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1 INTRODUCTION

Friction is not a material property
but a system response.

Bharat Bhushan

1.1 About this thesis

Nanotribology is the study of friction, lubrication, and wear on the nano-
scale. This relatively young field of research has evolved from classical tri-
bology essentially for two reasons: on the one hand, new technologies like
micro- and nano-electro-mechanical systems (MEMS, NEMS) or the manip-
ulation of nano-objects with an atomic force microscope (AFM) demand an
atomistic theory of friction; on the other hand, the complexity of friction
suggests that any substantial progress toward a Theory of friction can only
be achieved based on a thorough understanding of its atomic-scale mech-
anisms. What nanotribologists hope for is to explain friction eventually in
much the same way that thermodynamics is explained by statistical physics.

Although the phenomenological laws of macroscopic friction are already
centuries old, a fundamental and quantitative theoretical description of fric-
tion is still missing. Furthermore, atomic-scale friction experiments pro-
duced results contrary to expectations from the classical laws: on the atomic
scale, friction actually depends on the contact geometry, on rotation angles,
on atomic lattices, etc. Since macroscopic contacts between two sliding bod-
ies are made of single asperities down to atomic size, the need for theoretical
models describing friction phenomena on the nanoscale is self-evident [1].

There are three theoretical approaches toward modeling atomic-scale fric-
tion, each of them being suitable under certain premises [2]:

• For systems of many interacting particles there are atomistic molecular
dynamics (MD) simulations. They are rigorous and accurate tools, yet
expensive in terms of computer time and thus limited to nanometer
size systems and nanosecond time scales.
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1 Introduction

• Phenomenological rate–state models are coarse grained models that
keep only a manageable number of (phenomenological) state variables
to be fitted to experimental results [3]. They were first introduced by
geophysicists to describe the slow time evolution of mechanical con-
tacts (e.g., earthquake models based on a complicated dynamics of ag-
ing and rejuvenation of coarse grained contacts).

• The highest reduction of complexity is achieved in minimalist models
with as few degrees of freedom as possible. Wether a minimal model is
still reliable must be ascertained in each individual case. As far as non-
linear phenomena of molecular friction are concerned (e.g., stick–slip
motion), this minimal approach has been applied successfully.

This thesis applies minimalist modeling to nanotribological systems with-
out lubrication and wear. It approaches these systems from a different an-
gle than nanotribological studies usually do. Normally, a minimal dynam-
ical system is deduced to realistically represent the complex dynamics as it
can be found in experiment. Since this thesis is focused on possible non-
equilibrium effects that may contribute to atomic-scale friction, the minimal
systems under study are purposefully designed in such a way that special
non-equilibrium effects are not inhibited a priori. In other words, models are
chosen including a minimum of complexity necessary to reproduce a sys-
tem behavior beyond the regime of linear response. As a consequence, the
connection to reality, i.e., the “mapping” of experimentally accessible param-
eters onto the system variables of the minimal model, can only be made a
posteriori. This is a part of the interpretation of the models and their results.

The dynamical systems considered in this thesis comprise relatively small
numbers of coupled particles, especially pairs thereof, the so-called dimers.
Their study is useful with regard to various friction phenomena, e.g., tribo-
logical effects arising from ad-atoms in atomic contacts or adsorbed dimers
on surfaces. They also serve, in different contexts, as model systems for
molecular motors, polymers, ferrofluids, and colloidal systems, to name but
a few. There are two reason for this versatile applicability of dimers to so
many different physical systems: on the one hand, they are not very complex
(two-body problems are analytically tractable, whereas three-body problems
cannot be solved in general), on the other hand, a dimer is the simplest sys-
tem that offers more complexity than a single particle.

This thesis is organized as follows:

• Chapter 1 presents, within the following sections, some historical notes
on friction from a scientific point of view, its exploration, and the de-
velopment of nanotribology. Important issues of atomic-scale friction
experiments are introduced such as the stick–slip motion encountered

2



1.1 About this thesis

in both the micro- as well as the macro-world and the meaning of struc-
tural lubricity or superlubricity. It ends with a literature survey on
books, reviews, and articles from the field of nanotribology in general
and non-equilibrium atomic-scale friction phenomena in particular. A
logarithmic force–velocity relation is derived in brief.

• Chapter 2 gives a shorhand explanation of certain theoretical aspects
of Brownian motion. The first section presents important results con-
cerning the dynamics of Brownian particles in tilted periodic potentials.
The exact analytical derivation of the velocity and the diffusion coeffi-
cient of such particles is redrawn in a condensed form. In the second
section, the ratchet effect is highlighted. A minimalist ratchet model
and the prototypal on–off ratchet are discussed in order to describe
the mechanism generating unidirectional motion without any external
bias. An important consequence of this non-equilibrium effect is to fa-
cilitate the design of the so-called Brownian motors.

• Chapter 3 examines the Brownian motion of a one-dimensional chain
of coupled particles in a tilted periodic potential. Special attention is
payed to the effects caused by variation of the coupling strength and
the ratio of the chain and surface lattice constants. Drift and diffusion
of the chain are studied analytically and numerically and are shown to
exhibit a complex multipeaked structure as functions of the equilibrium
interparticle separation. This system can be regarded as a minimalist
model of multi-asperity contacts.

• Chapter 4 treats the ratchet effect of a dimer that finds itself in a sym-
metric potential. The symmetry of the model is broken through an in-
ternal degree of freedom. It is achieved by different coupling strength
of the dimer components to the flashing surface potential. An accurate
analytical approximation for the dimer’s velocity and diffusion coef-
ficient is obtained. The velocity is maximized by adding an optimal
amount of noise and by tuning the driving frequency to an optimal
value. Furthermore, there exists an optimal coupling strength at which
the velocity is the largest.

• Chapter 5 is concerned with a system nearly identical to chapter 4: a
dimer with broken friction symmetry in a symmetric potential. Instead
of the coupling to the surface potential, the coupling to the heat bath via
the viscous friction coefficients is different for both dimer components,
thus breaking the dynamical symmetry of the system. A weak and a
strong coupling approximation of the dimer’s velocity and diffusion
coefficient are derived and compared to extensive numerical simula-
tions of the Langevin equations.

3



1 Introduction

• Chapter 6 finally concludes the thesis with a summary of the main
results and depicting their relevance to atomic-scale friction phenom-
ena. Any attempt to control friction via some system parameters is
pursued most efficiently if one can make use of non-linear and/or non-
equilibrium effects since these effects can exert the most powerful in-
fluence on any dynamical system.

On first sight, the key ingredients of this thesis (i.e., nanotribology, Brown-
ian motion in tilted periodic potentials, and the ratchet effect) are seemingly
unrelated. But a simple change of the frame of reference can establish a quasi-
direct connection between these different fields of research. On the one hand,
if the AFM tip is pulled across a surface, the pulling velocity is the control pa-
rameter and the friction force is the observed variable. On the other hand, if
a Brownian particle in a tilted periodic potential is concerned, the tilt (force)
is the control parameter and the resulting velocity is the observed variable. If
we consider a sufficiently weak cantilever both pictures, pulling and tilting,
are essentially the same, as pointed out in section 2.1.1. To demonstrate this
connection, let us take a closer look onto the experimental situation.

In a typical atomic scale friction experiment, the tip of an atomic force mi-
croscope (AFM, cf. section 1.3.1) scans along an atomically flat surface, e.g.,
Cu(111) or Si(111). The tip–surface interaction can be projected onto a one-
dimensional potential corresponding to the one-dimensional path of the tip
across the surface. The potential can most easily be modeled by a symmetric
periodic function, in the simplest case a cosine of the contact coordinate.

The situation becomes quite different if the AFM tip is not in direct con-
tact with the surface but instead is placed on top of an island floating freely
above the surface. Such islands (e.g., antimony or gold nanodroplets, cf. Fig.
1.12) can form a special interface between tip and surface, where the tip is
connected to the island and can move it across the surface. Depending on
the exact structure of this interface, it can give rise to dynamical effects that
cannot be modeled as usual by a single contact coordinate. For example,
if the island consists of two different kinds of atoms, say elements A and
B, forming an alternating crystal lattice (. . . A–B–A–B. . . ), the corresponding
one-dimensional minimal contact model naturally is a dimer.

Experimentally, the main control parameter still is the relative velocity be-
tween the cantilever and the AFM stage carrying the sample. But for the
sliding (or stick–slip) dynamics of the interface, i.e., the nanotribological sub-
system to be modeled, the determining parameter is the instantaneous force
(or tilt). It is exerted by the cantilever that pushes or pulls the island across
the surface. Here is the place where non-equilibrium effects come into play
via thermal activation of escape events or purposeful manipulation of other
system parameters. Both can give rise to non-linear effects with high impact
on the dynamical properties, thereby permitting to control atomic-scale fric-
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1.2 Macroscopic friction

Figure 1.1: An Egyptian colossus is transported on a sledge. A lubricant is poured
onto the ground in front of the sledge. Fragment of a painting from the tomb of
Tehuti-Hetep, El-Bersheh (∼1880 B.C.), taken from [5].

tion. A prominent example is the ratchet effect that enables unidirectional
transport in otherwise symmetric systems.

These effects are of fundamental importance: not only do we live in a non-
linear universe but also at non-equilibrium—otherwise, our world would
suffer the “heat death”, a final state of maximal entropy first recognized by
William Thomson (Lord Kelvin) in the 1850s. The non-linearity is responsible
for the richness and complexity of our world, and deviations from equilib-
rium are the prerequisite of all physical processes, motion, and life, powered
by the persisting fluctuation and dissipation of energy. Since friction is an al-
most omnipresent mediator of dissipation, friction research remains an issue
of both fundamental and practical importance.

1.2 Macroscopic friction

1.2.1 Historical notes

Friction is one of the oldest technological challenges that was tackled by hu-
man ingenuity, dating back to prehistoric times. It is also a “hot spot” of
current scientific research. Novel experimental techniques offer ample op-
portunity for physicists and engineers to gain insight into its basic principles,
solving old riddles and, at the same time, creating new ones. The reason for
this longevity is that friction, at all times, was a vital issue in many respects.

For the Neanderthals, the tedious procedure of making fire by rubbing
wood on wood was of very elemental importance for the preparation of food
or the hibernation in northern latitudes. Ancient civilizations like Meso-

5



1 Introduction

potamia and Egypt developed methods to reduce friction and thus were
able to build impressive monuments for their religious purposes, see Fig. 1.1.
In modern times, friction, mostly in the form of wear, is consuming a great
amount of the economic performance. An often cited estimate says that the
economic losses due to ignoring friction amount to approximately 6% of the
gross national product of the USA [6].

The first systematic exploration of friction is ascribed to Leonardo da Vinci
(1452–1519). However, his sketches of various experiments concerning static
and sliding friction and different bearings from the Codex Atlanticus and the
Codex Arundel remained unpublished for many years. The first empirical
laws of friction were rediscovered by Guillaume Amontons (1663–1705) and
Charles Augustin de Coulomb (1736–1806) and named in their honor [7].
Substantial contributions were added by Leonhard Euler (1707–1783) and
Osborne Reynolds (1842–1912). The former was the first to discern between
static and kinetic friction and has introduced the dimensionless friction coef-
ficient, the latter worked out the role of friction in the field of fluid mechanics.

The empirical laws state the following relations concerning the friction
force between two solid bodies:

1. The friction force is independent of the apparent area of contact.

2. The friction force is proportional to the normal force (the load) acting
on the area of contact.

Both are known as Amontons’ laws of static friction. Coulomb’s law of slid-
ing friction says:

3. The friction force is independent of the sliding velocity.

It must be said that these empirical “laws” can only be understood as rough
approximations to reality because their validity is restricted to the normal
cases of macroscopic contacts, not too clean or lubricated or too smooth or
too heavily grafted surfaces, and not exceedingly low or high sliding velocity.
Nevertheless, the plain but extensively applicable formula resulting thereof,

F = µL , (1.1)

connects the friction force F to the normal load L via a system constant µ, the
friction coefficient, and has been successfully in use for centuries.

Surprisingly, the friction coefficients for dry contact areas, i.e., without lu-
brication, are all of order unity. This universal behavior gave rise to a simple
geometrical explanation as depicted in Fig. 1.2. If there are no other forces
like adhesion acting between both surfaces, the resulting force necessary to
move the upper body relative to its lower counterpart is given by

Fs = L tanα , (1.2)

6



1.2 Macroscopic friction
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Figure 1.2: Schematic of two surfaces with interlocking asperities. The upper body
experiences a normal load L and a pulling force F, while the lower body is fixed.
The slope α of the asperities determines the static friction.

where Fs denotes the static friction, α the inclination angle of the surface as-
perities, and L the normal load, as before. This purely geometrical reasoning
dates back to Coulomb and was, for a very long time, the standard explana-
tion for dry friction. But it is an oversimplification: the natural roughness of
surfaces is, in most cases, very irregular so that an inclination angle cannot
be defined at all. In fact, naturally rough surfaces could tend toward re-
duced friction because of incommensurability, see the following section. The
compliance of real systems to Amontons’ laws might rather be due to mo-
bile atoms in the interface that mediate interlocking and commensurability
so that a universal coefficient µ can be recovered [8].

More detailed analysis of friction phenomena was acquired not until new
experimental probing techniques became available, e.g., the scanning elec-
tron microscope, the use of radioactive tracers, mechanical profilometers, the
surface force apparatus, etc. In 1950, the book of Frank Philip Bowden (1903–
1968) and David Tabor (1913–2005), The Friction and Lubrication of Solids [9],
presented extensive experimental studies and soon became a standard work
in the field of tribology. They successfully explained macroscopic friction,
not by surface roughness, but with a new concept of adhesive bonding, i.e.,
the formation and destruction of interfacial contacts.

For realistic interfaces, the shearing and plowing of interfacial asperities
can be viewed as the microscopic origin of Coulomb’s law of friction. A
decisive distinction must be made between the apparent and the actual area of
contact (cf. Fig. 1.3). Whereas the former is a purely geometrical property of
the sliding body, the latter is indeed load-sensitive. By increasing the normal
load, the surfaces are more strongly pressed against one another and new
contacts can form, thereby increasing the actual area of contact. Depending
on the duration of contact, this also increases the adhesion because the newly
formed contacts tend to minimize their binding energy.

Furthermore, the resistance against lateral motion that comes from shear-
ing stress or plastic deformation of all the interlocking asperities naturally is

7



1 Introduction

Figure 1.3: Every macroscopically smooth surface has a microscopical roughness
consisting of undulating hills and wells. The actual area of contact therefore is
formed by single asperities, indicated by arrows, where the largest protrusions
are in direct contact. It is considerably smaller than the apparent area of contact,
which would consist of the whole surface.

proportional to the actual area of contact. When the upper layer is pulled by
a force F, all the single asperity forces add up to the overall macroscopic fric-
tion force. In 1966, Greenwood and Williamson extended this Bowden–Tabor
theory to explain the mechanical properties of elastic contacts between nom-
inally flat surfaces [10]. A serious shortcoming of the Bowden–Tabor theory
is that it can explain friction only qualitatively, but still lacks a quantitative
theoretical description of the observed macroscopic friction coefficients.

1.2.2 Macroscopic stick–slip motion

A classical friction experiment consists of a cuboid block of a solid material
under study with clean and flat surfaces. It is pulled across a table by a rope
or wire, see Fig. 1.4. The pulling rope is connected to the block by an elastic
spring. If the free end of the rope is pulled forward at constant velocity, the
force exerted on the block increases in direct proportion to the elongation of
the spring, according to Hooke’s law.

The response of the block to the increasing pulling force reveals three dif-
ferent regimes of motion:

1. In the beginning, the force increases until it reaches the value of the
static friction between block and table. Immediately thereafter, the
block starts moving and the spring relaxes until the elastic force equals
to the sliding friction of the block. Continued pulling keeps this force
constant and results in a steady sliding motion, see Fig. 1.5 (a).

2. For a low pulling velocity or a weak spring the motion sets in above
the threshold of static friction. But, due to inertia, the body moves so
far that the restoring force of the spring falls below the sliding friction
level. Therefore, the quick jump at each onset of motion always ends
abruptly after a characteristic length has been travelled. This kind of

8



1.2 Macroscopic friction

Figure 1.4: A classical friction experiment: A body with normal load L is pulled
across a table at constant velocity v. The friction force is directly proportional to
the elongation of the elastic spring connecting the pulling rope with the body.

t

F

t t

F F
(a) (b) (c)

Figure 1.5: Three different regimes of sliding motion as observed in the experiment
from Fig. 1.4: (a) steady sliding, (b) periodic stick–slip motion, (c) chaotic motion.
Horizontal axis: time t; vertical axis: pulling force F.
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1 Introduction

intermittent sliding is known as stick–slip motion and is frequently en-
countered in squeaky door hinges or pieces of chalk being drawn across
black boards, cf. Fig. 1.5 (b).

3. If the interface is less regularly structured so that nonlinear terms with-
in the equations of motion prevail, the stick–slip motion may turn out
random. The force values at which the intermittent jumps start and end
will be statistically distributed around some average values of static
and sliding friction, see Fig. 1.5 (c).

It is important to distinguish between the macroscopic stick–slip phenomenon
as described above and atomic-scale stick–slip motion which we will present
in the following section. Although both phenomena appear to be close rela-
tives on different length scales, they are fundamentally dissimilar.

1.3 Nanotribology

1.3.1 New experimental techniques

The advent of the various local probe methods in the 1980s gave a real boost
to research activities, especially with regard to surface science. A concise
overview of these new scanning microscopy techniques is given in Ref. [11].
The first representative of these new techniques was the scanning tunnel-
ing microscope (STM) built by Gerd Karl Binnig (1947) and Heinrich Rohrer
(1933). In 1981, it operated successfully for the first time and delivered to-
pographical images of monatomic steps. Its resolution was continuously re-
fined to atomic length scales of a few ångström so that it became possible to
“see” the single atoms of a crystalline surface. For this invention, Binnig and
Rohrer have been awarded the Nobel prize in 1986 [12].

In contrast to optical and electronic instruments (e.g., the scanning electron
microscope developed in the 1930s), the STM is primarily a mechanical tool
that, like a “nanofinger”, mechanically probes the topography of a sample. It
does so by piezo actuators that keep the tunneling current flowing through
the gap between tip apex and sample at a constant value. The next idea
was to measure the vertical profile of a surface in a more direct fashion, viz.,
by directly utilizing mechanical properties. This became possible with the
atomic force microscope (AFM), developed by Binnig et al. in 1985 [13]. While
the first AFM was combined with an STM, where the STM measured the
vertical displacement of the AFM tip and cantilever, shortly after that the
displacement was measured directly via the deflection of a laser beam from
the cantilever, see Fig. 1.6.

In direct contact mode, the tip is pressed against the surface with a constant
force that is related to a specific elastic bending of tip and cantilever. The
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1.3 Nanotribology

Figure 1.6: Schematic of the probe–sample contact in an FFM. Part A: A cantilever tip
in contact with a crystalline surface; the surface is movable in x, y and z direction
by piezo actuators. Part B: A closed atomic contact exists between an atom of
the tip apex and a surface atom (black arrow); moving the substrate leads to a
bending of tip and cantilever that can be detected by a deflected laser beam.

repulsive force between tip and surface is due to the Pauli exclusion of the
electron shells involved. In a way, the constant normal force is reminiscent
of the load of a sliding body, and drawing the tip across a surface can be seen
as a sliding motion with extremely small area of contact, where usually but
a few atoms participate [4]. This analogy was fully exploited in the friction
force microscope (FFM) that was developed by Mate et al. in 1987 [14].

The difference between AFM and FFM is the pulling direction of the tip.
While the AFM tip is pulled parallel to the cantilever beam, the FFM tip is
pulled sideways, perpendicular to the cantilever. The AFM signal is deduced
from the longitudinal deflection of the cantilever whereas the FFM in addi-
tion detects the lateral one. It is caused by the torsional force acting on the
tip–cantilever complex whose elastic response is proportional to the copla-
nar force component of the tip–surface interaction. Because of its sensitivity
to lateral forces, i.e., those forces inhibiting motion classified as friction, the
FFM can actually measure atomic-scale friction. The first experiments by
Mate and co-workers were performed with a tungsten tip on a crystalline
graphite surface and displayed periodic patterns with atomic-scale resolu-
tion: the stick–slip motion at the nanoscale.

In 1988, Krim et al. used a quartz-crystal microbalance (QCM) to mea-
sure the momentum of an adsorbate layer and deduced a relation for the
film-substrate interfacial viscosity based upon measurements of the acous-
tic impedance [15]. As a consequence of the high-frequency vibrations, ex-
tremely weak inertial forces act on the adsorbate layer. These forces could
never move the film by themselves, but their effect is to tilt the surface po-
tential just enough to allow thermally activated transport [6]. Actually, the
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Figure 1.7: Prandtl’s mechanical device showing hysteresis of sliding motion in a
corrugated potential, taken from [18].

term nanotribology first appeared in a 1991 paper by Krim et al. on atomic-
scale friction of a Kr monolayer [16].

The surface force apparatus (SFA) was devised by Tabor, Winterton, and
Israelachvili in the 1970s [17]. It came fairly close to the resolution of the lo-
cal probe techniques, being able to resolve distances of 0.1nm (measured via
laser interferometry) and forces of 10nN (measured by the torsional deforma-
tion of a spring). The strength of the SFA lies in its wide range of operating
distances, from tenths to over a hundred nanometers. Especially at larger
distance, the SFA excels in resolving the surface-to-surface force more pre-
cisely than any other method. In combination with measuring shear, the SFA
became an important tool for specifying dry and wet friction between two
atomically flat surfaces in an ideal contact.

1.3.2 Atomic-scale stick–slip motion

The first theoretical studies concerning atomic-scale dry friction date back to
the late 1920s. Ludwig Prandtl (1875–1953) investigated the motion of a mass
that experiences a one-dimensional corrugated potential and is externally
pulled with constant velocity [18]. The external pulling is coupled to the
mass by an elastic spring. This simple model already reveals a theoretical
prerequisite for the stick–slip motion observed in an FFM experiment.

The reason is a dynamical hysteresis as obtained from Prandtl’s Gedanken-
experiment shown in Fig. 1.7 that gives rise to a non-adiabatic loss of energy.
In case of low pulling velocities and subcritical elasticity, the position of the
mass undergoes a transition from stable to unstable equilibrium. The follow-
ing relaxation into the new stable position excites vibrational modes of the
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spring so that large parts of the stored elastic energy are dissipated as heat.
In an actual atomic contact, these are the phonons created in the surface, the
tip, and the cantilever by the elastic energy released in each slip event.

George Arthur Tomlinson (1885–1944) independently proposed a molecu-
lar theory of friction based on a hypothetical mechanism of dissipation in-
duced by intramolecular forces of a Lennard–Jones type [19]. He showed
how the closure and succeeding rupture of a molecular bond between a sur-
face (atoms elastically coupled) and a passing atom of a sliding body can set
a surface atom into an unstable equilibrium position. Subsequent relaxation
into stable equilibrium leads to irreversible dissipation of energy previously
supplied by the atom passing by. All molecular contacts between surface and
sliding body thus contribute to the total amount of friction.

The so-called Prandtl–Tomlinson model is the simplest way to represent a
single atomic contact in a minimal model:

1. The essentially one-dimensional movement of the FFM tip can be com-
prised within a one-dimensional model because the vertical tip–surface
interaction is held at a constant level by appropriate tracking of the
sample stage. Of course, this simplification makes quantitative predic-
tions impossible for higher-dimensional systems but can be justified
with regard to the qualitative explanations it facilitates.

2. The simplest case of the tip–surface interaction is a periodic function
with a spatial period equal to the periodicity of the crystalline surface.
Generally it suffices to take into account only the lowest Fourier mode,
yielding a potential function

U(x) =
∆U
2

(
1− cos

2πx
L

)
, (1.3)

where ∆U is the corrugation depth and L the lattice spacing. The vari-
able x parameterizes the one-dimensional path of the tip with respect
to the surface.

