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Chapter 1

Prologue

Belief that numbers could represent or describe the "tradtepn or “reality” be-
hind countless manifestations in nature is very old. Onbefitst and most promi-
nent follower was certainly Pythagoras, who found that lanimintervals in music
are representable through simple natural numbers ratiaso Rent even further,
claiming that the cosmos and everything within is just ananfgct image of an
ideal mathematical world of numbers and ideas. Allthougivawys nobody ex-
pects pure numbers or simple function to represent “real$laf physics - instead
we now talk of theories, notably the Standard Modell (SM) eftigle physics
where the physics is encoded in gauge invariant Lagrangataen- at the end of
the day one still needs numbers, because physics is experoriented science
and in order to compare the theoretical predictions withetkgeriment one needs
to know how to extract numbers out of the theory. As of nowdhisrno known
solution of equations of motions for a realistic (i.e. foumdnsional) QFT and
one has to resort to some kind of approximation. One veryessfal scheme is
perturbative QFT (pQFT) parts of which will be subject oftkiesis.

1.1 Heuristics

Can one describe pQFT in simple words? We'll give it a try. @oeld say
that QFT is a "marriage” of quantum mechanics (QM) and spelseory of rel-
ativity (SRT). We will just take the most prominent relatiofrom both theories,
from SRT the famous relatioR = mc?, which states that energy can be used to
create particles and vice versa and from QM the Heisenbergrtainty relation
[#,p] > ih/(2m), which states that one cannot simultaneously know to arlyitr
precision the momentum and the spatial location of the @artising relativistic
notion and combiningZ andp’to four-momentum antlandx to space-time vector,
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we can say that in order to "see” at short space-time distaimvelves high four-
momenta and vice versa. The more we want to increase thautiesplthe more
momentum we need. This is the reason why we need bigger agdrhigachines
in order to detect smaller and smaller particles.

Let us now try to combine the two relation from SRT and QM arel\sbat con-
sequences this merge will have. For the sake of simplicigywill take a freely
propagation electron. Imagine now that we have the abiitypok at the electron
at very short distances. According to Heisenberg unceytaiation, since we are
"looking” at very short distances, we have pretty certafioimation about the lo-
cation of the electron, hence we are very uncertain abowgldotrons momentum,
which can be very large. Here comes the second relation etgame. Accord-
ing to Einstein the electron with very high momentum couldduce a photon and
reabsorb it, all within the rules of Heisenberg uncertanetation.

We can represent this schematically as:

~
/

We will call this photon a virtual photon, since it gets reat®d and cannot be
directly measured. Let us now add another freely movingteladnto the game.
According to our previous considerations, the two electroould look schemati-
cally something like this:

Imagine now that we bring the two electrons closer and cltsgpather. At some
point they will be so close together that the photon emmitechfone electron,
with certain probability, will be absorbed by the other #len, instead of being
reabsorbed by the original. We could picture it like this:

In the last case however, we have momentum transfer betweaeeléctrons, in
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other word we have interaction.

Even in this simple picture, we have an idea of how particlmdd interact in
QFT, namely through the exchange of a gauge particle, indke of electrons - or
speaking in terms of QFT, in the case of quantumelectrodic®a(@ED) - through
the exchange of a photon.

There is however one problem with the line of argumentatienhave taken:
Why did we include only one photon in our considerations? dfowe know, go-
ing to smaller distance involving higher momenta could leea picture like this:

Actually it is far worse then that. We can imagine the photonthe above pic-
ture creating any particle-antiparticle pair, as long &sghrticles are electrically
charged and these could again mediate gauge bosons themaaly so on ad in-
finitum. However, these diagrams contribute less to thege®one is interested
in and to see this we have to leave this simple picture we hbiagred from only
two relations and we have to bee more technical.

1.2 Amplitude and Feynman graphs

Particle experiments, like the upcoming experiments agéadadron Collider
(LHC) at CERN, involves colliding beams of particles and sweag the cross
section for the process. The simplest and most importalisiool is the one where
two particles collide and a number of particles is creatésyloch some or all can
be measured.

0 P

\\pﬂ,

Figure 1.1: Particle collision
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The cross section is given by the Golden Rule as

_ 1 2
- F/d(I)n]M] , (1.1)

where the Flux is given by

F = 4\/(QuQp)? — m3m?, (1.2)

the phase space is

a®, = { ﬁ #%}(277)45(4) (f:pj ~Qa-Qp), (3
1 =

i=1

and M is the amplitude. The amplitude contains the "physics”,har dynamics,
whereas the phase space integrals contain the kinemascsllithe phase space
integrals are performed numerically using Monte Carlo mesh

How do we compute\1?
There is a graphical technique, which is by now folklore, tanpute M and it
consists of drawing all Feynman diagrams for a given proaesgdranslate the di-
agrams into mathematical expressions according to saldadgnman rules. These
state that with every vertex, there comes a power of the ewypfFor perturbative
theory to work, the assumption is that the coupling is snthéirefore every dia-
gram with one more vertex contributes less. Additionalxgrg loop is equivalent
to an integration over the inner momentum, which makes thgrdims hard to eval-
uate. So if every vertex brings a power of the coupling, wigiehdefinition should
be small and every loop brings in an integration, then why dacare to evaluate
multiloop diagrams, which contribute less and less and are to calculate?

Bigger and better experiments lead to the need of more aeqoredictions from
the theoretical side. This in turn means for perturbatideutations, that one has
to evaluate multiloop diagrams if one wants to keep up witeexnents. "This is
the 'raison détre’ for loop calculations: A higher accuracy is reachednmfuding
more terms in the perturbative calculation” [80].

So far we have only been speaking of perturbative QFT in gémerms. Now it
is time to become more concrete and look at the physics wtastbken the initial
phenomenological motivation for this thesis: finite tengbere QCD.

1.3 Finite temperature QCD

Recently, large effort has been put in determination of tlesgure of QCD. The
motivation comes primarely from heavy-ion collisions atlRHand the upcoming
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LHC. Also, the pressure is of importance in cosmology fokdaetter relic density
computations.

Due to the fundamental property of asymptotic freedom [&], We expect the
coupling of QCD to approach zero, as we go to higher energiais.can be easily
seen by taking the running of the coupling obtained from ¢fagling order solution
to the renormalization group equation:

2472
(11N —2nys)In(A/Agcep)

g*(A) = (1.4)
whereA is renormalization scale antlycp ~ 150 MeV the characteristic energy
scale of the theory.

It is to expect that the behavior of QCD at high energies orlistigtances will
be that of a free theory, hence justifying the use of pertibanethods. In terms
of thermodynamical properties, this would mean that oneesguect perturbative
methods to produce reliable results in the limit of high tenapures.

However, computing the pressure perturbatively is not ay éask itself. The
structure of the weak coupling expansion is not analytical’i At high temper-
ature and small coupling, QCD develops a momentum scale hierarehyl” >
gT > ¢°T. The first scale is the typical energy scale of a particle inealiom
with temperature T. The other two scales are associatedh@tscreening of color-
electric and color-magnetic forces respectively. In otdeaccount for this, effec-
tive field theory approach might be useful. It consists obsaping different scales
into effective theories, which reproduce static obsemslalt successively longer
distance scales, idea which is based on "dimensional riesi(id32, 2]. Let us
first define the Lagrangian for QCD.

The Euclidean Lagrangian of QCD is given by:

Laop = FFly + IuDu (15)
whereF5, = 9, A% — 0,A% + gf Ab A¢ is the field strength tensor ard, =
Oy —igA, = 0, —igAiT" the covariant derivative, tHE*,a = 1,..., N> — 1 are
generators of the fundamental representation of SU(N)4ffdare the structure
coefficients of SU(N) given byTI®, T?) = i febeTe,

The partition function for QCD is:

Zocp = / DA, / DiDn / Dy D
periodic periodic antiperiodic

A I dr J dl P B Bl Dt mly+ g (0u A0, AS) 70 (026°0 +0f*P AG 0, )" |

— / DAY / DijDn / DYDyy  eSotIInNT
periodic periodic antiperiodic
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(1.6)

where7, n are the Faddeev-Popov ghosts, which have the same bouratadi ¢
tions as the gauge fields.

Having the partition function one can derive the pressuiegustandard thermo-
dynamic derivation. It is given as:

1T
pocn(T) = lim [ DLz v Gewl= [ dr [ *otqepl. @)
0

As already stated QCD is, even at high temperatures and smagllingg, a mul-
tiscale system. The reason is that of the gauge fields

Al(z) = T expliwhr] A% (x)
where wg =2nnT  are the Matsubara frequencies , (1.8)

the non-static modes gain effective masses that grow linedth increasing tem-
perature and then decouple, leaving the zero-modes of thgegields as true
degrees of freedom contributing, since the fermionic fielsn forn = 0 get ef-
fective masses. These zero modes can be described by aostot scalar field
Ag(z) and magnetostatic gauge field (x) of a three dimensional effective theory,
called electrostatic QCD (EQCD), with the Lagrangian:

1 ig3
Lpocp = 5Tng. + Tr[Dy, Ao)? + m%LTrAZ + 23 > s TrAd +
!
A0 (17 A2)? + AP Tr AL + higher order operators
(1.9
with
Fi = 0;AY— 0;A¢ + gpf* AV AS (1.10)
The pressure can then be expressed as:
T
pacn(T) =pp(T) + 17 ln [ DAIDAGenp(-Sp} (112

wherepr = prgcp is a parameter of the effective theory computable in pertur-
bative full QCD [16]. With this theory one is able to compube fpressure of the
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full theory to the order® [16]. This procedure of separating different scales in
different effective theories can be applied further sifwmré are still two dynam-
ical scalesyT andg?T [14]. The non-perturbative scalg7” which enters in the
computation at ordeg®, originates from the magnetostatic sector, that is from the
fields A, so that we can write:

T
PQCD = PEQCD + PMQCD + v In / DAfexp{—Smqcp} (1.13)
where
1 a
Lygep = ST E
Fj = 0iA% — A7 + gu [ ALA; (1.14)

guM = gmqQcp IS, analogous ter, computable through perturbative expansion
of EQCD. The non-perturbative contribution has been datexrdhnumerically in
[34, 35, 25].

1.4 EQCD

In this thesis we will be concerned only with EQCD, which idided by the La-
grangian in eqg. (1.9), which can be most easily obtained By\iriting down the
most general Lagrangian invariant under all the symme#iasthen determining
the parameters of the Lagrangian through matching conipaosain full QCD. The
higher order, possibly non-renormalizable, operatorslgvounly contribute aty”
order or higher [39]. Given the Lagrangian in eqg. (1.9) onewate down all dia-
grams, carry out tensorial contractions and use integrdtyoparts (IBP) identities
to obtain up to four loops [61] the following set of masteeigrals.

(1.15)

' @ A ’;, A ' '

In the picture above, the propagators have the feﬁqﬂ?, where the mass values
arem = mp andm = 0 for Ay and A; fields respectively.

Allthough we need this set of master integrals in 3 dimerssion hot QCD it is
also useful to compute the integrals in 4 dimensions, sinogesof them appear
in different sets of master integrals, which contribute ifeecent physical settings,
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for example in the calculation of the four loop QCD correcfido the electroweak
p-parameter [63, 19, 13]. Therefore it would be useful to imbtaD-dimensional
representation of the master integrals and have a methogtmeé ine automat-
ically. We will therefore try to find so called hypergeometrepresentations (see
section 3.3) of master integrals and we will see that we c@ness some of them
in terms of hypergeometric functions with half-integer ffic&ents, in 3 as well as
in 4 dimensions. It is to expect that this feature is genemabhe-scale Feynman
integrals, that is, integrals with one or more masses (fahé&u example in other
physical contexts see e.g. [23, 24]). Itis therefore to ekfi@t in various contexts
hypergeometric functions with half-integer coefficientdl arise and it would be
of interest to have a general way of expanding these furetion This is our main
motivation for the implementation of a FORM package Hypswenfsee chapter
4) for the expansion of such functions to arbitrary ordereimts of nested sums
(see chapter 3).

At the end one can ask the question whether or not the mettsadsaan be ap-
plied to full QCD at finite temperature as well. We speculatetids in chapter
6.



Chapter 2

Setting the stage

In this chapter we look at scalar Feynman integrals and dote methods of
rewriting them in terms of other integrals, especially inrie of the so called
Mellin-Barnes type integrals. We also introduce the cohacépnaster integrals,
which will be important in this thesis. But first, let us look some difficulties,
which arise when dealing with Feynman integrals. The stnecof the following
sections follows roughly [80] and [68].

The main object of this thesis will be scalar integrals offthren:

d*ky ... d*k
[

wherek; are loop momentay; are integer indices and the denominators are given
by

E. = Z AYpip; —m? (2.2)
i>j>1

where the momentg; are either the loop momenka or independent external mo-
menta of the graph.
In this thesis we will only consider the class of integralsewehthe denominators
determined by some matrid contain momenta which are quadratic. The cases
where denominators are linear with respect to loop and/@real momenta, will
not be treated here although some of the methods used im#siis tare also appli-
cable there, see [68].

Before going on to computation of these integrals, first Esae what are the
difficulties in computing these integrals in the first place.

13
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2.1 Regularization

Some of the loop integrals may be divergent. We call thessgiats ill-defined
guantities. A simple example is the two-point one-loopgnéé with zero external
momentum:

d*k 1 1 o0 1 1  dx
/ @) <k2>2:<4w>2/0 dk2ﬁ:W/o 2 (23)

In fact, this integral is divergent as we také — 0, as well as fok? — co. We
call the former infrared (IR) divergencies and the lattéraviolet (UV) divergen-
cies. These ill-defined integrals need to be regulated. hplast method is by
introducing a cut-off on the loop integral, rendering it f&iWe will however use
different method, which by now has become almost standaid;called dimen-
sional regularization (DR). The basic idea of DR is to ext#mafour dimensional
momentum integration to a D-dimensional one, keeping D aditional param-
eter, which can be rational or even complex. The result ofrttegration will then
depend on D. Usually, one writdd = 4 — 2¢ - allthough other dimensions are
also of interest, e.gD = 3 — 2¢ in thermal field theory - and performs Laurent
expansion ire. In DR divergencies will manifest themselves as poles/fa In
general, one finds that illoop integral UV divergencies can lead to polgs’ and

IR divergencies to poles/? at worst. Renormalization absorbs UV divergencies
and IR safe observables cancel in the final result, when suhover all degenerate
states [43, 49].

2.2 Feynman parameters

We will now show how one can perform momentum loop integratib a cost of
introducing integration over some additional parameténe parameterization we
choose, called Feynman parameterization, is defined by:

=) (T T M
1 (_PZ)VL a H?:l P(Vi)/() (}:Ild e )(— Z?:l (L'Z-PZ-)V (24)

with v = >~ | v;. Another widely used parameterization is so called Schering
parameterization:

n
1=

1 1

(=P ~ T(v) /om dzz”~" exp(zP). (2.5)

Any choice of Feynman parameters can be obtained using 8gbwparameteri-
zation and making appropriate changes in variables [68].
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The standard procedure for computing loop integrals useygnman parameters is
to rewrite all propagators using eq. (2.4), then shift ira¢ign variables to com-
plete the square in the momenta, perform Wick rotation gtanguclidian space
where one can perform the integral over angles in terms ohgafanctions, ob-
taining at the end result in terms of integrals over Feynnearmeters. In general
one can state, that a scalaloop integral, corresponding to a graph G, with n
propagators and in D dimensions

de: 1
IG—/H WD/Z e (2.6)

can be written in terms of Feynman parameters as [38]:

D

o - g | (Hdmm—l) (-3 n) e

ol

2

Polynomial functiong/ and F can be obtained from the topology of every given
graph. Cutting lines of a given connecteldloop graph, such that one gets con-
nectedl-tree graph T gives a set of lines not belonging to this traked the chord
C(T,G). The Feynman parameters associated with each chord define a mono-
mial of degred. The set of all such trees T is call&d, a set ofl-trees. Elements
of 7; definel/ as the sum over all monomials corresponding to the cG¥d G).
Cutting one more line on& 7; gives us two disconnected tred§, 7») € 73, or a
2-tree. 75 is the set of all such pairs and the corresponding chord gia@somials

of depthl + 1.

