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Chapter 1

General Introduction

As can be well observed in the current financial crisis choosing the wrong

model specifications for making decisions or assessing risk can have very se-

vere consequences if the underlying theory is not robust to model uncertainty.

This seems to have been one of the major shortcomings which lead to the

present economic situation. Therefore a major aim in economics is to reduce

model risk by developing robust approaches to decision making.

A link between robust control theory and decision theory was shown in

[Hansen & Sargent, 01]. In robust control theory model uncertainty arises

by the perturbation of a unique approximating model. This corresponds to

uncertainty about the true distribution in a decision theoretical ansatz which

will be the focus of the following.

The well known works of [von Neumann & Morgenstern, 44], [Savage, 54]

and [Anscombe & Aumann, 63] are among the first theoretical models on

decision making. One common property of all these models however is that

they incorporate only one single known distribution of the outcomes, i.e.

what is often called a purely risky setting, which in reality is a situation

seldom found. The first comment on the fact that there is more than pure

risk can be found in [Knight, 21] which is why uncertainty about the true

distribution is often referred to as Knightian uncertainty but sometimes also



1. GENERAL INTRODUCTION

as ambiguity.

1.1 Knightian Uncertainty

In his seminal paper [Knight, 21] suggested that there exist random outcomes

which cannot be represented by numerical probabilities, i.e. he establishes a

clear distinction between measurable uncertainty he calls risk and unmeasur-

able uncertainty. This unmeasurable uncertainty can among other reasons

arise when the decision-maker is ignorant of statistical frequencies relevant

to his decision or when a priori estimations are impossible to obtain or the

decision is unique in the sense that there is no information to build an ap-

proximation for numerical probabilities. To make this differentiation a bit

more explicit think of following examples. If one has to bet heads or tails

in a coin toss one would assume that both are equally likely based on one’s

experience, i.e. one can somehow measure the probability and finds oneself

in a pure risky setting. However if one is asked to bet on e.g. the outcome

of a tennis match without possessing any information about the players, it

is not clear how to assign a unique probability to the outcomes and one is in

an uncertain setting.

Based on this theoretical approach is the empirical work of [Ellsberg, 61].

Following the aim of giving evidence for Knight’s theory, he constructed the

following urn-experiment with two urns containing 100 black and red balls. In

the first urn the ratio of black to red is unknown, it can be anything between 0

and 100. In the second urn there are 50 red and 50 black balls. If one denotes

the bet of getting $100 if a red ball is pulled from urn i and $0 else by REDi,

and BLACKi for the respective bet on a black ball Ellsberg claims that a

majority of people show following preferences: They are indifferent between

REDi and BLACKi for i = 1, 2 but prefer RED2 to RED1 and BLACK2 to

BLACK1.

He shows that there is absolutely no way to assign probabilities to the

2



1.2. TIME-CONSISTENCY

event of red being pulled from the first urn, to explain these preferences im-

plying that the classical decision theory dealing with one unique distribution,

as e.g. introduced in [Savage, 54] cannot contain the whole truth and that

there do exist the unmeasurable uncertainties proposed by Knight.

An attempt to underpin these findings with a theoretical model is given

in [Gilboa & Schmeidler, 89]. They set up axioms for preferences which lead

to Maxmin Expected Utility or the Multiple Priors Model. They weakened

the Independence Axiom of Anscombe and Aumann and introduced an ax-

iom formalizing Uncertainty Aversion to the model. By this slight change

they accomplished a representation of their preferences which instead of one

unique distribution contained a whole set of possible distributions. It leads

the decision maker to maximize infP∈C EP[u ◦ f ] among all possible acts f ,

where C is a non-empty set of distributions. Heuristically one can interpret

this as having the decision maker think all distributions in C possible and in

order to be on the safe side he always looks at the one which gives him the

lowest utility. If the utility under the worst possible distribution is enough

to make him choose act f surely it is high enough under all other distribu-

tions as well. Seen this way these preferences correspond to an extremely

conservative decision maker.

1.2 Time-Consistency

Since up to now the models were purely atemporal [Epstein & Schneider, 03]

generalized the above approach to a dynamic setting. They appropriately

modified the axioms of [Gilboa & Schmeidler, 89] to be not only state but

also time dependent and additionally asked for Dynamic Consistency in the

preferences. With this assumption they meant if two acts are identical up

to some time t but one is preferred over the other in t + 1 then this should

already be the case at time t implying that a decision maker will never regret

his earlier choices. This restriction on the preferences yields a very special

3
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property for the set of distributions in the Utility functional. They showed

that preferences are dynamically consistent if and only if the corresponding

set of distributions arising in their Recursive Multiple Priors Representation

is rectangular. Rectangularity is a restriction on the whole set of measures.

Equivalent definitions were formulated by various authors. A survey of the

different concepts and a proof of their equivalence can be found in [Riedel, 09]

and [Delbaen, 03]. Among these concepts is the above mentioned rectangu-

larity introduced in [Epstein & Schneider, 03] which is a property concerning

the one-step-ahead measures. They asked that at every point in time all pos-

sible one-step-ahead measures can be added. Another concept is stability

introduced in [Föllmer & Schied, 04]. Here for two measures P and Q in the

set of measures and every stopping time τ the measure that takes P up to

τ and Q afterwards is also contained in the set. The last concept is time-

consistency which was introduced in [Delbaen, 03]. This property demands

that at every stopping time density processes can be consistently pasted to-

gether. It is also equivalent to a Law of Iterated Expectations meaning that

at time s my expected future payoff is the same as the expectation in s of

my future expected payoff in t ≥ s.

These may seem as rather technical assumptions but they also have some

intuitive consequences for the decision maker. He can for instance change his

mind in every time period about which measure he thinks is the true one or

the worst one and time-consistency guarantees that this measure is contained

in the set of his possible measures. This implies that as time passes he will

never regret his previous decisions since at every point in time he can decide

optimally. Another implication is that he can use backward induction for

solving problems which makes large classes of problem a lot more tractable.

One further generalization of these utility models is the variational pref-

erence model introduced in a static set up in [Maccheroni et al., 06a] and

extended to a dynamic framework in [Maccheroni et al., 06b]. Since up to

now all distributions in the set were conceived as equally likely they intro-

4
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duced penalty functions allowing to differentiate the different distributions

according to their likelihood.

1.3 Risk Measures

Up to now we have focused on utility models that arise from preferences but

analogous models can also be found by axiomatizing risk measures.

Static coherent risk measures which correspond to the multiple prior

model under the assumption of risk neutrality, a discount factor of one

and no intermediate payoffs were first axiomatized in [Artzner et al., 99]

and their dynamic generalizations can inter alia be found in [Riedel, 04] or

[Artzner et al., 07]. The robust representation of a coherent risk measure is

identical to the one for multiple prior preferences up to a minus sign, having

the decision maker look at the largest expected loss as a basis for his decision.

Since for risk measures it is important to incorporate liquidity risk and

to give less conservative assessments which coherent risk measures cannot

provide convex risk measures were introduced and can e.g. be found in

[Föllmer & Schied, 04] for a static setting. For a dynamic setting we refer

to [Föllmer & Penner, 06] or [Föllmer et al., 07] for risky projects seen as

payoffs in the last period while risky projects seen as stochastic processes are

studied in [Cheridito et al., 06]. Here again the equivalence to variational

preferences is given up to a minus sign.

Time-consistency concepts are the same in both approaches although in

terms of risk measures one usually works with the one corresponding to the

law of iterated expectations.

Considering this it makes no difference if we make the following observa-

tions in terms of utility functionals or risk measures. Each chapter may be

reformulated in terms of the other approach resrectively since for simplicity

we assume risk neutral decision makers without discounting in all chapters.

However in Chapter 2 and 3 we will look at utility functionals while Chapter

5



1. GENERAL INTRODUCTION

4 will be mainly expressed in terms of risk measures where we will give a

further short overview of the theory of risk measures and their robust repre-

sentation.

1.4 Particular Considerations

The main chapters of this thesis, each of which is self-contained, are based

on three articles. The first deals with the construction or an alternative char-

acterization of time-consistent sets of measures in the special framework of

finite trees, the second shows as a main result a duality theorem this however

in a continuous time setting while the topic of the third one, coauthored by

Daniel Engelage is concerned with the merging of convex risk measures as

information is gained in the course of time.

In Chapter 2 we solve the question what time-consistent sets of measures

look like in finite trees. In [Riedel, 09] time-consistent sets of measures in a

discrete setting are constructed via their density processes which gave rise to

the question if all time-consistent sets can be constructed in this way. When

restricting the framework to finite trees with a constant and finite splitting

function we show that every time-consistent set of measures can be described

via predictable processes. For each measure P in a time-consistent set P we

get a predictable process αP whose dimension is one less than the splitting

value of the tree. The set of predictable processes A = {αP | P ∈ P} that

arises via this identification has specific features. These features in return

guarantee that a time-consistent set of measures can be created from a set

of predictable processes with these properties. After this characterization we

show some examples or applications for the use of this theorem. Additionally

we show that standard generalizations of this theorem fail to go through,

showing that our characterization is a universal one.

Chapter 3 contains a Duality theorem which allows to switch the or-

der of minimization and maximization in order to solve optimal stopping

6
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problems under ambiguity. This theorem is again set in the recursive mul-

tiple priors model of [Epstein & Schneider, 03] and works for fairly general

assumptions on our payoff process X and rather standard assumptions on

our set of measures P . We make strong use of an explicit but general con-

struction for time-consistent sets of measures given in [Delbaen, 03]. We also

apply this theorem to specific classes of payoff processes. It allows to deter-

mine an optimal stopping time for multiple prior super- and submartingales

as payoff processes and in the case of κ-ambiguity adapted to our framework

and a Brownian motion with drift as payoff process we are able to identify the

worst case distribution and hence our ambiguous stopping problems shrinks

to a classical problem.

In Chapter 4, coauthored by Daniel Engelage, we tackle the question

of how in an ambiguous environment the assessment of risk and with this

optimal behavior changes as time passes and information increases. The ve-

hicle for this analysis will be convex risk measures or dynamic variational

preferences equivalently. Our first approach to incorporate a kind of learning

mechanism into convex risk measures is a constructive one via the mini-

mal penalty function in the robust representation. However in our explicit

approach to construct the penalty via the likelihoods of the distributions

time-consistency seems to be a major problem. Therefore in our second ap-

proach we take a dynamically consistent set of risk measures as given and

show that in the long run all uncertainty is revealed, leaving the decision

maker behave as a utility maximizer under the true distribution. Formulat-

ing this result closer to the fundamental Blackwell-Dubins theorem of which

this is a generalization: two decision makers who agree on sure and impos-

sible events but with different opinions of the risk they face, modeled here

via different penalty functions, tend towards agreeing on the true under-

lying distribution in the end. As mentioned we extend the main result in

[Blackwell & Dubins, 62] which holds for probability measures to convex risk

measures. An important step in this generalization is also the extension to

7
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not necessarily time-consistent convex risk measures. With this our existence

result for a limiting distribution becomes more general than the one found

in [Föllmer & Penner, 06]. To make things clearer we study entropic risk

measures as an application.

To this point we have given a brief outline of the general context and

developments which lead to this work. Since the questions and topics treated

in the following chapters differ a more detailed scientific placement of this

work will be discussed in each chapter separately.

8



Chapter 2

Time-Consistent Sets of

Measures on Finite Trees

2.1 Introduction

In 1944 von Neumann and Morgenstern formulated their famous axioms for

preferences over random payoffs (see [von Neumann & Morgenstern, 44]) and

showed that these preferences are equivalent to an Expected Utility Repre-

sentation of preferences. After some time their model was criticized because

the distributions of their payoffs were exogenously given and purely objec-

tive. Since this is a very restrictive assumption their model was extended

in [Savage, 54] and in [Anscombe & Aumann, 63]. In contrast to the von

Neumann and Morgenstern model Savage regarded the distributions of the

payoffs to be purely subjective and endogenous. Anscombe and Aumann

then combined both models taking some objective distributions as given and

having others arising purely out of the model.

At some point criticism also arose against these models. One of the most

mentioned objections can be found in [Ellsberg, 61]. He conducted experi-

ments and empirically showed that Expected Utility models do not always

mirror reality. One way of explaining these findings is that people behave only
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boundedly rational. Another way is to distinguish between uncertainty and

risk. While in a risky setting the decision maker is sure of the distributions

of the outcomes in an uncertain setting he is unsure of the right distribution

and thinks more than one possible. Following this idea Gilboa and Schmei-

dler developed their Multiple Priors Model in [Gilboa & Schmeidler, 89] us-

ing Anscombe’s and Aumann’s model as a basis. They weakened the In-

dependence Axiom and added an additional axiom formalizing Uncertainty

Aversion. This lead the decision maker to maximize inf
P∈C

EP[u ◦ f ] among all

possible acts f , where C is a non-empty, closed and convex set of probability

measures.

Since this is a purely atemporal model in [Epstein & Schneider, 03] the

Multiple Priors Model was expanded to incorporate the factor time. They

modified preferences to be not only state but also time-dependent, adjusted

the G-S-axioms appropriately and asked for Dynamic Consistency as an ad-

ditional axiom. This restriction on preferences yields a very specific property

of the set of measures in their Utility Representation. They found out that

preferences are dynamically consistent if and only if the set of measures in

their Recursive Multiple Priors Representation is rectangular. Rectangular-

ity is a restriction on the whole set of measures. It demands that it is possible

for the one-step-ahead measures to be mixed arbitrarily. Since for some pur-

poses (e.g. solving concrete optimal stopping problems) this is not a very

easy definition but never the less an important one it is very natural to try

and find equivalent definitions.

This was done by various authors. In [Riedel, 09] one can find a survey

of the different concepts and a proof of their equivalence. Among these

concepts is rectangularity which was introduced in [Epstein & Schneider, 03]

and is a property concerning the one-step-ahead measures. They asked that

at every point in time all possible one step ahead measures can be added.

Another concept is stability. It was introduced in [Föllmer & Schied, 04].

Here for two measures P and Q in the set of measures and every stopping

10
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time τ the measure that takes P up to τ and Q afterwards also lies in the set.

The last concept is time-consistency which was introduced in [Delbaen, 03].

This property demands that at every stopping time density processes can

be consistently pasted together. A more formal definition of this specific

property will be given in the next section.

In the above cited paper Riedel among other things constructed time-

consistent sets of measures via their density processes. Consequently the

question arose if in this special setting all time-consistent sets of measures

can be constructed in this way. That is why we took a closer look at time-

consistent sets of measures and found out that not quite all sets are of this

kind. However a slight modification of his construction does the trick.

The main content of this paper is this alternative characterization of time-

consistent sets. They are described via a set of predictable processes with

specific properties. This will be our first and main theorem. In addition to

showing how the set of measures can be related to this set of processes we

will also show that sets of processes with the assumed properties define sets

of time-consistent measures. This will be the content of our second theorem.

So altogether we will provide an equivalent formulation for time-consistent

sets of measures.

The build-up of this paper will be the following. After pinning down the

model framework and specifying the attributes of our sets more precisely in

Section 2.2 we will deduct the first theorem in the succeeding Section 2.3.

Then in Section 2.4 we will commit ourselves to proving the second theorem.

In the following fifth section we will introduce some example setting where our

results are applicable an might simplify calculations. After that we discuss

possible extensions in Section 2.6 and then conclude in the last and seventh

section.

11
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2.2 Model

To specify the setting we start with a discrete set Ω = {ω1, ..., ωk}. On this

state space we have an information structure {Ft}t=0,...,T with F0 = Ω and

FT = {{ω1}, ..., {ωk}}. This is a sequence of partitions of Ω, which become

finer as time progresses, i.e. every set of Ft+1 is a subset of some set of Ft

for all t.

Heuristically this concept describes the information of the prevailing state

available at a certain time t. This means for a fixed time t the decision maker

will not necessarily be able to observe the exact state which occurs but merely

which subset of Ft is realized. If the observed subset consists of only a single

state then of course the decision maker has full knowledge of the realization.

If you want to express this in terms of σ-fields and filtrations you just

take the power set Pot(Ω) for the filtration F and define the filtration {Ft}t
by setting Ft := σ(Ft) i.e. Ft is the set of atoms generating Ft.

For our considerations we assume our information structure to have a

constant and finite splitting function with splitting value ν. This implies

that if you draw the filtration as an information tree it will have the same

finite number of branches at every vertex. Formally the splitting function f

of an information structure {Ft}t is defined in the following way

f : Ω× [0,∞)→ N , f(ω, t) = ]{A ∈ Ft+1 | A ⊆ Ft(ω)}

where Ft(ω) is the set B ∈ Ft with ω ∈ B. The finiteness of this index

will allow us to apply the martingale representation given in Theorem 5.15

in [Dothan, 90] and the constancy will result in unique processes in the rep-

resentation. We will make these two things more precise in the following

section.

For now we will also restrict this model to a finite time horizon [0, T ].

The finite splitting index and the finite time horizon result in a finite Ω.

12
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To complete our probability space we still need to fix a probability mea-

sure P0 as a reference measure which pins down the sets of measure zero.

Since we are on a tree like structure any measure which assigns non-zero

probability to each branch will do, for simplicity let us choose the uniform

distribution.

The set of measures we want to characterize will be denoted by P . In

the following we will make some assumptions on this set and justify their

plausibility.

Our first assumption will be

Assumption 2.2.1. We assume P0 ∈ P and for all other measures P ∈ P
P(A) > 0 for all A ∈ FT

In this assumption P0’s function as a reference measure becomes clear.

One can see that it has no influence on the stochastic structure of the other

measures. It simply implies that all measures contained in P have the same

null sets which means that we know what sure and impossible events are.

In [Epstein & Marinacci, 06] an economic interpretation of this assump-

tion was given. They related it to an axiom on preferences first postulated

in [Kreps, 79]. He claimed that if a decision maker is ambivalent between

an act x and x ∪ x′ then he should also be ambivalent between x ∪ x′′ and

x∪x′∪x′′. Meaning if the possibility of choosing x′ in addition to x brings no

extra utility compared to just being able to choose x, then also no additional

utility should arise from being able to choose x′ supplementary to x ∪ x′′.
In our second assumption we claim

Assumption 2.2.2. P is time-consistent. This means for a stopping time

τ and densities pt :=
(
dP
dP0

)
t

and qt :=
(
dQ
dP0

)
t

belonging to P,Q ∈ P that the

measure P̃ defined by the density(
dP̃
dP0

)
t

=

{
pt if t ≤ τ
pτ qt
qτ

else

belongs to P as well.

