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Introduction

Diffusion processes are stochastic processes describing the physical phenomenon
of diffusion. Their mathematical theories are firmly based on modern proba-
bility theory, or more precisely, Itô calculus. Using Itô’s stochastic calculus,
it is possible to characterize the infinitesimal motion of a diffusion particle.
The dynamics of a diffusion particle in Rd is usually governed by a stochastic
differential equation

dXt = b(t,Xt)dt+ σ(t,Xt)dWt, (1)

where σ(t, x) : [0,∞) × Rd → Rd ⊗ Rr, b(t, x) : [0,∞) × Rd → Rd are mea-
surable and Wt is an r-dimensional Brownian motion. Because of intuitive
physical meanings, the matrix a(t, x) := σ(t, x)σT (t, x) is called the diffusion
matrix and b(t, x) called the drift vector.

The basic existence and uniqueness theories for (1) were already estab-
lished by the end of last 60’s. It was K. Itô who gave the first existence and
uniqueness theorem to (1). He proved that if σ(t, x), b(t, x) are uniformly
Lipschitz with respect to x and are at most of linear growth, then there
exists a unique strong solution to (1). Then in 1969, using the martingale
problem methods, Stroock and Varadhan proved that there exists a unique
weak solution to (1) if a(t, x) is bounded continuous, everywhere positive
definite and b(t, x) is bounded measurable.

However, the above mentioned existence and uniqueness results require
the coefficients of (1) to be locally bounded, namely a(t, x), b(t, x) could
not be singular. Motivated from applications, of course also mathematically
important, many people studied the existence and uniqueness problem for
(1) when the coefficients are not locally bounded (cf. [Stu93, ES84, Por90,
BC03, KR05], and the list is far from complete). Now it is an accepted fact
that, if the diffusion matrix is "nice", then very mild assumptions on the
drift vector still ensure that (1) has a unique weak solution.

Now let’s look at the simplest case in which a(t, x) is everywhere the
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6 INTRODUCTION

identity matrix. The stochastic differential equation (1) becomes

dXt = b(t,Xt)dt+ dWt. (2)

The solution to (2), if it exists, is usually called Brownian motion with drift
b. To solve (2), both probabilistic and analytic methods can be used. We
know that, under Novikov’s condition holding for b(t, x), the equation (2)
can be solved through Girsanov transformation. Several authors adopted
this approach to solve (2) under various assumptions on b(t, x) (cf. [Stu93,
Por90]).

Apart from probabilistic methods, one can also use modern PDE theories.
We could look at the corresponding Kolmogorov’s backward equation

∂u

∂s
+

1

2
4u+ b(s, x) · ∇u = 0. (3)

If b(s, x) is smooth and has compact support, it is well-known that for (3)
there exists a classical fundamental solution which is exactly the transition
density function for the diffusion process described by (2). When b(s, x) is
merely bounded and measurable, classical fundamental solutions for (3) do
not exist in general. However, D.G. Aronson’s work (cf. [Aro68]) tell us
there still exists a fundamental solution p(s, x; t, y) for (3) in a weak sense
when b(s, x) only satisfies some integrability condition. Using this weak
fundamental solution p(s, x; t, y) as the transition probability density of the
desired process, N.I. Portenko constructed a weak solution to (2) for a broad
class of drift vectors b.

Recently, Bass and Chen used another method to solve (2) (cf. [BC03]).
They proved that if the drift b(t, x) is independent of time (i.e. b(t, x) = b(x))
and each component bi(x) belongs to the Kato class Kd−1 (cf. Example 1.1.2
for the definition), then (2) has a unique weak solution. In fact they could
even allow the drift to be a Radon measure, but then the notion of a solution
to (2) would be a little bit different from the usual sense. Their method is
based on constructing the resolvent Sλ of the desired process described by
(2).

The above mentioned results concerning the stochastic differential equa-
tion (2) dealt only with weak solutions. In the paper [KR05], Krylov and
Röckner considered existence and uniqueness of strong solutions to (2). They
proved that if b(t, x) is locally in Lp,q (cf. Example 1.1.2 for the definition)
with p ≥ 2 and d

2p
+ 1

q
< 1

2
, then (2) has a unique strong solution up to an

explosion time.

In this work, we aimed to construct diffusion processes with singular
coefficients using analytic methods. In chapter 1 and chapter 2, we consider
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the stochastic differential equation (2) for a new class of singular drift vector
b(t, x). In chapter 3 we turn to the infinite dimensional case and construct
the Glauber dynamics of an unbounded spin system on a graph. To be more
precise, we now explain the contents and main results of this thesis chapter
by chapter.

Weak fundamental solution for a parabolic equation with
singular lower order terms

From the work of N.I. Portenko, we have seen that fundamental solutions
of second order parabolic equations are very helpful for the construction of
diffusion processes. Therefore in chapter 1 we study a class of second order
parabolic equations of the following form

∇(a(t, x) · ∇u(t, x)) + b(t, x) · ∇u(t, x) + V (t, x)u(t, x)− ∂tu(t, x) = 0 (4)

in the domain [0, T ]× Rd, where T <∞. Here we use the notation

∇(a(t, x) · ∇u) =
d∑

i,j=1

∂xiaij∂xju, b · ∇u =
d∑
j=1

bj∂xju.

There has been a lot of work on weak fundamental solutions of (4) under
various assumptions on the coefficients. In particular, it was Qi S. Zhang
who first introduced time-dependent Kato classes to study (4). In [Zha96a,
Zha97a], Qi S. Zhang studied the special case of (4) in which V ≡ 0. There he
assumed that a(t, x) is uniformly elliptic and Hölder continuous, |b(t, x)| has
compact support and belongs to T Kcd−1 (cf. Definition 1.1.1) for any c > 0,
then he proved Gaussian bounds of the corresponding weak fundamental
solution. He also treated the case in which b ≡ 0 and V (t, x) has compact
support and belongs to the class T Kcd−2 (cf. Definition 1.1.9) for any c > 0,
see [Zha96b, Zha97b] for more details.

Then in [LS00], Liskevich and Semenov studied the full form of (4). For
the principle part they only assumed the matrix a(t, x) to be measurable and
uniformly elliptic, without any additional continuity conditions. For the zero
order term V (t, x) they assumed similar conditions like [Zha96b, Zha97b],
but they dropped the restriction that V (t, x) is compactly supported. For
compensation they imposed more restrictive assumptions on the first order
term b(t, x) than in [Zha96a, Zha97a]. Under these conditions they proved
that (4) has a unique weak fundamental solution. However, in order to drop
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the restriction that b(t, x) and V (t, x) are compactly supported, they used a
very sophisticated argument (cf. [LS00, page 538]).

We now state our assumptions on the coefficients of (4). We assume that
the matrix a(t, x) = (aij(t, x)) is symmetric and uniformly elliptic, Hölder
continuous in t, x and ∂

∂xi
aij(t, x) are bounded and Hölder continuous in

x. Under these assumptions on a(t, x), it is well-known (cf. [Fri64, LSU67,
Aro68]) that the equation

∇(a(t, x) · ∇u(t, x))− ∂tu(t, x) = 0

has a classical fundamental solution p(t, x; s, y) satisfying the following esti-
mates: there exist positive constants c0, α0, C0, α such that for any x, y ∈ Rd

and 0 ≤ s < t ≤ T ,

(i)
c0

(t− s) d2
exp(−α0

|x− y|2

t− s
) ≤ p(t, x; s, y) ≤ C0

(t− s) d2
exp(−α |x− y|

2

t− s
),

(ii) |∇xp(t, x; s, y)| ≤ C0

(t− s) d+1
2

exp(−α |x− y|
2

t− s
).

For the first order term, we assume |b| to be in the time-dependent Kato
class T Kα1

d−1 for some α1 <
α
2
, namely

lim
h→0

Nα1
h (|b|) = 0,

where

Nα1
h (|b|) := sup

(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−α1
|x− y|2

t− s
)|b(t, x)|dxdt+

sup
(t,x)∈R×Rd

∫ t

t−h

∫
Rd

1

(t− s) d+1
2

exp(−α1
|x− y|2

t− s
)|b(s, y)|dyds.

For the zero order term, we assume V ∈ T Kα2
d−2 for some α2 <

α
4
, namely

lim
h→0

Mα2
h (V ) = 0,

where

Mα2
h (V ) := sup

(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d2
exp(−α2

|x− y|2

t− s
)|V (t, x)|dxdt+

sup
(t,x)∈R×Rd

∫ t

t−h

∫
Rd

1

(t− s) d2
exp(−α2

|x− y|2

t− s
)|V (s, y)|dyds.
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Here our assumptions on the lower order terms b(t, x), V (t, x) are weaker
than in [Zha96a, Zha96b]. In particular we don’t assume that b(t, x), V (t, x)
are compactly supported.

Under the above assumptions, our main result of this chapter, Theorem
1.4.10, states that there exists a unique weak fundamental solution

G(t, x; s, y), 0 ≤ s < t ≤ T, x, y ∈ Rd

for the parabolic equation (4). To prove this theorem, the main difficulty lies
in the existence part, namely how to construct such a G(t, x; s, y). To this
end we use a general scheme as in [Zha96a, Zha96b, LS00]. We first consider
the equation

∇(a(t, x) ·∇u(t, x)) + bn(t, x) ·∇u(t, x) +Vk(t, x) ·u(t, x)−∂tu(t, x) = 0 (5)

where bn(t, x) and Vk(t, x) are bounded smooth and approximate b(t, x) and
V (t, x) respectively in a reasonable way. For the parabolic equation (5),
there exists the fundamental solution Gnk(t, x; s, y). Then we prove that
Gnk(t, x; s, y) converges locally uniformly to a function G(t, x; s, y). This
kind of convergence was first proved in the special case when b(t, x) = b(x)
is time-indepedent, b(x) ∈ Kd−1 and V ≡ 0 in the paper [KS06], where Kim
and Song studied the transition probability densities of the Markov process
constructed in [BC03]. Here we do it in the more general time-depedent case
and we have to overcome many technical difficulties. Then we verify that
G(t, x; s, y) is indeed a weak fundamental solution to the parabolic equation
(4). The uniqueness of such a weak fundamental solution G(t, x; s, y) can be
proved similarly to [LS00].

It should be pointed out that the method of chapter 1 can also be applied
to the backward parabolic equation (3). Therefore some results of chapter 1
will be used in chapter 2 to study the corresponding diffusion processes.

Diffusions with time-dependent singular drift

In chapter 2 we study the stochastic differential equation{
dXt = dWt +B(t,Xt)dt, t ≥ s

Xt = x, 0 ≤ t ≤ s
(6)

with a new class of time-dependent singular drift terms. Here we only con-
sider weak solutions to (6). It is well-known that existence and uniqueness of
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weak solutions to (6) is equivalent to the martingale problem for the operator
L being well-posed, where

Lt =
1

2
4+B(t, x) · ∇

Now we state our assumption on the drift term. We assume |B(t, x)| to
be in the forward-Kato class FKαd−1 for some α < 1

2
, namely

lim
h→0

Nα,+
h (|B|) = 0,

where

Nα,+
h (|B|) := sup

(s,x)∈[0,∞)×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−α |x− y|
2

t− s
)|B(t, y)|dydt.

We should note that the forward-Kato class FKαd−1 is strictly larger than
the time-dependent Kato class T Kαd−1. In section 2.1 we shall give an example
which belongs to T Kαd−1 but does not belong to FKαd−1.

Under the above assumption, we prove Theorem 2.2.22. It states that the
martingale problem for

Lt =
1

2
4+B(t, x) · ∇

is well-posed, or equivalently, the stochastic differential equation (6) has a
unique weak solution for every starting point (s, x). This is the main result
of this chapter. We should note that FKαd−1 includes the (time-independent)
Kato class Kd−1, therefore our work extends the results of [BC03].

In section 2.3 we further assume |B(t, x)| ∈ T Kα′d−1 for some α′ < 1
4
, then

from the results of Chapter 1, we can easily prove Theorem 2.3.4, which tells
us that the solution Xt of (6), as a Markov process, has a transition density
function q(s, x; t, y) satisfying two sided Gaussian estimates.

Construction of Glauber dynamics for an unbounded spin
system on a graph

To construct diffusion processes, we can also use Dirichlet form methods.
After Fukushima discovered the connection between symmetric Markov pro-
cesses and symmetric Dirichlet forms, this methodology has been imple-
mented in great generality. One advantage of this method is that it still
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works in infinite dimensional cases (cf. [AR91, MR92]). In chapter 3 we use
Dirichlet form methods to construct the Glauber dynamics for an unbounded
spin system on a graph.

In this chapter, we consider an unbounded spin system which was first
studied in [Pas07a, Pas07b]. More precisely, let G(V,E) be a connected
simple graph consisting of a countable set of vertices v ∈ V and a set of
unordered edges e ∈ E. For each vertex v, let mv be the degree of v. We
assume that G(V,E) is of uniformly bounded degree, i.e.

mG := sup
v∈V

mv <∞.

Then we can define

δG := inf
{
δ > 0 :

∑
v∈V

e−δρ(v,o) <∞
}
,

where o ∈ V is a fixed vertex and ρ(v, o) is the combinatorial distance between
vertices v and o. Suppose that to each vertex v ∈ V, there corresponds
a particle performing one-dimensional oscillation. The configuration space
Ω := RV of this unbounded spin system consists of all real sequence x =
(xv)v∈V. We assume that the potential energy of each configuration x ∈ Ω is
given by the formal Hamiltonian

H(x) =
∑
v

Vv(xv) +
1

2

∑
v∼v′

Wvv′(xv, xv′),

where the sums are running over all v ∈ V and ordered pairs (v, v′) ∈ V2

with v ∼ v′ ( ∼ means v and v′ are adjacent, namely ρ(v, v′) = 1). Here we
assume Wvv′ ≡ 0 if v and v′ are not adjacent.

For the interaction potentialWvv′ , we assume thatWvv′(·, ·) is measurable
and there exist constants CW , J ≥ 0 such that for all v ∼ v′ and xv, xv′ ∈ R

|Wvv′(xv, xv′)| ≤
1

2
J(CW + |xv|2 + |xv′ |2).

For the self-potential Vv, we assume that Vv(·) is measurable and there
exist constants p ≥ 2, AV > mGJ(eδG + 1

2
), BV ∈ R, CV > 0, such that for all

v ∈ V and xv ∈ R

AV |xv|2 +BV ≤ Vv(xv) ≤ CV (1 + |xv|p).

It should be emphasized that here we merely assume the potential func-
tions to be measurable. This is much weaker than the conditions in [Pas07a,
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Pas07b], where Wvv′ and Vv were assumed to be twice continuously differen-
tiable.

For each δ > 0 we set

‖x‖δ :=

[∑
v∈V

|xv|2exp
{
− δρ(v, o)

}]1/2

and Ωδ :=
{
x ∈ Ω : ‖x‖δ <∞

}
. The tempered configuration space is defined

as
Ωt :=

⋂
δ>δG

Ωδ.

Under the above assumptions, we aim to construct the stochastic evo-
lution of this spin system, which is usually called Glauber dynamics, on
the tempered configuration space Ωt. Since the potential functions are only
measurable, we can not construct the Glauber dynamics by solving the cor-
responding infinite system of stochastic differential equations (cf. [Pas07a,
Pas07b]). We have to use Dirichlet form methods. To do that we first need to
find a good reference measure on the tempered configuration space. There-
fore in section 3.2 we adapt the methods of [Pas07a] to prove the existence
of tempered Gibbs measures, which are mathematical descriptions of equi-
librium states of the spin system.

In section 3.3 we fix some tempered Gibbs measure µ on the tempered
configuration Ωt. Using the general framework in [AR90], we can define a
Dirichlet form (E , D(E)) on L2(Ωt;µ). Then we use the standard arguments
to show that (E , D(E)) is quasi-regular. Using the correspondence between
Markov processes and quasi-regular Dirichlet forms, thus we can construct
the Glauber dynamics on the tempered configuration space.
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Chapter 1

Weak fundamental solution for a
parabolic equation with singular
lower order terms

In this chapter, we consider a parabolic equation in the following form

∇(a(t, x) · ∇u(t, x)) + b(t, x) · ∇u(t, x) + V (t, x) · u(t, x)− ∂tu(t, x) = 0 (∗)

in the domain [0, T ] × Rd where T < ∞. We assume that the matrix
a(t, x) = (aij(t, x)) is uniformly elliptic, Hölder continuous in t, x and ∂

∂xi
aij

are bounded and Hölder continuous in x. The lower order coefficients b(t, x)
and V (t, x) are assumed to be in some proper time-dependent Kato classes
(cf. Assumption (1.2.2) below).

Under these conditions we prove that there exists a unique weak funda-
mental solution to the above equation (∗). In section 1.1 we introduce several
time-dependent Kato classes and study some of their properties. In section
1.2 we make precise assumptions on the coefficients of (∗) and introduce the
notion of weak fundamental solutions. In section 1.3 we first consider the
equation

∇(a(t, x) · ∇u(t, x)) + bn(t, x) · ∇u(t, x) + Vk(t, x) · u(t, x)− ∂tu(t, x) = 0

where bn(t, x) and Vk(t, x) are bounded smooth and approximate b(t, x) and
V (t, x) respectively in a reasonable way. Since bn(t, x) and Vk(t, x) are
bounded smooth, the above equation has a unique fundamental solution
Gnk(t, x; s, y). Then we prove that Gnk(t, x; s, y) converges locally uniformly
to a function G(t, x; s, y). In Section 1.4 we verify that G(t, x; s, y) is indeed
a weak fundamental solution to (∗). The uniqueness of weak fundamental
solutions to (∗) can be proved with the same methods used in [LS00].

15



16 CHAPTER 1. A PARABOLIC EQUATION

1.1 Time-dependent Kato classes

In the study of Schrödinger equations, the (time-independent) Kato class
of functions plays a very important role. It was first introduced by T.Kato
to show the essential self-adjointness of the Schrödinger operator −4 + V
on C∞0 (Rd). In [Zha96a] and [Zha96b], Qi S. Zhang generalized the notion
of Kato class to the time-dependent case. In this section we will explore
some properties of the classes T Kcd−1 and T Kcd−2 introduced by Qi S. Zhang.
These classes will be used later as assumptions on the lower order terms of
the equation (∗).

1.1.1 Time-dependent Kato class T Kcd−1 and its proper-
ties

Definition 1.1.1. A measurable function f on [0,∞) × Rd is said to be in
the time-dependent Kato class T Kcd−1 if

lim
h→0

N c
h(f) = 0,

where

N c
h(f) := sup

(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt+

sup
(t,x)∈R×Rd

∫ t

t−h

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(s, y)|dyds.

Here c > 0 is a given constant and f(·, ·) is extended to R× Rd by 0.

We use the notation T Kcd−1 here because this class is the natural extension
of the (time-independent) Kato class Kd−1.

Example 1.1.2. (a) (Time-indepedent Kato class Kd−1) Suppose d ≥ 3.
Let a measurable function f : [0,∞) × Rd → R be time-indepedent, i.e.
f(t, x) = f(x), and

lim
r→0

sup
x∈Rd

∫
B(x;r)

|f(y)|
|x− y|d−1

dy = 0. (1.1)

Then f ∈ T Kcd−1 for any c > 0. The reader is referred to [KS06, Proposition
2.3] for a proof of this fact. The class of functions which satisfy (1.1) is called
(time-independent) Kato class Kd−1.
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(b) If a measurable function f on [0,∞) × Rd is bounded, then f ∈ T Kcd−1

for any c > 0.
(c) For p, q ∈ [1,∞] we denote Lp = Lp(Rd), Lp,q = Lq(R, Lp). If a measur-
able function f on [0,∞)× Rd has compact support and f ∈ Lp,q (here f is
regarded as 0 outside [0,∞)×Rd) with d

2p
+ 1

q
< 1

2
, then f ∈ T Kcd−1 for any

c > 0, see [Zha97a, Proposition 2.1] for a proof.

Remark 1.1.3. If f ∈ T Kcd−1, then f is locally integrable. Since limh→0N
c
h(f) =

0, we can find a small enough h > 0 such that N c
h(f) < ∞. For any

(t′, x′) ∈ [0,∞)× Rd, let s = t′ − h
2
, then

N c
h(f) ≥

∫ t′+h
2

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− x
′|2

t− s
)|f(t, x)|dxdt

≥
∫ t′+h

4

s+h
4

∫
Rd

1

(t− s) d+1
2

exp(−c |x− x
′|2

t− s
)|f(t, x)|dxdt

≥C
∫ t′+h

4

s+h
4

∫
|x−x′|≤h

|f(t, x)|dxdt,

where
C = inf

t∈[t′−h
4
,t′+h

4
]

|x−x′|≤h

1

(t− s) d+1
2

exp(−c |x− x
′|2

t− s
) > 0.

Therefore
∫ t′+h

4

s+h
4

∫
|x−x′|≤h |f(t, x)|dxdt <∞ and f is locally integrable.

Next we prove some properties of the class T Kcd−1 and these properties
will be used in the subsequent sections.

Proposition 1.1.4. Suppose f(t, x) ∈ T Kcd−1, then N c
l (f) < ∞ for any

l > 0.

Proof. For any s < s1 < t, we have the following inequality∫
Rd

(2c)
d
2

(2π)
d
2 (s1 − s)

d
2

exp(−c |z − y|
2

s1 − s
)

(2c)
d
2

(2π)
d
2 (t− s1)

d+1
2

exp(−c |x− z|
2

t− s1

)dz

≥ 1

(t− s) 1
2

∫
Rd

(2c)
d
2

(2π)
d
2 (s1 − s)

d
2

exp(−c |z − y|
2

s1 − s
)

(2c)
d
2

(2π)
d
2 (t− s1)

d
2

exp(−c |x− z|
2

t− s1

)dz

=
1

(t− s) 1
2

(2c)
d
2

(2π)
d
2 (t− s) d2

exp(−c |y − x|
2

t− s
)

=
(2c)

d
2

(2π)
d
2 (t− s) d+1

2

exp(−c |y − x|
2

t− s
) (1.2)
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Suppose h > 0 is such that N c
h(f) <∞, then∫ s+2h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt

≤N c
h(f) +

∫ s+2h

s+h

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt

Let s+ h = s1, then by (1.2)∫ s+2h

s+h

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt

≤
∫

Rd

(2c)
d
2

(2π)
d
2 (h)

d
2

exp(−c |z − y|
2

h
)dz

∫ s+2h

s+h

∫
Rd

1

(t− s1)
d+1

2

exp(−c |x− z|
2

t− s1

)|f(t, x)|dxdt

≤
∫

Rd

(2c)
d
2

(2π)
d
2 (s1 − s)

d
2

exp(−c |z − y|
2

s1 − s
)dz ·N c

h(f)

≤N c
h(f)

Therefore we get∫ s+2h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt ≤ 2N c

h(f).

Similarly we can prove for all n ∈ N∫ s+nh

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt ≤ nN c

h(f).

Then it is easy to see that the propostion is true.