The square of the sum of momenta through the cut lines of otteedfvo discon-
nected treeg’ or 15 defines Lorentz invariant :

sT:< Z p?)z. (2.8)
jeC(T,G)

Defining 5y as sum over all monomials frof, times minus the corresponding
invariantsy, one can defing asF, plus additional piece involving internal masses
m;. In summary:

u = > (1

TeT, jeC(T,G)

Fo = > ( I1 xj)(—ST)

(Th,T2)eT>  j€C(T1,G)

j=1
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Let us demonstrate this on a scalar two-loop integral in theré:

2 4

which reads

/ dPlydPky
(B ((p = k1)) (B3)%s ((p — k2)*)M ((By — k2)?)?s

(2.10)

The set of alll-trees is given in figure below:

COoCOT LMD

and from that one can write
U= ($1 +Z9 +x3 + SL’4)SL’5 + ($1 + 1’2)(1'3 + 1’4). (2.11)

Cutting one more line, one gets 2-trees:

<">x\f/'Pq'd”b

which gives us the thg& polynomials

F = [(z1 + xo)xsxs + (23 + x4)x120 + (1 + 23) (22 + w4)w5]p2. (2.12)

2.3 Tensor Integrals

So far we only considered scalar integrals. There are havadse tensor integrals
occurring on perturbative QFT, that is, integrals whichéhmomenta in the numer-
ator. These integrals can in general be reduced to scaégrais. To see this let
us assume we have written the tensor integral as integraF@y@mman parameters
and now we have loop momentan numerator as well. If we have an odd power
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of k, then the integral vanishes by symmetry. If the power is giream the integral
can be related to a scalar integral by Lorentz invariancg [57

dPk 1 dPk
BEY£(E2) = —— g 12\ f(12
/mp/z’f KfE) = —59 /mD/2( k) f(k?)
/d,ikuk‘uk‘akipf(ka) = #(QMVPU _|_gupl/0' _|_g;/,al/p)
imP/? D(D +2)
dPk
/—iﬂp/z(—kQ)Qf(k‘Q) (2.13)

Generalization to higher tensor structures can be achietemiucing shifting op-

erators. Apart from a factor, the terfa-k2) in numerator is equivalent to shifting
dimension taD — D + 2. We can introduce an operatbrt which does this shift

and with this operator one can write:

dPk 1 dPk
A R% 2 _ T prpt 2
/mD/zk KR = —5g"D /Z,WD/Qf(k: ) (2.14)

In addition, shifting loop momentd’ = k — xp introduces for tensor integrals
Feynman parameters in the numerator, which is equivalent to raising the power
of the original propagator by one unit. Here we can also duoe an operator,
which raises the power of the propagator. Using these ongvdémintegrals with
Feynman or Schwinger parameters in the numerator as a sat@gral, with the
corresponding propagator raised to a higher power.

In summary: one can express all tensor integrals in termgalas integrals,
which in turn may have higher powers of propagators and/ee Ishifted dimen-
sions [70, 71].

2.4 Mellin-Barnes representations
Let us look at our general Feynman parameters represantati® scalar integral
in eq. (2.7). In general, the integral depends6and F, which are homogenous

functions of Feynman parameters. In the case thand F are absent however,
the parameter integrals can be performed easily using:

/01 <£[1dazimi”i_l>5(1 - ix) - P(anjj“r.(’f)yj). (2.15)

We are going to try to reduce the general expression eq.i{@He previous for-
mula eq. (2.15).
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To do this, Mellin-Barnes (MB) transformations comes indhant is defined as

Al

iz’
—100 A2+Z

! ! i/wo dzI'(A + 2)[(—2) (2.16)

(A1 + Ax)> ~ T(\) 2mi
where the contour is chosen such that the poleS(efz) are to the right and the
poles ofl'(A + z) are to the left. The MB transformation can be recursivelyliagp
to denominators with more then two terms, yielding:

L = 1 L /Zoodzl.../modz_l
(A1 + Ag +...+ A T 2mi)! [ Cioo T
XF(—Zl) ce F(—Zn_l)F(A +z1+...+ Zn—l)
AfL AT AT e (2.17)

We can use this representation to convert all the sums of miat® of i/ and F

into a product, such that alt; are of the form of LHS of eq.(2.15). Then we
can integrate over; and obtain as a result gamma functions. In other words,
we exchange the parameter integrals for multiple completaro integrals. The
contour integrals can in return be performed by closing traaur at infinity and
summing up all the residues which lie inside. Since the natieg) contains gamma
functions, one has to use following residue formulas:

(="
(=n"

n!

res((z+a),z=—a—n) =

res(I(—z+a),z=a+n) =— (2.18)

There are two strategies for obtainiagexpansion using MB techniques. In the
first, called strategy A [67, 9], one finds out the gamma fuumdiin the integrand
which contribute poles, shifts the contour and then takedhiglues. Let us demon-
strate this strategy in a simple example:

_ dPk
I(a,b;m) = / 2 ((p — K — )b (2.19)
Using equation (2.16) we get:
11 e B dPk
T(0) 2ri /_ioo dz(—m?)* T (—2)T(b + z)/ T2 ((p = R (2.20)

Now, the last integral is a massless one-loop integral wisidilnown analytically
in terms of Gamma functions to be [68]:

D D D Q —a
/ (k2)a(c(lp ﬁ K2 ﬂ(pz)?‘”‘br( z — )l

(2.21)
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so using this result and linearly shifting the variable degrationz = g —a—
b — z (which does not change the separation of the contour, ittonhs "left” into
"right” and vice versa) we get:

L - — P V(=2 p_D
ey = SB[ g (SR TR T = B )
I'(a)2mi _ F(5+z)
(2.22)
Closing the contour on the right, we obtain:
D D
5( m2)§—a br( )
I(a,b;m) = RONO x
x l'<p_2> atatb=5+3) (50
=\ L(5 +7)

where we used the formula for the residues of Gamma funcégng.18).

Please note the fact, which is of importance to usbla= 4 —2¢ in the eq. (2.23),
gamma functions have integer valued coefficients, givehdlaandb are integers.

In D = 3—2¢ however, which is the case in EQCD, we get half-integer otefits.
This was the initial reason that motivated us to write thekpge Hypsummer de-
scribed in chapter 4. But let us now come back to the othetegtydor evaluating
MB integrals.

Strategy B [72] involves choosing an initial value faind a value of the real part
of the integration variable; in such a way that the real parts of all the arguments
in gamma functions in the numerator are positive. Then omeim&grate over
straight lines. Finally one lets — 0 and whenever the real part of the argument
of some gamma function vanishes one crosses the pole anthadosresponding
residue, which has one integration less. On the remainitegyial, one applies the
same procedure. In fact, strategy B, being algorithmic, dlesady been imple-
mented and published in the public Mathematica package MB.f20] and also
implemented and used in [1] as well. Since we will not use this strategy to
expand integrals, we refer the reader to [72] for examples.

Recently, strategy A has also been implemented in Mathemaiie package is
called MBresolve.m [69] and it needs the MB.m package. Oheesingularities
are resolved, all packages can perform numerical integrati
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2.5 IBP and Master integrals

DR integrals have properties that one would expect frongnals, like linearity

[ k@) +aafal) = ar [ aPEAK) +ar [ PkE), (@29

whereq; andb; are constants, translation invariance

/de:f(k +p) = /de:f(k), (2.25)
wherep is any vector and scaling law
/def()\k) = )\‘D/de:f(k:), (2.26)

where) is a constant.

There is also a less trivial property which states that avdve of an integral in
DR with respect to mass or momentum equals the corresporiliegral of the
derivative. A corollary to this property leads to the pos#ibto integrate by parts
and neglect the surface term:

/ Ak (ki) = 0. (2.27)

wherek is inner momentump; are the external momenta anctan be either in-
ternal or external momentum. One write these integratiopars (IBP) identities
and apply this set of equation to solve the so called redugtioblem, i.e. to find
out how a general Feynman integral of a given class can bessgul as a linear
combination of some master integrals.

Let us look at a simple example [18]:

1
D
FOY= / T ey (2.26)
Writing down IBP identity
0 1
D _
/d kaku k;#(_k2 R 0, (2.29)

gives us the following recurrence relation:
2
SHE(A) + 20 " F(A+1) =0
DF(\) —2X(—=k* +m? —mH)F(A+1) =0

— DF(\) —2AF(\) + 2Am?*F(A +1) =0
LR+ = 2P0, (2.30)

2 m2
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Since forA < 1 F(\) is zero and forx > 1 all F'(\) can be expressed in terms of
F(1), we call F(1) a master integral.

Let us summarize.
We have seen in this chapter that we only need to considearsoatgrals which
may reduce to a smaller set of so called master integralshatdite momentum
integrals can be traded for parameter integrals, which fin tan be written as
complex contour integrals, which are of the form

[T D(ai +bie+ 3, cmz]
(2mi) /H HFa + e+ . c

H alk, (2.31)

JZJJ k

wherea; anda; are integerb;, b}, ¢;; andc;; are integersyy, are ratios of kinematic
invariants and/or masses and the exponéptare linear combination of and z-
variables. Summing up all residues gives us the result ohfay integrals in
terms of multiple sums involving gamma functions. The exgiam parametet
will appear in the argument of some of these gamma functidnsorder to get
the Laurent expansion iy we need to know how to expand multiple sums with
gamma functions around

In the next chapter we will introduce objects, which will bleaus to expand certain
classes of multiple sums.



22

CHAPTER 2. SETTING THE STAGE



Chapter 3

Enter the actors

3.1 Introduction

In calculations of higher order radiative corrections, emeounters logarithms,
classical polylogarithms and generalized polylogaritl®@]. At higher num-
ber of loops this set of functions may not suffice. As a coneeqe, people
started to extend and generalize this class of functionsuitipte polylogarithms
[10, 30, 59, 28]. On the other hand, harmonic [7, 74] and EXegier [26, 81]
sums have been used in calculation of higher order Mellin erdmof deep in-
elastic structure functions [42, 76, 52]. Finally, in [53reeralization of harmonic
and Euler-Zagier sums, called S- or Z-sums, were introduaith at the same
time encompassed all the multiple polylogarithms as aerspiecial cases. The
purely mathematical question, which numbers can appeaoeffiaients of Lau-
rent expansion of Feynman integrals, has been address8fiTihg answer is that
integrals in Euclidian region, with all ratios of invarigrand masses being rational
have periods as coefficients of Laurent series. Periods ealetined as [8] com-
plex numbers whose real and imaginary parts are values ofuably convergent
integrals of rational functions with rational coefficientser domains ifR"™ given
by polynomial inequalities with rational coefficients.

We will introduce the Z-/S- sums, show some of their progsttwhich will be
usefull in later chapters and summarize special cases &g tem to known
functions. In the last section we introduce hypergeomédtmction and show the
link to nested sums.

23
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3.2 Nested sums

The Z-sums are defined recursively*by

1:n>0
Z = -
(n) {0:n<0
Z(nymy,...,mg;x1,...,Tk) = E WZ(Z'—1;7712,...,mk;$2,...,33‘k) (3.2)

=1
where k is called the depth amd= m; + mo + ... + m;, the weight of the Z-sum.
Equivalent definition can be given by

i
L

T
. . _ 1
Z(nymy, ..., mg;x1,...,Tx) = E T (3.2
N>i1>i9>... >0 >0 L k

Analogous definition can be given for the S-sums

1:n>0
S(n):{ 0:n<0

no i

x

. . _ 1

S(nyma,...,mg;x1,...,TK) = E s
i=1

S(i;ma, ... ,my;zo,...,xk)  (3.3)

or

:E’f 332’“
S(nyma,...,mg;x1,...,T) = Z T (3.4)

n>iy>ip>.. >ip>1 1 k

Notice that the difference between the S- and Z-sums is tiperupummation
boundary, (i-1) for Z- and (i) for S-sums. With the help of flefowing formula,
one can easily convert Z-sums into S-sums and vice versa

n 21 i1—1 Z1

S(nymq,...;x g Zml g S(ig;ms,...;x3,...)
o= 1
+ S(n;ml+m2,...;w1w2,x3,...)
i1
Z(n;my,...;21 g Zm1 E wlzllZ io — 1;ms,...;23,...)
io=1
— Z(n;m1—|—m2,...;$1$2,aj3,...) (3.5)

1This section follows closely the second chapter of [53]
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Z-sums form an algebra, which means that the product of tveoirds with the
same upper summation, that is the same argument, can benirmitierms of single
Z-sums

Z(n;my,...,my; 21, .., xk) X Z(nymy, ..., mpxy, ..., 1))
n 7;1
x
1 . .
= E le(1—1,m2,...,mk7w2,...,xk)><
=11
XZ(iy —1,my,...,m;ay,...,T))

z!
l .
+ E Z (ig — Lymq,...,mg;21,...,Tk) X

XZ(ig — 1,my, ..., mj;xy,...,1))

m1+m1 Z(i—1yma,...,my;2Ta,...,2) X

=1
XZ(i—1,my,...,m;xy,...,x;) (3.6)
As one can see, one or both Z-sums on the RHS have reduced dgplying

the formula recursively, since per definition it has an egdieaves us with single
Z-sums. For example:

Z(n;my,mo;x1,2) X Z(n;mg;x3) =
Z(n;my, mg, ms; x1,x2,x3) + Z(n;m1, ms, me; 1, T3, T2)
+Z(n;m3, my, ma; T3, 71, T2) + Z(n;m1, ma + mz; 1, ¥2T3)

+Z(n;my + ms, mg; x173, T2) (3.7)

Similarly the product of two S-sums simplifies to sum of ssm§Fsums:

S, My T, ., ) X S(ymy, . mys ., T))

I
Msﬁ;\

T
1 y . . y ) . ’ ’
Z,m—lS(zl,mg,...,mk,xg,...,;Uk)S(zl,ml,...,ml,ajl,...,ajl)

=11
n
+ E TS22,m1,...,mk;xl,...,wk)S(ig,m’Q,...,mi;x’z,...,xé)
22:1 9
.1;1.1;1 > ) ) ) )
_ e, (i5ma, ..., my;x2,...,T)S(i,my, ..., m);xh, ..., 7))
=1
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Figure 3.1: An intuitive, geometric picture for the multgation of two Z-sums in
eg. (3.6), taken from [53]

The proof for the equation (3.6) uses the triangle relatsme (Fig. 3.1):

n 1—1

ZZaw—ZZawZZawzau (3.9)

=1 j=1 =1 j=1 7j=11i=1

The equation (3.6) actually states that the Z-sums form aaledcHopf Algebra
(see appendix of [80]).

