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Foreword

Microarrays are a ubiquitous tool in molecular biology with a wide range of appli-
cations on a whole-genome scale including high-throughput gene expression analysis,
genotyping, and resequencing. Although several different microarray platforms exist,
we focus on high-density oligonucleotide arrays, sometimes called DNA chips. One of
the advantages of higher density arrays is that they allow the simultaneous measure-
ment of the expression of several thousand genes at once, possibly covering all genes
of a species in a single experiment.

Oligonucleotide microarrays consist of short DNA molecules, called probes, affixed
or synthesized at specific locations of a solid support. Probes are built, nucleotide-
by-nucleotide, by a light-directed combinatorial chemistry. Because of the natural
properties of light, the quality of a microarray can be compromised if the physical
arrangement of the probes on the array and their synthesis schedule are not carefully
designed. This thesis is mainly concerned with the problem of designing the layout of
a microarray in such a way that the incidence of the unintended illumination problem
is reduced. We call it the microarray layout problem (MLP), using the term layout to
refer to where and how the probes are synthesized on the array, i.e., their arrangement
and their embeddings.

In the first chapter of this thesis, we briefly review the role of microarrays in analyzing
complex genetic information. We then describe the technology currently employed in
the production of high-density microarrays as well as the problems that arise during
manufacturing.

In Chapter 2, we give a formal definition to the microarray layout problem and describe
in detail two quality measures that are used to evaluate a given layout. Finding an
optimal layout with respect to any of these two measures seems unlikely, even for very
small arrays. As we shall see in Chapter 4, the MLP can be modeled as a quadratic
assignment problem (QAP), a classical combinatorial optimization problem that is
notoriously hard to solve in practice, giving further indication that the MLP is, in
fact, a hard problem. In practice, the layout problem is usually approached in several
“phases” with a range of heuristic algorithms.

The placement phase is the subject of Chapter 3. Traditionally, this phase consists
of fixing an embedding for all probes and finding an arrangement minimizing a given
cost function. We describe several known placement algorithms with an emphasis on
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methods that can be used to design large arrays. A new algorithm, called Greedy,
is also presented. One of the reasons why we show the relation between the MLP
and the QAP is that we can now use QAP techniques as placement algorithms. This
is interesting because there is a rich literature on methods for solving the QAP. In
Chapter 4, we also show the results of using one QAP heuristic to design small artificial
chips, and discuss how this approach can be applied to larger microarrays.

Chapter 5 focuses on the re-embedding phase that usually follows the placement. In
this phase, one attempts to further improve the layout by finding a different embed-
ding of the probes without changing their location on the chip. Again, we review all
known re-embedding algorithms, describing the most successful ones in detail. We
also introduce a new algorithm, called Priority re-embedding.

In the last decade, commercial microarrays have grown from a few thousands to more
than a million probe sequences on a single chip. Many placement algorithms are unable
to deal with such large arrays because of their non-linear time and space complexities.
For this reason, the layout problem is sometimes broken into smaller sub-problems by
a partitioning algorithm. This is the focus of Chapter 6, where we present an extensive
evaluation of existing algorithms and show how the partitioning phase can improve
solution quality and reduce running time.

In Chapter 7, we discuss the disadvantages of the traditional “place and re-embed”
approach to the layout problem. We then propose a new algorithm, called Greedy+,
that for the first time merges the placement and re-embedding phases into a single one.
Our results show that Greedy+ indeed outperforms all known placement algorithms.

In Chapter 8, we present a pioneering analysis and evaluation of the layout of several
Affymetrix GeneChip R© arrays, considered the industry standard in terms of high-
density oligonucleotide microarrays. Some design decisions that might affect the qual-
ity of these arrays are described in detail. We then use some of the algorithms presented
in earlier chapters to propose alternative layouts for two of the latest generation of
GeneChip arrays, showing how the risk of unintended illumination can be reduced.

Another problem related to the production of microarrays is to find a shortest syn-
thesis schedule for a given set of probes, which we refer to as the shortest deposition
sequence problem (SDSP). The SDSP is an instance of the shortest common superse-
quence problem (SCSP), a classical problem in computer science that is known to be
NP-complete even under various restrictions. Several existing heuristics are able to
find good approximate solutions for the SCSP, but, in Chapter 9, we investigate the
feasibility of finding a shortest deposition sequence for currently available oligonucleo-
tide microarrays. Chapter 10 concludes this thesis with a short discussion about the
presented results.
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Publications. Parts of this thesis have been published in advance. The conflict in-
dex model for evaluating a microarray layout (Chapter 2) and the Pivot Partitioning
algorithm (Section 6.4) were first presented at the Workshop on Algorithms in Bioin-
formatics (WABI), in Zürich (de Carvalho Jr. and Rahmann, 2006a). The conflict
index model was also presented, together with the QAP formulation of the microarray
layout problem (Chapter 4), at the German Conference on Bioinformatics (GCB) in
Tübingen (de Carvalho Jr. and Rahmann, 2006b).

The work on the shortest common supersequence (Chapter 9) was first published as a
technical report at the Faculty of Technology of Bielefeld University (de Carvalho Jr.
and Rahmann, 2005). Finally, a book chapter containing a more accessible description
of the microarray layout problem and of several algorithms presented here, including
the previously unpublished Greedy+, 1-Dimensional and 2-Dimensional Partitioning,
is expected to appear in late 2007 (de Carvalho Jr. and Rahmann, to appear).

This thesis also contains previously unpublished material, namely:

• the Greedy placement algorithm (Section 3.6);

• the Priority re-embedding algorithm (Section 5.5);

• the layout analysis of several commercially available GeneChip arrays with re-
spect to the defined evaluation criteria (Chapter 8).

Software. Most algorithms described in this thesis have been implemented in Java,
along with several Perl and Python scripts to parse chip specifications from Affymetrix
and manipulate microarray layouts. The branch-and-bound search for the shortest
deposition sequence (Chapter 9) was implemented in Perl and, subsequently, in C.
Source code is available from the author upon request.
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Chapter 1

Introduction

In the last few years, the genomes of an increasing number of organisms have been
sequenced, generating a vast amount of information. Sequencing the genomes, how-
ever, is just the first step in understanding these organisms at the molecular level,
and the focus has turned to understanding the function of genes and other parts of
the genome, as well as understanding their regulation at a genome-wide scale, a field
known as functional genomics.

The central dogma of molecular biology states that the genetic information in the
DNA is transcribed into portable messenger RNA (mRNA) molecules that are sub-
sequently translated into proteins. While the DNA is viewed as a storage device for
genetic instructions, proteins actually execute these instructions in several forms such
as enzymes, transcription factors, structural elements, immunoglobulins, hormones
and signaling molecules.

A deoxyribonucleic acid (DNA) molecule is a repeating chain composed of four different
nucleotides: adenine (A), guanine (G), cytosine (C) and thymine (T). DNA molecules
are structurally organized in duplexes consisting of two helical DNA molecules coiled
around a common axis, forming a structure known as the double helix. The messenger
ribonucleic acid (mRNA) is a copy of a segment of one DNA strand with uracil (U)
replacing thymine (T). The basic building blocks for the proteins are the amino acids.
There are 22 amino acids naturally occurring in plants, animals and bacteria. The
sequence that forms a protein is coded directly in the mRNA in terms of successive
groups of three nucleotides called codons. The genes are the RNA-encoding segments
of the DNA, and they are said to be expressed in a cell when they are transcribed.
The set of all mRNA molecules, or transcripts, produced in one or a population of
cells is called transcriptome.

To meet the challenge posed by functional genomics, new and highly ingenious exper-
imental techniques have been developed. Among them, microarrays have emerged as
the method of choice for large-scale gene expression studies because they provide an
efficient and rapid method to investigate the entire transcriptome of a cell.
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Chapter 1 Introduction

The complementary nature of the DNA double helix is the basis for the large-scale
measurement of mRNA levels with microarrays. Under the right conditions, two com-
plementary nucleic acid molecules (or strands) combine to form double stranded he-
lices, a reaction know as hybridization. This principle allows the use of selected DNA
strands with a known sequence of nucleotides (the probes) to query complex popula-
tions of unidentified, complementary strands (the targets).

1.1 High-density oligonucleotide microarrays

Several microarray technologies are available today, based on a variety of fabrication
techniques including printing with fine-pointed pins onto glass slides, ink-jet printing,
electrochemistry on microelectrode arrays and photolithography. This thesis is mainly
concerned with the production of high-density oligonucleotide microarray, sometimes
called DNA chips, that are fabricated by photolithography.

This type of microarray consists of relatively short DNA probes synthesized at specific
locations, called features or spots, of a solid surface. Each probe is a single-stranded
DNA molecule of 10 to 70 nucleotides that perfectly matches with a specific part of
a target molecule. The probes are used to verify whether (or in which quantity) the
targets are present in a given biological sample.

The first step of a microarray experiment consists of collecting mRNAs or genomic
DNA from the cells or tissue under investigation. The mixture to be analyzed is pre-
pared with fluorescent tags and loaded on the array, allowing the targets to hybridize
with the probes. Any unbound molecule is washed away, leaving on the array only
those molecules that have found a complementary probe. Finally, the array is exposed
to a light source that induces fluorescence, and an optical scanner reads the intensity
of light emitted at each spot.

Under ideal conditions, each probe will hybridize only to its target. Thus, it is possible
to infer whether a given molecule is present in the sample by checking whether there is
light coming from the corresponding spot of the array. The expression level of a gene in
a cell can also be inferred because each spot contains several million identical probes,
and the strength of the fluorescent signal on a spot is expected to be proportional to
the concentration of the target in the sample. In practice, each target is queried by
several probes (called probe set), and complex statistical calculations are performed
to infer the concentration from the observed signals.

Microarrays have been extensively used for cellular gene expression monitoring and
profiling (Schena et al., 1995; Lockhart et al., 1996) with diverse applications such
as discovery of gene functions (Cho et al., 1998; Hughes et al., 2000), drug target
identification and validation (Marton et al., 1998; Liotta and Petricoin, 2000), analysis
of drug response (Debouck and Goodfellow, 1999), classification of clinical samples
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1.1 High-density oligonucleotide microarrays

(Perou et al., 1999) and detection of splicing variants (Hu et al., 2001). Microarrays
are also used for genotypic analysis, in two main areas: SNP analysis, and mutation
and variant detection. Single nucleotide polymorphisms (SNP) are the most common
source of genetic variation and, in fact, large numbers of SNPs have been discovered
using microarrays (Lindblad-Toh et al., 2000). Special mutation detection arrays have
also been used, for instance, to identify HIV variants (Kozal et al., 1996).

The advantage of high-density oligonucleotide microarrays is that they can have more
than a million spots, and are thus able to query tens of thousands of genes, possibly
covering the entire genome of an organism. This type of microarray was originally
designed in the late 1980s as a tool for DNA sequencing, a technology that is known
as Sequencing by Hybridization (SBH). Today, the pioneering Affymetrix GeneChipR©

arrays, for instance, have up to 6.5 million spots on a coated quartz substrate measur-
ing a little over 1 cm2. The spots are as narrow as 5 µm (5 microns, or 0.005 mm), and
are arranged in a regularly-spaced rectangular grid (McGall and Christians, 2002).

1.1.1 Photolithography

GeneChip arrays are produced by combinatorial chemistry and techniques derived from
micro-electronics and integrated circuit fabrication. Probes are typically 25 bases long
and are synthesized on the chip, in parallel, in a series of repetitive steps. Each step
appends the same kind of nucleotide to probes of selected regions of the chip. The
sequence of nucleotides added in each step is called deposition sequence or synthesis
schedule. The selection of which probes receive the nucleotide is achieved by pho-
tolithography (Fodor et al., 1991, 1993; Lipshutz et al., 1999).

Figure 1.1 illustrates this process: The quartz wafer of a GeneChip array is initially
coated with a chemical compound topped with a light-sensitive protecting group that
is removed when exposed to ultraviolet light, activating the compound for chemical
coupling. A lithographic mask is used to direct light and remove the protecting groups
of only those positions that should receive the nucleotide of a particular synthesis step.
A solution containing adenine (A), thymine (T), cytosine (C) or guanine (G) is then
flushed over the chip surface, but the chemical coupling occurs only in those positions
that have been previously deprotected. Each coupled nucleotide also bears another
protecting group so that the process can be repeated until all probes have been fully
synthesized.

Photolithographic masks are notoriously expensive and cannot be changed once they
have been manufactured. Thus, any change in the chip layout requires the production
of a new set of masks. A similar method of in situ synthesis known as Maskless
Array Synthesizer (MAS) was later developed to eliminate the need of such masks
(Singh-Gasson et al., 1999). Probes are still built by repeating cycles of deprotection
and chemical coupling of nucleotides. The illumination, however, relies on an array
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Figure 1.1: Left: Affymetrix GeneChip array (image courtesy of Affymetrix, Inc.). Right:
probe synthesis via photolithographic masks. The chip is coated with a chemical com-
pound and a light-sensitive protecting group; masks are used to direct light and activate
selected probes for chemical coupling; nucleotides are appended to deprotected probes;
the process is repeated until all probes have been fully synthesized.

of miniature mirrors that can be independently controlled to direct or deflect the
incidence of light on the chip.

NimbleGen Systems, Inc. currently uses its Maskless Array Synthesizer (MAS) technol-
ogy based on its own Digital Micromirror Device (DMD) similar to Texas Instruments’
Digital Light Processor (DLP) that can control 786 000 to 4.2 million individual pixels
of light to produce microarrays with spots as small as 16 µm × 16 µm (Nuwaysir et al.,
2002). The geniom R© system of febit biotech GmbH, a highly-automated self-contained
platform for customized microarray production, also uses a micromirror array to direct
the synthesis process (Baum et al., 2003). Recently, the same technology has also been
used to synthesize arrays of peptides using 20 natural amino acids as well as synthetic
amino acid analogs (Pellois et al., 2002; Gao et al., 2003; Li et al., 2004; Bhushan,
2006).

1.1.2 The unintended illumination problem

Regardless of which method is used to direct light (masks or micromirror arrays), it
is possible that some probes are accidentally activated for chemical coupling because
of light diffraction, scattering or internal reflection on the chip surface. This un-
wanted illumination of regions introduces unexpected nucleotides that change probe
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1.2 Manufacturing and design problems

sequences, significantly reducing their chances of successful hybridization with their
targets. Moreover, these faulty probes may also introduce cross-hybridizations, which
can interfere in the experiments performed with the chip.

This problem is more likely to occur near the borders between a masked and an
unmasked spot (in the case of maskless synthesis, between a spot that is receiving
light and a spot that is not). This observation has given rise to the term border
conflict.

It turns out that by carefully designing the arrangement of the probes on the chip and
their embeddings (the sequences of masked and unmasked steps used to synthesize each
probe), it is possible to reduce the risk of unintended illumination. This issue becomes
even more important as there is a need to accommodate more probes on a single chip,
which requires the production of spots at higher densities and, consequently, with
reduced distances between probes.

The main focus of this thesis is to design the layout of a microarray in such a way
that we minimize the incidence of the unintended illumination problem, what we call
the microarray layout problem (MLP). Our goal is to study the several phases of the
design in detail, and to provide better and faster algorithms for each phase. The MLP
is discussed in Chapters 2 to 8. A related problem is the shortest deposition sequence
problem, which attempts to find the shortest deposition sequence to synthesize a given
set of probes. In Chapter 9, we analyze the feasibility of finding an exact solution to
this problem.

1.2 Manufacturing and design problems

We conclude this chapter by briefly describing other interesting mathematical and
computational problems that arise in the design and production of oligonucleotide
microarrays. Recently, Kahng et al. (2003c, 2006) and Atlas et al. (2004) proposed
methodologies to integrate the various steps in the design of a microarray chip, in-
cluding probe selection, deposition sequence design and, ultimately, layout design.

Probe selection. Although a probe should only hybridize to its target, it is known
that, in practice, cross-hybridizations are likely to occur. The goal of the probe se-
lection problem is to find the smallest number of probes with the specified length
covering all genes of interest satisfying the three criteria: homogeneity, sensitivity and
specificity as proposed by Lockhart et al. (1996). Homogeneity ensures that probes
can hybridize to their targets at about the same experimental temperature. Sensitivity
detects self-complementarity and prevents probes with secondary structures. Speci-
ficity ensures that probes are unique to each gene and eliminates probes that could
cross-hybridize.
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This problem has been extensively studied in the past few years (Li and Stormo,
2001; Kaderali and Schliep, 2002; Rahmann, 2004), and many algorithms have been
proposed to speed up the specificity check, regarded as the most computationally
intensive step (Rahmann, 2002; Sung and Lee, 2003; Chou et al., 2004). Among
the presented approaches, Rahmann (2002) proposed a fast algorithm based on suffix
arrays (Manber and Myers, 1990) that eliminates candidates that have a long common
factor with other genes.

Mask decomposition problem. Once the probes have been selected and the layout
of the chip has been designed, the photolithographic masks must be produced. The
masks used by Affymetrix are fabricated by a series of “flashes”, with each flash
producing a rectangular part of the mask. The cost of a mask is directly proportional
to the number of flashes (Hubbell and Stryer, 1998; Hubbell et al., 1999) and, in fact,
there may be a limit in the number of flashes before a more expensive fabrication
technology must be used. Ideally, each mask must be decomposed in the minimum
number of rectangles in order to reduce costs and incidence of errors.

Hannenhalli et al. (2002) studied this problem, called mask decomposition problem,
as an instance of the rectilinear polygon interior cover problem, which, according to
Garey and Johnson (1979) was first shown to be NP-hard by Masek (Unpublished
manuscript). Although approximation algorithms with small performance ratios are
known (Franzblau and Kleitman, 1986), Hannenhalli et al. (2002) explored the partic-
ular characteristics of photolithographic masks to devise an efficient algorithm which
found provably optimal decompositions for a set of relatively small GeneChip arrays.

Probe quality control. During the production of a microarray chip, it is possible that
one synthesis step may be entirely compromised, resulting in damages to all probes
that receive the nucleotide of that particular step, and, consequently, invalidating any
experimental result obtained with the chip. In order to detect such failures, Affymetrix
have introduced the idea of producing a set of quality control probes (QC) on their
chips (Affymetrix, Inc., 2002). Target molecules for each QC probe are deliberately
added to the biological mixture during the experiment with the chip. If no synthesis
step fails, the QC probes should exhibit similar signal intensities. Thus, by measuring
the fluorescent signal emitted by each QC probe, it is possible to infer if they have
been correctly synthesized or not.

In fact, several copies of each quality control probe are produced on different spots
of the chip using different synthesis schedules (embeddings) in such a way that it is
possible to check if a synthesis step was compromised (Hubbell and Pevzner, 1999)
(and maybe even identify systematic problems in the chip production). However,
the validation proposed by Hubbell and Pevzner (1999) does not take into account
possible defects on isolated spots containing QC probes caused by other manufacturing
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1.2 Manufacturing and design problems

problems. For this reason, robust schemes based on a combinatorial design approach
that guarantee coverage of all synthesis steps and that are able to tolerate a great
number of unreliable QC probes have been proposed (Alon et al., 2001; Sengupta and
Tompa, 2002; Colbourn et al., 2002; Khan et al., 2003).
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Chapter 2

The Microarray Layout Problem

In this chapter we give a more precise definition of the microarray layout problem
(MLP) and define criteria for evaluating a given layout. The description that follows
assumes that probes are synthesized with photolithographic masks, but the concepts
also apply to the maskless production (with micromirror arrays). Two evaluation
criteria are presented: border length and conflict index. As shown later, the conflict
index model can be seen as a generalization of the border length model.

Formally, we have a set of probes P = {p1, p2, . . . , pn}, where each pk ∈ {A, C, G, T}∗
with 1 ≤ k ≤ n is produced by a series of T synthesis steps. Frequently, but not
necessarily, all probes have the same length `. Each synthesis step t uses a mask Mt

to induce the addition of a particular nucleotide Nt ∈ {A, C, G, T} to a subset of P
(Figure 2.1). The nucleotide deposition sequence N = N1N2 . . . NT corresponding to
the sequence of nucleotides added at each synthesis step is a supersequence of all
p ∈ P .

A microarray chip consists of a set of spots, or sites, S = {s1, s2, . . . , sm}, where
each spot s is specified by its coordinates on the chip surface and accommodates a
unique probe pk ∈ P . Note that we usually refer to s as containing a single probe pk

although, in practice, it contains several million copies of it. Each probe is synthesized
at a unique spot, hence there is a one-to-one assignment between probes and spots
(if we assume that there are as many spots as probes, i.e., m = n). Real microarrays
may have complex physical structures but we assume that the spots are arranged in
a rectangular grid with nr rows and nc columns. We also assume that probes can be
assigned to any spot.

In general, a probe can be embedded within N in several ways. An embedding of pk

is a T -tuple εk = (εk,1, εk,2, . . . , εk,T ) in which εk,t = 1 if probe pk receives nucleotide
Nt (at step t), and 0 otherwise. In particular, a left-most embedding is an embedding
in which the bases are added as early as possible (as in ε1 in Figure 2.1). Similarly, a
right-most embedding is an embedding in which the bases are added as late as possible
(as in ε8 in Figure 2.1).

9



Chapter 2 The Microarray Layout Problem

Figure 2.1: Synthesis of a hypothetical 3×3 chip with photolithographic masks. Left: chip
layout and the 3-mer probe sequences. Center: deposition sequence with 2.5 cycles (cycles
are delimited with dashed lines) and probe embeddings (asynchronous). Right: first six
masks (masks 7 to 10 not shown).

We say that an embedding εk is productive (unmasked) at step t if εk,t = 1, or unpro-
ductive (masked) otherwise. The terms productive and unproductive can also be used
to denote unmasked and masked spots, respectively.

The deposition sequence is often a repeated permutation of the alphabet, mainly
because of its regular structure and because such sequences maximize the number of
distinct subsequences (Chase, 1976). The deposition sequence shown in Figure 2.1 is
a 2.5-time repetition of ACGT, and we thus say that it has two and a half cycles.