3. The lateral deflection of cantilever and tip and the resulting restoring
force can be modeled as elastic deformations obeying Hooke’s law,

V(x, t) =
κ

2
(x− vt)2 . (1.4)

Here, κ is defined as the serial sum of surface, tip, and cantilever elas-
ticities, κ−1 := κ−1

surf + κ−1
tip + κ−1

cant, according to [20]. The external control
parameter v is the pulling velocity, and vt the (lateral) position of the
cantilever regarding the one-dimensional path x(t).
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4. Dissipation enters the model by introducing a heat bath of absolute
temperature T . A stochastic force term ξ(t) mimics the thermal fluctu-
ations which naturally arise from the surrounding atoms. These fluc-
tuations are related to dissipation of energy from the moving tip via
the fluctuation–dissipation theorem of the second kind giving rise to a vis-
cosity η and a damping term −ηẋ. The random force is conveniently
realized as a white noise with zero mean and delta correlation,

〈ξ(t)〉 = 0 , 〈ξ(t) ξ(s)〉 = 2ηkBT δ (t− s) , (1.5)

where kB is the Boltzmann constant.

5. According to Newton’s second law, the tip–cantilever complex owns
an effective mass m that connects the sum of all forces Fi acting on it to
the resulting acceleration,

mẍ = ∑
i

Fi . (1.6)

Taking all parts together, we obtain a dynamical model of a single atomic
contact whose formal description is given by a Langevin equation,

mẍ(t) = − ∂

∂x
U

(
x(t)

)− ∂

∂x
V

(
x(t), t

)− ηẋ(t) + ξ(t) . (1.7)

It is important to notice that this kind of stochastic partial differential equa-
tion is only valid on time scales well above the mean time of ballistic motion
between two collisions of the mass m with any atom within its surroundings.

An equivalent formulation is given by a Fokker–Planck equation (FPE),
alternatively called Kramers equation,

∂

∂t
P (x, v, t) =

[
∂

∂v

(
U ′(x) + V ′(x, t) + ηv

m
+
ηkBT
m2

∂

∂v

)
− v

∂

∂x

]
P (x, v, t) ,

(1.8)
where P (x, v, t) is the probability density to find a particle at time t at position
x with velocity v. The distribution P therefore no longer describes a single
particle trajectory but an ensemble of such trajectories. The advantage of
the FPE is that it offers an analytical approach to statistical evaluation of the
system dynamics.

The resulting friction force Ffric, i.e., the mean force necessary to pull the
cantilever with constant velocity, is given by the time average

Ffric = − lim
τ→∞

1
τ

τ∫

0

dt
∂

∂x
V

(
x(t), t

)
= lim

τ→∞

κ

τ

τ∫

0

dt [vt− x(t)] (1.9)

14



1.3 Nanotribology

 0

 0.5

 1

 1.5

 2

 0  2  4  6  8  10

v

F

kBT = 0     
kBT = 0.1  
kBT = 0.01

Figure 1.8: Force–velocity relation obtained from numerical simulation of Eq. (1.7),
where F = Ffric, according to Eq. (1.9). Solid line: kBT = 0; long dashed line:
kBT = 0.1; short dashed line: kBT = 0.01; dotted line: v = F/η. Other parameter
values: m = L = ∆U = 1, η = 5, κ = 0.1. For v → 0 at kBT = 0, the force is close
to the critical tilt at Fc = π.

of the elastic force, in analogy to the elongation of the spring from the classi-
cal friction experiment in Fig. 1.4. The force–velocity diagram of Eq. (1.7) for
different values of the temperature is shown in Fig. 1.8. The role of thermally
activated escape becomes clear in the v → 0 limit at different temperatures:
At kBT = 0, the force takes on a nearly constant positive value at low ve-
locities. With increasing temperature, the v → 0-limit ensues F → 0 with
gradually decreasing steepness.

In the Prandtl–Tomlinson model, one observes either the stick–slip motion
as explained in Fig. 1.9 or steady sliding motion due to inertia at higher ve-
locities, see [21]. In the case of atomic-scale stick–slip motion, the force as a
function of time exhibits the familiar sawtooth pattern of a linearly increas-
ing force that abruptly drops back to a lower value whenever a slip to the
next potential minimum occurs, see Fig. 1.9 (c). With a static tilt instead of an
increasing force, this model for Brownian motion in tilted periodic potentials
has been rigorously treated and results can be found summed up in [22].

Interestingly, at T = 0 and for weak κ,

κ < U ′′(0) =
2π2∆U

L2 , (1.10)

the Prandtl–Tomlinson model features two distinct force levels for static and

15



1 Introduction

Figure 1.9: The Prandtl–Tomlinson model of a mass point in a one-dimensional cor-
rugated potential. The mass is connected to a carrier with an elastic spring, and
the carrier moves with constant velocity v. (a) Mass and carrier are aligned at the
potential minimum. (b) The carrier moves to the right, but the mass cannot yet
surmount the potential barrier (stick-phase). (c) When the restoring force of the
spring exceeds the critical tilt of the potential, the mass instantaneously jumps to
the next minimum (slip-phase). The elastic energy is largely dissipated as heat.

kinetic friction in the underdamped regime [23], where

η̃ < ηc :=
π2

2L

√
∆U
2m

. (1.11)

We start with a mass m at rest. If the pulling force exceeds the critical tilt of
the surface potential U(x),

F > Fc :=
π∆U

L
, (1.12)

the system will make a transition from the locked state to the running state.
The critical tilt Fc thus is a synonym for static friction. If the pulling force is
reduced, the system will stay in the running regime due to inertia until

F < Fk :=
2η
π

√
2m∆U , (1.13)

when the backward transition to the locked solution takes place. This thresh-
old force Fk corresponds to the kinetic friction. Therefore, stick–slip motion
can only occur whenever the inequality Fk < Fc holds.

A direct application of these findings to macroscopic systems is not pos-
sible without taking into account the contact stiffness [24] and the contact
geometry [25]. For a single contact, the interplay of inertia and elasticity
produces a non-trivial system behavior including locked, running, and in-
termittent states. For many such contacts, the whole situation increasingly
depends on the exact geometry.
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Figure 1.10: The Frenkel–Kontorova model of a harmonically coupled (infinite)
chain of masses experiencing a one-dimensional sinusoidal potential.

1.3.3 Superlubricity

In the late 1930s, the Russian physicists Yakov Ilitch Frenkel (1894–1952) and
Tatyana Abramovna Kontorova (1911–1976) achieved an important theoreti-
cal result in the field of plastic deformations and twinning of solids [26]. The
Frenkel–Kontorova model consists of an infinite linear chain of harmonically
coupled masses finding themselves in a one-dimensional sinusoidal poten-
tial, see Fig. 1.10. Under the influence of an external pulling force F being
applied to the whole chain, the corresponding system of Langevin equations
reads

mẍi(t) = − ∂

∂xi
U ({xn(t)})− ∂

∂xi
V ({xn(t)})− ηẋi + F + ξi(t) , (1.14)

where the indices i and n denote the i-th and n-th particle, respectively. The
function

U ({xn}) = ∑
n

∆U
2

(
1− cos

2πxn

L

)
(1.15)

is the periodic surface potential with corrugation depth ∆U and corrugation
length L, and

V ({xn}) = ∑
n

κ

2
(xn+1 − xn − a)2 (1.16)

is the pair interaction of the chain with equilibrium interparticle distance a.
The noise terms are assumed to be Gaussian, thus obeying

〈ξi(t)〉 = 0 , 〈ξi(t) ξ j(s)〉 = 2ηkBT δi j δ (t− s) . (1.17)

Because of its simplicity, this model was successfully applied to various prob-
lems besides those it was originally designed for, e.g., adsorbed monolay-
ers of atoms or molecules in surface physics, glassy systems, charge density
waves or coupled Josephson junctions, to name but a few.

The ratio of the number of masses in the chain to the number of surface po-
tential minima on a given length implies a substantial property of this model.
There are commensurate vs. incommensurate lattices, the first meaning that
a/L is a rational number, the latter that it is an irrational number. In the
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Figure 1.11: Left: Average friction force versus rotation angle of the graphite sam-
ple around an axis normal to the sample surface, taken from [31]. Two narrow
peaks of high friction were observed at 0 and 61, respectively. Between these
peaks a wide angular range with ultralow friction close to the detection limit of
the instrument was found. Right: Schematic of the “Tribolever”, taken from [32]:
Lateral or frictional forces acting on the scanning tip (tungsten) are measured via
the displacement of the central pyramid (silicon). Motion is detected by four laser
interferometers reflecting from the pyramid facets on the rear side.

incommensurate case, a transition takes place at κ = κAubry [27], where, for
larger values of κ, any non-vanishing external force F leads to steady motion,
meaning that the static frictional force is zero. Of course, this only holds for
infinite chains since finite Frenkel–Kontorova chains are always pinned [23].
For such a “frictionless” state the term superlubricity or structural lubricity was
coined. Please note that superlubricity should not be confused with quantum
effects like superconductivity or superfluidity where the relevant system pa-
rameter (e.g., electric resistance, viscosity) vanishes completely.

Zero friction has first been proposed in the late 1980s by McClelland [28]
and later, in combination with multi-dimensional Frenkel–Kontorova mod-
els of sliding surfaces, by Hirano and Shinjo [29,30]. Experimental realization
waited until 2004 when Dienwiebel et al. measured a distinct dependence on
the angle at which a graphite flake was pulled across a highly oriented py-
rolytic graphite (HOPG) plate [31]. They used a novel FFM with a special
friction force sensor, the so-called Tribolever [32], see Fig. 1.11, that allows
measurement of forces acting on the tip in three directions, down to 15 pN.
The friction force displayed peaks every 60◦ of the rotation angle coplanar to
the surface, where only the distinct directions of commensurate (hexagonal)
lattices showed noticeable friction. The incommensurate directions, which
form wide angular ranges in between, showed ultra-low friction.

So far, all friction measurements that hint toward superlubricity were per-
formed in ultra high vacuum (UHV) since exposing the samples to ambient
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Figure 1.12: Scheme of nanoparticle manipulation experiment and data obtained
under UHV conditions, uncovering two distinct frictional regimes for particle or
sample contact areas up to 90 000 nm2, taken from [33]. Regime 1 (black sym-
bols) comprises particles with substantial friction whereas particles that exhibit
virtually no measurable friction (red symbols) are assigned to regime 2.

conditions immediately produces a contamination with “dirt” particles (e. g.,
water or hydrocarbon molecules) or oxidation of the freshly cleaved surfaces.
These contaminations effectively destroy the incommensurability necessary
for structural lubricity by a hypothetical interlocking mechanism [8]. Nev-
ertheless, Dietzel et al. performed sliding friction measurements in air and
UHV with antimony nanoparticles on HOPG that has been cleaved in UHV,
and they encountered an astonishing frictional duality [33]. Some nanoparti-
cles showed frictionless sliding due to lattice mismatch while others behaved
according to an atomistic Amontons’ law where the friction force is propor-
tional to size/area/load of the antimony islands, see Fig. 1.12. The ratio of
vanishing friction to non-vanishing friction particles depends on the “dirty-
ness” of the samples, i.e., the time of exposure to air or even to imperfect
vacuum. Increasing dirt contamination diminishes the proportion of super-
lubric sliding. Following Müser, the interfacial mobile molecule hypothesis is a
first candidate that could explain the observed duality, but it cannot explain
why, under UHV conditions, superlubricity breaks down for some particles
and does not for others. Surprisingly, even on the dirtiest samples, Dietzel
et al. found two islands with vanishing friction, albeit for a sliding distance
of less than 100nm. Therefore, the hope remains that superlubricity may be
adopted to macroscopic engineering in some way or other.

Müser proclaims a rigid-body hypothesis based on the (length-scale de-
pendent) ratio of interaction stiffness to bulk stiffness which must remain
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smaller than unity in order to gain structural lubricity [34]. He stresses that
ultralow macroscopic friction can only occur if the microscopic dynamics re-
main correlated on macroscopic length scales. In other words, the decisive
incommensurability can get lost for too large and/or too flexible particles if
their structure does not guarantee for a rigid-body like behavior. Promising
model systems could be nanotubes or three-dimensional incommensurate
crystals with atomically flat surfaces. The question of how nanotribologi-
cal results concerning superlubricity may be adopted to explain (or better:
explore) friction phenomena on the macroscopic level thus remains open.

The Prandtl–Tomlinson model from the last preceding subsection already
comprises a mechanism leading to vanishingly small friction. If the elasticity
κ exceeds the second derivative of the surface potential at its maximal value,
κ > U ′′(0), see Eq. (1.10), only a single mechanically stable position remains
for the dynamical variable x(t) at each time [35]. Then, the aforementioned
hysteresis cannot occur and adiabatic motion will take place. In other words,
stick–slip motion gives way to smooth sliding. Consequently, if the mech-
anism leading to energy dissipation is inhibited, only a vanishingly small
amount of energy will be dissipated through the damping term. This sce-
nario was already suggested by Prandtl [18]. If no other sources of friction
are present (e.g., surface contaminants, lattice defects, etc.), such a regime of
ultra-low friction may also be termed superlubricity [7].

Experimentally, this kind of ultra-low friction that does not depend on in-
commensurate lattices was realized by Socoliuc et al. [36]. The experiment
was performed with a silicon tip on a NaCl single crystal and in UHV at
room temperature. They tuned the ratio of the surface potential to the stiff-
ness of the contact by varying the normal load and could thus observe nearly
vanishing (lateral) friction at small loads meaning small corrugation depth.
Their results were acceptable as compared to a one-dimensional Prandtl–
Tomlinson model, taking into account the two-dimensional averaging in case
of the experiment. Remarkably, the state of ultra-low friction coincided with
the disappearance of the stick–slip instabilities that otherwise contributed
the most to the dissipation observed in FFM measurements.

More realistic two-dimensional simulations of superlubricity are recently
performed by Steiner et al. delivering reasonably good agreement of numer-
ical and experimental data [37]. They differentiate between three regimes of
superlubricity: static superlubricity, dynamic superlubricity, and thermolu-
bricity, see [38]. The first regime is the same as described above. The second
one is achieved by externally applied actuation of the contact perpendicular
to the sample surface, thereby facilitating load oscillations equivalent to an
oscillating corrugation depth. If these oscillations correspond to a resonance
frequency of the contact, the lateral friction decreases below the resolution
of the FFM. The third regime refers to the suppression of the stick–slip phe-
nomenon due to thermally activated transitions between potential minima.
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Figure 1.13: Schematic of the ratchet mechanism of a surface asperity. The AFM
tip moves over an asperity that makes an angle θ with the horizontal plane. W
and F are the normal and friction forces, respectively, and S and N are the force
components along and perpendicular to the local surface of the sample at the
contact point, respectively. Taken from [40].

1.3.4 Bhushan’s “ratchet mechanism”

Experimental studies on homogeneous but rough materials showed a depen-
dence of the lateral friction force rather on the slope of the surface asperities
than on their height [39]. In contrast to the AFM tip that has a diameter of
about 10 to 15nm, the surface asperities of this microscopically rough ma-
terial are a few hundred nm in size. This obviously affords a geometrical
explanation similar to the early explanation of friction leading to Eq. (1.2).

The situation is shown in Fig. 1.13. When the tip moves “uphill”, the lat-
eral deflection increases by an amount proportional to the load multiplied
by tan θ, when it moves “downhill”, the indicated friction force is reduced
by the same amount since θ changes its sign. This effect generates two arti-
ficial peaks of the friction force, a positive one when the tip climbs up and
a negative one when the tip comes down again. Bhushan calls this geomet-
rical effect a ratchet mechanism [40], sometimes even a ratchet effect [41]. This
somewhat unfortunate terminology should not be confused with the thermal
ratchet effect which will be described in section 2.2.

1.4 Literature review

1.4.1 Books and reviews

The total number of publications concerning nanotribology, stick–slip mo-
tion, superlubricity, and thermal effects in atomic-scale sliding friction is
well above 1 000 and still growing. Of course, the aim of this section can-
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not possibly be a concise review of all current and/or past research activi-
ties in this field. Instead, this literature review focuses on a small number
of (a) more general but essential publications and (b) more specific but the-
matically selected publications with relevance to this thesis. Therefore, the
selection made herein does not claim to be complete.

Books
Starting with more general descriptions, a number of books should not go
unmentioned. Those by Persson (Sliding friction: Physical Principles and Ap-
plications [6]) and Mate (Tribology on the Small Scale: A Bottom Up Approach to
Friction, Lubrication and Wear [7]) have already been introduced earlier in this
chapter. They combine descriptions and results of the various techniques in
use for probing atomic-scale friction. Gnecco and Meyer have edited exper-
imental and theoretical studies on Fundamentals of Friction and Wear on the
Nanoscale [42]. Their main focus is on AFM experiments and their theoretical
framework. Various contributions comprise contact mechanics, dissipation
mechanisms, wear and fracture, nanoparticles, and organic materials.

Bhushan, besides editing a series of handbooks on applied scanning probe
methods, has edited and partly written three books: an Introduction to Tribol-
ogy [43] which contains a chapter on nanotribology besides a general survey
of friction, wear, and lubrication; Nanotribology and Nanomechanics: An Intro-
duction [44] offers more than 1 500 pages of divers experimental techniques,
mainly AFM exploring different probes under various environmental condi-
tions; together with Nosonovsky as a co-author, Multiscale Dissipative Mech-
anisms and Hierarchical Surfaces: Friction, Superhydrophobicity, and Biomimet-
ics [45] presents a linkage between nanotribology and biological systems,
with many examples of nanotechnology “made by nature”, e.g., the hierar-
chical structure of the adhesive hair bundles of gecko feet or the “lotus effect”
of a nano-structured surface that largely diminishes adhesion, etc.

Reviews
Topical reviews and reports are less general than books but still summing
up recent trends and open questions of nanotribology. One of the earliest
reviews dates back to 1994, Friction and energy dissipation at the atomic scale, by
Singer [46]. It focuses on wearless sliding as the most simple mechanism of
atomic-scale friction dynamics. Both, minimal models and MD simulations,
are discussed. The concept of frictionless sliding is investigated theoretically,
including a reference to Hirano’s and Shinjo’s results [29].

In 2000, Robbins and Müser reported on Computer Simulations of Friction,
Lubrication and Wear [47]. Various simulation techniques and their applica-
tion to tribological problems are highlighted. The presented models range
from simple one-dimensional crystalline surfaces to complex MD simula-
tions including realistic hydrocarbon boundary lubricants. One section ad-
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dresses the stick–slip phenomenon and microscopic models for its origins.
Gnecco et al. reviewed Friction experiments on the nanometre scale [48]. Their

scope is on experimental result for variations of diverse parameters includ-
ing load, velocity, anisotropy, etc. The importance of the Prandtl–Tomlinson
model regarding atomic-scale dynamics is stressed. A logarithmic velocity
dependence at low velocities is reported.

Müser et al. collected approaches to the molecular origins of friction based
on statistical mechanics under the title Statistical mechanics of static and low-
velocity kinetic friction [35]. In the case of dry elastic friction, they go much
into details of the Prandtl–Tomlinson and the Frenkel–Kontorova model.

In Nanotribology: Microscopic mechanisms of friction [23], Braun and Nau-
movets describe the current state of research on friction from the point of
view of surface science physicists. They mainly accentuate MD results and
their connection to experiments.

The latest review, dating from 2008, Recent advances in single-asperity nan-
otribology [49] by Szlufarska et al., reflects recent advances in the experimen-
tal, theoretical, and computational studies of nanotribology. In particular, it
focuses on the latest developments in atomic force microscopy and MD sim-
ulations and their application to the study of single-asperity contacts.

1.4.2 Velocity dependence of atomic-scale friction

Classical friction of macroscopic bodies does not depend on the sliding veloc-
ity, an empirical fact known as Coulomb’s law for a long time. This relation
is only valid within specific boundaries (e.g., low velocities, normal ambient
conditions, no viscous flow/very low Reynolds number). Outside of these
boundaries, friction is known to exhibit different kinds of velocity depen-
dence: in viscous fluids, swimming bodies experience Stokes friction which
is proportional to the velocity, and bodies moving in air are decelerated by
the air drag which, at intermediate to high velocities, is proportional to the
velocity being squared or even cubed.

Most likely, atomic-scale friction will depend on velocity in one way or
another—save the special case of unmeasurable low friction (superlubricity).
Many different relations have been proposed by numerous researchers, some
of them even in obvious contradiction to others. There is a simple reason for
this confusing situation: the scanning velocities of the AFM are limited to
very low values, typically ranging from nm/s to a few µm/s. This might be
enough to exclude those hypotheses which are the farthest from reality, but
it is not enough to corroborate any of the remaining theories beyond doubt.

A reasonable approach to the velocity dependence of atomic scale friction
is to assume thermal activation to be a key ingredient that causes the stick–
slip phenomenon of the tip’s Brownian motion. In this case, Kramers rate

23



1 Introduction

theory of thermally activated escape can be applied to the dynamics of the
tip. The interstitial stick–slip motion proceeds in jumps of unit cell length
with respect to the periodic surface potential: after overcoming a potential
barrier, the tip relaxes to the next local minimum and the escape process
starts anew. The force-dependent rate of escape, ω(F), is equivalent to the
inverse of the average waiting time, provided that thermalization within the
new minimum is fast as compared to this waiting time (Markov process).
The pulling velocity v then can be deduced from the unit cell length a times
the rate ω(F),

v = aω(F) . (1.18)

The rate is an exponential of the energy barrier hight and (in a first approx-
imation, as long as variations of the pulling force are small, e.g., for a weak
cantilever) depends linearly on the force. This immediately implies a loga-
rithmic dependence of the average friction force on the pulling velocity,

F ∝ ln
v
v0

. (1.19)

The intrinsic velocity v0 is mainly comprised of the unit cell length a and the
Arrhenius factor (“attempt frequency”) of the Kramers rate.

Deviations from this purely logarithmic dependence are to be expected in
the more general case of larger force fluctuations and higher pulling veloc-
ities. A master equation links the instantaneous Kramers rate ω(t) to the
probability p(t) that the tip has not yet escaped from a potential minimum,
i.e., the slip has not yet occurred,

ṗ(t) = −ω(t)p(t) . (1.20)

As usual, the overdot symbols differentiation with respect to the time. Since
backward jumps are highly improbable, they are not taken into account. The
quantity ṗ(t) thus can be understood as the rate of depletion of the system
state corresponding to that local minimum being occupied at time t = 0.

The force–time diagram of the stick–slip motion resembles a saw-tooth pat-
tern, where the instantaneous force grows linearly in the time between two
jumps and in direct proportion to the deflection of the tip,

f (t) = f0 + κvt . (1.21)

Here, f0 is the restoring force of the bent cantilever at time t = 0 right after a
jump into the local minimum has occurred.

Substituting this force–time relation into the master equation (1.20) yields

dp( f )
d f

= − 1
κv
ω( f )p( f ) . (1.22)
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A first order approximation for the average force is given by the force f ∗ that
maximizes the probability current. It can be found by solving d2 p( f )/d f 2 =
0 for f = f ∗. This leads to dω( f )/d f | f = f ∗ = [ω( f ∗)]2/κv, finally yielding the
proportionality relation

v ∝ f ∗ω( f ∗) , (1.23)

where ω( f ) still is assumed to depend exponentially on f ∗. The inverse of
this relation does not exist in closed form, but depending on further system
parameters, this relation gives rise to modifications of the plainly logarithmic
force–velocity relation, Eq. (1.19).

Following this line of reasoning, thermally activated Brownian motion was
studied by Evstigneev and Reimann within theoretical models for a paradig-
matic force–velocity relation. Their first attempt resorted to overdamped mo-
tion in tilted periodic potentials [50], using analytical results first obtained
by Stratonovitch. They predict a velocity maximum which can be approx-
imately described by a universal scaling law. The following papers [51–53]
developed a description of stick–slip motion in terms of forced Brownian mo-
tion in a multi-stable potential landscape, where the transition rates between
potential minima can be determined by the Kramers reaction rate theory.