Since, in order to apply eq.(3.6), one needs to have nested mith the same
argument, it is usefull to know how to synchronize them. Tdaa be done with
the help of the following formulae:

Z(n+c_1;m1> Y )
c—

. 51315131 ;. .
Z(n—1;my,...;x1 —I—JZ; RS Z(n—1+4j;mg,...;29,...)
S(n+c¢;my,...;x,.. ):

S(nyma,...;x; Z S(n+j;ma,...;xe,...). (3.10)

The Z/S-sums are a fairly general object, in a lots of casewsiit be necessary
to consider these general objects, but instead some simmpdsr (see Fig.(3.2)). If
one for example takes the index n in Z-sums to be infinity, amseavith the so
called multiple polylogarithms of Goncharov [30]:

Z(OO; miy...,ME;T1,... ,xk) = Limh...,mk (1‘1, e ,ack). (311)

If, in addition ton = oo one also sets; = - -- = x; = 1 then one gets multiple
Zeta-values [12]:

Z(oosmy,...,mi; ..., 1) =((my,...,mg). (3.12)
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S-sums
multiple polylogs Euler-Zagier sums
harmonic polylogs multiple zeta value:

|

Nielsen polylogs

|

classical polylogs

Figure 3.2: Inheritance diagram for S-sums from [53]

By taking onlyz; = --- = x; = 1 and leaving n general, we get Euler-Zagier
sums ([26] [81]):

Z(nymy,...,m 1,0 1) = Zy o, (). (3.13)

On the other hand, the S-sums for valugs= --- = x;, = 1 andm,; > 0 reduce
to harmonic sums [74]:

Snyma,...,mi; 1,000, 1) = Sy, (1). (3.14)

Multiple polylogs, in turn contain as a subset the classpalylogs Li, (x),
Nielsen’s generalized polylogs [56]:

Snp(x)=Li1 . 1,21(1,..., 1,z 3.15

»(@) 1ot ) (3.15)
p—1

and harmonic polylogs introduced by Vermaseren and Rerfb@dli

Hpoomp () = Ly, o, (1,...,1,2). (3.16)
N——
k—1
In this work we will specially use multiple and harmonic polgarithms, therefore
we will take a closer look at these two subclasses of nested suthe appendix.
In the next section we will introduce hypergeometric fuoi, which are related

to eq. (2.31) and later we will link those to nested sums.
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3.3 Hypergeometric functions

3.3.1 Gauss function

The series

abr  ala+1)bb+1) 22  ala+1)(a+2)b(b+1)(b+2) a3
S T A B T cr et 2) 3

(3.17)
is called the Gauss series or Gauss hypergeometric serfig@auss function [66].
The symbob F (a, b; ¢; z) is usually reserved for it, where b, c are parameters of
the function and: is called the argument. Introducing the following notation

(@), =ala+1)(a+2)...(a+n—-1) (3.18)
called the Pochhammer symbol, wiif), = 1, then one can write

(a)n = 7P(§(Z)n) (3.19)

and the Gauss functions can be written as

n=0

(3.20)

The series is convergent for all valuesagfreal or complex such that| < 1. In
the casdz| = 1 itis convergent if R&c — a — b) > 0.

The Gauss function has an integral representation, provigg|z| < 1 and Réc—
b) > 0 and R¢b) > 0, which is given by

1
oFi(a,b;c;) = % /tb_l(l — 1)1 — )Tt (3.21)
0

The integral is also called Pochhammer integral.
Gauss function can also be represented as Barnes-typeainteg

+100
I'(c) D(—2)T(a + 2)T(b+ 2) .
T(b)L(a)2mi / Tt 2) (—2)?dz. (3.22)

—100

2F1(a7 b7 & x) =

provided that|z| < 1 and that|arg(—z)| < w. Actually, the expression in
eg. (2.22) is exactly of this form, so the result in eq. (2.280 be also written
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as
D D_, b
Habm) = TEm)TT NG —alla+ b 5)
ININGS!
D D p
X2F1<a’a+b_??ﬁ>' (3.23)

There are number of relations which allow one to transforenghrameters and
argument of Gauss function. The most famous ones are Eelatityland Kummer
identities [66]:

X

oF1(a,bc2) = (1L—x)"%F (a, c—bic ﬁ)

_ T
= (1-x) b2F1<c—a,b;c;—$_1>

= 1—2) " %F(c—a,c—bcx). (3.24)

3.3.2 Generalized Gauss function

One can generalize the Gauss function, by adding equal nushbéather gamma
functions in numerator and denominator in the series reptaton:

o0

(al)n(az)n .. (ap)nx”
Z (b1)n(b2)n - - - (bp—1)nn!’ (3.25)

n=0

The above series is called generalized Gauss function ergiéred hypergeomet-
ric function, and for it we use the symbol

pr_l(CLl, a2, ...,0ap; bl, b2, oo ,bp_l, x) (326)
The above function is convergent when < 1, for z = 1 if
p—1 P
Re(Z bi—> ai> >0 (3.27)
i=1 i=1

and forx = —1 if

p—1 P
Re<2bi - Zai> > —1. (3.28)
i=1

i=1
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The integral representation is (we set ngw p — 1) [66]

1
I'(bg) 1 by—ap—1
Fy(ay,...,ap;b1,...,bg;2) = 1 /tap (1 —t)% %
P P ! ['(ap)L'(bg — ap) ;
xp_qu_l(al,...,ap_l;bl,...,bq_l;xt)dt
(3.29)

where Réb,) >Re(a,) > 0 and|arg(l — z)| < =.
The Barnes-type integral representation is given by:

—a
s

['(b;) +icoT'(—2)
qu(al""’ap;blv"wbq;x) = = D i

q
27 H i _iso H P(bz + 2)
1=1 i=1

I'(a; + 2)

Il
—

(—ZL')ZdZ,

(3.30)

provided thaiz| < 1 and that arg(—x)| < .
One interesting special case for= 3 andxz = 1 is Dixon’s theorem [66], which
states:

L(d)L(s)I'(e)
Fa)l'(d+e—a—c)l'(d+e—a—Db)
sFy(d—a,e—a,s;d+e—a—c,d+e—a—b;l),

(3.31)

3F2(CL, b7 C; dve; 1) =

wheres = e +d — a — b — ¢ and one must have Re > 0 and R¢a) > 0
and which can be used to balance the hypergeometric funclitrat is: if say

in eq.(3.31)d = 1/2 + d' and all the other coefficients are integers, then, by
applying Dixon’s theorem one gets hypergeometric functigth equal number of
half-integer coefficients in numerator and denominator.

3.3.3 Appell functions

One can also generalize the Gauss function to two argumastead of just one.
This leads to four possibilities:

> A (@) (b ) (D i)
Fi(a, b1, by w1, 2) = ZZ( ) +]C() 1).( 2)i ;'j'2 (3.32)
n=0 j=0 n+j kN

A)pti(b1)n(b g
Fy(a,br,boscr,com1,20) = ZZ( )(:1])( (122)(.2)] n1'j|2 (3.33)
n(c2); 15!
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i(01)n(b
Fs(a1,az,b1,bo;5¢521,20) = ZZ (a1)r a2 nlla); 2423 (3.34)

141
n= 0] 0 n+J nJ
. . n+] n+] wlxz
F4(CL, b7 C1,C2,x171’2) - ZZ ol 0 (335)
n=0 j=0 -

(3.36)

In this thesis we will only be concerned with the first Appeih€tion F; and the
generalized form thereof

(11 ntjcc )n+j (el)n ce (ep)n (il)j o (ip)j ‘T? x%
Z Z T (3.37)
=0 j—=0 Cl ntj e ( )n+j (gl)n T (Qp—l)n (ll)j o (lp 1) n.J

which has the following contour integral representation:

pi-l p2—1 p3—1
IT T(lx) II T(gx) II T(ck)  Fico+ico
k=1 k=1 k=1 lede(—xl)Zl(—mg)ZQ

(2mi)2 ] Tax) T1 Ter) TT Tlin)—he 2o
k=1 k=1 k=1

P2

['(=2z1)I'(—22) ﬁ [C(ag + 21+ 22) [ T'(er +21) ﬁ (i + 22)

p1—1 p2—1 p3—1
H D(cg + 21 + 22) H I'(gk + 21) H P(lk + 22)
k=1 k=1 k=1

This representation, as well as representation eq. (313@reralized hypergeo-
metric function, is of the form eq. (2.31), therefore we etm@me Feynman inte-
grals to be expressible in terms of these hypergeometrictifurs. The generality
of this statement is one of the main motivations for us to lolgser at hypergeo-

metric functions.
Let us now look at another general method for dealing withterastegrals, which

also has a link to hypergeometric functions.

3.4 Difference equations and hypergeometric functions

In a well known paper [46] a method has been introduced wlidiased on dif-
ference equations. One starts with an integiaind raises the power of one prop-
agator to a number, which one treats as a variable and one can fix other powers
of propagators usually to one. Combining various IBP refegione obtains differ-
ence equation:

ap(n)M(z) + a1 (x)M(z+ 1) + ...+ ar(z)M(x 4+ r) = G(z), (3.39)
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wherea;(z) are rational polynomials in ande andG(z) contains Feynman in-
tegrals which have one or more propagators less then thmalrigtegral M (x).
For these integrals one obtains again similar differenagagons and at the end
one obtains a triangular system of difference equatiorextiBg with the simplest
integral, i.e. the one with the least number of propagatong, can use various
methods to solve the equations. The most widely used is byngaknsatz in
form of factorial series [51, 46]

> by
@ 3.40
“;r(gg—fﬂz“)’ (3.40)

where the values of the parametars; and K are to be determined. This method
for obtaining high precision numerical values was succdlyspplied to various
multiloop calculations, e.g. [47, 48, 62, 64]

The equation in eq. (3.39) is calledorder ordinary inhomogeneous difference
equation. In case that the ter@(x) is zero, the equation is called homogenous.
Similar to differential equations, difference equationsist order

M(z+1)=a(x)M(z) + G(z) (3.41)
can be formally solved as

z—1 z—1 z—1
M(z) = [H a(i)] M (o) + ) {[ IT e

i=x0 j=zo i=7+1

}G(j), (3.42)

where M (z) is the initial value. In the case af; being fraction of polynomials
with rational coefficients, the products give Pochhammaentsyls. Therefore the
solution is nothing else then a generalized hypergeomtetniction, assuming that
G(3) is given in terms of Pochhammer symbols and/or powers ofaegt;. That
means that should we have a first order difference equatioa foaster integral,
we can find automatically the hypergeometric represemtatiul, in case the coef-
ficients are balanced, we can expand it. Unfortunately, ifferénce equations of
higher order, just like for differential equation, therenis formal solution. In this
case one has to use more advanced and difficult methods, dilade transform
[51, 46] or make an Ansatz for the solution in terms of funtsimne expects to
appear [77].

The observation that (first order) difference equatioribpalgh a priori unrelated
to Feynman integrals, can also be naturally expressed a&sdggmetric functions
strengthens the belief that hypergeometric functions aigaral representation of
Feynman integrals. But let us now show the connection betvisgpergeometric
functions and nested sums.
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3.5 Relating nested sums and hypergeometric functions

As we have seen, hypergeometric functions can be represastsums over Poch-
hammer symbols containing a number and summation indices. How do these
relate to nested sums introduces in first section of thisteln@aplLet us start with
rewriting the Pochhammer symbols as products and mangthat expression a
bit:

1+q, — Walton

(D)n

n

- I
= (e [ ([T )]

~ e[S (E2)]

= o[- 000 (G ]
- (1)nexp:—§: _/? . Z,J

- (—e)k
= (1)neXp_—Z( )S(n;k;l)]-

(3.43)

This means that we can expand all Pochhammer symbols indggaetric func-
tions in terms of nested sums. Since we have products of Routier symbols, we
will get products of nested sums, but using their algebrhalldw us to systemat-
ically perform expansion ia. The details of the implementation will be described
in detail in next chapter.
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Chapter 4

HypSummer

4.1 Introduction

In this chapter we will describe in detail the FORM packageSymmer, which
expands ire balanced higher transcendental functions of the form:

= (% +bre), - (B +be), "
Z (c_l j—d . Cp721 dp _'7 (4-1)
= (G T die), - (F + dpae), 1!

and

= (F b€, (F+ bp€) s j o (3 + fie), - (F + fre),

=0 n=0 (5 + dle)n+j (T dpe)n—i—j (% +hie), - (F + hpe),,
y (% +kre); -+ (2 + kpe), al " “2)
(% + mle)j e (lp2*1 + mp—le)j j' n!

where Pochhammer symbol is defined@g = Fl(f‘(l')” and latin indices;, b;, . . .,

m; are integer numbers. The first expression is the sum repegsemof the so
called generalized hypergeometric functigf},_; and the second one is the sum
representation of the so called generalized first Appelttion F;. The term "bal-
anced” means in this context, that the number of integer atidiiteger coeffi-
cients are equal for the corresponding summation indexhdrcase that all latin
indices are even integer numbers, there already exists dvFdiplementation
called XSummer [54]C++ library callednestedsums [78] as well as Mathemat-
ica implementation HypExp [50]. For the half-integer caménts there has been
published an upgrade of HypExp [37], which can deal with saomaber of classes
of hypergeometric functions. There is however a generaréilgn for expansion

35
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of generalized hypergeometric functions with balancetbmat coefficients [79]
based on algebraic manipulation of nested sums. By rdsticurselves to co-
efficients of the formg which are the one needed in multiloop calculatiomse

considerably simplify the general algorithm A and B of [78].the following we
describe the implementation and present some examplesuslLfatst look at the
generalized hypergeometric functions.

4.2 Expansion of generalized hypergeometric functions

In order to expand the sum of eq. (4.1), we will first bring atRhammer symbols

to the form(3 + ¢),, and(1 + ¢),, using the formuld’(z + 1) = 2I'(z) [HypSum-
mer — GammaCracker.prc]?. The next step consists in expanding the Gamma
functions in nested sums using [79]

(29, - Q-5 s}

k=1

(1 4 e>n _ <1>nexp (- i (_22]:)k Sk (2n) + S_k(2n)]> 4.3)

k=1

[HypSummer— GammaFEzpandor.prc] and also expanding the Gamma func-
tions without summation index [HypSummet GammaepCracker.prc]. Here
one has to note that we expand integer as well as half-intetdeed Gamma func-
tions yielding nested sums with argumentin both cases, thus the package does
not discriminate any more between the integers and hafers and also purely
integer valued generalized hypergeometric functions gpareed. Also one can
see at this level already why the sums eq. (4.1) and eq. (A& to be balanced.

