
Combinatorial Aspects of Low-Rank
Matrix Factorization and Two
Applications in Bioinformatics

Epameinondas Fritzilas

Februar 2009

Dissertation
zur Erlangung des akademischen Grades
eines Doktors der Naturwissenschaften

(Doctor rerum naturalium)

an der Technischen Fakultät
der Universität Bielefeld

Betreuer:
Prof. Dr. rer. nat. Sven Rahmann

Prof. Dr. rer. nat. Jens Stoye

1. Referee: Prof. Dr. Sven Rahmann
2. Referee: Prof. Dr. Jens Stoye

Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706

Στην oικoγϵνεια µoυ

To my family

Contents

1 Introduction 1

2 Low-Rank Matrix Factorization 5
2.1 Signal processing: Blind signal separation 6
2.2 Data mining: Dimension reduction . 6
2.3 Introducing a-priori knowledge about the factors 7
2.4 Algorithmic issues . 8
2.5 A special case: Nonnegative matrix factorization 12

3 Identifiability in Low-Rank Matrix Factorization 15
3.1 Definition of identifiable graphs . 16
3.2 A digression concerning bipartite matchings 20
3.3 A non-algebraic view of identifiable graphs 22
3.4 Some combinatorial properties . 24
3.5 Partially identifiable graphs . 27

4 Optimal Manufacturing of Sensors 35
4.1 MINSENSOR is NP-hard . 36
4.2 An exact MILP solution for MINSENSOR 38
4.3 Cutting-plane approaches to solve MINSENSOR 41
4.4 A greedy approximation algorithm . 43
4.5 Computational experiments on randomly generated instances 49

5 Selection of Independent Subnetworks 53
5.1 Motivation . 53
5.2 MINSOURCE is NP-complete . 56
5.3 Data reduction rules . 59
5.4 An exact MILP solution for MINSOURCE 61

6 Modeling Uncertainty in the Network Structure 63
6.1 Robustness of identifiability in the unit-cost case 63
6.2 Computing the surplus and finding tight sets 66
6.3 On the robustness of identifiability in the weighted case 70

7 Modeling cross-hybridization in microarray experiments 71

iii

7.1 Technological motivation . 71
7.2 A case study for alternative splicing arrays 74

8 Estimating transcription factor activities in regulatory networks 79
8.1 Biological motivation . 79
8.2 A review of Network Component Analysis 81
8.3 A case study on subnetwork selection 82
8.4 Some directions for further research . 84

9 Conclusions 87
9.1 Summary . 87
9.2 Limitations . 88
9.3 Directions for further research . 88

iv

Chapter 1

Introduction

In many signal processing and data mining applications we need to approximate a
given matrix Y with a low-rank product Y ≈ AX. Both matrices A and X have
to be determined and we assume that from the specifics of the application we can
derive some constraints for A and X. In general, there are different factorizations
that approximate a given Y equally well and, therefore, the problem is inherently ill-
defined. On the other hand, we intuitively expect that the constraints that we impose
on the factors must somehow offer some control over the space of possible solutions.

In this work, we focus on an especially strong class of constraints. They arise in
applications that involve a bipartite network of sources that are emitting some signals
over discrete time and sensors that are monitoring these signals. In this context,
Y contains sensor measurements over several time points, X contains source signals
over time points and A contains the source-sensor mixing coefficients. We assume
that we know a-priori the connectiviy of the network, which implies that, in the
factorization Y ≈ AX, A (the matrix of the mixing coefficients) must have zeros at
certain positions. For this class of constraints a fundamental question arises: Does the
known zero pattern of A contribute anything to the uniqueness of the factorization?

An observation that follows from the linearity of the model naturally leads us to a
characterization of uniqueness up to diagonal scaling. It is important to note that this
characterization is combinatorial, in the sense that it is based solely on the structure
of the source-sensor network and not on the numerical values of a particular (A,X)
solution. In fact, it only assumes that the matrices A and X of a solution are nu-
merically generic. This discussion is formalized in Chapter 3 with the definition of
identifiable bipartite graphs. Thereby, the concept of structural rank is the crucial link
between linear algebra and graph theory.

Identifiable graphs are defined in terms of bipartite matchings, which are very well-
studied objects both in graph theory and in computer science. Below we mention some
existing results from both communities that we use in our investigations. We can only
start with Hall’s marriage theorem, which gives a concise theoretical characterization
for the existence of perfect matchings in bipartite graphs. From the algorithmic point

1

Chapter 1 Introduction

of view, a maximum matching can be efficiently computed due to Berge’s theorem and
the concept of augmenting paths. On the other hand, König’s theorem states that in
bipartite graphs a maximum matching and a minimum vertex cover have equal sizes,
i.e., bipartite graphs are easy input instances of the (generally hard) minimum vertex
cover problem. An elegant connection of bipartite matchings to linear programming via
totally unimodular matrices and integer polyhedra builds a bridge between continuous
and combinatorial optimization. In the case of non-identifiable graphs, we draw some
conclusions about the identifiability of the model, using Dulmage-Mendelsohn (DM)
decomposition, a canonical decomposition of bipartite graphs with especially strong
properties. Finally, the concepts of surplus and, in general, of submodular set functions
appear again and again at different points of the discussion.

After having established identifiable bipartite graphs as the basic object of our study,
we focus on two optimization problems that arise in the context of source-sensor net-
works. For these problems we coin the names MINSENSOR and MINSOURCE; we define
and study them in Chapters 4 and 5, respectively. Roughly speaking, both problems
deal with the selection of good subgraphs: Given a bipartite graph G the goal is to
find a subgraph of G that is identifiable and also satisfies some additional restrictions.
Both problems turn out to be NP-hard, as we show with reductions from SET COVER.
This is a prototypical NP-hard problem with many generalizations and variants, for
many of which the approximation (and inapproximability) properties have been well-
studied. One powerful generalization is SUBMODULAR SET COVER, for which a greedy
approach achieves a logarithmic approximation guarantee. We derive an approxima-
tion algorithm for MINSENSOR rather painlessly, by showing that it is, in fact, a special
case of SUBMODULAR SET COVER.

In Chapter 6 we ask another natural question that arises from our need to model
uncertainty in the network structure. Given an identifiable graph G, where the edges
have been predicted with some uncertainty, how many edge modifications (deletions
and additions) does it take, so that G loses the property of identifiability? This
robustness question is reduced to the computation of surplus in bipartite graphs and
we show how this can be done in polynomial time.

In Chapters 7 and 8 we present two applications from bioinformatics that can be
abstracted in the context of a source-sensor network. The first one is dealing with
the processing of microarray data under the presence of non-specific probes and the
second one is dealing with the quantification of transcription factor activities in simple
regulatory networks.

In summary, our discussion will cross two bridges that are built on solid ground.
Bipartite matchings and related concepts, like surplus and DM decomposition, will
bring us to the side of polynomial solvability and SET COVER will bring us to the side
of NP-hardness. The connection to these prototypical problems of computer science
offers a large palette of existing theoretical results. I certainly gained much from my

2

attempts to digest this classical material and combine it in new ways for my own
investigations.

Contributions. To the best of our knowledge we are the first to define identifiable
bipartite graphs in order to study the uniqueness of solutions in low-rank matrix
factorization. We are also the first to investigate the properties of these graphs and
related combinatorial optimization problems that arise in the context of source-sensor
networks. For our investigations we use several existing theoretical results, which we
combine in new ways.

Publications. Some parts of Chapter 3 (basic problem of non-identifiability, defini-
tion of identifiable graphs) and Chapter 4 (definition of MINSENSOR, NP-hardness and
MILP solution) were presented in COCOON’08 [FRSR08]. An improved version of
the conference paper, extended with the approximation algorithm for MINSENSOR, has
been accepted under revisions in Algorithmica. For the near future, we are planning a
conference sumbission with (parts of) the remaining material (MINSOURCE, robustness,
partially identifiable graphs).

Acknowledgments. This work was carried out in the Faculty of Technology of Biele-
feld University under a three-year long scholarship from the NRW International Grad-
uate School in Bioinformatics and Genome Research. I am grateful for this scholarship
that made it possible to concentrate on my Ph.D. project, without any distractions
and additional responsibilities. I thank all my present and former colleagues from the
Genome Informatics research group for the relaxed and, at the same time, productive
working atmosphere. In our weekly group seminars I gained much, not only in domain-
specific knowledge, but also in scientific methodology and presentation skills. I thank
my supervisors Sven Rahmann and Jens Stoye for their trust and encouragement at
some critical points of the project and the financial support they offered towards the
end. Finally, special acknowledgments go to Yasmin Rios-Solis and Martin Milanič
for their friendship and scientific advice that decisively contributed to the completion
of this thesis.

3

4

Chapter 2

Low-Rank Matrix Factorization

Summary of the chapter. This chapter attempts to provide a unifying survey of
existing results. We define the basic problems that motivate the work in this thesis:
Approximate Matrix Factorization (AMF) and Constrained Approximate Matrix Fac-
torization (CAMF). We sketch some applications of these problems in signal processing
and data mining and also present algorithms for their solution.

At the basis of our discussion lies the following mathematical problem: Given an n×k
real-valued matrix Y , we want to write it as a product Y = AX, where the matrices
A and X have dimensions n×m and m× k, respectively, and m < min(n, k). If Y is
not degenerate, then it will be rank(Y) = min(n, k), while for the product it always
holds rank(AX) ≤ min(rank(A), rank(X)) ≤ m < min(n, k). Therefore, if Y is not
degenerate, its exact factorization as a low-rank product is not possible. Instead, we
seek an approximate solution, i.e., we want to compute the matrices A and X such
that the quantity ∥Y − AX∥ is minimized, for some appropriate proximity measure
∥ · ∥. Below, we use Frobenius norm as a straightforward measure of elementwise
proximity. Let us recall that the Frobenius norm of an n × m matrix A = (aij) is

defined as ∥A∥F =
√∑n

i=1

∑m
j=1 a2

ij. We will refer to this problem as Approximate

Matrix Factorization (AMF).

Problem 1. Approximate Matrix Factorization (AMF)
Given is an n× k real-valued matrix Y . We want to compute an n×m matrix A and
an m× k matrix X, with m < min(n, k), such that ∥Y − AX∥F is minimized.

Let us point out from the beginning that AMF is an inherently ill-defined problem.
To see that, let us assume that we have already computed a global or local minimum
(A,X) for AMF. Clearly, many other pairs (Â, X̂) may exist that satisfy ÂX̂ = AX and
are, therefore, indistinguishable from (A,X) in terms of how well they approximate Y .

For example, let us consider Â = AR and X̂ = R−1X for an arbitrary, invertible, m×m
matrix R. This inherent non-uniqueness of solutions and how it can be alleviated is
the topic that motivates much of the material in this thesis. Below we show that, due
to its generality, AMF appears in many different areas of science and engineering.

5

Chapter 2 Low-Rank Matrix Factorization

2.1 Signal processing: Blind signal separation

Let us consider the following generic signal processing application. There is a set of n
sensors that monitor m signal sources over k discrete time points. We assume that, in
general, each sensor measures a mixture of signals from more than one source and that
the sensor measurements depend linearly on the source signals. Both the values of the
source signals and the values of the mixing coefficients are unknown, and this is exactly
our task: Given the sensor measurements over the k time points, we want to infer the
source signals over the k time points and the mixing coefficients. This problem is also
known as blind signal separation, since we have no or very little information about the
source signals and the mixing process.

In formal terms, we are given an n×k matrix Y = (yit) where yit is the signal measured
at sensor i at time point t. We want to express Y as a product Y = AX of an n×m
matrix A = (aij), where aij is the mixing coefficient between sensor i and signal source
j, and an m×k matrix X = (xjt) that contains the source-signal intensities at different
time points.

In Chapters 7 and 8, we will see two applications of blind signal separation in bioin-
formatics. Firstly, in the context of transcriptomics, it can be used to analyze mea-
surements from DNA microarrays that contain non-specific probes. In this case, the
source signals are the mRNA target concentrations and the sensor readouts are the
probe intensities. In the context of gene regulatory networks, it has been a successful
approach for determining the activities of transcription factors from transcriptome
data. In this case, the source signals are the transcription factor activities and the
sensors are the regulated genes. For exact descriptions of these applications we refer
to the corresponding chapters.

2.2 Data mining: Dimension reduction

In applications of data mining and pattern recognition, a typical dataset consists of a
set of n objects that are represented as vectors in a k-dimensional feature space. Such
a dataset can be represented as a n × k matrix Y = (yij), where yij is the value of
the j-th feature for the i-th object. Data mining practitioners often want to represent
the objects of their studies as vectors in an m-dimensional space, where m < k. Such
a low-dimensional representation can be, for example, beneficial for the performance
of learning and data exploration algorithms, as well as for the interpretation and
visualization of the results.

A plethora of papers published over the years propose different methods to actually
perform dimension reduction (for a review we refer to [Fod02]). Here, we only men-
tion that these methods can be roughly classified into two broad categories: feature

6

2.3 Introducing a-priori knowledge about the factors

selection and feature extraction methods. The first aim at choosing a small subset of
the initial features that capture the crucial properties of the objects, while the latter
try to discover a set of “summarizing” new features that can be computed from the
initial features.

Let us motivate our discussion with a classical example from text mining [BDJ99,
SBPP06]. In this application, Y is the so-called document-term matrix, where the
rows correspond to documents of a text corpus, the columns correspond to the terms
of a finite vocabulary and the entry yij is the (normalized) appearance frequency of
the j-th term in the i-th document. We intuitively expect that our text corpus is built
on top of an underlying set of a few topics that are, however, hidden and corrupted
by the wide variety of used words. If we could somehow discover the hidden topics,
then it would be beneficial to represent the document vectors in the m-dimensional
topic space instead of representing them in the initial k-dimensional term space. In
this way, the negative effects of polysemy and synonymy1 on query-based text retrieval
would be made less severe.

Below we assume that we have n documents, k terms and m < min(n, k) hidden
topics. With the goal of discovering the hidden topics we can try a feature extraction
approach that is based on a simple linear model of text generation. We assume that
the i-th document discusses the ℓ-th topic with strength aiℓ and that the ℓ-th topic
involves the j-th term of the vocabulary with strength xℓj. According to the linear
model, the observed frequency yij would then be explained as yij =

∑m
ℓ=1 aiℓxℓj. This

imediately gives rise to the matrix equation Y = AX, where both matrices A and
X have to be estimated from the observed frequencies Y . This is exactly the AMF

problem.

2.3 Introducing a-priori knowledge about the factors

In many applications that give rise to the AMF problem, we have an additional intuitive
understanding of the underlying physical model. For instance, in the text mining
application of Section 2.2, for the text generation model to make sense it is reasonable
to require that the matrices A and X should have nonnegative entries.

Let us now consider a case of blind signal separation, with the signal sources being
sound emitters (e.g. human speakers) and the sensors being microphones. Nonneg-
ativity of the factors is a reasonable requirement also in this application, but in this
case we may even be able to derive more constraints from our understanding of the
physical system. For example, if we know in advance the distances between the micro-
phones and the sound sources, we can draw some conclusions about the magnitudes of

1Polysemy: the same word can have multiple meanings. Synonymy: many different words can have
the same meaning.

7

Chapter 2 Low-Rank Matrix Factorization

the mixing coefficients; below we denote with dij the distance between the i-th micro-
phone and the j-th source. For example, if dij ≫ dik, it is reasonable to expect that
aij ≫ aik. On the other hand, if dij ≈ dik we can expect that |aij − aik| < ϵ, where
ϵ is an appropriately chosen threshold. Going one step further, if we have available a
physical model that roughly predicts the mixing coefficient aij as a function of dij, we
could even make a statement about the absolute value of the mixing coefficient. Fi-
nally, if the distance dij is larger than an appropriate threshold we can expect aij = 0.
We will later see that such an a-priori knowledge of some entries of A being fixed to
zero has some strong implications for the identifiability of the model.

Taking into account the physically motivated constraints complicates our basic prob-
lem: Given a matrix Y , we want to write it as an approximate low-rank product
Y ≈ AX and, now, we additionally want to enforce some constraints on the factors A
and X. Below we will use the notation A ▹ C to denote the generic statement that
a matrix A satisfies a set of constraints C. We will restrict ourselves to the case in
which C consists only of linear equalities and inequalities that involve the elements of
A in arbitrary combinations. In fact, several useful classes of constraints that arise in
practice can be expressed in that form.

Problem 2. Constrained Approximate Matrix Factorization (CAMF)
Given is an n× k real-valued matrix Y and two sets of linear constraints CA and CX .
We want to compute an n×m matrix A and an m×k matrix X, with m < min(n, k),
such that A ▹ CA, X ▹ CX and ∥Y − AX∥F is minimized.

As it was the case with the unconstrained problem AMF, also for CAMF there are, in
general, many different feasible (A,X) pairs that approximate a given Y equally well.
On the other hand, we intuitively expect that the enforcement of the constraints CA
and CX must somehow offer some control over the space of possible solutions. In
Chapter 3 we investigate an especially strong class of constraints, where CA specifies
that certain entries in A are fixed to zero.

2.4 Algorithmic issues

2.4.1 Unconstrained problem AMF

In this section we will focus on the algorithmic aspects of AMF and CAMF: Given a matrix
Y , how can we actually compute a pair (A,X) that minimizes ∥Y −AX∥F (under the
constraints CA and CX)? At first we discuss the unconstrained AMF problem. It turns
out that it can be efficiently solved to optimality from the singular value decomposition
of Y ; for its constrained counterpart CAMF the situation is more complicated. The
singular value decomposition (SVD), as summarized in Theorem 2.1, is a fundamental

8

2.4 Algorithmic issues

theoretical result in linear algebra that also has tremendous practical impact. For the
following two standard results and for efficient and stable algorithms to numerically
compute the SVD we refer to the classical book of Golub and Van Loan [GL96].

Theorem 2.1. Any n× k matrix Y (w.l.o.g. we assume that n ≥ k) can be factorized
as Y = UΣV T , where the matrices U , Σ and V have the following properties:

• U has dimensions n× k and satisfies UT U = I.

• Σ has dimensions k × k and is diagonal, with all its entries being nonnegative.

• V has dimensions k × k and satisfies V T V = I.

The columns of U and V T are called left and right singular vectors of Y , respectively.
The entries of Σ are called singular values of Y ; usually we assume that the columns
of U and the rows of V T are permuted such that the singular values σi are sorted in
decreasing order on the diagonal of Σ. The following theorem states that the best
m-rank approximation of a matrix Y , with m < rank(Y), can be computed from the
SVD of Y . In particular, it suffices to truncate the SVD product by keeping only the
m largest singular values and the corresponding singular vectors.

Theorem 2.2. We consider the n × k matrix Y , with rank(Y) > m. The matrix
approximation problem

min
Z
∥Y − Z∥F s.t. rank(Z) = m

has the solution Z∗ = UmΣmV T
m , where the matrices Um, Σm and V T

m result from the
SVD matrices by keeping only the m largest singular values and the corresponding
singular vectors. Moreover, the minimum value of the objective function is

∥Y − Z∗∥F =

√√√√min(n,k)∑
i=m+1

σ2
i .

Therefore, we can solve the unconstrained problem AMF by just taking A = UmΣm and
X = V T

m . Of course, this is only one of infinitely many different and equally good
solutions.

2.4.2 Constrained problem CAMF

The enforcement of the constraints CA and CX makes the problem significantly harder.
The optimal solution of the unconstrained problem obtained with SVD will not be,
in general, feasible for the constrained problem. Moreover, the objective function
is not convex with respect to the variables (A,X), so standard convex optimization

9

Chapter 2 Low-Rank Matrix Factorization

methods cannot be applied for the efficient computation of a global minimum. If
it is critical to find the global minimum, methods from global optimization can be
employed, keeping, however, in mind that their complexity can be prohibitively large.
Alternatively, if a local minimum is sufficient for our purposes, we can approach CAMF

with Algorithm 1 that is described below. In fact, in Algorithm 1 we have replaced
CAMF with the equivalent problem that results from squaring the objective function.
The algorithm first starts with a guess for matrix A that satisfies the constraints CA
and then alternates between two minimization steps until convergence. In each one of
these steps, one matrix is considered fixed and minimization is performed with respect
to the other matrix. Under some mild assumptions on the constraints, the algorithm
is guaranteed to converge to a critical point of the objective function, which, not
surprisingly, depends on the initialization of A. Therefore, in order to increase the
chance to find a good minimum, a common practical approach is to run the algorithm
several times with different initializations.

Algorithm 1 Alternating minimization algorithm for the solution of CAMF.
1: n← 0
2: Initialize An with values that satisfy CA
3: Xn ← argminX∥Y − A0X∥2F s.t. X ▹ CX
4: repeat
5: n← n + 1
6: An ← argminA∥Y − AXn−1∥2F s.t. A ▹ CA
7: Xn ← argminX∥Y − AnX∥2F s.t. X ▹ CX
8: until ∥AnXn − An−1Xn−1∥2F < ϵ
9: return (An, Xn)

Although for the original problem CAMF it is hard to compute a global minimum, it is
important to note that in Algorithm 1 the minimization subproblems of lines 6 and 7
can be efficiently solved to optimality. Let us consider, for example, the minimization
of line 7 (the minimization of line 6 is symmetric):

min
X
∥Y − AX∥2F s.t. X ▹ CX (2.1)

Let Â be the block diagonal matrix built from k copies of A and let ŷ and x̂ be
the vectors that result from stacking on top of each other the columns of Y and X,
respectively:

Â =

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

 , ŷ =

y1
...
yk

 , x̂ =

x1
...

xk

10

2.4 Algorithmic issues

Then, the matrix minimization problem (2.1) becomes:

min
bx
∥ŷ − Âx̂∥22 s.t. x̂ ▹ C

bx (2.2)

where ∥ · ∥2 denotes the Euclidean norm. Let us recall that the Euclidean norm of
an n-dimensional vector x = (xi) is defined as ∥x∥2 =

√∑n
i=1 x2

i . Since C
bx consists

only of linear constraints, (2.2) is a Euclidean norm approximation (also known as
least-squares) problem with linear constraints. This can be efficiently solved to global
optimality. In fact, such problems have been an active area of research for a long time
and highly optimized algorithms have been developed for their solution [HH82]. We
note that such a problem is, in fact, a special case of a convex quadratic program,
i.e., minimization of a convex quadratic function under linear equality and inequality
constraints. Therefore, it can be in principle solved with a generic interior point solver
[BV04].

2.4.3 Convergence of alternating minimization

Algorithm 1 is, in fact, a special case of a more general minimization scheme that is
called block-nonlinear Gauss-Seidel (block-GS) method and works as follows. Given a
multivariate objective function that has to be minimized under some constraints, we
first partition the variables into disjoint blocks. We start with an initial feasible point
and at each iteration we minimize with respect to the variables of one block, while
keeping the variables of all other blocks fixed. We alternate this partial minimization
step cyclically through all variable blocks with the hope of convergence.

It is known that, in general, the block GS minimization will not converge, in the sense
that it may produce a sequence with limit points that are not critical points of the
objective function. On the other hand, a number of studies have given convergence
results for the unconstrained and constrained case under suitable convexity assump-
tions. Moreover, in the special case of having only two variable blocks, Grippo and
Sciandrone [GS00] proved that every limit point is a critical point, even without any
convexity assumption on the objective function. Below, we summarize their result for
this important special case; the objective function is f : Rn1+n2 7→ R and x1, x2 stand
for the two blocks of variables.

Problem 3.

minimize: f(x1, x2)

subject to: x1 ∈ X1 ⊆ Rn1

x2 ∈ X2 ⊆ Rn2

11

Chapter 2 Low-Rank Matrix Factorization

For Problem 3, the k-th iteration of the block-GS method is:

xk+1
1 = argminy1∈X1

f(y1, x
k
2) (2.3)

xk+1
2 = argminy2∈X2

f(xk+1
1 , y2) (2.4)

Theorem 2.3 ([GS00]). We assume that (i) f is continuously differentiable, (ii) the
sets X1, X2 are closed, nonempty and convex, and (iii) the minimization subproblems
(2.3) and (2.4) have an optimal solution. Then, every limit point of the sequence
{(xk

1, x
k
2)} generated by the block-GS method is a critical point of Problem 3.

It turns out that Algorithm 1 is a special case of the two-block GS method, where
the matrices A and X are the two blocks of variables. Furthermore, the properties of
Theorem 2.3 hold. Firstly, the objective function is continuously differentiable, i.e.,
the first-order partial derivatives exist and are continuous:

∂∥Y − AX∥2F
∂A

= 2(AX − Y)XT ,
∂∥Y − AX∥2F

∂X
= 2AT (AX − Y)

Secondly, the feasible sets A and X are convex, since we only impose linear constraints
on the matrix entries aij and xij. In order to guarantee that they are also closed, we can
in practice add some very loose lower and upper bounds on aij and xij. Thirdly, each
one of the minimization subproblems has a global optimum, which we can efficiently
compute.

2.5 A special case: Nonnegative matrix factorization

The special case of CAMF where the only constraint applied on the two factors is non-
negativity, deserves a more detailed discussion. In fact, this is the so-called nonnegative
matrix factorization (NMF), a method that has been introduced in [LS99] and since
then succesfully used in many different applications. The popularity of NMF lies in the
fact that in many applications nonnegativity is an essential (and the only) assumption
for the validity of the model.

In Section 2.2 we sketched with an example from text mining how low-rank matrix
factorization can be used for dimension reduction, and in Section 2.3 we pointed out
that nonnegativity of the factors is a reasonable requirement. In fact, the same scheme
of explaining a set of observations as linear combinations of some hidden factors has
been applied to many other scientific disciplines. These include image recognition
[LS99], acoustics [VBB08, Beh03], video summarization [CF02] and Internet research
[LXY03].

Being to a large extent a data-driven discipline, bioinformatics has also witnessed the
use of matrix factorization methods for dimension reduction. A typical application

12

2.5 A special case: Nonnegative matrix factorization

comes from the field of microarray studies, where the rows of matrix Y correspond
to samples, the columns to genes and the matrix entries are expression values. The
result of the factorization can be interpreted as projecting the sample-vectors onto a
low-dimensional space of “metagenes”; this representation is then used to assign the
samples to classes of different disease types [BTGM04, KP07]. Other applications of
NMF in bioinformatics include biclustering of microarray data [CSPMT+06], discov-
ery of gene relationships from the biomedical literature [CCSS+06] and analysis of
regulatory motifs [HMSG08].

