results are shown in Table 8. Most of the subjects rated the
comprehensibility of the texts and pictures as easy (both with median = 4). Texts and
pictures together were regarded as the essential element for understanding, whereas

pictures were preferentially chosen as the aid for memorizing the content of instruction.

Comprehensibility Crucial element(s)
of for
text pictures understanding memorization
60% 60% 75% 52.5%
easy easy both text and pictures
(median = 4) (median = 4) pictures

Table 8: Results of the questionnaire shown in accordance with the SMP-
and the DMP-conditions

8.5 Discussion

8.5.1 Learning results

In Experiment 2, I attempted to examine the hypotheses that subjects can only learn
more efficiently with dual modality presentation (DMP) if the pictorial information is
neither too easy nor too complicated; if the information conveyed by the pictures is very
easy, the DMP is not necessarily better for learning than the SMP because the capacity
of the learners’ working memory (especially the CE) in the SMP condition is not
exhausted, and therefore, they can process pictorial and textual information without

being less efficient. In contrast, if the pictorial information is very complicated, the
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capacity of the CE would be more likely exceeded by the DMP. In this case, learners
will fail to process the verbal information even though the text is presented auditorily.

The results of this experiment were consistent with most of the hypotheses. As
predicted, DMP was not superior to SMP when pictorial information was very easy or
very complicated. When the demand for visual information in the pictures was high, the
error rate of the DMP-conditions was substantially higher than that of the SMP-
conditions. This evidence goes against the ubiquitous belief that DMP or a multi-
modality presentation should be superior to SMP. On the contrary, DMP or a multi-
modality presentation sometimes can be detrimental to learning because any extra
modality used for presentation will additionally require a certain amount of cognitive
resources to process the information presented in that presentation mode. Furthermore,
the hypothesis that DMP might facilitate the processing of text and picture integration if
the picture complexity is at a medium level is not confirmed in this experiment.
Although the error rate of Condition (med-audi) was slightly lower than that of
Condition (med-visu), the difference between them was not significant. The reason for
this result might lie in the fact that the picture complexity did not reach the “real”
medium level.

The assumption that DMP might facilitate information processing if working
memory is not overloaded by the total amount of information that has to be processed
simultaneously is in line with the following result, namely, that the error rate of
Condition (ani-audi) was substantially lower than that of Condition (com-audi). It is
assumed that, if animation can guide subjects’ visual attention toward the relevant
information shown in the complex diagrams, the superiority of DMP can be restored.
That is, animation is supposed to reduce the complexity of the complex diagrams and to
release CE from being overloaded by the large amount of information to be processed at
the same time. Finally, the results showed that when animation was presented with
visual text, subjects’ performance was the worst among the conditions, which was a
quite robust result throughout my research. The reason for this result is the same as the
one | mentioned in Experiment 1. Since subjects cannot view the animation and read the
text simultaneously, they have to either deal with these two sources of information
consecutively, or to try to process these two sources of information by switching their
gazes between text and animation both rapidly and frequently. According to the eye-
movement data recorded on the video tapes, the subjects in relation to Condition (ani-
visu) did employ the speedy eye-movement strategy. However, the speedy eye

movements obviously cannot integrate the text and animation information successfully.
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Moreover, the error rate of Condition (comp-visu) was much lower than that of
Condition (comp-visu), which indicates that the cognitive load induced by Condition
(comp-visu) is not nearly as heavy as that caused by Condition (comp-audi), which

contradicts the modality effect suggested by the cognitive load theory.

8.5.2 Learning behavior

In addition to the results of the analyses of learning, the factors that influenced the
learning time and the section time were also investigated. The reason for examining
learning time or section time was to find out how and why different combinations of text
presentation mode and picture complexity affected the amount of time subjects required
for processing the information in the instruction. Further factors such as the number of
propositions and the number of objects, etc. were also taken into account because they
can yield more detailed information about how learning time changed as the quantity of
information to be processed varied.

