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Abstract

Robots that are used to support humans in dangerous environments, e.g., in
manufacture facilities are established for decades. Now, a new generation of
service robots is focus of current research and about to be introduced. These
intelligent service robots are intended to support humans in everyday life. To
achieve a most comfortable human-robot interaction with non-expert users it is,
thus, imperative for the acceptance of such robots to provide interaction interfaces
that we humans are accustomed to in comparison to human-human communica-
tion. Consequently, intuitive modalities like gestures or spontaneous speech are
needed to teach the robot previously unknown objects and locations. Then, the
robot can be entrusted with tasks like, fetch-and-carry orders even without an
extensive training of the user. In this context, this dissertation introduces the
multimodal Object Attention System which offers a flexible integration of com-
mon interaction modalities in combination with state-of-the-art image and speech
processing techniques from other research projects. To prove the feasibility of
the approach the presented Object Attention System has successfully been in-
tegrated in different robotic hardware. In particular, the mobile robot BIRON and
the anthropomorphic robot BARTHOC of the Applied Computer Science Group
at Bielefeld University. Concluding, the aim of this work to acquire a qualitative
Scene Model by a modular component offering object attention mechanisms has
been successfully achieved as demonstrated on numerous occasions like reviews
for the EU-integrated Project COGNIRON or demos.
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1. Introduction

"Please clean up the table and bring the dishes into the kitchen."

The sentence afore might in the future become a typical utterance of an elderly
person directed to a robotic companion. This addresses the development that
even today more and more elderly people decide to live alone and, hence, in
some circumstances require external help. The situation illustrates a growing
problem due to the foreseeable shift of the age pyramid (Figure 1.1) [fE04].

Figure 1.1: Age pyramid for Germany.
c©2004 WHO. The image has been taken from [fE04].

Significant progress in medical issues and a regressive birth rate are the most
important reasons for this development in our modern society. In the end this will
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lead to the problem that more and more people have to be cared for at home as
the capacity of retirement homes will exceed. Therefore, the society is on search
for a solution that enables home care as, in this way, the people can stay in their
familiar living environment. Consequently, a lot of research is done in the field of
robotics in order to match these requirements of a home care involving a robot
as caregiver. Hence, the development of so-called Personal Robots which repre-
sent companions that are able to learn from humans is one of the major goals of
this research. In particular, the establishing of a natural Human-Robot Interaction
(HRI) that offers a learning aspect in terms of adaptations in the robot’s behavior
on the needs of the interaction partner is the most difficult issue within the field
of robotics. This includes not only the interfaces that are used during such an in-
teraction but also the robot’s capability to appropriately answer the queries stated
by the user. For instance, social aspects like upholding a certain distance to the
user or the character of the robot (introvert vs. extrovert) need to be considered
as well. For such Robot Companions [DWK+05] or Robot Assistants [LPD+01]1

numerous applications are conceivable. Not only health care but also surveil-
lance and entertainment tasks or even support for pregnant women, cf. cover
illustration.

In combination with the development of a fully automated domestic Personal
Robot many problems in vision and speech processing have to be solved. To
face these challenges the Robot Home Tour Scenario was introduced by the Eu-
ropean Cognitive Robot Companion project (COGNIRON) [COG06] (Figure 1.2).
In particular, the scenario concentrates on the learning process of a robot after
the user has bought it in a store and took it home. As soon as the user switches
the robot on for the very first time, it automatically initializes and is, thus, ready to
acquire knowledge about its new operating area that contains, for instance, var-
ious objects. Because everything is unknown to the robot in this state, the user
has to teach the robot all objects and locations that might become important for
subsequent autonomous interactions.

Figure 1.2: The Robot Home Tour Scenario.

In addition to the learning of unknown object instances it is useful that the robot
is able to learn the geometry and the topology of the environment as well. Thus,

1cf. MORPHA-project [MOR99] and Desire-project [fPuA05]
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autonomous interactions with its environment become easier. Consequently, an
analysis of spatio-temporal relations between different objects can help to match
the peculiarities of a dynamic environment, like a private home with, e.g., objects
that can be carried to various locations or rooms. Furthermore, the robot has to
be able to gain knowledge about its user, e.g., the name, for the purpose of a
comfortable communication.

While dealing with the large amount of technical problems resulting from these
requirements, however, the important issue whether the society is already will-
ing to accept a Personal Robot as a companion needs to be considered as well.
Within this context, Arras and Cerqui conducted an opinion survey with 2000 par-
ticipants [AC05]. Although, the study was restricted to one European country,
the answers clearly show that people still exhibit a lot skepticism regarding the
acceptance of robots in their life. Thus, significant clarification of the benefits of
a robotic companion is needed. Additionally, the intuitive handling of robots has
to be improved for interactions with non-expert users. Especially the ease of use
is an extremely complex task and consists of a lot of requirements that have to
be fulfilled. But as shown in the past the learning aspect is the most challenging
one among all tasks, because it is a highly adaptive process. It is impossible to
foresee all situations due to the unstructured, cluttered, and flexible environmen-
tal conditions. Furthermore, elderly people are usually not as familiar with new
robotic techniques as young people. This makes a simple, flexible, and adap-
tive interface absolutely essential for a successful Human-Robot Interaction and
motivates us to search for new integrated solutions.

Motivation
The learning of unknown objects during a Human-Robot Interaction demands
for attentional mechanisms that enable the robot to steer its attentional focus on
individual object locations.

This especially applies for assistant-like personal robotic companions that are
intended to be used for tasks requiring interactions with their user and their envi-
ronment, like, e.g., fetch-and-carry tasks ("bring me tea"), cleaning tasks ("clean
up the table"), or search tasks ("find my keys"). However, the robots can only
solve this task if they are able to perceive and analyze objects and locations in
their vicinity. Decades of research have shown that robots with a perception only
based on a single modality are often not suitable for these tasks. Hence, the log-
ical conclusion is to use different modalities in parallel, e.g., vision and sound, in
order to overcome the limitations of former approaches in the field of object per-
ception for mobile robots. But, even such integrated solutions are not yet able to
satisfy the needs of non-expert users in natural environments as they are usually
developed from a technical perspective only and, thus, are not able to commu-
nicate in terms that humans are accustomed to. That is the reason why recent
cognitive robotic research considers not only the object itself, but also the user as
the most valuable source of information.

In doing so, a selection of relevant input that can be influenced by, e.g., the ut-
terances or the gestures of the currently interacting user becomes useful. This
selection is often realized by using an attentional mechanism [Lan05]. In partic-
ular, this means that the robot needs to have an awareness model for objects
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that enables the robot to focus its attention on the same Region-Of-Interest that
the user refers to. It is easy to understand that this process has to be as com-
fortable and intuitive for the human as possible. Hence, the awareness model
needs to support different modalities that humans are accustomed to. Usually
this involves at least the use of speech and deictic gestures. Due to their close
relationship between each other, especially these two modalities need to be an-
alyzed and aligned in a spatio-temporal sense. Thus, object references specified
by the user can be resolved which enables the robot to determine the current
Region-Of-Interest. This region is, consequently, used to acquire detailed visual
and auditory information about an object. As an outcome of such a successful
interaction, the gained knowledge can then be used for the acquisition of a quali-
tative Scene Model that stores all relevant information. This not only enables the
robot to interact with its environment on its own, but also ensures the evaluation
of the user’s actions through continuous feedback and provides the user and the
robot with a common ground. Hence, ambiguous situations between the user and
the robot can be avoided by, e.g., displaying an image about the selected object,
and yielding a more comfortable interaction. Concluding, the user always needs
to be informed about the internal state of the robot during the analysis phase in
order to be able to recognize and, eventually, to influence the robot’s behavior.

This internal state has to be communicated as best as possible. The probably
best choice, therefore, seems be an adaption of the robot’s behavior and attention
to human standards, respectively. The most promising attention models to face
these challenges are, consequently, presented in the following as far as they are
relevant in this work.

Survey of Attention Models for Cognitive Robots
The notion Attention is difficult to interpret. Mostly, this is due to its abstractness
and the unmanageable diversity of possible definitions. In this thesis definitions of
Attention given in [KH04] and [Nag04] are used. Accordingly, Attention is consid-
ered as a process connected to an agent which concentrates on some features
of the environment while other features are excluded.

Here, the focus lies on modalities that are usually used for a Human-Robot Inter-
action. To uphold the close relation between the user and the robot, and because
humans are excellent in paying attention on distinctive features, all following the-
ories of attentional mechanisms are biologically inspired. Therefore, they are
regarded in the context of so-called Social Attention since at least two individuals
are involved in a Human-Robot Interaction. Social Attention in terms of visual
perception, as it is described in [Eme00] can be distinguished into fives classes:
Mutual Gaze, Gaze Following, Joint Attention, Shared Attention, and Theory of
Mind . As Mutual Gaze and Gaze Following are rather considered as preprocess-
ing for the establishment of an attention-based Human-Robot Communication, it
is useful to concentrate on the latter classes which are more feasible. In this work
these different classes of attention between two interaction partners are under-
stood as follows:

• Joint Attention between the user and the robot defines a joint intentional
relation to the world pursuing a plan of action that either the user or the robot
chooses in order to realize a particular goal.
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• Shared Attention regarded as extension of Joint Attention additionally de-
scribes that the human and the robot are aware of each other and know that
the partner focuses its attention on the same feature.

• Theory of Mind describes the ability of the robot to attribute the behav-
ior of its user to the user’s mind, like it is often done between humans as
well [BC95]. For instance, when the user grasps an apple, the robot could
infer that the user is hungry and probably wants to eat the apple.

Starting from these definitions, the following section points out the contribution of
this thesis for the realization of an attentive system for objects supporting intuitive
interactions between a human user and a robot.

Contribution
The contribution of this thesis is the development of an innovative approach for
the integration of different modalities in an attention-controlled framework for ob-
ject learning and recognition tasks that emerge from a Human-Robot Interaction.
The proposed framework is called Object Attention System (OAS), in the follow-
ing used as proper name that accurately establishes a spatio-temporal relation
between visual and auditory object features, symbolic speech input, face recog-
nition, and gesture information. Thus, a so far unique amount of acquired object
information becomes available which extends the imaginable applications for the
Object Attention System in numerous ways. For instance, intuitive Human-Robot
Interactions with object references become possible due to interfaces that hu-
mans are accustomed to (natural speech, pointing gestures, . . . ). Additionally,
the robot can interact with its environment autonomously, like reacting on the
sound of an alarm clock even it can not be seen by the robot while afterwards the
robot could inform its user, e.g., by a spoken notification.

In order to face these challenges, the Object Attention System integrates many
recent techniques that are summarized next. Resulting from interactions, the
object data includes graph-based visual appearances [TE05] as well as SIFT fea-
tures [Low04] to support a proper object recognition of objects afterwards. From
an auditory perspective, modern compression algorithms, like Ogg Vorbis [Fou06]
are used to achieve an adequate sound representation of objects as well. Espe-
cially the object representation, no matter whether it concerns sound, text, or vi-
sion, consistently uses broadly accepted open and non-proprietary formats only,
like OpenCV [int06] or XML [Wor06a].

Additionally, the symbolic description given by the user is summarized in an adap-
tive XML-based structure which, for instance, includes 3D-object positions, object
properties, and entries pointing to the location of object sounds and object views.
In conclusion, the gathered information is used to acquire a qualitative Scene
Model representing the environment. To prove the feasibility of the proposed ap-
proach, it has been applied on two different demonstration platforms, the mobile
robot BIRON [HHH+04] and the anthropomorphic robot BARTHOC [HSF+05].
Therefore, the Object Attention System has been integrated in the robotic system
infrastructure SIRCLE [FKH+05]. To sum up, the proposed Object Attention Sys-
tem meets the demands for a natural, comfortable, and intuitive Human-Robot
Interaction.
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Outline
The complexity of the contributed Object Attention System is explained best by
Figure 1.3 on page 7. The cyan framed numbers relate to the relative chapter of
this thesis. Thus, this thesis is structured as follows.

Chapter 2 presents related work in the context of Object Attention used in robots.
In particular, the chapter gives a more detailed introduction in the concepts of
Joint Attention, Shared Attention, and the Theory Of Mind. Then, a reflection
of unimodal versus multimodal attention-based systems follows. At the end of
chapter 2, an overview on robots using attentional mechanisms is given.

The subsequent chapter 3 first discusses possible modalities that are useful for
the development of the multimodal Object Attention System, followed by a view
on the modalities actually used. Thus, a distinction between user-related and
object-related perception, as well as supported interfaces (e.g., symbolic speech,
gesture data) are described.

Next, after the modalities have been introduced, chapter 4 focuses on the de-
velopment of the integrated Object Attention System. Therefore, a short section
about related work with regard to learning approaches for objects and the robot
hardware used is provided. This is followed by a detailed presentation of the inte-
gration of intra- and intermodule-relevant communication, while time-dependent
restrictions are considered as well. After that, the acquisition of an appropriate
Region-Of-Interest together with the realized object representation of the user’s
actions and visual as well as acoustic object appearance is described. The chap-
ter closes with the presentation of the implemented processing strategies for the
handling of unknown and known objects.

In order to complete the integrational aspects of the proposed Object Attention
System, chapter 5 gives an insight into the robotic system environment where it
has been integrated. Therefore, the chapter deals with the knowledge represen-
tation in terms of a Scene Model which is realized by an Active Memory concept,
and a method to gain enhanced visual object perception by so-called Multi-Mosaic
images. In the second half of that chapter, the actual system environment is de-
scribed, ranging from the architectural framework to the communication system
applied. So far, all aspects for the development of the Object Attention System
have been presented. Thus, the developed system needs to prove its technical
quality.

The quality analysis of such a system, hence, is the topic of the following chapter
6. Here, a qualitative and quantitative evaluation of the proposed object reference
resolving approach is given. Therefore, an extensive evaluation setup including
user studies is presented. The chapter ends with a discussion of the acquired
evaluation results.

Finally, a summary of the work including an outlook for possible extensions of the
proposed Object Attention System is given in chapter 7.
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2. Object Attention and Learning in
Mindful Robots

Attention as intention to concentrate on a distinctive feature is an essential part
of an interaction or communication. Hence, sophisticated Personal Robots that
are intended for interactions with a human, need to have the ability to direct their
attention on objects the human user refers to. Additionally, as this kind of robots
is meant to be used as companion-like robots, they have to support human-like
behavior as well, e.g., simultaneous looking on objects for feedback reasons or
verbal feedback after an object has been focused.

This chapter begins by describing an attentive robot equipped with a basic at-
tention model in order to illustrate the principles of directed Object Awareness.
Subsequently, more advanced models are presented which follow the same prin-
ciples as proposed in the first example. These more sophisticated approaches,
namely Joint Attention, Shared Attention, and Theory Of Mind are then discussed
within unimodal versus multimodal robotic architectures providing Object Atten-
tion. At the end of this chapter a selection of robots that use mechanisms which
allow them to interact with objects are presented.

Kopp and Gärdenfors propose in [KG01] that "...attention is a minimal criterion
of intentionality in robots...". This is a clear statement, because only a robot that
is able to perceive its environment is able to act in it. To prove their point they
have developed the reactive grasp robot R1 in order to describe behavior that
seems intentional. In particular, R1 uses a set of S-R (stimulus-response) rules.
For grasping a single object they have observed that R1’s action seems to be
intentional since the robot is able to appropriately react even on moving objects.
However, using S-R rules limits the interactions to single objects. If more than
one object is present, the "attention" of R1 randomly shifts between the different
objects.

Considering their experience with R1 they submit that a visual robot needs to be
able to

1. identify relevant objects in the scene.
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2. select one of the identified objects.

3. direct its sensors towards the selected object.

4. maintain its focus on the selected object.

These prerequisites lead to their proposal of a basic architecture for an attentional
robot consisting of a reactive system, a value component to represent the moti-
vational attraction level for objects, a selection system and an attentive system.
To sum up, this is the basis for an attentional mechanism used for object learning
and recognition in a robot. However, for an intuitive Human-Robot Interaction not
only salient object features need to be analyzed but also the user’s instructions.
Here, humans are mostly accustomed to a combination of speech and gestures
because gestures usually provide a faster and more precise possibility to refer
to objects. For instance, it is often very difficult to describe the exact position
of an object verbally only. Thus, adding visual gesture information can help to
improve the convenience of an interaction. But, this results in the need for a com-
bination with the visual appearance of the referenced object. Most commonly
the combination of different visual input is realized with some kind of Attention
Maps [SRHR04] (similar to Conspicuity Maps [IKN98], Feature Maps [BS99] or
Saliency Maps [VCSS01]) while their basic idea is exemplary depicted in Fig-
ure 2.1(b).

(a) Original input image cap-
tured by the object camera.

(b) A color mask for ’blue’.
White areas are transparent.

(c) Overlay schematics for highlighting blue
color (isometric view).

(d) Overlay schematics for
highlighting blue color (top
view).

Figure 2.1: Illustration of the usage of possible cues for Attention Maps.

Those Attention Maps highlight a specific feature and, ideally, provide only data
that is relevant for the evaluation of an object by applying the map (Figure 2.1(c)
and 2.1(d)) on a given input image (Figure 2.1(a)). Originally, this concept for
Visual Attention was introduced by Itti, Koch, and Niebur [IKN98] who presented
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a fast approach for scene analysis. They applied Saliency Maps that use bio-
logically inspired complementary colors like red-green, blue-yellow, and intensity.
In the context of object learning for robots features like, e.g., color, edges, and
shape have proven to be best as they are the most important ones for humans
according to [Sch01, Tso05]. After calculating Attention Maps they are usually
fused to get a more reliable signal. Especially in the field of robotic research the
required maps are often designed as neural networks, as they are assumed to
appropriately simulate human behavior.

An applied example for an integrated approach using Saliency Maps for learn-
ing objects, directing the attention of a robot and selecting a Region-of-Interest is
described by Gonçalves and colleagues. They have developed a framework for
Robot Cognition [GWOG99]. In particular, they use a stereo head robotic plat-
form for the processing of visual information. In their framework this information
is used as basis for neuro-physiologically inspired Saliency Maps, similar to the
proposed model for attention of Itti et al., e.g., [IKN98]. As a result Gonçalves et
al. are able to create an environmental map containing pattern orientation, posi-
tion, and representation. The collected information is then dynamically updated
which enables adaptation to changes in the environment over time. However, their
approach does not allow a human user to directly interfere which is one main as-
pect of a convenient Human-Robot Interaction as they mostly focus on the signal
processing.

Besides this low-level signal processing with Attention Maps a cognitive motivated
Personal Robot needs to provide high level cognitive functions like social skills as
well. It is obvious that in a cooperative task, like playing a table game, the interac-
tion will be more comfortable for the human user as long as the Object Attention
System supports a natural interaction. This means that it has to support appro-
priate information about objects that can easily be processed by a deliberative
dialog component. For instance, the Object Attention System needs to be able to
establish connections to formerly learned objects and their symbolic descriptions,
like color names and numeric color values. In order to prove that humans desire a
robot that exhibits social skills they are accustomed to, Breazeal et al. [BBG+04]
presented results of an investigation on humanoid robots that had social abilities.
They state that it is imperative for a socially intelligent, cooperative humanoid
robot to adhere people’s Social Model in order to be able to predict, explain, and
understand the robot’s behavior. This Social Model assumes that humans auto-
matically attribute different mental states (e.g., beliefs, feelings, . . . ) to non-living
entities when they exceed a certain state of complexity. A Personal Robot that
is intended to support untrained people in a natural and intuitive manner belongs
to this category. Due to the increasing complexity of the interaction scenario the
robot’s social sophistication has to scale appropriately as well [FND03].

In order to face these challenges the next sections point out different theories
of attention that are helpful for an interaction scenario with a Personal Robot.
Starting with Joint Attention as a theory with the loosest coupling between mind
and action (cf. section 1) over the mechanisms of Shared Attention up to the
Theory Of Mind as the most sophisticated model as far as the development of the
Object Attention System is concerned.
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2.1 Theories of Attention
For an intuitive Human-Robot Interaction, the mechanism which directs the robot’s
attention to a referenced object can be realized more or less high-level. In the
following, the most appropriate theories that are relevant for the development of
the Object Attention System are presented from the perspective of increasing
demands for cognitive abilities.

Joint Attention

Joint Attention as an advanced social skill for robots implies that the robot is
able to follow the focus of attention of its interaction partner. In particular, Joint
Attention offers a great opportunity for cooperative learning since the user is able
to give direct feedback to the robot.

An approach that presents a model for the development of Joint Visual Attention
in a robotic context is given in the work of Y. Nagai et al. [NHMA03, Nag04].
Subsequently, this work is exemplary used to explain the mechanisms of Joint
Attention. Y. Nagai and colleagues motivate their learning attention model by the
cognitive developmental process of infants. From this perspective, they simulate
the staged learning process of infants in their behavioral model as it is introduced
in [BJ91]. Next, this model is described by means of an interaction between a
human user and a robot. In the first stage, which represents the Ecological Stage,
the robot does not explicitly follow the gaze of the human user but tends to look
at interesting objects that are within the gaze direction (Figure 2.2(a)). Compared
to infants this behavior is usually shown at an age of 6 to 9 months.

(a) Ecological Stage:
Robot looks at salient ob-
jects within the gaze direc-
tion of the user.

(b) Geometric Stage:
Joint Attention only when ob-
ject is observed in the field of
view of the robot.

(c) Representational Stage:
Joint Attention even if the ob-
ject is out of the robot’s cur-
rent field of view.

Figure 2.2: Staged learning of Joint Attention.
The images have been adapted from [NHMA03].

During the following Geometric Stage (Figure 2.2(b)), the robot realizes Joint At-
tention for the first time, but only if the user is looking at an object that is already
within the robot’s field of view. This stage of perception has been observed at in-
fants at the age of 12 months. The Representational Stage shown in Figure 2.2(c)
describes the last stage of development with regard to Joint Attention. The robot
is able to follow the gaze of its user even if the Region-Of-Interest is initially not
in the robot’s field of perception. This behavior corresponds to experiments that
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were done with infants at 18 months of age. All considered, a robot that should
be able to focus its attention on an object referenced by the user, needs to simu-
late the behavior of an approximately 18 months old infant in order to enable an
interaction humans are accustomed to.

Another approach investigating the development of Joint Attention as social cog-
nition between a human user and a robot is proposed by Kaplan and Hafner
in [KH04]. They state that besides viewing the gaze and simultaneous looking
at a salient feature, Joint Attention also "...implies viewing the behavior of other
agents as intentionally-driven..."1. Concluding, they propose that the challenges
in the development of social cognition and Joint Attention, respectively, need to
consider the coordinated development of intentional matching and inferencing,
behavioral parsing and other skills. A step in that direction is given by models for
Shared Attention which are described next.

Shared Attention

In this work the term of Shared Attention is used as extension of Joint Attention (cf.
section 1). The main difference consists in the additional aspect that the involved
interaction partners are aware of each other and know that they are referring
to the same object. For instance, a model for a Shared Attention mechanism is
presented by Lockerd Thomaz et al. [ALTB05]. For their studies they have realized
their model for Shared Attention in their robot Leonardo.

(a) Influence factors for the computation of
object saliency.

(b) Schematic of the Shared Attention mech-
anism used in the robot Leonardo.

Figure 2.3: A concept for Shared Attention with object context in an HRI.
Explanations are given in the text. The images have been taken from [ALTB05].

Thus, Leonardo is able to direct its attention to the same object that the user
refers to. As for the development of the Object Attention System the appraisal of
objects is of major interest, the computation of the object saliency is discussed
next. For its computation several aspects are considered in order to establish a
social interaction scenario, where the overall saliency determination is the result
of a weighted sum of different factors distributed on three categories. The first
category considers the social reference (e.g., if something is pointed to) as it is
depicted in Figure 2.3(a). The second category contributes the perceptual proper-
ties of an object, i.e., whether it’s moving or its color. The third category concerns

1taken from [KH04]
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the internal state of the robot. Depending on the current state the robot is, for
instance, able to determine whether the object shown is familiar to the robot or
not. After the object saliency has been computed, it is used in the overall attention
model shown in Figure 2.3(b).

The attention model in turn is realized as an explicitly represented mental state
in the style of the attention mechanism proposed by Baron-Cohen [BC91]. Within
this state the model of Lockerd Thomaz et al. collects data that helps to determine
what the person’s interest is about. As the schematic of the Shared Attention
model in Figure 2.3(b) illustrates, the model is divided into three components,
in particular, three different kinds of foci. The first one deals with the current
attentional focus related to the view of the robot. In order to be able to know what
the human user is currently looking at, a second separate attentional mechanism
for the human is used. These two distinct foci are combined in the third referential
focus that involves the current topic of shared focus. Here, generic aspects are
considered, like the topic of communication or performed activities.

Now that the principle mechanisms of Joint Attention and Shared Attention have
been explained, they can be used as prerequisite in modeling a Theory of Mind,
which is described next.

Theory of Mind

The different attention models described in the preceding sections enable the
robot to direct its attention on the object of interest. But for a natural communi-
cation this is not sufficient as humans automatically attribute certain intentions,
beliefs, or goals of the partner related to the object. For instance, if a person
points to an apple, the person probably wants to eat it. This kind of inference can
be described by the Theory of Mind which represents another essential part for a
human-like interaction between a human and a robot. It is obvious that a Theory
of Mind in a socially reactive robot provides several advantages. Aspects like,
e.g., desires or emotions of the user could be realized in the robot’s mind and,
thus, it can react more appropriate. As an example, if the user is angry, the robot
could try to calm him down.

An attempt to simulate this "mind-reading" behavior by integrating a Theory of
Mind in a robot’s architecture is described by Ono and Imai in [OI00] or Scassel-
lati in [Sca02]. For example, Scassellati proposes a model for the humanoid robot
Cog. In his work he adapted the models of Theory of Mind by Leslie [Les94]
and Baron-Cohen [BC91]. Summarized, Leslie proposes in [Les94] that three
classes of events based on their causal structure should represent the world. In
brief, the Actional Agency Class explains goals and intents of agents, the Attitu-
dinal Agency Class models attitudes and beliefs of agents, and the Mechanical
Agency Class explains the rules for mechanics. In Leslie’s model especially the
interdependency between these classes is considered.

The model of Baron-Cohen [BC91] introduces a so-called Mindreading System
that acts as a set of precursors for a Theory of Mind. His proposed system is
shown in Figure 2.4 which is decomposed into four distinct modules. The first two
modules, the Intentionality Detector and the Eye Direction Detector represent the
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input that is provided by two perceptional representations. All stimuli with self-
propulsion and direction (auditory, tactile, visual) on the one hand and all visual
stimuli with eye-like shape on the other hand.

Shared Attention
Mechanism

Theory of Mind
Mechanism

Intentionality
Detector

Eye Direction
Detector

Eye−like
stimuli

Stimuli with
self−propulsion
and direction

Dyadic
representations
(desire, goal)

Triadic
representations

Dyadic
representations

(sees)

Full range of mental
state concepts,
expressed in

M−representations

Knowledge of the
mental, stored and
used as a theory

Figure 2.4: Baron-Cohen’s model visualized as block dia-
gram for the development of a Theory of Mind in a robot.

See text for description. Adapted from [BC95].

In detail, the Intention-
ality Detector creates
a dyadic output for ba-
sic movements as well
as declarations about
approach and avoid-
ance, like "She wants
to eat the fruit." The
output of the Eye Di-
rection Detector de-
termines whether the
interaction partner is
looking at the robot or
not. Based on this
information the mod-
ule can interpret, e.g.,
the eye direction in or-
der to guess the gaze
and, thus, produces
triadic representations
like "Axel is looking (I
see the apple)" while
the three involved el-
ements are “I", “Axel",
and “apple". This
structure is caused by the embedding of the first dyadic representation within the
second one. Concluding, this means that both interaction partners attend to the
same object (cf. section 2.1). The fourth module of Baron-Cohen’s Mindreading
System consists of the Theory Of Mind mechanism. It connects epistemic mental
states in other agents with our knowledge of mental states in one theory. So,
intentions, desires, and beliefs of different agents can be predicted. Scassellati
now links Leslie’s model together with the model of Baron-Cohen into a robotic
Theory Of Mind for the robot Cog which is subsequently described.

The initial system implemented by Scassellati in [Sca02] focuses on two abilities.
First, it is able to distinguish between animate and inanimate motion and sec-
ond it is able to identify gaze direction. For these tasks the system uses different
detectors for Color, Skin, and Motion which are combined together with a habitua-
tional mechanism within an attention process. This attention model is based upon
models of a human visual search and attention where this solution is held very
flexible. Thus, it was possible to use a former implementation of this attentional
mechanism on the social robot KISMET [BS99]. By using different input cues, the
system is able to detect faces and follow the gaze in order to focus on the same
object that a user attends to. An extension by imperative and declarative pointing
of the presented system is described in [Sca03]. In that paper Scassellati and
colleagues discuss their implementation of a behavioral model of social develop-
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ment. In particular, they review the capabilities of the implemented mechanisms
for Joint Attention. It has to be noted that they do not distinguish between Joint
and Shared Attention. Thus, the aspects they report as Joint Attention are under-
stood as Shared Attention in this thesis (cf. section 1). Although they reported
an unfinished implementation of Baron-Cohen’s model realized in the humanoid
robot Cog the results gave promising insights. In detail, the Eye Direction Detector
and the Shared Attention module as well as a mechanism to orient the neck and
arm pointing were used. Based on this configuration, the users who interacted
with the robot found its social behavior, for instance, head-nod imitation and eye-
neck orientation both believable and entertaining. Summarizing, it can concluded
that the implementation of a Theory Of Mind is a step in the right direction during
the development of cognitive Personal Robots and the proposed Object Attention
System, respectively.

However, the mental models of attention present only one side of the coin, the
other one copes with the integration of perceptual sensors in a mentally moti-
vated design. For this reason, the next sections will focus on architectures used
in social robots that offer Object Attention capabilities. Especially as such archi-
tectures provide an infrastructure that supports an assignment of sensor signals
to symbolic expressions which is known under the term Anchoring, cf. [CS03,
FKL+03, Lan05].

2.2 Architectural Aspects for
Robotic Systems with Object Awareness

The control of attention can eventually be realized based on one modality only
as input cue. Especially for mobile robots where computational resources are
strongly limited, unimodal solutions are advantageous because they usually have
a reduced consumption of computational power since less data has to be pro-
cessed. The disadvantage of unimodal processing lies in the vulnerability for
perceptional errors. This problem can partially be compensated by multimodal
approaches using more than one kind of input, e.g., vision and audio.

To give an overview of different approaches, the next sections will review atten-
tional mechanisms with a focus on unimodal and multimodal input processing
for their advantages and disadvantages in robotic systems that provide a kind of
Object Attention.

2.2.1 Unimodal Attention Processing

Unimodal attention processing for socially reactive robots is not very common
since a natural Human-Human Interaction usually uses several modalities (e.g.,
Speech, Gestures) as input. Like described above, unimodal solutions are very
sensitive to errors and, thus, a selected modality often does not provide reliable
data. For instance, if in a purely vision-based system the Region-Of-Interest is
temporarily occluded, it’s very difficult to enable or uphold the focus of attention on
the referenced location. As a second example, a purely audio-based approach will
fail if the background noise (e.g., talking people in the robot’s vicinity) overlays the
speech of the Person-Of-Interest and as a consequence the needed information
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can not be extracted. For a purely audio-based Object Awareness approach the
objects always need to produce a sound. But since sonar-based or ultrasonic
approaches are too coarse in order to pinpoint and identify a far-off object they
are of minor relevance for a natural interaction as well. Furthermore, systems
using wireless identification, like radio frequency tags, are not the focus of this
work either, as they are not used in a natural interaction. Thus, only architectures
that are mainly vision-based will be discussed subsequently.