Due to the wide popularity of NMF, its algorithmic aspects have been intensively stud-
ied. Namely, in the place of Algorithm 1, many methods from the gradient descent
family have been proposed [BBL+07, Lin07]. In practice, these methods run faster
than the alternating minimization described above, because their update rules (taking
a step into the direction of the gradient) can be implemented with a few smart ma-
trix operations. However, as opposed to alternating minimization, their convergence
behavior is a black spot in the literature.

Furthermore, several variants of NMF have been developed that explicitly enforce
a minimum sparsity, i.e., that the factors A, X contain at least a specified number
of zeros [Hoy04, HS06]. Sparsity of the factors is a desired property in dimension
reduction, because it contributes to an easier interpretation of the results. However,
in a typical application the exact sparsity pattern of the factors is not known a-priori,
because the purpose of empirical data mining is exactly to explore the structure that
is hidden in the data, when there are no strong a-priori assumptions. In contrast, in
this work we will investigate what happens, if the exact sparsity pattern of one of the
factors is fixed a-priori.

13

14

Chapter 3

Identifiability in Low-Rank Matrix
Factorization

Summary of the chapter. We focus on a special case of CAMF, where in the factor-
ization Y ≈ AX one of the factors must have zeros at certain positions. This class of
constraints arises in applications that involve a bipartite network of sources that are
emitting some signals over discrete time and sensors that are monitoring these signals.
The question about the uniqueness of the solutions leads to the definition of identifiable
bipartite graphs, which is crucially based on bipartite matchings. Since identifiable
graphs are the basic objects of our study, we present some of their properties that
may provide some insight into their combinatorial structure. Finally, we turn our
attention to non-identifiable graphs and, using the Dulmage-Mendelsohn decomposi-
tion, we show how we can draw some useful structural conclusions even in these cases.

Let us consider the following generic setting: There is a bipartite network of n ob-
servable sensors that monitor m hidden signal sources over k discrete time points. In
general, each sensor measures a mixture of signals from more than one source. We
assume that the connectivity between the sensors and the sources is known and, more-
over, that the sensor measurements depend linearly on the source signals. However,
the exact values of the mixing coefficients are unknown, except for those that are
constrained to zero as a consequence of the connectivity of the source-sensor network.
Given the sensor measurements over the k time points, our task is to infer the source
signals over the k time points and the non-zero mixing coefficients.

In formal terms, we are given an n×k matrix Y = (yit) where yit is the signal measured
at sensor i at time point t. We want to express Y as a product Y = AX of an n×m
matrix A = (aij), where aij is the mixing coefficient between sensor i and signal source
j, and an m×k matrix X = (xjt) that contains the source-signal intensities at different
time points. We assume that m < min(n, k) (low-rank factorization). The sparsity
structure of A that is known a priori from the connectivity of the network is modeled
with a 0/1 matrix Z, called zero pattern. We say that a real-valued matrix A satisfies a
zero pattern Z (denoted by A ▹ Z), if A and Z have the same dimensions and Zij = 0

15

Chapter 3 Identifiability in Low-Rank Matrix Factorization

implies Aij = 0. In fact, we are dealing with a special case of the CAMF problem of
Section 2.3. Here, we seek a matrix pair (A,X) such that A ▹ Z and ∥Y − AX∥F is
minimized; other constraints CA and CX may be also available, but in our discussion
below we will only use the zero pattern Z. We will refer to this optimization problem
as Zero Constrained Approximate Matrix Factorization (ZCAMF).

Let us see how the a-priori knowledge of the zero pattern Z appears in the two ap-
plications from bioinformatics that we have already sketched in Section 2.1. In the
context of microarrays, the connectivity between signal sources (mRNA targets) and
sensors (probes) can be derived from the sequence similarity between the probes and
the targets. In the context of regulatory networks, the sources are the transcription
factor activities and the sensors are the regulated genes; the connectivity of the net-
work is known either from lab experiments or from sequence-based in-silico prediction
of binding sites.

Here, we do not focus on how we can actually compute a global or local minimum for
ZCAMF; in Section 2.4.2 we saw that alternating minimization (see Algorithm 1) is one
possible way to go. Instead, we focus on the inherent (non-)identifiability of the model.

Assume that we have obtained a solution (A,X) for AMF. Many other pairs (Â, X̂)

may exist that satisfy ÂX̂ = AX and Â ▹ Z, and are therefore indistinguishable from
(A,X) in terms of how well they approximate Y .

The zero pattern Z (equivalently the connectivity of the bipartite source-sensor graph)

restricts the (Â, X̂)-space. In Section 3.1, we characterize the bipartite graphs that,
under mild non-degeneracy assumptions on A and X, make the AMF model identifiable
up to diagonal scaling. This characterization is based on the notion of structural rank
from combinatorial matrix theory and relies on maximum bipartite matchings.

3.1 Definition of identifiable graphs

Given a matrix pair (A,X) and a zero pattern Z with A ▹ Z, we first characterize

the class of matrix pairs (Â, X̂) such that ÂX̂ = AX and Â ▹ Z.

Proposition 3.1. Let A and Â be n×m matrices, and X and X̂ be m× k matrices
with AX = ÂX̂ and such that rank(A) = rank(X) = m. Then there exists an invertible

m×m matrix R such that Â = AR and X̂ = R−1X.

Proof. From AX = ÂX̂, we get AT AX = AT ÂX̂. Since rank(A) = m, AT A is non-

singular and we can write X = RX̂, where R = (AT A)−1AT Â. From X = RX̂ we get

m = rank(X) ≤ min{rank(R), rank(X̂)}. On the other hand, from the dimensions of

R and X̂, we have that rank(R) ≤ m and rank(X̂) ≤ min{m, k} and we conclude that

rank(R) = rank(X̂) = m. From the equality X = RX̂ and the non-singularity of R

16

3.1 Definition of identifiable graphs

A
z }| {

0

B

B

B

B

B

@

0 a12 a13 0
0 0 0 a24

0 0 0 a34

a41 0 a43 0
a51 a52 0 0
0 a62 0 a64

1

C

C

C

C

C

A

R
z }| {

0

B

B

@

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44

1

C

C

A

▹

Z
z }| {

0

B

B

B

B

B

@

0 1 1 0
0 0 0 1
0 0 0 1
1 0 1 0
1 1 0 0
0 1 0 1

1

C

C

C

C

C

A

leads to

eA1
z }| {

0

B

B

@

a12 a13 0
0 0 a24

0 0 a34

a62 0 a64

1

C

C

A

er1
z }| {

0

@

r21

r31

r41

1

A =

0

B

B

@

0
0
0
0

1

C

C

A

,

eA2
z }| {

0

@

0 0 a24

0 0 a34

a41 a43 0

1

A

er2
z }| {

0

@

r12

r32

r42

1

A =

0

@

0
0
0

1

A ,

eA3
z }| {

0

B

B

@

0 0 a24

0 0 a34

a51 a52 0
0 a62 a64

1

C

C

A

er3
z }| {

0

@

r13

r23

r43

1

A =

0

B

B

@

0
0
0
0

1

C

C

A

,

eA4
z }| {

0

@

0 a12 a13

a41 0 a43

a51 a52 0

1

A

er4
z }| {

0

@

r14

r24

r34

1

A =

0

@

0
0
0

1

A .

Figure 3.1: An example of a zero pattern Z, a general matrix A ▹ Z, and the four linear
systems derived from A, Z, and the condition AR ▹ Z.

we get X̂ = R−1X. The same equality, combined with AX = ÂX̂, gives ARX̂ = ÂX̂.
Since rank(X̂) = m, we finally get Â = AR.

Under the full-rank assumption of Proposition 3.1 the entries of R are restricted by
the condition Â = AR ▹ Z. Only zeros in Z induce constraints: Zij = 0 implies
that

∑
ℓ aiℓrℓj = 0. This leads to m linear systems, one for each column of R. In

particular, the j-th column of R (denoted by rj) is constrained by the linear system
Ajrj = 0, where Aj stands for the submatrix of A that results from taking only the
rows where the j-th column of Z has zeros. Since A ▹ Z, the j-th column of Aj is

all zero. Therefore, the system Ajrj = 0 can be simplified to Ãj r̃j = 0, where Ãj

results from Aj by dropping the j-th column and r̃j results from rj by dropping the
j-th element. An example is shown in Figure 3.1.

The column rank of the matrix Ãj determines the degrees of freedom of the j-th

column of R. If rank(Ãj) = m − 1, then the corresponding linear system only allows
the zero solution and the j-th column of R has all its entries, except for the j-th,
constrained to zero. If the condition rank(Ãj) = m − 1 holds for all columns j ∈
{1, . . . , m}, then R is a diagonal matrix. Let us recall from Proposition 3.1 that

Â = AR and X̂ = R−1X; therefore, if R and consequently R−1 are diagonal, then Â
differs from A only by column scaling and X̂ differs from X only by row scaling. In
many applications, diagonal scaling does not affect the interpretation of the results,
since it can be eliminated with normalization. In this sense, the solution (A,X) of
ZCAMF is essentially unique.

17

Chapter 3 Identifiability in Low-Rank Matrix Factorization

The ranks of the submatrices Ãj depend on both the structure of Z and on the values

of the free aij entries. In the example of Figure 3.1, we note that the rank of Ã2 can

be at most 2, for any choice of values of aij. On the other hand, the ranks of Ã1,

Ã3 and Ã4 can be 3 or smaller, depending on the numerical values of aij. While the

rank degeneracy of Ã2 is due to the “bad structure” of Z, only adversarily chosen
values of A would make the other Ãj rank-degenerate. Below we formalize the notion
of a “badly structured” zero pattern. To do that, we need to introduce the concept of
structural rank, which will be the link between linear algebra and graph theory. Then,
Proposition 3.4 relates the structural rank of a zero pattern with the numerical rank
of the matrices that satisfy this pattern. Both Definition 3.3 and Proposition 3.4 can
be found, e.g., in the book of Murota [Mur00].

Definition 3.2. A matching M in a graph G is a subset of edges such that no two
edges in M share a vertex. The size of a maximum matching in G is called matching
number and it is denoted by ν(G).

In fact, the structural rank of a zero pattern is defined as the matching number of
an appropriate graph. More specifically, we represent a zero pattern Z as a bipartite
graph, where the two vertex partitions correspond to the columns and rows of Z and
the edges correspond to the ones in Z.

Definition 3.3. The structural rank of a zero pattern Z, denoted by srank(Z), is the
matching number of the corresponding bipartite graph.

Proposition 3.4. If a matrix B satisfies a zero pattern Z, then rank(B) ≤ srank(Z).

Let us now assume that B and Z both have dimensions n × m, with n ≥ m, and
srank(Z) = m. We intuitively expect that if the non-zero entries of B are “generic”,
then rank(B) = m. Below, we give a semiformal argument for this statement. We
know that rank(B) equals the order of the largest non-vanishing minor in B. Therefore,
rank(B) < m if and only if for each subset of rows I, with |I| = m, it holds det (BI) =
0; here BI denotes the submatrix that results from B by taking only the rows in I.
Now, taking all possible choices of I into account, the set of conditions of the form
det (BI) = 0 gives rise to a system of

(
n
m

)
multivariate polynomial equations with

respect to the variables bij. The zero set of any non-zero polynomial is very “thin”; by
Sard’s theorem it has Lebesgue measure zero [Sar42]. This implies that the zero set
of the polynomial system, i.e., the set of assignments of bij that make rank(B) < m,
also has measure zero. Therefore, a rank-degenerate matrix B appears with zero
probability, if the entries bij are drawn from any reasonable continuous distribution.

In our example, the structure ofZ immediately gives a certificate for the non-identifiability
of ZCAMF. More specifically, srank(Z̃2) = 2 and this is a structural reason that makes

rank(Ã2) < 3 and the model non-identifiable. This is illustrated in Figure 3.2.

18

3.1 Definition of identifiable graphs

Figure 3.2: Example of Figure 3.1 continued. Left: graph of Z. Center: graph of Z̃1;
srank(Z̃1) = 3. Right: graph of Z̃2; srank(Z̃2) = 2. The graph of Z̃j , for j = 1, . . . , 4,
results from the graph of Z by discarding the column-vertex Cj and its neighbors. The
maximum matchings are drawn with thick lines.

Let us recall that in the generic signal processing application described at the beginning
of this chapter the zero pattern Z arises from the known connectivity of the source-
sensor network. In applications, we would like to avoid source-sensor networks that
give rise to such inherently problematic zero patterns as the one of Figure 3.1. This
motivates the following definition, where, from the application’s point of view, C
represents the set of sources and R represents the set of sensors. With N(x) we
denote the set of neighbors of a vertex x.

Definition 3.5. Let G = (C, R; E) be a bipartite graph with at least one edge. A
vertex x ∈ C is called identifiable, if the subgraph induced by (C \ {x}) ∪ (R \N(x))
has a matching of cardinality |C| − 1. The whole graph G is called identifiable, if all
vertices of C are identifiable.

We should emphasize that an identifiable source-sensor graph G does not guarantee the
uniqueness up to scaling of AMF’s solution (A,X), but rather avoids a possible reason
for its non-uniqueness. Even if G is identifiable, it is possible that the non-zero entries
of A have such values that at least one of the submatrices Ãj is rank-degenerate.
However, according to our previous discussion, such assignments of the aij entries
belong to the union of m measure-zero sets, and altogether they have measure zero.
Intuitively, if G is identifiable and in the solution (A,X) the non-zero entries of A have
generic values, then (A,X) is unique up to scaling. In fact, this genericity assumption
is reasonable for numbers that correspond to physical quantities.

For a bipartite graph G = (C,R; E) and vertex sets X ⊆ C, Y ⊆ R, we will denote

19

Chapter 3 Identifiability in Low-Rank Matrix Factorization

with G[X,Y] the subgraph of G induced by X ∪ Y . For brevity, we will use G̃x to
denote the subgraph G[C \ {x}, R \N(x)].

Given a bipartite graph G = (C, R; E), we can efficiently test if it is identifiable, by

computing the matching numbers of the subgraphs G̃x, for all x ∈ C. Finding a
maximum matching in a (not necessarily) bipartite graph can be done in polynomial
time; more details about matching algorithms are given in the following section.

3.2 A digression concerning bipartite matchings

For most of the discussions in this thesis, Definition 3.5 will play the central role. In
order to gain a working knowledge of this definition, we have to briefly review some
classic graph-theoretical results concerning bipartite matchings. Given a bipartite
graph G = (C,R; E), we call a matching C-perfect if it has cardinality |C|, i.e., covers
all vertices of partition C. The most fundamental result about bipartite matchings
is Hall’s marriage1 theorem that completely characterizes the bipartite graphs that
have a perfect matching. Below, we denote with N(X) the neighborhood of a vertex
set X, i.e., the set of all vertices that are adjacent to at least one vertex from X:
N(X) = ∪x∈XN(x).

Theorem 3.6 ([Hal35]). Let G = (C,R; E) be a bipartite graph. There is a C-perfect
matching in G if and only if |N(X)| ≥ |X|, for all subsets X ⊆ C.

Although theoretically appealing, Hall’s theorem does not readily provide an efficient
algorithm for checking the existence of a C-perfect matching, since a naive application
of it would require checking all 2|C|−1 non-empty subsets of C. Moreover, if a perfect
matching does not exist, we usually want to compute the matching number of the
graph, i.e., find a matching that is as large as possible. For the algorithmic treatment
of maximum matchings, Theorem 3.8 comes as a rescue. But for its understanding we
first need to introduce the notion of augmenting path.

Given is a (not necessarily bipartite) graph G and a (not necessarily maximum) match-
ing M in G. The edges of M are called matched and the other edges are called free.
Similarly, a vertex is called matched if it is endpoint of a matched edge, otherwise it is
called free. An augmenting path with respect to M (briefly M-augmenting path) is a
path in G such that its edges are free and matched in alternation and both endpoints
are free. It is easy to show Proposition 3.7: If we can find an M -augmenting path in
G, then we can construct a matching that is larger than M .

1The term “marriage” shows that in some (rare) cases mathematics can have a positive impact on
people’s personal lives. We consider the following scenario: C is a set of girls, R is a set of boys
and E are the pairwise attraction relationships. A C-perfect matching is an assignment of boys
to girls such that each girl gets married to a boy she finds attractive.

20

3.2 A digression concerning bipartite matchings

Proposition 3.7 ([Ber57]). Given a matching M and an M-augmenting path P , the
symmetric difference M ′ = (M ∪ P) \ (M ∩ P) is a matching with |M ′| > |M |.

Interestingly, Berge showed that the converse is also true and this observation is a key
for matching algorithms.

Theorem 3.8 ([Ber57]). A matching M in a graph G is maximum if and only if G
has no M-augmenting path.

This theorem suggests the following straightforward algorithm for finding a maximum
matching in a graph G. We start with any (heuristically chosen) matching M in
G and we look for an M -augmenting path. If we find such a path P , then we set
M ← (M ∪ P) \ (M ∩ P) and we repeat the search for augmenting paths. If no
M -augmenting path exists, then M is a maximum matching and we stop. Therefore,
finding a maximum matching in G reduces to finding M -augmenting paths. If G has n
vertices, this step can be repeated up to ⌊n

2
⌋ times, because at each step the cardinality

of the matching is increased at least by one and a matching in G can be of size at
most ⌊n

2
⌋. For general graphs the task of finding an M -augmenting path requires quite

elaborate techniques, but for bipartite graphs it is rather easy, as we describe below.

Given a bipartite graph G = (C,R; E) and a matching M in it, we can “grow” all
M -augmenting paths simultaneously with breadth-first search. First, we observe that
an augmenting path always has odd length, with the two endpoints being free vertices
in the two partitions. Therefore, without loss of generality, we can start growing paths
from the free C-vertices, trying to reach a free R-vertex via a sequence of alternating
edges. In order to do that, we construct a directed version of G, denoted by Gd,
(in fact, we only need to simulate the construction of Gd) as follows: All free edges
are directed from C to R and all matched edges are directed from R to C. Then,
the M -augmenting paths in G are exactly the directed paths from a free C-vertex to
a free R-vertex in Gd. Therefore, an augmenting path can be found with breadth-
first search in O (n2) time, where n is the number of vertices in G. As already said,
the augmentation step can be repeated up to ⌊n

2
⌋ times and, therefore, a maximum

bipartite matching can be computed in O (n3) time. Algorithm 2 and Theorem 3.11,
which are adapted from [Wol98], formalize the above discussion. It is important to
note that, along with a maximum matching, Algorithm 2 automatically computes a
minimum vertex cover. We will use this fact in Section 4.3, in order to develop a
cutting-plane approach for our integer linear program.

Definition 3.9. A vertex cover V C in a graph is a subset of vertices such that every
edge of the graph is incident to at least one vertex in V C.

We note that in general graphs, for any vertex cover V C and for any matching M , it
always holds that |V C| ≥ |M |. Moreover, computing a minimum vertex cover is, in

21

Chapter 3 Identifiability in Low-Rank Matrix Factorization

general, an NP-hard problem, while a maximum matching can be always computed
in polynomial time. Theorem 3.11 states that in the case of bipartite graphs the
two problems are equivalent and also gives an algorithmic proof of a strong min-max
relation that originally goes back to a result obtained by König in 1931:

Theorem 3.10 ([Die05]). In a bipartite graph, the number of edges in a maximum
matching equals the number of vertices in a minimum vertex cover.

Hopcroft and Karp discovered an algorithm for maximum bipartite matching that runs

in O
(√
|V ||E|

)
time, reducing the problem to a max-flow problem and then applying

a max-flow algorithm [HK73]. This is also the asymptotically fastest solution known.

For the sake of completeness let us mention that finding a maximum matching in
general graphs can be still done in polynomial time (O (|V |4)), although the lack of
bipartite structure makes the task of finding augmenting paths far more difficult. The
intricacy of the problem and its elegant solution were first pointed out by Edmonds
in a seminal paper [Edm65].

Theorem 3.11. Upon termination of Algorithm 2, M is a maximum matching and
C− ∪R+ is a minimum vertex cover in G. Moreover, |M | = |C− ∪R+|.

3.3 A non-algebraic view of identifiable graphs

Starting from Definition 3.5, we can ask if there are practical situations, other than
ZCAMF, where identifiable bipartite graphs would be relevant. For example, let us con-
sider the following scenario: C is a set of professors, R is a set of students and E models
compatible research interests between professors and students. At the beginning of
each semester, each professor must get at least one “compatible” student as teaching
assistant and a student can be assigned to at most one professor at a time. However,
the professors happen to be famous and influential and this results in a complication:
If a professor leaves the university for a better position, he has the means to lure
and take with him all students with whom he shares common interests. In such an
unpleasant scenario, is it still possible to assign teaching assistants to the remaining
professors?

If the graph G = (C, R; E) of research compatibilities is identifiable, then this is
possible, no matter which professor happens to leave, and all remaining professors
will be happy with their assistants. But even then, we must not forget that research
interests are dynamic in time. Therefore, the edge set of G may change at some point,
such that the desirable property of identifiability is destroyed. How many changes in
E can G tolerate before it loses the property? We study this robustness question in
Chapter 6.

22

3.3 A non-algebraic view of identifiable graphs

Algorithm 2 Computation of a maximum bipartite matching

1: Input: A bipartite graph G = (C, R; E) and a matching M ⊆ E in G.
2: Output: A maximum matching and a minimum vertex cover in G.
3:
4: All vertices of G are not labeled and not scanned.
5: All C-vertices that are free w.r.t. M get a dummy label $.
6:
7: repeat
8:
9: for all c ∈ C that are labeled and not scanned do

10: for all r ∈ N(c) such that (c, r) is free and r is not labeled do
11: label[r]← c
12: end for
13: Mark c as scanned.
14: end for
15:
16: for all r ∈ R that are labeled and not scanned do
17: if r is free then
18: An M -augmenting path P was found.
19: P ← use the labels to backtrack from r to $.
20: M ← (M ∪ P) \ (M ∩ P)
21: goto line 4.
22: else
23: Find the edge (c, r) ∈M and do label[c]← r
24: Mark r as scanned.
25: end if
26: end for
27:
28: until there is no vertex in G that is labeled and not scanned
29:
30: C+, R+ ← vertices of C, R that are labeled.
31: C−, R− ← vertices of C, R that are not labeled.
32: return maximum matching M , minimum vertex cover C− ∪R+.

At the end of each academic year, some students graduate and leave the university
and this can destroy the identifiability of G. On the other hand, a certain number
of new students will be admitted to join in. After having interviewed and ranked
the applicants, the selection committee faces the following problem: Select a subset
of the applicants that are ranked as high as possible and additionally restore the
identifiability of G. This is, in fact, a generalization of the MINSENSOR problem that
we define and study in Chapter 4.

23

Chapter 3 Identifiability in Low-Rank Matrix Factorization

Clearly, this example from university life is rather artificial. However, it would be
interesting to investigate whether identifiable bipartite graphs have, as combinatorial
objects, more realistic applications, e.g., in scheduling. They could be used to model
the following constraint: If any C-vertex disappears together with its neighborhood,
all remaining C-vertices must be matchable. This also motivates us to ask: Does it
make sense to define this property for general graphs?

3.4 Some combinatorial properties

In this section we list some properties of identifiable graphs; we gained them as a by-
product of our attempts to understand the combinatorial structure of these graphs.
In some of our arguments throughout the section, we will use the concepts of surplus
and tight subsets, which are generally important for the study of bipartite matchings.
Both concepts can be found, e.g., in the book of Lovász and Plummer [LP86].

Definition 3.12. Let G = (C, R; E) be a bipartite graph. For a set X ⊆ C, the
surplus of X is defined as σ(X) = |N(X)| − |X|. The surplus of the whole graph G is
σ(G) = min∅≠X⊆C{σ(X)}. A set X ⊆ C is called tight, if X ̸= ∅ and σ(X) = σ(G).

Intuitively, the surplus of a set X ⊆ C quantifies how much X satisfies Hall’s condition
|N(X)| ≥ |X| and tight sets are the ones that minimally satisfy (or maximally violate)
this condition. Rephrasing Hall’s theorem (Theorem 3.6), G has a C-perfect matching
if and only if σ(G) ≥ 0. As we will see in Chapter 6, the computation of the surplus will
be the key for determining the robustness of identifiability. Moreover, in Section 4.3,
we will see that finding a tight set in a graph that violates Hall’s condition will be the
basis for an efficient cutting-plane approach for the ILP of MINSENSOR. It turns out that
the surplus and a tight set of a graph can be efficiently computed; see Algorithms 5
and 6.

Below we summarize some properties of identifiable graphs. With d(x) we denote the
degree of a vertex x.

Proposition 3.13. Let G = (C,R; E) be a bipartite graph with at least one edge.

(i) G is identifiable if and only if its connected components are identifiable.

(ii) If there exists a vertex x ∈ C that is connected and identifiable, then G has a C-
perfect matching. In particular, this is the case if G has two identifiable vertices
x, y ∈ C.

(iii) Suppose that G is identifiable. If X ⊆ C is a tight subset, then d(x) = σ(G)+ 1,
for all x ∈ X (i.e., for all x ∈ X, {x} is also a tight subset of G). Moreover,
σ(G) = minx∈C d(x)− 1.

24

3.4 Some combinatorial properties

(iv) If G is identifiable, then its connected components are either single edges or have
positive surplus.

(v) If there is a subset R′ ⊆ R such that the graph induced by C ∪R′ is identifiable,
then G is identifiable too.

(vi) We call a vertex z ∈ R that is adjacent to all vertices of C a dominating R-
vertex. The addition or removal of such a vertex preserves identifiability: G is
identifiable if and only if G + z is identifiable.

Proof.

(i) This easily follows from the fact that all neighbors of a vertex x ∈ C are in the
same connected component as x.

(ii) Vertex x has at least one neighbor z ∈ R. Because x is identifiable, there exists
a matching Mx that does not touch z and that covers all vertices of C \ {x}.
Therefore, Mx ∪ {(x, z)} is a matching that covers all vertices of C. If y is

identifiable, then x must be matchable in G̃y and, therefore, it cannot be isolated.

(iii) From the definition of σ(G), d(x) ≥ σ(G) + 1, for all x ∈ C. Let X ⊆ C be a
tight subset, i.e., |N(X)| = |X|+σ(G). If |X| = 1 the first part is immediate, so
assume |X| ≥ 2. For all x ∈ X, it must be d(x) ≤ σ(G) + 1, because otherwise
it would be |N(X) \ N(x)| < |X| − 1 and not all vertices of X \ {x} would be

matchable in G̃x. Therefore, d(x) = σ(G) + 1, for all x ∈ X. Now, we have
d(x)− 1 = σ({x}) = σ(G) ≤ σ({y}) = d(y)− 1 for any y ∈ C and the equality
σ(G) = minx∈C d(x)− 1 follows.