As the results indicated, the mean learning time was independent of the
combinations of picture complexity and text mode. However, the mean section time was
significantly affected by the combinations of picture complexity and text mode, the
number of propositions, the quantity of visual distractors as well as by the quantity of
relevant objects in pictures. The reason why the experimental conditions did not have an
effect on the mean learning time but rather on the mean section time was that the
subjects were allowed to view the instruction as long and as often as they wanted.
Therefore, as subjects repeated the instructional sections with varying frequency, the
experimental conditions were not able to affect the mean learning time but instead
affected the mean section time and the mean section frequency.

According to the data, the mean section time of Condition (med-visu) was
significantly shorter than that of the other conditions. I assume that the diagrams shown
in Condition (med-visu) depicted all the possible positions that the Chinese chess pieces
would occupy. In this case, the subjects did not need to infer all the possible positions by
themselves. In contrast, subjects in Condition (simp-visu) could only see one or two
possible positions in the diagrams. Although there were all in all fewer objects in the
diagrams, subjects in Condition (simp-visu) conceivably tended to infer the rest of the
possible movement positions by themselves, which is probably why the section time
was longer.

With respect to the effect of the number of propositions and the number of

objects on the mean section time, as one might predict, the mean section time was a
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positive function of the number of propositions and the number of objects. The more
information that was to be processed, the longer that the processing time was.

Due to a negative correlation between the mean section time and the mean
section frequency (r = -0.154; n = 680; p < 0.001), subjects who viewed every single
instructional section quickly tended to repeat each section more frequently. However,
certain experimental conditions, like Condition (comp-audi) or Condition (ani-visu),
made learning more difficult. As a result, the error rate of those conditions was high
even though subjects repeated the sections more often or viewed each single section for
a longer period of time. It appears that the inappropriateness of the two presentation
conditions impaired learning to such a degree that it could not simply be recovered by
longer section time or higher section frequency.

Animation, on the other hand, takes more time to view. Subjects might get the
impression that they understood and remembered the information displayed by means of
animation very well during the long viewing time, and might, therefore, repeat
instructions less frequently. Moreover, the mean section frequency was negatively
related to the number of propositions and the number of objects. This is a sort of parallel
effect that resulted from the negative correlation between the mean section time and the
mean section frequency because mean section time is positively related to the number of
propositions and the number of objects. The reason for this could lie in the fact that the
more time subjects spent on a section, the better they could memorize the information to

be learned, which in turn leads to less repetitions of the instructional sections.

8.5.3 Interpretation of the eye-movement data

In this section, I would like to discuss the eye-movement data while considering one by
one the effects of text mode, picture complexity, the number of propositions, the number
of objects as well as the quantity of visual distractors and quantity of relevant objects on

subjects’ eye-movement behavior.

8.5.3.1 Text mode

The effects of text mode are briefly summarized in Table 9. When text was presented
auditorily, subjects’ eye movements were slower whereby their fixation duration was
longer and saccade length was shorter. This can be attributed to the fact that subjects had
to perform the visual and auditory tasks at the same time. Since they had to pay attention

to the auditory text, their attention resource for processing the pictorial information was
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accordingly less than that of the subjects in the visual-only conditions. This kind of
tradeoff between the auditory and visual tasks was clearly revealed in the eye-movement
data which can be characterized by a longer fixation duration, a lower fixation rate and
shorter saccade length. Similar results were obtained in a study by May et al. (1990),

indicating that the range of saccadic extent decreased significantly as the complexity of

the auditory task (tone counting) was increased.