For cyclic deposition sequences, it is possible to distinguish between two types of
embeddings: synchronous and asynchronous. In the former, each probe has exactly one
nucleotide added in every cycle of the deposition sequence; hence, 25 cycles or 100 steps
are needed to synthesize probes of length 25. In the latter, probes can have any number
of nucleotides added in any given cycle, allowing shorter deposition sequences. For this
reason, asynchronous embeddings are usually the choice for commercial microarrays.
For instance, all GeneChip arrays that we know of can be asynchronously synthesized
in 74 steps with N = (TGCA)18TG., i.e., 18.5 cycles of TGCA — we refer to this sequence
as the standard Affymetrix deposition sequence (see Chapter 8).

Ideally, the deposition sequence should be as short as possible in order to reduce
manufacturing time, cost and probability of errors (Rahmann, 2003). Finding the
shortest deposition sequence to synthesize a set of probes is an instance of a classical
computer science problem known as the shortest common supersequence problem,
which will be the focus of Chapter 9. For the MLP, however, we assume that N is a
fixed sequence given as input.
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2.1 Problem statement

2.1 Problem statement

Given a set of probes P, a geometry of spots S, and a deposition sequence N as
specified above, the MLP asks to specify a chip layout (λ, ε) that consists of

1. a bijective assignment λ : S → {1, . . . , n} that specifies a probe index k(s) for
each spot s (meaning that probe pk(s) will be synthesized at s),

2. an assignment ε : {1, . . . , n} → {0, 1}T that specifies an embedding εk =
(εk,1, . . . , εk,T ) for each probe index k, such that the deposition sequence, re-
stricted to the selected positions where εk,t = 1, spells out the probe sequence
pk, i.e., N [εk] :≡ (Nt)t:εk,t=1 = pk,

such that a given penalty function is minimized. We introduce two such penalty
functions: total border length and total conflict index.

2.2 Border length

The first formal definition of the unintended illumination problem was given by Han-
nenhalli et al. (2002), who defined the border length Bt of a mask Mt as the number
of borders separating masked and unmasked spots at synthesis step t, that is, the
number of border conflicts in Mt. Formally,

Bt :=
1

2
·

∑
s,s′∈S

1{s and s′ are adjacent} · 1{εk(s),t 6=εk(s′),t}. (2.1)

where 1{cond} is the indicator function that equals 1 if condition cond is true, and 0
otherwise. The total border length of a given layout (λ, ε) is the sum of border lengths
over all masks, that is

B(λ, ε) :=
T∑

t=1

Bt. (2.2)

The border length minimization problem was then defined as the problem of finding a
layout minimizing the total border length (Hannenhalli et al., 2002). As an example,
the six masks shown in Figure 2.1 have B1 = 4, B2 = 3, B3 = 5, B4 = 4, B5 = 8
and B6 = 9. The total border length of that layout is 52 (masks M7 to M10 are not
shown).
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Hamming distance. In the next chapters, we refer to the Hamming distance H(k, k′)
between the embeddings εk and εk′ as the number of synthesis steps in which they
differ. Formally,

H(k, k′) :=
T∑

t=1

1{εk,t 6=εk′,t}. (2.3)

Note that H(k, k′) gives the number of border conflicts generated when probes with
embeddings εk and εk′ are placed in adjacent spots.

2.2.1 Lower bounds

Lower bounds for the BLMP with synchronous and asynchronous embeddings were
given by Kahng et al. (2002), based on a simple graph formulation. Unfortunately,
both lower bounds are not tight, and their computation is time-consuming, especially
for large chips.

Synchronous embeddings. Let L be a complete directed graph over the set of probes
P with arcs weighted with the Hamming distance between the (unique) embeddings
of the corresponding probes.

Since a probe can have at most four neighbors on the chip, we delete all but the four
arcs with the least weights of every node. Furthermore, assuming that the chip is a
rectangular grid with nr rows and nc columns, we delete the heaviest 2 · (nr + nc)
remaining arcs, because the spots on the borders of the chip have less than four
neighbors. It is not difficult to see that the cost of any placement must be greater
than the total arc weight of L, and we obtain the following theorem.

Theorem 2.1. The total arc weight of L is a lower bound on the total border length
of the optimum layout with synchronous embeddings.

Asynchronous embeddings. With asynchronous embeddings, we can construct a
similar complete directed graph L′. For the arc weights, however, it is necessary to
estimate the minimum number of border conflicts between the two probes (among all
of their possible embeddings).

Kahng et al. (2002) observed that the number of bases of probe pk that can be “aligned”
with bases of pk′ cannot exceed the length of LCS(pk, pk′), where LCS(pk, pk′) is the
longest common subsequence of pk and pk′ . Therefore, an arc of L′ between probes pk

and pk′ can be weighted with ` − |LCS(pk, pk′)|, where ` is the length of both probe
sequences (assuming probes have the same length).
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2.3 Conflict index

We can then delete all but the four arcs with the least weights of each probe and,
subsequently, the heaviest 2 · (nr + nc) remaining arcs of L′, to obtain the following
theorem.

Theorem 2.2. The total arc weight of L′ is a lower bound on the total border length
of the optimum layout with asynchronous embeddings.

2.3 Conflict index

The border length measures the quality of an individual mask or set of masks. With
this model, however, it is not possible to know how the border conflicts are distributed
among the probes. Ideally, all probes should have roughly the same risk of being
damaged by unintended illumination, so that all signals are affected by approximately
the same amount.

The conflict index is a quality measure defined with the aim of estimating the risk of
damaging probes at a particular spot (de Carvalho Jr. and Rahmann, 2006b); it is
thus a per-spot or per-probe measure instead of a per-mask measure. Additionally, it
takes into account two practical considerations observed by Kahng et al. (2003a):

a) stray light might activate not only adjacent neighbors but also spots that lie as
far as three cells away from the targeted spot;

b) imperfections produced in the middle of a probe are more harmful than in its
extremities.

For a proposed layout (k, ε), the conflict index C(s) of a spot s whose probe pk(s) is
synthesized in T masking steps according to its embedding vector εk(s) is

C(s) :=
T∑

t=1

(
1{εk(s),t=0} · ω(εk(s), t) ·

∑
s′: neighbor

of s

1{εk(s′),t=1} · γ(s, s′)
)
. (2.4)

The indicator functions ensure the following conflict condition: During step t, there
is a conflict at spot s if and only if s is masked (εk(s),t = 0) and a close neighbor s′ is
unmasked (εk(s′),t = 1) — since light directed at s′ may somehow reach s. When s is
unmasked, it does not matter if it accidentally receives light targeted at a neighbor,
and when s′ is masked, there is no risk that it damages probes of s since it is not
receiving light.

Function γ(s, s′) is a “closeness” measure between s and s′ (to account for observation
a). We define it as

γ(s, s′) := (d(s, s′))−2, (2.5)
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Figure 2.2: Ranges of values for both γ and ω on a typical Affymetrix chip where probes
of length ` = 25 are synthesized in T = 74 masking steps. Left: approximate val-
ues of the distance-dependent weighting function γ(s, s′) for a spot s in the center and
close neighbors s′. Right: position-dependent weights ω(ε, t) on the y-axis for each value
of bε,t ∈ {0, . . . , 25} on the x-axis, using θ = 5/`ε and c = 1/ exp (θ).

where d(s, s′) is the Euclidean distance between the spots s and s′. In (2.4), s′ ranges
over all neighboring spots that are at most three cells away from s (see Figure 2.2,
left), which is in accordance with observation a. In general, we use the terms close
neighbor or simply neighbor of a spot s to refer to a spot s′ that is at most three
cells away (vertically and horizontally) from s. In other words, s′ is inside a 7 × 7
region centered on s. This is in contrast to the terms direct or immediate neighbor
of s, used to denote a spot s′ that is adjacent to s (in other words, when s′ shares a
common border with s on the chip). Obviously, an immediate neighbor s′ is also a
close neighbor of s.

The position-dependent weighting function ω(ε, t) accounts for the significance of the
location inside the probe where the undesired nucleotide is introduced in case of acci-
dental illumination (observation b). We defined it as:

ω(ε, t) := c · exp (θ · λ(ε, t)) (2.6)

where c > 0 and θ > 0 are constants, and for 1 ≤ t ≤ T ,

λ(ε, t) := 1 + min(bε,t, `ε − bε,t), (2.7)

bε,t :=
t∑

t′=1

εt′ , `ε :=
T∑

t=1

εt = bε,T . (2.8)

In other words, `ε is the length of the final probe specified by ε (equal to the number
of ones in the embedding), and bε,t denotes the number of nucleotides added up to
and including step t. The parameter θ controls how steeply the exponential weighting
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2.3 Conflict index

function rises toward the middle of the probe (Figure 2.2, right). In our experiments,
unless stated otherwise, we use probes of length ` = 25, and parameters θ = 5/` and
c = 1/ exp (θ). We can now speak of the total conflict index of a given layout (λ, ε) as
the sum of conflict indices over all spots, that is

C(λ, ε) :=
∑

s

C(s). (2.9)

Conflict index distance. Many of the algorithms discussed in later chapters were
initially developed for border length minimization, and they usually rely on the Ham-
ming distance defined earlier (2.3). We have adapted some of these algorithms to work
with conflict index minimization by using the conflict index distance, which extends
the Hamming distance by taking into account the position inside the probe where
the conflict occurs (observation b). The conflict index distance C(k, k′) between the
embeddings εk and εk′ is defined as:

C(k, k′) :=
T∑

t=1

(
1{εk,t=0 and εk′,t=1} · ω(εk, t) + 1{εk′,t=0 and εk,t=1} · ω(εk′ , t)

)
. (2.10)

The conflict index distance C(k, k′) can be interpreted as the sum of the conflict indices
resulting from placing probes with embeddings εk and εk′ at hypothetical neighboring
spots, ignoring the distance between these spots (note that there is no dependency on
γ) and the conflicts generated by other neighbors.

2.3.1 The choices of γ and ω

The conflict index C(s) attempts to estimate the risk of damaging the probes of a
spot s due to unintended illumination. The definitions of γ and ω given here are an
arbitrary choice in an attempt to capture the characteristics of the problem.

However, the most appropriate choice of γ depends on several attributes of the specific
technology utilized to produce the chips such as the size of the spots, the density of the
probes on the chip, the physical properties of the light being used (intensity, frequency,
etc.), the distance between the light source and the mask, and the distance between
the mask (or the micromirrors) and the chip surface.

The most appropriate choice of ω depends on the chemical properties of the hybridi-
zation between probes and targets. Although it is generally agreed that the chances
of a successful hybridization are higher if a mismatched base occurs at the extremities
of the formed duplex instead of at its center (Hubbell et al., 1999; Southern et al.,
1999; Guo et al., 1997), the precise effects of this position are not yet fully understood
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and have been an active topic of research (Binder et al., 2004; Binder and Preibisch,
2005).

We propose the use of an exponential function, so that ω grows exponentially from the
extremities of the probe to its center (see Figure 2.2, right). The motivation behind
this definition is that the probability of a successful stable hybridization of a probe
with its target should increase exponentially with the absolute value of its Gibbs free
energy, which increases linearly with the length of the longest perfect match between
probe and target.

Finding the best choice of γ and ω for a particular technology is beyond the scope
of this thesis. We note, however, that all algorithms discussed in the next chapters
were developed to work independently of the values given by these functions. In
other words, should γ and ω be defined differently, no changes to the algorithms are
necessary.

2.4 Chip quality measures

Most of the algorithms discussed in the next chapters can work with border length as
well as conflict index minimization. In our experiments, we will usually present results
with both measures, making a distinction between border length minimization (BLM)
and conflict index minimization (CIM).

The relation between these two measures becomes clear if γ(s, s′) and ω(ε, t) are re-
defined as follows: Set γ(s, s′) := 1 if s′ is a direct neighbor of s, and := 0 otherwise.
Also, set c = 1/2 and θ = 0 so that ω(ε, t) := 1/2 independently of the position in
the probe where the conflict occurs. Now

∑
s C(s) =

∑T
t=1 Bt; that is, total border

length is equivalent to the total conflict index for a particular choice of γ and ω. For
the choices (2.5) and (2.6), they are not equivalent but still correlated, since a good
layout has low border lengths as well as low conflict indices.

To better compare border lengths for chips of different sizes, we usually divide the
total border length by the number nb of internal borders of the chip, which equals
nr(nc − 1) + nc(nr − 1) if the chip is a rectangular grid with nr rows and nc columns.
We thus call B(λ, ε)/nb the normalized border length, NBL for short, of a given layout
(λ, ε). This can be further divided by the number of synthesis steps to give the
normalized border length per mask B(λ, ε)/(nb·T ). We may also refer to the normalized
border length of a particular mask Mt as Bt/nb. Since Bt ≤ nb, Bt/nb ≤ 1 and thus
B(λ, ε)/nb ≤ T .

Similarly, it is useful to divide the total conflict index by the number of probes on
the chip, and we define the average conflict index, ACI for short, of a layout as
C(λ, ε)/|P|.
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2.5 How hard is the microarray layout problem?

The MLP appears to be hard because of the super-exponential number of possible
arrangements, although no NP-hardness proof is yet known. A formulation of the
MLP as a quadratic assignment problem (QAP) is given in Chapter 4. The QAP
is a classical combinatorial optimization problem that is, in general, NP-hard, and
particularly hard to solve in practice (Çela, 1997). Optimal solutions are thus unlikely
to be found even for small chips and even if we assume that all probes have a single
predefined embedding.

If we consider all possible embeddings (up to several million for a typical Affymetrix
probe), the MLP is even harder. For this reason, the problem has been traditionally
tackled in two phases. First, an initial embedding of the probes is fixed and an
arrangement of these embeddings on the chip with minimum conflicts is sought. This
is usually referred to as the placement phase. Second, a post-placement optimization
phase re-embeds the probes considering their location on the chip, in such a way that
the conflicts with neighboring spots are further reduced. Often, the chip is partitioned
into smaller sub-regions before the placement phase in order to reduce running times,
especially on larger chips.

The most important placement algorithms are surveyed in Chapter 3, whereas re-
embedding algorithms are discussed in Chapter 5. Partitioning algorithms are the
focus of Chapter 6. Finally, we present recent developments that simultaneously place
and re-embed probes in Chapter 7.
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Chapter 3

Placement Algorithms

The input for a placement algorithm consists of a geometry of spots S, the deposition
sequence N , and a set of probes P , where each probe is assumed to have at least one
embedding in N . The output is a one-to-one assignment λ of probes to spots. If there
are more spots than probes to place, one can add enough “empty” probes that do
not introduce any conflicts with the other probes (since light is never directed to their
spots).

All algorithms discussed in this section assume that an initial embedding of the probes
is given, which can be a left-most, right-most, synchronous or otherwise pre-computed
embedding — a placement algorithm typically does not change the given embed-
dings.

3.1 Optimal masks for uniform arrays

Feldman and Pevzner (1994) were the first to formally address the unintended illumi-
nation problem. They showed how a placement for a uniform array with minimum
number of border conflicts can be constructed using a two-dimensional Gray code.
Uniform arrays are arrays containing all 4` probes of a given length `, which require
a deposition sequence of length 4 · `. These arrays were initially developed for the
technique known as Sequencing by Hybridization (Southern et al., 1992).

In general, the term Gray code refers to an ordering of a set of elements in which
successive elements differ in some pre-specified, usually small, way (Savage, 1997).
The construction of Feldman and Pevzner is based on a two-dimensional Gray code
composed of strings of length ` over a four-letter alphabet. It generates a 2` × 2`

array filled with `-mer probes in which each pair of adjacent probes (horizontally or
vertically) differs by exactly one letter. This construction is illustrated in Figure 3.1.
An (` + 1)-mer array is constructed by first copying the `-mer array into the upper
left quadrant of the (` + 1)-mer array and reflecting it horizontally and vertically into
the other three quadrants. The letter in front of the probes in the upper left quadrant
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Figure 3.1: Construction of a placement for uniform arrays (containing the complete set of
`-mer probes) based on a two-dimensional Gray code, resulting in layouts with minimum
number of border conflicts.

of the `-mer array is added to all probes in the upper left quadrant of the (` + 1)-mer
array. The probes of the other three quadrants are extended in the same way.

It can be shown that such placement generates masks with a minimum number of
border conflicts if probes are synchronously embedded (see Figure 3.2). However,
because this construction is restricted to uniform arrays and synchronous embeddings,
it is of limited practical importance for current microarrays.

3.2 TSP and threading algorithms

The border length problem on arrays of arbitrary probes was first discussed by Han-
nenhalli et al. (2002). The article reports that the first Affymetrix chips were designed
using a heuristic for the traveling salesman problem (TSP). The idea is to build a
weighted graph with nodes representing probes, and edges containing the Hamming
distances between their embeddings (see Equation 2.3). A TSP tour on this graph
is heuristically constructed and threaded on the array in a row-by-row fashion (Fig-
ure 3.3a).

For uniform arrays, every solution of the TSP corresponds to a (one-dimensional) Gray
code since consecutive elements in the tour differ in only one position, thus minimizing
border conflicts between neighboring probes. For general arrays, a TSP solution also
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3.2 TSP and threading algorithms

Figure 3.2: Masks for the 8 × 8 uniform array of Figure 3.1 when probes are synchronously
embedded into (ACGT)3. Masked spots are represented by shaded squares, unmasked spots
by white squares. Note that masks of the same cycle have the same number of border
conflicts.

reduces border conflicts as consecutive probes in the tour are likely to be similar.
Threading the (one-dimensional) tour on a two-dimensional chip, row-by-row, leads to
an arrangement where consecutive probes in the same row have few border conflicts,
but probes in the same column may have very different embeddings.

Another problem of this approach is that the TSP is known to be NP-hard, so com-
puting an optimal TSP tour even for a small 300× 300 array is not feasible, and only
fast approximation algorithms are suitable. In practice, Hannenhalli et al. managed
to achieve marginal improvements in tour cost using the 2-opt algorithm for TSP of
Lin and Kernighan (1973) and an algorithm for weighted matching due to Gabow
(1976). Unfortunately, their efforts resulted in only 1.05% reduction in tour cost for
a chip with 66 000 probes when compared to the greedy TSP algorithm initially used
at Affymetrix.

Since improvements in the cost of the TSP tour seemed unlikely, Hannenhalli et al.
turned their attention to the problem of threading the tour on the chip. They studied
several threading alternatives, which they collectively called k-threading (Figure 3.3).
A k-threading is a variation of the standard row-by-row threading, in which the right-
to-left and left-to-right paths are interspaced with alternating upward and downward
movements over k sites (the row-by-row threading can be seen as a k-threading with
k = 0); k is called the amplitude of the threading. Hannenhalli et al. experimentally
observed that 1-threading may reduce total border length of layouts constructed with
TSP tours in up to 20% for large chips when compared to row-by-row threading.

From now on, we will use the term TSP+k-threading to refer to the method of com-
puting a TSP tour and threading it on the array using k-threading.
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a) b) c)

Figure 3.3: Different ways of threading probes on a chip. a) Standard row-by-row (0-
threading); b) 1-threading; c) 2-threading.

3.3 Epitaxial placement

A different strategy inspired by techniques used in the design of VLSI circuits, called
Epitaxial placement, or seeded crystal growth, was proposed by Kahng et al. (2002). It
essentially grows a placement around a single starting “seed” using a greedy heuristic.
Although it was originally designed for chips with synchronous embeddings, it can be
trivially implemented for asynchronous embeddings as well.

The algorithm starts by placing a random probe in the center of the array and continues
to insert probes in spots adjacent to already-filled spots. Priority is given to spots
whose all four neighbors are filled, in which case a probe with the minimum number of
border conflicts with the neighbors is placed. Otherwise, all spots with 1 ≤ i < 4 filled
neighbors are examined. For each spot s, the algorithm finds a non-assigned probe p
whose number of border conflicts with the filled neighbors of s, c(s, p), is minimal and
assigns a normalized cost c̄(s, p) := σi · c(s, p)/i for this assignment, where 0 < σi ≤ 1
are scaling coefficients (the authors propose σ1 = 1, σ2 = 0.8, and σ3 = 0.6). The
assignment with minimum c̄(s, p) is made and the procedure is repeated until all probes
have been placed.

In order to avoid repeated cost computations, the authors propose keeping a list of
probe candidates, for each spot, sorted by their normalized costs. This list must be
updated whenever one of its neighbors is filled; thus, it is updated at most four times
(but only two times on average).

With this algorithm, Kahng et al. claim a further 10% reduction in border conflicts over
the TSP+1-threading approach of Hannenhalli et al. (2002). However, the Epitaxial
algorithm has at least quadratic time complexity as it examines every non-placed probe
to fill each spot, and large memory requirements if a list of probe candidates is kept for
each spot. Hence, like the TSP approach, it does not scale well to large chips. In their
experiments, the Epitaxial algorithm needed 274 seconds to design a 100 × 100 chip,
but 4 441 seconds to design a 200 × 200 chip. That is a 16.2-fold increase in running
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a) b) c)

Figure 3.4: Sliding-Window Matching algorithm. a) Initial arrangement of probes p1 to
p16 inside a 4 × 4 window (with spots s1 to s16 and a selected maximal independent
set of spots (shaded). b) Bipartite graph with selected probes and spots, and a minimum
weight perfect matching (dark edges) resulting in a minimum cost re-assignment of probes
to spots. c) New arrangement inside the window according to the perfect matching.

time for a 4-fold increase in number of spots. Chips of larger dimensions could not be
computed because of prohibitively large running time and memory requirements.

3.4 Sliding-Window Matching

The Sliding-Window Matching algorithm (Kahng et al., 2003a), SWM for short, is not
exactly a placement algorithm as it iteratively improves an existing placement that
can be constructed, for instance, by TSP+1-threading (Section 3.2).

The authors noted that the TSP tour can be conveniently substituted by lexicograph-
ically sorting the probe sequences or, alternatively, their binary embedding vectors
with a linear-time radix sort. The sorting is faster, but it is also likely to produce a
worse initial placement than the TSP tour, with consecutive embeddings being similar
only in their first synthesis steps. The authors argue that this is of little importance
in practice given that this placement is only used as a starting point for the SWM
algorithm, and the lexicographical sorting should be the choice for large microarrays
because computing a TSP tour takes prohibitively long for chips larger than 500×500
spots. (From now on, we will use the term sorting+k-threading, or simply k-threading,
to refer to the method of sorting probes lexicographically and threading them on the
array using k-threading.)