The following lemma is taken from [LS00, Proposition 2.4], for the readers’
convenience we give a proof here.

Lemma 1.1.5. Suppose f ∈ T Kcd−1 and f is considered to be 0 outside
[0,∞)× Rd, then for any nonnegative φ ∈ C∞0 (Rd+1) with

∫
Rd+1 φ(ξ)dξ = 1,

we have N c
h(f ∗ φ) ≤ N c

h(f). Here f ∗ φ denotes the convolution of φ and f ,
namely f ∗ φ(ξ) =

∫
f(ξ − η)φ(η)dη.

Proof. For each fixed (s, y) ∈ R× Rd, let

gs,y(t, x) =
1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
).
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Then ∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f ∗ φ|(t, x)dxdt

=

∫ s+h

s

∫
Rd
gs,y(t, x)

∣∣∣ ∫
Rd+1

f(t− τ, x− z)φ(τ, z)dτdz
∣∣∣dxdt

≤
∫ s+h

s

∫
Rd
gs,y(t, x)

∫
Rd+1

|f(t− τ, x− z)|φ(τ, z)dτdzdxdt

=

∫
Rd+1

φ(τ, z)dτdz(

∫ s+h

s

∫
Rd
gs,y(t, x)|f(t− τ, x− z)|dxdt).

Let x− z = x′, t− τ = t′, then∫ s+h

s

∫
Rd
gs,y(t, x)|f(t− τ, x− z)|dxdt

=

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t− τ, x− z)|dxdt

=

∫ s−τ+h

s−τ

∫
Rd

1

(t′ − (s− τ))
d+1

2

exp(−c |x− z − y
′|2

(t′ − (s− τ))
)|f(t′, x′)|dx′dt′

≤ sup
(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt.

Note that
∫

Rd+1 φ(τ, z)dτdz = 1, therefore we have

sup
(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f ∗ φ(t, x)|dxdt

≤ sup
(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt.

Similarly we can show

sup
(t,x)∈R×Rd

∫ t

t−h

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f ∗ φ(s, y)|dyds

≤ sup
(t,x)∈R×Rd

∫ t

t−h

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(s, y)|dyds.

Therefore N c
h(f ∗ φ) ≤ N c

h(f).
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Lemma 1.1.6. Suppose f ∈ T Kcd−1 and f is considered to be 0 outside
[0,∞) × Rd, then there exist nonnegative functions ϕn ∈ C∞0 (Rd+1) with∫

Rd+1 ϕn(ξ)dξ = 1 such that f ∗ϕn ∈ C∞b (Rd+1). Moreover, ϕn can be chosen
such that

supp(ϕn) ∈
{
x ∈ Rd+1 : |x| ≤ 1

n

}
.

Proof. First we can find a nonnegative φ ∈ C∞0 (Rd+1) with
∫

Rd+1 φ(ξ)dξ = 1
and

supp(φ) ⊂
{
ξ ∈ Rd+1 : |ξ| ≤ 1

2

}
.

Define φn(ξ) = n(d+1)φ(nξ), then
∫

Rd+1 φn(ξ)dξ = 1 and

supp(φn) ⊂
{
ξ ∈ Rd+1 : |ξ| ≤ 1

2n

}
.

Let

gn(t, x) =

{
Cn

t(d+1)/2 · exp(−c |x|
2

t
), if 0 < t 6 1

2n
, |x| 6 1

2n

0 otherwise

where Cn is chosen such that
∫

Rd+1 gn(t, x)dxdt = 1.

Then for any (t, x) ∈ Rd+1,

|f ∗ gn|(t, x) = |
∫

Rd+1

gn(t− s, x− y)f(s, y)dyds|

≤
∫ t

t− 1
2n

∫
Rd

Cn

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(s, y)|dyds ≤ CnN

c
1

2n
(f),

namely f ∗ gn is bounded.

Let ϕn = gn ∗ φn, then

f ∗ ϕn = f ∗ (gn ∗ φn) = (f ∗ gn) ∗ φn

=

∫
Rd+1

φn(ξ − η) ·
(
f ∗ gn(η)

)
dη

Since f ∗gn is bounded and φn ∈ C∞0 (Rd+1), we have f ∗ϕn ∈ C∞b (Rd+1).

Now suppose that f ∈ T Kcd−1, by Remark 1.1.3 we know that f is locally
integrable. For any compact K ⊂ [0,∞)×Rd, we can define a finite measure
µ(dξ) := 1K(ξ) · |f |(ξ)m(dξ) on ([0,∞) × Rd,B), where m is the Lebesgue
measure on Rd+1. The following lemma is just a straightforward computation.
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Lemma 1.1.7. For each (s, y) ∈ [0,∞)× Rd, define

gs,y(t, x) :=
1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
), if (t, x) ∈ (s,∞)× Rd

and gs,y(t, x) := 0 if (t, x) ∈ [0, s]×Rd. Then the family {gs,y(t, x)}(s,y)∈[0,∞)×Rd

is uniformly integrable with respect to the measure µ.

Proof. For any a > 0, let h(a) := a−
2
d+1 . Then∫

{(t,x):gs,y(t,x)>a}
gs,y(t, x)dµ

=

∫
{(t,x):gs,y(t,x)>a}∩K

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt

≤
∫ s+h(a)

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, x)|dxdt

≤N c
h(a)(f).

Since h(a) tends to 0 as a→∞ and f ∈ T Kcd−1, so we have

lim
a→∞

∫
{(t,x):gs,y(t,x)>a}

gs,y(t, x)dµ = 0.

Therefore {gs,y(t, x)}(s,y)∈[0,∞)×Rd is uniformly integrable with respect to the
measure µ.

The following proposition is an improved version of [LS00, Proposiiton
2.4(ii)]. It plays a crucial role in the subsequent sections of this chapter.

Proposition 1.1.8. Let ϕn be as in Lemma 1.1.6 and f ∈ T Kcd−1, then for
any compact K ⊂ [0,∞)× Rd,

lim
n→∞

N c
h(1K |f ∗ ϕn − f |) = 0.

Proof. For fixed (s, y) ∈ [0,∞)× Rd, let

A = [s, s+ h]× Rd, ξ = (t, x), gs,y(t, x) =
1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)
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Then∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f ∗ ϕn − f | · 1K(t, x)dxdt

=

∫
A

|f ∗ ϕn − f |gs,y(ξ) · 1K(ξ)dξ =

∫
A

|
∫

Rd+1

f(ξ − η)ϕn(η)dη − f(ξ)|gs,y(ξ) · 1K(ξ)dξ

=

∫
A

|
∫

Rd+1

(f(ξ − η)− f(ξ))ϕn(η)dη|gs,y(ξ) · 1K(ξ)dξ

≤
∫

Rd+1

ϕn(η)dη

∫
A

|f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ.

Set K1 := {ξ ∈ Rd+1 : d(ξ,K) 6 1}, then by Lusin’s theorem, for a given
δ > 0, there exists a closed set F δ ⊂ K1 and a continuous function fδ on
Rd+1 with compact support such that

m(K1 \ F δ) < δ and fδ = f on F δ,

here m is the Lebesgue measure. If |η| 6 1, then∫
A

|f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ

=

∫
A∩K1

|f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ

≤
∫
A∩F δ∩(F δ+η)

|f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ+

+

∫(
K1\F δ

)S(
(K1\F δ)+η

) |f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ

≤
∫
A∩F δ∩(F δ+η)

|fδ(ξ − η)− fδ(ξ)|gs,y(ξ) · 1K(ξ)dξ +

∫
C

|f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ

=I + II

where C =
(
K1 \ F δ

)⋃ (
(K1 \ F δ) + η

)
with m(C) < 2δ.

Suppose ε > 0 is any given constant. By Lemma 1.1.7, the family
{gs,y(ξ)}(s,y) is uniformly integrable with respect to the finite measure 1K1(ξ)·
|f |(ξ)m(dξ) and note that m(C) < 2δ, we can choose δ small enough such
that

II =

∫
C

|f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ

≤
∫
C

|f(ξ)|gs,y(ξ) · 1K(ξ)dξ +

∫
C+η

|f(ξ)|gs′,y′(ξ) · 1K1(ξ)dξ < ε.
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Since the above fδ is continuous with compact support, then we can
choose n0 large enough such that |fδ(ξ − η)− fδ(ξ)| < ε whenever |η| ≤ 1

n0
.

Since
supp(ϕn) ∈

{
x ∈ Rd+1 : |x| ≤ 1

n

}
,

we have for n ≥ n0,

I =

∫
A∩F δ∩(F δ+η)

|fδ(ξ − η)− fδ(ξ)|gs,y(ξ) · 1K(ξ)dξ

≤ε
∫
A∩F δ∩(F δ+η)

gs,y(ξ) · 1K(ξ)dξ ≤ ε

∫
A

gs,y(ξ)dξ.

But
∫
A
gs,y(ξ)dξ is a constant, so we get

lim
n→∞

∫
Rd+1

ϕn(η)dη

∫
A

|f(ξ − η)− f(ξ)|gs,y(ξ) · 1K(ξ)dξ = 0.

Therefore we have

lim
n→∞

sup
(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)1K |f∗ϕn−f |(t, x)dxdt = 0.

In the same way we can also prove

lim
n→∞

sup
(t,x)∈R×Rd

∫ t

t−h

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)1K |f∗ϕn−f |(s, y)dyds = 0.

1.1.2 Time-dependent Kato class T Kcd−2

Similarly to the above section we just collect the same facts to T Kαd−2.

Definition 1.1.9. A measurable function f on [0,∞) × Rd is said to be in
the time-dependent Kato class T Kcd−2 if

lim
h→0

M c
h(f) = 0,

where

M c
h(f) := sup

(s,y)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d2
exp(−c |x− y|

2

t− s
)|f(t, x)|dxdt+

sup
(t,x)∈R×Rd

∫ t

t−h

∫
Rd

1

(t− s) d2
exp(−c |x− y|

2

t− s
)|f(s, y)|dyds.

Here c > 0 is a given constant and f(·, ·) is regarded as 0 outside [0,∞)×Rd.
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We use the notation T Kcd−2 here because this class is the natural extension
of the (time-independent) Kato class Kd−2.

Example 1.1.10. (a) (Time-indepedent Kato class Kd−2) Suppose d ≥ 3.
Let a measurable function f : [0,∞) × Rd → R be time-indepedent, i.e.
f(t, x) = f(x), and

lim
r→0

sup
x∈Rd

∫
B(x;r)

|f(y)|
|x− y|d−2

dy = 0. (1.3)

Then f ∈ T Kcd−2 for any c > 0, see [KS06, Proposition 2.3] for a proof. The
class of functions which satisfy (1.3) is called (time-independent) Kato class
Kd−2.
(b) If a measurable function f on [0,∞) × Rd is bounded, then f ∈ T Kcd−2

for any c > 0.
(c) If a measurable function f on [0,∞) × Rd has compact support and
f ∈ Lp,q with d

2p
+ 1

q
< 1, then f ∈ T Kcd−2 for any c > 0. The reader is

referred to [Zha96b, Proposition 2.1] for a proof.

Corresponding lemmas also hold in this section.

Proposition 1.1.11. (i) If f ∈ T Kcd−2, then f is locally integrable.
(ii) If f(t, x) ∈ T Kcd−2, then M c

l (f) <∞ for any l > 0.

Lemma 1.1.12. Suppose f ∈ T Kcd−2, then for any nonnegative φ ∈ C∞0 (Rd+1)
with

∫
Rd+1 φ(ξ)dξ = 1, we have M c

h(f ∗ φ) ≤M c
h(f).

Lemma 1.1.13. Suppose f ∈ T Kcd−2 and f is considered to be 0 outside
[0,∞) × Rd, then there exist nonnegative functions Φn ∈ C∞0 (Rd+1) with∫

Rd+1 Φn(ξ)dξ = 1 such that f ∗Φn ∈ C∞b (Rd+1). Moreover, Φn can be chosen
such that

supp(Φn) ∈
{
ξ ∈ Rd+1 : |ξ| ≤ 1

n

}
.

Proposition 1.1.14. Let Φn be as in Lemma 1.1.13 and f ∈ T Kcd−2, then
for any compact K ⊂ [0,∞)× Rd,

lim
n→∞

M c
h(1K |f ∗ Φn − f |) = 0.

1.2 Assumptions on the coefficients and the no-
tion of a weak fundamental solution

In this section we give our assumptions on the coefficients of the equation

∇(a(t, x) · ∇u(t, x)) + b(t, x) · ∇u(t, x) + V (t, x) · u(t, x)− ∂tu(t, x) = 0 (∗)
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in [0, T ] × Rd, where T < ∞ is fixed throughout this chapter. Here we use
the notation

∇(a(t, x) · ∇u) =
d∑

i,j=1

∂xiaij∂xju, b · ∇u =
d∑
j=1

bj∂xju.

Assumption 1.2.1. We assume a(t, x) = (aij(t, x)) satisfy:
(i) The matrix a(t, x) is uniformly elliptic, i.e. there exist constants λ0, λ1 > 0
such that

λ0|ξ|2 6
d∑

i,j=1

aij(t, x)ξiξj 6 λ1|ξ|2.

(ii) Each aij(t, x) are Hölder continuous in t and x, i.e. there exists constant
0 < β ≤ 1 such that for all x, x′ ∈ Rd, t, t′ ∈ [0, T ],

|aij(t, x)− aij(t′, x′)| 6 A(|x− x′|β + |t− t′|
β
2 ).

(iii) ∂
∂xi
aij(t, x) are bounded and Hölder continuous in x.

Under Assumption 1.2.1, we know that for the equation

∇(a(t, x) · ∇u(t, x))− ∂tu(t, x) = 0,

there exists a classical fundamental solution p(t, x; s, y) satisfying the follow-
ing estimates: there exist positive constants c0, α0, C0, α such that for any
x, y ∈ Rd, 0 ≤ s < t ≤ T

(i)
c0

(t− s) d2
exp(−α0

|x− y|2

t− s
) ≤ p(t, x; s, y) ≤ C0

(t− s) d2
exp(−α |x− y|

2

t− s
),

(1.4)

(ii) |∇xp(t, x; s, y)| ≤ C0

(t− s) d+1
2

exp(−α |x− y|
2

t− s
). (1.5)

The above estimates can be found in [Aro68, LSU67, Fri64].

For the lower order terms of (∗), we need the following assumptions.

Assumption 1.2.2. |b| ∈ T Kα1
d−1 for some α1 <

α
2
.

Assumption 1.2.3. V ∈ T Kα2
d−2 for some α2 <

α
4
.

Here α is the constant appearing in the Gaussian esitmates (1.4) and
(1.5) for p(t, x; s, y).

Now we introduce the notions of weak solutions and weak fundamental
solutions to (∗).
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Definition 1.2.4. Suppose that 0 ≤ s < T , a weak solution of

∇(a · ∇u) + b · ∇u+ V · u− ∂tu = 0 (∗)

in [s, T ]× Rd is a function u such that

u ∈ C([s, T ];L2(Rd)) ∩ L2((s, T );H1(Rd)),

b · ∇u ∈L1((s, T )× Rd),

V u ∈L1((s, T )× Rd),∫ T

s

∫
Rd

(∇u · a · ∇φ−φb · ∇u− V uφ− u∂tφ)dxdt = 0,

∀φ ∈ C∞0 ([s, T ]× Rd),

where H1 denotes the Sobolev space of square integrable functions with the
distributional derivatives in L2.

Definition 1.2.5. A function G(t, x; s, y) is called a weak fundamental so-
lution to the parabolic equation (∗) if

us(t, x) =

∫
Rd
G(t, x; s, y)f(y)dy, s ≤ t ≤ T

is a weak solution of (∗) in [s, T ]×Rd for all 0 ≤ s ≤ T and all f ∈ L1 ∩L∞.

1.3 Construction of G(t, x; s, y)

In order to solve the original equation (∗), as an intermediate step, we first
consider equations with smooth coefficients.

Since |b| ∈ T Kα1
d−1, by Lemma 1.1.6 and Proposition 1.1.8, we can find a

sequence of functions ϕn ∈ C∞0 (Rd+1) such that

bn := b ∗ ϕn = (b1 ∗ ϕn, · · · , bd ∗ ϕn) ∈ C∞b (Rd+1)

and for any compact set K ⊂ [0,∞)× Rd, h > 0,

lim
n→∞

Nα1
h (1K |bn − b|) = 0. (1.6)

Remark 1.3.1. From Lemma 1.1.5, it is easily seen that there exists a
constant κ > 1 such that for any h > 0 and n ∈ N

Nα1
h (|bn|) ≤ κNα1

h (|b|). (1.7)
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Similarly, since V ∈ T Kα2
d−2, by Lemma 1.1.13 and Proposition 1.1.14, we

can find Φk ∈ C∞0 (Rd+1) such that

Vk = V ∗ Φk ∈ C∞b (Rd+1)

and for any compact set K ⊂ [0,∞)× Rd, h > 0,

lim
k→∞

Mα2
h (1K |Vk − V |) = 0. (1.8)

Let Gnk(t, x; s, y) be the weak fundamental solution for the parabolic
equation with smooth coefficients bn, Vk:

∇(a · ∇u) + bn · ∇u+ Vku− ∂tu = 0. (1.9)

In this section we construct a function G(t, x; s, y) as a limit of Gnk(t, x; s, y).

1.3.1 A priori estimates

In this section we explain Qi S. Zhang’s method to obtain two-sided Gaus-
sian estimates for the fundamental solution Gnk(t, x; s, y) of the parabolic
equation (1.9), for more details see [Zha97a] and [Zha97b].

In this section we will use the following three inequalities (1.11)-(1.13)
very often; their proofs can be found in [Zha97a] (see also [Ria07]). First we
introduce some notations, let

Γc(t, x; s, y) :=
1

(t− s) d2
exp(−c |x− y|

2

t− s
),

Ψc(t, x; s, y) :=
1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
). (1.10)

Lemma 1.3.2. Let 0 < c1 < c2, then for any c with 0 < c < (c2 − c1) ∧ c1,
there exists a constant C > 0 depending on c1, c2, c such that for any s < τ < t
and x, y, z ∈ Rd,

(i)
Γc1(t, x; τ, z)Γc2(τ, z; , s, y)

Γc1(t, x; s, y)
≤ C

(
Γc(t, x; τ, z) + Γc(τ, z; s, y)

)
(1.11)

(ii)
Γc1(t, x; τ, z)Ψc2(τ, z; , s, y)

Ψc1(t, x; s, y)
≤ C

(
Ψc(t, x; τ, z) + Ψc(τ, z; s, y)

)
(1.12)

(iii)
Ψc1(t, x; τ, z)Ψc2(τ, z; , s, y)

Ψc1(t, x; s, y)
≤ C

(
Ψc(t, x; τ, z) + Ψc(τ, z; s, y)

)
(1.13)
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Let us first look at the equation

∇(a · ∇u) + bn · ∇u− ∂tu = 0.

Since bn ∈ C∞b (Rd+1), there exists a weak fundamental solution qn(t, x; s, y)
for this parabolic equation. In [Zha97a] it was showed that qn(t, x; s, y) sat-
isfies Gaussian bounds, namely there exist α′, cq, Cq > 0 such that for any
0 ≤ s < t ≤ T and x, y ∈ Rd,

(i)
cq

(t− s) d2
exp(−α′ · |x− y|

2

t− s
) ≤ qn(t, x; s, y) ≤ Cq

(t− s) d2
exp(−α

2
· |x− y|

2

t− s
)

(1.14)

(ii) |∇xqn(t, x; s, y)| ≤ Cq

(t− s) d+1
2

exp(−α
2
· |x− y|

2

t− s
). (1.15)

where the constant Cq does not depend on n and only depends on the rate
at which Nα1

h (|b|) goes to 0 as h → 0. For convenience here we sketch the
ideas of the proof.

First we prove (1.14). By Duhamel’s formula,

qn(t, x; s, y) = p(t, x; s, y) +

∫ t

s

∫
Rd
qn(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ.

(1.16)
This is an integral equation, so we can formally write

qn(t, x; s, y) =
∞∑
i=0

J in(t, x; s, y), (1.17)

where the convergence of the series on the right-hand is shown below and
J in(t, x; s, y) are defined inductively in the following way:

J0
n(t, x; s, y) = p(t, x; s, y),

J1
n(t, x; s, y) =

∫ t

s

∫
Rd
p(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ,

...

J i+1
n (t, x; s, y) =

∫ t

s

∫
Rd
J in(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ.

Recall that α1 <
α
2
. Then by Lemma 1.3.2(ii), there exists a constant

C1 > 0 such that for all x, y ∈ Rd, s < t,
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Γα
2
(t, x; τ, z)Ψα(τ, z; , s, y)

Γα
2
(t, x; s, y)

≤ C1

(
Ψα1(t, x; τ, z) + Ψα1(τ, z; s, y)

)
(1.18)

and

Ψα
2
(t, x; τ, z)Ψα(τ, z; , s, y)

Ψα
2
(t, x; s, y)

≤ C1

(
Ψα1(t, x; τ, z) + Ψα1(τ, z; s, y)

)
. (1.19)

If t > s, then

|J1
n(t, x; s, y)|

=|
∫ t

s

∫
Rd
p(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ |

≤ C2
0

∫ t

s

∫
Rd

Γα(t, x; τ, z)|bn(τ, z)|Ψα(τ, z; s, y)dzdτ

≤ C2
0

∫ t

s

∫
Rd

Γα
2
(t, x; τ, z)|bn(τ, z)|Ψα(τ, z; s, y)dzdτ

≤ C2
0C1

∫ t

s

∫
Rd

Γα
2
(t, x; s, y)(Ψα1(t, x; τ, z) + Ψα1(τ, z; s, y))|bn(τ, z)|dzdτ

≤ C2
0C1N

α1
t−s(|bn|) · Γα

2
(t, x; s, y). (1.20)

By Remark 1.3.1, Nα1
h (|bn|) ≤ κNα1

h (|b|). By induction it is easy to get
that for all i ≥ 1

|J in(t, x; s, y)| ≤ C0

(
κC0C1N

α1
t−s(|b|)

)i · Γα
2
(t, x; s, y). (1.21)

If we choose h1 > 0 sufficiently small such that κC0C1N
α1
h1

(|b|) < 1, then

qn(t, x; s, y) =
∞∑
i=0

J in(t, x; s, y)

≤ C0

1− κC0C1N
α1
h1

(|b|)
· Γα

2
(t, x; s, y), 0 < t− s ≤ h1. (1.22)

To prove the Gaussian lower bound, we can choose h0 > 0 sufficiently
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small such that

qn(t, x; s, y) =
∞∑
i=0

J in(t, x; s, y)

≥ p(t, x; s, y)−
∞∑
i=1

|J in(t, x; s, y)|

≥ c0e
−α0

1

(t− s) d2
− C0

1− κC0C1N
α1
t−s(|b|)

1

(t− s) d2

≥ 1

2
c0e
−α0

1

(t− s) d2
,

when |x−y|2
t−s ≤ 1 and 0 < t − s ≤ h0. By a rescaling argument, it is then

proved in [Zha96a] that there exist α′, c′0 such that for 0 < t− s ≤ h0

qn(t, x; s, y) ≥ c′0Γα′(t, x; s, y). (1.23)

Therefore for 0 ≤ s < t ≤ T with |t− s| ≤ h1 ∧ h0, we have

c′0Γα′(t, x; s, y) ≤ qn(t, x; s, y) ≤ C0

1− κC0C1N
α1
h1

(|b|)
· Γα

2
(t, x; s, y).