Mean Mean Mean Mean Mean | Mean | Mean | Mean
fixation | fixation | number | number | fixation | fixation | saccade | saccade

Text duration | duration of of rate rate in | length | length

mode in fixations | fixations picture in
picture in picture

picture

auditory | longer | longer | smaller | greater | lower | lower | shorter | shorter
visual | shorter | shorter | larger | smaller | higher | higher | longer | longer

Table 9: An overview of the effects of text mode on the eye movements

8.5.3.2 Picture complexity

The discussion of the effects of picture complexity focuses on the eye-movement data
collected in the picture region of the instructional display because they can yield pure
information about how picture complexity influences the way subjects view the pictures.
Since the effects of picture complexity are not linear, it is difficult to discuss them in

general. Therefore, I will discuss the effects one by one.

1) Mean fixation duration:

The mean fixation duration was longer when ‘animation’ was presented. Due to the
interaction between picture complexity and text mode, the mean fixation duration of
‘simple’ diagrams was significantly longer than that of ‘medium’ and ‘complex’
diagrams when text was presented auditorily, whereas this effect did not exist when text
was presented visually. This is quite an interesting and essential phenomenon that has
been noticed, and it gives rise to the difference between the parallel and sequential
processing of textual and pictorial information. When auditory text is presented, the
textual and pictorial information have to be processed simultaneously. Fixation

durations are significantly shorter when there are many objects in the pictures because
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subjects try to integrate the auditory information with the information from the objects
that are scattered in different locations in the picture. Rapid eye movements could be a
more efficient strategy when subjects have to process the auditory information and view
pictures with many objects in parallel. Since there are only a few objects in the simple
diagrams, the mean fixation duration of Condition (simp-audi) is longer than that of
Conditions (med-audi) and (comp-audi).

On the contrary, when text is presented visually, the textual and pictorial
information processing are carried out more sequentially. In other words, the integration
of textual and pictorial information is executed by switching gazes between text and
pictures. Hence, subjects’ eye movements in the picture region are not much affected by
the parallel processing of textual information. As the data indicated, the differences in
the mean fixation durations between the three levels of picture complexity (‘simple’,
‘medium’, and ‘high”) were not significant when visual text was presented.

The mean fixation duration of ‘animation’, on the other hand, was significantly
longer than that of the experimental conditions with static pictures, irrespective of the
presentation mode of text. The reason for this was probably that subjects most of the
time followed the motion of the chess piece moving on the chess board when they were
viewing the animation. The speed of the subjects’ eye movements was controlled by the
speed of movement of the chess piece, which was certainly much slower than the
normal eye-movement speed when the subjects regarded static pictures. It should be
noted that the measurement of fixation duration in the animation was probably not
confounded by the effect of smooth pursuit because the movements shown in the
animation were not based on slow or smooth motion but simply showed a series of
alternative positions for a chess piece moving from one point to another. Therefore, it is
unlikely that the eye-tracker will merge the fixations in rapid succession to a longer one

as might occur when tracking very slight eye movements (smooth pursuit).

2) Mean number of fixations:

The mean number of fixations in relation to the ‘simple’ diagrams was significantly
smaller than those in regard to the ‘medium’ and ‘complex’ pictures as well as
‘animation’. By taking the effect of text mode into account, when text was presented
visually, significant differences were found to exist between ‘simple’ and ‘complex’ as
well as between ‘simple’ and ‘animation’. Basically, the data pointed out that the
number of fixations increased as the picture complexity (or the number of objects,
respectively) increased. A straightforward explanation is that the more objects were

scattered in the diagram, the more fixations were required to “pick up” the information.
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3) Mean fixation rate:

The mean fixation rate was lower when animation was presented. The reason for this
was conceivably that subjects followed the motion of animation, and therefore, their eye
movements were substantially slower than when they were viewing static pictures.
When visual text and static pictures were presented, the mean fixation rate in the picture
region did not differ between complexity levels, whereas the mean fixation rate of
‘complex’ pictures was substantially higher than that of ‘simple’ pictures when auditory
text was presented. The reason for this, as I mentioned before, could be that subjects
must employ rapid eye movements to integrate textual and pictorial information if there
are many objects in the picture, or if textual and pictorial information have to be
processed at the same time. This can be regarded as a kind of “time-pressure” effect. In
contrast, if textual and pictorial information can be processed sequentially, the “time-

pressure” effect disappears.