13



2. TIME-CONSISTENT SETS ON FINITE TREES

As mentioned in the introduction this assumption also originates from

a feature claimed for preferences introduced in [Epstein & Schneider, 03].

They expanded the Multiple Priors Model (cp [Gilboa & Schmeidler, 89]) to

a dynamic setting and asked the decision maker to be dynamically consistent

in his decisions. With this they meant that if two acts are identical up to

some time t but in t+ 1 the one is preferred over the other, then this should

already be the case at time t. This implies that a decision maker will never

regret his earlier decisions. In their paper Epstein and Schneider then showed

that preferences fulfill this requirement if and only if the utility functional

one obtains contains a rectangular set of measures. Rectangularity is equiv-

alent to time-consistency. Time-consistency was introduced in [Delbaen, 03]

where he also showed the equivalence to rectangularity. These two features

stand for being able to judge each period in time with a different measure.

More technically they allow to consistently paste together different densities

at different times and still stay in the set. They also make it possible to

use backward induction in discrete settings and allow for a Law of Iterated

Expectations.

The set used to characterize P will be denoted by A. We will show that

it consists of predictable processes, is compact and that the process constant

to zero is contained in it. Furthermore we will see that it fulfills a property

we call stable under pasting and define in the following way.

Definition 2.2.3. A set of processes A is called stable under pasting if for

every stopping time τ and all processes (αt)t, (βt)t ∈ A the process defined by

γt :=

{
αt if t ≤ τ

βt else

belongs to A as well.

Later on we will show if we assume these properties for a set A then we

can derive a set of measures P that features our original characteristics.

14



2.3. FROM P TO A

2.3 From P to A

The goal of this section is to prove the main theorem of this paper, which

tells us, that every time-consistent set of measures in our setting can also be

described via a set of predictable processes fulfilling certain properties.

Expressed more formally this results in

Theorem 2.3.1. For every set of measures P satisfying Assumptions 2.2.1,

2.6.1 and 2.2.2 there is a set of predictable processes A such that

P =

{
P
∣∣∣ ( dP

dP0

)
t

= Ẽt(α) , α ∈ At, t ∈ {0, ..., T}
}

where

Ẽt(α) = exp

(
t∑

s=1

ν−1∑
h=1

αhs∆mhs −
t∑

s=1

ln E

[
exp

(
ν−1∑
h=1

αhs∆mhs

)])

The A resulting from each P inhabits following features:

• 0 ∈ A

• A is compact.

• A is stable under pasting.

In order to prove this theorem we will derive a set of predictable processes

A for every time-consistent set P and then show that it inhabits the requested

features. One important step along this way will be a martingale representa-

tion theorem which we will explain more thoroughly in the next subsection.

After that we will show the construction of the processes starting with an

arbitrary time-consistent set of measures satisfying the above assumptions.

Following this we will show that the constructed processes really are what

we asked for.
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2. TIME-CONSISTENT SETS ON FINITE TREES

2.3.1 Martingale Representation

This important tool which we will use in our proof tells us that in our setting

we can find a set of martingales with which we can represent every other

martingale in our setting with the help of predictable processes. A set of

martingales which has this representation property is called a martingale

basis. More formally we define

Definition 2.3.1. A finite set of martingales {m1t}, ..., {mkt} is called a basis

iff for every martingale {xt} there are predictable processes {α1t}, ..., {αkt}
such that for every 1 ≤ t ≤ T

xt = x0 +
k∑

h=1

T∑
s=1

αhs∆mhs where ∆mhs = mhs −mh,s−1

If the martingales {m1t}, ..., {mkt} are pairwise orthogonal, i.e. for every

1 ≤ j ≤ k , 1 ≤ h ≤ m , j 6= h and every 0 ≤ t ≤ T , 〈mj,mh〉t = 0, then

the basis {m1t}, ..., {mkt} is called orthogonal.

For our purposes it would be good to know in which cases such a basis

exists especially with unique α’s. An answer for this is provided by the

following proposition. A slightly different version of this can be found in

[Dothan, 90] but since we are looking for a unique representation we need

to restrict the setting to a constant splitting function of our information

structure. The proof is works along the same line as the one in [Dothan, 90].

Proposition 2.3.2. (Martingale Representation)

Given a discrete space Ω = {ω1, ..., ωk} which is endowed with an information

structure {Ft}t=0,...,T with F0 = Ω and FT = {{ω1}, ..., {ωk}} and a constant

splitting function with value ν. Then there exists an orthogonal martingale

basis m1t, ...,mν−1,t for which the predictable processes {αx1t}, ..., {αxν−1,t} in

the representation of every {xt} are unique.

Remark 2.3.3. Since under the assumption of “no arbitrage” discounted

assets are martingales for a martingale measure P∗ this means for a binomial
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tree setting that there is one asset Mt with which every other asset Xt can

be replicated and therefore hedged. More general in an n-nomial tree we can

replicate every asset with a set of n− 1 many assets.

2.3.2 Exponential form of the densities

The next step we will take is to show that every measure P ∈ P can be

uniquely related to predictable processes
(
αP

1s

)
s
, ...,

(
αP
ν−1,s

)
s
.

Remark that this is exactly one process less than our splitting value ν.

The equivalence of the measures in addition to P0 ∈ P (Ass.2.2.1) gives us

the possibility to identify each P ∈ P uniquely with its density with respect

to P0.

If you define
(
dP
dP0

)
t

:= E
[(

dP
dP0

) ∣∣∣
Ft

]
for every t ≤ T and every P ∈ P

with the expectation taken under P0 you obtain density processes which are

P0-martingales.

Using Jensen’s inequality and Doob’s decomposition theorem each of the

above densities can be written in the following form where (Mt)t is also a

P0-martingale and (At)t is a non-decreasing and predictable process with

A0 = 0 (
dP
dP0

)
t

= exp(Mt − At).

Now applying the martingale representation theorem to Mt we obtain an

orthogonal martingale basis (m1s)s , ..., (mν−1,s)s. This implies that there are

predictable processes
(
αP

1s

)
s
, ...,

(
αP
ν−1,s

)
s

such that our densities can now be

written in the following manner where ∆mhs = mhs −mh,s−1

(
dP
dP0

)
t

= exp

(
t∑

s=1

ν−1∑
h=1

αP
hs∆mhs − At

)
.

Now we still have to determine the At’s. Using the martingale property of the

densities and the measurability of the At’s we receive the following recursive

17



2. TIME-CONSISTENT SETS ON FINITE TREES

relation

At+1 − At = ln E

[
exp

(
ν−1∑
h=1

αP
h,t+1∆mh,t+1

) ∣∣∣∣ Ft
]
.

This results in

At =
t∑

s=1

(As − As−1) =
t∑

s=1

ln E

[
exp

(
ν−1∑
h=1

αP
hs∆mhs

) ∣∣∣∣ Fs−1

]
.

Additionally thanks to the assumptions on our information structure, we

can show that our filtration is generated by our martingale basis and this in

addition to the predictability of the α’s allows us to drop the conditioning

on Fs−1.

So for our density
(
dP
dP0

)
t

we now have following representation(
dP
dP0

)
t

= exp

(
t∑

s=1

ν−1∑
h=1

αP
hs∆mhs −

t∑
s=1

ln E

[
exp

(
ν−1∑
h=1

αP
hs∆mhs

)])
.

(2.1)

This construction now allows us to not only identify a measure P with its

density with respect to P0 and the associated density process but also with

the predictable processes in the above representation
(
αP

1s

)
s
, ...,

(
αP
ν−1,s

)
s
.

Consequently it gives us a mapping from our density processes to sets of

predictable processes.

For notational convenience and in resemblance to a stochastic exponential

we will denote the right hand side of (2.1) as Ẽt(αP) seeing αP = (αP
1 , ..., α

P
ν−1)

as a ν − 1-dimensional process.

So now if we denote the set of processes generated via this construction

and the densities up to time t by

At :=
{(
αP

1,s, ..., α
P
ν−1,s

)
s∈{0,...,t} | P ∈ P

}
and

Dt :=

{((
dP
dP0

)
1

, ...,

(
dP
dP0

)
t

)
| P ∈ P

}
we have constructed a mapping Ẽ−1

t : Dt → At.
From this construction and from the assumption that P0 ∈ P we directly

conclude that the α’s are predictable and that 0 ∈ A := AT .
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2.3.3 Compact-valuedness of the α’s

One further thing we want to show is that the compactness of the densities

resulting from P implies compactness ofA. The compactness onAt is defined

via the norm ||α||t,L1 := max
s∈{0,...,t}

||αs||L1 .

This is a straight forward consequence of our assumptions and the pre-

ceding construction. In the construction of the α’s every step was unique

thanks to our assumptions. A density with respect to a designated measure

uniquely characterizes a measure, the same is true for the construction of

our density processes. Doob’s decomposition is also unique and since we as-

sumed a finite and constant splitting function the martingale representation

also delivers unique predictable processes once the martingale basis is fixed.

All in all the set of α’s that belongs to one P is unique. Additionally a set of

α’s provides exactly one density and through that uniquely one measure. For

this reason our Ẽt gives us a bijective mapping from the set of predictable

processes At to our set of densities Dt. This mapping is also continuous

since the elements of our martingale basis are bounded thanks to the finite

splitting index.

Since this also implies a continuous mapping between the densities and

the predictable processes, the compactness on one side carries over to the

other.

2.3.4 Stability under Pasting

The final property we claimed for our processes is stability under pasting.

This property however follows directly from the assumption that P is time-

consistent. To make this more clear for (αP
t )t, (α

Q
t )t ∈ A and a stopping time

τ ≤ T define

βt :=

{
αP
t if t ≤ τ

αQ
t else

19



2. TIME-CONSISTENT SETS ON FINITE TREES

Our aim now is to show that this process lies in A, i.e. that there exists a

P∗ ∈ P such that
(
dP∗
dP0

)
t

= Ẽt(β). If we plug β into Equation (2.1) and define

P∗ by (
dP∗

dP0

)
t

:=

{
Ẽt(αP) if t ≤ τ
Ẽt(αQ)Ẽτ (αP)

Ẽτ (αQ)
else.

we notice that β ∈ A is equivalent to P∗ ∈ P . The fact that P∗ ∈ P however

follows directly from our assumption of time-consistency.

If we now combine the above propositions we have shown Theorem 2.3.1.

2.4 Necessity

Now let us look at the conversion of the theorem above. The goal of this

section will be to show that every A with the above properties defines a

time-consistent set of measures. So we see that the properties of A are not

only sufficient but also necessary. For this purpose we will derive a set of

measures P from a given set A of predictable processes which are assumed

to be compact-valued and stable under pasting. Additionally we claim that

A contains the process constant to zero. Our goal will be to verify that the

derived P satisfies the assumptions made in the model specifications.

Formally this will lead to following theorem

Theorem 2.4.1. For every set of predictable processes A that satisfies the

properties shown in Theorem 2.3.1 there exists a set of measures P, such that

A =

{
α
∣∣ ( dP

dP0

)
t

= Ẽt(α) , P ∈ P
}
.

Every P constructed in this way has the following properties:

• P0 ∈ P and P ∼loc P0 for all P ∈ P

• P is compact

• P is time-consistent.
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2.4.1 Construction of P

If we use the same identification as in part 2.3.2 between the processes

(αt)t∈{0,...,T} and the densities we are able to construct a density process((
dPα
dP0

)
t

)
t

for every α ∈ A.

From the construction it follows immediately that the obtained processes

are P0-martingales with expectation 1 and since the they are clearly strictly

larger than zero they are indeed density processes.

Let us define our new set of measures by

P :=

{
P
∣∣∣∣ dPdP0

∣∣∣
Ft

= Ẽt(α) for α ∈ A
}
.

Since the process α ≡ 0 is assumed to be an element of A we get that

P0 ∈ P . From the fact that all P ∈ P are constructed via density processes

with respect to P0 that are strict positive we can also directly conclude that

our measures are all equivalent to our reference measure.

2.4.2 Time-Consistency

As when showing that we can derive A from P time-consistency in our set P
is equivalent to stability under pasting in our set A and thus this property

follows instantly from our assumptions.

2.4.3 Compactness of densities

Here again the fact that the Ẽ is a bijective and continuous mapping is the

reason why the compactness of the α’s implies compactness of the densities.

And again summarizing the above propositions leads us to the proof of

Theorem 2.3.1.
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2.5 Examples

In this section we introduce some examples for which this result is applicable

and might simplify calculations.

2.5.1 Binomial Tree

The most basic example one can think of in this setting is a binomial tree.

It has a constant and finite splitting index of two. Here things are still very

basic to calculate. One can for instance show that a convex set of priors

results in a convex set of processes and vice versa which is in general not true

for a higher splitting index. Put more formally we have

Proposition 2.5.1. On a binomial tree every convex set of measures fulfill-

ing Assumptions 2.2.1 and 2.2.2, i.e. P = {(p1, ..., pT ) |pt ∈ [pt, pt] for all

t = {0, ..., T}}, is equivalent to the respective processes lying in a predictable

interval [at, bt], where pt = P [Xt = up |Ft−1].

Proof. For the proof we will work ourselves through the tree successively for

every time period t.

Starting with t = 1 the density for a fixed P takes following form

dP
dP0

∣∣∣
F1

(up) = 2p =
2 exp(α∆m1(up))

exp(α∆m1(up)) + exp(α∆m1(down))

this can be transformed to

α = ln

(
1− p
p

)
(m1(down)−m1(up))−1

which is a function that is monotone and continuous in p. So if p ∈ [p, p]

then this results in boundaries a, b which are F0-measurable s.t. α ∈ [a, b].

One can show the conversion by the same argumentation since the above

formula can be converted to a function p(α) which is also monotone and

continuous in α. Therefore a convex set of α’s gives us a convex set of

probabilities [pt, pt] where pt = inf
P∈P

P[Xt = up |Ft−1].
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This can easily be extended to further time periods by just looking at the

one step ahead measures or densities in an analogous way.

[Chudjakow & Vorbrink, 09] present applications of this to american ex-

otic options on a binomial tree.

2.5.2 Exponential Families

A further example for expressing time-consistent sets of measures via pre-

dictable processes was given in [Riedel, 09]. He introduced what he calls

dynamic exponential families which is the discrete version of κ-ambiguity in

[Chen & Epstein, 02] but with predictable bounds.

He starts with a probability state space (S,S, ν0) with S ⊂ Rd. With this

he constructs a probability space with (Ω,B, (Ft)t=1,...,T , P0), where

• Ω = ST

• B =
⊗T

t=1 S σ-field generated by all projections εt : Ω→ S

• (Ft) generated by the sequence (εt)

• P0 =
⊗T

t=1 ν0 probability s.t. εt iid with distribution ν0

Then by assuming that
∫
S
eλ·xν0(dx) <∞ the log-Laplace function L(λ) =

log
∫
S
eλ·xν0(dx) is well defined and with the help of predictable processes

(αt)t he then defines densities on (Ω,B, (Ft)t,P0) via

Dαt := exp

(
t∑

s=1

αsεs −
t∑

s=1

L(αs)

)
.

Then for fixed predictable processes a < b one gets a set of densities which

defines a time-consistent set of measures by setting

Pa,b =

{
P
∣∣ ( dP

dP0

)
t

= Dαt , α ∈ [a, b]

}
.

23
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2.5.3 Trinomial Tree

The purpose of the following example is to show that switching between these

two representations does not work too well in general. Starting with a two

period trinomial tree which means we have a state space Ω = {s1, ..., s9} and

the information structure F0 = Ω , F1 = {{s1, s2, s3}, {s4, s5, s6}, {s7, s8, s9}}
and F2 = {{s1}, ..., {s9}} we define the rather simple time-consistent set

P =

{(
1

3
+ ε,

1

3
+ δ,

1

3
− ε− δ

) ∣∣∣ ε, δ ∈ (−1

3
,
1

3

)
and ε+ δ 6= 1

3

}
.

We then construct a martingale basis in this tree with respect to the uniform

distribution and then show what this set looks like expressed via predictable

processes and our basis.

A martingale basis {m1
t}, {m2

t} in this case is given by

m1 m2

and

1

−1

3
2

−4

2
1

−1

−3

−1

0

1

0

−1

2

2
−1

−2

−3
2

−1

2

1

−2

1

0

Figure 2.1: Martingale Basis

If we now calculate the processes that belong to each of the measures

above we obtain

for t = 1 and i = 1, ..., 9

α1
1(si) =

1

2
ln

1 + 3ε

1− 3δ − 3ε
and α2

1(si) =
1

3
ln

(1 + 3ε)(1− 3ε− 3δ)

1 + 3δ
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and for t = 2

α1
2(si) =



1
4

ln 1−3ε−3δ
1+3δ

for i = 1, 2, 3

1
6

ln

√
(1−3ε−3δ)(1+3ε)

1+3δ
for i = 4, 5, 6

1
4

ln 1+3ε
1−3ε−3δ

for i = 7, 8, 9

α2
2(si) =



1
3

ln

√
(1−3ε−3δ)(1+3δ)

1+3ε
for i = 1, 2, 3

1
2

ln 1+3ε
1−3ε−3δ

1 + 3δ for i = 4, 5, 6

1
3

ln

√
(1+3ε)(1−3ε−3δ)

1+3δ
for i = 7, 8, 9

.

As one can see a comparably simple set in the one representation can become

relatively complicated in the other.

2.5.4 DTV@R

Another important area in which time-consistent sets of measures have been

studied are risk measures. In [Artzner et al., 99] it is shown that every coher-

ent risk measure ρt has a robust representation involving a set of measures

P , i.e.

ρt(X) = ess inf
P∈P

EP [X | Ft] .

Then in [Artzner et al., 07] it was shown that the family of dynamic risk

measures ρ = (ρt)t is dynamically consistent iff the set P is time-consistent.

[Roorda & Schumacher, 05] introduce dynamically consistent tail value at

risk (DTV@R) as one of these time-consistent risk measures.

As the set P they take all measures P for which the one step ahead

densities with respect to the reference measure P0 are bounded by 1
λ

where

λ ∈ (0, 1] is the usual risk level. If we want to describe this in our character-

ization it gives us

Ẽt(α)

Ẽt−1(α)
= exp (αt ·∆mt − ln E [exp (αt ·∆mt)]) =

exp (αt ·∆mt)

E [exp (αt ·∆mt)]
≤ 1

λ
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for all t = 1, ...T and all α ∈ A.
This allows to characterize the set A as soon as the martingale basis is

fixed.

2.6 Possible Extensions

In this section we will discuss poaaible extensions which arise quite naturally.

