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Chapter 1

Prologue

Belief that numbers could represent or describe the ”true” pattern or “reality” be-
hind countless manifestations in nature is very old. One of the first and most promi-
nent follower was certainly Pythagoras, who found that harmonic intervals in music
are representable through simple natural numbers ratios. Plato went even further,
claiming that the cosmos and everything within is just an imperfect image of an
ideal mathematical world of numbers and ideas. Allthough nowdays nobody ex-
pects pure numbers or simple function to represent “real” laws of physics - instead
we now talk of theories, notably the Standard Modell (SM) of particle physics
where the physics is encoded in gauge invariant Lagrange densities - at the end of
the day one still needs numbers, because physics is experiment oriented science
and in order to compare the theoretical predictions with theexperiment one needs
to know how to extract numbers out of the theory. As of now there is no known
solution of equations of motions for a realistic (i.e. four dimensional) QFT and
one has to resort to some kind of approximation. One very successful scheme is
perturbative QFT (pQFT) parts of which will be subject of this thesis.

1.1 Heuristics

Can one describe pQFT in simple words? We’ll give it a try. Onecould say
that QFT is a ”marriage” of quantum mechanics (QM) and special theory of rel-
ativity (SRT). We will just take the most prominent relations from both theories,
from SRT the famous relationE = mc2, which states that energy can be used to
create particles and vice versa and from QM the Heisenberg uncertainty relation
[~x, ~p] > ih/(2π), which states that one cannot simultaneously know to arbitrary
precision the momentum and the spatial location of the particle. Using relativistic
notion and combiningE and~p to four-momentum andt and~x to space-time vector,
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6 CHAPTER 1. PROLOGUE

we can say that in order to ”see” at short space-time distances involves high four-
momenta and vice versa. The more we want to increase the resolution, the more
momentum we need. This is the reason why we need bigger and bigger machines
in order to detect smaller and smaller particles.

Let us now try to combine the two relation from SRT and QM and see what con-
sequences this merge will have. For the sake of simplicity, we will take a freely
propagation electron. Imagine now that we have the ability to look at the electron
at very short distances. According to Heisenberg uncertainty relation, since we are
”looking” at very short distances, we have pretty certain information about the lo-
cation of the electron, hence we are very uncertain about theelectrons momentum,
which can be very large. Here comes the second relation into the game. Accord-
ing to Einstein the electron with very high momentum could produce a photon and
reabsorb it, all within the rules of Heisenberg uncertaintyrelation.

We can represent this schematically as:

e−
e−

γ

We will call this photon a virtual photon, since it gets reabsorbed and cannot be
directly measured. Let us now add another freely moving electron into the game.
According to our previous considerations, the two electrons could look schemati-
cally something like this:

e−
e−

γ

e−

e−

γ

e−

Imagine now that we bring the two electrons closer and closertogether. At some
point they will be so close together that the photon emmited from one electron,
with certain probability, will be absorbed by the other electron, instead of being
reabsorbed by the original. We could picture it like this:

e−
e−

e−

e− e−

γ

In the last case however, we have momentum transfer between two electrons, in
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other word we have interaction.
Even in this simple picture, we have an idea of how particles could interact in

QFT, namely through the exchange of a gauge particle, in the case of electrons - or
speaking in terms of QFT, in the case of quantumelectrodynamics (QED) - through
the exchange of a photon.

There is however one problem with the line of argumentation we have taken:
Why did we include only one photon in our considerations? Forall we know, go-
ing to smaller distance involving higher momenta could leadto a picture like this:

e−e−

Actually it is far worse then that. We can imagine the photonsin the above pic-
ture creating any particle-antiparticle pair, as long as the particles are electrically
charged and these could again mediate gauge bosons themselves and so on ad in-
finitum. However, these diagrams contribute less to the process one is interested
in and to see this we have to leave this simple picture we have obtained from only
two relations and we have to bee more technical.

1.2 Amplitude and Feynman graphs

Particle experiments, like the upcoming experiments at Large Hadron Collider
(LHC) at CERN, involves colliding beams of particles and measuring the cross
section for the process. The simplest and most important collision is the one where
two particles collide and a number of particles is created, of which some or all can
be measured.

p1

QA

QB

pn

Figure 1.1: Particle collision
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The cross section is given by the Golden Rule as

σ =
1

F

∫

dΦn|M|2, (1.1)

where the Flux is given by

F = 4
√

(QAQB)2 −m2
Am

2
B, (1.2)

the phase space is

dΦn =
{ n∏

i=1

d~pi
(2π)32E~pi

}

(2π)4δ(4)
( n∑

j=1

pj −QA −QB

)

, (1.3)

andM is the amplitude. The amplitude contains the ”physics”, or the dynamics,
whereas the phase space integrals contain the kinematics. Usually the phase space
integrals are performed numerically using Monte Carlo methods.

How do we computeM?
There is a graphical technique, which is by now folklore, to computeM and it
consists of drawing all Feynman diagrams for a given processand translate the di-
agrams into mathematical expressions according to so called Feynman rules. These
state that with every vertex, there comes a power of the coupling. For perturbative
theory to work, the assumption is that the coupling is small,therefore every dia-
gram with one more vertex contributes less. Additionally, every loop is equivalent
to an integration over the inner momentum, which makes the diagrams hard to eval-
uate. So if every vertex brings a power of the coupling, whichper definition should
be small and every loop brings in an integration, then why do we care to evaluate
multiloop diagrams, which contribute less and less and are hard to calculate?

Bigger and better experiments lead to the need of more accurate predictions from
the theoretical side. This in turn means for perturbative calculations, that one has
to evaluate multiloop diagrams if one wants to keep up with experiments. ”This is
the ’raison d’̂etre’ for loop calculations: A higher accuracy is reached by including
more terms in the perturbative calculation” [80].

So far we have only been speaking of perturbative QFT in general terms. Now it
is time to become more concrete and look at the physics which has been the initial
phenomenological motivation for this thesis: finite temperature QCD.

1.3 Finite temperature QCD

Recently, large effort has been put in determination of the pressure of QCD. The
motivation comes primarely from heavy-ion collisions at RHIC and the upcoming
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LHC. Also, the pressure is of importance in cosmology for dark metter relic density
computations.

Due to the fundamental property of asymptotic freedom [31, 58], we expect the
coupling of QCD to approach zero, as we go to higher energies.This can be easily
seen by taking the running of the coupling obtained from the leading order solution
to the renormalization group equation:

g2(Λ) =
24π2

(11N − 2nf ) ln(Λ/ΛQCD)
(1.4)

whereΛ is renormalization scale andΛQCD ∼ 150 MeV the characteristic energy
scale of the theory.

It is to expect that the behavior of QCD at high energies or small distances will
be that of a free theory, hence justifying the use of perturbative methods. In terms
of thermodynamical properties, this would mean that one canexpect perturbative
methods to produce reliable results in the limit of high temperatures.

However, computing the pressure perturbatively is not an easy task itself. The
structure of the weak coupling expansion is not analytical in g2. At high temper-
ature and small couplingg, QCD develops a momentum scale hierarchy2πT ≫
gT ≫ g2T . The first scale is the typical energy scale of a particle in a medium
with temperature T. The other two scales are associated withthe screening of color-
electric and color-magnetic forces respectively. In orderto account for this, effec-
tive field theory approach might be useful. It consists of separating different scales
into effective theories, which reproduce static observables at successively longer
distance scales, idea which is based on ”dimensional reduction” [32, 2]. Let us
first define the Lagrangian for QCD.

The Euclidean Lagrangian of QCD is given by:

LQCD =
1

4
F aµνF

a
µν + ψ̄γµDµψ (1.5)

whereF aµν ≡ ∂µA
a
ν − ∂νA

a
µ + gfabcAbµA

c
ν is the field strength tensor andDµ ≡

∂µ− igAµ ≡ ∂µ− igAaµT a the covariant derivative, theT a, a = 1, . . . ,N2−1 are
generators of the fundamental representation of SU(N) andfabc are the structure
coefficients of SU(N) given by[T a, T b] = ifabcT c.
The partition function for QCD is:

ZQCD =

∫

periodic
DAaµ

∫

periodic
Dη̄Dη

∫

antiperiodic
Dψ̄Dψ

e

n

−
R β
0
dτ

R

d3x[ 1
4
F a

µνF
a
µν+ψ̄[γµDµ+m]ψ+ 1

2ξ
(∂µAa

µ∂νAa
ν)+η̄a(∂2δab+gfabcAc

µ∂µ)ηb]
o

=

∫

periodic
DAaµ

∫

periodic
Dη̄Dη

∫

antiperiodic
Dψ̄Dψ eS0+SINT
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(1.6)

whereη̄, η are the Faddeev-Popov ghosts, which have the same boundary condi-
tions as the gauge fields.
Having the partition function one can derive the pressure using standard thermo-
dynamic derivation. It is given as:

pQCD(T ) = lim
V→∞

ln

∫

D[Aaµ, ψ, ψ̄] exp[−
1/T∫

0

dτ

∫

d3−2ǫxLQCD]. (1.7)

As already stated QCD is, even at high temperatures and smallcouplingg, a mul-
tiscale system. The reason is that of the gauge fields

Aaµ(x) = T
∞∑

−∞
exp[iωbnτ ]A

a
µ,n(x)

where ωbn = 2nπT are the Matsubara frequencies , (1.8)

the non-static modes gain effective masses that grow linearly with increasing tem-
perature and then decouple, leaving the zero-modes of the gauge fields as true
degrees of freedom contributing, since the fermionic fieldseven forn = 0 get ef-
fective masses. These zero modes can be described by an electrostatic scalar field
Aa0(x) and magnetostatic gauge fieldAai (x) of a three dimensional effective theory,
called electrostatic QCD (EQCD), with the Lagrangian:

LEQCD =
1

2
TrF 2

ij + Tr[Di, A0]
2 +m2

ETrA
2
0 +

ig3

3π2

∑

f

µfTrA
3
0 +

+λ
(1)
E (TrA2

0)
2 + λ

(2)
E TrA4

0 + higher order operators

(1.9)

with

F aij = ∂iA
a
j − ∂jA

a
i + gEf

abcAbiA
c
j (1.10)

Di = ∂i − igEAi (1.11)

The pressure can then be expressed as:

pQCD(T ) = pE(T ) +
T

V
ln

∫

DAaiDAa0exp{−SE} (1.12)

wherepE = pEQCD is a parameter of the effective theory computable in pertur-
bative full QCD [16]. With this theory one is able to compute the pressure of the
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full theory to the orderg5 [16]. This procedure of separating different scales in
different effective theories can be applied further since there are still two dynam-
ical scalesgT andg2T [14]. The non-perturbative scaleg2T which enters in the
computation at orderg6, originates from the magnetostatic sector, that is from the
fieldsAai , so that we can write:

pQCD = pEQCD + pMQCD +
T

V
ln

∫

DAai exp{−SMQCD} (1.13)

where

LMQCD =
1

2
TrF aij

F aij = ∂iA
a
j − ∂jA

a
i + gMf

abcAbiA
c
j (1.14)

gM = gMQCD is, analogous topE , computable through perturbative expansion
of EQCD. The non-perturbative contribution has been determined numerically in
[34, 35, 25].

1.4 EQCD

In this thesis we will be concerned only with EQCD, which is defined by the La-
grangian in eq. (1.9), which can be most easily obtained by first writing down the
most general Lagrangian invariant under all the symmetriesand then determining
the parameters of the Lagrangian through matching computations in full QCD. The
higher order, possibly non-renormalizable, operators would only contribute atg7

order or higher [39]. Given the Lagrangian in eq. (1.9) one can write down all dia-
grams, carry out tensorial contractions and use integration by parts (IBP) identities
to obtain up to four loops [61] the following set of master integrals.

; ;

(1.15)

In the picture above, the propagators have the form1
p2+m2 , where the mass values

arem = mE andm = 0 for A0 andAi fields respectively.
Allthough we need this set of master integrals in 3 dimensions for hot QCD it is

also useful to compute the integrals in 4 dimensions, since some of them appear
in different sets of master integrals, which contribute to different physical settings,
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for example in the calculation of the four loop QCD corrections to the electroweak
ρ-parameter [63, 19, 13]. Therefore it would be useful to obtain a D-dimensional
representation of the master integrals and have a method to expand inǫ automat-
ically. We will therefore try to find so called hypergeometric representations (see
section 3.3) of master integrals and we will see that we can express some of them
in terms of hypergeometric functions with half-integer coefficients, in 3 as well as
in 4 dimensions. It is to expect that this feature is general for one-scale Feynman
integrals, that is, integrals with one or more masses (for further example in other
physical contexts see e.g. [23, 24]). It is therefore to expect that in various contexts
hypergeometric functions with half-integer coefficients will arise and it would be
of interest to have a general way of expanding these functions inǫ. This is our main
motivation for the implementation of a FORM package Hypsummer (see chapter
4) for the expansion of such functions to arbitrary order in terms of nested sums
(see chapter 3).

At the end one can ask the question whether or not the methods used can be ap-
plied to full QCD at finite temperature as well. We speculate on this in chapter
6.



Chapter 2

Setting the stage

In this chapter we look at scalar Feynman integrals and introduce methods of
rewriting them in terms of other integrals, especially in terms of the so called
Mellin-Barnes type integrals. We also introduce the concept of master integrals,
which will be important in this thesis. But first, let us look at some difficulties,
which arise when dealing with Feynman integrals. The structure of the following
sections follows roughly [80] and [68].

The main object of this thesis will be scalar integrals of theform:

∫

. . .

∫
d4k1 . . . d

4kl
Eν11 . . . EνN

N

(2.1)

whereki are loop momenta,νi are integer indices and the denominators are given
by

Er =
∑

i≥j≥1

Aijr pipj −m2
r (2.2)

where the momentapi are either the loop momentaki or independent external mo-
menta of the graph.
In this thesis we will only consider the class of integrals where the denominators
determined by some matrixA contain momenta which are quadratic. The cases
where denominators are linear with respect to loop and/or external momenta, will
not be treated here although some of the methods used in this thesis are also appli-
cable there, see [68].

Before going on to computation of these integrals, first let us see what are the
difficulties in computing these integrals in the first place.

13



14 CHAPTER 2. SETTING THE STAGE

2.1 Regularization

Some of the loop integrals may be divergent. We call these integrals ill-defined
quantities. A simple example is the two-point one-loop integral with zero external
momentum:

∫
d4k

(2π)4
1

(k2)2
=

1

(4π)2

∫ ∞

0
dk2 1

k2
=

1

(4π)2

∫ ∞

0

dx

x
. (2.3)

In fact, this integral is divergent as we takek2 → 0, as well as fork2 → ∞ . We
call the former infrared (IR) divergencies and the latter ultraviolet (UV) divergen-
cies. These ill-defined integrals need to be regulated. The simplest method is by
introducing a cut-off on the loop integral, rendering it finite. We will however use
different method, which by now has become almost standard; it is called dimen-
sional regularization (DR). The basic idea of DR is to extendthe four dimensional
momentum integration to a D-dimensional one, keeping D as anadditional param-
eter, which can be rational or even complex. The result of theintegration will then
depend on D. Usually, one writesD = 4 − 2ǫ - allthough other dimensions are
also of interest, e.g.D = 3 − 2ǫ in thermal field theory - and performs Laurent
expansion inǫ. In DR divergencies will manifest themselves as poles in1/ǫ. In
general, one finds that inl-loop integral UV divergencies can lead to poles1/ǫl and
IR divergencies to poles1/ǫ2l at worst. Renormalization absorbs UV divergencies
and IR safe observables cancel in the final result, when summed over all degenerate
states [43, 49].

2.2 Feynman parameters

We will now show how one can perform momentum loop integration at a cost of
introducing integration over some additional parameters.The parameterization we
choose, called Feynman parameterization, is defined by:

n∏

i=1

1

(−Pi)νi
=

Γ(ν)
∏n
i=1 Γ(νi)

∫ 1

0

( n∏

i=1

dxix
νi−1
i

) δ(1 −∑n
i=1 xi)

(−∑n
i=1 xiPi)

ν
(2.4)

with ν =
∑n

i=1 νi. Another widely used parameterization is so called Schwinger
parameterization:

1

(−P )ν
=

1

Γ(ν)

∫ ∞

0
dxxν−1 exp(xP ). (2.5)

Any choice of Feynman parameters can be obtained using Schwinger parameteri-
zation and making appropriate changes in variables [68].
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The standard procedure for computing loop integrals using Feynman parameters is
to rewrite all propagators using eq. (2.4), then shift integration variables to com-
plete the square in the momenta, perform Wick rotation goingto Euclidian space
where one can perform the integral over angles in terms of gamma functions, ob-
taining at the end result in terms of integrals over Feynman parameters. In general
one can state, that a scalarl-loop integral, corresponding to a graph G, with n
propagators and in D dimensions

IG =

∫ l∏

i=1

dDki

iπD/2

n∏

j=1

1

(−q2j +m2
j)
νj

(2.6)

can be written in terms of Feynman parameters as [38]:

IG =
Γ(ν − lD

2 )
∏n
j=1 Γ(νj)

∫ 1

0

( n∏

i=1

dxix
νi−1
i

)

δ
(

1 −
n∑

i=1

xi

)Uν− lD
2
−D

2

Fν− lD
2

. (2.7)

Polynomial functionsU andF can be obtained from the topology of every given
graph. Cuttingl lines of a given connectedl-loop graph, such that one gets con-
nected1-tree graph T gives a set of lines not belonging to this tree, called the chord
C(T,G). The Feynman parametersxi associated with each chord define a mono-
mial of degreel. The set of all such trees T is calledT1, a set of1-trees. Elements
of T1 defineU as the sum over all monomials corresponding to the chordC(T,G).
Cutting one more line on T∈ T1 gives us two disconnected trees(T1, T2) ∈ T2, or a
2-tree.T2 is the set of all such pairs and the corresponding chord givesmonomials
of depthl + 1.
The square of the sum of momenta through the cut lines of one ofthe two discon-
nected treesT1 or T2 defines Lorentz invariant :

sT =
( ∑

j∈C(T,G)

p2
j

)2
. (2.8)

DefiningF0 as sum over all monomials fromT2 times minus the corresponding
invariantsT , one can defineF asF0 plus additional piece involving internal masses
mj. In summary:

U =
∑

T∈T1

( ∏

j∈C(T,G)

xj

)

F0 =
∑

(T1,T2)∈T2

( ∏

j∈C(T1,G)

xj

)

(−sT )

F = F0 + U
n∑

j=1

xjm
2
j . (2.9)
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Let us demonstrate this on a scalar two-loop integral in the figure:

1

2

5

4

3

which reads

∫
dDk1d

Dk2

(k2
1)
λ1((p − k1)2)λ2(k2

2)
λ3((p − k2)2)λ4((k1 − k2)2)λ5

. (2.10)

The set of all1-trees is given in figure below:

and from that one can write

U = (x1 + x2 + x3 + x4)x5 + (x1 + x2)(x3 + x4). (2.11)

Cutting one more line, one gets 2-trees:

which gives us the theF polynomials

F = [(x1 + x2)x3x4 + (x3 + x4)x1x2 + (x1 + x3)(x2 + x4)x5]p
2. (2.12)

2.3 Tensor Integrals

So far we only considered scalar integrals. There are however also tensor integrals
occurring on perturbative QFT, that is, integrals which have momenta in the numer-
ator. These integrals can in general be reduced to scalar integrals. To see this let
us assume we have written the tensor integral as integral over Feynman parameters
and now we have loop momentak in numerator as well. If we have an odd power
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of k, then the integral vanishes by symmetry. If the power is even, then the integral
can be related to a scalar integral by Lorentz invariance [57]:

∫
dDk

iπD/2
kµkνf(k2) = − 1

D
gµν

∫
dDk

iπD/2
(−k2)f(k2)

∫
dDk

iπD/2
kµkνkσkρf(k2) =

1

D(D + 2)
(gµνρσ + gµρνσ + gµσνρ)

∫
dDk

iπD/2
(−k2)2f(k2) (2.13)

Generalization to higher tensor structures can be achievedintroducing shifting op-
erators. Apart from a factor, the term(−k2) in numerator is equivalent to shifting
dimension toD → D+ 2. We can introduce an operatorD+ which does this shift
and with this operator one can write:

∫
dDk

iπD/2
kµkνf(k2) = −1

2
gµνD+

∫
dDk

iπD/2
f(k2) (2.14)

In addition, shifting loop momentak′ = k − xp introduces for tensor integrals
Feynman parametersxj in the numerator, which is equivalent to raising the power
of the original propagator by one unit. Here we can also introduce an operator,
which raises the power of the propagator. Using these one canwrite integrals with
Feynman or Schwinger parameters in the numerator as a scalarintegral, with the
corresponding propagator raised to a higher power.