As its name implies, SWM works inside a window that starts at the top left of the
chip and slides from left to right, top to bottom, while maintaining a certain amount
of overlap between each iteration. When the window reaches the right end of the chip,
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it is re-started at the left end of the next set of rows, also retaining an overlap with
the preceding set of rows.

At each iteration, the algorithm attempts to reduce the total border length inside the
window by relocating some of its probes (Figure 3.4a). First, a random maximal inde-
pendent set of spots is selected, and the probes assigned to these spots are removed.
The term “independent” refers to the fact that selected spots can be re-assigned to
probes without affecting the border length of other selected spots. The algorithm
then creates a bipartite graph with nodes representing the removed probes and the
now vacant spots (Figure 3.4b). The edges of this graph are weighted with the num-
ber of border conflicts that are generated by the corresponding assignment. Finally,
a minimum weight perfect matching on this graph is computed, and the indicated
assignments are made (Figure 3.4c).

The small graphs generated by SWM can be computed rather quickly as a minimum
weight perfect matching can be constructed in polynomial time (for a survey of algo-
rithms, see Gross and Yellen, 2004). The authors experimentally observed that the
best results are obtained with small window sizes (e.g. 6 × 6) and an overlap of half
the window size. Moreover, employing less effort in each window and executing more
cycles of optimization gives better results than more effort in each window and less
cycles.

Selecting an independent set of spots ensures that the cost of each new assignment
can be computed independently of the other assignments. The SWM was designed
for border length minimization (BLM) and it takes advantage of the fact that, in
this model, an independent set of spots can be constructed by selecting spots that do
not share a common border. SWM can be adapted for conflict index minimization
(CIM) by using larger windows containing relatively sparse independent sets (to our
knowledge, this has not been implemented yet). Therefore several random independent
sets should be constructed before moving the window.

3.5 Row-Epitaxial

Row-Epitaxial (Kahng et al., 2003a) is a variant of the Epitaxial algorithm with two
main differences introduced to improve scalability: i) spots are filled in a pre-defined
order, namely, from top to bottom, left to right, and ii) only a limited number Q of
probe candidates are considered for filling each spot.

Like SWM, Row-Epitaxial improves an initial placement that can be constructed by,
for example, sorting+1-threading. For each spot s with a probe p, it looks at the
next Q probes that lie in close proximity (to the right or below s), and swaps p with
the probe that generates the minimum number of border conflicts between s and its
left and top neighbors.
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In the experiments conducted by Kahng et al. (2003a, 2004), Row-Epitaxial was the
best large-scale placement algorithm (for BLM), achieving up to 9% reduction in
border conflicts over TSP+1-threading, whereas SWM achieved slightly worse results
but required significantly less time.

Row-Epitaxial can also be adapted to CIM by swapping a probe of a spot s with
the probe candidate that minimizes the sum of conflict indices in a region around s
restricted to those neighboring probes that are to the left or above s (those which have
already found their final positions).

Table 3.1 shows the results of using Row-Epitaxial for both border length and conflict
index minimization on chips with random probe sequences (uniformly generated).
Probes were lexicographically sorted and left-most embedded into the standard 74-
step Affymetrix deposition sequence and threaded on the array with k-threading. The
resulting layouts were then used as a starting point for Row-Epitaxial.

Although Hannenhalli et al. (2002) suggested 1-threading for laying out a TSP tour
on the chip, our results show that increasing the threading’s amplitude from k = 0 to
k = 4 usually improves the initial layout produced by sorting+ k-threading, both in
terms of border length and conflict index minimization. For example, increasing the
amplitude from k = 0 to k = 4 reduced the normalized border length of the initial
layout in up to 6.56% (from 23.6828 to 22.1279) and the average conflict index in up
to 4.51% (from 689.6109 to 658.5097) on 800 × 800 chips.

However, the best initial layouts rarely led to the best final layout produced by Row-
Epitaxial. With BLM the best results were usually achieved with k = 0, whereas with
CIM there was no clear best value for k. In any case, the difference due to varying k
for the threading were rather small for Row-Epitaxial — at most 0.78% in normalized
border length (from 16.9760 with k = 0 to 17.1085 with k = 4) and 0.26% in average
conflict index (from 448.0140 with k = 0 to 449.1653 with k = 4), both on a 800×800
chip with Q = 5K (we use “K” to denote a multiple of a thousand).

Our results also give further indication that the running time of Row-Epitaxial is
approximately O(Qn), i.e., linear in the chip size, where Q is a user-defined parameter
that controls the number of probe candidates examined for each spot. In this way,
solution quality can be traded for running time: More candidates yield better layouts
but also demand more time.

3.6 Greedy

As discussed in the previous section, the best results obtained with Row-Epitaxial
rarely came from the best initial layouts (produced by k-threading). This is proba-
bly because Row-Epitaxial ignores the probe order used by k-threading when it looks

25



Chapter 3 Placement Algorithms

Table 3.1: Normalized border length and average conflict index of layouts produced by
Row-Epitaxial (Row-Eptx) on random chips of various dimensions, with initial layouts
produced by sorting+ k-threading. Running times are reported in minutes and include
the time for k-threading and Row-Epitaxial. All results are averages over a set of five
chips.

Border length minimization Conflict index minimization
Dim. Q k k-threading Row-Eptx Time k-threading Row-Eptx Time

300 × 300 5K 0 24.9649 18.2935 1.1 701.8698 462.5194 4.9
1 24.1235 18.2999 1.3 690.8091 462.4656 5.1
2 23.8695 18.3072 1.2 685.5916 462.6394 4.6
3 23.7993 18.3226 1.2 683.5980 462.5885 5.1
4 23.7588 18.3279 1.3 682.3542 462.7775 5.1

10K 0 24.9649 18.1477 2.8 701.8698 444.0354 9.7
1 24.1235 18.1529 2.8 690.8091 444.0904 9.3
2 23.8695 18.1519 2.9 685.5916 444.1960 10.0
3 23.7993 18.1591 2.8 683.5980 443.9850 10.6
4 23.7588 18.1603 2.9 682.3542 444.1745 9.8

20K 0 24.9649 18.0274 7.2 701.8698 426.7824 18.9
1 24.1235 18.0325 6.9 690.8091 426.8863 18.5
2 23.8695 18.0277 6.6 685.5916 426.8832 19.3
3 23.7993 18.0272 6.6 683.5980 426.8694 19.6
4 23.7588 18.0321 7.5 682.3542 426.6600 20.2

500 × 500 5K 0 24.2693 17.6000 4.3 693.5428 456.2042 15.2
1 23.3454 17.6095 4.1 682.2097 456.1341 15.2
2 23.0797 17.6246 4.3 676.4884 456.5261 14.1
3 22.9632 17.6474 3.8 672.8160 456.5337 14.1
4 22.9162 17.6670 3.7 671.2636 456.8203 15.3

10K 0 24.2693 17.4503 13.1 693.5428 438.7075 33.9
1 23.3454 17.4523 12.8 682.2097 438.7379 33.6
2 23.0797 17.4582 12.7 676.4884 438.6477 30.4
3 22.9632 17.4685 12.5 672.8160 438.8183 30.8
4 22.9162 17.4755 12.5 671.2636 438.9280 32.8

20K 0 24.2693 17.3303 28.2 693.5428 421.1358 66.7
1 23.3454 17.3297 29.0 682.2097 421.1580 63.6
2 23.0797 17.3308 27.4 676.4884 421.1087 67.7
3 22.9632 17.3344 27.4 672.8160 420.9758 65.1
4 22.9162 17.3376 27.7 671.2636 421.0436 64.2

800 × 800 5K 0 23.6818 16.9760 12.2 689.6109 448.0140 36.9
1 22.6092 16.9927 12.2 672.2254 448.1474 40.3
2 22.3205 17.0187 11.7 664.9753 448.6130 38.6
3 22.1958 17.0589 11.7 660.5923 448.9159 40.2
4 22.1279 17.1085 12.0 658.5097 449.1653 40.0

10K 0 23.6818 16.8032 37.0 689.6109 432.2283 88.2
1 22.6092 16.8111 39.1 672.2254 432.5153 91.4
2 22.3205 16.8235 37.7 664.9753 432.5031 85.8
3 22.1958 16.8353 37.7 660.5923 432.6652 90.1
4 22.1279 16.8622 39.0 658.5097 432.6980 91.9

20K 0 23.6818 16.6771 83.1 689.6109 415.6470 174.2
1 22.6092 16.6803 83.2 672.2254 415.7402 181.1
2 22.3205 16.6851 83.4 664.9753 415.6622 179.7
3 22.1958 16.6915 86.5 660.5923 415.7609 172.3
4 22.1279 16.7007 80.3 658.5097 415.7951 190.9
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for probe candidates to fill a certain spot (Row-Epitaxial always looks for candidates
in the next Q spots, row-by-row, regardless of how probes were threaded on the ar-
ray). Another possible disadvantage of the k-threading+Row-Epitaxial approach is
that each swap made by Row-Epitaxial shuffles the probes in the not-changed spots,
destroying the lexicographical order used during the threading.

In this section, we present a new placement algorithm, Greedy, that combines the
Row-Epitaxial greedy heuristic and a k-threading filling strategy in a single phase,
using a linked list of probes to maintain the probe order during the whole placement.
Like Row-Epitaxial, Greedy fills the spots in a greedy fashion, i.e., for each spot s,
it examines Q probe candidates and chooses the one that can be placed at s with
minimum cost (Greedy can also be easily implemented for border length as well as for
conflict index minimization).

There are two main differences to Row-Epitaxial. First, instead of (re-)filling spots
row-by-row, spots are filled with k-threading (there is no need for an initial layout).
Perhaps more importantly, Greedy sorts the probes lexicographically and keeps them
in a doubly-linked list. This list is used to maintain the lexicographical order during
placement. Moreover, it is also used to improve the chances of finding a candidate
having fewer conflicts with the last placed probe (which will be its neighbor on the
chip): Once a probe p is selected to fill a certain spot, it is removed from the list and
the next search of candidates examines the probes around p’s former position in the
list, e.g., Q/2 probes to the left and to the right of p.

Table 3.2 shows the results of using Greedy for both border length and conflict index
minimization on the same set of (random) chips that have been previously used for the
experiments with Row-Epitaxial (Table 3.1). The best layouts were always achieved
with k = 0. Interestingly, increasing the amplitude of the threading from k = 1 to
k = 4 always improved the results in terms of border length. In terms of conflict
index, increasing k from 1 to 3 worsened the results; in most cases, increasing it from
3 to 4, improved the results.

In terms of BLM, Greedy and Row-Epitaxial produced similar results, with the best
layout of Greedy being sometimes marginally better and sometimes marginally worse
than the best layout of Row-Epitaxial. In terms of CIM, however, Greedy was con-
stantly and significantly better than Row-Epitaxial, achieving up to 5.65% reduction in
average conflict index (from 415.6470 to 392.1786) on a 800×800 chip with Q = 20K.

In our results, Greedy was between 13.9% and 59.9% slower than Row-epitaxial in the
BLM case (19.7% on average), and between 3.7% and 18.1% in the CIM case (only
5.6% on average). The difference between Row-epitaxial and Greedy drops in the CIM
case because the extra time spent in computing the cost of each candidate is higher
than in the BLM case, which reduces the impact of the time required to keep the
doubly-linked list.
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Table 3.2: Normalized border length (NBL) and average conflict index (ACI) of layouts
produced by Greedy on random chips of various dimensions. The results of Row-Epitaxial
on the same set of chips (Table 3.1) are shown for comparison. Running times in minutes.

Border length minimization Conflict index minimization
Row-Epitaxial Greedy Row-Epitaxial Greedy

Dim. Q k NBL Time NBL Time ACI Time ACI Time
3002 5K 0 18.2935 1.1 18.3182 1.6 462.5194 4.9 440.5166 5.4

1 18.2999 1.3 18.5037 1.6 462.4656 5.1 444.7837 5.3
2 18.3072 1.2 18.4222 1.6 462.6394 4.6 446.8662 5.3
3 18.3226 1.2 18.3863 1.6 462.5885 5.1 447.7464 5.0
4 18.3279 1.3 18.3728 1.5 462.7775 5.1 447.6559 5.3

10K 0 18.1477 2.8 18.1830 4.3 444.0354 9.7 426.3480 10.9
1 18.1529 2.8 18.3912 4.7 444.0904 9.3 429.5617 11.3
2 18.1519 2.9 18.3058 4.5 444.1960 10.0 431.7555 11.1
3 18.1591 2.8 18.2732 4.6 443.9850 10.6 432.6821 11.3
4 18.1603 2.9 18.2415 4.6 444.1745 9.8 432.3800 11.0

20K 0 18.0274 7.2 18.0576 9.6 426.7824 18.9 415.5003 30.3
1 18.0325 6.9 18.2813 9.2 426.8863 18.5 418.2357 21.3
2 18.0277 6.6 18.1985 9.2 426.8832 19.3 419.4866 21.1
3 18.0272 6.6 18.1617 9.5 426.8694 19.6 420.7345 20.1
4 18.0321 7.5 18.1328 8.8 426.6600 20.2 420.7332 21.0

5002 5K 0 17.6000 4.3 17.5830 5.8 456.2042 15.2 432.3023 15.9
1 17.6095 4.1 17.7842 5.3 456.1341 15.2 437.2417 16.2
2 17.6246 4.3 17.7087 5.3 456.5261 14.1 439.7432 15.6
3 17.6474 3.8 17.6759 5.4 456.5337 14.1 441.3441 16.2
4 17.6670 3.7 17.6561 5.4 456.8203 15.3 441.0668 16.1

10K 0 17.4503 13.1 17.4673 15.8 438.7075 33.9 415.6951 35.4
1 17.4523 12.8 17.6765 16.0 438.7379 33.6 419.7788 33.4
2 17.4582 12.7 17.5936 16.8 438.6477 30.4 422.1943 36.3
3 17.4685 12.5 17.5550 16.2 438.8183 30.8 424.0554 34.6
4 17.4755 12.5 17.5324 15.7 438.9280 32.8 423.7936 35.2

20K 0 17.3303 28.2 17.3554 33.3 421.1358 66.7 401.4609 67.1
1 17.3297 29.0 17.5829 34.0 421.1580 63.6 404.9949 69.8
2 17.3308 27.4 17.4939 34.1 421.1087 67.7 406.9576 67.8
3 17.3344 27.4 17.4519 34.7 420.9758 65.1 408.5048 69.4
4 17.3376 27.7 17.4273 33.7 421.0436 64.2 408.4556 68.4

8002 5K 0 16.9760 12.2 16.9124 15.3 448.0140 36.9 426.0757 41.9
1 16.9927 12.2 17.1259 15.5 448.1474 40.3 430.9759 42.7
2 17.0187 11.7 17.0551 15.1 448.6130 38.6 433.8504 42.9
3 17.0589 11.7 17.0214 15.4 448.9159 40.2 435.4797 43.3
4 17.1085 12.0 17.0009 15.4 449.1653 40.0 435.2589 43.2

10K 0 16.8032 37.0 16.7951 45.5 432.2283 88.2 408.3982 91.4
1 16.8111 39.1 17.0122 43.2 432.5153 91.4 412.9971 95.1
2 16.8235 37.7 16.9333 45.1 432.5031 85.8 415.7934 91.7
3 16.8353 37.7 16.8935 45.9 432.6652 90.1 417.5229 95.2
4 16.8622 39.0 16.8748 45.6 432.6980 91.9 417.5098 91.3

20K 0 16.6771 83.1 16.6980 95.8 415.6470 174.2 392.1786 186.4
1 16.6803 83.2 16.9263 93.2 415.7402 181.1 396.3923 185.9
2 16.6851 83.4 16.8376 93.8 415.6622 179.7 399.0043 186.9
3 16.6915 86.5 16.7947 94.4 415.7609 172.3 400.7189 183.3
4 16.7007 80.3 16.7727 97.2 415.7951 190.9 400.7257 189.3
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Figure 3.5: Trade-off between solution quality and running time (in logarithmic scale) with
the Greedy algorithm on random chips of dimensions 300 × 300 (¡), 500 × 500 (×) and
800× 800 (•). The number Q of candidates per spot are 1.25K, 2.5K, 5K, 10K, 20K, 40K,
and 80K (from left to right). Layouts are measured by normalized border length after
BLM (left) and average conflict index after CIM (right).

It should be noted that, like Row-Epitaxial, Greedy has the drawback of treating the
last spots of a chip “unfairly”: While Q probe candidates are examined for each of
the first n −Q + 1 filled spots, the last Q− 1 spots have fewer than Q candidates (in
particular, when the last spot is being filled, there is only one probe candidate). As
a result, we usually observe comparatively higher levels of conflicts in the last filled
spots.

We also observed that, in terms of border length, increasing Q above 5K has little
positive effect (see Figure 3.5). For instance, on 800×800 chips, increasing Q from 5K
to 20K reduced the normalized border length by only 1.27% (from 16.9124 to 16.6980
with k = 0), while requiring approximately six times more time. In terms of conflict
index, however, increasing Q even above 40K still results in significant improvements
for large chips. For instance, on 800 × 800 chips, increasing Q from 40K to 80K
reduced the average conflict index by 3.18% (from 378.3110 to 366.8446 with k = 0,
data not shown). The fact that increasing Q has more effect in terms of conflict
index is probably because, in this measure, there is more room for optimization as
the conflicts can be moved to the extremities of the probes (while retaining the same
number of border conflicts) and a larger number of neighbors are involved.

Figure 3.6 shows the normalized border length per masking step of layouts produced
by Greedy for a 500 × 500 chip with border length and conflict index minimization.
With BLM, the generated layout has most border conflicts concentrated between steps
7 and 58. The last masks of this layout have low levels of border conflicts because
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Figure 3.6: Normalized border length (on the left y-axis) per masking step of layouts pro-
duced by Greedy for a 500 × 500 chip with border length (×) and conflict index (¡)
minimization using 0-threading and Q = 20K. Chip contained random probe sequences
left-most embedded in the standard 74-step Affymetrix deposition sequence. The his-
togram shows the number of middle bases synthesized at each step (right y-axis).

the probes are left-most embedded, which leaves most embeddings in an unproductive
state during the final synthesis steps. As a result of the lexicographical sorting of
probes, the first masks also have relatively few conflicts. Representations of selected
photolithographic masks for this layout are shown in Figure 3.7. Layers of masked
and unmasked regions that result from sorting probes lexicographically can be seen
in masks M1 to M8. Masks M9 to M62 are very “noisy” as there seems to be little
regularity in their arrangement. After M62, masks start to get “darker” as most probes
have been already fully synthesized.

With CIM, Greedy shifts border conflicts away from the steps that add the middle
bases (between steps 20 and 45; see Figure 3.6), which effectively reduces the average
conflict index. Not surprisingly, this reduction comes at the expense of an increase
in total border length — the normalized border length of this particular chip rose
from 17.3513 with BLM to 19.8461 with CIM. Figure 3.8 shows a representation of
selected masks for this layout. Note that the first masks (M1 to M4) still exhibit a
“layered” structure, although the layers are much narrower and the masks noisier than
the first masks of Figure 3.7. In the central masks M20 to M45, especially between
M25 and M40, it is possible to see clusters of masked and unmasked spots that cause
the reduction in average conflict index.
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M1 M2 M3

M4 M5 M6

M7 M8 M9

M62 M70 M74

Figure 3.7: Selected masks generated by Greedy with border length minimization for a
random 500×500 chip with 25-mer probes left-most embedded in the standard Affymetrix
deposition sequence. Unmasked (masked) spots are represented by light (dark) dots.
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M1 M2 M3

M4 M20 M25
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Figure 3.8: Selected masks generated by Greedy with conflict index minimization for a
random 500×500 chip with 25-mer probes left-most embedded in the standard Affymetrix
deposition sequence. Unmasked (masked) spots are represented by light (dark) dots.
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3.7 Summary

In this chapter, we have surveyed placement algorithms for the microarray layout
problem, including an optimal placement strategy for uniform arrays based on a two-
dimensional Gray code, an approach based on the traveling salesman problem and
different threading techniques. For general arrays, we have presented more experi-
mental results with Row-Epitaxial, the best known placement algorithm to date, and
studied the impact of the choice of threading for its initial layout.

We have also introduced a new placement algorithm, called Greedy. Greedy achieved
similar results in terms of BLM and better results in terms of CIM compared to
Row-Epitaxial. For BLM, Row-Epitaxial is faster than Greedy and should still be
the method of choice. For CIM, however, the improvements achieved by Greedy over
Row-Epitaxial justify the small increase in running time.
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Chapter 4

MLP and the Quadratic Assignment
Problem

In this chapter, we show that the microarray layout problem (MLP) with general
distance-dependent and position-dependent weights is an instance of the quadratic as-
signment problem (QAP), a classical combinatorial optimization problem introduced
by Koopmans and Beckmann (1957), which opens up the way for using QAP tech-
niques to design microarray chips.

We then use an existing QAP heuristic algorithm called GRASP to design the layout of
small artificial chips, comparing our results with the best known placement algorithm.
The chapter ends with a discussion about how this approach can be combined with
other existing algorithms to design and improve larger microarrays.

4.1 Quadratic assignment problem

The quadratic assignment problem (QAP) can be stated as follows. Given n× n real-
valued matrices F = (fij) ≥ 0 and D = (dkl) ≥ 0, find a permutation π of {1, 2, . . . n}
such that

n∑
i=1

n∑
j=1

fij · dπ(i)π(j) → min . (4.1)

The attribute quadratic stems from the fact that the target function can be written
with n2 binary indicator variables xik ∈ {0, 1}, where xik := 1 if and only if k = π(i).
The objective (4.1) then becomes a quadratic integer programming problem:

n∑
i=1

n∑
j=1

fij ·
n∑

k=1

n∑
l=1

dkl · xik · xjl → min,

such that
∑

k xik = 1 for all i,
∑

i xik = 1 for all k, and xik ∈ {0, 1} for all (i, k). The
objective function is a quadratic form in x.
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The QAP has been used to model a variety of real-life problems. One common example
is the facility location problem where n facilities must be assigned to n locations. The
facilities could be, for instance, the clinics, doctors or services (X-ray, emergency
room, etc.) provided by a hospital and the locations could be the available rooms of
the hospital building.