This section is structured as follows. First, a general approach of establishing
Joint Visual Attention that allows to focus on an object is presented. Subse-
quently, a model that enables a coarse fixation on an object in a large cluttered
scene is described. However, on the contrary to a large cluttered scene interac-
tions often take place in a small restricted area with similar looking objects. Thus,
a proposal that allows to focus the visual attention on a single object in a strongly
restricted scene with a couple of similar objects standing nearby to each other is
discussed.

The Joint Visual Attention approach by Y. Nagai et al. [Nag05a, Nag05b] (cf. sec-
tion 2.1) integrates a computational learning model that is used to comprehend
the development of Joint Visual Attention by investigating pointing, reaching, and
tapping gestures. In the following, their learning model is explained on basis of
Figure 2.5 that illustrates the overall setup.

Figure 2.5: Learning model for the acquisition of Joint Visual Attention.
See text for a detailed description. This figure has been taken from [Nag05a].

As experimental input for the setup, a human user performs the above mentioned
different types of gestures (pointing, reaching, tapping) which are evaluated by a
salient image feature detector that analyzes the edges and the optical flow in the
captured images. Thus, the movement of the hand can be determined. To do so,
they apply a visuo-motor learning module that uses two neural networks. As a
consequence it becomes possible to let the robot follow the pointing direction in
order to determine the Region-Of-Interest which contains the salient object. The
execution of the calculated following behavior is realized in a last processing step.
Here, the output of the feature detector and the learning module is verified by the
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Output Coordinator that decides which motor commands are actually sent to the
robot’s head.

The results of the conducted experiments showed that the chosen category of a
gesture affects the learning process regarding the comprehension of the direc-
tion of a gesture. Y. Nagai comes to the conclusion that the reaching gesture
facilitates the fastest learning method to comprehend the direction of a gesture
because of the richness of edge features and the closeness to the referenced ob-
ject. The second fastest learning results are possible with the tapping movement
as it offers a qualitative difference between the edge directions and the optical
flow. The remaining third category of pointing gestures are not that suitable due
to their distance to the referenced object as this involves the capability to correctly
assign an object that is only within the pointing direction and, thus, more difficult
to determine.

Concluding the experiments of Y. Nagai, the best possible results for the determi-
nation of the Region-of-Interest by the proposed Object Attention System can be
expected if the user directly touches the referenced object. However, as it cannot
be assumed that the object is always nearby the user so that he can directly touch
the object, a coordination of the robot’s head might become necessary in order to
roughly focus on the area containing objects, see Figure 2.6.

Figure 2.6: Focused object (sign
with red boundary) after head-eye
saccade., taken from [VCSS01].

Since these difficulties require an active
mechanism to direct a "spotlight" of at-
tention, Vijayakumar et al. investigated
in [VCSS01] the computational mecha-
nisms for Visual Attention. For this pur-
pose they have build a biologically inspired
system (cf. [SF03, KLT04]). In particular,
they modeled an artificial oculomotor sys-
tem on an anthropomorphic robot, like it is
shown in Figure 2.7. The schematic illus-
trates that the necessary computations are
modularized into three distinct subparts,
the Sensory Processing Module, the Motor
Planning Module, and the Interaction Issue
Module. The Sensory Processing Module

mainly consists of a Competitive Dynamical Neural Network for modeling cortical
information processing. It is responsible for the conversion between the raw sen-
sory input signals and the camera coordinates that are used as target for the next
saccade.

Then, the Motor Planning Module takes these coordinates in order to transform
them into motor control commands for the head and the oculomotor system. Last
but not least, the Interaction Issue Module is used to control higher level actions
of overt attention. This involves for example the cancellation of self-motion as a
potential target of attention. To prove the usability of the developed system, Vi-
jayakumar et al. demonstrate the performance of their attention model by focusing
on different small objects (round signs) in a cluttered scene, cf. Figure 2.6. Unfor-
tunately, a natural environment usually offers a variety of different objects standing
nearby to each other. Thus, such a coarse visual search, like it is presented by
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Figure 2.7: Schematic of a system implementing overt Visual Attention.
See text for a detailed description. This figure has been taken from [VCSS01].

Vijayakumar and colleagues is often not sufficient for the use in the proposed Ob-
ject Attention System. An approach that allows a closer visual search within the
scene is, therefore, described next.

Figure 2.8: Schematics of Itti & Koch model
for Visual Attention., taken from [IK00].

A few approaches, e.g., [BE04,
KBCE05, HW06a] deal with as-
pects of directed attention for ob-
jects within a cluttered scene. For
instance, in [HW06a], Hawes and
Wyatt present an extension of the
Itti & Koch model of Visual At-
tention by contextual information.
Their approach is developed as
part of the EU Project Cognitive
Systems for Cognitive Assistants
(CoSy) which defines the so-called
PlayMate scenario. Within this
scenario, a human and a cognitive
inspired robot interact with objects
placed on a tabletop. To improve
the scene analysis of the tabletop
view, Hawes and Wyatt altered the
approach of Itti et al. [IK00] which
is depicted in Figure 2.8. The dif-
ference is not to linearly combine
the computed Conspicuity Maps for colors (red-green, blue-yellow), orientations
(0◦,45◦, . . . ), and intensities and then to fuse them in a single Conspicuity Map
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(highlighted layer in Figure 2.8), but to integrate the different single Conspicuity
Maps directly into the final Saliency Map.

In the end, this final map is used as input for a Winner-Take-All (WTA) neural
network that detects the most salient location and, subsequently, directs the focus
of attention towards it. For context-sensitivity they additionally use weights in the
final linear combination in order to enable varying presence in the Saliency Map.
As a first evaluation result they report improvements in performance towards the
original Itti et al. model on a static scene with a number of different-colored cans
on a white tabletop. This result is very interesting with regard to the application
in the Object Attention System as an increased performance is helpful to support
a convenient Human-Robot Interaction. Thus, it has to be considered, whether a
similar approach can be realized in the Object Attention System as well.

Summarizing this section, it turned out that unimodal approaches are only suitable
to investigate basic behaviors, like, e.g., the development of different kinds of
attention. For an intuitive Human-Robot Interaction, however, at least Speech or
Gestures are required. Thus, a couple of multimodal architectures using these
input cues are discussed next.

2.2.2 Multimodal Attention Processing

Multimodal attention models that are using different input cues to focus the direc-
tion of attention, underly the same principles as unimodal approaches. But due to
a combination of different modalities it is possible to compensate the weaknesses
of a single input cue up to a certain degree. Here, integration in a spatio-temporal
sense becomes one of the most important issues. Relying only on one modality
has been proven as insufficient input for directing a robot’s focus of attention in
domestic domains which represent dynamic, cluttered, and noisy environments.
In particular, variations in lighting conditions or moving and talking people usually
cause at least one sensor not to support a robust cognition of the environment.
These variations demand for a flexible solution while developing the Object Atten-
tion System. Additionally, due to the unstructured environment, the robot always
needs to be able to learn new objects and locations. In [RP97], Roy and Pentland
propose that only multimodal interfaces are able to provide a solution for these
challenges. They point out that it requires at least two different modalities to learn
a new circumstance, e.g., the meaning of a new object. First, the main input cue
that is responsible for the "task" itself (here, a new object) and, secondly, an addi-
tional source of information (e.g., a gesture) which indicates that an object should
be learned.

The outline of this section is as follows. This section begins with biologically in-
spired robotic architectures of increasing complexity used in two different robots.
The first one facilitates a cognitive motivated architecture which uses speech for
the description of objects. The second example discusses an architecture that,
furthermore, offers a Theory Of Mind. Both examples have in common that they
have been applied on stationary robots. To point out that similar approaches are
applicable on mobile robot platforms as well, two mobile robots are introduced
that, in particular, support speech and gesture processing. The latter one, addi-
tionally, does a visual object analysis.
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One example for a stationary robot providing an Object Attention mechanism
is the Bielefeld robotic system GRAVIS which is described in [SRHR04]. The
GRAVIS system directs its attention towards an object while the user is pointing
to it. The diagram in Figure 2.9 depicts its principal architecture.
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Figure 2.9: The Bielefeld robotic system GRAVIS.
See text for a detailed description. Image taken from [SRHR04].

Basically, it is divided into four modules, the Speech Processing, the Visual At-
tention Processing, the Control Mechanism for the arm and hand manipulator,
and the Integration Module responsible for the convergence of linguistic and visu-
al/gestural inputs. All considered, these modules are able to generate saccadic

Figure 2.10: Attentional subsystem of the
GRAVIS robot, see text for a detailed description.

The image has been taken from [MFR+02].

movements of the stereo cam-
era head in order to sup-
port an active scene analy-
sis for finding and interact-
ing with objects in the scene.
This method of Object Atten-
tion is supported by the lay-
ered architecture (Figure 2.10)
of the Visual Attention mod-
ule. It integrates several Fea-
ture Maps. Specifically, the dif-
ferent maps highlight the satu-
ration and intensity within the
Hue Saturation Intensity (HSI)
color space. Thus, skin color,
oriented edges, and motion
based on a difference map can
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be highlighted. Spoken simplified, a "moving skin map" is created as an additional
Feature Map. Furthermore, a map for the detection of deictic pointing gestures is
added. During the subsequent processing a weighted sum of all Feature Maps is
combined with a manipulation map and a fadeout map in order to create a final in-
terest map. Finally, this map is overlayed with a Gaussian smoothing to suppress
small saccades and, consequently, the dominant peak is used as new fixation
point. Hence, a stereo matching is activated and the resulting loop continuously
generates new saccades.

Current research of this architecture deals with a mosaic image representation
used as a Short-Term Scene Memory. Besides, the current research uses a new
robotics platform representing the successor of the GRAVIS system which now
integrates a 20 Degrees-of-Freedom (in the following denoted as DoF) Shadow
Dextrous Robot Hand.

To sum up, the GRAVIS robot is able to pinpoint a location of an object and, there-
fore, after an object formerly has been learned it is able to grasp and interact with
it. Regarding the support for Object Attention in the GRAVIS robot, its architec-
ture does not allow to learn verbally specified additional object properties, as the
work mainly focuses on imitation grasping. Hence, it definitely provides an excel-
lent model to resolve object references, but it limits the knowledge stored about
objects.

An example for an architecture supporting Object Attention which is integrated
in a very sophisticated stationary robot is given next. Breazeal et al. describe
in [BBG+04] the architecture shown in Figure 2.11 that is used in the cognitive
robot Leonardo. Similar to the architecture of the GRAVIS robot it is divided into
several subsystems.

Figure 2.11: Architecture of the cognitive robot Leonardo.
See text for a detailed description. Image taken from [BBG+04].

Beginning in the lower left of Figure 2.11, Leonardo has a Speech Processing Unit
including the Speech Recognition and Speech Understanding. Besides, the robot
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offers a Spatial Reasoning System which acts as a mediator between the Speech
Processing and the Vision Processing which in turn includes a Shared Attention
mechanism, cf. section 2.1 on page 13. Both, the Speech Processing Unit and the
Vision Processing Unit support a Belief System that enables Leonardo to reason
about a referenced object. Thus, a common focus of the human and the robot
on the same object becomes possible. This is enabled by the evaluation of vision
and speech, e.g., the user is pressing a red button and, simultaneously, saying
"That’s the red button". The Action System which supports a Learning Module
addresses the Motor System for appropriate actions of the robot.

Summarizing, the robot Leonardo is able to learn new objects including verbally
given properties. Although this matches the aim of a natural Human-Robot In-
teraction, the robot depends on a well-defined environment with special cameras
observing a particular part of the scene. For instance, a camera mounted at the
ceiling for the observation of the restricted object area in front of the robot. To
overcome these limitations of stationary robotic setups, approaches integrated
on mobile robots have been developed which are presented next.

Within the last ten years more and more robotic architectures considering visual
object appearances, speech, and gestures have been developed. In order to
name few of them, e.g., the Perseus architecture [Kah96], the architecture for
the robot HERMES [BG99], the service robot Albert [REZ+02], or the humanoid
robot ARMAR [BSZD06]2. To get a better insight of the architectures used in such
multimodal operating robots, in the following we concentrate on two canonical
examples. Therefore, the approaches of Ghidary et al. [GNS+02] and Kruijff et
al. [KKH06] are subsequently described.

Ghidary and colleagues use for their mobile robot the architecture shown in Fig-
ure 2.12. As it can been seen, it is divided into two main parts. First, the complete
speech processing is done on a separate host computer, and, secondly, every-
thing else, e.g., visual processing or behavior-control is processed directly on the
robot. The mobile robot of Ghidary et al. is used for room map generation while
it is able to learn rough squared 2D-views of objects supported by static hand
postures and predefined speech commands given by the user. In order to control
the robot, Ghidary et al. use the so-called Behavior Controller, represented by a
Finite State Machine (FSM). As main control mechanism it determines the most
appropriate behavior sequence in order to reach a particular goal.

For the learning and localization of new objects, Ghidary et al. use a depth-from-
focus approach supported by an autofocus camera. This enables the robot to
measure the distance to the hand and the object, respectively. It has to be men-
tioned that their approach does not support an object recognition, instead they
estimate an object’s position based on the position of the user’s hand. In par-
ticular, the current hand position is focused and, subsequently, centered by the
result of the skin color detection using the center of mass of the segmented hand.
As the environment and the robot is equipped with a Home Robot Positioning
System (HRPS), the robot is, thus, able to enter the exact position of the hand
and the object/location where the user pointed to, respectively, with a squared
image pattern in a knowledge base. This knowledge base is used to generate

2Part of the Collaborative Research Center 588 "Humanoid Robots – Learning and Cooperat-
ing Multimodal Robots" and the German Service Robotics Initiative DESIRE [fPuA05].
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Figure 2.12: Control Architecture of the mobile robot used by Ghidary et al.
See text for a detailed description. The image has been taken from [GNS+02].

a map of the robot’s environment including all referenced objects with their rela-
tions to each other and their verbally specified sizes. Once an object view and
its location has been learned, this information can be referred in the knowledge
base with corresponding queries. Thus, the map can be updated over time as in,
e.g., a domestic domain the position of objects (e.g., dishes) often changes. The
approach of Ghidary and colleagues, however, mainly focuses on the detection
of the human user, and, hence, only a basic model of Object Attention is imple-
mented. Unfortunately, the knowledge that can be gained about objects is very
limited (size, estimated position, relation to other objects). Furthermore, due to
the use of the indoor positioning system using infrared and ultrasonic sensors, the
robot can construct an adequate map only in especially prepared environments
which conflicts with the requirements of a natural surrounding. A cognitive model
that overcomes these limitations and provides a more extensive mechanism for
Object Awareness is discussed next.

Kruijff et al. currently use two different modalities for the realization of an Object
Attention mechanism [KKH06]. They state that "...reference resolution in a situ-
ated dialog is a particular instance of the anchoring problem [CS03]..."3 related to
the correspondence of sensor data and symbols that refer to the same physical
object, cf. J. Fritsch et al. [FKL+03]. In order to realize a solution for the anchor-
ing problem, they integrate a combination of two different fusion strategies, an
intra-modal one versus an inter-modal strategy. The intra-modal strategy gener-
ates different object hypotheses occurring in a single modality which concern one
and the same object. As an outcome, equivalence classes are generated which
store the information about different occurrences in a conceptual manner. In order
to define relations between the classes that were created in different modalities,
the inter-modal strategy is used. Here, the approach of Kruijff et al. uses an
ontology-based mediation which utilizes the conceptional information gathered
in each equivalence class. To prove the efficiency of the presented strategy, a

3taken from [KKH06].
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framework for the resolution of object references occurring in a Human-Robot
Interaction has been developed, see Figure 2.13.

Figure 2.13: Control Architecture of the CoSy project.
See text for a detailed description. The image has been taken from [KKH06].

The figure illustrates that the architecture is realized as a three-layered hybrid
architecture, cf. J. Fritsch et al. [FKH+05], based on a Belief-Desire-Intention
(BDI) process to mediate between different subsystems. The three subsystems
developed are responsible for communication issues (blue highlighted), spatial lo-
calization & mapping (red highlighted), and visual processing (pink highlighted).
Now, to achieve a common ground between the different modalities, the BDI pro-
cess uses beliefs.

The visual processing responsible for the Object Attention uses three cues, iden-
tity, color, and the size of objects in a scene [KKH06]. As the diagram in Fig-
ure 2.14 shows, SIFT features [Low04] are used for the identity computation. The
given example illustrates incremental learning of a visual object supported by cor-
responding symbolic speech input.

In case that an object which is unknown to the robot should be learned, the de-
tailed processing is discussed next as this is a major issue for the development of
the Object Attention System. Starting with an utterance like "This is a box", a new
SIFT-based model should be learned. Therefore, in order to create an object’s
identity, Kruijff et al. first segment the object view by a bounding box with fixed
size. Therefore, the object that should be segmented needs to be placed without
occlusions on a white tabletop. Then, SIFT features are extracted and, subse-
quently, stored in a new equivalent class together with a description of the object
(here: "box") [KKBL06]. In correspondence to the new equivalence class, the BDI
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Figure 2.14: Diagram of multimodal object learning used within the CoSy project.
See text for a detailed description. Image taken from [KKH06].

mediation creates an appropriate belief that enables the dialog to create a suit-
able feedback utterance for the user. If the user now says "It is red", the additional
information for the color is linked by the keyword "it" to the current discourse ref-
erent for "box". Consequently, the mediator informs the vision subsystem about
the new property "red" and updates the corresponding visual equivalence class.
In particular, a histogram determines the color which is applied on the segmented
region using the HSI color space. After the histogram is smoothed in a subse-
quent processing step, the dominant color peak indicates the object’s color value.

In addition to the learning of previously unknown objects, the system is able to
recognize already learned objects as well. For this task, SIFT features of the cur-
rent scene were calculated. In case that the found number of features exceeds a
certain threshold, the affinities between the already stored object features and the
currently extracted features result in the computation of an affine transformation.
Based on this transformation they determine the object’s pose while it is applied
to the model’s segmentation mask. Although it is only possible to learn and to
recognize a single object in a scene, Kelleher and Kruijff are able to establish
relational descriptions between the objects learned within a qualitative scene rep-
resentation [KK05]. Such a scene representation can be compared best with the
Scene Model presented in this thesis, cf. the overview illustration 1.3 on page 7.
This issue is discussed in detail in the corresponding section 5.1 on page 90.

All considered, the approach of Kruijff et al. is only partially usable for a natural
scene, as, e.g., domestic domains are very cluttered and, thus, it is not realistic
to assume that always a strictly separated object is present. However, a realistic
environment analysis is not the focus of their experiments.
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To sum up, a few recently developed multimodal approaches for Object Atten-
tion, partly biologically-inspired and designed for a cognitive Personal Robot exist.
Nevertheless, a separated module for Object Attention within a mobile robot sup-
porting well-defined flexible interfaces is a challenge neglected so far. Here, the
proposed Object Attention System presented in this thesis enters a new domain,
as it not implicitly integrated in an architecture but allows due to its modularity to
be integrated in architectures that have either a very limited perception of objects
or do not offer an object awareness at all.

A couple of robots have been developed as host systems for the different Object
Attention mechanisms that have been presented in this section. Therefore, some
of these different hardware platforms that either apply the above mentioned ar-
chitectures or at least facilitate similar approaches that also allow to cope with
objects during an interaction are introduced next.

2.3 Robots paying Attention to Objects

In this section, a variety of the most sophisticated humanoid robots that provide
an Object Attention mechanism is presented. In accordance to their multimodal
architectures which were partly described in the previous section, only robots
using multiple input cues are considered as they enable the most natural Human-
Robot Interactions.

Care-O-Bot II

The service robot Care-O-Bot II [HGS02] was primarily developed for interactions
with elderly people. Thus, it offers a number of different sensors which enable
an easy Human-Robot Interaction. Besides a 6 DoF manipulator arm used for
object-related tasks, adjustable walking supporters, a tilting sensor head with two
cameras, a laser range finder, as well as a control panel are integrated. With the
help of these sensors, the robot supports some interesting interaction tasks.

Figure 2.15: Care-O-Bot II.
c© Fraunhofer IPA.

In particular, the robot is able to learn, rec-
ognize, and grasp objects [GHS04]. Further-
more, a map of the environment with different
landmarks can be processed which can basi-
cally be seen as a kind of Scene Model al-
though the object locations are not explicitely
denoted. This becomes possible through a re-
mote control which enables the user to trans-
mit commands to the robot. In order to learn
a new object model, a camera captures an im-
age of the unknown object and, subsequently,
the view is stored in a database. In case the
robot should grasp a known object, its image
is retrieved from the database and compared
with the current camera view. Additionally, a
3D-laser scanner provides distances to deter-
mine the exact object position. Thus, the robot
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is able to generate a trajectory for its arm and can grasp the object. Finally, the
robot brings the object to the user.

Although Care-O-Bot II can interact with objects, the user always needs to use a
control panel to instruct the robot. Hence, it is indeed a helpful service robot, but
due to the missing speech and gesture processing, it matches only partially the
flexibility of human-like interactions. A robotic system which is more interaction-
oriented is the robot HERMES.

HERMES

Figure 2.16: HERMES.
Image taken from [BG99].

The impressive humanoid robot HERMES pre-
sented in [BG02] is a mobile robot as well.
It has got two arms which have 6 DoF each
and for direct manipulations of objects, 2-finger
grippers are mounted at the end of the arms.
Additionally, to optimize the position, e.g., while
the robot puts down a tablet with objects on
a tabletop, the upper body can bend forward
and backward. For visual processing tasks
concerning objects, HERMES has got 2 pan-
tilt cameras mounted on a pan-tilt head that
is connected to its torso. HERMES also has
tactile sensors around its base and an auditory
system integrated for object manipulations and
speech recognition, respectively.

A long-term study of 6 months in the Heinz-
Nixdorf museum in Paderborn in Germany en-

abled the robot to demonstrate its capabilities to a larger audience. In particular,
HERMES is able to interact with objects in different ways. It can detect, recognize,
and also track multiple objects. As it is, furthermore, able to build a map of the
environment by a vision-based navigation system, the robot can drive to specific
objects and locations. As soon as the robot arrives at the destination, the manip-
ulator arms can be used to interact with objects, e.g., taking over a glass from a
person. Finally, the robot can be instructed by naturally-spoken commands and
even talk to interaction partners in the languages German, English, and French.

Summarizing, the robot HERMES is well-suited for, e.g., simple guidance or fetch-
and-carry tasks, but it does not support higher cognitive functions, like, for in-
stance, talking about already known objects or learning additional information
about object features. Compared to Care-O-Bot II it is more suitable for a conve-
nient interaction as it is equipped with an interface for naturally spoken language.
However, as it does not support a gesture recognition, it still does not match all
requirements of an intuitive interaction. A few more robots have been developed
that support a natural Human-Robot Interaction. One example is the mobile robot
HOROS, described in the next paragraph.

HOROS
The mobile Home Robot System (HOROS), presented by Richarz et al. [RMSG06]
is another cognitively motivated Service Robot that is from a mechanical point of
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view very similar to the robot BIRON that has been used for the evaluation of the
proposed Object Attention System. HOROS is equipped with a 180◦ laser range
finder and three cameras for visual perception of the environment and the user.

Figure 2.17: HOROS.
Image taken

from [GRM+06].

The omnidirectional camera is mounted on the top (Fig-
ure 2.17), another camera with a telephoto lens is
mounted on a tilting unit at the front part of the head.
Additionally, a camera with a wide-angle lens is located
in one of the eyes. Furthermore, a pair of microphones is
integrated into the platform as well as a touch-sensitive
tablet PC. With help of these sensors, a speech, and a
gesture recognition system, HOROS is able to detect in-
teracting users and can navigate to Regions-Of-Interest
that are referenced by a pointing gesture of the user. For
navigational tasks, HOROS can access a given environ-
ment map that, however, does not include any informa-
tion about specific objects, hence, no adequate Scene
Model for objects is available, yet.

Although the robot does not have an explicit object-
centered attention model yet, it is already able to resolve
location references based on gestures which enables a
mechanism for Object Attention as well. In this aspect it
is less sophisticated than the robot HERMES but on the
contrary it offers a gesture-based interface. A robot that
is able to focus on a referenced Region-Of-Interest and
recognize already known objects is realized with the robotic platform Infanoid.

Infanoid

Figure 2.18: Infanoid.
Image taken from [Nag04].

Infanoid is a stationary infant-like robot [KY01]
with 23 DoF, developed for investigations of
the cognitive development shown by human
infants. In order to be able to simulate their
behavior, the robot is equipped with a stereo
camera head with 3 DoF. With regard to the
stereo head, each eye has got two built-in color
cameras with different focal lengths (foveal and
peripheral view) that offer, additionally, 2 DoF.
Furthermore, its neck is equipped with 3 DoF
as well. For manipulation tasks, Infanoid has
got two arms that have 6 DoF each and a trunk
that offers 3 DoF.

In accordance to the intended use as investigation platform for the development
of Joint Attention in human infants, the robot has been used, e.g., in [Nag05b].
As described in section 2.2.1 on page 17, Y. Nagai et al. simulated the behavior
of Joint Attention using gaze and gestures. In their approach, they used a purely
vision-based analysis of gaze and gestures. Their model successfully described
the possible role of gestures in the development of Joint Attention in infants. Nev-
ertheless, in the context of modeling an Object Attention, the missing speech pro-
cessing does only allow a restricted Human-Robot Interaction as the robot is only
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able to follow the gaze or gesture direction of its user to focus on a salient-colored
object. It does not allow to learn additional object attributes or other features that
can verbally be specified, like a position. Furthermore, no learning of unknown
object instances or the construction of a Scene Model is supported which, how-
ever, is essential for autonomous actions of the robot.

To sum up, the learning of unknown object instances is a challenging task. There-
fore, only very few research groups cope with this topic. One example for such a
robot that is able to learn unknown attributes, like color, about objects is the robot
Leonardo (cf. section 2.1).

Leonardo

The robot Leonardo, depicted in Figure 2.19, is developed at the Massachusetts
institute of technology as successor of the robots COG (cf. section 2.1 on page 14)
and KISMET. Hence, its architecture and capabilities represent an advancement
of the former work for an Object Attention mechanism.

Leonardo is a 65 DoF embodied robot with an expressive 24 DoF face, an active
4 DoF binocular vision system in the eyes, two actively steerable 3 DoF ears,
a 4 DoF neck, two 6 DoF arms, and two 3 DoF hands with tactile sensation.
Furthermore, Leonardo is a stationary robot using two additional vision systems,
the first one is mounted behind the robot to provide a peripheral view for tracking
people and objects. The second vision system is a stereo camera in the ceiling
directed on the workspace in front of the robot. It is used to track objects and
pointing gestures.

Figure 2.19: Leonardo.
Image taken from [BBG+04].

Leonardo is capable to detect the in-
teraction of a human with saliently col-
ored buttons arranged in front of the
robot. To do so, Leonardo recognizes
objects using deictic gestures in com-
bination with speech and salient ob-
ject features (cf. its architecture in sec-
tion 2.2.2 on page 22). In particular,
it is possible to label buttons by giving
verbal information as well as to teach
the robot how to use these buttons.

However, due to its stationary setup, it
is not easily possible to transfer its Ob-
ject Attention approach to other plat-
forms as, e.g., the gesture recognition

works from a totally different perspective than an ego-view-based recognition sys-
tem does. Additionally, the robot is not able to construct a map of the environment
that can be used as Scene Model.

To finish the overview about robots that have a human- or object-oriented attention
mechanism, the robot Robovie is presented next as a final example.
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Robovie

A couple of research groups, e.g., [NHMA03, MI05] have been used the robotic
platform Robovie [IOI+01] (Figure 2.20) for the integration of an Attention System
that is able to detect objects. For this task, the mobile robot is equipped with
two arms (4 DoF each), a head (3 DoF) and two pan-tilt cameras serving as
eyes. Additionally, it offers an omnidirectional vision sensor, 10 tactile sensors,
two microphones, and 24 ultrasonic sensors.

Figure 2.20: Robovie.
Image taken from [Nag04].

An approach that deals with an
integrated Attention System
is, for instance, presented by
Mukai and Imai [MI05]. They
have implemented a commu-
nication system using Fea-
ture Drift in order to, spon-
taneously, change the atten-
tion to specific objects (col-
ored blocks) in the vicinity of
the robot. Besides the visual
inspection of the scene, their
approach contains a speech
recognition unit which enables
the user to give the robot ver-
bal commands as well. Thus,
their system supports the mechanisms of Joint Attention, cf. page 12 for details.

Concluding, although the presented system works quite fine for attentional shifts
in combination with already known objects, the system is not able to learn a priori
unknown objects. Last but not least, their approach does not offer a kind of Scene
Memory which, however, is essential for autonomous tasks of the robot as stated
above. This completes the overview of robotic platform that provide an implemen-
tation of an Object Attention. Next, the most important statements of this chapter
are summarized.

2.4 Summary
In this chapter, different models of attention have been discussed in the beginning.
In particular, models of Joint and Shared Attention as well as the idea of a Theory
Of Mind have been introduced in the context of robotics. This overview has shown
that the most sophisticated cognitive robots use an implementation of a Theory Of
Mind to be able to cope with objects in a socially accepted interaction. This can be
interpreted in a way that a Theory Of Mind supports the object-centered attention
mechanisms best as the user and the robot are able to talk about the meaning of
the referenced object. Hence, the robot might know what the interaction partner
thinks about the object.

In the second part of this chapter it has been shown that different processing
approaches using single as well as multiple input cues exist to support the Object
Attention. To sum up, a broad agreement exists in the robotic community, that
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only multimodal approaches are able to match the requirements of an intuitive and
comfortable Human-Robot Interaction as it is more similar to scenarios humans
are accustomed to. Here, especially Human-Human Interactions are usually the
reference scenario.

At the end of the chapter, different robots have been presented which apply the
attentional mechanisms described before. That section pointed out that only very
few robots can actually deal with an Object Attention although most of them at
least offer the necessary hardware prerequisites. This leads to the following final
conclusion.

All approaches presented above lack the integration of a natural, intuitive, robust,
and extensible object-centered Attention System. Some of them are good in vi-
sion processing, some are good in reasoning, and some are good in audio-based
issues but a system that, ideally, copes with all three topics based on sophisti-
cated approaches, does currently not exist. However, a lot of approaches can be
used and integrated into the proposed Object Attention System in order to match
the requirements for a natural Human-Robot Interaction.

The next chapter will, therefore, give an introduction on the techniques used for
different input modalities as far as they are applied in the proposed Object Atten-
tion System.



3. Selected Modalities as Sources
for Multimodal Object Attention

The previous chapter 2 has shown that only Object Attention mechanisms using
multimodal input are suitable to face the challenging task of a natural Human-
Robot Interaction. The given examples pointed out that Speech, Gestures, touch-
sensitive user panels and easy to describe visual object properties (color, simple
shapes) are the most promising candidates for robots with Object Awareness.
However, not all of these features cover the preference for the integrated inter-
faces in the same manner as suggested in a preliminary evaluation presented
by Khan et al. in [Kha98]. Their results of a questionnaire conducted with 134
participants about attitudes towards intelligent Service Robots showed that spo-
ken language (82% preference) is nearly twice-preferred than written commands
(45% preference). The study has also shown that touch screens are the second
popular choice with 63% preference followed by gestures performed in front of
the robot with 51% of preference. Therefore, a Personal Robot should provide a
natural language-based interface for sentences, like, e.g., "Go to the sideboard
in front of you", because this is more convenient for a human as an interface us-
ing a command language, like, e.g., "Forward 3 meter". That natural language is
indeed of great interest for Human-Robot Interactions has been confirmed by a
user study with 20 participants performed by J. Fritsch and colleagues [FWS05].

Besides these obvious interaction modalities, additional information about the
user himself is useful in order to enable a pleasant atmosphere. For instance,
an integrated face recognition could be used to identify the user and, thus, trigger
the Object Attention System to complete an association for a personal object re-
minding event, e.g., "Axel, your black tea is waiting in the kitchen". This leads to
the following structure for this chapter.

