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Introduction

Diffusion processes are stochastic processes describing the physical phenomenon
of diffusion. Their mathematical theories are firmly based on modern proba-
bility theory, or more precisely, Ito calculus. Using Ito’s stochastic calculus,
it is possible to characterize the infinitesimal motion of a diffusion particle.
The dynamics of a diffusion particle in R? is usually governed by a stochastic
differential equation

dXt = b(t, Xt)dt + O'(t, Xt)th, (1)

where o(t,z) : [0,00) x R — R @ R", b(t,z) : [0,00) x R? — R? are mea-
surable and W, is an r-dimensional Brownian motion. Because of intuitive
physical meanings, the matrix a(t,z) := o(t, z)o” (¢, z) is called the diffusion
matrix and b(t, z) called the drift vector.

The basic existence and uniqueness theories for (1) were already estab-
lished by the end of last 60’s. It was K. [to who gave the first existence and
uniqueness theorem to (1). He proved that if o(t,x),b(t,x) are uniformly
Lipschitz with respect to x and are at most of linear growth, then there
exists a unique strong solution to (1). Then in 1969, using the martingale
problem methods, Stroock and Varadhan proved that there exists a unique
weak solution to (1) if a(t,z) is bounded continuous, everywhere positive
definite and b(¢, x) is bounded measurable.

However, the above mentioned existence and uniqueness results require
the coefficients of (1) to be locally bounded, namely a(t,z),b(t, ) could
not be singular. Motivated from applications, of course also mathematically
important, many people studied the existence and uniqueness problem for
(1) when the coefficients are not locally bounded (cf. [Stu93, ES84, Por90,
BC03, KRO05], and the list is far from complete). Now it is an accepted fact
that, if the diffusion matrix is "nice", then very mild assumptions on the
drift vector still ensure that (1) has a unique weak solution.

Now let’s look at the simplest case in which a(t,x) is everywhere the
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6 INTRODUCTION

identity matrix. The stochastic differential equation (1) becomes

The solution to (2), if it exists, is usually called Brownian motion with drift
b. To solve (2), both probabilistic and analytic methods can be used. We
know that, under Novikov’s condition holding for b(¢,z), the equation (2)
can be solved through Girsanov transformation. Several authors adopted
this approach to solve (2) under various assumptions on b(¢,z) (cf. [Stu93,
Por90]).

Apart from probabilistic methods, one can also use modern PDE theories.
We could look at the corresponding Kolmogorov’s backward equation

%+%Au+b(s,x> -Vu = 0. (3)
If b(s,z) is smooth and has compact support, it is well-known that for (3)
there exists a classical fundamental solution which is exactly the transition
density function for the diffusion process described by (2). When b(s, x) is
merely bounded and measurable, classical fundamental solutions for (3) do
not exist in general. However, D.G. Aronson’s work (cf. [Aro68|) tell us
there still exists a fundamental solution p(s,z;t,y) for (3) in a weak sense
when b(s,z) only satisfies some integrability condition. Using this weak
fundamental solution p(s,x;t,y) as the transition probability density of the
desired process, N.I. Portenko constructed a weak solution to (2) for a broad
class of drift vectors b.

Recently, Bass and Chen used another method to solve (2) (cf. [BCO03]).
They proved that if the drift b(¢, x) is independent of time (i.e. b(t,z) = b(x))
and each component b'(z) belongs to the Kato class Ky_; (cf. Example 1.1.2
for the definition), then (2) has a unique weak solution. In fact they could
even allow the drift to be a Radon measure, but then the notion of a solution
to (2) would be a little bit different from the usual sense. Their method is
based on constructing the resolvent S* of the desired process described by

(2).

The above mentioned results concerning the stochastic differential equa-
tion (2) dealt only with weak solutions. In the paper [KRO05], Krylov and
Réckner considered existence and uniqueness of strong solutions to (2). They
proved that if b(¢,x) is locally in LP? (cf. Example 1.1.2 for the definition)
with p > 2 and % + % < %, then (2) has a unique strong solution up to an
explosion time.

In this work, we aimed to construct diffusion processes with singular
coefficients using analytic methods. In chapter 1 and chapter 2, we consider



the stochastic differential equation (2) for a new class of singular drift vector
b(t,x). In chapter 3 we turn to the infinite dimensional case and construct
the Glauber dynamics of an unbounded spin system on a graph. To be more
precise, we now explain the contents and main results of this thesis chapter
by chapter.

Weak fundamental solution for a parabolic equation with
singular lower order terms

From the work of N.I. Portenko, we have seen that fundamental solutions
of second order parabolic equations are very helpful for the construction of
diffusion processes. Therefore in chapter 1 we study a class of second order
parabolic equations of the following form

Via(t,z) - Vu(t,z)) + b(t,z) - Vu(t,z) + V(t,x)u(t,x) — wu(t,z) =0 (4)

in the domain [0, 7] x RY, where T' < oo. Here we use the notation

d d
Via(t,z) - Vu) = Z 0z, 0ijO0p,u,  b-Vu = Z b0y 1.
j=1

ij=1

There has been a lot of work on weak fundamental solutions of (4) under
various assumptions on the coefficients. In particular, it was Qi S. Zhang
who first introduced time-dependent Kato classes to study (4). In [Zha96a,
Zha97al, Qi S. Zhang studied the special case of (4) in which V' = 0. There he
assumed that a(¢, x) is uniformly elliptic and Holder continuous, |b(¢, )| has
compact support and belongs to 75, (cf. Definition 1.1.1) for any ¢ > 0,
then he proved Gaussian bounds of the corresponding weak fundamental
solution. He also treated the case in which b = 0 and V (¢, ) has compact
support and belongs to the class T7XS_, (cf. Definition 1.1.9) for any ¢ > 0,
see |Zha96b, Zha97b| for more details.

Then in [LS00], Liskevich and Semenov studied the full form of (4). For
the principle part they only assumed the matrix a(¢, x) to be measurable and
uniformly elliptic, without any additional continuity conditions. For the zero
order term V(¢,x) they assumed similar conditions like [Zha96b, Zha97b|,
but they dropped the restriction that V'(¢,z) is compactly supported. For
compensation they imposed more restrictive assumptions on the first order
term b(t,x) than in [Zha96a, Zha97al. Under these conditions they proved
that (4) has a unique weak fundamental solution. However, in order to drop



8 INTRODUCTION

the restriction that b(t,z) and V(¢,x) are compactly supported, they used a
very sophisticated argument (cf. [LS00, page 538|).

We now state our assumptions on the coefficients of (4). We assume that
the matrix a(t,z) = (a;;(t,z)) is symmetric and uniformly elliptic, Holder
continuous in ¢, = and 8 3 Qij (t,z) are bounded and Hélder continuous in
x. Under these assumptlons on a(t,z), it is well-known (cf. [Fri64, LSU67,
Aro68]) that the equation

V(a(t,z) - Vu(t,z)) — Qwu(t,z) =0

has a classical fundamental solution p(¢, x; s,y) satisfying the following esti-
mates: there exist positive constants cq, g, Cp, a such that for any z,y € R?
and 0 <s<t<T,

: ¢ z —yl? C T — 2
(i) 2 exp(-an ) < pltmrs.y) € P exp(-al2 00
(t—s)2 t—s (t—s)2 t—s
y C z—yf?
(i) [Vaplt, 255, )] < — 0 exp(—alZ =0y,

(t—s)= -5

For the first order term, we assume |b| to be in the time-dependent Kato
class 7K', for some oy < 5, namely

: a1 _
}lll_)HéNh (|ol) =

where
s |z — |
Ne )= s [ el b o) dade
(s,y)ERxRE J s Rd t—s 2 [
o [ [ e lays
(t,x)eRxR Jt—h Rd t—s 2

For the zero order term, we assume V' € TKj?, for some ap < §, namely

lim M2 (V) = 0,
h—0

where

s+h | _ y|2
M2(V):= sup / exp( Qg
s Rd (t t—

(s,y) ERxRY

)V (t, z)|dwdt+

¢ a2
sup / ———exp(— 042’ y! )NV (s,y)|dyds.
hJrd (t— )2

(t,z)ERXR t—



Here our assumptions on the lower order terms b(t, x), V (¢, z) are weaker
than in [Zha96a, Zha96b|. In particular we don’t assume that b(¢, x), V (¢, x)
are compactly supported.

Under the above assumptions, our main result of this chapter, Theorem
1.4.10, states that there exists a unique weak fundamental solution

G(t,z;s,y), 0<s<t<T, z,y € R

for the parabolic equation (4). To prove this theorem, the main difficulty lies
in the existence part, namely how to construct such a G(¢,z;s,y). To this
end we use a general scheme as in [Zha96a, Zha96b, LS00]. We first consider
the equation

Va(t,z) -Vu(t,z)) +bu(t,z) - Vu(t,z) + Vi(t,z) - u(t,x) — du(t,x) =0 (5)

where b,,(t, z) and Vi(t,z) are bounded smooth and approximate b(t, z) and
V(t,z) respectively in a reasonable way. For the parabolic equation (5),
there exists the fundamental solution G, (t,z;s,y). Then we prove that
Gni(t, z;s,y) converges locally uniformly to a function G(¢,z;s,y). This
kind of convergence was first proved in the special case when b(t,z) = b(x)
is time-indepedent, b(z) € K4_1 and V = 0 in the paper [KS06], where Kim
and Song studied the transition probability densities of the Markov process
constructed in [BCO3]. Here we do it in the more general time-depedent case
and we have to overcome many technical difficulties. Then we verify that
G(t,z;s,y) is indeed a weak fundamental solution to the parabolic equation
(4). The uniqueness of such a weak fundamental solution G(¢, x;s,y) can be
proved similarly to [LS00].

It should be pointed out that the method of chapter 1 can also be applied
to the backward parabolic equation (3). Therefore some results of chapter 1
will be used in chapter 2 to study the corresponding diffusion processes.

Diffusions with time-dependent singular drift
In chapter 2 we study the stochastic differential equation

{dXt =dW,+ B(t, X,)dt, t>s ©)

X, ==, 0<t<s

with a new class of time-dependent singular drift terms. Here we only con-
sider weak solutions to (6). It is well-known that existence and uniqueness of
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weak solutions to (6) is equivalent to the martingale problem for the operator
L being well-posed, where

1
L= 3A+B(t.x)V

Now we state our assumption on the drift term. We assume |B(t, z)| to
be in the forward-Kato class FK§_, for some a < i, namely

. a7+ _
lim N (1 B]) =

where

s+h
Vel s [ [ et v
Rt (t—5) t—

(s,2)€[0,00) x R4 2

We should note that the forward-Kato class FK§_; is strictly larger than
the time-dependent Kato class 7Kg ;. In section 2.1 we shall give an example
which belongs to 7X¢_, but does not belong to FK¢_,

Under the above assumption, we prove Theorem 2.2.22. It states that the
martingale problem for

1

is well-posed, or equivalently, the stochastic differential equation (6) has a
unique weak solution for every starting point (s,z). This is the main result
of this chapter. We should note that FXg_; includes the (time-independent)
Kato class ICy_1, therefore our work extends the results of [BC03].

In section 2.3 we further assume |B(t,z)| € TKS , for some o/ < 1, then
from the results of Chapter 1, we can easily prove Theorem 2.3.4, which tells
us that the solution X; of (6), as a Markov process, has a transition density
function q(s, z;t,y) satisfying two sided Gaussian estimates.

Construction of Glauber dynamics for an unbounded spin
system on a graph

To construct diffusion processes, we can also use Dirichlet form methods.
After Fukushima discovered the connection between symmetric Markov pro-
cesses and symmetric Dirichlet forms, this methodology has been imple-
mented in great generality. One advantage of this method is that it still
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works in infinite dimensional cases (cf. [AR91, MR92|). In chapter 3 we use
Dirichlet form methods to construct the Glauber dynamics for an unbounded
spin system on a graph.

In this chapter, we consider an unbounded spin system which was first
studied in [Pas07a, Pas07b|]. More precisely, let G(V,E) be a connected
simple graph consisting of a countable set of vertices v € V and a set of
unordered edges e € E. For each vertex v, let m, be the degree of v. We
assume that G(V,E) is of uniformly bounded degree, i.e.

mg = supm, < o0.
veV

Then we can define

0g := inf {5 >0: 26—50(1170) < oo},

veV

where o € Vis a fixed vertex and p(v, 0) is the combinatorial distance between
vertices v and o. Suppose that to each vertex v € V, there corresponds
a particle performing one-dimensional oscillation. The configuration space
Q) := RY of this unbounded spin system consists of all real sequence z =
(2y)vev. We assume that the potential energy of each configuration = € € is
given by the formal Hamiltonian

H() = S Valws) + 5 3 Waw (o, 0),

v’

where the sums are running over all v € V and ordered pairs (v,v’) € V2
with v ~ v' ( ~ means v and v’ are adjacent, namely p(v,v") = 1). Here we
assume W,,» = 0 if v and v’ are not adjacent.

For the interaction potential W,,, we assume that W, (-, -) is measurable
and there exist constants Cy, J > 0 such that for all v ~ ¢" and z,,x,, € R

1
’va’<xv7$v’>| < §J<CW + ‘xv‘2 + |xv'|2)'

For the self-potential V,, we assume that V,(-) is measurable and there
exist constants p > 2, Ay > mgJ (e’ + 1), By € R,Cy > 0, such that for all
veVandz, € R

Avla,? + By < Vy(z,) < Oy (1 + |z,|P).

It should be emphasized that here we merely assume the potential func-
tions to be measurable. This is much weaker than the conditions in [Pas07a,



12 INTRODUCTION

Pas07b|, where W,,, and V,, were assumed to be twice continuously differen-
tiable.

For each § > 0 we set

1/2
[ z]l5 == [Z |z [Pexp{ — dp(v, 0) }

veV

and Qs := {:z: €0zl < oo}. The tempered configuration space is defined

as
O = ﬂ Q5.

0>dg

Under the above assumptions, we aim to construct the stochastic evo-
lution of this spin system, which is usually called Glauber dynamics, on
the tempered configuration space Q!. Since the potential functions are only
measurable, we can not construct the Glauber dynamics by solving the cor-
responding infinite system of stochastic differential equations (cf. [Pas07a,
Pas07b]). We have to use Dirichlet form methods. To do that we first need to
find a good reference measure on the tempered configuration space. There-
fore in section 3.2 we adapt the methods of [Pas07a| to prove the existence
of tempered Gibbs measures, which are mathematical descriptions of equi-
librium states of the spin system.

In section 3.3 we fix some tempered Gibbs measure p on the tempered
configuration Q. Using the general framework in [AR90|, we can define a
Dirichlet form (£, D(€)) on L*(Q%; ). Then we use the standard arguments
to show that (£, D(£)) is quasi-regular. Using the correspondence between
Markov processes and quasi-regular Dirichlet forms, thus we can construct
the Glauber dynamics on the tempered configuration space.
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Chapter 1

Weak fundamental solution for a
parabolic equation with singular
lower order terms

In this chapter, we consider a parabolic equation in the following form
Via(t,x) - Vu(t,z)) + b(t,x) - Vu(t,z) + V(t,z) - u(t,z) — Qu(t,x) =0 (%)

in the domain [0,7] x R? where T < oco. We assume that the matrix
a(t,x) = (a;j(t,x)) is uniformly elliptic, Hélder continuous in ¢,z and %aii
are bounded and Hélder continuous in z. The lower order coefficients b(t, )
and V (¢, x) are assumed to be in some proper time-dependent Kato classes
(cf. Assumption (1.2.2) below).

Under these conditions we prove that there exists a unique weak funda-
mental solution to the above equation (x). In section 1.1 we introduce several
time-dependent Kato classes and study some of their properties. In section
1.2 we make precise assumptions on the coefficients of (%) and introduce the
notion of weak fundamental solutions. In section 1.3 we first consider the
equation

V(a(t,z) - Vu(t,x)) + by(t,z) - Vu(t,z) + Vi(t,z) - u(t,z) — dwu(t,z) =0

where b, (t,z) and Vj(t,z) are bounded smooth and approximate b(¢, x) and
V(t,x) respectively in a reasonable way. Since b,(t,x) and Vi (¢, x) are
bounded smooth, the above equation has a unique fundamental solution
Gr(t, z;s,y). Then we prove that G, (¢, x; s,y) converges locally uniformly
to a function G(t,z;s,y). In Section 1.4 we verify that G(¢, x; s,y) is indeed
a weak fundamental solution to (x). The uniqueness of weak fundamental
solutions to (x) can be proved with the same methods used in [LS00].

15



16 CHAPTER 1. A PARABOLIC EQUATION
1.1 Time-dependent Kato classes

In the study of Schrédinger equations, the (time-independent) Kato class
of functions plays a very important role. It was first introduced by T.Kato
to show the essential self-adjointness of the Schrodinger operator —A + V
on C°(R?). In |Zha96a] and [Zha96b|, Qi S. Zhang generalized the notion
of Kato class to the time-dependent case. In this section we will explore
some properties of the classes 7K¢_, and 7K_, introduced by Qi S. Zhang.
These classes will be used later as assumptions on the lower order terms of
the equation ().

1.1.1 Time-dependent Kato class 7K{ , and its proper-
ties

Definition 1.1.1. A measurable function f on [0,00) x R? is said to be in
the time-dependent Kato class 7K_; if

}ILIE%Nh(f) - 07

where

. s+h |.T _ y|2
Ni(f):= sup ———7 exp(—c ) f(t, x)|dedt+
Rd (t — ) 2 t—s

(s,y) ERXRY

[z —y/? dud
sup exp(—c ) f(s,y)|dyds.
(t,z)eRXRE J t—h Rd t—s o t—s

Here ¢ > 0 is a given constant and f(-,-) is extended to R x R by 0.

We use the notation 7X¢_, here because this class is the natural extension
of the (time-independent) Kato class ICy_;.

Example 1.1.2. (a) (Time-indepedent Kato class K4—1) Suppose d > 3.
Let a measurable function f : [0,00) x RY — R be time-indepedent, i.e.

f(t,x) = f(x), and
lim sup / Mdy = 0. (1.1)

70 yerd |I - yld !
Then f € TKS , for any ¢ > 0. The reader is referred to [KS06, Proposition
2.3] for a proof of this fact. The class of functions which satisfy (1.1) is called
(time-independent) Kato class K4_1.
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(b) If a measurable function f on [0,00) x R? is bounded, then f € TK¢_,
for any ¢ > 0.