Then using the reproducing property of qn(t, x; s, y), we easily get the Gaus-
sian bounds (1.14). Namely, there exist cq, Cq > 0 such that for any 0 ≤ s <
t ≤ T and x, y ∈ Rd,

cqΓα′(t, x; s, y) ≤ qn(t, x; s, y) ≤ Cq

(t− s) d2
exp(−α

2
· |x− y|

2

t− s
) (1.24)

Remark 1.3.3. (i) From the above argument it is easily seen that we can
also define J i(t, x; s, y) inductively by

J0 =p(t, x; s, y),

J1 =

∫ t

s

∫
Rd
p(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ,

...

J i+1 =

∫ t

s

∫
Rd
Jk(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ, i ≥ 1.
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Similarly to (1.21) we can prove

|J i(t, x; s, y)| ≤ C0

(
κC0C1N

α1
t−s(|b|)

)i · Γα
2
(t, x; s, y). (1.25)

(ii) Since h1 is such that κC0C1N
α1
ht−s

(|b|) < 1, now we can define

q(t, x; s, y) :=
∞∑
i=0

J i(t, x; s, y), 0 < t− s ≤ h1.

It is easily seen that for any x, y ∈ Rd and 0 < t− s ≤ h1,

q(t, x; s, y) = p(t, x; s, y) +

∫ t

s

∫
Rd
q(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ.

Now we try to explain how to get the gradient estimate (1.15) for qn(t, x; s, y).
Formally taking ∇x in the both sides of the equation (1.16), we have

∇xqn(t, x; s, y) =∇xp(t, x; s, y) +

∫ t

s

∫
Rd
∇xqn(t, x; τ, z) · bn(τ, z)∇zp(τ, z; s, y)dzdτ

=∇xp(t, x; s, y) +
∞∑
i=1

I in(t, x; s, y),

where I in(t, x; s, y) are defined inductively by

I1
n(t, x; s, y) =

∫ t

s

∫
Rd
∇xp(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ,

...

I i+1
n (t, x; s, y) =

∫ t

s

∫
Rd
I in(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ, i ≥ 1.

It is easily seen that

I in(t, x; s, y) = ∇xJ
i
n(t, x; s, y). (1.26)

Now we use the estimate (1.5) of p(t, x; s, y) and Lemma 1.3.2(iii). Simi-
larly to the above method used to get (1.21), we can show that

|I in(t, x; s, y)| ≤ C0

(
κC0C1N

α1
t−s(|b|)

)i ·Ψα
2
(t, x; s, y). (1.27)
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Since h1 is such that κC0C1N
α1
h1

(|b|) < 1, then

|∇xqn(t, x; s, y)| =
∣∣∣ ∞∑
i=0

Ini (t, x; s, y)
∣∣∣

≤ C0

1− κC0C1N
α1
h1

(|b|)
·Ψα

2
(t, x; s, y), |t− s| ≤ h1.

Then using the reproducing property of qn(t, x; s, y), we easily get the esti-
mates (1.15), namely for any 0 ≤ s < t ≤ T, x, y ∈ Rd

|∇xqn(t, x; s, y)| ≤ Cq

(t− s) d+1
2

exp(−α
2
· |x− y|

2

t− s
). (1.28)

Remark 1.3.4. From the above arguments it is clear that we can also define
I i(t, x; , s, y) inductively by

I0 =∇xp(t, x; s, y),

I1 =

∫ t

s

∫
Rd
∇xp(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ,

...

I i+1 =

∫ t

s

∫
Rd
Ik(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ.

We can also show

|I i(t, x; s, y)| ≤ C0

(
κC0C1N

α1
t−s(|b|)

)i ·Ψα
2
(t, x; s, y). (1.29)

From the definition of J i(t, x; s, y) and q(t, x; s, y) it follows that

I i(t, x; s, y) = ∇xJ
i(t, x; s, y), 0 < t− s ≤ h1, (1.30)

and therefore

∇xq(t, x; s, y) = ∇xp(t, x; s, y) +
∞∑
i=1

I i(t, x; s, y), 0 < t− s ≤ h1.

Now we come to the equation

∇(a · ∇u) + bn · ∇u+ Vku− ∂tu = 0. (1.31)
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Suppose Gnk(t, x; s, y) is the fundamental solution for the above equation,
then again by Duhamel’s formula we have

Gnk(t, x; s, y) = qn(t, x; s, y) +

∫ t

s

Gnk(t, x; τ, z)Vk(τ, z)qn(τ, z; s, y)dzdτ.

(1.32)

Therefore we can write

Gnk(t, x; s, y) =
∞∑
i=0

J ink(t, x; s, y),

where

J0
nk = qn(t, x; s, y),

J1
nk =

∫ t

s

∫
Rd
qn(t, x; τ, z)Vk(τ, z)qn(τ, z; s, y)dzdτ,

...

J i+1
nk =

∫ t

s

∫
Rd
J in(t, x; τ, z)Vk(τ, z)qn(τ, z; , s, y)dzdτ, i ≥ 1.

Recall that now α2 <
α
4
. By Lemma 1.3.2(i), there exists a constant C2

such that for all s < t and x, y ∈ Rd,

Γα
4
(t, x; τ, z)Γα

2
(τ, z; , s, y)

Γα
4
(t, x; s, y)

≤ C2

(
Γα2(t, x; τ, z) + Γα2(τ, z; s, y)

)
(1.33)

Using the a priori estimates (1.14) for qn(t, x; s, y), we can easily get the
following estimates:

|J ink(t, x; s, y)| ≤ Cq
(
CqC2M

α2
t−s(V )

)i · Γα
4
(t, x; s, y), 0 < t− s < h1. (1.34)

Then we can find an sufficiently small h2 such that h2 < h1, CqC2M
α2
h2

(V ) <
1, and

Gnk(t, x; s, y) =
∞∑
i=0

J ink(t, x; s, y)

≤ Cq
1− CqC2M

α2
t−s(V )

· Γα
4
(t, x; s, y)

≤ Cq
1− CqC2M

α2
h2

(V )
· Γα

4
(t, x; s, y), 0 < t− s ≤ h2. (1.35)
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The Gaussian lower bound for Gnk can be proved similarly to (1.23).
There exist h′0, c

′′
, α
′′
> 0 such that for 0 < t− s < h′0,

Gnk(t, x; s, y) ≥ c
′′
Γα′′ (t, x; s, y).

Then by the reproducing property of Gnk(t, x; s, y), there exist positive con-
stants cG, CG such that for 0 ≤ s < t ≤ T ,

cG · Γα′′(t, x; s, y) ≤ Gnk(t, x; s, y) ≤ CGΓα
4
(t, x; s, y). (1.36)

Remark 1.3.5. (i) From the above argument it is easily seen that we can
also define J iG(t, x; , s, y) inductively as

J0
G = q(t, x; s, y),

J1
G =

∫ t

s

∫
Rd
q(t, x; τ, z)Vk(τ, z)q(τ, z; s, y)dzdτ,

...

J i+1
G =

∫ t

s

∫
Rd
J i(t, x; τ, z)Vk(τ, z)q(τ, z; s, y)dzdτ, i ≥ 1.

Similarly we can prove

|J iG(t, x; s, y)| ≤ Cq
(
CqC2M

α2
t−s(V )

)i · Γα
4
(t, x; s, y), 0 < t− s ≤ h2. (1.37)

(ii) Since h2 is such that CqC2M
α2
h2

(V ) < 1, we can define

G(t, x; s, y) =
∞∑
i=0

J iG(t, x; s, y), 0 < t− s ≤ h2.

It is easily seen that for 0 ≤ s < t ≤ T, 0 < t− s ≤ h2

G(t, x; s, y) = q(t, x; s, y) +

∫ t

s

∫
Rd
G(t, x; τ, z)V (τ, z)q(τ, z; s, y)dzdτ.

Remark 1.3.6. To get the formula (1.32), we used the fact that, for each
fixed (s, y) ∈ [0, T ) × Rd, the function (t, x) 7→ Gnk(t, x; s, y) for t > s is
a solution to the equation (1.31). We should note that for fixed (t, x) ∈
(0, T ] × Rd, the function of (s, y) 7→ Gnk(t, x; s, y) for s < t satisfies the
adjoint equation

∇(a · ∇u)−∇(bnu) + Vku+ ∂su = 0.
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Similarly, the function of (s, y) 7→ qn(t, x; s, y) solves

∇(a · ∇u)−∇(bnu) + ∂su = 0.

So we can use Duhamel’s principle to get

Gnk(t, x; s, y) = qn(t, x; s, y) +

∫ t

s

∫
Rd
qn(t, x; τ, z)Vk(τ, z)Gnk(τ, z; s, y)dzdτ.

(1.38)
Sometimes it is more convenient to use this expression of Gnk(t, x; s, y) in-
stead of (1.32).

1.3.2 Convergence of Gnk(t, x; s, y) to G(t, x; s, y)

In this section we will prove that Gnk(t, x; s, y) converges locally uniformly
to G(t, x; s, y) as n and k goes to∞. This kind of convergence is inspired by
[KS06], where they only considered the case in which V ≡ 0 and b(t, x) = b(x)
belongs to the time-independent Kato class Kd−1.

Recall that h1 is the constant which appears in (1.22). By (1.22) we know

qn(t, x; s, y) =
∞∑
i=0

J in(t, x; s, y), 0 < t− s ≤ h1.

From Remark 1.3.3, we also have

q(t, x; s, y) =
∞∑
i=0

J i(t, x; s, y), 0 < t− s ≤ h1.

Lemma 1.3.7. Let δ be any constant such that 0 < δ < h1. Let K1, K2 ⊂ Rd

be compact sets and θ := {(s, t) : 0 ≤ s < t ≤ h1}. Then

lim
n→∞

sup
(s,t)∈θ,|t−s|≥δ
x∈K1,y∈K2

|J1
n(t, x; s, y)− J1(t, x; s, y)| = 0.
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Proof. By (1.4) and (1.5)

|J1
n(t, x; s, y)− J1(t, x; s, y)|

=
∣∣∣ ∫ t

s

∫
Rd
p(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ−

−
∫ t

s

∫
Rd
p(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ

∣∣∣
=
∣∣∣ ∫ t

s

∫
Rd
p(t, x; τ, z)(bn − b)(τ, z) · ∇zp(τ, z; s, y)dzdτ

∣∣∣
≤C2

0

∫ t

s

∫
Rd

Γα(t, x; τ, z)|bn − b|(τ, z)Ψα(τ, z; s, y)dzdτ (1.39)

≤C2
0

(∫ t

s

∫
|z|>k

+

∫ t

s

∫
|z|≤k

)
Γα(t, x; τ, z)|bn − b|(τ, z)Ψα(τ, z; s, y)dzdτ

=C2
0(I + II)

From Remark 1.3.1, we know for any h > 0 and n ∈ N

Nα1
h (|bn|) ≤ κNα1

h (|b|).

Then for 0 < hε <
δ
2
and k large enough such that

|x− z| ≥ 1

2
|z|, ∀x ∈ K1, |z| ≥ k,

we have

I =

∫ t

s

∫
|z|>k

1

(t− τ)
d
2

exp(−α · |x− z|
2

t− τ
)|bn − b|

1

(τ − s) d+1
2

exp(−α · |z − y|
2

τ − s
)dzdτ

≤
∫ t−hε

s

∫
|z|>k

1

(t− τ)
d
2

exp(−α · |x− z|
2

t− τ
)|bn − b|

1

(τ − s) d+1
2

exp(−α · |z − y|
2

τ − s
)dzdτ+

+

∫ t

t−hε

∫
|z|>k

1

(t− τ)
d
2

exp(−α · |x− z|
2

t− τ
)|bn − b|

1

(τ − s) d+1
2

exp(−α · |z − y|
2

τ − s
)dzdτ

≤ h
− d

2
ε exp(−α · k

2

4h1

)

∫ t−hε

s

∫
|z|>k
|bn − b|

1

(τ − s) d+1
2

exp(−α · |z − y|
2

τ − s
)dzdτ+

+
2
d
2

δ
d
2

∫ t

t−hε

∫
|z|>k

1

(t− τ)
d+1

2

exp(−α · |x− z|
2

t− τ
)|bn − b|dzdτ

≤ (κ+ 1)h
− d

2
ε exp(−α · k

2

4h1

)Nα1
h1

(|b|) + (κ+ 1)(
2

δ
)
d
2Nα1

hε
(|b|)
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Given any ε > 0, we can first choose hε sufficiently small such that

(κ+ 1)(
2

δ
)
d
2Nα1

hε
(|b|) < ε

3
,

and then find large enough k such that

(κ+ 1)h
− d

2
ε exp(−α · k

2

4h1

)Nα1
h1

(|b|) < ε

3
.

For II we have

II =

∫ t

s

∫
|z|≤k

Γα(t, x; τ, z)|bn − b|(τ, z)Ψα(τ, z; s, y)dzdτ

≤
∫ t

s

∫
|z|≤k

Γα(t, x; τ, z)(1[0,h1]×{|z|≤k}|bn − b|)(τ, z)Ψα(τ, z; s, y)dzdτ

≤ C1N
α1
h1

((1[0,h1]×{|z|≤k}|bn − b|)) · Γα
2
(t, x; s, y)

≤ (δ)−
d
2C1N

α1
h1

(1[0,h1]×{|z|≤k}|bn − b|).

Since [0, h1]× {|z| ≤ k} is compact, from (1.6), we have

lim
n→∞

Nα1
h1

(1([0,h1]×{|z|≤k}) · |bn − b|) = 0.

So we can find n0 such that II < ε
3
when n ≥ n0. Therefore if n ≥ n0, we

have
sup

(s,t)∈θ,|t−s|≥δ
x∈K1,y∈K2

|J in(t, x; s, y)− J1(t, x; s, y)| < C2
0ε.

Thus the lemma is proved.

Remark 1.3.8. Recall that θ := {(s, t) : 0 ≤ s < t ≤ h1}. Then for any
compact K ⊂ θ, we can always find some δ > 0 such that K ⊂ {(s, t) ∈
θ : |t − s| ≥ δ}, therefore from the above lemma it follows that for any
K1, K2 ⊂ Rd compact,

lim
n→∞

sup
(s,t)∈K

x∈K1,y∈K2

|J1
n(t, x; s, y)− J1(t, x; s, y)| = 0.

Lemma 1.3.9. For any compact sets K ⊂ θ and K1, K2 ⊂ Rd, we have

lim
n→∞

sup
(s,t)∈K

x∈K1,y∈K2

|J in(t, x; s, y)− J i(t, x; s, y)| = 0, ∀i ≥ 1.



38 CHAPTER 1. A PARABOLIC EQUATION

Proof. The proof goes by induction argument. For i = 1, this has been
proved. Now suppose that the lemma is true for i, then for (s, t) ∈ θ, |t−s| ≥
δ, we have

|J i+1
n (t, x; s, y)− J i+1(t, x; s, y)|

=
∣∣∣ ∫ t

s

∫
Rd
J in(t, x; τ, z)bn(τ, z) · ∇zp(τ, z; s, y)dzdτ−

−
∫ t

s

∫
Rd
J i(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ

∣∣∣
=
∣∣∣ ∫ t

s

∫
Rd
J in(t, x; τ, z)(bn − b)(τ, z) · ∇zp(τ, z; s, y)dzdτ−

−
∫ t

s

∫
Rd

(J i − J in)(t, x; τ, z)b(τ, z) · ∇zp(τ, z; s, y)dzdτ
∣∣∣

≤C0(

∫ t

s

∫
Rd
|J in|(t, x; τ, z)|(bn − b)|Ψα(τ, z; s, y)dzdτ

+

∫ t

s

∫
Rd
|J i − J in|(t, x; τ, z)|b|Ψα(τ, z; s, y)dzdτ)

=C0(I + II).

For I, we have

I ≤ C0

(
κC0C1N

α1
h1

(|b|)
)i ∫ t

s

∫
Rd

Γα
2
(t, x; τ, z)|bn − b|(τ, z)Ψα(τ, z; s, y)dzdτ.

So we can do the similar procedure as as we did with (1.39) to get

lim
n→∞

I(t, x; s, y) = 0

uniformly for (s, t) ∈ θ, |t− s| ≥ δ and x ∈ K1, y ∈ K2.

For II, we have∫ t

s

∫
Rd
|(J i − J in)(t, x; τ, z)| · |b(τ, z)| · |∇zp(τ, z; s, y)|dzdτ (1.40)

=

∫ t−hε

s

∫
Rd
|(J i − J in)(t, x; τ, z)| · |b(τ, z)| · |∇zp(τ, z; s, y)|dzdτ+

+

∫ t

t−hε

∫
Rd
|(J i − J in)(t, x; τ, z)| · |b(τ, z)| · |∇zp(τ, z; s, y)|dzdτ

≤
∫ t−hε

s

∫
Rd
|(J i − J in)(t, x; τ, z)| · |b(τ, z)| · |∇zp(τ, z; s, y)|dzdτ+
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+ 2C2
0

(
κC0C1N

α1
hε

(|b|)
)i ∫ t

t−hε

∫
Rd

Γα
2
(t, x; τ, z)|b(τ, z)|Ψα(τ, z; s, y)dzdτ

≤
∫ t−hε

s

∫
Rd
|(J i − J in)(t, x; τ, z)| · |b(τ, z)| · |∇zp(τ, z; s, y)|dzdτ + 2C2

0(
2

δ
)
d
2

(
κC0C1N

α1
hε

(|b|)
)i+1

≤II1 + II2

For II1, we can choose k large enough such that

|x− z| ≥ 1

2
|z|, ∀x ∈ K1, |z| ≥ k,

then

II1 =

∫ t−hε

s

(

∫
|z|>k

+

∫
|z|≤k

)|(J i − J in)(t, x; τ, z)| · |b(τ, z)||∇zp(τ, z; s, y)|dzdτ

≤ 2C2
0(κC0C1N

α1
h1

(|b|))i
∫ t−hε

s

∫
Rd

Γα
2
(t, x; τ, z)|b(τ, z)|Ψα(τ, z; s, y)dzdτ+

sup
(τ,t)∈θ,|t−τ |≥hε
x∈K1,|z|≤k

|(J i − J in)(t, x; τ, z)|
∫ t−hε

s

∫
|z|≤k
|b(τ, z)|Ψα(τ, z; s, y)dzdτ

≤ 2C2
0(κC0C1N

α1
h1

(|b|))ih−
d
2

ε exp(−α · k
2

8h1

)Nα1
h1

(|b|) + C ′ sup
(τ,t)∈θ,|t−τ |≥hε
x∈K1,|z|≤k

|(J i − J in)(t, x; τ, z)|,

where κ is the constant from Remark 1.3.1.

Given ∀ε > 0, we can first choose hε sufficiently small such that II2 < ε
3
,

and then find large enough k such that

2C2
0(κC0C1N

α1
h1

(|b|))ih−
d
2

ε exp(−α · k
2

8h1

)Nα1
h1

(|b|) < ε

3
.

Since
lim
n→∞

sup
(τ,t)∈θ,|t−τ |≥hε
x∈K1,|z|≤k

|(J i − J in)(t, x; τ, z)| = 0,

We get
lim
n→∞

II(t, x; s, y) = 0

uniformly for (s, t) ∈ θ, |t−s| ≥ δ and x ∈ K1, y ∈ K2. For a general compact
set K ⊂ θ, the statement is still true.

Remark 1.3.10. From (1.26) and (1.30), recall that

I in(t, x; s, y) = ∇xJ
i
n(t, x; s, y)
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and
I i(t, x; s, y) = ∇xI

i(t, x; s, y).

If we replace J in(t, x; s, y), Jn(t, x; s, y) with I in(t, x; s, y) and I i(t, x; s, y) in
the above lemma, it is still true. The idea of the proof is the same, so we
omit it.

Theorem 1.3.11. For any compact setsK ⊂ θ and K1, K2 ⊂ Rd, qn(t, x; s, y)
converges uniformly to q(t, x; s, y) on {(t, x; s, y) : (s, t) ∈ K, x ∈ K1, y ∈
K2}.

Proof. For (s, t) ∈ θ, |t− s| ≥ δ, qn(t, x; s, y) =
∑∞

i=0 J
n
i (t, x; s, y), and

|J in(t, x; s, y)| ≤ C0

(
κC0C1N

α1
h1

(|b|)
)i · Γα

2
(t, x; s, y) ≤

C0

(
κC0C1N

α1
h1

(|b|)
)i

(δ)
d
2

,

since κC0C1N
α1
h1

(|b|) < 1, the above series converges absolutely. Using lemma
1.3.9 and a standard argument we can easily get

qn(t, x; s, y)→ q(t, x; s, y)

uniformly for (s, t) ∈ θ, |t−s| ≥ δ and x ∈ K1, y ∈ K2. For a general compact
subset K of θ, the lemma still holds.

From Remark 1.3.10, we also have the following theorem.

Theorem 1.3.12. For any compact setsK ⊂ θ andK1, K2 ⊂ Rd, ∇xqn(t, x; s, y)
converges uniformly to ∇xq(t, x; s, y) on {(t, x; s, y) : (s, t) ∈ K, x ∈ K1, y ∈
K2}.

Now we proceed to prove the convergence of Gnk(t, x; s, y) to G(t, x; s, y).
Recall that h2 > 0 is the constant which makes the inequality (1.35) hold.
By (1.35), we know for 0 < t− s ≤ h2,

Gnk(t, x; s, y) =
∞∑
i=0

J ink(t, x; s, y).

From Remark 1.3.5, we also have

G(t, x; s, y) =
∞∑
i=0

J i(t, x; s, y), 0 < t− s ≤ h2.
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Lemma 1.3.13. Let δ be a constant such that 0 < δ < h2, K1, K2 ⊂ Rd be
compact sets, then

lim
n,k→∞

sup
(s,t)∈θ,|t−s|≥δ
x∈K1,y∈K2

|J ink(t, x; s, y)− J iG(t, x; s, y)| = 0, ∀i ≥ 1.