2.6.1 Convexity

Since time-consistent sets are often used in optimization problems convexity

of the sets is often assumed. It would be nice if this feature would carry over

to the processes. Unfortunately this is not the case in general, as can be seen

in the following counterexample.

Take for example a trinomial tree with states s1, s2 and s3 and just one

time period. As a reference measure we will fix

P0(s1) =
1

2
, P0(s2) =

1

4
and P0(s3) =

1

4
.

A second measure will be given by

Q(s1) =
1

2
, Q(s2) =

1

8
and Q(s3) =

3

8
.

The density of Q with respect to P0 will then be

dQ
dP0

(s1) = 1 ,
dQ
dP0

(s2) =
1

2
and

dQ
dP0

(s3) =
3

2
.

Since we want to show that from a convex set of measures a non-convex

set of processes can arise, let us define our set of measures via

P := convH {P,Q} .

Then let us look at the set of processes A arising from this convex set, espe-

cially αP0 and αQ. Now ifA were a convex set, then every convex combination
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of αP0 and αQ has to be an element of A. Since αP0 is zero, because we chose

P0 as our reference measure we look at 1
2
αQ. If we now calculate the associ-

ated density to this process, we see that it can never originate from a convex

combination of our original measures and therefore 1
2
αQ /∈ A and hence A is

not convex.

2.6.2 Infinite Horizon

When extending our statements to an infinite time horizon let us first remark

that our model assumptions can all be transferred without complications.

We will however need a further assumption on our set of measures. This

assumption will be

Assumption 2.6.1. The family of densities for a fixed t

Dt :=

{
dP
dP0

∣∣∣
Ft
| P ∈ P

}
is weakly compact in L1(Ω,F ,P0).

Technically this assumption ensures that when looking at expressions of

the following kind inf
P∈P

EP [Xτ ] the infimum is always attained for bounded

stopping times τ . (cp. [Riedel, 09])

[Arrow, 71] already gives an economic interpretation of this property by

claiming a feature of preferences which is related to this assumption in

[Chateauneuf et al., 05]. The condition we need to ask of the preferences

to obtain this feature is called Monotone Continuity. It means that if an act

f is preferred over an act g then a consequence x is never that bad that there

is no small p such that x with probability p and f with probability (1− p) is

still preferred over g. The same is true for good consequences mixed with g.

Critics tend to object to this assumption by saying that if the probability

of dying is added to the better act f then surely the preferences have to

be reversed. However if we take f for getting 100 dollars and g for getting
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nothing then having to drive 60 miles to get the 100 dollars and so adding a

small probability of getting killed will normally not reverse the preferences.

Expressed formally this means for acts f � g, a consequence x and a

sequence of events {En}n∈N with E1 ⊇ E2 ⊇ ... and ∩n∈NEn = ∅ there exists

an n̄ ∈ N such that

[
x if s ∈ En̄
f(s) if s /∈ En̄

]
� g and f �

[
x if s ∈ En̄
g(s) if s /∈ En̄

]
.

The construction of the processes can also be maintained, since they are

always constructed for a fixed time horizon up to a time t. That is also the

reason why the mapping from our densities to our processes still inhabits

the same features, i.e. it is continuous and bijective. Therefore in this case

the compactness also carries over from one side to the other. It is also clear

that stability under pasting is equivalent to time-consistency for an infinite

horizon as well. So altogether our statements can smoothly be converted

from a finite to an infinite time horizon.

2.6.3 Looser Assumptions on Splitting Function

Since our assumptions on the filtration are very restrictive, it would be nice

if they could be relaxed in one way or another.

One way would be to give up the assumption of a constant splitting

function. In this case however you run into the problem that the α’s that

arise from the martingale representation are no longer unique and with that

the mapping no longer distinct and bijective.

A second way is allowing for the splitting value to become infinite. This

however has the consequence that the martingale representation will not

necessarily exist anymore.
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2.7 Conclusions

For our special setting, i.e. discrete and with special assumptions on the

information structure, we have constructed an alternative characterization

for time-consistent sets of measures. We have shown that all sets of time-

consistent sets of measures can be expressed by predictable processes and

vice versa.

As can be seen in the extensions standard generalizations fail to work. So

as far as I am concerned this is the most generalization that can be formulated

in this setting.

For practical applications we have shown that for problems which can be

modeled in the form of decision trees (with a constant number of branches

e.g. trinomial trees) we now know what a time-consistent set of measures

must look like expressed via predictable processes which might simplify cal-

culations. So hopefully our construction will be helpful in the future e.g. for

solving Optimal Stopping Problems which can be modeled in this framework.
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Chapter 3

A Duality Theorem for

Optimal Stopping Problems

under Uncertainty

3.1 Introduction

Many investment problems arising in Economics, Finance or general Decision

Theory do not have a fixed point in time when the decision must be made

but a time period in which the choice of investment is possible. Especially if

the decision is irreversible which means the investment cannot be recovered

without considerable losses optimal timing is crucial. Important examples for

these kind of investments are the market entry time of a firm, the optimal

time to install a new technology or the exercise strategy of an American

option but also at what bid to sell a house or which job offer to accept. This

class of problems is called optimal stopping problems.

Each of these problems can be modeled by optimally trying to stop a

stochastic process (Xt)t which describes the future random payoffs. Clas-

sical decision theory (e.g. [von Neumann & Morgenstern, 44]) proposes to
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maximize the expected payoff under a given distribution, i.e.

maximize E[Xτ ] among all stopping times τ .

But what if the distribution of (Xt)t is not (exactly) known or one is

unsure about its true form. In this case the current literature on what is

called ambiguity or uncertainty aversion often reverts to the multiple prior

model introduced in [Gilboa & Schmeidler, 89] for the static case and in

[Epstein & Schneider, 03] for a dynamic setting. They propose to look at

a whole set of possible distributions and to take the worst expected value as

a foundation of decision-making, i.e.

maximize inf
P∈P

EP[Xτ ] among all stopping times τ

where P is a set of measures with specific properties.

One reason this way of modeling decisions emerged was that empirical

studies e.g. [Ellsberg, 61] gave substantial evidence that decision makers not

only inhabit risk aversion but also uncertainty aversion.

What is the difference between risk and uncertainty? When talking about

risk one means the randomness that is inherent in a given and fixed distribu-

tion while uncertainty or ambiguity describes a further source of randomness

which springs from lacking knowledge of the correct distribution. This no-

tion was first introduced in [Knight, 21], and hence is also often referred to

as Knightian Uncertainty.

This ansatz can further be motivated using the framework of incomplete

markets where the equivalent martingale measure is no longer unique and

therefore one obtains a whole set of measures. Alternatively one can think

of the set of measures being slight variations of the measure one thinks

the right one, this corresponds to testing the robustness of a model (cp.

[Hansen & Sargent, 01]).

The question we now want to study is, can the order of minimizing over

the distribution and maximizing via the stopping time be switched. Since
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for several optimal stopping problems the classical solution, i.e. with one

fixed and known distribution, is well studied the duality can be helpful in

solving these problems under uncertainty. Therefore the main objective of

this work is to study under what conditions it is possible to first maximize

over all stopping times and then minimize over the distributions. Expressed

more formally we will prove the following duality theorem

sup
τ∈S

inf
P∈P

EP[Xτ ] = inf
P∈P

sup
τ∈S

EP[Xτ ].

Remark 3.1.1. This problem can also be seen as a stochastic game between

two players, while one player is the “maximizer” picking an optimal stop-

ping time the second is the “minimizer” choosing the distribution. What our

theorem then shows is that it is irrelevant in which order they make their

decisions since the “value” process of this game is always the same.

In this paper we prove in a rather general setting a minimax theorem for

optimal stopping problems in continuous time under Knightian uncertainty

and deduce an optimal stopping rule. More precisely for mild assumptions on

the payoff process X (i.e. right continuous, class of P-D, upper semicontin-

uous, adapted and an a.s. finite optimal stopping time) and rather standard

assumptions on P (i.e. absolute continuity, weak compactness of densities

and time-consistency) we obtain that

ess sup
τ≥t

ess inf
P∈P

EP [Xτ |Ft] = ess inf
P∈P

ess sup
τ≥t

EP [Xτ |Ft]

and that an optimal stopping strategy is given by

ρ∗0 = inf{s ≥ 0| ess sup
τ≥s

ess inf
P∈P

EP [Xτ |Fs] = Xs}.

We also show that this stopping time is the minimum of all optimal stopping

rules for the classical solutions, i.e.

ρ∗0 = inf
P∈P

ρP
0 , where ρP

0 = inf{s ≥ 0| ess sup
τ≥s

EP[Xτ |Fs] = Xs}.
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A great help in the proof of the main theorem is an explicit but general

construction for time-consistent sets of measures introduced in [Delbaen, 03]

and briefly reviewed in Section 3.4. He shows that every convex and time-

consistent set of measures can be expressed with the help of a convex valued

correspondence. He also shows that starting with a martingale and a convex

valued corespondence, one can construct a convex and time-consistent set of

measures.

In addition to the theorem with its implications we apply the results to

special classes of payoff processes. First we look at the case where (Xt)t is

either a multiple prior sub- or supermartingale, which leads to stopping at

the last possible period if there is a finite time horizon for the submartingale

or to stopping immediately in case of the supermartingale. After that we

show how the theorem helps identify the worst case distribution in an adap-

tion of κ-ambiguity1 introduced in [Chen & Epstein, 02]. This allows for the

ambiguous stopping problem to be transformed into a classical one.

Discrete versions of the theorem can be found in [Föllmer & Schied, 04]

and [Riedel, 09] who also presents applications. In [Karatzas & Kou, 98] one

can find the continuous time case for a finite time horizon and a strong

focus on trading constraints. Unlike their paper we explicitly include the

infinite time horizon and embed the explicit construction for all sets of time-

consistent sets of measures introduced in [Delbaen, 03] into the proof.

The paper is organized in the following way. In the next section the

model will be discussed in more detail and the assumptions we make justified.

After that the problem that is to be solved is elaborated more thoroughly

in Section 3.3. Section 3.4 contains a constructive description of the time-

consistent sets we look at including the adapted version of κ-ambiguity. The

succeeding Section 3.5 contains the proof of our main theorem which we apply

1Since we are going to look at problems with an infinite time horizon and the classical

version of κ-ambiguity fails to satisfy the Novikov condition in T = ∞ we need to adapt

this concept a bit.
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to different stopping problems in Section 3.6 and Section 3.7 concludes.

3.2 Model

As a foundation for our model we begin with the filtered probability space(
Ω,F ,P0, (Ft)t∈[0,∞]

)
, where the filtration satisfies the usual assumptions,

also F0 is trivialand F the σ-field generated by the union of all Ft. We will

denote the class of all stopping times τ of the filtration (Ft)t which satisfy

P0(τ <∞) = 1 by S and those that are larger than or equal to a t ∈ [0,∞)

by St := {τ ∈ S |τ ≥ t}.
Further let (Xt)t∈[0,∞] be a right continuous and adapted process describ-

ing the payoff from stopping. Our decision maker’s task is to choose a stop-

ping time τ of the filtration (Ft)t. If he chooses the stopping rule τ he gains

the payoff Xτ (ω) = Xτ(ω)(ω) for ω ∈ Ω . His goal is to maximize his expected

reward. Since our model is placed in an ambiguous setting our decision maker

is uncertain about the true distribution of X. In order to capture the decision

maker’s uncertainty aversion we will use the Recursive Multiple Prior Model

introduced in [Epstein & Schneider, 03]. As a consequence he considers a set

of probability distributions P on (Ω,F) which he all assumes possible and

his (minimax) expected reward for stopping in τ is given by

inf
P∈P

EP [Xτ ] . (3.1)

Remark 3.2.1. For simplicity we will only look at risk neutral decision mak-

ers. Plus we will not explicitly mention discounting or a special utility func-

tion.

Since the expected payoff should be well-defined for all possible stopping

times we introduce following notion of class P −D and assume this property

for X.

Definition 3.2.2. We say a right-continuous process {Xt,Ft; 0 ≤ t <∞} is
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of class P −D if

sup
P∈P

sup
τ∈S

EP [|Xτ |] <∞ and

lim
K→∞

sup
P∈P

sup
τ∈S

∫
|Xτ |>K

|Xτ | dP = 0.

Remark 3.2.3. This property is a uniform integrability condition for am-

biguous settings. We not only ask for uniform integrability under a fixed

distribution P0 but under a whole set P. However we only look at stopping

times τ and not at the whole time set.

A further property we want to assume for the payoff process X is upper

semicontinuity.

Definition 3.2.4. A stochastic process X is upper semicontinuous in ex-

pectation from the left with respect to the probability measure P0 if for any

increasing sequence of stopping times {τi}∞i=1 converging to τ , we have

lim sup
i→∞

EP0 [Xτi ] ≤ EP0 [Xτ ].

This ensures that the lower Snell envelope

V· = ess inf
P∈P

ess sup
τ∈S·

EP[Xτ | F·]

has a cadlag modification with the important consequence that for the stop-

ping times ρt := inf{s ≥ t | Xs = Vs} one actually obtains Vρt = Xρt . A

thorough discussion of these results along with a different approach to The-

orem 3.5.1 can be found in [Treviño, 09].

For the set P we will also make some assumptions. First of all, for mainly

technical reasons we assume

Assumption 3.2.5. P0 ∈ P and all other measures P ∈ P are absolutely

continuous with respect to P0, i.e. P(A) = 0 if P0(A) = 0 for all A ∈ F .
Additionally we will ask for P to be convex, i.e. for λ ∈ (0, 1) and Q,P ∈ P
we have λQ + (1− λ)P ∈ P .
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This assumption merely lets P0 fix some sets of measure zero and serve as

a reference measure. This has no influence on the stochastic structure of the

other measures. It simply implies that all measures contained in P have at

least the same null sets as P0 which economically translates to the decision

maker knowing some sure and impossible events. Technically it allows us

to identify each measure P ∈ P with its Radon-Nikodym density dP
dP0

with

respect to P0.

The second part of the assumption assures that the set satisfying the

more stringent constraint of mutual continuity, i.e. Pe := {Q ∈ P | Q ∼ P0}
lies dense in P since each Q ∈ P can be approximated by elements in λQ +

(1 − λ)P0 ∈ Pe. Therefore we achieve the same behavioral implications for

our optimal stopping problem.

For the assumption of mutual continuity an interpretation was given in

[Epstein & Marinacci, 06]. They related it to an axiom on preferences first

postulated in [Kreps, 79]. He claimed that if a decision maker is ambivalent

between an act x and x∪x′ then he should also be ambivalent between x∪x′′

and x ∪ x′ ∪ x′′. Meaning if the possibility of choosing x′ in addition to x

brings no extra utility compared to just being able to choose x, then also no

additional utility should arise from being able to choose x′ supplementary to

x ∪ x′′.
The second assumption for our set P will ensure that the infimum in

(3.1) is always attained for bounded stopping times τ (cp. [Riedel, 09]). We

assume

Assumption 3.2.6. The family of densities

D :=

{
dP
dP0

| P ∈ P
}

is weakly compact in L1(Ω,F ,P0).

An economic interpretation of this property was given by [Arrow, 71] in

claiming a feature of preferences which was related to this assumption in
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[Chateauneuf et al., 05]. The condition we need to ask of the preferences to

obtain this feature is called Monotone Continuity. It means that if an act f

is preferred over an act g then a consequence x is never that bad that there

is no small p such that x with probability p and f with probability (1− p) is

still preferred over g. The same is true for good consequences mixed with g.

Critics tend to object to this assumption by saying that if the probability

of dying is added to the better act f then surely the preferences have to

be reversed. However if we take f for getting 100 dollars and g for getting

nothing then having to drive 60 miles to get the 100 dollars and so adding a

small probability of getting killed will normally not reverse the preferences.

Expressed formally this means for acts f � g, a consequence x and a

sequence of events {En}n∈N with E1 ⊇ E2 ⊇ ... and ∩n∈NEn = ∅ there exists

an n̄ ∈ N such that[
x if s ∈ En̄
f(s) if s /∈ En̄

]
� g and f �

[
x if s ∈ En̄
g(s) if s /∈ En̄

]
.

3.3 Problem

The question we want to study in the above setting is how to solve optimal

stopping problems of the following form

maximize inf
P∈P

EP [Xτ ] over all stopping times τ ∈ S.

If P is singleton the problem reduces to subjective expected utility and

the solution is well-known. We know an optimal solution is given by

τ ∗ = inf

{
s ≥ 0 | Xs = sup

τ∈Ss
E [Xτ | Fs]

}
see for example [El Karoui, 81]. As we will see later on the solution to our

problem including uncertainty is very similar to this one.

In a discrete setting the problem was studied in [Riedel, 09]. He shows

that with an added condition on P he attains following optimal stopping
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time as a result for the problem

τ ∗ = inf {s ≥ 0 | Xs = Us} , where Us = ess sup
τ∈Ss

ess inf
P∈P

E[Xτ | Fs].

He also shows that under this extra assumption and with a finite time horizon

Us can be obtained recursively by setting

UT = XT and Us = max

{
Xs, ess inf

P∈P
EP[Xs+1 | Fs]

}
∀s = 0, ..., T−1.

This important condition on P is called time-consistency. It is a crucial

assumption for making dynamically consistent decisions. In the discrete set-

ting for instance it allows the use of backward induction. More general it

implies following version of the law of iterated expectations:

ess inf
P∈P

E
[
ess inf

P∈P
E [Xτ | Ft] | Fs

]
= ess inf

P∈P
E [Xτ | Fs] for t ≥ s.

This can be interpreted in the following way, if the decision maker settles for

the stopping rule τ then his expected return at time s is the same as the

expectation in s of what he would get if he chose τ in t.

A technical formulation of this property can be found in the following

final assumption on our set P .

Assumption 3.3.1. P is time-consistent. This means that for every stop-

ping time τ and every pair P1,P2 ∈ P with density processes p1
t = dP1

dP0
and

p2
t , respectively, the measure Q defined by the density process

dQ
dP0

∣∣∣
Ft

=

{
p1
t if t ≤ τ
p1τp

2
t

p2τ
else

belongs to P as well.

Further implications or equivalent definitions can inter alia be found in

[Delbaen, 03] or [Riedel, 09].
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3.4 Construction of P

As is typical for these models we will use our first assumption on P , the ab-

solute continuity, to describe our set of measures since it allows us to identify

each measure with its density function with respect to the reference measure

P0. A further useful and well-known fact is that for a given martingale (Mt)t

with respect to P0 and (Ft)t densities can be generated by predictable pro-

cesses since the stochastic exponential E(θ ·M) describes a density if it is a

non-negative martingale.