It is only when there are equal number of integer and haffgiat valued gamma
function with the same summation index, that the Pochhansgmabols in eq. (4.3)

in front of the exponential function cancel. Now one can expthe exponential
function to the desired order inand one gets products of nested sums, all with
the same argumertn. Here the algebra of nested sums we mentioned in previ-
ous chapter, comes into play and reduces the products @chesins into sums
of single nested sums according to eq. (3.8) [HypSummeBasisS.prc]. Also,

the applied formuld’(z + 1) = «I'(z) brings possibly a great deal of polynomi-
als in the denominator. To deal with those terms we use rigeugeneral partial

1See remarks at the end of this chapter
The text indicates the name of the FORM procedure in HypSumme
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fractioning formula [HypSummers PartialCracker.prc]:

I 1
n+an+b a’b(n+a)2
£ Ol 00— a) (- ). (@)
“ Dy "a\nta ntu) T
whereO(z) is zero ifx < 0 and one ifr > 0. This leads us to the following cases:
i " Sar s (210) (4.5)
S G abeop
D a0 S i (20) (4.6)
n=1
> " Sy (27) (4.7)
n=1

and the corresponding cases without the nested sums:

[e.9] n

x
nzz:l (% +a + be +n)™ (4.8)
2 (4.9)
n=1
i " (4.10)
n=1

Let us consider the cases with nested sums first. We rewdatedh(4.5, 4.6, 4.7)
as following:

> (\/5)271

;(%+a+be+27n)m 1yee M3 T 500, k( TL) ( )
= 2n\k

n=1

Z(\/E)Znsml,...,mk§x1,...,xk(271)- (413)
n=1

Now every summation index is equipped with &, which means that we have a
sum over a function with argumegt:

> f2n) (4.14)
n=1



38 CHAPTER 4. HYPSUMMER

and the next step will be to apply

[e.e]

> o) = 2 (3 ) + 31" (). (4.15)
n=1 n=1

This yields after some relabeling the following expression
[HypSummer— SummConuv.prd]:

S VD

2::1 (@ + be +n)m Sz e, (1) (4.16)
Z(iﬁ)"nkSml,...,mm,..,,wk (n) (4.17)
n=1

Z(i\/z)nsml,,mmml”zk (n) (418)

and analogous terms without S-sums. Now we will convert tsei8s to Z-sums
[HypSummer— ConwvStoZ.prec] since Z-sums will be slightly more convenient
to deal with. Taking eq. (4.16) we get

}: a+&+4z — Z etz (M — 1) (4.19)

n= 1

and now we have to reduce the offgetio zero. We have to distinguish two cases
a < 0 anda > 0. In the case of negative offset, we proceed as follows [HypSu
mer— Summer2.prc]:

0o a—1
Zm -1) = Ty (1 —1
nz::ln—a—i-be v = 1) Zz:;z—a—i-be v (0=1)
(Vo) = (V)
L, —1 L, —1).
+ hem _— ) + z:: n+b€ o (nta )
(4.20)
The last expression can be expanded ursing
k .
(n+e)” }: k=i (4.21)
which leaves us with
}: Zmy.(n+a—1). (4.22)

n=1
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The offseta in the argument of the Z-sum can be brought to zero using th@ d®)
[HypSummer— Zsynch.prc], which brings us to

i (ﬁ)n Zima,...(n = 1), (4.23)

n=1

which is per definitionZ,, .., .. /7 2,....z: (00) OF, Using eq. (3.11) of previous
chapter,Liy, . mim(z1,..., 25 V).

In the case that > 0 we first expand the denominator dérusing eq. (4.21) from
which we get

g:l %Z...(n —1). (4.24)
Now we apply the following formula [HypSummer Summer21.prc]:
ni:o:l %Zml,._;xl,___(n —1) =
T :1 %Zml,_m,._(n -1)
S S

In the first expression on the RHS of eq. (4.25) the offsistnow lowered by one
and in the second expression of the above equation, the détite nested sum is
reduced. Using eq. (4.25) recursively gives us terms

> (@ Ty (= 1), (4.26)
n=1 n
which are the same as eq. (4.23) and/or terms like
Z ﬂj (4.27)
n=1 ((1 T n)m

which we will treat further below (see eq. (4.32 ff.)).
Let us now treat the expression in eq. (4.17), the case witlenominator but with
a power of summation index. First we rewrite the Z-sum adogrtb

n—1 4

x .
Zml,...;xl,...(n - 1) = Z 2.777,—1127712,...;1’2,...(11 - 1) (428)
=1 1
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Next thing we do is interchanging the two summations, legdom[HypSummer
— NegSummer.prd]:

Z(\/E)nnmzm1,m1(n — 1)
n=1
n—1

S VS B Ly i1 -1)
j=1

ip=1 1

2 i ) > n.m
= E ~7711 Zm2---;x2---(11 - 1) E (\/E) n-. (4-29)
i1=1 B n=i1+1

The last sum in the above equation can be done analyticalhg jislypSummer
— NegLi.prc]

S "™ = 3 O\ x)"
n§1<ﬁ> n§1<0 ﬁ) (V)
_ <%)mn§1(ﬁ)"

_ (835)’” (I/f)il/; (4.30)

which gives a finite number of polynomials ipfor any finitem. Using eq. (4.29)
recursively we either reduce the depth of the Z-sum to zezacé obtain terms
like eq. (4.27), or we obtain terms with Z-sums of non-zemptdebut with denom-
inators with positive powers of the summation index, thaerms like eq. (4.23).
The last expression with nested sums, eq. (4.18), we canwersjmilarly using

o0
S (VD) Zy i (0= 1)
n=1
o) n—1 LL’il
= (\/E)n Z 7:771—11Zm2...;502...(il - 1)
j=1 =1 1
0 ‘Tlf . 0
=D im0 =1) D (V)"
i=1"1 n=i1+1
NG
—1_ ﬁZml,m2...;m1-\/5,zg...(oo)' (4.31)
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The three cases without nested sums eq. (4.8-4.10) can keeadaitogously using

S S V) S S 3
2rar Gt @ T mrgr ¢

n=1

in case that the offset is positive and in case it is hegative we use

0 a—1
(Vz)* Va)rre
Z n—a—l—be z—a+be + be™ + Z n+be

n:l i=1 n:l

M

(4.33)
What is left to do is compute terms like
> (fn) = Lin (V) (4.34)
n=1
and -
> (VE)"n™ = Li_pm (V). (4.35)
n=1

Li_,,(x) is just a polynomial which can be done using the eq. (4.30pFynmer
— NegLi.prc]. Atthe end we have the result of our expansion of eq. (4.19 as
linear combination of multiple polylogarithm&i,,, . m, m(1,...,1,4/z). Inthe
case that the argument = 1 one needs to be a bit careful due to ter%
comming from manipulations like eq. (4.31) and eq. (4.3Me Tase eq. (4.30) is
not problematic, it is just

Z n™

n=i1+1

In the case of eq. (4.31) one cannot do anything similar. OelypSummer has
to make sure that the hypergeometric function one is expgndi

Z1+1

(4.36)

PFP—l{alw--7aP§b17---abP—1§1} (4.37)
fullfills the convergence property
P—1 P
> b= a; >0 (4.38)
=1 i=1

This implies that the expansion incommutes with the procedure of taking the
limit x — 1 in [HypSummer— argl.prc]. In the case, where argumentlind
hypergoemetric function fullfills convergence propertyltiple polylogs reduce
to multiple zeta values and have a particularly compactesprtation.



42 CHAPTER 4. HYPSUMMER

4.3 Expansion of generalized first Appell functions

The generalized first Appell function can be written as:

i i (% + ble)n+j e (%) + bpe)n—i—j % (% + fle)n T (%) + fpe)n
N U ¥ N R TR U o

(3 +kie); - (F + kpe); @yt -

(%"‘mle)J (tr ); gt nl

= (%‘i'ble)j"'(%p“‘bpe)j (%“‘kle)j"'(%“‘kpe)j zd
+Z(c_1+d€),...(c_p_|_de), b lp—1 4!

j=1 \2 1€); p) P ](§+m1€)j”'(T+mp—le)j !
+§: (%_‘_ble)n'”(%}_‘_bpe)n (%_‘_fle)n'“(%) +fp€)ny_

n=1 (%1 + dle)n e (%p + dpe)n (971 + hle)n T (%J + hl’e)n n

(B 40y (FH A (R4 ey
(G i), (Z+dpe), (G e (B +hpo),
(

by ko). i yn—i
2+ kpe); ry - (4.39)

The first two sums on the RHS of the above equation are justglered hyperge-
ometric functions, the last sum however,

nz—: 61 —|—f16 i (%’ +fp6)n—j (% —l-kle)J(%p +kp€)j
(5 h16) o (B hpe), (4 me); - (5t + Mp-1€);
I ]
) x (4.40)
' (n—j)

we have to compute differently. Following the same samesstépxpanding Poch-
hammer symbols in nested sums and using their algebra lilklédifer generalized
hypergeometric functions, we get expressions like:

(@)

S : 2n — 2j) x
Z:: Lia+ be fn—j)m mlv---,mkyxh---,xk( 7)
><Smp...,mk;961,...,%;C (2]) (4.41)
n—1 n j

Z _|_a+ bE +]) Smly---ymk§x17---7xk(2n - 2]) X

J=1
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> @) Sy, (20— 25) X
XSm’l,...,m;C;x’l,...,x;ﬂ(2j) (443)

n—
Z ! (w/)n_j Sm17---7mk;5017---7$k (2n) X

XSm’l,...,m;C;x’l,...,x;ﬂ(2j) (444)

and the corresponding cases without the nested sums, wisiahili\not describe
here, since they can be computed using methods from pregeciton. Also,
the eq. (4.41) can, via shifting the summation ingex» n — j which is done
automatically by HypSummer, be reduced to the eq. (4.42) usdook closely at
eq. (4.42-4.44). Rewriting the summand as

L ()P
g +a+b€+ ) Lyeees T3 LY 5eeey k( j)
XSml,...,m;C;m’l,...,r;C(2j) (445)

and doing so analogously for eq. (4.43,4.44) and using aggi(.15) we obtain,
after some relabeling and changing from S-sums to Z-sums:
2n—1 ( %)]

> mzml,...,mk;m,...,wk(j — 1) x
j:

X Lol cimlyih oy (210 = = 1) (4.46)
2n—1 " j
Z < ;) ijm1,~~~7mk;r1,...,Ik(j - 1) X
j=1

X Lol cimlyih oy (20— = 1) (4.47)
2n—1 ]

:L. .

Z < ;) Zml,...,mk;:vl,,,,,;pk (j - 1) X
j=1

><Zm17 ST T, (2n—j—1) (4.48)

It suffices here to treat only eq. (4.46), the other expressigan be done analo-
gously. We rewrite eq. (4.46) as

$j2

—-1j—
z:: z:: a+b€+j2 Zm17...,mk;x1,-..,xk(j2 - 1) X
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1\j—j2
L X Zm’ B AR A 4 (] _j2 - 1) (449)
(j —]2)7”1 200 2P g
where the inner sum is again of the same type, but with theedsed depth of
the nested sum. Recursive use of eq. (4.49) [HypSummetalga.prc] gives us
expressions like those in eq. (4.16-4.18):

2n—1 J1 -l 15 )72 Jh-a=l 5. )k
I D IR D DI e N

mi — m2 —
a+be+ji)™ £= (j1 — Jj2) = U1 = k)

X Zt st (e = 1) (4.50)
2n—1 j1 1 : jkfl—l .

J1 ;mi (m2)j2 (xk)]k
2 I Y G 2 G X
= = (=) = Uk — )™

X ot oot (G = 1) (4.51)
2n—1 j1—1 2 32 Jr—1—1 (xk)“

x
U VT X
j; pz:l (J1 = J2)™ ]gz:l (Jk—1 — Jr)™
XZml,...;ml,...(jk - 1) (4.52)

and similar expressions without Z-sums. When summing beakrsively, in order
to account for the fact that the sums in eq. (4.49) have figpealimit, we slightly
modify some of the methods we used in previous section. Bidase eq. (4.25)
becomes

Jrk—1—1 i
'1: .
Z WZML---;IL---(M —-1)=
Je=1
Jek—1—1 .
1 x]k
J— —Z . . _ 1
X jzl (CL — 1 +]k)m m17---,1‘1,...(jk )
—
Jk—1—2 Jk
o jz:l a +]k Zm2~~~;:v2,...(jk - 1)
k
:L-.ykfl ]
+m2m1,...;x1,...(yk_1 - 1), (4.53)

and eg. (4.29) modifies to

Jrk—1—1 '
Z wjkjlznZML---;Il,---(jk - 1) =
Jr=1
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ot e (G () )

(4.54)

and finally, eq. (4.31) modifies to

Je—1—1
Z wijm17___;x17--.(]k - 1) = EZm,ml,...;x-xh...(]k—l - 1)
Jr=1
€T - :ijkfl .
_ﬁzm,ml,...;x-xl,...(]k—l - 1) (455)

Applying eq. (4.53-4.55) and similar identities recurspe eq. (4.46-4.48) [Hyp-
Summer— Ralga2.prc] we can express eg. (4.40) as liner combination of
Zma,...x1,...(2n—1). Transforming Z-sums to S-sums and synchronizing them, the
double sum in eq. (4.39) results in

(Y A+ bre), - (B + bye),, "
Z (% + dle)n L. (%J + dpe)nm X Sml,...;x1,...(2n)7 (456)

n=1

which can be computed with the algorithm from the previoudise. The graphic
fig. (4.1) shows the internal structure of HypSummer package

4.4 Usage

In this section we use HypSummer to expand several hypergieicrand first Ap-
pell functions and compare the results with other packagesimerical results.
In [53] examples of the expansion of several hypergeoméirictions have been
presented. We will use them to introduce the syntax of Hyp8amand check the
expansion result. The functions we want to expand are:

(1)  2Fi(e, 267 1 -3¢ ),
) 2F1(17 €; x)
(tit)  3Fa(a—2€ —2¢,1 —¢1—2¢,1—2¢x)
) ak3(
)

Fi(—

1 1

2,1,26 2¢;2 — §—|—€,1—|—26;1)
2—¢€,6€2,1,9) (4.57)
() Let us look at the first hypergeometric function. The HypSwenimput has to
be as follows:
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INPUT IF sumn(n,1,inf)
L HypG = .........
IF sum(j,1,n-1)

/ Y
GammaepCracker GammaepCracker
GammacCracker GammacCracker
PartialCracker PartialCracker
GammaExpandor GammaExpandor
BasisS BasisS
SummConv \ SummConv
ConvStoZ ConvStoZ
IndexTrans Summer2
RalgA2 Ssynch
RalgA21 Summer21
Zsynch NegSummer
ConvZtoS NegLi

Znumbers
argl

IF sumn(n,1,inf)

HypG = ...S....(2n)...