Proof. Step 1: We consider i = 1. Then

|J1
nk(t, x; s, y)− J1

G(t, x; s, y)|

=
∣∣∣ ∫ t

s

∫
Rd
qn(t, x; τ, z)Vk(τ, z)qn(τ, z; s, y)dzdτ−

−
∫ t

s

∫
Rd
q(t, x; τ, z)V (τ, z)q(τ, z; s, y)dzdτ

∣∣∣
=
∣∣∣ ∫ t

s

∫
Rd
qn(t, x; τ, z)Vk(τ, z)(qn − q)(τ, z; s, y)dzdτ

+

∫ t

s

∫
Rd
qn(t, x; τ, z)(Vk − V )(τ, z)q(τ, z; s, y)dzdτ

+

∫ t

s

∫
Rd

(qn − q)(t, x; τ, z)V (τ, z)q(τ, z; s, y)dzdτ
∣∣∣

=|I+II+III|

For I, by (1.24),

|I| ≤ Cq

∫ t

s

∫
Rd

Γα
2
(t, x; τ, z)|Vk|(τ, z)|qn − q)|(τ, z; s, y)dzdτ

≤2Cq

∫ s+hε

s

∫
Rd

Γα
2
(t, x; τ, z)|Vk|(τ, z)Γα

2
(τ, z; s, y)dzdτdzdτ

+ Cq

∫ t

s+hε

(

∫
|z|>k

+

∫
|z|≤k

)Γα
2
(t, x; τ, z)|Vk|(τ, z)|qn − q|(τ, z; s, y)dzdτ

Then use the same method as we estimated (1.40), we get

lim
n,k→∞

sup
(s,t)∈θ,|t−s|≥δ
x∈K1,y∈K2

|I(t, x; s, y)| = 0.
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The second summand is estimated as follows:

|II| ≤Cq
∫ t

s

∫
Rd

Γα
2
(t, x; τ, z)|Vk − V |(τ, z)Γα

2
(τ, z; s, y)dzdτ

≤Cq(
∫ t

s

∫
|z|>k

+

∫ t

s

∫
|z|≤k

)Γα
2
(t, x; τ, z)|Vk − V |(τ, z)Γα

2
(τ, z; s, y)dzdτ

=C(II1 + II2)

For II1, we have

II1 =

∫ t

s

∫
|z|>k

1

(t− τ)
d
2

exp(−α
2
· |x− z|

2

t− τ
)|Vk − V |

1

(τ − s) d2
exp(−α

2
· |z − y|

2

τ − s
)dzdτ

≤
∫ t−hε

s

∫
|z|>k

1

(t− τ)
d
2

exp(−α
2
· |x− z|

2

t− τ
)|Vk − V |

1

(τ − s) d2
exp(−α

2
· |z − y|

2

τ − s
)dzdτ

+

∫ t

t−hε

∫
|z|>k

1

(t− τ)
d
2

exp(−α
2
· |x− z|

2

t− τ
)|Vk − V |

1

(τ − s) d2
exp(−α

2
· |z − y|

2

τ − s
)dzdτ

≤ h
− d

2
ε exp(−α · k

2

8h2

)

∫ t−hε

s

∫
|z|>k
|Vk − V |

1

(τ − s) d2
exp(−α

2
· |z − y|

2

τ − s
)dzdτ+

+
2
d
2

(t− s) d2

∫ t

t−hε

∫
|z|>k

1

(t− τ)
d
2

exp(−α
2
· |x− z|

2

t− τ
)|Vk − V |dzdτ

≤ 2h
− d

2
ε exp(−α · k

2

8h2

)Mα2
h2

(V ) + 2(
2

δ
)
d
2Mα2

hε
(V )

Therefore we can first choose hε sufficiently small such that 2(2
δ
)
d
2Mα2

hε
(V ) <

ε
3
, and then find large enough k such that 2h

− d
2

ε exp(−α · k2

8h2
)Mα2

h2
(V ) < ε

3
.

For II2 we have

II2 =

∫ t

s

∫
|z|≤k

Γα
2
(t, x; τ, z)|Vk − V |(τ, z)Γα

2
(τ, z; s, y)dzdτ

≤
∫ t

s

∫
|z|≤k

Γα
2
(t, x; τ, z)(1[0,h2]×{|z|≤k}|Vk − V |)(τ, z)Γα

2
(τ, z; s, y)dzdτ

≤ C2M
α2
h2

(1[0,h2]×{|z|≤k}|Vk − V |) · Γα
2
(s, x; t, y)

≤ (δ)−
d
2C2M

α2
h2

(1[0,h2]×{|z|≤k}|Vk − V |).

Since [0, h]× {|z| ≤ k} is compact, we have

lim
n→∞

Mα2
h2

(1([0,h2]×{|z|≤k})(Vk − V ) = 0.
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So we can find n0 > 0 such that when n, k ≥ n0, II < ε
3
.

The third term III can be done as the first term I. So we have

lim
n,k→∞

sup
(s,t)∈θ,|t−s|≥δ
x∈K1,y∈K2

|J1
nk(t, x; s, y)− J1

G(t, x; s, y)| = 0.

Step 2: Suppose now the lemma holds for i. Then for i+ 1 we have

|J i+1
nk (t, x; s, y)− J i+1

G (t, x; s, y)|

=|
∫ t

s

∫
Rd
J ink(t, x; τ, z)Vk(τ, z)qn(τ, z; s, y)dzdτ−

−
∫ t

s

∫
Rd
J i(t, x; τ, z)V (τ, z)q(τ, z; s, y)dzdτ |

=|
∫ t

s

∫
Rd
J ink(t, x; τ, z)Vk(τ, z)(qn − q)(τ, z; s, y)dzdτ

+

∫ t

s

∫
Rd
J ink(t, x; τ, z)(Vk − V )(τ, z)q(τ, z; s, y)dzdτ

+

∫ t

s

∫
Rd

(J ink − J i)(t, x; τ, z)V (τ, z)q(τ, z; s, y)dzdτ

Then the rest of the proof is very similar to step 1, so we omit it.

The following theorem is an easy consequence of the above lemma.

Theorem 1.3.14. For any compact sets K ⊂ θ, K1, K2 ⊂ Rd, Gnk(t, x; s, y)
converges uniformly to G(t, x; s, y) on {(t, x; s, y) : (s, t) ∈ K, x ∈ K1, y ∈
K2}.

1.3.3 How to define G(t, x; s, y) for 0 ≤ s < t ≤ T

So far we have only defined G(t, x; s, y) locally for 0 < t − s ≤ h2 and
x, y ∈ Rd. Now we use the reproducing property of Gnk(t, x; s, y) to define
G(t, x; s, y) for all 0 ≤ s < t ≤ T .

Theorem 1.3.15. Suppose that K1, K2 ⊂ Rd are compact sets and δ ∈
(0, h2). Let θT := {(s, t) : 0 ≤ s < t ≤ T}, then Gnk(t, x; s, y) converges
uniformly on {(s, t) : (s, t) ∈ θT , t− s ≥ δ} ×K1 ×K2.
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Proof. We only look at the case T = 3
2
h2, for general case the lemma can be

proved similarly.

We define

A := {(s, t) : 0 ≤ s < t ≤ h2, t−s ≥ δ}, B := {(s, t) :
1

2
h2 ≤ s < t ≤ 3

2
h2, t−s ≥ δ},

C := {(s, t) : 0 ≤ s ≤ 1

2
h2, h2 ≤ t ≤ 3

2
h2}.

We easily see that {(s, t) : (s, t) ∈ θT , t− s ≥ δ} ⊂ A ∪B ∪ C.

For (s, t) ∈ B, G(t, x; s, y) is already defined and with almost the same
proof of theorem 1.3.14, we have

lim
n,k→∞

sup
(s,t)∈B

x∈K1,y∈K2

|Gnk(t, x; s, y)−G(t, x; s, y)| = 0.

From theorem 1.3.14 we also have

lim
n,k→∞

sup
(s,t)∈A

x∈K1,y∈K2

|Gnk(t, x; s, y)−G(t, x; s, y)| = 0.

So if we can show Gnk(t, x; s, y) converges uniformly on C × K1 × K2,
then we are done.

For 0 ≤ s ≤ 1
2
h2, h2 ≤ t ≤ 3

2
h2 and x ∈ K1, y ∈ K2, by the reproducing

property of Gnk(t, x; s, y),

|Gnk(t, x; s, y)−
∫

Rd
G(t, x;

3

4
h2, z)G(

3

4
h2, z; s, y)dz|

=
∣∣∣ ∫

Rd
Gnk(t, x;

3

4
h2, z)Gnk(

3

4
h2, z; s, y)dz −

∫
Rd
G(t, x;

3

4
h2, z)G(

3

4
h2, z; s, y)dz

∣∣∣
=
∣∣∣ ∫

Rd
Gnk(t, x;

3

4
h2, z)(Gnk −G)(

3

4
h2, z; s, y)dz

−
∫

Rd
(G−Gnk)(t, x;

3

4
h2, z)G(

3

4
h2, z; s, y)dz

∣∣∣
Since K1, K2 are compact sets, we can find R > 0 large enough such that

4C2
G

∫
|z|>R

Γα
4
(t, x;

3

4
h2, z)Γα

4
(
3

4
h2, z; s, y)dz <

ε

2

for any 0 ≤ s ≤ 1
2
h2, h2 ≤ t ≤ 3

2
h2 and x ∈ K1, y ∈ K2.
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Then

|Gnk(t, x; s, y)−
∫

Rd
G(t, x;

3

4
h2, z)G(

3

4
h2, z; s, y)dz|

≤4C2
G

∫
|z|>R

Γα
4
(t, x;

3

4
h2, z)Γα

4
(
3

4
h2, z; s, y)dz

+

∫
|z|≤R

Γα
4
(t, x;

3

4
h2, z)|Gnk −G|(

3

4
h2, z; s, y)dz

+

∫
Rd
|G−Gnk|(t, x;

3

4
h2, z)G(

3

4
h2, z; s, y)dz

≤ ε
2

+ C ′ sup
0≤s≤ 1

2
h2

y∈K2,|z|≤R

|Gnk −G|(
3

4
h2, z; s, y) + C ′ sup

h2≤t≤ 3
2
h2

x∈K1,|z|≤R

|G−Gnk|(t, x;
3

4
h2, z).

Therefore

lim
n,k→∞

|Gnk(t, x; s, y)−
∫

Rd
G(t, x;

3

4
h2, z)G(

3

4
h2, z; s, y)dz| = 0, uniformly on C×K1×K2.

Remark 1.3.16. (i) From the above theorem, we can therefore define

G(t, x; s, y) := lim
n,k→∞

Gnk(t, x; s, y), 0 ≤ s < t ≤ T.

(ii) By Theorem 1.3.15, for any compact K ⊂ {(s, t) : 0 ≤ s < t ≤
T}, K1, K2 ⊂ Rd, we have

lim
n,k→∞

sup
(s,t)∈K

x∈K1,y∈K2

|Gnk(t, x; s, y)−G(t, x; s, y)| = 0. (1.41)

(iii) Recall that Gnk(t, x; s, y) satisfies Gaussian lower and upper bounds,
namely there exist constants cG, CG > 0 such that

cG · Γα′′(t, x; s, y) ≤ Gnk(t, x; s, y) ≤ CG · Γα
4
(t, x; s, y) (1.42)

for all 0 ≤ s < t ≤ T and x, y ∈ Rd. Therefore we also have

cG · Γα′′(t, x; s, y) ≤ G(t, x; s, y) ≤ CG · Γα
4
(t, x; s, y) (1.43)

for all 0 ≤ s < t ≤ T and x, y ∈ Rd.
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1.4 Existence and uniqueness of weak funda-
mental solution

In last section we constructed G(t, x; s, y) as limit of Gnk(t, x; s, y). Since
each Gnk(t, x; s, y) is a weak fundamental solution for

∇(a · ∇u) + bn · ∇u+ Vku− ∂tu = 0,

in the limit case, we would expect G(t, x; s, y) to be a weak fundamental
solution to the parabolic equation

∇(a · ∇u) + b · ∇u+ V u− ∂tu = 0. (∗)

In this section we prove that this is indeed the case. Thereafter we will also
show that weak fundamental solution for (∗) is unique.

Let 0 ≤ s < T , for any f ∈ L1(Rd) ∩ L∞(Rd), we define u(s, x) = f(x)
and

u(t, x) =

∫
Rd
G(t, x; s, y)f(y)dy, s < t ≤ T.

Theorem 1.4.1. u(t, x) is a weak solution to (∗) in [s, T ]× Rd, namely

u ∈ C([s, T ];L2(Rd)) ∩ L2((s, T );H1(Rd)),

b · ∇u ∈L1((s, T )× Rd),

V u ∈L1((s, T )× Rd),∫ T

s

∫
Rd

(∇u · a · ∇φ−φb · ∇u− V uφ− u∂tφ)dxdt = 0,

∀φ ∈ C∞0 ([s, T ]× Rd).

We prove this theorem through the following several lemmas.

We define unk(s, x) = f(x) and

unk(t, x) =

∫
Rd
Gnk(t, x; s, y)f(y)dy, s < t ≤ T.

Since Gnk(t, x; s, y) is a weak fundamental solution for

∇(a · ∇u) + bn · ∇u+ Vlu− ∂tu = 0,
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we have

unk ∈ C([s, T ];L2(Rd)) ∩ L2((s, T );H1(Rd)),

bn · ∇unk ∈L1((s, T )× Rd),

Vkunk ∈L1((s, T )× Rd),∫ T

s

∫
Rd

(∇unk · a · ∇φ−φbn · ∇unk − unkVkφ− unk∂tφ)dxdt = 0,

∀φ ∈ C∞0 ([s, T ]× Rd).

Lemma 1.4.2. Let 0 < δ < T − s, then

lim
n,k→∞

sup
s+δ≤t≤T

‖unk(t, ·)− u(t, ·)‖2 = 0,

where ‖ · ‖2 denotes the norm in L2(Rd).

Proof. For t ∈ [s+ δ, T ],

‖unk(t, ·)− u(t, ·)‖2
2 =

∫
Rd

(unk(t, x)− u(t, x))2dx

=

∫
Rd

(∫
Rd
Gnk(t, x; s, y)f(y)dy −

∫
Rd
G(t, x; s, y)f(y)dy

)2

dx

≤
∫

Rd

(∫
Rd
|Gnk(t, x; s, y)−G(t, x; s, y)||f(y)|dy

)2

dx.

Since Gnk(t, x; s, y), G(t, x, s, y) satisfy Gaussian bounds (1.42) and (1.43),
then we can use Jensen’s inequality to get

‖unk(t, ·)− u(t, ·)‖2
2

≤C
∫

Rd

∫
Rd
|Gnk(t, x; s, y)−G(t, x; s, y)||f(y)|2dydx

=C

∫
Rd
|f(y)|2dy(

∫
Rd
|Gnk(t, x; s, y)−G(t, x; s, y)|dx)

≤C ′
∫
|y|>K1

|f(y)|2dy + C

∫
|y|≤K1

|f(y)|2dy(

∫
Rd
|Gnk(t, x; s, y)−G(t, x; s, y)|dx).

Since f(x) ∈ L2(Rd), we can choose K1 large enough s.t.

C ′
∫
|y|>K1

|f(y)|2dy < ε

3
. (1.44)
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For the second term we have∫
|y|≤K1

|f(y)|2dy(

∫
Rd
|Gnk(t, x; s, y)−G(t, x; s, y)|dx)

≤
∫
|y|≤K1

|f(y)|2dy(C ′′
∫
|x|>K2

Γα
4
(t, x; s, y)dx+

∫
|x|≤K2

|Gnk −G|(t, x; s, y)dx)

≤C ′′
∫
|y|≤K1

|f(y)|2dy(

∫
|x|>K2

1

δ
d
2

e−
α
8
· |K2−K1|

2

T dx)

+

∫
|y|≤K1

|f(y)|2dy
∫
|x|≤K2

|Gnk −G|(t, x; s, y)dx

We can choose K2 large enough s.t.

C ′′
∫
|y|≤K1

|f(y)|2dy(

∫
|x|>K2

1

δ
d
2

e−
α
8
· |K2−K1|

2

T dx) <
ε

3C
. (1.45)

By Remark 1.3.16(ii), we have

lim
n,k→∞

sup
|x|≤K2,|y|≤K1

δ≤t−s≤T

|Gnk −G|(t, x; s, y) = 0,

and therefore

lim
n,k→∞

∫
|y|≤K1

|f(y)|2dy
∫
|x|≤K2

|Gnkl −G|(t, x; s, y)dx) = 0. (1.46)

So with (1.44), (1.45) and (1.46) we get

lim
n,k→∞

sup
s+δ≤t≤T

‖unk(t, ·)− u(t, ·)‖2 = 0.

Lemma 1.4.3. limt↓s ‖u(t, ·)− f(·)‖2 = 0.

Proof. Recall that p(t, x; s, y) is the weak fundamental solution to

∇(a · ∇u)− ∂tu = 0,

and hence
lim
t↓s

∥∥∥∫
Rd
p(t, x; s, y)f(y)dy − f(x)

∥∥∥
2

= 0. (1.47)

By Remark 1.3.3, for 0 < t− s ≤ h1, we have

q(t, x; s, y) =
∞∑
i=0

J i(t, x; s, y) = p(t, x; s, y) +
∞∑
i=1

J i(t, x; s, y),
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and
|J i(t, x; s, y)| ≤ C0

(
κC0C1N

α1
t−s(|b|)

)i · Γα
2
(t, x; s, y).

Therefore∥∥∥∫
Rd
q(t, x; s, y)f(y)dy − f(x)

∥∥∥
2

=
∥∥∥∫

Rd
p(t, x; s, y)f(y)dy − f(x) +

∫
Rd

∞∑
i=1

J i(t, x; s, y)f(y)dy
∥∥∥

2

≤
∥∥∥∫

Rd
p(t, x; s, y)f(y)dy − f(x)

∥∥∥
2

+
∥∥∥∫

Rd

∞∑
i=1

J i(t, x; s, y)f(y)dy
∥∥∥

2

But ∥∥∥∫
Rd

∞∑
i=1

J i(t, x; s, y)f(y)dy
∥∥∥2

2
=

∫
Rd

(∫
Rd

∞∑
i=1

J i(t, x; s, y)f(y)dy
)2

dx

≤
∫

Rd

(∫
Rd
|
∞∑
i=1

J i(t, x; s, y)| · |f(y)|dy
)2

dx

≤
∫

Rd

(∫
Rd

κC2
0C1N

α1
t−s(|b|)

1− κC0C1N
α1
t−s(|b|)

Γα
2
(t, x; s, y)|f(y)|dy

)2

dx

≤
(

κC2
0C1N

α1
t−s(|b|)

1− κC0C1N
α1
t−s(|b|)

)2 ∫
Rd

(∫
Rd

Γα
2
(t, x; s, y)|f(y)|dy

)2

dx

≤C ′
(

κC2
0C1N

α1
t−s(|b|)

1− κC0C1N
α1
t−s(|b|)

)2 ∫
Rd

∫
Rd

Γα
2
(t, x; s, y)|f(y)|2dydx

≤C ′
(

κC2
0C1N

α1
t−s(|b|)

1− κC0C1N
α1
t−s(|b|)

)2 ∫
Rd
|f(y)|2dy

(∫
Rd

Γα
2
(t, x; s, y)dx

)
≤C ′′

(
κC2

0C1N
α1
t−s(|b|)

1− κC0C1N
α1
t−s(|b|)

)2 ∫
Rd
|f(y)|2dy.

Since limt↓sN
α1
t−s(|b|) = 0, together with (1.47), we have

lim
t↓s
‖
∫

Rd
q(t, x; s, y)f(y)dy − f(x)‖2 = 0. (1.48)

From Remark 1.3.5, we know

G(t, x; s, y) =
∞∑
i=0

J iG(t, x; s, y) = q(t, x; s, y) +
∞∑
i=1

J iG(t, x; s, y)
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and

|J iG(t, x; s, y)| ≤ Cq
(
CqC2M

α2
t−s(V )

)i · Γα
4
(t, x; s, y), 0 < t− s ≤ h2 (1.49)

Similarly to the proof of (1.48), now we can use (1.48) and (1.49) to get

lim
t↓s
‖
∫

Rd
G(t, x; s, y)f(y)dy − f(x)‖2 = 0. (1.50)

Remark 1.4.4. From the proof of the above lemma, we see that the rate at
which ‖u(t, ·)− f(·)‖2 goes to 0 as t ↓ s depends only on Mα2

t−s(V ), Nα1
t−s(|b|)

and the rate of

lim
t↓s
‖
∫

Rd
p(t, x; s, y)f(y)dy − f(x)‖2 = 0. (1.51)

If we change u(t, ·) to unk(t, ·) in the above lemma, by the same estimates
we see that the rate at which ‖unk(t, ·) − f(·)‖2 goes to 0 depends only on
Mα2

t−s(V ), Nα1
t−s(|b|) and the rate of (1.51). In particular, it does not depend

on n, k.

From Lemma 1.4.2, Lemma 1.4.3 and Remark 1.4.4, a simple "ε − δ"
argument leads us to the following corollary.

Corollary 1.4.5. u ∈ C([s, T ];L2(Rd)) and

lim
n,k→∞

sup
s≤t≤T

‖unk(t, ·)− u(t, ·)‖2 = 0.

Next we show that u ∈ L2((s, T );H1(Rd)).

The following lemma is a time-depedent version of Lemma 2.11 in [KLSU04].

Lemma 1.4.6. There is a constant C > 0 independent of n, k such that∫ T

s

∫
Rd
∇unk · a · ∇unkdxdt ≤ C.

Proof. This is a modification of the proof of Lemma 2.11 in [KLSU04].

Let s < t1 < t2 < T, 0 < ε < t2−t1
2

and define

η(t) =


0 t ∈ [0, t1] ∪ [t2, T ]
1
ε
(t− t1) t ∈ (t1, t1 + ε)

1 t ∈ [t1 + ε, t1 − ε]
1
ε
(t2 − t) t ∈ (t2 − ε, t2).
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Using the estimates for Gnk(t, x; s, y), it is easy to verify that

ηunk ∈ H1
0 ((s, T )× Rd).

Therefore∫ T

s

∫
Rd

(∇unk·a·∇(ηunk)−(ηunk)bn·∇unk−unkVk(ηunk)−unk∂t(ηunk))dxdt = 0,

or∫ T

s

η∇unk · a · ∇unkdxdt

=

∫ T

s

∫
Rd

(ηunk∂tunk + u2
nk∂tη)dxdt+

∫ T

s

∫
Rd

(ηunk)bn · ∇unkdxdt+

∫ T

s

∫
Rd
ηVk|unk|2dxdt

=I1 + I2 + I3.

I1 =
1

ε

∫ t1+ε

t1

‖unk‖2
2(t)dt− 1

ε

∫ t2

t2−ε
‖unk‖2

2(t)dt+
1

2

∫ t2

t1

η∂t
(
‖unk‖2

2

)
(t)dt.

A direct computation yields

lim
ε→0

I1 =
1

2

(
‖unk‖2

2(t2) + ‖unk‖2
2(t1)

)
.