Remark 3.4.1. As a reminder for a semimartingale X with X0 = 0 the

stochastic exponential is defined in the following way:

Et(X) = exp

(
Xt −

1

2
[X,X]t

) ∏
0<s≤t

(1 + ∆Xs) exp

(
−∆Xs +

1

2
(∆Xs)

2

)
where ∆X = Xs −Xs− and the infinite product converges.

In [Delbaen, 03] one can find a thorough study of such constructions,

he shows that under certain assumptions time-consistent sets can always be

represented in this way and gives a description of what the set of densities

will look like. More explicit he proves for every convex and time-consistent

set of densities P containing the reference measure P0, that if there exists a

continuous martingale (Mt)t such that for all measures P ∈ Pe there exists

a predictable process θ such that EP0

[
dP
dP0

∣∣∣Ft] = Et(θ · M) , then there

exists a predictable, convex correspondence C : R+ × Ω → B(Rd) such that

0 ∈ C(t, ω) for all (t, ω) and such that

P = cl Pe with Pe =

{
Pθ | dP

θ

dP0

= E(θ ·M) with θ ∈ Θ

}
where

Θ = { θ | θ is a predictable process with θ(t, ω) ∈ C(t, ω),

s.t. E(θ ·M) is a positive uniformly integrable martingale }
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and the closure is taken with respect to the L1 norm on the space of the

density processes.

Remark 3.4.2. The uniform integrability of the stochastic exponential guar-

antees that the arising distributions are absolutely continuous with respect to

P0 and the positivity, i.e. E∞(θ ·M) > 0, even guarantees equivalence.

Remark 3.4.3. Two important examples for these kind of sets are the ex-

treme constructions where C(t, ω) = {0} and C(t, ω) = Rd. In the first case

P = {P0}, i.e. singleton, and in the second case P is the set of all absolutely

continuous probability measures whose densities have the appropriate form.

Remark 3.4.4. Delbaen also shows the conversion of the theorem used above

to describe our set. He shows that for a martingale M and a predictable

convex correspondence C : R+ × Ω → B(Rd) satisfying 0 ∈ C(t, ω) for all

(t, ω) and that the projection of C onto the predictable range of M is closed2

we can construct a time-consistent convex set of measures.

3.4.1 κ-Ambiguity

An explicit example for the construction of such a set on the probability

space (Ω,F , (Ft)t∈[0,∞],P0) is given in the following. It is strongly related

to κ-ambiguity introduced in [Chen & Epstein, 02], but since the classical

definition does not fulfill the Novikov condition in T =∞ we need to slightly

adapt it.

Fix a P0-martingale (Mt)t∈[0,∞] and the set of predictable processes

Θ :=
{

(θt)t∈[0,∞] | θ predictable process with |θt| ≤ κt
}

where κt =

{
1 t ≤ 1
1
t2

else.

2This assumption is made in order to deal with those density generators θ that are not

identically zero but are such that θ ·M is zero. It guarantees that the elements lying in the

closure of the constructed set that are equivalent to P0 also have the form of a stochastic

exponential. For more details we again refer to [Delbaen, 03].
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Here C(t, ω) = [−κt, κt] is a predictable and convex correspondence with

0 ∈ C(t, ω) for all (t, ω).

Using the analysis found in [Czichowsky & Schweizer, 09] it follows that

the projection of C onto the predictable range of M is closed and since κt

tends to zero fast enough to fulfill the Novikov condition we get the posi-

tivity and the uniform integrability of the stochastic exponential. Therefore

Theorem 1 in [Delbaen, 03] tells us that the L1-closure of

Pe =

{
Pθ
∣∣∣ dP
dP0

= E(θ ·M), θ ∈ Θ

}
is a time-consistent and convex set.

The set P = cl Pe is also a weakly compact set, since it is weakly closed,

uniformly integrable, and bounded hence it is a set fulfilling all our assump-

tions.

Remark 3.4.5. When constructing time-consistent sets in a setting with

an infinite time horizon in this fashion one needs to consider that many

martingales known to us when t ∈ [0,∞[ no longer satisfy the martingale

condition when t = ∞ is included. A prominent example for this is the

geometric Brownian motion.

3.5 Main Part

Before we come to the main theorem of the paper let us make sure the con-

ditional expectations we will speak about are properly, i.e. P0-a.s., defined.

Since our sets of measures constructed with the help of [Delbaen, 03] are con-

vex we know that every measure Q << P0 can be approximated by measures

Qn ∼ P0. Hence Pe lies dense in P and we define

ess inf
P∈P

EP [Xτ |Ft] := ess inf
P∈Pe

EP [Xτ |Ft] .

To simplify notations we will define the value function of stopping under
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the worst case measure by

Ut := ess sup
τ∈St

ess inf
P∈P

EP [Xτ |Ft] ,

the value function of the interchanged problem by

Vt := ess inf
P∈P

ess sup
τ∈St

EP [Xτ |Ft]

and for fixed P we define

UP
t := ess sup

τ∈St
EP [Xτ | Ft] .

The equations are all to be understood P0-almost surely. Additionally we

will ask for the stopping times ρt := inf{s ≥ t | Xs = Us} to be P0-almost

surely finite for all t <∞.

The main statement of this paper is the following Duality Theorem which

can help solve optimal stopping problems in the above model since it allows

to interchange the infimum and supremum.

Theorem 3.5.1. For X,F and P satisfying the above claims we get

Ut := ess sup
τ∈St

ess inf
P∈P

EP [Xτ |Ft] = ess inf
P∈P

ess sup
τ∈St

EP [Xτ |Ft] =: Vt

Remark 3.5.1. As is always the case with statements of duality one inequal-

ity is trivial. So in our case we only have to show that the left hand side is

greater than or equal to the right hand side.

Proof of the theorem. The proof will consist of two claims leading to the

main statement. The first claim is

Claim 1:

Vt = ess inf
P∈P

EP [Xρt|Ft] for all 0 ≤ t <∞,

where ρt = inf{s ∈ [t,∞) | Xs = Vs}

and from this claim the theorem results at once.
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In order to prove this claim first observe that ρs ∈ S and we immediately

obtain that the l.h.s. is greater than or equal to the r.h.s. The opposite

inequality remains to be shown.

To do so, we propose

Claim 2:

Vs ≤ EQ [Vρ|Fs] for all Q ∈ P and stopping times s ≤ ρ ≤ ρs

This immediately yields the first claim by setting ρ = ρs.

Remark 3.5.2. In the following the explicit construction of the set of mea-

sures as described in Section 3.4 will play a very prominent role. Instead of

directly working with the distributions, we can restrict ourselves to the density

generators.

We start the proof of the second claim by first fixing an arbitrary measure

Q ∈ P whose density process regarding P0 is E(θ·M)t. Now look at a sequence

{θk}k∈N where θk ∈ Θ for all k and all θk coincide with θ on the stochastic

interval [[s, ρ]] and which suffices following convergence

lim
k→∞

ess sup
τ∈St

EPk [Xτ | Ft] = Vt,

where Pk denotes the measure with the density E(θk ·M).

For such a sequence to exist we need to show that the set

Φ := {ess sup
τ∈St

EP [Xτ | Ft] | P ∈ P}

is directed downwards, i.e. for all φ1, φ2 ∈ Φ we have that φ1 ∧ φ2 ∈ Φ. This

follows at once from Lemma 17 of [Delbaen, 03], where he shows that

Φ̃ := {EP [Xτ | Ft] | τ ≥ t is a stopping time and P ∈ P}

is a lattice.

Remark 3.5.3. In the respective proof one can see that time-consistency is

a crucial assumption here.
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This sequence is dominated by ess supP∈P ess supτ∈St EP [Xτ | Ft], which

is Q-integrable due to X being of class P − D. Now applying the Domi-

nated Convergence Theorem and using the facts that the stopped process(
UPt∧ρs

)
t≥s is a P-martingale for ρP

s = inf{u ≥ s |Xu = UP
u} (cp e.g.

[Karatzas & Shreve, 98]) and ρt ≤ ess infP∈P ρ
P
t (cp subsequent lemma) we

get the second claim through

EQ [Vρ | Fs] = EQ

[
lim
k→∞

ess sup
τ∈Sρ

EPk [Xτ | Fρ]
∣∣ Fs]

= lim
k→∞

EQ

[
ess sup
τ∈Sρ

EPk [Xτ | Fρ]
∣∣ Fs]

= lim
k→∞

EPk
[

ess sup
τ∈Sρ

EPk [Xτ | Fρ]
∣∣ Fs]

≥ ess inf
P∈P

EP [UP
ρ

∣∣ Fs] = EP∗ [UP∗
ρ∧ρs |Fs]

= UP∗
s∧ρs ≥ ess inf

P∈P
ess sup
τ∈Ss

EP [Xτ | Fs]

= Vs

where P∗ denotes the minimizing P in the foregoing equation.

To complete the proof we still need to show

Lemma 3.5.4. Defining

• ρt := inf{s ≥ t | Xs = Vs} and

• ρP
t := inf{s ≥ t | Xs = UP

s }

then it holds that ρt ≤ ρP
t for all P ∈ P.

Proof. We know following equations hold almost surely for all P ∈ P

1. Xs < Vs and Xρt = Vρt for all t ≤ s < ρt

2. Xs < UP
s and XρP

t
= UP

ρP
t

for all t ≤ s < ρP
t
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3. Vs ≤ UP
s for all s ∈ [0,∞]

Now if we assume ρt > ρP
t it follows from 1 and 2 that

VρP
t
> XρP

t
= UP

ρP
t

which clearly contradicts 3 and therefore ρt ≤ ρP
t for all P.

Intuitively this means our “worst case” decision maker has a more pes-

simistic apprehension of the future than the other investors and hence he

values the expected payoff lower. So he is more likely to accept what he has

earlier because he expects less in the future.

With the help of the theorem we can now immediately show that the ρt in

the proof gives us a solution to our optimal stopping problem and we obtain.

Corollary 3.5.5. (i) U is the smallest multiple prior supermartingale with

respect to P that dominates X.

(ii) An optimal stopping rule is given by ρ∗0 = inf {s ≥ 0|Us = Xs} .

Proof. We first show that (Ut)t∈[0,∞] is a multiple prior supermartingale.

For t ≥ s we have

ess inf
P∈P

EP [Ut |Fs] = ess inf
P∈P

EP
[
ess inf

P∈P
EP [Xρt |Ft] |Fs

]
= ess inf

P∈P
EP [Xρt |Fs] ≤ ess sup

τ∈Ss
ess inf

P∈P
EP [Xτ |Fs] = Us.

Remark 3.5.6. The second equality is again due to our time-consistency

assumption.

Next we show that it is the smallest multiple prior supermartingale domi-

nating X. For this assume that W is another multiple prior supermartingale

dominating X, then it holds that

ess inf
P∈P

EP [Xτ |Ft] ≤ ess inf
P∈P

EP [Wτ |Ft] ≤ Wt ∀τ ∈ St
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and in particular

Ut = ess sup
τ∈St

ess inf
P∈P

EP [Xτ |Ft] ≤ Wt.

The last thing we want to show is the optimality of ρ∗0, this follows directly

with the help of the first claim in the proof, since

inf
P∈P

EP [Xρ∗0

]
= V0 = U0 = sup

τ∈S
inf
P∈P

EP [Xτ ] ≥ inf
P∈P

EP [Xτ ] ∀τ ∈ S.

3.6 Applications

3.6.1 Sub- and Supermartingales

With the help of this theorem we want to solve optimal stopping problems.

Two straightforward examples are if the payoff process (Xt)t∈[0,T ] is either a

multiple prior sub- or supermartingale.

In the case of the multiple prior submartingale which means

ess inf
P∈P

EP[Xt |Fs] ≥ Xs for all t ≥ s

we can show that

sup
τ∈S

inf
P∈P

EP [Xτ ] = inf
P∈P

EP[XT ].

This means it is optimal to wait until the very last period to stop and the

expected payoff is the expected payoff in the last period under the worst case

measure.

To see why this is true first of all remark that thanks to the optional

sampling theorem

EP[XT ] = EP[EP[XT |Fs]︸ ︷︷ ︸
≥Xs

] ≥ EP[Xs]
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for all stopping times s ≤ T and fixed P since multiple prior submartingales

are submartingales for all P ∈ P .

Therefore supτ∈S EP[Xτ ] = EP[XT ] for all P and we get

sup
τ∈S

inf
P∈P

EP [Xτ ] = inf
P∈P

sup
τ∈S

EP [Xτ ] = inf
P∈P

EP[XT ]

and with that the above statement.

In the case of a multiple prior supermartingale it turns out that stopping

immediately is optimal. Since X being a multiple prior supermartingale

means

ess inf
P∈P

EP[Xt |Fs] ≤ Xs for all t ≥ s

we get

inf
P∈P

EP[Xτ ] ≤ X0 ∀τ ∈ S

and obtain that stopping immediately is optimal.

3.6.2 Exploiting Monotonicity in the Drift

In the following let µ, σ, θ : R+×R→ R be continuous, bounded and adapted

functions. For convenience we abbreviate the functions µ(t,Xt), σ(t,Xt) and

θ(t,Xt) by µt, σt and θt. Let bθ = µ+ θσ fulfill a Lipschitz condition, i.e.

|bθt (x)− bθt (y)| ≤ K|x− y| for a positive constant K.

On top of this let σ satisfy |σ| ≥ ε > 0 and

|σt(x)− σt(y)| ≤ h(|x− y|)

where h :]0,∞[→]0,∞[ is a strictly increasing function with h(0) = 0 and∫
(0,ε)

h−2(u)du =∞ ∀ε > 0.

Falling back on the example for constructing time-consistent sets via our

adaption of κ-ambiguity in Section 3.4.1 we will in this section show how the

theorem helps identify the worst case measure in this set in the case of a
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Brownian motion with drift as payoff process. With this we mean that our

payoff process has following dynamics

dXt = µ(t,Xt)dt+ σ(t,Xt)dW
0
t

where W 0 is a Brownian Motion with respect to our underlying probability

space (Ω,F , (Ft)t,P0).

So the problem we want to study is

sup
τ∈S

inf
P∈P

EP[Xτ ]

for the above X and the P from Section 3.4.1. For simplicity we will restrict

ourselves to one dimensional processes giving us the advantage that we can

use a comparison theorem for our drifts later on.

The first step in our analysis will be to transfer the ambiguity imple-

mented by our set of measures onto the process, we want to stop. The main

tool for this can be found in the theory of weak solutions for stochastic dif-

ferential equations (SDEs) and Markov processes (e.g. cp [Revuz & Yor, 91]

and [Shiryayev, 78]).

If a SDE has two weak solutions

(X i,W i), (Ωi,F i, (F it )t,Pi) for i = 1, 2 with X1 = X2 = x,

meaning in our case that

dX i
t = µ(t,X i

t)dt+ σ(t,X i
t)dW

i
t

where W i is a Brownian motion with respect to (Ωi,F i, (F it )t,Pi) for i = 1, 2,

then we know that X1 and X2 have the same law, i.e.

P1[X1 ∈ Γ] = P2[X2 ∈ Γ] for Γ ∈ B(C(R+)) .

In our case this means if we define a further auxiliary process (Xθ
t )t via

dXθ
t = (µt + θtσt)dt+ σtdW

0
t
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then with the help of Girsanov’s theorem and the construction of our mea-

sures we get that for W θ being the Pθ-Brownian motion defined by

W θ
t = W 0

t −
∫ t

0

θsds

where θ ∈ Θ is one of the density generators from Section 3.4.1 that

(X,W θ), (Ω,F , (Ft)t,Pθ) and (Xθ,W 0), (Ω,F , (Ft)t,P0)

are both weak solutions to the same SDE and therefore

Pθ[X ∈ Γ] = P0[Xθ ∈ Γ] for Γ ∈ B(C(R+)) .

This equality now allows us to shift the ambiguity from the set of measures

to the payoff process since (Xt)t together with (Ω,F , (Ft)t,Pθ) is a Markov

process and hence

s(t, x) = sup
τ≥t

EPθ [Xτ | Xt = x]

is the smallest excessive majorant of the function g(z) = z and with respect

to the process X.

Remark 3.6.1. Since we are looking for the optimal stopping time from the

beginning, we set t = 0 and drop it in the following.

We also know the smallest excessive majorant of g(x) with respect to X

can be approximated by

v(x) = lim
n

lim
N
QN
n g(x),

where QN
n g(x) is the N th power of of the operator Qn defined via

Qng(x) = max{g(x), T2−ng(x)}.

Remark 3.6.2. The operator Qn reminds of backward induction since g(x)

is the payoff of stopping and T2−ng(x) =
∫
g(y)Pθ(2−n, x, dy) is the expected

payoff in t = 2−n.
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This is now where the uniqueness in law from above comes in since it

implies

Pθ(2−n, x, dy) := Pθ(X2−n ∈ dy |X0 = x)

= P0(Xθ
2−n ∈ dy |Xθ

0 = x) = P0(2−n, x, dy).

Implying since (Xθ
t )t together with (Ω,F , (Ft)t,P0) is also a Markov process

that the smallest excessive majorants in both settings are identical and we

have

sup
τ∈S

EPθ [Xτ | X0 = x] = sup
τ∈S

EP0 [Xθ
τ | X0 = x]

which allows to shift the uncertainty of the distribution of X to uncertainty

of the true drift of X via

sup
τ∈S

inf
Pθ∈P

EPθ [Xτ | X0 = x] = sup
τ∈S

inf
θ∈Θ

EP0 [Xθ
τ | Xθ

0 = x] for all x ∈ Ω.

The construction of Section 3.4.1 now tells us that

µt + θtσt ≥ µt − κtσt

for all θ ∈ Θ, meaning that µt − κtσt is the smallest possible drift our pay-

off process can have and with a comparison result for stochastic differential

equations we obtain that

P0

[
Xθ
t ≥ X−κt for all t ≥ 0

]
= 1

and with that

sup
τ∈S

inf
θ∈Θ

EP0
[
Xθ
τ

]
= inf

θ∈Θ
sup
τ∈S

EP0
[
Xθ
τ

]
≥ inf

θ∈Θ
sup
τ∈S

EP0
[
X−κτ

]
= sup

τ∈S
EP0

[
X−κτ

]
.