In Ref. [20], it has proven necessary to introduce an effective spring con-
stant that is weakly velocity dependent, thereby improving the agreement
of the rate deduced force–velocity relation with numerical simulations of the
corresponding Fokker-Planck equation. In cooperation with the experimen-
tal group of Schirmeisen in Münster, Evstigneev, Schirmeisen et al. analyzed
AFM data with regard to force-dependent transition rates [54]. They found
a good accordance only for high velocities and suggest that a formation of
multiple bonds could be responsible for the substantially lower rates at low
velocities, an effect termed “contact aging”.

In 2008, together with Schirmeisen et al., the investigation of low velocities
due to Contact ageing in atomic friction [55] was continued. Within a simpli-
fied model of the contact ageing process, their theoretical predictions and
the experimental results were in reasonable agreement with each other. This
implies the importance of time-dependent changes in the properties of sin-
gle asperity contacts, namely time dependent transitions to stronger bound
states during stick-phases.

Only a small selection from the multitude of experimental results and fur-
ther theoretical findings shall be presented here. First experimental findings
in favor of the thermal activation scenario date back to the 1990s. A logarith-
mic velocity dependence of atomic-scale friction was found by Bouhacina et
al. when exploring the Tribological behavior of a polymer grafted on silanized sil-
ica probed with a nanotip [56]. They explained this behavior with the Eyring
model that expands the thermal activation of reaction rate theory with an ex-
ternal stress term representing the pulling force in terms of an external bias.
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Dudko et al. promote the use of a thermally activated Prandtl–Tomlinson
model to describe results obtained by dynamical force spectroscopy [21].
This offers a new possibility to extract detailed information of the surface
potential and the dissipation mechanisms from the measured force–velocity
relations.

A distinction between “ramped” and “linear creep” was introduced by
Sang et al. [58]. Linear creep describes the sliding friction of an extended
contact region (e.g., two plates in slow relative motion, constant bias) and im-
plies a logarithmic velocity dependence of friction, as before. But in case
of atomic-scale stick–slip motion, the force is modulated quasi-periodically,
with a linearly increasing force interrupted by downward jumps, which they
call ramped creep. By incorporating this sawtooth pattern into their dy-
namical model, Sang et al. found a logarithmic power law, F ∝ const −
T 2/3 |ln(v/T )|2/3, in dimensionless units, that displayed a convincing col-
lapse of experimental data recorded at different temperatures.

In A comparative study of the one- and two-dimensional Tomlinson model, Fusco
and Fasolino inquired athermal and thermal contributions to the expected
velocity dependence of atomic-scale friction [59]. They found out that the
interplay of several system parameters (e.g., corrugation depth, cantilever
stiffness, and a phenomenological damping term) crucially influences the re-
sulting velocity.

But there also have been measurements in contradiction to a logarithmic
velocity dependence of friction. While Bouhacina et al. studied velocities at
nm/s, Zwörner et al. chose much higher velocities, namely µm/s [60]. They
found friction to take on values that were independent of the pulling velocity.
This is in agreement with an athermal Prandtl–Tomlinson model, where the
intrinsic noise is sufficiently negligible. At higher velocities, viscous damp-
ing sets in leading to a linear dependence of the friction force on the velocity.

Gnecco et al. again measured (at nm/s) a logarithmic force–velocity rela-
tion of an FFM tip on NaCl(100) and explained this via a thermally activated
Prandtl–Tomlinson model [61]. Measurements over five orders of magnitude
in pulling velocity were performed by Riedo, Gnecco et al. [62]. They com-
bined a logarithmic increase at low velocities with a saturation at the µm/s
level and found a plateau beyond some critical velocity.

1.4.3 Controlling atomic-scale friction

Changing parameter values between different regimes of friction (i.e., be-
tween stick–slip and smooth sliding, into or out of the thermo- or superlubric
regime) offers the opportunity to control friction actively on the atomic scale.

In 2005, Krylov et al. discussed a Thermally induced suppression of friction
at the atomic scale [63], where they introduced a distinction between thermol-
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Figure 1.14: (A) Schematic of AFM measurements on a silicon p–n junction device.
(B) Plot of friction force as a function of applied load at +4V sample bias. The
scanning speed was 5 µm/s. (Inset) The pull-off force as a function of sample
bias. The error scales represent the standard deviation from five independent
measurements. Taken from Park et al. [66].

ubricity and thermal drift. The former is applied to a reduction in friction by
thermal activation, the latter to a suppresion of dissipation by quasi-adiabatic
sliding comparable to superlubricity. There is a reasonable agreement be-
tween their theoretical findings and known experiments [31, 36].

A different approach is tuning friction by mechanical excitations. Tshiprut
et al. demonstrated how lateral vibrations of a substrate can increase surface
mobility and diffusivity, thereby reducing friction at the atomic scale [64]. A
complete elimination of the lateral force fluctuations cannot be achieved in
this way—and probably this is not desirable because of the important role
the fluctuations play for thermal activation.

Normal vibrations can also effect friction in an atomic force microscope,
as was shown by Jeon et al. [65]. They observed a reduction of the friction
coefficient by a few orders of magnitude when periodic out-of-plane surface
vibrations were stimulated. They compared their experimental findings to
computer simulations of a one-dimensional Frenkel–Kontorova chain repre-
senting the tip–sample contact.

Control of friction by normal vibration as well as electronic control in sil-
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icon p–n junctions were outlined by a series of articles in the Science Maga-
zine [66]. Therein, Socoliuc et al. reported how they excited the mechanical
resonances of the tip–cantilever system perpendicular to the contact plane
and reduced friction below 10pN. Park et al. observed a dependence of fric-
tion on the predominant charge carrier concentration, see Fig. 1.14. Although
the p regions of a doped Si-surface lead to an increasing dissipation with in-
creasing load of the TiN tip, the sliding was perfectly wearless.

An important examination of the “fine structure” behind the stick–slip dy-
namics was performed by Maier et al. in 2005 [67]. Results were compared
with simulations based on an extended Prandtl–Tomlinson model includ-
ing thermal fluctuations. They observed that the slip process can happen on
very different time scales (from below 15 µs up to some 10 ms). They apply
a two-spring model with different elasticities for tip–contact and cantilever,
and suggest that multiple asperities in contact may be responsible for the
observed variety of slip durations.

Krylov et al. go one step further and do not only propose a two-spring
model but a two-mass–two-spring model [68], where the tip apex is included
as a highly flexible and extremely small mass. In consequence, the tip apex
performs rapid thermal fluctuations (some GHz) which lead to a delocal-
ization of the contact. Nevertheless, stick–slip motion of the cantilever is
preserved since the surface corrugation is still superimposed to the average
elastic force of the apex.

In 2008, Tshiprut et al. also have examined the two-mass–two-spring model
and could successfully explain the “fine structure” of slip events [69]. Fur-
thermore, they have found a range of parameter values for which the well-
known single-spring Prandtl–Tomlinson model is applicable.
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2 THEORETICAL ASPECTS OF
BROWNIAN MOTION

Une intelligence qui, à un instant donné,
connaı̂trait toutes les forces dont la nature est animée

et la situation respective des êtres qui la composent,
si d’ailleurs elle était assez vaste pour soumettre ces données à l’analyse,

embrasserait dans la même formule les mouvements des plus grands corps
de l’univers et ceux du plus léger atome:

Rien ne serait incertain pour elle,
et l’avenir, comme le passé, serait présent à ses yeux.

Pierre Simon de Laplace

2.1 Brownian motion in tilted periodic potentials

2.1.1 Connection to nanotribology

As mentioned in the previous chapter, full-fledged MD simulations of a 2D
sliding contact region containing hundreds of atoms in multiple layers of
probe and sample (plus some extra layers of a lubricant if the contact is
not dry) are expensive in terms of computer time. This is mostly due to
the fact that every single channel of dissipation (predominantly the creation
of phonons in substrate and cantilever) must be taken into account. There-
fore, the resources necessary to resolve a significant time span of the motion
of a macroscopic body will be beyond reach until some distant future—a
silicon-based Laplacian demon is not in sight yet. Furthermore, simulation re-
sults reveal that our current understanding of dissipation in sliding contacts
must be either incomplete or, in some parts, wrong. The reason is the dis-
crepancy in the values of the force–velocity relation, especially the velocity
at which smooth sliding sets in. Simulation results for “realistic” sliding con-
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2 Theoretical aspects of Brownian motion

Figure 2.1: Superposition of a sinusoidal and a parabolic potential, where x denotes
the lattice site in arbitrary units. For a weak spring, the constantly pulled tip
mostly resides at one of the tilted flanks where the total potential locally is very
similar to a tilted periodic potential.

tacts yield a critical velocity that exceeds the experimentally observed value
by more than six orders of magnitude [23].

It does not come as a surprise that recent success has been achieved by
leaving the basis of pure MD and applying an earthquakelike model to slid-
ing friction where the formation and rupture of mesoscopic bonds is statisti-
cally described via a master equation approach [70]. This approach system-
atically separates the calculation of the friction force from the studies of the
properties of the contacts and thus can reduce the error in the critical veloc-
ity by two orders. In this context, the method we have chosen for our own
research on atomic-scale friction phenomena seems not to be utterly unjus-
tified, namely, to resort to minimalist models that are well suited for char-
acteristic situations frequently encountered in experimental nanotribology
(e.g., the sliding of a few point contacts).

In subsection 1.3.2, a general setup already was described in Eqs. (1.3)–
(1.9): the Brownian motion of a single atomic contact under the influence of
a lateral pulling with constant velocity,

mẍ(t) = −U ′(x(t)
)
+ κ

(
x(t)− vt

)− ηẋ(t) + ξ(t) . (2.1)

The sum of a sinusoidal surface potential and a parabolic spring potential
can be seen in Fig. 2.1. If κ is sufficiently small, the dynamics of the tip will
be such that x(t) resides in a local minimum until the pulling has moved it
“up” one of the tilted branches of the potential. There, the effective barrier
height is substantially reduced and thermally activated transitions to lower
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Figure 2.2: For a particle in a periodic potential there is no difference wether it is
pulled with a constant force or the potential is tilted with a constant bias. Arith-
metically, both descriptions are equivalent.

minima can take place. On average, x(t) cycles up (by pulling) and down (by
hopping) around a small region of the potential that can locally be described
by a tilted periodic potential.

Furthermore, this minimalist model of atomic-scale sliding friction can eas-
ily be dealt with in the framework of overdamped Brownian motion in tilted
periodic potentials. Since the effective mass of the tip is extremely small
(m ≤ 3× 10−12 kg, as it is conservatively estimated in Ref. [53]), it is possi-
ble to neglect inertia completely. Taking into account some realistic values
for the corrugation depth of the sinusoidal potential (say, 100 kBT , which is
about 4 × 10−19 J at room temperature), of the cantilever and tip elasticity
(about 1 N/m, where the tip is much more flexible than the torsional mode
of the cantilever with 75 N/m, respectively), and a lattice spacing of 0.5 nm,
the tip must be bent across a few lattice sites before the restoring force is
strong enough to overcome the energy barrier of the surface potential.

The resulting overdamped equation of motion reads

ηẋ(t) = −U ′(x(t)
)
+ F(t) + ξ(t) , (2.2)

where F(t) = κ
(

x(t)− vt
)
. Provided that κ is small, only the hopping tran-

sitions to neighboring lattice sites make a substantial contribution to F(t)
whereas the thermal fluctuations within the same minimum can be neglected.
From this, we exactly recover the overdamped Brownian motion in a tilted
periodic potential as it is discussed in numerous publications, see Ref. [22]. It
is arithmetically irrelevant whether the (slowly varying) force term appears
on its own or as an additional term of the potential, Utot =

(
U(x)− F(t)x

)
,

which is known as a tilted periodic potential, see Fig. 2.2—the equation of
motion stays the same.

The concept of a Brownian walker in a tilted periodic potential is a quite
general one with many known results. Following the connection to atomic
friction as explained above, results obtained from Brownian motion in tilted
periodic potentials can be transfered more or less directly into the framework
of nanotribology.
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2.1.2 Analytical results for velocity and diffusion coefficient

Under the influence of a constant force, i.e., a tilted potential without any pe-
riodic modulation, the velocity and diffusion coefficient of a Brownian parti-
cle are easily found:

v = F/η and D = kBT /η, (2.3)

where η and T refer to this test particle’s viscosity and temperature, respec-
tively. The latter is the well-known Einstein relation, dating back to Einstein’s
annus mirabilis 1905 [71].

A mathematically rigorous way to treat Brownian motion was introduced
by Norbert Wiener (1894–1964). In the case of an unmodulated tilted poten-
tial, the particle’s dynamics is a biased Wiener process. It is known that for
the Wiener process (and for the more general case of a modulated potential
as well) the dynamics of the particle can be derived from the moments of the
first passage time. These are the statistical averages of the times t(x → b) to
reach an arbitrary but fixed boundary b, starting from an initial point x,

Tn(x → b) := 〈tn(x → b)〉 , (2.4)

where the subscript n denotes the n-th moment. In the overdamped regime,
a well-known analytical recursion exists in closed form [72], starting with
the constant term T0(x → x′) ≡ 1, with arbitrary x′. For all moments with
positive integer n, the recursion reads:

Tn(x → b) = n
η

kBT

b∫

x

dy eV(y)/kBT
y∫

−∞

dz e−V(z)/kBT Tn−1(x → z) . (2.5)

For an arbitrary amount ∆x of the test particle’s displacement, the velocity
is given by

v = ∆x/T1(x → x + ∆x) . (2.6)

Similarly, the diffusion coefficient is related to the first and second moment
of the first passage time via

D =
∆x2

2
∆T2(x → x + ∆x)
T 3

1 (x → x + ∆x)
, (2.7)

where ∆T2(x → b) := 〈t2(x → b)〉 − 〈t(x → b)〉2 = T2(x → b)− T 2
1 (x → b)

is the so-called first passage time dispersion. These expressions may also
serve as definitions in the case of a modulated potential, provided that ∆x is
sufficiently large.

For a Brownian particle in a tilted potential with periodic modulation, the
question is not as simple. Both v and D will instantaneously as well as on
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average depend on the particle’s position x because the force acting on the
particle will vary with x as F(x) = −V ′(x). The problem becomes irrelevant
on a large length scale, where the small-scale fluctuations of the particle’s
position will be negligible in comparison to the total displacement of the
particle. Instead of the true viscosity η and temperature T in a modulated
potential, we compare the particle’s motion to a test particle without periodic
potential modulation and find an effective viscosity η′ and temperature T ′
that will generate the same effective velocity and diffusion. The question is,
how to link the simple model of a test particle in a tilted potential and the
more general case of a modulated potential?

Since the diffusion process under consideration has no memory, the first
passage times are distributed independently and thus are additive quantities,
T1(x → b) = T1(x → a) + T1(a → b) and ∆T2(x → b) = ∆T2(x → a) +
∆T2(a → b), for an arbitrary inner point a, i.e., x ≤ a ≤ b. Therefore, in
the case of a periodic potential with period L, we can subdivide ∆x into N =
b∆x/Lc full periods plus a remaining distance δx = ∆x− NL, so that

T1(x → x + ∆x) = NT1(x → x + L) + T1(x → x + δx) (2.8)

and
∆T2(x → x + ∆x) = N∆T2(x → x + L) + ∆T2(x → x + δx) . (2.9)

Clearly, in the limit of large N, the δx-dependent remainders become negligi-
bly small as compared to those summands scaling with N. Thus, the diffu-
sion coefficient in a (tilted) periodic potential is fully determined by the first
and second moment of the first passage time for a single lattice spacing L,

D =
L2

2
∆T2(x → x + L)
T 3

1 (x → x + L)
, (2.10)

as can be seen by substituting Eqs. (2.8) and (2.9) into (2.7).
After some manipulation (the details of which can be found in Refs. [73,

74]), the velocity and the diffusion coefficient of a Brownian particle in a tilted
periodic potential are given by the exact analytical expressions

v =
1− e−LF/kBT

∫ x0+L

x0

dx
L

I±(x)
(2.11)

and

D =
kBT
η

∫ x0+L

x0

dx
L

I±(x) I+(x) I−(x)
(∫ x0+L

x0

dx
L

I±(x)
)3 , (2.12)
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where the integrals

I±(x) :=
η

kBT

L∫

0

dz exp
(
±V(x)− V(x∓ z)

kBT

)
(2.13)

are introduced for convenience.
These results facilitate the calculation of the test particle’s effective veloc-

ity and diffusion coefficient from the modulated potential. But the physical
meaning of the diffusion coefficient is merely limited to the very short relax-
ation time of a model point contact within the multi-stable potential land-
scape that is enclosed by the confining spring potential of the cantilever. Af-
ter relaxation is complete, the local distribution of the tip’s position keeps its
finite width depending mainly on the spring constant and the temperature—
in case of an unmodulated potential this is known as the Ornstein–Uhlenbeck
process which we will refer to later. Since this is due to the contact sensing
the parabolic part of the total potential, the diffusion coefficient as obtained
from a tilted periodic potential has no longer any physical meaning, not to
mention that it cannot be measured at all.

There is a different dynamical quantity with a comparable statistical mean-
ing. Regarding atomic-scale stick–slip motion, the waiting times and their
moments are perfectly accessible to measuremet. From Eq. (2.10) we infer

∆T2 = 2DT 3
1 /L2 = 2DL (T1/L)3 = 2DL/v3, (2.14)

which enables us to deduce the waiting time dispersion of the tip’s dynamics
from its pulling velocity and the diffusion constant for a corresponding test
particle. For a linearly increasing pulling force, F(t) = κ

(
x(t)− vt

)
, the wait-

ing time dispersion is linked to the distribution width of the instantaneous
forces at which the transition of the tip to the neighboring minimum occurs.

While the result for the particle’s average velocity, Eq. (2.11), has been ob-
tained by Ruslan Leont’evich Stratonovitch (1930–1997) half a century ago
[73], the extension to the diffusion coefficient, Eq. (2.12), was established at
the beginning of the new millennium by Reimann et al. [74]. The most impor-
tant consequence of this extension is the precise prediction of an enormous
diffusion peak that can arise at close to critical tilt, see Fig. 2.3. The main
reason for this giant acceleration of free diffusion is a pronounced maximum
of the first passage time dispersion due to the extended flat regions of the
potential. In case of a sinusoidal potential, there is a saddle-node bifurca-
tion at the critical tilt where relative minima and maxima converge with the
inflection point so that both gradient and curvature of the potential vanish
simultaneously. Due to the “dynamical bottlenecks” that arise within each
period of the potential, the distribution of first passage times out of these flat
regions increases dramatically: particles may with nearly equal probability
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2.2 The ratchet effect

Figure 2.3: Diffusion coefficient as a function of the tilt F of a sinusoidal periodic
potential, in dimensionless units. D0 is the free diffusion coefficient kBT /η. F = 1
corresponds to the critical tilt (onset of deterministically running solution). Com-
parison of numerical simulation (dots) to analytical predictions at kBT = 0.1 (solid
line) and kBT = 0.01 (dashed-dotted line). Other lines (dashed and dotted) repre-
sent an alternative model. Taken from [75].

“slide through” without much hindrance as well as reside in place for a very
long time. For a suitably chosen set of parameter values (such as the viscos-
ity and the ratio height of potential barriers to thermal energy), the effective
diffusion may well exceed the free diffusion by more than an order of mag-
nitude. This effect is of great practical relevance, e.g., to facilitate the sorting
or mixing of different species of suspended particles in microfluidic devices.

2.2 The ratchet effect

2.2.1 Historical notes

In 1912, at a congress of the Gesellschaft Deutscher Naturforscher und Ärzte in
Münster, Marian Smoluchowski (1872–1917) proposed a Gedankenexperiment
for a molecular ratchet. At that time, several scientists questioned the valid-
ity of the second law of thermodynamics on the molecular scale. In their art-
less reasoning, some simple mechanical device could rectify the thermal fluc-
tuations of a heat reservoir and thereby produce utilizable work. A promi-
nent example of a hypothetical rectifier is known as the Maxwell demon. Of
course, such a mechanism would be tantamount to a perpetuum mobile of the
second kind and thus violate the second law as formulated by Kelvin.
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Figure 2.4: A ratchet-and-pawl device illustrating Feynman’s Gedankenexperiment.
If it worked properly, the thermal fluctuations of gas molecules at the paddle-
wheel could only move the axle in one direction whereas motion into the opposite
direction should be prohibited by the pawl. A small weight thus could be lifted
against gravity. Taken from [78].

Smoluchowski demonstrated in a series of counterintuitive examples why
such a machine cannot work properly, at least not on arbitrary time scales
[76]. Although it is possible to construct microscopical systems that, in prin-
ciple, are able to violate the second law, the mean waiting time until one will
observe a violation increases, according to Boltzmann, exponentially with
the weight of the violation which is to be measured in units of thermal en-
ergy. Large scale fluctuations in molecular systems thus emerge about once
during 1010x

years, where x À 1. Followingly, the mean waiting time may
outlast the age of our universe by many orders of magnitude. One can safely
argue that such giant fluctuations will, for all practical reasons, never occur.

Richard Phillips Feynman (1918–1988) explicitly calculated through a rat-
chet-and-pawl device [77] as depicted in Fig. 2.4. Regarding its strength,
the pawl is subject to two competing restrictions, namely, it must be weak
enough to let the axle slip into the wanted direction and, at the same time,
it must be strong enough to prevent it from slipping backward. Feynman
arrived at the conclusion that these restrictions exclude one another in any
system of molecular size. If the thermal fluctuations on the paddle-wheel and
the ratchet-and-pawl sides are comparable, then transitions between neigh-
boring teeth of the cog-wheel are equally probable despite of its asymmetry.
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However, Feynman observed that a modification of the ratchet-and-pawl
device with different heat baths on both sides opens a pathway to circum-
vent the aforementioned restrictions. If the ambient temperature of the pawl
mechanism is smaller than the ambient temperature of the paddle-wheel,
the whole device acts as a molecular heat engine and can produce utilizable
work without any difficulty and in full compliance to the second law. In
this way, the simple ratchet-and-pawl mechanism turns into a prototypical
Brownian heat engine, and the mechanism leading to unidirectional trans-
port (i.e., a broken symmetry and the departure from thermal equilibrium)
is termed the ratchet effect. Its characteristic is the existence of a non-zero
current without any external force. This means that, in a one-dimensional
dynamical system x(t), the ratchet effect is sufficiently described by

F = 0 ⇒ 〈ẋ〉 6= 0 , (2.15)

where F is the applied force and 〈ẋ(t)〉 the average velocity.
For eight decades following Smoluchowski’s talk, there have been publi-

cations from distant areas implying a ratchet effect for muscle contraction,
molecular pumps, DC-SQUIDs (super conducting quantum interference de-
vices), photovoltaic and -refractive effects, see Ref. [75] for a review. Yet the
coverage of these works was narrow and important discoveries remained un-
noticed by most colleagues. This lasted until the early 1990s, when the quest
of the ratchet effect experienced a downright boom due to its re-invention
for modeling molecular motors [79]. Soon, the scope widened to Brownian
motors in general and their embedding into statistical mechanics, entailing
theoretical as well as experimental contributions.

Today, the ratchet effect is considered as a fully approved member of the
family of noise-induced or -assisted non-equilibrium phenomena, e.g., sto-
chastic resonance, noise induced (phase) transitions, reaction rate theory, and
driven diffusive systems. A prime example of the ratchet effect that we will
re-encounter in Chapters 4 and 5 is a pulsating ratchet, the so-called on–off
ratchet. It is discussed, together with a summary of its theoretical framework,
within the following subsections.