From the proof of Lemma 1.4.2, we know that for any s ≤ t ≤ T ,

‖unk(t, ·)‖2
2 ≤ C

∫
Rd
|f(y)|2dy,

where C only depends on the constant CG which appears in the Gaussian
bounds for Gnk(t, x; s, y) and G(t, x; s, y). Therefore we have

lim
ε→0
|I1| ≤ C

∫
Rd
|f(y)|2dy. (1.52)

For I2, we have

|I2| ≤
∫ T

s

∫
Rd
|bn(t, x)| · |∇unk(t, x)| · |unk|(t, x)dxdt

≤
∫ T

s

∫
Rd
|bn(t, x)| ·

∣∣∣ ∫
Rd
∇xGnk(t, x; s, y)f(y)dy

∣∣∣ · ∣∣∣ ∫
Rd
Gnk(t, x; s, y)f(y)dy

∣∣∣dxdt
≤C1‖f‖∞ ·

∫ T

s

∫
Rd

∫
Rd
|bn(t, x)| · |∇xGnk(t, x; s, y)| · |f(y)|dydxdt

≤C1‖f‖∞ ·
∫

Rd
|f(y)|dy

(∫ T

s

∫
Rd
|bn(t, x)| · |∇xGnk(t, x; s, y)|dxdt

)
.
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From (1.38), we know

∇xGnk(t, x; s, y) = ∇xqn(t, x; s, y)+

∫ t

s

∫
Rd
∇xqn(t, x; τ, z)Vk(τ, z)Gnk(τ, z; s, y)dzdτ.

(1.53)
Therefore by Fubuni’s theorem and Proposition 1.1.4 and 1.1.11,∫ T

s

∫
Rd
|bn(t, x)| · |∇xGnk(t, x; s, y)|dxdt

=

∫ T

s

∫
Rd
|bn(t, x)| ·

∣∣∣∇xqn(t, x; s, y) +

∫ t

s

∇xqn(t, x; τ, z)Vk(τ, z)Gnk(τ, z; s, y)dzdτ
∣∣∣dxdt

≤C2

∫ T

s

∫
Rd
|bn(t, x)|Ψα

2
(t, x; s, y)dxdt

+

∫ T

s

∫
Rd
|bn(t, x)|dxdt

(
|
∫ t

s

∇xqn(t, x; τ, z)Vk(τ, z)Gnk(τ, z; s, y)dzdτ |
)

≤C3 +

∫ T

s

∫
Rd

Γα
4
(τ, z; s, y)Vk(τ, z)dzdτ

( ∫ T

τ

|bn(t, x)|Ψα
2
(t, x; τ, z)dxdt

)
≤C4

The constants C1, C2, C3, C4 depend only on the quantityNα1
h (|b|) andMα2

h (|V |)
and are the same for all n, k. So we have

|I2| ≤ C1C4‖f‖∞
∫

Rd
|f(y)|dy. (1.54)

For I3, we have

|I3| ≤
∫ T

s

∫
Rd
|Vk(t, x)| · |unk(t, x)|2dxdt

≤
∫ T

s

∫
Rd
|Vk(t, x)| ·

∣∣∣ ∫
Rd
Gnk(t, x; s, y)f(y)dy

∣∣∣2dxdt
≤C6

∫ T

s

∫
Rd
|Vk(t, x)|

∫
Rd
Gnk(t, x; s, y)|f(y)|2dydxdt

≤C7

∫
Rd
|f(y)|2dy

(∫ T

s

∫
Rd
|Vk(t, x)|Γα

4
(t, x; s, y)dxdt

)
≤C8

∫
Rd
|f(y)|2dy (1.55)

Combining (1.52), (1.54) and (1.55) we show that∫ t2

t1

∇unk · a · ∇unkdxdt ≤ C,
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where C does not depend on n, k. Since t1, t2 are arbitrary, the lemma is
proved.

Corollary 1.4.7. u ∈ L2((s, T );H1(Rd)) and there exists a subsequence of
∇unk converges to ∇u weakly in L2((s, T ), L2(Rd)).

Proof. It is easy to check that there exists a constant C > 0 independent of
n, k such that ∫ T

s

∫
Rd
|unk|2(t, x)dxdt < C

∫
Rd
|f(y)|2dy.

Then the lemma follows from Corollary 1.4.5 and Lemma 1.4.6.

Lemma 1.4.8. b · ∇u, V u ∈ L1((s, T )× Rd).

Proof. We only prove b · ∇u ∈ L1((s, T ) × Rd), the claim for V u is proved
similarly. From (1.38) and (1.41), we can get

G(t, x; s, y) = q(t, x; s, y) +

∫ t

s

∫
Rd
q(t, x; τ, z)V (τ, z)G(τ, z; s, y)dzdτ,

and therefore

∇xG(t, x; s, y) = ∇xq(t, x; s, y)+

∫ t

s

∫
Rd
∇xq(t, x; τ, z)V (τ, z)G(τ, z; s, y)dzdτ.

(1.56)
By Fubuni’s theorem and Proposition 1.1.4 and 1.1.11,∫ T

s

∫
Rd
|b(t, x) · ∇xG(t, x; s, y)|dxdt

≤
∫ T

s

∫
Rd
|b(t, x)| ·

∣∣∣∇xq(t, x; s, y) +

∫ t

s

∇xq(t, x; τ, z)V (τ, z)G(τ, z; s, y)dzdτ
∣∣∣dxdt

≤C1

∫ T

s

∫
Rd
|b(t, x)|Ψα

2
(t, x; s, y)dxdt

+

∫ T

s

∫
Rd
|b(t, x)|dxdt

( ∫ t

s

∣∣∇xq(t, x; τ, z)
∣∣V (τ, z)G(τ, z; s, y)dzdτ

)
≤C2 +

∫ T

s

∫
Rd

Γα
4
(τ, z; s, y)V (τ, z)dzdτ

( ∫ T

τ

|b(t, x)|Ψα
2
(t, x; τ, z)dxdt

)
<∞.
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Lemma 1.4.9. For ∀φ ∈ C∞0 ([s, T ]× Rd), we have∫ T

s

∫
Rd

(∇u · a · ∇φ− φb · ∇u− V uφ− u∂tφ)dxdt = 0.

Proof. For each unk, we know that∫ T

s

∫
Rd

(∇unk · a · ∇φ− φbn · ∇unk − unkVkφ− unk∂tφ)dxdt = 0.

By Corollary 1.4.5, we know that unk converges to u strongly in L2((s, T ), L2(Rd)),
therefore

lim
n,k→∞

∫ T

s

∫
Rd
unk∂tφdxdt =

∫ T

s

∫
Rd
u∂tφdxdt.

From Corollary 1.4.7, there exists a subsequence of ∇unk converges to ∇u
weakly in L2((s, T ), L2(Rd)), for simplicity, we denote it still by ∇unk. So

lim
n,k→∞

∫ T

s

∫
Rd
∇unk · a · ∇φdxdt =

∫ T

s

∫
Rd
∇u · a · ∇φdxdt.

If we can prove

lim
n,k→∞

∫ T

s

∫
Rd
φbn · ∇unkdxdt =

∫ T

s

∫
Rd
φb · ∇udxdt (1.57)

and

lim
n,k→∞

∫ T

s

∫
Rd
unkVkφdxdt =

∫ T

s

∫
Rd
V uφdxdt, (1.58)

then we are done. Here we only prove (1.57), because (1.58) can be done
similarly.

To prove (1.57), we have∣∣∣ ∫ T

s

∫
Rd
φbn · ∇unkdxdt−

∫ T

s

∫
Rd
φb · ∇udxdt

∣∣∣
=
∣∣∣ ∫ T

s

∫
Rd
φ(bn − b) · ∇unkdxdt−

∫ T

s

∫
Rd
φb · (∇u−∇unk)dxdt

∣∣∣
≤
∣∣∣ ∫ T

s

∫
Rd
φ(bn − b) · ∇unkdxdt

∣∣∣+
∣∣∣ ∫ T

s

∫
Rd
φb · (∇u−∇unk)dxdt

∣∣∣
=I1 + I2
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By (1.53) and (1.56)

I1 =
∣∣∣ ∫ T

s

∫
Rd
φ(bn − b) · ∇unkdxdt

∣∣∣
=
∣∣∣ ∫ T

s

∫
Rd
φ(bn − b)

( ∫
Rd
∇xGnk(t, x; s, y)f(y)dy

)
dxdt

∣∣∣
=
∣∣∣ ∫ T

s

∫
Rd
φ(bn − b)

∫
Rd
∇xqn(t, x; s, y)f(y)dydxdt

+

∫ T

s

∫
Rd
φ(bn − b)

( ∫
Rd

∫ t

s

∫
Rd
∇xqn(t, x; τ, z)Vk(τ, z)Gnk(τ, z; s, y)f(y)dzdτdy

)
dxdt

∣∣∣
=|I11 + I12|.

By Fubini’s theorem,

|I11| ≤
∫

Rd
|f(y)|dy

( ∫ T

s

∫
Rd
|φ(bn − b)|Ψα

2
(t, x; s, y)dxdt

)
≤C1

∫
Rd
|f(y)|dy ·Nα1

T−s(|φ(bn − b)|).

Since φ is of compact support, we have

lim
n,k→∞

I11 = 0.

For I12, we again use Fubini’s theorem, which yields

|I12| =
∣∣∣ ∫

Rd
f(y)dy

( ∫ T

s

∫
Rd

∫ t

s

∫
Rd
φ(bn − b)∇xqn(t, x; τ, z)Vk(τ, z)Gnk(τ, z; s, y)f(y)dzdτdxdt

)∣∣∣
≤
∫

Rd
|f(y)|dy

( ∫ T

s

∫
Rd
|Vk(τ, z)|Gnk(τ, z; s, y)dzdτ

∫ T

τ

∫
Rd
|φ(bn − b)|Ψα

2
(t, x; τ, z)dxdt

)
≤ C2

∫
Rd
|f(y)|dy ·Mα2

T−s(V ) ·Nα1
T (|φ(bn − b)|).

Since limn→∞N
α1
T (|φ(bn − b)|) = 0, we also get

lim
n,k→∞

I12 = 0.

Therefore we proved
lim

n,k→∞
I1 = 0.

The term I2 can be estimated by similar methods, so we get

lim
n,k→∞

∫ T

s

∫
Rd
φbn · ∇unkdxdt =

∫ T

s

∫
Rd
φb · ∇udxdt.
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Thus we have proved Theorem 1.4.1. So now we can state the main
theorem of this section.

Theorem 1.4.10. G(t, x; s, y), 0 ≤ s < t ≤ T, is the unique weak fundamen-
tal solution for the equation

∇(a · ∇u) + b · ∇u+ V u− ∂tu = 0. (∗)

Proof. By Theorem 1.4.1, we know G(t, x; s, ) is a weak fundamental solution
to (∗). Uniqueness can be proved in the same way as [LS00], Lemma 4.6 and
4.7.



Chapter 2

Diffusions with time-dependent
singular drift

In the paper [BC03], Chen and Bass proved existence and uniqueness of weak
solutions to the following stochastic differential equation

dXt = dWt +B(Xt)dt, X0 = x (2.1)

where the drift term belongs to the (time-independent) Kato class Kd−1 and
can be very singular. In fact they could even allow B to be a Radon measure,
but then the notion of a solution to (2.1) would be a little bit different from
the usual sense. Their method is based on constructing the resolvent Sλ
for the process Xt. Later P. Kim and R. Song studied the process Xt with
singular drift B thoroughly (see [KS08, KS07a, KS07b, KS06] et al); among
many other things, they obtained two sided estimates for the heat kernel and
Green function of Xt.

In this chapter we study the time-dependent version of (2.1), namely{
dXt = dWt +B(t,Xt)dt, t ≥ s.

Xt = x, 0 ≤ t ≤ s.
(2.2)

We assume |B(t, x)| to be in the forward-Kato class FKαd−1 for some α < 1
2
,

then we prove existence and uniqueness of weak solutions to (2.2). Basic ideas
are taken from [BC03], but we have to extend them to the time-dependent
case. We should note that FKαd−1 includes the (time-independent) Kato class
Kd−1, therefore our work extends the results of [BC03].

If we further assume |B(t, x)| ∈ T Kα′d−1 for some α′ < 1
4
, then from the

results of Chapter 1, we can also get two-sided Gaussian estimates for the

57
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transition density function of Xt. These are time-dependent versions of the
results of P. Kim and R. Song.

2.1 Forward Kato class FKcd−1

In the time-dependent case, the definition of Kato class is very subtle. In this
section we introduce the forward Kato class FKcd−1, which is strictly larger
than T Kcd−1.

Definition 2.1.1. A measurable function f on [0,∞) × Rd is said to be in
the forward Kato class FKcd−1 if

lim
h→0

N c,+
h (f) = 0,

where

N c,+
h (f) := sup

(s,x)∈[0,∞)×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, y)|dydt.

Here c > 0 is a given constant.

By definition, FKcd−1 includes the time-dependent Kato class T Kcd−1.
However, they are not the same.

Example 2.1.2. For any given c > 0, we have FKcd−1 6= T Kcd−1.
Let

f(t, x) =

{
− 1

(1−t)1/2 ln(1−t) if 1
2

6 t < 1, |x| 6 3d(1− t) 1
2

0 otherwise

If we fix (t, y) = (1, 0), then for all 0 < h < 1,∫ 1

1−h

∫
Rd

1

(1− s) d+1
2

exp(−c |x|
2

1− s
)|f(s, x)|dxds

=

∫ 1

1−h

∫
|x|63d(1−s)

1
2

1

(1− s) d+1
2

exp(−c |x|
2

1− s
)|f(s, x)|dxds

=

∫ 1

1−h

1

(1− s) ln 1
(1−s)

ds

∫
|x|63d(1−s)

1
2

1

(1− s) d2
exp(−c |x|

2

1− s
)dx, let

x

(1− s) 1
2

= x′

=

∫ 1

1−h

1

(1− s) ln 1
(1−s)

ds

∫
|x′|63d

exp(−c|x′|2)dx,

≥C
∫ 1

1−h

1

(1− s) ln 1
(1−s)

ds, where C > 0 is some constant.
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Since
∫ 1

1−h
1

(1−s) ln 1
(1−s)

ds diverges, we have

Nα
h (f) >

∫ 1

1−h

∫
Rd

1

(1− s) d+1
2

exp(−c |x|
2

1− s
)|f(s, x)|dxds =∞,

so f /∈ T Kcd−1. Next we show that f ∈ FKcd−1.

For 1
2
≤ s < 1, we have

lim
s→1

∫ 1

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
)|f(t, y)|dydt = 0

In fact,

lim
s→1

∫ 1

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
)|f(t, y)|dydt

≤ lim
s→1

∫ 1

s

1

(t− s) 1
2 (1− t) 1

2 ln 1
(1−t)

dt

∫
Rd

1

(t− s) d2
exp(−c |y|

2

t− s
)dy

≤ lim
s→1

C

∫ 1

s

1

(t− s) 1
2 (1− t) 1

2 ln 1
(1−t)

dt, let r =
t− s
1− s

,

≤ lim
s→1

C

∫ 1

0

1

r
1
2 (1− r) 1

2 ln 1
(1−s)(1−r)

dr

≤ lim
s→1

1

ln 1
1−s

C

∫ 1

0

1

r
1
2 (1− r) 1

2

dr = 0

For any given ε > 0, we can find a constant s0 >
1
2
such that∫ 1

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
)|f(t, y)|dydt < ε

4
, if s0 ≤ s < 1.

We set

C1 = sup
1
2
6t6 s0+1

2

1

(1− t) 1
2 ln 1

(1−t)

.

Let h0 > 0 be sufficiently small such that∫ h0

0

∫
Rd

1

t
d+1

2

exp(−c |y|
2

t
)dydt <

ε

4C1

.
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Let h < h0

2
∧ (1−s0)

2
. Then for s < s0, we have∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
)|f(t, y)|dydt

≤
∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
) · C1dydt

≤ C1 ·
ε

4C1

≤ ε

4
.

If s ≥ s0, then∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
)|f(t, y)|dydt

≤
∫ 1

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
)|f(t, y)|dydt < ε

4
.

Therefore

sup
(s,x)∈R×Rd

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |x− y|
2

t− s
)|f(t, y)|dydt

≤ sup
s∈R

∫ s+h

s

∫
Rd

1

(t− s) d+1
2

exp(−c |y|
2

t− s
)|f(t, y)|dydt < ε.

We have proved that limh→∞N
c,+
h (f) = 0 and f ∈ FKcd−1.

Now we state some properties of FKcd−1, the proofs are similar to the case
of T Kcd−1.
Proposition 2.1.3. (i) If f ∈ FKcd−1, then f is locally integrable.
(ii) If f(t, x) ∈ FKcd−1, then N

c,+
l (f) <∞ for any l > 0.

Lemma 2.1.4. Suppose f ∈ FKcd−1, then for any nonnegative φ ∈ C∞0 (Rd+1)
with ∫

Rd+1

φ(ξ)dξ = 1,

we have N c,+
h (f ∗ φ) ≤ N c,+

h (f).

Proposition 2.1.5. Given a non-negative function φ ∈ C∞0 (Rd+1) with∫
Rd+1

φ(ξ)dξ = 1.

Let
φn(ξ) = n(d+1)φ(nξ).

Suppose f ∈ FKcd−1, then for any compact set K ⊂ [0,∞)× Rd,

lim
n→∞

N c,+
h (1K |f ∗ φn − f |) = 0.
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2.2 Brownian motion with time-dependent sin-
gular drift

In this section we study the following stochastic differential equation{
dXt = dWt +B(t,Xt)dt, t ≥ s.

Xt = x, 0 ≤ t ≤ s.
(2.3)

Throughout the rest of this chaper we impose

Assumption 2.2.1. |B(·, ·)| ∈ FKαd−1 for some α < 1
2
.

Under the above assumption, we prove there exits a unique weak solution
to (2.3) for each (s, x) ∈ [0,∞)× Rd. Instead of dealing with equation (2.3)
directly, we use the equivalent formulation of the martingale problem due to
Stroock and Varadhan. Namely we will prove that the martingale problem
for the generator

Lt =
1

2
4+B(t, x) · ∇

is well-posed. We will use the same method as in [BC03] and adapt it to the
time-dependent case. The idea is to construct the space-time resolvent Sλ of
the process Xt. If the drift B(t, x) has support in a very small comact set,
then we will see that the space-time resolvent Sλ of Xt can be expressed in
terms of the space-time resolvent of Brownian motion. So heuristically, we
can first solve (2.3) locally. Then after a standard gluing argument we will
also get a global solution. To prove uniqueness we need to use the techniques
from Srtoock and Varadhan’s martingale problem approach.

2.2.1 The local martingale problem and martingale prob-
lem

As well-known, (2.3) is equivalent to the local martingale problem of Stroock
and Varadhan. As compared with (2.3), using the local martingale problem
approach has several advantages. Now we let

Lt =
1

2
4+B(t, x) · ∇,

and Ω = C([0,∞); Rd) be the space of continuous trajectories from [0,∞)
into Rd. Given t ≥ 0 and ω ∈ Ω, let Xt(ω) := ω(t). Let

Mt = σ(Xs : 0 ≤ s ≤ t),
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and
M = σ

(
∪t≥0Mt

)
.

Definition 2.2.2. Given (s, x) ∈ [0,∞) × Rd, a solution to the local mar-
tingale problem for Lt starting from (s, x) is a probability measure Ps,x on
(Ω = C([0,∞); Rd),M) with the following properties:

Ps,x(Xt = x, 0 6 t 6 s) = 1 and

f(Xt)−
∫ t

s

Luf(Xu))du

is a (Ps,x,Ft) local martingale after time s for all f ∈ C2(Rd). Here the
filtration Ft is the augmentation ofMt w.r.t. Ps,x, i.e.

Ft = Gt+,Gt = σ(Mt,N ).

According to [KS91, Proposition 4.11], in our case the martingale problem
and the local martingale problem for Lt are equivalent. Note that here the
second order term in Lt is nothing but 1

2
4.

Definition 2.2.3. Given (s, x) ∈ [0,∞) × Rd, a solution to the martingale
problem for Lt starting from (s, x) is a probability measure Ps,x on (Ω =
C([0,∞); Rd),M) with the properties that

Ps,x(Xt = x, 0 6 t 6 s) = 1 and

f(Xt)−
∫ t

s

Luf(Xu))du

is a (Ps,x,Ft) martingale after time s for all f ∈ C∞0 (Rd).

We say that the martingale problem for Lt is well-posed if, for each (s, x)
there is exactly one solution to that martingale problem staring from (s, x).

Remark 2.2.4. In Definition 2.2.3, we have used the filtration {Ft} which
satisfies the usual conditions. But it is more convenient to deal with {Mt}
itself because it does not depend on the probability measure and is countably
generated. Suppose f ∈ C∞0 (Rd) and let

M f
t := f(Xt)−

∫ t

s

Luf(Xu))du.

If {M f
t ,Mt} is a martingale after time s, then so is {M f

t ,Ft}. The reason is
simple. For any s ≤ t1 < t2, if

E[M f
t2|Mt1+ 1

n
] = M f

t1+ 1
n

,
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then let n goes to infinity, we get

E[M f
t2|Mt1+] = M f

t1 , a.e.

Therefore {M f
t ,Ft} is also a martingale after time s.

2.2.2 Some gradient estimates for Rλ

In this subsection we derive some gradient estimates for the space-time re-
solvent Rλ of Brownian motion. Recall that the transition density function
p(s, x; t, y) of Brownian motion is given by

p(s, x; t, y) =
1

(2π)
d
2 (t− s) d2

exp(−1

2
· |x− y|

2

t− s
).

For α < 1
2
, it is easy to verify that there exists a constant C1 > 1 such that

for any 0 ≤ s < t and x, y ∈ Rd,

|∇xp(s, x; t, y)| 6 C1

(t− s) d+1
2

exp(−α |x− y|
2

t− s
). (2.4)

For any λ > 0 and any bounded measurable function f on [0,∞) × Rd,
let Rλ be the space-time resolvent of Brownian motion, namely

Rλf(s, x) :=

∫ ∞
s

e−λ(t−s)dt

∫
Rd
p(s, x; t, y)f(t, y)dy

Lemma 2.2.5. If f ∈ FKαd−1 and supp(f) ⊂ [s1, s1 + h] × Rd for some
s1 > 0, h > 0, then

|∇Rλf | 6 C1 ·Nα,+
h (f),

where C1 is the constant appearing in (2.4).