Since the converse inequality follows directly from the theorem

sup
τ∈S

inf
P∈P

EP [Xτ ] = inf
P∈P

sup
τ∈S

EP [Xτ ] = inf
θ∈Θ

sup
τ∈S

EP0
[
Xθ
τ

]
≤ sup

τ∈S
EP0

[
X−κτ

]
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we obtain that the theorem helps us identify the worst case distribution in

this case and our ambiguous stopping problem is simplified into a classical

stopping problem with a known distribution, i.e.

sup
τ∈S

inf
P∈P

EP[Xτ ] = sup
τ∈S

inf
θ∈Θ

EP0 [Xθ
τ ] = sup

τ∈S
EP0

[
X−κτ

]
= sup

τ∈S
EP−κ [Xτ ] .

3.7 Conclusion

Confronted with an optimal stopping problem and not (exactly) knowing

or being unsure of the true distribution of the payoff process X we find

ourselves in the framework of [Epstein & Schneider, 03] who propose to solve

the following problem

maximize inf
P∈P

EP [Xτ ] among all stopping times τ

where P is the set of all measures we think possible. Here we asked if and

under what conditions it is possible to interchange the order of minimizing

over the distributions and maximizing over all stopping times. The result is

a minimax theorem under rather general assumptions on the payoff process

X and standard assumptions on the set of measures P . It incorporates

an explicit but still universal construction given in [Delbaen, 03] for time-

consistent sets of measures.

This theorem allows us to identify the optimal stopping time for payoff

processes which are multiple prior sub- or supermartingales and have a finite

investment horizon. It also helps us determine the worst case distribution in

the setting of κ-ambiguity for options with an increasing payoff in the un-

derlying and with this turns our ambiguous decision problem into a classical

purely risky one.

It would be desirable to find further applications of this theorem. Since

the crux of applying this theorem is mainly a minimization over the drift it
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would be preferable to find classical solutions that depend on the drift of the

payoff process. However the drift has to be stochastic and since in classical

solutions the drift is commonly assumed constant for simplicity, it might be

a good idea to look at processes in a setting with stochastic interest rates.
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Chapter 4

Learning for Convex Risk

Measures with Increasing

Information

4.1 Introduction

Reaching decisions concerning risky projects in a dynamic system, an agent

faces new information consecutively influencing her assessment of risk instan-

taneously.

In this article, we answer the question how anticipation of risk evolves

over time when an agent gathers information. We show that, in the limit, all

uncertainty is revealed but risk remains if the agent perceives risk in terms

of time-consistent dynamic convex risk measures and, hence, generalize the

famous Blackwell-Dubins Theorem to convex risk measures. We then relax

the time-consistency assumption and show the result to still be valid. Hereto,

a fundamental assumption is existence of a reference distribution that fixes

impossible and sure events by virtue of equivalence of distributions under

consideration.

Coherent risk measures were introduced by virtue of an axiomatic ansatz
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in [Artzner et al., 99] in a static setting and have been generalized to a dy-

namic framework in [Riedel, 04]. Tangible problems in this setup are inter

alia discussed in [Riedel, 09]. The equivalent theory of multiple prior prefer-

ences in a static setup is introduced in [Gilboa & Schmeidler, 89]; a dynamic

generalization is given in [Epstein & Schneider, 03]. Applying coherent risk

measures substantially decreases model risk as they do not assume a spe-

cific probability distribution to hold but assume a whole set of equally likely

probability models. Moreover, they possess a simple robust representation.

However, as they assume homogeneity, coherent risk measures do not ac-

count for liquidity risk. Though in financial applications, the Basel II accord

requires a “margin of conservatism”, coherent risk measures are far too con-

servative when estimating risk of a project as they result in a worst case

approach. Furthermore, popular examples of risk measures, as e.g. entropic

risk, are not coherent.

Hence, it seems worthwhile to consider a more sophisticated axiomatic

system: [Föllmer & Schied, 04] introduce convex risk measures as a gener-

alization of coherent ones relaxing the homogeneity assumption. Equiva-

lently, [Maccheroni et al., 06a] generalize multiple prior preferences to varia-

tional preferences. Convex risk measures are applied to a dynamic setup in

[Föllmer & Penner, 06] for a stochastic payoff in the last period or, equiva-

lently, in [Maccheroni et al., 06b] in terms of dynamic variational preferences.

[Cheridito et al., 06] applies dynamic convex risk measures to stochastic pay-

off processes. Given a set of possible probabilistic models, convex risk mea-

sures are less conservative than coherent ones. Dynamic convex risk measures

as well as dynamic variational preferences possess a robust representation in

terms of minimal penalized expectation. The minimal penalty, serving as

a measure for uncertainty aversion, uniquely characterizes the risk measure

or, respectively, the preference. Conditions on the minimal dynamic penalty

characterize time-consistency of the dynamic convex risk measure.

A parametric learning model in an uncertain environment for dynamic co-
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herent risk measures or, equivalently, dynamic multiple priors as introduced

in [Epstein & Schneider, 03], is elaborated in [Epstein & Schneider, 07]. The

main virtue of this article is to introduce learning based on experience to

convex risk measures models. First, we try to introduce learning in a con-

structive approach: we design a minimal penalty function and plug it into

the robust representation: Since the penalty might be seen as some inverse

likelihood of a specific prior distribution, we first apply a quite simple and

intuitive learning mechanism to the penalty. We calculate the likelihood of

a distribution given past experience and use this as updated penalty. The

intuition behind this approach is quite simple: observing good events, dis-

tributions of a payoff process that are “stochastically more dominated”, i.e.

put more weight on bad events, become more unlikely, i.e. have a higher

penalty. However, besides its intuitive appeal, it turns out that this proce-

dure does not result in a penalty function as it is backwards oriented and a

penalty function, by definition, incorporates probability distributions of the

future movement of the payoff process. In a second, more sophisticated ap-

proach, we model a penalty incorporating projections of “past” likelihoods on

future distributions. Here, we make use of the conditional relative entropy

as penalty function: we achieve a proper penalty that penalizes distributions

according to “distance” from the “most likely” distribution serving as refer-

ence distribution. However, the convex risk measure in terms of this penalty

turns out not to be time-consistent in general as shown by a counterexample.

In [Epstein & Schneider, 07], time-consistency is not an issue as multiplicity

of priors is not introduced in terms of multiple equally likely distributions of

the payoff process as e.g. in [Riedel, 09] or [Maccheroni et al., 06a], but in

terms of multiple distributions on the parameter space.

Our further approach is not constructive but takes the robust representa-

tion of a risk measure in terms of minimal penalty for granted. As the main

result of this article we achieve a generalization of the famous Blackwell-

Dubins Theorem in [Blackwell & Dubins, 62] from conditional probabilities
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to time-consistent dynamic convex risk measures. We pose a condition on

the minimal penalty in the robust representation, always satisfied by coherent

risk measures, forcing the convex risk measure to converge to the conditional

expected value under the true underlying distribution. Intuitively, this re-

sult states that, eventually, the uncertain distribution is revealed or, in other

words, uncertainty diminishes as information is gathered but risk remains.

The agent, as she has learned about the underlying distribution, is again

in the framework of being an expected utility maximizer with respect to the

true underlying distribution. We have hence achieved learning as an intrinsic

property of dynamic convex risk measures.

Our generalization of the Blackwell-Dubins Theorem serves as an alterna-

tive approach to limit behavior of time-consistent dynamic convex risk mea-

sures as the one in [Föllmer & Penner, 06]. The result particularly states the

existence of a limiting risk measure. As an example we consider dynamic

entropic risk measures or, equivalently, dynamic multiplier preferences. We,

however, show a Blackwell-Dubins type result to hold, even if we relax the

time-consistency assumption. Again, we obtain existence of a limiting risk

measure but in a more general manner than [Föllmer & Penner, 06] for not

necessarily time-consistent convex and coherent risk measures.

[Schnyder, 02] discusses H.P. Minsky’s theory of financial instability, a

huge portion of which is caused by herding on financial markets. Besides,

herding is usually one of the major objections towards Basel II. Our result

however shows that, in the long run, there is hardly any chance to circumvent

herding behavior.

The article is considered in a parametric setting. However, the second part

can be restated in a non parametric setting. It is structured as follows: The

next section formally introduces the underlying probabilistic model. Section

4.3 elaborately discusses robust representation of dynamic (time-consistent)

convex risk measures. Constructive approaches to learning in terms of dy-

namic minimal penalty as well as their shortcomings are stated in Section
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4.4. Section 4.5 generalizes the Blackwell-Dubins Theorem to conditional ex-

pectations. The following two sections then apply this result to coherent and

convex risk measures first in the time-consistent case and then in the case

without time-consistency. Section 4.8 states examples. Then we conclude.

4.2 Model

For our model we start with a discrete time set t ∈ {0, ..., T} where T is an

infinite time horizon. We will now construct an underlying filtered reference

space (Ω,F , (Ft)t,Pθ0) and define risky projects X:

We fix (S,A) as a measurable space where S describes the possible states

of the world at a fixed point in time t and define Ω to be all possible states

of the world, formally the set of sequences of elements of S. For this let

St = S for all t ∈ {0, ..., T} and then define Ω :=
⊗T

t=0 St. On this space

let F be the product σ-field generated by all projections πt : Ω → St and

let the elements of the filtration Ft be generated by the sequence π1, ..., πt.

Additionally define all sequences up to time t by Ωt :=
⊗t

s=0 Ss. Denote

generic elements on these spaces by st ∈ St, s ∈ Ω, and st ∈ Ωt.

Let Θ be a set of parameters where every θ ∈ Θ uniquely defines a distri-

bution Pθ on (Ω,F) with filtration (Ft)t and fix Pθ0 as a reference distribution

which can be seen as the true distribution of the states. For all θ ∈ Θ, Pθ

is assumed to be equivalent to Pθ0 . Let Me(Pθ0) denote the set of all distri-

butions on (Ω,F) equivalent to Pθ0 . Assume that all these can be achieved

by parameters θ ∈ Θ, i.e. Me(Pθ0) = {Pθ|θ ∈ Θ}. For Pθ ∈ Me(Pθ0) let

Pθ(·|Ft) denote the distribution conditional on Ft. Due to our assumption

to only consider distributions equivalent to Pθ0 , the reference distribution

merely fixes the null-sets of the model, i.e. distinct agents at least agree on

impossible and sure events. This assumption has no influence on the stochas-

tic structure of the distributions it just tells the decision makers what sure

or impossible events are. An economic interpretation of this assumption was
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given by Epstein and Marinacci in [Epstein & Marinacci, 06]. They related

it to an axiom on preferences first postulated by Kreps in [Kreps, 79]. He

claimed that if an agent is ambivalent between an act x and x ∪ x′ then he

should also be ambivalent between x ∪ x′′ and x ∪ x′ ∪ x′′. Meaning if the

possibility of choosing x′ in addition to x brings no extra utility compared to

just being able to choose x, then also no additional utility should arise from

being able to choose x′ supplementary to x ∪ x′′.
Furthermore we define X : Ω → R to be an F -measurable random vari-

able which can be interpreted as a payoff at final time T . Assume X being

essentially bounded with ess sup |X| = κ > 0. Having constructed the fil-

tered reference space (Ω,F , (Ft)t≥0,Pθ0) as above, the sets of almost surely

bounded F -measurable and Ft-measurable random variables are denoted by

L∞ := L∞(Ω,F ,Pθ0) and L∞t := L∞(Ω,Ft,Pθ0), respectively. All equations

have to be understood Pθ0-almost surely.

Remark 4.2.1. As we will see in course of the article, the parametric set-

ting is only needed in the first part on the constructive approach to learn-

ing. All statements in the second part, the generalization of the Blackwell-

Dubins theorem, can be posed in terms of an arbitrary underlying filtered

space (Ω,F , (Ft)t≥0,P0) with distributions in Me(P0), where P0 denotes the

reference distribution, i.e. in a non-parametric setting. Moreover, for these

results, we do not need the particular structure of Ω in terms of a product of

marginal spaces St. We however follow the parametric approach throughout

to obtain a unified appearance.

4.3 Dynamic Convex Risk Measures

In this article, we apply the theory of convex risk measures as set out in

[Föllmer & Penner, 06] for end-period payoffs. For payoff processes, convex

risk measures are described in [Cheridito et al., 06]. We do not consider

the axiomatic approach to convex risk but take the robust representation
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of dynamic convex risk measures or, equivalently, of dynamic variational

preferences as given.

Definition 4.3.1 (Dynamic Convex Risk & Penalty Functions). (a) A family

(ρt)t of mappings ρt : L∞ → L∞t is called a dynamic convex risk measure if

each component ρt is a conditional convex risk measure, i.e. for all X ∈ L∞,

ρt can be represented in terms of

ρt(X) = ess sup
Q∈Me(Pθ0 )

(
EQ [−X| Ft]− αt(Q)

)
,

where (αt)t denotes the dynamic penalty function, i.e. a family of mappings

αt : Me(Pθ0) → L∞t , αt(Q) ∈ R+ ∪ ∞, closed and grounded. For technical

details on the penalty see [Föllmer & Schied, 04].

(b) Equivalently, we define the dynamic concave monetary utility function

(ut)t by virtue of ut := −ρt, i.e.

ut(X) := ess inf
Q∈Me(Pθ0 )

(
EQ [X| Ft] + αt(Q)

)
.

Remark 4.3.2. (a) By Theorem 4.5 in [Föllmer & Penner, 06], the above

robust representation in terms of Me(Pθ0) is sufficient to capture all time-

consistent dynamic convex risk measures.

(b) Assuming risk neutrality but uncertainty aversion, no discounting, and no

intermediate payoff, (ut)t is the robust representation of dynamic variational

preferences as introduced in [Maccheroni et al., 06b]. In this sense, all our

results also hold equivalently for dynamic variational preferences. However,

we have chosen to concentrate on dynamic convex risk measures here.

Assumption 4.3.3. In the robust representation, we assume the penalty αt

to be given by the minimal penalty αmin
t . The minimal penalty is introduced

in terms of acceptance sets in [Föllmer & Penner, 06], p.64: For every Q ∈
Me(Pθ0)

αmin
t (Q) := ess sup

X∈L∞:ρt(X)≤0

EQ [−X| Ft] .
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As stated in the respective references, every dynamic convex risk mea-

sure (ρt)t can be expressed in terms of the above robust representation,

uniquely by virtue of the minimal penalty and vice versa. The notion of

minimal penalty is justified by the fact that every other penalty represent-

ing the same convex risk measure a.s. dominates the minimal one, cp.

[Föllmer & Penner, 06]’s Remark 2.7. Throughout, we assume a represen-

tation in terms of the minimal penalty (αmin
t )t.

Remark 4.3.4 (Equivalent Notation). In our parametric set-up, a distribu-

tion Pθ of the process is uniquely defined by a parameter θ ∈ Θ. Hence, we

write

ρt(X) = ess sup
θ∈Θ

(
EPθ [−X| Ft]− αmin

t (θ)
)
.

Further assumptions on the risk measure under consideration will be

posed when necessary.

Remark 4.3.5 (On Coherent Risk). As set out in the references, the robust

representation of coherent risk is a special case of the robust representation

of convex risk when the penalty is trivial, i.e. for all t it holds

αt(θ) =

{
0 if Pθ(·|Ft) ∈ Q̃(·|Ft),

∞ else

for Q̃ the set of prior distributions induced by all θ in some set Θ̃ ⊂ Θ.

Throughout, Q̃ is assumed to be convex and weakly compact or, equivalently,

Θ̃ is assumed to be such.

The following definition is a major assumption needed in order to solve

tangible economic problems under convex risk.

Definition 4.3.6 (Time-Consistency). A dynamic convex risk measure (ρt)t

is called time-consistent if, for all t, s ∈ N, it holds

ρt = ρt(−ρt+s)

or, equivalently, ut = ut(ut+s).
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Remark 4.3.7. For the special approach here, [Cheridito et al., 06] show

that it suffices to consider s = 1 in the above definition.

Remark 4.3.8. As inter alia shown in [Föllmer & Penner, 06], Theorem

4.5, time-consistency of (ρt)t is equivalent to a condition on the minimal

penalty (αmin
t )t called no-gain condition in [Maccheroni et al., 06b].

We now introduce a special class of dynamic convex risk measures that

will be used in several examples later on: Dynamic entropic risk measures.

Therefore, we first have to introduce:

Definition 4.3.9 (Relative Conditional Entropy). For P� Q, we define the

relative entropy of P with respect to Q at time t ≥ 0 as

Ht(P|Q) := EP [logZt] ,

where (Zt)t by virtue of Zt := dP
dQ |Ft denotes the density process of P with

respect to Q. Furthermore, we define the conditional relative entropy of P
with respect to Q at time t ≥ 0 as

Ĥt(P|Q) := EP
[

log
ZT
Zt

∣∣∣∣Ft] = EQ
[
ZT
Zt

log
ZT
Zt

∣∣∣∣Ft] I{Zt>0}.

Definition 4.3.10 (Entropic Risk Measures). Given reference model Q ∈
Me(P0). Let δ > 0. We say that dynamic convex risk ρet (X) of a random

variable X ∈ L∞, is obtained by a dynamic entropic risk measure given

reference model Q ∈Me(Pθ0) if it is of the form

ρet (X) = ess sup
P∈Me(Pθ0 )

(
EP[−X|Ft]− δĤt(P|Q)

)
. (4.1)

Equivalently, dynamic multiplier preferences (uet )t are defined by virtue of

uet (X) = ess inf
P∈Me(Pθ0 )

(
EP[X|Ft] + δĤt(P|Q)

)
. (4.2)

Remark 4.3.11. The variational formula for relative entropy implies

ρet (X) = δ log(EQ[e−
1
δ
X |Ft]).
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Intuitively, an entropic risk measure means that the agent in an uncer-

tain setting believes the reference model Q as most likely and distributions

“further away” as more unlikely. Again, we can write (ρet )t by virtue of

ρet (X) = ess sup
θ∈Θ

(
EPθ [−X|Ft]− δĤt(θ|η)

)
,

where Pη defines the reference model.

4.4 A Constructive Approach to Learning

In this section, we try to explicitly develop a learning mechanism by virtue of

penalty functions that are then used for the robust representation of dynamic

convex risk measures. We will encounter, that this is not an eligible approach

to model learning as it is still not clear how to explicitly form a penalty. In

a later section, we will just take the robust representation as given and pose

the question what can be said about learning when distinct properties of the

penalty are assumed.

4.4.1 The Intuition of Learning via Penalties

In a first, intuitive approach, we explicitly introduce a learning mechanism

to the penalty (αt)t in terms of a likelihood function. The fundamental idea

is that the penalty might be viewed as a measure for the likelihood of a

distribution. In the extreme case of coherent risk, this means

• αt(θ) =∞: Pθ is not possible,

• αt(θ) = 0: Pθ is among the most likely.