(iv) By (i), it is enough to prove that a connected identifiable graph of zero surplus
must be a single edge. Let G be a connected identifiable graph with σ(G) = 0.
By (iii), there is a vertex x ∈ C of degree 1. But then necessarily |C| = 1 since
otherwise there would exist a vertex y ∈ C \{x} adjacent to the unique neighbor

of x, which would mean that x is isolated in G̃y, contrary to the identifiability
assumption.

(v) The addition of an R-vertex can only increase the matching numbers of the

subgraphs G̃x, for all x ∈ C.

(vi) The addition of a dominating R-vertex to G increases σ(G) by one, but does not

change G̃x, for all x ∈ C.

25

Chapter 3 Identifiability in Low-Rank Matrix Factorization

In summary, in the study of identifiable graphs we can safely focus on identifiable
graphs that are connected, have strictly positive surplus and contain no dominating
R-vertices.

Assertion (ii), in conjunction with Hall’s marriage theorem [Hal35], shows that iden-
tifiability implies non-negative surplus. There is also a connection between this ob-
servation and Lemma 3.1. Namely, if a source-sensor network is identifiable, then the
corresponding zero pattern Z has full-column structural rank. This is a necessary
condition for the requirement of Lemma 3.1 that A must have full column-rank.

Assertion (iii) shows that in identifiable graphs, the computation of the surplus is
easier than in general graphs (cf. Section 6.2). We remark that in general, not every
subset X ⊆ {x ∈ C : d(x) = σ(G) + 1} in an identifiable graph is tight, and that
the equality σ(G) = minx∈C d(x)− 1 is only a necessary, but not a sufficient condition
for identifiability. For example, let us consider C = {c1, c2}, R = {r1, r2, r3} and
E = {(c1, r1), (c1, r2), (c2, r2), (c1, r3), (c2, r3)}. Then, σ(G) = 1 = d(c2) − 1, but G is
not identifiable.

Assertion (iv) implies that a graph G = (C, R; E) with |R| = |C| is identifiable if
and only if it consists of single edges. Assertion (v) motivates the following ques-
tion: Can we characterize minimally identifiable graphs, that is, identifiable graphs
G = (C,R; E) such that the deletion of an arbitrary vertex from R results in a non-
identifiable graph?

The fact that G is identifiable and d(x) = σ(G) + 1, for all x ∈ X ⊆ C, does not
imply that X is tight. For example, let us consider G to be a path with |C| = 3 and
|R| = 4. G is identifiable, σ(G) = 1 and for the subset X = {c1, c3}, where c1 and c3

are the two vertices in C that are of distance 4 in G, we have d(c1) = d(c3) = σ(G)+1.
However, X is not tight, because |N(X)| = 4 > |X|+ σ(G).

Proposition 3.14. A connected bipartite graph G = (C,R; E) with |R| = |C| + 1 is
identifiable if and only if d(x) = 2 for all x ∈ C.

Proof.
Forward: It has to be d(x) ≤ 2, for all x ∈ C, otherwise G̃x would have fewer than
|C| − 1 R-vertices and this contradicts the identifiability assumption. Let us assume
that there exists x ∈ C with d(x) = 1 and call v the single neighbor of x. Since G is

connected, v must have also a neighbor y ̸= x. In that case x is isolated in G̃y, which
contradicts the identifiability assumption. Therefore, d(x) = 2, for all x ∈ C.
Reverse: |V (G)| = 2|C| + 1, |E(G)| = 2|C| and, since G is connected, it must be a
tree. Let us assume that G is not identifiable. Then there exists a vertex x ∈ C and a
subset Y ⊂ C, such that x /∈ Y and |Y | ≥ |Ñx(Y)|+ 1. Let us consider the subgraph

G′ induced by {x} ∪ Y ∪ N(x) ∪ Ñx(Y): we have |V (G′)| = 1 + |Y | + 2 + |Ñx(Y)|
and |E(G′)| = 2(|Y | + 1). We observe that |E(G′)| ≥ |V (G′)|; therefore, G′ contains
a cycle and this contradicts the fact that G is a tree. Therefore, G is identifiable.

26

3.5 Partially identifiable graphs

3.5 Partially identifiable graphs

In Section 3.1 we defined identifiable graphs starting from Proposition 3.1 and the
condition Â = AR ▹ Z. In particular, we observed that this condition, combined
with the identifiability of Z (i.e. of the underlying source-sensor network) can force
R to be diagonal, provided that A and X are generic. In this section, we turn our
attention to the next natural question: Can we draw any conclusions about source-
sensor networks that fail to be identifiable, just by studying their structure? Below we
show that this is indeed the case; this gives rise to the notion of partially identifiable
graphs. The discussion that follows is meant to be complemented by the example of
Figure 3.3.

As in Section 3.1, our reasoning starts again from the basic condition Â = AR ▹ Z,
which can be expanded to m homogeneous linear systems, one for each column of R.
Let us consider the j-th column and the corresponding system Ãj r̃j = 0. We know

that if Ãj has full column structural rank and generic entries, then r̃j = 0, i.e., the
j-th column of R is all zero apart from the diagonal element. On the other hand,
if Ãj is structurally rank-degenerate, it follows that, in general, r̃j ̸= 0. Actually, it
turns out that we can draw much more specific conclusions, by studying the solution
of the system Ãj r̃j = 0 from a structural point of view. In this way, we can predict
the sparsity pattern of the vector r̃j and doing that for all columns j we can finally
predict the zero pattern of R.

The theoretical machinery that allows us to do so is a canonical decomposition of
bipartite graphs that was discovered by Dulmage and Mendelsohn (DM decomposi-
tion) [DM58]. For the moment, we will use as a black-box one crucial aspect of the
DM decomposition that is relevant for our purpose; details about the internals of the
decomposition will follow in Section 3.5.1. Namely, from this decomposition we can
determine a permutation of the rows and columns of the zero pattern Z̃j, such that
the permuted matrix is block-triangular and exactly one of the blocks has reduced
structural rank (see Figure 3.3).

From the block-triangular form of Z̃j, and under the usual genericity assumption on

the entries of Ãj, we can immediately read off which components of r̃j will be zero.
Applying this procedure for all columns of Z, we can finally predict the zero pattern
of R. Let us recall that according to Proposition 3.1 we have Â = AR and X̂ = R−1X,
i.e., R and R−1 account for the non-identifiability of A and X, respectively. Therefore,
we are motivated to ask the following natural question: From the zero pattern of R, can
we draw any conclusions about the zero pattern of R−1? It turns out that the theory
of sparse matrix algorithms provides us with the tools to answer this question.

In general, a sparse matrix algorithm takes advantage of the zero patterns of the
matrices involved in the computation. Such an algorithm typically has a first phase,
in which it predicts the zero pattern of the solution from the zero pattern of the input.

27

Chapter 3 Identifiability in Low-Rank Matrix Factorization

Then, it performs the actual numerical computations in a static data structure. This
is particularly useful in applications where many problem instances with the same zero
pattern must be solved and, therefore, the prediction of the zero pattern of the result
needs to be done only once. Graph theory is a useful language in which to state and
prove structure prediction results. One reason for this is that the structural effect of a
matrix computation often depends on some path structure, which is easier to describe
in terms of graphs than in terms of matrices. For a good review of this exciting field
that lies on the intersection of numerical computation and graph theory, we refer to
[Gil94]. From this paper we also take Definition 3.15 and Proposition 3.17 (see also
Figure 3.4).

Definition 3.15. Let W be a square n × n zero pattern with non-zero diagonal.
We model W with the directed graph G(W) = (V, E), where V = {1, . . . , n} and
E = {(i, j) ∈ V 2 : i ̸= j and Wij = 1}.

Definition 3.16. Given a graph G = (V, E), its transitive closure is the graph
G∗ = (V,E∗), where E∗ = {(i, j) ∈ V 2 : there is a path in G from vertex i to vertex j}.

Proposition 3.17. If a square matrix R satisfies a zero pattern W, then R−1 satisfies
the zero pattern that corresponds to the transitive closure of G(W).

One simple way to compute the transitive closure of a directed graph in Θ(|V |3) time
is to assign a unit weight to each edge and then compute all-pairs shortest paths by
applying the Floyd-Warshall algorithm. If there is a path from vertex i to vertex j,
then we get dij < n, otherwise we get dij = ∞. Of course, more elaborate methods
are also known [Nuu95].

Returning to the example of Figure 3.3, we now use Proposition 3.17 to predict the zero
pattern of R−1. We observe that the directed graph that models the zero pattern of R is
already transitive and, therefore, R−1 satisfies the same zero pattern as R. We strongly
suspect that this is not a coincidence. In fact, the methodology described above has
been implemented and applied on many random instances and the following conjecture
always holds. However, a formal proof remains a topic for further research.

Conjecture. The zero pattern of R as it is determined from the condition AR ▹ Z
is always transitive.

In Figure 3.3 we observe that the first two rows of R−1 are all zero, apart from the
diagonal elements. From the equation X̂ = R−1X, it follows that the first two rows
of X and X̂ differ only by diagonal scaling. Therefore, although the graph is not
identifiable according to Definition 3.5 (actually there is not even a single identifiable
column), the signals of the first two sources can still be uniquely reconstructed up to
scaling. This observation motivates us to describe the network as partially identifiable.
An interesting direction for further research would be to look for a combinatorial
characterization of such networks.

28

3.5 Partially identifiable graphs

We point out that the whole analysis done so far was based on purely graph-theoretic
arguments and no numerical computation at all. The reason is that we want to
draw our conclusions based solely on the network structure and the assumption that
the (A,X) solution of ZCAMF is numerically generic. In practice, when we solve an
instance of ZCAMF we get concrete numerical values for the matrices A and X. Then,
at first we can (and we should) check if the genericity assumptions on A and X hold.
Going one step further we can compute R and its inverse parametrically. This is done
by determining the general solution of the linear system Ajrj = 0, for each column
j = 1, . . . , m.

This solution is rj = Kjuj, where Kj is a matrix whose columns form a basis for the
nullspace of Aj and uj is a vector of free parameters, as many as the dimension of
the nullspace of Aj. We recall that the nullspace of an n × m matrix A is defined
as the linear subspace N (A) = {x ∈ Rm : Ax = 0}. In the special case where
the j-th column is identifiable (i.e. rank(Aj) = m − 1), Kj has as only column the
unit vector ej and uj is a scalar variable. We can compute the matrix Kj from the
singular value decomposition Aj = UΣV T (see Theorem 2.1). In particular, if Aj has
dimensions N ×M and rank(Aj) = r, then the singular vectors {vr+1, . . . , vM} form
an orthonormal basis for the nullspace of Aj [GL96]. Finally, the entries of R will be
linear functions of the free parameters uj, as shown below.

R =
(
K1 . . . Km

) u1 · · · 0
...

. . .
...

0 · · · um

In Figure 3.5 we give an example, where R has been computed in parametric form.
Then, it is possible to also compute R−1 in parametric form with a computer algebra
system; the entries of R−1 will be rational functions of the free parameters.

Topic for further research. It would be interesting to consider if these closed form
expressions for R and R−1 can be subsequently used to draw any more conclusions
about the space of feasible solutions for the ZCAMF problem. For example, let us
consider the case where, additionally to the zero pattern Z, we also have linear con-
straints CA on the entries of A. Then, the condition AR ▹ CA gives rise to a set of
linear constraints on the free u-parameters, which can be used to further quantify the
“difference” between Â and A. Note that the notion of “difference” must be properly
defined such that it takes into account the unavoidable diagonal scaling.

29

Chapter 3 Identifiability in Low-Rank Matrix Factorization

3.5.1 The mechanics of Dulmage-Mendelsohn decomposition

For the sake of completeness, in this section we give some more details about the
mechanics of the DM decomposition that was introduced in [DM58] as a canonical
decomposition for bipartite graphs.

Theorem 3.18 (e.g. [LP86]). Let G = (C,R; E) be a bipartite graph. There exists
a unique partitioning C = C1 ∪ C2 ∪ C3 and R = R1 ∪ R2 ∪ R3, that satisfies the
properties stated below:

1. N(C3) = R3 and N(R1) = C1.

2. The subgraph G[C2, R2] has a perfect matching.

3. Every maximum matching consists of a perfect matching between C2 and R2,
a matching of all vertices of R3 onto C3 and a matching of all vertices of C1

onto R1.

4. The subgraphs G[R3, C3] and G[C1, R1] have positive surpluses.

5. For every minimum vertex cover T : C1∪R3 ⊆ T ⊆ C1∪R3∪C2∪R2. Moreover,
C1 ∪R3 ∪ C2 and C1 ∪R3 ∪R2 are minimum vertex covers.

The DM decomposition has some immediate applications in sparse matrix computa-
tions. We already know that we can model a zero pattern as a bipartite graph, where
the two partitions correspond to the rows and columns of the matrix and the edges
correspond to the non-zero positions. The DM decomposition of this graph gives a row
and column permutation for the zero pattern that makes it block-triangular and also
separates the part that has reduced structural rank from the rest. This is illustrated
in Figure 3.6.

As far as its algorithmic aspects are concerned, the DM decomposition can be effi-
ciently computed by first finding any maximum matching in the bipartite graph G
and then performing a depth-first search. Thereby, we are looking for alternating
paths with respect to M , i.e., paths whose edges are matched and free in alterna-
tion 2. The next theorem states exactly how the DM decomposition is computed. For
its proof, more algorithmic details and applications in sparse matrix computations we
refer to [PF90].

Theorem 3.19. Let M be a maximum matching in G. With respect to M , the sets of
the DM decomposition as they are defined in Theorem 3.18, are computed as follows:

• R1 := R-vertices that can be reached through an alternating path from an un-
matched R-vertex.

2Compare to augmenting paths from Section 3.2. In fact, an augmenting path is a special case of
alternating path.

30

3.5 Partially identifiable graphs

• R3 := R-vertices that can be reached through an alternating path from an un-
matched C-vertex.

• R2 = R \ (R1 ∪R3)

• C1 := C-vertices that can be reached through an alternating path from an un-
matched R-vertex.

• C3 := C-vertices that can be reached through an alternating path from an un-
matched C-vertex.

• C2 = C \ (C1 ∪ C3)

The sets R1, R2, R3 and C1, C2, C3 do not depend on the choice of the maximum
matching M .

31

Chapter 3 Identifiability in Low-Rank Matrix Factorization

For a given zero pattern Z and a generic matrix A, such that A ▹ Z, we write down AR ▹ Z.

A
z }| {

0

B

B

B

B

B

B

B

B

B

@

a11 0 0 a14 0 0 a17 a18

a21 0 0 a24 0 a26 0 0
a31 0 0 0 0 0 0 0
0 a42 0 0 a45 0 0 0
0 0 0 0 a55 0 0 a58

0 a62 0 0 0 0 0 0
a71 a72 0 0 0 0 0 0
0 0 a83 a84 0 a86 0 a88

1

C

C

C

C

C

C

C

C

C

A

R
z }| {

0

B

@

r11 · · · r18

.

..
. . .

.

..
r81 · · · r88

1

C

A

▹

Z
z }| {

0

B

B

B

B

B

B

B

B

B

@

1 0 0 1 0 0 1 1
1 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 1 0 1

1

C

C

C

C

C

C

C

C

C

A

To show the use of DM decomposition, we take, for example, the 7-th column and consider the
corresponding linear system Ã7r̃7 = 0.

eA7
z }| {

0

B

B

B

B

B

B

B

@

a21 0 0 a24 0 a26 0
a31 0 0 0 0 0 0
0 a42 0 0 a45 0 0
0 0 0 0 a55 0 a58

0 a62 0 0 0 0 0
a71 a72 0 0 0 0 0
0 0 a83 a84 0 a86 a88

1

C

C

C

C

C

C

C

A

er7
z }| {

0

B

B

B

B

B

B

B

@

r17

r27

r37

r47

r57

r67

r87

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

@

0
0
0
0
0
0
0

1

C

C

C

C

C

C

C

A

We can permute the rows and columns of Ã7 such that the resulting matrix is block-triangular.
In this example we apply the row permutation πr = (7, 1, 4, 3, 5, 6, 2) and the column permutation
πc = (6, 3, 4, 7, 5, 2, 1). The submatrix [R3, C3] is horizontal (i.e. more columns than rows), the
submatrix [R2, C2] is square and the submatrix [R1, C1] is vertical. [R3, C3] has reduced structural
rank, while [R2, C2] and [R1, C1] both have full structural ranks.

0

B

B

B

B

B

B

B

B

B

B

@

C3 C2 C1

R3
a86 a83 a84 a88 0 0 0
a26 0 a24 0 0 0 a21

R2
0 0 0 a58 a55 0 0
0 0 0 0 a45 a42 0

R1

0 0 0 0 0 a62 0
0 0 0 0 0 a72 a71

0 0 0 0 0 0 a31

1

C

C

C

C

C

C

C

C

C

C

A

0

B

B

B

B

B

B

B

@

r67

r37

r47

r87

r57

r27

r17

1

C

C

C

C

C

C

C

A

=

0

B

B

B

B

B

B

B

@

0
0
0
0
0
0
0

1

C

C

C

C

C

C

C

A

If the aij entries are generic, then the rij entries that correspond to the square and vertical parts will
be zero. The rij entries that correspond to the horizontal part will be coupled to each other with a
set of linear equalities and, in general, will be nonzero.

0

B

B

@

r87

r57

r27

r17

1

C

C

A

=

0

B

B

@

0
0
0
0

1

C

C

A

,

„

a86 a83 a84

a26 0 a24

«

0

@

r67

r37

r47

1

A =

„

0
0

«

So, we can predict the zero pattern of the 7-th column of R. Doing the same for all columns gives us
the zero pattern of R. We observe that the corresponding digraph is transitive, so R−1 also satisfies
the same zero pattern.

0

B

B

B

B

B

B

B

B

B

@

r17

r27

r37

r47

r57

r67

r77

r87

1

C

C

C

C

C

C

C

C

C

A

▹

0

B

B

B

B

B

B

B

B

B

@

0
0
1
1
0
1
1
0

1

C

C

C

C

C

C

C

C

C

A

, R ▹

0

B

B

B

B

B

B

B

B

B

@

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 0
1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1

1

C

C

C

C

C

C

C

C

C

A

Figure 3.3: An example of a non-identifiable zero pattern Z and how the DM decomposition
can be used to predict the sparsity pattern of R.

32

3.5 Partially identifiable graphs

Figure 3.4: From the zero pattern of a matrix we can predict the zero pattern of its inverse.
Here, W−1 does not denote numerical inverse, but the zero pattern of the inverse.

A
z }| {

0

B

B

B

B

B

B

B

B

B

@

6 0 0 5 0 0 8 7
6 0 0 2 0 2 0 0
4 0 0 0 0 0 0 0
0 1 0 0 7 0 0 0
0 0 0 0 4 0 0 2
0 7 0 0 0 0 0 0
7 2 0 0 0 0 0 0
0 0 7 9 0 2 0 5

1

C

C

C

C

C

C

C

C

C

A

R
z }| {

0

B

@

r11 · · · r18

..

.
. . .

..

.
r81 · · · r88

1

C

A

▹

Z
z }| {

0

B

B

B

B

B

B

B

B

B

@

1 0 0 1 0 0 1 1
1 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0
0 0 0 0 1 0 0 1
0 1 0 0 0 0 0 0
1 1 0 0 0 0 0 0
0 0 1 1 0 1 0 1

1

C

C

C

C

C

C

C

C

C

A

=⇒ R =

0

B

B

B

B

B

B

B

B

B

B

@

d1 0 0 0 0 0 0 0
0 d2 0 0 0 0 0 0

− 2
7
p12 − 9

7
p13

24
35

p21 + 8
5
p22 d3 p41

24
35

p51 + 8
5
p52 p61 p71 p82

p13 − 7
5
p21 − 8

5
p22 − 8

5
p31 d4 − 7

5
p51 − 8

5
p52 − 8

5
p62 −p71 −p81

0 − 1
2
p21 0 0 d5 0 0 0

p12
7
5
p21 + 8

5
p22

8
5
p31 p43

7
5
p51 + 8

5
p52 d6 p71 p81

p11 p22 p31 p42 p52 p62 d7 p83

0 p21 0 0 p51 0 0 d8

1

C

C

C

C

C

C

C

C

C

C

A

Figure 3.5: For concrete numerical values for A and from the condition AR ▹ Z we can
compute R in parametric form. The variables di and pij are free parameters. Compare
with Figure 3.3: There we have computed the zero pattern of R before we get concrete
numerical values for A.

33

Chapter 3 Identifiability in Low-Rank Matrix Factorization

Figure 3.6: A schematic view of Dulmage-Mendelsohn decomposition. For the sizes of the
partitions we have |R1| ≥ |C1| + 1, |C2| = |R2| and |C3| ≥ |R3| + 1. The subgraph
G[C1, R1] has a matching that covers all C1, i.e., the submatrix [C1, R1] has full column-
rank (structural rank). The subgraph G[C2, R2] has a perfect matching, i.e., the submatrix
[C2, R2] has full rank. The subgraph G[C3, R3] has a matching that covers all R3, i.e., the
submatrix [C3, R3] has full row-rank but reduced column-rank.

34

Chapter 4

Optimal Manufacturing of Sensors

Summary of the chapter. We define the combinatorial problem MINSENSOR that
arises in the context of source-sensor networks, when we need to manufacture sensors
in an optimal way. We prove that this problem is NP-hard with a reduction from
HITTING SET. Then, for its exact solution we develop a mixed integer linear program
(MILP), where we use the connection of bipartite matchings to linear programming
via totally unimodular matrices. For a practical solution of the MILP, we propose two
cutting-plane approaches that take advantage of the fact that a maximum matching
and a minimum vertex cover can be efficiently computed in bipartite graphs. We also
present a greedy algorithm for MINSENSOR and show that it guarantees a logarithmic
approximation ratio. We do that by showing that MINSENSOR is a special case of
SUBMODULAR SET COVER. Finally, we experimentally test the different approaches on
simulated problem instances of various sizes.

Assume that we want to manufacture a set of sensors, in order to monitor a set of signal
sources C. If the design of sensors can be done at low cost, we can proceed by designing
a large (and maybe redundant) list of candidate sensors R; this gives rise to a bipartite
graph G = (C,R; E). However, when it comes to the actual manufacturing of the
sensors, which is usually more expensive than the design, we would like to select a cheap
subset of sensors I ⊆ R. Moreover, we would like to select I appropriately such that the
induced subgraph of G is identifiable; this will allow us to process the measurements
in the ZCAMF framework, without worrying (too much) about identifiability issues.
Although it is easy to check whether G is identifiable, it turns out that the task of
selecting identifiable subgraphs is a hard one.

Problem 4. MINSENSOR
Given is a bipartite graph G = (C, R; E) and a function c that assigns a nonnegative
rational cost to each vertex of R. We want to find a set I ⊆ R such that the subgraph
G[C, I] is identifiable and

∑
y∈I c(y) is minimized.

35

Chapter 4 Optimal Manufacturing of Sensors

4.1 MINSENSOR is NP-hard

We prove that the unit-cost restriction of MINSENSOR is NP-hard with a reduction from
HITTING SET 1 [GJ79].

Problem 5. HITTING SET

Given is a finite ground set T , a family F of subsets of T and a positive integer k ≤ |T |.
Is there a subset S ⊆ T , with |S| ≤ k, that intersects all sets of F?

For the ease of presentation, we use the representation of a bipartite graph as a zero
pattern. More specifically, we model a bipartite graph G = (A,B; E) with the zero
pattern in which the columns correspond to part A, the rows correspond to part B,
and the ones correspond to the edges in E. The “translation” between graph and zero
pattern terminology is then straightforward. When convenient, we shall identify the
zero pattern with the graph it represents.

Theorem 4.1. MINSENSOR is NP-hard.

Proof. Let (F , T, k) be an arbitrary instance of HITTING SET with F = {C1, . . . , Cm};
without loss of generality we assume that T = {1, . . . , n}. First, we construct an
n×m zero pattern H such that Hij = 0 if and only if i ∈ Cj. Then, HITTING SET is
equivalent to asking: Is there a set of at most k rows that cover at least one zero in each
column of H? We can answer this question by solving an appropriately constructed
instance of the decision version of the unit-cost restriction of MINSENSOR.

We construct a zero pattern G as follows: G has in total 2m columns, which we label
as x1, . . . , xm; y1, . . . , ym, and 2m + n + 1 rows divided in 4 blocks: A,B1,B2, C. Block
A consists of two n×m sub-blocks: A1 = H and A2 = 1. Each of the blocks B1 and
B2 is an m×m identity matrix. Finally, block C consists of a single row with its first m
elements equal to one and the last m equal to zero. An example for this construction
is illustrated in Figure 4.1. For notational convenience we set X = {x1, . . . , xm},
Y = {y1, . . . , ym} and denote by L the subset of rows from the blocks B1,B2 and C
(note that |L| = 2m + 1).

We now show that H contains a set of rows S, with |S| ≤ k, that covers each column
with at least one zero, if and only if G contains a set of rows I, with |I| ≤ 2m + 1 + k,
such that G[X ∪ Y, I] is identifiable.

Forward: We take I = S ∪ L and show that G[X ∪ Y, I] is identifiable. For each
column xj, there exists a row sxj

∈ S such that G[sxj
, xj] = 0. For column xj we

consider the subpattern G̃xj
: in G̃xj

all columns, except for yj, can be matched to the
rows of blocks B1 and B2, and column yj is matched to row sxj

. For column yj, we

1The hardness of HITTING SET immediately follows from the hardness of VERTEX COVER. In fact,
HITTING SET is a generalization of VERTEX COVER to hypergraphs.