In summary: one can express all tensor integrals in terms of scalar integrals,
which in turn may have higher powers of propagators and/or have shifted dimen-
sions [70, 71].

2.4 Mellin-Barnes representations

Let us look at our general Feynman parameters representation of a scalar integral
in eq. (2.7). In general, the integral depends onU andF , which are homogenous
functions of Feynman parameters. In the case thatU andF are absent however,
the parameter integrals can be performed easily using:

∫ 1

0

( n∏

i=1

dxix
νi−1
i

)

δ
(

1 −
n∑

i=1

xi

)

=

∏n
j=1 Γ(νj)

Γ(ν1 + . . . + νj)
. (2.15)

We are going to try to reduce the general expression eq. (2.7)to the previous for-
mula eq. (2.15).
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To do this, Mellin-Barnes (MB) transformations comes in handy. It is defined as

1

(A1 +A2)λ
=

1

Γ(λ)

1

2πi

∫ i∞

−i∞
dzΓ(λ+ z)Γ(−z) Az1

Aλ+z
2

, (2.16)

where the contour is chosen such that the poles ofΓ(−z) are to the right and the
poles ofΓ(λ+z) are to the left. The MB transformation can be recursively applied
to denominators with more then two terms, yielding:

1

(A1 +A2 + . . .+An)λ
=

1

Γ(λ)

1

(2πi)n−1

∫ i∞

−i∞
dz1 . . .

∫ i∞

−i∞
dzn−1

×Γ(−z1) . . .Γ(−zn−1)Γ(λ+ z1 + . . .+ zn−1)

Az11 . . . A
zn−1

n−1 A
−λ−z1−...−zn−1
n . (2.17)

We can use this representation to convert all the sums of monomials ofU andF
into a product, such that allxj are of the form of LHS of eq. (2.15). Then we
can integrate overxi and obtain as a result gamma functions. In other words,
we exchange the parameter integrals for multiple complex contour integrals. The
contour integrals can in return be performed by closing the contour at infinity and
summing up all the residues which lie inside. Since the integrand contains gamma
functions, one has to use following residue formulas:

res(Γ(z + a), z = −a− n) =
(−1)n

n!

res(Γ(−z + a), z = a+ n) = −(−1)n

n!
(2.18)

There are two strategies for obtainingǫ-expansion using MB techniques. In the
first, called strategy A [67, 9], one finds out the gamma functions in the integrand
which contribute poles, shifts the contour and then take theresidues. Let us demon-
strate this strategy in a simple example:

I(a, b;m) ≡
∫

dDk

(k2)a((p − k)2 −m2)b
. (2.19)

Using equation (2.16) we get:

1

Γ(b)

1

2πi

∫ i∞

−i∞
dz(−m2)zΓ(−z)Γ(b+ z)

∫
dDk

(k2)a((p− k)2)b+z
. (2.20)

Now, the last integral is a massless one-loop integral whichis known analytically
in terms of Gamma functions to be [68]:
∫

dDk

(k2)a((p− k)2)b
= π

D
2 (p2)

D
2
−a−bΓ(D2 − a)Γ(D2 − b)Γ(a+ b− D

2 )

Γ(a)Γ(b)Γ(D − a− b)
,(2.21)
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so using this result and linearly shifting the variable of integrationz = d
2 − a −

b− z (which does not change the separation of the contour, it onlyturns ”left” into
”right” and vice versa) we get:

I(a, b;m) =
Γ(D2 − a)

Γ(a)2πi

i∞∫

−i∞

dz
( − p2

m2 )zΓ(−z)Γ(a+ z)Γ(a+ b− D
2 + z)

Γ(D2 + z)
.

(2.22)

Closing the contour on the right, we obtain:

I(a, b;m) =
π

D
2 (−m2)

D
2
−a−bΓ(D2 − a)

Γ(a)Γ(b)
×

×
∞∑

j=0

1

j!

(
p2

m2

)j Γ(a+ j)Γ(a + b− D
2 + j)

Γ(D2 + j)
, (2.23)

where we used the formula for the residues of Gamma functionseq. (2.18).
Please note the fact, which is of importance to us: InD = 4−2ǫ in the eq. (2.23),

gamma functions have integer valued coefficients, given that a andb are integers.
InD = 3−2ǫ however, which is the case in EQCD, we get half-integer coefficients.
This was the initial reason that motivated us to write the package Hypsummer de-
scribed in chapter 4. But let us now come back to the other strategy for evaluating
MB integrals.

Strategy B [72] involves choosing an initial value forǫ and a value of the real part
of the integration variablezi in such a way that the real parts of all the arguments
in gamma functions in the numerator are positive. Then one can integrate over
straight lines. Finally one letsǫ → 0 and whenever the real part of the argument
of some gamma function vanishes one crosses the pole and addsthe corresponding
residue, which has one integration less. On the remaining integral, one applies the
same procedure. In fact, strategy B, being algorithmic, hasalready been imple-
mented and published in the public Mathematica package MB.mby [20] and also
implemented and used in [1] as well. Since we will not use thisthis strategy to
expand integrals, we refer the reader to [72] for examples.
Recently, strategy A has also been implemented in Mathematica, the package is
called MBresolve.m [69] and it needs the MB.m package. Once the singularities
are resolved, all packages can perform numerical integration.
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2.5 IBP and Master integrals

DR integrals have properties that one would expect from integrals, like linearity
∫

dDk(a1f1(k) + a2f2(k)) = a1

∫

dDkf1(k) + a2

∫

dDkf2(k), (2.24)

whereai andbi are constants, translation invariance
∫

dDkf(k + p) =

∫

dDkf(k), (2.25)

wherep is any vector and scaling law
∫

dDkf(λk) = λ−D
∫

dDkf(k), (2.26)

whereλ is a constant.
There is also a less trivial property which states that a derivative of an integral in
DR with respect to mass or momentum equals the correspondingintegral of the
derivative. A corollary to this property leads to the possibility to integrate by parts
and neglect the surface term:

∫

dDk
∂

∂kµ
vµf(k, pi) = 0 , (2.27)

wherek is inner momentum,pi are the external momenta andv can be either in-
ternal or external momentum. One write these integration byparts (IBP) identities
and apply this set of equation to solve the so called reduction problem, i.e. to find
out how a general Feynman integral of a given class can be expressed as a linear
combination of some master integrals.
Let us look at a simple example [18]:

F (λ) =

∫

dDk
1

(−k2 +m2)λ
(2.28)

Writing down IBP identity
∫

dDk
∂

∂kµ
kµ

1

(−k2 +m2)λ
= 0, (2.29)

gives us the following recurrence relation:

δµµF (λ) + 2λk2F (λ+ 1) = 0

→ DF (λ) − 2λ(−k2 +m2 −m2)F (λ+ 1) = 0

→ DF (λ) − 2λF (λ) + 2λm2F (λ+ 1) = 0

→ F (λ+ 1) =
2λ−D

2λm2
F (λ). (2.30)
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Since forλ < 1 F (λ) is zero and forλ > 1 all F (λ) can be expressed in terms of
F (1), we callF (1) a master integral.

Let us summarize.
We have seen in this chapter that we only need to consider scalar integrals which
may reduce to a smaller set of so called master integrals and that the momentum
integrals can be traded for parameter integrals, which in turn can be written as
complex contour integrals, which are of the form

1

(2πi)n

∫ n∏

l=1

dzl

∏

i Γ(ai + biǫ+
∑

j cijzj)
∏

i Γ(a′i + b′iǫ+
∑

j c
′
ijzj)

∏

k

xdk
k , (2.31)

whereai anda′i are integer,bi, b′i, cij andc′ij are integers,xk are ratios of kinematic
invariants and/or masses and the exponentsdk are linear combination ofǫ andz-
variables. Summing up all residues gives us the result of Feynman integrals in
terms of multiple sums involving gamma functions. The expansion parameterǫ
will appear in the argument of some of these gamma functions.In order to get
the Laurent expansion inǫ, we need to know how to expand multiple sums with
gamma functions aroundǫ.
In the next chapter we will introduce objects, which will enable us to expand certain
classes of multiple sums.
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Chapter 3

Enter the actors

3.1 Introduction

In calculations of higher order radiative corrections, oneencounters logarithms,
classical polylogarithms and generalized polylogarithms[56]. At higher num-
ber of loops this set of functions may not suffice. As a consequence, people
started to extend and generalize this class of functions to multiple polylogarithms
[10, 30, 59, 28]. On the other hand, harmonic [7, 74] and Euler-Zagier [26, 81]
sums have been used in calculation of higher order Mellin moments of deep in-
elastic structure functions [42, 76, 52]. Finally, in [53] generalization of harmonic
and Euler-Zagier sums, called S- or Z-sums, were introduced, which at the same
time encompassed all the multiple polylogarithms as certain special cases. The
purely mathematical question, which numbers can appear as coefficients of Lau-
rent expansion of Feynman integrals, has been addressed in [8].The answer is that
integrals in Euclidian region, with all ratios of invariants and masses being rational
have periods as coefficients of Laurent series. Periods can be defined as [8] com-
plex numbers whose real and imaginary parts are values of absolutely convergent
integrals of rational functions with rational coefficients, over domains inRn given
by polynomial inequalities with rational coefficients.

We will introduce the Z-/S- sums, show some of their properties, which will be
usefull in later chapters and summarize special cases and relate them to known
functions. In the last section we introduce hypergeometricfunction and show the
link to nested sums.

23
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3.2 Nested sums

The Z-sums are defined recursively by1

Z(n) =

{
1 : n ≥ 0
0 : n < 0

Z(n;m1, . . . ,mk;x1, . . . , xk) =
n∑

i=1

xi1
imi
Z(i− 1;m2, . . . ,mk;x2, . . . , xk) (3.1)

where k is called the depth andw = m1 +m2 + ...+mk the weight of the Z-sum.
Equivalent definition can be given by

Z(n;m1, . . . ,mk;x1, . . . , xk) =
∑

n≥i1>i2>...>ik>0

xi11
im1
1

· · · x
ik
k

imk
k

(3.2)

Analogous definition can be given for the S-sums

S(n) =

{
1 : n > 0
0 : n ≤ 0

S(n;m1, . . . ,mk;x1, . . . , xk) =

n∑

i=1

xi1
imi

S(i;m2, . . . ,mk;x2, . . . , xk) (3.3)

or

S(n;m1, . . . ,mk;x1, . . . , xk) =
∑

n≥i1≥i2≥...≥ik>1

xi11
im1
1

. . .
xikk
imk
k

(3.4)

Notice that the difference between the S- and Z-sums is the upper summation
boundary, (i-1) for Z- and (i) for S-sums. With the help of thefollowing formula,
one can easily convert Z-sums into S-sums and vice versa

S(n;m1, . . . ;x1, . . .) =
n∑

i=1

xi11
im1

i1−1∑

i2=1

xi11
im1
1

S(i2;m3, . . . ;x3, . . .)

+ S(n;m1 +m2, . . . ;x1x2, x3, . . .)

Z(n;m1, . . . ;x1, . . .) =

n∑

i=1

xi11
im1

i1∑

i2=1

xi11 i
m1
1 Z(i2 − 1;m3, . . . ;x3, . . .)

− Z(n;m1 +m2, . . . ;x1x2, x3, . . .) (3.5)

1This section follows closely the second chapter of [53]
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Z-sums form an algebra, which means that the product of two Z-sums with the
same upper summation, that is the same argument, can be written in terms of single
Z-sums

Z(n;m1, . . . ,mk;x1, . . . , xk) × Z(n;m,
1, . . . ,m

,
l;x

,
1, . . . , x

,
l)

=
n∑

i1=1

xi11
im1
1

Z(i1 − 1;m2, . . . ,mk;x2, . . . , xk) ×

×Z(i1 − 1,m,
1, . . . ,m

,
l;x

,
1, . . . , x

,
l)

+

n∑

i2=1

x,i21

i
m,

1
2

Z(i2 − 1;m1, . . . ,mk;x1, . . . , xk) ×

×Z(i2 − 1,m,
2, . . . ,m

,
l;x

,
2, . . . , x

,
l)

+

n∑

i=1

(x1x
,
1)
i

im1+m,
1
Z(i− 1;m2, . . . ,mk;x2, . . . , xk) ×

×Z(i− 1,m,
2, . . . ,m

,
l;x

,
2, . . . , x

,
l) (3.6)

As one can see, one or both Z-sums on the RHS have reduced depth. Applying
the formula recursively, since per definition it has an ending, leaves us with single
Z-sums. For example:

Z(n;m1,m2;x1, x2) × Z(n;m3;x3) =

Z(n;m1,m2,m3;x1, x2, x3) + Z(n;m1,m3,m2;x1, x3, x2)

+Z(n;m3,m1,m2;x3, x1, x2) + Z(n;m1,m2 +m3;x1, x2x3)

+Z(n;m1 +m3,m2;x1x3, x2) (3.7)

Similarly the product of two S-sums simplifies to sum of single S-sums:

S(n;m1, . . . ,mk;x1, . . . , xk) × S(n;m,
1, . . . ,m

,
l;x

,
1, . . . , x

,
l)

=

n∑

i1=1

xi11
im1
1

S(i1;m2, . . . ,mk;x2, . . . , xk)S(i1,m
,
1, . . . ,m

,
l;x

,
1, . . . , x

,
l)

+
n∑

i2=1

x,i21

i
m,

1
2

S(i2;m1, . . . ,mk;x1, . . . , xk)S(i2,m
,
2, . . . ,m

,
l;x

,
2, . . . , x

,
l)

−
n∑

i=1

(x1x
,
1)
i

im1+m,
1
S(i;m2, . . . ,mk;x2, . . . , xk)S(i,m,

2, . . . ,m
,
l;x

,
2, . . . , x

,
l)

(3.8)
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i i

iii

2 2 i2 i 2

i1111

Figure 3.1: An intuitive, geometric picture for the multiplication of two Z-sums in
eq. (3.6), taken from [53]

The proof for the equation (3.6) uses the triangle relation (see Fig. 3.1):

n∑

i=1

n∑

j=1

aij =
n∑

i=1

i−1∑

j=1

aij +
n∑

j=1

j−1
∑

i=1

aij +
n∑

i=1

aii (3.9)

The equation (3.6) actually states that the Z-sums form a so called Hopf Algebra
(see appendix of [80]).
Since, in order to apply eq. (3.6), one needs to have nested sums with the same
argument, it is usefull to know how to synchronize them. Thiscan be done with
the help of the following formulae:

Z(n+ c− 1;m1, . . . ;x1, . . .) =

Z(n− 1;m1, . . . ;x1, . . .) +

c−1∑

j=1

xj1x
n
1

(n + j)m1
Z(n− 1 + j;m2, . . . ;x2, . . .)

S(n+ c;m1, . . . ;x1, . . .) =

S(n;m1, . . . ;x1, . . .) +
c∑

j=1

xj1x
n
1

(n+ j)m1
S(n + j;m2, . . . ;x2, . . .). (3.10)

The Z/S-sums are a fairly general object, in a lots of cases itwont be necessary
to consider these general objects, but instead some simplerones (see Fig.(3.2)). If
one for example takes the index n in Z-sums to be infinity, one ends with the so
called multiple polylogarithms of Goncharov [30]:

Z(∞;m1, . . . ,mk;x1, . . . , xk) = Lim1,...,mk
(x1, . . . , xk). (3.11)

If, in addition ton = ∞ one also setsx1 = · · · = xk = 1 then one gets multiple
Zeta-values [12]:

Z(∞;m1, . . . ,mk; 1, . . . , 1) = ζ(m1, . . . ,mk). (3.12)
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multiple zeta values

Euler−Zagier sums

classical polylogs

Nielsen polylogs

harmonic polylogs

multiple polylogs

S−sums

Figure 3.2: Inheritance diagram for S-sums from [53]

By taking onlyx1 = · · · = xk = 1 and leaving n general, we get Euler-Zagier
sums ([26] [81]):

Z(n;m1, . . . ,mk; 1, . . . , 1) = Zm1,...,mk
(n). (3.13)

On the other hand, the S-sums for valuesx1 = · · · = xk = 1 andmi > 0 reduce
to harmonic sums [74]:

S(n;m1, . . . ,mk; 1, . . . , 1) = Sm1,...,mk
(n). (3.14)

Multiple polylogs, in turn contain as a subset the classicalpolylogs Lin(x),
Nielsen’s generalized polylogs [56]:

Sn,p(x) = Li1,...,1,n+1(1, . . . , 1
︸ ︷︷ ︸

p−1

, x) (3.15)

and harmonic polylogs introduced by Vermaseren and Remiddi[59]

Hm1,...,mk
(x) = Limk,...,m1(1, . . . , 1

︸ ︷︷ ︸

k−1

, x). (3.16)

In this work we will specially use multiple and harmonic polylogarithms, therefore
we will take a closer look at these two subclasses of nested sums in the appendix.
In the next section we will introduce hypergeometric functions, which are related
to eq. (2.31) and later we will link those to nested sums.
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3.3 Hypergeometric functions

3.3.1 Gauss function

The series

1 +
ab

c

x

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

x2

2!
+
a(a+ 1)(a+ 2)b(b + 1)(b+ 2)

c(c+ 1)(c + 2)

x3

3!
+ . . .