In general, the larger αt, the less likely the respective distribution. Stated in

other terms, (αt)t is a measure for uncertainty aversion: given two penalties

(α1
t )t and (α2

t )t, the a.s. larger one corresponds to the less uncertainty averse
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agent. In the entropic case, αt(θ) = Ht(Pθ|Pθ̄), the conditional relative en-

tropy of Pθ with respect to Pθ̄ at time t, the agent considers Pθ̄ most likely as

Ht(Pθ̄|Pθ̄) = 0 and distributions “further away” as more and more unlikely.

In the coherent case characterized by a trivial penalty, learning means to

alternate the sets Q̃t := {P ∈ Q̃ | P(·|Ft) ∈ Q̃(·|Ft)} , t = 0, ..., T of condi-

tional priors on which the penalty has value zero: when more information is

available and hence, more might be known about the distribution that rules

the world, Q̃t ⊃ ˜Qt+1, i.e. penalty is increasing in t. For some cut off value

β, an intuitive approach would be in terms of some likelihood function l:

αt(θ) =

{
0 if l(Pθ|θ,Ft) ≥ β,
∞ else.

As a direct generalization to convex risk measures, one might consider the

log-likelihood − log(l(Q|θ,Ft)) as penalty. It will turn out that this approach

is not eligible since a penalty defined in terms of likelihood functions is not

feasible. Hence, we come up with a distinct ansatz in which penalty is given

by relative conditional entropy. We then achieve a dynamic convex risk

measure but run into trouble regarding time-consistency. A model defined

as above serves as a measure theoretic fundament of H.P. Minsky’s theory

of financial instability: A sequence of “good” events causes the penalty to

be smaller for distributions that stochastically dominate for the payoff under

consideration. Upon observing favorable events, the agent thinks that nature

has become kinder. This might help to understand underestimation of risk

leading to bubbles and financial instability in times of growth and financial

success.

4.4.2 Special Case: Explicit Learning for Coherent Risk

[Epstein & Schneider, 07] introduce learning for coherent risk in terms of

likelihood ratio tests. As we will see later, they do not consider the sets of

priors (Qt)t as for example in [Riedel, 04] but the process Pt(Ft) of one-step
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ahead conditional beliefs, formally introduced below, as these immediately

represent the learning process. Moreover, [Epstein & Schneider, 07] distin-

guish between information that can be learned and information that cannot:

Information that can be learned is incorporated in a the set of priors not

being singleton, information that cannot be learned is incorporated in the

set of likelihood functions not being singleton.

Formally, let the state space be given by ST := ⊗Tt=1St, St = S, Θ as in the

general model. The space of parameters will be slightly modified, i.e. every

θ ∈ Θ uniquely characterizes a distribution on S and not on Ω; however,

this modification is restricted to the current subsection. Let Q0 ⊂M(Θ) be

the set of priors on Θ and L the set of likelihoods, i.e. every l ∈ L satisfies

l(·|θ) ∈ M(S) and l(st|·) is Ft-measurable for st ∈ St. Set st = (s1, . . . , st),

si ∈ Si. Every µ0 ∈ Q0 together with a family of likelihoods (l1, l2, . . .) ∈ L∞

induces a prior P ∈Me(P0) of the payoff process or, equivalently, the process

(pt)t of one-step-ahead conditionals

pt(·|st) =

∫
Θ

l(·|θ)dµt(θ|st) ∈M(St+1),

where µt is derived from µ0 as described below and µt(·|st) ∈ Qt(st), the set

of posterior beliefs on Θ given history st. Hence, multiplicity of beliefs is

described by

Pt(st) =

{
pt(·|st) =

∫
Θ

l(·|θ)dµt(θ)
∣∣∣∣ µt ∈ Qαt (st), l ∈ L

}
:=

∫
Θ

L(·|θ)dQαt (θ).

To complete the model, it leaves to show how (µ0; l1, . . .) induce µt or, equiv-

alently, how Qt(st) is obtained. For (µ0; l1, . . .), the posteriors are obtained

by Bayesian updating:

dµt(·, st, µ0, l
t)

=
lt(st|·)∫

Θ
lt(st|θ̃)dµt−1(θ̃, st−1, µ0, lt−1)

dµt−1(·, st−1, µ0, l
t−1).
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Then, the posteriors are achieved by virtue of a likelihood ratio test in terms

of the unconditional data density:

Qαt (st) :=

{
µt(s

t, µ0, l
t)

∣∣∣∣∣µ0 ∈ Q0, l
t ∈ Lt,

∫ t∏
j=1

lj(sj|θ)dµ0(θ)

≥ β max
µ̄0∈Q0,l̄t∈Lt

∫ t∏
j=1

l̄j(sj|θ)dµ̄0(θ)

}

for some bound β ∈ R+.

Remark 4.4.1. Conceptually, there is a huge difference between the ap-

proach in [Epstein & Schneider, 07] and [Gilboa & Schmeidler, 89]: In the

latter, the term “multiple priors” means multiple distributions of the payoff

stream, all being equally likely, in the former, it means multiple distribu-

tions of the parameter, i.e. multiple distributions on the distributions of

the payoff stream. Hence, [Epstein & Schneider, 07] is a generalization of

[Gilboa & Schmeidler, 89] as the latter framework is achieved with Q0 = {µ0}
with µ0 the uniform distribution on some subset of Θ. In that case we have

a trivial α and hence a coherent risk measure. Intuitively, a uniform distri-

bution on a subset of Θ corresponds to the agent believing all distributions in

that subset being equally likely and the others impossible.

Nevertheless, fruitful insights from [Epstein & Schneider, 07] can be gained

for our approach in particular the incorporation of a likelihood ratio test. We

go a step closer to [Gilboa & Schmeidler, 89] and introduce a single distribu-

tion on Θ inducing a unique penalty for a dynamic convex risk measure.

4.4.3 A First, Particularly Intuitive Approach: Sim-

plistic Learning

As stated above, multiple prior preferences mean the agent has a uniform

distribution on a subset of Θ: She is sure about which parameters are possible

and which not, but has no tendency towards their likeliness. In a way, this
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corresponds to a non-informative weighting or a trivial penalty function α0.

We act on this non-informative approach and assume the following penalty

at time zero: Let Θ̃ ⊂ Θ. The penalty corresponding to this distribution is

given by:

αt(θ) =

{
0 if θ ∈ Θ̃,
∞ else.

Hence, initially the convex risk measure is actually coherent:

ρ0(X) := ess sup
θ∈Θ

{
EPθ [−X]− α0(θ)

}
= ess sup

θ∈Θ̃

EPθ [−X].

We now come up with a simple learning mechanism directly defining the

dynamic penalty function (αt)t in terms of likelihoods. At t = 0, we have

already characterized the penalty. Furthermore, we set

α1(θ) := − ln

(
l(s1|θ)

supθ̄ l(s1|θ̄)

)
= − ln

(
Qθ(s1)

supθ̄ Qθ̄(s1)

)
,

where s1 = s1 and

α2(θ) = − ln

(
l(s2|θ)

supθ̄ l(s
2|θ̄)

)
= − ln

(
Qθ(s1)Qθ(s2|θ, s1)

γ2

)
,

where γ2 := supθ∈Θ Qθ(s1)Qθ(s2|θ, s1).

Definition 4.4.2. We say that the penalty (αt)t in the robust representation

of the convex dynamic risk measure (ρt)t is achieved by simplistic learning,

if it is of the form:

αt(θ) := − ln

(∏t
i=1 Qθ(si|θ, si−1)

γt

)
,

where γt := supθ∈Θ

∏t
i=1 Qθ(si|θ, si−1).

Remark 4.4.3 (On improperness of simplistic learning). (αt)t achieved by

simplistic leaning is not a feasible penalty function.

Proof. A penalty at t should include the conditional distributions from t

onwards as seen in the definition. In our likelihood approach αt only depends

on distributions up to time t, i.e. already realized entities of the density

process.
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4.4.4 A Second, More Sophisticated Approach: En-

tropic Learning

We now incorporate the likelihood function in the relative entropy in order

to achieve a risk measure based on the well known and elegant entropic risk

measures.

Here, we assume θ = (θt)t ∈ Θ; every entity θt characterizes a distribution

in M(St) possibly dependent on (θi)i<t. The family θ = (θt)t then defines a

prior Pθ ∈Me(Pθ0). Set θt := (θ1, . . . , θt) analogous to st.

In the foregoing section, we have seen the major problem to be that our

“penalty” was only contingent on the past evolution of the density process.

There is however a whole bunch of possibilities to estimate the future by use

of past information. A prominent route is by virtue of maximum likelihood

estimator.

Definition 4.4.4 (Experience Based Learning). (a) Given likelihood l. Being

at time t, learning is said to be naive if the estimator θ̂t for θt is achieved

solely by taking into account maximum likelihood for the observation st at

time t.

(b) Learning is called intermediate or experience based at level m, if θ̂t is

the maximum likelihood estimator of the last m observations (st−m, . . . , st)

MLE−m ∈ arg max
θt∈Θ

l(st−m, . . . , st|θt, θ̂t−1, st−m−1).

(c) Learning is said to be of maximum likelihood type, if, at any t, θ̂t is the

maximum likelihood estimator of the whole history.

Note that the naive estimator is just the intermediate one at level zero.

Furthermore, note that our definition of experience based maximum like-

lihood. In the next definition, we characterize how learning results in a

distribution for the payoff.
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Definition 4.4.5 (Learning Distributions). Being at time t, having obtained

θ̂t and the foregoing estimators (θ̂i)i<t, the reference family θ̂ of parameters

is achieved by

θ̂i =

{
θ̂i i ≤ t,

θ̂t i > t.

Having seen how agents learn about the best fitting distribution, we now

formally introduce entropic learning for which dynamic entropic risk mea-

sures in Definition 4.3.10 serve as a vehicle: We choose the best fitting dis-

tribution as reference distribution in the conditional relative entropy.

The agent’s variational utility incorporating learning is in our setup given

by a convex risk measure with an entropic penalty function:

Definition 4.4.6 (Experience Based Entropic Risk). A penalty (α̂t)t is said

to be achieved by experience based entropic learning if given as

α̂t(η) := δĤt(Pη|Pθ̂)

for δ > 0 and θ̂ = (θ̂t)t achieved as in Definition 4.4.5, η = (ηt)t ∈ Θ. The

resulting convex risk measure (ρ̂t)t incorporating this very penalty function is

then called experience based entropic risk.

Remark 4.4.7. (α̂θt )t is well defined as penalty; this is inter alia shown in

[Föllmer & Schied, 04]. Due to our construction, the penalty now incorpo-

rates conditional distributions of future movements.

Remark 4.4.8. When the parameter is also the realization of an entity in

the density process, e.g. in a tree (cp. the example below), relative entropy

can directly be written as

α̂t(θ) = EPθ
[

ln

(
dPθ

dPθ0
/ dPθ̂

dPθ0

)∣∣∣∣∣Ft
]
.

Remark 4.4.9. Naive entropic learning reflects the tendency of the agent to

forget (or ignore) about the distant past and just assume the present to be the
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best estimator of the underlying model. This learning mechanism is then of

course particularly adjuvant in explaining a bubble as it is harder to see that

the financial system moves away from the fundamentals.

Despite [Epstein & Schneider, 07] we do not consider multiplicity of likeli-

hoods here. Hence, we do not incorporate information that cannot be learned

upon in our model. Though real world applications with several true param-

eters, e.g. in incomplete financial markets with a multiplicity of equivalent

martingale measures, would be modeled in terms of multiple likelihoods.

However, our main result in this section on “time-inconsistency” of expe-

rience based entropic risk would not change when extending the model to

multiple likelihoods.

Proposition 4.4.10. The model is well defined, i.e. for every t, ρ̂t is a

conditional convex risk measure.

Proof. As can easily be seen, the model satisfies the axioms of convex risk

measures: ρ̂t : L∞ → L∞t and

• ρ̂t is monotone, i.e. ρ̂t(X) ≤ ρ̂t(Y ) for X ≥ Y a.s.

• ρ̂t is cash-invariant, i.e. ρ̂t(X +m) = ρ̂t(X)−m ∀m ∈ Lt, X ∈ LT

• ρ̂t is convex as a function on LT

As inter alia shown [Föllmer & Penner, 06], Proposition 4.4, dynamic en-

tropic risk measures are time-consistent when the reference distribution is

not learned but fixed at the beginning. However, now that the reference

distribution is also stochastic, we achieve:

Proposition 4.4.11. Experience based entropic risk is in general not time-

consistent.

Proof. As proof we construct the following counterexample showing an ex-

perience based entropic risk measure which is not time-consistent.
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Example 4.4.12 (Entropic Risk in a Tree). Since our example is mainly for

demonstration purposes we restrict ourselves to a simple Cox-Ross-Rubinstein

model with 3 time periods. Each time period is independent of those before.

One could imagine that in every time period a different coin is thrown and

the result of the coin toss determines the realization in the tree, e.g. from

heads results up and from tails down. The payoffs of our random variable

X are limited to the last time-period and are as shown in the figure below.

For tractability reasons we also confine ourselves to a single likelihood func-

tion l(· | θ). For the same reason we will also use the extreme case of naive

updating which means our reference distribution will merely depend on the

last observed event in our tree. The probability for going up in this tree will

always be assumed to lie in the interval [a, b] where 0 < a ≤ b < 1.

1

-1

-3

-2

0

2

1

-1

0

p ∈ [a, b]

3

Figure 4.1: Cox-Ross-Rubinstein Model

Time-period 2: Since we want to show a contradiction to time-consistency

we will show that the recursive formula

ρ̂t(X) = ρ̂t(−ρ̂t+s(X)) for all t ∈ [0, T ] and s ∈ N
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is violated. So we start with the calculation of ρ2(X) for the different sets in

F2

ρ̂2(X)(up, up)

= ess sup
p∈[a,b]

E [−X | F2] (up, up)− E
[
ln

(
θ2

θ∗2

)
| F2

]
(up, up)

= sup
p∈[a,b]

(
−3p− 1 + p− p ln

p

b
− (1− p) ln

(
1− p
1− b

))
= ln

(
be−3 + (1− b)e−1

)
,

where the reference distribution Pθ∗ induced by θ∗ is determined by the fol-

lowing maximization:

θ∗ = (θ∗0, θ
∗
1, θ
∗
2), θ∗2 ∈ arg max

θ2∈[a,b]

l(up | θ2)

giving us the maximum-likelihood estimator for what happened in the last

time-period which we also think is the right distribution for the next time-

period.

The result of this computation can also be obtained by using a variational

form which can for example be found in [Föllmer & Penner, 06] and takes

the following form

ρ̂t(X) = ln EPθ∗ [exp(−X) | Ft] ,

where Pθ∗ is again the reference distribution the decision maker establishes

by looking at the past, which, as we look at naive learning, will again only

be what happened in the last period. Since this gives way for an easier and

quicker computation we will use this form for the following calculations:

ρ̂2(X)(down, up) = ln EPθ∗ [exp(−X) | F2] (down, up)

= ln
(
be−1 + (1− b)e1

)
,

ρ̂2(X)(up, down) = ln EPθ∗ [exp(−X) | F2] (up, down)

= ln
(
ae−1 + (1− a)e1

)
.
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Here one can nicely observe the extremeness of the naive learning approach.

Even though the decision maker in these two calculations is located at the

same vertex in the tree he has very different beliefs about the probability of

going up or down which causes strong shifts in his risk conception.

In the case of going first down then up he clearly believes up will be more

probable in the next step. This is visible in his choice of reference measure

Pθ∗ in the penalty function which he sets b for going up and 1 − b for going

down.

In contrast to this the decision maker who has observed up and then down

will put more weight on the probability of going down in the next step and

therefore sets his reference measure a for up and 1− a for down.

For the last possible event in time 2 our risk-measure takes the following

value:

ρ̂2(X)(down, down) = ln EPθ∗ [exp(−X) | F2] (down, down)

= ln
(
ae1 + (1− a)e3

)
.

Time-period 1: If for the next time-period we maintain the assumption of

time-consistency and make use of the recursive formula, using the variational

form as we did above will yield

ρ̂1(X)(up) = ρ̂1(−ρ̂2(X))(up) = ln EPθ∗ [exp(ρ̂2(X)) | F1](up)

= ln
(
b
(
be−3 + (1− b)e−1

)
+ (1− b)

(
ae−1 + (1− a)e1

))
= ln

(
b2e−3 + (a+ b)(1− b)e−1 + (1− a)e1

)
.

Now if we calculate ρ̂1(X)(up) without the time-consistency assumption mean-

ing we cannot use the recursive formula we obtain the following equation:

ρ̂1(X)(up) = ess sup
p,q∈[a,b]

Ep,q [−X | F1] (up)− Ep,q

[
ln

(
θ1θ2

θ∗1θ
∗
2

)
| F1

]
(up)

= ln
(
b2e−3 + 2b(1− b)e−1 + (1− b)2e1

)
.

This clearly is not the same as we obtained under the assumption of time-

consistency. However if our dynamic experience based entropic risk measure
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were time-consistent these calculations should give us the same results. Hence

this example clearly shows us that the assumption of our risk measure being

time-consistent only leads up to contradictions and can therefore not be true.

To emphasize the reason for these inconsistencies set Zt := dPθ1
dPθ2

∣∣∣
Ft

, where

Pθi is the reference distribution the agent obtains at time i when looking at

past realizations and then maximizing the respective likelihood function. Then

for instance for t = 1 and ω = up we obtain:

ρ̂1(−ρ̂2(X − ln
ZT
Z2

))(up)

= ln

[
EPθ1

[
exp

(
ρ2

(
X3 − ln

Z3

Z2

))]
| F1

]
(up)

= ln

[
bEPθ2

[
e−X

Z

Z2

| F2

]
(up, up)

+(1− b)EPθ2
[
e−X

Z

Z2

| F2

]
(up, down)

]
= ln

[
b

(
be−3 bbb

bbb

bb

bb
+ (1− b)e−1 bb(1− b)

bb(1− b)
bb

bb

)
+ (1− b)

(
ae−1 b(1− b)b

b(1− b)a
b(1− b)
b(1− b)

+(1− a)e1 b(1− b)(1− b)
b(1− b)(1− a)

b(1− b)
b(1− b)

)]
= ln

[
b2e−3 + 2b(1− b)e−1 + (1− b)2e1

]
= ρ1(X)(up),

which, if ZT
Zi
6= 1 (generally true), clearly contradicts time-consistency.