(c) For p,q € [1,00] we denote LP = LP(RY), LP? = L4(R, LP). If a measur-
able function f on [0, 00) x R? has compact support and f € LP4 (here f is
regarded as 0 outside [0, 00) x RY) with 2% + é < 3, then f € TKj_, for any

¢ > 0, see [Zha97a, Proposition 2.1| for a proof.

Remark 1.1.3. If f € TKj_,, then f islocally integrable. Since limj,_o N5 (f) =

0, we can find a small enough A > 0 such that Nj(f) < oo. For any
(t',2') € [0,00) x R let s =t — 2, then

|z — 2’|

t'+% _
Nz [ o e

t'-‘r% 1 T — 2
2/ / —ﬂexp(—cgﬂf(t,x)]dxdt
s+t Jrd (t—s) 2 t—s
t'4h
o[ ] ittt
s+% lz—z'|<h
where | '
C= inf —dﬂexp(—cu) > 0.
teft—h 48] (t —s) 2 t—s
lz—z'|<h

4 h
Therefore ft;f f| a|<h |f(t,z)|dzdt < oo and f is locally integrable.
s+7 T—X|S

Next we prove some properties of the class 7K, and these properties
will be used in the subsequent sections.

Proposition 1.1.4. Suppose f(t,xz) € TKG ,, then NF(f) < oo for any
[>0.

Proof. For any s < s; < t, we have the following inequality

20)% 2z —yl? 2c)% x — z|?
/ (2¢) i exp(_c\ | ) (2¢) - exp(_c| | \dz
Re (277) 2

2(sy — 3) $1=8 7 (2m)2(t — 51) t—s1
1 (20)? B TGN 0 LN b
Z@—Qééd@ﬂa&—sﬁam( s1—s(2m)a(t —51)% Plme 5
= 1 (26)% ex —c—'y ki
(t—s)2 (2m)5(t - 5) A
S O LN (12)

(2m)2(t — )5 t—s
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Suppose h > 0 is such that N(f) < oo, then

s+2h 2
1 T—1y
/ / d+1 eXp<_C| | )‘f(t,l‘)’dl’dt
Rd t — 5 2 t—s

s+2h 1 |x_y|2
<N/ (f —_— — t,x)|dxdt
v+ L E eIl

Let s + h = sy, then by (1.2)

s+2h | _y|2
/ /Rd (t— d+1 exp( PR )|f(t,1})|dq;dt

2

d

)4 CETPAY L e =2 )
<[, ot T iz | o e Dl e

(20)? 2=y
<t g e s Ni)

Therefore we get

s+2h T — 2
/ / (=T ity < 203,
s R4 (t — S) 2 l—s

Similarly we can prove for all n € N
s+nh 1 xr — 2
[ [ ent=eE= s s < i),
s R (t— )2 t—s

Then it is easy to see that the propostion is true. O

The following lemma is taken from [L.S00, Proposition 2.4], for the readers’
convenience we give a proof here.

Lemma 1.1.5. Suppose f € TK5 , and f is considered to be 0 outside
[0,00) x R?, then for any nonnegative ¢ € C5°(R) with [gay, ¢(€)dE =1,
we have NE(f x ¢) < Nf(f). Here f x ¢ denotes the convolution of ¢ and f,
namely f * ¢(&) = [ f(& —n)d(n)dn.

Proof. For each fixed (s,y) € R x RY, let

1 |z —y|?
syll,T) = ——— €x .
g ,y( ) (t S)d-gl p( t s )
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Then

s+h | _y|2
B e S R R
i -

s+h
/ gsy(t,x ‘ flt — 7,2 — 2)o(T, 2)drdz|dxdt
Rd Rd+1

Let v —z=2a',t — 7 =1, then

s+h
/ / Jsy (L, )| f(t — 7,2 — 2)|dzdt
s Rd
s+h 1 _ 9
_/ / —MQXP(—Cu)]f(t—T,:r;—z)]dxdt
Rd t — 5 T t—

s—1+h |x_z_y|2
/ /R;d t’ S—T %exp( (t —( )))’f(t l‘)‘dmdt

s+h ’ _ y’2
s [ [ (e =L )
Re (t —8) t—s

(s,y)ERxRI 2

Note that [o.., ¢(7, z)dTdz = 1, therefore we have

s+h 2
o [ [ e B ot daar
s Rd t—s = -

(s,y)ERXRA 4

s+h
ap [ [ e s
Rd t—s t—

(s,y)ERxR4 T2

Similarly we can show

2
sup / / o exp(—e 0 s, ) s
t—h Rd t—s

(t,z)eERxR? T2 t—

Ix -yl
< swp / / xp(—c )£ (s, )\dyds.
(t,z)eERxRE Jt—h Rd t—s 2 t—s

Therefore NE(f @) < N(f).

19
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Lemma 1.1.6. Suppose f € TK§_ | and f is considered to be 0 outside
[0,00) x RY, then there exist nonnegative functions ¢, € C°(RI) with
Jgasr ©n(€)dE =1 such that fx @, € Co (R, Moreover, @, can be chosen
such that

1
supp(pn) € {z € R™ : |z| < E}

Proof. First we can find a nonnegative ¢ € C5°(R) with [o.., ¢(§)dE =1

and .
supp(¢) C {£ € RT 1 ¢ < = 1.

Define ¢,,(¢) = nVg(nf), then [r., ¢n(€)dé =1 and

1

supp(¢n) C {€ € R 1 |¢] < o™

Let

.'EZ .
gult, ) = t(dfﬁ . exp(—c%), if 0 <.t 2n, lz] <
0 otherwise

where C,, is chosen such that [;., gn(t, z)dzdt = 1.
Then for any (¢,z) € R4,

|/ * gnl(t, ) !/ W(t — 5,0 —y) f(s,y)dyds|

2

n r—vY ¢

S/ / dt1 exp(—c’ ’ )|f(s,y)|dyds < C,N% (f),
t721n Rd (t — 3) 2 t—s 2n

namely f * g, is bounded.

Let ¢, = g, * ¢,, then

fron=[fx(gn*on) = (f*gn) *bn
= Gn(E—n) - (f * ga(n))dn

Rad+1

Since f * g, is bounded and ¢,, € C§°(R¥™), we have fx ¢, € C°(R*). O

Now suppose that f € T7KS_,, by Remark 1.1.3 we know that f is locally
integrable. For any compact K C [0,00) x R?, we can define a finite measure
w(d€) == 1 (&) - |f1(E)m(dE) on ([0,00) x R B), where m is the Lebesgue
measure on R4T!. The following lemma is just a straightforward computation.
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Lemma 1.1.7. For each (s,y) € [0,00) x R, define

1 [z -yl d
gs,y(tva}) = —@exp(_c—% Zf (t,l’) < (37 OO) x R
(t — S) 2 t—s

and gs,(t,z) :== 0 if (t,x) € [0, s] xR Then the family {gs, (¢, ) }(s.4)€[0,00) xRY
is uniformly integrable with respect to the measure .

Proof. For any a > 0, let h(a) := — a 1. Then

/ Gsy(t, x)dp
{(t.2):95,4 (t,2)>a}

1 |z —y[?
N vz exp(=c¢ )Nt x)|dzdt
/t$ ):gs,y(t,T) >a}ﬂK (t — S) oL t—s

s+h(a ‘ ‘
/ / L exp (Tt )
Rd t — s 2 t—
<Nc

Since h(a) tends to 0 as a — oo and f € TK_,, so we have

lim Gsy(t,x)dp = 0.
4700 J{(t,2):95,y (t,2) >a}

Therefore {gs,(t, )} (sy)c[0,00)xre 18 uniformly integrable with respect to the
measure fi. O]

The following proposition is an improved version of [LS00, Proposiiton
2.4(ii)]. It plays a crucial role in the subsequent sections of this chapter.

Proposition 1.1.8. Let ¢,, be as in Lemma 1.1.6 and f € TK_,, then for
any compact K C [0,00) x R,

7}1_{20 Ny (Ag|f *on = f]) =

Proof. For fixed (s,y) € [0,00) x R, let

|C(7—y|2>
t—s

A=[s,s+h] xR &= (t,z), goy(t,z) = exp(—c

(t—s)%
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Then
s+h 1 €T — 2
/ /d — exp(—c%)\f x o — [l 1g(t,x)dxdt
s R -

(t—s)% t

= [ 1 % 0n= flaus(©) 1@ = [ 1] 6= montn = 1©lausl®) - L)
= [ 1], €= = Fpatnnlan, () 1r(e)a
< [ entmdn [ 176 =) = F©)]0.0(6) - Lu(6)a

Set K' := {¢ € R¥ : d(¢, K) < 1}, then by Lusin’s theorem, for a given
§ > 0, there exists a closed set F° C K' and a continuous function f5 on
R with compact support such that

m(K'\ F°) <§ and fs= f on F°,

here m is the Lebesgue measure. If || < 1, then

/|f§ n) (E)gs,5(&) - 1 (§)dE
/AmKl‘f(§ 1) = f()]9sy(8) - 1xc(§)dE

< / F(E = 1) = F(O)]gny(©) - 1 (€)d+
ANFON(F34n)

o - s,y -1 (8)d
+/(Kl\Fé)U((Kl\pém) 178 =) = FQlgns &) - L)t

< / [f6(& =) = [5(E)]gs,y (&) - L (§)dS + / [f(€ =) = F(E)]gsy(&) - 1x(§)dE
ANFON(F3+n) e}
=I+1I

where C' = (K'\ F°)J ((K* \ F°) 4 n) with m(C) < 24.

Suppose € > 0 is any given constant. By Lemma 1.1.7, the family
{95.4(€)} (5. 1s uniformly integrable with respect to the finite measure 11 (§)-
|f1(§)m(d§) and note that m(C') < 24, we can choose § small enough such
that

I = / FE— 1) — F©)lguy(€) - 1 (€)de
< / ()00 (€) - 1x(€)dE + / FO)gw (6) - it (€)dE < c.
C C+n
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Since the above fs is continuous with compact support, then we can
choose ny large enough such that |f5(§ —n) — f5(€)| < € whenever |n| < nlo
Since .

supp(en) € {x e R . lz| < ﬁ}’

we have for n > ng,

- / F5(€ =) — F5(O)9ay () - L ()l
ANFSN(F34n)

<e /A o 9s.y(§) - 1 (€)dE < € /A Gsy(E)dE.

But [, gs,,(£)dE is a constant, so we get

im [ )y / €= 1) = F©)lgan(E) - Lic(€)dE = 0.

n—00 Jpa+1

Therefore we have

s+h |:U _ y|2
lim  sup exp(—c )1k | fxpn—f|(t, x)dzdt = 0.
s R ( t —3) =N t—s

00 (5,9)ER xR

In the same way we can also prove

2
-y
lim  sup / / —7 exp(—¢ = | k| fpn—f[(s, y)dyds = 0.
t—h JRA (t — 5) t—

N0 (¢ ) eERxRY 2

]

1.1.2 Time-dependent Kato class 7K,

Similarly to the above section we just collect the same facts to 7Kg,

Definition 1.1.9. A measurable function f on [0,00) x R is said to be in
the time-dependent Kato class TKg_, if

lim M;(f) =0,

where
sth |£L‘ _ y|2
ME(f) = sup / / exp(—c ()| dedt+
(s,y)ERxR4 Rd t — S 2 t—s
2
r—1Yy
w [ exp(—c 200 (s, ) layds.

(t.w)eRxR4 Jit—h JRa ( t—s l—s

Here ¢ > 0 is a given constant and f(-,-) is regarded as 0 outside [0, 00) x R
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We use the notation 7X4_, here because this class is the natural extension
of the (time-independent) Kato class ICy_o.

Example 1.1.10. (a) (Time-indepedent Kato class K;_2) Suppose d > 3.
Let a measurable function f : [0,00) x RY — R be time-indepedent, i.e.

f(t,x) = f(z), and
. 1/ (y)]
| ——= —dy = 0. 1.
rl_I’%zS:_]Ig /B(CC;T) |£L‘ - yld_2 Y ! ( 3)

Then f € TK; , for any ¢ > 0, see [KS06, Proposition 2.3| for a proof. The
class of functions which satisfy (1.3) is called (time-independent) Kato class
Ka-sa.

(b) If a measurable function f on [0,00) x R? is bounded, then f € TKS ,
for any ¢ > 0.

(c) If a measurable function f on [0,00) x R? has compact support and
f € LP9 with Qip + é < 1, then f € TKj_, for any ¢ > 0. The reader is
referred to [Zha96b, Proposition 2.1] for a proof.

Corresponding lemmas also hold in this section.

Proposition 1.1.11. (i) If f € TKS_,, then f is locally integrable.
(i0) If f(t,x) € TKS o, then Mf(f) < oo for anyl > 0.

Lemma 1.1.12. Suppose f € TKS_,, then for any nonnegative ¢ € C§°(RIT)
with [pai $(§)dE =1, we have ME(f x ¢) < M{(f).

Lemma 1.1.13. Suppose f € TKS 5, and [ is considered to be 0 outside
[0,00) x RY, then there exist nonnegative functions ®, € C§°(R*) with
Jpasr Pn(§)dE =1 such that f+®,, € Co(RTHY). Moreover, ®,, can be chosen
such that

supp(®,) € {€ € R4 Je] < ).

Proposition 1.1.14. Let ®,, be as in Lemma 1.1.13 and f € TKS 5, then
for any compact K C [0,00) x R,

Tim M (1g|f @, — f]) = 0.
1.2 Assumptions on the coefficients and the no-

tion of a weak fundamental solution

In this section we give our assumptions on the coefficients of the equation

V(a(t,z) - Vu(t,z)) + b(t,x) - Vu(t,z) + V(t,x) - u(t,z) — du(t,x) =0 (*)
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in [0,7] x R4, where T' < oo is fixed throughout this chapter. Here we use
the notation

d d
Via(t,x) - Vu) = Z 02, 0ij0p,u,  b-Vu = Z b;0;u.
j=1

ij=1

Assumption 1.2.1. We assume a(t, z) = (a;;(t, z)) satisfy:
(i) The matrix a(t, z) is uniformly elliptic, i.e. there exist constants \g, A\; > 0
such that

d
Molé? < Z ai; (1, 2)&&; < MlEf.
ij=1

(ii) Each a;;(t, ) are Holder continuous in ¢ and z, i.e. there exists constant
0 < 3 < 1 such that for all x,2' € R? ¢, ¢ € [0,T],

lai;(t,2) — ay(t',2)] < Az — o' + |t — ¢'|7).

(i) s2a;(t, ) are bounded and Hélder continuous in z.

Under Assumption 1.2.1, we know that for the equation
Via(t,z) - Vu(t,z)) — dwu(t,z) = 0,

there exists a classical fundamental solution p(t, z; s, y) satisfying the follow-
ing estimates: there exist positive constants cg, ag, Cy, @ such that for any
T,y €RL0<s<t<T

_ |2 2
() — exp(—ao 28 < pt,315,9) £ =2 exp(—alZZH)
(t—3)2 t—s (t—S)Q
(1.4)
. C T — ul2
(11) |v$p(t7xa3ay)| S mexp(—a%)_ (15)

The above estimates can be found in [Aro68, LSU67, Fri64].

For the lower order terms of (x), we need the following assumptions.
Assumption 1.2.2. [b| € TK3!, for some oy < §.

Assumption 1.2.3. V € TK;?, for some oy < T

Here « is the constant appearing in the Gaussian esitmates (1.4) and
(1.5) for p(t, x;s,y).

Now we introduce the notions of weak solutions and weak fundamental
solutions to ().
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Definition 1.2.4. Suppose that 0 < s < T, a weak solution of
V(a-Vu)+b-Vu+V -u—0u=0 (%)
in [s,T] x R? is a function u such that
we C([s, T L*(RY) N L*((s, T); H' (RY)),
b-Vu cL'((s,T) x RY),
Vu €L ((s,T) x RY),
T
/ / (Vu-a-Vo—¢b-Vu — Vup — udyp)dzdt = 0,
s R4
Yo € C°([s, T] x RY),

where H! denotes the Sobolev space of square integrable functions with the
distributional derivatives in L.

Definition 1.2.5. A function G(¢,x;s,y) is called a weak fundamental so-
lution to the parabolic equation (x) if

w@@ZAow&wﬂw@wﬁtST

is a weak solution of (%) in [s,T] x R? for all 0 < s < T and all f € L' N L.

1.3 Construction of G(t,z;s,y)

In order to solve the original equation (x), as an intermediate step, we first
consider equations with smooth coefficients.

Since [b] € TK;',, by Lemma 1.1.6 and Proposition 1.1.8, we can find a
sequence of functions ¢, € C°(R4*1) such that

by i=b* @, = (b %, b % p,) € OF° (R
and for any compact set K C [0,00) x R% h > 0,
lim N (1k|b, —b]) = 0. (1.6)

Remark 1.3.1. From Lemma 1.1.5, it is easily seen that there exists a
constant x > 1 such that for any A > 0 and n € N

Ny (1on]) < £ NG ([01)- (1.7)
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as

Similarly, since V € TK{?,, by Lemma 1.1.13 and Proposition 1.1.14, we
can find @ € C°(R*™!) such that

Vi, =V * & € C°(RT)
and for any compact set K C [0,00) x R% h > 0,

khm M}?Q(]_K’Vk—‘/l) = 0. (18)

Let Gui(t,x;s,y) be the weak fundamental solution for the parabolic
equation with smooth coefficients b,,, Vj:

V(a-Vu)+b, - Vu+ Viu— 0 = 0. (1.9)

In this section we construct a function G(t, x; s, y) as a limit of G (¢, x; s,y).

1.3.1 A priori estimates

In this section we explain Qi S. Zhang’s method to obtain two-sided Gaus-
sian estimates for the fundamental solution G, (¢, x;s,y) of the parabolic
equation (1.9), for more details see [Zha97a| and [Zha97b].