In this scenario, F is called the flow matrix as fij represents the flow of materials
or persons from facility i to facility j. Matrix D is called the distance matrix, as dkl

gives the distance between locations k and l. One unit of flow is assumed to have an
associated cost proportional to the distance between the facilities, and the optimal
permutation π defines a one-to-one assignment of facilities to locations with minimum
cost.

4.2 QAP formulation of the MLP

The MLP can be seen as an instance of the QAP, where we want to find a one-to-one
correspondence between spots and probes minimizing a given penalty function such
as total border length or total conflict index (defined in Chapter 2). To formulate
it, we use the facility location example by viewing the probes as locations and the
spots as facilities, i.e., the spots are assigned to the probes. The flow matrix F then
contains the “closeness” values between spots, while the distance matrix D contains
the conflicts between probe embeddings.

We first give the general formulation for conflict index minimization case; the border
length minimization case is obtained by using the particular weight functions given in
Section 2.4.

In a realistic setting, we may have more spots available than probes to place. Below,
we show that this does not cause problems as we can add enough “empty” probes and
define their weights appropriately.

Perhaps more severely, we assume that all probes have a single pre-defined embed-
ding in order to force a one-to-one relationship. A more elaborate formulation would
consider all possible embeddings of a probe, but then it becomes necessary to ensure
that only one embedding of each probe is used. This still leads to a quadratic integer
programming problem, albeit with slightly different side conditions.

Our goal is to design a microarray minimizing the sum of conflict indices over all
spots s ∈ S, i.e., ∑

s∈S

C(s) → min .
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4.2 QAP formulation of the MLP

The “flow” fij between spots i and j depends on their distance on the chip; in accor-
dance with the conflict index model, we set

fij := 1{i,j neighbors} · γ(i, j) (4.2)

where “neighbors” means that spots i and j are at most three cells away (horizontally
and vertically) from each other. Note that most of the flow values on large arrays are
zero. For border length minimization, the case is even simpler: We set fij := 1 if spots
i and j are adjacent, and fij := 0 otherwise.

The “distance” dkl between probes k and l depends on the conflicts between their
embeddings εk and εl. To account for possible “empty” probes to fill up surplus spots,
we set dkl := 0 if k or l or both refer to an empty probe — i.e., empty probes never
contribute to the target function since we do not mind if nucleotides are erroneously
added to spots assigned to empty probes. For real probes, we set

dkl :=
T∑

t=1

(
1{εk,t=0} · ω(εk, t) · 1{εl,t=1}

)
. (4.3)

Note that dkl is related to the conflict index distance C(k, l) defined in Section 2.3
(Equation 2.10):

dkl + dlk =
T∑

t=1

(
1{εk,t=0} · ω(εk, t) · 1{εl,t=1}

)
+

T∑
t=1

(
1{εl,t=0} · ω(εl, t) · 1{εk,t=1}

)
=

T∑
t=1

(
1{εk,t=0 and εl,t=1} · ω(εk, t)

)
+

T∑
t=1

(
1{εl,t=0 and εk,t=1} · ω(εl, t)

)
=

T∑
t=1

(
1{εk,t=0 and εl,t=1} · ω(εk, t) + 1{εl,t=0 and εk,t=1} · ω(εl, t)

)
= C(k, l)

In the case of border length minimization, where θ = 0 and c = 1/2 (see Section 2.4),
we obtain that dkl +dlk = H(k, l) = H(l, k), where Hkl denotes the Hamming distance
between the embeddings εk and εl (Equation 2.3).

It now follows that for a given assignment π, we have,

fij · dπ(i)π(j) =
T∑

t=1

(
1{επ(i),t=0} · ω(επ(i), t) · 1{επ(j),t=1} · 1{i,j neighbors} · γ(i, j)

)
.
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The objective function (4.1) then becomes∑
i

∑
j

fij · dπ(i)π(j)

=
∑

i

∑
j

T∑
t=1

(
1{επ(i),t=0} · ω(επ(i), t) · 1{επ(j),t=1} · 1{i,j neighbors} · γ(i, j)

)
=

∑
i

T∑
t=1

(
1{επ(i),t=0} · ω(επ(i), t) ·

∑
j

1{i,j neighbors} · 1{επ(j),t=1} · γ(i, j)
)

=
∑

i

T∑
t=1

(
1{επ(i),t=0} · ω(επ(i), t) ·

∑
j: neighbor

of i

1{επ(j),t=1} · γ(i, j)
)

=
∑

i

C(i),

and indeed equals the total conflict index with our definitions of F = (fij) and D =
(dkl).

Remark. Note that it is technically possible to switch the definitions of F and D, i.e.,
to assign probes to spots instead of spots to probes as we do now, without modifying
the mathematical problem formulation. However, this would lead to high distance
values for neighboring spots and many zero distance values for independent spots, a
somewhat counterintuitive model. Also, some QAP heuristics initially find pairs of
objects with large flow values and place them close to each other. Therefore, the way
of modeling F and D may be significant.

4.3 QAP heuristics

We have shown how the microarray placement problem can be modeled as a quadratic
assignment problem. However, the QAP is known to be NP-hard and particularly
hard to solve in practice. Instances of size larger than n = 20 are generally considered
to be impossible to solve to optimality. Fortunately, several heuristics exist, including
approaches based on tabu search, simulated annealing and genetic algorithms (for a
survey, see Çela, 1997; Loiola et al., 2007). Our formulation is thus of interest because
we can now use existing QAP heuristics to design the layout of microarrays minimizing
either the sum of border lengths or conflict indices.

As an example, we briefly describe a general QAP heuristic known as GRASP (Li
et al., 1994), which was first used for solving the QAP by Feo and Resende (1995),
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4.3 QAP heuristics

and an improved version called GRASP with path-relinking (Oliveira et al., 2004),
that we used to design small microarray chips with our formulation.

4.3.1 GRASP with Path-relinking

GRASP (Greedy Randomized Adaptive Search Procedure) is comprised of two phases:
a construction phase where a random feasible solution is built, and a local search phase
where a local optimum in the neighborhood of that solution is sought. In the following
description we use the terms of the facility location problem: fij is the flow between
facilities i and j, dkl is the distance between locations k and l.

The construction phase starts by sorting the (n2−n) elements of the distance matrix in
increasing order and keeping the smallest E := bβ(n2−n)c elements, where 0 < β < 1
is a restriction parameter given as input.

dk1l1 ≤ dk2l2 ≤ · · · ≤ dkE lE .

Similarly, the (n2 − n) elements of the flow matrix are sorted, this time in decreasing
order, and the largest E elements are kept:

fi1j1 ≥ fi2j2 ≥ · · · ≥ fiEjE
.

Then, the costs of assigning pairs of facilities to pairs of locations are computed. The
cost of initially assigning facility iq to location kq and facility jq to location lq for some
q ∈ {1, . . . , E} is dkqlqfiqjq . GRASP sorts the vector

(dk1l1fi1j1 , dk2l2fi2j2 , . . . , dkE lEfiEjE
),

keeping the bαEc smallest elements, where 0 < α < 1 is another restriction parameter.
A simultaneous assignment of a pair of facilities to a pair of locations is selected at
random among those with the bαEc smallest costs, and a feasible solution is then built
by making a series of greedy assignments.

In the local search phase, GRASP searches for a local optimum in the neighborhood
of the constructed solution. Several search strategies and definitions of neighborhood
can be used. One possible approach is to check every possible swap of assignments and
make only those which improve the current solution until no further improvements can
be made.

The construction and local search phases are repeated for a given number of times,
and the best solution found is returned.
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Path-relinking. GRASP takes no advantage of the knowledge gained in previous
iterations to build or improve an obtained solution, i.e., each new solution is built
from scratch.

GRASP with path-relinking is an extension of the basic GRASP algorithm that uses
an “elite set” to store the best solutions found. It incorporates a third phase that
chooses, at random, one elite solution that is used to improve the solution produced
at the end of the local search phase.

Solutions p and q are combined as follows. For every location k = 1, . . . , n, the path-
relinking algorithm attempts to exchange facility pk assigned to location k in solution p
with facility qk assigned to location k in the elite solution. In order to keep the solution
p feasible, it exchanges pk with pl, where pl = qk. This exchange is performed only if
it results in a better solution. The result of the path-relinking phase is a solution r
that is at least as good as the better of p and q.

4.4 Results

We present experimental results of using GRASP with path-relinking (GRASP-PR)
for designing the layout of small artificial chips, and compare them with the layouts
produced by the Greedy placement algorithm (described in Section 3.6), with the
number Q of candidates per spot set to a sufficiently large value so that all available
probes are considered for each spot.

We used a C implementation of GRASP-PR provided by Oliveira et al. (2003) with
default parameters (32 iterations, α = 0.1, β = 0.5, and elite set of size 10). The
main routine takes three arguments: the dimension n of the problem (in our case, the
number of spots or probes) and matrices F and D. The matrices were generated using
the formulations presented in Section 4.2.

The data set consists of chips with probes of length 25 uniformly generated and asyn-
chronously embedded in a deposition sequence of length 74. The running times and the
border lengths of the resulting layouts are shown in Table 4.1 (all results are averages
over a set of ten chips).

Our results show that GRASP-PR produces layouts with lower border lengths than
Greedy on the smaller chips. On 6×6 chips, GRASP-PR outperforms Greedy by 2.14
percentage points on average (15.94%−13.80%), when compared to the initial random
layout. On 9× 9 chips, however, this difference drops to 0.16 percentage points, while
Greedy generates better layouts on 11 × 11 or larger chips. In terms of running time,
Greedy is faster and shows little variation as the number of probes grows. In contrast,
the time required to compute a layout with GRASP-PR increases at a fast rate.
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Table 4.1: Total border length of random chips compared with the layouts produced by
Greedy and GRASP with path-relinking. Reductions in border length are reported in
percentages compared to the random layout.

Random Greedy placement GRASP with path-relinking
Chip Border Border Reduction Time Border Reduction Time

dimension length length (%) (sec.) length (%) (sec.)
6 × 6 1 989.20 1 714.60 13.80 0.01 1 672.20 15.94 2.73
7 × 7 2 783.20 2 354.60 15.40 0.02 2 332.60 16.19 6.43
8 × 8 3 721.20 3 123.80 16.05 0.03 3 099.13 16.72 12.49
9 × 9 4 762.00 3 974.80 16.53 0.05 3 967.20 16.69 25.96

10 × 10 5 985.20 4 895.60 18.20 0.06 4 911.40 17.94 47.57
11 × 11 7 288.40 5 954.40 18.30 0.10 5 990.73 17.80 87.48
12 × 12 8 714.00 7 086.20 18.68 0.11 7 159.80 17.84 152.42

Table 4.2: Average conflict indices of random chips compared with the layouts produced by
Greedy and GRASP with path-relinking.

Random Greedy placement GRASP with path-relinking
Chip Avg. C. Avg. C. Reduction Time Avg. C. Reduction Time

dimension Index Index (%) (sec.) Index (%) (sec.)
6 × 6 524.28 495.15 5.56 0.05 467.08 10.91 3.68
7 × 7 558.25 521.90 6.51 0.07 489.32 12.35 8.84
8 × 8 590.51 551.84 6.55 0.09 515.69 12.67 19.48
9 × 9 613.25 568.62 7.28 0.11 533.79 12.96 38.83

10 × 10 628.50 576.49 8.28 0.11 539.69 14.13 73.09
11 × 11 642.72 588.91 8.37 0.12 551.41 14.21 145.67
12 × 12 656.86 598.21 8.93 0.12 561.21 14.56 249.19

Table 4.2 shows results in terms of conflict indices. GRASP-PR consistently produces
better layouts on all chip dimensions, achieving up to 6.38% fewer conflicts on 10× 10
chips, for example, when compared to Greedy. In terms of running times, GRASP-PR
is even slower than in the border length case. The reason is not clear, but it could
be because the distance matrix contains fewer zero entries with the conflict index
formulation.

The gains in terms of conflict index of both Greedy and GRASP-PR are clearly less
than the gains in terms of border length (when compared to the initial random layout).
This may be because the probe embeddings are fixed and the reduction of conflicts
is restricted to the relocation of the probes, which only accounts for one part of the
conflict index model.

4.5 Discussion

The QAP is notoriously hard to solve, and currently known exact methods start to take
prohibitively long already for slightly more than 20 objects, i.e., we could barely solve
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the problem exactly for 5 × 5 arrays. Fortunately, the literature on QAP heuristics
is rich, as many problems in operations research can be modeled as QAPs. Here we
used one such heuristic to identify the potential of the MLP-QAP-relation.

As our results show, however, even heuristic algorithms are too slow to deal with chips
of dimensions larger than 12 × 12, and although we could design a 20 × 20 chip with
a QAP heuristic within a day, we have to keep in mind that this would still be a very
small part of a larger problem as real microarray dimensions range from 200× 200 up
to 1164 × 1164.

For this reason, we restricted our experiments to such small chips and QAP heuristics
that could handle the problems within a few minutes. Up to now, finding exact solu-
tions even to these small microarrays seems to be an incredibly hard task. We mention
here experiments conducted by Dr. Peter Hahn, who used two branch-and-bound al-
gorithms to solve some problem instances from Table 4.1. With RTL-2 (Adams et al.,
to appear), it was possible to find two solutions with total border length of 1 652 for
a selected 6 × 6 chip, being only 1.43% better than the solution found with GRASP-
PR (1 676), although it took RTL-2 about 6.5 hours, in contrast with the less than
3 seconds needed by GRASP-PR. A lower bound calculation for the same problem
resulted in 1 624, so the RTL-2 solution is only 1.69% higher, while the gap to the
GRASP-PR solution is about 3.10%.

For another selected problem of dimension 7 × 7, Dr. Hahn found one solution with
border length 2 290 using RTL-1 (Hahn et al., 1998), being about 1.72% better than
the solution found by GRASP-PR (2 330), although it took RTL-1 some 29 hours, in
contrast with the less than 7 seconds needed for the GRASP-PR run. The results
obtained with exact QAP solvers give an idea of how hard the quadratic assignment
problem actually is, and show that the results with GRASP-PR are a good compromise
when time is limited.

Improved results for several selected problem instances from Tables 4.1 and 4.2 were
also reported by Chris MacPhee using GATS, a hybrid genetic / tabu search algorithm,
although these results were obtained on a number of large memory SMP machines,
each having 144 processors and 576 GB of global memory. The latest results for these
selected problems are available online.1

4.5.1 Alternatives

It is clear that, because of the large number of probes on industrial microarrays, it
is not feasible to use GRASP-PR (or any other currently available QAP method) to
design an entire microarray chip. However, we showed that it is certainly possible to
use it on small sub-regions of a chip, which opens up the way for two alternatives.

1http://gi.cebitec.uni-bielefeld.de/comet/chiplayout/qap
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First, the QAP approach could be used combined with a partitioning algorithm such
as those discussed in Chapter 6 to design the smaller regions that result from the
partitioning. This, however, does not seem promising because, as we will see later, a
partitioning is a compromise in solution quality, and level of partitioning required to
achieve the dimensions supported by the QAP approach is too high.

It is interesting to extrapolate the times shown in Table 4.1 to predict the total time
that would be required to design the layout of commercial microarrays, if we were to
combine GRASP-PR with a partitioning algorithm. If the partitioning produced 6×6
regions, 37 636 sub-regions would be created from the 1164× 1164 Affymetrix Human
Genome U133 Plus 2.0 GeneChip array, one of the largest Affymetrix chips. Since
each sub-region takes around 3 seconds to compute with GRASP-PR, the total time
required for designing such a chip would be a little over 31 hours (ignoring the time
for the partitioning itself).

If the partitioning produced 12 × 12 regions, 9 409 sub-regions would be created and,
at 2.4 minutes each, the total time would be more than 16 days. This is probably
prohibitive, although it is certainly possible to reduce the time of each GRASP-PR
execution by running it on faster machines or run them in parallel.

A better alternative is to use the QAP approach to improve an existing layout, iter-
atively, by relocating probes inside a defined region of the chip, in a sliding-window
fashion. Each iteration of this method would produce an instance of a QAP whose
size equals the number of spots inside the window. The QAP heuristics could then
be used to check whether a different arrangement of the probes inside the window can
reduce the conflicts. For this approach to work, however, we also need to take into
account the conflicts due to the spots around the window. Otherwise, a new layout
with less internal conflicts could be achieved at the expense of increasing conflicts on
the borders of the window.

A simple way of preventing this problem is to solve a larger QAP instance consisting of
the spots inside the window as well as those in a layer (of three spots) around it. The
spots outside the window obviously must remain unchanged, and that can be done by
fixing the corresponding elements of the permutation π. Note that there is no need to
compute fij if spots i and j are both outside the window, nor dkl if probes k and l are
assigned to spots outside the window.
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Chapter 5

Re-embedding Algorithms

After the placement phase, it is no longer possible to reduce conflicts if probes are
synchronously embedded. With asynchronous embeddings, however, layouts can usu-
ally be further improved by re-embedding the probes without changing their locations
on the chip, in what is sometimes called a post-placement optimization phase.

All re-embedding algorithms discussed in this chapter are based on the Optimum Single
Probe Embedding (OSPE) introduced by Kahng et al. (2002). OSPE is a dynamic
programming algorithm for computing an optimum embedding of a single probe with
respect to its neighbors, whose embeddings are considered as fixed. The algorithm
was originally developed for border length minimization (BLM) but here we present a
more general form designed for conflict index minimization (CIM) that first appeared
in (de Carvalho Jr. and Rahmann, 2006a).

5.1 Optimum Single Probe Embedding

The Optimum Single Probe Embedding algorithm, OSPE for short, can be seen as
a special case of a global alignment between a probe sequence p of length ` and the
deposition sequence N of length T , disallowing mismatches and gaps in N . We assume
that p is placed at spot s, and that we know the embeddings of all probes placed at
spots near s (spots that are at most three cells away from s, horizontally and vertically,
in accordance with the conflict index model).

The optimal embedding of p into N is built by determining the minimum cost of
embedding a prefix of p into a prefix of N : We use an (` + 1) × (T + 1) matrix D,
where D[i, t] is defined as the minimum cost of an embedding of p[1..i] into N [1..t] for
0 ≤ i ≤ `, 0 ≤ t ≤ T . The cost is the sum of conflicts induced by the embedding
of p[1..i] on its neighbors (when s is unmasked and a neighbor is masked), plus the
conflicts suffered by p[1..i] because of the embeddings of its neighbors (when s is
masked and a neighbor is unmasked).
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We can compute the value for D[i, t] by looking at two previous entries in the matrix:
D[i, t − 1] and D[i − 1, t − 1]. The reason is that D[i, t] is the minimum cost of
embedding p[1..i] up to the t-th synthesis step of N , which can only be obtained from
the previous synthesis step (t− 1) by either masking or unmasking spot s at step t.

If s is productive (unmasked) at step t, base Nt is appended to p[1..i− 1]; this is only
possible if p[i] = N [t]. In this case a cost Ut is added for the risk of damaging probes
at neighboring spots s′. We know that p[1..i− 1] can be embedded in N [1..t− 1] with
optimal cost D[i − 1, t − 1]. Hence, the minimum cost at step t, if s is productive, is
D[i − 1, t − 1] + Ut. According to the conflict index model,

Ut :=
∑

s′: neighbor
of s

1{εk(s′),t=0} · ω(εk(s′), t) · γ(s′, s). (5.1)

If s is unproductive (masked) at step t, no base is appended to p[1..i − 1], but a cost
Mi,t must be added for the risk of damaging p (by light directed at neighboring spots
s′). Since D[i, t − 1] is the minimum cost of embedding p[1..i] in N [1..t − 1], the
minimum cost up to step t, if s is unmasked, is D[i, t − 1] + Mi,t.

Note that Mi,t depends on the number of bases probe p already contains (that is, on
i): Each unmasked neighbor s′ generates a conflict on p with cost

γ(s, s′) · c · exp(θ · (1 + min{i, ` − i})),

in accordance with (2.6)–(2.8). Thus,

Mi,t := c · exp(θ · (1 + min{i, ` − i})) ·
∑

s′: neighbor
of s

1{εk(s′),t=1} · γ(s, s′). (5.2)

Finally, D[i, t] is computed as the minimum cost of the possible actions,

D[i, t] :=

{
min{D[i, t − 1] + Mi,t, D[i − 1, t − 1] + Ut } if p[i] = N [t],

D[i, t − 1] + Mi,t if p[i] 6= N [t].

The first column of D is initialized as follows: D[0, 0] = 0 and D[i, 0] = ∞ for 0 < i ≤ `,
since no probe of length ` > 0 can be embedded into an empty deposition sequence.
The first row is initialized by setting D[0, t] = D[0, t − 1] + M0,t for 0 < t ≤ T .

If we assume that costs Ut and Mi,t can be computed in constant time, the time com-
plexity of the OSPE algorithm is O(`T ) since there are O(`T ) entries in D to compute.
The algorithm can be rather time-consuming in the general form presented here, since
we have to look at the embeddings of up to 48 neighbors around s. Naturally, it runs
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Figure 5.1: OSPE’s dynamic programming matrix for computing an optimal embedding of
a probe p = GACTT in a deposition sequence N = (ACGT)5. Dark shaded cells are not
computed. Arrows show all paths in the matrix leading to a valid embedding of p in N .

much faster for border length minimization, since there are only four neighbors to look
at, and there are neither position-dependent (ω) nor distance-dependent (γ) weights
to compute. In practice, a simple optimization can significantly reduce running time:
in each row, only the columns between the left-most and right-most embeddings of p
in N need to be computed (see Figure 5.1).

Once D is computed, the minimum cost is D[`, T ], and an optimal embedding of p in
N can be constructed by tracing a path from D[`, T ] back to D[0, 0], similarly to the
procedure used to build an optimal global alignment. This takes O(T ) time.

The OSPE algorithm is the basic operation of several post-placement optimization
algorithms: Chessboard, Greedy and Batched Greedy, and Sequential, as well as our
new Priority re-embedding algorithm. The main difference between these algorithms
lies in the order in which the probes are re-embedded.

Since OSPE never increases the amount of conflicts in the region around the re-
embedded probe, optimization algorithms can execute several re-embedding opera-
tions without risk of worsening the current layout. Moreover, each probe may be
re-embedded several times since new improvements may be possible once its neigh-
bors have been changed. In fact, all algorithms presented here work in repeating cycles
of optimization until no more improvements are possible (when a local optimal solu-
tion is found), until improvements drop below a given threshold W , or until a given
number of cycles (or passes) have been executed.