In accordance to the thesis overview presented on page 7, this chapter con-
tains the details on the input modalities used for the proposed Object Attention
System. In brief, these are all four modalities that are proposed by Khan et
al. [Kha98]. Therefore, the chapter begins with modality information about the
Person-Of-Interest (section 3.1), in particular, Face Recognition, Leg Detection,
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Gesture Recognition, and Speech Processing. After the person-dependent input
cues have been presented, the support for touch-sensitive panels (section 3.2)
and written commands (section 3.3) is described. In particular, it is realized
by the Graphical User Interface (GUI) that has been developed together with
M. Saerbeck in his diploma thesis for the Object Attention System. Finally, the
chapter closes with a brief summary (section 3.4).

3.1 Person Data
The processing of person-dependent data, like it has been proposed by S. Lang
in [Lan05] and M. Kleinehagenbrock [Kle05] can be used, for instance, to increase
the convenience level of a Human-Robot Interaction or to improve the accuracy
of the determined Region-Of-Interest and the quality of learning objects, respec-
tively. Thus, it is shown how face identification and the processing of distance val-
ues in combination with the evaluation of deictic gestures and speech are used by
the Object Attention System in the context of person data. Although a great deal
more processing like, gaze, haptic information, body heat, arousal of the commu-
nication partner, and so on, are conceivable, mostly, the selected features given
above provide a reliable support in a human-like Human-Robot Interaction.

Identification and Distance of Communication Partners

Most people start a Human-Human Communication with a personal greeting while
they address the communication partner with his name. In this way, often a more
comfortable atmosphere is created. Furthermore, an identification enables the
assignment of a specific object to an owner. Hence, if the user says something
like "Bring me my red tea cup", the Object Attention System is able to reason
about the information that Axel’s red tea cup is addressed if the face identification
has determined that Axel is the person who said the sentence. For a more robust
identification the Object Attention System relies on two different methods. First, in
case the user has said its name, the resulting symbolic speech entry is associated
with the currently processed object instance. If the user does not state his name,
a second method using a vision-based approach is evaluated as fallback solution.
However, in the past it has been shown that neither the vision-based identification
nor the speech-based identification is reliable enough to store the recognition
results in the Long-Term Memory of the robot. Hence, to improve the reliability of
the visual identification, a confidence value is considered by the Object Attention
System for both approaches.

Experimental performance tests have shown that for the speech processing a
reliability of 85% is realistic. This value corresponds to the word accuracy for
the mobile robots used (cf. S. Hohenner [Hoh05]). The accuracy results from
the Speech Localization by S. Hohenner [Hoh05], the Speech Recognition by
G. Fink [Fin99], the Speech Understanding by S. Hüwel [HW06b], and the Di-
alog System by I. Toptsis [THH+05], and S. Li [LHW+05], respectively. For the
vision-based face identification, evaluations have resulted in a value of 46% , ac-
cording to T. Spexard [SHFS06]. The latter method of identification is provided
by the Person Tracking and Attention System (PTA), developed by S. Lang, M.
Kleinehagenbrock, and T. Spexard [Lan05, Kle05, SHFS06] which includes a face
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recognition and an identification submodule. This is discussed in more detailed,
next.

For the recognition task of frontal faces as well as for faces that are up to 80◦

turned to the left or to the right, an approach proposed by Viola and Jones [VJ01]
using simple rectangular regions as features is applied. Subsequently, a learning

Figure 3.1: Eigenface represen-
tation for the user identification.

Image taken from [Spe05].

algorithm based on the AdaBoost approach
introduced by Freund and Schapiere [FS95]
which implements a chain of classifiers with in-
creasing complexity is employed. As this only
allows to recognize faces, but does not inte-
grate an identification, the Person Tracking and
Attention System uses the Eigenface compu-
tation proposed by Turk and Pentland [TP91].
In brief, this method represents for all faces
a mixture of Gaussian functions with diagonal
covariance in a particular Eigenface space. An
example of such Eigenfaces is shown in Fig-
ure 3.1.

Figure 3.2: Laser-based dis-
tance scan of the Person Track-
ing and Attention module.

Experimental results of S. Lang [Lan05] and M.
Kleinehagenbrock [Kle05] have shown that be-
sides face identification, the evaluation of dis-
tance values (Figure 3.2) helps to improve the
quality of an interaction. For the Object At-
tention System this can be applied to analyze
the user’s actions as well. In order to access
the measured values concerning the Person-
of-Interest, the Object Attention System eval-
uates a continuously updated XML-document
provided by the Person Tracking and Attention
System. A fragment of such an XML-document
is depicted below. In line 2 of the XML exam-
ple the values are denoted by the tag “STATES"
and its attribute “dst", respectively. The value of this attribute specifies the dis-
tance in millimeter which can be provided, e.g., by a laser range finder that is
mounted on the robot. Besides, the value α [◦] of the attribute “ang” with α ∈
[-90. . . +90] denotes the relative angle between the user and the robot.
1 ...
2 <STATES ang="36.544791" dst="1818.802734" facing="NO" gazing="0" talking

="YES" walking="NO"/>
3 <IDENT id="3" name="Axel"/>
4 ...

The line 3 of the XML fragment illustrates that the Person Tracking and Attention
System provides the tag "IDENT" which represents a consecutively numbered
identification value and the name of the recognized user. If the user could not be
identified, it is declared "unknown".

In the following, the gesture processing approaches that serve as additional input
cues for the Object Attention System are introduced. Additionally, the upcoming
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sections point out how the presented distance of the Person-of-Interest is applied
to optimize the results of the gesture recognition.

Gesture Processing

Communicative and manipulative gestures are of great importance for the reso-
lution of referenced objects occurring in an Human-Robot Interaction, cf. Strobel
et al. [SIKM02]. Unfortunately, gestures can be carried out in many diverse ways.
Therefore, the detection system needs to be flexible and adaptive in order to be
able to recognize and track an adequate amount of gestures, according to Strobel
et al. [SIKM02] and Guo et al. [GYJX99]. As it has been shown by J. Fritsch
in [Fri03], visual scene context helps a lot to determine the performed action.
However, as the approach by J. Fritsch is skin color-based only, it is vulnerable
against varying lighting conditions. Furthermore, as the skin-colored regions are
provided only by 2D-images, no depth information is available. But appropriate
depth information about the current body pose can significantly improve the ro-
bustness of recognized actions. One method to provide a suitable context for the
user’s actions is to use a body model which allows to increase the quality of rec-
ognized gestures. Consequently, a 3D-Body Model is applied for the proposed
Object Attention System which is described in the following.

3D-Body Model Tracking

The recognition of a gesture in a cluttered and natural environment is a highly
complex task which consumes a great deal of computational power. Especially on
mobile robots, where the computational resources are very limited it is desirable
to reduce the amount of data to be processed. As a consequence, it is logical
to reduce the search space by considering only postures, a human is able to
perform. This can be realized by a corresponding Body Model. Furthermore,
such a Body Model can help to disambiguate similar postures and, thus, can
provide more accurate depth information. Hence, the 3D-Body Model developed
by J. Schmidt [SKF06] is used to improve the performance of the subsequent
gesture recognition.

As it is described by J. Schmidt et al. [SKF06], such a 3D-Body Model is quite
suitable to support an Human-Robot Interaction although it relies only on a single
monocular camera. However, the system used is not yet optimized and, thus,
does not allow an online performance within the robot’s architecture applied. Fig-
ure 3.3 illustrates the principle processing of the 3D-Body Model Tracking System
while the following section schematically describes the processing during one ex-
emplary iteration cycle.

In the beginning, after an image is captured Ê, it is preprocessed. This way,
limbs, face, and hand regions can be detected. To do so, a skin color model in
combination with edge and color cues is applied Ë. Furthermore, the edge fil-
ter helps to determine ridges in the given input image while this depend on the
computation of the first and second partial derivative, respectively. In detail, the
first partial derivative is used for the edge cue as it provides significant contrast
changes only. Then, for the ridge cue, which depends on the image size of the
limbs, additionally, a Gaussian image pyramid is created. This in turn is calcu-
lated by the distance between the regarded limb and the camera lens. Thus,
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Figure 3.3: Schematic of the 3D-Body Model Tracking System.
See text for a detailed description. Image adapted from [SKF06].

single edge points can be suppressed while the image is analyzed for an exist-
ing limb. As a result of this preprocessing, a probability distribution is generated.
This distribution is analyzed during multiple iterations of the Mean Shift Algorithm
(cf. [SKF06]) Ì. Subsequently, the probability distribution is used to identify differ-
ent modes representing diverse body poses Í. As an outcome of the identification
process, the Body Model with the highest rated body pose is selected Î and, ad-
ditionally, used Ï for following frames to provide a more reliable accuracy for new
configurations of subsequent postures. Finally, a percentage of the generated
particles (weighted sample points in space) is disturbed Ð in order to allow an
estimation of following body postures and movements, respectively.

The circumstance that the body tracker uses a single monocular camera only
leads to a distance variance which depends on the gesture, environmental con-
ditions (e.g., different lighting conditions), and observed movements of the user.
Hence, a variance value of ± 200 mm is not uncommon. In order to partly com-
pensate this variance and, consequently, get a more precise position of the limbs,
a more accurate distance value provided by a 2D-laser range finder can be used,
like it is mounted on the robot hardware that served for this thesis as evaluation
platform. The equation 3.1 on the next page illustrates the correction term, where
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distbt represents the distance provided by the body tracker. distlaser is the mea-
sured value from the laser range finder after the Person Tracking and Attention
System module has determined the Person-Of-Interest, and distcorr denotes the
correction factor for the distance value. As an outcome, all relative distances
between the limbs are scaled by the resulting distance correction.

distcorr =
distbt

distlaser
(3.1)

To sum up, the presented 3D-Body Model approach matches the requirements
for the subsequent gesture recognition process by generating hand trajectories
that can directly be processed by the gesture recognition system. The Figure 3.4

Figure 3.4: 3D-Body Model
with an exemplary hand tra-
jectory of a pointing gesture.

illustrates an exemplary trajectory of a pointing
gesture, like it has been produced during the eval-
uation of the Object Attention System.

Consequently, the pre-processing of the 3D-Body
Model framework offers two advantages. The first
one is the support for real depth information which
significantly improves the accuracy of all gesture-
related coordinate values. The second advan-
tage is that the gesture recognition system is less
dependent on the error-prone skin color detec-
tion which is highly sensitive against varying light-
ing conditions and wooden surfaces in the robot’s
vicinity. In the next section it is described how the
data provided by the body tracker is used for the
trajectory-based gesture recognition.

Condensation-based Trajectory Recognition (CTR)

The gesture recognition module that, finally, provides the Object Attention System
with gesture information is the Conditional Density Propagation (CONDENSATION)-
based trajectory recognition system (CTR), developed by N. Hofemann [HHFS05].
To do so, the CTR component supports two different modes, one for a 3D-based
gesture representation and one for 2D-processing. The 3D-based approach ap-
plies the results, in particular, the trajectories of the previously described 3D-Body
Model framework for the recognition of performed gestures, cf. Figure 3.4. Alter-
natively, the CTR module can directly deal with 2D-input images, see Figure 3.5.

In case of 2D-data processing, the CTR component utilizes a skin color-based
region tracking in combination with a Kalman filter [May79] to extract the hand
trajectories resulting from the movements of the user. In either case, 2D and 3D,
after the trajectories are available, the further processing within the CTR module
is basically the same. Briefly, the actual recognition is done by comparing the
current motion with previously trained models and, thus, a specific action like a
pointing gesture can be determined as soon as a certain threshold is exceeded.
Nevertheless, the 3D-Body Model Tracking System provides a great deal more re-
liable data since it supports real depth information instead of empirically guessed
values and, thus, the 3D-based gesture recognition leads to significantly better
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Figure 3.5: Modules for the deictic gesture recognition.
Image adapted from [HHFS05].

results. For the Object Attention System it does not matter whether the 2D or the
3D-based approach is used as it automatically detects the different input formats
and dynamically initiates in each case the appropriate processing strategy.

The input that is provided by the CTR module contains the hand position or, in
case of the 3D-approach, the hand, face, and head position. An excerpt of an
XML document, like it is received by the Object Attention System is illustrated be-
low. Here, the 3D-based variant is presented, as it contains more entries that are
relevant for the Object Attention System than in the 2D-case. In the latter case,
only the hand position, pointing direction, and gesture progress are considered.

1 ...
2 <TIMESTAMP>1156863546969</TIMESTAMP>
3 <ID>
4 <Origin Mod="GrabImg" Timestamp="">00236_1153819261_456.png</Origin>
5 <Origin Mod="BodyModelTracker" Timestamp=""/>
6 <Origin Mod="CtrXMLImport" Timestamp="1154591248898"/>
7 </ID>
8 ...
9 <RAW>

10 <STEP T="0">
11 <RIGHTHANDPOS X="2.418990" Y="-0.178610" Z="-0.258875"/>
12 <RIGHTHANDTIP X="2.245982" Y="-0.381262" Z="-0.299064"/>
13 <HEADPOS X="2.496483" Y="-0.054796" Z="0.204690"/>
14 </STEP>
15 <STEP T="-1">
16 ...
17 </STEP>
18 <STEP T="-2">
19 ...
20 </STEP>
21 </RAW>
22 ...

The XML example shows, solely, the data tags that are processed by the Object
Attention System. Line 2 illustrates the time1 just before the message is sent

1seconds since midnight UTC of January 1, 1970 (POSIX time), not counting leap seconds
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by the CTR module. The three other timestamps (line 4 to 6) are necessary as
the current implementation of the 3D-Body Model Tracking System does not al-
low an online performance. Hence, the "GrabImg" value denotes the consecutive
number (236) of the captured image and the seconds (1153819261) with the cor-
responding milliseconds (456) in POSIX time. In line 5, the online timestamp of
the 3D-Body Model tracker will be provided, as soon as it reaches real-time ca-
pabilities in combination with the CTR module. Until then, the line 6 provides the
timestamp of the time when the XML data from the 3D-Body Tracking System has
been recorded on hard disk.

As the recognition of the current posture is probability-based and, therefore, more
or less disturbed, the last three time steps of the CTR are given, where the time
between two subsequent steps is approximately 66,6 ms (=̂15 frames per second,
like it is used by the CTR module). In order to minimize the noise influence, these
three values are averaged by the Object Attention System.

Figure 3.6: Illustration of the 3D-
Body Model after the mean shift
algorithm has been applied.
Image adapted from [SKF06].

Each time step consists of three tags which re-
fer to the position within the 3D-Body Model
as shown in Figure 3.6. Firstly, the po-
sition RIGHTHANDTIP (1) gives the coordi-
nates of the fingertip. Secondly, the position
RIGHTHANDPOS (2) which denotes the wrist
of the right hand, and thirdly, the estimated po-
sition of the neck, denoted as HEADPOS (3).
All values of the attributes X, Y, and Z (e.g.,
line 11) denote the distance between the user
and capturing camera lens. In detail, the Y and
Z values describe the deviation from the cen-
ter of the camera image in the horizontal line,
and the deviation from the center of the camera
image in the vertical line, respectively.

Besides the pure gesture recognition, the CTR
module does have the ability to recognize ac-
tions as well, like drinking, making a phone call, typing on a keyboard, and so
on. This action recognition, however, requires symbolic object information from
the proposed Object Attention System that sends the object context to the CTR
module, cf. [HFS04]. In detail, the object type (cup, bottle, keyboard, . . . ), and the
addressed object ID is sent to the CTR module while the information is sent as
soon as the Object Attention System is informed by the dialog component about
the currently discussed object.

The gained information about the Person-Of-Interest and his performed gestures
is worthless as long as the point of time when an object reference should be
resolved by the Object Attention System is unknown. Hence, the user’s speech
is used to resolve this timing dependency. The dialog system is able to provide
the Object Attention System with the appropriate symbolic speech data which is
presented next.
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Speech

Symbolic speech and sound input plays an important role within the Object At-
tention System. It initiates the fusion process of gesture, speech, visual object
appearance, and acoustic information of an object. But, before the symbolic data
can be processed in the Object Attention System, the speech signal is prepro-
cessed by the Speech Recognition of G. Fink [Fin99], the Speech Understanding
of S. Hüwel [HW06b], and the Dialog module. For the latter one, two different
implementations exist, which are both supported by the Object Attention Sys-
tem. The former slot-filling approach of I. Toptsis [THH+05] and the more recent
implementation of S. Li [LHW+05] that allows an easier integration of context-
dependent initiative models. Thus, it better supports studies concerning the is-
sues, when the robot should say something. As the current developmental state
of both dialog approaches offers the same functionality for the Object Attention
System, only the more recent model of S. Li is regarded in the following.

When the communication partner is talking to the robot, the sound signal passes
the Speech Recognition at first. It is based on a probabilistic Hidden Markov
Model approach which generates raw symbolic speech data [Fin99]. Subse-
quently, this symbolic information is semantically interpreted by the Speech Un-
derstanding module [HW06b] which especially focuses on spontaneous speech
as it is common in a Human-Robot Interaction. As an outcome, e.g., verbs or
referenced object types can be determined and, thus, forwarded to the dialog
component. The dialog module in turn decides on the basis of given utterances,
whether the user announces that he wants to show the robot an object or other-
wise the user wants to talk about an object that is already known by the robot. As
a consequence, the dialog model currently supports two different orders that are
evaluated by the Object Attention System. Firstly, an Align View command and,
secondly, a Focus Object command.

The Align View command allows the robot’s architecture to hand over the steering
control of the camera to the Object Attention System. This enables the Object
Attention System to lower the camera in order to get a better view on the user’s
hands. Additionally, the Object Attention System sends a response message to
the dialog component. This is done, as soon as the camera is aligned and if the
gesture recognition module is active, a confirming attribute "GestureExpected" is
added to the corresponding XML document.

The order Focus Object causes the Object Attention System to align the camera
as well if it is not already aligned. Additionally, the order provides the Object
Attention System with information about the currently referenced object, as it is
illustrated in the XML fragment on the next page. As the example shows in line 2,
a timestamp is included which marks the time of the moment when the message
was sent by the dialog component. Furthermore, an ID tag (line 4) indicates
the current discourse ID within the dialog module. This ID is important for the
Object Attention System in order to enable references to a specific query. In
line 6, the name of the order is illustrated. If the user indicates a gesture, for
instance, with an utterance like "This is. . . ", the speech understanding and the
dialog module expect a pointing gesture and, thus, the corresponding value in
line 10 is set to ’yes’. Below line 10, the tag ’ObjectList’ contains either none,
one, or more than one objects that have been referenced, while each object is
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denoted within a separate ’Object’ tag, as shown in lines 12 to 15. Furthermore,
the ’Object’ tag contains the type of an object, like, e.g., bottle, cup, keyboard, and
so on which is used for later object recognition tasks. Additionally, the ’Object’ tag
allows to embed various feature tags. The two most important ones consist of
the type ’Color’ which indicates the verbally specified object color and the type
’maybeGesture’ providing the Object Attention System with the expected time of
a performed deictic gesture. This timestamp refers to the moment when the user
begins an utterance. As the speech understanding and dialog module assume
that the user usually begins a sentence with "This is. . . ", when he wants to refer
to an object, it can be assumed that a corresponding pointing gesture is performed
at that moment, as well.

1 ...
2 <TIMESTAMP>1130316022360</TIMESTAMP>
3 <ID>
4 <ORIGIN mod="DLG">4</ORIGIN>
5 </ID>
6 <NAME>FocusObj</NAME>
7 <STATE>ObjectAttention</STATE>
8 <DATA>
9 <OBJDESCR>

10 <GestureExpected val="yes" />
11 <ObjectList>
12 <Object type="cup">
13 <Feature type="Color" val="blue" />
14 <Feature type="maybeGesture" time="1130316022195" />
15 </Object>
16 </ObjectList>
17 </OBJDESCR>
18 </DATA>
19 </MSG>

To sum up, the presented XML representation of symbolic speech data allows
an easy extension of the content by simple adding of further feature tags. Thus,
the Object Attention System can be provided with various verbally given object
information.

Besides the person-dependent information processing, like it is done by the Ob-
ject Attention System, two more intuitive interfaces are realized in the proposed
system. As the questionnaire results from the beginning of this chapter on page 33
pointed out are touch screen and textual input editor interfaces very popular for
the instruction of a service robot, as well. For this reason, the GUI has been
developed in cooperation with M. Saerbeck [Sae05] to provide such interfaces.

3.2 Touch Screen
A touch screen interface complements the input modalities considered by the Ob-
ject Attention System, in particular, the gesture recognition module. Thereby, a
touch screen might become necessary if the provided gesture data is not accu-
rate enough or the gesture recognition fails at all. Such a failure can be caused
by, e.g., varying lighting conditions or insufficient trained motion models which
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are based on the hand trajectories. Another advantage of a touch screen inter-
face lies in the possibility to give the user a direct visual feedback of the currently
selected Region-Of-Interest. Thus, it becomes easy to recognize and, subse-
quently, to correct wrong selected areas. Even for multi-colored or partly oc-
cluded objects this is essential, as it is very difficult to automatically segment
such objects correct. In general, that is the reason why most approaches select
only a simple bounding box around objects instead of segmenting a fine-grained
boundary around them as described in approaches presented by, e.g., Ghidary
et al. [GNS+02], Kruijff et al. [KKBL06], or Wünstel et al. [WR06a].

To overcome these limitations, the GUI of the Object Attention System offers an
interface for precise selections of referenced locations. This is enabled by display-
ing the current field of view of the object camera whereas the user can mark the
center of the Region-Of-Interest with his finger, or instead with the mouse pointer.

Figure 3.7: Touch screen functionality of the Object
Attention System. Image adapted from [Sae05].

An example showing a
manually selected Region-
Of-Interest is given in Fig-
ure 3.7. The selected
center of the Region-Of-
Interest is marked by the
red cross that is, addition-
ally, highlighted by the red
arrow pointing to it. For
evaluation reasons, the
user interface window, fur-
thermore, contains infor-
mation about the selected
position in image coordi-
nates. This is visualized at
the bottom of the window.
However, the shown text
field for the pointing direc-
tion is currently not used.

To cover most of the
preferred interfaces, the
Object Attention System
supports besides Speech,

Gesture, and a touch screen interface, a fourth modality. In accordance to the
most popular interaction interfaces presented by Khan et al. in [Kha98] (cf.
page 33), the next section gives a brief introduction to the textual input editor
of the Graphical User Interface.

3.3 Textual Input Editor
The integration of text fields usable for written commands offers three functional-
ities. Firstly, it enables the Object Attention System to be evaluated completely
autonomous without a connection to other modules in a robotic system. This is of
great advantage, in particular, for rapid prototyping. Secondly, the user is always
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informed about the currently processed data and, thus, can more easily detect
wrong recognized utterances due to the direct visual feedback. Thirdly, the text-
editable areas support an interface for manually entered written commands. That
way, a further modality is supported in order to make an interaction more comfort-
able for the user, for instance, if speech input is too difficult or the utterance is not
recognized at all.

In its current implementation, the GUI supports two different modes for enter-
ing and querying object information. The first one is depicted in Figure 3.3 and
shows the default view when an object is learned. At the top of the window, the
user selects via different tabs which mode he wants to see or edit. On the left,
the text fields for the symbolic speech data are present which offer a selection of
the most important value, like color or object type. On the right, the slider “Pix-
elAcceptThresh” can be used to refine the selected areas for the object view that
was shown in the last paragraph. Thus, an insufficient learning result, e.g., due
to varying lighting conditions can easily be corrected. Below the slider, a text field
shows the currently processed unique object ID. At the bottom of the window,
two checkboxes are given. Both are used to indicate whether the object infor-
mation should be processed either from the Object Attention System or the GUI.
The one called “From ShortMem” causes the system to process the data pro-
vided by other modules of the robotic system, for instance, the dialog component,
which are stored in the Short-Term Memory of the Object Attention System. The
second checkbox called “From ObjCommFlow” determines whether the mode of
object learning is selected by the Object Attention System (checked) or by the
GUI (manually entered by the user). Last but not least, the button “Go” causes
the system to perform the computations in order to extract an object view. This
button is, consequently, used if the manually entered values should be processed.

Figure 3.8: Graphical user interface used for written commands.
See text for a detailed description. The image has been taken from [Sae05].
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Concluding, the Object Attention System supports all four interaction modalities
suggested by Khan et al. [Kha98]. After these aspects have been described, the
following summary points out the main statements of this chapter.

3.4 Summary
In this section all user-related input modalities that are used by the Object At-
tention System were presented. At the beginning it was discussed, which are
the most popular interaction interfaces for convenient Human-Robot Interactions.
Then, the processing of user-dependent information (face identification, user po-
sition) was described in order to improve the accuracy of the Region-Of-Interest
determination and to enable the connection between a user and an object, e.g.,
the extraction of the probable object’s owner. Subsequently, the section about
person-dependent information also included the gesture processing method used
in order to recognize deictic pointing gestures. They enable the robot to pinpoint
object references that are supported by gestures at the same time. After the dis-
cussion of gestures as input modality, the following section gave a brief introduc-
tion to the interface that allows to process symbolic speech data. In particular, the
speech information that is supported by an interconnection of speech recognition,
speech understanding, and a dialog component. In this way, the Object Attention
System is provided with important object information verbally given by the user,
like, e.g., the object’s color. Thus, further processing within the Object Attention
System and, hence, the extraction of an object view becomes possible. As last
input modality, the graphical user interface including support for a touch screen
and written command has been presented which completes the discussion on the
different modality interfaces realized.

In the following chapter, the internal processing mechanisms of the proposed
Object Attention System is presented. In particular, the chapter describes how
the object information is actually fused, rated, and evaluated.
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4. Development of an Object
Attention System

This chapter describes the main contribution of this thesis. Therefore, the com-
munication, data representation, and processing strategies are presented. During
the last chapters, the principles of Attention for a successful Human-Robot Inter-
action has been described as well as a selection of useful modalities that support
a convenient interaction. It has been pointed out that a scene analysis that en-
ables a robot to robustly learn single objects demands for multiple modalities (e.g.,
Speech, Gestures, . . . ). These modalities in turn need to be joint with each other
in a spatio-temporal sense. However, neither the explicit object segmentation of
a scene nor the temporal analysis has been discussed so far and is, thus, part of
this chapter. Due to its specific character, the learning of objects and the spatio-
temporal dependencies are presented in a separate related work section. This
leads to the following outline for this chapter.

In the following, an overview of the related work for object learning is described
(section 4.1) together with a brief introduction to the robot platforms used (sec-
tion 4.2). In compliance with the thesis overview (Figure 1.3 on page 7), then,
the realization of a unified interface follows (section 4.3) that is directly connected
to the implemented Short-Term Memory (section 4.4). It is responsible for accu-
rate data representations of visual and auditory object information (section 4.5).
Within the Short-Term Memory the proposed Object Attention System decides
whether the object referenced by the user is unknown to the robot or if it is an
already known object. The underlying control mechanisms has been realized by
a Finite State Machine for the integration of these two different processing strate-
gies (section 4.6). Finally, a concluding short summary is given (section 4.7).

4.1 Related Work
In this section, a presentation of the most relevant related work in the context of
object learning for robots follows. Therefore, the main advantages and disadvan-
tages of the different proposed systems in relation to the implementation of the
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proposed Object Attention System are discussed. At the end of this section, a
short introduction to field of temporal dependencies between different modalities,
e.g., gesture and speech, are given.

Approaches for Online Object Learning

For a natural Human-Robot Interaction and, consequently, the development of
the Object Attention System, the aspect of object learning is one of the major
issues as described by, e.g., Nicolescu, Mataric, Taylor, and Kleemann [NM01,
TK04, SGW+06]. For instance, like Steil and Wersing [SW06] summarize the
trends for online learning in cognitive robotics, hard-wired behavior sequences
in a cognitive robotic architecture limit the capabilities of flexible object learning.
They point out that especially biologically-inspired cognitive vision approaches are
the most promising ones for online learning tasks between a teacher and a robot.
They conclude that due to the need for a highly reactive and adaptive behavior
of the robot in a natural Human-Robot Interaction, traditional approaches using,
e.g., Multi-Layer Perceptrons (MLP) or Support Vector Machines (SVM) fail due
to their online performance, cf. Kirstein and colleagues [KWK05, WKG+06].

Kirstein et al. [KWK05] therefore follow the paradigm of a separation into a Short-
Term Memory for fast reactive learning tasks and a Long-Term Memory for storing
persistent but not time-critical information. This separation is useful for the Object
Attention System as well, as the object learning takes place in a few seconds dur-
ing a Human-Robot Interaction while for autonomous interactions (e.g., fetch-and-
carry tasks) by the robot, the object information learned can be transferred to the
Long-Term Memory. For the realization of the memories, Kirstein and colleagues
use a slightly modified supervised Learning Vector Quantization (LVQ) algorithm.
This enables their system to create a Short-Term Memory using similarities with
an adaptive collection of object view templates. Subsequently, the learned fea-
ture representation is used for an incremental LVQ in order to accumulate the
features into the Long-Term Memory. Thus, it is possible to continuously train
the Long-Term Memory which usually results in a decreasing classification error.
They have demonstrated the feasibility of their approach by learning 50 objects
in about three hours while the remaining classification error was about 6% using
color and shape and an 8% error by using shape features only. These results are
very promising, although Kirstein’s approach does not match the requirements of
a natural interaction as no commonly used interfaces, like a gesture or speech
recognition have been integrated.

In [BSD03, BSZD06], Becher et al. propose an interactive Object Modeling Sys-
tem for semi-autonomous learning of object models. In this context, the practi-
cability for these object models is discussed with regard to a convenient Human-
Robot Interaction as well. For instance, such object models have features, like
"is transportable" or "is a container", and the models are grouped into classes.
Consequently, each single model represents an instance of a certain class, like
"cups". The features contain several attributes, for instance, the fill state for con-
tainers with corresponding attribute values, like the numeric value for its fill state
(e.g., 10%). In order to enter this information they use a graphical user interface
that allows to enter the names of attributes as well as their values. For the sen-
sory input they use a 3D-laser scanner and a high-resolution color stereo camera
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system which enables a visual analysis of an exposed object within the restricted
modeling area as shown in Figure 4.1.

Figure 4.1: Object modeling
area of Becher et al. [BSZD06].

In order to enable further processing of the
manually entered object information, the at-
tributes and their values are represented as
Extensible Markup Language [Wor06a] en-
coded text. This object text is inserted in a
database for modeling the world knowledge of
the system. Summarizing, the proposed sys-
tem for object modeling is able to generate de-
tailed object models that can be used for later
recognition tasks. However, the system is only
partial usable for a convenient Human-Robot
Interaction as its current implementation does
not support naturally spoken language or ges-
tures without additional sensors.

An interesting approach that does not rely on such a restricted modeling area
is presented by Hois and colleagues [HWBR06]. As their approach for object-
related modeling does support speech processing, it is more suitable for the re-
quirements of a natural Human-Robot Interaction. As sensor they use a 2D-laser
scanner mounted on a pan-tilt unit in order to recognize objects in a domestic
environment.

Figure 4.2: Object Recognition using
Cognitive Computing system.

The figure has been taken
from [HWBR06].