2.2.2 A minimal ratchet model

In order to elucidate the ratchet effect, an exact model of the Smoluchowski–
Feynman ratchet is by far too intricate. Therefore, a minimalized version that
comprises all relevant aspects of the original gadget but with as few vari-
ables and parameters as possible is to be preferred because its only purpose
is purely to demonstrate the ratchet effect.

In the most simple fashion, we consider a Brownian particle in a one-
dimensional periodic potential, V(x) = V(x + kL), where k is an integer. A
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Figure 2.5: A commonly used ratchet potential, Eq. (2.16).

so-called ratchet potential with a suitably built-in asymmetry is commonly
used,

V(x) = V0

(
sin

2πx
L

+
1
4

sin
4πx
L

)
, (2.16)

see Fig. 2.5. The complete equation of motion reads

mẍ(t) = −V ′
(

x(t)
)− ηẋ(t) + ξ(t) , (2.17)

with analogous notation as in Eq. (1.7). Again, ξ(t) is an unbiased Gaussian
white noise.

In case of a microscopically small system, inertial forces are marginal as
compared to all other terms and the limit m → 0 can safely be applied, thus
yielding an overdamped equation of motion,

ηẋ(t) = −V ′
(

x(t)
)
+ ξ(t) . (2.18)

Discretization in the time–domain yields a numerically tractable scheme al-
lowing computer simulations of the stochastic dynamics. Choosing a small
time increment ∆t and replacing ẋ(t) by [x(tn+1)− x(tn)] /∆t, where tn := n∆t,
leads to

x(tn+1) = x(tn)− ∆t
η

[
V ′

(
x(tn)

)
+ ξn

]
, (2.19)

which is an explicit Euler algorithm applied to Eq. (2.18). The time discretiza-
tion of the stochastic process ξ(t) results in a set of independent random
numbers ξn that are Gaussian distributed with zero mean and where

〈ξ2
n〉 =

2ηkBT
∆t

(2.20)

determines the second moment.

38



2.2 The ratchet effect

It is instructive to look at the corresponding Fokker–Planck equation that
can be deduced from simple considerations in a heuristic way. If one is inter-
ested not so much in a certain trajectory but in an ensemble average of many
such stochastic processes based on different realizations of the noise term
ξ(t), one focuses on the probability density P(x, t) :=

〈
δ
(

x− x(t)
)〉

. Its time
evolution is governed by two fundamental contributions: drift and diffusion.

In the deterministic limit, i.e., for T → 0, the noise is constantly zero and
the time evolution of P(x, t) obeys a Liouville–Equation,

∂

∂t
P(x, t) =

∂

∂x

(
kBT
η

P(x, t)
)

. (2.21)

In case of V ′(x) = 0, only thermal fluctuations govern the time evolution of
P(x, t). This scenario is captured by the diffusion equation

∂

∂t
P(x, t) =

kBT
η

∂2

∂x2 P(x, t). (2.22)

A superposition of both contributions yields the Fokker–Planck equation

∂

∂t
P(x, t) =

[
∂

∂x

(
V ′(x)
η

+
kBT
η

∂

∂x

)]
P(x, t) (2.23)

which is also known as the Smoluchowski equation. Hence, the Fokker–
Planck operator which is enclosed in square brackets is said to comprise a
“drift term” and a “diffusion term”.

The probability current J(x, t) is defined by J(x, t) :=
〈

ẋ(t) δ
(

x − x(t)
)〉

.
Please, note that x is a coordinate, whereas x(t) is a stochastic process. By
means of a continuity equation for the probability density,

∂

∂t
P(x, t) +

∂

∂x
J(x, t) = 0 , (2.24)

the probability current J(x, t) is readily expressed by

J(x, t) = −
(

V ′(x)
η

+
kBT
η

∂

∂x

)
P(x, t). (2.25)

This is related to the average particle current 〈ẋ〉 := 〈ẋ(t)〉 via

〈ẋ〉 =
∞∫

−∞

dx J (x, t) . (2.26)

It should be mentioned that, “as far as the particle current 〈ẋ〉 is concerned,
it suffices to solve the Fokker–Planck equation with periodic boundary (and
initial) conditions” [75]. This permits to reduce open boundaries (in case of
infinitely stretched domains) to a finite, periodic boundary which are more
“nicely” implemented on a computer.
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Figure 2.6: A single trajectory (solid line) and an ensemble average (dashed line) of
the on–off ratchet system, Eq. (2.27). Parameter values were V0 = L = η = 1,
kBT = 0.1, ∆t = 0.05, and the period of f (t) is τ = 2.

2.2.3 The on–off ratchet

The on–off ratchet is a subclass of the so-called pulsating potential ratchets,
i.e., the potential is modulated by a time-periodic signal f (t) = f (t + τ) with
period τ. In case of the on–off ratchet, the time modulation is a rectangular
signal periodically switching between 1 and 0 so as to switch the potential
either “on” or “off”. Eq. (2.18) thus is modified to

ηẋ(t) = −V ′
(

x(t)
)

f (t) + ξ(t) . (2.27)

The essential meaning of this modification is the destruction of the detailed
balance symmetry in order to put the system periodically out of thermal
equilibrium. Without this built-in “disturbance”, there could not be any
ratchet effect due to Curie’s principle. The situation would be equivalent
to a Smoluchowski–Feynman ratchet with only a single heat bath.

Results from computer simulations of the Langevin equation (2.27) includ-
ing a rectangular signal f (t) with duty cycle 1/2, i.e., the potential is on for
half a period, are shown in Fig. 2.6. Both periodicities—in time (τ) and space
(L)—appear distinctly. On the one hand, slip events occur at integer mul-
tiples of τ, the period of the signal f (t). On the other hand, the trajectory
moves stepwise and noisily by integer multiples of L, the corrugation length
of the potential V(x). Both effects lead us to a qualitative explanation of the
particle dynamics and how the ratchet effect manifests itself.

Let us suppose that (a) the thermal energy is considerably smaller than the
barrier height of the potential, kBT ¿ V0, and (b) the duration of the off-
phase is substantially longer than the relaxation time of the Brownian parti-
cle toward the potential minimum, τ/2 À η/ max{V ′′(x) | x ∈ [0, L)}. Con-
sequently, the probability distribution P(x, t) from Eq. (2.23) is dominated
by the drift term. The Brownian particle unavoidably relaxes to a potential
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2.2 The ratchet effect

Figure 2.7: A minimal on–off ratchet: as soon as the potential is off, the initial δ like
distribution (black bar, bottom) undergoes diffusive motion (top). When the po-
tential is on again, one tail of the broadened distribution (gray area, top) ends up
beyond the “short leg” of the ratchet potential (dotted line), thereby generating a
net probability current. Taken from [75].

minimum so that P(x, t) becomes stationary according to a Boltzmann dis-
tribution, Pst(x) ∝ exp [−V(x)/kBT ]. Due to supposition (a), this stationary
distribution will be very narrow and can, on coarser scales, be approximated
by a δ-peak, as it is depicted in form of a solid vertical bar at position x0 in
the lower part of Fig. 2.7.

At that moment in time when the signal f (t) turns from 1 to 0, the Brown-
ian particle’s dynamics is governed by free diffusion according to Eq. (2.22).
Its time evolution is determined by a Green’s function G(x, t|x′, t′) serving as
a propagator that connects the probability density P(x, t) with itself at some
other time t′ via the integral P(x, t) =

∫
dx′ G(x, t|x′, t′) P(x′, t′). The analo-

gous stochastic process is called a Wiener process which is the standard math-
ematical idealization of Brownian motion. The exact form of the propagator
is given by a Gaussian function,

G(x, t|x′, t′) =
1√

4πηkBT (t− t′)
exp

(
− (x− x′)2

4ηkBT (t− t′)

)
. (2.28)

At the end of the f (t) = 0 phase, the resulting distribution P(x, t) is shown
in the upper part of Fig. 2.7. It broadened significantly whereas its center, as
to be expected, did not move away from x0.

Pursuant to supposition (a), the motion of the Brownian particle becomes
quasi-deterministic after f (t) changed again from 0 to 1 (potential on). Be-
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Figure 2.8: Average particle current of the on–off ratchet from Eq. (2.27) depending
on the tilt F. All parameter values are the same as in Fig. 2.6.

cause of the spatial asymmetry of the ratchet potential, only one tail of the
distribution P(x, t) significantly extends beyond the potential maximum and
thus falls into the basin of attraction of the neighboring minimum at x0 + L.
Indeed, this is the key mechanism that evokes the ratchet effect. As we have
seen, it is a purely statistical effect—there is no way to predict the next transi-
tion for the trajectory of a single Brownian particle. But the ensemble average
positively reveals a non-vanishing current without external bias.

If we introduce a constant bias F and add it to the right hand side of
Eq. (2.27), our minimal model of a Smoluchowski–Feynman ratchet turns
into a full-fledged Brownian heat engine. The force–velocity diagram shown
in Fig. 2.8 exemplifies (a) the effectiveness of the ratchet effect (〈ẋ〉 6= 0 for
F = 0) and (b) a negative mobility for small negative bias (〈ẋ〉 > 0 for F < 0).
The latter means that thermal energy from the heat bath (i.e., noise) is trans-
formed into utilizable work against an externally applied force. The Brown-
ian particle thus actually climbs “uphill”.

Early experimental demonstrations of the on–off ratchet followed imme-
diately. They all used colloidal systems where micro-beads are suspended
in a solution. The ratchet potential was more or less exactly adjusted by
means of microfabricated electrodes [80] or optical tweezers [81]. Especially
the optical tweezer experiments are well suited to provide a quantitative ver-
ification of the simple theoretical model. Today, the use of the ratchet effect
in microfluidic devices is, besides other geometrical or thermal effects (e.g.,
absolute negative mobility), considered as state-of-the-art particle separation
technique, especially with regard to lab-on-a-chip applications.
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3 INTERACTION-CONTROLLED
BROWNIAN MOTION IN
TILTED PERIODIC POTENTIALS

The laws of thermodynamics, as empirically determined,
express the approximate and probable behavior of systems

of a great number of particles, or, more precisely,
they express the laws of mechanics for such systems as they appear to beings

who have not the fineness of perception to enable them to appreciate quantities
of the order of magnitude of those which relate to single particles,

and who cannot repeat their experiments often enough
to obtain any but the most probable results.

Josiah Williard Gibbs

3.1 Introduction

Drift and diffusion of a single Brownian particle in a tilted washboard poten-
tial is a long-studied problem in non-equilibrium statistical physics. It is of
relevance in a number of diverse research areas and belongs to the rare prob-
lems which can be solved analytically. As has been stated in subsection 2.1.2,
the expression for the velocity in the overdamped limit has been obtained by
Stratonovich some fifty years ago [73], while an analytic result for the diffu-
sion coefficient was derived relatively recently [74]. A shorthand summary
of the derivation can be found in the preceding chapter.

In many physical situations one deals not with single Brownian particles,
but with arrays of a finite number of interacting particles finding themselves
in a periodic potential and acted upon by some external force. These arrays
comprise different geometries, from linear chains (e.g., the Frenkel–Kontoro-
va model) to complex three-dimensional structures that may even be com-
posed of dissimilar constituents. The problem of coupled Brownian particles
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3 Interaction-controlled Brownian motion

in a periodic structure is important in a large number of fields. Examples
include

• friction [18, 19, 67, 82–85]

• diffusion of dimers on surfaces [86–93]

• diffusion of colloidal particles [94–96]

• molecular motors [75, 97–107]

• DNA translocation through a nanopore [108]

• charge density waves [109, 110]

• arrays of Josephson junctions [111, 112]

to name but a few. Many-particle systems may exhibit some features not
found in the single-particle counterparts, such as phase transitions, sponta-
neous ratchet effects, and negative mobility [113].

In the present chapter, we study the behavior of a one-dimensional array
of a finite, typically small, number of overdamped Brownian particles in a
tilted periodic potential. Our system is closely related to the one investigated
in Ref. [93]. The difference of our model from the one considered in that work
is that, on the one hand, we restrict ourselves to the case of the overdamped
dynamics, while the authors of [93] consider a more general case of arbitrary
damping; on the other hand, in Ref. [93], the motion of a pair of interacting
particles is studied, whereas we do not impose any restriction on the number
of particles in the array.

By numerically solving the underlying equations of motion, as well as by
using asymptotic analytic results for the velocity and diffusion coefficient
at low and high coupling strength, we report and qualitatively explain new
features of the system’s dynamics. Namely, we show that both velocity and
diffusion coefficient can be maximized with respect to the coupling strength.
Furthermore, we find that these characteristics exhibit an interesting multi-
peaked dependence on the equilibrium interparticle separation.

Single point contact models (also known as single spring Prandtl–Tomlin-
son models) for atomic-scale friction can successfully explain many experi-
mental results, but by far not all of them. Especially at the microsecond time
domain of the stick–slip dynamics, regarding the so-called fine-structure of
jump events, a distinction between the rapid thermal movement of the tip
apex within a potential minimum and the relatively more inert bending mo-
tion of the cantilever is required [67, 69]. It turns out that an extension to a
two-mass–two-spring model is better suited to explain the data consistently.

The extension can easily be carried forward to chains of more than two
masses, thereby taking into account the influence of a geometrically extended
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Figure 3.1: An artist’s impression of IBM’s Millipede, an experimental data storage
device consisting of an 64× 64 array of AFM cantilevers. The tips work in paral-
lel and can “write” and “read” indentations or manipulate the magnetization of
extremely small domains by electric currents. Taken from [114].

contact region. Because very sharp tips still have an apex radius of ca. 100 nm,
so many elementary bounds actually do participate in the formation of the
tip–sample contact that it is very unlikely not to find evidence for a many-
particle interaction, tiny as its overall contribution may be.

A prominent example is the vanishing friction usually termed superlubric-
ity, where in fact the many-particle contribution is the decisive one. As Müser
pointed out [34], a high degree of non-local correlation is a necessary prereq-
uisite for this extraordinary phenomenon. The experimental access to it has
been greatly simplified by Dienwiebel et al. [31] and Dietzel et al. [33], and we
may think of a linear chain of coupled masses in terms of a one-dimensional
projection of their sliding graphite flake or antimony island. We assume this
projection to be justified because of the sufficiently robust degree of orienta-
tion the nano-sliders maintain during the AFM experiments.

Finally, the necessity of a many-particle approximation becomes self-evi-
dent if one deals with a multi-asperity tip instead of the usual single-asperity
tip or, more drastically, with an array of many AFM tips. The IBM Millipede
project currently aims at utilizing microfabricated arrays of cantilevers as a
novel storage device that mechanically punch indentations or read them out
in parallel similar to the punch cards of early computers, see Fig. 3.1. The
mutual influence of the atomic-scale stick–slip motion of each individual tip
and the microscopically smooth movement of the whole array is one of the
aspects that can ideally be studied with such a multi-asperity device.

In this context, the following considerations of coupled Brownian particles
in tilted periodic potentials were performed to understand better how inter-
particle cooperation can alter the sliding dynamics with special regard to the
velocity (or rather mobility) of the chain.
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3.2 Model

We consider an array of N interacting overdamped Brownian particles in a
one-dimensional, periodic potential,

U(x) = U(x + L) , (3.1)

tilted by a homogeneous, static force F. The equation of motion for the coor-
dinate xi of the ith particle is

ηẋi(t) = −U ′(xi(t)
)
+ F − ∂V

(
x1(t), . . . , xN(t)

)

∂xi
+

√
2ηkBT ξi(t) . (3.2)

Here, η is the friction coefficient and thermal fluctuations of energy kBT are
modeled as usual by Gaussian noises ξi(t) with

〈ξi(t)〉 = 0 , 〈ξi(t) ξ j(s)〉 = δi j δ(t− s) . (3.3)

The meaning of the coordinates xi depends on the concrete problem at hand.
For instance, in the studies [18,19,67,75,82–108] of molecular motors, sliding
friction, diffusion of dimers and colloids, and DNA translocation, they repre-
sent the physical coordinates of the respective components, such as heads of
the molecular motors, surface atoms, colloidal particles, DNA segments, etc.
In the models of pinned charge density waves [109, 110], they represent the
local phases thereof. Finally, in the arrays of Josephson junctions [111, 112],
they stand for the phase differences of the superconducting order parameter
between both sides of the barrier.

The interaction potential V(x1, . . . , xN) in (3.2) is assumed to be confining
and translation invariant,

V(x1, . . . , xN) = V(x1 + b, . . . , xN + b) , (3.4)
V(x1, . . . , xN) → ∞ if |xi − x j| → ∞ (3.5)

for all real b and all indices i 6= j. We furthermore assume that V has a
single minimum, such that in the absence of all other forces, the particles are
regularly spaced with period a at the positions

xmin
i = ia + x− N + 1

2
a , (3.6)

relatively to their common center of mass

x :=
1
N

N

∑
i=1

xi . (3.7)
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An example is provided by the all-to-all harmonic coupling

V({xi}) =
κ

2

N

∑
i=1

(
xi − xmin

i

)2
, (3.8)

where xmin
i is related to the center of mass via Eq. (3.6). Physically, this in-

teraction may thus be viewed e.g. as emerging due to a rigid (but massless)
“backbone”, to which the “particles” xi are attached via springs at regular
distances a. Such systems quite naturally arise e.g. in the context of molecu-
lar motors [75, 97, 99, 106] and atomic friction [18, 19, 67, 83–85].

Our goal is to find the average velocity and diffusion coefficient of the
center of mass (3.7) of the N-particle system (3.2),

v := lim
t→∞

〈x(t)〉
t

, D := lim
t→∞

〈x2(t)〉 − 〈x(t)〉2
2t

, (3.9)

and, in particular, their dependence upon the most important system param-
eters.

Unlike the majority of previous related works, we assume free rather than
periodic boundary conditions and, most importantly, our main focus will not
be on the large-N limit but rather on quite small particle numbers.

Due to the internal degrees of freedom of the many-particle system (3.2),
this problem is considerably more complex than the single-particle counter-
part. Therefore, an analytical treatment will be possible only in the situations
when the many-particle problem can be approximately reduced to a single-
particle one, namely for asymptotically weak and strong coupling. These an-
alytical results will be derived in the next section. In Sect. IV, we will present
the results of our numerical simulations of Eq. (3.2), as well as of the analytic
approximations, to demonstrate and discuss some interesting peculiarities of
the diffusion of the many-particle system.

3.3 Analytical Results

For a single, overdamped Brownian particle in a tilted periodic potential
(N = 1 in Eqs. (3.2)-(3.7)) the mean velocity from (3.9) is given by the ex-
act analytical formula [73, 75]:

v1({un}, T ) =
1− e−FL/kBT

∫ x0+L

x0

dx
L

I±(x)
, (3.10)

for any choice of the reference point x0 and of the indices ± in

I±(x) :=
kBT
η

L∫

0

dz exp
(
±U(x)−U(x∓ z)− F(x− z)

kBT

)
. (3.11)
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The subscript 1 in Eq. (3.10) indicates that the result applies to a single par-
ticle and, for later convenience, we have explicitly indicated its dependence
on temperature T and the Fourier components un of the periodic potential:

U(x) =
∞

∑
n=−∞

uneinqx , u−n = u∗n , q :=
2π
L

. (3.12)

Likewise, the single-particle diffusion coefficient from Eq. (3.9) is given by
the exact analytical formula [75]

D1({un}, T ) =
kBT
η

∫ x0+L

x0

dx
L

I±(x) I+(x) I−(x)
(∫ x0+L

x0

dx
L

I±(x)
)3 . (3.13)

3.3.1 Weak-coupling limit

In the absence of the interaction potential W in (3.2), the N individual par-
ticles are statistically independent of each other and thus the correlation is
separable, 〈xi(t)x j(t)〉 = 〈xi(t)〉〈x j(t)〉, for all i 6= j and all times t. Exploit-
ing this fact after introducing Eq. (3.7) into (3.9) readily yields the following
result for the velocity and diffusion coefficient of the center of mass:

v = v1({un}, T ) , D =
D1({un}, T )

N
. (3.14)

Turning to asymptotically weak but finite interactions, it is intuitively quite
plausible that the concomitant modifications of velocity and diffusion of the
center of mass will also be asymptotically small. Formally, this means that
the limits of vanishing interaction in (3.2) and of large times in (3.9) commute.
In other words, we expect the results (3.14) to remain approximately valid
for sufficiently weak interaction potentials V . While we have no rigorous
proof of this conjecture, it is in full agreement with our extensive numerical
explorations.

3.3.2 Strong-coupling limit

For asymptotically strong coupling, the individual particles maintain fixed
positions with respects to their common center of mass, namely xmin

i from
Eq. (3.6). Hence we expect that the center of mass behaves like one single,
“big” Brownian particle with some appropriately renormalized potential and
thermal noise.

To work out this program, it is convenient to change to the shifted particle
coordinates

x̃i := xi − ia (3.15)
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and their corresponding center of mass

x̃ :=
1
N

N

∑
i=1

x̃i = x− N + 1
2

a , (3.16)

where the last equality follows from (3.7) and (3.15). In the new coordinates,
the equations of motion (3.2) assume the form

η ˙̃xi(t) = −U ′(x̃i(t) + ia
)
+ F − ∂V

({x̃ j(t) + ja})

∂x̃i
+

√
2ηkBT ξi(t) . (3.17)

Next, we sum over all i and divide by N, yielding η ˙̃x on the left-hand side. On
the right-hand side, the sum over the interaction terms vanishes, as follows
by differentiating (3.4) with respect to b. The last arithmetic average of the
N independent, delta-correlated Gaussian noises ξi(t) results in N−1/2 times
a single, delta-correlated Gaussian noise ξ(t). Specifically for asymptotically
strong coupling it follows from xi = xmin

i (see above) together with (3.6),
(3.15), and (3.16) that x̃i = x̃. All in all, we thus find in the strong coupling
limit that

η ˙̃x(t) = −Ũ
(

x̃(t)
)
+ F +

√
2ηkBT

N
ξ(t) , (3.18)

with an effective potential

Ũ(x) :=
1
N

N

∑
i=1

U(x + ia) (3.19)

whose Fourier components are related to those of the bare potential in (3.12)
via

Ũ(x) =
∞

∑
n=−∞

ũn einqx , (3.20)

ũn = un
einqa

N
1− eiqnNa

1− einqa . (3.21)

In view of (3.16) one readily sees that the resulting drift and diffusion for x̃
will be the same as those for x from (3.9). Since (3.18) represents an effective
single-particle dynamics for x̃, we can employ (3.10) and (3.13) to infer for
the velocity and the diffusion coefficient in the strong-coupling limit:

v = v1

(
{ũn},

kBT
N

)
, D = D1

(
{ũn},

kBT
N

)
. (3.22)

These expressions become exact for rigidly coupled particles. For large but
finite coupling strengths, one can approximately account for the resulting
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small but fast fluctuations of the individual particle positions around their
accompanying “strong coupling equilibria” by integrating over those fluctu-
ations [87]. We do not present the respective formulae, as we have found that
all interesting effects are already captured by our leading order expressions
(3.22).

3.3.3 Symmetries

Focusing on the specific interaction potential from (3.8), the equations of mo-
tion (3.17) for the shifted particle coordinates (3.15) can be rewritten (for ar-
bitrary κ) in the form

η ˙̃xi = −U ′(x̃i + ia) + F − κ (x̃i − x̃) +
√

2ηkBT ξi(t) . (3.23)

It follows that velocity and diffusion coefficient remain unchanged if the
equilibrium interparticle distance, a, is increased by an integer multiple of
the lattice constant L of the potential: v(a + kL) = v(a), D(a + kL) = D(a).
Furthermore, changing a to −a is equivalent to renumbering the particles in
the reverse order, again leaving the physical properties, such as v and D, un-
changed. This implies the following symmetry property of the quantities of
interest:

v(kL± a) = v(a) , D(kL± a) = D(a) (3.24)

for any integer k.
We remark that the symmetry property (3.24) is valid for interactions (3.23)

of arbitrary strength κ. Moreover, the periodic potential U(x) may be arbi-
trary, and, in particular, does not need to be spatially symmetric.