Proof.

|∇xR
λf(s, x)|

=|∇x

∫ ∞
s

e−λ(t−s)dt

∫
Rd
p(s, x; t, y)f(t, y)dy|

=|
∫ ∞
s

e−λ(t−s)dt

∫
Rd
∇xp(s, x; t, y)f(t, y)dy|

6
∫ ∞
s

∫
Rd
C1

1

(t− s) d+1
2

exp(−α |x− y|
2

t− s
)|f(t, y)|dydt
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If s > s1, then

|∇xR
λf(s, x)|

6
∫ s+h

s

∫
Rd
C1

1

(t− s) d+1
2

exp(−α |x− y|
2

t− s
)|f(t, y)|dydt

6C1 ·Nα,+
h (f)

If s < s1, then

|∇xR
λf(s, x)|

6
∫ s1+h

s1

∫
Rd
C1

1

(t− s) d+1
2

exp(−α |x− y|
2

t− s
)|f(t, y)|dydt

6
∫

Rd

(2α)
d
2

(2π)
d
2 (s1 − s)

d
2

exp(−α |z − x|
2

s1 − s
)dz

∫ s1+h

s1

∫
Rd

C1

(t− s1)
d+1

2

exp(−α |y − z|
2

t− s1

)|f(t, y)|dydt

(2.5)

6C1

∫
Rd

(2α)
d
2

(2π)
d
2 (s1 − s)

d
2

exp(−α |z − x|
2

s1 − s
)dz ·N+

α,h(f)

6C1 ·N+
α,h(f)

In fact, to get (2.5) we need the following inequality:∫
Rd

(2α)
d
2

(2π)
d
2 (s1 − s)

d
2

exp(−α |z − x|
2

s1 − s
)

(2α)
d
2

(2π)
d
2 (t− s1)

d+1
2

exp(−α |y − z|
2

t− s1

)dz

>
1

(t− s) 1
2

∫
Rd

(2α)
d
2

(2π)
d
2 (s1 − s)

d
2

exp(−α |z − x|
2

s1 − s
)

(2α)
d
2

(2π)
d
2 (t− s1)

d
2

exp(−α |y − z|
2

t− s1

)dz

=
1

(t− s) 1
2

(2α)
d
2

(2π)
d
2 (t− s) d2

exp(−α |y − x|
2

t− s
)

=
(2α)

d
2

(2π)
d
2 (t− s) d+1

2

exp(−α |y − x|
2

t− s
)

Similar to the above lemma, we have the following estimate for Rλ.

Lemma 2.2.6. Suppose f ∈ FKαd−1 and supp(f) ⊂ [s1, s1 +h]×Rd for some
s1 > 0, 0 < h < 1, then

|Rλf | 6 Nα,+
h (f)
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Proof. The proof is similar to Lemma 2.2.5, we only need to note that if
0 < t− s < 1, then

p(s, x; t, y) ≤ 1

(t− s) d+1
2

exp(−α |x− y|
2

t− s
).

The following lemma is well-known, but for the reader’s convenience we
give a proof here.

Lemma 2.2.7. For each λ > 0, there exists a constant Cλ > 0 such that for
any g bounded measurable on [0,∞)× Rd, we have

|∇Rλg| 6 C(λ) · ‖g‖∞

Proof.

|∇xR
λg(s, x)|

=|∇x

∫ ∞
s

e−λ(t−s)dt

∫
Rd
p(s, x; t, y)g(t, y)dy|

=|
∫ ∞
s

e−λ(t−s)dt

∫
Rd
∇xp(s, x; t, y)g(t, y)dy|

6
∫ ∞
s

e−λ(t−s)dt

∫
Rd
C1

1

(t− s) d+1
2

exp(−α · |x− y|
2

t− s
)|g(t, y)|dydt

6C1‖g‖∞
∫ ∞
s

e−λ(t−s)dt

∫
Rd

1

(t− s) d+1
2

exp(−α · |x− y|
2

t− s
)dy

6C(λ) · ‖g‖∞

Thus we have proved our lemma.

2.2.3 Well-posedness of the martingale problem: local
case

In this subsection we will get the well-posedness of martingale problem for
Lt if the drift B has support in a very small compact set.

Recall Assumption 2.2.1 that |B(·, ·)| ∈ FKαd−1 for some α < 1
2
. We

first consider smooth approximations of the singular drift B. We can find a
nonnegative function φ ∈ C∞0 (Rd+1) with

∫
Rd+1 φ(ξ)dξ = 1.
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Let
φn(ξ) = n(d+1)φ(nξ),

and define
Bn := B ∗ φn = (B1 ∗ φn, · · · , Bd ∗ φn).

Remark 2.2.8. From Lemma 2.1.4, it is easily seen that there exists a
constant κ > 1 such that for any h > 0

Nα,+
h (|Bn|) ≤ κNα,+

h (|B|). (2.6)

For this subsection we impose an additional assumption on B.

Assumption 2.2.9. There exist (s1, x1) ∈ [0,∞)× Rd such that

supp(B) ⊂ [s1, s1 + ε1]×
{
x ∈ Rd : |x− x1| ≤ 1

}
and

Nα,+
2ε1

(|B|) < 1

2κC1

.

Remark 2.2.10. Since now B has compact support, by Lemma 2.1.5 we
have for any h > 0,

lim
n→∞

Nα,+
h (|Bn −B|) = 0. (2.7)

Since Bn is smooth and has compact support, for each starting point
(s, x) ∈ [0,∞)×Rd, there exists a unique probability measure Ps,x

n on
(
Ω =

C([0,∞); Rd),M
)
which solves the martingale problem for the generator

1

2
4+Bn(t, x) · ∇ (2.8)

For any λ > 0 and any bounded measurable function f on [0,∞) × Rd,
define

Sλnf(s, x) := Es,x
n [

∫ ∞
s

e−λ(t−s)f(t,Xt)dt],

where Es,x
n [·] means taking expectation under the measure Ps,x

n on
(
Ω =

C([0,∞); Rd),M
)
.

Now we want to get an exact expression of the space-time resolvent Sλn .
Recall that Rλ is the space-time resolvent for Brownian motion. For any
f ∈ Bb([0,∞) × Rd), since ∂Rλf

∂xi
exists and is continuous, we can define the

operator

BRλ(f) := (B,∇Rλf) =
d∑
i=1

Bi · ∂R
λf

∂xi
.
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Similarly we can define

BnR
λ(f) := (Bn,∇Rλf) =

d∑
i=1

Bi
n ·

∂Rλf

∂xi
.

Lemma 2.2.11. If g ∈ Bb([0,∞)× Rd), then

Sλng(s, x) =
∞∑
k=0

Rλ(BnR
λ)kg(s, x),

where the convergence on the right-hand side is uniform with respect to
(s, x) ∈ [0,∞)× Rd.

Proof. Since Bn is smooth and has compact support, Brownian motion with
such a drift Bn has a transition density function qn(s, x; t, y). Recall that
p(s, x; t, y) is the transition density function of Brownian motion. Then by
Duhamel’s formular, we get that

qn(s, x; t, y) = p(s, x; t, y) +

∫ t

s

∫
Rd
qn(s, x; τ, z)Bn(τ, z) · ∇zp(τ, z; t, y)dzdτ.

(2.9)
By (2.4) and noting that |Bn| ∈ T K

α
4
d−1, we can apply the same arguments

of section 1.3.1 in chapter 1. In particular we get the same Gaussian bounds
for qn(t, x; s, y) as (1.14).

By (2.9), we can consider the difference between Sλn and Rλ. If f is
bounded measurable, then

Sλnf(s, x)−Rλf(s, x)

=

∫ ∞
s

∫
Rd
e−λ(t−s)qn(s, x; t, y)f(t, y)dydt−

∫ ∞
s

∫
Rd
e−λ(t−s)p(s, x; t, y)f(t, y)dydt

=

∫ ∞
s

∫
Rd
e−λ(t−s)(qn(s, x; t, y)− p(s, x; t, y))f(t, y)dydt

=

∫ ∞
s

∫
Rd
e−λ(t−s)f(t, y)(

∫ t

s

∫
Rd
qn(s, x; τ, z)Bn(τ, z) · ∇zp(τ, z; t, y)dzdτ)dydt.

Since f is bounded and Bn has compact support, by (1.14) and (1.20) we
have∫ ∞

s

∫
Rd
e−λ(t−s)f(t, y)

(∫ t

s

∫
Rd
qn(s, x; τ, z)|Bn(τ, z)| · |∇zp(τ, z; t, y)|dzdτ

)
dydt

6C
∫ ∞
s

∫
Rd
e−λ(t−s)f(t, y)

(∫ t

s

∫
Rd

Γα
2
(s, x; τ, z)|Bn(τ, z)|Ψα(τ, z; t, y)dzdτ

)
dydt

6C
∫ ∞
s

∫
Rd
e−λ(t−s)f(t, y)Γα

2
(s, x; t, y)dydt <∞,
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where Γα
2
and Ψα are introduced in (1.10). Therefore we can apply Fubini’s

theorem to get

Sλnf(s, x)−Rλf(s, x)

=

∫ ∞
s

∫
Rd
qn(s, x; τ, z)dzdτ(

∫ ∞
τ

∫
Rd
e−λ(t−s)f(t, y)Bn(τ, z) · ∇zp(τ, z; t, y)dydt)

=

∫ ∞
s

∫
Rd
e−λ(τ−s)qn(s, x; τ, z)dzdτ(

∫ ∞
τ

∫
Rd
e−λ(t−τ)f(t, y)Bn(τ, z) · ∇zp(τ, z; t, y)dydt)

=

∫ ∞
s

∫
Rd
e−λ(τ−s)qn(s, x; τ, z)

(
Bn(τ, z) · ∇z(

∫ ∞
τ

∫
Rd
e−λ(t−τ)p(τ, z; t, y)f(t, y)dydt

)
dzdτ

Namely we have shown that

Sλnf −Rλf = SλnBnR
λf.

For any bounded measurable function g on [0,∞) × Rd, taking f = BnR
λg

in the above formula, we get

SλnBnR
λg −RλBnR

λg = SλnBnR
λBnR

λg,

therefore we get

Sλng = Rλg +RλBnR
λg + Sλn(BnR

λ)2g.

Similarly, after i steps, we get to

Sλng =
i∑

k=0

Rλ(BnR
λ)kg + Sλn(BnR

λ)i+1g.

If n is large enough, we can ensure that supp(Bn) ⊂ [s1 − ε1
2
, s1 + 3ε1

2
] ×K

for some compact set K ⊂ Rd. we also have

Nα,+
2ε1

(|Bn|) ≤ κNα,+
2ε1

(|B|) < 1

2C1

.

Claim 1. supp((BnR
λ)kg) ⊂ [s1 − ε1

2
, s1 + 3ε1

2
]×K and (BnR

λ)kg ∈ FKαd−1.
Moreover

Nα,+
2ε1

((BnR
λ)kg) < Cλ‖g‖∞(

1

2
)k. (2.10)

When k = 1, by Lemma 2.2.7 we have

|BnR
λg| 6 |Bn| · |∇Rλg| 6 |Bn|Cλ‖g‖∞
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So
Nα,+

2ε1
(BnR

λg) < Cλ‖g‖∞(
1

2
).

Suppose that the claim is true for k, then by Lemma 2.2.5

|(BnR
λ)k+1g| 6 |Bn| · |∇Rλ(BnR

λ)kg| 6 |Bn| · C1 ·N+
α,2ε1

((BnR
λ)kg)

6 Cλ‖g‖∞|Bn| · C1(
1

2
)k.

Therefore

Nα,+
2ε1

((BnR
λ)k+1g) 6 Cλ‖g‖∞C1(

1

2
)k · 1

2C1

6 Cλ‖g‖∞(
1

2
)k+1

So the claim is proved.

Now we have that

|Sλn(BnR
λ)k+1g|

=|Sλn(Bn∇Rλ(BnR
λ)kg)|

6Sλn(|Bn||∇Rλ(BnR
λ)kg|)

6C1N
α,+
2ε1

((BnR
λ)kg)Sλn(|Bn|)

6C ′(
1

2
)k+1,

where C ′ > 0 is a constant. With the same argument, we can also get

|Rλ(BnR
λ)kg| 6 C1R

λ(|Bn|)(
1

2
)k−1.

From Lemma 2.2.6, we have

|Rλ(|Bn|)| ≤ Nα,+
2ε1

(|Bn|) ≤
1

2C1

.

Therefore
|Rλ(BnR

λ)kg| ≤ (
1

2
)k. (2.11)

Now it is clear that

Sλng =
∞∑
k=0

Rλ(BnR
λ)kg. (2.12)

So the lemma is proved.
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Remark 2.2.12. If we check the proof of the above lemma, the only thing
we need to ensure the convergence in (2.12) is that

Nα,+
2ε1

(|Bn|) <
1

2C1

,

and we can exactly do the same thing for B, it means that for any bounded
measurable function g, we can define Sλg as follows,

Sλg(s, x) =
∞∑
k=0

Rλ(BRλ)kg(s, x).

Moreover, for each term, we know

|Rλ(BRλ)kg| 6 (
1

2
)k. (2.13)

Now we are ready to the prove that the above definition of Sλ is exactly
what we need. we verify that Sλ is the limit of Sλn .

Lemma 2.2.13. For each bounded measurable function g on [0,∞) × Rd,
Sλng(s, x) converges to Sλg(s, x) uniformly with respect to (s, x) ∈ [0,∞)×Rd

as n→∞.

Proof. We first show that

lim
n→∞

RλBnR
λg(s, x) = RλBRλg(s, x),

and the convergence is uniform with respect to (s, x) ∈ [0,∞)×Rd. In fact,
by Lemma 2.2.6 and Lemma 2.2.7,

|RλBnR
λg(s, x)−RλBRλg(s, x)|

=|Rλ(Bn −B)Rλg(s, x)|
6Cλ‖g‖∞Rλ|Bn −B|(s, x)

6Cλ‖g‖∞Nα,+
2ε1

(|B −Bn|),

By (2.7), we have

lim
n→∞

RλBnR
λg(s, x) = RλBRλg(s, x), uniformly for (s, x) ∈ [0,∞)× Rd.

Suppose now we have

lim
n→∞

Rλ(BnR
λ)kg(s, x) = Rλ(BRλ)kg(s, x), uniformly for (s, x) ∈ [0,∞)× Rd,
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and
lim
n→∞

Nα,+
2ε1

[(BnR
λ)kg − (BRλ)kg] = 0.

Then

|(BnR
λ)k+1g − (BRλ)k+1g|

=|(BnR
λ)k+1g −Bn∇Rλ(BRλ)kg +Bn∇Rλ(BRλ)kg − (BRλ)k+1g|

6|Bn||∇Rλ(BnR
λ)kg −∇Rλ(BRλ)kg)|+ |Bn −B||∇Rλ(BRλ)kg|

6C1 ·N+
α,2ε1

((BnR
λ)kg − (BRλ)kg)|Bn|+ C1 · |Bn −B|N+

α,2ε1
((BRλ)kg).

Similarly to (2.10), we can show

Nα,+
2ε1

((BRλ)kg) < Cλ‖g‖∞(
1

2
)k.

So we get
lim
n→∞

Nα,+
2ε1

[(BnR
λ)k+1g − (BRλ)k+1g] = 0.

Then

|Rλ(BnR
λ)k+1g −Rλ(BRλ)k+1g|

6C0N
α,+
2ε1

[(BnR
λ)k+1g − (BRλ)k+1g]→ 0,

as n→∞, and the convergence is uniform with respect to (s, x) ∈ [0,∞)×
Rd.

Then by (2.11) and (2.13), the lemma can be proved easily.

Lemma 2.2.14. Sλn|Bn|(s, x) tends to 0 uniformly for (s, x) ∈ [0,∞) × Rd

as λ→∞, and the rate is independent of n.

Proof. Since |Bn| is bounded, by Lemma 2.2.11, we have

Sλn|Bn| =
∞∑
k=0

Rλ(BnR
λ)k|Bn|.

Similarly to (2.10), we can get

Nα,+
2ε1

((BnR
λ)k|Bn|) < (

1

2
)k+1.
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Therefore

Sλn|Bn| 6
∞∑
k=0

Rλ
(
|Bn| ·

∣∣∇Rλ(BnR
λ)k−1(|Bn|)

∣∣)
6
∞∑
k=0

Rλ
(
|Bn|) · C1 ·Nα,+

2ε1
((BnR

λ)k−1|Bn|)

6C1 ·Rλ|Bn|.

For ∀ε > 0, we can find a δ > 0 such that

Nα,+
δ (|B|) 6

ε

4κC1

.

By (2.6) and noting that supp(Bn) ⊂ [s1 − ε1
2
, s1 + 3ε1

2
]×K, we have

Sλn|Bn|(s, x)

6C1 ·Rλ|Bn|(s, x)

6C1

∫ ∞
s

∫
Rd
e−λ(t−s)p(s, x; t, y)|Bn|(t, y)dydt

6C1

(∫ s+δ

s

∫
Rd

1

(t− s) d2
exp(−α |x− y|

2

t− s
)|Bn|(t, y)dydt

+

∫ ∞
s+δ

∫
Rd
e−λδp(s, x; t, y)|Bn|(t, y)dydt

)
6C1 ·Nα,+

δ (|Bn|) + C1e
−λδ
∫ s1+

3ε1
2

s+δ

∫
Rd

1

(t− s) d2
exp(−α |x− y|

2

t− s
)|Bn|(t, y)dydt

6C1κ ·Nα,+
δ (|B|) + C1e

−λδNα,+
2ε1

(|Bn|)
6C1κ ·Nα,+

δ (|B|) + C1κe
−λδNα,+

2ε1
(|B|)

6
ε

2
+

1

2
e−λδ

If λ→∞, then Sλn|Bn| < ε.

Using the above lemma and doing exactly the same calculation as in the
time-independent case (cf. [BC03, Theorem 4.3]), we prove the following
proposition, which implies the tightness of the family Ps,x

n . To be complete,
we include the proof here.

Proposition 2.2.15. Let β, ε, T > 0, then ∃δ > 0 not depending on (s, x)
nor n, s.t.

Ps,x
n ( sup

t,t′6T,|t−t′|6δ
|Xt −Xt′| > β) < ε.
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Proof. By Markov property, it is enough to show that

Ps,x
n ( sup

s≤t≤s+δ
|Xt − x| > β) < ε.

We know that under the measure Ps,x
n ,

dXn
t = dWt +Bn(t, x)dt,

where Wt is the Brownian motion. For Brownian motion Wt, it is known
that there exits small enough δ > 0 such that

Ps,x
n ( sup

s≤t≤s+δ
|Wt −Ws| >

β

2
) <

ε

2
.

If we can find δ > 0 such that

Ps,x
n (

∫ s+δ

s

|Bn(u,Xu)|du >
β

2
) <

ε

2
,

then we are done. Let θ = δ−1, then

Ps,x
n (

∫ s+δ

s

|Bn(u,Xu)|du >
β

2
) ≤ 2

β
Es,x
n

∫ s+δ

s

|Bn(u,Xu)|du

≤2e

β
Es,x
n

∫ s+δ

s

e−θ(t−s)|Bn(u,Xu)|du ≤
2e

β
Es,x
n

∫ ∞
s

e−θ(t−s)|Bn(u,Xu)|du

≤2e

β
Sθn|Bn|(s, x)

By Lemma 2.2.14, we can find large enough θ > 0, independent of (s, x) and
n such that

Sθn|Bn|(s, x) <
ε

2
.

The lemma is proved.

Corollary 2.2.16. Let β ∈ (0, 1], then there exists δ < 1, which does not
depends on (s, x), such that if

τs := ε1 ∧ inf{r ≥ 0 : |Xs+r −Xs| > β},

then
sup
n
Es,x
n e−τs 6 δ.

Proof. See the proof of [BC03, Corollary 4.4].
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By Proposition 2.2.15 and [SV06, Theorem 1.3.2], we know that the fam-
ily {Ps,x

n }n≥1 of probability measures on
(
Ω = C([0,∞); Rd),M

)
is tight,

therefore we can find a subsequence which converges under the weak topol-
ogy. Suppose Ps,x = limk→∞Ps,x

nk
is the limit point, then for any λ > 0 and

g ∈ C0(Rd),

EPs,x

∫ ∞
0

e−λ(t−s)g(Xt)dt

= lim
k→∞

EPs,xnk

∫ ∞
0

e−λ(t−s)g(Xt)dt

= lim
k→∞

Sλnkg(s, x)

=Sλg(s, x).

Since λ is arbitrary, by uniqueness of the Laplace transform, we get that one
dimensional distribution of (Xt,P

s,x) is determined. Similarly, using Markov
property, multidimensional distributions of the process (Xt,P

s,x) are also
determined. That means that {Ps,x

n }n≥1 has only one limit point.

Theorem 2.2.17. Ps,x
n converges weakly to Ps,x, for each (s, x). Moreover,

Es,x(

∫ ∞
s

e−λ(t−s)f(t,Xt)dt) = Sλf(s, x).

Now we need to show that the measure Ps,x is indeed a solution to the
maringale problem for

Lt =
1

2
4+B(t, x) · ∇

Theorem 2.2.18. Ps,x is a solution to the martingale problem for Lt, start-
ing from (s, x).

Proof. This is a modification of the proof of [BC03] Proposition 4.9. We need
to show that

f(Xt)−
∫ t

s

Luf(Xu))du

is a Ps,x-martingale after time s for ∀f ∈ C∞0 (Rd). Since Ps,x
n solves the

martingale problem for
1

2
4+Bn(t, x) · ∇,

therefore

f(Xt)−
∫ t

s

(
1

2
4f +

d∑
i=1

Bi
n(u, x)

∂f

∂xi
)(Xu)du
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is a Ps,x
n -martingale after time s.

For any s ≤ t1 ≤ t2, 0 ≤ r1 ≤ · · · ≤ rl ≤ t1 and g1, · · · , gl ∈ C0(Rd), let

Y =
l∏

j=1

gj(Xrj),

where l ∈ N is arbitrary chosen. Then

Es,x
n

[
Y
(
f(Xt1)−

∫ t1

s

(
1

2
4f +

d∑
i=1

Bi
n(u, x)

∂f

∂xi
)f(Xu)du

)]
=Es,x

n

[
Y (f(Xt2)−

∫ t2

s

(
1

2
4f +

d∑
i=1

Bi
n(u, x)

∂f

∂xi
)f(Xu)du

)]
(2.14)

By the weak convergence of Ps,x
n , we have

lim
n→∞

Es,x
n

[
Y
(
f(Xt1)−

∫ t1

s

1

2
4f(Xu)du

)]
= Es,x

[
Y
(
f(Xt1)−

∫ t1

s

1

2
4f(Xu)du

)]
.

Therefore we only need to show that

lim
n→∞

Es,x
n

[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
= Es,x

[
Y

∫ t1

s

Bi(u, x)
∂f

∂xi
(Xu)du

]
For each fixed k ≥ 1, we have∣∣∣Es,x

k

[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
− Es,x

k

[
Y

∫ t1

s

Bi
m(u, x)

∂f

∂xi
(Xu)du

]∣∣∣
=
∣∣∣Es,x

k

[
Y

∫ t1

s

(Bi
n −Bi)(u, x)

∂f

∂xi
(Xu)du

]
− Es,x

k

[
Y

∫ t1

s

(Bi
m −Bi)(u, x)

∂f

∂xi
(Xu)du

]∣∣∣
≤C · Es,x

k

∫ t1

s

(|Bi
n −Bi|+ |Bi

m −Bi|)
∣∣∣ ∂f
∂xi

∣∣∣(u,Xu)du

≤C1 · Sλk (|Bi
n −Bi|+ |Bi

m −Bi|)(s, x)

≤C2 ·Rλ(|Bi
n −Bi|+ |Bi

m −Bi|)(s, x)

≤C3 ·Nα,+
2ε1

(|Bi
n −Bi|+ |Bi

m −Bi|)→ 0, as n,m→∞. (2.15)

Similarly to (2.15), we have∣∣∣Es,x
[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
− Es,x

[
Y

∫ t1

s

Bi(u, x)
∂f

∂xi
(Xu)du

]∣∣∣
≤C3 ·Nα,+

2ε1
(|Bi

n −Bi|)→ 0, as n→∞. (2.16)
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By (2.15) and (2.16), for any given ε > 0, we can find n1, which is independent
of k, such that when n,m ≥ n1,∣∣∣Es,x

[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
− Es,x

[
Y

∫ t1

s

Bi(u, x)
∂f

∂xi
(Xu)du

]∣∣∣ < ε

and∣∣∣Es,x
k

[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
− Es,x

k

[
Y

∫ t1

s

Bi
m(u, x)

∂f

∂xi
(Xu)du

]∣∣∣ < ε.