(3.17)
is called the Gauss series or Gauss hypergeometric series orGauss function [66].
The symbol2F1(a, b; c;x) is usually reserved for it, wherea, b, c are parameters of
the function andx is called the argument. Introducing the following notation

(a)n = a(a+ 1)(a+ 2) . . . (a+ n− 1) (3.18)

called the Pochhammer symbol, with(a)0 = 1, then one can write

(a)n =
Γ(a+ n)

Γ(a)
(3.19)

and the Gauss functions can be written as

2F1(a, b; c;x) =

∞∑

n=0

(a)n(b)nx
n

(c)nn!
. (3.20)

The series is convergent for all values ofx, real or complex such that|x| < 1. In
the case|x| = 1 it is convergent if Re(c− a− b) > 0.
The Gauss function has an integral representation, provided that|x| < 1 and Re(c−
b) > 0 and Re(b) > 0, which is given by

2F1(a, b; c;x) =
Γ(c)

Γ(b)Γ(c− b)

1∫

0

tb−1(1 − t)c−b−1(1 − xt)−adt. (3.21)

The integral is also called Pochhammer integral.
Gauss function can also be represented as Barnes-type integral:

2F1(a, b; c;x) =
Γ(c)

Γ(b)Γ(a)2πi

+i∞∫

−i∞

Γ(−z)Γ(a+ z)Γ(b+ z)

Γ(c+ z)
(−x)zdz. (3.22)

provided that|x| < 1 and that| arg(−x)| < π. Actually, the expression in
eq. (2.22) is exactly of this form, so the result in eq. (2.23)can be also written
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as

I(a, b;m) =
π

D
2 (−m2)

D
2
−a−bΓ(D2 − a)Γ(a+ b− D

2 )

Γ(b)Γ(D2 )

×2F1

(

a, a+ b− D

2
;
D

2
;
p2

m2

)

. (3.23)

There are number of relations which allow one to transform the parameters and
argument of Gauss function. The most famous ones are Euler identity and Kummer
identities [66]:

2F1(a, b; c;x) = (1 − x)−a2F1

(

a, c− b; c;
x

x− 1

)

= (1 − x)−b2F1

(

c− a, b; c;
x

x− 1

)

= (1 − x)c−a−b2F1(c− a, c− b; c;x). (3.24)

3.3.2 Generalized Gauss function

One can generalize the Gauss function, by adding equal number of further gamma
functions in numerator and denominator in the series representation:

∞∑

n=0

(a1)n(a2)n . . . (ap)nx
n

(b1)n(b2)n . . . (bp−1)nn!
. (3.25)

The above series is called generalized Gauss function or generalized hypergeomet-
ric function, and for it we use the symbol

pFp−1(a1, a2, . . . , ap; b1, b2, . . . , bp−1, x). (3.26)

The above function is convergent when|x| < 1, for x = 1 if

Re

( p−1
∑

i=1

bi −
p
∑

i=1

ai

)

> 0 (3.27)

and forx = −1 if

Re

( p−1
∑

i=1

bi −
p
∑

i=1

ai

)

> −1. (3.28)
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The integral representation is (we set nowq = p− 1) [66]

pFq(a1, . . . , ap; b1, . . . , bq;x) =
Γ(bq)

Γ(ap)Γ(bq − ap)

1∫

0

tap−1(1 − t)bq−ap−1

×p−1Fq−1(a1, . . . , ap−1; b1, . . . , bq−1;xt)dt

(3.29)

where Re(bq) >Re(ap) > 0 and| arg(1 − x)| < π.
The Barnes-type integral representation is given by:

pFq(a1, . . . , ap; b1, . . . , bq;x) =

q∏

i=1
Γ(bi)

2πi
p∏

i=1
ai

+i∞∫

−i∞

Γ(−z)
p∏

i=1
Γ(ai + z)

q∏

i=1
Γ(bi + z)

(−x)zdz,

(3.30)

provided that|x| < 1 and that| arg(−x)| < π.
One interesting special case forp = 3 andx = 1 is Dixon’s theorem [66], which

states:

3F2(a, b, c; d, e; 1) =
Γ(d)Γ(s)Γ(e)

Γ(a)Γ(d + e− a− c)Γ(d+ e− a− b)

3F2(d− a, e− a, s; d+ e− a− c, d+ e− a− b; 1),

(3.31)

wheres = e + d − a − b − c and one must have Re(s) > 0 and Re(a) > 0
and which can be used to balance the hypergeometric function. That is: if say
in eq. (3.31)d = 1/2 + d′ and all the other coefficients are integers, then, by
applying Dixon’s theorem one gets hypergeometric functionwith equal number of
half-integer coefficients in numerator and denominator.

3.3.3 Appell functions

One can also generalize the Gauss function to two arguments,instead of just one.
This leads to four possibilities:

F1(a, b1, b2; c;x1, x2) =

∞∑

n=0

∞∑

j=0

(a)n+j(b1)n(b2)j
(c)n+j

xn1 ix
j
2

n!j!
(3.32)

F2(a, b1, b2; c1, c2;x1, x2) =
∞∑

n=0

∞∑

j=0

(a)n+j(b1)n(b2)j
(c1)n(c2)j

xn1x
j
2

n!j!
(3.33)



3.4. DIFFERENCE EQUATIONS AND HYPERGEOMETRIC FUNCTIONS31

F3(a1, a2, b1, b2; c;x1, x2) =
∞∑

n=0

∞∑

j=0

(a1)n(a2)j(b1)n(b2)j
(c)n+j

xn1x
j
2

n!j!
(3.34)

F4(a, b; c1, c2;x1, x2) =

∞∑

n=0

∞∑

j=0

(a)n+j(b)n+j

(c1)n(c2)j

xn1x
j
2

n!j!
. (3.35)

(3.36)

In this thesis we will only be concerned with the first Appell functionF1 and the
generalized form thereof

∞∑

n=0

∞∑

j=0

(a1)n+j · · · (ap)n+j

(c1)n+j · · · (cp)n+j

(e1)n · · · (ep)n
(g1)n · · · (gp−1)n

(i1)j · · · (ip)j
(l1)j · · · (lp−1)j

xn1
n!

xj2
j!

(3.37)

which has the following contour integral representation:

p1−1∏

k=1

Γ(lk)
p2−1∏

k=1

Γ(gk)
p3−1∏

k=1

Γ(ck)

(2πi)2
p1∏

k=1

Γ(ak)
p2∏

k=1

Γ(ek)
p3∏

k=1

Γ(ik)

+i∞∫

−i∞

+i∞∫

−i∞

dz1dz2(−x1)
z1(−x2)

z2

Γ(−z1)Γ(−z2)
p1∏

k=1

Γ(ak + z1 + z2)
p2∏

k=1

Γ(ek + z1)
p3∏

k=1

Γ(ik + z2)

p1−1∏

k=1

Γ(ck + z1 + z2)
p2−1∏

k=1

Γ(gk + z1)
p3−1∏

k=1

Γ(lk + z2)

(3.38)

This representation, as well as representation eq. (3.30) of generalized hypergeo-
metric function, is of the form eq. (2.31), therefore we expect some Feynman inte-
grals to be expressible in terms of these hypergeometric functions. The generality
of this statement is one of the main motivations for us to lookcloser at hypergeo-
metric functions.
Let us now look at another general method for dealing with master integrals, which
also has a link to hypergeometric functions.

3.4 Difference equations and hypergeometric functions

In a well known paper [46] a method has been introduced which is based on dif-
ference equations. One starts with an integralM and raises the power of one prop-
agator to a numberx, which one treats as a variable and one can fix other powers
of propagators usually to one. Combining various IBP relations one obtains differ-
ence equation:

a0(n)M(x) + a1(x)M(x+ 1) + . . .+ ar(x)M(x+ r) = G(x), (3.39)
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whereai(x) are rational polynomials inx andǫ andG(x) contains Feynman in-
tegrals which have one or more propagators less then the original integralM(x).
For these integrals one obtains again similar difference equations and at the end
one obtains a triangular system of difference equations. Starting with the simplest
integral, i.e. the one with the least number of propagators,one can use various
methods to solve the equations. The most widely used is by making Ansatz in
form of factorial series [51, 46]

µx
∞∑

l=1

blx!

Γ(x−K + l + 1)
, (3.40)

where the values of the parametersµ, bl andK are to be determined. This method
for obtaining high precision numerical values was successfully applied to various
multiloop calculations, e.g. [47, 48, 62, 64]

The equation in eq. (3.39) is calledr-order ordinary inhomogeneous difference
equation. In case that the termG(x) is zero, the equation is called homogenous.
Similar to differential equations, difference equations of first order

M(x+ 1) = a(x)M(x) +G(x) (3.41)

can be formally solved as

M(x) =

[
x−1∏

i=x0

a(i)

]

M(x0) +
x−1∑

j=x0

{[
x−1∏

i=j+1

a(i)

]}

G(j), (3.42)

whereM(x0) is the initial value. In the case ofai being fraction of polynomials
with rational coefficients, the products give Pochhammer symbols. Therefore the
solution is nothing else then a generalized hypergeometricfunction, assuming that
G(j) is given in terms of Pochhammer symbols and/or powers of argumentj. That
means that should we have a first order difference equation for a master integral,
we can find automatically the hypergeometric representation and, in case the coef-
ficients are balanced, we can expand it. Unfortunately, for difference equations of
higher order, just like for differential equation, there isno formal solution. In this
case one has to use more advanced and difficult methods, like Laplace transform
[51, 46] or make an Ansatz for the solution in terms of functions one expects to
appear [77].

The observation that (first order) difference equations, although a priori unrelated
to Feynman integrals, can also be naturally expressed as hypergeometric functions
strengthens the belief that hypergeometric functions are anatural representation of
Feynman integrals. But let us now show the connection between hypergeometric
functions and nested sums.
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3.5 Relating nested sums and hypergeometric functions

As we have seen, hypergeometric functions can be represented as sums over Poch-
hammer symbols containingǫ, a number and summation indices. How do these
relate to nested sums introduces in first section of this chapter? Let us start with
rewriting the Pochhammer symbols as products and manipulate the expression a
bit:

(1 + ǫ)n =
(1)n(1 + ǫ)n

(1)n

= (1)n

n∏

i=1

ǫ+ i

i

= (1)n exp
[

ln
( n∏

i=1

ǫ+ i

i

)]

= (1)n exp
[ n∑

i=1

ln
(ǫ+ i

i

)]

= (1)n exp
[

−
n∑

i=1

∞∑

k=1

((−1)k

k
ǫki−k

)]

= (1)n exp
[

−
∞∑

k=1

(−ǫ)k
k

n∑

i=1

1

ik

]

= (1)n exp
[

−
∞∑

k=1

(−ǫ)k
k

S(n; k; 1)
]

.

(3.43)

This means that we can expand all Pochhammer symbols in hypergeometric func-
tions in terms of nested sums. Since we have products of Pochhammer symbols, we
will get products of nested sums, but using their algebra will allow us to systemat-
ically perform expansion inǫ. The details of the implementation will be described
in detail in next chapter.
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Chapter 4

HypSummer

4.1 Introduction

In this chapter we will describe in detail the FORM package HypSummer, which
expands inǫ balanced higher transcendental functions of the form:

∞∑

n=0

(a12 + b1ǫ)n · · · (
ap

2 + bpǫ)n
( c12 + d1ǫ)n · · · (

cp−1

2 + dp−1ǫ)n

xn

n!
, (4.1)

and

∞∑

j=0

∞∑

n=0

(a12 + b1ǫ)n+j · · · (
ap

2 + bpǫ)n+j

( c12 + d1ǫ)n+j · · · (
cp
2 + dpǫ)n+j

× (e12 + f1ǫ)n · · · (
ep

2 + fpǫ)n
(g12 + h1ǫ)n · · · (

gp

2 + hpǫ)n

×
( i12 + k1ǫ)j · · · (

ip
2 + kpǫ)j

( l12 +m1ǫ)j · · · (
lp−1

2 +mp−1ǫ)j

xj

j!

yn

n!
(4.2)

where Pochhammer symbol is defined as(a)j = Γ(a+j)
Γ(a) and latin indicesai, bi, . . . ,

mi are integer numbers. The first expression is the sum representation of the so
called generalized hypergeometric functionpFp−1 and the second one is the sum
representation of the so called generalized first Appell functionF1. The term ”bal-
anced” means in this context, that the number of integer and half-integer coeffi-
cients are equal for the corresponding summation index. In the case that all latin
indices are even integer numbers, there already exists a FORM implementation
called XSummer [54],C++ library callednestedsums [78] as well as Mathemat-
ica implementation HypExp [50]. For the half-integer coefficients there has been
published an upgrade of HypExp [37], which can deal with somenumber of classes
of hypergeometric functions. There is however a general algorithm for expansion

35
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of generalized hypergeometric functions with balanced rational coefficients [79]
based on algebraic manipulation of nested sums. By restricting ourselves to co-
efficients of the forma

2 which are the one needed in multiloop calculations1 we
considerably simplify the general algorithm A and B of [79].In the following we
describe the implementation and present some examples. Letus first look at the
generalized hypergeometric functions.

4.2 Expansion of generalized hypergeometric functions

In order to expand the sum of eq. (4.1), we will first bring all Pochhammer symbols
to the form( 1

2 + ǫ)n and(1 + ǫ)n using the formulaΓ(x+ 1) = xΓ(x) [HypSum-
mer→ GammaCracker.prc]2. The next step consists in expanding the Gamma
functions in nested sums using [79]

(
1

2
+ ǫ

)

n

=

(
1

2

)

n

exp

(

−
∞∑

k=1

(−2ǫ)k

2k
[Sk(2n) − S−k(2n)]

)

(

1 + ǫ

)

n

=

(

1

)

n

exp

(

−
∞∑

k=1

(−2ǫ)k

2k
[Sk(2n) + S−k(2n)]

)

(4.3)

[HypSummer→ GammaExpandor.prc] and also expanding the Gamma func-
tions without summation index [HypSummer→ GammaepCracker.prc]. Here
one has to note that we expand integer as well as half-integervalued Gamma func-
tions yielding nested sums with argument2n in both cases, thus the package does
not discriminate any more between the integers and half-integers and also purely
integer valued generalized hypergeometric functions can expanded. Also one can
see at this level already why the sums eq. (4.1) and eq. (4.2) have to be balanced.
It is only when there are equal number of integer and half-integer valued gamma
function with the same summation index, that the Pochhammersymbols in eq. (4.3)
in front of the exponential function cancel. Now one can expand the exponential
function to the desired order inǫ and one gets products of nested sums, all with
the same argument2n. Here the algebra of nested sums we mentioned in previ-
ous chapter, comes into play and reduces the products of nested sums into sums
of single nested sums according to eq. (3.8) [HypSummer→ BasisS.prc]. Also,
the applied formulaΓ(x + 1) = xΓ(x) brings possibly a great deal of polynomi-
als in the denominator. To deal with those terms we use recursive general partial

1See remarks at the end of this chapter
2The text indicates the name of the FORM procedure in HypSummer
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fractioning formula [HypSummer→ PartialCracker.prc]:

1

n+ a

1

n+ b
= δa,b

1

(n+ a)2

+ (Θ(a− b) + Θ(b− a))
1

b− a

(
1

n+ a
− 1

n+ b

)

, (4.4)

whereΘ(x) is zero ifx ≤ 0 and one ifx > 0. This leads us to the following cases:
∞∑

n=1

xn

(1
2 + a+ bǫ+ n)m

Sm1,...,mk;x1,...,xk
(2n) (4.5)

∞∑

n=1

xnnkSm1,...,mk ;x1,...,xk
(2n) (4.6)

∞∑

n=1

xnSm1,...,mk;x1,...,xk
(2n) (4.7)

and the corresponding cases without the nested sums:
∞∑

n=1

xn

(1
2 + a+ bǫ+ n)m

(4.8)

∞∑

n=1

xnnk (4.9)

∞∑

n=1

xn. (4.10)

Let us consider the cases with nested sums first. We rewrite the eq. (4.5, 4.6, 4.7)
as following:

∞∑

n=1

(
√
x)2n

(1
2 + a+ bǫ+ 2n

2 )m
Sm1,...,mk;x1,...,xk

(2n) (4.11)

∞∑

n=1

(
√
x)2n

(2n

2

)k
Sm1,...,mk;x1,...,xk

(2n) (4.12)

∞∑

n=1

(
√
x)2nSm1,...,mk;x1,...,xk

(2n). (4.13)

Now every summation indexn is equipped with a2, which means that we have a
sum over a function with argument2n:

∞∑

n=1

f(2n) (4.14)
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and the next step will be to apply

∞∑

n=1

f(2n) =
1

2

( ∞∑

n=1

f(n) +

∞∑

n=1

(−1)nf(n)
)

. (4.15)

This yields after some relabeling the following expressions
[HypSummer→ SummConv.prc]:

∞∑

n=1

(±√
x)n

(a+ bǫ+ n)m
Sm1,...,mk;x1,...,xk

(n) (4.16)

∞∑

n=1

(±
√
x)nnkSm1,...,mk;x1,...,xk

(n) (4.17)

∞∑

n=1

(±
√
x)nSm1,...,mk;x1,...,xk

(n) (4.18)

and analogous terms without S-sums. Now we will convert the S-sums to Z-sums
[HypSummer→ ConvStoZ.prc] since Z-sums will be slightly more convenient
to deal with. Taking eq. (4.16) we get

∞∑

n=1

(
√
x)n

(a+ bǫ+ n)m
Zm1,...,mk ;x1,...,xk

(n − 1) (4.19)

and now we have to reduce the offseta to zero. We have to distinguish two cases
a < 0 anda > 0. In the case of negative offset, we proceed as follows [HypSum-
mer→ Summer2.prc]:

∞∑

n=1

(
√
x)n

(n− a+ bǫ)m
Zm1...(n− 1) =

a−1∑

i=1

(
√
x)i

(i− a+ bǫ)m
Zm1,...(i− 1)

+
(
√
x)a

bǫm
Zm1,...(a− 1) +

∞∑

n=1

(
√
x)n+a

(n+ bǫ)m
Zm1,...(n+ a− 1).

(4.20)

The last expression can be expanded inǫ using

(n+ ǫ)−k =

k∑

i=1

k!

i!(k − i)!
niǫk−i, (4.21)

which leaves us with
∞∑

n=1

(
√
x)n

nm
Zm1,...(n+ a− 1). (4.22)
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The offseta in the argument of the Z-sum can be brought to zero using the eq. (3.10)
[HypSummer→ Zsynch.prc], which brings us to

∞∑

n=1

(
√
x)n

nm
Zm1,...(n− 1), (4.23)

which is per definitionZm,m1,...,mk;
√
x,xk,...,x1

(∞) or, using eq. (3.11) of previous
chapter,Limk ,...,m1,m(x1, . . . , xk,

√
x).

In the case thata > 0 we first expand the denominator inǫ using eq. (4.21) from
which we get

∞∑

n=1

(
√
x)n

(a+ n)m
Z...(n− 1). (4.24)

Now we apply the following formula [HypSummer→ Summer21.prc]:

∞∑

n=1

(
√
x)n

(a+ n)m
Zm1,...;x1,...(n− 1) =

1√
x

∞∑

n=1

(
√
x)n

(a− 1 + n)m
Zm1,...;x1,...(n − 1)

−
∞∑

n=1

(
√
x)n

(a+ n)m
xn1
nm1

Zm2,...;x2,...(n− 1). (4.25)

In the first expression on the RHS of eq. (4.25) the offseta is now lowered by one
and in the second expression of the above equation, the depthof the nested sum is
reduced. Using eq. (4.25) recursively gives us terms

∞∑

n=1

(
√
x)n

nm
Zm1,...(n− 1), (4.26)

which are the same as eq. (4.23) and/or terms like

∞∑

n=1

(
√
x)n

(a+ n)m
, (4.27)

which we will treat further below (see eq. (4.32 ff.)).
Let us now treat the expression in eq. (4.17), the case without denominator but with
a power of summation index. First we rewrite the Z-sum according to

Zm1,...;x1,...(n− 1) =

n−1∑

i1=1

xi11
im1
1

Zm2,...;x2,...(i1 − 1). (4.28)
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Next thing we do is interchanging the two summations, leading to [HypSummer
→ NegSummer.prc]:

∞∑

n=1

(
√
x)nnmZm1...;x1...(n− 1)

=

∞∑

j=1

(
√
x)nnm

n−1∑

i1=1

xi11
im1
1

Zm2...;x2...(i1 − 1)

=
∞∑

i1=1

xi11
im1
1

Zm2...;x2...(i1 − 1)
∞∑

n=i1+1

(
√
x)nnm. (4.29)

The last sum in the above equation can be done analytically using [HypSummer
→ NegLi.prc]

∞∑

n=i1+1

(
√
x)nnm =

∞∑

n=i1+1

( ∂

∂
√
x

)m
(
√
x)n

=
( ∂

∂
√
x

)m
∞∑

n=i1+1

(
√
x)n

=
( ∂

∂
√
x

)m (
√
x)i1+1

1 −√
x
, (4.30)

which gives a finite number of polynomials ini1 for any finitem. Using eq. (4.29)
recursively we either reduce the depth of the Z-sum to zero, hence obtain terms
like eq. (4.27), or we obtain terms with Z-sums of non-zero depth, but with denom-
inators with positive powers of the summation index, that isterms like eq. (4.23).
The last expression with nested sums, eq. (4.18), we can compute similarly using

∞∑

n=1

(
√
x)nZm1...;x1...(n− 1)

=
∞∑

j=1

(
√
x)n

n−1∑

i1=1

xi11
im1
1

Zm2...;x2...(i1 − 1)

=

∞∑

i1=1

xi11
im1
1

Zm2...;x2...(i1 − 1)

∞∑

n=i1+1

(
√
x)n

=

√
x

1 −√
x
Zm1,m2...;x1·

√
x,x2...(∞). (4.31)
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The three cases without nested sums eq. (4.8-4.10) can be done analogously using

∞∑

n=1

(
√
x)n

(n+ a)m
=

1√
x

n∑

i=1

(
√
x)i

(i+ c− 1)m
− 1

cm
+

(
√
x)n

(n+ c)m
(4.32)

in case that the offseta is positive and in case it is negative we use

∞∑

n=1

(
√
x)n

(n− a+ bǫ)m
=

a−1∑

i=1

(
√
x)i

(i− a+ bǫ)m
+

(
√
x)a

bǫm
+

∞∑

n=1

(
√
x)n+a

(n+ bǫ)m
.