In this section we will use the following three inequalities (1.11)-(1.13)
very often; their proofs can be found in [Zha97a| (see also [Ria07]). First we
introduce some notations, let

1 |z —yf?
L.t z;s,y) = exp(—c———),
( ) TP (me—~—2)
1 T —yl?
U.(t,x;8,y) = —mexp(—cl | ). (1.10)
(t—s)2 t—s

Lemma 1.3.2. Let 0 < ¢; < ¢g, then for any c with 0 < ¢ < (cy — ¢1) A ¢y,
there exists a constant C' > 0 depending on cy, ¢z, ¢ such that for any s < 7 <t
and x,y,z € RY,

Lo, (t,z;7m,2)Te, (T, 25, 8, 9)
1 Y PR 2 PR A A <OFct ;’ FC , ;’ 1‘11
L lel L) < Ot ) + Tz (1)

Fcl (t7 x; 7—7 Z)WCQ (T7 Z; Y 87 y)
< C(V(t, x; T, W (T, 2; s, 1.12
W, (t, 25 8,9) SCWebain )+ ¥lrzay) (112

l1101(2(:7‘/'17;7—’Z)\:[ICQ(,]—?’Z;787,!/)
< CO(Ye(t, s, V(T 25 8, 1.13
Talbmsy) = CWdbnm ) wbdnzsy) (119

(4)

(%)

(i)
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Let us first look at the equation
V(a-Vu)+b, - Vu— 0u = 0.

Since b, € C°(R4T), there exists a weak fundamental solution g, (¢, z; s, y)
for this parabolic equation. In [Zha97a| it was showed that ¢, (¢, z; s,y) sat-
isfies Gaussian bounds, namely there exist o', ¢,, C;, > 0 such that for any
0<s<t<TanduaxycR?

G ;e —yl? Cy a |z—yf
o I <o (e < et e N
) pesnt=o B2 <t < S Cpen 5 B2
(1.14)

.. C a |r—yl?
(il) [Van(t, x35,y)] < —— 57 exp(—5 - ] ). (1.15)

2 t—s

(t—s)>

where the constant C,, does not depend on n and only depends on the rate
at which N;"'(]b]) goes to 0 as h — 0. For convenience here we sketch the
ideas of the proof.

First we prove (1.14). By Duhamel’s formula,

t
anlt, 75 5,) = plt, 55, 9) + / / 4t 27, Yoo (7, 2) - Vop(r, 23 5, y)ddr.
s Rd

(1.16)
This is an integral equation, so we can formally write
w(t, s s,y) = Z (t,x;8,y), (1.17)

=0

where the convergence of the series on the right-hand is shown below and
Ji(t,z; s,y) are defined inductively in the following way:

JO(t, x5 8,y) = p(t, 58, y),

t
J%(t,x;s,y) :/ / p(t, z; 1, 2)by (7, 2) - V.p(T, 2; 8, y)dzdT,
s JRA

t
JH(t x5 s, y) :/ /d Jh(t, @y 7, 2)by (7, 2) - Vp(T, 23 5, y)dzdT.
s JR

(6]

Recall that a; < §. Then by Lemma 1.3.2(ii), there exists a constant

C; > 0 such that for all z,y € R% s < ¢,
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F%(t,l';T, Z)\IIQ(T,Z;,S,?J) <C (\I/ (t T T Z)—f-\If (7- 28 )) (1 18)
1—1%({:7 xjsjy) ~ 1 a y My by aq » 7y .

and

Vo (t,z;7,2)Wo(T, 25,5, 9)
o (t,x;5,y) < 01(\I’a1 (t,z;7,2) + Vo (T, 2; s,y))_ (1.19)

Ift > s, then
T2 :5,)
—\/ /Rd (t,x;7,2)bu(T, 2) - Vop(T, 25 8, y)dzdT]|
< C’g/ / Co(t, z; 7, 2)|bp(T, 2)|ValT, 2; 8, y)dzdT
<C’2//Rd La(t,z;7,2)|bu(7, 2)[Va (T, 25 8, y)dzdr
< 6’201/ / a(t,x;8,y)(Va, (t, 237, 2) + Vo, (7, 25 8, y)) |bn (7, 2)|dzdT

< C3CINM(1by]) - La(t,z;s,y). (1.20)

By Remark 1.3.1, N;"(|b,]) < &N;*(|b|). By induction it is easy to get
that for all # > 1

| Ti(t,255,)| < Co(RCoCINEL(B])) - T (8,3 5, ). (1.21)

If we choose h; > 0 sufficiently small such that xCoC Ny (|b]) < 1, then

n(t,x; s, y) = ZJthsy

Co
< o :
1-— KJCOCIN]H <|b|)

La(t,z;8,y), 0<t—s<h. (1.22)

To prove the Gaussian lower bound, we can choose hy > 0 sufficiently
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small such that

=0
o0
> p(t,x;5,y) — | Ja(t, 3 8,9)]
=1
1 Co 1
> cpe” —
’ t—s)z 1= rCCINZ([b]) (¢ — 5)2
1 |
= 7Cp€ )
2 (t—s)?

when % < land 0 <t—s < hy. By a rescaling argument, it is then
proved in [Zha96a| that there exist o/, ¢; such that for 0 <t — s < hg

Qn(t, 75 8,y) > U (t, 73 8,9). (1.23)

Therefore for 0 < s < ¢t < T with [t — s| < hy A hg, we have

Co .
1-— KCOCIN}?l (|b|)

colar(t. 23 5,y) < qu(t,255,y) < La(t, 7;8,y).

Then using the reproducing property of g, (t, z; s, y), we easily get the Gaus-
sian bounds (1.14). Namely, there exist ¢,, C;, > 0 such that for any 0 < s <
t <T and z,y € R?,

Cy a |:1c—y|2

Fa'ta;v Snt7;7 < :
collar(t235,y) < qu(t, 215, y) T R

) (L.24)

Remark 1.3.3. (i) From the above argument it is easily seen that we can
also define J'(¢, z; s, y) inductively by

J? =p(t,z;s,),

// (t,x;7,2)b(T,2) - V.p(T, 2; 8, y)dzdr,
Rd

t
Jit :/ / JE(t, 27, 2)b(T, 2) - Vap(T, 25 8,y)dzdr, i > 1.
Rd
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Similarly to (1.21) we can prove
[7(t,:5,9)] < Co(KCCINE (b)) Tyt 235,9). (1.25)

(ii) Since hy is such that kCoC1 N, ([b]) < 1, now we can define

o0

q(t,x;s,y) : Z (t,z;8,y), 0 <t—s<h.
=0

It is easily seen that for any z,y € R? and 0 < t — s < hy,
t
oft.aisg) = pltassg) + [ [ altwm2b(r,2) - Veplr, s e
s JRd

Now we try to explain how to get the gradient estimate (1.15) for ¢, (¢, x; s, y).
Formally taking V, in the both sides of the equation (1.16), we have

¢
Veqn(t,z;8,y) =Vep(t, x; s,y) +/ Ven(t,x;7,2) - by (7, 2)V,p(T, 25 8, y)dzdT
s JR4

=Vap(t,wis,9) + > Li(t,755,y),

=1

where I’ (t, x;s,y) are defined inductively by

t
It x;5,y) :/ ) Vup(t,x; 7, 2)b, (1, 2) - V.p(T, 2; 8, y)dzdT,
s R

t
[Z+1(t7 x;s, y) - / /d I:l(t, T, T, Z)bn(T, Z) : vzp(Ta z5S, y)dZdT’ i Z L.
s R

It is easily seen that

IL(t,z;8,y) = Vo JL(t, 75 8,7). (1.26)

Now we use the estimate (1.5) of p(t,z;s,y) and Lemma 1.3.2(iii). Simi-
larly to the above method used to get (1.21), we can show that

I (8,255, y)| < Co(KCoCyNEL(J0])" - Ve (t,2;5,y). (1.27)
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Since h, is such that KCoC1 N, (|b]) < 1, then

Vaan(t, ;5 8,y)] = ‘Zf?(t,w;s,y)‘
=0

Co
< -Wal(t,x;s,y),
S T rao e sy

’t—S’ S hl-

Then using the reproducing property of q,(t,z;s,y), we easily get the esti-
mates (1.15), namely for any 0 < s <t < T,z,y € R?

C a |r—yl?
Vatn(t, 7;8,9)] < —— 57 -5
|V 2Gn( Isy)l_(t_s)dglexp( 5 T,

Remark 1.3.4. From the above arguments it is clear that we can also define
I'(t,z;,s,y) inductively by

). (1.28)

IO :V:Ep<t7x7 Say)a

t
]1 :/ dvxp(t,l’;T, Z)b(Ta Z) ’ va(T’Z;S’y)dZdT’
s JR

It :/t /]R{d I5(t, 257, 2)b(T, 2) - V.p(T, 2; 8, y)dzdT.
We can also show
|I'(t, 2;5,y)| < C’O(/iCocle‘_lsﬂbD)i . \II%(t,x; S,Y)- (1.29)
From the definition of J*(t,z;s,y) and q¢(t,z; s, ) it follows that
I'(t,z;5,y) = Vo' (t,2;8,y), 0<t—s5<h, (1.30)

and therefore

Veq(t,z;s,y) = Vap(t, x;s,y) + Zli(t,x; $,Y), 0 <t—s<h.

i=1
Now we come to the equation

V(a-Vu)+b, - Vu+ Viu— 0u=0. (1.31)
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Suppose G (t,x;s,y) is the fundamental solution for the above equation,
then again by Duhamel’s formula we have

¢
Gur(t, z;8,y) = qn(t, z; s,y) +/ Gur(t, z; 7, 2)Vi(T, 2)qn (T, 2; 8, y)dzdT.
’ (1.32)

Therefore we can write
Gur(t,x;s,y) = ZJflktccsy

where
Tk = an(t, z55,y),
t
Tok :/ / qn(t, x5 7, 2)Vi(T, 2)qn(T, 2; 8, y)dzdT,
s JRd

t
Jit = / Tt s, Vil 2)an( 24 5, y)dedr, i > 1.
s Rd

Recall that now ap < §. By Lemma 1.3.2(i), there exists a constant C,
such that for all s < t and z,y € RY,

F%(t, T, Z)F%(T, 2;,5,Y)
F% (ta Z5s, y)

S CZ(Fag(t7x;T; Z) +Fa2(T,Z;S,y)) (133)

Using the a priori estimates (1.14) for ¢, (¢, x; s,y), we can easily get the
following estimates:

| T (28, )] < Cq(CquMf‘fs(V))i Ta(t,z;s,y), 0<t—s<h. (1.34)

Then we can find an sufficiently small hy such that hy < hy, C,Co M2 (V) <
1, and

Guk(t, z;8,y) = ZJflkt:csy

C
< il -Ta(t, x:
SToaomm ) LibhEsy)
C
< 4 -Ta(t, x; t— s < ho. 1.
_]_—CqOQM;;;Q(V) 4<7$7S7y)7 0< § > Na ( 35)
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The Gaussian lower bound for G, can be proved similarly to (1.23).
There exist hj), ¢ ,a” > 0 such that for 0 < t — s < hj,

Gui(t, x5 8,y) > c”Fau (t,x;8,9).
Then by the reproducing property of Gx(t, z;s,y), there exist positive con-
stants cg, Cg such that for 0 < s <t < T,
el Fa'/(tv x5 s, y) < Gnk(ta x5 s, y) < CGF% (ta Z;s, y) (136)

Remark 1.3.5. (i) From the above argument it is easily seen that we can
also define J5(t, x;, s,y) inductively as

Jo = q(t,z;s,y),

t
Jé:// q(t, x5 7, 2)Vi(T, 2)q(7, 2; 8, y)d2dr,
s R4

t
s JRd

Similarly we can prove

| TGt x5 8,y)| < C'q(C'qC'QJWtO‘fs(V))Z . F%(t,x; $,Y), 0<t—s<hy (1.37)

(ii) Since hy is such that C,CoM;? (V) < 1, we can define

G(t,x;s,y) = ZJé(t,x;s,y), 0<t—s< hs.

1=0

It is easily seen that for 0 < s <t <T, 0 <t — s < hy

t
Gt 2 5,y) = alt, 735, ) + / / Gt 27, )V (r, 2)q(r, = 5, y)d=dr.
s Rd

Remark 1.3.6. To get the formula (1.32), we used the fact that, for each
fixed (s,y) € [0,T) x RY, the function (¢,z) — Gui(t,z;s,y) for t > s is
a solution to the equation (1.31). We should note that for fixed (¢,z) €
(0,7] x R%, the function of (s,y) — Gui(t,z;s,y) for s < t satisfies the
adjoint equation

V(a-Vu)—V(byu) + Viu+ dsu = 0.
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Similarly, the function of (s,y) — ¢,(t, z;s,y) solves
V(a-Vu) — V(byu) + 0su = 0.

So we can use Duhamel’s principle to get

t
Gur(t, z;8,y) = qn(t, z; s,y) +/ / qn(t, z; 7, 2)Vi(T, 2)Gui (T, 25 8, y)dzdT.
s JRA
(1.38)

Sometimes it is more convenient to use this expression of G,k (t,x;s,y) in-
stead of (1.32).

1.3.2 Convergence of G,;(t,x;s,y) to G(t,x;s,y)

In this section we will prove that G (t, z;s,y) converges locally uniformly
to G(t,x;s,y) as n and k goes to co. This kind of convergence is inspired by
|[KS06], where they only considered the case in which V' = 0 and b(¢, x) = b(z)
belongs to the time-independent Kato class K;_;.

Recall that h, is the constant which appears in (1.22). By (1.22) we know
n(t,x;s,y) = ZJ’txsy 0<t—s<h.
From Remark 1.3.3, we also have
q(t,z;s,y) = ZJ’ta:sy 0<t—s<hy.

Lemma 1.3.7. Let § be any constant such that 0 < 6 < hy. Let K, Ky C R?
be compact sets and 0 = {(s,t) : 0 < s <t <hy}. Then

lim sup  |Ji(t,mys,y) — Ut @ s, y)| = 0.
n—00 (5 1Yef,[t—s|>0
xEKl,yEKg
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Proof. By (1.4) and (1.5)
[ Ja(t, @ 8,y) = ' (t, 215, y)]
:‘ /t /de(t,a:;T, 2)bn(7,2) - Vop(7, 218, y)dzdr—
— /t /]Rd p(t, z;7,2)b(7, 2) - V.p(T, 2; 8, y)dsz’
:‘ /t /]Rd p(t,x; 7, 2) (b, — b)(7,2) - V.p(T, 2; s,y)dsz‘

t
§C’§/ / Lot a1, 2) by, — b|(7,2)Vu(T, 2; 5, y)dzdT (1.39)
Rd
/ / / / otz T, 2)| by — b|(T, 2)V o (T, 25 8, y)dzdT
2>k 2| <k
=C3(I+1I)

From Remark 1.3.1, we know for any h > 0 and n € N
Ny ([bal) < &NR([0]).
Then for 0 < h, < g and k large enough such that
1
|lx — 2| > §|z|, Vo € Ky, |z| > k,

we have

I—//
z|>k
t—h 2 2
‘ M—d 1 |2 =y
— exp b, — b|—————exp(—a - dzdr+
/ /z|>k t—r7)2 (Fe t— ) |(7’—s)d§1 ( T—3S8 )

2 1 2
/ / expl—a- 5 oo — ——r exp(—a - 2 dgr
|z\>k t— T

t—7 (T—s)T T— 35

2 2
l— (tr—s) = T— 8

dzdr

eXp(

e Jz—yP
< he 2 exp / / b, — b| 7 exp(—o - ————)dzdr+
4h1 2| >k (r—s

)2 T — S

/ / . exp(—a =z |)|b — bldzdr
t—he z|>k t—T =N t—T1

< (s e expl(a SN0 + G5+ DN ()

>N
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Given any € > 0, we can first choose h. sufficiently small such that
2.4 0, €
(5 +1)(5)2 N (Bl) < 5,

and then find large enough k such that

2

_d k
(5 + Dhe * exp(—a - — )N ([b]) <
4h, 1

Wl ™

For II we have

t
n=//irmwmam—wWNwwwwM”
S \Z|§k

t
;// Pa(t, 57, 2) (Lompeiiy bn — D) (7. 2)Ua(T, 2 5, y)dzdr
s Jz|<k

< CiNG ((Lopgxqiz<ay [bn — b)) - Ta (8, 23 5,9)
d
< (0)72CLN,! (Ljo,n)x {21k} [bn — )

Since [0, hy] % {|2z| < k} is compact, from (1.6), we have

Jim N3 (Lo,m)xqleliy) « [bn = bl) = 0.
So we can find ng such that IT < £ when n > ng. Therefore if n > ng, we
have

sup |y (t @ s,y) = JH(E @8, y)| < Ce
(S7t)€0,|t—8|2(5
zeK1,yeK2

Thus the lemma is proved. O]

Remark 1.3.8. Recall that 6 := {(s,t) : 0 < s <t < hy}. Then for any
compact K C 6, we can always find some § > 0 such that K C {(s,t) €
0 : |t —s| > &}, therefore from the above lemma it follows that for any
K, Ky C R? compact,

lim  sup |J71L(t,$; $,Y) — Jl(taQU; s,y)| = 0.
n—oo (s ek
wGKl,yGKg

Lemma 1.3.9. For any compact sets K C § and K,, Ky C R?, we have

lim  sup |J.(t,2;8,y) — J'(t,2;8,9)| =0, Vi > 1.
N0 (st)EK
rzeKi,yeK>
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Proof. The proof goes by induction argument. For ¢ = 1, this has been
proved. Now suppose that the lemma is true for i, then for (s,t) € 6, [t —s| >
0, we have

[ TaH (b s, y) — TNt @y s, )|
:’ /t /Rd Tt @7, 2)ba (7T, 2) - Vop(T, 23 5, y)dzdT —
- /t /Rd JU(t, @7, 2)b(T, 2) - Vzp(T,Z;S,y)dZdT‘
:‘ /t /Rd Ty (t, 237, 2) (b — b)(7, 2) - Vap(T, 25 8,y)dzdr—
/ /Rd )(t, 27, 2)b(T, Z)’Vzp(T,Z;S,y)dsz‘
gaﬁ/AQﬁw@wxmm—mwaﬂz&m@m

t
+/ |J" — Tt 27, 2) |b|Wa(T, 25 5, y)dzdT)
s JRA
=Co(I+1I).

For I, we have
I < Co(kCoC1N ([0])) / / a(t,x;7,2)|by — b|(7, 2)Wa(T, 2; 8, y)dzdrT.
So we can do the similar procedure as as we did with (1.39) to get

lim I(¢,2;8,4) =0

n—oo

uniformly for (s,t) € 0,|t —s| > d and z € K1,y € Ks.