36

4.1 MINSENSOR is NP-hard

T = {1, . . . , 6}

F =

8

<

:

{2, 4, 5}
{2, 3, 4, 6}

{1, 6}

9

=

;

=⇒ H =

0

B

B

B

B

B

@

1 1 0
0 0 1
1 0 1
0 0 1
0 1 1
1 0 0

1

C

C

C

C

C

A

=⇒ G =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

x1 x2 x3 y1 y2 y3

1 1 0 1 1 1
0 0 1 1 1 1

A 1 0 1 1 1 1
0 0 1 1 1 1
0 1 1 1 1 1
1 0 0 1 1 1

1 0 0 1 0 0
B1 0 1 0 0 1 0

0 0 1 0 0 1
1 0 0 1 0 0

B2 0 1 0 0 1 0
0 0 1 0 0 1

C 1 1 1 0 0 0

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 4.1: An example for the reduction of HITTING SET to MINSENSOR.

consider the subpattern G̃yj
: in G̃yj

all columns, except for xj, can be matched to the
rows of blocks B1 and B2, and column xj is matched to the row C.

Reverse: The identifiability of G[X ∪ Y, I] implies that each column of G[X ∪ Y, I]
contains at least 2m − 1 zeros. In order for all columns from Y to contain 2m − 1
zeros, it must be I ⊇ L. Therefore, I = L ∪ S, where |S| ≤ k. But each column of
X has exactly 2m− 2 zeros in G[X,L]. Therefore, the set of rows S must cover each
column from X with at least one zero.

So, we conclude that HITTING SET can be polynomially reduced to the decision version
of the unit-cost restriction of MINSENSOR. Therefore, MINSENSOR is NP-hard.

Remark 4.2. The decision version of MINSENSOR is NP-complete, because a-posteriori
checking if a graph is identifiable can be done in polynomial time.

We did our reduction from HITTING SET and, therefore, this classical problem will be
a valuable source of information. We should be aware that HITTING SET often appears
under the disguise of the equivalent problem SET COVER.

Problem 6. SET COVER

Given is a finite ground set T , a family F of subsets of T and a positive integer k ≤ |F|.
Is there a subfamily S of F , with |S| ≤ k, such that every element of the ground set
T is contained in some set of S?

To see the equivalence between HITTING SET and SET COVER, observe that the sets of
the family and the elements of the ground set have dual roles in the two problems.
In HITTING SET we choose elements from the ground set in order to hit all sets of
the family, while in SET COVER we choose sets from the family in order to cover all
elements from the ground set.

37

Chapter 4 Optimal Manufacturing of Sensors

4.2 An exact MILP solution for MINSENSOR

The NP-hardness of MINSENSOR does not leave us much hope for the existence of
an algorithm that runs in polynomial time. Therefore, in this section we set out to
develop a mixed integer linear program (MILP) for the exact solution of the problem.
This approach is beneficial in two ways. Firstly, it allows us to use the rich theory and
highly optimized tools of integer linear programming, in order to efficiently explore
the search space. Secondly, the MILP framework, once constructed, makes it possible
to tackle different problem variants with only slight modifications.

The power, and also the computational hardness, of integer linear programming lies
in the fact that binary 0/1 variables can easily model logical decisions. Therefore,
many combinatorial optimization problems can be formulated as ILPs, as long as the
problem constraints can be cast as linear inequalities. In order to do so, we often
need to translate statements of propositional logic into linear inequalities involving
the variables. In what follows we expose step by step the logic that leads us to the
final MILP formulation for MINSENSOR.

Our starting point is a well-known connection between bipartite matchings and linear
programming. Namely, given a bipartite graph G = (C, R; E), we can express the
existence of a C-perfect matching as the feasibility of a linear program (LP) that
contains |E| real-valued variables, |R| inequalities and |C| equalities.

LP 1 Existence of a perfect matching as an LP feasibility problem

zji ≥ 0 ∀j ∈ C, ∀i ∈ N(j) (4.1)∑
j∈N(i)

zji ≤ 1 ∀i ∈ R (4.2)

∑
i∈N(j)

zji = 1 ∀j ∈ C (4.3)

Correctness (of LP 1). The graph G = (C, R; E) has a matching that covers all
vertices of C if and only if there exists a vector z that is a feasible solution of LP 1.

To prove the correctness of LP 1, we need to recall some standard facts about totally
unimodular (TU) matrices that can be found, e.g., in [Wol98].

Definition 4.3. A matrix is called totally unimodular if every square submatrix of it
has determinant equal to 0 or ±1.

Proposition 4.4.

38

4.2 An exact MILP solution for MINSENSOR

1. If the rows of a 0/1 matrix can be partitioned in two sets such that each column
contains at most one 1 in each partition, then the matrix is TU.

2. A TU matrix remains TU under the following operations: append a copy of an
existing row, append a unit row-vector, multiply a row with −1.

Theorem 4.5. If A is a TU matrix and b is an integer vector, then all vertices of the
convex polyhedron P = {x : x ≥ 0, Ax ≤ b} are integer.

Now we are finally ready to prove the correctness of LP 1.

Proof. First, we show that there exists a feasible vector z if and only if there exists a
feasible 0/1 vector ẑ. The reverse direction is obvious; here we prove the forward direc-

tion. If z is feasible, then it lies in the polyhedron P = {z : z ≥ 0,
(
A B −B

)T
z ≤(

1 1 −1
)T}, where A and B are the matrices corresponding to (4.2) and (4.3), re-

spectively. Each variable zji (recall that variables correspond to edges) appears with
coefficient 1 exactly once in (4.2) (incidence to the R-vertex of the edge) and exactly
once in (4.3) (incidence to the C-vertex of the edge). Therefore, from the first part of

Proposition 4.4 it follows that the matrix
(
A B

)T
is TU and from the second part

we finally get that
(
A B −B

)T
is also TU. Since P is non-empty and bounded,

it has at least one vertex ẑ and, due to Theorem 4.5, this vertex has to be integer.
Furthermore, (4.1) and (4.2) imply that ẑji ∈ [0, 1] for all j and i. Therefore, ẑ is a
0/1 feasible solution of LP 1.

Now, we show that a 0/1 feasible solution ẑ corresponds to a C-perfect matching in
G. Since the variables zji correspond to the edges of G, a feasible 0/1 assignment of
z indicates a subset of edges M ⊆ E such that each vertex of C is incident to exactly
one edge of M [equality (4.3)] and each vertex of R is incident to at most one edge of
M [inequality (4.2)]. The edge set M is a C-perfect matching.

We can immediately extend LP 1 in order to express identifiability of a bipartite graph
as an LP feasibility problem. Recall that identifiability of a graph G = (C, R; E) is
defined as the existence of perfect matchings in certain (|C| many) subgraphs of G. So,
all we have to do is to enforce the existence of a complete matching in the subgraphs
G̃s, for all s ∈ C. In LP 2 we do this, by explicitly writing down |C| sets of inequalities
of type LP 1.

Correctness (of LP 2). The graph G = (C,R; E) is identifiable if and only if there
exists a vector z that is a feasible solution of LP 2.

Finally, we can now give a complete formulation for the exact solution of MINSENSOR.
More specifically, we develop a mixed integer linear program (MILP 1) that contains
|R| 0/1 variables yi such that yi = 1 if and only if i ∈ I. It also contains O (|C||E|)

39

Chapter 4 Optimal Manufacturing of Sensors

LP 2 Identifiability as an LP feasibility problem

zs
ji ≥ 0 ∀s ∈ C,∀j ∈ C \ {s},∀i ∈ N(j) \N(s) (4.4)∑

j∈N(i)\{s}

zs
ji ≤ 1 ∀s ∈ C,∀i ∈ R \N(s) (4.5)

∑
i∈N(j)\N(s)

zs
ji = 1 ∀s ∈ C,∀j ∈ C \ {s} (4.6)

real -valued variables zs
ji, in order to enforce the identifiability of the subgraph G[C, I].

For a vertex s ∈ C, the variables zs
ji and the corresponding group of constraints (4.8)-

(4.11) guarantee the identifiability of s in G[C, I]. The correctness proof of MILP 1
closely follows the correctness proof of LP 1.

MILP 1 Formulation for the exact solution of MINSENSOR

minimize:
∑
i∈R

c(i)yi

subject to:

yi ∈ {0, 1} ∀i ∈ R (4.7)

zs
ji ≥ 0 ∀s ∈ C,∀j ∈ C \ {s},∀i ∈ N(j) \N(s) (4.8)

zs
ji ≤ yi ∀s ∈ C,∀j ∈ C \ {s},∀i ∈ N(j) \N(s) (4.9)∑

j∈N(i)

zs
ji ≤ 1 ∀s ∈ C,∀i ∈ R \N(s) (4.10)

∑
i∈N(j)\N(s)

zs
ji = 1 ∀s ∈ C,∀j ∈ C \ {s} (4.11)

Correctness (of MILP 1). A vector y defines a set I ⊆ R such that G[C, I] is iden-
tifiable if and only if there exists a vector z such that (y, z) is a feasible solution of
MILP 1.

Proof. First, we show that there exists a vector z such that (y, z) is feasible if and
only if there exists a 0/1 vector ẑ such that (y, ẑ) is feasible. The reverse direction is
obvious; here we prove the forward direction. If (y, z) is feasible, then y is a 0/1 vector
and z lies in the polyhedron P (y) defined by (4.8)-(4.11). Each variable zs

ji appears
with coefficient 1 exactly once in (4.10) and exactly once in (4.11); combined with
Proposition 4.4, this implies that the matrix defining P (y) is totally unimodular. Since
P (y) is non-empty and bounded, it has at least one vertex ẑ and, due to Theorem 4.5,

40

4.3 Cutting-plane approaches to solve MINSENSOR

this vertex has to be integer. Furthermore, (4.8) and (4.9) imply that ẑs
ji ∈ [0, 1] for

all s, i and j. Therefore, (y, ẑ) is a 0/1 feasible solution of MILP 1.

Now, we show that y defines a set I ⊆ R such that G[C, I] is identifiable if and
only if there exists a 0/1 vector ẑ such that (y, ẑ) is feasible. For each edge (i, j) of
G[C \ {z}, R \N(z)] there is one variable zs

ji, and condition (4.9) is equivalent to the
statement: i /∈ I ⇒ zs

ji = 0. The graph G[C, I] is identifiable if and only if for each
s ∈ C there exists a matching Ms in G[C \ {s}, I \ N(s)] that covers all vertices of
C \ {s}. This can be expressed as a system of linear inequalities: There is a set of
edges Ms in G[C \ {s}, I \N(s)] such that each vertex of C \ {s} is incident to exactly
one edge of Ms and each vertex of I \ N(s) is incident to at most one edge of Ms.
This happens if and only if there is a 0/1 assignment of the variables zs

ji that satisfies
(4.9)-(4.11).

4.3 Cutting-plane approaches to solve MINSENSOR

In MILP 1, there are a few binary variables yi that are used to choose the optimal
subset of sensors and a lot more continuous variables zs

ji, whose only purpose is to
guard the identifiability of the subgraph G[C, I]. We observe that the z-variables
and the corresponding constraints have a simple structure. For a vertex s ∈ C,
the variables zs

ij and the constraints (4.8)-(4.11) enforce that s will be identifiable in
G[C, I]. Moreover, for s1, s2 ∈ C with s1 ̸= s2, the corresponding z-variables and
constraints are completely decoupled.

This observation motivates us to develop an incremental approach for MINSENSOR. In-
stead of setting out to solve the full-fledged MILP 1 at once, we first try to solve a re-
laxation of MINSENSOR (that we call MINSENSOR-REL) and add the matching constraints
on demand, only if they are violated. In the relaxation we replace the requirement of
G[C, I] being identifiable with two necessary (but not sufficient) conditions that must
hold in G[C, I]: (i) every vertex s ∈ C must have at least |C| − 1 non-neighbors and
(ii) for all s1, s2 ⊆ C with s1 ̸= s2 it must be N(s1) * N(s2). The same construction
as that of Section 4.1 shows that MINSENSOR-REL is also NP-hard. The corresponding
ILP is much simpler, as it contains only the binary variables yi and |C|2 constraints.
More specifically, condition (i) is equivalent to

∑
i∈R\N(s) yi ≥ |C| − 1 and condition

(ii) is equivalent to
∑

i∈N(s1)\N(s2) yi ≥ 1.

Of course, a solution of the relaxed problem is not guaranteed to be identifiable. How-
ever, given a candidate solution G[C, I], we can efficiently check a-posteriori, if any of
the |C| matching constraints is violated; this is done by solving |C| bipartite maximum
matching problems. If no constraint is violated, then MINSENSOR has been optimally
solved, otherwise, for vertices s ∈ C that are not identifiable in G[C, I], we add the

41

Chapter 4 Optimal Manufacturing of Sensors

corresponding block of z-variables and constraints (4.8)-(4.11) and reiterate. It is im-
portant to note that we can check in polynomial time if a candidate solution violates
any of the constraints and, if this is the case, also detect the violated constraints.
Clearly, this approach of adding the constraints on demand does not offer any theo-
retical advantage, since it is in principle possible to iterate up to |C| times, each time
solving a larger MILP. However, in Section 4.5, we demonstrate that this approach
eventually pays off for a wide range of randomly generated problem instances.

From a geometric point of view, replacing the original problem with a relaxation
corresponds to optimizing the objective function over a polyhedron (call it Pr) that
contains the polyhedron of the original problem (call it Po). Given an optimal solution
x∗ of the relaxation, which lies of course in Pr, we need an oracle to decide if x∗ also
lies in Po. If this is not the case, we also want the oracle to return a hyperplane that
separates the point x∗ from the interior of Po; this corresponds to detecting a violated
inequality in the ILP formulation. This hyperplane “cuts” from Pr the part towards
the direction of x∗ that does not belong to Po and, therefore, it is called cutting-plane.
For the oracle we say that it solves the separation problem. Finding a separation oracle
that runs in polynomial time is not always possible, but in our case this is a simple
consequence of the problem structure.

Below we present an alternative way to add cutting-planes, which is based on Hall’s
marriage theorem. As we explained before, given a solution I ⊆ R that is optimal for
the relaxed problem, we check a-posteriori, for all s ∈ C, if the subgraph G[C \{s}, I \
N(s)] has a matching of size |C| − 1. If this is the case, the optimal solution of the
relaxed problem is also an optimal solution of MINSENSOR and we are done. Let us
now assume that for some s ∈ C the matching constraint fails. Then, Hall’s marriage
theorem (see Theorem 3.6) implies that there exists a set Xv ⊆ C \ {s} such that
|N(Xv)∩ (I \N(s))| < |Xv|. And here comes the difference to the previous approach.
Instead of adding the whole group of variables zs

ji and the corresponding constraints,
we now detect a particular set Xv that causes the problem. For these particular s ∈ C
and Xv ⊆ C \{s} we add to the ILP the following constraint that enforces the desired
condition |N(Xv) ∩ (I \N(s))| ≥ |Xv|:∑

i∈N(Xv)\N(s)

yi ≥ |Xv|.

In contrast to the first approach of adding the whole group of variables zs
ji, adding only

the above constraint does not exclude the existence of another set X ′
v ⊆ C \ {s} that

violates Hall’s condition. Theoretically, it is even possible to have exponentially many
such violations, which would lead to exponentially many cutting-plane iterations and
constraints. However, in Section 4.5 we show experimentally that, at least for randomly
generated problem instances, this second cutting-plane approach is more efficient than
the first one.

42

4.4 A greedy approximation algorithm

In the above discussion, there is one important point that we have left open: How
can we actually find a set Xv that violates Hall’s condition? In other words, given
a bipartite graph G = (A,B; E) that does not have an A-perfect matching, can we
find efficiently a set Xv ⊆ A such that |N(Xv)| < |Xv|? It turns out that we actually
get such a set “for free” by taking a look at the internals of the maximum matching
algorithm. Even more strongly, we get a minimizer of the surplus function σ(X) =
|N(X)| − |X|, i.e., a set that maximally violates Hall’s condition. In order to show
that, we need Proposition 4.6; for its proof see, e.g., [LP86].

Proposition 4.6. If G = (A,B; E) is a bipartite graph with no A-perfect matching,
then the size of a maximum matching ν(G) = |A|+ σ(G) 2

Proposition 4.7. Let G = (A,B; E) be a bipartite graph that has no A-perfect match-
ing and no isolated vertices in A. If V C is a minimum vertex cover of G, then
σ(A \ V C) = σ(G).

Proof. From König’s theorem and the assumption that no A-perfect matching exists,
we get |V C| = ν(G) < |A|. If V C ∩ B = ∅, then V C ⊂ A and since V C covers
all edges of G, it follows that A contains some isolated vertices. This contradicts the
assumption and, therefore, it must be V C ∩B ̸= ∅.

We set B′ := V C∩B, A′ := V C∩A and A′′ := A\V C = A\A′. Due to Proposition 4.6
and König’s theorem, we have σ(G) = ν(G)− |A| = |V C| − |A| = |A′|+ |B′| − |A| =
|B′| − |A′′|. On the other hand, the fact that V C is a vertex cover implies that
N(A′′) ⊆ B′ and, therefore, σ(A′′) = |N(A′′)| − |A′′| ≤ |B′| − |A′′| = σ(G). The
minimality of σ(G) finally implies σ(A′′) = σ(G).

And here comes the last piece of the puzzle: In a bipartite graph a minimum vertex
cover is automatically computed along with a maximum matching (see Algorithm 2
in Section 3.2). So, when we use this algorithm to check whether a graph has an
A-perfect matching, we also get for free a set that maximally violates Hall’s condition,
if no A-perfect matching exists.

4.4 A greedy approximation algorithm

Recall that the input to the MINSENSOR problem is a bipartite graph G = (C,R; E)
together with a function c : R → Q+, and the goal is to find a set I ⊆ R such that
the subgraph G[C, I] is identifiable and

∑
y∈I c(y) is minimized. In this section we

show that there exists an efficient greedy algorithm for MINSENSOR that guarantees a
logarithmic approximation of the optimal solution. A variant of the algorithm that
improves on the running time will be discussed in Sect. 4.4.1.

2Recall that σ(G) = minX⊆A{|N(X)| − |X|}. Since G has no A-perfect matching, it is σ(G) < 0.

43

Chapter 4 Optimal Manufacturing of Sensors

Theorem 4.8. There exists a greedy algorithm that computes an H(τ)-approximate
solution to MINSENSOR, where τ = |C| − miny∈R d(y). The algorithm runs in time

O
(
|R|2|C|

√
|R|+ |C||E|

)
.

In the above theorem, d(y) denotes the degree of y and H(n) =
∑n

i=1
1
i

the n-th
harmonic number. Since H(n) ≤ ln n + 1 for n ≥ 1, the algorithm given by the
theorem provides an (ln |C| + 1)-approximation to MINSENSOR. We will show later in
this section that this bound on the approximation ratio is almost tight.

Before proceeding to the proof of Theorem 4.8, we must recall some preliminaries
about submodular functions and state some of the related well-known results, which
we will use in our proof.

Definition 4.9. A real-valued set function f defined on the power set of a finite
ground set R is called submodular if f(X) + f(Y) ≥ f(X ∪ Y) + f(X ∩ Y), for any
two sets X, Y ⊆ R.

Submodular functions are a key concept in combinatorial optimization; see for ex-
ample the books [Fuj05, Nar97]. For our purposes, the following problem related to
submodular functions will be of interest, together with a greedy algorithm for it and
the corresponding analysis by Wolsey.

Problem 7. MINIMUM SUBMODULAR COVER

We are given a finite ground set R, a nonnegative cost function c defined on R and an
integer-valued, non-decreasing and submodular function f on R. Our task is to find a
set I ⊆ R that satisfies f(I) = f(R) and minimizes

∑
y∈I c(y).

Algorithm 3 Greedy algorithm for MINIMUM SUBMODULAR COVER

1: I ← ∅
2: repeat
3: for all y ∈ R \ I do
4: ∆f(y)← f(I ∪ {y})− f(I)
5: end for

6: y∗ ← argmax
∆f(y)
c(y)

7: I ← I ∪ {y∗}
8: until f(I) = f(R)
9: return I

Theorem 4.10 (Wolsey [Wol82]). Algorithm 3 is an H(τ)-approximation algorithm
for MINIMUM SUBMODULAR COVER, where τ = maxy∈R f({y})− f(∅).

The following proposition will also be used in our proof of Theorem 4.8.

44

4.4 A greedy approximation algorithm

Proposition 4.11 (Lovász and Plummer [LP86]). Let G = (A,B; E) be a bipartite
graph and for X ⊆ B let g(X) = ν(G[A,X]). Then, g is a submodular function.

We are now ready to prove Theorem 4.8.

Proof. The proof relies on Theorem 4.10. In fact, by defining a suitable submodular
function f , we will show that MINSENSOR is a special case of MINIMUM SUBMODULAR

COVER. Therefore, we can apply the framework of Algorithm 3 together with Wolsey’s
analysis of its performance guarantee.

Given a bipartite graph G = (C, R; E), we define an integer-valued potential function
f on our search space, as follows: for a set X ⊆ R the value of f at X is given by:

f(X) =
∑
z∈C

ν (Gz[X]) . (4.12)

(Recall that Gz[X] denotes the graph G[C \ {z}, X \N(z)].)

Intuitively, our potential function f evaluates the goodness of a set X ⊆ R by com-
puting its total contribution to the matching numbers of the subgraphs Gz[X], for
all z ∈ C. By definition, a vertex z ∈ C is identifiable in G[C, X] if and only if the
matching number of Gz[X] equals |C| − 1. Therefore, f(X) ≤ |C|(|C| − 1), for all
X ⊆ R, and equality holds if and only if G[C, X] is identifiable.

We now show that the function f given by (4.12) defines a natural mapping from the
instances of the MINSENSOR problem to those of the MINIMUM SUBMODULAR COVER. To
this end, we need to verify that f(I) = f(R) if and only if G[C, I] is identifiable, and
that f is non-decreasing and submodular.

• f is non-decreasing.

This follows immediately from the definition, since adding an R-vertex to a set I
cannot decrease the matching number of any Gz[I]. Therefore f(I∪{y}) ≥ f(I),
for every I ⊂ R and every y ∈ R \ I.

• f is submodular.

For z ∈ C and X ⊆ R, we set gz(X) = ν(Gz[X]). Since f is defined as the
sum of the functions gz, and the sum of submodular functions is submodular,
is suffices to show that the functions gz are submodular, for all z ∈ C. We
apply Proposition 4.11 to the subgraph Gz. Let X, Y ⊆ R. The submodularity
condition given by Proposition 4.11, applied to the sets X \N(z) and Y \N(z),
results in the following inequality:

ν(Gz[X]) + ν(Gz[Y]) ≥ ν(Gz[X ∪ Y]) + ν(Gz[X ∩ Y]).

45

Chapter 4 Optimal Manufacturing of Sensors

This gives gz(X) + gz(Y) ≥ gz(X ∪ Y) + gz(X ∩ Y), i.e., gz is submodular.
Therefore, f is submodular too.

• For every I ⊆ R, f(I) = f(R) if and only if G[C, I] is identifiable.

Since f is non-decreasing, an instance of MINSENSOR is feasible if and only if the
given graph G = (C,R; E) is identifiable, that is, f(R) = |C|(|C|−1). Assuming
this equality, the fact that f(I) = |C|(|C|−1) if and only if G[C, I] is identifiable,
establishes that f(I) = f(R) if and only if G[C, I] is identifiable.

Therefore, Theorem 4.10 implies that, with the function f given by (4.12), Algorithm 3
is an H(τ)-approximation algorithm for MINSENSOR, where τ = maxy∈R f({y})− f(∅).
In our case, f(∅) = 0 and f({y}) = |C| − d(y) for all y ∈ R; therefore, we conclude
that the greedy algorithm for MINSENSOR returns a solution that approximates the
optimal one within a ratio of at most H(|C| −miny∈R d(y)).

The claimed time complexity of O
(
|R|2|C|

√
|R|+ |C||E|

)
follows from a straightfor-

ward implementation of Algorithm 3 (with the function f given by (4.12)), computing
the maximum matchings using, e.g., the algorithm by Hopcroft and Karp [HK73]
(which computes the matching number of a bipartite graph with n vertices and m
edges in time O (

√
nm)).

We now show that our bound from Theorem 4.8 for the performance of the greedy
algorithm is tight up to an additive term of 2. Inspired by tight examples for the greedy
algorithm for the set cover problem (see, e.g., [Vaz04]) we can construct instances for
MINSENSOR on which the greedy algorithm returns a solution which is at least a factor
of ln |C| − 1 away from optimality.

Theorem 4.12. The approximation ratio of the greedy algorithm for MINSENSOR (Al-
gorithm 3 with f given by (4.12)) is at least ln |C| − 1.

Proof. Consider the following hitting set instance: T = {1, . . . , n+1},F = {{i, n+1} :
1 ≤ i ≤ n}. We construct an instance G = (C, R; E) and c for MINSENSOR as follows:
G is the graph obtained by applying to (T,F) the transformation used in the proof
of Theorem 4.1. The costs of vertices in R = {v1, . . . , v3n+2} (respecting the order of
corresponding rows in the zero pattern) are given as follows: for 1 ≤ i ≤ n, we have
c(vi) = 1/i; moreover c(vn+1) = 1 + ϵ (for some ϵ > 0, to be specified later), while
the remaining vertices are of zero cost. For small enough ϵ, there is a unique optimal
solution of cost 1 + ϵ given by {vj : n + 1 ≤ j ≤ 3n + 2}. The solution returned
by the greedy algorithm is R \ {vn+1} and is of cost H(n) = H(|C|/2). The ratio is
H(|C|/2)/(1 + ϵ), which is at least ln |C| − 1 for small enough ϵ.

46

4.4 A greedy approximation algorithm

4.4.1 Improving the running time

It turns out that it is possible to improve the running time of the greedy approximation

algorithm for MINSENSOR from O
(
|R|2|C|

√
|R|+ |C||E|

)
down to O (|R||C||E|). The

key observation is that for the special case of the potential function defined by (4.12),
the computation of line 4 in Algorithm 3 does not require the evaluation of f(I ∪{y})
from scratch at each iteration. Instead, we rewrite ∆f(y) as a sum of terms each of
which is either 0 or 1:

∆f(y) = f(I ∪ {y})− f(I) =
∑
z∈C

(
ν (Gz[I ∪ {y}])− ν (Gz[I])

)
. (4.13)

Thus, we consider, for each z ∈ C, the subgraph Gz[I] and we want to check if the
addition of vertex y to I will increase the matching number of Gz[I] by one. This com-
putation can be performed efficiently using the properties of maximum matchings.