Figure 4.1: Internal structure of HypSummer
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L f21 = 1+sumn(n,l1,inf) *Po(0,ep,n) *Po(0,2 *ep,n) *
InvPo(1,-3 *ep,n) *InvPo(1,0,n)  *pow(x,n);

Here one can see that the objects one is putting infarg:, ep, n) for Poch-
hammer symbols. For the half-integer cases we will wRtéialf(1/2,a, ep,n).
For inverse Pochhammer symbols one just need the self etptgnprefix Inv.
The Pochhammer symbdto(a, ep,n) has three input slots, where the first one
is reserved for the integer number or zero, but not a symhelsecond for the
ae and third slot is reserved for summation index. All of thef@sshave to
be filled with something otherwise the program will not workor example, if
one hasF(F_(iJg)") one would writePo(—3,0,n). For the Pochhammer symbols
Pohalf(1/2,a,ep,n) one has four slots where in the first one allways has to be
% and the other three are the same asfor For example% would

be Pohalf(1/2,—2,ep,n). These definitions are chosen this way to simplify the
internal pattern matching of the package. The result oh(8qd. (4.57) up to order

O(e®) is
f21 =

+ep2 * (
+ 4% Li(2, - (X)(1/2))
+ 4% Li(2,(x)(1/2))
)

+ ep3 * (

+ 24+Li(1,2,-1, - (X)"(1/2))
24+ Li(1,2,-1,(x)7(1/2))
24+ Li(1,2,1, - (x)"(1/2))
24+ Li(1,2,1,(x)"(1/2))

24 Li(3, - (X)°(1/2))
24+ Li(3,(x)"(1/2))

~ + + + + +

+1

Please notice that the result here is in different reprasient then in [53], where
the result is:

oF1(6,26,1 — 3e;2) = 14 2(2Li(2,))
+ (12Li(1,2,1,z) 4+ 6Li(3,2)) (4.58)
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which is due to eq. (4.15). The result is still the same, ascanesee using expres-
sions like

Li(m,z%) = 2" Y Li(m, z) + Li(m, —w)]
(4.59)

and generalizations thereof [79].
(i), (iii) The result of the other two functions is:

(1)  oFi(1,—61 —ex) =1+ (—Li(1,—vx) — Li(1,/x))e
+2(=Li(2, —/x) — Li(2,x))e* + 4(—Li(3, —/x) — Li(3,x))e
+8(—Li(4, —/x) — Li(4,V7))e* + O()

(i11)  3Fy(—2¢,—26,1 — ;1 — 26,1 — 2e;2) = 1+ 8(Li(2, —/x)
+Li(2,v/x))e® + (—8Li(1,2,—1,v/x) — 8Li(1,2,1,/x)
—8Li(1,2,—1,—/x) — 8Li(1,2,1, —/w) + 48Li(3, —/x)
+48Li(3, /)€ + O(e*) (4.60)

which both agree with known values.
(iv) Another, rather nontrivial example is hypergeometric tiorc which con-

tribute to the grap :

1 1
4F3(§, 1,2¢,2¢;,2 — ¢, 3 +e,1+42¢1) (4.61)

Here we have half-integer valued coefficients which areruad, therefore the
function is expandable with HypSummer. The output from Hymp#er is:

f43 =
+ep2 * ( -4+ 4 +x22)

+ep3 * ( -24-6 +23 + 8%22 + 16+In2 )

+ ep4 =+ ( - 108 + 96 =xlidhalf - 12 *z3 + 24+z2 - 96/
5#2z2°2 + 112 *In2 + 84 *In2 xz3 - 48 xIn2°2 - 24 *In2"°2
*72 + 4xIn2°4 )

+ ep’5 * ( - 432 - 576 =*li5half + 451  *z5 + 192«
lidhalf - 28 *x73 + 72%z2 + 32%72%z3 - 192/5 =222 +
560*In2 - 576 =*In2 *lidhalf + 168 *In2 *z3 - 336 *In2°2

- 252 %In2°2 *z3 - 48 *In2°2 *z2 + 96*In2"3 + 96 =
In2°3 *z2 + 8*In2°4 - 96/5 *In2°5 )

+ 1;
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In standard notation this gives:

1 1
4F3(§7 1,26,262 — 6,5 + 6,1+ 2¢; 1) = 14 (—4+4()€

1
€3(—24 — 6(3 + 8Co + 161ny) + €*(—108 + 96 Li(4, 5) —12¢3 4 24¢o
—?422 4 1121ny +841n2¢3 — 481n3 —241n2 ¢, + 41n3) + O(e)?  (4.62)

which coincides with the result given by HypExp2 from [37].
(v) Let us take an example of an Appell function:

Fi(—2—€,6,6,2,2,y) Z Z "ﬂ( ) (©n x_Jﬁ (4.63)

. 1)
=0 1=0 2 J:

where we will taker = y = 1 in order to keep the output short. HypSummer
gives:

fl =
+ep x ( -573)

+ep2 * (6118 - 2 %z2)

+ep3 * ( - 239/108 - 2 *z3 + 10/3 *z2 )

+ ep4 + ( 3853/648 + 10/3 *z3 - 61/9 %22 + 2/5 %722 )
+ 1

or

=2 — e e62,1,1) = 1— 2et+ (2 9gy)e?

1 €66 24,1, - 36 18 2
239 3853 10
+(_@— C3+—C2)€ +(648 —CS——C2+ Cz)
+0(e)’ (4.64)

which coincides with known values.

One can also write in the input a number of basic functionsciwidypSummer
can deal with (see table for all basic functions in HypSunmmEor example, the
two-loop integral:

@ d=3—2¢ 1—2¢ 1 1 31
Cn Fi(26, 151 4 € =) — 260 (=, 1; 2 =
de {2 1( €, 1] +674) €2 1(27 3 )}

J? 274
(4.65)
where.J is a massive one-loop tadpole, needs to be written in HypSemas
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L s3 = (1-2 *ep) den0(0,4 *ep) *((1+sum(j,1,inf) *Po(0,2 *epj) =
InvPo(1,ep,j) * pow(x1,)))-
2 ep* (1+sum(j,1,inf) * Pohalf(1/2,0,ep,)) *
InvPohalf(1/2,1,0,)) * pow(x1,))));
yielding
s3 =
+ep-1 x (
+ 1/4
)
+ep x (
- 2L, - 1/2)

+ Li(1,1,-1,1/2)
+ Li(1,1,1, - 1/2)
- Li2, - 1/2)

- Li(2,1/2)

)

+ ep2 * (
- 2+Li(1,1,-1,1/2)
- 2xLi(1,1,1, - 1/2)
+ Li(1,1,1,-1,-1, - 1/2)
+ Li(1,1,1,-1,1,1/2)
+ Li(1,1,1,1,-1,1/2)
+ Li(1,1,1,1,1, - 1/2)

Li(1,2,-1, - 1/2)

Li(1,2,-1,1/2)

Li(1,2,1, - 1/2)

Li(1,2,1,1/2)

+ 2% Li(2, - 1/2)

+ 2+ Li(2,1/2)

Li(2,1,-1, - 1/2)

- Li(2,1,-1,1/2)

- Li2,1,1, - 1/2)

- Li(2,1,1,1/2)

+ 2% Li(3, - 1/2)

+ 2+ Li(3,1/2)

)

- 12
+ Li(1, - 1/2)

1
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Name Description Standard notation/Example
sumn Inf. summation symbol >">°, =sumn(n,1,inf)
sum Finite summation symbol -7~ = sum(j,1,n-1)
den Int. denominator T =den(a,ep,))
den0O Int. denominator - =den0(a,ep)

without sum. index
denhalf Half-int. denominator —L— =denhalf(1/2,a,ep,))
5 tatet)
ep Expansion parameter ¢
pow Power function 27 = pow(X,])
powep Power of exp. parameter ¢* = powep(ep,a)
Gamma Gamma function I'(a + be + n) = Gamma(a,b*ep,n)
Gammaep Gamma function I'(a + be) = Gammaep(a,b*ep)
without summation index
Po Pochhammer symbol (a + €), =Po(a,ep,n)
Pohalf Half-int. Pochhammer (% + a + €),, =Pohalf(1/2,a,ep,n)

S(R(..),X(..),n)

S-sums

Z(R(..),X(..),n-1) Z-sums

Sml,...;xl,...(n) =
S(R(M1...),X(x1,..).n)
Zml,---;l‘h---(n - 1) =
Z(R(m1,..),X(x1,..),n-1)

Table 1: Basic input objects for HypSummer
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45 Remarks

Some remarks due to other package is in order. As alreadyionedt in case that
the sums we expand have integer valued coefficients, therthiage packages al-
ready cited in section 4.1. In case of half-integer valuesfftments there is Math-

ematica package HypExp2 [37]. The package can expandrcéntpergeometric

functions, namely:

22 2t 20 2l
3, 33, 3i, 30, 3
1 3

417 43

whereP? in this notation means tha is the depth of the hypergeometric function
»Fp—1 anda is the number of half-integer coefficients in denominatod arthe
number of half-integer coefficients in numerator.alt= b we have balanced hy-
pergeometric functions. The expansion algorithm of HypgEgdifferent than the
approach taken here. It reduces a given hypergeometridgidnnio a basis func-
tion of the same type using differential operators and thamakes an Ansatz for
the expansion of the basic functions of the correspondipg.tyet us take a look
at 2% -type functions and compare with HypSummer. HypSummer gaared the
balanced ones, but sin@ is Gauss function, one can use the Euler relations in
order to balance the case# b. The caset’ are both balanced, so HypSummer
can expand them, which leaves tifetype functions. Againg = b case can be
done and3{-type can also be balanced using methods from previous ehdfite
two remaining cases}; and 3} can unfortunately only be balanced in case that
the argument ig using generalization of Dixon'’s theorem [66]. Also, one ddo
say that the method HypEXxp2 uses is not in principle boundetieé mentioned
hypergeometric functions above, it can be generalizedgoednidepths. One other
remark also needs to be made here. Both HypExp2 and HypSuexpand hy-
pergeometric functions whose coefficients are of the féFma +be+j. Recently,

in [41] the two-loop massive sunset vacuum diagram like the im eq. (4.65),
but with two different masses, has been expressed in terrvgodbasic hyperge-
ometric functions with coefficients having not half but gearvalues and whose
expansion ire can be expressed in terms of elliptic integrals [44]. Onéneftivo
hypergeometric functions is balanced and could be in grlaaione using gen-
eral Algorithm B from [79], the other however ig—type. The class of multiple
polylogarithms is not sufficient for the expansion of thiadtions.



Chapter 5

Applications

In this chapter we use the methods from chapters 2 and 3 ariy thien to var-

ious Feynman integrals, first of all the set of EQCD mastergrals. We first try

to express all Feynman integrals in terms of hypergeomairictions. Then we

use the package Hypsummer described in chapter 4 and expamesulting hy-
pergeometric functions ia We have seen that all scalar integrals can be expressed
as Barnes-type integrals, but only one-fold integrals leageneralized hyperge-
ometric functions, which in turn can be expanded using Hypser. In order to
achieve the minimal number of Mellin-Barnes integrations, try to find Mellin-
Barnes representations of subloop integrals and inserthei given integral, which
then might been computable in terms of gamma function.

5.1 EQCD master integrals

Let us start with the simplest example:

D 1 T:l(1-2)
J= [ d k— 5 = —5 (5.1)
k2 +m (m2)'~2

This is also the first and only one-loop master integral of BE@Bd we will use its
integral measure for other integrals. However we will nesgdrl some other one-
loop integrals, which will be used to compute more compéidantegrals, therefore
we will write them down here. Those are [68]:

d"k 72T\ + Ao — DIT(=M+9)r(-x+2)
/ B N 5 (5.2)
PP =R DT O)D (= — Ao + D)(p2)MHA2= 2
/ Pk CwIl(-A+ D)
(P + 1M =k T(A)T(A2)

53
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/d )\1 + D AT(=2)T (M1 + X2 — ? + 2) 5.3)
— X+ D — Z)( ))q-l—)\z—j-i-z

/ delde2 B

(DM (R — k2)?)2 (ke +12)%
B WDF()\l + X2 =D+ XA3)L' (A + Ap — %)P()‘l - %)F(_)‘Q + %) (5.4)
- (A (A2)T(A3)0(5) .
/ dPkydPky B

(2 2P ((hr — )2 (ks + 12)%

TPT(A 4+ A2 — D+ A3)T(A1 + Ao — 2T 4+ Ao — 2)T (=20 + 2)
I(A)T(A3)L(AL + 202 + A3 — D)I(E) '

(5.5)

Since there are no two loops master integrals for EQCD we gbree loops
integrals of which there are two:

The first one we will solve inserting the result of eq. (5.2hieh will leave us with

eg. (5.5). Since both results we are using are given in tefrgarmma functions,
the result of the master integrals is:

_ TP - 2)r3 - D)’r <2D‘ DI+ 5) (5.7)
(6 —2D)1(3)

The second three loops integral is more difficult. We use éimesmethod, how-
ever this time we insert eq. (5.3) instead, resulting agagti (5.5). Since eq. (5.3)
is given in terms of a one-fold Barnes-type integral and®&)(in terms of gamma
function, the master integral itself will be given in ternfgyeneralized hypergeo-
metric functions:

3(1+D)

Csc DT} 22— DF[4 ]FB D]F[% %}F[%}
Q - e ( I - 2D] "
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oo glglnlfi2s o) {18114}
(20~ 9D+ p?)r[1+ 2]

- Zhnl{re- g5+ 25 10)])
(5.8)

whererCsc[rz] = I'(x)I'(1 — z).
All hypergeometric functions are balanced in 3 as well asredlision, therefore
we can use Hypsummer to expand the result.

@ D—4—2¢ 5 1 103 1141 112
—=L T 2 ce— o — € (——) — € +5G)

12 DY

J3 3 2

—e(— 9225 + 256a,4 + 168(3 — 96¢5 — 641n” 2(, + 3— In?2 — 32¢y)

—66(—% + 1536a5 — 1240¢5 + 1152a4 + —43 — 432¢3

+5761n 2¢2 — 2881n” 2¢y + 1281n> 2¢, + 481n* 2 — 3 Apsg 144¢4

+192¢4 In 2)

—e7(—411899203 + 384056 + 9216a6 + 6912a5 — 5580(5 + 4288ay
%Cg - @c — 1608¢3 — 44288 ¢3 +25921n2¢2 — 10721n% 2¢,

—17281n22¢2 + 576 1n> 2¢, + ?m 2 —1921In* 2¢, — zgﬁln 2

4
+% In%2 — 5364 — 192¢4Co + 864¢4 In 2 — 5764 In? 2 — 176¢6)

2667781 87040 74240 772868
—e8(— Ty sTb + s7a + 55296a7 —

+17280s6 + 41472a¢ + 25728a5 — 20770¢5 + 14624a4 +

260720 25024 199296
—7320¢2 + Cols — BASACE + = (3¢3 —

74240 92800 189568

7

20797
3

G

In 2C2

+223201n% 2¢5 — 3656 In2 2¢; — 777610 2¢3 + 2144 1n° 2(,

+34561n32g§+@1 49 —8641In*2¢ —%721 59 11552 In® 2¢,
2 4
L8 62_38 1

= n' 2 — 1828(y + 320(4(3 — 864C4 (o + 3216(4 In 2
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+1152¢4 In 2¢5 — 2592¢4 In? 2 + 1152¢4 In® 2 — 792¢s + 10566 In 2)
(5.9)

B e

1
—I—ln4)e— g(—288—47r2+1921n2+47r21n2— 181022 + 81n32

Q) » :
D=3-2¢ 1 (_2+4ln2)—(—16—2%‘1'61112_411“22

17674

1
—2In2In8 + 114@,)62 -5 ( — 34560 — 9600a, — 6407 —

+230401n 2 — 12072 In 2 — 38401n? 2 + 32072 In? 2 + 320 1n> 2
—4801n*2 + 14072 In 4 4 4560(3 — 12960 In 2<3> e

4
—( — 864 — 160a5 — 4872 — wl—g + (15—(1)7#(—1 +1n2) + 1672 In 2
101 , 10 5. 5. 3. 2In*2 222 2
————7fn2 — —7r*In2% - 27%In32 — In2(432
oo " In 37 In 7 1n° 2 + 5 + E + 15 (4320

+1n2(=720 +In2(80 + (=5 +1n2)In 2))) — 280¢3 + 972(3 + 1081n 2(3

15412 2¢, +54(8+1n22 . ln4>C3 + 5”2( . 144+21n2(24+1n22

1445g5)64
2

—In 8) + 81(3) v (5.10)

The numbers appearing in the results of all expansions srtiieisis are defined in
the appendix A3.

5.1.1 4-loop integrals

Now we come to four loop integrals, where we will try to use Hagne tactic we
used on the two three loop integrals: insert simpler sutdaoomrder to obtain in-
tegrals which can be written in terms of gamma functions.