Their proposed recognition system
ORCC (Object Recognition using Cog-
nitive Computing) depicted in Fig-
ure 4.2 is able to segment a clut-
tered scene based on a visual 3D-
laser scan by putting a bounding box
around single objects. The processing
starts with a Data Acquisition step per-
formed by their 2D-laser range finder
which is tilted in order to achieve a 3D-
laser scan. The resulting depth im-
age provides an accuracy of approxi-
mately 1 cm. Then, in a subsequent
Singular Value Decomposition (SVD)
step [WR06b] which is combined with
a region growing algorithm, planes in
the scene are extracted. After this first

Plane Detection for the complete scene content, a Plane-Based Functional Ob-
ject Recognition is initiated in order to gain a coarse separation of objects from
their environment, like walls or table surfaces. Therefore, the object models offer
attributes, like orientation or object size. Furthermore, these attributes describe
relations between the different models, for instance, distance or the deviation of
the orientation from the horizontal plane. For the following object detection, all
points within objects are removed in a Data Crushing step as structural infor-
mation would not allow a sufficient object segmentation. For the segmentation
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Hois et al. then use a Density Segmentation approach to enable the detec-
tion of already known shapes, but also of unknown objects. However, the pre-
viously gained knowledge about the environment, like tabletops is also used to
improve the results by restriction of the scenario. In a last processing step, an
Object-Oriented Bounding Box is set around each segmented object. Hence,
a Dimension-based Object Recognition can be initialized using these bounding
boxes.

An exemplary processing result is shown in Figure 4.3. Image 4.3(a) illustrates
the scenario. In the foreground, the laser range finder mounted on a pan-tilt unit
can be seen. In the right image 4.3(b), the final 3D-representation is depicted.
It shows the already separated and labeled objects together with their bounding
boxes. Next, a brief Human-Robot Interaction scenario is described that illustrates
how this 3D-representation is applied for the mobile robot used.

(a) 2D-scene. (b) 3D-scene.

Figure 4.3: 2D- and 3D-representation of a scanned scene.
The images have been adapted from [HWBR06].

As their purely vision-based approach is often not sufficient to let a mobile robot
interact or navigate in an unknown environment (cf. section 2.2.2 on page 20),
the ORCC system of Hois and colleagues combines the visual information with
naturally spoken language. Thus, their system allows to correct wrong learned ob-
ject classifications and instances. Furthermore, it can deal with spatial relations.
These features are supported by a linguistic component, which is divided into two
phases, the training phase and the action phase. During the training phase, the
user is able to associate object type labels that could not be determined automat-
ically. These labels are added to a domain ontology acting as knowledge base
for the scene. In combination with the depth information from the laser range
finder, the system can be asked about spatial relations between objects. First
evaluation results for object recognition and the determination of spatial relations
are presented in [WR06a, HWBR06]. These show that they have developed a
feasible approach of a cognitive vision system connected to an ontology-based
representation with linguistic support.

Summarizing, the approach of Hois and colleagues is quite sophisticated but it is
not yet suitable for a natural Human-Robot Interaction because of the following
reasons. The 3D-scan of the scene is very time-consuming. Thus, this model
is more suitable for non time-critical offline object learning than for a dynamic
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Human-Robot Interaction scenario. Furthermore, the user interface is rather lim-
ited as it currently includes speech only and even more their system is not able
to cope with additional object attributes, like color. As depth is difficult to ver-
balize for humans (e.g., objects that are positioned in a 45◦ angle to each other,
are they placed behind, side by side or both?), a gesture recognition can help
to resolve such ambiguities. Last but not least, depth is currently the only input.
For aspects, like partial occlusions or objects standing directly next to each other,
the scene analysis will fail for these objects. In this context other features, for
instance, shape or color could significantly improve the recognition results of the
system.

An approach that overcomes some of these constraints by using visual object in-
formation as well, but also speech and gesture data is presented by F. Lömker
in [Löm04]. He utilizes a static scene in order to visually learn objects. The vi-
sual learning algorithm is based on comparisons of histograms. This becomes
available by the use of difference images that were calculated as soon as the
user picks up an object and, thus, the system can determine which image part
represents the object. In this way, the approach produces reliable output, how-
ever, it does not consider spatial issues. Hence, a second method based on
graph-matching, like described by, e.g., C. Bauckhage and colleagues [BBS04]
has been implemented by F. Lömker as well to overcome these limitations. As
the evaluation of the system shows, the approach of F. Lömker matches many of
the requirements for a cognitive motivated object learning architecture. However,
it does neither consider spatial object relations nor object features, like size or
depth. Unfortunately, a domestic domain often requires the analysis of these fea-
tures, e.g., due to its cluttered character. Additional information is often the only
way to resolve ambiguities. Approaches that are more focusing on the processing
of context information are therefore discussed in the next paragraphs.

As it has been shown (e.g., Dickinson [Dic99], Triesch and Eckes [TE05], and
E. Braun [Bra06]), a large amount of object recognition approaches already exist
that can eventually be adapted for the use in robots.

A survey for inferencing generic object models based on examples is, e.g., de-
scribed by Keselman and Dickinson in [KD05]. Such generic models are espe-
cially useful for autonomous interaction tasks of a robot, as they eventually allow
an improved recognition of the objects that have been learned during a former in-
teraction with a user. Thus, it makes sense to discuss the approach of Keselman
and Dickinson in detail. They point out that during the 90’s, appearance-based
modeling became more and more popular in order to deal with complex, scaled,
rotated, occluded or translated objects. One of the most challenging tasks re-
garding the recognition of objects is the still existing representational gap. This
gap occurs as it is usually assumed that a 1:1 correspondence between the im-
age and its model exists. In particular, they state that a saliency in the image
does not automatically imply that it is contained in the model as well. Thus, the
model needs to be represented as abstract as possible and, therefore, be able
to abstract from salient details anyway. They propose an approach to develop
the so-called lowest common abstraction (LCA) image, whose principles can be
explained on the basis of Figure 4.4. As the illustration shows, the construction
of an LCA image underlies a hierarchical concept. First, Keselman and Dickinson
segment the real images, as shown in the middle row of Figure 4.4.
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Figure 4.4: Lowest common abstraction image.
Image has been taken from [SKD+06].

This enables a formation of
a region adjacency graph γ ,
while it is assumed that ev-
ery image is oversegmented.
Then, a lattice λ is formed
by merging all possible se-
quences of region adjacency
graphs. Each image forms its
own lattice where the bottom is
the original region adjacency
graph and the top τ of the lat-
tice is the silhouette of the ob-
ject. The latter one emerges
from merging all regions into a
single region. Now, a common
abstraction is defined in such
a way that for any two nodes
of two different image lattices
(λ1, λ2) their corresponding graphs (γ1, γ2) are isomorphic. Hence, each τn of
every image is a common abstraction. The LCA (top row of Figure 4.4) is then
defined as a common abstraction whose graph has got a maximal amount of
nodes. In order to improve the performance of the search for an LCA, they search
only for intersections of two lattices λ1,2 ∈ λn .

The benefit of the calculation of an LCA image is the creation of a generic ob-
ject model that can be mapped on new scene images in order to recognize al-
ready learned objects. Nevertheless, object recognition with image-based ap-
pearance models still proves as prone to error. As a consequence, more and
more algorithms are based on interest feature points, like the SIFT features by
Lowe [Low04], or shape matching algorithms [BBM05] introduced by Berg and
colleagues. Especially the SIFT features by Lowe [Low04] became an excellent
approach to recognize interesting feature points in images. Thus, they are applied
in the proposed Object Attention System as well.

One last aspect that has been considered for the implementation of the multi-
modal Object Attention System copes with the temporal relationships between
the modalities used. In this field of research a lot of experiments have been con-
ducted. The following section gives a brief overview of the most important issues
as far as they concern the Object Attention System.

Temporal Dependencies between different Modalities

Deictic gestures often accompany a verbally specified object reference during a
Human-Human Interaction. This behavior has successfully been observed or at
least been evaluated during Human-Robot Interactions as well, as user studies
have shown, e.g., [Kha98, FWS05]. The temporally correct relation assignment
of different modalities (speech, gesture, object sound, and visual object appear-
ance) is, therefore, one key feature of the proposed Object Attention System.
Consequently, a lot of effort has been spent on the implementation and the analy-
sis of temporal connections. For this reason, the Short-Term Memory is responsi-
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ble for the temporally correct data fusion. To summarize the modalities that need
to be aligned, all considered features are listed below:

• (Deictic) speech

• Deictic gesture

• Distance of the user to the robot

• Auditory object appearance

• Visual object appearance (Position)

In the following, these issues are discussed in detail in the following subsections.

Correlation between Gesture and Speech

The accurate timing of a deictic pointing gesture related to a specific utterance is
the linchpin for the determination of the correct Region-Of-Interest. The relevance
of object references that are supported by gestures, thus, has been a research
topic for several years, as described by A. Kranstedt and colleagues [KLP+06], S.
Wachsmuth [Wac01], or Kendon [Ken04]. Concluding, the literature shows that
diverse time-dependent thresholds have to be considered in order to get the best
accuracy for Region-Of-Interest. As a consequence, it is useful to orient by ex-
periments that investigate the temporal dependencies between different modali-
ties. Especially, gestures and speech should be related and synchronized to each
other as they are the most volatile features in comparison to visual object appear-
ances or written commands. In the following, experiments that are related to this
topic and that have been conducted in a robotic setup are discussed.

The experiments that are described next, concern the multimodal fusion of 3D-
pointing gestures and speech and have been conducted by Holzapfel and col-
leagues [HNS04] who present user studies with 7 participants. In their scenario
they used a kitchen environment that allows to interact with the humanoid robot
ARMAR by using speech and gestures. As this scenario is part of the Home Tour
Scenario, like it has been described in this thesis, the results are considered to be
adaptable to other robots as well. Consequently, the resulting time value relations
have been used for the Object Attention System. An overview of the measured
values is given in Figure 4.5 on the next page.

The results of the conducted experiment are based on 89 utterances accompa-
nied by simultaneously performed gestures as it is illustrated in the upper part of
Figure 4.5. The upper diagram describes the temporal correlation between the
manually annotated begin of a deictic gesture and the begin of an utterance. As
the diagram shows, most gestures began between 0.52 seconds before and 0.7
seconds after the speech began. Subsequently, Holzapfel and colleagues inves-
tigated the correlation between a deictic gesture and a deictic word, like "this"
or "that". The corresponding results of this investigation are shown in the lower
diagram of Figure 4.5.
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Figure 4.5: Time-correlation between deictic
gesture, speech, and deictic speech. These fig-
ures have been adapted from [HNS04].

Here, a subset of the evalua-
tion data has been used that
contains 53 utterances. It can
be seen that a close relation
between a deictic word and a
spoken utterance exists which
is also verified by experiments
of Sugiyama et al. [SKI+05]
or McNeill in [McN92]. The
data of Holzapfel, however,
has been estimated with a nor-
mal distribution which results
in a mean value of -0.3 sec-
onds and a variance of 0.14
seconds, as it is described
in [HNS04]. This indicates
that the user often points to an
object 0.3 seconds before he
speaks his deictic word. How-
ever, these experiments con-
cern only the correlation of
gesture and speech. The du-
ration of the gesture during its
hold phase is, nevertheless,
very important as well. Espe-
cially for the gesture recogni-
tion it is essential to detect the
end position of a gesture as

otherwise all subsequent calculations, performed by the Object Attention System
for the determination of the Region-Of-Interest are getting inaccurate. Holzapfel
investigated the aspect of the ending gestures in his experiments, too (Figure 4.6).

Figure 4.6: Duration of a deictic gesture during hold
phase. The figure has been adapted from [HNS04].

The diagram illustrates
that most of the ges-
tures lasted no longer
than 1 second while
a significant peak in
his evaluation shows
that nearly half of the
gestures investigated,
were performed with
an approximate hold
phase of 0.5 seconds.
But, the histogram also
shows that every fifth
gesture had a hold
phase of approximately
0.3 seconds. How-
ever, further experi-
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ments with virtual characters, conducted by S. Kopp [Kop03] and T. Sowa [Sow05]
have shown that this time-dependent relation does not necessarily always apply
for a Human-Machine Interaction. This proves that a high variability for deictic
gestures exist, influenced by the task and the user.

Besides the relation between speech and gesture, it is useful to consider the
presence of the user and his position as well (cf. page 38). In this way, the ac-
curacy of the calculations for the Region-Of-Interest within the Object Attention
System can be improved. Therefore, this issue is discussed next. However, since
the proposed Object Attention System is an innovative approach with regard to
the diversity of different modalities processed for Object Attention, no comparable
related work is available yet. Nevertheless, as these time-related issues are se-
mantically connected to the temporal dependency between gesture and speech,
they are briefly introduced in this related work section as well. The same applies
to the following paragraphs describing the relation to object sounds and object
views. A more detailed description, however, is given later on in the subsequent
sections of this chapter.

Location of the interaction partner

The position of the user at a particular time results from the Person-Of-Interest
that is calculated by the Person Tracking and Attention module [Lan05, Kle05,
SHFS06]. In particular, the distance of the Person-Of-Interest in relation to the
robot is measured by a laser range finder, cf. page 35. Due to its measure-
ment frequency of approximately 5 Hz (200 ms), the corresponding relationship
between this distance and the estimated timestamp of the utterance can not be
determined more accurate than these 200 ms. However, this has been proven to
be accurate enough for a clear assignment (User Position ⇔ Utterance) although
a time span of±500 ms would be sufficient, too, as normally an interacting person
does not move that much in half a second. Besides these temporal aspects for
the Person-Of-Interest, the referenced object itself can provide useful information
as well, like its sound. Therefore, a short description on this detail is given next.

Object sound

Capturing the correct moment in time in order to extract an object’s sound is very
difficult, as objects usually do not indicate the beginning and the end of the sound
producing period. Of course, exceptions exist, like, e.g., alarm clocks that often
additionally illuminate their display while they are beeping but that is barely a
reliable aspect. Fortunately, the user can help with his utterance and his gesture
to let the robot capture the correct time span as well as the direction from where
the sound is generated. To match these requirements, the Sound Collector has
been developed for the Object Attention System which establishes a temporal
assignment between the user’s utterance and the object’s sound.

This Utterance ⇔ object sound relation in a temporal sense has been chosen as
speech offers the possibility to bind the begin and end time of a sound recording
to specific key words or sentences, like “Listen to the following object sound” and
“Now stop recording the object sound". Besides the audio-based object analysis
does the visual object appearance provide valuable features, too.
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Object view

As the object camera continuously captures images, it has to be considered which
image needs to be extracted from the continuous video stream in order to get a
clear object view. In this context, the Object Attention System offers two possibil-
ities. On the one hand, the user can select the Region-Of-Interest just by using
the touch screen interface, which has been described in section 3.2 on page 42.
Although this provides the advantage of a direct feedback for the user, a point-
ing gesture offers an additional input cue and, thus, supports a more convenient
Human-Robot Interaction. Therefore, the gesture is evaluated and, consequently,
the camera can be aligned on the referenced location. However, it has to be
questions how the system can determine whether the gesture is complete. For
the Object Attention System this is solved by a continuous validation of the current
camera position. As soon as the camera stops its motion it can be assumed that
the camera has reached its destination position. Nevertheless, the evaluation of
the timestamp when an image has been captured can increase the robustness
for an accurate temporal assignment. In particular, this image timestamp could
be put in relation to the gesture timestamp. However, due to technical constraints
this has not been realized so far.

Concluding, it can be said that the different input information arrive at different
time which demands for a buffering of the data. This is realized by the Short-Term
Memory within the Object Attention System. But before the implementation de-
tails of the proposed Object Attention System are described, the robotic hardware
platforms used are presented next with a focus on the sensors that provide data
for the Object Attention System.

4.2 Hardware Platforms used for
the Integration of the Object Attention System

The use of real robots for the development of the Object Attention System is
essential mostly for two reasons. First, it enables a more robust implementation
as it allows to evaluate the proper functionality of the Object Attention System.
Secondly, the use of real robots demonstrates that the system not only operates
in a laboratory environment, but actually on the intended field of application. While
in the beginning of the development phase of the Object Attention System only
one mobile platform existed, later on a stationary anthropomorphic robot became
available as well. As a consequence, the proposed Object Attention System has
been enhanced for the use with this robotic platform as well as it partly offers
different sensors. Thus, the Object Attention System can be used with human-
like sensors only and does not necessarily rely on artificial sensors, like the laser
range finder any longer. The following paragraphs, therefore, briefly describe the
different hardware used.

The Mobile Robot BIRON

One of the first steps during the development of the Object Attention System con-
sisted in the examination of the existing robot platform with regard to the needs
for the integration of the Object Attention System in the robot. It turned out
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that for several reasons, e.g., insufficient computational power, it did not match
the requirements for a successful integration. Thus, an enhanced new platform
has been assembled. As a consequence, not only the Object Attention System
but also further modules, like the gesture recognition by N. Hofemann [HHFS05]
could be integrated as well. Image 4.7 shows the new mobile Bielefeld Robot
Companion (BIRON). It is based on a Pioneer PeopleBot platform from the com-
pany ActivMedia. Next, this hardware platform is described in more detail.

Figure 4.7: The Bielefeld Robot Companion (BIRON) of the applied computer sci-
ence group at Bielefeld University. The wirelessly connected notebook depicted
on the right is mainly used for speech processing tasks, e.g., the dialog system.

On its top, a Sony Evi-D31 pan-tilt camera is mounted at the front side at a height
of approximately 1,42 m. It is the most important visual sensor for the Object
Attention System as it is used to identify objects and, therefore, it is described
more detailed than the other sensors. Besides, it is also used to identify the face
of the current interaction partner (cf. 3.1 on page 34). The camera supports a
resolution up to 768×576 pixel (PAL) and is steerable for about 100◦ to the left
and as well as to the right, and for about 25◦ in each vertical direction. Its lens
provides a field of view of up to 37,6◦×48,8◦ in its widest zoom position while the
maximal×12 optical zoom provides a perceptional field of view of 3,2◦×4,3◦. The
zoom functionality is approximately linearly adjustable over an interval divided in
approximately 1000 steps. The camera is attached to a mounting that includes a
display with a touch screen. This display is used for maintenance tasks as well as
for visual feedback for the user during a Human-Robot Interaction. At the left and
right bottom of the display two far-field microphones are mounted which capture
the environmental sound for the speaker localization as described by S. Hohenner
in [Hoh05]. Additionally, in a calm environment these microphones can be used
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to capture the user’s speech which makes the use of a close-talking microphone
headset dispensable.

Beneath the display, a sonar ring including 8 sensors is mounted while an equally
equipped second sonar ring is mounted at the base of the robot. These sensors
can be used for, e.g., collision avoidance, but as they produce a clicking sound in
audible frequency they are disabled as they would influence the speech recogni-
tion results. Directly under the upper sonar ring, a monocular Apple iSight camera
is mounted which is used for the body tracker and the gesture recognition, cf. sec-
tion 3.1 on page 36 and the following ones. Alternatively, a stereo camera can
be mounted in order to get more accurate depth values. Also embedded into the
tower casing of BIRON are two speakers that are used for its utterances during
an interaction phase. Besides, the tower also contains an industrial computer
that is mainly used for the visualization on the display and the Person Tracking
and Attention System by M. Kleinehagenbrock [Kle05], S. Lang [Lan05], and T.
Spexard [Spe05, SHFS06]. At the bottom of the tower casing two mountings are
attached, one on each side in order to equip the robot with two notebooks that
perform the computations of the Object Attention System, the gesture recogni-
tion, and a self-localization which is currently under development. Between the
two laptops, the blue-colored laser range finder is shown. This 2D-laserscanner
measures distances of the environment within a 180◦ plane scan at an approxi-
mate height of 30 cm. Thus, pairs of legs can be detected by the Person Tracking
and Attention System by using an appropriate heuristic as described by S. Lang
and J. Fritsch in [Lan05, FKL+03].

The basis of BIRON holds a motor which enables BIRON to move forward and
to rotate. Since no sensors are oriented to the back, a backwards movement
is disabled and so are the black bumper switches at the very bottom that can,
for instance, be used for emergency stops if BIRON collides with an obstacle.
Within the basis, the power supply consisting of high-capacity batteries and a
second industrial computer are contained. This computer is connected to the two
microphones beneath the display and to the motor controller board. Additionally,
it serves as host computer for the wired network on the robot and the wireless
network that is used to connect one or more notebooks that are used for, e.g., the
speech processing as shown in Figure 4.7.

The technically oriented platform BIRON is due to its sensors not ideally designed
to simulate the behavior of humans and, therefore, restricts the fields of applica-
tion of the Object Attention System. Thus, the Object Attention System has been
extended for the use with anthropomorphic robot platforms as well.

The Anthropomorphic Robot BARTHOC

In this section, the anthropomorphic robot Bielefeld Anthropomorphic Robot for
Human-oriented Communication (BARTHOC) [HSF+05, SHFS06] is described. It
has been developed by the company mabotic and is mainly used for user studies
with human-like robots. The applied computer science group of Bielefeld Univer-
sity has got two exemplars of BARTHOC, an adult-like one (BARTHOC senior )
shown in Figure 4.8(a) and a second one with child-like dimensions (BARTHOC
junior ), see Figure 4.8(b). The latter one is shown with a skin-like mask for the
face while an appropriate mask for BARTHOC senior exists as well.
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(a) Full body view of BARTHOC senior. (b) BARTHOC junior with skin mask.

Figure 4.8: The Bielefeld Anthropomorphic Robot for Human-oriented Communi-
cation (BARTHOC) of the applied computer science group at Bielefeld University.

Both robots are equally equipped with 41 actuators that enable human-like DoF
for their movements. Thus, they can tilt and pan their heads to both sides and up
and down, respectively. Besides, the complete head is movable in forward and
backward direction. Furthermore, the eyes, each equipped with a color camera
that have a resolution of 640×480 pixel (VGA), and a focal length of either 4, 6, or
8 mm, can be panned separately but tilted only for both eyes in the same angle.
For the simulation of mimics, the artificial heads have actuators for the forehead,
eye brows, cheeks, and the jaw as well. The torsos are equipped with additional
actuators that allow shrugging the shoulders and a movement of the arms and
hands while each hand is able to move its fingers separately. However, the hands
are usable only for communicative gestures and not for manipulation tasks due to
their construction.

With regard to the computational resources available for the BARTHOC robots,
currently two stationary computers for each robot are used, one for the head
and one for the torso. As the motor control unit and the cameras are separately
connected with the computers, the resources can easily be extended if necessary.

After all relevant details for the hardware have been discussed, the software-
based implementation of the proposed Object Attention System is described in
detail in the following.

4.3 Data Representation for Intra- and Inter-module
Communication

The related work for object learning showed that the communication between the
human and a social robot needs to be supported by the Object Attention System
in order to make the conversation as comfortable as possible. In order to be able
to adapt to the rapidly changing challenges, a flexible data communication format
has to be used as well. In the following, therefore, the communication scheme
used is briefly pointed out. Additionally, the Object Attention System needs to
be able to adapt itself to the varying environment. To face these requirements,
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a global and fully verifiable setup configuration has been developed that is, sub-
sequently, be presented. A detailed description on these issues is given in the
appendix A.1 on page 119.

Flexible Data Exchange

The development of a cognitive operating Personal Robot demands for the incor-
poration of many components that communicate with each other. These issues
lead to a very complex architecture and, thus, worldwide not a single research
group is able to match every specific demand in the best possible manner. Hence,
it is essential to provide interfaces for each module (e.g., for object recognition,
speech processing, . . . ) that allow different research groups to interconnect their
solutions as easily as possible. Because of this constraint, all interfaces no mat-
ter whether it concerns text-based or binary data are unified which offers for all
modalities used a great deal of flexibility. The fact that the exchanged data em-
beds various types of formats, like, e.g., text in arbitrary languages or binary data
(motor commands, sound, images, . . . ) additionally requires the capability to deal
with these constraints using a neutral format container. In order to solve these
challenges, only open, non-licensed, and internationally accepted standards are
used for the different domains Audio, Text, and Vision within the Object Attention
System. Furthermore, these standards need to be independent from a particular
programming language or operating system which has been realized as well for
the Object Attention System. This completes the brief discussion on the flexible
data exchange issues as the details on the concrete approaches are described
on page 119. The second aspect mentioned above concerning the need for a
global configuration is, therefore, briefly given next.

Global Configuration of the Object Attention System

The proposed Object Attention System is designed to be integrated in various
robotic systems. Thus, all environment-dependent settings, like names for com-
munication channels or hardware parameters for cameras are adaptable without
the need to edit the source code. In particular, a global and easy extendable
XML-based configuration has been developed which is verifiable with an also de-
veloped corresponding XML Schema-based validation. This way, invalid entries
are immediately displayed and the user is able to correct the values. While it is
inconvenient under research conditions to always change the configuration file
as soon as another robotic platform is used, the Object Attention System sup-
ports parameters which let the developer select the individual system-dependent
configuration.

These selectable configurations always cover the same features that are divided
into four semantically distinct blocks:

• Global configuration (locations of object and logging files)

• Communication connections

• Hardware setup (camera parameters, including position and orientation)

• Memory setup (size and storage duration of Short- and Long-Term Memory)
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To sum up, a coarse introduction into the concepts used for the flexible interface of
the Object Attention System has been given. These concepts support an easy in-
tegration of the Object Attention System in robots used by other research groups.
Next, the temporal dependencies between the different modalities used are con-
sidered. This reflects the corresponding discussion in the related work of this
chapter. Therefore, the developed Short-Term Memory approach is presented in
the following.

4.4 Short-Term Memory
The developed Short-Term Memory optimizes the memory consumption, pro-
cessing speed, and CPU load by its data-centralized and data-encapsulated char-
acter. Additionally, it is held flexible for the integration in other robotic systems.
This becomes possible as the most important settings enable a quick adaptation
of memory duration, memory size, and object storage location which is supported
by the global configuration approach described above. As the Short-Term Mem-
ory contains all input data that needs to be accessed several times during one
processing cycle of the Object Attention System, it offers an optimized represen-
tation for each modality.

In particular, the different interfaces are symbolically composited by the Store
label in Figure 4.9. This interface is directly connected to the individual context-
dependent memory structures for the processing of gestures, speech, person
data, and object data. During each storage process, a label is attached that
contains a Best Before timestamp for later validity checks. With this timestamp
calculation and the subsequent storage in the appropriate memory structure, the
overall storage process is complete.

Query
Queried
data set

<?xml version=”1.0“?>

<Timestamp>...</Timestamp>

XML-/Binary Data

...

Temporal Modality Fusion

Memory
Synapse

Store

Short-Term
Memory

Validity Check

Context-dependent
Memory structure

Data Assignment

Figure 4.9: Schematic illustration of the
Short-Term Memory and its interfaces.

As soon as all data is complete
and the Object Attention System
wants to access the memorized
data, a structure called Memory
Synapse is accessible by a sep-
arate interface. Within this struc-
ture, the actual temporal fusion of
the modality data stored is done.
During each access, the memo-
rized data is checked for validity
(age, completeness) first. If an
error occurs, a meaningful error
message is returned to the query-
ing instance. Then, starting from
the oldest stored values the tem-
poral assignment of speech, ges-
ture, person, and object data is
performed in correspondence to
the values that have been dis-
cussed on page 52 and the follow-
ing ones. As an outcome, all rel-
evant and temporally related data
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is summarized in a structure called OASObject that integrates the attributes and
values received by the gesture recognition, speech processing units, and the per-
son tracking component. This OASObject is from now on the only global data
structure needed for further processing tasks within one overall processing cycle
(object learning or object recognition) of the Object Attention System. Thus, the
efficiency mentioned above is achieved. After the fusion process is complete, is
the OASObject accessible over a third interface category, in particular, the Query
interfaces. They offer a generalized possibility to extract either the current OA-
SObject or particular data set related to a specific modality.

For a more detailed illustration of the internal structure of the Short-Term Mem-
ory, please confer the description in appendix A.4 on page 126. As the basics of
the Short-Term Memory have now been discussed, the important aspects of the
object perception (visual, auditory) and representation is presented next. For clar-
ification, this may not be confused with the OASObject as this is a data structure
for internal use.

4.5 Perception and Representation of Objects
The perception and representation of objects referenced during an HRI presents
besides the anchoring and fusion process of sensor signals to appropriate sym-
bolic symbols the most challenging task for the development of a multi-modal
Object Attention System. Therefore, a special focus has been layed on the vi-
sual learning and representation algorithms for a priori unknown object instances.
Therefore, the outline of this section is as follows.

At first the necessary conversion between symbolic and numeric expressions is
presented. Then, the computation for the actual location where the robot refers
to, the Region-Of-Interest, is described. After that, the visual segmentation and
representation used for the final object views are pointed out. Finally, the cor-
responding ontological object representation in a spatial and a textual semantic
sense is regarded.

4.5.1 Modality Converter

The visual exploration of a scene utilizes common image processing algorithms.
Those algorithms use numeric values, e.g., for the representation of colors de-
noted in a specific color space, like the Red Green Blue (RGB) or Hue Saturation
Value (HSV) color model. However, the user of a robot does not have an interest
in the learning of thousands of numerical color value combinations, instead he
wants to deal with colors in a familiar way. In detail this means that he wants to
use symbolic color names, like ’red’ or ’cyan’. In order to provide such a symbolic
⇔ numeric transformation, the Modality Converter has been developed for the
Object Attention System, cf. page 121 for details.

The Modality Converter is designed as a stand-alone application as well. For rea-
sons of flexibility, its access interfaces are fully based on XML which enables other
modules, like the distributed Long-Term Memory, to state queries to the Modal-
ity Converter. In its current implementation, the Modality Converter supports the
following four features for transformation tasks:
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• Color

• Relation

• Size

• Shape

Except for the two feature types ’Relation’ and ’Shape’, all other transformations
are performed in a classical mapping task symbolic ⇔ numeric. Nevertheless,
they all use a database-like model of a lookup table which is encoded in XML
as well. This enables several advantages, like easy adaptability and automatic
verifiable entries.

The basic conversion scheme is explained by the following simplified lookup ta-
ble 4.1. In the most left column, the Predicate name, e.g., color is given, which
corresponds to the symbolic expression used by the dialog, speech understand-
ing and speech recognition component. All these predicates have values, e.g.,
red, as shown in the second column. This is enough information to enable the
Modality Converter a conversion into a format usable for the Object Attention
System. Depending on the predicate used, this destination format varies a lot, as
the Numeric/Model column exemplifies.

Predicate Symbolic value Numeric / Model
Color red Model Ch. Ch. 1 Ch. 2 Ch. 3

HSV 6 0. . . 4 25. . . 29 151. . . 155
Relation Obj1 under Obj2 Obj1.y < Obj2.y
Size small 5. . . 12
Shape round Haralick

Table 4.1: Simplified lookup table of the Modality Converter.

From this structure arise three possible conversion situations. First, all needed
entries for symbolic and numeric values are specified. In this case, the Modal-
ity Converter returns the appropriate answer to the querying module. Secondly,
in some cases, .e.g., a symbolic name, like “transparent” does not have a cor-
responding numeric value defined in the color space used. Thirdly, no numeric
value exists for a given symbolic name yet. In the latter case, although not yet
implemented, the Object Attention System could resend the color values of the
determined Region-Of-Interest, e.g., at the position of its center of mass. That
way, the lookup table of the Modality Converter can be completed and, thus, a
previously unknown symbolic color can subsequently be used by the Object At-
tention System.

The two strategies used for the features Relation and Shape follow the same
principles. Both map the large variety of possible predicate names to a relatively
small set of mathematical expressions (e.g., <,>,=) or names for shape recogni-
tion approaches [WC05, Ber05] (e.g., Haralick, Least Median of Squares, Fourier
Descriptors, or Minimum Bounding Rectangle), respectively. Thus, the user can
iteratively optimize the extraction of an object view without the need to know about
the particular underlying mathematical methods.
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After the modality conversion is completed, the Object Attention System is able
to use the transformed values to focus the camera on the referenced Region-Of-
Interest.

4.5.2 Determination of the Region-Of-Interest

The alignment of the camera on the referenced Region-Of-Interest which ideally
contains the object is a very challenging task. In order to solve this task, two dif-
ferent algorithms were implemented in the Object Attention System, both mainly
using the output of the gesture recognition system. The first one for the princi-
pally 2D-gesture recognition in combination with the depth data provided by the
laser range finder of the robot BIRON. The second algorithm is able to deal with
the data provided by the 3D-Body Model Tracker in combination with the gesture
recognition, cf. section 3.1 on page 36. Thus, the latter one is a great deal more
precise than the first algorithm based on the gesture recognition using skin-color
region tracking. Nevertheless, the goal for both approaches consists in the align-
ment of the object camera which uses the robot coordinate system depicted in
Figure 4.10. This is of special interest, as the robot and the object camera, re-
spectively, use a completely different coordinate system than the gesture recogni-
tion, although all positions, finally, need to be transformed into the object camera
coordinate system.