The pseudocode of this improved algorithm (Algorithm 4) is given below. Its main
properties are summarized in Proposition 4.13. The algorithm relies on a well-known
theorem by Berge [Ber57], a result of central importance for matching algorithms.
Berge’s Theorem holds for arbitrary graphs and states that a matching M in a graph
G is maximum if and only if G has no M-augmenting path, i.e., a path whose edges
alternate between matched and unmatched and whose endpoints are non-matched.
If there exists an M -augmenting path P , then a matching M ′ larger than M can
be immediately obtained by replacing in M the matched edges along this path with
the unmatched ones. In formulae, M ′ = M△E(P) where △ denotes the symmetric
difference operator.

Proposition 4.13. Algorithm 4 is correct and computes, in time O (|R||C||E|), an
H(τ)-approximate solution to MINSENSOR, where τ = |C| −miny∈R d(y).

Proof. Observing that Algorithm 4 is closely related to Algorithm 3, its correctness
follows from the following invariants of the algorithm:

(i) For every z ∈ C and for every I, the set Mz[I] is a subset of E that forms a
maximum matching in Gz[I].

(ii) For every z ∈ C and for every I, the set Rz[I], as defined in line 9, is equal to
the set of all vertices y in R \ I such that ν(Gz[I ∪ {y}]) = ν(Gz[I]) + 1.

(iii) For every I and every y ∈ R\I, the value of ∆f(y), as defined in line 12, is equal
to f(I ∪ {y})− f(I).

Property (iii) follows from (ii), using equation (4.13). Properties (i) and (ii) can
be proved simultaneously by induction on |I| and using Berge’s Theorem together
with the following observation, which follows directly by the construction of the graph
Dz[I]:

47

Chapter 4 Optimal Manufacturing of Sensors

Algorithm 4 Greedy algorithm for MINSENSOR
1: I ← ∅
2: for all z ∈ C do
3: Mz[∅]← ∅
4: end for
5: repeat
6: for all z ∈ C do
7: Construct Dz[I], the directed graph obtained from Gz by orienting in it the edges

of Mz[I] from R to C and all the other edges from C to R. In addition, there is
a new vertex s∗ with no incoming arc and with an outgoing arc to each vertex in
C \ {z} unmatched by Mz[I].

8: Rz[I]← the set of all vertices in R \ (I ∪NG(z)) reachable by a directed path from
s∗ in Dz[I].

9: end for
10: for all y ∈ R \ I do
11: ∆f(y)← |{z : z ∈ C, y ∈ Rz[I]}|
12: end for

13: y∗ ← argmax
∆f(y)
c(y)

14: for all z ∈ C do

15: Mz[I ∪ {y∗}]←
{

Mz[I]△P, if y∗ ∈ Rz[I];
Mz[I], otherwise.

Here, P is an augmenting Mz[I]-path in Gz[I ∪ {y∗}].
16: end for
17: I ← I ∪ {y∗}
18: until f(I) = f(R)
19: return I

Observation For every I, every z ∈ C and every y ∈ R\(I ∪NG(z)), there exists an
Mz[I]-augmenting path in Gz[I ∪ {y}] if and only if y ∈ Rz[I].

It remains to analyze the algorithm’s running time:

• For every I and every z ∈ C, the computation corresponding to lines 7–9 can
be performed, for example using breadth-first search, in time O (|E|). Over all
repeat iterations, the computation corresponding to lines 7–9 contributes for a
total of O (|R||C||E|).

• The computation in line 12 contributes, over all repeat iterations, for a total of
O (|R|2|C|).

• The computation in line 14 contributes, over all repeat iterations, for a total of
O (|R|2).

• The computation in line 16 contributes, over all repeat iterations, for a total of
O (|R||C||E|).

48

4.5 Computational experiments on randomly generated instances

Therefore, the total time complexity is O (|R||C|max{|R|, |E|}), which is of the order
O (|R||C||E|), if there are no isolated vertices in R. However, this assumption is easily
justified as any such vertices can be a-priori detected and deleted from the graph.

4.5 Computational experiments on randomly
generated instances

In this section we investigate how the methods from Section 4.3 and the greedy al-
gorithm of Section 4.4 perform on simulated instances of the unit-cost restriction of
MINSENSOR. We generated random bipartite graphs G = (C,R; E), with 24 differ-
ent parameter combinations: |C| ∈ {30, 60, 90}, |R| ∈ {2|C|, 3|C|} and edge density
d ∈ {10%, 20%, 30%, 40%}. For each combination we generated 100 random graphs
by drawing each edge, independently from the others, with probability d.

• S-CP: This algorithm corresponds to the straightforward cutting plane approach
of Section 4.3. More precisely, it is the incremental method where the identifia-
bility requirements are replaced by two necessary (but not sufficient) conditions.
Then, given a solution of the relaxed problem, we check if any of the matching
constraints is violated and, if it is the case, we add the corresponding constraints
to the MILP.

• H-CP: This is the cutting plane approach based on Hall’s theorem described
in Section 4.3. The main difference from S-CP is that the constraints that are
added to the MILP (if violations exist) are based on Hall’s theorem.

• GREEDY: This algorithm is the greedy approach described in Section 4.4.

The programs are solved on a 64-bit Sparc machine (450 MHz, 4 GB of RAM), using
the AMPL/CPLEX software platform (version 10.2) with default CPLEX parameters,
and an upper limit of 20 CPU minutes for the solution of a single ILP. The ILPs are
simplified by the presolver of AMPL, before being sent to the optimization engine.

The results of the cutting-plane approaches of Section 4.3 are summarized in Table 4.1.
As described in Section 4.2, we first try to solve the relaxed problem and we add the
matching constraints on demand, only if they are violated. It turns out that in most
cases the solution of the relaxed problem does not violate the matching constraints
and is, therefore, a solution of the original problem. This is in accordance with our
intuition: In a randomly generated, dense enough bipartite graph, large matchings
exist with high probability. In the context of MINSENSOR, if we make sure that each
s ∈ C has enough (at least |C| − 1) non-neighbors in G[C, I], then it is likely that
G[C \ {s}, I \N(s)] has a matching of size |C|− 1. In other words, for these randomly
generated instances the computational bottleneck is the “coverage” of each s ∈ C with
at least |C| − 1 non-neighbors and not the matching constraints.

49

Chapter 4 Optimal Manufacturing of Sensors

S-CP: Straightforward Cutting Plane Approach
|C| = 30 |C| = 60 |C| = 90

d (%) |R| = 60 |R| = 90 |R| = 120 |R| = 180 |R| = 180 |R| = 270
10 0.98ci 5890si 1.09ci 21694si 0.05ci 906si 0.08ci 4674si 0ci 23640si 0ci 35781si

(95) (71)
20 0.01ci 101si 0.08ci 2054si 0ci 1490si 0ci 28887si 0ci 32332si 0ci 44335si

(95) (77) (55)
30 0ci 45si 0ci 129si 0ci 858si 0ci 57413si 0ci 22644si 0ci 49805si

(80) (86) (17)
40 0ci 23si 0ci 197si 0ci 61si 0ci 65078si 0ci 4144si 0ci 42516si

(76) (11)

H-CP: Cutting Plane Approach Based on Hall’s Theorem
|C| = 30 |C| = 60

d (%) |R| = 60 |R| = 90 |R| = 120 |R| = 180
10 2.44ci 282si 6.16ci 1130si 0.05ci 225si 0.08ci 1467si
20 0.02ci 70si 0.08ci 122si

Table 4.1: Each cell corresponds to a certain parameter combination (|C|, |R|, d). It contains
the average number of cutting-plane iterations (ci) and the average total number of simplex
iterations (si). The number of instances solved within the time limit (out of 100, all solved
if number not given) is shown in parentheses. In the table H-CP we monitor only the
cases where the addition of any cutting-planes was necessary; in the rest of the cases it
was sufficient to solve the relaxed problem.

For the sparse instances (upper-left corner of Table 4.1), where the relaxation does
not immediately yield a solution, a few cutting-plane iterations are enough in practice.
Comparing the two approaches, S-CP and H-CP, we observe that the one based on
Hall’s theorem (H-CP) is more efficient in practice, as it takes in total fewer simplex
iterations.

Of course, MINSENSOR-REL is itself a hard problem. As we face bigger and more dense
zero patterns, moving toward the lower-right corner of Table 4.1, its solution is more
and more computationally intensive and in several cases cannot be achieved within
the time limit.

Table 4.2 shows the experimental results for the GREEDY algorithm. The algorithm
produces solutions of high quality since the average approximation ratio and the max-
imum approximation ratio are close to 1. As is often the case with approximation
algorithms, the performance of the algorithm on randomly generated instances seems
to be better than its worst-case performance guarantee of O (ln |C|) established in
Section 4.4. In fact, on the generated instances, the approximation ratios do not even
increase with the size of the instances.

50

4.5 Computational experiments on randomly generated instances

GREEDY algorithm
|C| = 30 |C| = 60 |C| = 90

d (%) |R| = 60 |R| = 90 |R| = 120 |R| = 180 |R| = 180 |R| = 270
10 33 32 65 64 99 97

1.09, 1.19 1.11, 1.19 1.05, 1.09 1.06, 1.11 1.05, 1.09 1.05, 1.08
20 36 35 75 72 111 109

1.06, 1.14 1.07, 1.20 1.06, 1.13 1.07, 1.12 1.05, 1.09 1.06, 1.12
30 42 39 86 82 130 124

1.06, 1.12 1.08, 1.15 1.06, 1.10 1.07, 1.13 1.06, 1.10 1.07, 1.11
40 52 46 104 96 157 146

1.04, 1.08 1.08, 1.17 1.04, 1.08 1.07, 1.11 1.04, 1.06 1.07, 1.10
Table 4.2: First row: average size of optimal solution (rounded to integer). Second row:

average approximation ratio and maximum approximation ratio.

51

52

Chapter 5

Selection of Independent Subnetworks

Summary of the chapter. We analyze the case where from a source-sensor network
we want to isolate subsets of sources that can be measured independently from the rest.
Thereby, we require that the corresponding subnetwork is identifiable, so that we can
process the measurements in the matrix factorization framework. We show how this
requirement leads to the definition of “nicely separable” sets of sources and we define
two related combinatorial problems. For one of them, that we call MINSOURCE, we
manage to prove that it is NP-hard. The reduction is similar in spirit to the reduction
for MINSENSOR, but more complicated due to the extra constraints. We present some
simple data reduction rules that can be used to simplify instances of these problems
and, finally, we develop a MILP formulation for their exact solution.

5.1 Motivation

The main object of our study in this chapter is again a source-sensor bipartite network
G = (C,R; E), where C is the set of sources and R is the set of sensors. As described
in Chapter 2, we are measuring the linear signal mixtures on the sensors and from
these measurements we want to infer the source signals across time and the non-zero
mixing coefficients.

We firstly consider a scenario where, due to limited budget, we cannot afford to take
measurements at more than k < |C| time samples. Let us recall that Proposition 3.1

implies the basic condition Â = AR ▹ Z, which in turn forms the basis for the
definition of identifiable networks. In order for the assumption rank(X) = m of
Proposition 3.1 to hold, the necessary condition m ≤ k must be satisfied, where m is
the number of monitored signal sources and k is the (fixed) number of time samples.
Therefore, having k < |C| time samples at our disposal, we want to isolate from G a
subnetwork that contains at most k sources. Of course, we also want this subnetwork
to be identifiable, so that we can process the measurements in the ZCAMF framework.
Is it easy to find an identifiable subnetwork with at most k sources?

53

Chapter 5 Selection of Independent Subnetworks

Let us secondly consider the case where the initial graph G is not identifiable. Then,
one option is to make it identifiable, by adding some appropriately designed sensors.
If we cannot afford any more sensors, but we still want G to be of any use, we have
to leave some sources out of our measurements. Which sources should we omit? Can
we find a maximum subset of sources J ⊂ C that induces an identifiable subgraph?

In both cases described above, we want to isolate a subset of sources J ⊂ C and
this creates an additional complication. Namely, if a sensor x ∈ R is connected to a
source y /∈ J , then we cannot use x in our ZCAMF computation: The measurements
on x depend on the signal of y, but we are not including y in our computation. In
other words, selecting a set of sources J ⊂ C automatically restricts the set of allowed
sensors to the ones whose neighborhood is completely contained in J . This observation
motivates the following definition.

Definition 5.1. Let us consider a bipartite graph G = (C, R; E) and two sets J ⊆ C
and I ⊆ R. If N(I) = J , we will say that I measures J . If there exists an I that
measures J , we will call J separable.

Remark 5.2. If J ⊆ C is separable and N(I1) = N(I2) = J , then N(I1 ∪ I2) =
J . Therefore, among the sets that measure J there is a unique one with maximum
cardinality; we will denote this set with s(J). We should keep in mind that s(J) is
defined only for a separable set J .

Remark 5.3. It is easy to test if a given J ⊆ C is separable. We just have to go once
through all vertices y ∈ R and keep aside in a set Y the ones that have N(y) ⊆ J .
Finally, if N(Y) = J , then J is separable and s(J) = Y , otherwise J is not separable.

In contrary to MINSENSOR, in this chapter we will not be concerned about minimiz-
ing the number (or the cost) of the used sensors. Therefore, having chosen a set of
sources J , it is reasonable to monitor them with as many sensors as possible, i.e. with
the sensor set s(J), because this can only improve the identifiability of the resulting
subgraph.

Definition 5.4. Let us consider a graph G = (C, R; E) and a set J ⊆ C. We will
call J nicely separable, if it is separable and, moreover, the subgraph G[J, s(J)] is
identifiable.

Below we show that the family of nicely separable sets is closed under union (such a
set family is called semi-lattice). Therefore, this family contains a unique set J∗ with
maximum cardinality. Moreover, any nicely separable set is contained in J∗.

Proposition 5.5. Let us consider a graph G = (C, R; E) and two sets J1, J2 ⊆ C. If
both J1 and J2 are nicely separable, then so is also their union.

54

5.1 Motivation

Proof. Since J1 and J2 are nicely separable, s(J1) and s(J2) exist and, by definition,
N(s(J1)) = J1 and N(s(J2)) = J2. Moreover, the subgraphs H = G[J1, s(J1)] and
F = G[J2, s(J2)] are identifiable. Since N(s(J1) ∪ s(J2)) = J1 ∪ J2, we have that
J1∪J2 is separable; moreover s(J1∪J2) ⊇ s(J1)∪ s(J2). We now show that the graph
K = G[J1 ∪ J2, s(J1) ∪ s(J2)] is identifiable; this implies that G[J1 ∪ J2, s(J1 ∪ J2)] is
identifiable and concludes the proof.

Let us consider an arbitrary vertex x ∈ J1. Since H is identifiable, H̃x contains a
matching M1 that matches all vertices of J1 \ {x} onto s(J1). M1 is a matching also

in K̃x, because H̃x is a subgraph of K̃x.

The identifiability of F implies the existence of a matching M that matches all vertices
of J2 onto s(J2). In particular, M matches the vertices of J2 \ J1 onto s(J2) \ s(J1),
because there are no edges between J2 \ J1 and s(J1). Let M2 be the restriction of M

on (J2 \ J1) ∪ (s(J2) \ s(J1)). If x ∈ J1 \ J2, then K̃x contains M2, because there are

no edges between J1 \ J2 and s(J2) \ s(J1). In that case, M1 ∪M2 is a matching in K̃x

that covers all vertices of (J1 ∪ J2) \ {x}.

If x ∈ J1 ∩ J2, by the definition of identifiability, F̃x contains a matching M ′ that
matches all vertices of J2 \ {x} onto s(J2). M ′ is a matching also in K̃x, because F̃x is

a subgraph of K̃x. In particular, M ′ matches the vertices of J2 \ J1 onto s(J2) \ s(J1).
Let M ′

2 be the restriction of M ′ on the vertices (J2\J1)∪(s(J2)\s(J1)). Then, M1∪M ′
2

is a matching in K̃x that covers all (J1 ∪ J2) \ {x}.

Finally, we conclude that for any arbitrary x ∈ J1 there exists a matching in K̃x that
covers all vertices of (J1 ∪ J2) \ {x} and, therefore, x is identifiable in K. Applying
the same argument symmetrically shows that any arbitrary vertex of J2 is identifiable.
Therefore, the subgraph K is identifiable.

Remark 5.6. The family of nicely separable sets is not closed under intersection;
Figure 5.1 contains a counter-example. This is also an example for the fact that the
family of separable sets is not closed under intersection.

Below we define formally two subgraph selection problems:

Problem 8. Given is a non-identifiable bipartite graph G = (C, R; E).

1. Find any nicely separable set J ⊂ C.

2. Find the nicely separable set J∗ ⊂ C of maximum cardinality.

Problem 9. MINSOURCE
Given is a graph G = (C, R; E) and a positive integer k ≤ |C|. Is there a nicely
separable set J ⊆ C with |J | ≤ k?

55

Chapter 5 Selection of Independent Subnetworks

Figure 5.1: J1 and J2 are nicely separable: G[J1, s(J1)] and G[J2, s(J2)] are both identifiable.
However, J1 ∩ J2 is not nicely separable; in fact, it is not even separable.

Note that the problem becomes trivial if we relax the requirement “nicely separable”
to just “separable”. In order to find a minimum separable set, we just have to find
an R-vertex with minimum degree and take its neighborhood. On the other hand,
the difficulty of MINSOURCE intuitively arises from the fact that, as J becomes smaller,
the set s(J) also becomes smaller (if it exists at all) and, therefore, it is difficult for
G[J, s(J)] to contain all necessary matchings. In other words, it is not obvious how
we can isolate small subsets of sources that can be measured independently from the
rest with an identifiable design. The cardinality of the smallest such subset quantifies
how strongly the sources are coupled to each other; in order to measure anything on
the network, we must take measurements in at least that many time points.

In the next section, we show that MINSOURCE is NP-complete 1. However, the com-
plexity of (both parts of) Problem 8 remains open and this is, in fact, an interesting
direction for further research. More specifically, it makes sense to investigate if the
two parts are somehow related to each other. For example, if we have a polynomial-
time algorithm that finds any nicely separable set in a graph, can we use it repeatedly
and combine it with Proposition 5.5 in order to construct an algorithm that finds the
maximum nicely separable set?

5.2 MINSOURCE is NP-complete

We present a reduction from HITTING SET, which is similar in spirit to the reduction
that we did for MINSENSOR. However, the construction here is more complicated, be-
cause we also have to take into account the constraint of nice separability. For the
ease of presentation, we use the representation of a bipartite graph as a zero pattern.
More specifically, we model a bipartite graph G = (A,B; E) with a zero pattern such

1Note that we have defined MINSOURCE as a decision problem.

56

5.2 MINSOURCE is NP-complete

that the columns correspond to part A, the rows correspond to part B, and the ones
correspond to the edges in E.

Problem 10. HITTING SET

Given is a finite ground set T , a family F of subsets of T and a positive integer k̂ ≤ |T |.
Is there a subset S ⊆ T , with |S| ≤ k̂, that intersects all sets of F?

Let (F , T, k̂) be an instance of HITTING SET with F = {C1, . . . , Cm}; without loss
of generality we may assume that T = [n] := {1, . . . , n}. Moreover, we assume that
m ≥ 3. As we did for MINSENSOR’s reduction, we firstly construct an n × m zero
pattern H, such that Hij = 0 if and only if i ∈ Cj. Then, HITTING SET is equivalent

to asking if there is a set of at most k̂ rows that cover at least one zero in each column
of H.

In the following, we show how we can answer this question by solving an appropriately
constructed instance of MINSOURCE. An example for this construction is illustrated in
Figure 5.2. We construct another zero pattern G (that corresponds to graph G in
MINSOURCE’s definition) as follows: G has 2m+n columns, which we label as x1, . . . , xm;
y1, . . . , ym; z1, . . . , zn, and 2m2−m + 3n rows divided in m + 4 blocks: A, B1, . . . ,Bm,
C, D, E . Block A consists of three sub-blocks: A1 = Ĥ (n × m), A2 = 1 (n × m)
and A3 = I (n × n). For j ∈ [m], block Bj consists of two identical (2m − 2) × m
sub-blocks, filled with ones except for the j-th column which is all zero, and a third
n×n block of zeros. Block C consists of three sub-blocks: C1 = 1 (m×m), C2 = 1− I
(m×m) and C3 = 0 (m× n). Block D consists of three sub-blocks: D1 = 0 (n×m),
D2 = 1 (n × m) and D3 = I (n × n). Finally, block E consists of three sub-blocks:
E1 = 1 (n ×m), E2 = 0 (n ×m) and E3 = I (n × n). For notational convenience we
set X := {x1, . . . , xm}, Y := {y1, . . . , ym}, Z := {z1, . . . , zn} and L := the set of rows
from the blocks B1, . . . ,Bm, C.

Lemma 5.7. If J is a nicely separable set of columns in G, then J ⊇ X ∪ Y .

Proof. We say that row i intersects (avoids) column j if Gij = 1 (Gij = 0). First we
show the following statements:

∀j ∈ [m] : yj ∈ J ⇒ J ⊇ X \ {xj} (5.1)

∀j ∈ [m] : xj ∈ J ⇒ J ⊇ Y \ {yj} (5.2)

Because J is nicely separable, there exists a set of rows s(J) such that N(s(J)) = J
and H[J, s(J)] is identifiable. Let us assume that yj ∈ J ; then the identifiability of
H[J, s(J)] implies that s(J) contains at least one row that avoids yj. But every row that
avoids yj intersects every column from the set X\{xj}. Therefore, N(s(J)) ⊇ X\{xj}
and (5.1) follows. Similarly, we can show (5.2).

57

Chapter 5 Selection of Independent Subnetworks

Now, we show that if J contains any column from X ∪ Y , then it contains them all.
Thereby, we make use of the assumption that m ≥ 3. Without loss of generality
we assume that x1 ∈ J and from (5.1) and (5.2) we get the following sequence of
implications:

x1 ∈ J ⇒ J ⊇ Y \ {y1} ⇒ y2 ∈ J

y2 ∈ J ⇒ J ⊇ X \ {x2} ⇒ x3 ∈ J

x3 ∈ J ⇒ J ⊇ Y \ {y3} ⇒ y1 ∈ J

y1 ∈ J ⇒ J ⊇ X \ {x1} ⇒ x2 ∈ J

From the above implications it follows that J ⊇ X ∪ Y .

To complete the proof, it remains to show that every nicely separable set of columns
contains at least one column from X ∪ Y . For the sake of contradiction, suppose that
there is a nicely separable set J ⊆ Z. The identifiability of H[J, s(J)] implies that for
each column of J , s(J) contains at least one row that intersects this column. But for
every column j ∈ Z, every row that intersect j also intersects a column from X ∪ Y .
Therefore, N(s(J)) ∩ (X ∪ Y) ̸= ∅ and this implies that J ∩ (X ∪ Y) ̸= ∅, which is a
contradiction.

Lemma 5.8. Block A contains a row subset I, with |I| = t, that covers each column
of X with at least one zero if and only if there exists a nicely separable column set J ,
with |J | = 2m + t.

Proof.
Forward: Let us assume that I = {i1, . . . , it} ⊆ [n]. We take J = X∪Y ∪{zi1 , . . . , zit};
J is separable, with s(J) = L ∪ A[{i1, . . . , it}] ∪ D[{i1, . . . , it}] ∪ E [{i1, . . . , it}]. Now,
we show that J is nicely separable, by verifying that G[J, s(J)] is identifiable. For each
column xj there exists a row index ij ∈ I with xj[ij] = 0. For column xj consider the

subpattern G̃xj
: In G̃xj

all columns of (X ∪ Y) \ {yj} are matched to the rows of Bj,
column yj is matched to row ij and the columns {zi1 , . . . , zit} are matched to the rows

of D[{i1, . . . , it}]. For column yj, consider the subpattern G̃yj
: In G̃yj

all columns of
(X ∪ Y) \ {xj} are matched to the rows of Bj, column xj is matched to the j-th row
of C and the columns {zi1 , . . . , zit} are matched to the rows of E [{i1, . . . , it}]. Finally,

for each column z ∈ {zi1 , . . . , zit} consider the subpattern G̃z: In G̃z all columns of
X ∪ Y can be matched to the rows of B1 and B2 and all columns of {zi1 , . . . , zit} \ {z}
are matched to the rows of D[{i1, . . . , it}]. Finally, we conclude that G[J, s(J)] is
identifiable.

Reverse: Since J is nicely separable, Lemma 5.7 implies that J ⊇ X ∪ Y . Since,
|J | = 2m+ t, it must be J = X ∪Y ∪{zi1 , . . . , zit}. Then, s(J) = L∪A[{i1, . . . , it}]∪
D[{i1, . . . , it}]∪E [{i1, . . . , it}]. The fact that G[J, s(J)] is identifiable implies that s(J)
covers each column of J with at least |J |−1 = 2m+t−1 zeros. But each column from

58

5.3 Data reduction rules

X has exactly 2m − 2 + t zeros in L ∪ D[{i1, . . . , it}] ∪ E [{i1, . . . , it}]. Therefore, the
row subset A[{i1, . . . , it}] must cover each column from X with at least one zero.

Lemma 5.8 establishes the reduction of HITTING SET to MINSOURCE and, therefore,
the NP-hardness of the latter. Furthermore, MINSOURCE is in NP, because for a given
J ⊆ C, we can find s(J) (if it exists) and, then, check if G[J, s(J)] is identifiable, in
polynomial time. Therefore, we arrive at the following conclusion:

Theorem 5.9. MINSOURCE is NP-complete.

T = {1, . . . , 6}

F =

8

<

:

{2, 4, 5}
{2, 3, 4, 6}

{1, 6}

9

=

;

=⇒ H =

0

B

B

B

B

B

@

1 1 0
0 0 1
1 0 1
0 0 1
0 1 1
1 0 0

1

C

C

C

C

C

A

=⇒ G =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

x1 x2 x3 y1 y2 y3 z1 z2 z3 z4 z5 z6

1 1 0 1 1 1 1 0 0 0 0 0
0 0 1 1 1 1 0 1 0 0 0 0

A 1 0 1 1 1 1 0 0 1 0 0 0
0 0 1 1 1 1 0 0 0 1 0 0
0 1 1 1 1 1 0 0 0 0 1 0
1 0 0 1 1 1 0 0 0 0 0 1

0 1 1 0 1 1 0 0 0 0 0 0
B1 0 1 1 0 1 1 0 0 0 0 0 0

0 1 1 0 1 1 0 0 0 0 0 0
0 1 1 0 1 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0

B2 1 0 1 1 0 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0
1 0 1 1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0

B3 1 1 0 1 1 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0
1 1 0 1 1 0 0 0 0 0 0 0

1 1 1 0 1 1 0 0 0 0 0 0
C 1 1 1 1 0 1 0 0 0 0 0 0

1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 1 1 1 1 0 0 0 0 0
0 0 0 1 1 1 0 1 0 0 0 0

D 0 0 0 1 1 1 0 0 1 0 0 0
0 0 0 1 1 1 0 0 0 1 0 0
0 0 0 1 1 1 0 0 0 0 1 0
0 0 0 1 1 1 0 0 0 0 0 1

1 1 1 0 0 0 1 0 0 0 0 0
1 1 1 0 0 0 0 1 0 0 0 0

E 1 1 1 0 0 0 0 0 1 0 0 0
1 1 1 0 0 0 0 0 0 1 0 0
1 1 1 0 0 0 0 0 0 0 1 0
1 1 1 0 0 0 0 0 0 0 0 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

Figure 5.2: An example for the reduction of HITTING SET to MINSOURCE.