For II, we have
/ (J' = T, 257, 2)| - |b(T, 2)| - | Vap(T, 25 8,9) |dzdT (1.40)
R4
t—he ' ,
= [ [0 = g )]V,

s Rd

t
+/ (T = )t @7, 2)] - [b(7, 2)| - [ V(T 23 5, y)|dedr

t—he JRE

t—he
s/ (T = Tt 237, 2)] - b )] - [Vap(r, 22, y) [ dzdr+
s Rd
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ot
+20§(/£C’OC1N,11(|17|))1/ / La(t,z;7,2)[b(T, 2)|Va(T, 2; 5, y)dzdT
t—he JRE

t—he ) ) d 7
<[ [ g b2 [V, ldadr + 2C3G) (CaCu N ()
s Rd

21N )

<II; + I,

For II;, we can choose k large enough such that
1
|z —z| > §|z], Ve € Ky, |z| > k,

then
t—he . .
= [ [ = ) (e 25 ) dedr
S ‘Z|>l€ |Z‘§k
| pthe
<2CRRCON () [ [ Tyt m2lb(r. )| Valr 0, )dzdr+
s R4

t—he
sup (= Sl [ [ )| dadr
(T,t)€0,|t—7|>he s |z|<k
z€K1,|z|<k
o _d k2 . ,

< 2CR(RCHCNE () R F exp(—a - S INEI(B) + €1 sup (T — Tk, 2)],

! 8hl ! T,t)e0,[t—T1|>h

(reOlirizhe

TEIK,|2Z|<

where & is the constant from Remark 1.3.1.

Given Ve > 0, we can first choose h, sufficiently small such that 1T, < g,
and then find large enough k such that

2

. _d k €
203 (RCHCANE () b exp(—a - S NG (bl) < 5.
Since A
lim  suwp |(J— S (i) =0,
=00 (14)€0,|t—T|>he
zeK1,|z|<k
We get

lim II(t, z;s,y) =0

n—oo

uniformly for (s,t) € 0, |t—s| > d and x € K3,y € Ks. For a general compact
set K C 6, the statement is still true. ]

Remark 1.3.10. From (1.26) and (1.30), recall that

[riL(ta 5 s, y) = VxJ:L(tv z5s, y)
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and
I'(t,w;s,y) = Vo I'(t,z58,y).

If we replace J!(t,z;s,y), Ju(t, z;s,y) with I'(¢t,x;s,y) and I'(t,z;s,y) in
the above lemma, it is still true. The idea of the proof is the same, so we
omit it.

Theorem 1.3.11. For any compact sets K C 0 and K1, Ky C R%, q,(t,2;5,7)
converges uniformly to q(t,x;s,y) on {(t,z;s,y) : (s,t) € K,z € Ky,y €
Ky}

Proof. For (s,t) € 0, |t —s| > 8, qu(t,x;5,y) = > oy JI'(t, x; 8, y), and

Co (F&COC1 (’b|))

d I

(9)2

since kCoC1 Ny, ' (|b]) < 1, the above series converges absolutely. Using lemma
1.3.9 and a standard argument we can easily get

| Ji(t,255,)| < Co(kCoCINE ([b]))" - Da (t, 23 5,) <

an(t, x5 s,y) — q(t,z;s,y)

uniformly for (s,t) € 0, [t—s| > d and x € K,y € K,. For a general compact
subset K of 6, the lemma still holds. n

From Remark 1.3.10, we also have the following theorem.

Theorem 1.3.12. For any compact sets K C 0 and K1, Ky C R%, V,oq,(t, z; 8,9)
converges uniformly to V.q(t,z;s,y) on {(t,x;s,y) : (s,t) € K,z € K,y €
Ky}

Now we proceed to prove the convergence of G (t, ; s,y) to G(t, x; s,y).
Recall that hy > 0 is the constant which makes the inequality (1.35) hold.
By (1.35), we know for 0 <t — s < hy,

[e9]

Gur(t, z;8,y) = Z LT 8,Y).
=0

From Remark 1.3.5, we also have

o0

G(t,x;s,y) = Z (t,z;s,y), 0<t—s<hs.
=0
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Lemma 1.3.13. Let 6 be a constant such that 0 < § < hsy, K1, Ko C R? be
compact sets, then

lim  sup |t ass,y) — Jo(tas,y) =0, Vi> L
k=00 (5.4)€0,|t—s|>6
zeKi,ye Ko

Proof. Step 1: We consider ¢ = 1. Then

|‘]rlzk(t7 z;s, y) - ‘]é(t z;s, y)’

:} /st /Rd G (t, 257, 2)Vi(T, 2)qn (7, 23 8, y)dzdT—
- /t /Rd qt, x;7,2)V(7,2)q(7, 23 5, y)dzdT
:‘ /t /Rd ot 257, 2)Vi(T, 2) (g — (7, 2; 5, y)dzdT
+ /t /Rd an(t, 27, 2) (Vi = V)(7, 2)q(T, 23 5, y)dzdT

t
n / / (4 — Q)(t, 27, 2)V (7, 2)q(7, 25 5, y)d=dr
s R4
—|T+ 11111

For I, by (1.24),

1| < C, / / a(t,z; 7, 2)|Vil(T, 2)|gn — @)|(7, 23 5, y)dzdT

s+he
<20, / / La(t,z;7,2)|Vi|(,2)a (7, 2; 5, y)dzdTdzdT
R4

e / + [ Pyt 2w — a7 55,0 dzdr
s+he J|z|>k |z|<k

Then use the same method as we estimated (1.40), we get

lim sup  |I(t,z;8,9)| = 0.
n,k—00 (5 4Yeg, |t—s|>5
r€K1,yc Ko
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The second summand is estimated as follows:
1| <C, / / a(t,z;7,2)|Vi = VI|(7,2)Ta (7, 2;8,y)dzdr

<C / / / / % t y LT, Z>|Vk - ‘/'|(7'7 Z)Fg(’]', z; 8, y)dZdT
|z[>k |z|<k

=C(II; + 1I,)

For II;, we have

Q@ ]x—z|2 1 a |z—yp?
1 2>k ( ( 2 t—r)l’“ |<T_S)g ( 5 T_S)
« |x—z|2 1 o |z -y’
= exp(=5 - Vi = V|—— exp(—5 ddr
/5 /Z|>k(t_7)g ( 2 o Vi ’(T—S)% ( 2 r—s )
1 a |x ,z|2 1 a |z —yl?
v / SRR T Y B NI T s
t—he J|z[>k ( t—TE ( 2 t- W= |(T—S)g ( 2 7'—5)
< he 2ex /t . / Vi = V]——g ex (—g —|Z_y|2)dzdr—|—
- " 8h2 N 7—3)2 S
22 / / a |z- z|2
* exp(—5 Vi, — Vl|dzdr
(t—s t—he z|>k t—T ( 2 t— IV |
2
<2]’L 2exp( 8h )M}?;(V)‘i‘Q((S)gMiz(V)

, and then find large enough k such that 2h.

For 11, we have

wlm

Therefore we can first choose h, sufficiently small such that 2(2)4M (V) <
5

* exp(—a g Mz (V) <

t
I, = / / F%(t,ﬂf;’i’, 2)|\Vie = V|(r, Z)F%(T, z;8,y)dzdT
s J|zI<k

< / / F%(t,x;T, Z)(l[o,hg]xﬂz\gk}ﬂ/k —VD(T, Z)F%(T,Z;S,y)dZdT
s Jz|<k
< Co M2 (Lo o) x(jz1<kp| Vi = V[) - Ta (s, 258, y)
d o
< ()72 CaMy 7 (Lo o) qiz1<k3 Ve = V).

Since [0, h] x {|z| < k} is compact, we have

Hm M2 (10, na)x {11 <kp) (Vi — V) = 0.

n—oo
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So we can find ng > 0 such that when n, k > no, IT < 2.

The third term III can be done as the first term I. So we have

im  sup  |Je(t@s,y) — Ja(t s s,y)| = 0.
n,k—00 (5.4)€0,|t—s|>6
reK1,ye K2

Step 2: Suppose now the lemma holds for 7. Then for i + 1 we have
[Tk (@ s,y) — T (t, @3 8,y)]

_|/ / k(2 7, 2)Vi(T, 2)qn(T, 25 8, y)dzdT —
- / /R Tt a7, 2)V (7, 2)q(T, 23 8, y)d2dT|
_!/ / L2, 2)Vi(T, 2) (g — @) (7, 25 8, y)dzdT
/ /Rd k(27 2)(Vie = V)(7, 2)q(7, 23 8, y)dzdr
/ /Rd )t 27, 2)V(7, 2)q(7, 25 8, y)dzdr

Then the rest of the proof is very similar to step 1, so we omit it. [

The following theorem is an easy consequence of the above lemma.

Theorem 1.3.14. For any compact sets K C 0, Ky, Ko C R, G(t,7;5,y)
converges uniformly to G(t,z;s,y) on {(t,x;s,y) : (s,t) € K,z € K,y €
Ky}

1.3.3 How to define G(t,z;s,y) for 0 < s <t <T

So far we have only defined G(t,z;s,y) locally for 0 < t — s < hy and
x,y € RY. Now we use the reproducing property of G,x(t,z;s,y) to define
G(t,z;s,y) forall 0 < s <t <T.

Theorem 1.3.15. Suppose that Ky, K, C R? are compact sets and § €
(0,hy). Let Op = {(s,t) : 0 < s <t < T}, then Gui(t,x;s,y) converges
uniformly on {(s,t) : (s,t) € Op,t —s >0} x K1 x K.
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Proof. We only look at the case T' = %hg, for general case the lemma can be
proved similarly.

We define

1 3
A:={(s,t):0<s<t<hy, t—s>0}, B:Z{(S,t)1§h2§S<t§§h2, t—s >0},

1
C:={(s,t):0<s< §h2, hoy <t < ghg}.

We easily see that {(s,t) : (s,t) € Op,t —s >0} C AUBUC.

For (s,t) € B, G(t,z;s,y) is already defined and with almost the same
proof of theorem 1.3.14, we have

lim sup  |Gui(t,z;s,y) — G(t,x;8,y)| = 0.
n,k—00 (s,t)eB
z€K1,y€K2

From theorem 1.3.14 we also have

lim  sup |Gu(t, 2;8,y) — G(t,258,9)| = 0.
n,k—o0 (s,t)EA
reK1,ye K>

So if we can show G(t,z;s,y) converges uniformly on C' x K; x Ky,
then we are done.

For 0 < s < %hg,hg <t< %h? and z € Ky,y € K,, by the reproducing
property of Gnk (t7 Z;s, y)7

Gt 5.) = [ Glt.23 o, )G (hasz:5,)
Rd
3 3 3 3
:‘/ Gnk(tux;_h27z)Gnk(_h27Z;8ay)dz_/ G(tux;_h27Z)G<_h27Z;S’y)dZ
e 4 4 e 4 4
3 3
:‘/ Gnk(tax;_h%z)(Gnk _G>(_h27z;$7y)dz
R4 4 4
3 3
— / (G — Gup)(t, x5 =he, 2)G(=ha, z; 8, y)dz
R4 4 4

Since K, Ky are compact sets, we can find R > 0 large enough such that

3 3 .
2 _ |
1o /Z|>R F%(t7 v ZhQ’ Z)F%(th z;8,y)dz < 2

foranyOSsS%hg,hggtgghQ and x € K1,y € Ks.
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Then

3 3
IGnk(t,x;S,y)—/ G(t,z; —ho, 2)G (< h, 2; 5, y)dz|
Rd 4 4

3
§4C’é/ La(t,z; —~hg, 2)Ta (< hy, 23 8, y)dz
2> R 4 4

3 3
4 [ Tttt )G - Gl(ha s )d:
2|<R 4 4 4

+ \G—Gnk|(t,x;§h2,z)G(§h2,z;s,y)dz
Rd 4 4

3 3

CL0 sup |G — Gl(Cha,zis,y) £ O sup |G — Gl (t 25 Sha, 2).

2 0<s<3ho 4 ha<t<Zhs 4
yEKo,|z|I<R z€K1,|z|<R

Therefore

3 3
lim ]Gnk(t,x;s,y)—/ G(t, x; Zhg,z)G(Zhg,z;s,y)dz\ = 0, uniformly on C'x K x K.
Rd

n,k— o0
O]

Remark 1.3.16. (i) From the above theorem, we can therefore define

G(t,z;s,y) == lim Gu(t,z;s,y), 0<s<t<T.

n,k— o0

(ii) By Theorem 1.3.15, for any compact K C {(s,t) : 0 < s < t <
T}, K1, Ky C R4, we have

lim  sup  |Guilt, 2 5,) — Gt is,9)] = 0. (1.41)
n,k—o0 (s,t)eK
reK1,yeK>

(iii) Recall that G,k (¢, x; s, y) satisfies Gaussian lower and upper bounds,
namely there exist constants cg, Cq > 0 such that

cag - Fa"(tax; Say) < Gnk(taxy Say) < CG T (t,l’, S7y) (142)

forall 0 < s <t <T and z,y € R% Therefore we also have

Ca - Fo/’(tvx; Svy) < G(t,lL‘, Say) <Cg-T (t,l’, Svy) (143)

o
4

forall 0 <s<t<Tandz,yc R
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1.4 Existence and uniqueness of weak funda-
mental solution

In last section we constructed G(t,z;s,y) as limit of Gx(t,z;s,y). Since
each Gx(t, z; s,y) is a weak fundamental solution for

V(a-Vu)+b, - Vu+ Viu— 0w =0,

in the limit case, we would expect G(t,z;s,y) to be a weak fundamental
solution to the parabolic equation

V(a-Vu)+b-Vu+Vu—0ou=0. (%)

In this section we prove that this is indeed the case. Thereafter we will also
show that weak fundamental solution for (x) is unique.

Let 0 < s < T, for any f € L*(RY) N L*(RY), we define u(s,z) = f(z)
and

u(t,x) = /Rd G(t,x;s,y)f(y)dy, s<t<T.

Theorem 1.4.1. wu(t,z) is a weak solution to (x) in [s,T] x R, namely

u € C([s, T); L*(RY) N L*((s,T); H'(RY),
b-Vu €L ((s,T) x RY),
VueL'((s,T) x RY),
/T/ (Vu-a-Vo—¢b-Vu—Vup — ud¢)ddt = 0,
s R4
Vo € C([s, T] x RY).

We prove this theorem through the following several lemmas.

We define u,(s,z) = f(z) and

R4

Since Gk (t, x; s,y) is a weak fundamental solution for

V(a-Vu)+b, - Vu+Viu—ou=0,
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we have

uni € O([s, T); LA(RY)) N L*((s, T); H'(RY)),
bn - Vune €L'((s,T) x RY),
Vkunk ELl((s,T) X Rd),

T
s R4
Yo € C°([s,T] x RY).
Lemma 1.4.2. Let 0 < 0 < T — s, then

lim sup ”unk(ta) —U(t,)HQ = 0’
n,k—00 51 5<t<T

where || - |2 denotes the norm in L*(R9).

Proof. For t € [s+6,T],

ot (2, ) — u(t, )3 = /Rd(unk(tw) — u(t,z))’dx

:/Rd (/Rd Gur(t, x5, y) f(y)dy — /Rd G(t,:v;s,y)f(y)dy>2dx
= /Rd ( Ra (Gt 23 5,y) = G(t, 2 Say)llf(y)ldy)Qd:c.

Since Gui(t, x;s,y), G(t,x,s,y) satisfy Gaussian bounds (1.42) and (1.43),
then we can use Jensen’s inequality to get

i (2, ) = ult, I3

<c / Gty 5,) — G(t, 735, )||f () Pdyda
R4 JRA

—C / £ ) Pdy( / (Gt 23 5.) — Glt, 23 5,)|do)
Rd R4

e / FPdy+C [ 1wy / (Gut,2:5,y) — G(t, 23 5,)|da).
ly|>K1 Rd

ly|<K1

Since f(z) € L*(R?), we can choose K large enough s.t.

/ 2 E
o[ wPd<g (1.44)
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For the second term we have

/ ) Pdy( / Gt 73 5,9) — G(t,2: 5, y)|dz)
ly| <Ky Rd

< / £ Pdy(C” / P (t, 255, y)dr + / G — GI(t, 3 5, y)de)
ly| <K |z|>Ka2

lz|< K>

" 2 1 axe-ry? €
C | f ()" dy( —e s T dr) < . (1.45)
W<k 2 3¢

By Remark 1.3.16(ii), we have
lim sup |Gor — G|(t,x;8,9y) =0,

k=00 4| <Ky |y <Ky
6<t—s<T
and therefore

lim () 2y / Gt — G|t 258, 9)dx) = 0. (1.46)
|z|<K>

7L,k‘~>00 |y\§K1

So with (1.44), (1.45) and (1.46) we get

lim  sup ||unk(t,) —u(t, )|z = 0.

n,k—00 g1 5<t<T

O
Lemma 1.4.3. limy, ||u(t,-) — f(-)]]2 = 0.
Proof. Recall that p(t, z;s,y) is the weak fundamental solution to
V(a-Vu) — 0w =0,
and hence
i | [ plt.aisf@ay - @), =0 (1.47

By Remark 1.3.3, for 0 < t — s < hy, we have

[e.9]

alt, 73 5,9) Z (tass,y) = plt,zis.y) + Y J'(Eais,y),

=0 i=1
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and

| Ji(t, 2 5,9)| < Co(CoCIN([B])" - T (8,3 5, ).

Therefore

/R alt,wis,0)f )y — 1)
— /de(t,w;s,y)f( )dy — f(x / ZJI (t, 23 5,y) @)dsz
/RdX:JZ (t,z;s,y) (y)dyH2

IN

/(t:csy y)dy — f(x H—i—‘
R4

But
| [ S rwasmsnl= [ ([ Srtnsnson) s
</ (Ad|§;Ji<t,x;s,y>| 1 ldy) ds
i 2
S/Rd (/Rd : _i;cogf]\,;'b(’ﬁbl Fg(t,x;s,y)lf(y)ldy> da

)
KZCQCthal |b| 2 2
< «@
(1—mCOCle“1 (10]) ) / (/RF (t.235,9) fly )Idy) dx

HCQClNal ‘b| 2
<C’ ' / Fg t, dud
<1—n00011vf (10]) sl ms )iy )|*dydz
,< HCQCthal ‘b|

d Ia(t, x; d

1_/'@0001]\/}&18 |b| > | Yy /d 2( 7‘7"7573/) I)
HCQ 1Na1 |b|
<C// t / d
- (1—KCOCIN;“ (16D ) ()l dy.