(4.33)

What is left to do is compute terms like

∞∑

n=1

(
√
x)n

nm
= Lim(

√
x) (4.34)

and ∞∑

n=1

(
√
x)nnm = Li−m(

√
x). (4.35)

Li−m(x) is just a polynomial which can be done using the eq. (4.30) [HypSummer
→ NegLi.prc]. At the end we have the result of our expansion of eq. (4.1) asa
linear combination of multiple polylogarithmsLimk,...,m1,m(1, . . . , 1,

√
x). In the

case that the argumentx = 1 one needs to be a bit careful due to terms1
1−√

x

comming from manipulations like eq. (4.31) and eq. (4.30). The case eq. (4.30) is
not problematic, it is just

∞∑

n=i1+1

nm =
ni1+1

1 − n
. (4.36)

In the case of eq. (4.31) one cannot do anything similar. Userof HypSummer has
to make sure that the hypergeometric function one is expanding

PFP−1

[

a1, . . . , aP ; b1, . . . , bP−1; 1
]

(4.37)

fullfills the convergence property

P−1∑

i=1

bi −
P∑

i=1

ai > 0. (4.38)

This implies that the expansion inǫ commutes with the procedure of taking the
limit x → 1 in [HypSummer→ arg1.prc]. In the case, where argument is1 and
hypergoemetric function fullfills convergence property, multiple polylogs reduce
to multiple zeta values and have a particularly compact representation.
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4.3 Expansion of generalized first Appell functions

The generalized first Appell function can be written as:

∞∑

j=0

∞∑

n=0

(a12 + b1ǫ)n+j · · · (
ap

2 + bpǫ)n+j

( c12 + d1ǫ)n+j · · · (
cp
2 + dpǫ)n+j

× (e12 + f1ǫ)n · · · (
ep

2 + fpǫ)n
(g12 + h1ǫ)n · · · (

gp

2 + hpǫ)n

×
( i12 + k1ǫ)j · · · (

ip
2 + kpǫ)j

( l12 +m1ǫ)j · · · (
lp−1

2 +mp−1ǫ)j

xj

j!

yn

n!
= 1 +

+
∞∑

j=1

(a12 + b1ǫ)j · · · (
ap

2 + bpǫ)j
( c12 + d1ǫ)j · · · (

cp
2 + dpǫ)j

( i12 + k1ǫ)j · · · (
ip
2 + kpǫ)j

( l12 +m1ǫ)j · · · (
lp−1

2 +mp−1ǫ)j

xj

j!

+

∞∑

n=1

(a12 + b1ǫ)n · · · (
ap

2 + bpǫ)n
( c12 + d1ǫ)n · · · (

cp
2 + dpǫ)n

( e12 + f1ǫ)n · · · (
ep

2 + fpǫ)n
(g12 + h1ǫ)n · · · (

gp

2 + hpǫ)n

yn

n!

+

∞∑

n=1

n−1∑

j=1

(a12 + b1ǫ)n · · · (
ap

2 + bpǫ)n
( c12 + d1ǫ)n · · · (

cp
2 + dpǫ)n

×
(e12 + f1ǫ)n−j · · · (

ep

2 + fpǫ)n−j
(g12 + h1ǫ)n−j · · · (

gp

2 + hpǫ)n−j

×
( i12 + k1ǫ)j · · · (

ip
2 + kpǫ)j

( l12 +m1ǫ)j · · · (
lp−1

2 +mp−1ǫ)j

xj

j!

yn−j

(n − j)!
(4.39)

The first two sums on the RHS of the above equation are just generalized hyperge-
ometric functions, the last sum however,

n−1∑

j=1

(e12 + f1ǫ)n−j · · · (
ep

2 + fpǫ)n−j
( g12 + h1ǫ)n−j · · · (

gp

2 + hpǫ)n−j

( i12 + k1ǫ)j · · · (
ip
2 + kpǫ)j

( l12 +m1ǫ)j · · · (
lp−1

2 +mp−1ǫ)j

×x
j

j!

x′n−j
(n− j)!

(4.40)

we have to compute differently. Following the same same steps of expanding Poch-
hammer symbols in nested sums and using their algebra like wedid for generalized
hypergeometric functions, we get expressions like:

n−1∑

j=1

xj(x′)n−j

(1
2 + a+ bǫ+ n− j)m

Sm1,...,mk;x1,...,xk
(2n− 2j) ×

×Sm′

1,...,m
′

k;x′1,...,x
′

k
(2j) (4.41)

n−1∑

j=1

xj(x′)n−j

(1
2 + a+ bǫ+ j)m

Sm1,...,mk;x1,...,xk
(2n − 2j) ×
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×Sm′

1,...,m
′

k;x′1,...,x
′

k
(2j) (4.42)

n−1∑

j=1

xj(x′)n−jjkSm1,...,mk;x1,...,xk
(2n − 2j) ×

×Sm′

1,...,m
′

k;x′1,...,x
′

k
(2j) (4.43)

n−1∑

j=1

xj(x′)n−jSm1,...,mk;x1,...,xk
(2n) ×

×Sm′

1,...,m
′

k;x′1,...,x
′

k
(2j) (4.44)

and the corresponding cases without the nested sums, which we will not describe
here, since they can be computed using methods from previoussection. Also,
the eq. (4.41) can, via shifting the summation indexj → n − j which is done
automatically by HypSummer, be reduced to the eq. (4.42). Let us look closely at
eq. (4.42-4.44). Rewriting the summand as

n−1∑

j=1

(
√
x√
x′

)2j(x′)n

(1
2 + a+ bǫ+ 2j

2 )m
Sm1,...,mk;x1,...,xk

(2n − 2j) ×

×Sm′

1,...,m
′

k;x′1,...,x
′

k
(2j) (4.45)

and doing so analogously for eq. (4.43,4.44) and using againeq. (4.15) we obtain,
after some relabeling and changing from S-sums to Z-sums:

2n−1∑

j=1

(
√

x
x′ )

j

(a+ bǫ+ j)m
Zm1,...,mk;x1,...,xk

(j − 1) ×

×Zm′

1,...,m
′

k;x′1,...,x
′

k
(2n− j − 1) (4.46)

2n−1∑

j=1

(√
x

x′

)j

jkZm1,...,mk;x1,...,xk
(j − 1) ×

×Zm′

1,...,m
′

k;x′1,...,x
′

k
(2n− j − 1) (4.47)

2n−1∑

j=1

(√
x

x′

)j

Zm1,...,mk;x1,...,xk
(j − 1) ×

×Zm′

1,...,m
′

k;x′1,...,x
′

k
(2n− j − 1) (4.48)

It suffices here to treat only eq. (4.46), the other expressions can be done analo-
gously. We rewrite eq. (4.46) as

2n−1∑

j=1

j−1
∑

j2=1

(
√

x
x′ )

j2

(a+ bǫ+ j2)m
Zm1,...,mk;x1,...,xk

(j2 − 1) ×
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(x′1)
j−j2

(j − j2)m
′

1
× Zm′

2,...,m
′

k;x′2,...,x
′

k
(j − j2 − 1) (4.49)

where the inner sum is again of the same type, but with the decreased depth of
the nested sum. Recursive use of eq. (4.49) [HypSummer→ Ralga.prc] gives us
expressions like those in eq. (4.16-4.18):

2n−1∑

j1=1

(x1)
j1

(a+ bǫ+ j1)m1

j1−1
∑

j2=1

(x2)
j2

(j1 − j2)m2
· · ·

jk−1−1
∑

jk=1

(xk)
jk

(jk−1 − jk)mk
×

×Zm′

1,...;x
′

1,...
(jk − 1) (4.50)

2n−1∑

j1=1

xj11 j
m1
1

j1−1
∑

j2=1

(x2)
j2

(j1 − j2)m2
· · ·

jk−1−1
∑

jk=1

(xk)
jk

(jk−1 − jk)mk
×

×Zm′

1,...;x
′

1,...
(jk − 1) (4.51)

2n−1∑

j1=1

xj11

j1−1
∑

j2=1

(x2)
j2

(j1 − j2)m2
· · ·

jk−1−1
∑

jk=1

(xk)
jk

(jk−1 − jk)mk
×

×Zm′

1,...;x
′

1,...
(jk − 1) (4.52)

and similar expressions without Z-sums. When summing back recursively, in order
to account for the fact that the sums in eq. (4.49) have finite upper limit, we slightly
modify some of the methods we used in previous section. In this case eq. (4.25)
becomes

jk−1−1
∑

jk=1

xjk

(a+ jk)m
Zm1,...;x1,...(jk − 1) =

1

x

jk−1−1
∑

jk=1

xjk

(a− 1 + jk)m
Zm1,...;x1,...(jk − 1)

−
jk−1−2
∑

jk=1

xjk

(a+ jk)m
xjk1
jm1
k

Zm2,...;x2,...(jk − 1)

+
xjk−1

(a+ jk−1)m
Zm1,...;x1,...(jk−1 − 1), (4.53)

and eq. (4.29) modifies to

jk−1−1
∑

jk=1

xjkjmk Zm1,...;x1,...(jk − 1) =
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jk−1−1
∑

jk=1

xjk1
jm1
k

Zm2,...;x2,...(jk − 1) ×
{( ∂

∂x

)m xjk−1

x− 1
−
( ∂

∂x

)m xjk

x− 1

}

(4.54)

and finally, eq. (4.31) modifies to

jk−1−1
∑

jk=1

xjkZm1,...;x1,...(jk − 1) =
x

1 − x
Zm,m1,...;x·x1,...(jk−1 − 1)

−x · xjk−1

1 − x
Zm,m1,...;x·x1,...(jk−1 − 1). (4.55)

Applying eq. (4.53-4.55) and similar identities recursively to eq. (4.46-4.48) [Hyp-
Summer→ Ralga2.prc] we can express eq. (4.40) as liner combination of
Zm1,...;x1,...(2n−1). Transforming Z-sums to S-sums and synchronizing them, the
double sum in eq. (4.39) results in

∞∑

n=1

(a12 + b1ǫ)n · · · (
ap

2 + bpǫ)n
( c12 + d1ǫ)n · · · (

cp
2 + dpǫ)n

xn

n!
× Sm1,...;x1,...(2n), (4.56)

which can be computed with the algorithm from the previous section. The graphic
fig. (4.1) shows the internal structure of HypSummer package.

4.4 Usage

In this section we use HypSummer to expand several hypergeometric and first Ap-
pell functions and compare the results with other packages or numerical results.
In [53] examples of the expansion of several hypergeometricfunctions have been
presented. We will use them to introduce the syntax of HypSummer and check the
expansion result. The functions we want to expand are:

(i) 2F1(ǫ, 2ǫ; 1 − 3ǫ;x),

(ii) 2F1(1,−ǫ; 1 − ǫ;x)

(iii) 3F2(a− 2ǫ,−2ǫ, 1 − ǫ; 1 − 2ǫ, 1 − 2ǫ;x)

(iv) 4F3(
1

2
, 1, 2ǫ, 2ǫ; 2 − ǫ,

1

2
+ ǫ, 1 + 2ǫ; 1)

(v) F1(−2 − ǫ, ǫ, ǫ, 2, x, y) (4.57)

(i) Let us look at the first hypergeometric function. The HypSummer input has to
be as follows:
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INPUT:

L HypG = .........

IF sum(j,1,n−1)

IF sumn(n,1,inf)

ConvZtoS

Zsynch

RalgA21

RalgA2

IndexTrans

ConvStoZ

SummConv

BasisS

GammaExpandor

PartialCracker

GammaCracker

    GammaepCracker

PartialCracker

GammaExpandor

BasisS

    GammaepCracker

GammaCracker

Summer2
ConvStoZ

SummConv

Ssynch

Summer21

NegSummer

NegLi

Znumbers

arg1

  IF sumn(n,1,inf)

HypG = ...S....(2n)... HypG = ...S....(inf)...

Figure 4.1: Internal structure of HypSummer
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L f21 = 1+sumn(n,1,inf) * Po(0,ep,n) * Po(0,2 * ep,n) *
InvPo(1,-3 * ep,n) * InvPo(1,0,n) * pow(x,n);

Here one can see that the objects one is putting in arePo(a, ep, n) for Poch-
hammer symbols. For the half-integer cases we will writePohalf(1/2, a, ep, n).
For inverse Pochhammer symbols one just need the self explanatory prefixInv.
The Pochhammer symbolPo(a, ep, n) has three input slots, where the first one
is reserved for the integer number or zero, but not a symbol, the second for the
aǫ and third slot is reserved for summation index. All of these slots have to
be filled with something otherwise the program will not work.For example, if
one hasΓ(−3+n)

Γ(−3) one would writePo(−3, 0, n). For the Pochhammer symbols
Pohalf(1/2, a, ep, n) one has four slots where in the first one allways has to be
1
2 and the other three are the same as forPo. For exampleΓ(−3/2+ǫ+n)

Γ(−3/2+ǫ) would
bePohalf(1/2,−2, ep, n). These definitions are chosen this way to simplify the
internal pattern matching of the package. The result of (i) in eq. (4.57) up to order
O(ǫ3) is

f21 =

+ epˆ2 * (
+ 4* Li(2, - (x)ˆ(1/2))
+ 4* Li(2,(x)ˆ(1/2))
)

+ epˆ3 * (
+ 24* Li(1,2,-1, - (x)ˆ(1/2))
+ 24* Li(1,2,-1,(x)ˆ(1/2))
+ 24* Li(1,2,1, - (x)ˆ(1/2))
+ 24* Li(1,2,1,(x)ˆ(1/2))
+ 24* Li(3, - (x)ˆ(1/2))
+ 24* Li(3,(x)ˆ(1/2))
)

+ 1
;

Please notice that the result here is in different representation, then in [53], where
the result is:

2F1(ǫ, 2ǫ; 1 − 3ǫ;x) = 1 + ǫ2(2Li(2, x))

+ ǫ3(12Li(1, 2, 1, x) + 6Li(3, x)) (4.58)
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which is due to eq. (4.15). The result is still the same, as onecan see using expres-
sions like

Li(m,x2) = 2m−1
[

Li(m,x) + Li(m,−x)
]

(4.59)

and generalizations thereof [79].
(ii),(iii) The result of the other two functions is:

(ii) 2F1(1,−ǫ; 1 − ǫ;x) = 1 + (−Li(1,−
√
x) − Li(1,

√
x))ǫ

+2(−Li(2,−
√
x) − Li(2,

√
x))ǫ2 + 4(−Li(3,−

√
x) − Li(3,

√
x))ǫ3

+8(−Li(4,−
√
x) − Li(4,

√
x))ǫ4 + O(ǫ5)

(iii) 3F2(−2ǫ,−2ǫ, 1 − ǫ; 1 − 2ǫ, 1 − 2ǫ;x) = 1 + 8(Li(2,−
√
x)

+Li(2,
√
x))ǫ2 + (−8Li(1, 2,−1,

√
x) − 8Li(1, 2, 1,

√
x)

−8Li(1, 2,−1,−
√
x) − 8Li(1, 2, 1,−

√
x) + 48Li(3,−

√
x)

+48Li(3,
√
x))ǫ3 + O(ǫ4) (4.60)

which both agree with known values.
(iv) Another, rather nontrivial example is hypergeometric function which con-

tribute to the graph :

4F3(
1

2
, 1, 2ǫ, 2ǫ; 2 − ǫ,

1

2
+ ǫ, 1 + 2ǫ; 1) (4.61)

Here we have half-integer valued coefficients which are balanced, therefore the
function is expandable with HypSummer. The output from HypSummer is:

f43 =
+ epˆ2 * ( - 4 + 4 * z2 )

+ epˆ3 * ( - 24 - 6 * z3 + 8 * z2 + 16 * ln2 )

+ epˆ4 * ( - 108 + 96 * li4half - 12 * z3 + 24 * z2 - 96/
5* z2ˆ2 + 112 * ln2 + 84 * ln2 * z3 - 48 * ln2ˆ2 - 24 * ln2ˆ2

* z2 + 4 * ln2ˆ4 )

+ epˆ5 * ( - 432 - 576 * li5half + 451 * z5 + 192 *
li4half - 28 * z3 + 72 * z2 + 32 * z2 * z3 - 192/5 * z2ˆ2 +
560* ln2 - 576 * ln2 * li4half + 168 * ln2 * z3 - 336 * ln2ˆ2

- 252 * ln2ˆ2 * z3 - 48 * ln2ˆ2 * z2 + 96 * ln2ˆ3 + 96 *
ln2ˆ3 * z2 + 8 * ln2ˆ4 - 96/5 * ln2ˆ5 )

+ 1;
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In standard notation this gives:

4F3

(1

2
, 1, 2ǫ, 2ǫ; 2 − ǫ,

1

2
+ ǫ, 1 + 2ǫ; 1

)

= 1 + (−4 + 4ζ2)ǫ
2

+ǫ3(−24 − 6ζ3 + 8ζ2 + 16 ln2) + ǫ4(−108 + 96Li(4,
1

2
) − 12ζ3 + 24ζ2

−96

5
ζ2
2 + 112 ln2 +84 ln 2ζ3 − 48 ln2

2 −24 ln2
2 ζ2 + 4 ln4

2) + O(ǫ)4 (4.62)

which coincides with the result given by HypExp2 from [37].
(v) Let us take an example of an Appell function:

F1(−2 − ǫ, ǫ, ǫ, 2, x, y) =
∞∑

j=0

∞∑

n=0

( − 2 − ǫ)n+j(ǫ)j(ǫ)n
(2)n+j

xj

j!

yn

n!
(4.63)

where we will takex = y = 1 in order to keep the output short. HypSummer
gives:

f1 =
+ ep * ( - 5/3 )

+ epˆ2 * ( 61/18 - 2 * z2 )

+ epˆ3 * ( - 239/108 - 2 * z3 + 10/3 * z2 )

+ epˆ4 * ( 3853/648 + 10/3 * z3 - 61/9 * z2 + 2/5 * z2ˆ2 )

+ 1;

or

F1(−2 − ǫ, ǫ, ǫ, 2, 1, 1) = 1 − 5

3
ǫ+ (

6

18
− 2ζ2)ǫ

2

+(−239

108
− 2ζ3 +

10

3
ζ2)ǫ

3 + (
3853

648
+

10

3
ζ3 −

61

9
ζ2 +

2

5
ζ2
2 )ǫ4

+O(ǫ)5 (4.64)

which coincides with known values.
One can also write in the input a number of basic functions which HypSummer
can deal with (see table for all basic functions in HypSummer). For example, the
two-loop integral:

J2

d=3−2ǫ
= −1 − 2ǫ

4ǫ

{

2F1(2ǫ, 1; 1 + ǫ;
1

4
) − 2ǫ2F1(

1

2
, 1;

3

2
;
1

4
)

}

(4.65)

whereJ is a massive one-loop tadpole, needs to be written in HypSummer as
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L s3 = (1-2 * ep) * den0(0,4 * ep) * ((1+sum(j,1,inf) * Po(0,2 * ep,j) *
InvPo(1,ep,j) * pow(x1,j))-

2* ep* (1+sum(j,1,inf) * Pohalf(1/2,0,ep,j) *
InvPohalf(1/2,1,0,j) * pow(x1,j)));

yielding

s3 =

+ epˆ-1 * (
+ 1/4
)