5.2 Chessboard

The Chessboard re-embedding algorithm (Kahng et al., 2002) was initially designed
for border length minimization and it takes advantage of the fact that, in this model, a
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a) b) c)

Figure 5.2: a) The chessboard-like bi-coloring of a chip used by the Chessboard re-embedding
algorithm for border length minimization; b) a possible coloring of the chip for conflict
index minimization using 16 colors (c1 to c16), resulting in sets of independent spots; c)
four of the 16 sets of independent spots (shaded) that can be re-embedded in the same
iteration.

chip can be bi-colored like a chessboard, in such a way that the embeddings of probes
located on white spots are independent of those placed on black spots (Figure 5.2a).

Chessboard uses this coloring to alternate the optimal re-embedding of probes located
on black and white spots with respect to their neighbors: Each pass of Chessboard
consists of re-embedding all probes of black spots and then all probe of white spots.

The chessboard coloring guarantees that probes re-embedded in the same step are
independent with respect to the border length model, i.e. they can be re-embedded
without affecting the border conflicts of other spots with the same color. For conflict
index minimization, the same principle can be applied by using 4 × 4 = 16 colors
instead of 2 as illustrated in Figure 5.2 (to the best of our knowledge this has not yet
been implemented).

5.3 Greedy and Batched Greedy

As its name implies, the Greedy re-embedding algorithm (Kahng et al., 2002) utilizes
a greedy strategy for choosing the order in which probes are re-embedded. At each
iteration, Greedy examines every spot of the chip and computes the maximum reduc-
tion of border conflicts achievable by optimally re-embedding its probe. It then selects
a spot with the highest gain (reduction of conflicts) and re-embeds its probe optimally,
updating the gains of adjacent spots.
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A faster version of this algorithm, called Batched Greedy (Kahng et al., 2002), pre-
selects several independent spots for re-embedding and thus sacrifices its greedy nature
in favor of running time by postponing the update of gains.

Like Chessboard, Greedy and Batched Greedy were initially developed for border
length minimization, and they can also be extended for conflict index minimization.
The main difference is that, once a probe is re-embedded, more neighbors need to
be updated. For Batched Greedy, the selection of independent spots needs to take
into account the minimum distance of four cells (horizontally and vertically) between
spots, in accordance with the conflict index model (Section 2.3). Hence fewer spots
may be re-embedded in the same iteration.

5.4 Sequential re-embedding

The Sequential algorithm (Kahng et al., 2003b) employs a much simpler and, surpris-
ingly, more efficient strategy. The algorithm just proceeds spot by spot, from top to
bottom, left to right, re-embedding each probe optimally in regard to its neighbors.
Once the end of the array is reached, Sequential restarts at the top left corner of the
array for the next iteration.

The algorithm is not only simple but also fast since there is no need to compute
achievable gains for each spot. Nonetheless, Sequential achieved the greatest reduction
of border conflicts in the experiments of Kahng et al. (2003b). The authors argue that
the main shortcoming of Chessboard and Greedy is that they always re-embed an
independent set of spots at a time, and dropping this requirement should allow faster
propagation of the effects of new embeddings and hence convergence to a better local
optimum.

Tables 5.1 and 5.2 show the results of using Sequential to re-embed the probes of
chips produced by the Greedy placement algorithm (Section 3.6). The chips initially
contained random probes of length 25, uniformly generated, and left-most embedded
in the standard Affymetrix deposition sequence. The threshold W was set to 0.2%
(Sequential stopped as soon as the total reduction of conflicts in one pass dropped
below 0.2%). In all cases, the threshold was reached after two passes.

The reduction of conflicts achieved by Sequential were small (at most 0.579% with
border length and 0.829% for CIM), which shows that there is little room for improve-
ments once the placement is fixed. In fact, the more time is spent during placement
(greater Q), the less reduction of conflicts is achieved by re-embedding. For instance,
on a 300×300 chip, the reduction in average conflict index dropped by 0.12 percentage
points (from 0.829% to 0.709%) when the number of candidates per spot considered
by Greedy during placement was increased from 5K to 20K.
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Table 5.1: Normalized border length (NBL) before and after an optimization phase with the
Sequential re-embedding algorithm. Placement was produced by the Greedy placement
algorithm (Section 3.6) with border length minimization, 0-threading, and number Q
of candidates per spot set to 5K and 20K. The average number of passes executed by
Sequential before the threshold W = 0.2% was reached is shown. The reduction of conflicts
is also shown in percentage. Running times are reported in seconds and all results are
averages over a set of five chips. The time spent by Sequential is also shown as a percentage
of the total time (placement plus re-embedding).

Greedy placement Sequential re-embedding
Dim. Q NBL Time NBL Reduct. Passes Time %Total time

300 × 300 5K 18.3182 98.5 18.2121 0.579% 2.0 4.8 4.617%
20K 18.0576 577.9 17.9726 0.471% 2.0 4.8 0.830%

500 × 500 5K 17.5830 345.7 17.4851 0.557% 2.0 12.7 3.538%
20K 17.3554 1 999.8 17.2779 0.446% 2.0 12.6 0.625%

800 × 800 5K 16.9124 916.8 16.8201 0.546% 2.0 32.6 3.437%
20K 16.6980 5 749.7 16.6258 0.432% 2.0 32.4 0.560%

Table 5.2: Average conflict index (ACI) before and after an optimization phase with the
Sequential re-embedding algorithm with W = 0.2%. Placement was produced by the
Greedy placement algorithm with conflict index minimization, 0-threading, and Q set to
5K and 20K.

Greedy placement Sequential re-embedding
Dim. Q ACI Time ACI Reduct. Passes Time %Total time

300 × 300 5K 440.5166 322.4 436.8630 0.829% 2.0 188.9 36.944%
20K 415.5003 1 818.6 412.5536 0.709% 2.0 189.9 9.457%

500 × 500 5K 432.3023 952.5 428.7410 0.824% 2.0 527.3 35.632%
20K 401.4609 4 027.2 398.6096 0.710% 2.0 528.3 11.597%

800 × 800 5K 426.0757 2 512.1 422.6277 0.809% 2.0 1 357.9 35.087%
20K 392.1786 11 182.8 389.3929 0.710% 2.0 1 352.5 10.790%

Although the reductions of conflicts were relatively small, Sequential required ap-
proximately half a minute to re-embed (two times) all probes of a 800 × 800 chip in
the BLM case, which represented about 3.44% of the aggregate time (placement and
re-embedding) when Q = 5K and only 0.56% when Q = 20K.

In some cases, Sequential even provided comparable reduction of border conflicts, in
less time, than increasing Q for Greedy. For instance, on a 800 × 800 chip, Greedy
placement with Q = 20K and two passes of Sequential re-embedding produced, in
approximately half of the time, a layout with only 0.14% more border conflicts than
Greedy with Q = 40K and no re-embedding (16.6258 NBL in 96.4 minutes versus
16.6026 in 189.0 minutes, respectively; data not shown). In other words, running
Sequential is sometimes more efficient than spending more time during placement.

Figure 5.3 shows the normalized border length per masking step of a selected 500×500
chip before and after a re-embedding phase with Sequential for BLM. It is clear that

50



5.5 Priority re-embedding

the reduction of conflicts is achieved mainly between steps 45 and 65, at the expense
of a small increase in conflicts in the final synthesis steps. This is a result of fixing the
placement with left-most embedded probes, which leaves no room for improvements
in the first masks.

In terms of CIM, the reductions were slightly higher but Sequential was over 40 times
slower than in the BLM case, taking up to 36.9% of the aggregate time. This, coupled
with the fact that Greedy gives significant reductions of conflicts with increasing Q
even beyond 40K, makes it difficult to justify the time spent with re-embedding, unless
when Q is approaching its limit (number of probes on the chip) and one is looking for
the best layout possible.

Figure 5.4 shows the normalized border length per masking step of the same 500×500
chip of Figure 5.3 before and after a re-embedding phase with Sequential for CIM
(placement was produced by Greedy also for CIM). Again, reduction of conflicts is
restricted to the second half of synthesis steps because of the left-most embeddings,
although with relatively better improvements when compared with the border length
case.

Our results give further indication that Sequential has approximately linear time com-
plexity (if we consider that each OSPE operation can be done in constant time).
Sequential performed around 19 400 re-embeddings per second in the BLM case and
around 475 re-embeddings per second in the CIM case, on average.

5.5 Priority re-embedding

In this section we describe a new re-embedding algorithm, called Priority re-embedding
(PR), which uses a priority queue to control the order in which probes are re-embedded.

The algorithm starts by scanning the chip for probes which have a unique embedding
in the deposition sequence. These are called pivots and they are used as starting
locations from where the re-embeddings propagate to other spots of the chip: Once
a pivot is found, all of its four adjacent spots on the chip are added to the priority
queue. We assume that the chip has at least one pivot, otherwise the deposition
sequence could be shortened. If this is not the case, however, we can also use probes
with the minimum number of embeddings among all probes as pivots.

If the probes are initially left-most embedded, every embedding with at least one
productive step in the last synthesis cycle corresponds to a probe with a unique em-
bedding. If probes are not left-most embedded, we can compute the number of em-
beddings E(p,N) of a probe p in the deposition sequence N in O(` · T ) time with
dynamic programming, where ` is the length of the probe and T is the length of N .
In practice, it is possible to compute E(p,N) for a million probes in a few seconds.
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Figure 5.3: Normalized border length per masking step of a 500 × 500 chip before (¡) and
after (×) a re-embedding phase with Sequential for border length minimization. Layout
was produced by the Greedy placement algorithm for border length minimization with
0-threading and Q = 20K.

The priority queue is used to retrieve the next spot s whose probe p should be re-
embedded, according to the defined priority. Once a probe p is retrieved, it is optimally
re-embedded in regard to its neighbors, and all four spots adjacent to s are added to
the queue (if they have not been added previously).

We have implemented two different priorities: one based on the number of embeddings
of each probe, and one based on the number re-embedded neighbors.

Priority I: Re-embed probes with fewer embeddings first.

The argument behind this priority is based on the observation that probes with more
possible embeddings have a greater degree of freedom and can more easily “adapt” to
their neighbors. Probes with a restricted number of embeddings, on the other hand,
have fewer choices and should be re-embedded first.

In this priority, we examine each spot s with a probe pk(s) and compute E(pk(s), N),
the number of embeddings of pk(s) in N . A weight w(s) := E(pk(s), N) is assigned for
each spot s in the queue, and the spot with the highest weight in each iteration is
retrieved.
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Figure 5.4: Normalized border length per masking step of a 500 × 500 chip before (¡) and
after (×) a re-embedding phase with Sequential for conflict index minimization. Layout
was produced by the Greedy placement algorithm for conflict index minimization with
0-threading and Q = 20K. The histogram shows the number of middle bases synthesized
at each step (right y-axis)

Priority II: Re-embed probes with greater number of re-embedded neighbors first.

This priority tries to mimic the seeded crystal growth used by the Epitaxial place-
ment algorithm (Section 3.3), giving preference to probes with a greater number of
re-embedded neighbors. The argument behind this priority is that probes should not
be re-embedded until a sufficient number of its neighbors have found their final em-
beddings.

In this priority, we also assign a weight w(s) for each spot s in the queue, and the
spot with the highest weight is retrieved. In case of border length minimization, w(s)
is set to the number of immediate neighbors of s that have already been re-embedded
in the current iteration.

In case of conflict index minimization, the algorithm looks at all 48 neighbors in the
7 × 7 region centered on s, and assigns a weight taking into account the distance-
dependent function γ (Equation 2.5):

w(s) :=
∑

s′: neighbor
of s

1{s′ has been re-embedded} · γ(s, s′),

where s′ ranges over all neighboring spots that are at most three cells away (hor-
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izontally and vertically) from s, in accordance with the conflict index model (Sec-
tion 2.3).

With Priority II, once a probe is re-embedded, it is necessary to update the weights
of its neighbors that have been previously added to the queue (up to 4 with border
length minimization, and 48 with conflict index minimization).

5.5.1 Results

Tables 5.3 and 5.4 show the results of using Priority re-embedding on the same set
of arrays used for Sequential (Tables 5.1 and 5.2). In terms of BLM, both priorities
resulted in negligible improvements when compared to Sequential (with Priority I
giving the best results). The greatest difference was only 0.0032% (from 18.2121 with
Sequential to 18.2115 with Priority I on 300 × 300 chips and Greedy placement with
Q = 5K). Moreover, Priority I was between 8.8% and 12.7% slower than Sequential,
whereas Priority II was between 2 to 5 times slower than Sequential.

Priority II is slower than Priority I because after it re-embeds a spot s, it needs to
update the weights of all neighbors of s that have been previously added to the queue.
With Priority I, the number of embeddings of each probe does not change, so they are
computed only once, before the first iteration.

In terms of CIM, Priority I produced the worse layouts, whereas Priority II once again
achieved negligible improvements when compared to Sequential — at most 0.0029%
(from 412.5536 to 412.5418 on 300 × 300 chips and Greedy placement with Q =
20K). The difference in running times between Sequential and Priority dropped in
comparison with the same difference in the BLM case. This is because OSPE is
significantly slower with CIM, so the extra time spent on re-embedding probes reduces
the impact of the extra work with the priority queue. For this reason, Priority I was
always within 0.1% of the time required by Sequential, whereas Priority II was at most
11.37% slower.

5.6 Summary

In this chapter, we have presented an extension of the Optimum Single Probe Em-
bedding algorithm (OSPE) of Kahng et al. (2002) that is general enough to work
with border length as well as conflict index minimization. We have also surveyed
re-embedding algorithms based on OSPE and presented experimental results with
Sequential, the best known algorithm to date.
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Table 5.3: Normalized border length (NBL) before and after an optimization phase with
various re-embedding algorithms. Placement was produced by the Greedy placement
algorithm with border length minimization, 0-threading, and number Q of candidates per
spot set to 5K and 20K. In all cases, each re-embedding algorithm executed two passes
before the threshold W = 0.2% was reached. Best results are highlighted in bold.

Greedy placement Sequential Priority I Priority II
Dim. Q NBL NBL Time NBL Time NBL Time

300 × 300 5K 18.3182 18.2121 4.8 18.2115 5.4 18.2118 22.0
20K 18.0576 17.9726 4.8 17.9721 5.4 17.9723 14.5

500 × 500 5K 17.5830 17.4851 12.7 17.4848 13.9 17.4849 76.7
20K 17.3554 17.2779 12.6 17.2776 13.7 17.2777 63.9

800 × 800 5K 16.9124 16.8201 32.6 16.8198 36.1 16.8199 187.0
20K 16.6980 16.6258 32.4 16.6256 35.3 16.6257 200.0

Table 5.4: Average conflict index (ACI) before and after an optimization phase with various
re-embedding algorithms. Placement was produced by the Greedy placement algorithm
with conflict index minimization, 0-threading, and number Q of candidates per spot set
to 5K and 20K. In all cases, each re-embedding algorithm executed two passes before the
threshold W = 0.2% was reached. Best results are highlighted in bold.

Greedy placement Sequential Priority I Priority II
Dim. Q NBL NBL Time NBL Time NBL Time
3002 5K 440.5166 436.8630 188.9 436.8881 190.7 436.8626 209.0

20K 415.5003 412.5536 189.9 412.5613 190.0 412.5418 205.1
5002 5K 432.3023 428.7410 527.3 428.7640 527.2 428.7375 581.6

20K 401.4609 398.6096 528.3 398.6261 530.0 398.6065 569.5
8002 5K 426.0757 422.6277 1357.9 422.6478 1357.9 422.6223 1512.2

20K 392.1786 389.3929 1352.5 389.4075 1355.3 389.3903 1488.9

In our results, it is evident that there is little room for improvements by re-embedding
probes once a placement is fixed. Nonetheless, we have also introduced a new re-
embedding algorithm that attempts to obtain better results by changing the order of
re-embeddings based on priorities. We have experimented with two priorities: probes
with fewer embeddings first (Priority I) and probes with more re-embedded neighbors
(Priority II).

Our results show that our algorithm can achieve negligible improvements when com-
pared to Sequential, with Priority I being the best for BLM and Priority II the best
for CIM. However, because of the extra time required by Priority, Sequential offers
a better trade-off between solution quality and running time, and it should still be
the algorithm of choice unless when time is not constrained. The results with our
new algorithm also give further indication that the improvements achievable in the
re-embedding phase are rather small.
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Chapter 6

Partitioning Algorithms

We mentioned earlier that the microarray layout problem is usually approached in two
phases: placement and re-embedding. The placement, however, can be preceded by a
partitioning phase that breaks the problem into smaller sub-problems that are easier
to manage. A partitioning algorithm divides the set of probes P into smaller subsets,
and assigns them to defined regions of the chip. Each region can then be treated
as an independent chip (and processed by a placement algorithm) or be recursively
partitioned. This is especially helpful for placement algorithms with superlinear time
or space complexities that are otherwise unable to handle very large chips. Linear-time
placement algorithms may also benefit from a partitioning since probes with similar
embeddings are typically assigned to the same region — Greedy and Row-Epitaxial
(Chapter 3), for instance, are more likely to find good candidates for filling the spots.

We describe four partitioning algorithms: 1-Dimensional Partitioning (1-DP), 2-Di-
mensional Partitioning (2-DP), Centroid-based Quadrisection (CQ), and Pivot Par-
titioning (PP). Like placement algorithms, they assume that an initial embedding of
the probes is given. Pivot Partitioning is the only algorithm that modifies these em-
beddings. As we shall see, 1-DP and 2-DP generate a few masks with extremely few
conflicts, but leave the remaining masks with many conflicts that are difficult to handle,
whereas CQ and PP offer a more uniform optimization over all masks. Earlier results
indicate that PP produces better layouts than CQ on large chips (de Carvalho Jr. and
Rahmann, 2006a).

Partitioning is clearly a compromise in solution quality since it restricts the space of
solutions and may lead to conflicts at partition borders, although it can improve solu-
tion quality when the placement algorithm cannot handle large regions well. Hence, it
is not advisable to perform too many levels of partitioning because smaller sub-regions
mean less freedom for optimization during placement. The right balance depends on
the chip dimensions as well as on the placement and partitioning algorithms.
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Chapter 6 Partitioning Algorithms

Figure 6.1: First four levels of 1-Dimensional Partitioning. Dashed lines show the divisions
performed in each step; solid lines indicate regions delimited in previous steps (there are
no border conflicts between spots separated by solid lines). Masked (shaded) regions are
labeled “0”, unmasked (white) regions are labeled “1”. This labeling forms a binary Gray
code (shown in the first three steps only).

6.1 1-Dimensional Partitioning

The 1-Dimensional Partitioning algorithm (de Carvalho Jr. and Rahmann, to appear)
divides the set of probes based on the state of their embeddings at a particular synthesis
step. It starts by creating two subsets of P :

P0 = {pk ∈ P|εk,1 = 0}, P1 = {pk ∈ P|εk,1 = 1}.

In other words, P0 contains all probes whose embeddings are unproductive during the
first synthesis step, whereas P1 contains probes with productive embeddings. The chip
is then divided into two horizontal (or vertical) bands, proportionally to the number
of probes in P0 and P1, so each band accommodates one subset of P .

This procedure is recursively applied to each band, using the next synthesis steps to
further divide each subset of probes. For instance, the following subsets of P0 and P1

are created during step t = 2:

P00 = {pk ∈ P0|εk,2 = 0}, P01 = {pk ∈ P0|εk,2 = 1},

P10 = {pk ∈ P1|εk,2 = 0}, P11 = {pk ∈ P1|εk,2 = 1}.

The next assignments of subsets to the upper or lower band of their regions are made
in such a way that regions with the same “state” — productive (unmasked) or un-
productive (masked) — are joined as far as possible, resulting in masks that consist
of alternating layers of masked and unmasked spots. This process is illustrated in
Figure 6.1, where at each step t, a band is labeled “0” when its embeddings are unpro-
ductive, and “1” when its embeddings are productive. The resulting binary numbers
from top to bottom form a binary Gray code, that is, a permutation of the binary
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numbers between 0 and 2n − 1 such that neighboring elements differ in exactly one
bit, as do the first and last elements (Kreher and Stinson, 1999).

The Gray code highlights an interesting property of 1-DP. After d levels of partitioning
(based on steps 1 to d), the embeddings of any two immediate neighbors differ among
the first d steps in at most one step. As a result, masks M1 to Md exhibit a layered
structure that effectively reduces border conflicts. The Gray code is disrupted as soon
as a region cannot be divided (because all probes of that region are masked at a
particular step, for instance). This will certainly happen as several binary numbers
are unlikely to be substrings of embeddings (for example, numbers containing long
runs of zeros).

Moreover, 1-DP can optimize only a limited number of masks because the sub-regions
soon become too narrow to be further divided. The maximum partitioning depth dmax

is primarily limited by the number of rows (or columns) on the chip. In practice, since
regions are likely to be unevenly divided, dmax varies between regions. The algorithm
can also be configured to stop partitioning a region once its height drops below a given
threshold Hmax (i.e., the maximum height of any final region will not exceed Hmax).

1-DP is easier to implement if the partitionings always produce rectangular regions
(i.e., splitting a row between two regions is not allowed). In order to force an exact
division of a region, however, it might be necessary to move a few probes from one
subset of probes to the other one.

For example, imagine that a chip with |P| = 900 probes, nr = 30 rows and nc = 30
columns is to be partitioned based on the state of the embeddings at the first synthesis
step, resulting in sub-sets P0 and P1 with, say, 638 and 262 probes, respectively.
The chip must thus be divided into two sub-regions, the upper one containing [30 ·
638/900] = 21 rows and the lower one with [30 · 262/900] = 9 rows (where [x] denotes
the nearest integer of x). The problem is that the upper region then contains 21 ·30 =
630 spots but it has to accommodate 638 probes, whereas the lower region contains
9 · 30 = 270 spots but only 262 probes. The solution is to (arbitrarily) move 8 probes
from P0 to P1, which results in some imperfections in the layers of the corresponding
mask (a few masked spots in a region of unmasked spots and vice-versa).