~zr

~xr

d

h
~r

ϑ

~yr

B

(a) Robot’s cylindric coordinate system, adapted from [Lan05]. (b) View from top
on robot’s coordi-
nate system.

Figure 4.10: Robot coordinate system used for the Object Attention System.

As Figure 4.10(a) shows is the object camera coordinate system a cylindric one
with its origin B for the height ~zr on the bottom of the robot. In that plane, the axis
~yr pointing to the front origins in the middle of the robot, while the orthogonal axis
~xr radiant from the axis of the drive wheels. Furthermore, the horizontal angle ϑ
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[rad] has its 0◦ angle pointed to the front of the robot, measured counterclockwise
as illustrated in Figure 4.10(b). The remaining components height h [m], distance
d [m], and radius r [m] have the same origin point B as the Cartesian ~xr , ~yr , ~zr
coordinate system as shown in Figure 4.10(a).

The computation of the position for the Region-Of-Interest starts in both cases
as soon as the dialog component sends the order to align the camera on an
object. For efficiency reasons, the following computation is only performed for the
relevant gesture and not for all stored gestures in the Short-Term Memory. This
becomes available by the analysis of the temporal correlation between speech
and gesture, as it is described in section 4.1. Based on the content of the XML
data sent by the gesture recognition module, the Object Attention System decides
how to proceed. In particular, two cases are distinguished, one for 2D-data, and
one for 3D-data.

Dealing with 2D-Gesture Data for the Region-Of-Interest

If the 3D-Body Model Tracking System is not used, the gesture recognition itself
supports the Object Attention System with the 2D-hand position and an estimated
2D-pointing direction α (0◦. . . 360◦). Thus, it is necessary for the Object Attention
System to extrapolate the pointing direction as otherwise the center of mass of the
hand would be interpreted as the center of the Region-Of-Interest. The following
paragraph, therefore, describes the basic proceeding in a simplified manner of
the algorithm applied to overcome this restriction.

To get an appropriate coordinate for the Region-Of-Interest, trigonometric func-
tions for right triangles are used to cover the various pointing directions, see Fig-
ure 4.11.

Figure 4.11: Illustration of geometric
2D-approximation for the Region-Of-Interest.

In particular, the slope m of the red-colored hypotenuse ~h is calculated which runs
parallel to the pointing direction, cf. equation 4.1.

m =
~o

~a
= tanβ (4.1)
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The hypotenuse is then, starting from Point A’, continued in pointing direction for
approximately 30 cm. In this way, the center for the Region-Of-Interest (B’) is
determined. The shift of the Region-Of-Interest for about 30 cm is indeed a very
coarse approximation, but in real experiments it has been proven as accurate
enough.

The Object Attention System so far does not have an estimated distance (Robot
⇔ Hand) for the gesture position. Thus, the distance value of the person pro-
vided by the Person Tracking and Attention System [Kle05, Lan05, Spe05] is
used. However, it has been shown that if the user’s hand is in the upper half
of the image captured by the gesture camera, the referenced location is a great
deal nearer to the camera than the legs. This is caused by the circumstance that
in such a case the user usually points to a location on a tabletop in front of him. In
order to compensate this discrepancy, the distance value is then simply divided
by the factor 2.

As a result of the calculation of the Region-Of-Interest, a gesture-based Attention
Map, like it is depicted in Figure 4.12 is generated.

(a) Gaussian distribution. (b) Gesture-based Attention Map (isometric view)
modeled with a Gaussian distribution.

Figure 4.12: Visualization of a gesture-based Attention Map.

In particular, the Figure shows the input image provided by the object camera,
which is overlayed by a black hidden layer and the actual gesture-based Attention
Map modeled as Gaussian distribution. It illustrates the effect of the gesture map.
In the center of the distribution peak (marked by the black arrow), the black hidden
layer is completely penetrated while with decreasing amplitude of the Gaussian
distribution G(x , y), the penetration decreases as well. The mathematical rela-
tion for G(x , y) is described in equation 4.2. The variance σ2 is regulated with
the mean size value provided by the Modality Converter. The black area of the
Attention Map causes a fade out of the image parts not belonging to the Region-
Of-Interest.

G(x , y) =
1

2πσ2
e
−

„
x2+y2

2σ2

«
(4.2)

This method to calculate the location for the Region-Of-Interest is indeed only a
coarse estimation. Therefore, the 3D-based estimation of the Region-Of-Interest
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has been implemented as well which in turn applies the integrated 3D-Body Model
Tracking System. The following section, hence, describes the algorithm devel-
oped for the Object Attention System that allows a more precise localization for
the Region-Of-Interest.

Dealing with 3D-Gesture Data for the Region-Of-Interest

The preliminary evaluation of the 3D-Body Model Tracking-based gesture infor-
mation has shown that it provides a great deal more accurate positions of the es-
timated Regions-Of-Interest than the 2D-based gesture recognition does. There-
fore, the localization algorithm for the Region-Of-Interest has been adapted in
order to be able to automatically deal with the changed preconditions. Neverthe-
less, it has to be noted that the usage of the 3D-Body Model Tracking System is
currently not capable to process the image streams in an online Human-Robot
Interaction scenario, as the 3D-Body Tracker is still not optimized.

However, before the actual algorithm is explained, an overview of the different
coordinate systems used for the localization task is given first. The destination
coordinate system still remains the one for the object camera, as depicted in Fig-
ure 4.10 on page 64. Furthermore, the gesture recognition and the body tracker,
respectively, use an orthogonal 3D-Cartesian coordinate system as the right half
of Figure 4.13 illustrates. Besides these two already known coordinate systems,
an additional spherical user coordinate system is used. Although it would not be
necessary to introduce a third coordinate system from a mathematical point of
view, it is helpful for an easier illustration and implementation of the algorithm.
This user coordinate system has its origin C at the HEADPOS location provided
by the 3D-Body Tracking System, described in section 3.1 on page 36. While
the main directions are represented by the vectors ~ξ, ~ψ, and ~ζ, are the horizontal
and the vertical angle denoted by ϕ and ϑ, respectively. This additional coordi-
nate system is primarily used to enable an easy extrapolation of the 3D-pointing
direction which is finally used to localize the Region-Of-Interest. In the following
paragraph the algorithm is explained in detail.

In a first processing step, the positions for the RIGHTFINGERTIP D (marked
as red square in Figure 4.13) are extracted. If they are not available, the also
red marked RIGHTHANDPOS E tags are evaluated instead. As the latter one
marks the wrist, a correction distance of 15 cm is added in motion direction
of the pointing gesture. Usually three different locations of the RIGHTHAND-
POS, RIGHTFINGERTIP, and the HEADPOS are present, due to the last three
timesteps of the Condensation-based Trajectory Recognition (CTR) (cf. page 38).
Consequently, the last 200 ms (3 · 66,6 ms, related to the 15 fps used for the CTR)
are considered and if they are sent to the Object Attention System, their mean
value is calculated in order to suppress too large variations for the positions. This
becomes necessary, as the 3D-Body Tracker uses non-deterministic probabilis-
tic methods which result in recognition errors, especially in the depth values, as
described by Schmidt in [SKF06]. These errors are mainly caused by the monoc-
ular camera used, because with only one point of view, a lot ambiguities occur for
different poses. A motion model that could reduce these ambiguities is, currently,
not yet implemented in the 3D-Body Tracking System.

The second processing step transforms the extracted values related to the body
tracker coordinate system which is spanned by the axes ~x , ~y , and ~z into the cylin-
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Figure 4.13: 3D-Coordinate Systems used for the Object Attention System.

dric object camera/robot coordinate system (Figure 4.10). This transformation
considers the horizontal and vertical offset as well as the tilt of the gesture cam-
era related to the object camera coordinate system.

Next, the different user-dependent positions are transformed into the spherical
user coordinate system. This enables a simple distance adaption between the
user’s hand position and the center of the referenced Region-Of-Interest. This
distance, however, is not fixed and depends on the object size verbally specified
by the user. The corresponding numeric size value is returned by the Modality
Converter as described in section 4.5.1 on page 62. The same size value is
used for two other aspects. First, it is used to generate an Attention Map in
a similar calculation as it is described in the section before for the 2D-gesture
processing. Secondly, the size value is used to adjust the zoom factor of the object
camera in order to capture a more detailed view of the Region-Of-Interest. Finally,
after the position and the size of the referenced location has been determined,
a last transformation outgoing from the user coordinate system into the object
camera coordinate system is calculated. Consequently, the object camera is then
aligned to the computed location of the Region-Of-Interest while the calculated
zoom position is also transmitted to the camera. During the alignment of position
and zoom, the actual camera settings are continuously evaluated with a frequency
of approximately 10 Hz. Thus, the Object Attention System is able to initiate
further processing as it is ensured that the camera has reached its final position.
In the case of an error, the Object Attention System sends a message to the
dialog component that an alignment on the object is not possible.



4.5. Perception and Representation of Objects 69

For reasons of an easy evaluation, another unit test has been developed. This
is discussed later on in the evaluation chapter. Assuming that the camera has
successfully been aligned towards the Region-Of-Interest, a visual scene analysis
can be performed. The methods of analysis used by the Object Attention System,
therefore, are the topic of the next paragraph.

4.5.3 Visual Object Representation

The visual object representation and the generation of object models as abstract
as possible that allow a robust recognition in an unknown and cluttered scene is
one of the most difficult challenges for the development of the proposed Object
Attention System. That this is still an unsolved problem has been shown in the
related work to this chapter on page 47 as well as in chapter 2. However, the
overview has pointed out that an intelligent reduction of all input image data is es-
sential for the establishment of a successful Object Attention. Thus, some of the
most promising approaches for data reduction have been considered in the pro-
posed Object Attention System of this thesis. Regarding the visual representation
of objects, this reduction is, therefore, based on the features Color, Depth, Re-
lations, and Gestures. The feature Shape is also very helpful, but due to clutter,
occlusions, varying lighting conditions and other environmental influences difficult
to deal with. Nevertheless, a couple of intelligent approaches already exist for
shape-based object recognition, e.g., [CD02, LLS04, BBM05]. In this work, how-
ever, this feature could only partially be considered due to the complex algorithms
needed, as described in section 4.5.1 on page 123. At first a data reduction
is done by the gesture-based restricted selection of an appropriate Region-Of-
Interest, like it is described in the section before. Then, a detailed image analysis
follows which is described next.

(a) Original input image. (b) Smoothed input image. (c) Attention Map for “Blue".

Figure 4.14: Demonstration of color attention. Images taken from [Sae05].

Before the actual visual object appearance within the Region-Of-Interest is ex-
tracted, some image preprocessing is done in order to improve the results. This
preprocessing is performed on the original input image 4.14(a), like it is captured
by the object camera. As the camera used has a CCD (Charged Coupled Device)
sensor, the image contains noise due to physical effects, like thermal noise or dark
current. Unfortunately, these issues have a greater impact in indoor scenarios as
a longer exposure becomes necessary. Thus, in order to reduce the influence of
the noise, a Gaussian filter mask is convolved with the underlying original image.
The result of the convolution is shown in Figure 4.14(b) while in this example a
mask with a size of 11×11 pixel has been applied. This mask size has been
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proven as a good compromise during the evaluation phase of the Object Atten-
tion System. The filter is optional, integrated as an iceWing [Löm06] plugin while
it uses algorithms of the OpenCV library (cf. section 4.3 on page 121). Besides
the configurable Gaussian filter, additionally Bilateral, Blur, and Median filters can
be applied. In this way, the preprocessing can be optimized for the relative task.

In the following the actual view-dependent object extraction algorithms are de-
scribed. Therefore, the color-based generation of Attention Maps is described
next.

Color-based Object Analysis

The subsequent processing for a Color Attention is realized as a configurable
plugin as well, which has been developed in cooperation with M. Saerbeck in his
master thesis [Sae05]. Although the color analysis is in principle also optional for
the Object Attention System, it is useful to always consider the color, as otherwise
the resulting learned object view will probably contain more background image
parts. In the end this will usually produce a less accurate result. To overcome this
constraint, a depth-based Attention Map has been developed together with M.
Köllmann [Köl06] for the Object Attention System that, however, cannot be used
simultaneously with the color-based approach so far.

The visual routines in turn cause the Object Attention System first to send a query
to the Modality Converter in order to get the symbolic color name transformed
into numeric values. After a successful query, a color-based Attention Map is
created which highlights only the specified color in the image, like it is shown in
Figure 4.14. The calculation of the Attention Map in turn contains several pro-
cessing steps. In the following, only the HSV color space is regarded as its use
resulted in the most promising Attention Map while the colorspaces RGB, LUV ,
YUV , and additionally GRAY images have been considered as well with a cor-
responding conversion plugin. In particular, the most important advantage of the
HSV color space is the separation of color and intensity processing that enables
more robustness against varying lighting conditions as, e.g., the RGB color space.
This can easily be verified in the image 4.14(c), since all blue objects are high-
lighted, although their colors have different intensities (e.g., trash bin vs. cup).
However, the plugin used for Color Attention is independent from the color space
used. Only the calculation of the attention value for each image pixel is identical,
no matter what color space is used. This calculation is described next.

The equation 4.3 used for an Attention Map A on an image I is described below.
The overall Attention Map is defined by the sum of activations Ai ,j that are calcu-
lated for each pixel of an image I with its dimensions dim(I ) = X ,Y . This relation
is subsequently represented as function γ(z ), where z is a geometric mean value
used for noise reduction.

A =

X ,Y∑
i ,j

Ai ,j = γ(z ) (4.3)

Now in order to suppress outliers, the geometric mean value z is defined on a
neighborhood N for each position i , j . The resulting value for each neighborhood
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position is then compared to the reference color value c which enables the mea-
surement of the similarity between the reference value and its surrounding pixel.
The best results for an appropriate activation have been shown with the empiri-
cally determined equation 4.4. The variable d denotes the maximum distance of
two colors related to one color channel. For an 8 bit color image, like it is used for
the Object Attention System this is consequently the value 255. The exponent p
determines the slope parameter of the function.

γ(z ) = 1−
(

z

d

)p

= 1−


√

N∑
m,n

(I (i + m, j + n)− c)2

d


p

(4.4)

For visualization, the Figure 4.15 presents the equation applied with different
parametric values of 1

2
, 1, and 2 for the slope parameter p and a value of 255

for the color distance d .
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Figure 4.15: Activation function used for a color-based Attention Map.

The different curves illustrate that pixel which are similar to the reference color
value get a small mean value z and, thus, a high activation. On the contrary, the
more different the color value of a pixel is, in comparison to the reference color,
the lower is its activation. In order to be able to evaluate verbal expressions, like
“reddish” or “ginger”, the slope parameter p has been proven as very helpful. Its
effect can be described as follows. If it is less than 1, the function value decreases
faster than for a slope parameter which is greater than 1. This reflects the intu-
itively assumed relation as a slope regulator. A special case represents a slope
value of 1, which causes a linear dependency between the color activation and
the color similarity. As an outcome of the color-related Attention Map, an object
view can more easily be extracted.

Although the color-based Attention Map is mostly sufficient, a depth-based At-
tention Map has been integrated as well for the Object Attention System in order
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to get an improved object view of the object regarded. This depth evaluation is
described next.

Depth-based Object Analysis

The development of robots can be divided into two main directions. Those that
are designed with a focus on a technical appearance which provide all kind of
sensors that are not comparable with the human-like perception, like ultra-sonic
sensors or laser range finders. The second category represents anthropomorphic
robots that are equipped with human-like sensors, like two cameras for the eyes,
or two microphones for the ears and so on. In order to cover the latter category
as well, the above mentioned model for depth-perception based on a stereo view
is described together with its underlying algorithms in the following.

To uphold the flexible character of the Object Attention System, the depth-related
attention processing has been implemented as a separate iceWing plugin, too.
Thus, it is optional, like the preprocessing or color-related plugins described above.

The algorithms applied for the depth-based acquisition of object positions support
a specific human-like feature, in particular, they are designed to use a flexible
stereo camera head where its two cameras can be panned and tilted even in
relation to each other. Furthermore, a second requirement is met that offers the
possibility for a relatively fast depth estimation during a Human-Robot Interaction.
Therefore, the principle calculation of a depth-based Attention Map is divided into
three processing steps:

• Intrinsic calibration for each camera

• Extrinsic calibration for the relation between the two cameras

• Determination of a disparity-based Depth Map

The basic algorithms used for each of these processing steps is briefly presented
in the next paragraphs. For a more detailed description, the referenced literature
needs to be considered.

Intrinsic Camera Calibration

The intrinsic camera calibration becomes necessary for a perspectively correct re-
construction of locations in the scene. In this case, the calibration is based on the
algorithm proposed by Hartley in [Har94a, Har94b] that analyzes the projective
distortion in images. The intrinsic calibration begins with two images captured
by one camera with a slightly different camera orientation. Thus, the algorithm
can compare these images for the distortions. For these two images, a Homog-
raphy is calculated that describes the transformation between the subsequently
captured images best by minimization of the squared error between these two
images. However, due to wrong assignments for pairs of image points, addition-
ally the RANSAC (Random Sample Consensus) algorithm, described by Fischler
and Bolles [FB81] is applied in order to reduce the squared error. After the Ho-
mography is known, the actual camera parameters (position and orientation) can
be calculated. Finally, a median filter is applied on the parameter values which
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reduces errors during the determination of the calibration matrix K which is de-
scribed in equation 4.5. Here, the variables kx and ky describe the magnification
in x and y direction. The variables px and py describe the principal point of the im-
age and s is a skew parameter which corresponds to a skewing of the coordinate
axes used.

K =

kx s px

0 ky py

0 0 1

 (4.5)

After the camera calibration matrix for each camera is calculated, the extrinsic
camera calibration takes place.

Extrinsic Camera Calibration

The relation of orientation for the two cameras of an anthropomorphic robot is
calculated by the extrinsic camera calibration. In the model used, this calibration is
separated into two parts. First, the calculation of the camera angles, and secondly
the determination of position and orientation related to each of the cameras and
the head of the robot, respectively. The second part uses the epipolar geometry,
like it is described by Hartley and Zisserman in [HZ04]. At the end, the performed
calculations result in two camera matrices Cl and Cr for the left and the right
camera, see equation 4.6. The variable Ki represents the two calibration matrices
from the intrinsic calibration, while Ri describes the rotation between the cameras
and ~ti denotes the translation between the left and the right camera related to a
common coordinate system.

Ci = Ki [Ri |~ti with i ∈ {l , r} (4.6)

As a final processing step, a depth value can be calculated for each position in
the image. However, this needs to be qualified, as this method works properly
only on locations with textures.

Determination of Depth Values

The depth value for a given scene object becomes available after the cameras
have been calibrated and a depth image can be calculated. The model used for
the Object Attention System in order to create a depth image uses triangulation-
based algorithms. In particular, a disparity image is calculated according to the
algorithm proposed by Birchfield and Tomasi in [BT98]. However, the dispar-
ity can only be calculated if corresponding image parts can be determined in
both images, the one of the left camera and the one of the right camera. Here,
the necessary feature points are extracted with help of the PCA-based SIFT fea-
tures [KS04] introduced by Ke and Sukthankar. They have proven as very robust
against translations, rotations, and different scaling of regarded scenes. An ex-
ample for a disparity image is shown in Figure 4.16(a). This disparity image has
been calculated from the images of the left (Figure 4.16(b)) and the right cam-
era (Figure 4.16(c)). The different gray values in the disparity image present the
distance of the objects. The brighter it is, the more different is that location in
the two cameras and, hence, the nearer is the object located to the camera. The
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(a) Disparity image: Bright ≡
near; Dark ≡ far or disparity
not calculable.

(b) Image of the left camera. (c) Image of the right camera.

Figure 4.16: Illustration of a disparity image with two objects.
The images have been taken from [Köl06].

horizontal stripes are caused by the linewise computation of the disparity image
which can partly be corrected with appropriate smoothing techniques.

Summarizing, two powerful segmentation approaches have been developed for
the Object Attention System. Nevertheless, such a segmented region often rep-
resents an object only partial. Hence, the logical conclusion is to combine various
image parts to a semantically combined set of image patches in order to approx-
imate a complete object view. As described in the related work to this chapter
offer feature graphs a fine solution for this problem.

Graph-based Object Representation

The graph-based approach which has been developed for the Object Attention
System in the diploma thesis of M. Saerbeck [Sae05] combines different coor-
dinate systems for an appropriate object representation. This can be described
best on the example depicted in Figure 4.17.

For the cube shown in Figure 4.17(a), two different colored sides (red, cyan)
should be combined. Therefore, the centers of mass (CoM) have been deter-
mined for the red-colored side R1, the cyan-colored side R2, and for the object
itself S . The resulting coordinates are located in the original image coordinate
system. In a second processing step, these coordinates are transformed into an
object-centered coordinate system with the points R′

1 and R′
2 at the locations of

the center of mass for each feature (Figure 4.17(b)). This way, two new feature
coordinate systems can be created with the resulting locations R′

1 and R′
2 as prin-

cipal points, shown in Figure 4.17(c). Finally, a new image coordinate system
is defined with its principal point matching the origin of the relative feature co-
ordinate systems (Figure 4.17(d)). This enables the Object Attention System to
generate a feature knot that contains the following information:

• Type of the feature, e.g., color
• Value of the feature, e.g., red
• Position, relative to the object center of mass (x , y)
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Figure 4.17: Coordinate transformations for graph-based object representation.
The images have been adapted from [Sae05].

• Amount of pixel, selected by one feature

In this case, each pixel is a tuple of position (x , y), color value g , and activa-
tion value a : M = {(x , y , g , a), . . .}. Every newly generated feature knot is then
inserted in a feature graph as depicted in Figure 4.18.

As the image illustrates, the different feature knots define a feature-graph which
describes the relations between each single feature to another feature. The edges
of the feature-graph are designed as distance vectors. Due to this relative position
information, the spatial relations between all feature knots are well-defined for an
object. Furthermore, this enables an incremental learning of an object, while it is
possible either to add new feature knots or to remove obsolete feature knots from
one object representation.

The presented graph-based solution for extracting object views is indeed very
powerful, but makes it necessary for the user to refine an object view several
times if it consists of more than one color. Hence, alternatives have been tried out
as well that might reduce the amount of necessary interactions to learn an appro-
priate single object view. An approach that has been applied is briefly presented
in the following.

Alternative Image Segmentation

The proposed object segmentation is sometimes not sufficient, especially if the
pointing gesture is of poor quality or the object color has not been specified by
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Figure 4.18: Object-centered feature-graph with three exemplary color features.
The image has been adapted from [Sae05].

the user. For this case, an experimental implementation of the segmentation al-
gorithm GrabCut which has been introduced by Blake et al. in [BRB+04, RKB04]
has been considered as well. As it goes beyond the scope of this thesis, the
algorithm is not explained because it has only been used. Nevertheless, the ex-
periments showed for some environments promising results which is depicted in
Figure 4.19. In detail, the Figure 4.19(a) shows the initial scene image without
a selected Region-Of-Interest. The finding of a region is, therefore, illustrated in
Figure 4.19(b), while the Region-Of-Interest has been manually selected. As a
result, the Figure 4.19(c) demonstrates a fine extracted object view.

(a) Original scene with a user
pointing to an object.

(b) Manually selected
Region-Of-Interest.

(c) Segmented object view.

Figure 4.19: Illustration of the applied GrabCut algorithm.

However, the experimental result that is presented here took a lot of trials and
even more time to calculate. The underlying algorithm is mainly based on the
iterative energy minimization and uses a couple of probabilistic approaches. This
results in a non-deterministic behavior that is, furthermore, occasionally very time-
consuming (> 1 minute on a desktop computer @2,4 GHz with 512 MB RAM).
Hence, the approach has been considered as practically not usable for a natu-
ral Human-Robot Interaction which demands for relative short response behav-
iors of the robot. Additionally, even the GrabCut algorithm does often segment
an object partially. For these reasons it has been determined, that the color-,
depth-, and graph-based approaches are more suitable for a convenient inter-
action. Nevertheless, as especially for fine-grained selections of an appropriate
Region-Of-Interest, the gesture recognition used is often too coarse, a Graphical
User Interface has been integrated to overcome these constraints.
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4.5.4 Graphical User Interface

The FLTK-based [FLT06] Graphical User Interface [Sae05] for the Object Atten-
tion System, developed in cooperation with M. Saerbeck provides a couple of
useful interaction enhancements as it is described on page 42 and the following
ones.

In this section, the focus lies on the visual representation of an object, like it is
described in the paragraphs before. The image 4.20 shows the view for updating
an already learned object. The GUI informs the user how many objects have
successfully been learned during the ongoing interaction and allows him with the
slider to select the object that he wants to update. The right half of the window
illustrates which symbolic information about the object can be updated.

Figure 4.20: Graphical user interface used for written commands.
Cf. text for a detailed description. The image has been taken from [Sae05].

To demonstrate an exemplary learning of a multi-colored object, a typical sce-
nario is depicted in Figure 4.21. The figure shows the original input image con-
taining several objects in Figure 4.21(a) from that the greenish marked blue/red
tape should be learned. During a first scene analysis, all red-colored areas are
extracted within the Region-Of-Interest (Figure 4.21(b)). The black parts in the
image represent the non-red colored areas which are internally tagged as trans-
parent. Subsequently, all blue-colored areas within the selected region are ex-
tracted as well as shown in Figure 4.21(c). By fusing these two colored views into
a single object representation, an object view suitable for later object recognition
tasks is created, which is depicted in Figure 4.21(d).

Summarizing the visual object representation, a couple of approaches have been
presented that support features which can easily been verbalized, like Color and
Relations. Nonetheless, the chosen representation can be used for other features
as well, like Object Type or Owner.

Besides the visual object representation, a representation formalism has been
implemented that is able to assign a sound to an object which is described next.
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(a) Evaluation scene with
different colored objects.

(b) Red parts of a
multi-colored object.

(c) Blue parts of a
multi-colored object.

(d) Fused red- and
blue-colored object
regions.

Figure 4.21: Representation of a multi-colored object.
The images (b,c,d) contain the learned object parts within the greenish marked
Region-Of-Interest in image (a). The images have been taken from [Sae05].

4.5.5 Sound Collector

The audio signal provides valuable information in an Human-Robot Interaction. It
serves as input for the speech processing units and can contain the sound of an
object as well, e.g., the tone of an alarm clock or the barking of a dog. In order
to capture this sound, the Sound Collector has been developed for the Object
Attention System. Like all other input cues, it is realized as a stand-alone appli-
cation which is fully accessible via XML documents. Thus, not only the paradigm
of the distributed architecture for the Object Attention System is supported, but
it also allows other modules, for instance, the dialog module to access and use
the Sound Collector. This enables the robot to react on certain sounds and ad-
ditionally supports applications, like a personal message service in similarity to a
computer log or answering service for people.

The Sound Collector uses capabilities of the Environment for Statistical Model
Estimation and Recognition on Arbitrary Linear Data Arrays (ESMERALDA) de-
veloped by G. Fink [Fin99] which is applied for the speech recognition as well.
While sound is already recorded for speech analysis, it is possible to permanently
store captured sounds as separate audio files. In particular, every time when
the user talks to the robot, the Person Tracking and Attention module (see sec-
tion 3.1 on page 34) activates the sound recording in order to enable the speech
recognition system and, hence, to analyze the user’s utterance. This is illustrated
in Figure 4.22. The Sound Collector benefits from this situation as it is able to
search for a particular audio file by interpreting its last modification timestamp t .

To extract a specific object sound, all recorded audio files that are newer than
the sound file which contains the utterance with a specific keyword, like “sound”,
are considered, cf. the green marked time span in Figure 4.22. Then, the oldest
file ending at time x and that has been modified after the queried timestamp t is
selected, but only if it is within a specified time span of 30 minutes at maximum.
This time span supports two functionalities and has been empirically determined.
On the one hand it ensures that the selected sound or utterance, respectively,
probably contains the expected object sound, because it is unlikely that a sound
which ends more than 30 minutes after the queried timestamp t still belongs to
an object sound or a speech memo. On the other hand this threshold limits the
maximum recording time for a single audio file and, consequently, the file size
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which enables a more reactive system whenever the data is transported within
the active memory infrastructure.

"Hello
Robot"

"Listen, this is the sound
of my alarm clock"

"Bye
Bye"

Recorded Sounds:

Utterances:

time50 10

t x

Query Sound: ≤ 30 minutes

Figure 4.22: Operating principle of the Sound Collector.
The Sound Collector extracts the oldest sound file recorded within the green

marked time span after the keyword “sound” has been spoken.

The interface to the Sound Collector is realized as follows. Besides the obliga-
tory object ID that allows a clear assignment to a particular discourse, the XML
document (cf. below) contains the timestamp t . This timestamp is specified in
milliseconds. Regarding the sampling rate (16 kHz) and the time between the
feature computations within the speech recognition module (10 ms) (see S. Ho-
henner [Hoh05]), the resulting accuracy for the timestamp is better than 100 ms.
This is accurate enough for the intended use of the Sound Collector. An additional
tag ’COMPRESSTYPE’ allows to chose between different compression schemes
(sound, speech) for the extracted audio file in order to improve the encoding re-
sult. Details are described in the appendix A.3 on page 124.

1 ...
2 <ID>
3 <ORIGIN mod="OAS">23</ORIGIN>
4 </ID>
5 <OBJECT>
6 <ID>14</ID>
7 <TIMESND>1130316024724</TIMESND>
8 <!-- COMPRESSTYPE can be either ’sound’ or ’speech’ -->
9 <COMPRESSTYPE>sound</COMPRESSTYPE>

10 </OBJECT>
11 ...

At the end of one processing cycle, no matter whether an appropriate audio file
can be determined by the Sound Collector or not, the generated response of the
Sound Collector contains an XML document. This document is similar to the
queried XML file, except that the ’TIMESND’ tag is updated with the actually cor-
rect timestamp of the extracted audio file. Additionally, it contains the file size for
easier processing within the receiving module. If the search for a correspond-
ing sound file was successful, the file itself is included as binary data within a
so-called Composite Transport Unit (CTU) as proposed by S. Wrede and col-
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leagues [WFBS04]. Thus, the receiving components are able to process the au-
dio file directly or otherwise to save it on the destination computer at an arbitrary
location.

Summarizing, the sections before described the object-related representation in
a visual and auditory sense. To combine this different information, an ontological
XML-based structure has been developed that offers an easy and intuitive access
on all relevant object information. The details of this approach are discussed next.

4.5.6 Ontological Textual Object Representation

An appropriate object format for the Long-Term Memory of the robot is a second
key feature of the proposed Object Attention System. Such an object information
container has to provide all relevant information that is needed to recognize a
formerly learned object on the one hand, and a mechanism to store all object
information that the user wants to memorize in the robot’s memory on the other
hand. The following exemplary XML-based object representation illustrates which
content is stored and how it is structured.