4) Mean saccade length:
The mean saccade length was independent of picture complexity, but there was an
interaction between picture complexity and text mode. As the results showed, the mean
saccade length of Condition (simp-visu) was greater than that of Condition (ani-audi).
For Condition (simp-visu), there were 2 to 5 objects in a diagram, which were sparsely
arranged on the chess board. On the other hand, subjects often switched their gazes
between the text and picture regions. Thus, many long saccades were made. For
Condition (ani-audi), subjects only had to follow the movements of a chess piece, and
there were no alterations of gaze positions between the text and pictures. The motion
shown in the animation comprised a series of rapid movements for different distances
(about 96.71 pixels in a move on average). When subjects followed the motion with
their eyes, they did not necessarily follow every single motion foveally to catch the
information because the movements were usually regular and symmetric, and therefore
easy to predict. Subjects’ eye movements that were recorded on the videotapes showed
that subjects sometimes even made proactive saccadic eye movements to the positions
the chess piece was about to reach. However, most of the time, subjects did not move
their eyes as far as the chess piece moved. The reasons just mentioned might explain
why the mean saccade length of Condition (ani-audi) was less than that of Condition
(simp-visu).

Furthermore, the mean saccade length in the text region was affected by picture

complexity as well. The data pointed out that the mean saccade length in the text was
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greater when animation was shown. There were no significant differences in the mean
saccade length between different levels of picture complexity when static pictures were
presented. Based on the observation of subjects’ eye movements recorded on the
videotapes, subjects made long saccades when reading the text in order to obtain some
text information as soon as possible, so that they could have time to view the animation
which was running while they were reading. Since the time for running the animation
was limited, subjects had to “scan” the text fast enough, which might account for the

long saccades in the text region.

5) Number of gaze changes between the text and the picture region:

When static pictures were shown, there was no significant difference between the three
levels of picture complexity (‘simple’, ‘medium’, and ‘complex’). When animation was
presented, subjects switched their gazes between visual text and animation considerably
more often than when static pictures were displayed. These results indicate that subjects
employed different viewing strategies according to the different picture types presented
in the instructions. As I have mentioned earlier, when animation was shown, subjects
moved their eyes between the text and pictures as quickly and as frequently as possible to
integrate the text and animation information because of the “time-pressure”. In contrast,
when static pictures were presented, subjects moved their eyes between text and pictures

less frequently possibly because they were not constrained by time.

6) Percentage of time spent in the picture and the text regions:

Subjects in Condition (simp-visu) spent less time in viewing pictures than did subjects
in other experimental conditions, whereas subjects in Conditions (comp-visu) and (ani-
visu) spent considerably more time in the picture region. With animation, it appears that
the subjects’ visual attention was attracted more by the motion of the chess piece, so that
they spent more time viewing the animation. With ‘complex’ diagrams, there were more
objects depicted in the diagrams than in the ‘simple’ diagrams, and therefore there was
more information to be processed. Certainly, subjects had to spend more time viewing
the diagrams. As to the percentage of time that subjects spent in the text region, the
results showed that subjects who viewed diagrams with ‘simple’ or ‘medium’
complexity spent substantially more time reading the text than did subjects who viewed
‘complex’ diagrams or ‘animation’. These are the results that accompanied those just
discussed. The more time subjects spent viewing the pictures, the less time they spent

reading the text accordingly.
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8.5.3.3 Number of propositions

The mean section time was positively related to the number of propositions while the
mean section frequency was inversely related to the number of propositions. If there is
more information to be processed in a section, subjects certainly need more time to
study that section which accounts for the longer section time. On the other hand, there
was a negative correlation between section time and section frequency. Accordingly, the
mean section frequency decreased as the number of propositions increased. However,
what was the reason why the subjects repeated the sections with more propositions less
frequently than those sections with fewer propositions? A possible reason is that
subjects could remember the information better after they had spent more time studying
it. Therefore, more repetitions were not necessary.