Since limy s N2, (]0]) = 0, together with (1.47), we have

lim | / gt 5,9)f )y~ f()]s =0 (1.48)

tls

From Remark 1.3.5, we know

G(t,w;s,y) =Y Jo(twss,y) = qlt,wss,9) + Y Jo(t,255,y)

1=0 1=1
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and

|J5(t, x5 8,y)| < C'q(CqC'thafs(V))i Ta(t,z;s,y), 0<t—s<hy (1.49)

E
Similarly to the proof of (1.48), now we can use (1.48) and (1.49) to get
|l [ G(t,255,9)f(y)dy = f(2)ll2 = 0. (1.50)
s JR

]

Remark 1.4.4. From the proof of the above lemma, we see that the rate at
which [Ju(t,) — f(-)||2 goes to 0 as t | s depends only on M (V'), N (]b])
and the rate of

lim | / plt 7 ,9)f )y — F(2)]ls = 0. (1.51)

tls

If we change wu(t,-) to unk(t,-) in the above lemma, by the same estimates
we see that the rate at which [|u,(t,-) — f(+)||2 goes to 0 depends only on
M2 (V), N2 (|b]) and the rate of (1.51). In particular, it does not depend
on n, k.

From Lemma 1.4.2, Lemma 1.4.3 and Remark 1.4.4, a simple "e — 9"
argument leads us to the following corollary.

Corollary 1.4.5. u € C([s,T]; L*(R?)) and

lim sup |[unk(t, ) —u(t,-)|l2 = 0.
n,k—o0 s<t<T

Next we show that u € L2((s,T); H*(R?)).
The following lemma is a time-depedent version of Lemma 2.11 in [KLSUO04|.

Lemma 1.4.6. There is a constant C' > 0 independent of n, k such that
T
/ Vi - a - Vuypdzdt < C.
s R4

Proof. This is a modification of the proof of Lemma 2.11 in [KLSUO04].
Let s <t; <ty <T, 0<e<%anddeﬁne

0 te[0,t] U [ta, T
() = Lt—t) te(t,ti+e)

1 teti+ets—¢

Lta—1t) te(tr—ets).
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Using the estimates for G (t, x; s,y), it is easy to verify that
Nk € Hi((5,T) x RY).
Therefore

T

/ ) (Vpg-a-V (ng) — (Mtng ) bn- Vg —Unk Vi (NUng ) = Uk Oy (Mg ) )dxdt = 0,
R

or

T
/ NVung - a - Vugdedt

T
s ]Rd

:Il + IQ -+ 13.

1 tite ) 1 to ) 1 to 9
e [ sl =2 [ a0+ 5 [0 (lonal) 0
€ t1 € to—e

t1
A direct computation yields

) 1
tim 1y = (s [3(02) + s [3(02).
From the proof of Lemma 1.4.2, we know that for any s <t < T,
st MF<C [ 15

where C' only depends on the constant C'¢ which appears in the Gaussian
bounds for G (t, z; s,y) and G(t,x;s,y). Therefore we have

lim |I;] < 0/ |f ()| dy. (1.52)
e—0 R4

For I, we have

T
L] < / / b ()| - [Vt (£, )| - i (£, 2) et
s R

S/ST/Rd\bn(t,m)"‘/RdeGnk(t,x;s,y)f(y)dy’.‘/RdGnk(t’x;s,y)f(y)dy’dxdt

T
<t [ [ [ utt.0) 1V, Goslts )] 110t

T
<Ch| flloo - /Rd \f(y)\dy(/ /Rd by, (T, )] - |VIGnk(t,x;s,y)\dxdt).
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From (1.38), we know

t
VxGnk(t7 €, s, y) - van(ta x;s, y)+/ / szn(ta T, Z)Vk(Ta Z)Gnk(Ta zZ5 8, y)dZdT
s JRd

(1.53)
Therefore by Fubuni’s theorem and Proposition 1.1.4 and 1.1.11,

T
[ [ el 9. G,
s JRd
T t
=/ b (t, )| - ‘qun(t,x;s,y)Jr/ Van(t, 57, 2)Vi(T, Z)Gnk(7—72§3ay)d2d7—‘dxdt
s R4 s
T
SC’Q/ b (t, ) [Wa (t, 258, y)drdt
s R4
T ¢
+/ / |bn(t,x)|dxdt(|/ Vo (t, 3,7, 2)Vi(T, 2)Goi(7, 2; 5, y) d2dT])
s R4 s

T T

§C'3—i—/ / FZ(T,Z;S,y)Vk(T,Z)dZdT(/ |bn(t,a:)|\11%(t,x;7',z)dxdt)
s Rd T

<Cy

The constants Cy, Cy, Cs, Cy depend only on the quantity Ny (|b]) and M2 (|V])
and are the same for all n, k. So we have

B < CCull Tl [, )l (154

For I3, we have
T
|I3] < / / \Vie(t, x)] - \unk(t,x)Idedt
s Ra
T 2
<[ [ Wit | [ Gutt.wisi) o) dode
s Rd R4
T
<Co [ [ e [ Gualt.ais )l )Py
s R4 R4

<c: [1twkan( [ [ Wit aivs e o s )

<G [ 17wy (1.55)

Combining (1.52), (1.54) and (1.55) we show that

to
/ Vi - a - Vugpdedt < C,
t1
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where C' does not depend on n, k. Since t,ty are arbitrary, the lemma is
proved. O

Corollary 1.4.7. u € L*((s,T); H'(RY)) and there exists a subsequence of
Vi converges to Vu weakly in L*((s,T), L*(R?)).

Proof. Tt is easy to check that there exists a constant C' > 0 independent of
n, k such that

T
//]unk|2(t,x)dxdt<0/ () 2y,
s R4 R4

Then the lemma follows from Corollary 1.4.5 and Lemma 1.4.6. [
Lemma 1.4.8. b-Vu,Vu € L'((s,T) x RY).

Proof. We only prove b- Vu € L'((s,T) x R?Y), the claim for Vu is proved
similarly. From (1.38) and (1.41), we can get

t
Gt a3 5,y) = qlt, a3 5,y) + / / a(t, 27, )V (7, 2)G(7, 2 5, y)d=dr,
s R4

and therefore

t
V.Gt z;s,y) = Veq(t, x; 3,y)+/ Voq(t,x; 1, 2)V(r, 2)G(T, 2; 8, y)dzdrT.
s JRd

(1.56)
By Fubuni’s theorem and Proposition 1.1.4 and 1.1.11,

T
[ [ pt.a) - 9.6 0,55,
s JR4
T ¢
< [ e [Vaattass.s) + [ Fualtows 2V (5,26 255, g)dedr |dadt
s JR4 s
T
§C1/ b(t, 2)[Va (t,x; s, y)drdt
s R4
T ¢
+/ / |b(t,:r)|dacdt(/ Vaq(t, 7, 2) |V (7, 2)G(7, 25 5, y)dzdT)
s R s

T T
§C’2—|—/ / F%(T,Z;S,y)V(T, z)dsz(/ |b(t,x)|\11%(t,x;7', z)dacdt)
s R4 T

<o0.
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Lemma 1.4.9. For V¢ € C3°([s, T] x R?), we have
T
/ / (Vu-a-Vo—¢b-Vu—Vup —udyp)dxdt = 0.
s R4

Proof. For each u,;, we know that

T
/ / (Vupg - a- Vo — dby, - Vupg — ung Vi — tni0y0)dzdt = 0.
s Rd

By Corollary 1.4.5, we know that u,,, converges to u strongly in L*((s, T, L*(R%)),

therefore
T T
lim / /unk(?tcbdxdt:/ / uOypdxdt.
nk—oo Jo R4 s Rd

From Corollary 1.4.7, there exists a subsequence of Vu, converges to Vu
weakly in L?((s,T), L*(R?)), for simplicity, we denote it still by V. So

T T
lim / Vg - a - Vodrdt = / / Vu-a-Vodxdt.
s R4 s R4

n,k— o0

If we can prove

T T
lim / by, - Vudrdt = / b - Vudxdt (1.57)
s R4 s R4

n,k—o00
and

T T
lim / /unkaqbdxdt:/ / Vugdxdt, (1.58)
nk—oo [ R4 s R4

then we are done. Here we only prove (1.57), because (1.58) can be done
similarly.

To prove (1.57), we have

T T
/ by - Vupdrdt — / / b - Vudxdt’
s R4 s R4

T T
- / S(by — b) - Vaupdadt — / b - (Vo — Vunk)dxdt‘
s R4 s Rd

T T
< / by — b) - Vunkdxdt‘ v ‘ / b - (Vi — Vunk)dxdt‘
s R4 s R4

=L+ I
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By (1.53) and (1.56)

T
L= / by — b) - Vunkd:vdt‘

s R4

N /ST /Rd $(bn b><éd Vank(tw;S,y)f(y)dy)da:dt‘

T
_ / o(ba — b) / Vadu(t 2 5,y) f (y)dydadt
s R4 R4

T t
s [ [ot-0( [ [ [ Veatiwin o Vitn Gt s, () dzdrdy)dr
s R4 Rd Js JR
=|I11 + L12].
By Fubini’s theorem,

il < [ @ldn [ [ 100, 01w ¢, )dndt)
<Cu [ 15)ldy- N7, (1066, - D).

Since ¢ is of compact support, we have

lim [11 = 0.

n,k—oo

For I3, we again use Fubini’s theorem, which yields
T t
al = | [ swan( [ [ [ [ o0 = 0)Vatnlt,w5m Vil Gl 5 5,0) f(0) )|
R s Re Js JR
T T
< /d |f(y)|dy(/ /d |Vi (T, z)|Gnk(T,z;s,y)dzd7'/ /d |p(b,, — b)|\P%(t,m;T, z)dzdt)
R s R T R

<0y » [FW)ldy - Mp2 (V) - Np* (¢(bn — D))

Since lim,, o N3 (|¢(b, — b)|) = 0, we also get

lim ]12 = 0.
n,k—o0
Therefore we proved
lkim ]1 = 0.

The term I5 can be estimated by similar methods, so we get

T T
lim / ob,, - Vuydrdt = / ¢b - Vudxdt.
s R4 s R4

n,k—o0
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Thus we have proved Theorem 1.4.1. So now we can state the main
theorem of this section.

Theorem 1.4.10. G(t,x;s,y),0 < s <t < T, is the unique weak fundamen-
tal solution for the equation

V(a-Vu)+b-Vu+Vu—0du=0. (%)

Proof. By Theorem 1.4.1, we know G(t, x; s, ) is a weak fundamental solution
to (). Uniqueness can be proved in the same way as [LS00|, Lemma 4.6 and
4.7. [



Chapter 2

Diffusions with time-dependent
singular drift

In the paper [BC03|, Chen and Bass proved existence and uniqueness of weak
solutions to the following stochastic differential equation

dX, = dW, + B(X,))dt, Xo = (2.1)

where the drift term belongs to the (time-independent) Kato class Ky_1 and
can be very singular. In fact they could even allow B to be a Radon measure,
but then the notion of a solution to (2.1) would be a little bit different from
the usual sense. Their method is based on constructing the resolvent S*
for the process X;. Later P. Kim and R. Song studied the process X; with
singular drift B thoroughly (see [KS08, KS07a, KS07b, KS06] et al); among
many other things, they obtained two sided estimates for the heat kernel and
Green function of X,.

In this chapter we study the time-dependent version of (2.1), namely

> s.
< (2.2)

dX; =dW, + B(t, X;)dt, t
t <s.

Xt:fﬂ, 0

We assume |B(t, z)| to be in the forward-Kato class FK§_, for some a < 3,
then we prove existence and uniqueness of weak solutions to (2.2). Basic ideas
are taken from [BCO03|, but we have to extend them to the time-dependent
case. We should note that FKg_, includes the (time-independent) Kato class
Ka—1, therefore our work extends the results of [BC03].

If we further assume |B(t,z)| € TKG, for some o’ < 1, then from the
results of Chapter 1, we can also get two-sided Gaussian estimates for the

57
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transition density function of X;. These are time-dependent versions of the
results of P. Kim and R. Song.

2.1 Forward Kato class 7K _,

In the time-dependent case, the definition of Kato class is very subtle. In this
section we introduce the forward Kato class FK_,, which is strictly larger

than TKXg_,.

Definition 2.1.1. A measurable function f on [0,00) x R? is said to be in
the forward Kato class FKg_; if

. C,J,- o
}1115)1(1) Nh (f) - 07

where

i s+h ’ _ 9’2
Ny (f) = Sup / / dﬂ exp(—c Wt y)|dydt.
s Rd t — s t—s

€[0,00) xR P

Here ¢ > 0 is a given constant.

By definition, FK¢_, includes the time-dependent Kato class TK¢_,
However, they are not the same.

Example 2.1.2. For any given ¢ > 0, we have FK5_; # TK_,
Let

otherwise

1 . 1 1
G m):{ “marnag 03 SE< el <3d(1 1)
’ 0

If we fix (t,y) = (1 0), then for all 0 < h < 1,

P
/1 h/Rd 1—s) ‘i'gl exp(—c 1 )’f(s x)|dzds

/ / L exp(eed™ ) (s, 2)ldad
Xp s, x)|dxds

1-h |x\<3d1 5) l—s)dz ‘1=
1 |2 |?

x
= ds/ ———exp(—c Ydx, let —— ==z
/1h (1- 3) Ingty Jpsan-ot (1-5)% ‘1= (1—s)z

! 1
:/ a 1 ds/ exp(—cla’[*)dx
—s) gy i<

1
1
>C / —ds, where C' > 0 is some constant.

(1—-3s)In 5




2.1. FORWARD KATO CLASS FK§

. 1 1
Since [, T)ds diverges, we have

P
/1 h/Rd 1—s) d'gl exp(—c 1 )’f(s x)|dzds = 0o

so f ¢ TKS . Next we show that f € FK§_,

For % < s < 1, we have

! 1 ly|?
lim —— 7 exp(—c——)|f(t,y)|dydt =0
Re (t— s t—s

s—1 s )2

In fact,

i / R AL
s ]Rd t—s 2 t—

1 2
<lim - - dt/ y exp(—c—|y| )dy
s—1 s (t—8)5(1—t)51 ﬁ R4 (t—s)E t—s

1
1 t—
gth/ . ——dt, let r=—",
s—1 s (t_S)Q(l—t)Q].nm 1—35
. ! 1
<limC ; - dr
s=1 Jo r2(l—r)2ln —(175)1(14)

1 o
<lim — C/ ———dr=0
s=ing— Jo rz(l1—r)2

—S

For any given € > 0, we can find a constant sy > % such that

! 1 ly|? €
/ / —— 7 exp(—c¢ Wt y)|dydt < —, if s <s<1.
Rl (t — 8 t—s 4

)2

We set

1
Ci = sup ,
<t\50+1 (1 — t) l ﬁ

1
2

Let hg > 0 be sufficiently small such that

ho yl
dydt < ——
/ /Rd %eXp ——)dy <401

29
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Let h < % A M Then for s < sg, we have

o ly|?
d+1 exp( )|f(t y)|dydt
Rd t — s t

2

If s > sg, then

/S+h/ ! exp(—c il () |dydt
—_— X —_— [ —
L e gE e ey

)2

= /1 /]R : € ( |y|2 )|f(t )‘ t < j
X C dyd —.
>~ \ 4 (t B d+1 p n 5 Y Yy

)2

Therefore
s+h

o [ [ et fay

(s,2)ERXRI J s ]Rd t—s 2 t—

s+h 2

Yy

< sup/ / jexp(—c vl ) f(ty)|dydt < e.

s€R Js Ri (t— )2 t—s

We have proved that limy, .o, Ny (f) =0 and f € FK_,

Now we state some properties of FKj_;, the proofs are similar to the case
of TG,
Proposition 2.1.3. (i) If f € FK§_,, then f is locally integrable.
(i) If f(t,x) € FKS_,, then NJ7(f) < oo for any | > 0.
Lemma 2.1.4. Suppose [ € FKS_, then for any nonnegative ¢ € C5°(RE)
with
P(§)dE =1,

Ra+1
we have No™(f * ¢) < NoT(f).
Proposition 2.1.5. Given a non-negative function ¢ € Cg°(R¥) with

¢(§)dg = 1.

RA+1
Let
$n(€) = n"Vo(n).
Suppose f € FKS_,, then for any compact set K C [0,00) x R,

Tim Ni (Ll f 6, — f1) =0
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2.2 Brownian motion with time-dependent sin-
gular drift

In this section we study the following stochastic differential equation

> (2.3)

dXt - th "‘ B(t, Xt)dt, t 2
X; ==, 0<t<s.

Throughout the rest of this chaper we impose

Assumption 2.2.1. |B(-,-)| € FKg_, for some o < 3.

Under the above assumption, we prove there exits a unique weak solution
to (2.3) for each (s,x) € [0,00) x RY. Instead of dealing with equation (2.3)
directly, we use the equivalent formulation of the martingale problem due to
Stroock and Varadhan. Namely we will prove that the martingale problem
for the generator

1
L= 50+ B(ta)-V

is well-posed. We will use the same method as in [BC03| and adapt it to the
time-dependent case. The idea is to construct the space-time resolvent S* of
the process X;. If the drift B(t,z) has support in a very small comact set,
then we will see that the space-time resolvent S* of X; can be expressed in
terms of the space-time resolvent of Brownian motion. So heuristically, we
can first solve (2.3) locally. Then after a standard gluing argument we will
also get a global solution. To prove uniqueness we need to use the techniques
from Srtoock and Varadhan’s martingale problem approach.

2.2.1 The local martingale problem and martingale prob-
lem

As well-known, (2.3) is equivalent to the local martingale problem of Stroock
and Varadhan. As compared with (2.3), using the local martingale problem
approach has several advantages. Now we let

1
Li=50+ Bta) -V,

and Q = C([0,00);R?) be the space of continuous trajectories from [0, 00)
into RY. Given t > 0 and w € Q, let X;(w) := w(t). Let

Mi=0(X;:0<s<t),
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and

M == O'(Utzo Mt)

Definition 2.2.2. Given (s,z) € [0,00) x R?, a solution to the local mar-

tingale problem for L, starting from (s,x) is a probability measure P** on
(2 = C([0,00); RY), M) with the following properties:

P Xy =2,0<t<s)=1 and

FX) — / Luf(X.))du

is a (P** F;) local martingale after time s for all f € C?*(RY). Here the
filtration F; is the augmentation of M, w.r.t. P*% i.e.

Fi =G, G = U(Mt,N).

According to [KS91, Proposition 4.11], in our case the martingale problem
and the local martingale problem for L; are equivalent. Note that here the
second order term in L; is nothing but %A.