6.2 2-Dimensional Partitioning

The 2-Dimensional Partitioning algorithm (de Carvalho Jr. and Rahmann, to appear)
extends the idea of 1-DP to two dimensions, with the potential of optimizing twice
as many masks. The algorithm is similar: P is divided into subsets based on the
state of the embeddings at a particular synthesis step. The differences are that 2-
DP alternates horizontal and vertical divisions of regions, and that the assignments
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Figure 6.2: First four levels of 2-Dimensional Partitioning. Dashed lines show the divisions
performed in each step; solid lines indicate regions delimited in previous steps. Masked
regions are labeled with “0”, unmasked regions with “1”; this labeling forms an approxi-
mation to a two-dimensional binary Gray code.

of probes to regions obey a two-dimensional binary Gray code (Figure 6.2). In a 2-
D Gray code, the binary numbers are arranged in a matrix in such a way that two
neighboring numbers differ in at most one bit. As a result, regions whose embeddings
are at the same state (productive or unproductive) are joined as far as possible.

If regions were always equally divided, 2-DP would have the same property as 1- DP:
After d levels of partitioning, the embeddings of any two immediate neighbors would
differ among the first d steps in at most one step. However, this is not always the case
since 2-DP is likely to create regions with different dimensions, forcing some regions to
share a border with more than its four natural neighbors. For instance, in Figure 6.2
region “0010” borders with “0000”, “1010”, and “0011”, but also with “0001” and
“1011”.

Like 1-DP, the maximum partitioning depth, dmax, is limited by the number of rows
and columns on the chip, and it varies since regions are likely to be unevenly divided.
2-DP can also be configured to stop partitioning a region as soon as its dimensions
(height and width) drop bellow a given threshold Lmax (the largest final region will
contain at most Lmax

2 spots).

Figure 6.3 shows the normalized border length per masking step of layouts produced by
2-DP for a random 1 000× 1 000 chip. With maximum partitioning depth (Lmax = 1),
2-DP produced a layout with the best masks for the first 22 synthesis steps. However,
because the chip is partitioned until all regions contain a single probe, the placement
algorithm has no freedom for reducing border conflicts in the remaining masks. As
a result, after step 32, the levels of border conflicts are as high as in the random
layout.

With Lmax = 10, there is more room for optimization during placement since the
final regions can be as large as 10 × 10. In this case, we used the Greedy placement
algorithm (Section 3.6) with Q = 100 so that all probes of a region were considered
for filling its spots. This resulted in a reduction of about 13.4% in normalized border
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Figure 6.3: Normalized border length per masking step of several layouts for a 1 000 ×
1 000 chip with random probes left-most embedded in the standard Affymetrix deposition
sequence: random layout (¡); 2-D Partitioning with Lmax = 1 (×); 2-D Partitioning with
Lmax = 10 and Greedy placement with Q = 100 (¯); 2-D Partitioning with Lmax = 50
and Greedy placement with Q = 2500 (+).

length compared to the layout produced with Lmax = 1 (from 21.5588 to 18.6670, data
not shown), although we observed an increase of border conflicts in the first 24 masks.
Increasing Lmax even further to 50 and using Greedy with Q = 2 500 resulted in a
reduction of 8.1% in normalized border length compared to Lmax = 10 (from 18.6670
to 17.1629) but, again, this came at the expense of an increase of border conflicts in
the first 20 masks.

Figure 6.4 compares the results obtained by 1-DP and 2-DP on the same 1 000×1 000
chip of Figure 6.3. We first compare both algorithms with their maximum partitioning
depths (Hmax = 1 for 1-DP and Lmax = 1 for 2-DP). With Lmax = 1, 2-DP produces
1 × 1 regions and leaves no room for optimization during placement. In contrast,
1-DP with Hmax = 1 produces regions with a single row but, in this case, with 1 000
columns (and 1 000 probes), leaving a considerable degree of freedom for the placement
algorithm. To be fair, we thus compare 1-DP and 2-DP using a placement algorithm
that places probes randomly inside each final region, so that the results are only due to
the partitionings (and not to the placement algorithm). In our results, with maximum
partitioning depths, 1-DP and 2-DP produced layouts with similar levels of border
conflicts in masks M33 to M74, although the layout produced by 2-DP was slightly
better in masks M58 to M69. However, while 1-DP was able to produce masks with
relatively few conflicts in the first 17 steps, 2-DP achieved even greater reductions of
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Figure 6.4: Normalized border length per masking step of layouts produced by 1-D and
2-D Partitioning for a 1 000 × 1 000 chip with random probes left-most embedded in the
standard Affymetrix deposition sequence: 1-DP with Hmax = 1 and random placement
(×); 2-DP with Lmax = 1 (¡); 1-DP with Hmax = 1 and Greedy placement with Q = 1000
(+); 2-DP with Lmax = 50 and Greedy placement with Q = 2500 (¯).

border conflicts in the first 32 steps. The normalized border lengths of these layouts
are 25.8543 (with 1-DP) and 21.5588 (with 2-DP).

In Figure 6.4 we also compare 1-DP with Hmax = 1 and 2-DP with Lmax = 50 using
Greedy for the placement. With Lmax = 50, 2-DP produces regions containing at most
2 500 probes. For this particular chip, 2-DP produced 1 005 regions, containing 995.02
probes on average (the largest region contained 2 209 and the smallest 210 probes),
so Greedy had about the same degree of freedom provided by 1-DP with Hmax = 1.
We used a sufficiently large number Q of candidates per spot so that all probes of a
region were considered for filling its spots. With these settings, the layouts produced
by 1-DP and 2-DP have similar levels of border conflicts in masks M20 to M74. In the
first 18 synthesis steps, however, 2-DP produced better masks, especially after step 5.
The NBLs of these layouts are 18.0078 (1-DP) and 17.1629 (2-DP).

A representation of selected photolithographic masks generated by 2-DP for a 300×300
chip are shown in Figure 6.5. The resulting rectangular regions can be clearly seen
up to mask M18. In the first eight masks it is possible to see some “imperfections”
(unmasked spots on masked regions or vice-versa) that result from arbitrarily moving
probes between regions in order to force exact divisions. On a chip of this size, 2-
DP can usually reduce conflicts up to the 25th synthesis step, although this is not
noticeable in M25 of Figure 6.5.
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M1 M2 M3

M4 M5 M6

M7 M8 M13

M18 M25 M68

Figure 6.5: Selected masks generated by 2-Dimensional Partitioning with Lmax = 1 for a
random 300 × 300 chip with 25-mer probes left-most embedded into the standard Affy-
metrix deposition sequence. Unmasked (masked) spots are represented by light (dark)
dots.
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Figure 6.6: Normalized border length per masking step (on the left y-axis) of two layouts
produced by 2-Dimensional Partitioning with Lmax = 50 and Greedy placement with
border length minimization and Q = 2.5K for a 1 000 × 1 000 chip with random probe
sequences: left-most mask optimization with left-most embeddings (¡); centered mask
optimization with centered embeddings (×). The histogram shows the number of middle
bases synthesized at each step with centered embeddings (right y-axis).

So far we have described both 1-DP and 2-DP using the state of the first d synthesis
steps to divide the set of probes. The result of this approach is that, while the first
masks are optimized, the remaining masks are left with high levels of border conflicts;
we call this a left-most mask optimization.

However, a defect in the middle of the probe is more harmful than in its extremities,
so it is more important to optimize the central masks that are more likely to add the
middle bases. Fortunately, it is possible to reduce conflicts in the central masks using 1-
DP and 2-DP by partitioning the probe set based on the following sequence of synthesis
steps, assuming that T is even and d is odd: T/2, (T/2)±1, (T/2)±2, . . . , (T/2)±bd/2c;
we call this a centered mask optimization.

For left-most optimization, it makes sense to embed the probes in a left-most fashion
in order to reduce conflicts in the last masks (which are not optimized by the par-
titioning). The left-most embeddings reduce the number of unmasked spots in the
last steps, resulting in masks that largely consist of masked spots and consequently
low levels of border conflicts. In contrast, centered mask optimization produces better
results with centered embeddings. A centered embedding is constructed by shifting
a left-most embedding to the right until the number of masked steps to the left of
the first productive step is approximately equal to the number of masked steps to the
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Table 6.1: Average conflict index (ACI) of layouts produced by Greedy placement and 2-D
Partitioning on random 800 × 800 chips with left-most and centered embeddings. 2-DP
was configured for centered mask optimization and used Greedy for the placement. In
all cases, Greedy was configured for conflict index minimization and used 0-threading.
Results are averages over a set of five arrays and running times are reported in minutes.

Embeddings Algorithm ACI Time
Left-most Greedy with Q = 20K 392.1786 186.4
Left-most Greedy with Q = 40K 378.3110 357.0
Left-most Greedy with Q = 80K 366.8446 680.9
Centered Greedy with Q = 20K 387.5974 205.1
Centered 2-DP with Lmax = 10 and Greedy with Q = 100 345.9908 0.6
Centered 2-DP with Lmax = 20 and Greedy with Q = 400 342.2031 1.3
Centered 2-DP with Lmax = 30 and Greedy with Q = 900 341.2786 2.3
Centered 2-DP with Lmax = 40 and Greedy with Q = 1200 341.6185 4.0
Centered 2-DP with Lmax = 50 and Greedy with Q = 2000 341.7515 6.1
Centered 2-DP with Lmax = 60 and Greedy with Q = 3600 341.8634 8.4

right of the last productive step.

Figure 6.6 shows the results of using 2-D Partitioning with Lmax = 50 on a 1 000×1 000
chip with left-most and centered mask optimization. With left-most mask optimiza-
tion, we obtain a normalized border length of 17.1629 (up to approximately 0.32 per
step). With centered mask optimization, the normalized border length improves by
1.03% to 16.9855 (not shown in the figure). The average conflict index, however, is re-
duced by as much as 34.89% (from 577.3353 to 375.9232) because of the higher weight
of the middle bases in the conflict index measure.

When carefully used, 1-DP and 2-DP can improve placement by producing a few masks
with very low levels of border conflicts, and breaking the problem into smaller sub-
problems that are easier to handle. Table 6.1 shows results on 800× 800 arrays using
2-DP with centered mask optimization and Greedy with conflict index minimization
for the placement, in comparison to using Greedy alone (results with Greedy as shown
in Table 3.2 and Figure 3.5). Results of Greedy with centered embeddings are also
shown. In our results, the layouts produced by 2-DP are even better than the ones
produced by Greedy with Q = 80K. This is a consequence of the importance of the
middle bases in the conflict index measure. Moreover, while Greedy required about
680.9 minutes with Q = 80K, the combination of 2-DP and Greedy required at most
8.4 minutes because the partitioning restricts the number of candidates Greedy can
look at for each spot.

Increasing Lmax provides more room for optimization during placement but worsens
the central masks, while reducing Lmax improves the central masks at the expense
of an increase of conflicts in the remaining masks (in this case, reducing Lmax also
improves running time as Greedy has fewer candidates available for each spot). The
best trade-off depends on several aspects of the problem such as chip dimension, probe
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Figure 6.7: First three levels of Centroid-based Quadrisection. Dashed lines show the divi-
sions performed in each step; solid lines indicate regions delimited in previous steps. The
centroids of each partition Rc1 to Rc4 are represented by small circles (labeled with pc1 to
pc4 in the first step).

embeddings, type of optimization (border length or conflict index), and placement
algorithm. For this case, the best results were achieved with Lmax = 30.

6.3 Centroid-based Quadrisection

Centroid-based Quadrisection (Kahng et al., 2003b), CQ for short, employs a different
criterion for dividing the probe set and a different approach for partitioning. At each
iteration, a region R is quadrisectioned into Rc1 , Rc2 , Rc3 , and Rc4 . Each sub-region
Rci

is associated with a selected probe pci
∈ P , called centroid, that is used to guide

the assignment of the remaining probes to the sub-regions.

A centroid is a representative of its region: It should symbolize the “average embed-
ding” in that region. The remaining probes pk ∈ P \ {pc1 , pc2 , pc3 , pc4} are compared
to each centroid and assigned to the sub-region Rci

whose centroid minimized the
Hamming distance H(k, ci) (as defined in Section 2.2).

The authors argue that, in order to improve the “clustering” of similar probes, the four
centroids should be as different from each other as possible. The following heuristic
is proposed: First, a probe index c1 is randomly selected from {1, . . . , |P|}. Then,
a probe index c2 6= c1 maximizing H(c2, c1) is selected. Similarly, c3 maximizing
H(c3, c1) + H(c3, c2) and c4 maximizing H(c4, c1) + H(c4, c2) + H(c4, c3) are selected.
The assignment of centroids to the quadrisections of the chip is arbitrary.

Since the partitioning must always produce four regions of the same size, sometimes it
is necessary to make non-optimal assignment of probes to regions. In order to recover
from a possibly bad choice of centroids, a “multi-start heuristic” is used, running the
centroid selection procedure several times with different “seeds” for c1 and keeping the
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centroids that lead to the best partitioning. For measuring partitioning quality, the
algorithm uses the sum of Hamming distances between the embeddings of the probes
and the embedding of the centroid (the partitioning that results in the least sum is
selected).

The maximum partitioning depth dmax of CQ is log2 nr, assuming that nr is a power
of 2 and that nc = nr (nr and nc are the number of rows and columns on the chip,
respectively). In practice, the partitioning continues until a pre-defined depth D has
been reached.

Although CQ was developed for border length minimization (BLM), it can be adapted
for conflict index minimization (CIM) by using the conflict index distance C(k, k′) (as
defined in Section 2.3) instead of the Hamming distance H(k, k′) for selecting the
centroids as well as for deciding which partition a probe should be assigned to.

As mentioned in Section 3.6, placement algorithms such as Row-Epitaxial and Greedy
have the drawback of treating the last Q − 1 filled spots unfairly since fewer than Q
probe candidates are available to fill them. This issue is aggravated by a partitioning
because in each final partition Q − 1 spots have fewer than Q probe candidates. In
order to attenuate this problem, a borrowing heuristic was implemented in CQ to allow
the placement algorithm (Row-Epitaxial, in the original implementation) to look at Q
probes “in the current and the next region”. Although the authors did not specify the
exact meaning of “next region”, it can be, for instance, the next region to be processed
by the placement algorithm. Borrowing probes from a region Rci

to fill spots of Rcj

obviously requires using the unplaced probes of Rcj
to fill spots of Rci

.

6.4 Pivot Partitioning

Pivot Partitioning (de Carvalho Jr. and Rahmann, 2006a), PP for short, is to a certain
extent similar to CQ: Sub-regions are recursively associated with special probes, here
called pivots instead of centroids, that are used to guide the assignment of the other
probes to the sub-regions. The main differences between PP and CQ are as follows.

Instead of quadrisectioning the chip, PP creates sub-regions by alternating horizontal
and vertical divisions (like 2-D Partitioning). At each iteration, a region R is parti-
tioned into sub-regions Rc1 and Rc2 associated with pivots qc1 and qc2 , respectively.
The advantage of alternating horizontal and vertical divisions over the quadrisection-
ing approach of CQ is that regions are not required to have the same size. Instead,
regions are divided proportionally to the size of each subset of probes, which reduces
the need for making non-optimal assignments, although it may still be necessary to
move some probes from one sub-region to the other in order to obtain rectangular
regions. Moreover, for each partitioning, only two pivots need to be selected.
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Algorithm 1 PivotPartitioning

Input: rectangular region R consisting of all rows and columns of the chip,
set of probes P = {p1, p2, . . . pn},
deposition sequence N ,
and requested partitioning depth D

Output: set of assignments A = {a1, a2, . . . a2D}
where ai = (Pi, Ri), Pi ⊂ P, and Ri is a sub-region of the chip

1. (Select pivot candidates.) Select probes p ∈ P with minimum number of embeddings E(p) as
pivot candidates:

a) Let Q = {p ∈ P | E(p,N) is minimum}
b) Set P ← P \ Q

2. (Call RecursivePartitioning.) Call recursive procedure with initial partitioning depth 1 and
return:

a) Return RecursivePartitioning (1, D,R,Q,P)

Another distinction is motivated by the same observation that inspired the develop-
ment of the Priority re-embedding algorithm (Section 5.5), i.e., that different probes
have different numbers of embeddings, ranging from a single one to several millions on
a typical Affymetrix GeneChip array. Probes with more embeddings can more easily
adapt to the other probes, that is, they are more likely to have an embedding with
fewer conflicts to fill a particular spot than a probe that has only a limited number of
embeddings. PP uses probes with a single embedding (or few embeddings) as pivots,
and chooses the other probes’ embeddings and region assignments accordingly. Indeed,
the most important feature of PP is the simultaneous embedding and assignment of
probes to sub-regions.

The first part of the algorithm consists of selecting a sub-set of probes that will be used
as pivots (Algorithm 1). First, it examines each probe p ∈ P and computes E(p,N),
the number of embeddings of p in the deposition sequence N ; this can be done in
O(` · T ) time with dynamic programming, where ` is the length of the probe and T
is the length of the deposition sequence. The set of pivot candidates Q then consists
of all probes p with E(p,N) = 1. In practice, this usually results in a sufficient
number of pivots. For instance, around 6% of the probes in a randomly generated
chip have a single embedding. If this is not the case, we can set a threshold e for the
maximum number of embeddings of a pivot in such a way that the number of probes
p with E(p,N) ≤ e is at least 2D, where D is the requested partitioning depth (a
user-defined parameter).

Using probes with fewer embeddings as pivots has two advantages. First, less time is
spent choosing the pivots in each iteration since fewer candidates need to be examined.
Second, probes with fewer embeddings are usually better “representatives” to drive the
partitioning. The problem is that some embeddings may have their productive steps
concentrated in one part of the deposition sequence. For instance, some Affymetrix
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Algorithm 2 RecursivePartitioning with conflict index minimization

Input: current partitioning depth d,
requested partitioning depth D,
rectangular region R of the chip,
set of pivot candidates Q,
and set of probes P,

Output: set of assignments A = {a1, a2, . . . a2(D−d)}
where ai = (Pi ∪Qi, Ri), Pi ⊂ P, Qi ⊂ Q, and Ri is a sub-region of R

1. (Stopping condition.) When d = D:
a) Re-embed each p ∈ P optimally with respect to all q ∈ Q
b) Return {(P ∪Q, R)}

2. (Choose pivot pair.) Select qc1 , qc2 ∈ Q such that C(c1, c2) is maximal

3. (Partition set of pivot candidates.) Assign each pivot candidate qk ∈ Q to sub-set Qcj associ-
ated with pivot qcj such that C(k, cj) is minimal; in case of ties, make assignments heuristically
in an attempt to achieve balanced partitionings:

a) Qc1 = {qk ∈ Q | C(k, c1) < C(k, c2)}
b) Qc2 = {qk ∈ Q | C(k, c1) > C(k, c2)}

4. (Partition probe set.) Assign each probe pk ∈ P to sub-set Qcj such that MC(k, cj) is minimal;
in case of ties, make assignments heuristically in an attempt to achieve balanced partitionings:

a) Pc1 = {pk ∈ P | MC(k, c1) < MC(k, c2)}
b) Pc2 = {pk ∈ P | MC(k, c1) > MC(k, c2)}

5. (Partition chip region.) Partition R into sub-regions Rc1 and Rc2 (vertically if d is even,
horizontally otherwise) proportionally to the number of probes in Pc1 ∪Qc1 and Pc2 ∪Qc2

6. (Proceed recursively.) Partition each sub-problem recursively and return:
a) Return RecursivePartitioning (d + 1, D,Rc1 ,Qc1 ,Pc1)

∪ RecursivePartitioning (d + 1, D,Rc2 ,Qc2 ,Pc2)

probes, when left-most embedded, are synthesized in the first 37 masking steps, thus
using only half of the total 74 steps. Such probes are not good choices for pivots. In
our experience, probes with fewer embeddings are better pivots because they cover
most (if not all) cycles of the deposition sequence.

Once the pivot candidates are selected, the main recursive procedure is called (Algo-
rithm 2). The output of this procedure is a set of assignments A = {a1, a2, . . . a2D},
where each ai = (Pi∪Qi, Ri), i.e., ai consists of a set of probes (pivots and non-pivots)
and a defined sub-region Ri of the chip. Each assignment can then be processed, in-
dependently, by a placement algorithm.

At Step 2 of Algorithm 2, a pair of pivots qc1 and qc2 ∈ Q is selected such that
the conflict index distance between their embeddings C(c1, c2) is maximal; in case of
BLM, the Hamming distance H(c1, c2) is used. Instead of checking every possible pair
of pivots, the following heuristic is applied: First, a probe index c1 is randomly selected
from {1, . . . , |Q|}. Then, a probe index c2 6= c1 maximizing C(c2, c1) is selected. This

69



Chapter 6 Partitioning Algorithms

procedure is repeated for a fixed number of times, and the pair with maximum H(c1, c2)
is used in this iteration.

Step 3 partitions the set of pivot candidates Q into sub-sets Qc1 and Qc2 associated
with pivots qc1 and qc2 , respectively. This is done by comparing each of the remaining
pivot candidates qk ∈ Q with qc1 and qc2 and assigning it to the sub-set Qcj

whose pivot
results in minimum C(k, cj) over j = 1, 2, or minimum H(k, cj) in case of BLM.

A similar approach is used to partition the set of non-pivot probes P into sub-sets Pc1

and Pc2 (Step 4). The difference is that a non-pivot probe pk is assigned to a sub-set Pcj

considering all valid embeddings of pk with respect to the embedding of pivot qcj
. This

is done by computing the minimum conflict index distance MC(k, cj) or the minimum
Hamming distance MH(k, cj) in case of BLM. MC(k, cj) is defined as the minimum
conflict index distance C(x, cj) between any embedding εx of pk and a fixed embedding
εcj

(see Section 2.3 for the definition of conflict index distance). Similarly, MH(k, cj)
is defined as the minimum Hamming distance H(x, cj) between any embedding εx of
pk and εcj

(see Section 2.2 for the definition of Hamming distance).

MC(k, cj) and MH(k, cj) are computed with the OSPE algorithm of Section 5.1. How-
ever, since at this point the probes have not yet been assigned to spots, we use a vari-
ant of OSPE that ignores the location of the probes (and thus the distance-dependent
weights γ) by setting the Ut and Mi,t costs (Equations 5.1 and 5.2), in the CIM case,
as follows:

Ut := 1{εcj ,t=0} · ω(εcj
, t),

Mi,t := c · exp(θ · (1 + min{i, ` − i})) · 1{εcj ,t=1}.