1 <?xml version="1.0" encoding="UTF-8" ?>
2 <OBJECT>
3 <ID>10</ID>
4 <SCORE>0.78125</SCORE>
5 <TIMESTAMP>1140889113943</TIMESTAMP>
6 <BESTBEFORE>1148665102531</BESTBEFORE>
7 <TIMESTAMP_HUMAN_READ>25.2.2006, 18:38:33</TIMESTAMP_HUMAN_READ>
8 <BESTBEFORE_HUMAN_READ>26.5.2006, 19:38:22</BESTBEFORE_HUMAN_READ>
9

10 <!-- Position based on global map in [m] -->
11 <GLOBAL_POSITION>
12 <X>0</X>
13 <Y>0</Y>
14 <Z>0</Z>
15 </GLOBAL_POSITION>
16
17 <RELATIVE_POSITION>
18 <!-- (-) -> left of robot : (+) -> right of robot in [deg] -->
19 <ANGLE>0.0838469</ANGLE>
20 <HEIGHT>0.539959</HEIGHT>
21 <DISTANCE>0.96797</DISTANCE>
22 </RELATIVE_POSITION>
23
24 <FEATURES>
25 <COLOR confidence = "0.85">red</COLOR>
26 <OWNER confidence = "0.3">Axel</OWNER>
27 <SOUND>/memory/objects/10.ogg</SOUND>
28 <TYPE confidence = "0.85">laptop</TYPE>
29 <VIEW>/memory/objects/10.ppm</VIEW>
30 </FEATURES>
31 <RELATION confidence = "0.85">left to</RELATION>
32 <RELATED_TO confidence = "0.85">14</RELATED_TO>
33 </OBJECT>
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At the beginning in line 3, the consecutively numbered object ID is specified.
It is used to enable a common ground for the currently processed object refer-
ence. Within the Object Attention System the ID ensures a consistent data as-
signment over all process conditions. Furthermore, the external communication
with other modules, in particular, Dialog, Gesture Recognition, Sound Collector,
Scene Model, and the Modality Converter use this object ID. In the context of
speech processing, the object ID can also be used for anaphoric resolution which
is, however, currently not supported by the speech processing units.

Next, in line 4, a score value [0. . . 1.0] is given which is the mathematical prod-
uct of all confidence values assigned in the Short-Term Memory, see page 61.
It is used to decide whether an object is already known or not. Besides a cou-
ple of features that need to match with features of already learned objects, an
empirically determined value of 0.8 has proven as a reliable value for later ob-
ject recognition tasks. In other words, all objects that provide a score value of a
certain threshold are considered for the object recognition module.

As especially small objects, like, e.g., cups or books are most probably moved
to another location from time to time and the robot is not always aware of these
actions, two timestamps are included as well. In line 5, the timestamp when the
object has been stored in the Long-Term Memory is specified, while the sub-
sequent Best Before-timestamp limits the life cycle of the object. Although an
active memory for robots is currently under development, this feature is not used
yet. Nevertheless, manifold applications are imaginable, like an automatic mech-
anism that lets the robot forget the once stored object. This is useful to hold the
memory consistent as, for instance, it usually does not make sense to store the
location of easy-perishable fruits for several months. As a second application,
the robot can take initiative and verify on its own, whether the object is still at its
once learned location. As these timestamps are not easy to interpret for humans
due to their POSIX format, the same timestamps are denoted in human-readable
form as well. They have mainly been implemented for manual maintenance tasks
performed by the user, but they can additionally be used to let the text-to-speech
component read the dates to the user in order to inform him about upcoming
update cycles.

The following block of the XML document includes the position of an object within
an absolute global coordinate system of the environment. It is used for robotic
platforms with navigational and localizational capabilities. For instance, the global
positioning system helps to assign a unique object position even in an environ-
ment with different rooms. However, as the robotic platforms used, currently not
support a positioning system, these values are set to zero in the given example.
The only positions actually supported by the overall robot architecture are relative
ones, related to the robot. Thus, the Object Attention System at least supports
these locations as can be seen in lines 17 to 22 while the values are specified in
cylindric coordinates.

The last semantic block of the textual object representation contains the learned
object features, and, as far as available, references to relations related to other
objects or locations, like “in front of the windows". In detail, the feature block con-
tains all verbally specified feature types and their values, as well as the confidence
values assigned by the Short-Term Memory. Furthermore, the location and the
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names of learned object views and object sounds are given as well. Here, it has
been proven as great advantage to use references to the actually stored data in-
stead of an encapsulated object representation which includes textual and binary
data at the same time. The advantage mainly consists in a compact data repre-
sentation which improves memory queries. Additionally, the data can more easily
be handled by, e.g., the object recognizer or the dialog system. However, the
latter one only in cases if the learning of a view or a sound has been successfully
completed before.

This XML-based object representation offers a great deal of advantages in con-
trast to proprietary data formats. Besides the already mentioned flexible usability,
it can easily be extended and updated. Nevertheless a lot of data analysis has to
be done before such a document can be generated. Thus, in the following, the
realized processing strategy is, therefore, illustrated in order to point out how the
algorithms are applied by the proposed Object Attention System.

4.6 Processing Strategy
In this section, the internal processing strategies of the proposed Object Attention
System are explained. Therefore, the underlying control mechanism is presented
first, followed by exemplary processing cycles for unknown object instances as
well as for known objects. This distinction in different scene analysis strategies
for unknown and known objects, respectively, is necessary as they principally
differ in the image processing algorithms applied.

The overall control mechanism of the Object Attention System is realized by a
Finite State Machine (FSM), see Figure 4.23. It consists of seven states, while
for the sake of improved clarity, the state User Callback is drawn several times,
although it is always the same state. The directed edges that connect the states
with each other are lettered with additional information about the events causing
the Finite State Machine to change its state. The event Abort represents an
exceptional event. This event is emerged by the dialog component if the user
wants to abort the current interaction task. To provide a fast reaction, this event is,
consequently, immediately analyzed by the Object Attention System and, hence,
concerns every possible condition, no matter at what stage the processing cycle
currently is. In the following this issue is, therefore, no more explicitely mentioned
as it applies for all cases.

The operating principle of the Finite State Machine is subsequently described. As
the distinct states mostly support a semantically separated functionality, this issue
is reflected by different sections.

Autonomous Scene Exploration

After the Object Attention System has been initialized, it is in its idle state Object
Alertness. Within this state two aspects are realized. First, an autonomous scene
exploration by visual capturing the robot’s vicinity. This capture process is imple-
mented by the construction of mosaic images which will be discussed in detail
later on. The capturing, however, is done only if the Person Tracking and Atten-
tion module does not detect a human in front of the robot. If a potential interaction
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Figure 4.23: Finite State Machine of the Object Attention System.

partner is in its vicinity, the mosaic construction is paused until the human leaves
the robot’s field of view. As second task of the Object Alertness state, the Object
Attention System continuously analyzes the input data and if new input is present,
it is stored in the Short-Term Memory (cf. page 61). As soon as speech input is
received, the Finite State Machine changes to the state Input Analysis.

Input Analysis and Temporal Modality Alignment

The input analysis of all received data begins with an interpretation of the symbolic
speech data. A detailed description of the parsing routine and the processed
speech data is provided on the pages 41 and 125. This enables an immediate
reaction if an Abort command has been received. Otherwise, the Object Attention
System continues with its normal processing routine and sends an XML document
to the gesture recognition module in order to provide it with information about the
current object context. In particular, the message contains three important values,
the timestamp provided by the speech recognition system, the object type, e.g.,
cup, and the consecutively numbered object ID that has been assigned by the
Object Attention System. After the object context has been sent, it is verified
whether an Align View or a Focus Object command has been received by the
Object Attention System, cf. section 3.1 on page 41.
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The Align View command is sent by the dialog component after the user says
something, like “Look here”. In particular, the command causes the Object Atten-
tion System to lower the object camera in order to show the user that the robot
is ready to learn a new object and ideally awaits a pointing gesture accompanied
by a verbal object description next, as it helps to resolve an object reference. Ad-
ditionally, the Object Attention System returns an acknowledge message to the
dialog module. This message in turn enables the generation of a verbal response
for the user. In this way, the user receives an additional acoustic signal that the
robot is ready to receive and interpret an new object reference. After the message
has been sent, the Finite State Machine returns into the Object Alertness state in
order to receive new messages from the dialog module.

The more complex command represents the order Focus Object . It is sent to
the Object Attention System if the user gives a verbal object description that is
optionally accompanied by a deictic gesture. Anyway, if the command is received,
the camera is aligned and zoomed on the calculated position for the Region-Of-
Interest as described on page 68. In the following, the symbolic information about
color and size is sent to the Modality Converter and, thus, appropriately converted
into numeric values. These values are then added to the OASObject for later use,
cf. page 62 and 61. After the conversion is complete, a query process is initiated
in order to verify, whether the referenced object is already known to the robot, or
if the object instance needs to be newly learned.

The verification process for known objects consists of a fine-grained analysis of
the textual object representations stored, described on page 80. This analysis
includes pattern matching with the already stored object features Color, Shape,
and Object Type as they are the most promising ones for a successful recogni-
tion task. If additionally the confidence value for a stored object indicates a high
probability that the object can be recognized, the Object Attention System pro-
ceeds with a recognition task and, hence, its Finite State Machine changes into
the state Object Detection. However, if no evidence is found that the object is
already known, the Finite State Machine changes to the state Visual Attention in
order to learn the object as a new instance.

Visual Scene Analysis for Unknown Object Instances

Within the state Visual Attention mainly the Attention Maps, e.g., for color, are cal-
culated and a visual object view is extracted from a scene image. The particular
implementation that enables this processing is very complex and has, therefore,
been developed in cooperation with M. Saerbeck in his diploma thesis [Sae05].
Beginning with the calculation of the gesture-based Attention Map (cf. page 66),
it is subsequently combined with the color- or depth-based Attention Map by a
weighted multiplication, cf. page 69 and the following ones. As an outcome, an
object view is stored for later recognition and analysis tasks. In case that the ob-
ject view is not sufficiently learned, the Object Attention System can complete the
view by adding further color nodes (see page 74). As this is currently not sup-
ported by the speech processing units, this is by now only possible with the Graph-
ical User Interface, cf. page 77. In case of an error, e.g., that the color could not
be detected or the robot has not yet recognized a gesture, a corresponding mes-
sage is sent to the dialog component. The dialog module in turn, then, re-initiates
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the object learn process as a failure discourse requires anaphoric resolution that
is currently not yet supported by the speech processing units. However, if the
object view has successfully been learned, the Object Attention System causes
the Finite State Machine to change to the Object Analysis state to complete the
visual learning of unknown object instances. As the recognition of already known
objects is regarded as an alternative Scene Analysis step, the proceeding for a
recognition task is described next, before further Object Analysis is discussed
that applies for both cases, known and unknown object processing.

Recognizing already Known Objects

The recognition of already known objects enables on the one hand the robot to
interact with objects autonomously, and on the other hand it supports interac-
tions between the user and the robot which refer to former interactions and object
information that has been stored during these interactions. This functionality is
covered by the state Object Detection.

However, as the object recognition is not a focus aspect of the Object Atten-
tion System, a simple approach has been integrated so far to demonstrate that
the proposed Object Attention System is a complete architecture that covers
all relevant aspects for an Object Attention. For this reason, a separate object
recognition module has been integrated, in particular, an object recognizer that
is based on the fast Normalized Cross-Correlation (fNCC) algorithm introduced
by Lewis in [Lew95]. Anyway, a lot of far more sophisticated recognizer exist,
e.g., [Dic99, Bra06, SWSK05] (also cf. page 48). The basic concept behind this
algorithm is a pattern matching. The learned object views are, therefore, consid-
ered as image patterns that the recognizer has to search for. As a result of a
successful recognition, the recognizer visualizes the found region on the display
by a squared frame. In this way, the user can directly verify that the object has
been correctly recognized. After the successful recognition has been completed,
the Finite State Machine proceeds with the state Object Analysis that allows a
more detailed examination of the recognized object.

Detailed Object Analysis

An extended object analysis for visual and auditory features is performed in the
state Object Analysis. It is used to collect as much information about an object
as possible, based on its previously learned object view and an eventually ex-
isting object sound. Therefore, the Object Attention System verifies with help of
the Sound Collector (cf. page 78), whether an object sound has been recorded.
Thus, if a sound exists, it is stored otherwise the normal processing continues
anyway. Next, the learned object view is analyzed in more detail. As the camera
has been appropriately zoomed during its alignment on the calculated Region-Of-
Interest, the object view usually contains detailed textural information. Therefore,
a calculation of SIFT- and PCA-SIFT features [Low04, KS04] is performed. As an
outcome, salient feature points are obtained that can be used for a subsequent
object recognition task. As soon as the SIFT-features have been stored, the Ob-
ject Attention System causes the Finite State Machine to continue with the state
Object Store.
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Long-Term Storage of Objects

The storage of object information in the Long-Term Memory is done in the state
Object Store. Here, the XML document presented on page 86 is generated. Be-
sides this storage task, this state is responsible for the generation of a message
for the dialog component which is used to inform the user that the object learning
has been successfully completed. Then, the Object Attention System returns the
control for the object camera back to the Person Tracking and Attention System
in order to let it track the user’s face again. Last but not least, the Finite State
Machine returns to the state Object Alertness to be able to receive new orders.

This completes the description of the overall processing cycle of the Object At-
tention System. As now all relevant aspects of components developed have been
presented, a brief summary points out the essential features in order to lead over
to issues concerning the integration in an existing robotic system.

4.7 Summary
This chapter described the most of the development aspects for the proposed Ob-
ject Attention System. The chapter began with a brief discussion of related work
in the field of object learning within a robotic context. Here, it has been shown that
besides features, like Color and Depth, recent developments follow the paradigm
of abstract object models in order to be able to recognize objects once learned.
Especially graph-based approaches have been proven to work well for the de-
scription of relations either for features within a single object, but also for relations
between several objects and locations. At the end of the related work section, the
temporal relationship that exists between different modalities has been pointed
out. As an outcome it has been shown that on the one hand a temporal depen-
dency between deictic gestures and speech exists but on the other hand that this
dependency is highly dependent on the given scenario. The related work, then,
lead over to the robot hardware used, in particular, the mobile robot BIRON and
the anthropomorphic robot BARTHOC. They have been described as they serve
as application scenario for the Object Attention System. Thus, the available sen-
sors for the Object Attention System have been explained as well.

The description of the components that realize the Object Attention System was
the focus of the subsequent sections. At first the requirements for a flexible com-
munication within a cognitive motivated robot were presented. It has been indi-
cated that open standards, like XML for textual information or OpenCV for image
processing tasks, are the most promising alternatives to support as much robot
architectures as possible. In this context, an XML-based flexible global configu-
ration for settings that concern the hardware setup, memory-dependent settings,
and the communication links has been presented for a simple possibility to adapt
the Object Attention System to new environments or robots, respectively.

The actual internal structure of the implemented biologically-inspired Short-Term
Memory has been introduced as first component of the Object Attention System.
It has been shown that it offers a great flexibility regarding the fusion of differ-
ent modality data in order to combine them in a consistent data structure called
OASObject. This included the appropriate transformation of symbolic data into
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numeric values that are needed for the vision-based processing. Consequently,
the concept of the Modality Converter has been introduced. The resulting val-
ues are mainly used for the determination of the Region-Of-Interest while for its
localization the algorithms used to steer the robot’s focus of attention have been
presented as well. It has been described that a 3D-based gesture recognition
provides several advantages in contrast to a 2D-based approach. Although it is
currently too expensive in terms of computational power for the intended usage on
a mobile robot, it has been shown that it is worth to pursue such a 3D-approach
as it allows a more accurate determination of the Region-Of-Interest.

The probably most important aspect for the Object Attention System, the percep-
tion and representation of objects has been described after all interfaces and the
dependencies between the different modalities have been presented. Therefore,
the analysis methods for the visual object appearance have been described. One
of these methods is a graph-based representation that has been developed in co-
operation with M. Saerbeck. It is basically based on symbolic speech information
and color-based features. Thus, a textual and visual object description became
available which has been presented as well. A second vision-based approach
using depth information that has been developed together with M. Köllmann has
been introduced next. It has been shown that depth information is, besides Color,
a second valuable source of information to segment an object in a given scene.
In addition to the visual object representation, the audio-based object representa-
tion has been considered as well. Therefore, the principles of the Sound Collector
have been introduced. It is able to add an object sound to a given textual object
representation. The latter one in turn has been described as last aspect in the
section about the analysis of the object perception and representation. The tex-
tual object representation is used for long-term storage and, hence, serves as
part of the qualitative Scene Model. Finally, the overall processing strategies for
unknown object instances and known object types, based on a Finite State Ma-
chine have been explained in detail. It has been shown how the object analysis
methods were actually applied in the Object Attention System.

As the description of the actual implementation of the Object Attention System
is now complete, its integration in an existing robotic environment is described in
the following chapter.
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5. Integration of the Object
Attention System in a Robot

The integration of the proposed Object Attention System in a real robot requires
an architecture that provides interfaces to sensors and other modules, like the di-
alog system or the gesture recognition system. Thus, the underlying architectural
model of the robots BARTHOC and BIRON is discussed in this chapter. In this
context, the communication framework which is responsible for the data exchange
between all modules is regarded as well. Additionally, as the Object Attention Sys-
tem is designed to acquire as much information about objects as possible, a first
interface to an iconic memory infrastructure has been realized. The approach
used is based on Multi-Mosaic images which enable the acquisition of different
views for one object as introduced by B. Möller in [MPH+05, Möl05]. As an out-
come of the mosaic image-based scene analysis, the Object Attention System
is able to store all views and other object information in a Scene Model, cf. Fig-
ure 1.3 on page 7. The Scene Model in turn serves as Long-Term Memory, storing
all objects and locations that may become relevant either in Human-Robot Inter-
actions or autonomous interaction tasks of the robot. Concluding, these topics
lead to the following outline of this chapter.

This chapter begins with a short overview of related work for approaches that
cope with Long-Term storage of acquired knowledge for robots. Then, a section
dealing with the knowledge representation actually applied, points out the Multi-
Mosaic image capturing approach by B. Möller et al. that has been connected to
the Object Attention System. Subsequently, a first implementation of the applied
distributed memory infrastructure is presented that matches the requirements for
the realization of a qualitative Scene Model. In the second half of this chapter,
the overall robot architecture used and the underlying communication framework
is introduced, while the chapter closes with a brief summary.

5.1 Related Work
All cognitive motivated Personal Robots need to integrate an architecture that en-
ables a communication between all semantically distinct units, like the speech
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recognition or the visual processing components. Furthermore, such an architec-
ture connects the different units with the available sensors and also regulates the
upcoming control and data flow. In particular, four main paradigms became pop-
ular for architectural approaches as Matarić pointed out in [Mat01]. These four
classes1 are, the deliberative ("think hard, then act"), the reactive ("don’t think,
act"), the hybrid ("think and act independently in parallel"), and the behavior-
based ("think the way you act") control. As the main application for mobile Robot
Companions is defined through their interaction abilities for a Human-Robot Inter-
action, the purely deliberative and reactive models are inappropriate. In such a
complex interaction scenario, on the one hand the robot needs to be able to think
about its actions and on the other hand must be able to simultaneously react on
the user’s behavior. Hence, only deliberative, behavior-based or a combination
of both approaches are feasible. For instance, the robot HERMES which is intro-
duced in detail on page 28 uses a combined approach as described by Bischoff
and Graefe [BG99]. Another example for a sophisticated architecture is applied
in the humanoid robot ARMAR, described by Burghart and colleagues [BMS+05].
It uses a three-layered architecture that is based on a behavior-oriented model.
These two examples already illustrate that the model which is finally applied, dif-
fers even it is for use in a robot. This is explainable as the field of application for
the two presented robots is different. Nevertheless, they demonstrate that hybrid
architectures are well-suited for a convenient Human-Robot Interaction. Because
of their flexible character, such a hybrid architecture has been developed for the
robots BARTHOC and BIRON by M. Kleinehagenbrock [Kle05].

Another major issue that needs to be discussed in the context of integrating the
Object Attention System into a robot architecture is definitely the aspect of au-
tonomous interactions, like fetch-and-carry-tasks. Before the robot can act on
its own, it is useful to let it explore the environment first, as this significantly re-
duces the required amount of time for independent actions. One possibility for
this is given by the generation of an environmental map like it is done by Ghidary
et al. [GNS+02]. As described on page 23, their robot is able to incrementally
construct a map which contains various squared image patterns that have been
learned during an interaction with a user. This is one possibility to match the re-
quirements of an autonomous task execution. However, their approach uses an
indoor positioning system (similar to GPS) which reduces the robot’s flexibility on
a large scale. An approach that partly overcomes these limitations is presented
by Kelleher and Kruijff [KK05]. They propose a model for the representation of
proximity between different objects. This becomes available by the evaluation of
linguistic discourse and visual object appearances that allow to produce spatial
proximity expressions related to objects located in the vicinity of the robot. In this
way, they are able to model even vague verbal expressions, like “at the corner”
or “close by” that are often used in an interaction. To sum up, they have pro-
posed a feasible modeling approach, but as it is restricted to single scenes, e.g.,
a tabletop, it is only partially suitable for the generation of a Scene Model. The
question whether this approach is scalable in an even more complex environment
with dozens or hundreds of objects located in several rooms remains open.

1Explanations have been taklen from [Mat01]
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As a last example, Hois et al. [HWBR06] use a domain ontology in order to sup-
port a 3D-object recognition in combination with utterances given by a user (for
details related to the object recognition, cf. page 49). Their ontology is based
on a concept which is divided into several categories, in particular, Abstracts,
Endurants, Perdurants, and Qualities. These categories are used to describe
entities in different ways, like, e.g., the Endurants describe entities that are per-
manently present over time, like objects, while Perdurants describe time-related
entities, like a sound event for a certain period of time. The Abstracts and Quali-
ties finally are inhered in entities. Here, the Abstract concept expresses the value
for the qualities, which in turn can contain qualities on their own. To model the
ontology-based representation, they use a hierarchical structure by means of the
object functions, e.g., drinking vessels, office-supply, etc. that allows a relation be-
tween similar objects, e.g., cups and bottles. Additionally, actions can be linguis-
tically assigned, like drinking. The presented approach of Hois and colleagues
is very promising but as most of it is still in the state of conceptual design, it is
too early to make a final judgement. Nonetheless, their approach only supports
speech and 3D-data by a laser range finder, but not a gesture recognition sys-
tem or features that are easier to verbalize, e.g., color, in order to improve the
convenience of a Human-Robot Interaction. Here, the proposed Object Attention
System and the proposed design of the Scene Model overcomes the limitations
that are given in the approach by Hois and colleagues.

Summarizing, the presented approaches show that no ideal architecture for a
Human-Robot Interaction or for the representation of knowledge already exists.
Although in both directions a lot of research has been conducted in the past, the
chosen approaches are more or less dependent on the individual tasks. However,
even though the knowledge representation is not the main focus of this thesis, the
models used for the Object Attention System are presented as they provide a
flexible character that allows to use them in various applications.

5.2 Knowledge Representation
For a robot that is intended to reuse the information once gathered during a
Human-Robot Interaction, the acquisition of a knowledge base that acts as a
Scene Model is essential. This section, therefore, describes the approaches for
the incremental construction of an extensible memory framework that has been
connected to the Object Attention System.

Multi-Mosaic Images as Iconic Memory
The perfect recognition of previously learned objects is still an unsolved issue, as
it has been described on page 47 and the following ones, although tremendous
progress has been achieved in this research field during the last 10 years. A
lot of approaches are based on the visual appearance of objects. Thus, it is of
great advantage if more than one view of a single object can be extracted by
the robot in the course of object modeling, ideally from another perspective since
objects are usually looking different from a second point of view. In order to get a
second or more views of an object, it either has to be rotated or the robot has to
change its current location. The latter one is often not desirable during a Human-
Robot Interaction as by a movement of the robot the eye contact between the
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t
−1: Record multi-mosaic

t0: Learn object

t
−2: Record multi-mosaic

Object

Figure 5.1: Capturing different views of objects through mosaic images.

user and the robot can break up or even worse, the robot completely loses its
interaction partner. This can be avoided if the robot first scans its environment at
different locations while no person is interacting with it and subsequently stores
the information appropriately. The scanning during interaction pauses has got
the additional advantage that usually no person occludes important parts of the
scene. In this way, the robot can store a large part of a scene in an iconic memory.
Thus, the robot needs to drive only to a few locations to begin the capture process
as these few large images already contain all relevant locations. In an interaction
at a later time then separated object views can be extracted from theses large
images. Thus, the approach of Multi-Mosaic Images by B. Möller et al. is used
which is responsible of the creation of the large scene images.

To do so, a corresponding examination scenario has been designed for the mo-
bile robot BIRON which can easily be transferred to other mobile robots as well.
The Figure 5.1 illustrates the basic idea. The robot moves to a distinct location
at time t−2. Here, it begins to capture a mosaic image as shown in Figure 5.2(a)
by panning, tilting, and zooming its camera or moving its body. As soon as the
mosaic image is complete, the robot moves on to a second location, e.g., another
corner of a room or to another side of a table. The more different the new cap-
turing location is with regard to the first location, the higher is the probability to
be able to extract a distinct second view of an object. At this new position t−1, a
second mosaic image is captured. After this task is completed as well, the robot
is used for an interaction with a user in the given example. During this interaction
that takes place at a third location and at time t0, another view of the object can
be extracted.

While the Object Attention System passes its normal processing cycle, described
in section 4.6 on page 82, the position of the Region-Of-Interest is calculated.
Assuming that the robot uses a global coordinate system, this position can now
be projected onto the formerly captured mosaic images at time t−2 and t−1 and an
additional object view can immediately be extracted.
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(a) Multi-Mosaic image with planes of different resolution.

(b) Image pattern of lowest
resolution plane.

(c) Image pattern of highest
resolution plane.

Figure 5.2: Illustration of Multi-Mosaic captured images.

The framework supporting this mosaicing functionality is called Toolbox for Pro-
cessing and Analyzing Images (ToPAs) and has been developed by B. Möller and
colleagues [MPH+05, Möl05]. The ToPAs framework offers interfaces that allow
to extract an image patch from a given mosaic image, even in different resolu-
tions. Examples of images with different resolutions are depicted in Figure 5.2(b),
showing an image patch taken from the lowest resolution level of a captured mo-
saic image, while Figure 5.2(c) shows an example for an image with the highest
possible resolution.

The support of different resolutions is useful as diverse applications have differ-
ent requirements. For instance, a holistic localization which is currently under
development for the mobile robot BIRON demands for a coarse overview of the
scene. This overview should ideally be a low resolution image in order to reduce
the computational costs and to minimize noise that increases with image detail.
High-resolution images, however, are useful for the Object Attention System as
they allow the extraction of a more detailed object view which is used for later
object recognition tasks. Due to this representation of mosaic images in multiple
resolutions and, hence, in multiple image planes, they are called Multi-Mosaic im-
ages. In the following, a more detailed view on the creation of such Multi-Mosaic
images is presented.
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The basic idea of mosaic images consists in the assumption that image se-
quences captured with one camera contain redundant image parts. These redun-
dancies can be detected and used for estimating parameters that allow to warp
images into a common coordinate frame. This procedure is called Registration.
The underlying mathematical transformations used for the registration process
are basically expressed in relation to the common coordinate frame (also called
reference frame). Registering this image completes the Registration phase and
enables the Integration phase for the mosaic image. Here, every single image
is merged with the mosaic image by the fusion of color information of individual
pixel. As an outcome, the mosaic image contains all fused parts of the scene
that have formerly been captured as separate views by the camera and, thus,
lead to a scene representation with a large field of view, see pages 82 and 91.
As the mosaic images offer a larger field of view than a single captured image,
distortions are unavoidable. In order to minimize these distortions, an appropriate
representation needs to be selected. B. Möller chose a polytopical coordinate rep-
resentation as shown in Figure 5.3. In particular, the Figure visualizes a so-called
Rhombicuboctahedron that shows the different planes of resolutions as well in a
simplified wire frame representation. This polytopical coordinate representation
has mainly been chosen as it provides easier image processing than, e.g., the
projection on a sphere. It goes beyond the scope of this thesis to discuss this
issue in detail, however, an extensive description is given in the dissertation by B.
Möller [Möl05].

Figure 5.3: Multi-Mosaic image
planes visualized as hierarchical
polytopical wire frame model.

The image has been taken
from [MPH+05].

In brief, this plane representation has mainly
been chosen as it simplifies to cope with dis-
continuities on the one hand, and as the planes
can be regarded separately, they support the
requirement of an incremental construction of
the mosaic image during the Integration phase
on the other hand. Thus, this representation al-
lows the Object Attention System to start, stop,
pause, and to resume ongoing mosaic creation
without the need to discard all mosaic parts
that have been fused so far. Hence, an efficient
representation of the iconic data is provided.

The Long-Term representation of this iconic
memory should of course be as efficient as
the capturing process especially with regard to
a fast and accurate data access. This is en-
abled by the proposed Scene Model which is
described in the following section.

Scene Model as Long-Term Knowledge Base

The Scene Model offers a great diversity with regard to autonomous robot perfor-
mance for, e.g., navigational tasks, and possibilities to improve a Human-Robot
Interaction as it enables the robot to “remember” former interactions. The latter
issue is useful for the Object Attention System as it allows to access formerly
learned objects and, thus, relations can be established. But, e.g., the dialog
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component can benefit from the memorized data as well, like it is described on
page 78.

The basic concept of the Scene Model has been adapted from the Visual Active
Memory developed within the EU-Project VAMPIRE [WWHB05, VAM05]. The
infrastructure of the memory concept is depicted in Figure 5.4. It illustrates that
the Active Memory consists of a Memory Server that includes the concept of
Intrinsic Memory Processes. These intrinsic processes are used to maintain the
consistency of the memory, e.g., by re-indexing or garbage collection which is
comparable to forgetting obsolete data after a specified period of time. The Figure
furthermore shows that the database used actually consists of two interfaces of
the relational Berkeley DB [Ora06], one for binary data and a second for XML data
which uses the native DB-XML API. Here, the coupling between the XML data
and the corresponding binary data entry is realized by the Resource Description
Framework (RDF) [W3C06].

Besides the Intrinsic Memory Processes, the access for other modules of the
robot’s architecture is regulated by Extrinsic Memory Processes. They are more
loosely connected to the Memory Server than the Intrinsic Memory Processes
in the context of abstractness. Thus, they can be used for higher-level tasks,
like contextual or spatial reasoning. Anyway, other modules that are used in the
robot’s architecture are not only connected to the Active Memory but to each other
as well. These connections are now discussed in more detail by the presentation
of the architectural model used.

5.3 System Infrastructure
The mobile robot BIRON introduced in section 4.2 on page 56 is used for the ex-
planations on the software architecture and its communication framework used.
In particular, the interconnections between the different modules of the architec-
ture are discussed in the following section.

Robot Architecture

The Object Attention System is part of the three-layered hybrid System Infras-
tructure for Robot Companion Learning and Evolution (SIRCLE), depicted in Fig-
ure 5.5. This Figure provides a reduced view on the architecture as only the
modules that are related to the Object Attention System are considered. At the
top of the Figure, the deliberative layer is shown. This layer contains the Speech
Recognition by G. Fink [Fin99], the Speech Understanding by S. Hüwel [HW06b],
and the Dialog module by S. Li [LHW+05]. These modules are located on the
deliberative layer as they process higher cognitive functions, e.g., the establish-
ing of a dialog based on natural language. Thus, they are used to send orders to
executing modules that are located on another layer of the architecture.

The second layer represents the intermediate level. Here, the Execution Su-
pervisor by M. Kleinehagenbrock [KFS04], who designed the SIRCLE architec-
ture [Kle05], is located as it is responsible for the communication control and data
flow between most of the modules. Additionally, this layer embeds the Scene
Model and the mosaic-based iconic memory which serves as knowledge base of
the robot, as described in the previous section.
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Figure 5.4: Infrastructure of the Active Memory adapted for Personal Robots.