3.4 Numerical results

To evaluate the velocity and the diffusion coefficient from numerical sim-
ulation of Eq. (3.2), direct application of the definition (3.9) is somewhat
inconvenient. This is so because, in general, the numerical effort to reach
good convergence is quite high and, in particular, the time necessary for con-
vergence of the quantities 〈x(t)〉/t and

(〈x2(t)〉 − 〈x(t)〉2) /2t is different for
differently chosen parameter values. Therefore, we have employed an alter-
native numerical procedure based on the relations from [75] between v and
D and the first two moments of the time necessary for the center of mass to
cover the distance kL, where k is an integer:

v =
kL

〈t (x0 → x0 + kL)〉
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and

D =
(kL)2

2
〈t2 (x0 → x0 + kL)〉 − 〈t (x0 → x0 + kL)〉2

〈t (x0 → x0 + kL)〉3 . (3.25)

These relations are strictly valid if the transitions by the distance kL are statis-
tically independent events [75]; in other words, information about the state
of the system before the transition is lost after the transition. This is the case
for one-particle systems for any value of k; hence, for a single particle, one
can take its smallest value, k = 1. For the system consisting of several Brow-
nian particles, this is not the case, because the system has “memory” in the
form of the internal degrees of freedom, making the consecutive transitions
not statistically independent. Therefore, additional care should be taken to
make sure that this is a negligible effect. Numerical application of the for-
mula above yielded identical (within statistical error) results for v and D for
k = 1 and k = 2 for all parameter values tested. This means that such mem-
ory effects are indeed negligible, and one can apply the relation above, taking
k = 1. For each data point, the results were based on at least 1 000 transitions
by L.

For simplicity, we focus on the specific potential

U(x) =
∆U
2

cos
2πx
L

(3.26)

with fixed corrugation depth ∆U = 10kBT and unit periodicity, L = 1. In
terms of the Fourier expansion from (3.12), the only non-zero Fourier com-
ponents are thus u1 = u−1 = ∆U/4. Both the thermal energy kBT and the
friction coefficient η are also set to unity. Furthermore, we use the all-to-all
harmonic coupling from (3.23).

3.4.1 Dependence on the tilt

Fig. 3.2 shows the dependence of velocity and diffusion coefficient on the bias
for the asymptotic cases considered in Sect. 3.3, see Eqs. (3.14) and (3.22), and
for the intermediate cases κ = 100 and κ = 200. Depicted are results for the
dimer (N = 2), while other values of N (not shown) produced similar curves.

For all values of the coupling constant, two regimes can be distinguished.
At high value of the bias F, the spatial modulation of the potential is neg-
ligible. In this regime, the velocity asymptotically approaches F/η and the
diffusion coefficient converges towards kBT / (ηN). In the opposite regime
of small bias F, the dynamics is governed by thermally activated transitions
between local potential wells, leading for both the velocity and the diffusion
to very small values with an approximately Arrhenius-type, exponential in-
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Figure 3.2: Velocity and diffusion coefficient (3.9) vs. tilt F for a dimer (N = 2), sat-
isfying (3.2) with (3.8), (3.26), η = kBT = L = 1, ∆U = 10, vanishing equilibrium
interparticle separation (a = 0), and different values of the coupling constant κ.
According to (3.27), the critical tilt is Fcrit = 31.4 . . .. Dashed lines: Analytical
results (3.14) for asymptotically small κ. Solid lines: Analytical results (3.22) for
asymptotically large κ. Filled and empty circles: Numerical results for κ = 100
and κ = 200, respectively. The numerical uncertainty is quantified by the small
erratic deviations from a smooth behavior. For still smaller and larger κ-values
(not shown), the numerically obtained results approach the respective analytical
asymptotics.
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crease with F. These two regimes are separated by the critical bias

Fcrit =
π∆U

L
, (3.27)

at which the barriers of the tilted periodic potential just disappear, degener-
ating into flat regions.

At F ≈ Fcrit, the diffusion coefficient exhibits a maximum. This maximum
can be understood as follows. Instead of a single system, let us consider an
ensemble of many non-interacting replicas of the system. If the tilt exceeds
the value Fcrit, all members of the ensemble are sliding down with approxi-
mately the same velocity around F/η. On the other hand, for F-values much
smaller than Fcrit, most of the members are trapped in the potential minima,
with only a small fraction performing a thermally activated interwell jump
at each moment of time. But in the critically tilted case, a notable part of the
replicas will remain in the flat regions of the potential and have zero velocity
(up to small thermal fluctuations) while the others will perform a downhill
motion with a large velocity. This means that the spreading of the ensemble
will proceed faster than in the overcritically tilted regime, when all the repli-
cas are in the running state, and also faster than in the subcritical case, when
the interwell transitions are rare events.

Conversely, if one considers velocity and diffusion coefficient as functions
of the barrier height ∆U (or, equivalently, the value of Fcrit) at a fixed non-
zero F-value, then the former will be a decreasing function of the potential
amplitude with a maximum vmax = F/η at ∆U = 0, and the latter will exhibit
a non-monotonic behavior. Namely, the diffusion coefficient will grow with
∆U until the corresponding critical force Fcrit from Eq. (3.27) will reach the
value of the tilt F, and then start to decrease upon further increase of the
potential amplitude in the regime of subcritical tilt.

3.4.2 Dependence on the coupling strength

So far our discussion has been mainly focused on the situation when the
many-particle array could be described as an effective one-particle system
with properly renormalized potential and temperature. Yet, finite-coupling
strengths are expected to lead to additional interesting effects which are cap-
tured neither by the weak- (3.14) nor strong-coupling (3.22) asymptotics.

To study these effects, we now turn to the dependence of the velocity and
diffusion coefficient on the coupling strength. Fig. 3.3 illustrates the results of
numerical simulation of Eq. (3.2). As before, we focus on the case of a dimer,
N = 2, since the results for more particles were qualitatively the same.

Fig. 3.3 shows the velocity and diffusion coefficient for a dimer in the po-
tential with the same parameters as before, tilted with the force F = 22 ≈
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Figure 3.3: Velocity and diffusion coefficient vs. coupling constant κ for the same
system as in Fig. 3.2 with a fixed tilt F = 22 and a dimer rest length of a = 0
(filled circles) and a = L/2 (empty circles). Horizontal lines correspond to the
analytical results for asymptotically small and large κ from (3.14) and (3.22), re-
spectively. The inset in (a) shows the velocity for a = 0 together with the results
of the analytic approximation (3.29).
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Figure 3.4: Model of dimer motion in a tilted periodic potential.

0.7Fcrit. The two sets of curves correspond to the dimer rest length a = 0
(filled circles) and a = L/2 (open circles).

For small coupling constant κ, the diffusion properties of the dimer practi-
cally do not depend on the rest length and are given by Eq. (3.14). At large
κ, on the other hand, the system behaves as a single Brownian particle in
the effective potential (3.19), whose modulation depth equals 0 for a = L/2.
Therefore, the velocity of the dimer with the rest length a = L/2 increases
monotonically from the single-particle value given by Eq. (3.14) to the value
F/η. On the other hand, for a = 0, the amplitude of the effective potential is
the same as in the non-interacting case, i.e. ∆U, but the effective temperature
in (3.18) is twice as small. Therefore, the probability of the interwell transi-
tions become exponentially suppressed due to the Arrhenius factor, and the
velocity drops from the same initial value to a smaller value.

Interestingly, in between the two extremes, the velocity of the dimer of
zero rest length as a function of the coupling strength develops a maximum
at some intermediate κ-value comparable to the second derivative of the host
potential at a minimum, see the inset in Fig. 3.3(a). This behavior is reminis-
cent to the results reported in Ref. [100], although the underlying physical
mechanism is quite different. The nature of this non-monotonicity is the cor-
related character of the jumps of the two dimer components between the
minima of the tilted periodic potential. We propose that the following sim-
plified picture captures the main qualitative features of the effect.

The motion essentially proceeds in steps as shown in Fig. 3.4. For a small

55



3 Interaction-controlled Brownian motion

but finite κ, the “downhill” transition of the dimer consists of two stages. In
the first stage, the system finds itself in the “ground state”, where both com-
ponents are found within one of the minima, x0, of the tilted periodic poten-
tial U(x) − Fx. At some point, one of the particles, the “leader”, performs
a thermally activated transition into the next minimum, while the second
particle, the “follower”, remains in the previous potential well. The charac-
teristic time for this process can be estimated as the mean first passage time
τ (xi → x f ; z) for one particle to go from the initial position xi to the final po-
sition x f > xi, provided that the other particle is at a fixed position z:

τ (xi → x f ; z) =
η

kBT

x f∫

xi

dx exp

(
U(x)− Fx + κ

2 (x− z)2

kBT

)

×
x∫

−∞

dy exp

(
−U(y)− Fy + κ

2 (y− z)2

kBT

)
. (3.28)

The average time of entrance from the “ground state” to the “first excited
state” in Fig. 3.4 is approximately τ (x0 → x0 + L; x0). Similarly, the transition
of the “follower” into the next potential well takes approximately a duration
τ (x0 → x0 + L; x0 + L). The resulting velocity is approximately the inverse
average time to cover one spatial period L:

v =
2L

τ (x0 → x0 + L; x0) + τ (x0 → x0 + L; x0 + L)
, (3.29)

where the factor 2 in the numerator accounts for the fact that any of the two
particles can assume the role of the leader.

The formula (3.29) is rather crude, as it does not capture many important
features. In particular, it assumes that one of the particles remains stationary
during the second particle’s transition into the next minimum. Furthermore,
it approximates the true positions of the particles in different potential wells
with the respective minima of the tilted periodic potential. Finally, this ap-
proach neglects the possibility of multiple transitions performed by either
particle.

Despite all these approximations, Eq. (3.29) still reproduces qualitatively
correctly the behavior of velocity with the coupling constant, in particular,
the fact that v is maximized at some κ-value, see Fig. 3.3. Accordingly, we can
understand this maximum as resulting from the competition between two
effects: on the one hand, the presence of the follower hinders the transition
of the leader into the next potential well, increasing τ (x0 → x0 + L; x0); on
the other hand, once the leader makes such a transition into the next well, it
is easier for the follower to get there, thus reducing the second contribution
to the total time, τ (x0 → x0 + L; x0 + L).
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It is interesting to observe that the diffusion coefficient is also maximized
at the coupling strength of the order of the second derivative of the tilted pe-
riodic potential at a minimum. Similar to the diffusion enhancement with re-
spect to the tilt (see Sect. 3.4.1), the diffusion maximum marks the boundary
between the two modes of the dimer motion characterized by substantially
different velocities – the uncorrelated jumps realized at weak coupling and
completely correlated motion at large κ. At the intermediate coupling con-
stants, both modes can be realized, meaning that in a large ensemble of the
non-interacting system replicas, there will be a large spreading of velocities,
resulting in the enhanced diffusion coefficient.

3.4.3 Dependence on the interparticle separation

If the strength of coupling between the constituents is weak, the effect of the
equilibrium interparticle separation, a, on the diffusion properties is insignif-
icant, cf. Sect. 3.4.1 and Fig. 3.5. Therefore, we will only consider the case of
rigid coupling; for finite but still strong coupling between the particles, we
numerically verified (not shown) that the main qualitative features discussed
below are preserved.

In view of the symmetry property (3.24), we will focus on a ∈ [0, L]. Due
to the invariance under a 7→ L− a it is in principle even sufficient to consider
a ∈ [0, L/2], but for the sake of better visualization of the essential features,
the full range a ∈ [0, L] will be plotted and discussed.

Fig. 3.5 shows the velocity (a) and the diffusion coefficient (b) for a system
of N = 5 rigidly coupled Brownian particles as a function of a for several
different tilt values. It is clear from Fig. 3.5(a) that the velocity as a function
of a has four peaks, and these peaks become less and less pronounced as the
tilt F is increased. With respect to the diffusion coefficient, it exhibits a more
complicated multipeaked structure, Fig. 3.5(b): not only the positions and
heights of the diffusion peaks, but also their number depend on the value of
the applied tilt.

To understand this behavior, it is instructive to consider how the critical
force corresponding to the effective periodic potential (3.20) depends on the
interparticle separation a. It follows from Eqs. (3.20), (3.21) and (3.27) that
the effective critical force is proportional to the amplitude |ũ1| of the effective
potential:

F̃crit =
4π
L
|ũ1| = π∆U

NL

∣∣∣∣
sin πNa/L
sin πa/L

∣∣∣∣ . (3.30)

This dependence is shown in Fig. 3.5(c). The amplitude of the effective po-
tential vanishes at N − 1 values of a = kL/N, k = 1, 2, . . . , N − 1. Since the
velocity of the system decreases with F̃crit ∝ |ũ1| and attains the largest value
vmax = F/η when |ũ1| = 0, to each zero of F̃crit there corresponds a velocity
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Figure 3.5: (a) Mobility, v/F, and (b) diffusion coefficient D from (3.22) for a system
of N = 5 rigidly coupled Brownian particles vs. equilibrium interparticle separa-
tion a at different values of the tilt F. Solid red line: F = 4; dashed green line:
F = 7; dotted blue line: F = 10; dash-dotted cyan line: F = 35. In (b), the solid
black curve corresponds to the diffusion coefficient at zero tilt, F = 0. All other
parameter values are the same as in Fig. 3.2. (c): The critical force (3.30) corre-
sponding to the effective potential (3.19). The four horizontal lines correspond to
the above specified four values of the applied bias F.
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maximum, and at each maximum of F̃crit the velocity is minimized. For a
system consisting of N particles, we therefore expect N − 1 velocity maxima
located at a = kL/N, k = 1, . . . , N − 1.

For convenience of further discussion, we divide the whole domain of a ∈
[0, L] into N equal regions of size L/N, with the kth region being defined as
[(k − 1)L/N, kL/N], k = 1, . . . , N. For the special case N = 5, these regions
are marked with numbers in Fig. 3.5(b). In each such region, the dependence
of F̃crit on a has a single maximum. This maximum is located approximately
in the “middle” of the regions with numbers 2, . . . , N − 1, while in the first
and the last region, the maxima coincide with the region boundaries, see
Fig. 3.5(c). The heights of the F̃crit-maxima in different regions, in general,
are different.

At zero tilt value, F = 0, the diffusion coefficient is maximized at exactly
the same N − 1 values of the interparticle separation as the velocity, i.e. at
a/L = 1/N, . . . , (N − 1)/N, where D = kBT / (ηN). For other values of a, the
untilted periodic potential possesses barriers hindering the diffusive motion
of the system. The dependence of D on a at zero tilt is shown in Fig. 3.5(b) as
a solid black line.

For a small but finite value of the applied bias F > 0, each of these max-
ima splits into two peaks. To understand this behavior, we note that for a
small but finite bias, depending on the value of a, the system can be tilted
either overcritically, or subcritically. The former situation is realized at those
values of the interparticle separation a, for which F̃crit(a) < F, and the latter
for F̃crit(a) > F. At each value of a where the effective critical force approxi-
mately equals the applied bias,

F̃crit(a) = F , (3.31)

the system finds itself in a critically tilted potential, where the diffusion co-
efficient is maximized, see the discussion in the end of Sect. 3.4.1. It is im-
possible to find the solution of Eq. (3.31) analytically for an arbitrary N, but
graphically, the solution corresponds to the intersection of the curve F̃crit(a)
with the straight line at the level of the tilt F, see Fig. 3.5(c).

At small tilt values, we have 2(N− 1) solutions of the equation (3.31) in the
domain 0 ≤ a ≤ L, with 2 solutions in the N − 2 middle regions, and 1 solu-
tion in each of the end regions with numbers 1 and N. Correspondingly, we
have 2(N− 1) maxima of the diffusion coefficient. In our numerical example,
this situation is realized at F = 4 (solid red line) in Fig. 3.5(b).

The N maxima of F̃crit vs. a in Fig. 3.5(c) are not of the same height: the one
in the region 3 is somewhat smaller than those in regions 2 and 4, and the
maxima in the end regions 1 and 5 are the largest. This means that for a tilt
value slightly exceeding the maximal F̃crit in region 3, but smaller than the
maximal critical tilt in all other regions, the system is supercritically tilted in
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the third region at all values of a, whereas in other regions, it can be tilted
either super- or subcritically, depending on a. Correspondingly, the two dif-
fusion maxima in region 3 merge into a single one located at that value of
a, at which F̃crit is the largest. In regions 2 and 4, the diffusion coefficient
still has two maxima, approximately corresponding to the two solutions of
Eq. (3.31) in those regions. This situation is realized at F = 7 (dashed green
line) in Fig. 3.5(b).

Upon further increase of the applied force F we enter the regime, in which
the system is overcritically tilted everywhere but in the end regions. Then,
in the middle regions 2, . . . , N − 1, we have a single diffusion peak, whose
height gets smaller and smaller upon increasing the tilt. This situation is
realized at F = 10 and shown as a blue dotted line in Fig. 3.5(b). Only in the
end regions 1 and N does Eq. (3.31) have a solution at a non-zero value of a,
resulting in a diffusion maximum around that value.

Finally, at very large bias, Eq. (3.31) does not have a solution in any a-
region and remains overcritically tilted for all values of a. The diffusion co-
efficient in this case has N rather small maxima, corresponding to N maxima
of F̃crit in each region (see Fig. 3.5(b), dash-dotted cyan line corresponding to
F = 35). These maxima become less and less pronounced as F increases.

For N > 5 one recovers analogous scenarios with essentially the same main
features, while for N < 5 some important features are missing.

3.5 Concluding remarks

We have investigated the behavior of N coupled, overdamped Brownian par-
ticles in a tilted periodic potential both analytically and numerically. Analytic
results for the center of mass velocity and diffusion coefficient have been ob-
tained in the asymptotic limits of weak and strong coupling by way of reduc-
ing the many-particle problem to an effective single-particle dynamics with
renormalized temperature and periodic potential.

The dependence of the transport properties of the many-particle system
on the tilt does not differ qualitatively from the single-particle case. At the
same time, when viewed as functions of the coupling parameters, the ve-
locity and diffusion coefficient exhibit several interesting peculiarities. Due
to the enhanced synchronization of the interwell transitions of the individ-
ual particles, both velocity and diffusion coefficient can be maximized with
respect to the coupling strength.

Furthermore, for sufficiently large coupling strengths, the velocity as a
function of the equilibrium interparticle separation of an N-particle system
exhibits N − 1 maxima, while the number of maxima of the diffusion coeffi-
cient, as well as their positions and heights depend on the applied tilt. More
precisely, there are N − 1 diffusion maxima for zero tilt, while for small but
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finite tilt value, each of these maxima splits into two, resulting in 2(N − 1)
diffusion peaks. Further increase of tilt leads to sequential merging of the
N − 2 adjacent peak pairs, so that for sufficiently large bias, the number of
diffusion peaks is N.

The relation to friction
The most obvious conclusion with regard to atomic-scale friction experi-
ments can be found from the results in Fig. 3.3(a). Namely, the large spread in
the chain mobility depending on the rest length of the dimer. For a strongly
coupled chain, a rest length that is commensurate to the period of the surface
potential causes a low mobility, whereas incommensurability (e.g., a = L/2)
boosts the mobility of the chain due to interparticle cooperation. The exten-
sion to a chain consisting of five atoms leads to the same qualitative result,
see Fig. 3.5(a). The mobility is peaked for a dimer length a equal to integer
multiples of L/5 except when a/L is an integer (commensurate).

This kind of cooperative behavior is the salient feature of any many-par-
ticle model because it provides one or more additional internal degrees of
freedom that do not exist in the single-particle dynamics. Internal degrees of
freedom can act very differently. On the one hand, they can act as an energy
storage that enhances the overall performance of the chain (mobility) by re-
distributing large amounts of the potential energy that otherwise would be
dissipated. On the other hand, they can open secondary paths of dissipation
or increase the impact of the primary paths of dissipation as one can see in
the case of commensurate a and L. The fundamental influence internal de-
grees of freedom have on the dynamics of the smallest many-particle system,
a dimer, will be examined in greater detail in the following two chapters.

With regard to experimental results concerning the superlubricity of a na-
noparticle on a crystalline surface, the orientational dependence is a well
known fact [31]. The disappearance of a measurable amount of friction can
be controlled by the relative angle between crystal lattice and graphite probe,
resulting in different degrees of (in-)commensurability. A new feature that,
as far as we know, has not yet been taken into consideration is the wait-
ing time dispersion of the many-particle stick–slip movement of such a nano
slider. Today, recording the average (“center of mass”) position of the sliding
probe with sub-micro second precision is no difficulty at all. Therefore, a sta-
tistical analysis of the torsional deflection should at least qualitatively reveal
a similar peaked structure of the waiting time dispersion as for the diffusion
in Fig. 3.5(b), depending on the ratio a/Leff(φ). Here, Leff(φ) is the effective
distance between potential minima of the substrate as experienced by a probe
pulled along a one-dimensional path with an angle φ to a principal axis.

In principle, the waiting time dispersion can be extracted from the auto-
correlation function of the cantilever’s torsional motion. May x(t) be the
trajectory, v the average pulling velocity and Leff(φ) the effective lattice spac-
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ing under the angle φ. Then, the auto-correlation function is given by c(τ) =
〈x(t)x(t + τ)〉. The signature of the jump events should show up as a peak at

τ0 ≈ Leff(φ)/v . (3.32)

The waiting time dispersion ∆T2, being related to the diffusion coefficient of
free Brownian motion in tilted periodic potentials via Eq. (2.14), translates
directly into ∆τ2, the width of the peak around τ0. A close inspection of the
dependence of ∆τ2 on the angle φ via the effective lattice constant Leff(φ) thus
may indicate whether the orientational variation of measured atomic friction
is due to the kind of interaction-controlled Brownian motion as described in
this chapter.
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4 RATCHET EFFECT OF A DIMER I
THE CASE OF ASYMMETRIC
SURFACE BINDING

Nessuno effetto è in natura senza ragione;
intendi la ragione e non ti bisogna sperienza.

Leonardo da Vinci

4.1 Introduction

Theoretical studies of coupled Brownian particles in periodic structures is of
great importance in many research areas, such as friction [18, 19, 67, 82–85],
molecular motors [97], adsorbed atoms [88, 115], polymers [116], ferrofluids
[117], colloids [94], to name but a few. It is known that in the absence of
thermodynamic equilibrium and under broken inversion symmetry of the
periodic structure, such systems are able to exhibit the so-called ratchet effect
(see section 2.2 and [75] for a review), that is, spontaneous transport in the
absence of any external bias.

Within this and the following chapter, we study the system where the pe-
riodic potential does possess inversion symmetry. Our interest to this prob-
lem is motivated by the fact that this is the case in many experimental sit-
uations, such as diffusion of a dimer on the surface. A further motivation
is that, based on the experimental studies [118], it has been suggested that
the mechanism responsible for the symmetry breaking in molecular motors
may be related to their own internal structure rather than their environment.
That is, one can achieve symmetry breaking by making use of the internal
degree of freedom (DOF) by either periodically modulating the interaction
parameters of the Brownian particles [119], or by applying different forcings
to different components of the dimer [120].
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We note that the ratchet effect is possible in a symmetric structure also
when there is no internal DOF, but the heights of different potential barriers
are modulated individually at different frequencies [121]. However, exper-
imentally, such a symmetry breaking due to individual modulation of the
energy barriers or dimer components may be more difficult to realize than to
globally modulate the potential properties for all components.

In this chapter, we introduce a simple model, where the transport occurs
in a system of interacting Brownian particles. In contrast to the previous
studies of coupled Brownian motors [100–103, 105, 122, 123], we consider the
case where the flashing potential has inversion symmetry at all times. The
essential feature of our model is that different components of the system feel
the potentials of the same shape but different amplitudes. Experimentally,
this can be realized, e.g., in the system of two dissimilar atoms, such as Si
and Ge, adsorbed on the surface [115].