5lines

Let us start with the integrals with 5 propagators. Thereaceof them:

(@) (5.11)
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Just like in the case of three loop integrals, we insert eR) ®vice for the first
master integral obtaining eqg. (5.5) which gives us:

- %)Zr[:a —dr( -1+ g)3

7275 — 2d]F(
- T8 — 3d]1“<§) ' 612

For the second master integral we insert first eq. (5.3), ¢lge(b.2) obtaining again
eg. (5.5), so that we can express the master integral as:

_ =2(=1)M2Csclen]?T[1 — €]l [—1 + 26T [—2 4 2¢ + )]
(e) B [[2 — €2T[AJT[—3 + 4e + )]
)

—142¢,—24+2e+ A, -3+ 3+ A
[[—2+ 3€]l'[—3 + 3¢ + )]

1
—_— 5’
I 3+3e—|—)\]3F4< 2—€6—3+2+%5,—1+2+3
1)

(—1))\2—2+257T3/2086[67T]2F[1 o E]F _ % +e

+ T[2 — T[T NT[=5 + 6e + \

—2+6,-2+36,-3+3e+ A, —4+4de+ A
€ —3+3+5,-2+3+3

1>,

where the dot on the line means we have kept the power of tipagator a variable
A. Inthe result abové® has already been set4e- 2¢, however, since no expansion
has taken place the result is valid in all dimensions. Sgitin= 1 expanding the
result using Hypsummer gives:

(Q) pesa

F[—4 + 4e + )\]3F4 <

(=) m2Csclen)?’T[1 — €| T[e]T[—1 4 € + A]
(=2 +2e+ N2 — €]°T[A]

5 Lg—66-1+e+ A —2+2+ A

s 3-26,2—6,-%4‘64‘%,6"‘%

_|_

(5.13)

a2 g€ 17¢2 N 37207 1976975
J4 B 2 36 216 1296 7776
1792¢3 ) 72443143 256 A o o .
+ 9 )e + < 16656 135 (177T + 607 Inj 601112)

8192 47T488(s)\ ;, (2259199205 128
3 27 279936 405

(12(265 — 721ny) Inj
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217088
+607% In3(—53 + 241ny) + 1774 (=53 + 72 1n2)> + ay + 32768as
1 2
427 Z?O s _ 87 %6 C"’])e? +O(&) . (5.14)

For 3-dim we have [5]:

(e) D=3-2¢ T
> 3 E—k? 8In2 + ¢(49 + 16 (> — 32In2 + 161n22)

+€2(308 — 108 (3 4 64 ¢y — 224In2 — 64 (5 In2 + 64122 — %m?’ 2)

412
€3(1904 + 128 ay — 4323 + 448y + = ¢2 —14081n2 + 544 (31n 2

@13

—256 (3 In2 + 4481n%2 + 96 (, In? 2 — n 2+8—301n42+426g4)

+¢4(11648 + 512 a5 — 3212 (5 + 512 ag — 3024 (3 + 2816 (o — 1088 (o (3

1648 1648
+— (2 —8704In2+21761n2¢3 — 1792In 2y — ——In n2¢2
+28161n 2 —10881n%2¢3 + 3841n?2 ¢y — 1792/31n3 2 —1281n%2¢y

2
4320 64/31n° 2 + 1704 ¢4 — 1704 (4 In 2)

+€>(70784 — 256 56 + 2048 ag + 2048 a5 — 12848 (5 + 3584 ay
11536 7968

—19008 3 + 3768 (2 -+ 17408 ¢ — 4352 (o (3 + ¢+ cz
—532481n2 + 1334410 2 (5 + 152321In 2 (5 — 11264 In2 Gy
6592

+4352102(y G5 — 5~ In2 (2 +174081n2 2 — 43521n% 2 (5

11264 4352
%1&2{3— 1264 ) 5o 335

24 128In*2¢ — 2261 594 381n62+11928C4

+26881n%2 ¢y +
2 2240 | 4

ln 2§3—512ln 2C2

+5592 C4 (o — 6816 (4 In 2 4 3408 ¢4 In? 2 4 11146 () + O(€9) .
(5.15)

6 lines

There are four master integrals with 6 propagators:

m m (5.16)
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Let us start with the one with two massive lines. Inserting(®8@) squared leaves
us with eq. (5.5) and we can write it in terms of gamma functiag:

7% __ S7GI6 - 2D)0 ()

= — . (5.17)
sin(22)0(L522)12(2 - D)2 (D - 2)
The next master integrals has three massive lines andimg®@ne loop subinte-
gral does not lead to a one-fold Barnes-type integral remtasion. However, the
hypergeometric representation for this integral has beand solving the corre-
sponding difference equation here [4]:

_227P(D - 2)T(6 - 2D)T'(5 — *P)P(3FP)I(F)

."-.....‘-". — ><
J4 VL7 - 2D)T(1 — )
3D
x[3F2(1,9 —3D,5 — 57— 2D, 7~ 2D;1) —
D
~3F3(1,9 - 3D,2 = =7~ 2D,4— D; 1)), (5.18)

The expanion was given in [4] and we just present here thetegadspansion in 3
dimensions up te’

LN p_3 o 3 9 9 21 3,
3- _Z Z¢ln2 - == <—1 2
= 16€C2+< g G2t G2n <3>+€2D

9 27 9 207
+—<2——<21n2+—<21n22— -G +—<3+36a4)

( 91n’ 2+ S 0 2——<2+27<21n2—27§21n 2 +18¢yIn32

G- - D6 T 6+ T G - 2160
432 a5) te (1836 56 + 5184 ag + 2592 as
—14229 (s +432ay +21¢3 — @@ + 288 ¢y ay
+@c2 G- G- T 1826+ 2 M2 G G
+$1 n2¢s+54In%2¢ — 22523 In?2¢2 —1081n32¢, + 181n2
+661n*2 ¢y — 1281 29+ 3561 69— @4442)
—64(81?7’60 sTh — 725;6437@ — 62208a7 + %@ — 1101656
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14229 16965
C5 — 288ay — 1440(3&4 +

—31104a¢ — 5184as +

1803411 261
—3456C2a5 — ———(2(5 — 1728Cza4<—-—§—C243

676203 435087 72864
+207/5¢3 — ——— (33 + 0 3+ — In2s6

91080 3726 292707
———n 22 — 72910 2C2 (s — = In 202 — =

426871 )

G

In 2¢3

2C5 — 36102 2¢5 + 1089 In2 2(5(3

8892 4

+13338l 2 n®2¢2 —121n*2 — 601n* 2¢3
2 432

3 n 2{2 +2161n32¢, —
1
6ln 24+ —1n"2

216 792
—3961n42C24————1n52-+ In® 2¢, — -

10689 4581 874368
a3+ ——C2 — 458144]11242) € 7

976320 9563184 11691495
+ s8c + s8b + TsSa + 746496ag

488160 437184 36933273
i s7b + s7a + 373248a7 — 576 + 2203256

4743 1627776 7655985
+62208a6 + 3456a5 — G — —Caas +

5 (3Cs + 8640C3a4
1 2571264 4102
- 6265 C?? - 577 6 (256 + 41472(2a6 + 20736(2a5 + 5 O 33

(2G5
9006387 2063808 2028609
+3456¢2a4 + 87(2(3 — (2C3 + 742204 R Te

| 435087 4 525208177 437184 10256 + 546480 I 2¢2
70 > 9800 2 7 7 3

5815017 2484 5517639
————— In2(>(5 + 1458 1n 2((3 + 5 In 2(2 T35 ——1n 2(2 (3

s8d

14
121 4881 1372
4—8725 In2¢5 — 8?%60 In? 256 + 128061 In? 2¢5 — 37295 In?2¢2
—65341n2 2<gg3—-2§§zgl 2902 18513, 292¢3 — 144103 2¢,
1152 2
— 5;361 3242Qs+-§§§§—1 32¢2 + 36010t 2¢3 + 7921n 2¢,
2014 144 24 4752 432
081%@—345 6?15%—i3 2g+im2
1584 2592 648
—— %26, — ——2" + h128-— 73296 a4 — 32067(4C3
105363
—4581¢4Co + (4¢3 + 27486(, In 2¢5 — 9162¢4 In? 2¢ — 30544 In? 2
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58649

(6¢2) + O(€°) (5.19)

The next master integral is with four massive lines. Inegrteq. (5.3) times
eg. (5.2) gives us again eq. (5.5) and we can write it downnmgeof hypergeo-
metric functions:

—Cot(B5)Cse(BE)T(6 — 2D)I(3 — D)T(2 - D)n(—1+ L)3
7~ (5+2D)(B-D) (1 4 2C0s(Dm))I(4 — D)I(—2 + D)T(L)
1+3)

(4-
(473 Prz 2D Cos(Dr)Cse G”Vr(-—g) I'(-14+9)’T(-3+ D))
(2C0s(5F) + Cos(257))T(—2 + D)T(F)0(~ 3+3D)

D 5 3 3D
F<12————— D; =, — ——J)
342 5 2+ 5’ 3+ 5
22D d 20 Cse(BEPI(5 — S2)1(2 - B)D(—1 + §)?Sec(ZE)

n 2
r@—Dﬁ(2+Dﬁ@P

(5.20)

D=4-22 4 2, 4(11-4¢) 53 4(435+ 71 —250¢) 4
= 3—1-36—1—36 3 € 5 €
(3267%)  6472In?2  8(—241 + 81n* 2+ 192a4 + 149C3 + 36(5)\ 5
—( + — )e
45 3 3
9328  21267*  8x® 2416 , 448 51 2,
—(== — = a'lm2+ 21n
( 5 T T 5T 3"
512 4481n*2  512In°2 5864
D12 gy MBITZ BI2I2 o 4006as 004G
3 15
4
6§V+mmg>
21827%  254087% 16912 2
——<14032——1228886-+ som’ | 25408m0 16912 4y o, 2308 o2y
945 45
4 4 23681In*2 1024
+@W4ln22—ﬁwzln32— 368 In + 0 m21n2
45 9 3 9
35841n°2  20481n°2 32
— — 18944a4 — 28672a; — 32 — 87 =
T 5 8944a, — 28672a5 — 32768as — 8 60Q3+-15w 3
14872¢2
+———J§~+2m36@——KﬂS@)J—%O@ﬁL (5.21)
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and in 3 dimensions

Qo 2 (Lo
( — 897 + 6072(—9 + 2In2(9 + In 2)) — 240 (48a4 +2In2t + 63C3>>e
1440
—(48a4 + 3205 + 21G + %( 9610 24(—15 + In4) — 8974(—3 + In4)
4572 (36 4161023 — 81n2(27 + In512) + 381<3>> + 401?%(5)62
- < — 192a5 — 128ag — % - ?;)—2(14(9 + w2> + 5256 — %mz‘*

(45+2(-9+1n2)In2) — éﬂ21n2< ~3+1n2? —I—ln2(—3—|—ln4)>

Iy
~g” (89 — 178In2 + In41n8)

4 8

7%(99321 — 64862 1n 2)
30240

+% In2*(15 + 4(—6 +In2)In2) + % (24a4 + In 24> (3

2
+(— 14+ éwZ(—m? +5In4))G — 253G 1209(5)&”

- (64(a4 + 8(as + ag)) — 20855 +

1
+393¢3 + %w‘*(%? +41In2(—444 + (87 — 1601n2) In 2 4 3601n 4)

1
+2037¢3) + 403¢s + %w2(60(768a4 + 512a5 +291¢3) — 8In2(4In 2
(15 4+ In2(—10 + In 2(—125 + 141n 2))) + 75(—27 + In 8192)(3)
—I—28095C5)> &+ O(E). (5.22)
The last master integral is the one with all 6 massive lines. Hale only been

able to find two-fold Barnes-type representation, whicklég@ unbalanced hyper-
geometric double sums.

7 lines

There are two master integrals:

(5.23)
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Let us start with the first one, the master integral with 5 nvasknes. The one
loop integrals eq. (5.2,5.3) will not be of any use here. Hmvdhere exist hy-

pergeometric representation of the two loop two-point fiomcwhich we can use
[17]:

// dPk1dPksy _

(k3 +m2)(k3)((k1 — )% + m?)((k2 — @)?)((k1 — k2)? + m?)
7iT(1 + €)?

mAt2(1 +€)(1 — 2e)

1 3 q2
(m4F3(1,1+€,1+€,1+2€;§+€,2+€,2—€;_—2)+

dm
(14 e)T(1 — €)?m? 3 ¢
F(1,1,1 =, 2
2¢0(1 — 26)g2c ° 2(L 1, T3 4m2)
1 3 2
_2_6 3F2(171+671+6;§72+6;_4q—7n2)>7 (524)

wheree = 2 — D/2 but until we expand the result will be valid in all dimensions
In order to insert this into the expression for our mastezgral, we need to write
the hypergeometric functions in terms of Barnes-type iratisg as:

2—6,%+6,2+6

r 1,1+e1+€14 2€
e 4m? | T T(1+ (14201 +e)

¢ ) CTE+or2+er(2—e)
2

/dz 1—2)F2(1+6—2)F(1+26—z) am?\”
—2)P2—€e—2)'(2+€—2) ¢

s ) _Ire)
4m? [(1+e)
)T

/Ood 21 — 2)T(1 + € — 2) [ 4m? :
INCEEINP z) q?

+100
o Lltelde] @\ F(g)r(2+e)
32 3.2+e¢ am?2 | T T(1+eT(1+e)
D) — T2(1 4 e —
/ g, LT Z 2T (1 e —2) (5.25)
I'(s —2)l2+e—2)
+i00
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Note that we decided to take the countour to the left. We ceagrinthe result in the
our master integral and obtain again eq. (5.5). Closing ¢intowir again on the left
we get:

(2 = 20)0(1 — )T (e)1(2 + e)F(—l +26)I(—1 + 3¢)
27 1H2ee(—1 4 36) (-1 + e+ 2e2)[(3 — e)[(2 — e)T(—5 + 2e)

1
qu({—§+e —1 43¢, —1+ 3¢ {36 ——+26} 1)

21=4er9=4e0(2 — 36)(1 — €)3T(e)T(1 + €)T'(—1 + 3e)T(—1 + 4e)

N r(
e(—1+3e)F(2—26) (3—er (2—6) (—3 + 3¢)

1 1
qu<{ -5 +e€,—14 3¢, —1 +46}, {36,—5 +3e},1>

84T (1 — )I(—1+ €)' (e )2f(2 +€)
2¢2(—1+e+2e2)I'(2 —¢)

1
qu<{§,1,2e,2e},{2—e, + €, 1+26},1>
2_4671179_46030(267T)F(1—62F —14€e)I'(3e)I'(1 + ¢)

e2I'(2 — 26)['(2 — )T (% - 2e>

1 1
qu<{§,1,2e,3e}, {2 — 6,5 + 2¢,1 +2e},1>

2272784 (1 — )T(—1 + e)T(e)T(26)T(36)['(2 + €)['(2 + €)
* e(1—5€2 + 4eM)T'(5 + 26)T'(1 + 2¢)

1 1
qu<{§,26,26,36},{2—6,§ —|—2e,1+2e},1>

92-4e 73 —4P(1 — €)20(1 + €)2T(—1 + 26)I'(—2 + 3¢)

+

3 3
pFql <1,1,- —2¢,14€7,9=,2,3—3e,,1
2 2
€

7T (3 — 26)0(—1 + ¢
e(1+€)(—14 e+ 2¢?)