+ ep * (
- 2 * Li(1, - 1/2)
+ Li(1,1,-1,1/2)
+ Li(1,1,1, - 1/2)
- Li(2, - 1/2)
- Li(2,1/2)
)

+ epˆ2 * (
- 2 * Li(1,1,-1,1/2)
- 2 * Li(1,1,1, - 1/2)
+ Li(1,1,1,-1,-1, - 1/2)
+ Li(1,1,1,-1,1,1/2)
+ Li(1,1,1,1,-1,1/2)
+ Li(1,1,1,1,1, - 1/2)
- Li(1,2,-1, - 1/2)
- Li(1,2,-1,1/2)
- Li(1,2,1, - 1/2)
- Li(1,2,1,1/2)
+ 2* Li(2, - 1/2)
+ 2* Li(2,1/2)
- Li(2,1,-1, - 1/2)
- Li(2,1,-1,1/2)
- Li(2,1,1, - 1/2)
- Li(2,1,1,1/2)
+ 2* Li(3, - 1/2)
+ 2* Li(3,1/2)
)

- 1/2
+ Li(1, - 1/2)

;
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Name Description Standard notation/Example

sumn Inf. summation symbol
∑∞

n=1 = sumn(n,1,inf)

sum Finite summation symbol
∑n−1

j=1 = sum(j,1,n-1)

den Int. denominator 1
a+ǫ+j = den(a,ep,j)

den0 Int. denominator 1
a+ǫ = den0(a,ep)

without sum. index
denhalf Half-int. denominator 1

1
2
+a+ǫ+j

= denhalf(1/2,a,ep,j)

ep Expansion parameter ǫ

pow Power function xj = pow(x,j)

powep Power of exp. parameter ǫa = powep(ep,a)

Gamma Gamma function Γ(a+ bǫ+ n) = Gamma(a,b*ep,n)

Gammaep Gamma function Γ(a+ bǫ) = Gammaep(a,b*ep)
without summation index

Po Pochhammer symbol (a+ ǫ)n = Po(a,ep,n)

Pohalf Half-int. Pochhammer (1
2 + a+ ǫ)n = Pohalf(1/2,a,ep,n)

S(R(..),X(..),n) S-sums Sm1,...;x1,...(n) =
S(R(m1,..),X(x1,..),n)

Z(R(..),X(..),n-1) Z-sums Zm1,...;x1,...(n− 1) =
Z(R(m1,..),X(x1,..),n-1)

Table 1: Basic input objects for HypSummer
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4.5 Remarks

Some remarks due to other package is in order. As already mentioned, in case that
the sums we expand have integer valued coefficients, there are three packages al-
ready cited in section 4.1. In case of half-integer valued coefficients there is Math-
ematica package HypExp2 [37]. The package can expand certain hypergeometric
functions, namely:

22
1, 21

1, 20
1, 21

0,

33
2, 32

2, 31
1, 30

1, 31
0

41
1, 43

3

whereP ba in this notation means thatP is the depth of the hypergeometric function

pFp−1 anda is the number of half-integer coefficients in denominator and b the
number of half-integer coefficients in numerator. Ifa = b we have balanced hy-
pergeometric functions. The expansion algorithm of HypExp2 is different than the
approach taken here. It reduces a given hypergeometric function to a basis func-
tion of the same type using differential operators and than it makes an Ansatz for
the expansion of the basic functions of the corresponding type. Let us take a look
at 2ba-type functions and compare with HypSummer. HypSummer can expand the
balanced ones, but since2ba is Gauss function, one can use the Euler relations in
order to balance the casea 6= b. The case4ba are both balanced, so HypSummer
can expand them, which leaves the3ba-type functions. Again,a = b case can be
done and30

1-type can also be balanced using methods from previous chapter. The
two remaining cases,33

2 and31
0 can unfortunately only be balanced in case that

the argument is1 using generalization of Dixon’s theorem [66]. Also, one should
say that the method HypExp2 uses is not in principle bounded to the mentioned
hypergeometric functions above, it can be generalized to higher depths. One other
remark also needs to be made here. Both HypExp2 and HypSummerexpand hy-
pergeometric functions whose coefficients are of the form1

2 +a+bǫ+ j. Recently,
in [41] the two-loop massive sunset vacuum diagram like the one in eq. (4.65),
but with two different masses, has been expressed in terms oftwo basic hyperge-
ometric functions with coefficients having not half but quarter values and whose
expansion inǫ can be expressed in terms of elliptic integrals [44]. One of the two
hypergeometric functions is balanced and could be in principle done using gen-
eral Algorithm B from [79], the other however is41

3−type. The class of multiple
polylogarithms is not sufficient for the expansion of this functions.



Chapter 5

Applications

In this chapter we use the methods from chapters 2 and 3 and apply them to var-
ious Feynman integrals, first of all the set of EQCD master integrals. We first try
to express all Feynman integrals in terms of hypergeometricfunctions. Then we
use the package Hypsummer described in chapter 4 and expand the resulting hy-
pergeometric functions inǫ. We have seen that all scalar integrals can be expressed
as Barnes-type integrals, but only one-fold integrals leadto generalized hyperge-
ometric functions, which in turn can be expanded using Hypsummer. In order to
achieve the minimal number of Mellin-Barnes integrations,we try to find Mellin-
Barnes representations of subloop integrals and insert it in the given integral, which
then might been computable in terms of gamma function.

5.1 EQCD master integrals

Let us start with the simplest example:

J =

∫

dDk
1

k2 +m2
=
π

D
2 Γ(1 − D

2 )

(m2)1−
D
2

(5.1)

This is also the first and only one-loop master integral of EQCD and we will use its
integral measure for other integrals. However we will need later some other one-
loop integrals, which will be used to compute more complicated integrals, therefore
we will write them down here. Those are [68]:

∫
dDk

pλ1(p − k)λ2
=
π

D
2 Γ(λ1 + λ2 − D

2 )Γ(−λ1 + D
2 )Γ(−λ2 + D

2 )

Γ(λ1)Γ(λ2)Γ(−λ1 − λ2 +D)(p2)λ1+λ2−D
2

(5.2)

∫
dDk

(p2 + 12)λ1(p− k)λ2
=
π

D
2 Γ(−λ2 + D

2 )

Γ(λ1)Γ(λ2)
×

53
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×
∫

dz
Γ(−λ1 + D

2 − z)Γ(−z)Γ(λ1 + λ2 − D
2 + z)

Γ(−λ1 − λ2 +D − z)(p2)λ1+λ2−D
2

+z
(5.3)

∫
dDk1d

Dk2

(k2
1)
λ1((k1 − k2)2)λ2(k2 + 12)λ3

=

=
πDΓ(λ1 + λ2 −D + λ3)Γ(λ1 + λ2 − D

2 )Γ(λ1 − D
2 )Γ(−λ2 + D

2 )

Γ(λ1)Γ(λ2)Γ(λ3)Γ(D2 )
(5.4)

∫
dDk1d

Dk2

(k2
1 + 12)λ1((k1 − k2)2)λ2(k2 + 12)λ3

=

=
πDΓ(λ1 + λ2 −D + λ3)Γ(λ1 + λ2 − D

2 )Γ(λ3 + λ2 − D
2 )Γ(−λ2 + D

2 )

Γ(λ1)Γ(λ3)Γ(λ1 + 2λ2 + λ3 −D)Γ(D2 )
.

(5.5)

Since there are no two loops master integrals for EQCD we go tothree loops
integrals of which there are two:

(5.6)

The first one we will solve inserting the result of eq. (5.2), which will leave us with
eq. (5.5). Since both results we are using are given in terms of gamma functions,
the result of the master integrals is:

=
π

3D
2 Γ(4 − 3D

2 )Γ(3 −D)2Γ(2 − D
2 )Γ(−1 + D

2 )2

Γ(6 − 2D)Γ(D2 )
(5.7)

The second three loops integral is more difficult. We use the same method, how-
ever this time we insert eq. (5.3) instead, resulting again in eq. (5.5). Since eq. (5.3)
is given in terms of a one-fold Barnes-type integral and eq. (5.5) in terms of gamma
function, the master integral itself will be given in terms of generalized hypergeo-
metric functions:

=
π

3(1+D)
2 Csc

[
Dπ
2

]2

Γ
[
D
2

]2

(
22−DΓ

[

4 − 3D
2

]

Γ[3 −D]Γ
[

3
2 − D

2

]

Γ
[
D
2

]

Γ[6 − 2D]
×

×2F1

[{

4 − 3D

2
,
3

2
− D

2

}

,
{7

2
−D

}

, 1
]

+

√
π2Γ

[

2 − D
2

]

3F2

[{

− 1
2 , 1, 3 −D

}

,
{

5
2 − D

2 ,
D
2

}

, 1
]

−3 +D
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−
√
π8Γ

[

3 − D
2

]

Γ
[
D
2

]

3F2

[{
1
2 , 2, 4 −D

}

,
{

7
2 − D

2 , 1 + D
2

}

, 1
]

(

20 − 9D +D2
)

Γ
[

1 + D
2

]

+
√
πΓ
[

2 − D

2

]

3F2

[{

1, 2 − D

2
,−1

2
+
D

2

}

,
{3

2
,−1 +D

}

, 1
]
)

,

(5.8)

whereπCsc[πx] = Γ(x)Γ(1 − x).
All hypergeometric functions are balanced in 3 as well as 4 dimension, therefore
we can use Hypsummer to expand the result.

J3

D=4−2ǫ
= −2 − 5

3
ǫ− 1

2
ǫ2 − ǫ3(−103

12
) − ǫ4(−1141

24
+

112

3
ζ3)

−ǫ5(−9055

48
+ 256a4 + 168ζ3 − 96ζ2

2 − 64 ln2 2ζ2 +
32

3
ln4 2 − 32ζ4)

−ǫ6(−63517

96
+ 1536a5 − 1240ζ5 + 1152a4 +

1876

3
ζ3 − 432ζ2

2

+576 ln 2ζ2
2 − 288 ln2 2ζ2 + 128 ln3 2ζ2 + 48 ln4 2 − 64

5
ln5 2 − 144ζ4

+192ζ4 ln 2)

−ǫ7(−418903

192
+ 3840s6 + 9216a6 + 6912a5 − 5580ζ5 + 4288a4

+
6398

3
ζ3 −

4880

3
ζ2
3 − 1608ζ2

2 − 44288

35
ζ3
2 + 2592 ln 2ζ2

2 − 1072 ln2 2ζ2

−1728 ln2 2ζ2
2 + 576 ln3 2ζ2 +

536

3
ln4 2 − 192 ln4 2ζ2 −

288

5
ln5 2

+
64

5
ln6 2 − 536ζ4 − 192ζ4ζ2 + 864ζ4 ln 2 − 576ζ4 ln2 2 − 176ζ6)

−ǫ8(−2667781

384
− 87040

7
s7b+

74240

7
s7a+ 55296a7 −

772868

7
ζ7

+17280s6 + 41472a6 + 25728a5 − 20770ζ5 + 14624a4 +
20797

3
ζ3

−7320ζ2
3 +

260720

7
ζ2ζ5 − 5484ζ2

2 +
25024

7
ζ2
2ζ3 −

199296

35
ζ3
2

−74240

7
ln 2s6 +

92800

7
ln 2ζ2

3 + 9648 ln 2ζ2
2 +

189568

35
ln 2ζ3

2

+22320 ln2 2ζ5 − 3656 ln2 2ζ2 − 7776 ln2 2ζ2
2 + 2144 ln3 2ζ2

+3456 ln3 2ζ2
2 +

1828

3
ln4 2 − 864 ln4 2ζ2 −

1072

5
ln5 2 +

1152

5
ln5 2ζ2

+
288

5
ln6 2 − 384

35
ln7 2 − 1828ζ4 + 320ζ4ζ3 − 864ζ4ζ2 + 3216ζ4 ln 2
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+1152ζ4 ln 2ζ2 − 2592ζ4 ln2 2 + 1152ζ4 ln3 2 − 792ζ6 + 1056ζ6 ln 2)

(5.9)

J3

D=3−2ǫ
=

1

ǫ
− (−2 + 4 ln 2) −

(

− 16 − 2π2

3
+ 6 ln 2 − 4 ln 22

+ ln 4
)

ǫ− 1

3

(

− 288 − 4π2 + 192 ln 2 + 4π2 ln 2 − 18 ln2 2 + 8 ln3 2

−2 ln 2 ln 8 + 114ζ3

)

ǫ2 − 1

60

(

− 34560 − 9600a4 − 640π2 − 176π4

3

+23040 ln 2 − 120π2 ln 2 − 3840 ln2 2 + 320π2 ln2 2 + 320 ln3 2

−480 ln4 2 + 140π2 ln 4 + 4560ζ3 − 12960 ln 2ζ3

)

ǫ3

−
(

− 864 − 160a5 − 48π2 − 19π4

10
+

61

10
π4(−1 + ln 2) + 16π2 ln 2

−101

90
π4 ln 2 − 10

3
π2 ln 22 − 2π2 ln3 2 +

2 ln4 2

3
+

22 ln5 2

15
+

2

15
ln 2(4320

+ ln 2(−720 + ln 2(80 + (−5 + ln 2) ln 2))) − 280ζ3 + 9π2ζ3 + 108 ln 2ζ3

+54 ln2 2ζ3 + 54
(

8 + ln2 2 − ln 4
)

ζ3 +
7

9
π2
(

− 144 + 2 ln 2
(

24 + ln2 2

− ln 8
)

+ 81ζ3

)

+
1445ζ5

2

)

ǫ4 (5.10)

The numbers appearing in the results of all expansions in this thesis are defined in
the appendix A3.

5.1.1 4-loop integrals

Now we come to four loop integrals, where we will try to use thesame tactic we
used on the two three loop integrals: insert simpler subloops in order to obtain in-
tegrals which can be written in terms of gamma functions.

5 lines

Let us start with the integrals with 5 propagators. There aretwo of them:

(5.11)
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Just like in the case of three loop integrals, we insert eq. (5.2) twice for the first
master integral obtaining eq. (5.5) which gives us:

=
π2dΓ[5 − 2d]Γ

(

4 − 3d
2

)2
Γ[3 − d]Γ

(

− 1 + d
2

)3

Γ[8 − 3d]Γ
(
d
2

) . (5.12)

For the second master integral we insert first eq. (5.3), theneq. (5.2) obtaining again
eq. (5.5), so that we can express the master integral as:

=
−2(−1)λπ2Csc[ǫπ]2Γ[1 − ǫ]Γ[−1 + 2ǫ]Γ[−2 + 2ǫ+ λ]

Γ[2 − ǫ]2Γ[λ]Γ[−3 + 4ǫ+ λ]

Γ[−3 + 3ǫ+ λ]3F4

(
1
2 ,−1 + 2ǫ,−2 + 2ǫ+ λ,−3 + 3ǫ+ λ

2 − ǫ,−3
2 + 2ǫ+ λ

2 ,−1 + 2ǫ+ λ
2

∣
∣
∣
∣
∣

1

)

+

(−1)λ2−2+2ǫπ3/2Csc[ǫπ]2Γ[1 − ǫ]Γ

[

− 1
2 + ǫ

]

Γ[−2 + 3ǫ]Γ[−3 + 3ǫ+ λ]

Γ[2 − ǫ]Γ[ǫ]Γ[λ]Γ[−5 + 6ǫ+ λ]

Γ[−4 + 4ǫ+ λ]3F4

(

−1
2 + ǫ,−2 + 3ǫ,−3 + 3ǫ+ λ,−4 + 4ǫ+ λ

ǫ,−5
2 + 3ǫ+ λ

2 ,−2 + 3ǫ+ λ
2

∣
∣
∣
∣
∣

1

)

+
(−1)λπ2Csc[ǫπ]2Γ[1 − ǫ]Γ[ǫ]Γ[−1 + ǫ+ λ]

(−2 + 2ǫ+ λ)Γ[2 − ǫ]3Γ[λ]

3F4

(

1, 3
2 − ǫ, ǫ,−1 + ǫ+ λ,−2 + 2ǫ+ λ

3 − 2ǫ, 2 − ǫ,−1
2 + ǫ+ λ

2 , ǫ+ λ
2

∣
∣
∣
∣
∣

1

)

,

(5.13)

where the dot on the line means we have kept the power of the propagator a variable
λ. In the result aboveD has already been set to4−2ǫ, however, since no expansion
has taken place the result is valid in all dimensions. Setting λ = 1 expanding the
result using Hypsummer gives:

J4

D=4−2ǫ
= −1 − ǫ

2
+

17ǫ2

36
+

ǫ3

216
− 37207ǫ4

1296
+

(

− 1976975

7776

+
1792 ζ3

9

)

ǫ5 +

(

− 72443143

46656
− 256

135

(

17π4 + 60π2 ln2
2 −60 ln4

2

)

+
8192

3
a4 +

47488 ζ3
27

)

ǫ6 +

(

− 2259199295

279936
+

128

405

(

12(265 − 72 ln2) ln4
2
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+60π2 ln2
2(−53 + 24 ln2) + 17π4(−53 + 72 ln2)

)

+
217088

9
a4 + 32768a5

+
871360 ζ3

81
− 87296 ζ5]

3

)

ǫ7 + O(ǫ8) . (5.14)

For 3-dim we have [5]:

J4

D=3−2ǫ
=

7

4ǫ
+ 7 − 8 ln 2 + ǫ(49 + 16 ζ2 − 32 ln 2 + 16 ln2 2)

+ǫ2(308 − 108 ζ3 + 64 ζ2 − 224 ln 2 − 64 ζ2 ln 2 + 64 ln2 2 − 64

3
ln3 2)

+ǫ3(1904 + 128 a4 − 432 ζ3 + 448 ζ2 +
412

5
ζ2
2 − 1408 ln 2 + 544 ζ3 ln 2

−256 ζ2 ln 2 + 448 ln2 2 + 96 ζ2 ln2 2 − 256

3
ln3 2 +

80

3
ln4 2 + 426 ζ4)

+ǫ4(11648 + 512 a5 − 3212 ζ5 + 512 a4 − 3024 ζ3 + 2816 ζ2 − 1088 ζ2 ζ3

+
1648

5
ζ2
2 − 8704 ln 2 + 2176 ln 2 ζ3 − 1792 ln 2 ζ2 −

1648

5
ln 2 ζ2

2

+2816 ln2 2 − 1088 ln2 2 ζ3 + 384 ln2 2 ζ2 − 1792/3 ln3 2 − 128 ln3 2 ζ2

+
320

3
ln4 2 − 64/3 ln5 2 + 1704 ζ4 − 1704 ζ4 ln 2)

+ǫ5(70784 − 256 s6 + 2048 a6 + 2048 a5 − 12848 ζ5 + 3584 a4

−19008 ζ3 + 3768 ζ2
3 + 17408 ζ2 − 4352 ζ2 ζ3 +

11536

5
ζ2
2 +

7968

35
ζ3
2

−53248 ln 2 + 13344 ln 2 ζ5 + 15232 ln 2 ζ3 − 11264 ln 2 ζ2

+4352 ln 2 ζ2 ζ3 −
6592

5
ln 2 ζ2

2 + 17408 ln2 2 − 4352 ln2 2 ζ3

+2688 ln2 2 ζ2 +
3296

5
ln2 2 ζ2

2 − 11264

3
ln3 2 +

4352

3
ln3 2 ζ3 − 512 ln3 2 ζ2

+
2240

3
ln4 2 + 128 ln4 2 ζ2 −

256

3
ln5 2 +

128

9
ln6 2 + 11928 ζ4

+5592 ζ4 ζ2 − 6816 ζ4 ln 2 + 3408 ζ4 ln2 2 + 11146 ζ6) + O(ǫ6) .