In what follows, we introduce the model and find an accurate analytic ap-
proximation for the velocity and diffusion coefficient. We show that at the
origin of the ratchet effect is the internal DOF in such a dimer. Furthermore,
we show that the velocity of the system is maximal at an optimal coupling
strength, and that, similar to the phenomena of stochastic resonance [124]
and resonant activation [125], it can be maximized also with respect to the
noise intensity and frequency.

The generalization to atomic-scale friction experiments in the way pro-
posed in the preceding chapter is quite obvious: instead of chains consisting
of identical atoms consider a copolymer structure of two or more different
constituents. In case of different constituents, the most important difference
to a monomer is, of course, the impact the interaction of the different species
exerts on the chain dynamics because this impact simply does not exist for
a monomer. For exactly two constituents, choosing the dimer as a minimal
model for a copolymer ensues by focusing on the “unit cell” of such a chain,
namely a pair of different atoms. This enormous simplification will lead to
qualitatively correct expectations as long as, after properly rescaling the sys-
tem size, merely small corrections must be added to the results for the bare
dimer when the actual chain length is accounted for.

Fortunately, the two most customary approximations, the strong and the
weak coupling limit, promote precisely this simplification. In the strong cou-
pling limit, the chain can be approximated by a single particle with higher
order corrections due to the interaction of different constituents. In the weak
coupling limit, the “unit cells” of the chain can be approximated by inde-
pendent dimers with higher order corrections due to the extended length of
the whole chain. In both cases, the dimer model is positively expected to be
“well-behaved” and can safely be applied.

Also, this should hold for an array of AFM tips like the IBM Millipede
mentioned in the previous chapter. If the tips were designed in two subunits
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Figure 4.1: Schematic representation of the dimer model. The dimer constituents are
labeled with coordinates x1 and x2, the corrugation length of the surface potential
is denoted by L. Different sizes symbolize the unequal coupling to the surface.

that own a different coupling strength to the surface, the effect would be the
same: the internal structure could be absorbed into the dimer’s internal DOF.

The insufficient performance in the low coupling constant regime that will
show up in the end of this chapter must not be misunderstood as a contra-
diction to the general applicability of the dimer model. As will be pointed
out explicitely, the various approximations that were chosen to develop the
model were not applicable to the weak coupling limit. This is so because of
the violation of some assumptions concerning the complete thermalization
of the dimer within specific time limits.

4.2 Model

We consider two overdamped coupled Brownian particles in symmetric syn-
chronously flashing potentials, see Fig. 4.1. The equations of motion for the
coordinates x1, x2 of the particles are

ηẋ1 = −U ′(x1) f (t)− κ (x1 − x2 + a) +
√

2ηkBT ξ1(t) (4.1)

and

ηẋ2 = −αU ′(x2) f (t) + κ (x1 − x2 + a) +
√

2ηkBT ξ2(t) (4.2)

with η the viscous friction coefficient, kBT the thermal energy, and ξi(t) in-
dependent and unbiased Gaussian noises with δ-correlation 〈ξi(t) ξ j(s)〉 =
δi j δ (t− s). The periodic potential for the first particle is a harmonic function
with amplitude ∆U and spatial period L

U(x) =
∆U
2

(
1− cos

2πx
L

)
. (4.3)
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4 Ratchet effect of a dimer I

The parameter α 6= 1 in Eq. (4.2) yields the amplitude of the potential felt
by the second particle, α∆U. Both potentials are periodically switched on
and off by a rectangular signal f (t) = f (t + τ) of periodicity τ = τon + τoff
consisting of on-phases of duration τon, such that f (t) = 1 for kτ ≤ t <
kτ+ τon, and off-phases of duration τoff, such that f (t) = 0 for kτ+ τon ≤ t <
(k + 1)τ, where k ∈ Z. For simplicity, we assume the interaction between the
components to be elastic, with the spring constant κ and the rest length a.

4.3 Origin of symmetry breaking

As we will show below, the model (4.1), (4.2) exhibits the ratchet effect, i.e.,
a non-zero velocity in the absence of any external forcing. At the origin of
the effect in our model is the internal DOF. This is so, because the current
is zero in the two opposite extremes of zero and rigid coupling. Indeed, in
the uncoupled case, κ = 0, each of the two particles in Eqs. (4.1) and (4.2)
finds itself in the flashing sinusoidal potential, where no current is possible
for symmetry reason. On the other hand, in the opposite rigid limit, κ → ∞,
meaning x2 − x1 = a, one can consider the equation of motion for the center
of mass and the relative coordinate,

X :=
x1 + x2

2
, Y := x2 − x1 − a . (4.4)

From the equations (4.1), (4.2) one obtains

ηẊ = −1
2

[
U ′

(
X − Y + a

2

)
+ αU ′

(
X +

Y + a
2

)]
f (t) +

√
ηkBT ΞX(t) (4.5)

and

ηẎ =
[

U ′
(

X − Y + a
2

)
− αU ′

(
X +

Y + a
2

)]
f (t)− 2κY +

√
4ηkBT ΞY(t) .

(4.6)

In the extreme case of rigid coupling, the distance between dimer compo-
nents is fixed, Y = 0, so that from Eq. (4.5) one concludes that the center of
mass finds itself in the potential [U (X − a/2) + αU (X + a/2)] f (t)/2. Since
both U1(x) and U2(x) are trigonometric functions of the same period, the re-
sulting potential for X is also a trigonometric function of non-ratchet type,
again excluding any possibility of current in the system.

In order to understand, how the internal DOF leads to the onset of the
directed current, it is instructive to study the system dynamics in the asymp-
totic limit of large but finite stiffness κ. In this case, the dynamics of the rela-
tive coordinate Y occurs on the much faster time-scale than that of the center
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Figure 4.2: Effective potential Eq. (4.8) for the following parameter values in Eq. (4.3):
∆U = 100, L = 1, α = 0.5, kBT = 1, and five values of κ ranging from 1 000 (upper
curve) to 50 (lower curve), as indicated.

of mass X. If the characteristic time-scale of change of the center of mass is
much longer than the thermalization time scale for the relative coordinate Y ,
one can use the unnormalized probability distribution of the relative coordi-
nate Y for a fixed value of X:

ρ(Y ; X) = exp

(
−

1
2 κY

2 + U
(
X − Y+a

2

)
+ αU

(
X + Y+a

2

)

kBT

)
. (4.7)

The slow coordinate X finds itself in a mean-field potential of the free-energy
type

Ueff(X) = −1
2

kBT ln
∞∫

−∞

dY ρ(Y ; X) . (4.8)

Fig. 4.2 shows this effective potential for several values of the coupling con-
stant, κ. It is seen that at high values of κ, the effective potential indeed rep-
resents a symmetric function prohibiting spontaneous currents, while reduc-
tion of κ leads to two effects: reduction of the potential amplitude and the
onset of its asymmetry, allowing for the ratchet effect in the system.
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4 Ratchet effect of a dimer I

4.4 Analytic relation for the velocity and diffusion
coefficient

Our goal is to evaluate the average velocity,

v = lim
t→∞

〈xi(t)〉
t

, (4.9)

which will be identical for both indices for positive κ. For analytic evaluation
of v, we assume a distinct inequality of amplitudes and deep potential wells
for particle 1,

∆U À kBT , α¿ 1, (4.10)

allowing the periodic part of potential U(x1) to be harmonically approxi-
mated. When the potentials are switched on, coordinate x1 will immediately
relax to the nearest minimum of the potential U(x1) almost independently
of x2. If we suitably move the origin of the x-axis by integer multiples of
L, we can always accomplish x1 to be located in the interval from −L/2 to
L/2 where U(x1) is minimal for x1 = 0, thus rendering a straightforward
harmonic approximation.

Our second assumption is that the on-phase of the driving is long enough
to allow for the thermalization of the systems,

τon À τrel , (4.11)

where τrel represents the characteristic relaxation time. In view of the condi-
tion (4.10), this quantity can be estimated as the relaxation time of the second
particle, provided that the first particle is placed at x1 = 0. In the on-phase,
the potential energy of the second particle is

Uon(x2) = αU(x2) +
κ

2
(x2 − a)2 . (4.12)

The relaxation time in Eq. (4.11) can be estimated as τon = η/λ, where λ is
the smallest non-vanishing eigenvalue of the corresponding Fokker-Planck
operator d

dx2

(
U ′

on(x2) + kBT d
dx2

)
.

Under the assumptions (4.10), (4.11), the joint probability distribution in
the end of the on-phase is

Won(x1, x2) ∝ exp

(
−U ′′(0) x2

1 + 2αU(x2) + κ (x1 − x2 + a)2

2kBT

)
, (4.13)

up to the normalization constant. This probability distribution can be trans-
formed to the center-of-mass probability distribution by integrating out the
xi to

Won
1 (X) =

∞∫

−∞

dx1

∞∫

−∞

dx2 δ

(
X − x1 + x2

2

)
Won(x1, x2) . (4.14)
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The expression for the distribution Won
2 (Y) of the relative coordinate in the

end of the on-phase is the same, but with Y + (x1 − x2 + a) as an argument
in the delta-function.

For f (t) = 0, the beginning of the off-phase, the equations of motion for
the center of mass, Eq. (4.5), and the relative coordinate, Eq. (4.6), describe
the Wiener and Ornstein-Uhlenbeck processes, respectively. Using the corre-
sponding transition probabilities, the center-of-mass probability distribution
in the end of the off-phase can be expressed as

Woff
1 (X) ∝

∞∫

−∞

dX′ exp

(
−η (X − X′)2

2τoffkBT

)
Won

1 (X′) , (4.15)

up to a normalization constant. In the same manner, we find the distribution
of the relative coordinate in the end of the off-phase,

Woff
2 (Y) ∝

∞∫

−∞

dY ′ exp

(
− κ

(
Y − e−2κτoff/η Y ′

)2

2kBT
(
1− e−4κτoff/η

)
)

Won
2 (Y0) , (4.16)

up to a normalization constant.
At the beginning of the next on-phase, x1 may either drop back into the

same potential well where it was one period ago or fall into a neighboring
well, with the respective probabilities depending on the properties of

Woff(x1) =
∞∫

−∞

dX
∞∫

−∞

dY δ
(

x1 − X +
Y + a

2

)
Woff

1 (X) Woff
2 (Y) . (4.17)

This enables us to calculate the probability to find particle 1 between the
k-th and the (k + 1)-th maximum (i.e., within the basin of attraction of the
minimum at kL) by

Pk =
kL+L/2∫

kL−L/2

dx1 Woff(x1) , (4.18)

resulting in the average velocity

v =
L
τ

∞

∑
k=−∞

kPk (4.19)

and diffusion coefficient

D =
L2

2τ

∞

∑
k=−∞

k2Pk − v2τ

2
. (4.20)
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4.5 Results and discussion

4.5.1 Symmetry and dimer length

In the following, we present a comparison of simulation data from Langevin
equations (4.1) and (4.2) with numerical results from our theory according
to Eqs. (4.19) and (4.20). We have chosen the following constant param-
eter values: η = L = 1, ∆U = 100, and α = 0.05, so that conditions
(4.10) are guaranteed throughout. Successively, four parameters were varied:
rest length (a), thermal energy (kBT ), switching frequency (ω), and coupling
strength/elasticity (κ). Simulation data represents an average of 15 trajecto-
ries for velocity, 200 for diffusion, where each single trajectory covers a time
span of 1.25× 104 in dimensionless units. All simulations are performed for
the duty cycle τon/τ = 1/2 (i.e., τon = τoff).

The inherent mirror symmetry of Langevin equations (4.1) and (4.2) im-
plies that the current is an odd function of the dimer length a. As trans-
lational symmetry of the periodic potential U(x) permits shifts by integer
multiples of period L, we recognize this symmetry to be valid for all inte-
ger k according to v(a) = v(kL + a) = −v(kL− a). This means that for all
a = kL/2 the net current must vanish, v(kL/2) = 0.

The sign of the current depends on the character of the dimer’s deforma-
tion during the on-phase. If the dimer was squeezed, then after turning the
potentials off, the first particle will move to the left of its original position.
Consequently, it will diffuse into the left maximum with greater probability
than into the right one, and will be trapped there in the next on-phase. Since
the character of the potential (4.12) is such that the dimer is squeezed for
kL < a < (k + 1/2)L, k ∈ Z, the overall velocity will be negative in this case.
Following an analogous line of reasoning, we conclude that the velocity will
be positive for (k + 1/2)L < a < (k + 1)L.

Both features, current reversal and symmetry, are shown in Fig. 4.3 for
dimer lengths a within the interval from 0 to L. At low switching frequency
(ω = 2π/τ = 10), the coincidence of theory and simulation is unequivocal.
Current reversal appears at a equal to integer multiples of L/2, as explained
above. In each node, the average velocity is an odd function of the dimer
length. This qualitative behavior is not impaired by higher frequencies, as is
also shown in this figure. For growing frequency, the exact probability distri-
bution will increasingly deviate from the stationary Boltzmann distribution
Won(x1, x2) given by Eq. (4.13). Therefore, our theoretical prediction of the
average velocity exceeds the simulation data for ω & 20.

Nevertheless, even for higher frequencies, Eq. (4.19) very accurately pre-
dicts the behavior of the current for a near all integer multiples of L. This is so
because in this case, the potential (4.12) has a single minimum, with the relax-
ation time given approximately by τrel (a ' kL) ≈ η/ [κ+ αU ′′(0)] , k ∈ Z.
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Figure 4.3: Average velocity v vs. rest length a at three different switching frequencies
ω = 10, 20, 30, for η = kBT = L = 1, ∆U = 100, α = 0.05, and κ = 50. Circles
and triangles are simulation data, solid lines show the corresponding theoretical
predictions. The results are uneven periodic functions with period L. A single
period of the dimer’s rest length (0 ≤ a ≤ L) is shown. With increasing frequency,
theoretical prediction looses accuracy for a ≈ L/2.

For the parameter values chosen, this relaxation time is much smaller than
the duration of the on-phase, so the condition (4.11) is satisfied. On the other
hand, for a ' (k + 1/2)L, the potential (4.12) becomes bistable, so that the
relaxation of the coordinate x2 involves a slow process of thermally acti-
vated hopping over the potential barrier with a substantially longer relax-
ation time.

4.5.2 Dependence on temperature

The temperature dependence of v reveals a good agreement of simulation
and theory over two orders of magnitude of thermal energy, as does the
diffusion coefficient D (Fig. 4.4). The v-kBT -diagram bears the signature of
stochastic resonance as there is a clear-cut maximum of the current for an
optimal amount of noise in the system. On the one hand, if temperature be-
comes zero, there is no motion at all and the current must vanish. On the
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Figure 4.4: (a) Average velocity v vs. thermal energy kBT for η = L = 1, ∆U =
100, α = 0.05, ω = 25, κ = 50, and a = 0.75. Solid line: analytic expression
(4.19); circles: simulations. The velocity clearly shows a stochastic resonance-like
maximum at kBT ' 1. (b) Diffusion coefficient D vs. kBT for the same parameter
values as in (a). Solid line: analytic expression (4.20); circles: simulations. At
kBT ' 1, D starts to converge towards kBT /4η (dashed line).
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other hand, if temperature increases above all limits, the effective potential,
Eq. (4.8), becomes insignificant and overall symmetry is restored, thus in-
hibiting any ratchet effect. In between, there must be a finite current (for all
a 6= kL/2, k ∈ Z) because at any finite value of T the distribution Woff(x1) is
non-symmetric at x1 = 0, leading to a non-vanishing sum in Eq. (4.19).

The dashed line in figure 4.4(b) corresponds to the free diffusion of an anal-
ogous system where the periodic potential U(x), Eq. (4.3), stays switched
off permanently and where in lieu thereof the temperature is periodically
switched on (kBT > 0) and off (kBT = 0) according to the same duty cycle
τon/τ = 1/2. For very high temperature, the diffusion coefficient converges
towards this free diffusivity Dfree = kBT /4η, thereby indicating the vanishing
dependence on the periodic potential in this temperature regime. At about
kBT ' 1, where there is a maximal current, the actual diffusion coefficient has
discernibly risen above its free counterpart and starts to converge from this
higher value. At T → 0, the decline of D is much steeper than of Dfree due to
the increasing probability of x1 returning to its starting point of the previous
on-phase, corresponding to a “loss” of diffusion over a whole period.

4.5.3 Dependence on driving frequency

Fig. 4.5(a) illustrates how switching frequency ω = 2π/τ affects the accuracy
of the theoretical prediction. It reproduces the asymptotic behavior forω→ 0
and for ω → ∞, where v → 0. The explanation for this is apparent: On the
one hand, there will be no net probability current for extremely long times of
free diffusion because Woff(x1) gets very flat. On the other hand, Woff(x1) will
be sharply peaked for very short times of free diffusion so that the Pk ≈ 0,
for k 6= 0, generating no current, either. In between, there is necessarily a fi-
nite amount of probability spreading beyond the interval from −L/2 to L/2,
giving rise to a finite net current. This current shows a clear-cut maximum,
too, which one would call a resonant activation in terms of escape from a
metastable state. The aforementioned deviation of Won for high frequencies
thereby leads to a slight overestimation of the maximal current.

The diffusion coefficient (see Fig. 4.5(b)) also converges towards Dfree =
kBT /4η, which in this case is Dfree = 1/4, but here the convergence takes
place in the low frequency limit, as it provides long times of free diffusion.
In the high frequency limit, the time of free diffusion becomes too short to
allow for a finite current, in analogy to the low temperature limit. The maxi-
mal value of the diffusion coefficient can be found in vicinity to the resonant
activation frequency. Please, note that the statistical nature of simulation
data regarding the diffusion coefficient is responsible for the scattering. In
Fig. 4.4(b), this effect is merely obscured by the logarithmic scale that spans
five orders of magnitude.
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Figure 4.5: (a) Average velocity v vs. switching frequency ω for η = kBT = L = 1,
∆U = 100, α = 0.05, κ = 50, and a = 0.7. For ω & 40, the theoretical prediction
starts to deviate slightly from simulation data. The reason for this is that τ is too
short to allow for a relaxation of x2 according to Won. A resonant activation-like
maximum stands out at ω ' 40. (b) Diffusion coefficient D vs. ω for the same
parameter values as in (a).
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Figure 4.6: Average velocity v vs. elastic coupling κ for η = kBT = L = 1, ∆U = 100,
α = 0.05, ω = 10, and a = 0.7. For low values of κ, the assumed Boltzmann dis-
tribution Won(x1, x2) cannot describe the real situation sufficiently exact, thereby
predicting an exceedingly high average current. This is due to the onset of a much
slower relaxation process taking effect at low κ.

4.5.4 Dependence on elasticity

The line of reasoning is different when it comes to the role of the elastic cou-
pling κ (Fig. 4.6). There will be an asymptotically vanishing net current for
κ → 0 and for κ → ∞, but this is due to the decisive role of the internal
DOF, as explained in section 4.3. The internal DOF can only exist as long as
κ is finite, thus breaking symmetry and inducing a ratchet effect. Similar to
temperature and frequency, where we could find a stochastic resonance-like
and a resonant activation-like maximum, respectively, we can distinguish an
optimal value of the coupling constant that leads to a maximal current.

We shall briefly discuss the obvious inability of (4.19) to give any accurate
prediction of the net current for small values of the elastic coupling constant.
We see a pronounced spread between theory and simulation for κ . 30. For
decreasing κ, the potential Uon(x2), Eq. (4.12), is transformed to a multistable
one-dimensional landscape consisting of two or more relative minima. The
barriers separating these minima approach a height of α∆U as κ→ 0, leading
to a thermalization time much larger than τon. Since Won(x1, x2) relies on the
equilibrium distribution, it cannot describe the actual probability distribu-
tion at the end of the on-phase with sufficient exactitude. Consequently, the
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theory does not hold for low κ. For this reason, any viable theoretical predic-
tion of the diffusion coefficient depending on the elastic coupling constant
could not be made.

4.6 Concluding remarks

In this chapter, we have demonstrated, both analytically and by means of
numerical simulations, that an internal DOF can lead to the onset of the sym-
metry breaking and to a ratchet effect in a dimer finding itself in a flashing
symmetric potential. The current can be maximized with respect to various
system parameters describing the properties of the potential, environment,
and coupling. We expect that the effect will be also observable for other
asymmetry types, e.g., inclusion of additional degrees of freedom and/or in-
ertia or different values of the friction coefficient of the two particles should
preserve the effect. Detailed studies of the intriguing possibilities offered by
dissimilar friction coefficients will be the subject of the following chapter.

In view of the new results for experimental control of atomic-scale fric-
tion [66], the possibility to observe a nanotribological system exhibiting the
ratchet effect seems to be close at hand. The reason for this is that the way
friction control experiments achieve the modulation of the dissipation of the
sliding object is very similar to the externally imposed modulation necessary
to drive a system out of equilibrium. It can be done in three different ways:

• by mechanically excited vibration,

• by varying load onto the tip,

• by applying an AC voltage.

Each way modulates the coupling between probe and surface. In any case, a
periodic modulation of some kind is involved which can be used as a drive
for the ratchet effect.

The symmetry breaking that is of fundamental importance to the ratchet
effect can be established by means of the internal DOF arising from the rel-
ative coordinate of the ratchet model, i.e., from the interaction of the two
different constituents of a chain/copolymer (or an array, if suitably extended
into the plain). For example, the experimental setup can be similar to a sin-
gle file diffusion experiment (see Fig. 4.7), where particles are placed within
etched troughs on a crystal surface of some sort, thereby imposing a one-
dimensional geometry. Of course, such an experiment must be reduced in
size, from microbeads to nano-droplets, which is by no means a trivial task.
Then an actuation by AC voltage could directly evoke a transport without
external bias that could be measured directly via the position of the droplet.
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Figure 4.7: Image of a microbead in a one-dimensional channel that is used in a
single file diffusion experiment. Image from the Homepage of C. Bechinger, 2.
Physikalisches Institut, Universität Stuttgart.

An indirect proof via the deflection of a cantilever beam that is attached to
the nano-droplet is more promising because the experimental setup is very
close to the aforementioned attempts to control friction in an FFM experi-
ment through the actuation of nano-contacts. The main difference is that
instead of a direct contact between the FFM tip and the surface a small is-
land of a suitably chosen material (i.e., consisting of at least two dissimilar
constituents) is intercalated. Thereby, the probe–sample interaction will pri-
marily be established, not by the contact of the tip to the sample, but by the
interaction between sample and surface.

With this setup, three different modes of operation are possible:

1. Tip and surface are in lateral motion without actuation. This is equiv-
alent to a usual FFM measurement where the force–velocity curve for
the material under consideration is determined.

2. There is no lateral motion between tip and surface but the contact is ac-
tuated by an applied AC voltage. In this mode, a possible ratchet effect
would evoke a bending of the cantilever that grows until the restoring
force precisely counteracts the ratchet effect.

3. Both, lateral motion and contact actuation, are in operation. This mode
allows for an additional control of friction by means of the ratchet effect
being superimposed on the forced lateral motion.

To our knowledge, a threefold friction experiment of this kind has not yet
been performed. Since the different components (e.g., the manipulation of
nano-droplets on surfaces, the actuation of nanometer-size contacts, etc.) are
all available and successfully applied, we are quite confident that an experi-
mental verification of our findings is, in principle, technically feasible.
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5 RATCHET EFFECT OF A DIMER II
THE CASE OF ASYMMETRIC
FRICTION

Nichts setzt dem Fortgang der Wissenschaft
mehr Hindernis entgegen,

als wenn man zu wissen glaubt,
was man noch nicht weiß.

Georg Christoph Lichtenberg

5.1 Introduction

Throughout this thesis, it has always been emphasized how versatile the
dimer model can be applied to distant and seemingly unrelated fields of re-
search. For example, the model treated within this penultimate chapter was
originally put into the context of molecular motors—but with a clear relation
to atomic-scale friction. Anyway, the bottom line is much the same as in the
preceding chapter: results from the abstract dimer model to the concrete sit-
uation of an atomic-scale friction experiment can be transferred in the same
manner as explained in sections 4.1 and 4.6.