In this special case for example the measure Pθ1 corresponds to the mea-

sure assigning the probability b to up in every time period, whereas Pθ2 is the

measure assigning b to up in the first 2 time periods and a in the last. That

is why e.g. Z3(up, down, up) = b(1−b)b
b(1−b)a and Z3

Z2
(up, down, up) = b

a
.

4.4.5 Lack of Time Consistency

As we have seen in the foregoing paragraph our definition of experience based

entropic risk does not result in a time-consistent dynamic convex risk mea-
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sure. This insight is somewhat disappointing as time consistency is a pros-

perous vehicle to solve tangible problems. On the other hand, [Schied, 07]

shows that a meaningful theory of convex risk can even be achieved in a not

generally time-consistent setting.

We have to pose the following question: Does there exist any learning

model for the reference distribution such that dynamic entropic risk becomes

time-consistent?

Remark 4.4.13. The major issue that might come into mind is the inde-

pendence of the reference distribution of future histories. As we will see,

this is basically the reason for the general impossibility result below. Fur-

thermore, the worst-case distribution chosen by nature is heavily dependent

on the reference distribution. As the latter one may change in a broad va-

riety of manners, there is no good reason to expect nature to choose in a

time-consistent way.

Next, we pose the most general definition of learning in entropic set-ups.

Definition 4.4.14. A reference distribution Pθ̃ for experience based entropic

risk is said to be obtained by general learning if the family (θ̃t)t is a family

of random variables, i.e. not deterministically fixed from scratch. We call

the resulting dynamic convex risk measure (ρ̃gt )t defined by virtue of α̃gt :=

Ĥt(·|(θ̃t)t) in the robust representation general experience based entropic risk.

We see that our definition of experience based entropic risk satisfies the

above definition as in that context learning takes place in terms of maximum

likelihood.

Using this general definition of learning, we can show an impossibility

result for time-consistency of general experience based entropic risk.

Proposition 4.4.15. General experience based entropic risk (ρ̃gt )t is in gen-

eral not time-consistent.
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Proof. Let θ̃ = (θ̃1, . . .) be obtained by general learning and tθ̃ such that

Ptθ̃ = Pθ̃(·|Ft). Let Zt+1 := dQtθ̃
dQt+1θ̃

∣∣∣
Ft+1

. Then, we have

ρ̃gt (X) = ln EQtθ̃ [e−X∣∣Ft]
= ln EQtθ̃

[
eln EQ

tθ̃
[e−X|Ft+1]

∣∣∣∣Ft]
= ln EQtθ̃

[
e

ln EQ
t+1θ̃

[
ZT
Zt+1

e−X
∣∣∣Ft+1

]∣∣∣∣Ft]
= ln EQtθ̃

[
e
−(−ρt+1(X−ln(

ZT
Zt+1

)))

∣∣∣∣Ft]
= ρ̃gt (−ρ̃

g
t+1(X − ln(

ZT
Zt+1

)))

6= ρ̃gt (−ρ̃
g
t+1(X)),

if ZT
Zt+1
6= 1 a.s., i.e. if, intuitively speaking, learning actually takes place and,

hence, the reference distributions at distinct time periods differ.

The foregoing result immediately implies our main intuition for expe-

rience based entropic risk not being time-consistent though quite puzzling

as entropic risk measures are broadly used as standard example for time-

consistent convex risk.

Remark 4.4.16 (Main Intuition). The minimal penalty function uniquely

defines a risk measure. Changing the reference distribution due to learning

results in a different minimal penalty and hence, a distinct risk measure.

Hence, an experience based entropic risk measure is actually a family of dy-

namic entropic risk measures and our definition of time-consistency is not

even applicable.

4.4.6 A Retrospective – In Between

In this section, we have stated a constructive approach to learning for convex

risk measures. We have encountered several problems in doing that:
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• In our first intuitive approach, we ran into problems in defining a

penalty function not entirely contingent on the past evolution of the

density process.

• In our second one, we ran into time-consistency problems.

In a way, in the next section, we put the cart before the horse: We

just take the robust representation in terms of minimal penalty of time-

consistent dynamic convex risk measures as given and ask ourselves what can

be said about “learning” in that respect. We will show an equivalent to the

fundamental Blackwell-Dubins Theorem for convex risk measures. As will be

seen, this result will be equivalently satisfied whenever the true parameter

is eventually learned upon as defined in the subsequent subsection. Our

result states some kind of herding behavior as every market participant will

eventually perceive risk in the same manner.

4.4.7 Learning for a given Time-Consistent Convex Risk

Measure

We now want to encounter, whether we actually have to construct a learning

mechanism or if learning is not already incorporated in some sense in the

concept of a time-consistent convex risk measure.

Remark 4.4.17. We have stated that the time-consistency problem encoun-

tered so far in learning models is due to the fact that penalties are not just

random variables but random itself, i.e. also the functional form depends on

the observations. This assumption in general contradicts time-consistency as

we actually may achieve distinct risk measures at a particular point in time.

However, the basis for learning is already incorporated in convex risk as the

domain of penalty consists of Bayesian updated distributions of the process.

Let us hence assume a true underlying parameter θ0 ∈ Θ and the agent

evaluates risk in terms of robust representation of time-consistent dynamic
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convex risk (ρt)t with minimal penalty (αmin
t )t. We then state the following

definition:

Definition 4.4.18. We say that θ0 is eventually learned upon if∣∣∣ρt(X)− EPθ0 [−X|Ft]
∣∣∣→ 0 Pθ0 − a.e.

for t→∞.

Proposition 4.4.19. The above definition is satisfied if and only if

lim
t→∞

∣∣∣∣ρt(X)−
∫
St+1

−ρt+1(X)Pθ0(dst+1|Ft)
∣∣∣∣ = 0 Pθ0 − a.e.

Proof. cp. [Klibanoff et al., 08], Proposition 5.

In the time-consistent case, the following assertion is equivalent to Defi-

nition 4.4.18:

Proposition 4.4.20. Given a time-consistent dynamic convex risk measure

(ρt)t, then θ0 is eventually learned upon if and only if

αmin
t (θ)

t→∞−→ 0 Pθ0 − a.e

for all θ such that αmin
0 (θ) <∞.

Proof. As (ρt)t is assumed to be time-consistent, it holds for all t

ρt = ρt(−ρt+1)

or, more elaborately, for all X

ρt(X)

= sup
θ∈Θ

{
EPθ [−X| Ft]− αmin

t (θ)
}

= sup
θ∈Θ

{
EPθ [−ρt+1(X)| Ft]− αmin

t (θ)
}
.

79
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As further for all X ∫
St+1

−ρt+1(X)Pθ0(dst+1|Ft)

= EPθ0 [−ρt+1(X)| Ft]

= sup
θ∈Θ

{
EPθ [−ρt+1(X)| Ft]− ᾱmin

t (θ)
}
,

where (ᾱmin
t )t is defined as

ᾱmin
t (θ) :=

{
0 if θ = θ0

∞ else,

the proof follows readily: αmin
t (θ)

t→∞−→ ᾱmin
t (θ) by Proposition 4.4.19. Theo-

rem 5.4.(4) in [Föllmer & Penner, 06] then shows equivalence to a vanishing

limit given time-consistency.

In the subsequent sections, we show the notion of being eventually learned

upon to be satisfied by convex risk measures in case of time-consistency and

under less stringent assumptions in terms of Blackwell & Dubins.

4.5 Adaption of Blackwell-Dubins Theorem

As a cornerstone for our main result on convergence of dynamic convex

risk measures, we first generalize the famous Blackwell-Dubins theorem, cp.

[Blackwell & Dubins, 62], from conditional probabilities to conditional expec-

tations of risky projects. As set out in the model section, we assume existence

of a reference distribution Pθ0 , θ0 ∈ Θ, as in [Blackwell & Dubins, 62]. This

reference has to be interpersonally being agreed upon.

Proposition 4.5.1. Let Pθ be absolutely continuous with respect to Pθ0 for
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some θ ∈ Θ,1 X as in the definition of the model, then∣∣EPθ [X |Ft]− EPθ0 [X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞.

Proof. For improving readability denote Pθ0 by P and Pθ by Q.

Given P and Q, Q being assumed absolutely continuous with respect to

P, i.e. dQ
dP = q, and for every n, dQ(·|Ft)

dP(·|Ft) = q(·|Ft). Then, the following line of

equations holds:

EQ[X|Ft] = EQ(·|Ft)[X]

= EP(·|Ft)[q(·|Ft)X]

and hence∣∣EQ[X|Ft]− EP[X|Ft]
∣∣ =

∣∣EP(·|Ft) [(q(·|Ft)− 1)X]
∣∣

≤ κ
∣∣EP(·|Ft) [(q(·|Ft)− 1)]

∣∣
= κ

∣∣∣∣∫ (q(·|Ft)− 1) P(d · |Ft)
∣∣∣∣ ,

which converges to zero P-a.s. by Blackwell-Dubins theorem as (Ft)t is as-

sumed to be a filtration and, hence, an increasing family of σ-fields.

Remark 4.5.2. As we see in the proof, the parametric setting is not needed.

The assertion can be shown in the same fashion in a non-parametric setting.

The same holds true for subsequent results.

4.6 Time-Consistent Risk Measures

We will now show a Blackwell-Dubins type result for coherent as well as

convex risk measures in case time-consistency is assumed. We see that the

risk measure eventually equals the expected value under the true parameter;

in this sense, uncertainty vanishes but risk remains.

1Note that we have assumed all distributions induced by parameters θ ∈ Θ to be

equivalent. In particular, all those are absolutely continuous with respect to each other

and this assumption is no restriction within our setup. Also note that the respective θ

does not have to be θ0.
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4.6.1 Time-Consistent Coherent Risk

Let (ρt)t be a time-consistent coherent risk measure possessing robust repre-

sentation

ρt(X) = sup
θ∈Θ̃

EPθ [−X |Ft],

with Θ̃ ⊂ Θ assumed to be a convex and compact set of parameters inducing

a weakly compact and convex set of priors Q̃ ⊂ Me(Pθ0).

Proposition 4.6.1. For every essentially bounded F-measurable random

variable X and time-consistent coherent risk measure (ρt)t we have

∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞.

Proof. Thanks to the assumption of time-consistency and compactness there

exists a parameter θ∗ ∈ Θ̃ such that ρt(X) = EPθ∗ [−X |Ft] for all t ∈
{0, ..., T} resulting in the following equation

∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣ =

∣∣EPθ∗ [−X |Ft]− EPθ0 [−X |Ft]
∣∣

and this converges to zero as t increases and Pθ∗ ∼ Pθ0 by Proposition 4.5.1.

Remark 4.6.2. Note that we have not assumed θ0 ∈ Θ̃.

Remark 4.6.3. The assumption that Θ̃ is weakly compact is a very crucial

assumption, as it assures that the supremum is actually attained. Addition-

ally it is a necessary property for our result to hold, which is shown in the

Proposition 4.6.4.

Proposition 4.6.4. Weak compactness of the set {Pθ|θ ∈ Θ̃} of priors is a

necessary condition for our result in Proposition 4.6.1 to hold.

Proof. For the proof, see the counterexample in Section 4.8.2.
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4.6.2 Time-Consistent Convex Risk

Let (ρt)t be a time-consistent dynamic convex risk measure, hence, possessing

the following robust representation:

ρt(X) = ess sup
θ∈Θ

{
EPθ [−X|Ft]− αmin

t (θ)
}

with dynamic minimal penalty (αmin
t )t.

Assumption 4.6.5. We assume (ρt)t to be continuous from below for all t,

i.e. for every sequence of random variables (Xj)j, Xj ∈ L∞ for all j, with

Xj ↗ X ∈ L∞ we have limj→∞ ρt(Xj) = ρt(X).

Remark 4.6.6. In the coherent case, continuity from below is equivalent to

weak compactness of the set {Pθ|(αt(θ))t = 0} = {Pθ|θ ∈ Θ̃} of priors as

inter alia shown in [Riedel, 09].

This assumption has technical advantages as it ensures the supremum to

be achieved in the robust representation of ρt. A proof is given in Theorem

1.2 of [Föllmer et al., 07]. It is also shown that continuity from below implies

continuity from above. To sum up: continuity from above is equivalent to the

existence of a robust representation. Continuity from below (which general-

izes the compactness assumption in the coherent case) is equivalent to the

existence of a robust representation in terms of a distinct prior distribution,

the so called worst case distribution.

From an economic point of view, continuity from below results from a

feature of preferences already claimed in [Arrow, 71] and related to this as-

sumption by [Chateauneuf et al., 05]. The condition on preferences we need

to ask for in order to obtain this feature is called Monotone Continuity: If

an act f is preferred over an act g then a consequence x is never that bad

that there is no small p such that x with probability p and f with probability

(1−p) is still preferred over g. The same is true for good consequences mixed

with g.
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Formally this means, for acts f � g, a consequence x and a sequence of

events {En}n∈N with E1 ⊇ E2 ⊇ ... and ∩n∈NEn = ∅ there exists an n̄ ∈ N
such that [

x if s ∈ En̄
f(s) if s /∈ En̄

]
� g and f �

[
x if s ∈ En̄
g(s) if s /∈ En̄

]
.

Now with the help of this assumption we can show the Blackwell-Dubins

result for time-consistent convex risk measures:

Proposition 4.6.7. For every essentially bounded F-measurable random

variable X and time-consistent convex risk measure (ρt)t, continuous from

below, it holds∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞

if there exists θ ∈ Θ such that αmin
t (θ) → 0 Pθ0-almost surely and αmin

0 (θ) <

∞.

Remark 4.6.8 (On the Assumption). By the main assumption in Proposi-

tion 4.6.7 there ought to be some θ such that the penalty vanishes in the long

run. This intuitively means that, eventually, nature at least has to pretend

some distribution to be the correct one. We see that this is satisfied e.g. in

the coherent or in the entropic case.

The assertion then states that it does not matter which risk measure was

chosen as long as the penalty is finite in the beginning. In the time-consistent

case, the penalty then vanishes for all those parameters and the convex risk

eventually will be coherent.

As we will see later, in the non-time-consistent case, nature has to pay a

price for not choosing a distribution time-consistently as in that case penalty

has to vanish for the true underlying parameter. To conclude: when nature

chooses the worst case distribution time-consistently, she merely has to pre-

tend some distribution to be the underlying one. If she does not choose the

worst case measures at any stage time-consistently, she has to reveal the true

underlying distribution in the long run.
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Remark 4.6.9. By Theorem 5.4 in [Föllmer & Penner, 06] due to time-

consistency the assumption αmin
t (θ)→ 0 Pθ0-almost surely for some θ ∈ Θ is

equivalent to αmin
t (θ)→ 0 Pθ0-almost surely for all θ ∈ Θ with α0(θ) <∞.

Proof of the proposition. By our assumptions on (ρt)t there exists θ∗ ∈ Θ

such that the assertion becomes∣∣∣EPθ∗ [−X|Ft]− αmin
t (θ∗)− EPθ0 [−X|Ft]

∣∣∣→ 0 Pθ0-a.s.

By the foregoing proposition on coherent risk, we know that this assertion

holds if and only if ∣∣αmin
t (θ∗)

∣∣→ 0 Pθ0-a.s.

Theorem 5.4 in [Föllmer & Penner, 06] implies this convergence being equiv-

alent to ∣∣αmin
t (θ)

∣∣→ 0 Pθ0-a.s.

for some θ ∈ Θ such that α0(θ) <∞ as assumed to hold in the assertion.

Corollary 4.6.10. By Proposition 4.4.20 under the conditions of Proposition

4.6.7, θ0 is eventually learned upon.

Again, note that we have not assumed θ0 such that α0(θ0) <∞.

Corollary 4.6.11. Every dynamic time-consistent convex risk measure (ρt)t

satisfying the assumptions of the Proposition 4.6.7 is asymptotically precise

as in the sense of [Föllmer & Penner, 06], i.e. ρt(X)→ ρ∞(X) = −X, and

vice versa. In particular, this holds for the coherent case as t→∞.

Proof. By the assumption of continuity from below, we know that a worst

case measure in the robust representation of (ρt)t is actually achieved. By

Theorem 5.4 (5) in [Föllmer & Penner, 06] we have that ρt(X)→ ρ∞(X) ≥
−X as we have assumed αmin

t (θ0) → 0. Then the assertion is shown by

Proposition 5.11 in [Föllmer & Penner, 06].
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Remark 4.6.12. In [Föllmer & Penner, 06] time-consistency is directly used

to show the existence of the limit ρ∞ := limt→∞ρt. As, by assumptions on X

in the model, limt→∞(EPθ0 [−X |Ft]) exists we achieve existence of ρ∞ from

our result not directly from time-consistency. In our proposition the con-

vergence of the α corresponds to asymptotic precision, however starting at a

different point of view. The question now is if time-consistency is a necessary

condition for our result to hold. If so, we have gained nothing, if not, we have

a more general existence result for ρ∞ than [Föllmer & Penner, 06]. We will

tackle the problem of necessity of time-consistency for our result within the

next section.

Proposition 4.6.13. (ρt)t being continuous from below is a necessary con-

dition for the result in Theorem 4.6.7 to hold.

Proof. In Proposition 4.6.4 we show necessity of weak compactness of the set

of priors for coherent risk measures. However, weak compactness is equivalent

to continuity from below and coherent risk measures are particular examples

for convex ones. This proofs the assertion.

Remark 4.6.14. In Proposition 4.6.7, if there does not exist θ such that

αmin
t (θ)→ 0 but αmin

t (θ∗) ≤ c ∈ R+ for all t ≥ n0 for some n0 ∈ N then there

is at least an upper bound on the remaining uncertainty:

|ρt(X)− EPθ0 [−X|Ft]| ≤ c

as t→∞.

4.7 Not Necessarily Time-Consistent Risk Mea-

sures

We will now achieve a Blackwell-Dubins type result for dynamic coherent and

convex risk measures for which we do not pose the time-consistency assump-

tion. However, we still assume the dynamic risk measure to be continuous
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from below, i.e. in the coherent case the set of priors to be weakly compact.

We can still show that anticipation of risk converges to the expected value

of a risky project X as defined in the model with respect to the underlying

parameter θ0.

4.7.1 Non Time-Consistent Coherent Risk

We will now restate the result in a manner that time-consistency is not

needed. We however need to assume that learning takes place; which is a

more liberal assumption than time-consistency as seen in Section 4.8.3.