=
—_
_|_
b
=
©
+

3



5.1. EQCD MASTER INTEGRALS 65

qu({l,g—6,1+6,1+6},{§,3—26,2+6},1>

+r@—aom1—dmg+om2+dm—1+%ﬂw4+ﬁdn—1+%)
2-3+2er =3 (1 4 3¢)(1 — 5e2 + 4e)T'(3 — ) (1 4 26)T(—1 + 3¢)

1 1
qu({ ~3 +€,—14+3¢6,—1 4 3¢, —1 —1—46}, {6,36,—5 —|—3e},1>

2974 (3 — 26) I (=1 4 €)I'(1 + €)T(2 + €)T (=2 + 2¢)
(1+€)(1 —5e2+4e)T(3 — (2 — )T (—1 +¢)

3 3
qu<{1,§—6,1—1—6,1—1—6,1+26},{3—26,2—6,5—|—€,2—|—€},1>

(5.26)

All hypergeometric functions have balanced half-integalugd coefficients and
using Hypsummer we get:

A
D=4-2¢ _l+6<_§) +62(—%— C3)

J4 N 6 6
44 166 31 24
3( _ == 2 4 Y o i
b (=TG- sa) T~ G+ S G- = G- 3G)
602 584
+f5<———g——+154<5-F128a4+———Cg——l28(§—————C2

2732
+ 2@ I o+ @—m@@—mwg

2122
-+66(-— —E;——%192Os7b4—192037a—+ N .+ 1280as

784 736
—353<54-128a4—-———<34-3360c3a4—-———g§-—564ocgc5

2048 7824 4808
- 3G — —— (3 —19201ny 56 4 2400 Iny (3
4736

+—;hm@+%mm@ 3%@@—Mm@@@

320 32
4-———1n2 42-+ ln%—%1401né (3«—-E{lng—+543<4

—375<4g34-132<4g2-768441n2-—250<g>

22 2884
e7< _ 22 + 88 s8a + 3840s7b + 3840sTa + 28255 (7 + 422456

3 5
8528
+11776as — 1280as + 4802 (5 — 3840a4 + 22784a4 - —— (3
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39872 C3a5 + 36903 (3 Cs + 6720 Czay — @ (2~ 112800 G
@ {2 107776 {2 a1 — 3168 {2 G — 133628 Cg 612§§72 Cg
3840105 56 + 4800 Iny (2 + %1 Ny (2 — 94304 P Iy (25
167210y €3 + 96012 ¢, — 11392 In2 Coay — 1680 In2 (5 G
_%1 Cz 26944 C2 320 C2 9968 1112 2 Cs
—1601n3 —i—@ In3 ay + 2801n3 ¢3 — 736 Ing (o + —— 7888 nj (3

3
32 4984 736 1424 356
Ty ——1Ind G+ — v In§ — — —In§ G+ = 5 In§ 42544 ¢4

3 15
17388
+6432 (qaq — 750 (4 (3 + 1542 (4 (2 — (a3 — 3984 ¢4 Iny

+5628 (4 Iny (3 + 3216 ¢4 In —1608 ¢4 ha2 Co + 268 ¢4 Inj
8361 70903
&) +O(e) (5.27)

+— C4 + 2605 ¢ — 3600 (g C2 —

For expansion in three dimesion we have [5]:

1 1
:ZC2—§1n22+6(—4C3—g@—i—gln2§2+5ln22+ln32)

J4
1 21
+62(3Oa4+40C3+13C2—1C22—Zln2C3—45ln2C2—261n22
2 21
——31H 2(2—101n 24 2ln42)—|—63(—28a5— 03 (5 — 300 aq

1
—208 (3 — 54 (s —13(2(3—1—g(g+281n2a4+%ln2(3+234ln2(2

361 213
+—1n2<2 +1081In22 + == 1n22<3+ 1151022 ¢ + 521n3 2

——ln 2C2——1n 2+ 2 1n7 2 )+e4(—§—27836+24a6+280a5

12531 43 5
(s + 1560ay + 1632 (5 + —— cs — 552y — 12 (aay + 604Ca G

34901 3319 1755
510 = A In2—1841n2a5 + 5 In2¢s

2324
—2801In2a4 —393In2(3 +3161In2¢ — £In2C2C3 3Tln2§2

1065
—4321n%2 — 921n? 2ay — —ln 2(3 —11501n%2 ¢, — 175 In? 2{2

—1063¢3 —
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1 172
—2161n°2 — %1113243 + %111324*2 —33In%2¢ (34 161n® 2¢3
1 1
+§31n42+ §1n42g2 —241n%2¢2 —241n°2 + 81In°2¢, — 4%311162
1
—§1n62§“2)+(’)(65) (5.28)

For the second master integral we were not been able to firabihrpriate hy-
pergeometric representation that would enable us to ussutymer. The second
master is governed by a difference equation of first orderffiSvhich the master
integral in eq. (5.13) is needed for all Unfortunately, the hypergeometric repre-
sentation we have found in eq. (5.13) is not balanced for angéA, it is balanced
if one sets\ to any fixed integer value. Therefore the formal solutionhaf dlif-
ference equation for the second master integral in eq.)8i28s hypergeometric
unbalanced double sum, which we cannot expand.

8 lines

There is only one master integral for EQCD with 8 lines:

Wall] = <> (5.29)

It obeys the difference equation of first order given by [65]:

(3—D)(80+9(—6+ D)D)(5 — 2D + X)?
1(—3+D—X)(—6+2D—X)(—5+2D—X)(—1113D — X)
(6 — 2D + X)2(3D — 2(4 + X))Ga3(X)
“C10+3D - X)(—9+ 3D — X)(—8 + 3D — X)
(=34 D)(—=10+3D)(6 — 2D + X)*V Be8(X)
2(—6+2D — X)(—11+3D — X)(—10+ 3D — X)

(=8 +3D)(—4+2D — X)(5—2D + X)?(6 — 2D + X)?
8(-3+D—X)(—6+2D—X)(—5+2D—X)(—1113D — X)
(3D — 2(3 + X))(5D — 2(8 + X))(3D — 2(4 + X)) BBa(X)

“ 10+ 3D — X)(—9+ 3D — X)(—8+3D — X)(—7+3D — X)
(=8 4+ 3D)(D — 2X)(~13 + 4D — X)(D — 2(1 + X))Ba(1)J(X)
16(—3+ D — X)(—11+3D — X)(—10+ 3D — X)

(=34 D)(~2 + D)(3D — 2(4 + X))Ve3(X)J(1)
4(—6+2D— X)(—11+3D - X)

— (=24 D)(=2+ D — X)|(=3 + D)*(664 + D(—448 + 75D))

Wall +z] =

—5(=3+ D)(212 + D(—143 + 24D)) X + (626 + D(—422 + 71D))X>
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—(=56 +19D)X? +2X*| (3D — 2(3 + X))(3D — 2(4 + X))Ba(X)J(1)
/18(=3+ D — X)(=6+2D — X)(=5+2D — X)(—11+3D — X) x

(=10 + 3D — X)(—=9+ 3D — X)(~8 + 3D — X)]

(—=2+ D)*(D—2X)(9—-3D+ X)*(D —2(1+ X))J(X)J(1)?
16(—3+ D)(=3+ D — X)(=6+2D — X)(—114+3D — X)(-9+ 3D — X)
(=3+D)(5—-2D + X)(6 — 2D+ X)(4 - 22 + X)Ta(X)

(9 — 3D+ X)(10 - 3D + X)(11 — 3D + X)
(5-22+X)3-D+ X)Wa(X)
X(ll - 3D+ X)

(5.30)

where some of the integrals on the RHS can be representegigasimma functions,
namely:

(5.31)

_ I3 -dIr(4rE -3¢ +2)r@2—d+ )
Balz) = JS T - —)r2(2 — g)rz(x)r@ —2d + ) (5.32)

BBa(z) = ~3(d—2T(8 - 3d)0(§ — §II(5)°T(4 — 2d + )
L 43—dr(% — %CI)I‘(Q _ %)4 (2)T(7 — 3d + 2)
S % +2). (5.33)

The other have first order inhomogeneous difference equstitich can be solved
in terms of hypergeometric sums:

(6 —2D) 144(5

J (9=3D)-142(4 — d)-142
-1
_|_wz: _2D+]x1](5_2+])xljx
e —3D+j)e-1-5(4 =D+ j)z1-4

2(=2+D)J()I(2 = D)YL(F)T(5 — °F + j)T(4 = D + )
(3—D+3)208-3D—jI'(1—2)20(1 + jT(6 — 2D + j)

(5.34)
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Ved(x) = __ (D—2T(4~ 32 +2)P(2 -2 +x)

J5 T (D-3-2)TQ1 -1 +2)0( -2 +2)
,6—-2D+z,3—D+x,2— 2 +x
X4F3< 1+2,5-32 +24-D+u 1) (5.35)
L -2 .
V Bc(z) i (11—3D)_1+EV c(1) +
+§ 6 —2D+2)T(11 —=3D+3)| (~8+3D)(—6+2D — )
< T(7 2D + j)I(10 3D + ) | 4(=3 + D — j)(~10 + 3D — )

(=5 +2D — )(—4+2D—j)(3D—2(3+j))(3D—2(4+j))BBa(j)+
(=9+3D — j)(—8+3D — j)(—7+3D — j)j

(=84 3D)(D — 25)(D — 2(1 + 5))Ba(1)J(j)
8(=3+ D —j)(—10+3D —j)j (5.36)
where S .
Ga(1) = Q(T:?))BBCLQ) - Z(T__?))Bau) (5.37)
and
VBe(l) = 3D2_ o [(D — 3)Ta(1)
‘2?5 = 2) <2D3_ >BBa(1) - 2 Ba(h)]  (6:38)

are the initial values taken from [64].
The eq. (5.30) is a first order difference equation like the wneq. (3.41), and
given the initial value, it is formally solvable, where tharal solution is given

in eq. (3.42). The problem is that our master integ is in the difference

equation languagé/a(1), in other words it is the initial value. The way we are
going to solve the difference equation is by using the bogndandition at infinity,
following the procedure in [4]. We will take formal solutiay. (3.42) and write it
formally as equation for the initial value:

Wa[wo]:Wa[w][H ] ZG [H%] (5.39)

1=x0 Jj=zo i=x
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where
ﬁ 1 _T@P(1-8D+o)03- D4l P va) o0
Zrali)  T(5—22+2)03 — D+ 2)0(11 - 3D + )T (w) '
and similarly
! T(1+/)T(12 — 3D + ))T(3 — D + x0)0'(5 — 32
eI RSN ASHACES o ot

a(i) I'(6— 22+ /)I'(4— D+ j)I'(11 — 3D + x0)['(x)

The LHS of eq. (5.39) does not dependagriherefore the the RHS cannot depend
on z as well. We are free to take the formal limit— oo and use the fact that
Wa(z) in this limit reduces to:

Wa(z) "= J(x — o0) x { L%, (5.42)
Using Stirling’s formulal’(z + a)/T(z + b) = 2*°(1 + O(z~!)) the first term

on RHS of eq. (5.39) goes like*~? for z >> 1. This is one in 3 dimensions and
it vanishes in 4 dimensions.

Since some of the terms 6f(j) are given in terms of generalized hypergeometric
functions eq. (5.34, 5.35, 5.36), the resulti®fz(1) will be given in terms of at
most generalized first Appell functions. In 3 dimensionsghms are unbalanced
and hence cannot be expanded.in

The first coefficient is [64]:

= 5C3e> + O(eh). (5.43)

J4
The reason why we could not compute any coefficients is tleaéxipansion starts
giving contributions at)(¢~2) for most of the summands, which of course at the
end cancel. However we need also to expand the solutiolfef1) to O(e”) in
order to get theD(e?) right. That means computing very large expression from
O(e=2 — €") and here we come into problems with time. Further improveimen
the algorithmic implementations should be made in ordepé®d the computation
up. This is however only a technical problem, not a concepne.

5.1.2 Additional master integrals

In this section we will try to apply the same methods as inioevchapter on some
of the four loops master integrals needed for the QCD cdaresto electroweak-
parameter [63, 19, 13]. The master integrals have been deshpu high precision
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using Laporta algorithm and/or so called Pade approximatid19, 13] For the
simplest case of master integrals with 5 lines we have twescas

LW (544
where the dot in this case means that the propagator is ksgower two. Using

similar technique like in th case of eq. (5.11) we obtaindaihg hypergeometric
representations:

2DF ]F[3—D]F[%(—2+D)]2
‘ - T[8 — 3DIT[6 — D]r[g]
(F[5 — 2D]T[6 — 2D]F[4 - %] [g - 1}

1) + (8- 3D)0(3 — D)r<1 - Q)

I 2

Both have unbalanced half-integer coefficients in 4 dinr@mrsiand cannot be ex-
panded ine using Hypsummer. However, unlike the other unbalancedtimmc
these functions are "only3Fy, functions and can be expanded using HypExp2
[37]. The first few terms of the expansion are

1 1  97+47% 833+ 96m% — 96(3 0
_ 1 @) 5.46
4et + €3 * 48¢2 + 288¢ o) ( )

The same master integral with one massles line risen to poveeis given as:
_ T6- 2D)T2(5 — 324 — D)T(—2 + 2)r? (-1
7=2PT(10 — 3D)I'(Z)

_ _3D 4 _ 1
X3F2<6 2D,5 32 4D Z)

11 3D D
432220
4
Lafter we multiply the result wit&((eew)/(mf’m)) in order to compare the results with nu-

9

B 3D
><3F2<5 2D4 3= D

2

D 4—@ 3—-D,2-%
><F<2——>3F2 27’ [’) 2
2 §_D7§

(5.45)

+3)

2

merics in [13]
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I'(5-32)r4-D)r(1-ra-rE -2rEk -1
T D)

7=2PT(8 — 2D)T'(£)
530 4 D 3 — 2 1
><3F2< 2, Z) (5.47)

2

and the expansion goes as:

R 1 9  —30—m? L
¢ = ———+ — - 5.48
i@ g8 T e PO (5.48)
4
where we multiplied the expansion result Wﬁh@”)/(z‘wD/?)) to match values

in [13].
There are four more master integrals we were able to compute:

NOGO (5.49)

There are with six line and can be represented in terms ofrggpenetric functions
along the line similar to eq. (5.16). They can be written as:

wcsc[&] [6 — 2D]I[—1 + Z2]*T[-3 + D]
—2+ DTS 3+3D

{6 —2D,3— D—2+D},{ —D2-= }1]

(=8+3D)x*Csc[Br]Csc[2BT|r[2 - %F 1+ 2]
(—4+ D)I'[-2 + D]T [ el

3D . D 3D D D
S P Nt B O 5.50
{5 27 27 3+ 2 }7{3 272}7 ] ( )

23-Dr3+DT[6 — 2D|T[5 — 32]T[2 — L)2r[-1 + D]4r[—4 + 3D
I[4-DIl'[-% + 2Ir[-2+ DIT

pFq

1\3|U
o
E
w

pFq

pFq 6—2D }{4 D}, 4]
+27TDP[5 3114 — DIT[1 —g]rz——r + 21T[-3 + D]
I3 — ZI0[~2+ D[ 3]
1 3D D D
ol 2} f22)e
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9-5+2D 15+ D[4 — 3RIP[3 — DIT[2 — 2J2r[—1 + 23

+ D
2

D 5
1,2—-=,-24D
{7 2’ 2+ }

pFq

D

3D
-1+ 5]31“[—5 + =5 IpF

2‘10+3D‘2(‘5+%’WDF[5 — 32104 — DIT[2 — 2T [-1 + 21T [-3 + D]
I3 - 2|r[-2+ DIT[%]

115 3D 3 D 1+D 4
277 2 Y 27 27

2—10—2(—2+%)+3D7T%+DF[5 — 3DJT[3 — DIP[2 — 22T[—1 4 233

_l’_

pFq

' T[]~ DI (2P
D 5 D 3D
qu {1,2—5,—§+D},{5,—4+7},4]
(5.52)
4
2T'[6 — 2D|T —%]r[?,—p]rl _glr ~1+2
(—4+D)T —%]r[—ﬂp]r g]

3D D 5D D
F 2D 5" 92 = 234 1| (553
pq{ﬁ )5 5 2},{8 2,3 2},]( )

can be done with Hypsummer

The expansion of i)

5 55 993 4+ 4472 2931 + 48472 4 1088 (3
“) =4 T g3 T 28 576¢
—82395 + 1322072 — 5287% + 59840 (3
* 5760
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42485  1217x% 1327 335 77 172
+(_ _RIe §3+7T2< C3) C5) n

256 240 36 576 27 3
+0(e?) (5.54)
as well as the expansion of
1 5 21472 201 — w2 4 74
L - T+ MG
12¢4 1263 36¢2 36¢
1
—( = 21150 — 65072 — 637 ) S
+360( 50 — 650n% — 637 + 58603 ) + o

(65268 (5 — 404190 — 15337 4 93300 (3 + 1072 (—1803 + 362 (3))e
+0(€%) (5.55)

The (7 %% and (7~ however contain unbalanced half-integer coefficient, but
they can be done using HypExp2 [37], which gives:

1 23 65 w2\ 1 1
G 66 m\1 - 5.56
: 3€4+12€3+<12+ 9>e2+0(6 ) (5.56)

and

1 11 13 4 72 -1
._.'.':: [ — —_— - 5.57
T e T e To) 557

where the normalization in all four expansions has beemtakeh that the nu-
merics can be directly compared with [13]. Further coeffitsecan be computed
without problems, it is just a mather of CPU time.