Since molecular motion within the body of living organisms takes place in
a noisy and viscous environment, fluctuation and dissipation phenomena are
of paramount importance with regard to developing and investigating the-
oretical models of molecular motors [97, 126]. The key mechanism of these
models that enables the transformation of isotropic thermal noise into aver-
age unidirectional motion is the ratchet effect [75, 127]. For over a decade
it is known experimentally that the internal properties of motor molecules
(e.g., kinesin, myosin, etc.) play, if not the decisive, at least a prominent
role in the emergence of directed motion in living organisms [118]. These
internal properties, their symmetry-breaking and transport generating ef-
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Figure 5.1: Mechanical ratchet device with broken friction symmetry. It consists of
two (upper and lower) helically rotating coupled plates. The supporting bottom
plate creates friction for the lower plate. A driving oscillating or fluctuating force
is applied to the upper plate, e.g., by hitting it slightly from various directions.
Colored noise was created by the sound from a fog horn, acting on a horizontal
membrane glued on top of the upper plate. In all cases of forcing vertically (from
above or below), the helical system was observed to rotate only clockwise when
viewed from above. Taken from [137].

fects in spite of originally symmetric environments, are addressed by nu-
merous theoretical studies of coupled particle chains [113], arrays [119], and
dimers [88,89,101,107,120], to name but a few. Dimers are especially suited to
model such systems because of their internal degree of freedom, their struc-
tural simplicity, and because they can easily mimic geometrical properties of
motor molecules like the stepwise “hand-over-hand” motion of two molecu-
lar branches.

A subclass of systems with internally broken symmetry consists of ratchet
systems based on inhomogeneous friction. In underdamped systems, fric-
tion applied to the internal degree of freedom can lead to self-propulsion
[129], even in the absence of an external potential [130]. Another way of en-
forced frictional inhomogeneity is a space dependent friction coefficient, both
for overdamped and underdamped ratchets [131–133]. In non-ratcheting
systems, sliding friction of dimers on periodic substrates reveals nonlinear
velocity dependence and a striking periodic variation with the ratio of dimer
length and substrate period [134–136].

A macroscopic mechanical device with frictional asymmetry was experi-
mentally realized by Nordén et al. in 2001 [137]. It converts fluctuating mo-
tion (actual sound waves from a fog horn) into unidirectional rotation, see
Fig. 5.1. Although it is an inertia ratchet, its relation to the overdamped
model we will discuss within this chapter is very close. It consists of two
masses that are harmonically coupled by stiff springs. One mass can freely
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rotate (since the air resistance is negligibly small) whereas the other mass
is attenuated through sliding friction on the ground plate. While the upper
mass is exposed to random forcings in various directions, accompanied by
colored noise, the whole apparatus is on average always turning clockwise
(as seen from above). This “gadget” was intended to visualize the underly-
ing Brownian dynamics of a molecular motor with broken friction symmetry.
If we imagine the device being immersed in a viscous fluid (e.g., oil), it may
serve to visualize the overdamped Brownian motion of our dimer model.

In this chapter, we study the same one-dimensional model consisting of
two elastically coupled Brownian particles in a symmetric flashing poten-
tial as in chapter 4. Instead of a different coupling to the surface potential
we now establish two independent friction coefficients, thereby breaking the
friction symmetry of the dimer. This kind of friction asymmetry is different
from the two-state systems with protein friction modeling a molecular motor
in [138–140], where fluctuations are rectified by means of switching between
states of high and low friction in order to account for cyclical attachment
to the track (e.g., cell filaments). In our model, the friction coefficients are
neither time nor space dependent but fixed quantities generating a nonzero
average velocity. We show that the dimer velocity can be maximized with
respect to the noise intensity and driving frequency, and that it is maximal at
some optimal coupling strength.

5.2 Model

The total energy Utot of the dimer consists of two parts: a flashing potential
representing the interaction of each dimer component with the surface plus
the bond energy of the dimer,

Utot (x1, x2, t) = [U(x1) + U(x2)] f (t) +
κ

2
(x2 − x1 − a)2 . (5.1)

The surface interaction U is a sinusoidal function with barrier height ∆U and
spatial period L,

U(xi) =
∆U
2

(
1− cos

2πxi

L

)
. (5.2)

Both contributions, U(x1) and U(x2), are synchronously and periodically
switched on and off by a rectangular signal f (t) = f (t + τ) of periodic-
ity τ = τon + τoff. On-phases of duration τon and off-phases of duration
τoff alternate such that f (t) = 1 for kτ ≤ t < kτ + τon, and f (t) = 0 for
kτ+ τon ≤ t < (k + 1) τ, where k ∈ Z. The coupling interaction is assumed to
be elastic, with spring constant κ and rest length a, meaning that there is no
internal force acting between the components if x2 − x1 = a.
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5 Ratchet effect of a dimer II

The dynamics of the dimer is modeled as overdamped Brownian motion
at absolute temperature T , yielding two coupled equations of motion,

ηi ẋi(t) = −∂Utot (x1, x2, t)
∂xi

+
√

2ηikBT ξi(t) , (5.3)

for i ∈ {1, 2}. The ηi are the viscous friction coefficients of the respective
dimer components, kB is the Boltzmann constant, and the ξi(t) are Gaussian
white noises with 〈ξi(t)〉 = 0 and 〈ξi(t) ξ j(s)〉 = δi j δ (t− s), for i, j ∈ {1, 2}.
The ratio of the friction coefficients can be merged into a dimensionless asym-
metry parameter α, allowing us to identify

η := η1 and α :=
η2

η1
(5.4)

throughout the rest of the text. For definiteness, we will focus on the case
α ≤ 1. In other words, x1 is the “slow” and x2 the “fast” component of the
dimer.

The quantities of main interest to us are the average dimer velocity

v := lim
t→∞

〈xi(t)〉
t

(5.5)

and the diffusion coefficient

D := lim
t→∞

〈x2
i (t)〉 − 〈xi(t)〉2

2t
. (5.6)

Focusing on κ > 0, both quantities are independent of the index i.

5.3 Origin of the ratchet effect

Before deriving the analytical approximations for the current and diffusion
coefficient of the system described in the previous section, we would like to
qualitatively discuss the basic mechanisms leading to the onset of a spon-
taneous current. The origin of the ratchet effect can be understood from
Fig. 5.2, depicting various stages of the dimer’s motion.

In each on-phase of driving, the dimer may be trapped either (A) near
the minimum of the potential U(x), or (B) near its maximum. In case A, the
dimer is compressed so that, immediately after the potential U(x) is switched
off, the distance between the dimer components will begin to increase to-
wards the equilibrium value a. This relaxation will proceed predominantly
via the motion of that component, whose friction coefficient is the smaller.
As a result, the geometrical center of the dimer will more likely be displaced
in the direction of that component in the end of each off-phase so that the
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5.3 Origin of the ratchet effect

Figure 5.2: Schematic representation of two different dimer equilibrium configura-
tions during on-phases (dimer plus sinusoidal potential, upper part) and their
subsequent deterministic relaxation (off-phase, lower part). Dimer constituents
are depicted as black (x1) and white (x2) balls connected by a spring. For each
configuration, a typical relaxation scenario of the dimer is shown for low α val-
ues, i.e., x2 moves faster than x1. The upper horizontal line represents the initial
distribution when the potential U is switched off, the lower line exemplifies the
equilibrated spring. The net displacement of the dimer’s geometrical center is the
origin of the ratchet effect.
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5 Ratchet effect of a dimer II

overall current direction in Fig. 5.2 (A) will be to the right. Turning to case
B, the dimer is initially stretched over one of the maxima of the potential
U(x). Immediately after this potential is switched off, the dimer length will
relax toward the equilibrium value predominantly via the motion of the com-
ponent with the smaller friction coefficient while the other component will
move much more slowly. As a result, the geometrical center will, on average,
be displaced to the left in the end of each off-phase, resulting in the overall
current in the negative direction.

Depending on the rest length and stiffness of the dimer, as well as on the
values of the friction coefficient of its components, one of these two scenarios
will dominate. At specific values of the system’s parameters, both mecha-
nisms can even mutually cancel, resulting in zero net current.

5.4 Analytical derivation of average dimer velocity
and diffusion coefficient

The key to a description of the dimer dynamics is a treatment in terms of tran-
sition probabilities from distinct potential wells to neighboring wells for the
various relevant dimer configurations (e.g., stretched or compressed). How-
ever, at a critical coupling strength,

κcrit := U ′′(0) =
2π2∆U

L2 , (5.7)

the distinctness of potential minima is severely disturbed by antagonistic su-
perposition of equally strong sinusoidal and elastic parts. It is only for κ well
below or above κcrit that we were able to deduce applicable schemes lead-
ing to analytical approximations for weak and strong coupling. This can be
expressed through the dimensionless parameter

ε :=
κ

κcrit
=

κL2

2π2∆U
, (5.8)

thereby referring to ε ¿ 1 as weak-coupling regime, and ε À 1 as strong-
coupling regime.

In order to gain analytical results, we need to make three assumptions. The
first of them concerns the barrier height. While the periodic driving f (t) of
the surface interaction is necessary to drive the dimer out of equilibrium, its
amplitude ∆U must be large enough to substantially “freeze” the diffusion
in the on-phase. Escapes from potential minima must be rare events in order
to neglect them completely within an analytical approximation. Therefore,
we require

∆U À kBT . (5.9)
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5.4 Analytical derivation

This also guarantees a sharply peaked equilibrium probability distribution
of the dimer components whenever the driving is active, f (t) = 1.

Our second assumption is that τon, the duration of the switching-on of the
surface potential, must be substantially larger than the relaxation time τrel

on of
the slower component x1,

τon À τrel
on . (5.10)

Otherwise, the dimer would not reach a quasistationary equilibrium distri-
bution during the on-phase. This relaxation time is mainly governed by the
curvature of the total potential Utot at its relative minima. Since the maximal
curvature of the potential U equals to κcrit, the relaxation time in the on-phase
is roughly τrel

on ∼ η/(κ+ κcrit).
Our third assumption requires that κ is not too small since the spring con-

stant determines the relaxation time τrel
off = αη/(1 + α)κ of the dimer length

in the off-phase (see below). For

τoff À τrel
off , (5.11)

a lower bound of κ is given by κ À αη/[(1 + α)τoff] to ensure a stationary
equilibrium distribution of the relative coordinate at the end of the off-phase.

5.4.1 Weak-coupling approximation

Because of conditions (5.9) and (5.10), at the end of each on-phase, f (t) = 1,
the system finds itself in a sharply peaked equilibrium distribution. Both
dimer components will be localized close to minima of U(xi), say, x1 ≈ kL
and x2 ≈ (k + m)L, where k, m ∈ Z. Further, we expect both dimer com-
ponents to be localized near the positions where ∂Utot/∂x1 = ∂Utot/∂x2 =
0, whence we can directly deduce sin

(
2πxeq

1 /L
)

= − sin
(
2πxeq

2 /L
)

with
xeq

1 + xeq
2 = (2k + m) L. This means that any equilibrium distribution is com-

pletely described by the pair (k, m). By a harmonic approximation of Utot

about x1 = kL and using xeq
2 = (2k + m)L− xeq

1 , the equilibrium positions
can be calculated approximately for small ε and not too large |m| as

xeq
1 = kL +

ε

1 + 2ε
(mL− a) (5.12)

and

xeq
2 = (k + m) L− ε

1 + 2ε
(mL− a) . (5.13)

In the off-phase, f (t) = 0, the equation of motion (5.3) can be decoupled
by introducing a dynamically weighted central coordinate,

X :=
x1 + αx2

1 + α
, (5.14)
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5 Ratchet effect of a dimer II

and a relative coordinate,

Y := x2 − x1 − a . (5.15)

We find for the central coordinate

(1 + α) ηẊ =
√

2 (1 + α) ηkBT ξX(t), (5.16)

which is a Wiener process, and for the relative coordinate

αη

1 + α
Ẏ = −κY +

√
2αηkBT
1 + α

ξY(t), (5.17)

being an Ornstein-Uhlenbeck (OU) process. Here, ξX(t) and ξY(t) are once
again independent delta-correlated Gaussian noises. For initial central coor-
dinate Xeq = (xeq

1 + αxeq
2 )/(1 + α), see Eqs. (5.12)-(5.14), the Wiener process

evolves, in the end of the off-phase, to the probability density

W1(X) = CX exp

(
− (1 + α) η (X − Xeq)2

4kBTτoff

)
(5.18)

where CX is a normalization constant. Because of condition (5.11), the OU
process approaches its long-time asymptotics

W2(Y) = CY exp
(
− κY2

2kBT

)
, (5.19)

with a normalization constant CY . The joint probability distribution for the
original dimer components follows by a backward transformation,

W(x1, x2) =
∫∫

dX dY δ
(

X − x1 + αx2

1 + α

)
δ (Y − x2 + x1 + a) W1(X) W2(Y)

= W1

(
x1 + αx2

1 + α

)
W2 (x2 − x1 − a) . (5.20)

The pair distribution function W(x1, x2) is a valid approximation at precisely
that moment in time when the potential U(xi) is switched on again.

Any initial dimer configuration ( j, m) can naturally be mapped onto (0, m)
by a shift of the coordinate axis by j multiples of L. From there on, the tran-
sition probability into any final configuration (k, l) is given by an integral of
the pair distribution function,

P(0,m)→(k,l) =
c+(α)∫

c−(α)

dx1

b+(x1)∫

b−(x1)

dx2 W(x1, x2). (5.21)
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5.4 Analytical derivation

The integration limits, c±(α) and b±(x1), must be chosen so as to match the
basins of attraction of each minimum, which is a precarious matter for mod-
erately weak coupling. A naive ansatz would be the following: since 〈Y〉 = 0,
the elastic part of the potential Utot can be averaged out and the remaining
part U(xi) leads to c± = (k± 1

2)L and b± = (k + l± 1
2)L. But this rather loose

approximation is limited to very small κ and thus is of little use.
Nevertheless, both for α→ 0 and α→ 1, refined asymptotical approxima-

tions of the limits can be established. In both cases, we identify b±(x1) with
the instantaneous local maximum of Utot (x1, x2) with respect to the variable
x2 for a given value of x1. Since, in most cases, α < 1, the relaxation of the
component x2 then will start toward the accompanying equilibrium closest
to (k + l) L. Therefore, we determine b±(x1) by expanding ∂Utot (x1, x2) /∂x2

to first order about x2 ≈
(

k + l± 1
2

)
L and setting it equal to zero, yielding

b±(x1) =

(
k + l± 1

2

)
L− ε (x1 + a)

1− ε
. (5.22)

In a similar manner we wish to determine the basin of attraction of parti-
cle x1 by an effective one-particle potential Ũtot(x1) = Utot(x1, x̃2(α)

)
. This

must not depend on component x2 anymore because the integration over x2
is already completed. Instead of that we introduce a parameter x̃2(α) having
different meanings in both limits α→ 0 and α→ 1. In the first case (α→ 0),
component x2 becomes frictionless and will immediately relax to its accom-
panying equilibrium. This adiabatically accompanying equilibrium is found
to be

x̃2 (α = 0) =
(k + l) L + ε (x1 + a)

1 + ε
(5.23)

by expanding ∂Utot (x1, x2) /∂x2 to first order about x2 ≈ (k + l)L and setting
it equal to zero. In the second case (α → 1), the relaxation dynamics of
both components proceed on the same time scale. After integrating out the
variable x2, the best estimate we have for x̃2 is its expectation value in case of
x1 being close to one of its own relative potential maxima at (k ± 1

2)L. This
expectation value is easily calculated to be

x̃±2 (α = 1) =
∫∫

dx1 dx2 x2 δ

[
x1 −

(
k± 1

2

)
L
]

W (x1, x2) , (5.24)

where the superscript ± indicates which sign is to be taken at the upper (+)
or the lower (−) integration limit.

Now, estimates for the instantaneous boundaries of the basins of attrac-
tion for component x1, denoted by c±α , are obtained from an expansion of
∂Ũtot(x1)/∂x1 at x1 ≈ (k ± 1

2)L. By using x̃2 (α = 0) within this expansion,

87



5 Ratchet effect of a dimer II

we find

c±0 =
(

k± 1
2

)
L + ε

[(
−l± 1

2

)
L + a

]
, (5.25)

and with x̃±2 (α = 1) that

c±1 = c±0 +
ε

1 + ε

[
(k + l) L− x̃±2

]
. (5.26)

For intermediate α, we choose a linear interpolation for the whole range 0 ≤
α ≤ 1 and obtain

c±(α) = c±0 + α
(
c±1 − c±0

)
. (5.27)

With these boundaries, Eq. (5.21) becomes applicable to all values of α with
sufficient accuracy.

At the beginning of a new cycle of driving, the final configuration (k, l) will
be mapped onto (0, m), as before. Therefore, we are able to deduce the tran-
sition probabilities from initial to final relative distance between components
1 and 2 (i.e., P(0,m)→( · ,l)) via the summation

P(0,m)→( · ,l) =
∞

∑
k=−∞

P(0,m)→(k,l). (5.28)

These transition probabilities correspond to some stationary nontrivial prob-
ability distribution Pm with ∑ Pm = 1 since the matrix elements P(0,m)→( · ,l)
vanish exponentially for large |l| and |m|. Thus, a formal solution of

∞

∑
m=−∞

(
P(0,m)→( · ,l) − δml

)
Pm = 0, (5.29)

where δml is the Kronecker symbol, determines Pm, which are the probabili-
ties of (0, m) states at the beginning of each driving cycle.

For any finite κ, the average velocity of the dimer must be equal to each
〈ẋi〉 according to Eq. (5.5), which by now can be calculated for component
x1 from the transition probabilities P(0,m)→(k,l). As we are interested in the
average shift of x1 alone, we can first sum over all final l configurations,
∑l P(0,m)→(k,l). The next step is to sum over all initial m configurations, where
the previously determined probabilities Pm enter. Then, after one period of
duration τ, each possible step width kL may occur with the assigned prob-
ability ∑l,m PmP(0,m)→(k,l). Finally, the average dimer velocity is obtained by
means of a threefold summation,

v =
L
τ ∑

k
k ∑

m
Pm ∑

l
P(0,m)→(k,l), (5.30)
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5.4 Analytical derivation

where all sums run from −∞ to ∞. The diffusion coefficient according to
Eq. (5.6) is obtained from the transition probabilities P(0,m)→(k,l) in an analo-
gous manner,

D =
L2

2τ ∑
k

k2 ∑
m

Pm ∑
l

P(0,m)→(k,l) −
v2τ

2
. (5.31)

5.4.2 Strong-coupling approximation

In the limit of strong coupling, the potential landscape is simplified signifi-
cantly. In the weak-coupling case considered before, there was a broad va-
riety of “frozen” dimer configurations (0, m) in each on-phase, whereas for
overcritical κ, there is (in most cases) but a unique equilibrium configuration
left. A straightforward but somewhat tedious analysis of the relaxation dy-
namics on a short time scale leads, for a given ε and restricting the rest length
a to the interval [−L/2, L/2], to the following approximate upper bound

|a| < L
π

arccos
(√

4ε2 + 2− 2ε
)

. (5.32)

Below this bound, any stretched configuration (i.e., dimer components sep-
arated by a potential maximum) is always unstable, thus leaving a single
stable minimum for any one given xi.

A further simplification arises from neglecting variations in the relative co-
ordinate Y because of the decreasing width of its distribution function. Since
small deviations from the center of this distribution are completely symmet-
ric, their effect cancels in first-order approximation. Therefore it suffices to
derive a single parameter transition probability P(0,0)→(k,0) for the dimer to
move by kL as a whole solely from the central coordinate distribution func-
tion W1(X), Eq. (5.18).

The equilibrium distribution can now be derived by expanding Utot with
respect to x1, not about kL as before but about kL− a/2 since this is the correct
value in the limit ε → ∞:

xeq
1 = kL− a

2
+

L
2π

sin (πa/L)
2ε + cos (πa/L)

(5.33)

and

xeq
2 = 2kL− xeq

1 , (5.34)

where ε À 1 (overcritical coupling). The equilibrium central coordinate
that follows from these new values still equals Xeq =

(
xeq

1 + αxeq
2

)
/ (1 + α),

yielding for the transition probability the result

P(0,0)→(k,0) =
d+(α)∫

d−(α)

dx1

∞∫

−∞

dX δ

(
X − x1 − α a

1 + α

)
W1(X) . (5.35)
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5 Ratchet effect of a dimer II

Again, we determine the limits of integration, d+(α) and d−(α), from the
two limiting cases of the asymmetry parameter α. For α→ 1, the dimer will
settle into that potential well to which its (geometrical) center is the closest.
Since we assume Y ≈ 0, we have X ≈ x1 + a/2. The dimer therefore will
relax to the minimum at kL for d−1 < x1 < d+

1 , where

d±1 =
(

k± 1
2

)
L− a

2
. (5.36)

In the opposite case α → 0, an expansion of Utot about x1 = (k± 1
2)L− a/2

and using x1 + x2 = (k ± 1
2)L leads to a basin of attraction of minimum kL

between

d±0 = d±1 +
L
2π

sin (πa/L)
2ε − cos (πa/L)

. (5.37)

As before, we choose a linear interpolation for 0 ≤ α ≤ 1,

d±(α) = d±0 + α
(
d±1 − d±0

)
. (5.38)

Average dimer velocity and diffusion coefficient follow immediately by ad-
justing Eqs. (5.30) and (5.31), yielding

v =
L
τ ∑

k
kP(0,0)→(k,0) (5.39)

and

D =
L2

2τ ∑
k

k2P(0,0)→(k,0) −
v2τ

2
. (5.40)

5.5 Results and discussion

To verify the above predictions we compared velocity and diffusion coeffi-
cient from Eqs. (5.30) and (5.31) in the case of weak coupling, or Eqs. (5.39)
and (5.40) in the case of strong coupling, to numerical simulations of the orig-
inal Langevin Eq. (5.3). Some parameter values were kept fixed throughout
all simulations and scaled to unity: thermal energy kBT , friction coefficient η,
and corrugation length L. The barrier height was fixed at ∆U = 100 kBT =
100 in order to satisfy assumption (5.9). Also, the duty cycle stayed unal-
tered, τon/τ = 1/2, dividing the time into equally long on- and off-phases.
Each data point resulted from averaging over 100 trajectories with more than
15 000 duty cycles for undercritical and 1 500 for overcritical coupling.
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5.5 Results and discussion

5.5.1 Dependence on dimer length

The symmetries of the total energy Utot naturally depend on the dimer length
a through the properties of the elastic part of the potential. Clearly, any Utot

and a dependent quantity (e.g., average dimer velocity) must be affected by
those fundamental properties, and we shall discuss these effects briefly. Since
the interplay of surface and elastic contributions to total energy Utot can only
be seen during the on-phases, f (t) = 1, we assume time t to have an ap-
propriate constant value. Therefore, within the subsequent discussion the so
far t dependence of the potential Utot = Utot (x1, x2; t) will be abandoned in
favor of its dependence on a, i.e., from now on Utot = Utot (x1, x2; a).

There are three different symmetry transformations applicable to the spa-
tial variables of Utot:

1. translational invariance,
Utot (x1, x2; a) = Utot (x1 + nL, x2 + ml; a− nL + mL), where n, m ∈ Z;

2. inversion symmetry, Utot (x1, x2; a) = Utot (−x1,−x2;−a);

3. exchange symmetry, Utot (x1, x2; a) = Utot (x2, x1;−a).