Definition 4.7.1. (a) Given a dynamic convex risk measure (ρt)t, continu-

ous from below but not necessarily time-consistent, we call a distribution Pθ∗t

instantaneous worst case distribution at t if it satisfies2

ρt(X) = EPθ
∗
t [−X| Ft]− αmin

t (θ∗t ).

(b) We say learning takes place if there exists a θ ∈ Θ, Pθ ∼ Pθ0, such that

the instantaneous worst case measures Pθ∗t → Pθ weakly for t → ∞. In the

coherent case we need θ ∈ Θ̃ as the penalty is infinite otherwise.

In this very definition, we see however, that the agent does not have to

learn the true underlying parameter θ0. In this sense, nature might mislead

her to a wrong parameter.

We can now relax the time-consistency assumption in the main result of

this article. Note that time-consistency is a special case of Definition 4.7.1

given continuity from below as in that case the sequence of instantaneous

worst case parameters is constant. Hence, we achieve the more general result:

Proposition 4.7.2. Let (ρt)t be a not necessarily time-consistent dynamic

coherent risk measure for which learning takes place. Then∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞.

2Note, that existence is locally guaranteed by continuity from below. As we however

have not assumed time-consistency, the instantaneous worst case distributions at each time

period may differ, hence global existence is not necessarily fulfilled.
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Proof. To make things clearer we will write the proof in terms of penalty

functions and not in terms of priors. We know that a coherent risk measure

has a robust representation of a convex risk measure with a penalty

αmin
t (θ) =

{
0 if Pθ(·|Ft) ∈ Q̃(·|Ft),
∞ else

where Q̃ is the set of priors, i.e. Q̃ = {Pθ|(αmin
t (θ))t = 0} uniquely defining

the coherent risk measure. As we are in the case of a coherent risk measure,

we particularly have αmin
t (θ∗t ) = 0.

First, note that in case αmin
t (θ) → ∞ for all θ ∈ Θ̃3, our convergence

result cannot hold, as limt→∞ EPθ0 [−X|Ft] exists and is finite by assumption.

Secondly, in the time-consistent (coherent as well as convex) case, it suf-

fices to assume αmin
t (θ̄) → 0 for some θ̄ ∈ Θ. This assumption in the time-

consistent case is equivalent to αmin
t (θ)→ 0 for all θ for which αmin

0 (θ) <∞
by Theorem 5.4 in [Föllmer & Penner, 06].

Let us now turn to the proof itself: As Q̃ is assumed to be weakly compact

and non-empty, i.e. there exists a distribution that has penalty zero, we

achieve an instantaneous worst case distribution at each time step, i.e. at

any t, there exists θ∗t ∈ Θ s.t.

ρt(X) = EPθ
∗
t [−X| Ft]− αmin

t (θ∗t ) = EPθ
∗
t [−X|Ft].

Of course, due to “time-inconsistency”, we might have θ∗i 6= θ∗j for i 6= j.

The proof is completed by showing the following convergence4

EPθ∗n [−X|Ft]→ EPθ0 [−X|F∞] for n, t→∞.
3Of course, convergence is trivial in this case due to triviality of the penalty function.
4By our assumptions we know:

• EPθ
∗
n [−X|Ft]→ EPθ [−X|Ft] for n→∞ as θ∗n → θ by Portemonteau’s Theorem.

• EPθ
∗
n [−X|Ft]→ EPθ

∗
n [−X|F∞] for t→∞ by Proposition 4.5.1.

The question now is, whether the result also holds when letting n, t→∞ at once.

In the time-consistent case, where θ∗i = θ∗j for all i, j, this is immediate by Proposition

4.5.1.
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In order to do this we look at the following equation for n ≥ t which uses the

projectivity of the density, i.e. of the Radon-Nikodym derivative:

EPθ∗n [−X|Ft] = EPθ0 [−XdPθ∗n
dPθ0

∣∣∣
Fn
|Ft].

Define the following sequence of random variables Yn := −X dPθ∗n
dPθ0

∣∣∣
Fn

. These

have finite expectation and thanks to our assumption that learning takes

place and the original Blackwell-Dubins result we have

Pθ0 [ lim
n→∞

Yn = −X] = Pθ0 [−XdPθ∗∞
dPθ0

∣∣∣
F∞

= −X] = 1.

Then, by Lemma 4.7.4, the assertion follows.

Remark 4.7.3. Again, note that we have not assumed θ0 ∈ Θ̃.

In the foregoing proof, we need a general martingale convergence result

as stated in [Blackwell & Dubins, 62], Theorem 2. We know from Doob’s

famous martingale convergence result that

EPθ [X|Ft] = lim
t→∞

EPθ [X|F∞] a.s.

under suitable assumptions. The question is: If Xn ↗n X in some sense, is

it true that

EPθ [X|F∞] = lim
n,t→∞

EPθ [Xn|Ft] a.s.?

A positive answer is given in the following lemma.

Lemma 4.7.4. Fix θ. Let (Yn)n be a sequence of F-measurable random

variables such that EPθ [supn |Yn|] < ∞. Assume Yn →n→∞ Y almost surely

for some F-measurable random variable Y . Then, it holds5

lim
n,t→∞

EPθ [Yn| Ft] = EPθ [Y | F ] .

5The convergence in the assertion of the lemma can also be shown in L1.
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Proof. We re-sample the proof in [Blackwell & Dubins, 62]: For k ∈ N, set

Gk := sup{Yn|n ≥ k}. If n ≥ k, we hence have Yn ≤ Gk and thus

EPθ [Yn| Ft] ≤ EPθ [Gk| Ft] (4.3)

for all t. Together with Doob’s martingale convergence result and Lebesgue’s

theorem, we achieve

z := lim
j→∞

sup
n,t≥j

EPθ [Yn| Ft]

(4.3)

≤ lim
j→∞

sup
t≥j

EPθ [Gk| Ft]

= lim
t→∞

EPθ [Gk| Ft]
Doob
= EPθ [Gk| F ]

and

z ≤ lim
k→∞

EPθ [Gk | F ]
Lebesgue

= EPθ [Y | F ] .

In the same token,

x := lim
j→∞

inf
t,n≥j

EPθ [Yn| Ft] ≥ EPθ [Y | F ] ,

which completes the proof since

x = lim
j→∞

inf
t,n≥j

EPθ [Yn| Ft] ≤ lim
j→∞

sup
n,t≥j

EPθ [Yn| Ft] = z.

Remark 4.7.5 (On Blackwell-Dubins Type Learning). Blackwell-Dubins ap-

plies for learning models but does not necessarily result in time-consistency

as this notion is now motivated as a special case of our notion of θ0 to be

eventually learned upon.

We have built a bridge between the first and the second part of this article:

in the first part we have achieved dynamic convex risk measures by virtue of

learning that did not turn out to be time-consistent. Hence, we have shown,

that our result even holds for those models, e.g. entropic learning.
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Remark 4.7.6. Note, that the above new version of the fundamental result

particularly holds for time-consistent dynamic coherent risk measures as then

such a limiting θ as in the Definition 4.7.1(b) always exists, the worst case

one. However, we particularly have an existence result for the limit ρ∞ :=

limt→∞ ρt in the non time-consistent case and thus a more general existence

result than in [Föllmer & Penner, 06].

4.7.2 Non Time-Consistent Convex Risk

As in the case of coherent risk measures, we now state our generalization

of the Blackwell-Dubins theorem when the dynamic convex risk measure is

not assumed to be time-consistent. As in the coherent case, we assume that

learning takes place, i.e. there exists θ ∈ Θ such that the instantaneous worst

case θ∗t → θ as t → ∞. Furthermore, we have to assume αmin
t (θ∗t ) → 0 as

n→∞:6 As in the foregoing proof, we achieve convergence of the conditional

expectations under the family of instantaneous worst case distributions to the

conditional expectation under θ0.

Proposition 4.7.7. For every risky project X as set out in the model and

dynamic convex risk measure (ρt)t, continuous from below but not necessarily

time-consistent, we have

∣∣ρt(X)− EPθ0 [−X |Ft]
∣∣→ 0 Pθ0-almost surely for t→∞

if learning takes place for an instantaneous worst case sequence (θ∗t )t toward

some θ ∈ Θ and we have

αmin
t (θ∗t )→ 0.

Proof. Applying the procedure used in the proof of Proposition 4.7.2 to the

proof of Proposition 4.6.7 shows the assertion.

6Note, again, we do not have to assume αmin
t (θ0)→ 0.

91



4. INCREASING INFORMATION & CONVEX RISK

4.8 Examples

In this section, we first consider dynamic entropic risk measures as a promi-

nent economic example of time-consistent dynamic convex risk measures. In

the second part we state a counterexample serving as proof for Proposition

4.6.4 and 4.6.13. As a last point, we consider a dynamic risk measure that is

not time-consistent.

4.8.1 Entropic Risk

Here, we will have a look at time-consistent dynamic entropic risk measure

(ρet )t. Recall its Definition 4.3.10 in terms of

ρe
t(X) := δ log E

[
e−γX

∣∣Ft]
for some model parameter δ > 0. A fundamental result shows that the

robust representation of dynamic entropic risk is given in terms of conditional

relative entropy as penalty function, i.e. for all n, we have

αmin
t (θ) =

1

γ
Ĥt(Pθ|Pη) :=

1

γ
EPθ

[
ln
ZT
Zt

∣∣∣∣Ft] ,
where Zt := dPθ

dPη

∣∣∣
Ft

, the Radon-Nikodym derivative of Pθ with respect to Pη

conditional on Ft.
The fundamental Blackwell-Dubins Theorem immediately shows that

∣∣Pθ(·|Ft)− Pη(·|Ft)
∣∣→ 0

for every θ, η. Hence, we have that ZT
Zt
→ 1 Pθ0-a.s. for t→∞ and hence

αmin
t (θ)→ 0

showing Proposition 4.6.7 to hold. This is an alternative way to show the

last assertion in Theorem 6.3 in [Föllmer & Penner, 06] directly.
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4.8.2 Counterexample

To show necessity of continuity from below in Proposition 4.6.7 we consider

the following example introduced in [Föllmer & Penner, 06]:

The underlying probability space consists of the state space Ω = (0, 1]

endowed with the Lebesgue measure Pθ0 and a filtration (Ft)t generated by

the dyadic partitions of Ω. This means Ft is generated by the sets Jt,k :=

(k2−t, (k + 1)2−t] for k = 0, ..., 2t−1. In this setting [Föllmer & Penner, 06]

construct a time-consistent coherent and therefore convex risk measures with

αmin
t (θ0)→ 0 Pθ0-a.s. of the following form:

ρt(X) = − ess sup{m ∈ L∞t |m ≤ X}.

That this sequence from all properties assumed in Proposition 4.6.7 is only

missing continuity from below (here equivalent to weak compactness of priors)

can be seen in the following way: Let t be arbitrary but fixed and X defined

by virtue of

X(ω) =

{
0 for ω ∈ (0, (2t − 1)2−t],
1 else.

Then we can construct a sequence (Xn)n, Xn ↗ X, such that ρt(Xn) = 0

for all n but ρt(X) = −X 6= 0. This shows (ρt)t not being continuous from

below.

Now we still have to show that for this construction the statement of our

proposition is not fulfilled. To verify this look at a set A assumed to be

F := σ(
⋃
t≥0Ft)-measurable such that Pθ0 [A] > 0 and Pθ0 [Ac ∩ Jt,k] 6= 0 for

all t and k. For this set, it holds

lim
t→∞

∣∣∣ρt(1A)− EPθ0 [−1A |Ft]
∣∣∣ = lim

t→∞

∣∣0 + Pθ0 [A |Ft]
∣∣ = Pθ0 [A] > 0

and hence necessity of the continuity assumption is shown.

The skeptical reader might now object that such a set A might not exist.

For sake of completeness we briefly quote a set A from [Föllmer & Penner, 06]
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that satisfies our assumptions: Let A be defined by virtue of its complement

A :=

(
∞⋃
t=1

2t−1⋃
k=1

Uεt(k2−t)

)c

,

where Uεt denotes the εt-neighborhood and εt ∈]0, 2−2t].

4.8.3 A Non Time-Consistent Example

Here, we consider the entropic learning model introduced in Definition 4.4.6

explicitly in terms of Ω = ⊗tSt. Let Pθ denote the distribution induced by

θ = (θt)t, θt inducing a marginal distribution in M(St). Though the model

looks quite similar to dynamic entropic risk measures, we briefly recall it: Let

the robust representation of a dynamic convex risk measure (ρ̂t)t be given by

virtue of the penalty

α̂min
t (θ) := δĤt(Pθ|Pθ̂),

δ > 0 and θ̂ = (θ̂t)t be achieved as in Definition 4.4.5: for t ∈ N, θ̂t is the

maximum likelihood estimator of the foregoing observations and θ̂i := θ̂t for

i > t. Restricting ourselves to the iid case, we know that we achieve θ̂t → θ̄0,

Pθ0-a.s., where θ0 = (θ̄0)t for some θ̄0 inducing a marginal distribution in

M(St). By definition, (ρ̂t)t is a dynamic convex risk measure. As shown

in Proposition 4.4.15, (ρ̂t)t is not time-consistent. By standard results on

conditional entropic risk measures, (ρ̂t)t is continuous from below.

Furthermore, Proposition 4.7.7 is applicable and hence, our generaliza-

tion of Blackwell-Dubins’ theorem holds for experience based entropic risk.

Indeed: By definition of the penalty and our considerations in Section 4.8.1,

α̂min
t (θ) → 0 as t → ∞ for all θ ∈ Θ. Secondly, as the maximum likelihood

estimator is asymptotically stable, i.e. θ̂t → θ̄0, the conditional reference

distributions Pθ̂(·|Ft) converge. Thus, the worst case instantaneous distribu-

tions Pθ∗t converge as in Definition 4.7.1 due to continuity of the entropy and

as the effective domain of the penalty is given by conditional distributions, a
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fact that is made particularly precise in [Maccheroni et al., 06b].7

4.9 Conclusions

The major contribution of our results is to carry over the famous Blackwell-

Dubins theorem from probability distributions to convex risk measures. It is

particularly striking that the results still hold when time-consistency is not

posed as an assumption.

Hereto, the present article is twofold: In the first part, we show that

explicitly constructing dynamic convex risk measures by virtue of a penalty

emerging from a learning mechanism and inserted in the robust represen-

tation of convex risk measures leads to time-consistency problems. In the

second part, we have then assumed a time-consistent dynamic convex risk

measure for granted and asked the question of limit behavior; more elabo-

rately its convergence to the expected value under the true underlying dis-

tribution.

We therefore introduced a generalization of the famous Blackwell-Dubins

theorem on “Merging of Opinions” to conditional expected values. Existence

of a worst case distribution due to continuity from below and time-consistency

then allowed for a further generalization to coherent and convex risk mea-

sures. In particular, we have obtained the existence of the limiting risk

measure ρ∞ in that case.

By virtue of a counterexample, we have shown necessity of continuity

from below for our result. However, we have shown that time-consistency

is not necessary for the result to hold. In particular, we have obtained

a more general existence result for the limiting risk measure ρ∞ than in

[Föllmer & Penner, 06]. Our generalization of the Blackwell-Dubins theorem

7The notation is quite misleading at this point: the worst case instantaneous distribu-

tions Pθ∗t ∈ Me(Pθ0) as in Definition 4.7.1 is a distribution on (Ω,F) as θ∗t is an element

of Θ and not a “marginal” parameter as the above θts.
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was shown to be equivalent to the notion of the parameter being eventually

learned upon and the notion of asymptotic precision in [Föllmer & Penner, 06]

in the time-consistent case.

Further research should be conducted in the direction of our results.

First, of course, the riddle of explicitly constructing convex risk measures

by virtue of the penalty function is still to solve; in particular, how a learn-

ing mechanism might be introduced without destroying the assumption of

time-consistency. Weaker notions of time-consistency that are satisfied in

a “learning” environment should be introduced along with a comprehensive

theory allowing for solutions of tangible economic and social problems.

In the article at hand, we have considered risky projects with final payoffs,

i.e. random variables of the form X ∈ F . We have shown convergence of con-

vex risk measures to the conditional expected value with respect to the true

underlying distribution: a generalization of the Blackwell-Dubins theorem to

(not necessarily time-consistent) convex risk measures for final payoffs. To

us it seems being an interesting, yet challenging, task to generalize our result

to the case of convex risk measures for stochastic payoff processes (Xt)t with

respect to some filtration (Ft)t, where each Xt denotes the stochastic payoff

in period t. [Cheridito et al., 06] introduce dynamic convex risk measures for

these stochastic processes and elaborately discuss time-consistency issues but

do not inspect limiting behavior. A major difficulty in the case of stochastic

processes is that the assumption of equivalent distributions should be re-

placed by local equivalence, cp. [Riedel, 09]. Hence, the main question turns

out to be if the result still holds assuming local instead of global equivalence

as done here.
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Chapter 5

Closing Remarks

Within the three chapters of this thesis we have studied several problems

arising in the context of dynamic decision problems under Knightian Uncer-

tainty. Each chapter discusses its respective topic in detail and ends with

a conclusion summarizing its results. Nevertheless for completeness we will

briefly restate our achievements at this point:

First, we presented an alternative characterization for time-consistent sets

of measures on finite trees. It allows to express our set of measures through a

set of predictable processes which in return again defines a time-consistent set

of measures. This representation is unique up to the choice of a martingale

basis. Trying to generalize our assumptions in standard ways in order to

achieve a more universal representation failed, showing the scope of this

characterization.

In the third chapter we studied if and under what conditions a duality

theorem for optimal stopping problems holds in the multiple priors framework

of [Epstein & Schneider, 03]. The result is a minimax theorem for rather

general assumptions on the payoff process and standard assumptions on the

set of measures. We use this theorem to identify the worst case measure in

the setting of κ-ambiguity adapted to our framework and apply it to multiple

prior super- and submartingales determining the optimal stopping times.



5. CLOSING REMARKS

Finally, we have considered dynamic convex risk measures when infor-

mation is gathered in course of time. We have generalized the fundamental

Blackwell-Dubins theorem from [Blackwell & Dubins, 62] to not necessarily

time-consistent dynamic convex risk measures and have thus shown their con-

vergence to conditional expected values with respect to the true underlying

distribution: Intuitively the result shows that uncertainty vanishes but risk

endures.
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[Föllmer & Schied, 04] FÖLLMER, H. & SCHIED, A. (2004): Stochastic

Finance, An Introduction in Discrete Time, 2nd edition, Walter De-

Gruyter.
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