As to the effects of the number of propositions on subjects’ eye-movement
behavior, the results indicated that the mean number of fixations in the picture region
increased as the number of propositions increased, whereas the mean saccade length in
the picture region decreased as the number of propositions increased when text was
displayed auditorily. The positive relationship between the number of fixations in the
picture region and the number of propositions indicates that if there are more
propositions conveyed by the text, subjects require more fixations to pick up the
corresponding information in the picture, regardless of how text is presented (visually or
auditorily).

The negative relationship between the mean saccade length in the picture region
and the number of propositions when text was presented auditorily can be related to a
study by May et al. (1990). The results of this study show that under the condition of
performing a dual task, where one visual and one auditory task have to be performed at
the same time, the subjects’ saccadic extent decreased as cognitive workload increased
(for more details see Chapter 6). Nevertheless, the same effect did not exist when text
was presented visually, which may be an indicator that the visual-only presentation
mode induces relatively less mental workload than does the audio-visual one within the
same span of time because the verbal and pictorial information is processed
sequentially. The effect of the number of propositions on the mean saccade length was
not significant when animation with auditory text was presented, which points out that
animation could have a much stronger influence on subjects’ eye movements than
auditory text.

Finally, the mean number of gaze changes between the text and the picture

region decreased as the number of propositions increased. Consider the two sections
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with the largest number of propositions—the ‘horse’ and the ‘soldier’. The rules in
relation to the two pieces are similar to (but not the same as) those for the ‘knight’ and
the ‘pawn’ in European chess, respectively. Subjects with a little chess experience may
be more or less familiar with the basic movement rules of these pieces, but they are not
familiar with the Chinese chessboard and the additional rules that distinguish the ‘horse’
from the ‘knight’ as well as the ‘soldier’ from the ‘pawn’. In order to understand the
rules for the ‘horse’ and the ‘soldier’, subjects would have to rely more on the
information depicted in the pictures. According to the data, subjects did spend much
more time viewing pictures rather than reading the texts when they viewed those two
sections. This might explain the low frequency of gaze changes between the text and the

picture because subjects concentrated more on the pictorial information.

8.5.3.4 Number of objects, quantity of visual distractors, and quantity of relevant

objects

The mean section time was positively related to the number of objects and the quantity
of relevant objects. The explanation that I provide is the same as the one that expounds
the effect of the number of propositions on the mean section time. The more objects that
are depicted in a section, the more time that is required for processing the information.
The quantity of visual distractors had no effect on the mean section time or the mean
section frequency, which is consistent with the effects of picture complexity on the
mean section time and the mean section frequency, because picture complexity is
(partly) confounded by the quantity of visual distractors.

The effects of the number of objects, the quantity of visual distractors as well as
the quantity of relevant objects on subjects’ eye movements were almost the same. Thus

they are discussed here together. The results of this experiment show that:

1) The mean number of fixations in the picture region was positively related to the
number of objects irrespective of the presentation mode of the text or pictures. The
reason for this result is quite simple. Basically, if there are more objects in the
diagrams, more fixations are accordingly required to scan the objects, regardless of

how the text and pictures were presented.

2) The mean fixation duration in the picture region was inversely related to the number
of objects only when auditory text was presented, but not when visual text was

presented. Similarly, the mean fixation rate in the picture region was positively
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3)

related to the number of objects only when auditory text was presented. However,
the number of objects had no effect on the mean fixation rate in the picture region
when animation was displayed. The same results were also obtained with the
quantity of visual distractors and the quantity of relevant objects.