Definition 2.2.3. Given (s,z) € [0,00) x R? a solution to the martingale

problem for L; starting from (s,z) is a probability measure P, on (2 =
C([0,00); RY), M) with the properties that

P Xy =2,0<t<s)=1 and

t
is a (P®®, F;) martingale after time s for all f € C5°(R?).

We say that the martingale problem for L; is well-posed if, for each (s, x)
there is exactly one solution to that martingale problem staring from (s, x).

Remark 2.2.4. In Definition 2.2.3, we have used the filtration {F;} which
satisfies the usual conditions. But it is more convenient to deal with {M,}
itself because it does not depend on the probability measure and is countably
generated. Suppose f € C5°(RY) and let

W= o0 - [ Lof(X.)du

If {M/, M,} is a martingale after time s, then so is {M;, F,}. The reason is
simple. For any s < t; < t, if

BIME|M, 2] = M/,
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then let n goes to infinity, we get
E[M{|My,1] = M, a.e.

Therefore { M/, F;} is also a martingale after time s.

2.2.2 Some gradient estimates for R

In this subsection we derive some gradient estimates for the space-time re-
solvent R* of Brownian motion. Recall that the transition density function
p(s,x;t,y) of Brownian motion is given by
1 1 Jz—yP
p(s,zity) = —————exp(—5 - —— ).
(27)%(t — 5)* 2
For a < —, it is easy to verify that there exists a constant C; > 1 such that
for any 0 < s < t and z,y € R,

t—s

C x —yl?
- d+1 eXp(—Ozl | )

T — (2.4)

|Vaup(s, x;t,y)| <

For any A > 0 and any bounded measurable function f on [0,00) x R,
let R* be the space-time resolvent of Brownian motion, namely

R f(s,) = [0 [ pls,ast) e o)y
s R

Lemma 2.2.5. If f € FKS | and supp(f) C [s1,81 + h] x R? for some
s1 =2 0,h >0, then
VR < G- Ny (f),

where Cy is the constant appearing in (2.4).

Proof.
IV.R f(s,2)|

IV, / A=o)gy / ps, ;1 9) f(t, y)dy]
]Rd

—I/ =9 gt pr(s,x;t,y)f(t,y)dyl

[z —yl?
< CI—M exp(—a ()| dydt
s Jrd  (t—s t—s

)2
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If s > sq, then

’va/\f<57 )|

s+h 1 |.T_y|2
< C,———— exp(—a——)|f(t,y)|dydt
I e e e S
<Cy - Ny (f)
If s < s1, then
|V R f(s,2)]

sith E y|2
/ / Cr———— exp(—a It )| dydt
R4 t — s t—

2

20[) /81+h/ ’y _ Z|2
S g X g X t,y)|dydt
/ (27)% (51 — 5)? plra’ ) Rd t_sl e p(—aZ—_)If (ty)ldy

(2.5)
(20)% 2 — x|
<O / exp(—a——)dz N; f
" Jaa (2%)%(51 — 5)% ( 51— S ) ()
<C1-Ng,(f)
In fact, to get (2.5) we need the following inequality:
201)% z—zx|? 20)% — 2|2
[P ol Bl
R (2m)2(81 — )2 51—5 " (2m)2(t — s1) 2 t— s,
1 2 g _ |2 2 % 12
B P T e
(t—s)2 Jra (27 )5(31—5) S1 =8 " (2m)2(t — s1)2 t—s1
1 20)% 2
= 1 (d a) d exp(—&u)
(t—s)2 (27r)§(t 5)2 t—s
2c)2 —x|?
_ ( k _ exp(—a ly — = ly==F,
(27r) (t—s)z t—s
]

Similar to the above lemma, we have the following estimate for R*.

Lemma 2.2.6. Suppose f € FKS_, and supp(f) C [s1,51+h] xR? for some
s120,0<h<1, then
(R < N ()
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Proof. The proof is similar to Lemma 2.2.5, we only need to note that if
0<t—s<1,then

1 |z —y[?
ty) < ——— —ai—21Y),
p(s,z;t,y) < TP exp(—a——-)

]

The following lemma is well-known, but for the reader’s convenience we
give a proof here.

Lemma 2.2.7. For each A > 0, there exists a constant C'\ > 0 such that for
any g bounded measurable on [0,00) x R%, we have

VR | < C(N) - llglls
Proof.
|V$R>\g(87 l‘)|

=V, / o~ Mt=9) dt/dp(s,x;t,y)g(t,y)dy\
R

- / Nt [ Vst gt )

1 2
g/ M9t [ Oy exp(—a- = y' )g(t, y)|dydt
s Rd (t — S) 2 t—

00 s 1 x_y2
<C(A) - llgll

Thus we have proved our lemma. [

2.2.3 Well-posedness of the martingale problem: local
case

In this subsection we will get the well-posedness of martingale problem for
L, if the drift B has support in a very small compact set.

Recall Assumption 2.2.1 that |B(-, )| € FKJ , for some a < We
first consider smooth approximations of the singular drift B. We can find a
nonnegative function ¢ € Cg°(R*™) with [, ¢()d€ = 1.

N
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Let
dn(€) = n“TV(ng),
and define
B, :=Bx¢, = (B'xp,, - ,Blxa,).

Remark 2.2.8. From Lemma 2.1.4, it is easily seen that there exists a
constant x > 1 such that for any A > 0

Ny (1Bal) < 6N (1B)) (2.6)

For this subsection we impose an additional assumption on B.

Assumption 2.2.9. There exist (s1,2;) € [0,00) x R? such that
supp(B) C [s1, 51 + €1] X {a: e R?: |z — x| < 1}

and
1
2/‘4',01 '
Remark 2.2.10. Since now B has compact support, by Lemma 2.1.5 we
have for any h > 0,

N3 (1B]) <

2€e1

lim N (|B, — B|) = 0. (2.7)

Since B,, is smooth and has compact support, for each starting point
(s,2) € [0,00) x R4, there exists a unique probability measure P*? on (Q =
C([0, 00); RY), M) which solves the martingale problem for the generator

1

For any A > 0 and any bounded measurable function f on [0,00) x R,
define

S (s,x) = B3| / T N £(1, X,)d],

where FE2%[-] means taking expectation under the measure P on (Q =
C([0, 00); R%), M).

Now we want to get an exact expression of the space-time resolvent S-.
Recall that R* is the space-time resolvent for Brownian motion. For any
f € By(]0,00) x RY), since (?;;f exists and is continuous, we can define the
operator
ORMNf

oxr;

BRMf) := (B,VRf) ZBZ
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Similarly we can define

A o A 7 R)\f
B,Rf) :== (B,, VRf ZB o

Lemma 2.2.11. If g € By([0,00) x R?), then
S2qg(s, ) ZR)‘ (B.RM*g(s, ),

where the convergence on the mght—hand side is uniform with respect to
(s,2) €]0,00) x RY,

Proof. Since B,, is smooth and has compact support, Brownian motion with
such a drift B, has a transition density function ¢,(s,z;t,y). Recall that
p(s,x;t,y) is the transition density function of Brownian motion. Then by
Duhamel’s formular, we get that

t
n(s, it y) = p(s, z;t,y) +/ / Gn(8, 257, 2) By (7, 2) - Vop(T, 238, y)dzdr.
s JR4
(2.9)
By (2.4) and noting that |B,| € TICd 1> we can apply the same arguments

of section 1.3.1 in chapter 1. In particular we get the same Gaussian bounds
for g, (t, z;s,y) as (1.14).

By (2.9), we can consider the difference between S} and R*. If f is
bounded measurable, then

1) = R f(s,)

/ / A= (s, t,y) f( tydydt—/ / A=) (s, ast, y) f(t, y)dydt
Rd R

= [ [ el itn) st ) e )y
s R4

) t
[ [ e[ [ 2B Ve st ey
s R4 s JR4

Since f is bounded and B, has compact support, by (1.14) and (1.20) we
have

) t
[ [ s ( [ [ asmm 2Bl 1Vaptrzto)ldsdr ) dyds
s Rd s JRd
0 t
<c / / e f (k) / / Dy (5,27, 2) [ Ba(r, 2)| Wa(7, 251, y)dzdr ) dydt
s R4 s JR4 ?

<C/ /e*(ts’f(t,y)F;(s,x;t,y)dydKoo,
s Rd
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where I's and W, are introduced in (1.10). Therefore we can apply Fubini’s
theorem to get

— R f(s,x)

/ /dqns x; TZdZdT/ /d M9 (4, ) Bo(7, 2) - Vap(T, 23 t, y)dydt)
R R

[ [ s madsan [ / N (1) Bar,2) - Vel 21, y)dyi)
s R R

:/ /d e Mg, (s, 257, 2) (Bu(1,2) / /d (7, 2t y) £ (L, y)dydt)dzdr
s R R

Namely we have shown that
S)f—RMf = S)B,Rf.

For any bounded measurable function g on [0,00) x R?, taking f = B, Rg
in the above formula, we get

S)B,R*g — R*B,R"g = S)B,R*B,Rg,
therefore we get
S)g = R g+ R*B,R g + S)(B,R")*g

Similarly, after i steps, we get to

Sng =Y RNB.R"*g + S)(B.R)g.

If n is large enough, we can ensure that supp(B,) C [s1 — $, 51 + 3%] x K
for some compact set K C R? we also have

1

N5z (1B < kN5 (1BI) < g

2€1

Claim 1. supp((B,R*)*g) C [s1 — ¢, s1 4+ %] x K and (B,R*)*g € FK3_,
Moreover

o 1
N (BuB)g) < Chllgll(5)" (2.10)
When k£ = 1, by Lemma 2.2.7 we have

| BuR*| < |Bul - [VRg| < [Bu|Cillgll
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So
1

2
Suppose that the claim is true for k, then by Lemma 2.2.5

No" (BuR*g) < Callglloo(

2€1

(BuRY)* 9| < |Bul - [VRNB.RY*gl < |Bal - C1 - N, (BaRRY)*

1
< Chllglloo] Bnl - Cl(g)k-

Therefore
N H(BaR) 1 9) < CrllglloCr(2)F - = < Calglloo( )
2e1 27 204 2
So the claim is proved.
Now we have that
1S3 (B R g
:|52(BnVR)‘(BnR)‘)kg)|

<SN(| Bl [VRN B, R g))
<CINS T ((BLRM*9)S2(|1Ba))

2€1

1
<0/ T\k+1
(2) )
where C" > 0 is a constant. With the same argument, we can also get
1
[RAB.RY) 9| < CLRY(1Bal)(5)"

From Lemma 2.2.6, we have

1

MIB, DI < N&T(IB,]) < —.
|[R*(|Ba])| < (1 |>_201

2€1

Therefore .
R B RN < (5)"
Now it is clear that
Shg =Y RNB,RM"g.
k=0

So the lemma is proved.

69

9)

(2.11)

(2.12)
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Remark 2.2.12. If we check the proof of the above lemma, the only thing
we need to ensure the convergence in (2.12) is that

o 1
N2€71+<|BTLD < 2_6117

and we can exactly do the same thing for B, it means that for any bounded
measurable function g, we can define S*g as follows,

SAg(s,x) = Z RMBRMFg(s,z).

Moreover, for each term, we know

R (BRg| < (5)" (213)

Now we are ready to the prove that the above definition of S? is exactly
what we need. we verify that S* is the limit of S;.

Lemma 2.2.13. For each bounded measurable function g on [0,00) x R%,
S2g(s,x) converges to S*g(s, ) uniformly with respect to (s, x) € [0, 00) x R
as n — oo.

Proof. We first show that

lim R*B,R*g(s,r) = R*BRg(s, z),

n—oo

and the convergence is uniform with respect to (s, z) € [0,00) x R?. In fact,
by Lemma 2.2.6 and Lemma 2.2.7,

|R*B, R g(s,2) — R*BR¢(s, )|
=|RNB, — B)R*g(s, )|
<Gillglle R B, — B|(s,7)
<ChllglloeN3e, (1B = Bal),

2€e1

By (2.7), we have

lim R*B, R g(s,r) = R*BRg(s,z), uniformly for (s,z) € [0,00) x R%

n—oo

Suppose now we have

lim RY(B,R"*qg(s,z) = RN BR)*g(s,x), uniformly for (s,z) € [0,00) x R?,

n—oo
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and
lim N5t [(B,RY)*g — (BR)"g] = 0.

n—oo

Then

(B, R g — (BRY)Fg|
=|(B,R"**'g — B,VRNBR*g + B,VRNBR*g — (BR")**g|
<|B.||[VRNB,RY)*g — VRNBRY)*g)| + | B, — B||[VR)BR)"g|
<Cy - Nfy, ((BaRY)*g — (BRN'g)|By| + C1 - | By — BIN,,, (BRY)*g).

a,2€;

Similarly to (2.10), we can show

NgF((BRFg) < Callgloly)"

2€1

So we get
lim N5 " [(B,R") g — (BR)Fg] = 0.

2€1
n—00

Then

|RNB,RN)"'g — RNBRY) g
gCONOc,-‘r[(BnR)\)k-‘rlg o (BR)\)k+lg] _ O,

2€1

as n — 00, and the convergence is uniform with respect to (s,z) € [0, 00) X
R,

Then by (2.11) and (2.13), the lemma can be proved easily. O

Lemma 2.2.14. S}|B,|(s, ) tends to 0 uniformly for (s,z) € [0,00) x R?
as A\ — 00, and the rate is independent of n.

Proof. Since |B,| is bounded, by Lemma 2.2.11, we have

Sqi\’Bn| = ZR)\(BnRA)k|Bn‘-
k=0

Similarly to (2.10), we can get

N (BB BA) < (5

2€1
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Therefore

Sr)z\|Bn’ SZR)‘(’BTJ ’ ‘VRA<BHRA>’C71<|BH|)D
k=0

2€1

<D RM|Bal) - O Nog ((BoRY)* 1| Bul)

<Oy - RMB,|.

For Ve > 0, we can find a 6 > 0 such that

€

4501 .
By (2.6) and noting that supp(B,) C [s1 — <, s1 + 2] x K, we have

N ™(|B]) <

SAIB (s, )
Cy - RYB,[(s, )

/ / At=s) p(s,x;t,y)| By|(t, y)dydt
]Rd

5+0 ‘ _ y‘Q
<o / / - exp(—ats—L0) B, (1, ) dyat
s R4 (t — 8)2 t—

+/ /e‘”‘p(s,x;t,y)anl(t,y)dydt)
+6 JRd

81+ 2
<O, - Ny (|B, y)+CeM/ /
]Rd

<Cyk - NOH(IB) + Cre ¥ NS (| B,))

2€1

<Cik - NY(|B]) + Cire ¥ Nge*(|1B))

2€1

JJr =yl
,exp( )| Bal (8, y)dydt

e 1 _
SR

If A\ — oo, then S)|B,| < e. O

Using the above lemma and doing exactly the same calculation as in the
time-independent case (cf. [BC03, Theorem 4.3]), we prove the following
proposition, which implies the tightness of the family P;*. To be complete,
we include the proof here.

Proposition 2.2.15. Let 5,¢,T > 0, then 36 > 0 not depending on (s, x)
norn, s.t.

Py sup | Xi— Xy >0) <e
1 <T [t~/ <6
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Proof. By Markov property, it is enough to show that

P)*( sup |X;—2x|>p) <e
s<t<s+4

We know that under the measure P;*,
dX] = dW, + B,(t, z)dt,

where W, is the Brownian motion. For Brownian motion W;, it is known
that there exits small enough ¢ > 0 such that

Po( sup [Wh— Wil > D) < €
s<t<s+6 2 2
If we can find § > 0 such that
s+46
Pff(/ Bo(u, Xo)ldu > 2) < €,
) 2/ =79
then we are done. Let 6 = 61, then
s+4 6 2 s+0
P B X)ldu > ) < BE,S;I/ B, X,.)|du
2e $,T - —0(t—s) 2e $,T - —0(t—s)
SFEH’ e | B (u, X)) |du < EEH e | B, (u, X,)|du
2e
S—Sz B, |(s,x
3 | Bal(s, x)

By Lemma 2.2.14, we can find large enough 6 > 0, independent of (s, z) and
n such that

SlenKS? ZE) <

N

The lemma is proved. O]

Corollary 2.2.16. Let 5 € (0,1], then there exists 0 < 1, which does not
depends on (s,x), such that if

T = Ainf{r > 0: | X, — X;| > G},
then

sup Eyfe” ™ < 0.
n

Proof. See the proof of [BC03, Corollary 4.4]. ]
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By Proposition 2.2.15 and [SV06, Theorem 1.3.2], we know that the fam-
ily {P$"},>1 of probability measures on (Q = C([0,00);R?), M) is tight,
therefore we can find a subsequence which converges under the weak topol-
ogy. Suppose P** = limy_,, P}* is the limit point, then for any A > 0 and
g € Co(R?),

Epes / M09 (X, ) dt
0

k—o0

= lim EPZ’I:/ Q_A(t_s)g(Xt)dt
0

= lim S, g(s, )

k—o0

:SAg(s,x).

Since A is arbitrary, by uniqueness of the Laplace transform, we get that one
dimensional distribution of (X;, P*?) is determined. Similarly, using Markov
property, multidimensional distributions of the process (X;, P*") are also
determined. That means that {P*},>; has only one limit point.

Theorem 2.2.17. P5* converges weakly to P**, for each (s,x). Moreover,
B / e N9 (¢, X,)dt) = SM (5, 7).

Now we need to show that the measure P57 is indeed a solution to the
maringale problem for

Theorem 2.2.18. P** is a solution to the martingale problem for L;, start-
ing from (s, ).

Proof. This is a modification of the proof of [BC03] Proposition 4.9. We need
to show that .
£ = [ Lp(X))du

is a P*“-martingale after time s for Vf € C$°(R?). Since P%® solves the
martingale problem for

1
§A + Bn(t, Qf) . V,

therefore

£0) = [(GAF+ Y Bifun) 5h) (X )du
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is a P?»*-martingale after time s.