This concludes this chapter dealing with scalar integrateraperaturel” = 0.
In the next chapter we will speculate on possible applicatibsimilar methods in
finite temperature field theory.



Chapter 6

Heating things up

In this chapter we want to see what happens if we naively agh@ymethods we
used so far tdI" # 0 QFT and whether it may potentially be of any use. The
main difference to the zero temperature case, is - at thé dé¥eynman integrals

- that we have instead of four dimensional scalar integresso called scalar sum-
integrals, which we define as:

i TZ/ TZ/ ;i ;’IZ (6.1)

ko %

whereky = 2mnT, n € Z are the bosonic Matsubara momenta. Let us look at
the simplest example of a scalar massive tadpole integithi, ggneral power of
propagator:

1 R 1
Zm =Z(n=0,m?) + 2Tnz_:1/ CESTEENCEanD (6.2)
T

k

where theZ(n = 0,m?) contains zero-mode and we will not look at it, it can be
given in terms of gamma functions. Since we have only oneguafor in the rest
of the expression, we start with MB transformations obtagni

(z+ ) (2anT)*
2TZ / / tr )(pg +m2>)m
I'(- )(47T2T2) ((—=22)T (>\+z—3/2—|—6)
= 2T/dz (47)3/2—¢ (m2)M#=3/2+¢(\)2ri (6.3)
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Closing the contour to the right and picking the pole§'0k + z — 3/2 + ¢) gives
us:

- : . i
P27 5 ST+ e — § +7)¢(—Fe + 22 +2j) [ —m? 6.4)
92-2er3—[()) * T(1+ ) 47272 '
7=0
or
91=2X 15 —e—2Xpd—2e—2)
I'(A)

{F(A te— g)g(—?, +2+2)) +

(6.5)

X P(A+e—3+)C(—Se+22+2)) [ —m2 )
Z T(1+j) arT? )

7j=1
The first part isn = 0 limit and the rest is expansion #.

Let us now look at the next more complicated example, a mesdelf-energy
one-loop integral:

1
Hp) = i(@?)h((@—m%

k

1
s / .
=) (@ +a)M (¢ —p)* +a§ — 2pogo + pp)*
q

(6.6)

For the sake of simplicity, we do not consider Matsubara-peooe, since it ba-
sically coresponds to eq. (2.19), which can be written imseof Gauss function.
We now can use Feynman parameterisation and Mellin-Baraesformation to
write the self-energy integral as contour integral. Sineekwow the result of the
integral withoutpg, go in eq. (2.21), we will skip Feynman parameterisation and
use MB transform right away:

'p) = TZ //dzl...dz4r(_zl)"'F(_Z4)P()‘1+21)F()‘2+Z234)

(A1) (A2)(2mi)4

!/
(a3)  (45)(—2pogo)* (13)**
(q2)>\1+21 ((q _ p)2)>\1+2234
where we use the notatianss.. = z1 + 22+ . ... Now we can perform momentum

integration using eg. (2.21) and also the sum over Matsubaraenta by splitting
the summation to two parts;oco to —1 and1 to oo, leading to:

B i s F(—zl)...l“(—z4)
pr) = T/d 1---d 4F(/\1)F(/\2)(27ri)4F(D — A2 — 21234)

(6.7)
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x (p0)2z4+23(—2)237TD/2(p2)D/2_)\12_21234
X P(—D/Q + )\12 + 21234)P(D/2 — )\1 — Zl)F(D/Q — )\2 — 2234)
X (1 + (—1)2212“3)@—2212 — z3) (6.8)

This integral is to complicated to evaluate analyticallpwéver, the general struc-
ture of sum-integrals seems to be like this:

dg,
Ty (6.9)
JANCED SRy :

1 /ﬁdzz [ Dai + Zj cijzi)C(ai + Zj Céljzj)
1=1

(2mi)™

This is, apart fron{-functions, the same structure as in eq. (2.31). Since tee in
gration is over the complex plane, and arguments of(tfienction are complex,
the {(s)-function is meromorphic function for Re) > 1 and it has unique ana-
lytical continuation to entire complex plane, excluding fmoints = 1, where it
has a simple pole. Therefore it can be assumed that thegsésitr resolving
the singularities of MB representation and performing nuoag integration can
be applied here too. Since Matsubara frequencies lead & graiferation of MB
integrals, the question is how fast the numerical convergenill be.

Introducing finite chemical potential generates, since iduivalent to a shift of
Matsubara frequencies by a constant imaginary term, gkrestezeta functions,
also known as Hurwitz zeta functions. Since it has the saralgtical properties as
zeta function, adding finite chemical potential should pusadditional problems.
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Chapter 7
Epilogue

We have seen that the most important class of Feynman itdegy@ scalar inte-
grals, since all other cases are reducible to these. Fartiter one can reduce the
set of integrals for one particular problem to the set of dtedanaster integrals,
which in turn have to be computed. In general, one can wrisdlintegrals as
Barnes-type integrals. This has the advantage that the palebe resolved in an
algorithmic manner, which enables the numerical calcotatin the case of one-
fold MB integrals, one can perform the integration by pickimp the poles and
summing over them, resulting in generalized hypergeomseiies. These can in
turn be expanded in some cases using nested sums. For integicients there
are existing packages on the “market”, however many hypengéric series have
half-integer coefficients, for which, in case of balancedffioients, algorithms ex-
ist, but, at time we started the work, no package. Motivatethb fact that in vari-
ous theories master integrals can be represented throymgingoemetric functions
and that some of these, in case of single scale integrals, te{-integer coeffi-
cients, we have implemented in FORM a package for expangierof balanced
generalized hypergeometric and first Appell functions. ngdviB representation
of subloop integrals we were able to find suitable, that isfoldt MB represen-
tations, of number of master integrals of EQCD. For thoseplimaked integrals,
which have many massive lines and/or are non-planar, we narable to find
suitable hypergeometric representation, which would lenab to use Hypsum-
mer. In those case where we obtained suitable represemtaigpsummer was
successfully applied, producing analytical solution, ethcoincides with known
numerical values. We tried to apply the same strategy orr siteof master inte-
grals, the one contributing to QCD correction of the so chligparameter. Here,
the results were disappointing. Only for a few integralsiofe topology could
we find the appropriate representation, and even there therggometric sums
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were mostly unbalanced. This limits very much the applidgbof the methods
we used to obtain analytical results and the question mustsked, whether or
not the method of finding hypergeometric representatiodseapanding them us-
ing nested sums is going to be of any use in calculations iasca$ single- or
many-scaled integrals. Here, clearly, new approachesahdther developments
in hypergeometric functions are needed.

The situation in finite temperature is even worse. Techlyicgeaking, finite tem-
perature field theory is one case where we encounter matgistegrals. The so
called Matsubara frequencies act as different mass tehegfore, when applying
the methods to finite temperature, we were not even been@bl@mpute simple
diagrams analytically. However, it seems possible, att leaprinciple, to apply
MB approach and to obtain numerical values. We have shown ihe simplest
possible case. Like any other integrals, the integrals iteftemperature can be
represented as Barnes-type integrals and maybe simildwoaetor resolution of
singularities can be applied here as well. Once the polesactved one can inter-
change integration and summation and numerically comaéntegrals. Since,
as of now, there are no better alternatives and according3icliere is “the need
to develop novel computational techniques, in order to lbe bcomplete...[the]
task in systematic fashion®. Altough it is far from it this theds might be worth
looking at.

Another research area that is interesting concerning liasig is the application
of nested sums to difference equations. As we have seen,rfoofder differ-
ence equations one immediately obtains hypergeometric.surhere are more
advanced methods used to find solutions of higher orderrdiffe equations in
terms of nested sums [77]. Since derivation of differenagaéigns is algorithmic
[46], having an algorithms for solution in terms of nestechsuregardless of the
order of the difference equation, would be a major step faitw@he existing pack-
age Sigma [60] was applied on difference equations we hathéster integrals of
EQCD, however without result. Maybe the more general mettzdoing the lines
of work of [60, 6, 55] will be able to solve them.



Appendix A

Special cases of nested sums

A.1 Multiple polylogarithms

The result of the expansion given by Hypsummer is in terms wlfipie polylog-
arithms [30, 10], therefore we will give additional infortraan about this class of
functions. Multiple polylogarithms have a nested sumsesgg@ntation, since there
are the special case of Z-sums in the case that the argumiefiniy, as well as
an iterated integral representation. Let us first introducetions:

Foan fod g
t1 to 193
e 2 Y) = A.l
G(Zl7 7Zk7y) /tl — 21 / t2 — 29 / tk — 2k ( )
0 0 0

wherez; # 0.
Introducingg(z;y) = y%z we have

d
d_yG(er"azk;y) :g(zl;y)G(ZZa"'azk;y) (AZ)

and
Yy
G(z1,- -5 213Y) :/dt9(21§t)G(22a---azk§t) (A.3)
0

and by defining additionallgz (0, . .., 0;y) = % (Iny)* for all k-values being zeros
on can introduce the notation

Gml,...7mk(217 o 7Zk;y) = G(07 s 707 Rlyeey Rk—1, 07 o 707 ks y) (A4)

81



82 APPENDIX A. SPECIAL CASES OF NESTED SUMS

One can then find the relation to multiple polylogarithms

. 21 Z—
Gy (215 s 2039) = (D F Ly (L, 2, 220 (AB)
and the inverse relation
. 1 x
Limy e @1, 18) = () Gy (e = L 1). (AB)

Using eq. (A.1) one can define integral representation fdtiphe polylogarithms
as

1
) m1 1 dt
LZm17___7mk (1‘1, e, X k / b
— U1
0
dt \m2—1 dt dt \me—1 dt
— — A7
(t°> t— by (to) t— by’ A7)
whereb; = —L— and

T122...T

rodt dt fodt, o dt oa
/ 0...0 :/ n n-l ><...></ L _(A8)
t—an t—ay tn —an th—1— Qp-1 t1 —ay
0 0 0 0

and the short notation

i dt dt i dt
/ ( / . (A.9)
t— an t—a t —a
0

0

It is also of great importance to have a possibility to corepuimerical values
of multiple polylogarithms at fixed values. To do that onesuse

Gml,...,mk (zla <oy Rk y) =

y
0/(%0> 1 ltiltzl(%o) 2 1tiltzg'”(%o) k ltiltzig:

2. Z (J1+- +]k)m1 <£>j1 :

. z
Jji=1 Jrk=1 !

- (G2 + - .1+jk)m2 (2’_?42)]‘2 o j;}bk <Z_yk)3k (A.10)

and one transfers all arguments into a region where one hasvarging power
series expansion.
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A.2 Harmonic polylogarithms

When expanding generalized hypergeometric functions e 8q. (4.1) one ends
up with multiple polylogarithms of the formi,,, .., (1,...,1,z) which are har-
monic polylogs (HPL's). On their own, one can define HPL'sursd/ely as fol-
lowing [59]:

1
H(,...,0;x) = —'log"w
~——— n!
H(a,ay,...,a5;x) = / fa(®)H(ay,...,ag;x)dt (A.12)
0

for general vector of length, or weight n, where= 1,0, —1 and functionsf,(z)

are ) . .
h@ =17 folw) =~ fale)=1— (A.12)
The beginning of the recursion also has to be given, in trsg that would be the

lowest weight:

1
H(l;z) = /I——tdt = —In(l—2x)
0
H(0;z) = /ldt = In(z)
o t
|
H(-1; = ——dt = In(l+ A.13
(1a) = [ = mea) (19

An alternative definition would be;:

%H(a>a17 s ,ak;.l') = fa(ZL')H(al, <o Ak l‘) (A14)

From the equations above, it is easy to see that HPL's are ergemation of
Nielsen polylogarithms [56]. Historically, that was thasen for their introduction
[59].

HPL's also form an algebra, so one can write, just like in a@fs®/Z-sums, the
product of two HPL's (with the same argument) as a sum of eiltfPL’s of higher
weight. For example:

H(al, a; x)H(bl, bg; x) = H(al,ag, bl, bz; x) + H(al, bl, as, bg; x)

H(al,bl,bg,ag;(ﬂ) + H(bl,al,ag,bg;x)

H(bl,al,bg,ag;(ﬂ) + H(bl,bg,al,ag;x)
(A.15)
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Notice, that in thg above formula the relative order of themednts of a vector
a = (a1,a2) andb = (b1, by) respectively, is preserved. This is due to shuffle
algebra [59]. The general formula is then:

H(ay,...,ak1;2)H (b1, ..., b5 x) = Z H(er, ..y Clytko; ) (A16)
CieaiU> b;

where the symbd| )~ stands for the fact mentioned earlier, namely that theriater
order of the elements; andb; respectively is preserved.
The HPL's can be Mellin transformed and Taylor expandedcé&ime do not need
Mellin transforms and the Taylor expansion of HPL's, we réffie interested reader
to original literature [59].

What we are interested in are the HPL's with argument x=1. s€lare actu-
ally nothing else then Euler-Zagier sums at infinity, whick aothing else then
multiple zeta values (MZV) for positive’s, or colored MZV for arbitrarya’s.

H(a;1) = ((a) , a>0
H(—a;1) = (1-2"%¢(a) , a>0

H(ay,...,a1;1) = (—D)#@<O¢@,....a) , k>1
(A.17)
where(’s are:
oo i1—1  ig—1—1 k sgn(a;)i
— J
g(al,...,ak)_ZZ--- > o (A.18)
i1 1 1 j=1 Zj

and vectom = (a1, sgn(ai)asg, ..., sgn(a;—1)a;, ..., sgn(ax—1)ag).

The MZV’s themselves possess an algebra, which means gyatém be expressed
in terms of a few mathematical constants, like powers,@f-functions and certain

polylogarithms. For the relations see for example [10]] Hrid next section of the

appendix.
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A.3 Special values of harmonic sums

Here are the definitions of numbers appearing in the resultse expansions in
terms of harmonic sums as well as numerical values.

In2 = —5_1(c0)
(2 = Sn(o0)
tnzs = Lin(3)
s6 = S_5_1(c0) ~ 0.98744142640329971377
s7Ta = S_511(00) =~ —0.95296007575629860341

sTb = S5_1,-1(00) ~ 1.02912126296432453422

s8a = Ss3(00) ~ 1.04178502918279188338

s80 = S_7_1(00) ~ 0.99644774839783766598

s8¢ = S_5_1-1-1(c0) =~ 0.98396667382173367092
s8d = S_5_11,1(00) ~ 0.99996261346268344769
s9a = S7_1-1(c0) ~ 1.00640196269235635900

s9b = S_7_11(00) 0.99842952512288855439

s9¢ = S_g_21(c0) =~ —0.98747515763691525588
s9d = S_5_11,1,1(00) ~ 1.00219817413397743629
s9e = S_5_1_1,-1,1(00) = 0.98591171955244547261
s9f = S_5-1-1,1,-1(0) 0.97848117128116624247 (A.19)

Q

Q
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