5.3 Data reduction rules

In this section, we present three rules, which can be used to simplify problem in-
stances. In fact, applying these rules to regulatory networks (see Chapter 8) reduces

59

Chapter 5 Selection of Independent Subnetworks

the problems of subnetwork selection to trivial instances.

According to the following, we can safely eliminate neighborhood inclusions.

Proposition 5.10. We consider a bipartite graph G = (C, R; E) and two vertices
x, y ∈ C. If N(x) ⊆ N(y), then x cannot belong to a nicely separable set.

Proof. Assume that x belongs to a nicely separable set J ⊆ C and consider the
subgraph H = G[J, s(J)]. Since all neighbors of x are also neighbors of y in G,

the same also holds in H. Therefore, x is isolated (and non-matchable) in H̃y and,
therefore, H is not identifiable. This contradicts the assumption of J being nicely
separable.

If a C-vertex has more than one private (i.e. degree-one) neighbors, we can remove
all of them, except for one, without changing the family of nicely separable sets. This
simplification is particularly useful, if we decide to use integer linear programming,
because it can significantly reduce the number of variables.

Proposition 5.11. We consider a bipartite graph G = (C,R; E). Let G′ = (C, R′; E ′)
be the graph that results from removing the degree-one R-vertices of G such that each
C-vertex has at most one private neighbor. A set J ⊆ C is nicely separable in G if
and only if it is nicely separable in G′.

Proof. We consider two vertices x, y ∈ C. The claim easily follows from the following
two observations: (i) removing the private neighbors of x does not affect the neigh-

borhood of any other C-vertex (and therefore the matching number of G̃x) and (ii) in

order to match x in G̃y a single private neighbor of x is sufficient.

Now we show how the Dulmage-Mendelsohn decomposition (DM decomposition) can
be used in order to prune the search space of MINSOURCE. We remind the reader that the
DM decomposition and its main properties were described in Section 3.5.1. Using the
variable names of that section, we show below that when trying to solve MINSOURCE,
we can safely discard the sources from partition C3 and the sensors from partition
R3.

Proposition 5.12. Let G = (C, R; E) be a bipartite graph, decomposed in the Dulmage-
Mendelsohn form. If J ⊆ C is nicely separable, then J ∩ C3 = ∅ and s(J) ∩R3 = ∅.

Proof. For notational convenience we set J∗ = J ∩ C3, Z = G[J, s(J)] and W =
G[C3, R3]. Let us assume that J∗ ̸= ∅. Since J is nicely separable, the subgraph Z is
identifiable, therefore, it has non-negative surplus and, therefore, |NZ(J∗)| ≥ |J∗| ≥ 1.
From point (1) of Theorem 3.18, it follows that NZ(J∗) ⊆ R3. Then, we can apply
point (3) of Theorem 3.18 on NZ(J∗) to get: |NW (NZ(J∗))| ≥ |NZ(J∗)|+1 ≥ |J∗|+1.

60

5.4 An exact MILP solution for MINSOURCE

On the other hand, NZ(J∗) ⊆ s(J) and, since W is a subgraph of G we can write:
NW (NZ(J∗)) ⊆ NG(NZ(J∗)) ⊆ NG(s(J)) = J . This implies that |NW (NZ(J∗))| ≤
|J∗|, which is a contradiction. Therefore, we conclude that J∗ = ∅. From point (3) of
Theorem 3.18, it follows that every vertex x ∈ R3 has at least two neighbors in C3.
Since J ∩ C3 = ∅, we conclude that no x ∈ R3 can belong to s(J).

5.4 An exact MILP solution for MINSOURCE

In this section we develop a mixed integer linear program (MILP) for the exact solution
of (the minimization version of) MINSOURCE. Problem 8 defined at the beginning of
this chapter can also be tackled with the same set of constraints. MILP 2 contains |C|
binary indicator variables xj, such that xj = 1 if and only if j ∈ J . It also contains
|R| real-valued variables yi; we will see that the constraints enforce that yi = 1 if and
only if i ∈ s(J). Finally, it contains O (|C||E|) real-valued variables zs

ji that guard the
identifiability of G[J, s(J)]. In the same spirit as for MINSENSOR, it is rather easy to
develop an incremental cutting-plane approach also for MINSOURCE. Since this is quite
straightforward, we do not show this approach here.

MILP 2 Complete formulation for MINSOURCE.

minimize:
∑
j∈C

xj

subject to:

xj ∈ {0, 1} ∀j ∈ C (5.3)
0 ≤ yi ≤ 1 ∀i ∈ R (5.4)

yi ≤ xj ∀i ∈ R, ∀j ∈ N(i) (5.5)

yi ≥ 1−
∑

j∈N(i)

(1− xj) ∀i ∈ R (5.6)

zs
ji ≥ 0 ∀s ∈ C, ∀j ∈ C \ {s},∀i ∈ N(j) \N(s)

(5.7)

zs
ji ≤ yi ∀s ∈ C, ∀j ∈ C \ {s},∀i ∈ N(j) \N(s)

(5.8)∑
j∈N(i)\{s}

zs
ji ≤ 1 ∀s ∈ C, ∀i ∈ R \N(s) (5.9)

∑
i∈N(j)\N(s)

zs
ji ≤ 1 + (2− xs − xj)(|N(j) \N(s)| − 1) ∀s ∈ C, ∀j ∈ C \ {s} (5.10)

∑
i∈N(j)\N(s)

zs
ji ≥ xs + xj − 1 ∀s ∈ C, ∀j ∈ C \ {s} (5.11)

61

Chapter 5 Selection of Independent Subnetworks

Correctness (of MILP 2). A vector x defines a set J ⊆ C, such that G[J, s(J)] is
identifiable if and only if there exist vectors y and z such that (x, y, z) is a feasible
solution of MILP 2.

Proof. First we show that for any feasible (x, y), y is a 0/1 vector that “marks” the
vertices of R that belong to s(J). Inequalities (5.5) and (5.6) are equivalent to the
logical statements (5.12) and (5.13), respectively 2.

(∃j ∈ N(i) : j /∈ J)⇒ yi ≤ 0 (5.12)

(∀j ∈ N(i) : j ∈ J)⇒ yi ≥ 1 (5.13)

Combining (5.12), (5.13) and (5.4), we get that, for all i ∈ R, yi behaves as a binary
indicator variable: yi = 1, if i ∈ s(J) and yi = 0, otherwise.

Now, we show that there exists a vector z such that (x, y, z) is feasible if and only
if there exists a 0/1 vector ẑ such that (x, y, ẑ) is feasible. The reverse direction is
obvious; here we prove the forward direction. If (x, y, z) is feasible, then both x and y
are 0/1 vectors and z lies in the polyhedron P (x, y) defined by (5.7)-(5.11). With the
same arguments as for the MILP of MINSENSOR (see Section 4.2), we can show that
the matrix defining P (x, y) is totally unimodular and, since both x and y are integer,
the vertices of the polyhedron are integer. We take one vertex ẑ (that exists because
the polyhedron is non-empty and bounded). Furthermore, (5.7) and (5.9) imply that
zs

ji ∈ [0, 1]; therefore ẑ is a 0/1 vector.

Inequalities (5.10) and (5.11) guarantee that H = G[J, s(J)] is identifiable, namely

that for all s ∈ J and j ∈ J \ {s} there exists a matching in H̃s that covers j. If
xs = xj = 1, that is both s and j are in J , these two inequalities imply the equality∑

i∈N(j)\N(s) zs
ji = 1. This enforces that there exists a matching in H̃s that covers

j. Otherwise, if xs = 0 or xj = 0, these inequalities become degenerate and do not
impose any constraints on the variables.

2If the condition on left-hand side of the statement is true, then the inequality of the MILP reduces
to the inequality on the right-hand side. Otherwise, the inequality reduces to a trivial one and
does not impose any constraint on the variables.

62

Chapter 6

Modeling Uncertainty in the Network
Structure

Summary of the chapter. When the structure of a source-sensor network is pre-
dicted with some uncertainty, it makes sense to study the robustness of identifiability.
This is defined as the minimum number of edge modifications that are necessary for a
graph to lose the property. We show that the computation of robustness reduces to the
computation of surplus in bipartite graphs and, using an existing graph-theoretical re-
sult, we give a polynomial-time algorithm for this task. Then, by studying more closely
the properties of the surplus function, we also present a polynomial-time algorithm
for the computation of a tight set (this is a minimizer of the surplus function). To the
best of our knowledge, there are no existing algorithms for the computation of surplus
and tight sets in the literature. Therefore, the algorithms that we present here may
be of independent interest also outside the context of identifiable graphs.

6.1 Robustness of identifiability in the unit-cost case

In many applications, the sets of sensors and sources are known exactly, but the struc-
ture of the bipartite network is predicted with some statistical or empirical method.
For example, in the microarray setting, the network structure is predicted from the
sequence similarities between probes and targets and, in this case, the threshold that
separates binding from non-binding may be difficult to determine. Such a prediction
inevitably involves some uncertainty, i.e., some source-sensor connections that have
been predicted as significant may not exist in reality and, vice versa, some existing
connections may have been missed by the prediction. Having that in mind, a natural
question arises: How many prediction mistakes can a given bipartite network tolerate,
before it loses the property of identifiability?

Definition 6.1. Let G = (C,R; E) be an identifiable graph. For a vertex x ∈ C,
we define its robustness, denoted by ρ(x), as the minimum number of edge addi-

63

Chapter 6 Modeling Uncertainty in the Network Structure

tions/deletions that are required to destroy the identifiability of x, i.e., to make

ν(G̃x) < |C| − 1. The robustness of the whole graph is ρ(G) = minx∈C ρ(x).

In practice, this measure can be used in order to select among different sensor sets the
one that gives rise to the “most identifiable” network. We can imagine an immediate
generalization of MINSENSOR, where we replace the identifiability requirement with the
requirement for a lower bound for the robustness.

Problem 11. ROBUST-MINSENSOR
Given is a bipartite graph G = (C,R; E), an integer ρ ≥ 1 and a function c that
assigns a nonnegative rational cost to each vertex of R. We want to find a set I ⊆ R
such that the subgraph G[C, I] has robustness at least ρ and

∑
y∈I c(y) is minimized.

Clearly, the above problem is NP-hard, because for ρ = 1 it is reduced to MINSENSOR.

Topic for further research. An ILP formulation for ROBUST-MINSENSOR is an inter-
esting thing to consider, although the robustness requirement seems harder to model
with linear constraints than the identifiability requirement.

Given an identifiable graph G = (C,R; E), we now set out to develop an algorithm
for the computation of its robustness. To this end, we first show that computing the
robustness reduces to computing the (non-negative) surpluses of the graphs G̃x, for
all x ∈ C.

Proposition 6.2. For every x ∈ C, ρ(x) = σ(G̃x) + 1.

Proof. Consider a vertex x ∈ C. Adding (deleting) an edge incident to x, say (x, y),

results in deleting (adding) the vertex y in G̃x and this can only decrease (increase)

ν(G̃x). Adding (deleting) an edge (z, y), where z ̸= x and y ∈ N(x), has no influence

on G̃x. Finally, adding (deleting) an edge (z, y), where z ̸= x and y /∈ N(x), results

in adding (deleting) the edge (z, y) in G̃x and this can only increase (decrease) ν(G̃x).

Therefore, in order to decrease ν(G̃x), we must either add edges that are incident to x
or delete edges that are incident to some non-neighbor of x. Since both operations are
allowed and have the same cost, we can safely focus only on edge additions, because
they correspond to vertex deletions in G̃x. More specifically, ρ(x) equals the minimum
number of vertices that we must delete from R\N(x), such that the matching number

of the remaining subgraph of G̃x becomes less than |C|−1. By Hall’s marriage theorem,
this can only be achieved by choosing a nonempty set Y ⊆ C \ {x} and deleting
|N

eGx
(Y)|−|Y |+1 vertices from N

eGx
(Y). Therefore, ρ(x) = min∅̸=Y ⊆C\{x}{|N eGx

(Y)|−
|Y |+ 1} = σ(G̃x) + 1.

64

6.1 Robustness of identifiability in the unit-cost case

Remark 6.3. Observe that ν(G̃x) is decreasing with respect to the addition of edges
that are incident to x and increasing with respect to the addition of non-incident
edges. This shows, in turn, that the identifiability of G is not a monotone property
with respect to edge addition; in fact, it is not even convex. A property is called
monotone with respect to edge additions if: G = (V, E1) having the property implies
that, for all E ⊇ E1, G = (V, E) also has the property. A property is called convex
if G = (V,E1) and G = (V,E2) having the property implies that, for all E such that
E1 ⊆ E ⊆ E2, G = (V, E) also has the property.

From Proposition 6.2, any upper bound for the surplus σ(G̃x), immediately gives an

upper bound for the robustness of a vertex x ∈ C. Recall that G̃x is the subgraph
that arises from G by removing x and its neighborhood. For example, we have the
following straightforward bounds:

1. σ(G̃x) ≤ σ
eGx

(C \ {x}) = |N
eGx

(C \ {x})| − |C \ {x})| = |R| − d(x) − (|C| − 1).
Therefore, ρ(x) ≤ |R| − |C|+ 2− d(x).

2. For all y ∈ C \ {x}, we have σ(G̃x) ≤ σ
eGx

({y}) = |N(y) \N(x)| − 1. Therefore,
ρ(x) ≤ miny∈C\{x} |N(y) \N(x)|.

In general, these two bounds can be very loose, as shown in the following examples.

1. For every d ≥ 1, there exists an identifiable graph G = (C, R; E) such that for
every x ∈ C, ρ(x) = 1, while |R|− |C|+2−d(x) ≥ d. For example, such a graph
is obtained by taking the disjoint union of four stars with centers in C, two of
which are of degree d and the remaining two of degree 1.

2. For every d ≥ 1, there exists an identifiable graph G = (C, R; E) such that for
every x ∈ C, ρ(x) = 1, while miny∈C\{x} |N(y)\N(x)| = d. For example, such a
graph is obtained as follows: Take d+1 disjoint stars with d leaves (star centers
are in C and leaves are in R) and then take G to be the bipartite complement
of this graph. By construction, miny∈C\{x} |N(y) \N(x)| = d. For every x ∈ C,

the graph G̃x is a complete bipartite graph with d vertices on each side and,
therefore, σ(G̃x) = 0. So, by Proposition 6.2 we conclude that ρ(x) = 1.

In summary, Proposition 6.2 shows that the problem of computing ρ(G) reduces to

computing the surplus of the (nonnegative surplus) graphs G̃x, for all x ∈ C. The
proof also shows that, in order to destroy the identifiability of x ∈ C with a minimum
number of edge modifications, it is enough to find a tight set X in G̃x and then add
to G all the edges {(x, y) : y ∈ N

eGx
(X)}. But how do we actually compute the

surplus and find a tight set in a bipartite graph? In the following section we present
polynomial-time algorithms for these two tasks.

65

Chapter 6 Modeling Uncertainty in the Network Structure

6.2 Computing the surplus and finding tight sets

The results of this section apply to arbitrary bipartite graphs and might be of inde-
pendent interest also outside the context of robustness. Algorithm 5 below computes
the surplus σ(G) of a bipartite graph G = (L, R; E). Its correctness is based on the
following result from the book of Lovász and Plummer (Theorems 1.3.1 and 1.3.6 in
[LP86]).

Lemma 6.4. Let G = (L,R; E) be a bipartite graph. If σ(G) < 0, then σ(G) =
ν(G)−|L|. If σ(G) ≥ 0, then σ(G) equals the largest integer s satisfying the following
property, for every x ∈ L: if we add s new vertices to L and connect them to all
neighbors of x, the resulting graph has non-negative surplus.

For the algorithm’s implementation Berge’s theorem (see Theorem 3.8) again proves
to be very useful.

Algorithm 5 Computation of the surplus in G = (L,R; E)

1: Compute a maximum matching M in G.
2: if |M | = |L| (i.e., σ(G) ≥ 0) then
3: for all x ∈ L do
4: sx ← 0, Mx ←M , Gx ← G
5: repeat
6: Gx ← the graph obtained from Gx by adding to it a new vertex v∗ and

connecting it to all neighbors of x
7: if Gx has an Mx-augmenting path P then
8: Mx ← (Mx ∪ P) \ (Mx ∩ P) and sx ← sx + 1
9: else exit the repeat loop

10: end if
11: end repeat
12: end for
13: σ(G)← minx∈L sx

14: else
15: σ(G)← |M | − |L|
16: end if
17: return σ(G)

Proposition 6.5. Algorithm 5 computes the surplus of a bipartite graph G = (L,R; E).

It can be implemented so that it runs in time O
(
|E|(

√
|L|+ |R|+ |L|+ |E|)

)
(which

is O (|E|2) if G has no isolated vertices).

Proof. By Hall’s Theorem, the augmented graph Gx (line 6) has non-negative surplus
if and only if there exists a matching that covers all vertices of Lx ∪ {v∗}. By Berge’s

66

6.2 Computing the surplus and finding tight sets

Theorem this happens if and only if there exists an Mx-augmenting path (which has
to start at v∗). Finally, the correctness of the algorithm follows from Lemma 6.4.

It remains to analyze the running time. The computation of a maximum match-

ing in line 1 can be done in O
(
|E|

√
|L|+ |R|

)
time, using, e.g., the algorithm by

Hopcroft and Karp [HK73]. For each x ∈ L, the internal repeat-loop can be exe-
cuted up to d(x) times and, therefore, |E(Gx)| ≤ |E| + (d(x))2. In line 7, checking
if Gx has an Mx-augmenting path and if yes, finding one, can be done as follows:
First we orient all unmatched edges in Gx from L to R and all matched edges from
R to L and then we look for a directed path from v∗ to an unmatched vertex. This
can be done with breadth-first search in O (|E(Gx)|) time. In line 8, the symmet-
ric difference can be computed in O (|E(Gx)|) time. So, the total running time is

in O
(
|E|

√
|L|+ |R|+

∑
x∈L(|E|+ (d(x))2)

)
⊆ O

(
|E|

√
|L|+ |R|+ |L||E|+ |E|2

)
.

The last inclusion follows from:
∑

x∈L(d(x))2 ≤
(∑

x∈L d(x)
)2

= |E|2.

Remark 6.6. The algorithm for computing the surplus can also be used to compute
the weighted surplus σw(G) = min∅≠X⊆A(w(N(X)) − w(X)), where each vertex v is
assigned a positive integer weight w(v) and w(S) =

∑
v∈S w(v), for all S ⊆ A ∪ B.

It is easy to verify that the following (pseudo-polynomial) construction reduces the
problem to the unweighted case: Split each vertex v into w(v) vertices and replace an
edge (x, y) by a complete bipartite graph Kw(x),w(y).

In a practical setting, apart from computing the value of the surplus, we would also like
to find a tight set of G. In the context of the robustness computation, this corresponds
to finding a set of edge additions that destroy the identifiability of a given graph. As we
show next, we can find a tight set of G by using an algorithm for surplus computation
as a black-box routine in a greedy fashion. First we need some preliminary technical
facts.

Proposition 6.7. Let G = (A,B; E) be a bipartite graph and A′ ⊂ A. We denote
with G− A′ the subgraph induced by (A \ A′) ∪B.

1. For all X ⊆ A \ A′, σG−A′(X) = σG(X). Therefore, we will omit the index and
write σ(X) := σG−A′(X) = σG(X).

2. σ(G− A′) ≥ σ(G).

3. If σ(G − A′) = σ(G), then, for all A′′ ⊆ A′, any tight set of G − A′′ is also a
tight set of G. In particular, it follows that σ(G− A′′) = σ(G).

4. Let x ∈ A such that σ(G − {x}) = σ(G). Any tight set of G − x is also a tight
set of G.

5. σ(G− {x}) > σ(G) for all x ∈ A, if and only if A is the only tight set of G.

67

Chapter 6 Modeling Uncertainty in the Network Structure

Proof.

1. The neighborhood of any set X ⊆ A \ A′, is the same in G and in G− A′. The
claim follows from the definition σ(X) = |N(X)| − |X|.

2. σ(G − A′) = minX⊆A\A′{σ(X)} ≥ minX⊆A{σ(X)} = σ(G). The inequality
follows from the fact that we are minimizing the same objective function over a
larger ground set.

3. Let X∗ ⊆ A\A′′ be a tight set of G−A′′. So, we have σ(X∗) = minX⊆A\A′′{σ(X)} ≤
minX⊆A\A′{σ(X)} = minX⊆A{σ(X)}. The inequality follows from the fact that
A \ A′′ ⊇ A \ A′ and the last equality follows from the hypothesis σ(G − A′) =
σ(G). So, we finally have σ(X∗) ≤ minX⊆A{σ(X)} and equality follows. This
shows that X∗ is tight in G.

4. This is a special case of item 3 for A′′ = A′ = {x}.

5. Forward: For the sake of contradiction, assume that there exists a tight set
Y ⊂ A. Then, Y is also tight in G − {x}, where x ∈ A \ Y . That is, σ(Y) =
σ(G) = σ(G− {x}), which contradicts the hypothesis.
Reverse: For the sake of contradiction, assume that there exists x ∈ A with
σ(G − {x}) = σ(G) (it cannot be σ(G − {x}) < σ(G) due to item 2). Then,
there exists a set Y ⊆ A \ {x} that is tight in both G − {x} and G, and this
contradicts the hypothesis.

Algorithm 6 computes a tight set of a bipartite graph G = (A,B; E). It requires |A| it-
erations, each one containing a surplus computation that can be done inO (|A|2.5|B|2.5)
time with Algorithm 5. Therefore, the total running time of the algorithm is bounded
from above by O (|A|3.5|B|2.5).

Algorithm 6 Finding a tight set X
1: X ← A
2: for all x ∈ A do
3: if σ(G− {x}) = σ(G) then
4: G← G− {x}
5: X ← X \ {x}
6: end if
7: end for
8: return X

Below we prove the correctness of Algorithm 6.

68

6.2 Computing the surplus and finding tight sets

Proposition 6.8. Let H = (AH , BH ; E ′
H) be a bipartite graph. Let v∗ ∈ AH such

that σ(H − v∗) > σ(H). If A′ = {v1, . . . , vi} ⊂ AH and σ(H − {v1, . . . , vj−1}) =
σ(H − {v1, . . . , vj}) for all j = 1, . . . , i, then σ((H − A′)− v∗) > σ(H − A′).

Proof. Assume that it is not true. By item 2 of Proposition 6.7, we have σ((H −
A′) − v∗) = σ(H − A′). By hypothesis, σ(H − A′) = σ(H − {v1, . . . , vi}) = · · · =
σ(H). Then, σ((H − A′)− v∗) = σ(H). Using item 3 of Proposition 6.7, we get that
σ(H − v∗) = σ(H), a contradiction with the hypothesis.

Proposition 6.9. The set X output by Algorithm 6 is tight.

Proof. If X = A, the statement follows by item 5 of Proposition 6.7. So assume that
X = {vi1 , . . . , vik} for some k ≥ 1, and these vertices are deleted in this order by the
algorithm. Denote by G′ the subgraph induced by X ∪B. Then, it is enough to show
the following claim.

Claim. For every x ∈ X, σ(G′ − x) > σ(G′).

Assume that the claim holds. Then, item 5 of Proposition 6.7 implies that X is the
only tight set of G′. Applying inductively item 4 of Proposition 6.7 on the vertices
deleted by the algorithm (in reverse order), we deduce that X is a tight set of G.

Proof of Claim. Let x ∈ X. Let vij for j ≤ k be the last vertex deleted by the algorithm
before x is encountered by the algorithm (or j = 0 if there is no such vertex). If j = k,
the inequality of the claim follows by the algorithm’s rule. So, assume j < k. Let
G′′ = G− {vi1 , . . . , vij}. The algorithm’s rule implies that σ(G′′ − x) > σ(G′′). Now,
we apply Proposition 6.8 with H = G′′, v∗ = x and A′ = {vij+1

, . . . , vik}. We have
G′′ − A′ = G′ (the subgraph induced by X ∪ B) and σ(G′ − x) = σ((G′′ − A′)− x)
> σ(G′′ − A′) = σ(G′), proving inequality σ(G′ − x) > σ(G′). This completes the
proof of the claim and with it the proof of the proposition.

Remark 6.10. The surplus and a tight set can also be computed by minimizing |A|
submodular functions of the form fx(X) = σ

eGx
(X) (over all X ⊆ A − {x}), for all

x ∈ A (we omit the details). For instance, using as a black-box the algorithm for
submodular function minimization by Iwata [Iwa03], or the one by Orlin [Orl07], we
can compute the surplus and find a tight set in time O (|A|6|B| log |B|) or O (|A|7|B|),
respectively. If |B| is considerably bigger than |A|, then this approach is faster than
the simple algorithms proposed above.

69

Chapter 6 Modeling Uncertainty in the Network Structure

6.3 On the robustness of identifiability in the weighted
case

Let us recall our motivation for studying the robustness of identifiable graphs: The sets
of sensors and sources are known exactly and the structure of the bipartite network
is predicted with some statistical method. A natural generalization of this scenario
occurs when the prediction for each edge and non-edge comes together with a reliability
score. In this section, we sketch some ideas for modeling this case and formalize two
combinatorial problems that naturally appear.

There are two ways to model robustness in this setting. First, we can look for the
least reliable subset of edges and non-edges whose flipping destroys the identifiability
of the network. This results in the notion of weighted robustness, whose computation
is reduced to the following problem.