(5.15)

6 lines

There are four master integrals with 6 propagators:

(5.16)
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Let us start with the one with two massive lines. Inserting eq. (5.2) squared leaves
us with eq. (5.5) and we can write it in terms of gamma functions as:

=
8D−3Γ3(1

2)Γ(6 − 2D)Γ3(D2 )

sin(3D
2 )Γ(11−3D

2 )Γ2(2 − D
2 )Γ2(D − 2)

. (5.17)

The next master integrals has three massive lines and inserting one loop subinte-
gral does not lead to a one-fold Barnes-type integral representation. However, the
hypergeometric representation for this integral has been found solving the corre-
sponding difference equation here [4]:

J4
=

22−D(D − 2)Γ(6 − 2D)Γ(5 − 3D
2 )Γ(3−D

2 )Γ(D2 )
√
πΓ2(7 − 2D)Γ(1 − D

2 )
×

×[3F2(1, 9 − 3D, 5 − 3D

2
; 7 − 2D, 7 − 2D; 1) −

−3F2(1, 9 − 3D, 2 − D

2
; 7 − 2D, 4 −D; 1)]. (5.18)

The expanion was given in [4] and we just present here the updated expansion in 3
dimensions up toǫ5

J4

D=3−2ǫ
=

3

16ǫ
ζ2 +

(

− 9

8
ζ2 +

9

4
ζ2 ln 2 − 21

8
ζ3

)

+ ǫ
(3

2
ln4 2

+
9

4
ζ2 −

27

2
ζ2 ln 2 +

9

2
ζ2 ln2 2 − 207

40
ζ2
2 +

63

4
ζ3 + 36 a4

)

+ǫ2
(

− 9 ln4 2 +
18

5
ln5 2 − 3

2
ζ2 + 27 ζ2 ln 2 − 27 ζ2 ln2 2 + 18 ζ2 ln3 2

+
621

20
ζ2
2 − 621

10
ζ2
2 ln 2 − 63

2
ζ3 −

87

8
ζ3 ζ2 +

4743

16
ζ5 − 216 a4

−432 a5

)

+ ǫ3
(

1836 s6 + 5184 a6 + 2592 a5

−14229

8
ζ5 + 432 a4 + 21 ζ3 −

5655

8
ζ2
3 + 288 ζ2 a4

+
261

4
ζ2 ζ3 −

621

10
ζ2
2 − 145029

280
ζ3
2 − 18 ln 2 ζ2 +

243

2
ln 2 ζ2 ζ3

+
1863

5
ln 2 ζ2

2 + 54 ln2 2 ζ2 −
2223

5
ln2 2 ζ2

2 − 108 ln3 2 ζ2 + 18 ln4 2

+66 ln4 2 ζ2 −
108

5
ln5 2 +

36

5
ln6 2 − 1527

4
ζ4 ζ2

)

−ǫ4(81360
7

s7b− 72864

7
s7a− 62208a7 +

12311091

112
ζ7 − 11016s6
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−31104a6 − 5184a5 +
14229

4
ζ5 − 288a4 − 1440ζ3a4 +

16965

4
ζ2
3

−3456ζ2a5 −
1803411

56
ζ2ζ5 − 1728ζ2a4 −

261

2
ζ2ζ3

+207/5ζ2
2 − 676203

140
ζ2
2ζ3 +

435087

140
ζ3
2 +

72864

7
ln 2s6

−91080

7
ln 2ζ2

3 − 729 ln 2ζ2ζ3 −
3726

5
ln 2ζ2

2 − 292707

70
ln 2ζ3

2

−42687

2
ln2 2ζ5 − 36 ln2 2ζ2 + 1089 ln2 2ζ2ζ3

+
13338

5
ln2 2ζ2

2 + 216 ln3 2ζ2 −
8892

5
ln3 2ζ2

2 − 12 ln4 2 − 60 ln4 2ζ3

−396 ln4 2ζ2 +
216

5
ln5 2 +

792

5
ln5 2ζ2 −

216

5
ln6 2 +

432

35
ln7 2

+
10689

2
ζ4ζ3 +

4581

2
ζ4ζ2 − 4581ζ4 ln 2ζ2) + ǫ5(

874368

7
s8d

+
976320

7
s8c+

9563184

7
s8b+

11691495

56
s8a+ 746496a8

−488160

7
s7b+

437184

7
s7a+ 373248a7 −

36933273

56
ζ7 + 22032s6

+62208a6 + 3456a5 −
4743

2
ζ5 −

1627776

7
ζ3a5 +

7655985

56
ζ3ζ5 + 8640ζ3a4

−16965

2
ζ2
3 − 2571264

7
ζ2s6 + 41472ζ2a6 + 20736ζ2a5 +

5410233

28
ζ2ζ5

+3456ζ2a4 + 87ζ2ζ3 −
9006387

56
ζ2ζ

2
3 +

2063808

35
ζ2
2a4 +

2028609

70
ζ2
2ζ3

−435087

70
ζ3
2 − 525208177

9800
ζ4
2 − 437184

7
ln 2s6 +

546480

7
ln 2ζ2

3

−5815017

14
ln 2ζ2ζ5 + 1458 ln 2ζ2ζ3 +

2484

5
ln 2ζ2

2 − 5517639

35
ln 2ζ2

2ζ3

+
878121

35
ln 2ζ3

2 − 488160

7
ln2 2s6 + 128061 ln2 2ζ5 −

137295

7
ln2 2ζ2

3

−6534 ln2 2ζ2ζ3 −
26676

5
ln2 2ζ2

2 − 18513

7
ln2 2ζ3

2 − 144 ln3 2ζ2

−115236

7
ln3 2ζ2ζ3 +

53352

5
ln3 2ζ2

2 + 360 ln4 2ζ3 + 792 ln4 2ζ2

−20148

7
ln4 2ζ2

2 − 144

5
ln5 2 +

67824

35
ln5 2ζ3 −

4752

5
ln5 2ζ2 +

432

5
ln6 2

+
1584

5
ln6 2ζ2 −

2592

5
ln 27 +

648

35
ln 28 − 73296ζ4a4 − 32067ζ4ζ3

−4581ζ4ζ2 +
105363

10
ζ4ζ

2
2 + 27486ζ4 ln 2ζ2 − 9162ζ4 ln2 2ζ2 − 3054ζ4 ln4 2
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−58649

2
ζ6ζ2) + O(ǫ6) (5.19)

The next master integral is with four massive lines. Inserting eq. (5.3) times
eq. (5.2) gives us again eq. (5.5) and we can write it down in terms of hypergeo-
metric functions:

=
−Cot(Dπ2 )Csc(Dπ2 )Γ(6 − 2D)Γ(3

2 − D
2 )Γ(2 − D

2 )Γ(−1 + D
2 )3

π−( 3
2
+2D)8(3−D)(1 + 2Cos(Dπ))Γ(4 −D)Γ(−2 +D)Γ(D2 )

−((4−3+Dπ
3
2
+2DCos(Dπ)Csc(Dπ2 )2Γ(2 − D

2 )2Γ(−1 + D
2 )2Γ(−5

2 +D))

(2Cos(Dπ2 ) + Cos(3Dπ
2 ))Γ(−2 +D)Γ(D2 )Γ(−3 + 3D

2 )

3F2

(

1, 2 − D

2
,−5

2
+D;

3

2
,−3 +

3D

2
, 1
)

+
2−7+2Dπ

5
2
+2DCsc(Dπ2 )2Γ(5 − 3D

2 )Γ(2 − D
2 )Γ(−1 + D

2 )2Sec(Dπ2 )

Γ(9
2 −D)Γ(−2 +D)Γ(D2 )2

3F2

(1

2
, 1, 5 − 3D

2
;
9

2
−D,

D

2
, 1
)

. (5.20)

In 4 dimensions Hypsummer computes

J4

D=4−2ǫ
=

2

3
+

4

3
ǫ+

2

3
ǫ2 − 4(11 − 4ζ3)

3
ǫ3 − 4(435 + π4 − 250ζ3)

15
ǫ4

−
((326π4)

45
+

64π2 ln2 2

3
− 8(−241 + 8 ln4 2 + 192a4 + 149ζ3 + 36ζ5)

3

)

ǫ5

−
(9328

3
+

2126π4

45
+

8π6

21
− 2416

45
π4 ln 2 +

448

3
π2 ln2 2

−512

9
π2 ln3 2 − 448 ln4 2

3
+

512 ln5 2

15
− 3584a4 − 4096a5 −

5864ζ3
3

−64ζ2
3

3
+ 2784ζ5

)

ǫ6

−
(

14032 − 12288s6 +
2182π4

9
+

25408π6

945
− 16912

45
π4 ln 2 +

2368

3
π2 ln2 2

+
9664

45
π4 ln2 2 − 3584

9
π2 ln3 2 − 2368 ln4 2

3
+

1024

9
π2 ln4 2

+
3584 ln5 2

15
− 2048 ln6 2

45
− 18944a4 − 28672a5 − 32768a6 − 8760ζ3 +

32

15
π4ζ3

+
14872ζ2

3

3
+ 20736ζ5 − 1328ζ7

)

ǫ7 + O(ǫ8), (5.21)
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and in 3 dimensions

J4

D=3−2ǫ
=

π2

32ǫ
−
(

− 1

16
π2(−3 + ln 4) +

7ζ3
4

)

−

(

− 89π4 + 60π2(−9 + 2 ln 2(9 + ln 2)) − 240
(

48a4 + 2 ln 24 + 63ζ3

))

ǫ

1440

−
(

48a4 + 32a5 + 21ζ3 +
1

720

(

− 96 ln 24(−15 + ln 4) − 89π4(−3 + ln 4)

+5π2
(

36 + 16 ln 23 − 8 ln 2(27 + ln 512) + 381ζ3

))

+
403ζ5

16

)

ǫ2

−
(

− 192a5 − 128a6 −
13159π6

60480
− 32

3
a4

(

9 + π2
)

+ 52s6 −
4

45
ln 24

(45 + 2(−9 + ln 2) ln 2) − 1

3
π2 ln 2

(

− 3 + ln 23 + ln 2(−3 + ln 4)
)

− 1

120
π4(89 − 178 ln 2 + ln 4 ln 8)

+( − 14 +
1

8
π2(−127 + 5 ln 4))ζ3 −

253ζ2
3

4
− 1209ζ5

8

)

ǫ3

−
(

64(a4 + 8(a5 + a6)) − 208s6 +
π6(99321 − 64862 ln 2)

30240

+
8

45
ln 24(15 + 4(−6 + ln 2) ln 2) +

40

3

(

24a4 + ln 24
)

ζ3

+393ζ2
3 +

1

540
π4(267 + 4 ln 2(−444 + (87 − 160 ln 2) ln 2 + 360 ln 4)

+2037ζ3) + 403ζ5 +
1

720
π2(60(768a4 + 512a5 + 291ζ3) − 8 ln 2(4 ln 2

(15 + ln 2(−10 + ln 2(−125 + 14 ln 2))) + 75(−27 + ln 8192)ζ3)

+28095ζ5)
)

ǫ4 + O(ǫ5). (5.22)

The last master integral is the one with all 6 massive lines. We have only been
able to find two-fold Barnes-type representation, which leads to unbalanced hyper-
geometric double sums.

7 lines

There are two master integrals:

(5.23)
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Let us start with the first one, the master integral with 5 massive lines. The one
loop integrals eq. (5.2,5.3) will not be of any use here. However there exist hy-
pergeometric representation of the two loop two-point function which we can use
[17]:

∫ ∫
dDk1d

Dk2

(k2
1 +m2)(k2

2)((k1 − q)2 +m2)((k2 − q)2)((k1 − k2)2 +m2)
=

πdΓ(1 + ǫ)2

m4ǫ+2(1 + ǫ)(1 − 2ǫ)
(

1

(1 + ǫ)(1 − ǫ)
4F3(1, 1 + ǫ, 1 + ǫ, 1 + 2ǫ;

3

2
+ ǫ, 2 + ǫ, 2 − ǫ;− q2

4m2
) +

(1 + ǫ)Γ(1 − ǫ)2m2ǫ

2ǫΓ(1 − 2ǫ)q2ǫ
3F2(1, 1, 1 + ǫ;

3

2
, 2;− q2

4m2
)

− 1

2ǫ
3F2(1, 1 + ǫ, 1 + ǫ;

3

2
, 2 + ǫ;− q2

4m2
)

)

, (5.24)

whereǫ = 2 −D/2 but until we expand the result will be valid in all dimensions.
In order to insert this into the expression for our master integral, we need to write
the hypergeometric functions in terms of Barnes-type integrals, as:

4F3

(

1, 1 + ǫ, 1 + ǫ, 1 + 2ǫ
2 − ǫ, 3

2 + ǫ, 2 + ǫ

∣
∣
∣
∣
∣
− q2

4m2

)

=
Γ(3

2 + ǫ)Γ(2 + ǫ)Γ(2 − ǫ)

Γ(1 + ǫ)Γ(1 + 2ǫ)Γ(1 + ǫ)

−i∞∫

+i∞

dz
Γ(z)Γ(1 − z)Γ2(1 + ǫ− z)Γ(1 + 2ǫ− z)

Γ(3
2 + ǫ− z)Γ(2 − ǫ− z)Γ(2 + ǫ− z)

(

4m2

q2

)z

3F2

(

1, 1, 1 + ǫ
3
2 , 2

∣
∣
∣
∣
∣
− q2

4m2

)

=
Γ(3

2 )Γ(2)

Γ(1 + ǫ)

−i∞∫

+i∞

dz
Γ(z)Γ2(1 − z)Γ(1 + ǫ− z)

Γ(3
2 − z)Γ(2 −−z)

(

4m2

q2

)z

3F2

(

1, 1 + ǫ, 1 + ǫ
3
2 , 2 + ǫ

∣
∣
∣
∣
∣
− q2

4m2

)

=
Γ(3

2)Γ(2 + ǫ)

Γ(1 + ǫ)Γ(1 + ǫ)

−i∞∫

+i∞

dz
Γ(z)Γ(1 − z)Γ2(1 + ǫ− z)

Γ(3
2 − z)Γ(2 + ǫ− z)

(

4m2

q2

)z

. (5.25)
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Note that we decided to take the countour to the left. We can insert the result in the
our master integral and obtain again eq. (5.5). Closing the contour again on the left
we get:

=
π9−4ǫΓ(2 − 2ǫ)Γ(1 − ǫ)Γ(ǫ)Γ(2 + ǫ)Γ(−1 + 2ǫ)Γ(−1 + 3ǫ)

2−1+2ǫǫ(−1 + 3ǫ)(−1 + ǫ+ 2ǫ2)Γ(3
2 − ǫ)Γ(2 − ǫ)Γ(−1

2 + 2ǫ)

pFq

({

− 1

2
+ ǫ,−1 + 3ǫ,−1 + 3ǫ

}

,

{

3ǫ,−1

2
+ 2ǫ

}

, 1

)

+
21−4ǫπ9−4ǫΓ(2 − 3ǫ)Γ(1 − ǫ)3Γ(ǫ)Γ(1 + ǫ)Γ(−1 + 3ǫ)Γ(−1 + 4ǫ)

ǫ(−1 + 3ǫ)Γ(2 − 2ǫ)Γ(3
2 − ǫ)Γ(2 − ǫ)Γ(−1

2 + 3ǫ)

pFq

({

− 1

2
+ ǫ,−1 + 3ǫ,−1 + 4ǫ

}

,

{

3ǫ,−1

2
+ 3ǫ

}

, 1

)

+
π8−4ǫΓ(1 − ǫ)Γ(−1 + ǫ)Γ(ǫ)2Γ(2 + ǫ)

2ǫ2(−1 + ǫ+ 2ǫ2)Γ(2 − ǫ)

pFq

({

1

2
, 1, 2ǫ, 2ǫ

}

,

{

2 − ǫ,
1

2
+ ǫ, 1 + 2ǫ

}

, 1

)

+
2−4ǫπ

19
2
−4ǫCsc(2ǫπ)Γ(1 − ǫ)2Γ(−1 + ǫ)Γ(3ǫ)Γ(1 + ǫ)

ǫ2Γ(2 − 2ǫ)Γ(2 − ǫ)Γ

(

1
2 + 2ǫ

)

pFq

({

1

2
, 1, 2ǫ, 3ǫ

}

,

{

2 − ǫ,
1

2
+ 2ǫ, 1 + 2ǫ

}

, 1

)

+
22−2ǫπ8−4ǫΓ(1 − ǫ)Γ(−1 + ǫ)Γ(ǫ)Γ(2ǫ)Γ(3ǫ)Γ(3

2 + ǫ)Γ(2 + ǫ)

ǫ(1 − 5ǫ2 + 4ǫ4)Γ(1
2 + 2ǫ)Γ(1 + 2ǫ)

pFq

({

1

2
, 2ǫ, 2ǫ, 3ǫ

}

,

{

2 − ǫ,
1

2
+ 2ǫ, 1 + 2ǫ

}

, 1

)

+
22−4ǫπ

17
2
−4ǫΓ(1 − ǫ)2Γ(1 + ǫ)2Γ(−1 + 2ǫ)Γ(−2 + 3ǫ)

ǫΓ(2 − ǫ)Γ

(

− 1
2 + 2ǫ

)

pFq

({

1, 1,
3

2
− 2ǫ, 1 + ǫ

}

,

{

3

2
, 2, 3 − 3ǫ

}

, 1

)

+
π9−4ǫΓ(3 − 2ǫ)Γ(−1 + ǫ)Γ(1 + ǫ)Γ(2 + ǫ)Γ(−2 + 2ǫ)

ǫ(1 + ǫ)(−1 + ǫ+ 2ǫ2)Γ(3
2 − ǫ)Γ(2 − ǫ)Γ(−1

2 + ǫ)
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pFq

({

1,
3

2
− ǫ, 1 + ǫ, 1 + ǫ

}

,

{

3

2
, 3 − 2ǫ, 2 + ǫ

}

, 1

)

+
Γ(2 − 2ǫ)Γ(1 − ǫ)Γ(3

2 + ǫ)Γ(2 + ǫ)Γ(−1 + 2ǫ)Γ(−1 + 3ǫ)Γ(−1 + 4ǫ)

2−3+2ǫπ−
17
2

+4ǫ(−1 + 3ǫ)(1 − 5ǫ2 + 4ǫ4)Γ(3
2 − ǫ)Γ(1 + 2ǫ)Γ(−1

2 + 3ǫ)

pFq

({

− 1

2
+ ǫ,−1 + 3ǫ,−1 + 3ǫ,−1 + 4ǫ

}

,

{

ǫ, 3ǫ,−1

2
+ 3ǫ

}

, 1

)

+
2π9−4ǫΓ(3 − 2ǫ)Γ(−1 + ǫ)Γ(1 + ǫ)Γ(2 + ǫ)Γ(−2 + 2ǫ)

(1 + ǫ)(1 − 5ǫ2 + 4ǫ4)Γ(3
2 − ǫ)Γ(2 − ǫ)Γ(−1

2 + ǫ)

pFq

({

1,
3

2
− ǫ, 1 + ǫ, 1 + ǫ, 1 + 2ǫ

}

,

{

3 − 2ǫ, 2 − ǫ,
3

2
+ ǫ, 2 + ǫ

}

, 1

)

(5.26)

All hypergeometric functions have balanced half-integer valued coefficients and
using Hypsummer we get:

J4

D=4−2ǫ
= −1

6
+ ǫ
(

− 5

6

)

+ ǫ2
(

− 11

3
− ζ3

)

+ǫ3
(

− 44

3
+

2

3
ζ3 −

3

2
ζ4

)

+ ǫ4
(

− 166

3
+ 53 ζ5 +

31

3
ζ3 −

24

5
ζ2
2 − 3 ζ4

)

+ǫ5
(

− 602

3
+ 154 ζ5 + 128a4 +

38

3
ζ3 − 128 ζ2

3 − 584

5
ζ2
2

+
2732

35
ζ3
2 − 32 ln2

2 ζ2 +
16

3
ln4

2 +
159

2
ζ4 − 78 ζ4 ζ2 − 425 ζ6

)