In my opinion, this kind of eye-movement behavior can be explained by the
“time-pressure” phenomenon. Since the auditory information can only be held
briefly in working memory (for about 2 seconds) while waiting to be processed, the
information will be gone if it is not processed in time. When subjects try to process
the auditory and pictorial information simultaneously, the “time-pressure”
phenomenon can be observed in their eye movements: As the number of objects
increases, subjects have to speed up their eye movements to search or to scan the
objects that convey information that is relevant for establishing reference to the text.
However, when visual text was presented, subjects’ eye movements were insensitive
to the increase in the number of objects because there was no “time-pressure”
phenomenon in this case. Subjects were free to process the textual and pictorial

information at their own pace.

When auditory text and static pictures were presented, the mean saccade length in
the picture region became larger as the number of objects or the quantity of relevant
objects increased. These results can be explained by the “time-pressure”
phenomenon effect as well. While subjects were listening to the text, they needed to
scan the objects quickly, in order to establish a referential bond between the verbal
and the pictorial information. Since the objects that carry relevant information are
not restricted to a small area but are distributed throughout the picture, subjects often
needed relatively long saccades to find the relevant objects. The more relevant
objects a picture contained, the more long saccades were possibly made. Moreover,
when animation was shown, the effect of the number of objects was not significant
probably because subjects’ eye movements were mainly controlled by the motion of
the chess pieces.

By comparing the effect of the number of propositions with the effect of the
number of objects when text was presented auditorily, the mean saccade length in
the picture region was found to be much more strongly affected by the number of
propositions, which points out that subjects did pay attention to the auditory text,

and their eye movements were more controlled by the text than by the pictures.
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4) When text was presented visually, the percentage of time subjects spent in the
picture region was positively related to the number of objects, the quantity of visual
distractors, and the quantity of relevant objects. The more objects a picture
contained, the more time that subjects spent viewing them. This could be explained
along the same lines as has been done with regard to the mean section time. People
attempt to exploit the available information to the full, attending to each relevant

object at least once in the course of processing.
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9. General discussion

9.1 Issues regarding dual-modality vs. single-modality presentations

In this thesis, I have systematically investigated how people learn or process
multimedia-based learning materials containing texts and pictures. Two experiments
were conducted in which subjects learned multimedia instructions with regard to
how to assemble a cube puzzle or play Chinese chess. Throughout the learning
process, the subjects’ eye movements were measured by means of an eye tracker.

The results of Experiment 1 revealed that the effect of the picture-
presentation modes (static or moving) on learning efficiency was not significant, and
thus it could not confirm the overall superiority of moving pictures in demonstrating
the procedures for assembling the cube puzzle. Nevertheless, with regard to the
frequency of repeating instructions, moving pictures were found to exert a positive
effect in that subjects who viewed moving pictures had to go over the instructions
substantially less often than did subjects who viewed static pictures. Besides, the
superiority of moving pictures in terms of enabling the visualization of complex
movements was demonstrated by the fact that subjects who viewed static pictures
had to repeat the instructional sections that comprised complicated rotations of the
puzzle parts more frequently than did the subjects who viewed moving pictures. The
text presentation modes (written or spoken), in contrast, had a significant effect on
learning efficiency. Spoken text, together with moving pictures, resulted in the
highest level of learning efficiency, whereas written text with moving pictures
resulted in the lowest level. However, this positive effect of the spoken text was only
observed with moving pictures. When static pictures were displayed, there was no
difference in learning efficiency with respect to the text modes. Therefore, the
widely-held belief in the superiority of dual modality presentation (DMP) was not
confirmed in the present experiment when static pictures were presented.