Problem 12. Given a bipartite graph G = (A,B; E), a cost ce(e) for each edge e ∈ E
and a cost cv(v) for each vertex v ∈ B, find a subset B′ ⊆ B and a subset E ′ ⊆ E, such
that G−B′−E ′ has no A-perfect matching and the cost

∑
e∈E′ ce(e) +

∑
v∈B′ cv(v) is

minimal.

Another possibility for modeling robustness is to set two thresholds on the reliability
scores and characterize the edges as existing (if the score is above both thresholds),
non-existing (if the score is below both thresholds), or undetermined (otherwise). This
gives rise to the following sandwich problem:

Problem 13. Given two bipartite graphs G1 = (A,B; E1) and G2 = (A,B; E2)
such that E1 ⊆ E2, is there an edge set E such that E1 ⊆ E ⊆ E2 and the graph
G = (A,B; E) is identifiable?

For a nice discussion about sandwich problems for various graph properties (some of
them also relevant to computational biology), we refer to [GKS95].

Topic for further research. To the best of our knowledge, both problems defined
above are open in terms of complexity. As far as Problem 12 is concerned, the gen-
eralization where an upper bound K for the cardinality of a maximum matching in
G−B′ − E ′ is given as part of the input, is NP-hard, even for unit costs 1.

1Personal communication with Jerôme Monnot.

70

Chapter 7

Modeling cross-hybridization in
microarray experiments

Summary of the chapter. The analysis of microarray data under the presence of
non-specific probes can be abstracted as a signal separation problem in a source-sensor
network. Thereby, we regard the mRNA molecules as signal sources, the probes on
the microarray plate as sensors and the connectivity of the network can be predicted
from the known probe and target sequences. Here, we present a case study of the ma-
trix factorization approach on a real-world dataset. This was obtained with a custom
microarray that was designed for the study of alternative splicing events. Although no
training set is available for extensive cross-validation, we empirically observe an agree-
ment with some (very few) experimentally verified test cases and the results from
another, completely different, computational approach.

7.1 Technological motivation

During the last fifteen years, microarrays have become an indispensable tool in genome
research, because they offer the possibility to monitor the expression of a large number
of genes simultaneously. The processing of the massive amount of data generated
by a microarray experiment poses many statistical challenges. However, if carried
out successfully, it opens many possibilities for the comparison of gene transcription
profiles between different kinds of cells.

From a simplifying point of view, a microarray experiment consists of three basic
components: a small-scale rectangular grid (microarray plate), a set of short DNA
sequences (probes) that are fixed on the grid, and a mixture of mRNA sequences
(targets) that are labeled with a fluorescent dye. The goal is to measure the quantities
of the targets by taking advantage of the high specificity of DNA hybridization. During
an experiment, the labeled targets are allowed to hybridize on the surface of the
microarray; whenever a target comes across a complementary probe it will bind onto

71

Chapter 7 Modeling cross-hybridization in microarray experiments

it. Then, the microarray plate is scanned and the light intensity on each one of the
probe spots is measured. Finally, the light intensities are used to infer the quantities
of the targets.

A design principle that lies in the heart of a typical microarray experiment is probe
specificity, i.e., the requirement that each probe should be complementary to exactly
one target. Due to this requirement, the task of designing probes for a given set of
transcripts is complicated enough to deserve extensive study [Rah04]. Lack of speci-
ficity, also known as cross-hybridization, means that the light intensity measured on a
probe cannot be attributed any more to the presence of a single target, but is rather
a mixture due to multiple targets. This complication makes the demultiplexing of the
probe signals significantly more difficult. Therefore, almost all computational meth-
ods for low-level processing of microarray data rely on the fact that the probes are
almost perfectly specific by design. So, they focus on the remaining statistical chal-
lenges due to the many sources of variation that are inherent in a series of microarray
experiments.

Cross-hybridization is usually considered a side-effect, whose contribution to the mea-
sured signal is almost negligible and can be either quantified by ad-hoc methods
or absorbed by the stochastic components of the various models. For example, on
Affymetrix chips each probe has a counterpart, called mismatch probe, that differs
in exactly one nucleotide in the middle of the probe sequence. This mismatch probe
does not perfectly bind to the intended target and its purpose is to capture the cross-
hybridization signal and thus contribute to a more accurate data analysis. However, in
the meanwhile many questions have been posed concerning the utility of the mismatch
probes, e.g, when it was observed that almost 20% of them demonstrate higher inten-
sities than the corresponding perfect-match probes [WMP+07]. As it can be seen from
the plethora of published methods, the task of inferring the target quantities from the
probe intensities is far from trivial, even without taking into account the complications
that arise from cross-hybridizing probes. In fact, quite elaborate statistical methods
have been proposed, in order to compare gene expression across different samples in
a statistically rigorous way; for an overview of this huge field we refer to the book by
Wit and McClure [WM04].

Although absolutely desirable, perfect probe specificity cannot be always achieved. We
consider, for example, the use of microarrays for the quantitative study of alternative
splicing, where the goal is to measure the relative amounts of different splice variants in
different tissues [LR04]. For this application, it is important to have probes throughout
all regions of the gene: standard probes designed to match the exons and also probes
that are designed to match the exon-exon junction that might be brought together by
an alternative splicing event. Since different splice variants might share some exons,
some of the probes will be non-specific and the respective analysis methods will have
to explicitly deal with cross-hybridization. Wang et al. [WHH+03] take a matrix
factorization approach to deal with this problem, similar to the one that we describe

72

7.1 Technological motivation

below. They empirically observe that the approach works well in practice, but lacking
the notion of identifiability they do not attempt to explain its success theoretically. In
Section 7.2 we also present a case study, using the data from a microarray platform
that was designed for the study of alternative splicing.

Non-specific probes are also unavoidable when we want to measure the expression of
transcripts that exhibit very high sequence similarity. For example, microarrays that
use species-specific probes can contribute to high-throughput composition analysis of
microbial communities. However, it is rather difficult to design highly specific probes,
firstly because most of the genomes in an environmental community are unknown and
secondly, because many of them have very similar sequences, e.g., at the organism level
[MRM+07]. Therefore, apart from very careful probe design, in such an application it
is also necessary to take into account the effect of cross-hybridization.

But how is the modeling of cross-hybridization connected to the generic CAMF problem
that we introduced in Chapter 2? We can think of a microarray as a multiple-input,
multiple-output system, where the input signals are the target concentrations and the
output signals are the light intensities measured on the probes. At least for some
reasonable ranges of target concentrations it has been experimentally observed that
the output signals depend linearly on the input signals [LW01]. In the following, we
assume that normalization and optical background adjustment have been carried out
succesfully and, if necessary, some linearizing transformation, e.g. logarithmic, has
been applied.

Let us consider an experiment with n probes, m targets and k samples and define
the following real-valued matrices. Matrix A = (aij) has dimensions n × m and aij

is the affinity coefficient of the i-th probe for the j-th target. Matrix X = (xij) has
dimensions m × k and xij is the concentration of the i-th target at the j-th sample.
Finally, Y = (yij) has dimensions n × k and yij is the light intensity measured on
the i-th probe at the j-th sample. Assuming linearity and that background has been
removed (i.e., the measured probe intensities are only due to the presence of the
targets) it should hold Y ≈ AX. In general, we do not expect all probes to bind to all
targets, but only the pairs that demonstrate a high enough sequence complementarity.
In this way, from the pairwise sequence similarities between the probes and the targets
we can predict (with some uncertainty) the zero pattern of A.

For the non-zero affinity coefficients it is hard to obtain exact values, because this
would require an accurate modeling of the hybridization process on the microarary
plate, which is notoriously difficult. In fact, there is a whole community studying the
hybridization kinetics on a microarray plate using elaborate physicochemical models;
for a recent example see [OSF+08]. However, at a more elementary level we may be
able to derive a rough estimation for the affinity coefficients from the knowledge of the
probe and target sequences. Systematic ways to do so have been studied in [CCL+06],
where several sequence-based features have been considered as potential predictors of
the affinity coefficients.

73

Chapter 7 Modeling cross-hybridization in microarray experiments

In practice, we measure the intensity matrix Y and in order to draw biological con-
clusions, our primary goal is to estimate X. In fact, we usually do not need absolute
values for the entries of X, but it suffices to compute changes of concentration with
respect to a reference sample (i.e. column of X). Thereby, the affinity coefficents A
are unknown, but as we described above, it may be possible to derive some constraints
for them. Moreover, the entries of X must be nonnegative. Having said that, it is
clear that the problem of “decoding” the probe signals reduces to a constrained matrix
factorization problem, as we described it in Chapter 2.

7.2 A case study for alternative splicing arrays

As a case study, we use the matrix factorization framework described in Chapter 2 in
order to process a publicly available microarray dataset. This dataset was generated by
a microarray platform that was specifically designed to perform quantitative analysis
of tissue specific alternative splicing events (AS events) [PSM+04]. More specifically,
Pan et al. have developed a custom microarray to represent sequence validated AS
events that were mined from mouse expressed sequence tags databases. In particular,
they selected 3126 simple AS events that involve only three exons and two alternative
splice variants, as shown in Figure 7.1. We refer to the splice variant that contains
exon B as included and to the one that skips it as excluded. The concentrations of the
two variants were monitored across ten different tissue samples by six oligonucleotide
probes. They were designed as shown in the figure: one body probe for each exon and
one junction probe for each one of the three splice junctions. In order to analyze the
measurements produced by this microarray platform, Shai et al. [SMBF06] developed
an algorithm (called GenASAP) that is based on a generative probabilistic model.
Later we compare our results with the ones from GenASAP and observe a significant
agreement, although the two computational methods are different in nature.

Figure 7.1: Probe design for quantification of alternative splicing. The junction probes bind
perfectly to the one variant and partially to the other.

We downloaded the probe intensity data from the Gene Expression Omnibus (GEO)
database [BTW+09] and we fit a bilinear model using Algorithm 1. In this particular
application, the affinity matrix A has dimensions 6 × 2, where the rows correspond
to probes (as they are numbered in Figure 7.1) and the columns to targets: the first

74

7.2 A case study for alternative splicing arrays

column corresponds to the included and the second column to the excluded splice
variant. The concentration matrix X has dimensions 2× 10. From our empirical un-
derstanding of the physical system we derive the following constraints for the matrices
A and X:

1. A,X ≥ 0.

2. Probe 1 does not bind at all to excluded target: a12 = 0.

3. Probe 2 binds equally strongly to both targets: a21 ≈ a22.

4. Probe 3 binds equally strongly to both targets: a31 ≈ a32.

5. Probe 4 binds fully to included and only partially to excluded target: a42 < a41.

6. Probe 5 binds fully to included and only partially to excluded target: a52 < a51.

7. Probe 6 binds fully to excluded and only partially to included target: a62 > a61.

We have no a-priori knowledge about the order of magnitude of the affinity coefficients,
so, in order to express constraint 3, we bound the relative difference of the coefficients
(the bounds are chosen empirically). In the same way, we express constraint 4.

0.9 ≤ a21

a22

≤ 1.1

We have only one fixed zero position in A, namely a12 = 0. According to the discussion
of Chapter 3, this means that only the second column of A is identifiable. Let us
recapitulate what this means: If we consider two solutions of the factorization problem
Y ≈ AX = ÂX̂, then it holds Â = AR and X̂ = R−1X, where both R and R−1 satisfy
the following zero pattern.

R,R−1 ▹
(

1 0
1 1

)
.

Therefore, among equally good factorizations of Y , the second column of A and the
first row of X are uniquely determined up to scaling.

We implemented Algorithm 1 in Matlab, using the CVX library [GB08] to solve the
quadratic programming subproblems. This is a particularly convenient software for
convex optimization that allows constraints and objectives to be specified using stan-
dard Matlab expression syntax. CVX first checks if the input problem satisfies some
formal convexity requirements and, if yes, automatically transforms it to standard
form. Then, it calls a suitable external optimization engine and finally returns the
solution in the form of standard Matlab variables.

In total there are 3126 AS events available. For each one of them, we run Algorithm 1
for 20 different random initializations of the A matrix and we keep as final solution
the (A,X) pair that achieves the best fit to the measured probe intensities Y . As a

75

Chapter 7 Modeling cross-hybridization in microarray experiments

0 0.1 0.2 0.3 0.4 0.5 0.6
0

5

10

15

20

25

30

35

||Y−AX|| / ||Y||

P
er

ce
nt

ag
e

of
 A

S
 e

ve
nt

s

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

Number of iterations until convergence

P
er

ce
nt

ag
e

of
 A

S
 e

ve
nt

s

Figure 7.2: Some diagnostics for the alternating minimization. Left: histogram of the fit
ratio. Right: histogram of the number of iteratons until convergence.

convergence criterion we check if the relative decrease of the objective function between
two subsequent iterations falls below 0.5%. Figure 7.2 illustrates some diagnostics
about the performance of the minimization: A histogram of the fit ratio ∥Y −AX∥F

∥Y ∥F
and

a histogram of the number of iterations until convergence.

Let us recall that our whole discussion about identifiability is based on the assump-
tion that an (A,X) solution of CAMF is not rank-degenerate; in our case this means
rank(A) = rank(X) = 2. For a particular solution (A,X), it is important to check
a-posteriori if this assumption is satisfied. In our computational experiments, we ob-
served that this is always the case, which validates our intuition: Rank-degeneracies,
although certainly possible in theory, should be rare in practical applications, where
the numbers represent physical quantities.

We now make an attempt to validate our results, using 25 duplicate AS events that
the designers have included on the microarray. For each one of them there are two
different probe sets that are designed to hit different parts of the target sequences.
We compare the values of the measured intensities Y between the two duplicates and
we do the same for the estimated affinities and target concentrations, A and X. More
specifically, for the comparison we use the relative difference

dY =
∥Y1 − Y2∥F
∥Y1∥F

where Y1 and Y2 are the measurements for the first and second duplicate. Similarly, we
define dA and dX. In Figure 7.3 we plot dY versus dX and dA. We observe that, for
all 25 duplicate AS events, dY ≤ 0.8 and if we are willing to consider one measurement
as outlier, then dY ≤ 0.6. In order to get an empirical p-value, we calculate dY for
ten thousand randomly selected probeset pairs from the microarray: only 0.5% of
them have dY ≤ 0.6 and 7% have dY ≤ 0.8. This provides some evidence that the

76

7.2 A case study for alternative splicing arrays

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

||Y1−Y2|| / ||Y2||

||X
1−

X
2|

| /
 ||

X
2|

|

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.2

0.4

0.6

0.8

1

||Y1−Y2|| / ||Y2||

||A
1−

A
2|

| /
 ||

A
2|

|

Figure 7.3: Using the duplicate AS events for validation. Left: dY versus dX. Right: dY
versus dA.

experimental setting is consistent, i.e., that the same AS event, when measured with
different probes, gives rise to probe intensities that do not differ much.

A second observation from the plots gives a hint for the consistency of the compu-
tational method. Namely, in the dY -dX plot we see that the “closer to each other”
are the Y -matrices, the closer to each other are also the X-solutions (we observe an
almost linear dependence). As far as the A-solutions are concerned, their difference
does not depend on dY , for dY ≤ 0.4. This might be attributed to the fact that many
more constraints are imposed on matrix A than on X.

In order to assess the accuracy of the method, we would ideally need a spike-in dataset,
with known values for both the target concentrations X and the probe intensities Y .
Unfortunately, for this particular platform such a dataset is not available. On the
other hand, in [PSM+04] the authors mention that they performed real-time PCR
(RT-PCR) experiments for 20 AS events, in order to verify the performance of their
computational approach GenASAP. From the supplementary material of the paper,
we were able to extract the RT-PCR measurements for 9 of these events 1 and in the
following discussion we use them as “training set”. Clearly, the size of this training
set is very small, but this is the best we could do in this case. As a second best option,
we compare our results to the ones obtained with GenASAP (that are provided as
supplementary material in the authors’ website).

There is also another complication. For the AS events that were experimentally mea-
sured and for the results of GenASAP, we do not have the values for the entries of
the X matrix, but rather a different quantity that seems to be of more interest for the
authors. Given the 2× 10 matrix X, we define the vector q(X) to contain the relative
abundances of the excluded variant to the abundances of the included variant across
the tissues, i.e., q(X)i = X2i

X1i
, for i = 1, . . . , 10. So, for the experimentally verified

1We asked from the authors the measurements for all 20 events, but we received no answer.

77

Chapter 7 Modeling cross-hybridization in microarray experiments

AS events and for the GenASAP predictions, we have available the q-vector for each
monitored AS event.

We have already seen that the best we can do with the matrix factorization frame-
work is to determine A and X up to diagonal scaling and this is the case (only) if
the zero pattern of A is identifiable. Therefore, assuming that there exists a “true”
concentration matrix Xt, the computed Xc solution will be, in the best case, a scaled
version of Xt: Xc = RXt, for a diagonal R. In that case, q(Xc) and q(Xt) will be
collinear: q(Xc) = r22

r11
q(Xt). Therefore, it makes sense to compare the q vectors using

a statistical measure that captures linear relationships; the Pearson correlation coeffi-
cient is perfectly suited for that purpose. Although in our case the zero pattern of A is
not identifiable, we still use Pearson correlation as an empirical measure of agreement
between two q-vectors.

Now we compare the correlation between our results and the RT-PCR measurements.
The correlations for the nine measured AS events are: 0.07, 0.86, 0.96, 0.98, 0.87, 0.98,
0.77, 0.82, 0.94. Only one out of nine is low and this is at first approximation a good
sign. In Figure 7.4 we compare our predictions to the predictions of GenASAP.

−1 −0.5 0 0.5 1
0

5

10

15

20

25

30

35

40

45

Pearson correlation between our prediction and GenASAP

P
er

ce
nt

ag
e

of
 A

S
 e

ve
nt

s

Figure 7.4: q(X): correlation between our prediction and GeneASAP.

The main obstacle for a thorough evaluation of this approach is the lack of a training
set of high quality. If this was available, we would be able to try out several learning
approaches. For example, we could parametrize the physical constraints 5, 6 and 7
with a shrinkage parameter λ < 1: a42 ≤ λa41, etc. Then, we could sample different
values for λ, in order to get the best prediction performance on the training set. In any
case, the formalism of identifiable graphs would play an important role for a better
interpretation of the factorization results.

78

Chapter 8

Estimating transcription factor
activities in regulatory networks

Summary of the chapter. The source-sensor abstraction can also model simple bi-
partite regulatory networks. In this application, the signal sources are the transcription
factors, the sensors are the regulated genes and the task is to infer the activities of
the transcription factors from the gene expression profiles. The matrix factorization
approach applied on this problem has been known for a while in the bioinformatics
community under the name of Network Component Analysis (NCA). Here, we study
the regulatory networks of E. coli and S. cerevisiae from a structural point of view.
In particular, following the discussion of Chapter 5, we want to find out how hard it
is to isolate groups of sources that can be monitored independently from the rest. We
observe that some simple data reduction rules are very effective on these instances.
In this way, we come up with a simple deterministic solution to the problem of sub-
network selection, while the creators of NCA solve it in their papers with an ad-hoc
randomized method.

8.1 Biological motivation

A gene regulatory network is a collection of DNA molecules in a cell, which interact
with each other through their RNA and protein expression products. In general, each
gene is transcribed to an mRNA molecule, which is in turn translated to a protein.
The proteins are the building blocks of the cell, having a multitude of functions,
e.g., structural or enzymatic. Some proteins, called transcription factors (TF), serve
a special purpose: By binding to the promoter regions at the start of other genes,
they either activate or deactivate their transcription. In this way, the transcription
factors control the production rate of other proteins and this property makes them the
main players in regulatory networks. A key aspect of systems biology is to develop
mathematical models for describing the dynamics of regulatory networks.

79

Chapter 8 Estimating transcription factor activities in regulatory networks

Many existing methods that use gene expression data to study regulatory networks
assume that the quantity of a TF that interacts with promoters of other genes is the
same as the measured mRNA level of the TF. However, this assumption is not accurate
for most biological systems, since the amount of a TF that actively participates in DNA
binding (called TF activity) is only a fraction of its total quantity. In practice, the TF
activities are difficult to measure experimentally, especially when a TF is regulating
more than one gene. However, as we describe below, it is possible to reconstruct
unobserved TF activities from the expression profiles of target genes.

In some cases, the regulatory relationships between TFs and regulated genes can be
represented with a bipartite network G = (C,R; E), where C is the set of TFs, R is
the set of genes and E are the regulation pairs. The assumption that G is bipartite
excludes the existence of feedback loops or self-regulation. For the networks of simple
organisms this assumption is not too restrictive, because large parts of these networks
indeed have such a simple bipartite structure. The edges that connect a TF to the
regulated genes have weights that indicate the strength of regulation. These weights
quantify the relative contribution of the active TF quantity to the control of different
genes.

In order to reconstruct the unobserved TF activities, we approximate the relationship
between them and gene expression levels with a log-linear model; such models are used
in several disciplines as a standard tool to approximate nonlinear systems. For the
physical reasoning behind this equation see [LBY+03].

ŷi(t)

ŷi(0)
=

m∏
j=1

(
x̂j(t)

x̂j(0)

)aij

(8.1)

In Equation (8.1), ŷi(t) is the expression level of the i-th gene at time point t, x̂j(t)
is the activity of the j-th TF at time point t and aij is the regulation strength of the
j-th TF for the i-th gene. In the case of microarray data, it is particularly convenient
to work with relative quantities as in Equation (8.1), because gene expression levels
are typically measured with respect to a reference level.

Below we assume that we have n genes, m TFs and k time points, other than zero.
Then, taking logarithms in Equation (8.1) gives Y = AX, where Y , A and X are
n × k, n ×m and m × k matrices, respectively. The entries of A are the coefficients
aij and for Y and X we have yit = log byi(t)

byi(0)
and xjt = log

bxj(t)

bxj(0)
. The connection to the

CAMF problem of Chapter 2 should now become clear. Having measured the expression
levels Y of the regulated genes, we would like to infer the TF activities X and the
regulation strengths A. Thereby, from experimental evidence or from sequence-based
prediction of promoter binding we know a-priori that there is no regulation between
certain (actually the most) pairs of TFs and genes. In other words, matrix A satisfies
a known zero pattern Z. Apart from that, no other constraints can be immediately

80

8.2 A review of Network Component Analysis

derived for the factors, because in the log-space nonnegativity is not any more a
requirement.

8.2 A review of Network Component Analysis

Network Component Analysis (NCA) is a method that has been developed for inferring
the hidden TF activities in bipartite regulatory networks. This is not the only ansatz;
see also [PW07]. Since its introduction in 2003, several extensions and improvements
have appeared in the bioinformatics literature.

The method was introduced in [LBY+03] by Liao et al., who formalized the problem of
TF activity inference in a matrix factorization framework. Furthermore, they pointed
out that a method is needed for its solution which, in contrast to Independent Com-
ponent Analysis and Principal Component Analysis, enforces the zero pattern of A as
an explicit constraint. So, for the solution they propose an alternating minimization
approach that is essentially the same as Algorithm 1. Most importantly, the authors
observed that the zero pattern of A plays a central role for the identifiability of the
model, but they did not derive any formal combinatorial characterization. Let us note
that it was this last point that motivated the characterization of identifiable graphs
that we gave in Chapter 3.

Subsequently, in [BSLR05] Boscolo et al. gave some combinatorial conditions for iden-
tifiability that can be expressed in terms of the network structure, assuming that the
matrices A and X are numerically generic. Their conditions, however, seem to be
rather ad hoc, since the authors missed the connection to structural rank. In fact,
it turns out that these conditions only capture special cases of structural rank defi-
ciencies and are, therefore, necessary but not sufficient. In this paper, the authors
also investigate empirically the sensitivity of NCA to inaccuracies in the hypothesized
network topology and, finally, they propose a randomized heuristic for the selection of
identifiable subnetworks.

In their preprint paper [NRV07], Narasimhan et al. recognized the connection of iden-
tifiability to bipartite matchings via the notion of structural rank; so they arrived
at a definition that is the same as our basic Definition 3.5. However, they do not
study further either the properties of identifiable graphs or any related combinatorial
optimization problems.

Apart from the three papers cited above, a number of other NCA-related works have
appeared in the literature; here we point out two of them. In [CDHF08], Chang et
al. propose a fast heuristic for solving the factorization problem, without using an
iterative scheme, but rather an analytical solution based on projection matrices. In
[TBK+05], Tran et al. generalize NCA for the case where in the factorization Y ≈ AX,
there is a zero pattern available not only for A but also for X.

81

Chapter 8 Estimating transcription factor activities in regulatory networks

As far as the applications are concerned, we note that the inventors of the method have
developed an NCA toolbox for Matlab that is publicly available 1. The method was
first applied by Liao et al. on the regulatory network of S. cerevisiae for monitoring
some TFs that are known to be related to the cell cycle regulation. In a subsequent
paper, Kao et al. applied NCA to monitor some E. coli TFs during the transition from
glucose to acetate medium [KYB+04]. The regulatory networks of these two model
organisms have been used as a testbed for all NCA-related methods that appeared in
the literature in the last years. In the case study of the next section we will make no
exception to this rule.

8.3 A case study on subnetwork selection

In this section, we put the theoretical considerations of Chapter 5 about source se-
lection into the context of real-world regulatory networks. In a typical application of
NCA, we have available a limited number of time-point measurements, say k. There-
fore, and according to the considerations of Section 5.1, from the whole regulatory
network we need to choose a subnetwork that consists of at most k TFs and their
specific regulated genes. In most NCA-related papers cited above this is a recur-
ring problem, whose solution, however, is not addressed formally. Actually, it is this
observation that motivated our theoretical discussion.

For the subnetwork selection problem the authors of [BSLR05] propose a randomized
heuristic, which seems to have been implemented also in the NCA toolbox. Here, we
approach the problem with the theoretical observations of Chapter 5 and, in partic-
ular, we apply the simplification rules of Section 5.3. We find out that in the three
regulatory networks that we studied the task becomes almost trivial after applying
these simplifications. This also explains why the randomized heuristic of Boscolo et
al. works in practice without too many difficulties.

For our experiments we are using the regulatory networks of E. coli and S. cere-
visiae, whose structure is already available in the NCA toolbox. The network of
E. coli (ECOLI) was obtained from the RegulonDB database 2, while for S. cerevisiae
there are two networks available, obtained from [HGL+04] (SCEREV-1) and [LRR+02]
(SCEREV-2). All three networks have a bipartite structure G = (C,R; E), where C
is the set of TFs, R is the set of genes and E are the regulation pairs. Before any
further processing, we apply the following data reduction rules.