For any s <t; <ty, 0<r; <---<r; <ty and g1, -, g € Co(R?), let

l
Y = H gj(XT’j)7
j=1

where [ € N is arbitrary chosen. Then

t1 d
v - [ Gar+ S B ghson)]
e |YU) - [ Gar+ Y B ghia)] e

By the weak convergence of P, we have

n—o0

fim 222 [ (7(X0) — [ SAF(X,)d)]

S

_ g [Y(f(th) [ %Af(Xu)du)]

s

Therefore we only need to show that

t1 t1
lim E5° [Y / B (u, ) 2L (Xu)du} = goe [Y / Bi(u, )2 (Xu)du}
n—0o0 s 0 i s 0 )
For each fixed k& > 1, we have
t1 t1
‘Ez,x [y/ B;(u,x)gj (Xu)du] — B [y/ Bfn(u,x)gf. (Xu)duH

S,x h 7 i af S, h i 7 af
:‘Ek Y [ (B, = BYuwa)g= (X)du] = BF[Y | (Bl = B)(u,2)5 (X,)dul ‘
N i i in| 9f
<Ci-S(1B, = B'| +|B,, — B'|)(s,)
<Cy- RN|B, - B'| +|B,, - B'|)(s,2)
<Cs- Nso*(|B}, — B'| + |B.,, — B'|) — 0, as n,m — oc. (2.15)
Similarly to (2.15), we have
s,x " i af s,T " 7 af
(E [Y/s B, 1) (X, )du] — B [Y/s Bi(u, x)a—xi(Xu)duH

<C3- Nyo"(|Bl, — B’|) = 0, asn— oc. (2.16)
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By (2.15) and (2.16), for any given € > 0, we can find ny, which is independent
of k, such that when n,m > nq,

ho 9 oo
\Es’x[Y/ BZ(u>w)8£(Xu>du} —E“[Y/ Bl(u,x)ag (X, )du}) <e

and

1 o b 0
ety [ B 3L (] - B [ Bius) g (xad | <

Note that there exists ny such that for n > ns,

S,T o 7 af S, n 7 af
EXY / B! (u,z) a361()(11)@] - E>*Y / B} (u,x) o, (Xu)du}‘ <e
Now if n > sup{ni,ns}, we have
t1 ) af
s, [Y/ B, (u,2) 5 (X,)du] — B Y/ Bi(u Xu)du}‘
stl 7
s, [Y/ Bfl(u,m)%(X | Y/ (Xu)duH

+|Ezly /S“B;xu,@g—gi(m By / B, (u >§—£<Xu>du]\

t1 t1
+ ‘Ew v / Bgl(u,x)g—gi(xu)du] — E5T[Y / Bi(u,x)gf

(X.)du]|
<3¢

So we get that

: S,T " 7 af R " i af
JLIEO E; [Y/s Bn(u,x)axi (Xu)du} =F [Y/S B'(u, x)axl (X, )du]
Similarly
: S,T " % af s,T 2 ) af
Tim [Y / B 2) 5 (Xu)du} -y [Y / B'(u,a) (Xu)du].

Let n — oo in (2.14), then we get that

f(Xy) — /t L.f(X,)du

is a P**-martingale after time s. m
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Now we prove the uniqueness of solutions to the martingale problem for
L;. This can be done with the same method as in the time-indepedent case.

Theorem 2.2.19. If there exists another probability measure Q** which
solves the martingale problem for L, starting from (s, x), then for all f €
Cy(R?) we have Q*(f(X,)] = P**[(X,)], ¥t > 0.

Proof. This is a modification of [BC03| Proposition 5.1. We define a sequence
of stopping times

t
o, = inf{t > s / |B(u, X,,)|du > n}, 7, :=0,An,

and construct Q> in the following way:
Q.7 (AN(Coby,)) = Eque[P™ ™ (C); A], VA € M., C € M,

where 6; is the usual shift operators on 2 so that 6;(w)(t) = w(t + s). Then
Q3" again solves the martingale problem for L;, starting from (s, z), and

o / e B(t, X,)|dY]
=Eqse| / e NI\ B(t, X,)|dt] + Eqe[e ™) Epry o, / e N Bt X)|dt]

SEQs,m [/ ‘B(t, Xt)‘dt] + EQS,.’c[S)\’BKTn,XTn)]

<.

If now f € C%([0,00) x R?) with |f|,|V f| bounded, then by Ito’s formula,

ft, Xe) = f(s, X))
:/ Vf(u,Xu)-qu—i-/ %(U,Xu)du—i-%/ Af(u, X,)du

t
=" Martingale” + / (% + Ly f)(u, Xyy)du.

Taking expectations, we have

B[4, X0] = f(5,5) = Bquel | (5 + Luf)w X )
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Multiplying both sides with e=**~%) and integrating w.r.t. ¢ from s to oo, we
get

Eqg- [/ e M f(t, Xy)dt)

[e’e) t
—L (s, 2) + Eque] / e / Ly L) (0, X, dud]

A ou
1 1 s Of
)+ $Eael [ NG+ L X

Define the linear functional V) f by

V2 f(s,x) = Eqsel / e M9 £ (1) X)) dt,

then we have

AV f(s,2) = f(s,2) + Vn’\[(% + L.f)|(s,z)

Note that for given g € C}([0,00) x RY), we have f = R*g € C*([0, 00) x R?)
and |V f| is bounded. Substituting this f in the above equation and noting
that (A — L% — Z2)R g = g, we get

Vg = R'g+V)BRg. (2.17)

After an standard approximation procedure, the above equation holds for
any bounded continuous function g. Then it is easy to prove that the above
equation still holds for any bounded measurable function g.

Since V) B| = Eqse[ [ e 79| B(t, X,)|dt] < oo, using (2.17) we get
V.)\BRg = R*BR*g + V,\(BR")’g.

After iteration in k steps we arrive at

k
Vg =>_ RMBR'g+VNBRyg.

=0

But

[V (BRY) | < IIVRA(BRA)kgllooEQz’w[/ e MIB(t, Xy dt] — 0,

as k — o0.
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Therefore we have
Eqs+| / e Mg (¢, X, )dt] = ZRA (BRMg(s,x) = Epas| / e Mg (¢, X, )dt].

By the uniqueness of the Laplace transform, for Q>* we have

Q:°[f(X,)] = P**[f(X,)], for all f € Cy(R?) and t > s.

Then we can finally get

Q™ [f(Xy)]
=Q™*[f(Xy),t < 7] + QV[f(Xi), t = 73]
= hm QX [f(Xy),t < )

=l QX1 < 7]+ Jim QX002 7
=P*(f(X)].
O

Lemma 2.2.20. Suppose that Q** is a solution to the martingale problem
for Ly starting from (s,z). For a given t > s, define Q, := Q>*|M; which
is the reqular conditional distribution of Q%* under M,. Then there exists
a set N € My such that Q*>*(N) = 0 and Q,, solves the martingale problem
for L, starting from (t,w(t)) with w ¢ N.

Proof. Let {fy : fo € C?(RY), n > 1} be dense in C5°(R?). By [SVO06,
Theorem 1.2.10], for each f,, there exists N,, € M, such that Q**(N,) = 0
and

My, (u) == fo(Xu) — fu(Xy) — /tu Lfn(r, X, )dr

is a martingale after time ¢ with respect to (2, M,,@,,) for all w ¢ N,,.

We define a sequence of stopping times
—inf{u> s / IB(r, X,)|dr > n).

It is easy to see that

Q" ({w: Tp(w) — o0}) = 1.
Therefore there exists N, € M, such that

Qu{w: Th(w) = 00}) =1 forall w ¢ N,.
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Let
N = No U (UnZan)

Then for any w ¢ N, My, (u A 0,) is again a martingale with respect to
(€2, My, Qu).-

For any f € Cg°(R?), we can find f,, such that f,, — f in C5°(R?) as
k — oo. Then
My, (WA T) = Ms(uNTy)

bounded and pointwise as k — oc.

Hence (M¢(uAT,), My, Q) is a martingale after ¢ for any w ¢ N. Then
for any w ¢ N, (Mg(u), M,, Q) is a local martingale after time ¢. So
we know that @), solves the local martingale problem for L, starting from
(t,w;) for any w ¢ N. Since the second order term in L, is 3A, by [KS91,
Proposition 4.11], the local martingale problem for L, is equivalent to the
martingale problem for L;. Thus (), solves the martingale problem for L,
starting from (¢, w;) for all w ¢ N. O

Now from the Lemma 2.2.20 and Theorem 2.2.19, by standard arguments
one can get the uniqueness of solutions to the martingale problem for L.

Theorem 2.2.21. P*7 is the unique solution to the martingale problem for
L, starting from (s,z). Therefore the martingale problem for

1
18 well-posed.
Proof. The proof is the same as the proof of [SV06, Theorem 6.2.3]. ]

2.2.4 Well-posedness of the martingale problem: gen-
eral case

In last section, under Assumption 2.2.9, we proved that the martingale prob-
lem for L; is well-posed. This means that although B is very singular, we
can still solve the martingale problem for L; locally. However, martingale
problem can always be reduced to local considerations. Therefore in this
section we remove the additional technical Assumption 2.2.9. Now we come
back to the general case, namely we only impose Assumption 2.2.1:

1

|B(-,-)| € FKy_, for some a < 5
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The procedure to extend to general B is standard and is essentially the same
as in the time-independent case.

Theorem 2.2.22. If |B(-,-)| € FKY_, for some a < 3, then the martingale
problem for

1
L= ;A +B(ta)-V

15 well-posed.

Proof. This is a modification of the proof of [BC03, Theorem 2.6]. Since
|B(-, )| € FKg_4, we can find sufficiently small ¢; > 0 such that

1

N&T(I1B)) < .
(1B) < 5

2e1

For each (s,z) € [0,00) x R, let
Risnyi=[s,s+e] x {y € RY: |y — 2| < 1}

and PS’f be the solution we constructed in last section with drift vector B(s,m),
where Bsa)(t,y) = 1g,,, (t,y)B(t,y).

Now fix (s,2) € [0,00) x R? and let Ty = s. Define

T =inf{t >T;: (¢, X,) ¢ R(ThXTi)}'
Let Q1 = P*” and define inductively
Qit1(AN(Cobr)) := Eg, [P (C); A], A€ My, C € M.
It is clear that Q| Mr, = Qx| Mr, if m > k, therefore we can define
Q(A) = Qr(A) if A e Mq,.

Since

Eq,,, [eT] = Eqg,,, [e" T e 1] = Ey, [G_TiEPTi,XTZ_ [e~Tin1=T0]],

from Corollary 2.2.16, we know E_r; xr, [e=Tii=T)] < § < 1, therefore by
induction .
EQH—l [eiTiH] < o
So we have Egle™"i] < §* and therefore
lim T; = oo, a.e. under Q).
It is routine to check that () is a solution. Furthermore, the uniqueness also

holds by standard arguments (cf. [Bas98, Section 6.3] and [SV06, Section
6.6]). O



82 CHAPTER 2. DIFFUSIONS WITH SINGULAR DRIFT

2.3 Transition density function estimates un-
der further conditions

In Section 2.2 we proved existence and uniqueness of weak solutions to the
stochastic differential equation

S.

dXt - th + B(t, Xt)dt, t 2
Xy =, 0<t<s.

with drift terms B(¢,z) such that |B(-,-)| € FKg_; for some o < 1. This
process need not to have a transition density function. In this section we will
impose further conditions on the drift term B and prove that then the pro-
cess will have a continuous transition density admitting two-sided Gaussian
estimates. To this end we assume B to be in the time-dependent Kato class
TKg_, for some a < 1.

Assumption 2.3.1.

1
|B(-,-)| € T, for some a < 7

The reason why we use the class 7Kg |, a < 1, comes from the gradient
estimate of Brownian heat kernel p(s,z;t,y). Namely if o < %L, then we can
find C' > 0 and oy with 2a < oy < % such that for any 0 < s < t and
z,y € RY,

C |z —yl?
Vop(s,zit,y)| < ———— - .
Vap(s, z;t,y)| TR exp (—ap——_-)

(2.18)

The gradient estimate (2.18) reminds us of the perturbation techniques we
used in Chapter 1.

Under Assumption 2.3.1, we prove that (X;, P®*) has a continuous tran-
sition function ¢(s, x; ¢, y) satisfying two-sided Gaussian estimates. Since the
method is similar to what we have already used in Chapter 1, here we just
state the main theorem and omit the details of the proof.

We should remark that these are analogs of the results of [KS06| in the
time-dependent case.

In Chapter 1, we considered a parabolic equation with singular lower
order terms. In view of the estimates (2.18), the methods in chapter 1 can
also be applied here.
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Since |B(:,-)| € TK3_,,a < 3, by Lemma 1.1.6 and Lemma 1.1.8, we can
find a sequence of functions ¢, € C5°(R*™!) such that

B,:=Bxp,=(B' %, - ,B x,) € C°(R")
and for any h > 0 and compact set K C [0, 00) x RY,

lim N (1x|B, — B|) = 0. (2.19)

Since B, € C°(R*1), there exists a unique solution P%% to the martin-
gale problem for

1

starting from (s,z). Moreover, the Markov process (X}, P3”) has a contin-
uous transition density g, (s, z;t,y) which satisfies Kolmogorov’s backward
equation:

Iqn(s, 731, 1
D) |2 o5, a:t,9) + Bals, ) - Vs, 230,0) = 0. (2.20)
S

From the gradient estimate (2.18) and the fact that 20 < ap < 3, we

can use the same method as that of Section 1.3.1 to get the following two
Lemmas.

Lemma 2.3.2. For each T > 0, there exist constants cp, Cr, o' such that for
any 0 <t —s<T and x,y € R,

—yl’ C a2
(i) —— eXp(_O‘"u) < guls zity) < —— exp(— o - u);
(t—s)2 t—s (t—5)8 5 1 s
. Cr oy |z — yl?
(i) |Van(s, 23t y)| < ——— exp(—— - | | )
(t—S) 2 2 t—s

where the constants cr, Cp depend only on T and the rate at which N*(|B])
tends to 0 as h — 0.

Lemma 2.3.3. Let 0 := {(s,t) : 0 < s < t}. Suppose that K;, Ky C R? and
K C 0 are compact sets, then both q,(s,x;t,y) and V.q,(s,z;t,y) converge
uniformly on {(s,t) : (s,t) € K} x K; x K.

By Lemma 2.3.2 and 2.3.3 we can prove the main theorem of this section.
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Theorem 2.3.4. Under Assumption 2.8.1, the Markov process (X;, P®%)
has a continuous transition density function q(s,z;t,y). Moreover, for each
T > 0, there exist constants cp, Cp, ' such that for any 0 <t — s < T and
z,y € R4,

_ |2 C a2
T exp(—a - Lt 1 ) < gls, it y) < —— exp(— =2 - it
(t — 8)2 2

t—s (t —s) 2 t—s
. C
(”) |VxQ(Sax7tay)| < —Tdilexp(_

);

(t — S) 2 2 t — S ’
where the constants cr, Cp depend only on T and the rate at which N (|B])
tends to 0 as h — 0.

Proof. This is a modification of the proof of [KS06] Theorem 3.14. From
Lemma 2.3.3, we know that the transition density g, (s, z;t,y) for (X[, P5%)
converges uniformly on compact sets. We denote the limit as ¢(s,z;t,y).
Like Theorem 1.3.12, it is easy to show that V.q,(s,z;t,y) converges to
V.q(s,z;t,y) uniformly on compact sets. If we can show that ¢(s,x;t,y) is
the transition density of (X;, P**), then we are done.

Using the same arguments in the proof of [KS06] Theorem 3.14, we claim
that, as probability measures on (Q = (][0, oo);Rd),M), P>* converges
weakly to P**. Now we fix (s,2) € [0,00) x RY and t > s. For any f €
Co(R?), we have

P (f(X))) = lim Py (£(X0)

n—oo

= lim Qn(87x;tay)f(y)dy

n—oo [pd

_ / als 7t 9)F(y)dy.

Therefore (X;, P*") has transition density ¢(s, z;t,y). The theorem is proved.
]



Chapter 3

Construction of Glauber
dynamics for an unbounded spin
system on a graph

Recently unbounded spin systems on a graph were investigated in [Pas07a)
and [Pas07b]. Under certain assumptions on the graph and the potential
functions, the author obtained existence of tempered Gibbs measures and
ergodicity of the corresponding Glauber dynamics.

In this chapter we consider the same model as in [Pas07a|, but impose
weaker conditions on the potential functions. Apart from some growth condi-
tions, we merely assume the potential functions to be measurable. The main
aim is to construct the corresponding Glauber dynamics. Not like the pre-
vious chapters, here we come to an infinite dimensional space. To overcome
this difficulty we will use the Dirichlet form methods. We adapt the methods
of [Pas07a] to get existence of tempered Gibbs measures; then we show that
the corresponding Dirichlet form is quasi-regular. Using the correspondence
between Markov processes and Dirichlet forms, we can construct the Glauber
dynamics.

3.1 Descriptions of the model

Unbounded spin systems on a lattice are very important in statistical me-
chanics. The properties of the spin system necessarily depend on the specific
geometrical structure of the lattice. In [Pas07al, T. Pasurek studied un-
bounded spin systems on a graph. In this section we consider the same

85
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model as in [Pas07a|, but under more general assumptions.

3.1.1 Spin system on an infinite graph

Here, instead of the lattice we consider a general infinite graph G(V,E) con-
sisting of a countable set of vertices v € V and a set of unordered edges
e = [v,v'] € E. The graph G(V,E) is assumed to be connected and simple,
i.e. without isolated vertices, loops, and multiple edges. Naturally we have
the combinatorial distance p(v,v") on V which is the length of the shortest
path connecting v,v" € V. If p(v,v") = 1, we say that v and v' are adja-
cent and denote this by v ~ v/. For each vertex v, we define its vicinity
Ov .= {v' € V|v ~ v} and the degree m, := |0v|. We assume throughout
this chapter that G(V,E) is of uniformly bounded degree, i.e.

mg = supm, < Q.
veV
Remark 3.1.1. For any G(V, E) of uniformly bounded degree, it is easy to
see that there exists 0 > 0 such that

S e < o,

veV

for some (and hence, for each) fixed vertex o € V. We define

0g := inf {5 > 0: Ze“sp(”’o) < oo}

veV

Now we introduce spin systems on G(V,E). For a spin system on G(V,E),
we mean that to each vertex v € V, there corresponds a particle performing
one-dimensional oscillation and we use z, € R to denote the state of the par-
ticle at vertex v. Here for simplicity we consider the one-dimensional spins,
but our method also works for the multidimensional case. The configuration
space 2 := R of this system consists of all real sequence z = (z,),ey. We
assume that the potential energy of each configuration x € €2 is given by a
formal Hamiltonian

H(@) = Y Vi) + 5 32 Wl 20),

v’

where the sums are running over all v € V and ordered pairs (v,v') € V?
with p(v,v") = 1. The self-potentials V, and interactions W, are assumed
to satisfty the following conditions:
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Assumption 3.1.2. W, (-,-) is a measurable function on (R? B(R?)) and
there exist constants Cyy, J > 0 such that for all v ~v" and x,, 2, € R

1
’va’(xmwv’” < §J<CW + ‘xv‘2 + |xv'|2)'

Assumption 3.1.3. V,(+) is a measurable function on (R, B(R)) and there
exist constants p > 2, Ay > mgJ(e’® + 3), By € R and Cy > 0 such that for
allveVand z, € R

Av‘l’vP + By < ‘/U(ZL'U) < Ov(l + |va|p).