In Experiment 2, the factors determining the superiority of DMP were
investigated further. It was hypothesized that when static pictures are employed in
the instructions, the superiority of DMP in terms of information processing would
only be confirmed if the pictorial information presented in the static pictures is
neither too simple nor too complicated. If pictorial information is visually highly-
demanding, DMP might even be worse than SMP. The reasoning behind this
hypothesis is based on the dual-task paradigm: because the capacity of the central

executive is limited, the attentional resource must be divided when faced with a dual
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task, which results in a trade-off between the two tasks. In contrast, there is no such
trade-off if the two tasks are performed in succession. Furthermore, it was
hypothesized that if the pictorial information is visually demanding, animation could
be used to guide subjects’ visual attention, thus reducing the load on the visuo-spatial
sketchpad in working memory. The results showed that there were no significant
differences in the error rate between the DMP-condition and the SMP-condition
when the pictures were simple. The same held for pictures of medium complexity.
However, when the pictures were complex, the error rate was significantly higher in
the DMP-condition than in the SMP-condition. In contrast, the error rate in the SMP-
condition was higher than in the DMP-condition when the complex pictures were
animated.

Overall, the results of these two experiments provide evidence that
contradicts cognitive load theory in terms of the split-attention effect and the
modality effect. The superiority of DMP as a tool for learning could only be
observed when animation was involved. This does not necessarily mean that DMP
cannot be effective when static pictures are involved. In fact, several empirical
studies (see Chapter 5) did attest to the superiority of DMP when static pictures were
used. As a consequence, it is unlikely that the picture mode is able to determine
whether DMP is better. The positive effect of DMP observed in those studies may
have been the result of the pictorial materials employed in those experiments being
neither visually demanding nor particularly simple. Although Experiment 2 failed to
yield results that clearly demonstrated a positive effect of DMP with static pictures
of medium complexity, a slightly lower error rate for the DMP condition may be an
indication that DMP has the potential to be beneficial. It goes without saying that
further experiments are required to clarify this point. All in all, the results of
Experiment 2 suggest that the capacity of working memory and the way in which
working memory processes information both play a crucial role in determining
whether or not DMP facilitates information processing.

The two experiments I conducted have demonstrated that both the split-
attention effect and the modality effect require further modification. When static
graphics were displayed together with texts, SMP was not less effective than DMP, a
result which blatantly contrasts with the claims of the cognitive load theory. The
widely-accepted view that DMP should be superior to SMP can no longer be upheld
in light of the evidence. As a consequence, the use of SMP should not be
underestimated. What is to be kept in mind, though, are the limits of the human
cognitive system. Due to the limited capacity of the central executive (or the episodic
buffer), i.e. the component in working memory that integrates information from

multiple sources, the amount of information that can be processed at the same time is
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restricted. The overall attentional resource cannot simply be enlarged by presenting
information in different modalities. However, it can be exhausted better if the
information is well coordinated in the presentation and when the quality as well as

the quantity of information to be processed does not overburden working memory.

9.2 Eye movements and information processing

In both experiments I analyzed eye movements to investigate how subjects regarded
the instructions presented in accordance with different experimental conditions
because the eye-movement behavior can give insight into the cognitive processes
and the dynamics of attention involving learning in the given multimedia-based
learning scenarios. There were some correspondences in the results of the two
experiments: 1) the number of fixations was positively related to the number of
propositions as well as the number of objects; 2) the fixation duration was longer
when animation or auditory text was presented, but decreased as the number of
objects increased; 3) the fixation rate was substantially lower when auditory text or
animation was displayed, but it increased with the number of objects. More detailed
eye-movement analyses were especially conducted in the second experiment to
examine the eye movements in the picture regions of the instructional displays under
DMP-conditions versus under SMP-conditions. For instance, the effects of the
number of objects on the fixation duration, the fixation rate, and the saccade length
in the picture regions were significant only when text was presented auditorily but
not visually.