At Step 5, the region R is partitioned into sub-regions Rc1 and Rc2 proportionally to
the number of probes in Pc1 ∪ Qc1 and Pc2 ∪ Qc2 . The algorithm alternates between
vertical (if current partitioning depth d is even) and horizontal (if d is odd) divisions.

Pivot Partitioning continues recursively up to a pre-defined maximum partitioning
depth D. When d = D, it returns an assignment of all probes of P ∪ Q (pivots and
non-pivots) to region R (Step 1). Before that, however, the algorithm re-embeds each
probe pk ∈ P optimally with respect to all pivots qj ∈ Q using another variant of
OSPE with costs Ut and Mi,t, in case of CIM, set as follows:

Ut :=
∑
qj∈Q

1{εj,t=0} · ω(εj, t),

Mi,t := c · exp(θ · (1 + min{i, ` − i})) ·
∑
qj∈Q

1{εj,t=1}.
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Table 6.2: Comparison between Pivot Partitioning (PP) and Centroid-based Quadrisection
(CQ) on chips containing random probes sequences of length 25 embedded in a 100-step
deposition sequence (probes are, initially, synchronously embedded). Chip dimensions
range from 100 × 100 to 500 × 500. Partitioning depths vary from D = 1 to D = 3 for
CQ and, equivalently, from D = 2 to D = 6 for PP. Both partitionings use Row-Epitaxial
for the placement with 1-threading and Q = 20 000, and are followed by the Sequential
re-embedding algorithm with threshold W = 0.1%. The data shows the normalized border
length of chips produced by CQ as reported by Kahng et al. (2003b), and the results of
using PP on similar input. The relative difference between the two algorithms is shown
in percentage.

100 × 100 200 × 200 300 × 300 500 × 500
NBL NBL NBL NBL

CQ D = 1 19.8595 19.1558 19.4735 19.1310
PP D = 2 19.7414 18.6572 17.9959 17.3154
Relative −0.60% −2.60% −7.59% −9.49%
CQ D = 2 20.1673 19.4199 19.0263 18.7480
PP D = 4 20.4057 19.1756 18.4533 17.6462
Relative +1.18% −1.26% −3.01% −5.88%
CQ D = 3 20.7378 19.7625 19.1470 18.6523
PP D = 6 21.1305 19.8459 19.0458 18.1701
Relative +1.89% +0.42% −0.53% −2.59%

6.4.1 Results

Table 6.2 shows a comparison between Pivot Partitioning and Centroid-based Quadri-
section. For this comparison, we reproduce the results of Kahng et al. (2003b), which
used chips with random probes of length ` = 25 that were, initially, synchronously
embedded in a cyclic deposition sequence of length N = 100. We run PP on similar
input and report the results with equivalent partitioning depths (two levels of PP are
equivalent to one level of CQ). Both algorithms were configured for BLM and used
1-threading and Row-Epitaxial for the placement with Q = 20 000. Since PP also
modifies the probes’ embeddings, we compare the results obtained by both algorithms
after a re-embedding phase with Sequential (Section 5.4) using threshold W = 0.1%.

Our results show that PP produced layouts with less border conflicts than CQ except
on the smaller chips with higher partitioning depths. On 500×500 chips, for instance,
PP with D = 2 produced a layout with 9.49% less border conflicts than CQ with
D = 1, on average. With D = 6 (respectively, D = 3 for CQ), this difference dropped
to 2.59%. On 100× 100 chips, however, PP produced worse layouts, with up to 1.89%
more border conflicts with D = 6. We suspect that this disadvantage is due to the
“borrowing heuristic” used by CQ (and not implemented in PP) that permits, during
placement, borrowing probes from neighboring partitions in order to maintain a high
number of probe candidates for filling the last spots of a quadrant.

We also report results of similar experiments using PP and the Greedy placement
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Table 6.3: Normalized border length (NBL) and average conflict index (ACI) of layouts
produced by the Greedy placement algorithm and Pivot Partitioning (PP) with varying
partitioning depths D on chips containing random probes embedded in a deposition se-
quence of length 100 (probes are, initially, synchronously embedded). PP uses Greedy for
placement inside final regions. In all cases, Greedy uses Q = 20 000 and 0-threading, and
placement is followed by a re-embedding phase with Sequential using threshold W = 0.1%.
Total time (including partitioning, placement and re-embedding) is reported in seconds.

200 × 200 300 × 300 500 × 500
NBL Time NBL Time NBL Time

Greedy 20.7696 173.8 20.2921 560.5 19.5884 2 214.3
PP D = 2 18.6572 50.3 17.9959 335.8 17.3154 1 921.2
Relative −10.17% −71.0% −11.32% −40.1% −11.60% −13.2%
PP D = 4 19.1756 26.6 18.4533 92.2 17.6462 913.6
Relative −7.67% −84.7% −9.06% −83.6% −9.92% −58.7%
PP D = 6 19.8459 23.3 19.0458 60.2 18.1701 254.4
Relative −4.45% −86.6% −6.14% −89.3% −7.24% −88.5%

200 × 200 300 × 300 500 × 500
ACI Time ACI Time ACI Time

Greedy 469.6163 1 077.8 454.7646 2 780.5 440.8775 8 151.0
PP D = 2 410.9014 533.2 396.1600 1 799.2 380.6258 6 940.4
Relative −12.50% −50.5% −12.89% −35.3% −13.67% −14.9%
PP D = 4 426.4966 406.3 409.6784 1 024.0 389.2871 4 505.6
Relative −9.18% −62.3% −9.91% −63.2% −11.70% −44.7%
PP D = 6 444.0277 366.1 425.2855 891.5 403.9497 3 038.1
Relative −5.45% −66.0% −6.48% −67.9% −8.38% −62.7%

algorithm compared to using Greedy alone. For these experiments, we used versions
of PP and Greedy for border length as well as conflict index minimization (Table 6.3).
In all cases, we run the Sequential re-embedding algorithm with threshold W = 0.1%
after placement.

Our results show that PP improves the quality of layouts in both measures at the
same time that it significantly reduces running time. The best layouts were invariably
achieved with D = 2 and the improvements were higher on larger chips. The reduction
in normalized border length was up to 11.60% (from 19.5884 to 17.3154) on 500 ×
500 chips with D = 2 when compared with no partitioning. In this particular case,
there was also a reduction of 13.2% in running time (from 2 214.3 to 1 921.2 seconds).
With CIM, the reduction in average conflict index was up to 13.67% (from 440.8775
to 380.6258) on 500 × 500 chips with D = 2 when compared with no partitioning.
Increasing the partitioning depth up to D = 6 still resulted in better layouts, although
with relatively less reduction in normalized border length and average conflict index
when compared to D = 2. In terms of running time, however, we observed a reduction
of as much as 89.3% in the BLM case (from 560.5 to 60.2 seconds) and 67.9% in
the CIM case (from 2 780.5 to 891.5 seconds) on 300 × 300 chips with D = 6 when
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Table 6.4: Normalized border length (NBL) of layouts produced by the Greedy placement
algorithm and Pivot Partitioning (PP) with varying partitioning depths D on chips con-
taining random probes embedded in the standard Affymetrix deposition sequence (of
length 74; probes are, initially, left-most embedded). PP uses Greedy for placement inside
final regions. In all cases, Greedy uses Q as indicated and 0-threading, and placement is
followed by a re-embedding phase with Sequential using threshold W = 0.2%. Total time
(including partitioning, placement and re-embedding) is reported in seconds.

300 × 300 500 × 500 800 × 800
Q Alg. NBL Time NBL Time NBL Time

5K Greedy 18.2121 103.3 17.4851 358.4 16.8201 949.4
PP D = 2 18.4376 87.0 17.8102 315.3 17.1683 922.0
Relative +1.24% −15.7% +1.86% −12.0% +2.07% −2.9%
PP D = 4 18.6193 58.7 17.9299 267.9 17.3763 885.2
Relative +2.24% −43.2% +2.54% −25.3% +3.31% −6.8%
PP D = 6 19.1262 31.2 18.2090 149.8 17.5295 671.6
Relative +5.02% −69.8% +4.14% −58.2% +4.22% −29.3%

20K Greedy 17.9726 582.7 17.2779 2 012.4 16.6258 5 782.1
PP D = 2 18.1954 295.6 17.5494 1 612.5 16.9620 5 083.1
Relative +1.24% −49.3% +1.57% −19.9% +2.02% −12.1%
PP D = 4 18.6124 61.2 17.7584 696.6 17.1114 3 924.4
Relative +3.56% −89.5% +2.78% −65.4% +2.92% −32.1%
PP D = 6 19.1262 31.3 18.2083 150.5 17.4450 1 158.8
Relative +6.42% −94.6% +5.38% −92.5% +4.93% −80.0%

compared with no partitioning.

It should be noted that the results shown in Tables 6.2 and 6.3 use a deposition se-
quence of length T = 100, which allows a considerable degree of freedom for embedding
probes of length ` = 25; these experiments were mainly performed to compare PP with
previous results on CQ. In practice, the production of commercial microarrays is likely
to use shorter deposition sequences. Affymetrix chips, for instance, are synthesized in
74 synthesis steps. For this reason, we also show the results of using Pivot Partitioning
on chips with random 25-mer probes left-most embedded in the standard Affymetrix
deposition sequence. In these experiments we use the Greedy placement algorithm
with Q = 5 000 and Q = 20 000, and we report the results of PP compared with
layouts produced with no partitioning (using Greedy alone).

With BLM (Table 6.4), we observed that partitioning the chip always resulted in worse
layouts than without partitioning, although there was always a reduction in running
time. Again, increasing the partitioning depth from D = 2 to D = 6 worsened the
results. For instance, the percentage increase in normalized border length on 800×800
arrays in comparison with no partitioning raised from 2.02% with D = 2 to 4.93%
with D = 6 (with Q = 20 K), although the percentage reduction in running time
also raised from 12.1% to 80.0%. The reduction in running time was higher on the
smaller arrays and with higher values of Q because, in these cases, the restriction on
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Table 6.5: Average conflict index (ACI) of layouts produced by Greedy and Pivot Parti-
tioning (PP) with varying partitioning depths D on random chips with probes left-most
embedded in the Affymetrix deposition sequence. PP uses Greedy for placement inside
final regions. In all cases, Greedy uses Q as indicated and 0-threading, and placement is
followed by Sequential re- embedding with W = 0.2%. Total time is reported in seconds.

300 × 300 500 × 500 800 × 800
Q Alg. ACI Time ACI Time ACI Time

5K Greedy 436.8630 511.3 428.7410 1 479.8 422.6277 3 870.0
PP D = 2 432.8319 621.8 419.9128 1 863.0 410.8418 4 865.1
Relative −0.92% +21.6% −2.06% +25.9% −2.79% +25.7%
PP D = 4 441.2177 510.6 418.1961 1 724.1 403.9992 4 781.8
Relative +1.00% −0.1% −2.46% +16.5% −4.41% +23.6%
PP D = 6 459.5480 378.7 429.4306 1 356.5 407.4338 4 275.3
Relative +5.19% −25.9% +0.16% −8.3% −3.60% +10.5%

20K Greedy 412.5536 2 008.5 398.6096 4 555.5 389.3929 12 535.3
PP D = 2 423.0404 1 184.5 400.7174 4 837.2 386.0881 13 898.2
Relative +2.54% −41.0% +0.53% +6.2% −0.85% +10.9%
PP D = 4 440.4754 539.6 411.0308 2 940.8 388.3189 11 656.7
Relative +6.77% −73.1% +3.12% −35.4% −0.28% −7.0%
PP D = 6 459.5725 378.6 428.7111 1 461.4 402.3157 6 629.7
Relative +11.40% −81.2% +7.55% −67.9% +3.32% −47.1%

the number of probe candidates per spot is more significant.

With respect to CIM (Table 6.5), however, the partitioning resulted in improved lay-
outs in some cases, especially for the larger chips. With D = 4 and Q = 5K, we
observed a reduction of 4.41% in average conflict index on 800× 800 arrays, although
that also resulted in an increase of 23.6% in running time. On 500×500 chips, PP with
D = 6 and Greedy with Q = 20K produced, in approximately the same time, a layout
that was slightly better than the layout produced by Greedy with Q = 5K and no
partitioning (428.7111 ACI in 1 461.4 seconds versus 428.7410 ACI in 1 479.8 seconds,
respectively). In some cases, the extra time needed for the partitioning (choosing
pivots, comparing probes to pivots, etc.) exceeded the reduction in running time due
to limiting Q and, as a result, the total time with partitioning was higher than with-
out it. Only in one case we observed a reduction of running time combined with an
improvement in solution quality: On 800 × 800 arrays, PP with D = 4 and Greedy
with Q = 20K achieved reductions of 0.28% in ACI and 7.0% in running time when
compared to Greedy alone.

6.5 Summary

We described several partitioning algorithms that are able to break the microarray
layout problem into smaller sub-problems and showed that a partitioning can indeed
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be used to improve solution quality and/or reduce running time. However, several
aspects of the problem such as chip size, placement algorithm, type of embeddings,
deposition sequence length and type of optimization (BLM or CIM), must be taken
into account when choosing the partitioning algorithm and its parameters.

While Centroid-based Quadrisection and Pivot Partition offer more homogeneous im-
provements over all synthesis steps, 1-DP and 2-DP are able to achieve significant
reduction of conflicts for a few selected masks, which can be beneficial for the conflict
index measure where a conflict in the middle of the probe is penalized more severely.

On chips with a 100-step cyclic deposition sequence, Pivot Partitioning outperformed
previous results of CQ on larger chips because the approach of simultaneously re-
embedding and assigning probes to regions better exploits the extra freedom on the
probes’ embeddings provided by the long deposition sequence. We believe that the
comparatively worse results achieved by PP on the smaller chips with higher parti-
tioning depths are due to the borrowing heuristic implemented in CQ that allows the
placement algorithm to keep a high number of probe candidates per spot when the
last sites of a quadrant are being filled.

With shorter deposition sequences, we have shown that the restriction in number of
candidates per probe during placement of the last spots of a region often impacts
the solution quality more significantly than the gains due to grouping similar probes
together. As a result, in terms of BLM, PP failed to improve the quality of layouts
produced by the Greedy placement algorithm. In terms of CIM, however, PP was
able to reduce running time as well as ACI, probably because there is more room
for optimization in this measure. Again, the borrowing heuristic implemented in CQ
could improve the results of PP in both measures. It should be noted, however,
that the effects of a partitioning on Greedy and Row-Epitaxial are mainly due to a
particularity of their placement strategies; other placement algorithms such as Sliding-
Window Matching (Section 3.4) are not expected to be impaired in the same way.
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Chapter 7

Merging Placement and
Re-embedding

In the previous chapters we have described several algorithms that deal with the
microarray layout problem in the traditional way: partitioning, placement and re-
embedding. The problem with the “place and re-embed” approach is that once the
placement is fixed, there is usually little freedom for optimization by re-embedding
the probes. Intuitively, better results should be obtained when the placement and em-
bedding phases are considered simultaneously instead of separately. However, because
of the generally high number of embeddings of each single probe, it is not easy to
design algorithms that efficiently use the additional freedom and run reasonably fast
in practice. In Chapter 6, we have shown how Pivot Partitioning successfully exploits
this extra freedom to outperform previous partitioning algorithms.

In this chapter, we describe the first placement algorithm that simultaneously places
and re-embeds the probes. Our goal was to design an algorithm that is similar to the
Greedy placement algorithm (Section 3.6), so that we can make a better assessment
of the gains resulting from merging the placement and re-embedding phases.

7.1 Greedy+

Greedy+ (de Carvalho Jr. and Rahmann, to appear) is similar to Greedy in many
respects. Spots are filled in a greedy fashion, sequentially, using a user-configurable
k-threading pattern. For each spot s, Greedy+ looks at Q probe candidates and
chooses the one that can be placed at s with minimum cost. The main difference is
that Greedy+ considers all possible embeddings of a candidate p instead of only p’s
given embedding. This is done by temporarily placing p at the spot s and using OSPE
(Section 5.1) to compute p’s optimal embedding with respect to the already-filled
neighbors of s. (Naturally, OSPE can be used to compute the optimal embedding
with respect to border length or conflict index.) Another difference is that, unlike
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Chapter 7 Merging Placement and Re-embedding

Greedy and Row-Epitaxial, Greedy+ does not assume that an initial embedding of
the probes is given.

Compared to Greedy, Greedy+ spends more time evaluating each probe candidate p
for filling a spot s. While Greedy takes O(T ) time to compute the conflict index or
the border length resulting from placing p at s, Greedy+ requires O(` ·T ) time since it
uses OSPE (recall that ` is the probe length and T is the deposition sequence length).
We must therefore use lower numbers Q of candidates per spot to achieve a running
time comparable to Greedy.

There are three observations that significantly reduce the time spent with OSPE com-
putations when several probe candidates are considered in succession for filling the
same spot. First, we note that the Ut and Mi,t costs of OSPE (Equations 5.1 and
5.2, respectively) need to be computed only once for a given spot s since they do not
depend on the probe placed at s but rather on the probes placed at neighbors of s:
Ut depends solely on the neighbors of s, whereas Mi,t depends on the neighbors of s
and on the number i of bases probe p already contains at synthesis step t (if all probes
have the same length `, then c and θ in Equation 5.2 are constants).

Second, once we know that a probe candidate p can be placed at the spot s with
minimum cost κ, we can stop the OSPE computation for another candidate p′ as soon
as all values in a row of OSPE’s dynamic programming matrix are greater than or
equal to κ.

Finally, we note that if two probe sequences p and p′ share a common prefix of length r,
the first r +1 rows of OSPE’s matrix D will be identical. Hence, if we have previously
calculated the minimum cost of p, we can speed up the calculation of the minimum cost
of p′ by skipping the first r + 1 rows of D. In order to fully exploit this fact, we must
examine the probes in lexicographical order so that we maximize the length of the
common prefix between two consecutive probe candidates. For this reason, Greedy+
uses the same technique used by Greedy: Initially, the probe sequences are sorted
lexicographically and stored in a doubly-linked list. Once a probe p is selected to fill
the current spot, it is removed from the list. For the next spot to be filled, Greedy+
looks at Q probes in the list around p’s former position, e.g., at bQ/2c probes to the
left and at dQ/2e probes to the right of p (the list is traversed from left to right).

7.2 Results

We first examine how the amplitude of the k-threading and the number Q of candidates
per spot affect the results of Greedy+. In the case of BLM (Table 7.1), the best results
were always achieved with surprisingly high values of k (this is in contrast to Greedy,
which always produced the best results with k = 0). The reason is not yet clear,
especially because only conflicts between adjacent spots count in the border length
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Table 7.1: Normalized border length (NBL) of layouts produced by Greedy+ on random
chips with varying number Q of candidates per spot and amplitude of k-threading. Run-
ning times are reported in minutes.

Q = 500 Q = 1000 Q = 2000
Dim. k NBL Time NBL Time NBL Time

300 × 300 0 17.9356 5.4 17.7136 10.6 17.5460 20.6
1 18.0922 5.4 17.8988 10.5 17.7501 20.4
2 17.9886 5.4 17.7905 10.5 17.6342 20.5
3 17.9339 5.7 17.7406 10.5 17.5799 20.5
4 17.8978 5.7 17.7155 11.1 17.5506 20.5
5 17.8862 5.7 17.7013 10.6 17.5359 20.5
6 17.8749 5.4 17.6908 10.6 17.5225 20.5
7 17.8641 5.5 17.6807 10.6 17.5223 20.6
8 17.8605 5.4 17.6711 10.6 17.5141 20.6
9 17.8519 5.4 17.6685 10.6 17.5083 20.6

10 17.8518 5.4 17.6657 10.6 17.5067 20.6
11 17.8427 5.5 17.6705 10.6 17.5066 20.6
12 17.8431 5.4 17.6643 10.6 17.5070 20.6
13 17.8455 5.4 17.6628 10.6 17.5021 20.6
14 17.8423 5.4 17.6629 10.6 17.5053 20.5

500 × 500 0 17.3240 14.9 17.0576 29.1 16.8707 57.0
1 17.4648 14.8 17.2483 28.9 17.0761 56.5
2 17.3372 14.9 17.1318 29.0 16.9650 56.4
3 17.2732 14.9 17.0785 29.0 16.9135 56.5
4 17.2371 14.9 17.0436 29.0 16.8855 56.8
5 17.2143 14.9 17.0264 29.3 16.8676 57.2
6 17.1990 15.0 17.0141 29.3 16.8557 57.2
7 17.1812 15.0 17.0049 29.3 16.8420 57.2
8 17.1774 15.0 16.9965 29.3 16.8398 57.0
9 17.1704 15.0 16.9921 29.4 16.8346 57.3

10 17.1666 15.8 16.9876 29.2 16.8332 59.7
11 17.1629 15.0 16.9814 29.1 16.8294 56.8
12 17.1594 14.9 16.9821 29.3 16.8280 56.7
13 17.1549 15.8 16.9767 29.1 16.8240 56.8
14 17.1503 14.9 16.9737 29.1 16.8261 56.8

800 × 800 0 16.7983 38.0 16.4944 73.8 16.2640 144.4
1 16.8849 37.7 16.6615 73.3 16.4780 143.3
2 16.7420 37.8 16.5377 73.5 16.3626 143.6
3 16.6693 37.9 16.4775 73.9 16.3070 143.9
4 16.6266 38.0 16.4375 73.8 16.2707 144.2
5 16.5938 38.1 16.4096 74.2 16.2497 145.1
6 16.5700 38.2 16.3919 74.3 16.2334 145.2
7 16.5543 38.2 16.3801 74.6 16.2237 145.2
8 16.5435 38.1 16.3691 74.5 16.2171 145.3
9 16.5379 38.2 16.3646 74.7 16.2115 145.8

10 16.5297 38.0 16.3586 74.0 16.2094 144.5
11 16.5229 38.0 16.3539 74.0 16.2039 144.5
12 16.5210 38.2 16.3518 74.1 16.2022 144.6
13 16.5194 38.1 16.3474 74.1 16.1971 144.7
14 16.5118 38.0 16.3456 74.1 16.1968 144.8
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Chapter 7 Merging Placement and Re-embedding

Table 7.2: Average conflict index (ACI) of layouts produced by Greedy+ on random chips
with varying number Q of candidates per spot and k-threading’s amplitude. Running
times are reported in minutes.