Here apart from some growth conditions, we merely assume V,,, W, to
be measurable.

Remark 3.1.4. We suppose that the interaction potentials W, are sym-
metric in v,v" € V.

3.1.2 Local specification and Gibbs measures

In this section we study Gibbs measures which describe the equilibrium states
of our spin system.

Recall that the configuration space = {w = (wy)vev @ wy, € R} of
our spin system is the infinite product space of V copies of one dimensional
Euclidean space, let F be the product o-algebra on ().

For each v € V| let
o, —=R

W Wy,
be the projection onto the v’th coordinate. Similarly for each A € V, by
op:Q — RA

we denote the projection onto the coordinates in A. Let F, be the o-algebra
generated by op.

Definition 3.1.5. (i) A real function f on € is called a local function if f
is Fa-measurable for some A € V. A subset A C Q) is called a cylinder set
if 14 is a local function.

(ii) A function f : 2 — R is called quasilocal if there is a sequence (f;,)n>1
of local functions f,, such that lim,_.. sup cq | f(w) — fa(w| = 0.
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We fix an inverse temperature 3 > 0 and define the local specification
II:= {ma}rev.
This is a family of probability kernels
B(Q2) x 23 (B,y) — ma(Bly) € [0,1],

where
mA(Bly) := ZXI/ exp{ — 6HA(J:A|y)}13(J;A X Ype)dx
Qnp
and 1p is the indicator function of B € B(£2). Here

Za(y) == / exp{ — BH(2aly) Vs

Qp
is the normalization factor and

xA|y ZV xv +_ Z va xmxv Z va’(xvayv’)

vEA vEA vEA
v'eANdv v'eA°Ndv

is the potential energy within the finite volume A with boundary condition
y € .

Remark 3.1.6. By construction the local specification IT := {7y } yev satis-
fies:

| maBloyma(daly) = ma(Blu) A € N, B € B@)y < 9
Q
This is usually referred as the consistency property.

Because we are considering finite range potentials here, by Proposition
2.24(a) and Example 2.25(1) in [Geo88|, we can get the following proposition.

Proposition 3.1.7. The specification 11 := {mp}rev is quasilocal, namely
for any A € V and bounded quasilocal function f, maf is again quasilocal.

Let P(£2, F) denote the set of all probability measures on (€2, F). Now
we give the definition of Gibbs measures.

Definition 3.1.8. p € P(Q2, F) is called a Gibbs measure for II := {7} rev
if it satisfies the DLR equilibrium equation

/ﬂ ma(Ble)u(de) = u(B), (3.1)

for all A € V and B € B(Q).
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3.1.3 Tempered configuration space Q'

Throughout the rest part of this chapter, we fix a vertex o € V. For each
0 > 0 we define

1/2
|5 := [Z |z [Pexp{ — dp(v,0)}

veV

and Qs := {x e z|ls < oo}. The tempered configuration space is

O = ﬂ Q5.

6>0¢
We endow Q! with the topology of the projective limit generated by the
norms || - ||s, 0 > dg.

Suppose 0, > dg, 0, | dg, on each (25 , there is a natural distance

do(e) = (X Jos = wlesp{ — aup(o.0)})

veVv

For any z,y € Q, define

o0

1 dy(z,y)
n—=1 n\L, Y

It is easy to see that this metric induces the same topology as the original
one and with this metric Q! becomes a Polish space.

Definition 3.1.9. A Gibbs measure p is called tempered if p(Q) = 1.

Later we restrict ourselves to the tempered configuration space Q' and
construct the Glauber dynamics on Q.

3.2 Existence of tempered (GGibbs measures

In order to prove the existence of Gibbs measure, we first need to adopt a
topology on P(£2, F). Here we take the topology of local convergence (cf.
|Geo88, Chapter 4]) because our potential functions are only assumed to be
meausurable.
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Definition 3.2.1. A net (iq)aep in P(Q2, F) converges to u under the topol-
ogy of local convergence if limp o (A) = p(A) for all A € FY where F° is
the algebra generated by all cylinder sets in €).

Definition 3.2.2. A net (j4)aep in P(2, F) is said to be locally equicon-
tinuous if for each A € V and each sequence (A,,)>1 in Fp with A, | 0

lim limsup pq(An) = 0.

m—oo  qeD

Let A := Ay — %ng, then by the assumptions on V,, we have
A > mgJe.

Now suppose that v € V, A € V, y € Q, and & is an arbitrary constant such
that
mgJe’ < k< A,

we define
)= { [ exp(pnia?yma(ast) )
Q
The following lemma is taken from [Pas07a|, for the reader’s convenience

we put the proof in the appendix to this chapter.

Lemma 3.2.3. For any § € (5@,,111 ﬁ&]), there exists s := Ts(B,k) > 0
such that uniformly for all y € Qs

lim sup [mem exp{—5p(v,0)}| < BT

ATV vEA

Now we fix a sequence A,, T V.

Lemma 3.2.4. For a given y € Q', we define u, := 7, (-|y). Then the
sequence i, 1s locally equicontinuous in P(Q, F) and therefore has a cluster
point.

Proof. Let K; = [—1,1],l > 1, according to |[Geo88, Corollary 4.13|, we only
need to prove
llim lim sup o, (z, ¢ K;) =0, Yo € V.

From Lemma 3.2.3, for each fixed v € V, we have

imsuptn { [ exp{ela, Phaaldels) | expl-dotv.0)) < 5T

AV
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By Jensen’s inequality,

fimsup | Bile,fra(dely) < 9Csexp(op(r.0))
My Jao

Therefore
lim sup p,(z, ¢ K;) = limsup my, ((z, ¢ K;)|y)

o]? 1
<timsup [ el (drly) < = lim sup [ fouPa, (daly
n (wilzo|>1) ! [ n Q

1
<A BTsexp{dp(v. o).
So
llim lim sup 1, (2, ¢ K;) = 0.
]

Fix some y € Q' and suppose that u is a cluster point of p, = ma, (*|y).
Since our specification is quasilocal, p is in fact a Gibbs measure. Now we
show that p is tempered.

Theorem 3.2.5. p is a tempered Gibbs measure.

Proof. According to [Geo88, Proposition 4.15], there is a subsequence i,
which converges to pu. From Lemma 3.2.3, by Jensen’s inequality,

imsup | [ 5 o exp(-dp(0. o) ma(dsl)| < T/

ATV Q vEA

For each fixed A € V, there exists k large enough such that A C A,,,. So
lim sup [ | S lelexn{=nte o>}unk<da:>] < To/w.
ko0 Qven

Recall that for any A € Fj, we have limg p,(A) = pu(A). Then for any
M >0,

[arn (S espt-oo(0.0) )t

vEA

= lim [ / MA (Z 2 exp{—p(v, o>})unk<dx>}

vEA

<timsup | [ 3 [oufexp{-0p(0.0) i, ()]

k—o0 veA

ST(g/H.
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Since M is arbitrary, by monotone convergence theorem, we get
|3l exp(=3p(v,0)}n(d) < Y/
Q vEA

then clearly
/ S o exp{—dp(v, o) bu(d) < Yo/

Q veV

which implies 1(€Qs) = 1. But it is true for any ¢ such that g < d < K, now
it follows u(Q') = 1. O

3.3 The Dirichlet form and construction of the
Glauber dynamics

In this section, we will construct the Glauber dynamics on Qf. From now on,
we fix some tempered Gibbs measure p on Q.

For each vertex v € V, we denote the unit vector at v by e, := (Jypu/ )wrev.
Now we fix a v € V and for x = (z,)yev € Q' define

To(T) =T — @y - €.

Let E, := {7,(z) : = € Q'}, then E, is a closed subspace of Q'. For each
y € E,,s € R, define

po(y,8) = Zu(y) " exp { = BH,(y, )},

here

2= | exp{ = A9} ds

is the normalization factor and

HU(Z/? 5) = %(S) + Z va’(sayv’>‘

v/ €Jv

Since p is a tempered Gibbs measure, by definition, for any bounded mea-
surable function u(z) on Q, we have

/Qt u(z)p(dr) = /v /Ru(y Fs-en)poly, 8)p(de),

where p, := 7,(1).
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From Assumption 3.1.2 and Assumption 3.1.3, for Vy € E,, s € R

1
Hy(y,8) <Cv(1+[s") + > 5J(Cw + I + [yw]?)

v €V
1 1 9 1 9
<Cv + 5meCwJ + 26; 5w [PT + Cy sl + SmeJ]s|
Therefore
_ 1 1
Z,(y)" exp {=FCy =5 BT (maCw+ Y yw*)=B(Cvlsl"+5mad|s[*)} < puly. s)
v/ €dv

For each fixed y € E,, the function s — p,(y, s) satisfies the condition (H)
in [AR90, Section 2|.

Now we denote the dual space of Qf by (2°)" and let
PV)={zeQ:) |n[ <o}
veV
Then we easily see that
QY c*(V)c
densely and continuously. It follows that for any [ € (Q)’
> )| < 0. (3.2)
veV
Now let
FCr :={u: Q" — R : there exist Iy, -+ ,l,, € E' and f € C;°(R™)
such that u(z) = f(l(x), -, ln(2)), 2 € Q).

By [AR90, Theorem 3.2|, the bilinear form

ou Ov
Oe, Oe,

Ev(u,v) == du, u,v € FCR°

is closable and we denote the closure as (Ev, D(&,)).

We define a bilinear form

D(E) ::{u € FC %Sv(u,u) < oo}

E(u,v) :ng(% v), u,v € D(E).

veV
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By (3.2) and [AR90, Theorem 3.8|, we know that

D(&) = FC,

(€, D(€)) is closable and the closure (£, D(£)) is a Dirichlet form. Next we
want to show that the Dirichlet form (£, D(&)) is quasi-regular (cf. [MR92,
Chap.IV, Definition 3.1], namely the followings hold for (£, D(&)):

(i) There exists an £-nest consisting of compact sets.

(ii) There exists an &, /2_dense subset of D(E) whose elements have &-
quasi-continuous p-versions.

(iii) There exist u, € D(E),n € N, having £-quasi-continuous p-versions,
Un,n € N; and an E-exceptional set N C E such that {@,|n € N} separates
the points of QF \ V.

Then we can use the correspondence of quasi-regular Dirichlet forms and
Markov processes to construct the Glauber dynamics.

First we need to prove the following lemma.
Lemma 3.3.1. For any y € QF, define v(z) : Q' — R by
v(x) = d(z,y),
then v(x) € D(E).

Proof. Since

o) = dleg) = 3 o Tt

n=1 + d (‘r7 y)
we first show that 0, (1)
n\T, Y
——==— € D).
1+ d,(z,y) ©

We arrange the countable vertexes of G(V,E) in a sequence:

Then 1
) g (i@~ pu)a)”
1+ dn($7y) Mmoo | (Zgigm(‘rvz‘ _ yvi)2ai)§

where a; := e~P("i0) Define f(z) : R™ — R as

= (Xicicm(zi— yvi)2ai)%
flz1, 0 2m) =
L (Zlgigm(zi - yvi)%i)

(3.3)

N
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Then for f(z), let f.(2) = f*pn(2), here ¢, (2) = n™p(nz) and p € CF(R™)
nonnegative, me ¢©(z)dz = 1. Then by direct computation and noting that
0 < a; <1 we have

S 12301 [ S - wntoar

< /m Z ’85 (z — w)|290n(w)dw <1, for Vz € R™.
=1

)

Then g, () == fu(@y,, -, Ty,,) € FC® and
= 9gn() o
Elamon) = [ D17 s
(91 9n) QZ:;I 5o, | 1(d)
m (9fn ,
= Ao Lo 005 Ty, dr) <1
/Qt;|8%< )Pu(d)

But 1imn—>oo fn(xvp e ,:L‘Um) - f(xvly e ,{L‘Um), namely

1

. 2.\3
i g () = — sz 00
e 1+ (ZISiSm('T’Ui - yvi)Qai)

By [MR92, Chap.I, Lemma 2.12|, we have

N

1

( Z1§z‘§m($vi - y“i>2ai) :
1
L (X icicm (T = Yui)?ai)?

and E(f(xvl, o Xy )y [ (T, ,xvm)) < 1.
Similarly, by (3.3), we get

dy(z,y) dy(z,y) dy(z,y)
—>€D(5), 5( ))Sl

1+ du(z,y 1+du(z,y) 1+ d,(z,y

f(@o, - 20,,) = € D(E)

Now it is easily seen that v(x) € D(E). O

Theorem 3.3.2. (£, D(E)) is quasi-regular and therefore there exists a dif-
fusion process X = (Q, F,F, 0, X¢, P*) on QF which is properly associated
with (€, D(E)). This diffusion process is usually called the Glauber dynamics.
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Proof. Note that for any § > g, Q' C 5 densely and continuously. But €
is a separable Hilbert space and therefore we can find [, € (€5)',n € N, such
that

{sinl,|n € N}

separates the points of Q5. Here (€25)" denotes the dual space of Qs. Since [,,,
restricted on Q' is again a continuous linear functional on Q! and therefore
sinl, € FC;®. Clearly {sinl,|n € N} also separates the points of Q.

Since Q' is separable, we can choose a countable dense set {y,,|m € N}
in Qf. For each m € N define v, : Q' — R by

U () = d(, Ym)-

By the preceding lemma, we know v,,(z) € D(E).
For each v € V and z # y,,,

O () Ovp(x 41 -ey)

de, ot o
i": 1 ( W(T L ey, Ym) )’
n=1 2n 1 + d (iL‘ +1- €u, ym) =0
i 1 1 (20 — o) - €00 (V)
on 2" T
1 2 ]. + d (x7 ym)) (ZUEV(xU - y’l))2 . 6_6"/)(0’7))) 2
Therefore for V x # y,,
@vm(x) o0 1 | — Y | —dnp(0,v)
| Oe < Z on s s
v 1 2 (X ey (@0 — y)2 - emnelon) 2

SO

v () 1 |2y — yo| - e~ 0nrlo0) ’
Z| de, " < Z( ))%

o NnD 2 (D@ — )2 - enplon

S (S A mmulet) y(E1 gl
=1

2" - 0,V 3 2l ow 1
n=1 (EUGV(xv - yv)2 - el )) ’ (ZUEV( yv)2 e—dp( )) ’
> 5 T

n+l 1 T
veY 2 (EUEV(:C” - yv)2 ) 6—5np(0,v)) ’ (Zvev(% - yv)2 . e_5zP(0,v)> 2

n>1,1>1
Zvev ‘:L‘v yv‘ e (On+or)plow)

1
- Z on+l

1 1
2 2T (Serlay = )2 - e 0000) (T (@ — )2 - e-ivtow))

)
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)

SIS

~

1
yv|2 . 6_(5"+6l)p(07v (Z'L)GV |xv — yv|2 . 6_(5n+5l),0(07'0)) 2

_ Z 1 . (Z'L)GV |x” B
o 2n+l

T T
nisl (Xoev(@e —1u)? - eomelom) 2 (Xev(@ —yp)? - e7twlon))
1

<) gm=1L

n, <1
It is easily seen that p(y,,) = 0, therefore

v,
Z|%T(x)!2 <1 forp—ae xecQ.
v

veV

Then we can use the same method as [MR92, Chap.IV, Proposition 4.2 to
prove that there exists an £-nest consisting of compact sets. Thus we have
proved that (£, D(€)) is quasi-regular.

]

3.4 Appendix

In this section we give a proof of Lemma 3.2.3. The following proof is taken
from |Pas07a].

Proof of Lemma 3.2.3

Proof. From Assumption 3.1.2, for any v € V and z,y € )

m@,J J

Z |va’(xv7yv’)| S 9 |£L’v|2 + 5 Z (CW + |yvl|2)‘ (34)

v'€dv v/ EQv

By (3.4) and the definition of 7, (dx|y),

/Qexp {BE|z,|* } o (dzly)

< (X,/Y,) - exp {ﬁJ(mgCW+ Z ’yv’|2)}a

v €dv

where

X, =
R

@)

o { = w) — (n+ "2 ] o,

m((;,J

Voim [ew{ - 8lVite) + "5 ) fao,
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Using the upper and lower bounds in Assumption 3.1.3, one observes that

X :=sup X, < exp{—0(By} / exp{ A I€)$v|2}dl‘v < 00,
v R

ng
2

Y :=intY, z/exp{ —ﬁ[C’V(1+|xv|p)+ |xv|2]}dxv>0.
v R

Therefore we get

[ e (el pmtan) < o {5(1T+ T sni )} 63

v’ €dv

where Y := 7' In{X/Y} + CyymgJ.
Recall that

)= { [ exp(pnia?yma(ast) )

Integrating in (3.5) with respeact to ma(dx|y) with y € Qs and using the
consistency property we arrive at

no(My) <B(T+ 3" uwrlyul?)

v'€dtA
+In /exp( li_l(]ﬁli|$v/|2>ﬂ' (dx|y)
o2 A(dely) |
<B(T+ D rlgl?) 5D T s (Aly), (3.6)
v'€dtA v'EA

where 0T A := {v' € A¢|p(v',A) = 1} and J,w = J if v ~ v/, otherwise J,,, =
0. Here we used the multiple Hélder inequality p([Tr, f7) < [Tie, (u(f:)>,
valid for p € P(§2), functions f; >0, and oy € Ry, > a; < 1.

Multiplying both sides of (3.6) by exp{—0dp(v,0)} and then summing over
v € A one gets

> “nu(Aly) exp{—dp(v,0)}

vEA
< B
11—k 'mgJ -expd

YILANT + llyacllFme T - exp ],
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Since |ly||s < oo for y € Qs, we finally conclude that

lim sup {va(/\\y) exp{—dp(v,0)}| < BT,
ATV Loen

Y13

where T(g = m.

99
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