Note that there exists n2 such that for n ≥ n2,∣∣∣Es,x
n

[
Y

∫ t1

s

Bi
n1

(u, x)
∂f

∂xi
(Xu)du

]
− Es,x

[
Y

∫ t1

s

Bi
n1

(u, x)
∂f

∂xi
(Xu)du

]∣∣∣ < ε

Now if n ≥ sup{n1, n2}, we have

∣∣∣Es,x
n

[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
− Es,x

[
Y

∫ t1

s

Bi(u, x)
∂f

∂xi
(Xu)du

]∣∣∣
≤
∣∣∣Es,x

n

[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
− Es,x

n

[
Y

∫ t1

s

Bi
n1

(u, x)
∂f

∂xi
(Xu)du

]∣∣∣
+
∣∣∣Es,x

n

[
Y

∫ t1

s

Bi
n1

(u, x)
∂f

∂xi
(Xu)du

]
− Es,x

[
Y

∫ t1

s

Bi
n1

(u, x)
∂f

∂xi
(Xu)du

]∣∣∣
+
∣∣∣Es,x

[
Y

∫ t1

s

Bi
n1

(u, x)
∂f

∂xi
(Xu)du

]
− Es,x

[
Y

∫ t1

s

Bi(u, x)
∂f

∂xi
(Xu)du

]∣∣∣
≤3ε

So we get that

lim
n→∞

Es,x
n

[
Y

∫ t1

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
= Es,x

[
Y

∫ t1

s

Bi(u, x)
∂f

∂xi
(Xu)du

]
.

Similarly

lim
n→∞

Es,x
n

[
Y

∫ t2

s

Bi
n(u, x)

∂f

∂xi
(Xu)du

]
= Es,x

[
Y

∫ t2

s

Bi(u, x)
∂f

∂xi
(Xu)du

]
.

Let n→∞ in (2.14), then we get that

f(Xt)−
∫ t

s

Luf(Xu)du

is a Ps,x-martingale after time s.
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Now we prove the uniqueness of solutions to the martingale problem for
Lt. This can be done with the same method as in the time-indepedent case.

Theorem 2.2.19. If there exists another probability measure Qs,x which
solves the martingale problem for Lt starting from (s, x), then for all f ∈
Cb(Rd) we have Qs,x[f(Xt)] = Ps,x[f(Xt)], ∀t ≥ 0.

Proof. This is a modification of [BC03] Proposition 5.1. We define a sequence
of stopping times

σn := inf{t ≥ s :

∫ t

s

|B(u,Xu)|du > n}, τn := σn ∧ n,

and construct Qs,x
n in the following way:

Qs,x
n (A ∩ (C ◦ θτn)) = EQs,x [Pτn,Xτn (C);A], ∀A ∈Mτn , C ∈M,

where θt is the usual shift operators on Ω so that θt(ω)(t) = ω(t + s). Then
Qs,x
n again solves the martingale problem for Lt, starting from (s, x), and

EQs,x
n

[

∫ ∞
s

e−λ(t−s)|B(t,Xt)|dt]

=EQs,x [

∫ τn

s

e−λ(t−s)|B(t,Xt)|dt] + EQs,x [e−λ(τn−s)EPτn,Xτn

∫ ∞
τn

e−λ(t−τn)|B(t,Xt)|dt]

≤EQs,x [

∫ τn

s

|B(t,Xt)|dt] + EQs,x [Sλ|B|(τn, Xτn)]

<∞.

If now f ∈ C2([0,∞)× Rd) with |f |, |∇f | bounded, then by Ito’s formula,

f(t,Xt)− f(s,Xs)

=

∫ t

s

∇f(u,Xu) · dXu +

∫ t

s

∂f

∂u
(u,Xu)du+

1

2

∫ t

s

4f(u,Xu)du

=”Martingale” +

∫ t

s

(
∂f

∂u
+ Luf)(u,Xu)du.

Taking expectations, we have

EQs,x
n

[f(t,Xt)]− f(s, x) = EQs,x
n

[

∫ t

s

(
∂f

∂u
+ Luf)(u,Xu)du]
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Multiplying both sides with e−λ(t−s) and integrating w.r.t. t from s to∞, we
get

EQs,x
n

[

∫ ∞
s

e−λ(t−s)f(t,Xt)dt]

=
1

λ
f(s, x) + EQs,x

n
[

∫ ∞
s

e−λ(t−s)
∫ t

s

(
∂f

∂u
+ Luf)(u,Xu)dudt]

=
1

λ
f(s, x) +

1

λ
EQs,x

n
[

∫ ∞
s

e−λ(t−s)(
∂f

∂t
+ Ltf)(t,Xt)dt]

Define the linear functional V λ
n f by

V λ
n f(s, x) := EQs,x

n
[

∫ ∞
s

e−λ(t−s)f(t,Xt)dt],

then we have

λV λ
n f(s, x) = f(s, x) + V λ

n [(
∂f

∂u
+ Luf)](s, x)

Note that for given g ∈ C1
b ([0,∞)×Rd), we have f = Rλg ∈ C2([0,∞)×Rd)

and |∇f | is bounded. Substituting this f in the above equation and noting
that (λ− L0

u − ∂
∂u

)Rλg = g, we get

V λ
n g = Rλg + V λ

n BR
λg. (2.17)

After an standard approximation procedure, the above equation holds for
any bounded continuous function g. Then it is easy to prove that the above
equation still holds for any bounded measurable function g.

Since V λ
n |B| = EQs,x

n
[
∫∞
s
e−λ(t−s)|B(t,Xt)|dt] <∞, using (2.17) we get

V λ
n BR

λg = RλBRλg + V λ
n (BRλ)2g.

After iteration in k steps we arrive at

V λ
n g =

k∑
i=0

Rλ(BRλ)ig + V λ
n (BRλ)k+1g.

But

|V λ
n (BRλ)k+1g| ≤ ‖∇Rλ(BRλ)kg‖∞EQs,x

n
[

∫ ∞
s

e−λ(t−s)|B(t,Xt)|dt]→ 0,

as k →∞.
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Therefore we have

EQs,x
n

[

∫ ∞
s

e−λ(t−s)g(t,Xt)dt] =
∞∑
i=0

Rλ(BRλ)ig(s, x) = EPs,x [

∫ ∞
s

e−λ(t−s)g(t,Xt)dt].

By the uniqueness of the Laplace transform, for Qs,x
n we have

Qs,x
n [f(Xt)] = Ps,x[f(Xt)], for all f ∈ Cb(Rd) and t ≥ s.

Then we can finally get

Qs,x[f(Xt)]

=Qs,x[f(Xt), t < τn] + Qs,x[f(Xt), t ≥ τn]

= lim
n→∞

Qs,x
n [f(Xt), t < τn]

= lim
n→∞

Qs,x
n [f(Xt), t < τn] + lim

n→∞
Qs,x
n [f(Xt), t ≥ τn]

=Ps,x[f(Xt)].

Lemma 2.2.20. Suppose that Qs,x is a solution to the martingale problem
for Lt starting from (s, x). For a given t > s, define Qω := Qs,x|Mt which
is the regular conditional distribution of Qs,x under Mt. Then there exists
a set N ∈ Mt such that Qs,x(N) = 0 and Qω solves the martingale problem
for Lt starting from (t, ω(t)) with ω /∈ N .

Proof. Let
{
fn : fn ∈ C∞0 (Rd), n ≥ 1

}
be dense in C∞0 (Rd). By [SV06,

Theorem 1.2.10], for each fn there exists Nn ∈ Mt such that Qs,x(Nn) = 0
and

Mfn(u) := fn(Xu)− fn(Xt)−
∫ u

t

Lfn(r,Xr)dr

is a martingale after time t with respect to (Ω,Mu, Qω) for all ω /∈ Nn.

We define a sequence of stopping times

τn := inf{u ≥ s :

∫ u

s

|B(r,Xr)|dr > n}.

It is easy to see that

Qs,x
(
{ω : τn(ω)→∞}

)
= 1.

Therefore there exists Nτ ∈Mt such that

Qω({ω : τn(ω)→∞}) = 1 for all ω /∈ Nτ .
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Let
N := Nσ ∪ (∪n≥1Nn).

Then for any ω /∈ N , Mfn(u ∧ σn) is again a martingale with respect to
(Ω,Mu, Qω).

For any f ∈ C∞0 (Rd), we can find fnk such that fnk → f in C∞0 (Rd) as
k →∞. Then

Mfnk
(u ∧ τn)→Mf (u ∧ τn)

bounded and pointwise as k →∞.

Hence (Mf (u∧ τn),Mu, Qω) is a martingale after t for any ω /∈ N . Then
for any ω /∈ N , (Mf (u),Mu, Qω) is a local martingale after time t. So
we know that Qω solves the local martingale problem for Lt starting from
(t, ωt) for any ω /∈ N . Since the second order term in Lt is 1

2
4, by [KS91,

Proposition 4.11], the local martingale problem for Lt is equivalent to the
martingale problem for Lt. Thus Qω solves the martingale problem for Lt
starting from (t, ωt) for all ω /∈ N .

Now from the Lemma 2.2.20 and Theorem 2.2.19, by standard arguments
one can get the uniqueness of solutions to the martingale problem for Lt.

Theorem 2.2.21. Ps,x is the unique solution to the martingale problem for
Lt starting from (s, x). Therefore the martingale problem for

Lt =
1

2
4+B(t, x) · ∇

is well-posed.

Proof. The proof is the same as the proof of [SV06, Theorem 6.2.3].

2.2.4 Well-posedness of the martingale problem: gen-
eral case

In last section, under Assumption 2.2.9, we proved that the martingale prob-
lem for Lt is well-posed. This means that although B is very singular, we
can still solve the martingale problem for Lt locally. However, martingale
problem can always be reduced to local considerations. Therefore in this
section we remove the additional technical Assumption 2.2.9. Now we come
back to the general case, namely we only impose Assumption 2.2.1:

|B(·, ·)| ∈ FKαd−1 for some α <
1

2
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The procedure to extend to general B is standard and is essentially the same
as in the time-independent case.

Theorem 2.2.22. If |B(·, ·)| ∈ FKαd−1 for some α < 1
2
, then the martingale

problem for

Lt =
1

2
4+B(t, x) · ∇

is well-posed.

Proof. This is a modification of the proof of [BC03, Theorem 2.6]. Since
|B(·, ·)| ∈ FKαd−1, we can find sufficiently small ε1 > 0 such that

Nα,+
2ε1

(|B|) < 1

2κC1

.

For each (s, x) ∈ [0,∞)× Rd, let

R(s,x) := [s, s+ ε1]×
{
y ∈ Rd : |y − x| ≤ 1

}
and Ps,x be the solution we constructed in last section with drift vector B̃(s,x),
where B̃(s,x)(t, y) := 1R(s,x)

(t, y)B(t, y).

Now fix (s, x) ∈ [0,∞)× Rd and let T0 = s. Define

Ti+1 = inf{t ≥ Ti : (t,Xt) /∈ R(Ti,XTi )
}.

Let Q1 = Ps,x and define inductively

Qi+1

(
A ∩ (C ◦ θTi)

)
:= EQi

[
PTi,XTi (C);A

]
, A ∈MTi , C ∈M.

It is clear that Qm|MTk = Qk|MTk if m ≥ k, therefore we can define

Q(A) = Qk(A) if A ∈MTk .

Since

EQi+1

[
e−Ti+1

]
= EQi+1

[
e−(Ti+1−Ti)e−Ti

]
= EQi

[
e−TiE

P
Ti,XTi

[e−(Ti+1−Ti)]
]
,

from Corollary 2.2.16, we know E
P
Ti,XTi

[e−(Ti+1−Ti)] < δ < 1, therefore by
induction

EQi+1

[
e−Ti+1

]
≤ δi+1.

So we have EQ[e−Ti ] ≤ δi and therefore

lim
i→∞

Ti =∞, a.e. under Q.

It is routine to check that Q is a solution. Furthermore, the uniqueness also
holds by standard arguments (cf. [Bas98, Section 6.3] and [SV06, Section
6.6]).
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2.3 Transition density function estimates un-
der further conditions

In Section 2.2 we proved existence and uniqueness of weak solutions to the
stochastic differential equation{

dXt = dWt +B(t,Xt)dt, t ≥ s.

Xt = x, 0 ≤ t ≤ s.

with drift terms B(t, x) such that |B(·, ·)| ∈ FKαd−1 for some α < 1
2
. This

process need not to have a transition density function. In this section we will
impose further conditions on the drift term B and prove that then the pro-
cess will have a continuous transition density admitting two-sided Gaussian
estimates. To this end we assume B to be in the time-dependent Kato class
T Kαd−1 for some α < 1

4
.

Assumption 2.3.1.

|B(·, ·)| ∈ T Kαd−1 for some α <
1

4
.

The reason why we use the class T Kαd−1, α <
1
4
, comes from the gradient

estimate of Brownian heat kernel p(s, x; t, y). Namely if α < 1
4
, then we can

find C > 0 and α0 with 2α < α0 < 1
2
such that for any 0 ≤ s < t and

x, y ∈ Rd,

|∇xp(s, x; t, y)| ≤ C

(t− s) d+1
2

exp
(
− α0

|x− y|2

t− s
)
. (2.18)

The gradient estimate (2.18) reminds us of the perturbation techniques we
used in Chapter 1.

Under Assumption 2.3.1, we prove that (Xt,P
s,x) has a continuous tran-

sition function q(s, x; t, y) satisfying two-sided Gaussian estimates. Since the
method is similar to what we have already used in Chapter 1, here we just
state the main theorem and omit the details of the proof.

We should remark that these are analogs of the results of [KS06] in the
time-dependent case.

In Chapter 1, we considered a parabolic equation with singular lower
order terms. In view of the estimates (2.18), the methods in chapter 1 can
also be applied here.
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Since |B(·, ·)| ∈ T Kαd−1, α <
1
4
, by Lemma 1.1.6 and Lemma 1.1.8, we can

find a sequence of functions ϕn ∈ C∞0 (Rd+1) such that

Bn := B ∗ ϕn = (B1 ∗ ϕn, · · · , Bd ∗ ϕn) ∈ C∞b (Rd+1)

and for any h > 0 and compact set K ⊂ [0,∞)× Rd,

lim
n→∞

Nα
h (1K |Bn −B|) = 0. (2.19)

Since Bn ∈ C∞b (Rd+1), there exists a unique solution Ps,x
n to the martin-

gale problem for
1

2
4+Bn(t, x) · ∇

starting from (s, x). Moreover, the Markov process (Xn
t ,P

s,x
n ) has a contin-

uous transition density qn(s, x; t, y) which satisfies Kolmogorov’s backward
equation:

∂qn(s, x; t, y)

∂s
+

1

2
4qn(s, x; t, y) +Bn(s, x) · ∇xqn(s, x; t, y) = 0. (2.20)

From the gradient estimate (2.18) and the fact that 2α < α0 <
1
2
, we

can use the same method as that of Section 1.3.1 to get the following two
Lemmas.

Lemma 2.3.2. For each T > 0, there exist constants cT , CT , α′ such that for
any 0 < t− s ≤ T and x, y ∈ Rd,

(i)
cT

(t− s) d2
exp(−α′ · |x− y|

2

t− s
) ≤ qn(s, x; t, y) ≤ CT

(t− s) d2
exp(−α0

2
· |x− y|

2

t− s
);

(ii) |∇xqn(s, x; t, y)| ≤ CT

(t− s) d+1
2

exp(−α0

2
· |x− y|

2

t− s
).

where the constants cT , CT depend only on T and the rate at which Nα
h (|B|)

tends to 0 as h→ 0.

Lemma 2.3.3. Let θ := {(s, t) : 0 ≤ s < t}. Suppose that K1, K2 ⊂ Rd and
K ⊂ θ are compact sets, then both qn(s, x; t, y) and ∇xqn(s, x; t, y) converge
uniformly on {(s, t) : (s, t) ∈ K} ×K1 ×K2.

By Lemma 2.3.2 and 2.3.3 we can prove the main theorem of this section.
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Theorem 2.3.4. Under Assumption 2.3.1, the Markov process (Xt,P
s,x)

has a continuous transition density function q(s, x; t, y). Moreover, for each
T > 0, there exist constants cT , CT , α′ such that for any 0 < t − s ≤ T and
x, y ∈ Rd,

(i)
cT

(t− s) d2
exp(−α′ · |x− y|

2

t− s
) ≤ q(s, x; t, y) ≤ CT

(t− s) d2
exp(−α0

2
· |x− y|

2

t− s
),

(ii) |∇xq(s, x; t, y)| ≤ CT

(t− s) d+1
2

exp(−α0

2
· |x− y|

2

t− s
),

where the constants cT , CT depend only on T and the rate at which Nα
h (|B|)

tends to 0 as h→ 0.

Proof. This is a modification of the proof of [KS06] Theorem 3.14. From
Lemma 2.3.3, we know that the transition density qn(s, x; t, y) for (Xn

t ,P
s,x
n )

converges uniformly on compact sets. We denote the limit as q(s, x; t, y).
Like Theorem 1.3.12, it is easy to show that ∇xqn(s, x; t, y) converges to
∇xq(s, x; t, y) uniformly on compact sets. If we can show that q(s, x; t, y) is
the transition density of (Xt,P

s,x), then we are done.

Using the same arguments in the proof of [KS06] Theorem 3.14, we claim
that, as probability measures on

(
Ω = C([0,∞); Rd),M

)
, Ps,x

n converges
weakly to Ps,x. Now we fix (s, x) ∈ [0,∞) × Rd and t > s. For any f ∈
C0(Rd), we have

Ps,x(f(Xt)) = lim
n→∞

Ps,x
n (f(Xt))

= lim
n→∞

∫
Rd
qn(s, x; t, y)f(y)dy

=

∫
Rd
q(s, x; t, y)f(y)dy.

Therefore (Xt,P
s,x) has transition density q(s, x; t, y). The theorem is proved.



Chapter 3

Construction of Glauber
dynamics for an unbounded spin
system on a graph

Recently unbounded spin systems on a graph were investigated in [Pas07a]
and [Pas07b]. Under certain assumptions on the graph and the potential
functions, the author obtained existence of tempered Gibbs measures and
ergodicity of the corresponding Glauber dynamics.

In this chapter we consider the same model as in [Pas07a], but impose
weaker conditions on the potential functions. Apart from some growth condi-
tions, we merely assume the potential functions to be measurable. The main
aim is to construct the corresponding Glauber dynamics. Not like the pre-
vious chapters, here we come to an infinite dimensional space. To overcome
this difficulty we will use the Dirichlet form methods. We adapt the methods
of [Pas07a] to get existence of tempered Gibbs measures; then we show that
the corresponding Dirichlet form is quasi-regular. Using the correspondence
between Markov processes and Dirichlet forms, we can construct the Glauber
dynamics.

3.1 Descriptions of the model

Unbounded spin systems on a lattice are very important in statistical me-
chanics. The properties of the spin system necessarily depend on the specific
geometrical structure of the lattice. In [Pas07a], T. Pasurek studied un-
bounded spin systems on a graph. In this section we consider the same

85
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model as in [Pas07a], but under more general assumptions.

3.1.1 Spin system on an infinite graph

Here, instead of the lattice we consider a general infinite graph G(V,E) con-
sisting of a countable set of vertices v ∈ V and a set of unordered edges
e = [v, v′] ∈ E. The graph G(V,E) is assumed to be connected and simple,
i.e. without isolated vertices, loops, and multiple edges. Naturally we have
the combinatorial distance ρ(v, v′) on V which is the length of the shortest
path connecting v, v′ ∈ V. If ρ(v, v′) = 1, we say that v and v′ are adja-
cent and denote this by v ∼ v′. For each vertex v, we define its vicinity
∂v := {v′ ∈ V|v ∼ v′} and the degree mv := |∂v|. We assume throughout
this chapter that G(V,E) is of uniformly bounded degree, i.e.

mG := sup
v∈V

mv <∞.

Remark 3.1.1. For any G(V,E) of uniformly bounded degree, it is easy to
see that there exists δ > 0 such that∑

v∈V

e−δρ(v,o) <∞,

for some (and hence, for each) fixed vertex o ∈ V. We define

δG := inf
{
δ > 0 :

∑
v∈V

e−δρ(v,o) <∞
}
.

Now we introduce spin systems on G(V,E). For a spin system on G(V,E),
we mean that to each vertex v ∈ V, there corresponds a particle performing
one-dimensional oscillation and we use xv ∈ R to denote the state of the par-
ticle at vertex v. Here for simplicity we consider the one-dimensional spins,
but our method also works for the multidimensional case. The configuration
space Ω := RV of this system consists of all real sequence x = (xv)v∈V. We
assume that the potential energy of each configuration x ∈ Ω is given by a
formal Hamiltonian

H(x) =
∑
v

Vv(xv) +
1

2

∑
v∼v′

Wvv′(xv, xv′),

where the sums are running over all v ∈ V and ordered pairs (v, v′) ∈ V2

with ρ(v, v′) = 1. The self-potentials Vv and interactions Wvv′ are assumed
to satisfy the following conditions:
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Assumption 3.1.2. Wvv′(·, ·) is a measurable function on (R2,B(R2)) and
there exist constants CW , J ≥ 0 such that for all v ∼ v′ and xv, xv′ ∈ R

|Wvv′(xv, xv′)| ≤
1

2
J(CW + |xv|2 + |xv′ |2).

Assumption 3.1.3. Vv(·) is a measurable function on (R,B(R)) and there
exist constants p ≥ 2, AV > mGJ(eδG + 1

2
), BV ∈ R and CV > 0 such that for

all v ∈ V and xv ∈ R

AV |xv|2 +BV ≤ Vv(xv) ≤ CV (1 + |xv|p).

Here apart from some growth conditions, we merely assume Vv,Wvv′ to
be measurable.

Remark 3.1.4. We suppose that the interaction potentials Wvv′ are sym-
metric in v, v′ ∈ V.

3.1.2 Local specification and Gibbs measures

In this section we study Gibbs measures which describe the equilibrium states
of our spin system.