Basically, the eye-movement behavior suggests that cognitive strategies are
fairly flexible and adaptable to different multimedia displays. In general, eye
movements are more rapid when dealing with the visual-only format of instructions
and are much slower when dealing with the audio-visual format. This indicates that
DMP actually gives rise to a split-attention effect because the attentional resources
must be divided to process the simultaneously-presented auditory and visual
information, and thus the eye-movement speed is reduced. Saccade lengths are
informative with regard to the connection between mental workload and eye
movements. The mean saccade length in the picture region was found to decrease as
the number of propositions increased, provided that the text was presented auditorily.
Besides, the fixation rate was positively related to the number of objects when static
pictures were presented with auditory text, but not with visual text. All these results

suggest that DMP induces a heavier cognitive load than SMP.
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The qualitative analysis of eye movements in the second experiment
demonstrated how subjects’ visual attention was allocated to process the instructions.
When a subject was inspecting a complex picture while listening to the verbal
instructions, there was a noticeable delay in the oculomotor reaction, whereas a
subject could instantaneously react to the auditory text when the picture was less
demanding. This is an indicator of a tradeoff between the visual and the auditory
task. Obviously, when the central executive devoted more attentional resources to
deal with the information processed by the visuo-spatial sketchpad, the attentional
resources left for handling the information processed by the phonological loop
became less and vice versa. Moreover, when visual text was employed, gaze shifts
between text and pictures could often be observed at the phrase boundaries. This is
not only in line with the immediacy principle put forward by Just and Carpenter
(1980, 1987) but also indicates that the processes of integrating textual and pictorial
information are incremental.

Aside from the correspondences in the results described above, there is an
inconsistent result between the two experiments that I would like to mention here. It
is concerned with the number of gaze switches between text and moving pictures. In
the first experiment, I employed video clips combined with visual text. Subjects
often switched their gazes between the text and the video region while the video was
not playing. This was not the case in the second experiment. In Experiment 2,
animation was used for the instructions rather than video clips. As the videotaped
eye-movements show, subjects characteristically shifted their gazes between the text
and the animation region while the animation was playing. The reason for this
difference was probably that the animation started playing automatically when an
instructional section was just loaded, whereas the video clips in Experiment 1 were
played only when subjects clicked on a button to start them. As motion is likely to
capture the beholder’s visual attention automatically, subjects who received
animation were encouraged to watch it right at the beginning. However, animation
alone was not easy to understand without reading the text. Hence, speedy eye
movements between the text and the animation region were observed. What is
peculiar to me is that subjects did not replay the animation many times, even though
they knew they were allowed to replay it as often as they would like. In contrast,
subjects who received video clips (which did not start automatically) tended to read
the text first, and then watch the videos. After the first or the second visit to the same
instructional section, subjects were inclined to concentrate on viewing the videos.
Despite the different viewing strategies employed by those subjects, their
performance in both experiments was the worst compared with that of the subjects in
other experimental conditions. While DMP has proved to be no better than SMP in
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many situations, animation (or moving pictures) presented with visual text is the
very form of SMP that remains less efficient than DMP because information

presented by means of both animation and visual text is difficult to integrate.

9.3 Applications of this research

The current research is a kind of basic research from which several recommendations
that might apply to instructional design in general arise. First, instructional designers
should consider their choices. Moving pictures are particularly efficient in
visualizing complex processes or actions. Animation, on the other hand, can be used
to guide the recipients’ visual attention or to emphasize alterations of states within a
dynamic system. However, both moving pictures and animation will only facilitate
information processing when the accompanying verbal instructions are presented
auditorily. Visual texts should be avoided in this case because of the danger of
structural interference. Second, instructional designers should be careful in using
multimodal presentations, bearing in mind that the capacity of recipients’ working
memory is limited. While multimodal presentations are attractive to many people,
poorly-designed multimodal presentations might either impose a heavier cognitive
load on the recipients or unnecessarily distract their attention from relevant content.
Third, instructional designers should take learners’ characteristics into account.
There is no way that a multimedia presentation can be designed in such a way that it
is suitable for everyone. Learners with high domain-specific knowledge or aptitude
should be addressed differently from learners with low domain-specific knowledge
or aptitude. Age and learning experience are also factors that need to be considered.
Finally, instructional designers should adopt appropriate measures to evaluate the
effectiveness of multimedia presentations. Only a suitable evaluation can guarantee
with a reasonable probability that a particular multimedia presentation will have the

desired effect on learning.
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