+ǫ6
(

− 2122

3
+ 1920s7b + 1920s7a +

27591

2
ζ7 + 1280a5

−353 ζ5 + 128a4 −
784

3
ζ3 + 3360 ζ3a4 −

736

3
ζ2
3 − 5640 ζ2 ζ5

−2048

5
ζ2
2 − 7824

5
ζ2
2 ζ3 −

4808

35
ζ3
2 − 1920 ln2 s6 + 2400 ln2 ζ

2
3

+
4736

5
ln2 ζ

2
2 + 336 ln2 ζ

3
2 − 32 ln2

2 ζ2 − 840 ln2
2 ζ2 ζ3

+
320

3
ln3

2 ζ2 +
16

3
ln4

2 +140 ln4
2 ζ3 −

32

3
ln5

2 +543 ζ4

−375 ζ4 ζ3 + 132 ζ4 ζ2 − 768 ζ4 ln2 −250 ζ6

)

+ǫ7
(

− 7322

3
+

2884

5
s8a+ 3840s7b + 3840s7a + 28255 ζ7 + 4224s6

+11776a6 − 1280a5 + 4802 ζ5 − 3840a4 + 22784a2
4 −

8528

3
ζ3
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−39872 ζ3a5 + 36903 ζ3 ζ5 + 6720 ζ3a4 −
7652

3
ζ2
3 − 11280 ζ2 ζ5

+
192

5
ζ2
2 − 107776

5
ζ2
2a4 − 3168 ζ2

2 ζ3 −
133628

35
ζ3
2 +

6193972

875
ζ4
2

−3840 ln2 s6 + 4800 ln2 ζ
2
3 +

9088

5
ln2 ζ

2
2 − 94304

5
ln2 ζ

2
2 ζ3

+672 ln2 ζ
3
2 + 960 ln2

2 ζ2 − 11392 ln2
2 ζ2a4 − 1680 ln2

2 ζ2 ζ3

−20864

5
ln2

2 ζ
2
2 +

26944

5
ln2

2 ζ
3
2 − 320

3
ln3

2 ζ2 −
9968

3
ln3

2 ζ2 ζ3

−160 ln4
2 +

5696

3
ln4

2 a4 + 280 ln4
2 ζ3 −

736

3
ln4

2 ζ2 +
7888

15
ln4

2 ζ
2
2

+
32

3
ln5

2 +
4984

15
ln5

2 ζ3 +
736

45
ln6

2 −
1424

3
ln6

2 ζ2 +
356

9
ln8

2 +2544 ζ4

+6432 ζ4a4 − 750 ζ4 ζ3 + 1542 ζ4 ζ2 −
17388

5
ζ4 ζ

2
2 − 3984 ζ4 ln2

+5628 ζ4 ln2 ζ3 + 3216 ζ4 ln2
2 −1608 ζ4 ln2

2 ζ2 + 268 ζ4 ln4
2

+
8361

4
ζ2
4 + 2605 ζ6 − 3600 ζ6 ζ2 −

70903

4
ζ8

)

+ O(ǫ8) (5.27)

For expansion in three dimesion we have [5]:

J4
=

1

4
ζ2 −

1

2
ln2 2 + ǫ(−4 ζ3 −

5

2
ζ2 +

9

2
ln 2 ζ2 + 5 ln2 2 + ln3 2)

+ǫ2(30 a4 + 40 ζ3 + 13 ζ2 −
1

4
ζ2
2 − 21

4
ln 2 ζ3 − 45 ln 2 ζ2 − 26 ln2 2

−23

2
ln2 2 ζ2 − 10 ln3 2 +

1

12
ln4 2) + ǫ3(−28 a5 −

2103

16
ζ5 − 300 a4

−208 ζ3 − 54 ζ2 − 13 ζ2 ζ3 +
5

2
ζ2
2 + 28 ln 2 a4 +

105

2
ln 2 ζ3 + 234 ln 2 ζ2

+
361

5
ln 2 ζ2

2 + 108 ln2 2 +
213

4
ln2 2 ζ3 + 115 ln2 2 ζ2 + 52 ln3 2

−14

3
ln3 2 ζ2 −

5

6
ln4 2 +

12

5
ln5 2) + ǫ4(−9

8
− 278 s6 + 24a6 + 280a5

+
12531

8
ζ5 + 1560a4 + 1632 ζ3 +

4325

16
ζ2
3 − 552 ζ2 − 12 ζ2a4 + 604 ζ2 ζ3

−1063 ζ2
2 − 34901

210
ζ3
2 − 3319

8
ln 2 − 184 ln 2a5 +

1755

8
ln 2 ζ5

−280 ln 2a4 − 393 ln 2 ζ3 + 316 ln 2 ζ2 −
317

2
ln 2 ζ2 ζ3 +

2324

5
ln 2 ζ2

2

−432 ln2 2 − 92 ln2 2a4 −
1065

2
ln2 2 ζ3 − 1150 ln2 2 ζ2 − 175 ln2 2 ζ2

2
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−216 ln3 2 − 199

2
ln3 2 ζ3 +

172

3
ln3 2 ζ2 − 33 ln3 2 ζ2 ζ3 + 16 ln3 2 ζ2

2

+
13

3
ln4 2 +

73

3
ln4 2 ζ2 − 24 ln4 2 ζ2

2 − 24 ln5 2 + 8 ln5 2 ζ2 −
133

45
ln6 2

−16

3
ln6 2 ζ2) + O(ǫ5) (5.28)

For the second master integral we were not been able to find theappropriate hy-
pergeometric representation that would enable us to use Hypsummer. The second
master is governed by a difference equation of first order [65] for which the master
integral in eq. (5.13) is needed for allλ. Unfortunately, the hypergeometric repre-
sentation we have found in eq. (5.13) is not balanced for a generalλ, it is balanced
if one setsλ to any fixed integer value. Therefore the formal solution of the dif-
ference equation for the second master integral in eq. (5.23) gives hypergeometric
unbalanced double sum, which we cannot expand.

8 lines

There is only one master integral for EQCD with 8 lines:

Wa[1] =
J4

(5.29)

It obeys the difference equation of first order given by [65]:

Wa[1 + x] =
(3 −D)(80 + 9(−6 +D)D)(5 − 2D +X)2

4(−3 +D −X)(−6 + 2D −X)(−5 + 2D −X)(−11 + 3D −X)

× (6 − 2D +X)2(3D − 2(4 +X))Ga3(X)

(−10 + 3D −X)(−9 + 3D −X)(−8 + 3D −X)

+
(−3 +D)(−10 + 3D)(6 − 2D +X)2V Bc8(X)

2(−6 + 2D −X)(−11 + 3D −X)(−10 + 3D −X)

+
(−8 + 3D)(−4 + 2D −X)(5 − 2D +X)2(6 − 2D +X)2

8(−3 +D −X)(−6 + 2D −X)(−5 + 2D −X)(−11 + 3D −X)

× (3D − 2(3 +X))(5D − 2(8 +X))(3D − 2(4 +X))BBa(X)

(−10 + 3D −X)(−9 + 3D −X)(−8 + 3D −X)(−7 + 3D −X)

− (−8 + 3D)(D − 2X)(−13 + 4D −X)(D − 2(1 +X))Ba(1)J(X)

16(−3 +D −X)(−11 + 3D −X)(−10 + 3D −X)

+
(−3 +D)(−2 +D)(3D − 2(4 +X))V c3(X)J(1)

4(−6 + 2D −X)(−11 + 3D −X)

−
[

(−2 +D)(−2 +D −X)
[

(−3 +D)2(664 +D(−448 + 75D))

−5(−3 +D)(212 +D(−143 + 24D))X + (626 +D(−422 + 71D))X2
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−(−56 + 19D)X3 + 2X4

]

(3D − 2(3 +X))(3D − 2(4 +X))Ba(X)J(1)
]

/
[

8(−3 +D −X)(−6 + 2D −X)(−5 + 2D −X)(−11 + 3D −X) ×

×(−10 + 3D −X)(−9 + 3D −X)(−8 + 3D −X)
]

− (−2 +D)2(D − 2X)(9 − 3D +X)2(D − 2(1 +X))J(X)J(1)3

16(−3 +D)(−3 +D −X)(−6 + 2D −X)(−11 + 3D −X)(−9 + 3D −X)

− (−3 +D)(5 − 2D +X)(6 − 2D +X)
(
4 − 3D

2
+X

)
Ta(X)

(9 − 3D +X)(10 − 3D +X)(11 − 3D +X)
+

(
5 − 3D

2
+X

)
(3 −D +X)Wa(X)

X(11 − 3D +X)
(5.30)

where some of the integrals on the RHS can be represented using gamma functions,
namely:

Ta(x) =
J4

=
Γ(3d

2 )Γ(1 − 3d
2 )Γ(d2 )3Γ(5 − 2d+ x)Γ(4 − 3d

2 + x)

Γ(2 − d
2)2Γ(d− 2)2Γ(x)Γ(9 − 3d+ x)

(5.31)

Ba(x) =
J3

=
Γ(3 − d)Γ(d2 )Γ(3 − 3d

2 + x)Γ(2 − d+ x)

Γ(1 − d
2)Γ(2 − d

2)Γ(x)Γ(5 − 2d+ x)
(5.32)

BBa(x) =
J4

= −3(d− 2)Γ(8 − 3d)Γ(5
2 − d

2 )Γ(d2)2Γ(4 − 2d+ x)

43−dΓ(11
2 − 3d

2 )Γ(2 − d
2 )4Γ(x)Γ(7 − 3d+ x)

×Γ(3 − 3d

2
+ x). (5.33)

The other have first order inhomogeneous difference equations which can be solved
in terms of hypergeometric sums:

Ga(x) =
J4

==
(6 − 2D)−1+x(5 − 3D

2 )−1+x

(9 − 3D)−1+x(4 − d)−1+x
Ga(1) +

+

x−1∑

j=1

(6 − 2D + j)x−1−j(5 − 3D
2 + j)x−1−j

(9 − 3D + j)x−1−j(4 −D + j)x−1−j
×

2(−2 +D)J(1)Γ(2 −D)Γ(D2 )Γ(5 − 3D
2 + j)Γ(4 −D + j)

(3 −D + j)2(8 − 3D − j)Γ(1 − D
2 )2Γ(1 + jΓ(6 − 2D + j)

(5.34)
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V c3(x) =
J3

= − (D − 2)Γ(4 − 3D
2 + x)Γ(2 − D

2 + x)

(D − 3 − x)Γ(1 − D
2 )Γ(1 + x)Γ(5 − D

2 + x)

×4F3

(

1, 6 − 2D + x, 3 −D + x, 2 − D
2 + x

1 + x, 5 − 3D
2 + x, 4 −D + x

∣
∣
∣
∣
∣
1

)

(5.35)

V Bc(x) =
J4

=
(7 − 2D)−1+x

(11 − 3D)−1+x
V Bc(1) +

+

x−1∑

j=1

Γ(6 − 2D + x)Γ(11 − 3D + j)

Γ(7 − 2D + j)Γ(10 − 3D + x)

[

(−8 + 3D)(−6 + 2D − j)

4(−3 +D − j)(−10 + 3D − j)
×

(−5 + 2D − j)(−4 + 2D − j)(3D − 2(3 + j))(3D − 2(4 + j))BBa(j)

(−9 + 3D − j)(−8 + 3D − j)(−7 + 3D − j)j
+

+
(−8 + 3D)(D − 2j)(D − 2(1 + j))Ba(1)J(j)

8(−3 +D − j)(−10 + 3D − j)j

]

(5.36)

where

Ga(1) =
2D − 5

2(D − 3)
BBa(1) − D − 2

2(D − 3)
Ba(1) (5.37)

and

V Bc(1) =
2

3D − 10

[

(D − 3)Ta(1)

− 3D − 8

2(D − 3)

(2D − 5

3
BBa(1) − D − 2

4
Ba(1)

)]

(5.38)

are the initial values taken from [64].
The eq. (5.30) is a first order difference equation like the one in eq. (3.41), and

given the initial value, it is formally solvable, where the formal solution is given

in eq. (3.42). The problem is that our master integral is in the difference

equation languageWa(1), in other words it is the initial value. The way we are
going to solve the difference equation is by using the boundary condition at infinity,
following the procedure in [4]. We will take formal solutioneq. (3.42) and write it
formally as equation for the initial value:

Wa[x0] = Wa[x]

[
x−1∏

i=x0

1

a(i)

]

−
x−1∑

j=x0

G(j)

[
j
∏

i=x0

1

a(i)

]

(5.39)
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where

x−1∏

i=x0

1

a(i)
=

Γ(x)Γ(11 − 3D + x)Γ(3 −D + x0)Γ(5 − 3D
2 + x0)

Γ(5 − 3D
2 + x)Γ(3 −D + x)Γ(11 − 3D + x0)Γ(x0)

(5.40)

and similarly

j
∏

i=x0

1

a(i)
=

Γ(1 + j)Γ(12 − 3D + j)Γ(3 −D + x0)Γ(5 − 3D
2 + x0)

Γ(6 − 3D
2 + j)Γ(4 −D + j)Γ(11 − 3D + x0)Γ(x0)

. (5.41)

The LHS of eq. (5.39) does not depend onx, therefore the the RHS cannot depend
on x as well. We are free to take the formal limitx → ∞ and use the fact that
Wa(x) in this limit reduces to:

Wa(x)
x→∞
= J(x→ ∞) × . (5.42)

Using Stirling’s formulaΓ(x + a)/Γ(x + b) = xa−b(1 + O(x−1)) the first term
on RHS of eq. (5.39) goes likex3−D for x >> 1. This is one in 3 dimensions and
it vanishes in 4 dimensions.
Since some of the terms ofG(j) are given in terms of generalized hypergeometric
functions eq. (5.34, 5.35, 5.36), the result ofWa(1) will be given in terms of at
most generalized first Appell functions. In 3 dimensions thesums are unbalanced
and hence cannot be expanded inǫ.
The first coefficient is [64]:

J4
= 5ζ3ǫ

3 + O(ǫ4). (5.43)

The reason why we could not compute any coefficients is that the expansion starts
giving contributions atO(ǫ−2) for most of the summands, which of course at the
end cancel. However we need also to expand the solution forWa(1) to O(ǫ7) in
order to get theO(ǫ3) right. That means computing very large expression from
O(ǫ−2 − ǫ7) and here we come into problems with time. Further improvements on
the algorithmic implementations should be made in order to speed the computation
up. This is however only a technical problem, not a conceptual one.

5.1.2 Additional master integrals

In this section we will try to apply the same methods as in previous chapter on some
of the four loops master integrals needed for the QCD corrections to electroweakρ-
parameter [63, 19, 13]. The master integrals have been computed to high precision
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using Laporta algorithm and/or so called Pade approximation in [19, 13] For the
simplest case of master integrals with 5 lines we have two cases:

(5.44)

where the dot in this case means that the propagator is risen to power two. Using
similar technique like in th case of eq. (5.11) we obtain following hypergeometric
representations:

= −
π2DΓ

[

4 − 3D
2

]

Γ[3 −D]Γ
[

1
2(−2 +D)

]2

Γ[8 − 3D]Γ[6 − 2D]Γ
[
D
2

]

(

Γ[5 − 2D]Γ[6 − 2D]Γ
[

4 − 3D

2

]

Γ
[D

2
− 1
]

×3F2

(

5 − 2D, 4 − 3D
2 , 3 −D

9
2 − 3D

2 , 2 − D
2

∣
∣
∣
∣
∣

1

4

)

+ Γ(8 − 3D)Γ(3 −D)Γ
(

1 − D

2

)

×Γ
(

2 − D

2

)

3F2

(

4 − 3D
2 , 3 −D, 2 − D

2
7
2 −D, D2

∣
∣
∣
∣
∣

1

4

))

(5.45)

Both have unbalanced half-integer coefficients in 4 dimensions and cannot be ex-
panded inǫ using Hypsummer. However, unlike the other unbalanced function,
these functions are ”only”3F2 functions and can be expanded using HypExp2
[37]. The first few terms of the expansion are1:

=
1

4ǫ4
+

1

ǫ3
+

97 + 4π2

48ǫ2
+

833 + 96π2 − 96ζ3
288ǫ

+ O(ǫ0) (5.46)

The same master integral with one massles line risen to powertwo is given as:

=
Γ(6 − 2D)Γ2(5 − 3D

2 )Γ(4 −D)Γ(−2 + D
2 )Γ2(−1 + D

2 )

π−2DΓ(10 − 3D)Γ(D2 )

×3F2

(

6 − 2D, 5 − 3D
2 , 4 −D

11
2 − 3D

2 , 2 − D
2

∣
∣
∣
∣
∣

1

4

)

1after we multiply the result with

„

(eǫγ)/(iπD/2)

«4

in order to compare the results with nu-

merics in [13]
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+
Γ(5 − 3D

2 )Γ(4 −D)2Γ(1 − D
2 )Γ(3 − D

2 )Γ(D2 − 2)Γ(3D
2 − 1)

π−2DΓ(8 − 2D)Γ(D2 )

×3F2

(

5 − 3D
2 , 4 −D, 3 − D

2
9
2 −D, D2

∣
∣
∣
∣
∣

1

4

)

(5.47)

and the expansion goes as:

= − 1

4ǫ4
− 9

8ǫ3
+

−30 − π2

12ǫ2
+ O(ǫ−1), (5.48)

where we multiplied the expansion result with
(

(eǫγ)/(iπD/2)
)4

to match values

in [13].
There are four more master integrals we were able to compute:

(5.49)

There are with six line and can be represented in terms of hypergeometric functions
along the line similar to eq. (5.16). They can be written as:

=
πCsc[Dπ2 ]Γ[6 − 2D]Γ[−1 + D

2 ]4Γ[−3 +D]

Γ[−2 +D]Γ[D2 ]Γ[−3 + 3D
2 ]

pFq

[

{6 − 2D, 3 −D,−2 +D},
{

4 −D, 2 − D

2

}

, 1

]

−(−8 + 3D)π2Csc[Dπ2 ]Csc[3Dπ2 ]Γ[2 − D
2 ]Γ[−1 + D

2 ]4

(−4 +D)Γ[−2 +D]Γ[D2 ]2Γ[−3 + 3D
2 ]

pFq

[{

5 − 3D

2
, 2 − D

2
,−3 +

3D

2

}

,

{

3 − D

2
,
D

2

}

, 1

]

(5.50)

=
23−Dπ

1
2
+DΓ[6 − 2D]Γ[5 − 3D

2 ]Γ[2 − D
2 ]2Γ[−1 + D

2 ]4Γ[−4 + 3D
2 ]

Γ[4 −D]Γ[−1
2 + D

2 ]Γ[−2 +D]Γ[D2 ]

pFq

[{

6 − 2D,
3

2
− D

2

}

, {4 −D}, 4
]

+
2πDΓ[5 − 3D

2 ]Γ[4 −D]Γ[1 − D
2 ]Γ[2 − D

2 ]Γ[−1 + D
2 ]3Γ[−3 +D]

Γ[3 − D
2 ]Γ[−2 +D]Γ[D2 ]

pFq

[{

1

2
, 1, 5 − 3D

2

}

,

{

3 − D

2
,
D

2

}

, 4

]
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+
2−5+2Dπ

1
2
+DΓ[4 − 3D

2 ]Γ[3 −D]Γ[2 − D
2 ]2Γ[−1 + D

2 ]3

Γ[72 −D]Γ[D2 ]2

pFq

[{

1, 2 − D

2
,−5

2
+D

}

,

{

D

2
,−3 +

3D

2

}

, 4

]

(5.51)

=
π

1
2
+DΓ[7 − 2D]Γ[6 − 3D

2 ]Γ[2 − D
2 ]Γ[3 − D

2 ]Γ[−2 + D
2 ]

210−3D+2(−7+2D)Γ[5 −D]Γ[−3
2 + D

2 ]Γ[−2 +D]Γ[D2 ]

Γ[−1 +
D

2
]3Γ[−5 +

3D

2
]pFq

[{

7 − 2D,
5

2
− D

2

}

, {5 −D}, 4
]

+
2−10+3D−2(−5+ 3D

2
)πDΓ[5 − 3D

2 ]Γ[4 −D]Γ[2 − D
2 ]2Γ[−1 + D

2 ]3Γ[−3 +D]

Γ[3 − D
2 ]Γ[−2 +D]Γ[D2 ]

pFq

[{

1

2
, 1, 5 − 3D

2

}

,

{

3 − D

2
,−1 +

D

2

}

, 4

]

+
2−10−2(−2+ D

2
)+3Dπ

1
2
+DΓ[5 − 3D

2 ]Γ[3 −D]Γ[2 − D
2 ]2Γ[−1 + D

2 ]3

Γ[72 −D]Γ[D2 ]2

pFq

[{

1, 2 − D

2
,−5

2
+D

}

,

{

D

2
,−4 +

3D

2

}

, 4

]

(5.52)

= −
2Γ[6 − 2D]Γ

[

5 − 3D
2

]

Γ[3 −D]Γ

[

2 − D
2

]

Γ

[

− 1 + D
2

]4

(−4 +D)Γ

[

8 − 5D
2

]

Γ[−2 +D]Γ

[

D
2

]

pFq

[{

6 − 2D, 5 − 3D

2
, 2 − D

2

}

,

{

8 − 5D

2
, 3 − D

2

}

, 1

]

(5.53)

The expansion of can be done with Hypsummer

=
5

24ǫ4
+

55

48ǫ3
+

993 + 44π2

288ǫ2
+

2931 + 484π2 + 1088 ζ3
576ǫ

+
−82395 + 13220π2 − 528π4 + 59840 ζ3

5760
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+
(

− 42485

256
− 121π4

240
+

1327 ζ3
36

+ π2
(335

576
+

77 ζ3
27

)

+
172 ζ5

3

)

ǫ+

+O(ǫ2) (5.54)

as well as the expansion of

=
1

12ǫ4
+

5

12ǫ3
+

21 + π2

36ǫ2
+

−201 − π2 + 74 ζ3
36ǫ

+
1

360

(

− 21150 − 650π2 − 63π4 + 5860 ζ3

)

+
1

1080

(65268 ζ5 − 404190 − 1533π4 + 93300 ζ3 + 10π2(−1803 + 362 ζ3))ǫ

+O(ǫ2) (5.55)

The and however contain unbalanced half-integer coefficient, but

they can be done using HypExp2 [37], which gives:

=
1

3ǫ4
+

23

12ǫ3
+

(

65

12
+
π2

9

)

1

ǫ2
+ O(ǫ−1) (5.56)

and

=
1

4ǫ4
+

11

12ǫ3
+

13 + π2

12ǫ2
+ O(ǫ−1), (5.57)

where the normalization in all four expansions has been taken such that the nu-
merics can be directly compared with [13]. Further coefficients can be computed
without problems, it is just a mather of CPU time.