Recall that the configuration space Ω = {ω = (ωv)v∈V : ωv ∈ R} of
our spin system is the infinite product space of V copies of one dimensional
Euclidean space, let F be the product σ-algebra on Ω.

For each v ∈ V, let

σv : Ω→R
ω 7→ωv

be the projection onto the v’th coordinate. Similarly for each Λ b V, by

σΛ : Ω→ RΛ

we denote the projection onto the coordinates in Λ. Let FΛ be the σ-algebra
generated by σΛ.

Definition 3.1.5. (i) A real function f on Ω is called a local function if f
is FΛ-measurable for some Λ b V. A subset A ⊂ Ω is called a cylinder set
if 1A is a local function.

(ii) A function f : Ω→ R is called quasilocal if there is a sequence (fn)n≥1

of local functions fn such that limn→∞ supω∈Ω |f(ω)− fn(ω| = 0.
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We fix an inverse temperature β > 0 and define the local specification

Π := {πΛ}ΛbV.

This is a family of probability kernels

B(Ω)× Ω 3 (B, y) 7→ πΛ(B|y) ∈ [0, 1],

where

πΛ(B|y) := Z−1
Λ

∫
ΩΛ

exp
{
− βHΛ(xΛ|y)

}
1B(xΛ × yΛc)dxΛ

and 1B is the indicator function of B ∈ B(Ω). Here

ZΛ(y) :=

∫
ΩΛ

exp
{
− βHΛ(xΛ|y)

}
dxΛ

is the normalization factor and

HΛ(xΛ|y) :=
∑
v∈Λ

Vv(xv) +
1

2

∑
v∈Λ

v′∈Λ∩∂v

Wvv′(xv, xv′) +
∑
v∈Λ

v′∈Λc∩∂v

Wvv′(xv, yv′)

is the potential energy within the finite volume Λ with boundary condition
y ∈ Ω.

Remark 3.1.6. By construction the local specification Π := {πΛ}ΛbV satis-
fies: ∫

Ω

πΛ(B|x)πΛ′(dx|y) = πΛ′(B|y),∀Λ ⊆ Λ′, B ∈ B(Ω), y ∈ Ω.

This is usually referred as the consistency property.

Because we are considering finite range potentials here, by Proposition
2.24(a) and Example 2.25(i) in [Geo88], we can get the following proposition.

Proposition 3.1.7. The specification Π := {πΛ}ΛbV is quasilocal, namely
for any Λ b V and bounded quasilocal function f , πΛf is again quasilocal.

Let P(Ω,F) denote the set of all probability measures on (Ω,F). Now
we give the definition of Gibbs measures.

Definition 3.1.8. µ ∈ P(Ω,F) is called a Gibbs measure for Π := {πΛ}ΛbV
if it satisfies the DLR equilibrium equation∫

Ω

πΛ(B|x)µ(dx) = µ(B), (3.1)

for all Λ b V and B ∈ B(Ω).
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3.1.3 Tempered configuration space Ωt

Throughout the rest part of this chapter, we fix a vertex o ∈ V. For each
δ > 0 we define

‖x‖δ :=

[∑
v∈V

|xv|2exp
{
− δρ(v, o)

}]1/2

and Ωδ :=
{
x ∈ Ω : ‖x‖δ <∞

}
. The tempered configuration space is

Ωt :=
⋂
δ>δG

Ωδ.

We endow Ωt with the topology of the projective limit generated by the
norms ‖ · ‖δ, δ > δG.

Suppose δn > δG, δn ↓ δG, on each Ωδn , there is a natural distance

dn(x, y) :=
(∑
v∈V

|xv − yv|2exp
{
− δnρ(v, o)

})1/2

.

For any x, y ∈ Ωt, define

d(x, y) =
∞∑
n=1

1

2n
· dn(x, y)

1 + dn(x, y)
.

It is easy to see that this metric induces the same topology as the original
one and with this metric Ωt becomes a Polish space.

Definition 3.1.9. A Gibbs measure µ is called tempered if µ(Ωt) = 1.

Later we restrict ourselves to the tempered configuration space Ωt and
construct the Glauber dynamics on Ωt.

3.2 Existence of tempered Gibbs measures

In order to prove the existence of Gibbs measure, we first need to adopt a
topology on P(Ω,F). Here we take the topology of local convergence (cf.
[Geo88, Chapter 4]) because our potential functions are only assumed to be
meausurable.
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Definition 3.2.1. A net (µα)α∈D in P(Ω,F) converges to µ under the topol-
ogy of local convergence if limD µα(A) = µ(A) for all A ∈ F0 where F0 is
the algebra generated by all cylinder sets in Ω.

Definition 3.2.2. A net (µα)α∈D in P(Ω,F) is said to be locally equicon-
tinuous if for each Λ b V and each sequence (Am)m≥1 in FΛ with Am ↓ ∅

lim
m→∞

lim sup
α∈D

µα(Am) = 0.

Let 4 := AV − 1
2
mGJ , then by the assumptions on Vv, we have

4 > mGJe
δG .

Now suppose that v ∈ V, Λ b V, y ∈ Ω, and κ is an arbitrary constant such
that

mGJe
δG < κ < 4,

we define
nv(Λ|y) := ln

{∫
Ω

exp{βκ|xv|2}πΛ(dx|y)

}
.

The following lemma is taken from [Pas07a], for the reader’s convenience
we put the proof in the appendix to this chapter.

Lemma 3.2.3. For any δ ∈
(
δG, ln

κ
mGJ

)
, there exists Υδ := Υδ(β, κ) > 0

such that uniformly for all y ∈ Ωδ

lim sup
Λ↑V

[∑
v∈Λ

nv(Λ|y) exp{−δρ(v, o)}
]
≤ βΥδ.

Now we fix a sequence Λn ↑ V.

Lemma 3.2.4. For a given y ∈ Ωt, we define µn := πΛn(·|y). Then the
sequence µn is locally equicontinuous in P(Ω,F) and therefore has a cluster
point.

Proof. Let Kl = [−l, l], l ≥ 1, according to [Geo88, Corollary 4.13], we only
need to prove

lim
l→∞

lim sup
n

µn(xv /∈ Kl) = 0, ∀v ∈ V.

From Lemma 3.2.3, for each fixed v ∈ V, we have

lim sup
Λ↑V

ln

{∫
Ω

exp{βκ|xv|2}πΛ(dx|y)

}
exp{−δρ(v, o)} ≤ βΥδ.
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By Jensen’s inequality,

lim sup
Λ↑V

∫
Ω

βκ|xv|2πΛ(dx|y) ≤ βΥδ exp{δρ(v, o)}.

Therefore

lim sup
n

µn(xv /∈ Kl) = lim sup
n

πΛn((xv /∈ Kl)|y)

≤ lim sup
n

∫
{x:|xv |>l}

|xv|2

l2
πΛn(dx|y) ≤ 1

l2
lim sup

n

∫
Ω

|xv|2πΛn(dx|y)

≤ 1

l2κ
βΥδ exp{δρ(v, o)}.

So
lim
l→∞

lim sup
n

µn(xv /∈ Kl) = 0.

Fix some y ∈ Ωt and suppose that µ is a cluster point of µn = πΛn(·|y).
Since our specification is quasilocal, µ is in fact a Gibbs measure. Now we
show that µ is tempered.
Theorem 3.2.5. µ is a tempered Gibbs measure.

Proof. According to [Geo88, Proposition 4.15], there is a subsequence µnk
which converges to µ. From Lemma 3.2.3, by Jensen’s inequality,

lim sup
Λ↑V

[ ∫
Ω

∑
v∈Λ

|xv|2 exp{−δρ(v, o)}πΛ(dx|y)

]
≤ Υδ/κ.

For each fixed Λ b V, there exists k large enough such that Λ ⊂ Λnk . So

lim sup
k→∞

[ ∫
Ω

∑
v∈Λ

|xv|2 exp{−δρ(v, o)}µnk(dx)

]
≤ Υδ/κ.

Recall that for any A ∈ FΛ, we have limk µnk(A) = µ(A). Then for any
M > 0, ∫

Ω

M ∧
(∑

v∈Λ

|xv|2 exp{−δρ(v, o)}
)
µ(dx)

= lim
k→∞

[ ∫
Ω

M ∧
(∑

v∈Λ

|xv|2 exp{−δρ(v, o)}
)
µnk(dx)

]
≤ lim sup

k→∞

[ ∫
Ω

∑
v∈Λ

|xv|2 exp{−δρ(v, o)}µnk(dx)

]
≤Υδ/κ.
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Since M is arbitrary, by monotone convergence theorem, we get∫
Ω

∑
v∈Λ

|xv|2 exp{−δρ(v, o)}µ(dx) ≤ Υδ/κ,

then clearly ∫
Ω

∑
v∈V

|xv|2 exp{−δρ(v, o)}µ(dx) ≤ Υδ/κ,

which implies µ(Ωδ) = 1. But it is true for any δ such that δG < δ < κ, now
it follows µ(Ωt) = 1.

3.3 The Dirichlet form and construction of the
Glauber dynamics

In this section, we will construct the Glauber dynamics on Ωt. From now on,
we fix some tempered Gibbs measure µ on Ωt.

For each vertex v ∈ V, we denote the unit vector at v by ev := (δvv′)v′∈V.
Now we fix a v ∈ V and for x = (xv)v∈V ∈ Ωt define

τv(x) := x− xv · ev.

Let Ev := {τv(x) : x ∈ Ωt}, then Ev is a closed subspace of Ωt. For each
y ∈ Ev, s ∈ R, define

ρv(y, s) = Zv(y)−1 exp
{
− βHv(y, s)

}
,

here
Zv(y) :=

∫
R

exp
{
− βHv(y, s)

}
ds

is the normalization factor and

Hv(y, s) := Vv(s) +
∑
v′∈∂v

Wvv′(s, yv′).

Since µ is a tempered Gibbs measure, by definition, for any bounded mea-
surable function u(x) on Ωt, we have∫

Ωt
u(x)µ(dx) =

∫
Ev

∫
R
u(y + s · ev)ρv(y, s)µv(dx),

where µv := τv(µ).



3.3. CONSTRUCTION OF THE GLAUBER DYNAMICS 93

From Assumption 3.1.2 and Assumption 3.1.3, for ∀ y ∈ Ev, s ∈ R

Hv(y, s) ≤CV (1 + |s|p) +
∑
v′∈∂v

1

2
J(CW + |s|2 + |yv′ |2)

≤CV +
1

2
mGCWJ +

∑
v′∈∂v

1

2
|yv′|2J + CV |s|p +

1

2
mGJ |s|2

Therefore

Zv(y)−1 exp
{
−βCV−

1

2
βJ(mGCW+

∑
v′∈∂v

|yv′ |2)−β(CV |s|p+
1

2
mGJ |s|2)

}
≤ ρv(y, s)

For each fixed y ∈ Ev, the function s 7→ ρv(y, s) satisfies the condition (H)
in [AR90, Section 2].

Now we denote the dual space of Ωt by (Ωt)′ and let

l2(V) := {x ∈ Ω :
∑
v∈V

|xv|2 <∞}.

Then we easily see that
(Ωt)′ ⊂ l2(V) ⊂ Ωt

densely and continuously. It follows that for any l ∈ (Ωt)′∑
v∈V

|〈l, ev〉|2 <∞. (3.2)

Now let

FC∞b := {u : Ωt → R : there exist l1, · · · , lm ∈ E ′ and f ∈ C∞b (Rm)

such that u(x) = f(l1(x), · · · , lm(x)), x ∈ Ωt}.

By [AR90, Theorem 3.2], the bilinear form

Ev(u, v) :=

∫
∂u

∂ev

∂v

∂ev
dµ, u, v ∈ FC∞b

is closable and we denote the closure as
(
Ev, D(Ev)

)
.

We define a bilinear form

D(Ē) :=

{
u ∈ FC∞b :

∑
v∈V

Ev(u, u) <∞
}

Ē(u, v) :=
∑
v∈V

Ev(u, v), u, v ∈ D(Ē).
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By (3.2) and [AR90, Theorem 3.8], we know that

D(Ē) = FC∞b ,

(Ē , D(Ē)) is closable and the closure (E , D(E)) is a Dirichlet form. Next we
want to show that the Dirichlet form (E , D(E)) is quasi-regular (cf. [MR92,
Chap.IV, Definition 3.1], namely the followings hold for (E , D(E)):

(i)There exists an E-nest consisting of compact sets.

(ii) There exists an E1/2
1 -dense subset of D(E) whose elements have E-

quasi-continuous µ-versions.

(iii) There exist un ∈ D(E), n ∈ N, having E-quasi-continuous µ-versions,
ũn, n ∈ N, and an E-exceptional set N ⊂ E such that {ũn|n ∈ N} separates
the points of Ωt \N .

Then we can use the correspondence of quasi-regular Dirichlet forms and
Markov processes to construct the Glauber dynamics.

First we need to prove the following lemma.

Lemma 3.3.1. For any y ∈ Ωt, define v(x) : Ωt → R by

v(x) = d(x, y),

then v(x) ∈ D(E).

Proof. Since

v(x) = d(x, y) =
∞∑
n=1

1

2n
· dn(x, y)

1 + dn(x, y)
,

we first show that
dn(x, y)

1 + dn(x, y)
∈ D(E).

We arrange the countable vertexes of G(V,E) in a sequence:

v1, v2, · · · , vm, · · · · · ·

Then
dn(x, y)

1 + dn(x, y)
= lim

m→∞

(∑
1≤i≤m(xvi − yvi)2ai

) 1
2

1 +
(∑

1≤i≤m(xvi − yvi)2ai
) 1

2

(3.3)

where ai := e−δnρ(vi,o). Define f(z) : Rm → R as

f(z1, · · · , zm) :=

(∑
1≤i≤m(zi − yvi)2ai

) 1
2

1 +
(∑

1≤i≤m(zi − yvi)2ai
) 1

2

.
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Then for f(z), let fn(z) = f ∗ϕn(z), here ϕn(z) = nmϕ(nz) and ϕ ∈ C∞0 (Rm)
nonnegative,

∫
Rm ϕ(z)dz = 1. Then by direct computation and noting that

0 < ai < 1 we have

m∑
i=1

|∂fn(z)

∂zi
|2 =

m∑
i=1

|
∫

Rm

∂f

∂zi
(z − w)ϕn(w)dw|2

≤
∫

Rm

m∑
i=1

| ∂f
∂zi

(z − w)|2ϕn(w)dw ≤ 1, for ∀z ∈ Rm.

Then gn(x) := fn(xv1 , · · · , xvm) ∈ FC∞b and

E(gn, gn) =

∫
Ωt

m∑
i=1

|∂gn(x)

∂evi
|2µ(dx)

=

∫
Ωt

m∑
i=1

|∂fn
∂zi

(xv1 , · · · , xvm)|2µ(dx) ≤ 1.

But limn→∞ fn(xv1 , · · · , xvm) = f(xv1 , · · · , xvm), namely

lim
n→∞

gn(x) =

(∑
1≤i≤m(xvi − yvi)2ai

) 1
2

1 +
(∑

1≤i≤m(xvi − yvi)2ai
) 1

2

.

By [MR92, Chap.I, Lemma 2.12], we have

f(xv1 , · · · , xvm) =

(∑
1≤i≤m(xvi − yvi)2ai

) 1
2

1 +
(∑

1≤i≤m(xvi − yvi)2ai
) 1

2

∈ D(E)

and E
(
f(xv1 , · · · , xvm), f(xv1 , · · · , xvm)

)
≤ 1.

Similarly, by (3.3), we get

dn(x, y)

1 + dn(x, y)
∈ D(E), E

(
dn(x, y)

1 + dn(x, y)
,

dn(x, y)

1 + dn(x, y)

)
≤ 1.

Now it is easily seen that v(x) ∈ D(E).

Theorem 3.3.2. (E , D(E)) is quasi-regular and therefore there exists a dif-
fusion process X = (Ω,F ,Ft, θt, Xt, P

x) on Ωt which is properly associated
with (E , D(E)). This diffusion process is usually called the Glauber dynamics.
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Proof. Note that for any δ > δG,Ω
t ⊂ Ωδ densely and continuously. But Ωδ

is a separable Hilbert space and therefore we can find ln ∈ (Ωδ)
′, n ∈ N, such

that
{sin ln|n ∈ N}

separates the points of Ωδ. Here (Ωδ)
′ denotes the dual space of Ωδ. Since ln,

restricted on Ωt, is again a continuous linear functional on Ωt and therefore
sin ln ∈ FC∞b . Clearly {sin ln|n ∈ N} also separates the points of Ωt.

Since Ωt is separable, we can choose a countable dense set {ym|m ∈ N}
in Ωt. For each m ∈ N define vm : Ωt → R by

vm(x) = d(x, ym).

By the preceding lemma, we know vm(x) ∈ D(E).

For each v ∈ V and x 6= ym,

∂vm(x)

∂ev
=
∂vm(x+ t · ev)

∂t

∣∣∣∣
t=0

=
∞∑
n=1

1

2n
·
(

dn(x+ t · ev, ym)

1 + dn(x+ t · ev, ym)

)′∣∣∣∣
t=0

=
∞∑
n=1

1

2n
· 1(

1 + dn(x, ym)
)2 ·

(xv − yv) · e−δnρ(o,v)(∑
v∈V(xv − yv)2 · e−δnρ(o,v)

) 1
2

.

Therefore for ∀ x 6= ym

|∂vm(x)

∂ev
| ≤

∞∑
n=1

1

2n
|xv − yv| · e−δnρ(o,v)(∑

v∈V(xv − yv)2 · e−δnρ(o,v)
) 1

2

,

so∑
v∈V

|∂vm(x)

∂ev
|2 ≤

∑
v∈V

( ∞∑
n=1

1

2n
|xv − yv| · e−δnρ(o,v)(∑

v∈V(xv − yv)2 · e−δnρ(o,v)
) 1

2

)2

=
∑
v∈V

( ∞∑
n=1

1

2n
|xv − yv| · e−δnρ(o,v)(∑

v∈V(xv − yv)2 · e−δnρ(o,v)
) 1

2

)( ∞∑
l=1

1

2l
|xv − yv| · e−δlρ(o,v)(∑

v∈V(xv − yv)2 · e−δlρ(o,v)
) 1

2

)

=
∑
v∈V

n≥1,l≥1

1

2n+l

|xv − yv|2 · e−(δn+δl)ρ(o,v)(∑
v∈V(xv − yv)2 · e−δnρ(o,v)

) 1
2
(∑

v∈V(xv − yv)2 · e−δlρ(o,v)
) 1

2

=
∑
n,l≤1

1

2n+l

∑
v∈V |xv − yv|2 · e−(δn+δl)ρ(o,v)(∑

v∈V(xv − yv)2 · e−δnρ(o,v)
) 1

2
(∑

v∈V(xv − yv)2 · e−δlρ(o,v)
) 1

2
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=
∑
n,l≤1

1

2n+l
·
(∑

v∈V |xv − yv|2 · e−(δn+δl)ρ(o,v)
) 1

2(∑
v∈V(xv − yv)2 · e−δnρ(o,v)

) 1
2

(∑
v∈V |xv − yv|2 · e−(δn+δl)ρ(o,v)

) 1
2(∑

v∈V(xv − yv)2 · e−δlρ(o,v)
) 1

2

≤
∑
n,l≤1

1

2n+l
= 1.

It is easily seen that µ(ym) = 0, therefore∑
v∈V

|∂vm(x)

∂ev
|2 ≤ 1 for µ− a.e. x ∈ Ωt.

Then we can use the same method as [MR92, Chap.IV, Proposition 4.2] to
prove that there exists an E-nest consisting of compact sets. Thus we have
proved that (E , D(E)) is quasi-regular.

3.4 Appendix

In this section we give a proof of Lemma 3.2.3. The following proof is taken
from [Pas07a].

Proof of Lemma 3.2.3

Proof. From Assumption 3.1.2, for any v ∈ V and x, y ∈ Ω∑
v′∈∂v

|Wvv′(xv, yv′)| ≤
mGJ

2
|xv|2 +

J

2

∑
v′∈∂v

(CW + |yv′ |2). (3.4)

By (3.4) and the definition of πv(dx|y),∫
Ω

exp
{
βκ|xv|2

}
πv(dx|y)

≤ (Xv/Yv) · exp
{
βJ(mGCW +

∑
v′∈∂v

|yv′ |2)
}
,

where

Xv :=

∫
R

exp

{
− β

[
Vv(xv)− (κ+

mGJ

2
)|xv|2

]}
dxv,

Yv :=

∫
R

exp

{
− β

[
Vv(xv) +

mGJ

2
|xv|2

]}
dxv.
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Using the upper and lower bounds in Assumption 3.1.3, one observes that

X := sup
v
Xv ≤ exp{−βBV }

∫
R

exp

{
− β(4− κ)xv|2

}
dxv <∞,

Y := inf
v
Yv ≥

∫
R

exp

{
− β

[
CV (1 + |xv|p) +

mGJ

2
|xv|2

]}
dxv > 0.

Therefore we get∫
Ω

exp
{
βκ|xv|2

}
πv(dx|y) ≤ exp

{
β

(
Υ +

∑
v′∈∂v

J |yv′ |2
)}

, (3.5)

where Υ := β−1 ln{X/Y }+ CWmGJ .

Recall that

nv(Λ|y) := ln

{∫
Ω

exp{βκ|xv|2}πΛ(dx|y)

}
.

Integrating in (3.5) with respeact to πΛ(dx|y) with y ∈ Ωδ and using the
consistency property we arrive at

nv(Λ|y) ≤β
(

Υ +
∑

v′∈∂+Λ

Jvv′|yv′ |2
)

+ ln
{∫

Ω

exp

(∑
v′∈Λ

κ−1Jβκ|xv′ |2
)
πΛ(dx|y)

}
≤β
(

Υ +
∑

v′∈∂+Λ

Jvv′|yv′ |2
)

+ κ−1
∑
v′∈Λ

Jvv′ · nv′(Λ|y), (3.6)

where ∂+Λ := {v′ ∈ Λc|ρ(v′,Λ) = 1} and Jvv′ = J if v ∼ v′, otherwise Jvv′ =
0. Here we used the multiple Hölder inequality µ(

∏n
i=1 f

αi
i ) ≤

∏n
i=1(µ(fi))

αi ,
valid for µ ∈ P(Ω), functions fi ≥ 0, and αi ∈ R+,

∑n
i=1 αi ≤ 1.

Multiplying both sides of (3.6) by exp{−δρ(v, 0)} and then summing over
v ∈ Λ one gets∑

v∈Λ

nv(Λ|y) exp{−δρ(v, o)}

≤ β

1− k−1mGJ · exp δ
· [Υ‖1Λ‖2

δ + ‖yΛc‖2
δmGJ · exp δ].
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Since ‖y‖δ <∞ for y ∈ Ωδ, we finally conclude that

lim sup
Λ↑V

[∑
v∈Λ

nv(Λ|y) exp{−δρ(v, o)}
]
≤ βΥδ,

where Υδ :=
Υ·‖1‖2δ

1−k−1mGJ ·exp δ
.
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