Rule 1: Let us consider two TFs x, y ∈ C. From Proposition 5.10 we know that if
N(x) ⊆ N(y), then we can safely eliminate x and N(x). The elimination of N(x)
changes the neighborhoods of some vertices of C \ {x}, so some new neighborhood

1http://www.seas.ucla.edu/∼liaoj/download.htm
2http://regulondb.ccg.unam.mx

82

8.3 A case study on subnetwork selection

inclusions, that did not exist before, may appear among the remaining TFs. Therefore,
we have to repeat the procedure until no neighborhood inclusions can be found among
the TFs. If finally some TFs are disconnected, we eliminate them.

Rule 2: We find the connected components of the remaining network and work on
each one separately; see also Proposition 3.13. For the factorization Y ≈ AX it
is an overkill to mix TFs (and the related specific genes) that belong to different
connected components. In that case A can be permuted to block-diagonal form and
the problem can be reduced to many decoupled subproblems of smaller sizes, which
can be solved independently. Surprisingly, the authors of [BSLR05] and apparently
also the subnetwork selection routine of the NCA toolbox do not seem to take this
simple observation into account.

Rule 3: We find the DM decomposition, which allows us to safely discard some TFs
and genes; see Proposition 5.12.

In the three networks that we studied it turns out that the great majority of TFs
have private genes, i.e., genes that are regulated by a single TF. Such TFs (we call
them star-TFs) are important, because they are singleton nicely separable sets (recall
Definition 5.4) and, due to Proposition 5.5, can be arbitrarily combined to build
larger nicely separable sets. Therefore, the fact that most TFs have private genes
almost trivializes subnetwork selection in these regulatory networks. Difficulties can
arise only for TFs that have no private genes; in that case the MILP of Section 5.4
can be used for subnetwork selection. If we decide to do so, we can first apply the
following simplification rule.

Rule 4: If a TF has private genes, we prune it so that only one private gene remains.
This simplification does not change the family of nicely separable sets, but significantly
reduces the number of variables in the MILP.

In Table 8.1 we present some results. In all three networks we get some small compo-
nents that are trivial and one large component; then, we focus on this large compo-
nent.

ECOLI SCEREV-1 SCEREV-2
Initial size (TFs × genes) 120× 828 169× 2845 113× 6270

Edge density (%) 1.45 1.28 0.63
After rule 1 81× 660 161× 2822 102× 6231

Connected components 37 7 5
Largest component 41× 473 155× 2810 98× 2340

Star-TFs in largest component 36 133 94
Table 8.1: Some statistics for the regulatory networks. For these networks DM decomposi-

tion does not help.

83

Chapter 8 Estimating transcription factor activities in regulatory networks

In summary, subnetwork selection turns out to be easy for these real-world networks.
In fact, we do not need any heuristics or complicated algorithms; an understanding
of the problem structure and a few simplification rules are enough for an exact and
efficient solution. Although in the presence of these datasets the theoretical discussion
seems to be redundant, it is the only way to understand the structure of the problem,
recognize that we are in fact dealing with easy instances of the general problem and
come up with the simplification rules. Moreover, the power of the general approach
allows the processing of more complicated networks that are expected to appear in
the future.

8.4 Some directions for further research

We found out that subgraph selection becomes almost trivial in the regulatory net-
works that we studied. In this section, we sketch some ideas for further research that
seem to be more relevant in this setting.

For each TF we count how many private genes it has and for each pair of TFs we find
how many neighbors they have in common. With this information we can construct
a weighted graph where the vertices correspond to TFs and the edges correspond to
co-regulations. The vertices are weighted by the number of private genes, and the
edges are weighted by the number of common neighbors of the corresponding TFs.
We call this graph co-regulation graph (CR-graph); see Figure 8.1 for an example.
Note that if A is the 0/1 matrix that models the original bipartite graph, then AT A
contains the edge weights of the CR-graph.

For a TF that has private genes (i.e. singleton nicely separable set), the estimation of
its activity profile across time reduces to a rank-one factorization, if we only consider
the expression of the private genes. Furthermore, we intuitively expect that the more
specific genes are available for a TF, the more reliable is the estimation of its activity
profile. Therefore, in the CR-graph we would prefer to pick nodes with large weights,
i.e., TFs with many private genes.

An idea would be to first pick a set of “heavy” TFs and get an initial estimation of
their activity profiles across time from the private genes only. Then, at a second pass,
we could also take into account the non-private genes, in order to refine the estimation.
Thereby, the paths in the CR-graph can provide some useful information, because they
encode the coupling of the TFs through co-regulated genes. TFs that are connected
with an edge share some common genes, TFs that have distance two in the CR-graph
interact with each other through a common TF with which they co-regulate, and so
on. Intuitively, the closer two TFs are in the CR-graph, the more important it is to
take into account their interaction.

84

8.4 Some directions for further research

Figure 8.1: Part of the CR-graph for the regulatory network of E. coli. The weights of
the vertices are shown in parentheses. The weights of the edges (omitted for clarity) are
encoded in the 2D embedding of the graph: the heavier an edge is, the closer the incident
vertices are drawn on the plane.

Therefore, we could refine the estimation of the TF activities iteratively, following the
paths in the CR-graph. That is, we could first combine the TFs that are at distance
one from each other by taking into account their common genes and then we could
continue by combining TFs in increasing order of distance. In other words, instead of
solving a large, loosely coupled matrix factorization problem at once, we divide it in
smaller subproblems and combine the solutions of the subproblems by progressively
introducing their couplings.

Of course, the preliminary ideas sketched above need to be formalized. What is the
exact role of cliques, independent sets and paths in the CR-graph? Can we use this
graph in the context of CAMF in order to “order” and speed up the computations?

85

86

Chapter 9

Conclusions

9.1 Summary

The following problem formed the basis of our work: Given a real-valued matrix Y , we
want to approximate it with a low-rank product Y ≈ AX, where both factors are free
variables that have to be determined. Furthermore, we assume that from our a-priori
knowledge about the application at hand we can impose some constraints on the factors
A and X. It is clear that the above problem is ill-defined, i.e., there are (infinitely
many) different factorizations that approximate a given Y equally well. This motivated
us to ask the question: Do the constraints on A and X contribute anything to the
uniqueness of the factorization and, if yes, how exactly? In particular, we considered
an important class of constraints that arise in signal processing applications: In the
factorization Y ≈ AX, A must have zeros at certain positions. Such constraints arise
in applications that involve a bipartite network of sources that are emitting some
signals over discrete time and sensors that are monitoring these signals.

We arrived at a characterization of uniqueness up to diagonal scaling that is purely
combinatorial, in the sense that it is based solely on the structure of the source-sensor
network. This is encoded in the definition of identifiable bipartite graphs, which is cru-
cially based on bipartite matchings. These are well-studied objects and at many points
we benefited from the large body of existing theoretical results related to them.

After establishing the basic definition of identifiable graphs, we focused on two op-
timization problems, MINSENSOR and MINSOURCE, that arise in the context of source-
sensor networks. Roughly speaking, the goal of both problems is the selection of
identifiable subgraphs. We showed the NP-hardness of both problems and presented
mixed integer linear programs for their exact solution. Moreover, for MINSENSOR we
presented a greedy approximation algorithm and performed computational experi-
ments for randomly generated problem instances.

Then, we also asked another natural question that arises from our need to model
uncertainty in the network structure. Given an identifiable graph G, where the edges
have been predicted with some uncertainty, how many edge deletions and additions

87

Chapter 9 Conclusions

does it take, so that G loses the property? We reduced this robustness question to
the computation of surplus in bipartite graphs and we show how this can be done in
polynomial time. The computation of surplus and tight sets in bipartite graphs may
be also of independent interest outside the context of identifiable graphs.

Finally, we presented case-studies for two applications from bioinformatics that can
be modeled in the framework of a source-sensor network. The first one is dealing with
the processing of microarray data under the presence of cross-hybridization and the
second one is dealing with the quantification of transcription factor activities in simple
regulatory networks.

9.2 Limitations

For the three basic problems that we studied, MINSENSOR, MINSOURCE and robustness,
the theoretical complications arise due to the high density that is in general possible
in the connectivity of the source-sensor network. On the other hand, for problem
instances with many specific sensors, i.e., sensors connected to exactly one source,
practical heuristics may be sufficient. In most applications, this specificity requirement
is something for which much effort is invented in the design phase of the system.
On the other hand, understanding the structure of the general problem is not only
theoretically appealing, but may also be practically useful in cases where it is difficult
to design many specific sensors.

The discussion about identifiable graphs in this thesis was motivated, most of the time,
in the signal processing context of a source-sensor network. However, in Chapter 2 we
saw that low-rank matrix factorization also has applications in data mining for dimen-
sion reduction. Therefore, some parts of our discussion could also have applications in
this field. However, we should point out that there is an important limitation. On the
one hand, sparsity of the factors is a desired property in dimension reduction, because
it contributes to an easier interpretation of the results. On the other hand, in most
applications the exact sparsity pattern of the factors is not known a-priori, because
the purpose of empirical data mining is exactly to explore the structure that is hidden
in the data, when there are no strong a-priori assumptions.

9.3 Directions for further research

In the flow of the text we have already pointed out some ideas for future extensions.
Here, we collect the most important of them.

Let us recall that, in general, in the factorization Y ≈ AX, apart from the zero-
pattern constraint A ▹ Z, we can also have additional constraints on the factors. In

88

9.3 Directions for further research

our approach so far we have exclusively concentrated on the conclusions that we can
draw solely from the structure of Z. But even if the zero pattern on itself cannot
offer identifiability, the extra constraints should also somehow restrict the space of
multiple solutions. How exactly can we combine these constraints with the zero-
pattern, in order to draw stronger conclusions? We have already sketched this idea
in Section 3.5. What happens if in the factorization Y = AX both factors must
satisfy known zero patterns? Can we come up with a generalization of identifiability?
The next natural step beyond zero patterns would be sign patterns, i.e., constraints
enforcing the positivity or negativity of certain entries of the matrices. The study of
sign patterns is, in fact, a large field demonstrating many nice connections between
linear algebra and graph theory. For an extensive treatment we refer to the book
by Brualdi and Shader [BS95]. In fact, sign patterns are much stronger than zero
patterns; in some cases they make it possible to draw strong conclusions without even
assuming numerical genericity of the involved matrices.

In Section 3.5, we saw that, even in the case of graphs that do not satisfy the iden-
tifiability conditions, it is possible to draw structural conclusions about matrix R,
using the Dulmage-Mendelsohn decomposition. Moreover, we strongly suspect that
the directed graph that models the zero pattern of R is always transitive and, there-
fore, the inverse R−1 also satisfies the same zero pattern as R. Firstly, a formal proof
of this conjecture is pending and secondly, can we understand if there is a deeper
combinatorial reason that makes this happen?

As far as robustness questions are concerned we point out that the complexity of
the weighted robustness questions remained open. More importantly, incorporating
robustness as an optimization criterion into the design process (sensor selection) and in
the selection of good subgraphs seems to be worth investigating. This would also have
practical importance for networks with many specific sensors. Finding identifiable
subgraphs in such networks is, in general, easy, but what about finding identifiable
subgraphs with a lower bound on their robustness?

Another idea that would be useful in networks with many specific sensors is the follow-
ing. Assume that each sensor monitors at most k sources, where k is a constant, i.e.,
in the bipartite graph G = (C,R; E) the degree of all R-vertices is at most k. What is
then the complexity of the (generally NP-hard) problems MINSENSOR and MINSOURCE?
Can we probably come up with a fixed-parameter tractable (FPT) algorithm with
respect to k? What other parameters does it make sense to consider for an FPT
approach?

As a new property of bipartite graphs that has not been studied before, identifiability
can be looked at from many perspectives. For example, one may ask what happens
with random graphs. How probable is it that they have the property? If we could
answer this question then this would also open the possibility for statistical reasoning
on real networks. We have made a first attempt to approach these questions, but
their study requires rather sophisticated (and hard to grasp) methods from the theory

89

Chapter 9 Conclusions

of random graphs. Moreover, the fact that identifiability is not a convex property is
definitely discouraging.

Until now, the minimization method that computes the factorization Y ≈ AX and
the uniqueness questions have been considered independent from each other. We have
assumed that a solution to the factorization problem is computed with a black-box
method and we focused our attention to the identifiability questions. A method to
actually compute the factorization was described (see Algorithm 1) and implemented
for our case study of cross-hybridization. However, we have not systematically inves-
tigated how this minimization algorithm scales to large problems. How exactly do
the structure and type of the constraints influence the performance of the numerical
computations? Can we speed up the computations by taking advantage of the known
zero pattern and “ordering” the computations appropriately?

In this thesis, we saw how constrained matrix factorization, a problem that is contin-
uous in its own nature, naturally led to discrete graph-theoretical investigations. Our
motivation was the question about the uniqueness of solutions under the presence of
zero constraints and the key for the answer was the definition of identifiable bipartite
graphs. We hope that this new connection, apart from being theoretically appealing,
will also contribute to a better understanding of problems that can be modeled in the
framework of linear, bipartite source-sensor networks.

90

Bibliography

[BBL+07] M.W. Berry, M. Browne, A.N. Langville, V.P. Pauca, and R.J. Plem-
mons. Algorithms and applications for approximate non-negative matrix
factorization. Computational Statistics and Data Analysis, 2007.

[BDJ99] M.W. Berry, Z. Drmač, and E.R. Jessup. Matrices, vector spaces and
information retrieval. SIAM Review, 41(2):335–362, 1999.

[Beh03] S. Behnke. Discovering hierarchical speech features using convolutional
non-negative matrix factorization. In Proceedings of the International
Joint Conference on Neural Networks, volume 4, pages 2758–2763, 2003.

[Ber57] C. Berge. Two theorems in graph theory. Proceedings of the National
Academy of Sciences USA, 43:842–844, 1957.

[BS95] R.A. Brualdi and B.L. Shader. Matrices of Sign-Solvable Linear Sys-
tems. Cambridge University Press, 1995.

[BSLR05] R. Boscolo, C. Sabatti, J.C. Liao, and V.P. Roychowdhury. A general-
ized framework for network component analysis. IEEE Trans. Comp.
Biol. Bioinf., 2(4):289–301, 2005.

[BTGM04] J.-P. Brunet, P. Tamayo, T.R. Golub, and J.P. Mesirov. Metagenes
and molecular pattern discovery using matrix factorization. PNAS,
101(12):4164–4169, 2004.

[BTW+09] T. Barrett, D.B. Troup, S.E. Wilhite, P. Ledoux, D. Rudnev, C. Evan-
gelista, I.F. Kim, A. Soboleva, M. Tomashevsky, K.A. Marshall, K.H.
Phillippy, P.M. Sherman, R.N. Muertter, and R. Edgar. NCBI GEO:
archive for high-throughput functional genomic data. Nucleic Acids
Research, 37(Database issue):D885–D890, 2009.

[BV04] S. Boyd and L. Vandenberghe. Convex optimization. Cambridge Uni-
versity Press, 2004.

[CCL+06] Y.A. Chen, C.-C. Chou, X. Lu, E.H. Slate, K. Peck, W. Xu, E.O. Voit,
and J.S. Almeida. A multivariate prediction model for microarray cross-
hybridization. BMC Bioinformatics, 7:101, 2006.

91

Bibliography

[CCSS+06] Monica Chagoyen, Pedro Carmona-Saez, Hagit Shatkay, Jose M Carazo,
and Alberto Pascual-Montano. Discovering semantic features in the lit-
erature: a foundation for building functional associations. BMC Bioin-
formatics, 7:41, 2006.

[CDHF08] C. Chang, Z. Ding, Y.S. Hung, and P.C.W. Fung. Fast network com-
ponent analysis (FastNCA) for gene regulatory network reconstruction
from microarray data. Bioinformatics, 24(11):1349–1358, 2008.

[CF02] M. Cooper and J. Foote. Summarizing video using non-negative sim-
ilarity matrix factorization. In IEEE Workshop on Multimedia Signal
Processing, pages 25–28, 2002.

[CSPMT+06] P. Carmona-Saez, R.D. Pascual-Marqui, F. Tirado, J.M. Carazo, and
A. Pascual-Montano. Biclustering of gene expression data by non-
smooth non-negative matrix factorization. BMC Bioinformatics, 7:78,
2006.

[Die05] R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathemat-
ics. Springer, 2005.

[DM58] A.L. Dulmage and N.S. Mendelsohn. Coverings of bipartite graphs.
Canad. J. Math., 10:517–534, 1958.

[Edm65] J. Edmonds. Paths, trees and flowers. Canad. J. Math., 17:449–467,
1965.

[Fod02] I.K. Fodor. A survey of dimension reduction techniques. Technical
report, Lawrence Livermore National Laboratory, 2002.

[FRSR08] E. Fritzilas, Y.A. Rios-Solis, and S. Rahmann. Structural identifiabil-
ity in low-rank matrix factorization. In X. Hu and J. Wang, editors,
Computing and Combinatorics, volume 5092 of LNCS, pages 140–148.
2008. Proceedings of the 14th International Conference COCOON 2008
Dalian, China.

[Fuj05] S. Fujishige. Submodular Functions and Optimization. Elsevier, 2005.

[GB08] M. Grant and S. Boyd. CVX: Matlab software for dis-
ciplined convex programming (web page and software).
http://stanford.edu/∼boyd/cvx, December 2008.

[Gil94] J.R. Gilbert. Predicting structure in sparse matrix computations. SIAM
Journal on Matrix Analysis and Applications, 15(1):62–79, 1994.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman and Company, 1979.

92

Bibliography

[GKS95] M.C. Golumbic, H. Kaplan, and R. Shamir. Graph sandwich problems.
J. Algorithms, 19:449–473, 1995.

[GL96] G.H. Golub and C.F. Van Loan. Matrix Computations. The Johns
Hopkins University Press, 1996.

[GS00] L. Grippo and M. Sciandrone. On the convergence of the block nonlinear
Gauss-Seidel method under convex constraints. Operations Research
Letters, 26:127–136, 2000.

[Hal35] P. Hall. On representatives of subsets. J. London Math. Society, 10:26–
30, 1935.

[HGL+04] C.T. Harbison, D.B. Gordon, T.I. Lee, N.J. Rinaldi, K.D. Macisaac,
T.W. Danford, N.M. Hannett, J.-B. Tagne, D.B. Reynolds, J. Yoo,
E.G. Jennings, J. Zeitlinger, D.K. Pokholok, M. Kellis, P.A. Rolfe,
K.T. Takusagawa, E.S. Lander, D.K. Gifford, E. Fraenkel, and R.A.
Young. Transcriptional regulatory code of a eukaryotic genome. Na-
ture, 431(7004):99–104, 2004.

[HH82] R.J. Hanson and K.H. Haskell. Two algorithms for the linearly con-
strained least-squares problem. ACM Transactions on Mathematical
Software, 8(3):323–333, 1982.

[HK73] J.E. Hopcroft and R.M. Karp. An n5/2 algorithm for maximum match-
ings in bipartite graphs. SIAM J. Comput., 2:225–231, 1973.

[HMSG08] L.N. Hutchins, S.M. Murphy, P. Singh, and J.H. Graber. Position-
dependent motif characterization using non-negative matrix factoriza-
tion. Bioinformatics, 24(23):2684–2690, 2008.

[Hoy04] P.O. Hoyer. Non-negative matrix factorization with sparseness con-
straints. Journal of Machine Learning, 5:1457–1469, 2004.

[HS06] M. Heiler and C. Schnorr. Learning sparse representations by non-
negative matrix factorization and sequential cone porgramming. Journal
of Machine Learning Research, 7:1385–1407, 2006.

[Iwa03] S. Iwata. A faster scaling algorithm for minimizing submodular func-
tions. SIAM J. Comput., 32:833–840, 2003.

[KP07] H. Kim and H. Park. Sparse non-negative matrix factorizations via
alternating non-negativity-constrained least squares for microarray data
analysis. Bioinformatics, 23:1495–1502, 2007.

[KYB+04] K.C. Kao, Y.-L. Yang, R. Boscolo, C. Sabatti, V. Roychowdhury, and
J.C. Liao. Transcriptome-based determination of multiple transcrip-
tion regulator activities in escherichia coli by using network component
analysis. Proc Natl Acad Sci U S A, 101(2):641–646, Jan 2004.

93

Bibliography

[LBY+03] J.C. Liao, R. Boscolo, Y.-L. Yang, L.M. Tran, C. Sabatti, and V.P. Roy-
chowdhury. Network component analysis: reconstruction of regulatory
signals in biological systems. PNAS, 100(26):15522–15527, 2003.

[Lin07] C.-J. Lin. Projected gradient methods for non-negative matrix factor-
ization. Neural Computation, 19:2756–2779, 2007.

[LP86] L. Lovász and M.D. Plummer. Matching Theory. North-Holland, 1986.

[LR04] C. Lee and M. Roy. Analysis of alternative splicing with microarrays:
successes and challenges. Genome Biology, 5:231, 2004.

[LRR+02] T.I. Lee, N.J. Rinaldi, F. Robert, D.T. Odom, Z. Bar-Joseph, G.K.
Gerber, N.M. Hannett, C.T. Harbison, C.M. Thompson, I. Simon,
J. Zeitlinger, E.G. Jennings, H.L. Murray, D.B. Gordon, B. Ren, J.J.
Wyrick, J.-B. Tagne, T.L. Volkert, E. Fraenkel, D.K. Gifford, and R.A.
Young. Transcriptional regulatory networks in saccharomyces cerevisiae.
Science, 298(5594):799–804, 2002.

[LS99] D.D. Lee and H.S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401:788–791, 1999.

[LW01] C. Li and W.H. Wong. Model-based analysis of oligonucleotide arrays:
expression index computation and outlier detection. Proceedings of Na-
tional Academy of Sciences, 98(1):31–36, 2001.

[LXY03] J. Lu, B. Xu, and H. Yang. Matrix dimensionality reduction for mining
web logs. In IEEE/WIC International Conference on Web Intelligence,
2003, page pp.405, 2003.

[MRM+07] C. Militon, S. Rimour, M. Missaoui, C. Biderre, V. Barra, D. Hill,
A. Mon, G. Gagne, H. Meier, E. Peyretaillade, and P. Peyret. Phylarray:
phylogenetic probe design algorithm for microarray. Bioinformatics,
23(19):2550–2557, 2007.

[Mur00] K. Murota. Matrices and Matroids for Systems Analysis. Springer,
2000.

[Nar97] H. Narayanan. Submodular Functions and Electrical Networks. Elsevier,
1997.

[NRV07] S. Narasimhan, R. Rengaswamy, and R. Vadigepalli. Structural prop-
erties of gene regulatory networks: definitions and connections. IEEE
Trans. Comp. Biol. Bioinf., 2007. accepted.

[Nuu95] E. Nuutila. Efficient Transitive Closure Computation in Large Digraphs,
volume 74 of Acta Polytechnica Scandinavica, Mathematics and Com-
puting in Engineering Series. Finnish Academy of Technology, 1995.

94

Bibliography

[Orl07] James B. Orlin. A faster strongly polynomial time algorithm for sub-
modular function minimization. In Proceedings of IPCO’07, volume
4513 of LNCS, pages 240–251, 2007.

[OSF+08] N. Ono, S. Suzuki, C. Furusawa, T. Agata, A. Kashiwagi, H. Shimizu,
and T. Yomo. An improved physico-chemical model of hybridization on
high-density oligonucleotide microarrays. Bionformatics, 24:1278–1285,
2008.

[PF90] A. Pothen and C.-J. Fan. Computing the block triangular form of a
sparse matrix. ACM Trans. Math. Software, 16(4):303–324, 1990.

[PSM+04] Q. Pan, O. Shai, C. Misquitta, W. Zhang, A.L. Saltzman, N. Moham-
mad, T. Babak, H. Siu, T.R. Hughes, Q.D. Morris, B.J. Frey, and B.J.
Blencowe. Revealing global regulatory features of mammalian alterna-
tive splicing using a quantitative microarray platform. Molecular Cell,
16(6):929–941, 2004.

[PW07] I. Pournara and L. Wernisch. Factor analysis for gene regulatory net-
works and transcription factor activity profiles. BMC Bioinformatics,
8(1):61, 2007.

[Rah04] S. Rahmann. Algorithms for probe selection and DNA microarray de-
sign. PhD thesis, Free University of Berlin, Department of Mathematics
and Computer Science, February 2004.

[Sar42] A. Sard. The measure of the critical values of differentiable maps. Bul-
letin of the American Mathematical Society, 48(12):883–890, 1942.

[SBPP06] F. Shahnaz, M.W. Berry, V.P. Pauca, and R.J. Plemmons. Document
clustering using nonnegative matrix factorization. Inf. Proc. & Manag.,
42(2):373–386, 2006.

[SMBF06] O. Shai, Q.D. Morris, B.J. Blencowe, and B.J. Frey. Inferring global
levels of alternative splicing isoforms using a generative model of mi-
croarray data. Bioinformatics, 22(5):606–613, 2006.

[TBK+05] L.M. Tran, M.P. Brynildsen, K.C. Kao, J.K. Suen, and J.C. Liao. gnca:
a framework for determining transcription factor activity based on tran-
scriptome: identifiability and numerical implementation. Metab Eng,
7(2):128–141, 2005.

[Vaz04] V. Vazirani. Approximation Algorithms. Springer, 2004.

[VBB08] E. Vincent, N. Bertin, and R. Badeau. Harmonic and inharmonic non-
negative matrix factorization for polyphonic pitch transcription. In
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pages 109–112, 2008.

95

Bibliography

[WHH+03] H. Wang, E. Hubbell, J. Hu, G. Mei, M. Cline, G. Lu, T. Clark, M.A.
Siani-Rose, M. Ares, D.C. Kulp, and D. Haussler. Gene structure-based
splice variant deconvolution using a microarray platform. Bioinformat-
ics, 19:i315–i322, 2003.

[WM04] E. Wit and J. McClure. Statistics for Microarrays:
Design, Analysis and Inference. Wiley, 2004.

[WMP+07] Y. Wang, Z.-H. Miao, Y. Pommier, E.S. Kawasaki, and A. Player. Char-
acterization of mismatch and high-signal intensity probes associated
with affymetrix genechips. Bioinformatics, 23(16):2088–2095, 2007.

[Wol82] L.A. Wolsey. An analysis of the greedy algorithm for the submodular
set covering problem. Combinatorica, 2(4):385–393, 1982.

[Wol98] L.A. Wolsey. Integer Programming. Wiley Interscience, 1998.

96