This concludes this chapter dealing with scalar integrals at temperatureT = 0.
In the next chapter we will speculate on possible application of similar methods in
finite temperature field theory.



Chapter 6

Heating things up

In this chapter we want to see what happens if we naively applythe methods we
used so far toT 6= 0 QFT and whether it may potentially be of any use. The
main difference to the zero temperature case, is - at the level of Feynman integrals
- that we have instead of four dimensional scalar integrals the so called scalar sum-
integrals, which we define as:

∑
∫

k

≡ T
∑

k0

∫

k

≡ T
∑

k0

∫
d3−3ǫk

(2π)3−2ǫ
(6.1)

wherek0 = 2πnT , n ∈ Z are the bosonic Matsubara momenta. Let us look at
the simplest example of a scalar massive tadpole integral, with general power of
propagator:

∑
∫

k

1

(P 2 +m2)λ1
= I(n = 0,m2) + 2T

∞∑

n=1

∫

p

1

(p2 +m2 + (2πnT )2)λ
(6.2)

where theI(n = 0,m2) contains zero-mode and we will not look at it, it can be
given in terms of gamma functions. Since we have only one propagator in the rest
of the expression, we start with MB transformations obtaining:

2T

∞∑

n=1

∫

p

∫

dz
Γ(−z)Γ(z + λ)

Γ(λ)2πi

(2πnT )2z

(p2 +m2)λ+z

= 2T

∫

dz
Γ(−z)(4π2T 2)zζ(−2z)Γ(λ+ z − 3/2 + ǫ)

(4π)3/2−ǫ(m2)λ+z−3/2+ǫΓ(λ)2πi
. (6.3)
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Closing the contour to the right and picking the poles ofΓ(λ+ z − 3/2 + ǫ) gives
us:

T (22π2T 2)
3
2
−ǫ−λ

22−2ǫπ
3
2
−ǫΓ(λ)

∞∑

j=0

Γ(λ+ ǫ− 3
2 + j)ζ(−3

2ǫ+ 2λ+ 2j)

Γ(1 + j)

(

−m2

4π2T 2

)j

(6.4)

or

21−2λπ
3
2
−ǫ−2λT 4−2ǫ−2λ

Γ(λ)

{

Γ(λ+ ǫ− 3

2
)ζ(−3 + 2ǫ+ 2λ) +

∞∑

j=1

Γ(λ+ ǫ− 3
2 + j)ζ(−3

2ǫ+ 2λ+ 2j)

Γ(1 + j)

(

−m2

4π2T 2

)j}

. (6.5)

The first part ism = 0 limit and the rest is expansion inmT .
Let us now look at the next more complicated example, a massless self-energy
one-loop integral:

Π(P ) =
∑
∫

k

1

(Q2)λ1((Q− P )2)λ2

= T
∑

q0

∫

q

1

(q2 + q20)
λ1((q − p)2 + q20 − 2p0q0 + p2

0)
λ2
. (6.6)

For the sake of simplicity, we do not consider Matsubara zero-mode, since it ba-
sically coresponds to eq. (2.19), which can be written in terms of Gauss function.
We now can use Feynman parameterisation and Mellin-Barnes transformation to
write the self-energy integral as contour integral. Since we know the result of the
integral withoutp0, q0 in eq. (2.21), we will skip Feynman parameterisation and
use MB transform right away:

Π′(P ) = T
∑

q0

′
∫

q

∫

dz1 . . . dz4
Γ(−z1) . . .Γ(−z4)Γ(λ1 + z1)Γ(λ2 + z234)

Γ(λ1)Γ(λ2)(2πi)4

× (q20)
z1

(q2)λ1+z1

(q20)
z2(−2p0q0)

z3(p2
0)
z4

((q − p)2)λ1+z234
(6.7)

where we use the notationz123... = z1 +z2 + . . .. Now we can perform momentum
integration using eq. (2.21) and also the sum over Matsubaramomenta by splitting
the summation to two parts,−∞ to−1 and1 to ∞, leading to:

Π(P ) = T

∫

dz1 . . . dz4
Γ(−z1) . . .Γ(−z4)

Γ(λ1)Γ(λ2)(2πi)4Γ(D − λ12 − z1234)
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× (p0)
2z4+z3(−2)z3πD/2(p2)D/2−λ12−z1234

× Γ(−D/2 + λ12 + z1234)Γ(D/2 − λ1 − z1)Γ(D/2 − λ2 − z234)

×
(

1 + (−1)2z12+z3
)

ζ(−2z12 − z3) (6.8)

This integral is to complicated to evaluate analytically. However, the general struc-
ture of sum-integrals seems to be like this:

1

(2πi)n

∫ n∏

l=1

dzl

∏

i Γ(ai +
∑

j cijzj)ζ(a
′′
i +

∑

j c
′′
ijzj)

∏

i Γ(a′i +
∑

j c
′
ijzj)

∏

k

xdk
k (6.9)

This is, apart fromζ-functions, the same structure as in eq. (2.31). Since the inte-
gration is over the complex plane, and arguments of theζ-function are complex,
the ζ(s)-function is meromorphic function for Re(s) > 1 and it has unique ana-
lytical continuation to entire complex plane, excluding the points = 1, where it
has a simple pole. Therefore it can be assumed that the strategies for resolving
the singularities of MB representation and performing numerical integration can
be applied here too. Since Matsubara frequencies lead to great proliferation of MB
integrals, the question is how fast the numerical convergence will be.
Introducing finite chemical potential generates, since it is equivalent to a shift of
Matsubara frequencies by a constant imaginary term, generalized zeta functions,
also known as Hurwitz zeta functions. Since it has the same analytical properties as
zeta function, adding finite chemical potential should poseno additional problems.
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Chapter 7

Epilogue

We have seen that the most important class of Feynman integrals are scalar inte-
grals, since all other cases are reducible to these. Furthermore, one can reduce the
set of integrals for one particular problem to the set of so called master integrals,
which in turn have to be computed. In general, one can write these integrals as
Barnes-type integrals. This has the advantage that the poles can be resolved in an
algorithmic manner, which enables the numerical calculation. In the case of one-
fold MB integrals, one can perform the integration by picking up the poles and
summing over them, resulting in generalized hypergeometric series. These can in
turn be expanded in some cases using nested sums. For integercoefficients there
are existing packages on the “market”, however many hypergeometric series have
half-integer coefficients, for which, in case of balanced coefficients, algorithms ex-
ist, but, at time we started the work, no package. Motivated by the fact that in vari-
ous theories master integrals can be represented through hypergoemetric functions
and that some of these, in case of single scale integrals, have half-integer coeffi-
cients, we have implemented in FORM a package for expansion in ǫ of balanced
generalized hypergeometric and first Appell functions. Using MB representation
of subloop integrals we were able to find suitable, that is one-fold MB represen-
tations, of number of master integrals of EQCD. For those complicated integrals,
which have many massive lines and/or are non-planar, we werenot able to find
suitable hypergeometric representation, which would enable us to use Hypsum-
mer. In those case where we obtained suitable representation, Hypsummer was
successfully applied, producing analytical solution, which coincides with known
numerical values. We tried to apply the same strategy on other set of master inte-
grals, the one contributing to QCD correction of the so called ρ-parameter. Here,
the results were disappointing. Only for a few integrals of simple topology could
we find the appropriate representation, and even there the hypergeometric sums
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were mostly unbalanced. This limits very much the applicability of the methods
we used to obtain analytical results and the question must beasked, whether or
not the method of finding hypergeometric representations and expanding them us-
ing nested sums is going to be of any use in calculations in cases of single- or
many-scaled integrals. Here, clearly, new approaches and/or further developments
in hypergeometric functions are needed.
The situation in finite temperature is even worse. Technically speaking, finite tem-
perature field theory is one case where we encounter many-scale integrals. The so
called Matsubara frequencies act as different mass terms, therefore, when applying
the methods to finite temperature, we were not even been able to compute simple
diagrams analytically. However, it seems possible, at least in principle, to apply
MB approach and to obtain numerical values. We have shown it on the simplest
possible case. Like any other integrals, the integrals in finite temperature can be
represented as Barnes-type integrals and maybe similar methods for resolution of
singularities can be applied here as well. Once the poles areresolved one can inter-
change integration and summation and numerically compute the integrals. Since,
as of now, there are no better alternatives and according to [33] there is “the need
to develop novel computational techniques, in order to be able to complete...[the]
task in systematic fashion“. Altough it is far from it this methods might be worth
looking at.
Another research area that is interesting concerning this thesis is the application
of nested sums to difference equations. As we have seen, for first order differ-
ence equations one immediately obtains hypergeometric sums. There are more
advanced methods used to find solutions of higher order difference equations in
terms of nested sums [77]. Since derivation of difference equations is algorithmic
[46], having an algorithms for solution in terms of nested sums, regardless of the
order of the difference equation, would be a major step forward. The existing pack-
age Sigma [60] was applied on difference equations we had formaster integrals of
EQCD, however without result. Maybe the more general methods along the lines
of work of [60, 6, 55] will be able to solve them.



Appendix A

Special cases of nested sums

A.1 Multiple polylogarithms

The result of the expansion given by Hypsummer is in terms of multiple polylog-
arithms [30, 10], therefore we will give additional information about this class of
functions. Multiple polylogarithms have a nested sums representation, since there
are the special case of Z-sums in the case that the argument isinfinity, as well as
an iterated integral representation. Let us first introducefunctions:

G(z1, . . . , zk; y) =

y∫

0

dt1
t1 − z1

t1∫

0

dt2
t2 − z2

· · ·
tk−1∫

0

dtk
tk − zk

(A.1)

wherezk 6= 0.
Introducingg(z; y) = 1

y−z we have

d

dy
G(z1, . . . , zk; y) = g(z1; y)G(z2, . . . , zk; y) (A.2)

and

G(z1, . . . , zk; y) =

y∫

0

dtg(z1; t)G(z2, . . . , zk; t) (A.3)

and by defining additionallyG(0, . . . , 0; y) = 1
k!(ln y)

k for all k-values being zeros
on can introduce the notation

Gm1,...,mk
(z1, . . . , zk; y) = G(0, . . . , 0, z1, . . . , zk−1, 0, . . . , 0, zk ; y). (A.4)
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One can then find the relation to multiple polylogarithms

Gm1,...,mk
(z1, . . . , zk; y) = (−1)kLim1,...,mk

(
y

z1
,
z1
z2
, . . . ,

zk−1

zk
) (A.5)

and the inverse relation

Lim1,...,mk
(x1, . . . , xk) = (−1)kGm1,...,mk

(
y

x1
,

1

x1x2
, . . . ,

x1

· · ·xk; 1). (A.6)

Using eq. (A.1) one can define integral representation for multiple polylogarithms
as

Lim1,...,mk
(x1, . . . , xk) = (−1)k

1∫

0

(dt

t
◦
)m1−1 dt

t− b1

(dt

t
◦
)m2−1 dt

t− b2
◦ . . . ◦

(dt

t
◦
)mk−1 dt

t− bk
, (A.7)

wherebj = 1
x1x2...xj

and

y∫

0

dt

t− an
◦ . . . ◦ dt

t− a1
=

y∫

0

dtn
tn − an

tn∫

0

dtn−1

tn−1 − an−1
× . . . ×

t1∫

0

dt1
t1 − a1

(A.8)

and the short notation
y∫

0

( dt

t− an
◦
)m dt

t− a
=

y∫

0

dt

t− an
◦ . . . ◦ dt

t− a
. (A.9)

It is also of great importance to have a possibility to compute numerical values
of multiple polylogarithms at fixed values. To do that one uses

Gm1,...,mk
(z1, . . . , zk; y) =

y∫

0

(dt

t
◦
)m1−1 dt

t− z1

(dt

t
◦
)m2−1 dt

t− z2
. . .
(dt

t
◦
)mk−1 dt

t− zk
=

∞∑

j1=1

. . .
∞∑

jk=1

1

(j1 + . . .+ jk)m1

( y

z1

)j1
×

× 1

(j2 + . . . + jk)m2

( y

z2

)j2
. . .

1

jmk
k

( y

zk

)jk
(A.10)

and one transfers all arguments into a region where one has a converging power
series expansion.
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A.2 Harmonic polylogarithms

When expanding generalized hypergeometric functions of type eq. (4.1) one ends
up with multiple polylogarithms of the formLim1,...,mk

(1, . . . , 1, x) which are har-
monic polylogs (HPL’s). On their own, one can define HPL’s recursively as fol-
lowing [59]:

H(0, . . . , 0
︸ ︷︷ ︸

n

;x) =
1

n!
logn x

H(a, a1, . . . , ak;x) =

∫ x

0
fa(t)H(a1, . . . , ak;x)dt (A.11)

for general vector of length, or weight n, whereai = 1, 0,−1 and functionsfa(x)
are

f1(x) =
1

1 + x
, f0(x) =

1

x
, f−1(x) =

1

1 − x
(A.12)

The beginning of the recursion also has to be given, in this case that would be the
lowest weight:

H(1;x) =

∫ x

0

1

1 − t
dt = − ln(1 − x)

H(0;x) =

∫ x

0

1

t
dt = ln(x)

H(−1;x) =

∫ x

0

1

1 + t
dt = ln(1 + x) (A.13)

An alternative definition would be:

d

dx
H(a, a1, . . . , ak;x) = fa(x)H(a1, . . . , ak;x) (A.14)

From the equations above, it is easy to see that HPL’s are a generalization of
Nielsen polylogarithms [56]. Historically, that was the reason for their introduction
[59].

HPL’s also form an algebra, so one can write, just like in caseof S/Z-sums, the
product of two HPL’s (with the same argument) as a sum of single HPL’s of higher
weight. For example:

H(a1, a2;x)H(b1, b2;x) = H(a1, a2, b1, b2;x) +H(a1, b1, a2, b2;x)

+ H(a1, b1, b2, a2;x) +H(b1, a1, a2, b2;x)

+ H(b1, a1, b2, a2;x) +H(b1, b2, a1, a2;x)

(A.15)
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Notice, that in the above formula the relative order of the elements of a vector
~a = (a1, a2) and~b = (b1, b2) respectively, is preserved. This is due to shuffle
algebra [59]. The general formula is then:

H(a1, . . . , ak1;x)H(b1, . . . , bk2;x) =
∑

ci∈ai
S> bi

H(c1, . . . , ck1+k2 ;x) (A.16)

where the symbol
⋃> stands for the fact mentioned earlier, namely that the internal

order of the elementsai andbi respectively is preserved.
The HPL’s can be Mellin transformed and Taylor expanded. Since we do not need
Mellin transforms and the Taylor expansion of HPL’s, we refer the interested reader
to original literature [59].

What we are interested in are the HPL’s with argument x=1. These are actu-
ally nothing else then Euler-Zagier sums at infinity, which are nothing else then
multiple zeta values (MZV) for positivea’s, or colored MZV for arbitrarya’s.

H(a; 1) = ζ(a) , a > 0

H(−a; 1) = (1 − 21−a)ζ(a) , a > 0

H(a1, . . . , ak; 1) = (−1)#(ai<0)ζ(ā1, . . . , āk) , k > 1

(A.17)

whereζ ’s are:

ζ(a1, . . . , ak) =

∞∑

i1

i1−1∑

1

· · ·
ik−1−1
∑

1

k∏

j=1

sgn(aj)
ij

i
|aj |
j

(A.18)

and vector̄a = (a1, sgn(a1)a2, . . . , sgn(ai−1)ai, . . . , sgn(ak−1)ak).
The MZV’s themselves possess an algebra, which means that they can be expressed
in terms of a few mathematical constants, like powers ofπ, ζ-functions and certain
polylogarithms. For the relations see for example [10], [11] and next section of the
appendix.
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A.3 Special values of harmonic sums

Here are the definitions of numbers appearing in the results in the expansions in
terms of harmonic sums as well as numerical values.

ln 2 = −S−1(∞)

ζn≥2 = Sn(∞)

an≥3 = Lin(
1

2
)

s6 = S−5,−1(∞) ≈ 0.98744142640329971377

s7a = S−5,1,1(∞) ≈ −0.95296007575629860341

s7b = S5,−1,−1(∞) ≈ 1.02912126296432453422

s8a = S5,3(∞) ≈ 1.04178502918279188338

s8b = S−7,−1(∞) ≈ 0.99644774839783766598

s8c = S−5,−1,−1,−1(∞) ≈ 0.98396667382173367092

s8d = S−5,−1,1,1(∞) ≈ 0.99996261346268344769

s9a = S7,−1,−1(∞) ≈ 1.00640196269235635900

s9b = S−7,−1,1(∞) ≈ 0.99842952512288855439

s9c = S−6,−2,−1(∞) ≈ −0.98747515763691525588

s9d = S−5,−1,1,1,1(∞) ≈ 1.00219817413397743629

s9e = S−5,−1,−1,−1,1(∞) ≈ 0.98591171955244547261

s9f = S−5,−1,−1,1,−1(∞) ≈ 0.97848117128116624247 (A.19)
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