The third and last layer is the reactive one. Here, the Object Attention System
is located, while it is connected to a couple of other modules. First of all, to
modules located in the intermediate layer in order to be able to communicate with
the dialog module and access to the knowledge base. Secondly, to modules that
are located on the reactive layer as well. In particular, these are the modules that
have been described in chapter 3, 4, and 5. Additionally, the reactive layer shows
the Hardware Control by Spexard et. al that is mainly based on the Player/Stage
software by Gerkey, Vaughan, and Howard [GVH03, VGH03]. It provides unified
interfaces for different robotic platforms and, thus, can be classified as abstraction
component. It is responsible for the connection between the hardware-specific
issues of the robot used (motor control, serial interfaces of the basis) and the
modules that access the components connected to the robot basis. Hence, there
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Figure 5.5: System Infrastructure for Robot Companion Learning and Evolution.
The figure shows an Object Attention System-related view of SIRCLE.

is no need for the accessing modules to modify their interfaces if different robot
hardware is used.

The Figure 5.5 illustrates the communication connections between the modules.
The underlying communication framework is, therefore, briefly described in the
subsequent section.

Communication Framework XCF
The proposed Object Attention System relies on the output of many other com-
ponents, like the Person Tracking or the Speech Processing units. As described
in chapter 3 and 4, the Object Attention System ,therefore, uses a couple of open
standards for the communication, for instance, OpenCV for images or XML for
textual content. Thus, it is only reasonable to use a communication framework
which enables the XML-based communication per default. One approach that
offers such possibilities, but also embedded binary data support represents the
XML enabled Communication Framework (XCF) that has been mainly developed
by S. Wrede and colleagues [WFBS04]. Together with the above mentioned Ac-
tive Memory concept it has been introduced as part of the EU-project VAMPIRE
as well. As it is from scratch designed for a cognitive motivated architecture like
the SIRCLE framework, it is, hence, well-suited for the proposed Object Attention
System. In the following, the concepts used by XCF are described in detail as far
as they concern the Object Attention System.

Binary and XML transport

The provided XCF communication containers that are used for the Object Atten-
tion System are basically dividable into two different types. One for XML doc-
uments only and one for XML documents with attached binary data. As for all
communication an XML document is used, the latter one is only for selected in-
terfaces applied, e.g., for image and sound transport. This so-called Composite
Transport Unit (CTU) can contain multiple binary data which are referenced by an
Uniform Resource Identifier (URI) encoded as string. The transmission of such
CTUs takes place by one of two semantic concepts provided by XCF.
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Semantics for communication

In order to cover flexible module interconnectivity, the XCF framework supports
two communication semantics. First, 1 Publisher to n Subscriber streams. This
allows connected units to communicate with each other, while the receiving sub-
scribers are configurable in their data-receiving behavior. In particular, this in-
cludes asynchronous and synchronous subscriber calls as well as the opportu-
nity to fetch only the latest data set transmitted, even if more sets are buffered
and not yet requested. The second communication semantic is based on Remote
Procedure Calls (RPC) and Remote Method Invocation (RMI) which is realized
as an n to 1 solution as well. In detail this means that various clients, so-called
Remote-Servers are allowed to call member functions of networked Server pro-
cesses that are provided by a single Server. Last but not least, an optional XML-
Schema-based verification is included in order to ensure the validity of the data
transmitted, cf. page 119.

To sum up, due to the Publisher/Subscriber and the Server/Remote-Server se-
mantic, XCF offers easy data access and modification interfaces supported by
XPath and XML Query expressions. Thus, the interfaces to other modules could
be integrated in a simple manner. This completes the overview of the XML-based
data handling by XCF. As last aspects concerning the communication framework,
the logging mechanisms and error handling routines provided by XCF are dis-
cussed next.

System-wide Logging and Exception Handling

During the development of a software project like the Object Attention System,
a lot of dependencies need to be considered, no matter whether they concern
the timing between different modalities or the data format exchanged. There-
fore, a fine-grained logging support is essential as many different people and
even more different software modules are involved in the development of a Per-
sonal Robot. These challenges have been faced with a framework for logging
and introspection support. In particular, for the logging functionality three ap-
proaches are currently supported, Log4J [Apa06b] for Java-based software, Log
for C++ [BGW+06] which is an early C++-port of Log4J, and Log4cxx [Apa06a]
as successor of Log for C++. All three approaches allow the definition of various
loggers that differ not only by their specified name, but can also be assigned to
different log levels, like, e.g., ERROR, WARN, DEBUG, and a few more. This is
especially very helpful to disable a distinct logging level in order to avoid an in-
formation overflow. A typical example of one logging message is shown below.
The line begins with a timestamp in POSIX time. Then, the name of the logging
level (here:INFO) is given, followed by the name of the logger. In this case, the
logger’s name is ’ROR.ObjCommFlow’ which means that the logger belongs to
the ’Resolving Object References’2 module and is subscribed to the class ’Obj-
CommFlow’. The remaining part of the message contains the actual logging text.

1138879336 INFO ROR.ObjCommFlow : Processing time of OAS: 4258 ms

2An alternative identifier for the Object Attention System
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Those logging messages can be displayed in two ways. Either directly in the
command shell where the program has been started or in a system-wide and
centralized logging facility, the XCFLogger. But, not only specific logging mes-
sages can be displayed by the XCFLogger, it is additionally possible to intercept
and visualize the textual content of the data that is exchanged.

An extensive logging functionality is, however, only one important issue, espe-
cially in a large-scaled architecture for Personal Robots. At least as much impor-
tant is a well-defined exception handling. This is another reason why XCF has
been chosen as communication framework for the robots used as it provides a
fine-grained error handling as well. Thus, the overall system becomes a great
deal more robust as usually not all imaginable error cases can be considered.

5.4 Summary
In this chapter the integration of the proposed Object Attention System in an exist-
ing robot has been presented. This included at first the Long-Term representation
of object knowledge. Here, the concept of Multi-Mosaic images has been pointed
out and how the mosaic images are applied to get different object views. In brief,
the attractiveness for additional views consists in the possibility of improved object
recognition tasks that become important during subsequent tasks for the robot af-
ter it has learned referenced object instances. The second part of the knowledge
representation dealed with the concept of an Active Memory which allows a rudi-
mentary and incremental construction of a qualitative Scene Model.

After the discussion on the knowledge representation, the system infrastructure
used, in particular, the robot’s architecture SIRCLE and the underlying commu-
nication framework XCF have been presented. It has been shown that a hybrid
robotic architecture is well-suited for the task of a natural Human-Robot Inter-
action. Furthermore, the main contributions of the XCF framework have been
pointed out as far as they concern the Object Attention System.

Finally, after all relevant aspects for the development of the Object Attention Sys-
tem have been presented, an evaluation is given in the following chapter in order
to prove its suitability for real robots.
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6. Evaluation

In this chapter, the results of conducted evaluation experiments are presented
and subsequently discussed. As the Object Attention System employs mainly
deterministic approaches, like the Finite State Machine or the temporal modality
fusion within the Short-Term Memory, these issues will not be discussed. It would
not make any sense to roll out the reliability in additional tables as continuous
code reviews during the development ensured that the Object Attention System
is stable software. On many occasions has been shown that the Object Atten-
tion System is indeed operating very robust. For instance, on review scenarios
for the EU-project COGNIRON, the solemnization for the Collaborative Research
Center 673, and in dozens of testing sessions while more than 1000 object rep-
resentations have been successfully learned. In the following, therefore, only the
non-deterministic issues are regarded in detail. These issues are divided into the
three categories

• Accuracy for the determination of the Region-Of-Interest

• Visual object appearance based on color features

• Depth validation of objects

These aspects reflect the technical capabilities of the Object Attention System
best, as these mechanisms enable a subsequent object recognition that is, how-
ever, not considered in this evaluation chapter as it is not within the focus of this
thesis. After all, this leads to the following outline of this chapter.

In the following, at first the accuracy calculations for the resolved object posi-
tions are presented in section 6.1. The subsection begins with a description of
the experimental setup that served as the basis for user studies with the Object
Attention System. These user experiments have been conducted in coopera-
tion with J. Schmidt and N. Hofemann, as they needed to evaluate their sys-
tems [SKF06, Hof06] as well. The collaborative experiments offer, moreover, the
opportunity to evaluate the proposed Object Attention System on authentic data
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sets. After the setup in that section has been explained, the actually measured
and calculated position values for the Region-Of-Interest are discussed. In partic-
ular, the values are discussed and interpreted with regard to their relevance and
quality. In the subsequent sections, the results of the second and third category
are presented. In detail, for the color-based object analysis, section 6.2, and the
depth-based approach, section 6.3, that have been developed as diploma theses
in cooperation with M. Saerbeck and M. Köllmann. At the end of this chapter, a
brief summary follows which reflects the main statements of all conducted exper-
iments.

6.1 Determination of the Region-Of-Interest
The accuracy of the determined Region-Of-Interest that is selected based on the
analysis of the user’s actions is the most crucial part for a successful object learn-
ing scenario. This is easy to understand because an object can only be learned
if it is in the perception area of the (visual) sensors. Therefore, a lot of effort has
been spent to provide a representative examination of the estimated positions
for the Region-Of-Interest. The next paragraph presents the setup used for the
corresponding evaluation.

Experimental Setup

To face the requirements for the 3D-Body Model Tracking System, the gesture
recognition, and the Object Attention System, a specific setup with the robot
BIRON has been used for the evaluation, see Figure 6.1(a).

(a) Evaluation setup for user interactions. (b) User pointing to an object.

Figure 6.1: Evaluation setup for the Object Attention System
This setup has been used for the estimation of the Regions-Of-Interest.

Unfortunately, the complete evaluation needed to be performed offline for two
reasons. Firstly, the available computational power was insufficient for the 3D-
Body Model Tracking System to enable an online performance. Secondly, as
the development of the body tracker currently focuses on tracking performance
and, thus, it does not yet enable an automatic initialization for a body model.
As a consequence, the positions of the different participants and objects were
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manually measured in relation to the origin of the robot coordinate system, cf.
page 64. For visualization of a typical pointing gesture, Figure 6.1(b) shows an
exemplary gesture directed to the green toy crocodile used.

The conducted experiments were performed with 6 persons, three female and
three male. Half of the participants were unexperienced and performed the ges-
tures for the gesture recognition for the very first time. The other half were expe-
rienced users. All participants had to follow the same sequence:

1. Starfish configuration to enable initialization of the body tracker, cf. Fig-
ure 6.2(a)

2. Pointing from the bottle to the crocodile with top side of flat hand oriented to
the robot (withdrawing hand after each object pointing)

3. Waving with opened right hand, inner side of hand oriented to the robot

4. Presentation of objects (from the bottle to the crocodile), cf. Figure 6.2(b)

5. Pointing from the crocodile to the bottle with inner side of flat hand oriented
to the robot (withdrawing hand after each object pointing)

6. Waving with opened left hand, inner side of hand oriented to the robot

7. Presentation of objects (from the crocodile to the bottle), cf. Figure 6.2(b)

8. Repeat steps 1 to 5 three times

(a) Starfish pose for the initialization of the
3D-Body Model Tracking System.

(b) Presentation gesture (Steps 4 and 7).

Figure 6.2: Illustrative behavior for the evaluation of the ROI.

The overall sequence of the experiments has been performed as follows. The
different actions were captured by the gesture camera and the object camera (cf.
page 56) at first and, subsequently, stored on the hard disk. Then, the 3D-Body
Model Tracking System has been manually initialized by a manual adaption of
the body models used, cf. page 36. The resulting hand trajectories of the body
tracker were then used as input for the gesture recognition. This enabled the
training of appropriate models for the different pointing gestures. These models
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were trained for each person and with three of the four runs. The fourth run was
then, consequently, used for the actual gesture recognition.

All considered, the training phase for the probabilistic approaches of the 3D-Body
Model Tracking and the gesture recognition as well as the manual annotation
of the gesture data turned out to be very time-consuming as they took several
months. However, the annotations of the videos streams are essential for the gen-
eration of appropriate body models and the following gesture recognition. Thus,
the Object Attention System could at the earliest been evaluated when the rec-
ognized gestures became available. Consequently, and because the robot used
for the experiments is often involved in demonstrations that make a movement
of the robot and the experimental setup necessary, it was not possible to keep
the same setup for the Object Attention System as it actually used during the
user experiments. Therefore, the experimental setup was additionally scanned
by the object camera. In particular, a program has been developed that moved
the camera in the scanning area that covered all possible alignment positions for
the referenced Regions-Of-Interest. The basic proceeding of the scanning pro-
cess is illustrated in Figure 6.3. The detailed scans have been captured by the
object camera mounted on the robot. Thus, they do not exactly match the image
parts within the large image that has been taken from another point of view.

Figure 6.3: Evaluation setup scan for the Object Attention System.
The green line illustrates the scanning route of the object camera.

This scanning procedure resulted in 3300 images that were stored on hard disk
for later evaluation. It has to be mentioned that this scanning of course contains
a lot of ambiguous positions as several locations are in the same line of sight.
Nevertheless, this procedure allows an easier interpolation to verify the differently
focused Regions-Of-Interest in this section. For a realistic simulation of the real
interaction behavior of the Object Attention System, all images were captured with
a magnification factor of 4 which allows a more detailed view of an object. This
value has been chosen, as it is the default value if the user does not specify the
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size which is currently always the case as the speech processing units are not
able to deal with this attribute, cf. section A.2 on page 124. The following sec-
tion presents the calculated results for the camera alignment and the calculated
positions for the Regions-Of-Interest, respectively.

Results

During the creation of motion models for the gesture recognition it turned out
that for two participants no unified model could be trained. As consequence, the
Object Attention System can only process the data of the four remaining par-
ticipants as for these persons individual models were trainable. The calculated
positions of the Regions-Of-Interest which the users referred to, are presented in
the Figures 6.4, 6.5, and 6.7. These figures visualize the mean values of all 162
successfully performed pointing gestures related to the cylindric robot coordinate
system. Thus, they denote the mean values of the calculated Regions-Of-Interest
as separated values for Height, Distance, and Angle. The objects labeled on the
abscissae are ordered in the same manner as in Figure 6.1, in particular, the
green crocodile with 32 gestures, the blue cup with 32 gestures, the pink ball
with 30 gestures, the yellow lemon with 29 gestures, and the red bottle with 39
gestures. A detailed overview about all 576 calculated values is presented in ta-
ble B.1 on page 131. In particular, it shows the 486 calculated position values
for the Regions-Of-Interest while the 90 calculated values for the minimum, the
mean, and the maximum error values for each object are separately presented.

Figure 6.4: Evaluation result for the height value
of the estimated Regions-Of-Interest.

Beginning with the calculated
height values, the results are
surprisingly accurate as Fig-
ure 6.4 illustrates. This figure,
in particular, shows the calcu-
lated mean height values of all
162 successful pointing ges-
tures. Although a few times
the calculated height value
is greater than the reference
value (blue line at 0.75 m) the
mean value evaluation shows
that the mean values often
are approximately 10 cm less
in comparison to the actual
value. These results can be
explained as follows. Due to
the mounting of the gesture
camera that is tilted to enable

the capturing of the complete upper body for the 3D-Body Model tracking frame-
work, a measurement error for the tilt angle can be assumed. For instance, in an
average distance of 2 m for the objects an error of ±3◦ would result in a height
variation of ±10.4 cm. This would explain the resulting error as it is very difficult to
determine the exact orientation of the gesture camera due to a missing indicator
on the camera mounting. Next, the calculated distance values are discussed.
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The values for the distance are also often no more different than 10 cm related to
the manually measured object position that, of course, contains errors as well.

Figure 6.5: Evaluation result for the distance
value of the estimated Regions-Of-Interest.

The results of the distance-
related calculations are shown
in Figure 6.5. The figure il-
lustrates that the calculated
values are in average 10 to
15 cm greater than the man-
ually measured values. This
can be explained as follows.
Firstly, the manually measured
values are related to the outer
front side of the laser casing
while the actual origin for the
measured values is located a
few centimeters within the de-
vice. Secondly, the distance
of the legs slightly varied due
to the pants worn by the par-
ticipants. Each time, they
bended forward or backward

for a pointing gesture, the laser-based leg distance varied as well. Thirdly, the
bending movement, of course, influenced the distance value of the participants
hands, too. As a consequence, an error of ±15 cm for the distance is tolerable.

Especially, the forward and backward bending of the persons explains the values
that are in average 15 cm greater than the manually measured reference positions
as the participants were told to directly touch the objects. This instruction has
been given as a direct contact with the object probably results in the best possible
values, cf. section 2.2.1 on page 18. However, the subjects often disregarded
the given instruction as illustrated by the pointing gestures for the red bottle in
Figure 6.6.

(a) Distant pointing gesture. (b) Near pointing gesture.

Figure 6.6: Pointing gestures with different distances between hand and object.

This last aspect of varying distances between the calculated Regions-Of-Interest
and the user’s hand has, additionally, a great impact on the accuracy for the cal-
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culated angle values. Because the Object Attention System is not yet able to
dynamically adapt to various hand ⇔ object distances, this aspect leads to the
following results, depicted in Figure 6.7. The calculated values and, especially,
the high variance of the red bottle shows that the user’s pointing gesture indeed
varied a great deal. This can be explained as all gestures were performed only
with the right hand and, thus, a pointing to the most left object results in an in-
convenient posture. This is supported by the constraint that the torso should be
moved as less as possible in order to provide the best possible posture for the
3D-body tracker. Therefore, a tolerance value of ±30 cm can be considered as
tolerable.

Figure 6.7: Evaluation result for the angles of the
estimated Regions-Of-Interest.

However, this already large er-
ror does not explain the ex-
treme outliers. These resulted
from too fast performed ges-
tures, especially during the
presentation gesture (cf. Fig-
ure 6.2(b)) performed directly
from the most left to the most
right object and vice versa.
As a consequence, the frames
do not contain enough data
for an accurate hand trajec-
tory and a gesture recogni-
tion, respectively. As the Ob-
ject Attention System consid-
ers the two frames captured
before (@15 fps ≈133 ms) as
well, the values suffer a hori-
zontal shift which explains the

outliers. Additionally, a last important influence causes these high errors. As the
body tracker and the gesture recognition both rely on probabilistic approaches
with a certain error possibility, cf. section 3.1 on page 36, these inaccuracies, fi-
nally, explain the achieved results. Although the results show in one case an error
up to 87.8% (2.4◦ vs. 17.3◦ ≈ 72 cm offset@distance 2.15 m) for a calculated
angle, these outliers can be classified as valid as, nevertheless, the object has
been successfully focused and was fully within the camera field of view. This is
attributable to the rather larger capturing field of the camera, cf. detail scans in
Figure 6.3 on page 104.

Summarizing, the determination of referenced Regions-Of-Interest is accurate
enough to support a convenient and robust Human-Robot Interaction and even
more provides the correct Region-Of-Interest despite of inaccurate pointing posi-
tions provided by the gesture recognition modules. This is underpinned by the fact
that for all performed evaluations, the referenced object was always fully within
the camera’s field of view while, simultaneously, a limitation on the focused area
has been done. Next, the evaluation for the color-based approach is, therefore,
discussed in detail.
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6.2 Object Selection by their
Color-based Appearance

The previous section showed that the focused area always fully contained the
referenced object during the evaluation. Nonetheless, the result of a subsequent
object recognition task improves if only the segmented object view without scene
background is learned. This aspect has been considered in the diploma thesis of
M. Saerbeck [Sae05] with whom a method for the segmentation of an object view
that is based on color features has been developed, cf. section 4.5.3 on page 70.
The main results of his evaluation are summarized in the following.

Experimental Setup

As experimental setup for the color-based acquisition of an object view, a se-
lection of objects representing a variety of different colors has been analyzed.
To achieve a more representative conclusion, the objects were additionally po-
sitioned in front of two backgrounds, first a white tabletop (Figure 6.8(a)) and
secondly, a wooden table surface (Figure 6.8(b)). Furthermore, to emphasize the
feasibility of this approach, an automatic gain control for the object camera is used
to enable similar learn results under varying lighting conditions as well.

(a) Evaluation setup for object view genera-
tion with white table.

(b) Evaluation setup for object view genera-
tion with wooden table.

Figure 6.8: Evaluation setups for color-based learning of object views.
The images have been taken from [Sae05].

As it would be pointless to present hundreds or even thousands of objects with
a different color each, and variations in lighting, here, only two objects are exem-
plary analyzed to prove that the principal concept is feasible. The first object is
the blue cup and the second object is the yellow lemon, as shown in Figure 6.8.
The experiments conducted on these objects are, in particular, the influence of
the variance value and the range of tolerable hue variations.

Results

An object view that is extracted simply based on the color appearance is often
incomplete. In Figure 6.9 a learned object view illustrates the influence of the
selected hue value in relation to the completeness of the object.
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(a) Object view
learned with hue
value 160.

(b) Object view
learned with hue
value 255.

(c) Object view
learned with hue
value 68.

(d) Object view
learned with hue
value 55.

Figure 6.9: Influence of the hue value for a learned object view.
The images have been taken from [Sae05].

As the images show, does the hue value have a great impact on the complete-
ness of an object view. The particular values used for this example are given in
table 6.2. It shows that even a misaligned value that differs more than 35% from
the optimal hue value can produce object view that contain more than 2

3
of the

object. This is often sufficient for an object recognizer to successfully select the
searched object.

(a) (b) (c) (d)
Hue 160 255 68 55

Difference 0 +95 -92 -105
Difference [%] 0 +37.3 -36.1 -41.2

The second experiment investigates the standard deviation σ (cf. page 66) of
the Gaussian distribution that is layed over the Region-Of-Interest to reduce the
influence of pixel that probably do not belong to the regarded object as they are
located in a certain distance to the center of the Region-Of-Interest. The Fig-
ure 6.10 illustrates the impact of the chosen variance on the possibility to support
a resolution of ambiguities. Here, the values σ = {70, 40, 25, 15} have been
used. As intended, the parameter σ is well-suited to support the feature Size of
an object.

(a) Learned object
view with σ=70.

(b) Learned object
view with σ=40.

(c) Learned object
view with σ=25.

(d) Learned object
view with σ=15.

Figure 6.10: Learned object view of a lemon.
The images illustrate the influence of the Gaussian distribution-related variance

and have been taken from [Sae05].

As an overall summary for the color-based object view generation two main as-
pects have to be mentioned. First, both concepts, the use of the HSI-color space
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and the Gaussian distribution for the size determination of an object have shown
that they support good results. However, the evaluation took place only in a labo-
ratory environment and, thus, may cause very different results in other domains.
Hence, especially the hue-value optimization needs to be further investigated.
Next, the second, depth-based object segmentation approach is described.

6.3 Qualitative Measurement of
Object-related Depth Values

The quality of the calculated depth-based Attention Map (cf. page 72) has been
evaluated in cooperation with M. Köllmann in his diploma thesis [Köl06] while the
most important results are summarized in this section. To cover the accuracy
aspects for the stereo-based measurement of object positions, two different eval-
uations are subsequently discussed that are both related to experiences with the
anthropomorphic robot BARTHOC, cf. page 58.

Experimental Setup

All measured sensor values offer a tolerance due to mechanical inaccuracies.
Therefore, M. Köllmann has determined the maximal possible depth variation for
the camera sensors of BARTHOC. Figure 6.11 illustrates the underlying princi-
ples. In image 6.11(a), the left camera has been aligned to its straightforward
position (sensor ’0’-position) at time t0. In this case, the camera has been aligned
by rotation from its, e.g., most left alignment position to the ’0’-position in clock-
wise direction. The second image 6.11(b) was captured with the same sensor
’0’-position at time t1 but in this case, the camera has been aligned from the op-
posite camera orientation related to the first alignment. For the given example,
by rotation from the most right alignment position to the ’0’-position in counter-
clockwise direction. In this way, the two images can be overlayed with each other,
Figure 6.11(c). The image clearly shows the difference between the two images
that occurs when the camera is aligned to its initial position from opposite direc-
tions.

(a) Left camera, aligned to
straightforward pos. at time t0.

(b) Left camera, aligned to
straightforward pos. at time t1.

(c) Overlay of Figure 6.11(a)
and Figure 6.11(b).

Figure 6.11: Accuracy determination of the camera sensors used within the an-
thropomorphic robot BARTHOC. These images have been taken from [Köl06].
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This inaccuracy demands for a detailed analysis of the calculated depth values for
different objects. Thus, a second experiment with a couple of objects has been
conducted. In detail, the objects are a white cup, a black cup, a yellow lemon, a
red bottle, a black remote control, a clock, a blue mould, a green candle, a red
apple, and a red cherry as shown in Figure 6.12. The various colors and sizes
of the objects demonstrate that the approach not only operates on a single ob-
ject under optimized conditions but that the approach is feasible within limits for a
natural environment, like a private home with various different objects. The most
important limit concerns textureless scenarios. In such scenarios, the determi-
nation of object positions will not properly work as the stereo correspondence is
based on feature points that can only be calculated on salient areas.

Figure 6.12: Objects serving for the evaluation of the depth-based Attention Map
and the acquisition of object positions. The images have been taken from [Köl06].

The following section summarizes the results of the experiments above described
for the sensor accuracy determination and the acquisition of object positions.

Results

The analysis on pixel level of Figure 6.11(a) in relation to Figure 6.11(b) showed
a shift of Ux = 22 pixel for two corresponding pixel. This results in an inaccuracy
αU for a given camera calibration matrix Kl in an angle of 0.017 rad (≈ 0.974◦) as
the following equation 6.1 illustrates. The variable fx denotes the magnification in
the horizontal x-direction.

αU = arctan

(
Ux

fx

)
≈ 0.017 (6.1)

To point out the influence of this inaccuracy, the experiment refers to an object in
a distance of 1 m. While the stereo basis of the left and the right camera is 60
mm, a corresponding point on the object results in a panned camera orientation
of 0.03 rad (≈ 1.719◦) for each camera. This leads to the following equation:

0, 03− 0, 017 = 0, 013 0, 03 + 0, 017 = 0, 047 (6.2)
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A triangulation of the values 0.013 and 0.047 results in maximal possible dis-
tances of 0.64 m and 2.31 m for the object located in a distance of 1 m. This ex-
ample demonstrates that the sensor accuracy provided by the robot BARTHOC
might be not sufficient for the extraction of a depth-based object appearance.
Therefore, the second experiment (cf. Figure 6.12) has been conducted in order
to get insights on the influence of the sensor accuracy for different real objects.
To reduce the effect of outliers, three runs have been evaluated for the 10 objects
that have always been arranged in pairs. Additionally, the positions of the two
objects have been swapped (Object A → Object B and vice versa). In this way,
an overall amount of 10 · 3 · 2 = 60 object positions has been achieved which is,
in detail, shown in table B.2 on page 134. For a clearer representation, however,
the results are visualized in Figure 6.13 and Figure 6.14.

(a) Results of depth values for object A. (b) Results of depth values for object B.

Figure 6.13: Evaluation results of depth calculations for two objects.

The diagrams clearly show that the influence of the inaccurate sensors is accept-
able as the depth variation of all calculated object distances is less than 11 cm.
Consequently, the result is even better than the probabilistic depth estimation of
the 3D-Body Model Tracking System which uses one monocular camera only. In
addition to the distance evaluation concerning the object position in relation to the
camera, the distance between the two objects has been investigated as well. For
a reliable statement, this distance of 30 cm has been manually measured. The
Figure 6.14 visualizes the achieved results.

It can be seen that the variance is less than 11 cm as well. However, if the first
run is eliminated the achieved results are a great deal more accurate with, like the

Figure 6.14: Experimental evaluation concerning the relative distance values be-
tween the object A and the object B that have been investigated simultaneously.
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variance indicates with a value of less than 4 cm during the second and the third
run, cf. table B.2 on page 134. These results lead to the following conclusion.

Summarizing the results, the evaluation has shown that the second and the third
of all three runs are significantly more accurate than the first run. Although this
behavior was reproducible during the evaluation, the reason for this could not be
clarified. Most probably, the drive belts of the stepper motors produce a slip.

6.4 Summary
In this chapter, the feasibility of the Object Attention System was investigated from
different point of views. In particular, all included non-deterministic approaches
used have been evaluated. This includes first of all the determination of an ap-
propriate Region-Of-Interest based on the results of the gesture recognition input.
As expected, the accuracy of the finally determined region is much influenced by
the quality of the gesture recognition. Nevertheless, even with provided locations
occurring in a single gesture, the impact could successfully be reduced by the
consideration of currently 3 time steps. In this way, the referenced object was in
all cases fully within the field of view of the object camera.

The second part of the evaluation contains experiments of the color-based learn-
ing of object views. The very brief discussion on that aspect already showed
that several weaknesses can be compensated as long as stable environmental
conditions are provided. Especially the influence of varying lighting conditions
demands for further investigations although a color model that separates the hue
value and the saturation/intensity values has been used. Nevertheless is the
choice to use a color-based approach unavoidable as the color is a feature easy
to communicate for the user of a robot. Due to the often not sufficient extraction
of the object contour, the third part of the evaluation contains the quality results
of the depth-based approach used.

For the use of anthropomorphic robots, the choice to estimate the position of an
object and additionally to extract the object’s contour based on an eye-like stereo
camera is a logical conclusion. In this thesis, the approach used has shown that it
works fine even under the given preconditions of inaccurate sensors that are used
for the camera alignment. Nonetheless have the results shown that the approach
is more usable to estimate an object’s position than its contour.

With the discussion of the previously acquired results this chapter and the de-
scription of the proposed Object Attention System is closed. In the following, an
overall summary and an outlook for future work is given in order to point out the
most essential statements made in this thesis.
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7. Summary and Outlook

Summary

The goal of this thesis was to present a novel and flexible approach to realize
Object Attention in mobile robots in order to be able to acquire a qualitative Scene
Model with newly learned objects and locations.

The aim of this work has been motivated by the unstoppable development of an
aging society. The trend that more and more old people (have to) decide to live
alone at their homes due to an emerging lack of nursing staff seems unavoidable
mainly because of the regressive birth rate. As a consequence, new solutions are
needed. For instance, the development of a companion-like Personal Robot that
is able to support people in, e.g., domestic domains. These domains, however,
cannot be learned in advance by the robot due to their dynamic and cluttered
character which demands for a learning model of Object Attention. In order to
enable the best possible realization of such an Object Attention mechanism an
extensive literature research has pointed out that the proposed Object Attention
System requires multimodal input support. Furthermore, the robot has to be able
to show its reaction to the user in order to give positive or negative feedback
for the focused object or location that has been referenced. Thus, it becomes
necessary to establish a Shared Attention, like it is common in Human-Human
Interactions. Especially, the support for naturally spoken speech and gestures is
of great relevance as a Personal Robot with Object Attention capabilities has to
behave as intuitive as possible to be accepted in the human society. However, not
all modalities are preferred in the same manner as research showed.

This leads to the conclusion that the Object Attention System has to support at
least the most preferred modalities. But at the same time the system needs to
be modular enough to enable an easy extension for additional modalities, for in-
stance, to cover even special fields of applications that eventually require, e.g.,
tactile support. For this reason, the proposed Object Attention System supports
Speech, Gestures, touch-sensitive displays, and written commands. But, as the
object information provided be these modalities might not be accurate enough or
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it is not even specified at all, the Object Attention System complements the infor-
mation by an optional analysis of the currently interacting Person-Of-Interest. This
analysis contains, in particular, a person localization that allows to infer the ob-
ject’s position and, additionally, a face identification to assign the object’s owner.

The modular paradigm of the proposed Object Attention System is stressed by
an unified interface that is easy to extend and to configure through the use of
the extensible markup language (XML). The benefits are obvious as XML-based
communication is already a widespread application in information processing. It
has been shown how the XML-based communication with and within the Object
Attention System is combined with the acquisition of expressive auditory and vi-
sual object information. For this object information it is essential that it is easy
to verbalize as spoken language is the preferred interaction modality. Hence, the
features Color, Size, Shape, and Relation are considered for the learning of a
priori unknown object instances as well as for the recognition of already known
objects. As an outcome, a fused textual ontology has been presented as a unit
that allows the construction of a qualitative Scene Model.