A change from a to −a can be understood as inversion of the dimer’s orien-
tation. Necessarily, if the average velocity was nonzero before reorientation,
it must be reversed, v(a) = −v (−a). On the one hand, this immediately
implies nodes of v(a) at all integer multiples of L due to translation symme-
try. On the other hand, translational invariance makes the average velocity
a periodic function, v (a) = v (a + kL), where k ∈ Z. Accordingly, we find
v (L/2) = v (−L/2) = −v (L/2), which implies nodes of v(a) at all half in-
teger multiples of L. Therefore, if v is not constantly zero, it must change its
sign in each node at any integer multiple of half the corrugation length, L/2.
The direction of the average current depends on several parameters and will
be discussed in the following subsections.

Besides the above mentioned symmetry properties of v(a), Fig. 5.3 includes
variations in a further parameter, the driving frequency ω = 2π/τ. Values of
ω were chosen from a range well within the bounds imposed by Eqs. (5.10)
and (5.11). They yield a succession of increasing amplitudes of v, starting
from ω = 50 and ending at ω = 100. The abscissa represents the dimer
length a and ranges from −L/2 to L/2, thus covering a single full period
of the odd L-periodic function v(a). Nodes with change in sign appear at
each integer multiple of L/2, see explanation above. The absolute value of
v exhibits maxima at |a/L| ≈ 0.3. The agreement of theory and simulation
within statistical uncertainty is very good for all values depicted.
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Figure 5.3: Average dimer velocity v vs rest length a at four different values of driv-
ing frequency ω = 50 (circles and solid line), 60 (downward triangles and long
dashed line), 75 (diamonds and medium dashed line), and 100 (upward triangles
and short dashed line), where kBT = η = L = 1, α = 0.3, ∆U = 100, and κ = 50.
Data points are taken from simulation data, lines show the corresponding theo-
retical predictions.

5.5.2 Dependence on friction

The linear interpolation [Eq. (5.27)] yields accurate results, as can be seen
from Fig. 5.4. Therein, the rest length is a quarter of the spatial period, a =
L/4, so that velocity v(a) is potentially large. For α = 1, which means η1 =
η2, the equations of motion become completely symmetric and the average
current must be zero. For decreasing α, the average velocity increases until it
reaches a maximal absolute value at α ≈ 0.3. Ongoing decrease in α leads to a
current reversal at α ≈ 0.07 and finally to some finite current in the opposite
direction for α→ 0.

The qualitative behavior of the velocity v can be explained by two antago-
nistic effects. The first effect depends on the off-phase equilibrium position
of the dimer in the deterministic case, see Fig. 5.2. At α = 1, the whole sit-
uation is symmetric with respect to the surface potential U. A decrease in α
leads to a shift in the final position either to the right (A) or to the left (B), as
explained above. For a dimer with rest length L/4, as it is the case in Fig. 5.4,
the shift in B is substantially larger than in A, yielding a negative average
velocity.

The second effect depends on the shift in the boundaries of integration,
i.e., the friction dependent change in the basins of attraction for each dimer
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Figure 5.4: Dimer velocity v vs asymmetry parameter α, where η = kBT = L = 1,
a = 0.25, ∆U = ω = 100, and κ = 50. For α = 1, symmetry is restored and
the average current is zero; the limit α → 0 means vanishing friction of dimer
component x2 and gives rise to a current reversal.

component. From simple geometrical reasoning one can deduce that, with
α = 1 and l0 = L/4, the dimer approximately will end up in A with proba-
bility 3/4 and in B with probability 1/4. For α < 1, the probability to arrive
in a B state is reduced because the fast component x2 may sometimes pull
the slow component x1 over the top of a potential barrier. This results in a
drastic enhancement of the transition probability from any A state into the
next A state to the right instead of the B state lying in between. Since the B
states have a high transition probability to the left A state, jumps to the left
are further decreased for low α. Eventually, with α → 0, the second effect
becomes dominating and the average velocity turns to positive values.

5.5.3 Dependence on temperature

The vanishing velocity at both extremal temperature limits, see Fig. 5.5, is
readily explained. At zero temperature, the only possible motion is the pure-
ly deterministic motion between equilibrium positions of on- and off-phases,
see Fig. 5.2. This oscillatory motion clearly is bound to a fixed position, gen-
erating no net current. At very high temperature, the probability distribution
functions of both dimer components become extremely flat. Furthermore, the
influence of the surface potential becomes negligible as compared to thermal
energy so that the transport generating influence of the driving is substan-
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Figure 5.5: Dimer velocity v and diffusion coefficient D vs thermal energy kBT , where
η = kBT = L = 1, α = 0.3, a = 0.25, ∆U = ω = 100, and κ = 50. Upper
graph: The velocity shows two extremal values of opposite sign. Lower graph:
The coefficient of free diffusion Dfree, i.e., dimer diffusion without driving, and
Dfree/2 are depicted in dashed lines, too.
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tially reduced.
Everything being of physical interest, e.g., a ratchet effect, is to be found

in the intermediate temperature regime about 0.1 < kBT < 100. The pro-
nounced maximum of negative velocity at kBT ≈ 1 and the less prominent
maximum of positive velocity at kBT ≈ 4 can be explained similarly to the
preceding section. When temperature rises from zero, the width of any fi-
nal off-phase probability distribution grows and transitions into neighboring
states become more probable. As long as temperature is low, those widths are
rather narrow meaning that any dimer in a B state will proceed to the left A
state with high probability. At higher temperature, the transition from a B
state to the A state on the right becomes more and more probable, finally
leading to a current reversal. Further reversals at still higher temperature
could not be observed because assumption (5.9) is no longer valid.

With regard to the diffusion coefficient, the same temperature ranges re-
veal different features of the dimer dynamics. For T → 0, the dimer mo-
tion becomes subdiffusive since the probability to leave the basin of attrac-
tion of a specific state rapidly approaches zero. The free diffusion coeffi-
cient of the same dimer but without driving, i.e., with spatially constant sur-
face potential, is Dfree = kBT / (1 + α) η, which is the diffusion coefficient of
Wiener process (5.18). One half of Dfree is the respective free diffusion coef-
ficient of a dimer that is “frozen” in place according to the same duty cycle
τon/τ = 1/2 for half of the time but without being relocated to discrete rest
positions. At kBT ≈ 1, the diffusion coefficient grows larger than Dfree/2,
and at kBT ≈ 4 it has grown distinctly beyond this value, marking a local
maximum of D/Dfree. This corresponds to the appearance of those transi-
tions that lead directly from an A state to the neighboring A state instead of
looping between A and B state. Since this happens while transitions in op-
posite direction are still important, an ensemble of dimers is tuned toward
an optimal mixing. At higher temperatures (5 < kBT < 30) this advantage
is counterbalanced by the enhancement of transitions from B to the right A
state, as explained above, and the diffusion coefficient declines asymptoti-
cally to Dfree/2. Finally, for kBT ≥ ∆U, the diffusion becomes quasi-free and
the coefficient D approaches Dfree.

5.5.4 Dependence on driving frequency

The frequency dependence is related to the temperature dependence of the
dimer dynamics via Eq. (5.18) which has the most decisive influence onto
the final result. Therein, thermal energy and duration of the off-phase are
multiplied to yield the width of the final probability distribution. For duty
cycle 1/2, this equals to the ratio of thermal energy and driving frequency
according to kBTτon = πkBT /ω. Therefore, one may expect similar results for
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5 Ratchet effect of a dimer II

variation in ω at fixed kBT as one had for variation in 1/kBT at fixed ω, as
long as the assumptions concerning times τon and τoff are respected.

Regarding velocity, this connection is self-evident from Fig. 5.6. Starting
at low frequency, velocity grows from zero to a first positive maximal value,
corresponding to the positive velocity maximum in Fig. 5.5. Further increase
in frequency ω reverts the sign of the net current to a much larger negative
velocity, as is the case for decreasing temperature. At even higher frequency,
theory disagrees with simulation because assumptions (5.10) and (5.11) con-
cerning the relaxation times of dimer components are no longer complied
with. The apparent prediction of a second node in the velocity relation there-
fore lies outside the range of validity; nevertheless the asymptotical decrease
in velocity for very high frequency is correct.

The similarity regarding the diffusion coefficient is not so complete be-
cause the barrier surmounting effect of very high temperature can only be
imitated by such a low-frequency that the corresponding large driving pe-
riod τ entering the denominator of Eq. (5.31) cancels everything. Therefore a
transition from an asymptotic Dfree/2 to a Dfree regime for ω → 0 cannot be
observed. Instead, in the low frequency limit analogous to moderately high
temperature (5 < kBT < 30), there is a saturation of the diffusion coefficient
at Dfree/2. Increasing the frequency leads to a clear maximum of diffusivity,
above Dfree/2 but still well below Dfree. The explanation for this maximum
of D/Dfree was given in the preceding subsection. This maximum of the dif-
fusion coefficient coincides with the sign reversal of the net current, as well.
At high frequency, analogous to low temperature, the time τoff is not long
enough to allow for diffusive escape from one of the discrete “rest” states to
which the dimer is periodically confined by the surface potential.

5.5.5 Dependence on elasticity

As we pointed out in the previous section, the approximation scheme we ap-
plied to the dimer dynamics prevents us from any proposition concerning
κ ≈ κcrit. This particular shortcoming obviously appears in Fig. 5.7, where
there is very good agreement between theory and simulation data in the
weak-coupling and the strong-coupling regimes, but not at critical coupling
where the average dimer velocity is maximized. At this point, both approxi-
mations fail completely.

The reasons for the asymptotic behavior of v for weak and strong coupling
are clear. In the uncoupled limit (κ → 0), the dimer resolves into two inde-
pendent particles, each in a symmetric potential that does not yet allow for
unidirectional motion. Neither is there any net transport possible in the rigid
coupling limit (κ → ∞) because in this case the dynamics can be reduced to
the Brownian motion of a single particle (e.g., center of mass) in a symmetric
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Figure 5.6: Dimer velocity v and diffusion coefficient D vs driving frequency ω =
2π/τ, where η = kBT = L = 1, α = 0.3, l0 = 0.25, ∆U = 100, and κ = 50. Upper
graph: The velocity shows two extremal values of opposite sign. The similarity
to v as a function of 1/kBT is striking. Lower graph: The maximum of diffusion
coincides with the low-ω maximum of v.
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Figure 5.7: Dimer velocity v vs elasticity κ, where η = kBT = L = 1, α = 0.3, a = 0.25,
and ∆U = ω = 100. Weak and strong coupling approximations are in good
accordance with simulation data over several orders of magnitude of the coupling
strength κ. Only at critical coupling, κcrit ≈ 2 000, both approximations fail. In the
weak-coupling limit, the average velocity v converges to infinitely small negative
values, whereas the approximation suggests a small positive velocity. This is an
artifact due to incomplete relaxation of the dimer that was not accounted for.

periodic potential. The small positive velocity visible at κ < 10 is a mere ar-
tifact. It occurs because assumption (5.11) concerning the relaxation time in
the off-phase is violated. If it was desirable to remedy this situation, the sta-
tionary probability distribution W(Y) could be replaced by its non-stationary
representation.

The internal degree of freedom, Y , becomes physically relevant for finite
elasticity only. Similarly to the two preceding subsections, the average ve-
locity possesses two extremal values with different sign. The low-κ maxi-
mum (in negative direction) is captured by the weak-coupling approxima-
tion, whereas its high κ counterpart (in positive direction) coincides with the
critical coupling strength. Anyway, both approximations enclose this maxi-
mum very tight so that one can easily do without a precise theoretical pre-
diction at κcrit.

Unlike all former results, the maximal velocity in positive x direction is
about six times larger than its negative counterpart. There are several reasons
for this: the probability of reaching a B state (cf. Fig. 5.2) with its relaxation
into negative direction is diminished because the fast component x2 can more
rigidly pull the slow component x1 over a potential barrier top. Furthermore,
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the maximal displacement of A states is increased whereas that of B states is
decreased with increasing κ. Last but not least, with further increasing cou-
pling strength, B states become unstable so that the probability for traveling
backward is reduced largely. Therefore, the effect onto the average dimer
velocity is by far larger than it was with all previously varied parameters.

5.6 Concluding remarks

We have investigated the one-dimensional overdamped Brownian motion of
a dimer whose elastically coupled components differ in their friction coeffi-
cients and are located in a flashing sinusoidal potential. Approximations for
the average velocity and diffusion coefficient have been obtained for wide
ranges of parameter values, yielding precise theoretical predictions as com-
pared to numerical simulations of the Langevin dynamics. Ratcheting mo-
tion has been observed and explained upon variation in rest length, temper-
ature, frictional asymmetry, driving frequency and elasticity. In each case
two parameter values have been found that optimize the velocity, either in
positive or in negative direction. For the two most relevant parameters—
temperature and frequency— the characteristics of the effective diffusion co-
efficient have been obtained.

Regarding the relevance for atomic-scale friction, these results can, in prin-
ciple, be considered in the same way as before (see section 4.6). Admittedly,
there is a certain difficulty involved to find appropriate materials. Those
must have a relatively simple structure that can be modeled as a dimer and,
at the same time, a complex dynamics because they must possess different
friction coefficients. Although the required asymmetry in dissipation is, in
the first instance, a quantitative aspect, it clearly can only be generated by a
qualitative disparity between the two interacting components to produce a
large enough difference in friction. A problem arises if one wants to produce
the necessary qualitative difference directly within the components. This can
only be obtained by a sufficiently complex internal structure as one can ob-
serve in motor molecules like kinesin or myosin. This means, in turn, that
the appropriate samples are likely composed of small, separate units and not
geometrically extended, as would be helpful for AFM manipulation. Or they
are geometrically extended but their complex internal structure prevents us
from simplifying them, in a minimalist model, to a dimer. However, any new
results offering means and ways to overcome this dilemma and to refute the
author’s overcautious attitude are very welcome.

A more promising alternative is not to produce AFM tips that form multi-
contacts through different kinds of asperities, which probably is hardly pos-
sible at all, but instead to design a specially suited surface. A hot candidate
for this is a silicon p–n junction (cf. Fig. 1.14) like it was used by Park and
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5 Ratchet effect of a dimer II

Figure 5.8: A low wear AFM tip produced by Olympus Co. (Japan) with two protru-
sions of ca. 10nm radius. Picture from the producer’s internet site.

co-workers in their friction experiment [66]. A surface patterned with strips
of p- and n-doted silicon could produce two different regimes of friction and
thus break friction symmetry. The experiment could be operated by using
either a multi-cantilever device like the Millipede (cf. Fig. 3.1) or, in a smaller
version, an AFM cantilever with a twin tip, see Fig. 5.8. The latter may in-
deed be applied very nicely to verify the theoretically predicted ratchet effect
and further to inquire its usability as a means of atomic-scale friction control.
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What most experimenters take for granted
before they begin their experiments

is infinitely more interesting than any results
to which their experiments lead.

Norbert Wiener

Until less than a hundred years ago, the research of friction has first and fore-
most been a material science. Engineers and technicians have been diligently
collecting friction coefficients of all materials being in use, with and without
various lubricants. It goes without saying that filling technical data sheets is
a very useful task with regard to technical advancement and industrial ben-
efits. But, according to Leonardo, a thorough analysis of the ragione behind
the natural effect of friction could not be achieved in this way. Asking with
Wiener, what are the basic principles of friction that were taken for granted so
long, has been a question hard to answer before the experimental accessabil-
ity of molecular and even atomic dynamics was established. Today, we are
in a position not only to ask questions about friction in a more sophisticated
manner, but also to find at least some clarifying answers in experiment.

The centerpiece of this thesis is the crossover of nanotribology and Brown-
ian motion for those systems that possess an internal interaction which sub-
stantially influences the dynamics of the whole system. One aspect of Brow-
nian motion, the role thermal activation can play, is the object of current re-
search on stick–slip motion and atomic-scale friction of single asperities. An-
other aspect of Brownian motion consists of the more complex phenomena
that arise in systems out of thermal equilibrium treated herein. What this
thesis aspires to is to elucidate the possibility of non-equilibrium phenom-
ena, especially the ratchet effect, in the context of nanotribology. It does so
by concentrating on minimalist models that are concerned with the dynamics
of coupled particle chains and, in particular, dimers on a crystal surface.

For the sake of simplicity, the model systems under consideration were
chosen one-dimensional, i.e., each particle is fully described by a single co-
ordinate. This simplification was shown to be justified because, in a pulling
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experiment where the FFM tip moves across a crystal surface or it moves a
nanoparticle across it, the main direction of motion is firmly imposed onto
the nanocontact by the relative motion of cantilever and sample stage. The
two-dimensional geometry of the surface potential can be split into the di-
rection parallel to the imposed pulling path and its orthogonal complement.
The one-dimensional model thus can be seen as the projection of the full po-
tential onto the parallel direction, whereas the direction orthogonal to the
pulling path can, in a rough estimate, be neglected to a large extent. As we
desired a qualitative exploration, we left the models one-dimensional. For a
meaningful comparison to experimental results, more effort is necessary to
incorporate the two-dimensional corrections.

Since minimalist models arise in many different fields of research (e.g., dif-
fusion of dimers on surfaces, molecular motors, DNA translocation through
nanopores, etc.), they are presented in a generic form, meaning that they were
originally not limited to a distinct area like nanotribology. Instead, the famil-
iar quantities that usually describe the dynamical response of a many particle
system, i.e., the average velocity and the diffusion coefficient, are connected
to the relevant quantities of an atomic-scale friction experiment which are
the mobility (force–velocity relation) and the moments of the waiting time
distribution for slip events.

The connection between the diffusion coefficient and the second moment
of the waiting time distribution has been established qualitatively via plausi-
bility considerations. The connection between the average velocity of the sta-
tistical models and the experimentally measured mobility is more obvious—
the decisive relation is encoded in the F(v)- or v(F)-curve. To show that the
two different modi operandi (pulling with constant velocity vs. pulling with
constant force) are comparable is a little bit more intricate. It was established
under certain assumptions regarding the stiffness of the cantilever.

Throughout this thesis, it is the same geometrical property of the systems
under consideration that attracts most of our attention: the interplay of the
dimer (or polymer) rest length with the corrugation length of the surface po-
tential. For chains of interacting particles, the existence of cooperative effects
was shown. In case of incommensurate rest length and lattice constant, the
idealized springs between the particles (harmonic coupling) serve as storages
for potential energy and thereby facilitate the surmounting of the individual
surface potential barriers. For dimers, a high sensitivity of the ratchet effect
was shown to be due to the namely geometric ratio. In this case, the en-
ergy storage function of the internal DOF is decisive for the emergence of the
ratchet effect, whereas symmetry reasons (comparable to commensurability)
lead to its overall suppression.

The influence of the control parameters temperature/noise level, driving
frequency, and spring constant/coupling strength was studied with exten-
sive numerical simulations. The numerical results were compared to the
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predictions derived from the analytical models based on the Langevin equa-
tions of the model systems. These showed a fair to excellent agreement and
thereby justified the underlying assumptions and approximations.

Concluding remarks to each of the chapters 3 through 5 named possible
(or, at least, thinkable) experimental applications, mainly AFM studies that
in the first instance may show whether the proclaimed effects (a) do exist at
all and (b) do really contribute to atomic-scale friction. Furthermore, a posi-
tive detection of ratcheting motion in coupled asperities or cantilevers opens
new perspectives to control friction effectively on the atomic level. The most
impressive outcome would be an experimental verification of either of the
following two: the multi-peaked structure of the velocity and waiting time
dispersion of multi-contacts, or the ratchet effect for a dimer with broken
friction symmetry, as pointed out in section 5.6.

Progress in nanotribology can certainly not be achieved without prop-
erly incorporating the Brownian motion that governs the single- and multi-
asperity contact dynamics. We are convinced that any Theory of friction aim-
ing at completeness will not come without a good portion of non-equilibrium
statistical mechanics.
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ZUSAMMENFASSUNG

Die vorliegende Dissertation behandelt minimale stochastische Modelle im
Überlappungsbereich von atomarer Reibung und Nichtgleichgewichts-Phä-
nomenen der Brown’schen Molekularbewegung. Der thematische Schwer-
punkt liegt dabei auf der Untersuchung von dynamischen Effekten in Zwei-
und Mehrteilchen-Systemen, in denen thermische Aktivierung und gegen-
seitige Kopplung die entscheidende Rolle spielen. Insbesondere der soge-
nannte Ratschen-Effekt wird am Beispiel des Dimers eingehend untersucht.
Die erforderliche Symmetriebrechung wird (a) durch unterschiedliche Bin-
dung an das Oberflächen-Potenzial, (b) durch unterschiedliche Reibungsko-
effizienten der beiden Dimer-Komponenten erreicht.

Neben der approximativen analytischen Ausarbeitung der zugrunde lie-
genden Langevin-Dynamik finden umfangreiche numerische Simulationen
der betrachteten Ensembles ihre Berücksichtigung. Wichtige Resultate sind

• die durch mehrfache Extrema gekennzeichneten Kurven für mittlere
Geschwindigkeit und Diffusionskoeffizient einer Teilchenkette im ge-
kippten periodischen Potenzial,

• der Nachweis des Ratschen-Effektes mit Hilfe von Computer-Simula-
tionen und die detaillierte Erklärung seines Zustandekommens sowie

• mehrere Möglichkeiten der Maximierung des durch den Ratschen-Ef-
fekt erzeugten Transportes über verschiedene Kontroll-Parameter.

Ferner finden sich Vorschläge zu möglichen oder in näherer Zukunft denk-
baren experimentellen Überprüfungen der theoretischen Resultate.

Diese Dissertation beruht auf folgenden Veröffentlichungen:

1. Sebastian von Gehlen, Mykhaylo Evstigneev und Peter Reimann,
Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an
internal degree of freedom, Physical Review E 77, 031136 (2008).

2. Mykhaylo Evstigneev, Sebastian von Gehlen und Peter Reimann,
Interaction-controlled Brownian motion in a tilted periodic potential, Physi-
cal Review E 79, 011116 (2009).

3. Sebastian von Gehlen, Mykhaylo Evstigneev und Peter Reimann,
Ratchet effect of a dimer with broken friction symmetry in a symmetric poten-
tial, Physical Review E 79, 031114 (2009).
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Zusammenfassung

Übersetzung der Zitate

Kapitel 1

Reibung ist keine Materialeigenschaft, sondern eine Systemant-
wort.

Bharat Bhushan

Kapitel 2

Eine Intelligenz, die, zu einem gegebenen Zeitpunkt, alle Kräfte
wüsste, welche die Natur beleben, und die jeweilige Lage der
Dinge, aus denen diese besteht, wenn sie außerdem umfassend
genug wäre um diese Gegebenheiten einer Analyse zu unterzie-
hen, die in derselben Formel die Bewegungen der größten Körper
des Universums und jene der leichtesten Atome umfasste: Nichts
bliebe ihr ungewiss und das Zukünftige wie das Vergangene wäre
vor ihren Augen gegenwärtig.

Pierre Simon de Laplace

Kapitel 3

Die Gesetze der Thermodynamik, wie sie empirisch festgestellt
wurden, bringen das näherungsweise und wahrscheinliche Ver-
halten von Systemen einer großen Zahl von Teilchen zum Aus-
druck, oder, genauer, sie bringen die Gesetze der Mechanik für
solche Systeme zum Ausdruck, wie sie Lebewesen erscheinen,
die nicht die Feinheit der Wahrnehmung besitzen, die es ihnen
ermöglichte, Größen von einer derartigen Größenordnung abzu-
schätzen wie jene, die sich auf einzelne Teilchen beziehen, und
die ihre Experimente nicht oft genug wiederholen können, als
dass sie irgendwelche außer den wahrscheinlichsten Ergebnissen
erzielten.

Josiah Williard Gibbs

Kapitel 4

Es gibt keine Wirkung in der Natur ohne Ursache; verstehe die
Ursache und du brauchst kein Experiment.

Leonardo da Vinci

Kapitel 6

Was die meisten Experimentatoren als gegeben annehmen, bevor
sie ihre Experimente beginnen, ist unendlich viel interessanter als
irgendeines der Ergebnisse, zu denen ihre Experimente führen.

Norbert Wiener
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