The Scene Model in turn is based on an Active Memory approach that is capable
to maintain data consistency on its own by continuous intrinsic data processing.
Besides, to extend the reliability of autonomous interactions by the mobile robot, a
Multi-Mosaic approach has been described and how it is connected to the Object
Attention System. The mosaic images offer a greater field of view on the scene
at a particular position. Assuming that mosaic images have previously been cap-
tured at different locations, this proceeding enables the acquisition of additional
object views which can be used for a more robust object recognition.

In order to prove the feasibility of the proposed Object Attention System, it has
been integrated in a robotic architecture that is used in two different robot plat-
forms. Firstly, the anthropomorphic robot BARTHOC and, secondly, the mobile
robot BIRON. Consequently, the interfaces of the Object Attention System to other
modules, like the Gesture Recognition or Speech Processing have been summa-
rized by a brief introduction to the communication framework XCF. At the end of
this thesis, the performance of the proposed Object Attention System has been
evaluated in detail.

The evaluation results have shown that the combination of the chosen modalities
is excellent for the learning of unknown objects. This statement could be con-
firmed by the achieved experimental results that have been discussed from dif-
ferent functional perspectives. Firstly, an accuracy determination of the selected
Region-Of-Interest that has been referenced by the user, secondly, an evaluation
of the color-based attention processing and, thirdly, an evaluation of the stereo-
based object position acquisition. For the determination of the Region-Of-Interest,
an elaborate user study has been performed where 162 gestures have been an-
alyzed for the Object Attention System. In all cases the alignment of the object
camera in order to focus the referenced Region-Of-Interest was successful al-
though the referenced object was not always in the center of the field of view.
Nevertheless, this alignment can be regarded as sufficient, as the objects were
in each case fully within the camera’s perceptional area and, thus, an object view
could be learned. However, the variance was mainly caused in consequence of
inaccurate pointing gestures and uncertainties in the gesture processing modules
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that apply probabilistic models. The second part of the evaluation dealed with the
calculation of a color-based Attention Map. It has been shown that in constraint
environments (constant lighting conditions, bright colors) the underlying algorithm
works fine. Last but not least, the stereo-based determination of object positions
has been investigated. The position estimation implemented is able to deal with
stereo cameras that consist of two cameras which have no fixed stereo base and
can be rotated in relation to each other. Thus, the approach is predestinated for
anthropomorphic setups as human eyes are separately movable within limits as
well. The conducted experiments showed that even though the sensors offer a
large tolerance in terms of positioning accuracy, the acquired object positions are
nonetheless acceptable.

To sum up, the proposed Object Attention System provides a variety of inter-
action interfaces that allow a convenient and effective Human-Robot Interaction.
The achieved results clearly show that the chosen modalities in combination with
a flexible XML-based communication and the evaluation of the object attributes
Color, Size, Shape, and Relation are well-suited for task-oriented Object Atten-
tion in interacting robots. By its flexible communication interfaces and modular
software design the proposed Object Attention System is easy to adapt to differ-
ent robots, like it has been demonstrated for the robots BARTHOC and BIRON.
Consequently, the proposed Object Attention System provides a solid base for
future work on intuitive Human-Robot interfaces.

Outlook
The proposed Object Attention System offers a lot of possibilities for extensions.
This is especially supported by its modular implementation and due to consis-
tent use of the XML-based communication format. For instance, as depth often
provides an excellent source for the shape detection of objects, the visual shape
analysis of an object might improve the performance of the Object Attention Sys-
tem as, currently, the attribute Shape is used only in terms of a semantic speech
analysis.

A second improvement would be the integration of an adaptive mechanism that al-
lows varying distances between the user’s hand and the referenced object. This
could be realized, in particular, based on accelerations of the hand as coarse
pointing gestures directed to vague locations or large objects (e.g., a fridge) are
often performed faster than a precise pointing gesture on a strictly localized posi-
tion (e.g., pointing on a screw).

A further performance improvement of the Object Attention System could be
achieved by the use of fuzzy expressions for the color-based object segmenta-
tion. Utterances, like “a little bit brighter” or “a few centimeters to the right” are
not covered yet. For complex scenes this, however, might simplify the interac-
tion without the need of using the touch screen. In this way, the Object Attention
System allows an even more intuitive Human-Robot Interaction.
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A. Details on Implementation

In this chapter, a more detailed and technical description is presented for the dif-
ferent communication formats used, the Modality Converter, the Sound Collector,
and the Short-Term Memory. In this way, the internal processing of these modules
can be discussed without a loss of clarity in chapter 4 that mediates the basics
of the proposed Object Attention System. In some places the following explana-
tions might be redundant with regard to the content of chapter 4, however, this is
unavoidable for a clear discussion.

A.1 Flexible Communication Formats
The next section contains a detailed discussion on the different communication
formats that are preferred for the use within the Object Attention System. In par-
ticular, the following description covers the aspects of auditory, textual, and visual
communication issues.

Audio-based Communication

For audio-based content, the Object Attention System uses the Ogg [Fou06] mul-
timedia container format. It is non-licensed, patent-free, and supported by the
most important operating systems. In particular, the Ogg format is used within
the Sound Collector that is responsible for the extraction of object sound, cf. sec-
tion 4.5.5 on page 78. Besides the audio signal of an object, e.g., symbolic speech
data is exchanged as well, cf. page 41. Therefore, the next paragraph gives a
brief discussion on the format used for textual data representation.

Text-based Communication

An approach with a high rate for textual data exchange in the robotic community
is provided by markup languages which belong to the SGML (Standard General-
ized Markup Language). Therefore, most people consider that the advantages of
SGML-based approaches outweigh its disadvantages. In particular, it is a com-
bination of several factors which makes SGML or a subset of it the best choice.
Some of these advantages are independency of the operating system used, the
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representation in a simultaneously human- and machine-readable format, or that
it consists of a logically-verifiable format. A very popular subset represents the
eXtensible Markup Language (XML) [Wor06a] that has become widely accepted
and used in distributed networks, like the Internet. Although it is not patent-free,
it has become an open standard which in turn is based on several internationally
accepted standards, like, e.g., XML Query or XML Schema.

From this perspective, the proposed Object Attention System uses XML for three
different kinds of applications

• Communication format for inter-module data exchange

• Specification of learned object files

• Specification of configuration files

As the discussion of the concrete specification for objects and configuration files
has been presented in chapter 4.5.6 on page 80 and the following ones, this
section focuses on the communication aspects of the Object Attention System
only. Starting from the communication as it has been introduced in chapter 3 on
page 33, several XML fragments of exchanged XML documents for inter-module
communication have already been presented. All of them are embedded in a well-
defined format in order to enable the possibility to verify the included information
for validity. This is done with the specification language XML Schema as the
following excerpt of a communication document illustrates.

1 <?xml version="1.0" encoding="UTF-8" standalone="no" ?>
2 <MSG xmlns:xs="http://www.w3.org/2001/XMLSchema-instance" \
3 xs:type="data type name">
4 <GENERATOR>OAS</GENERATOR>
5 <TIMESTAMP>1160579023626</TIMESTAMP>
6 ...
7 </MSG>

After the initial declaration of an XML document, the actual content begins in line
2 with the tag ’MSG’. It encapsulates all exchanged data. Furthermore, this tag
contains some specifications, in particular, the namespace used as it is defined
by the attribute ’xmlns:xs’. Besides, at the end of the line, the related data type is
specified as well (cf. [Wor06b] for details). Next, in line 4, the ’GENERATOR’ tag
is specified which contains the name of the sending module. In line 5, a globally
defined timestamp denotes the time when the data has left the sending module in
POSIX time. This timestamp entry marks the end of the general frame description
of exchanged data. Subsequently, the document contains the individual data.
This is symbolically indicated in line 6 before the frame declaration ends with a
closing ’MSG’ tag.

One tremendous advantage of this XML-based approach is that it enables the
use of arbitrary languages by an encoding in unicode format. For instance, Asian
fonts which are not definable within the 8 bit ASCII standard can be integrated in
this way, too.



A.2. Modality Converter 121

Vision-based Communication

Regarding the vision-based processing, a distinction between separate images
and image streams or videos streams has to be made. Since both categories are
used by the Object Attention System, the formats used are briefly discussed in
the following.

For capturing the robot’s environment, the Object Attention System uses the
pan-tilt camera described in section 4.2 on page 57. While the camera pro-
duces a video stream encoded in the YUV-Format, the stream is converted by
a plugin for the graphical plugin shell iceWing, that has been developed by F.
Lömker [LWHF06, Löm06], into a sequence of OpenCV-based image processing
library (IPL) image format images [int06]. The OpenCV library by intel has been
chosen, as it is on the one hand freely available for the most common operat-
ing systems, Linux, MacOS X, and Windows and on the other hand because it
supports a broad selection of certain image formats and algorithms. Within the
Object Attention System, the IPL images are used to access and to modify the
image content.

At the end of the image processing different object views need to be stored as
part of the object representation for the Long-Term Memory. Here, the Portable
Pixel Map (PPM) format is used for image representations that are stored for later
interactions. The reason for this choice is that it represents a lowest common
denominator color image format for single image files and, thus, is easy to analyze
and to construct.

Summarizing, the chosen open standards for the different modality data enable
a well-documented integration of the Object Attention System in other robotic
systems.

A.2 Modality Converter
The Modality Converter supports four different features (Color, Relation, Shape,
and Size) that can be transformed for the use of visual object processing within the
Object Attention System, cf. page 62. The following sections provide a detailed
insight into the XML-based notation from a semantic point of view.

Color

The predicate Color is the most important symbolic information for the object
learning algorithm of the Object Attention System. Therefore, it offers the most
flexibility of all considered predicates. The listing below illustrates the entries used
for the symbolic ⇔ numeric conversion. As shown in lines 2 and 14, all entries
are embedded in a COLOR tag within the XML-based lookup table. Within the
color tags in turn, each color is specified within a SYMBOLIC tag which has an
additional attribute name that contains the symbolic description of the speech pro-
cessing unit. This name is evaluated by an XPath expression in case of a query.
In line 4, the name of the color space/model used is specified. The following lines
then contain the actual numeric values, while each color space channel, e.g., the
first one (here: A) has got a minimum and a maximum value. This becomes nec-
essary, as the color perception of humans and the robot varies, e.g., due to vary-
ing lighting conditions. For details, please see the dissertation of Backer [Bac04]
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who did an extensive analysis of this aspect. With help of these minimum/max-
imum values the recognition results can be significantly improved. As last entry,
a CHANNELS tag is included which is used to select the channels (lines 5 to 10)
to be considered for computations. In particular, the channels value is binary en-
coded (8-4-2-1 code). For instance, if only channel A should be considered, then
the channels value is 1. A combination of all three channels would, therefore,
result in the value 8.

1 ...
2 <COLOR>
3 <SYMBOLIC name="red">
4 <MODEL name="HSV">
5 <VALUE_A_MIN>0</VALUE_A_MIN>
6 <VALUE_A_MAX>4</VALUE_A_MAX>
7 <VALUE_B_MIN>29</VALUE_B_MIN>
8 <VALUE_B_MAX>107</VALUE_B_MAX>
9 <VALUE_C_MIN>154</VALUE_C_MIN>

10 <VALUE_C_MAX>162</VALUE_C_MAX>
11 <CHANNELS>8</CHANNELS>
12 </MODEL>
13 </SYMBOLIC>
14 </COLOR>
15 ...

The advantage of this representation is its great flexibility. It enables the usage of
various different color models no matter of how many channels it consists. The
predicate Color is, however, only one useful unit. Another one, supported by the
Modality Converter is the predicate Relation which is described next.

Relation

In order to be able to model relations in a qualitative Scene Model that exist be-
tween objects and locations, a corresponding predicate Relation has been imple-
mented. Although these relations are currently not used in the overall architecture
of the mobile robot platform as the speech processing units cannot deal with them,
yet, relations are internally used for a single object representation. For the use
of relations between several objects, the Modality Converter already supports an
easy method to transform symbolic names like, e.g., in front of, behind, beneath,
and above. This is supported by an XML structure similar to the color representa-
tion described in the preceeding paragraph. As the example below shows in line
2, every relation is embedded in a RELATION tag. Within such a relation tag, a
SYMBOLIC tag is given as well, which in this case contains the name “under”.
The actual main difference can be seen in lines 4 to 6, where a HORIZONTAL
tag, a VERTICAL tag, and a DEPTH tag enclose a mathematical expression,
e.g., ’equals’ or ’less’.

1 ...
2 RELATION>
3 <SYMBOLIC name="under">
4 <HORIZONTAL>equals</HORIZONTAL>
5 <VERTICAL>less</VERTICAL>
6 <DEPTH></DEPTH>
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7 </SYMBOLIC>
8 </RELATION>
9 ...

This described conversion again contains symbolic names, but this notation of-
fers an indisputable advantage. As there are a great deal less mathematical ex-
pressions to be considered than there may exist given names for a relation, it is
easy to perform a pattern matching in order to select the appropriate computation
method. For instance, for the relation ’under’, the expression is always ’less’ or
’greater’ depending on the regarded object. But, the user can have a lot more
expressions for that relation even in different languages, e.g., under, beneath, be-
low, unter, unterhalb, darunter, and many more. Thus, this kind of transformation
tremendously reduces the amount of possible combinations.

The same principles are used for the predicate Shape as the following paragraph
describes.

Shape

Another important feature to describe an object is the object’s shape. Hence, it
has been implemented in the Modality Converter as well. The representation of
the feature Shape is very similar to the one for relations. The only difference is the
tag METHOD embedded in the SYMBOLIC tag, which contains the name of the
algorithm used. In this way, only a few algorithms need to be implemented while
the user has got the freedom to store various alias names for the object shape,
like round, circle, and others. As the actual connection of a symbolic description
and an algorithm requires the knowledge of an expert, a couple of connections
have already been predefined, mainly based on the suggestions made by Berg
in [Ber05], and the Handbook of Pattern Recognition and Computer Vision by
Wang and Chen [WC05].

1 ...
2 <SHAPE>
3 <SYMBOLIC name="round">
4 <METHOD>Haralick</METHOD>
5 </SYMBOLIC>
6 </SHAPE>
7 ...

Although the concrete algorithms are not yet implemented in the Object Attention
System, this approach supports a great flexibility for shape recognition. However,
as it is not possible to consider all imaginable expressions for different shapes,
a method which enables the learning of additional connections needs to be con-
sidered as well. For this, the basic idea is as follows. All shapes can principally
be assigned to shape primitives, like it is presented in section 4.1 beginning on
page 47. Thus, it is imaginable that the robot displays a selection of possible
shape primitives on its display, and then, the user selects the most similar visual
appearance, e.g., with help of the touch screen interface. As a consequence
a new connection has been learned which is even for unexperienced users an
easy solution. Such a shape-matching method is, e.g., described by T. Käster
in [Käs05] for an approach of intelligent search in an image database.
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To sum up, the proposed method to deal with shapes of objects offer an intuitive
and convenient solution for a natural Human-Robot Interaction. This is addition-
ally extended in the following by the description of the feature Size, which is used
by the Object Attention System as well.

Size

The feature type Size is used in several distinctive ways within the Object Atten-
tion System. Firstly, it is used to determine the distance between the hand and
the actual Region-Of-Interest. Secondly, it is used to determine the size of the
Region-Of-Interest and, thirdly, it is used to adjust the zoom factor of the object
camera (cf. section 4.2 on page 57) in order to get a more detailed view of an
object. Unfortunately, the size of an object is usually a highly subjective predi-
cate. While one person calls a ball normal-sized, another person can call the ball
small. So, how can an object size be modeled appropriately? Should it be set in
relation to the size of the hand? Or should it be based on size relations to other
objects of the same type in the vicinity? Both would make sense, but as these
ambiguities demonstrate, the individual determination of the size is influenced by
everyone’s experiences. Thus, in this thesis the size parameter is determined
based on the average size of the user’s hand. Nevertheless, as these values are
encoded in XML and parsed at runtime, an adaptive adjustment is imaginable.
In this way, the user can assign an individual size value for every single learned
object. Although this is probably the best solution, it is currently not supported,
as the speech processing units cannot deal with anaphoric resolution, i.e., if a
sentence clearly names an object and a second, subsequent, sentence refers to
this object by, e.g., ’it’, indirectly. Hence, a subsequent addition or correction of
the size is not possible yet.

The basic structure of the XML fragment below is the same as for all other features
as well. The characteristical difference is, thus, only specified in the lines 4 and 5
which contain a minimum and a maximum value for the symbolic size name.
1 ...
2 <SIZE>
3 <SYMBOLIC name="large">
4 <VALUE_MIN>20</VALUE_MIN>
5 <VALUE_MAX>40</VALUE_MAX>
6 </SYMBOLIC>
7 </SIZE>
8 ...

This value range consequently enables the Object Attention System to use the
most appropriate value for a specific computation. For instance, on the one hand,
the camera is always zoomed in correspondence to the maximum value in order
to ensure that the complete object can be captured. On the other hand, the center
of the Region-Of-Interest is based on the mean value of the given value range, as
both, the minimum and the maximum value needs to be considered.

A.3 Sound Collector
The basic idea of the Sound Collector developed for the Object Attention Sys-
tem has been presented in chapter 4.5.5 on page 78. Next, a description of the
compression algorithms applied within the Sound Collector is given.
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In this thesis two different destination formats for sound are considered. The first
one is object sound. In this case, the raw PCM-encoded audio file is compressed
with the Vorbis [Fou06] audio compression scheme, embedded in an Ogg [Fou06]
container file, as these formats are patent and license-free. The Vorbis-encoder
was selected as it produces better auditory results than the commonly used pro-
prietary MPEG-1, layer 3 (MP3) format related to two equal input files which are
compressed with the same bit rate. The Vorbis compression is well suited for mu-
sic and sound while it is able to compress the audio file compared to the uncom-
pressed signal to its tenth part usually without subjectively detectable significant
information loss in quality.

For applications that concern speech compression, the Sound Collector uses the
also patent and license-free Speex codec [JMV06], also embedded in an Ogg
container. This codec was selected because Speex is specialized on speech
compression tasks. It is based on Code Excited Linear Prediction (CELP) [JMV06]
and, therefore, a Speex-compressed audio file typically provides a 2–4 times
higher compression at an equal quality as Vorbis-encoded files. In order to im-
prove the quality of the speech fragment, an automatic gain control and a denois-
ing algorithm is applied in a preprocessing step. Here, the built-in parameters
’--agc’ and ’--denoise’ of the ’speexenc’ program [JMV06] are used.

A.4 Short-Term Memory
The implemented Short-Term Memory of the Object Attention System is respon-
sible for an accurate maintenance of all interaction-dependent data. Due to its
complexity, a typical processing cycle is described to illustrate the internal pro-
ceeding within the Short-Term Memory after a query for stored data has been
initiated, cf. page 61.

In the data retrieving case, the data is first checked for its validity concerning its
age with regard to the computed Best Before time. If the data is not valid, the
stored entry is deleted immediately, otherwise the data fusion process is initiated.
Here, the dialog data is evaluated first, as it can contain a Deactivate command if
the user aborts an order or the robot has lost the Person-Of-Interest. The reason
why this is not already checked during the addition of the data is that even in the
current implementation it takes less than 1 second to store, retrieve and evaluate
the speech data within the Object Attention System. Thus, a user would have to
give two orders, e.g., deactivation and focusing on an object, within one second
which is highly unlikely and considering the time for speech processing actually
not possible at all. If the Object Attention System receives a deactivation com-
mand, it deletes all stored entries in the Short-Term Memory in order to ensure
a small memory consumption and a short access time on subsequent interaction
data. But, if the received command is different from the deactivation case, the
stored input is evaluated in detail which enables the creation of an appropriate
object representation for internal use within the Object Attention System. The
creation of this structure is discussed in the following, beginning with the speech
representation.

Speech Representation

Regarding the speech data representation, at first a distinction is made to deter-
mine which dialog model is currently used, the one of I. Toptsis [THH+05] or the
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Figure A.1: Schematic illustration of the Short-Term Memory developed for the
proposed Object Attention System. Please see the text for a detailed description.

one of S. Li [LHW+05], see also section 3.1 on page 41. Then, all metadata, like
timestamp or origin, and object-dependent tags are extracted and depending on
their data type (e.g., float, string, . . . ) transferred into an appropriate structure, a
so-called OASObject. Such an OASObject stores all relevant textual object infor-
mation as long as it is stored within the Short-Term Memory and, thus, used for
internal processing tasks.

Besides the extraction of the data provided by the speech processing units, a con-
fidence value is added for every contained entry as it is described in section 3.1
on page 34. These confidence values (e.g., 85%) are used for later object recog-
nition tasks. As it cannot be assumed that all processed object attributes are
all-embracing with regard to all imaginable possible attributes which the user ad-
dresses in an interaction, only a selection of attributes useful for object recognition
tasks is explicitely stored in a corresponding data field. For all not explicitely pro-
cessed attributes a flexible vector representation has been chosen in order to be
able to store these attribute-value pairs in the long-term object representation.
In its current implementation the Object Attention System considers the following
attributes: Object Type, Color, Consistence (e.g., liquid, solid, . . . ), Haptic (e.g.,
soft, hard), Owner, Relation (e.g., to other objects or locations), Shape, Size,
Temperature (symbolic, e.g., hot, as well as numeric), Article (definite, indefinite)
while the latter one can be used for amounts (e.g., these, this). It is easy to un-
derstand that due to the varying amount of specified attributes, the duration of an
interaction can vary on a great time scale as well. To sum up, a complex sce-
nario containing a lot of objects while each object contains a number of different
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attributes demands for the storage of more utterances than a short conversation
about objects. Hence, not only for the attribute list, but also for the overall speech
memory another flexible vector representation has been implemented. This will
dynamically increase its storage size in dependence of the amount of utterances.
These task-dependent settings are therefore regulated by a global configuration
that specifies, for instance, the memory duration as well.

After the speech input analysis is complete, the Short-Term Memory analyzes the
gesture data.

Gesture Representation

The need for a fast response of the robot in a natural Human-Robot Interaction
makes it necessary that the Short-Term Memory stores and processes only tem-
porally appropriate gesture entries. This means that too old and, thus, invalid
entries, for those it is unlikely that they belong to an utterance are deleted, cf.
section 4.1. Hence, a very fast memory structure has to be used. For the Short-
Term Memory this has been realized as ring memory that stores only a limited
amount of gesture entries, illustrated in Figure A.1. This enables the memory to
deal with very few relevant gesture data sets and, hence, improves the perfor-
mance of the memory and the interaction, respectively.

After the most appropriate gesture data set has been retrieved from memory, its
content is analyzed for the fusion with the speech data. The gesture recognition
output contains different data tags depending on the method used. This can
either be the result of a skin color-based region tracking or the result of the 3D-
Body Model Tracking System, described in section 3.1 on page 36. Hence, based
on the Origin tags (cf. page 39) it is decided which parsing method is used.
Nevertheless, it can happen that the user’s gesture has not been recognized. In
order to avoid a subsequent failure of the object learning algorithms all attributes,
therefore, are initialized with values that cause the robot to lower its camera. In
this way, the object camera at least captures the area at a typical height for table
tops. Furthermore, the field of view of the object camera is set to a maximum
value which enables a larger capturing area.

The gesture is mainly used to determine the Region-Of-Interest which is assumed
to contain the referenced object. As an outcome of the gesture processing, a set
of data, e.g., including 3D-coordinates for the user’s hand and the referenced
location, becomes available that is added to a special body coordinate object.
Such an additional structure is useful as, for instance, the user’s head position
is usually not relevant for the location of an object. Furthermore, this ensures to
keep the actual OASObject small in memory consumption, as it does only need to
store the real object location which is computed later during the processing cycle.

Now that the most appropriate gesture data has been parsed and assigned to
the currently processed utterance, the information about the Person-Of-Interest is
analyzed next in the Short-Term Memory.

Person Representation

The information about the current interacting user is provided by the Person At-
tention and Tracking System, cf. section 3.1 on page 34. Due to its relatively high
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frequency of up to 5 Hertz, the data is stored in a ring buffer as well. That way,
only the most recent positions of the user are considered which results in a fast
access time and a low memory consumption.

During the parsing and temporal assignment of person data to the processed
utterance, a comparison between data of the face identification and the given
speech information is performed. In case the user did not state his name, the
corresponding data field is set up with the name from the face recognition. But,
this is only assigned if the face recognition was successful, otherwise the value
unknown is assigned to the data field owner, see page 80. Furthermore, the
distance from the user is extracted in order to be able to compute the correction
factor, described in equation 3.1 on page 38. Summarizing, the extracted person
data is assigned to two different structures. Firstly, the owner information to an
OASObject and, secondly, the person distance to a body coordinate object.

After all modalities have been processed and assigned to an OASObject or a
body coordinate object, the next section gives a detailed description of the object
representation itself.

Object Representation

According to the requirements, objects are represented in two different forms and,
thus, stored in two different memory structures. The first one is the already men-
tioned OASObject. The corresponding memory infrastructure for those objects is
implemented as a resizable vector as its content varies in dependency of already
learned objects that are used for an object recognition task.

The second memory type for objects is a specialization of an OASObject, a so-
called Visual OASObject. Its purpose is to manage visual object data, like, e.g.,
the center of mass in image coordinates. For this representation, a map container
has been chosen as it allows a direct access to each element of the container.
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This chapter contains a detailed representation of the results that have been
achieved during the evaluation of the Object Attention System. They have not
been directly included in chapter 6 as they would minimize the clarity of the state-
ments for the conducted experiments.

Evaluation table for the
Determination of the Region-Of-Interest
A detailed overview about all 576 calculated Region-Of-Interest values is pre-
sented in table B.1 on page 131. They are related to the summarized values that
have been presented in chapter 6.1 on page 105. In detail, the table shows the
486 calculated position values for the Regions-Of-Interest while the 90 calculated
values for the minimum, the mean, and the maximum error values for each object
is presented separately.

In the upper part of the table, the five objects used, in particular, a red bottle, a
green toy crocodile, a blue cup, a yellow lemon, and a pink ball (cf. Figure 6.1 on
page 102) are denoted on the abscissae. The ordinate is separated by the four
participants. The first and the third person represent the unexperienced users and
the second and fourth user are the developers of the 3D-Body Tracking System
and the Gesture Recognition. Each row denoting the participants is divided into
the four sequences that are described in the evaluation chapter on page 103. As
the table illustrates, not for all runs exist 3 entries for an estimated object location.
In these cases the gesture has not been successfully recognized and, thus, not
sent to the Object Attention System. As a consequence, these gestures could not
be evaluated.

For a direct comparison with the manually measured positions (cf. green values
at bottom of the table), the values that either match or if no exact match exists,
the most similar values are denoted in green color. The red-colored values are
related to the maximum error that has been calculated relative to the manually
measured object location.
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1.98

-10.7
-9.4

0.58
0.55

1.98
2.01

5.4
4.5

0.53
0.45

1.98
1.97

2.1
2.7

0.59
0.66
0.41

2.22
2.07
2.19

7.6
4.9
6.4

1 0.73
0.76
0.72

2.21
2.16
2.29

-14.5
-12.4
-19.1

0.57
0.54

2.03
1.97

-8.4
-10.2

0.59 2.01 3.9 0.63
0.58

2.22
2.20

5.2
5.2

0.63
0.59
0.56

2.41
2.16
2.33

8.6
8.7
7.7

4 2 0.68
0.65

2.24
2.26

-16.0
-16.9

0.54
0.63

2.03
2.16

-8.1
-11.7

0.60
0.63

2.02
2.16

4.2
7.0

0.62
0.52

2.30
2.19

6.5
4.6

0.59
0.65
0.56

2.42
2.39
2.43

9.3
9.2
10.6

3 0.71
0.64

2.21
2.24

-16.5
-18.2

0.61
0.53

2.10
2.01

-9.0
-9.8

0.68
0.65

2.12
2.06

1.6
2.4

0.56
0.52

2.25
2.17

6.9
6.9

0.55
0.61

2.37
2.21

8.8
9.8

4 0.64
0.65

2.13
2.15

-15.1
-15.3

0.54 1.97 -8.1 0.48
0.54

2.06
2.10

1.4
2.0

0.56
0.51

2.27
2.18

6.9
5.5

0.61
0.49

2.45
2.20

10.8
8.8

Reference measurement 0.75 2.17 -13.6 0.75 1.95 -7.5 0.75 2.01 0.0 0.75 1.93 7.1 0.75 2.15 19.7
Min. error [%] 1.3 0.5 0.0 2.7 0.0 0.0 0.0 0.0 0.8 0.0 2.1 2.8 0.0 0.5 38.1

Min. error [m/◦] 0.01 0.01 0.0 0.02 0.0 0.0 0.0 0.0 0.8 0.0 0.04 0.2 0.0 0.01 7.5
Mean error [%] 4.0 0.4 11.8 14.7 7.7 17.3 12.0 4.5 8.3 16.0 13.0 31.0 16.0 8.4 56.3

Mean error [m/◦] -0.03 0.08 1.6 -0.11 0.15 1.3 -0.09 0.09 3.8 -0.12 0.25 -2.2 -0.12 0.18 -11.1
Max. error [%] 26.7 12.4 40.4 36.0 16.4 78.7 36.0 13.4 8.3 40.0 24.4 74.6 54.7 18.6 87.8

Max. error [m/◦] -0.20 0.27 5.5 -0.27 0.32 5.9 -0.27 0.27 8.3 -0.30 +0.47 -5.3 -0.34 0.40 -17.3
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Evaluation table for the qualitative
measurement of object-related depth values
The details on the calculated depth-based object positions are presented in this
section, cf. section 6.3 on page 110. The achieved results are, therefore, given
in table B.2 on the next page. In the most left column, the different evaluation
objects are listed. Additionally, the column contains entries for the calculated
mean value and the resulting standard deviation in relation to each of the three
runs performed. The column titled ||~ol || and ||~or || show the calculated distance
values between the robot camera and the object for the left and the right object,
respectively. This value has manually been measured and amounts 1.00 m. The
last column ||~or−~ol || denotes the relative distances between the two objects. The
manually measured value for this relation amounts 30 cm.
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Object l Object r ||~ol || ||~or || ||~or − ~ol ||
White cup Black cup 1.00 1.26 0.35
Black cup White cup 1.02 1.16 0.27

Lemon Bottle 1.00 1.19 0.29
Bottle Lemon 1.03 1.18 0.27

Remote Clock 0.94 1.48 0.59
Clock Remote 0.94 1.27 0.41
Mould Candle 1.08 1.32 0.34

Candle Mould 1.05 1.17 0.26
Apple Cherry 1.11 1.29 0.29

Cherry Apple 1.31 1.33 0.26
Mean value 1.048 1.265 0.333

Standard deviation 0.1067 0.0983 0.1025

White cup Black cup 0.94 1.17 0.32
Black cup White cup 0.95 1.09 0.25

Lemon Bottle 0.99 1.17 0.29
Bottle Lemon 1.04 1.28 0.34

Remote Clock 0.95 1.16 0.30
Clock Remote 0.94 1.20 0.34
Mould Candle 1.02 1.17 0.28

Candle Mould 1.00 1.18 0.28
Apple Cherry 1.00 1.25 0.35

Cherry Apple 0.98 1.23 0.34
Mean value 0.981 1.190 0.309

Standard deviation 0.0351 0.0533 0.0338

White cup Black cup 0.83 0.99 0.25
Black cup White cup 0.82 0.94 0.22

Lemon Bottle 0.82 0.99 0.25
Bottle Lemon 0.82 1.01 0.27

Remote Clock 0.85 0.99 0.24
Clock Remote 0.84 0.93 0.20
Mould Candle 0.85 1.00 0.24

Candle Mould 0.84 1.02 0.26
Apple Cherry 0.85 1.03 0.26

Cherry Apple 0.87 1.03 0.24
Mean value 0.839 0.993 0.243

Standard deviation 0.0166 0.0343 0.0206

Table B.2: Evaluation results for the determination of object positions.
All values are specified in [m]. The table has been adapted from [Köl06].
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