Q = 500 Q = 1000 Q = 2000
Dim. k ACI Time ACI Time ACI Time

300 × 300 0 462.3882 5.8 443.3786 10.5 425.9132 19.8
1 468.6485 5.8 449.1931 10.6 431.1021 19.9
2 472.3753 5.8 452.5054 10.6 434.1209 19.9
3 474.3210 5.8 454.6870 10.6 436.2880 20.0
4 474.2031 5.8 454.6782 10.6 436.2529 19.9

500 × 500 0 457.3329 15.8 437.3920 28.8 419.2114 54.2
1 463.6259 16.0 443.7018 30.4 424.5009 54.7
2 467.3461 15.9 447.5021 29.0 428.3882 54.8
3 469.2554 16.6 449.4136 29.1 430.4992 55.0
4 468.9371 16.0 449.5197 29.1 430.4662 58.0

800 × 800 0 451.8074 40.0 431.8977 73.0 413.3451 144.3
1 458.1598 40.3 437.8440 73.5 418.9562 138.4
2 461.6418 40.3 441.6484 73.3 423.0075 145.9
3 463.5349 40.3 443.7868 73.6 425.2302 138.9
4 463.1225 40.3 443.7802 73.7 425.3695 139.0

model. It should also be noted that for a sufficiently large value of k, a “row-wise”
k-threading can be seen as a “column-wise” 0-threading.

With BLM, increasing the amplitude from k = 0 to k = 1 always worsened the
results. Increasing it further, however, improved the layouts and eventually resulted
in less conflicts than with k = 0 up to a point when it started to make little difference.
The greatest difference between the worst and the best layouts due to the amplitude
k was at most 2.26% (from 16.5118 with k = 14 to 16.8849 with k = 1 on 800 × 800
chips and Q = 500). In case of CIM (Table 7.2), the best results were always achieved
with k = 0, and increasing it up to k = 3 always resulted in more conflicts, although
increasing it to k = 4 often resulted in slightly better layouts than with k = 3.

In both cases, doubling the number Q of candidates per spot roughly doubled the
running time. In contrast with Greedy, Greedy+ requires approximately the same
time with CIM and BLM, sometimes being even slightly faster with the former. This
can be explained as follows. The major difference the quality measure makes for OSPE,
in terms of running time, is when the Ut and Mi,t costs of OSPE are computed. While
for BLM at most four neighbors of a spot s need to be examined, for CIM we must look
at up to 48 neighbors of s. However, since the Ut and Mi,t costs are computed only
once for a spot s and are reused for each of the Q candidate probes, the greater the
number Q, the less impact the quality measure makes in total running time. The fact
that Greedy+ is sometimes slightly faster with CIM than with BLM could be because,
with the former, it more quickly finds a probe candidate with a low minimum cost κ
that allows it to stop computing the cost of other candidates sooner (when all entries
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Table 7.3: Normalized border length (NBL) of layouts produced by Greedy and Greedy+
on random chips with the number Q of candidates per spot of Greedy+ set in such a way
that it does not exceed the time spent by Greedy. Total time including placement and
re-embedding is reported in minutes. Both algorithms use 0-threading and are followed
by two passes of re-embedding optimization with Sequential. The relative difference in
NBL and time between the two approaches is shown in percentage.

Greedy and Sequential Greedy+ and Sequential Relative
Dim. Q NBL Time Q NBL Time NBL Time

300 × 300 10 000 18.0900 6.2 300 17.9807 4.2 −0.60% −31.21%
20 000 17.9725 12.1 700 17.6746 9.2 −1.66% −23.85%

500 × 500 10 000 17.3809 20.8 450 17.2216 16.0 −0.92% −23.30%
20 000 17.2779 41.9 950 16.9382 30.4 −1.97% −27.42%

800 × 800 10 000 16.7143 57.9 500 16.6549 41.7 −0.36% −28.00%
20 000 16.6259 121.6 1 130 16.3175 97.7 −1.85% −19.68%

Table 7.4: Average conflict index (ACI) of layouts produced by Greedy and Greedy+ (with
0-threading) on random chips in approximately the same amount of time (total time
in minutes including two passes of Sequential re-embedding optimization). The relative
difference in ACI between the two approaches is shown in percentage.

Greedy and Sequential Greedy+ and Sequential
Dim. Q ACI Time Q ACI Time Relative

300 × 300 10 000 423.1330 13.9 1 070 438.4015 14.0 +3.61%
20 000 412.5536 24.1 2 180 420.8863 24.2 +2.02%
80 000 402.4365 54.3 5 500 401.7005 54.0 −0.18%

500 × 500 10 000 412.5468 43.2 1 225 428.5082 43.7 +3.87%
20 000 398.6096 77.0 2 580 409.6446 76.9 +2.77%

140 000 375.5428 352.2 13 500 374.9914 351.9 −0.15%
800 × 800 10 000 405.3133 113.9 1 315 421.2380 113.7 +3.93%

20 000 389.3929 207.9 2 790 401.7969 208.5 +3.19%
300 000 350.8412 2 056.7 32 000 350.6951 2 050.8 −0.04%

in a row of OSPE’s matrix are greater than κ).

We now compare the results obtained by Greedy and Greedy+ when both algorithms
are given the same amount of time (the parameter Q is chosen differently for both
algorithms so that the running time is approximately comparable). To be fair, since
Greedy is a traditional placement algorithm that does not change the embeddings
of the probes, we need to compare the layouts obtained by both algorithms after
a re-embedding phase. For this task we use the Sequential algorithm (Section 5.4)
performing two passes of re-embedding optimization. For this experiment we use
probes of length ` = 25 left-most embedded in the standard Affymetrix deposition
sequence.

Table 7.3 compares both algorithms in terms of border length minimization. In all
cases, Greedy+ produced better layouts than Greedy in the same amount of time (or
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Figure 7.1: Normalized border length per masking step of layouts produced by Greedy
with Q = 20 000 (×) and Greedy+ with Q = 950 (¡) for a 500 × 500 chip with border
length minimization. Both algorithms used 0-threading and were followed by two passes
of re-embedding optimization with Sequential.

less) while looking at fewer probe candidates. For instance, on 800×800 chips Greedy+
with Q = 1 130 produced layouts with 1.85% less border conflicts than Greedy with
Q = 20 000 in 19.68% less time, on average.

In terms of CIM (Table 7.4), Greedy is not so easily outperformed by Greedy+. With
Q = 10 000 and Q = 20 000 Greedy produced better layouts than Greedy+ in approx-
imately the same time. For instance, on 800 × 800 chips, Greedy+ with Q = 2 790
produced layouts with 3.19% more conflicts than Greedy with Q = 20 000. However,
Greedy+ has an advantage over Greedy since it needs to examine fewer candidates
to achieve similar results and, for sufficiently large values of Q, it is usually possible
to achieve better results with Greedy+ in the same amount of time. For instance, on
300×300 chips, Greedy+ with Q = 13 500 produced layouts with only 0.18% less con-
flicts than Greedy with Q = 80 000. After this point, however, the difference in ACI
between Greedy and Greedy+ tends to increase (data not shown). We also observed
that the larger the chip, the less advantage Greedy+ has over Greedy. On 500 × 500
chips, Greedy+ starts to outperform Greedy when Q = 13 500 (with running times in
the order of 6 hours), approximately, and on 800× 800 chips around Q = 32 000 (with
more than 34 hours of running time per array).

One advantage of Greedy+ is that, unlike Greedy, it is not influenced by the initial
embeddings of the probes. Figure 7.1 shows the normalized border length of layouts
produced by Greedy and Greedy+ with border length minimization for a selected
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Table 7.5: Normalized border length (NBL) of layouts produced by Row-Epitaxial and
Greedy+ (both with 0-threading) on random chips in approximately the same amount of
time. (total time in minutes including two passes of Sequential re-embedding optimiza-
tion). The relative difference in NBL and time between the two approaches is shown in
percentage.

Row-Epitaxial and Sequential Greedy+ and Sequential Relative
Dim. Q NBL Time Q NBL Time NBL Time

300 × 300 10 000 18.0524 4.3 300 17.9807 4.2 −0.40% −1.24%
20 000 17.9430 9.5 700 17.6746 9.2 −1.50% −2.85%

500 × 500 10 000 17.3584 16.0 450 17.2216 16.0 −0.79% −0.40%
20 000 17.2502 34.7 950 16.9382 30.4 −1.81% −12.51%

800 × 800 10 000 16.7176 45.6 500 16.6549 41.7 −0.38% −8.51%
20 000 16.6012 100.1 1 130 16.3175 97.7 −1.71% −2.41%

500× 500 chip with equivalent numbers Q of candidates per spot (in accordance with
Table 7.3). Because the probes were initially left-most embedded, Greedy produced a
layout in which the border conflicts are concentrated between steps 7 and 58; start-
ing on step 59, the normalized border length drops steadily as the embeddings reach
their last productive steps. In contrast, Greedy+ produces a layout with a more
uniform distribution of conflicts in the final synthesis steps. In both cases the first
masks have relatively few conflicts as a result of lexicographically sorting the probes.
A representation of selected masks for the layout produced by Greedy+ is shown in
Figure 7.2. Layers of masked and unmasked regions in masks M1 to M9 are similar
to the ones shown in Figure 3.7, although the masks produced by Greedy are “nois-
ier”. The normalized border length of these layouts are 17.3182 (Greedy) and 16.9451
(Greedy+).

Finally, we also compare Greedy+ with Row-Epitaxial (Section 3.5), which, in terms of
border length minimization, achieves results comparable to Greedy in less time. Table
7.5 shows that Greedy+ also outperforms Row-Epitaxial in the same amount of time
(or less). The larger values of Q are used, the greater is the advantage of Greedy+.
According to the results of Table 7.1, the difference in NBL between Greedy+ and Row-
Epitaxial could be even greater if the former used higher k-threading amplitudes.

7.3 Summary

We have presented a new placement algorithm, called Greedy+, that for the first
time places and re-embeds the probes simultaneously. Our results have shown that
Greedy+ outperforms the previously best placement algorithms — Row-Epitaxial for
border length minimization and Greedy for conflict index minimization. In terms of
CIM, Greedy produces better results when time is limited but, otherwise, Greedy+
should be the placement algorithm of choice. In fact, Greedy+ achieves similar results
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M1 M2 M3

M4 M5 M6

M7 M8 M9

M62 M70 M74

Figure 7.2: Selected masks generated by Greedy+ with border length minimization for
a 500 × 500 chip with 25-mer probes embedded in the standard Affymetrix deposition
sequence. Unmasked (masked) spots are represented by light (dark) dots.
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to Greedy by examining fewer probe candidates per spot and, for this reason, it has
the potential for producing better layouts.

7.3.1 Future work

The fact that Greedy+ does not outperform Greedy so easily in terms of CIM as it does
in terms of BLM could be explained by the fact that probes are sorted lexicographically,
which increases the chances of finding candidates that have similar prefixes but not
good “matches” for the middle part of the embeddings. Greedy has an advantage
since it looks at more candidates in the lexicographically sorted list of probes. One
possibility that could improve the results of Greedy+ is to sort the list of probes
with an emphasis on the middle bases. Although this is technically possible, with our
current implementation of OSPE it would result in an increase in running time because
consecutive candidates would then be unlikely to have a common prefix, requiring the
dynamic programming matrix to be entirely re-computed for each probe considered.
We leave as an open problem the question of finding an ordering of the probes with
an emphasis on the middle bases and an implementation of OSPE in such a way
that consecutive candidates can be examined quickly by skipping the computation of
identical rows of the matrix.
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Chapter 8

Analysis of Affymetrix Microarrays

Affymetrix GeneChip arrays are considered the industry standard in terms of high-
density oligonucleotide microarrays. In this chapter, we analyze the layout of several
GeneChip arrays with respect to the quality measures defined in Chapter 2, i.e., border
length and conflict index. We then use some of the algorithms presented in previous
chapters to create alternative layouts for two commercially available microarrays.

8.1 Introduction

We obtained the specification of several GeneChip arrays containing the list of probe
sequences and their positions on the chip from Affymetrix’s web site1. As discussed
below, we have to make a few assumptions because some details such as the deposition
sequence used to synthesize the probes, the probe embeddings, and the contents of
“special” spots are not publicly available.

Some of the special spots are used to help the mechanical alignment of the chip with the
scanner that captures the image with the hybridization signals. Others contain quality
control probes used to detect failures during the production of the chip (Affymetrix,
Inc., 2002; Hubbell and Pevzner, 1999). Not knowing the contents of these special
spots did not interfere with our analysis because, in all arrays we examined, they
amount to at most 1.22% of the total number of spots.

What could interfere with our analysis is the fact that some arrays have a significant
number of empty spots (as much as 11.94% on the Chicken Genome array). The
physical locations of some empty spots suggest that they might be used as “spacers”
to separate regions of the chip. Others might be empty simply because the number
of spots exceeds the number of probes. A high number of empty spots results in a
relatively low normalized border length (as defined in Section 2.4) since we divide the
total number of border conflicts by the number of internal borders of the chip (an
empty spot contributes to the number of internal borders but obviously not to the

1http://www.affymetrix.com/support/technical/byproduct.affx?cat=arrays

87



Chapter 8 Analysis of Affymetrix Microarrays

N TGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATG

εp G AT TG A G A A C C GCA G T A C G A C C C G T

εp̄ G AT TG A G A A C C G G A G T A C G A C C C G T

++ +++ ++ ++ +++ +++ ++ ++ +

εp G AT TG A G A A C C GC A G T A C G A C C C G T

εp̄ G AT TG A G A A C C G G A G T A C G A C C C G T

+ +

Figure 8.1: Left-most (above) and pair-wise left-most (below) embeddings εp and εp̄ of
perfect match (PM) and mismatch (MM) probes p = GATTGAGAACCGCAGTACGACCCGT and
p̄ = GATTGAGAACCGGAGTACGACCCGT, respectively, in the standard Affymetrix deposition
sequence N = (TGCA)18TG. Conflicts between the embeddings are highlighted with plus
signs (+) in the corresponding synthesis steps.

number of border conflicts). Thus, to better compare chips with different amounts of
empty spots we also use the average number of border conflicts per probe, defined as
the total border length divided by the number of probes. As we shall see, an array
with many empty spots might still have an advantage depending on how the empty
spots are distributed on the chip.

Most GeneChip expression arrays use a 74-step deposition sequence (whereas most
genotyping arrays use an 80-step sequence). In fact, an analysis with the algorithms
presented in Chapter 9 revealed that most GeneChip expression arrays, regardless of
their size, can be synthesized in N = (TGCA)18TG, i.e., 18.5 cycles of TGCA, and that a
shorter deposition sequence is indeed unlikely. This suggests that only sub-sequences
of this particular deposition sequence can be used as probes on Affymetrix chips. In
principle, this should not be a problem as this sequence covers about 98.45% of all
25-mers (Rahmann, 2006).

Probes of GeneChip arrays always appear in pairs: the perfect match (PM), which
perfectly matches its target sequence, and the mismatch (MM) probe, which is used
to quantify cross-hybridizations and unpredictable background signal variations (Af-
fymetrix, Inc., 2001). The MM probe is a copy of the PM probe except for the
middle base (position 13 of the 25-mer), which is exchanged with its Watson-Crick
complement. The layout of GeneChip arrays alternate rows of PM probes with rows
of MM probes in such a way that probes of a pair are always adjacent on the chip.
Moreover, PM and MM probes are usually pair-wise left-most embedded or pair-wise
right-most embedded. Informally, a pair-wise left-most embedding is obtained from
left-most embeddings by shifting the second half of one embedding to the right until
the two embeddings are “aligned” in the synthesis steps that follow the mismatched
middle bases (Figure 8.1). This approach reduces border conflicts between the probes
of a pair, although it leaves a conflict in the steps that add the middle bases.

The fact that probes must appear in pairs restricts even more which sequences can be
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Figure 8.2: Average number of border conflicts per probe per masking step (on the left y-
axis) of three GeneChip arrays, assuming pair-wise left-most embeddings: Yeast Genome
S98 (×), Human Genome U95A2 (+), and E. coli Genome 2.0 (¡). The histogram shows
the number of middle bases synthesized at each step on the E. coli Genome 2.0 (right
y-axis).

used as probes on GeneChip arrays because both PM and MM probes must “fit” in the
deposition sequence. For example, although p = CGTAGGTACGTTATAAGTCACTAAA has an
embedding in N = (TGCA)18TG, it cannot be used as a probe because its corresponding
mismatch probe p̄ = CGTAGGTACGTTTTAAGTCACTAAA is not a subsequence of N , as shown
below.

N TGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATGCATG

εp C G T A G G T A C G T T AT A A G T CA C T A A A

εp̄ C G T A G G T A C G T T T T A A G T CA C T A A A

8.2 Layout Analysis

Figure 8.2 shows the average number of border conflicts per probe per masking step of
three GeneChip arrays. We assume that the probes are pair-wise left-most embedded
in N = (TGCA)18TG, and we consider all spots whose contents are not available as empty
spots. In all chips we analyzed, the number of border conflicts is higher in the steps
that add the middle bases, a result of placing PM and MM probes in adjacent spots.
The Yeast Genome S98 array has the worst layout in terms of border conflicts, and
most of the earlier GeneChip arrays such as the E. coli Antisense Genome have similar
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Table 8.1: Average number of border conflicts per probe (ABC), normalized border length
(NBL) and average conflict index (ACI) of selected GeneChip arrays (assuming pair-wise
left-most embeddings). The dimension of the chip, the percentage of spots with unknown
content and the percentage of empty spots are also shown.

GeneChip Array Dimension Unknown Empty ABC NBL ACI
Yeast Genome S98 534 × 534 1.22% 1.70% 44.8168 21.7945 669.0663
E. coli Antisense Genome 544 × 544 1.17% 3.12% 43.3345 20.7772 663.7353
Human Genome U95A2 640 × 640 0.96% 1.83% 28.2489 13.7517 510.3418
E. coli Genome 2.0 478 × 478 1.08% 0.46% 29.2038 14.4079 550.2014
Chicken Genome 984 × 984 0.46% 11.94% 28.2087 12.3680 540.5022
Wheat Genome 1 164 × 1 164 0.38% 0.08% 27.6569 13.7771 539.9632

levels of conflicts. The layout of the Human Genome U95A2 array has significantly
less border conflicts than the Yeast array, suggesting that it was designed with a better
placement strategy. The curve of the E. coli Genome 2.0 array, with very low levels of
conflicts in the first 10 masks, is typical of the latest generation of GeneChip arrays,
including the Chicken Genome and the Wheat Genome (one of the largest GeneChip
arrays currently available with 1 164×1 164 spots), and suggest yet another placement
strategy.

Figure 8.3 shows a representation of selected masks for the E. coli Genome 2.0. The
low levels of conflicts in the first synthesis steps are a result of the pattern of masked
and unmasked layers that can be seen in masks M1 to M9. This pattern is similar to
the ones produced by Greedy (Figure 3.7) and Greedy+ (Figure 7.2). A more careful
examination, however, reveals that the layers are arranged in a way that resembles the
Gray-code–based arrangement employed by 1-Dimensional Partitioning (Figure 6.1).
This does not necessarily mean that the layout was produced by such a partitioning.
In fact, a similar effect could be produced by a placement algorithm such as Greedy
or Greedy+ if the probes were ordered in such a way that a prefix of their binary
embeddings formed an approximation of a Gray code.

Table 8.1 confirms that the layout of the Human Genome U95A2 array is better than
the layouts of the Yeast Genome S98 and the E. coli Genome 2.0 arrays, as suggested
in Figure 8.2; in fact, the U95A2 has one of the best layouts among those shown in
Table 8.1. This, however, has more to do with empty spots than with the placement
strategy as this chip has about 1.83% of empty spots that are evenly distributed on
the chip surface (Figure 8.4, left). In contrast, the Chicken Genome array has an
exceptionally high percentage of empty spots (11.94%) that contribute to lower the
normalized border length but that does not result in a lower average number of border
conflicts per probe in comparison with the Human Genome array because the empty
spots are concentrated in the lower part of the chip (Figure 8.4, right).

GeneChip arrays exhibit relatively low levels of border conflicts when compared to
layouts produced by the best algorithms for random arrays of similar dimensions.

90



8.2 Layout Analysis

M1 M2 M3

M4 M5 M6

M7 M8 M9

M32 M50 M70

Figure 8.3: Selected masks of Affymetrix’s E. coli Genome 2.0 GeneChip array, assuming
pair-wise left-most embeddings. Unmasked (masked) spots are represented by light (dark)
dots. White regions represent spots whose contents are not publicly available.
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Human Genome U95A2 (640 × 640) Chicken Genome (984 × 984)

Figure 8.4: Distribution of empty spots on two GeneChip arrays. Chip dimensions are
indicated in parentheses (images were scaled differently). Non-empty spots are represented
by dark dots. White dots represent empty spots or spots whose contents are not publicly
available.

This can be explained by the fact that each probe has a nearly identical copy next
to it. Not surprisingly, these arrays have relatively high average conflict indices when
compared to random arrays because the conflicts are concentrated on the synthesis
steps that add the middle bases.

8.3 Alternative Layouts

We used Greedy+ (Chapter 7) and Sequential re-embedding (Section 5.4) to create
alternative layouts for two of the latest generation of GeneChip arrays: E. coli Genome
2.0 and Wheat Genome. Greedy+ was modified to avoid placing probes on special
spots or empty spots that we believe might have a function on the chip.

For each chip we run the algorithms with border length as well as conflict index
minimization. The main difference between our layouts and the original ones is that
we do not require the arrays to alternate rows of PM and MM probes; hence, probes
of a pair are not necessarily placed on adjacent spots. This is especially helpful for
conflict index minimization since it avoids conflicts in the middle bases. With border
length minimization, we observed that Greedy+ placed between 90.70% and 95.16%
of the PM probes adjacent to their corresponding MM probes. With conflict index
minimization, this rate dropped to between 12.89% and 21.25%.
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Table 8.2: Normalized border length (NBL) and average conflict index (ACI) of several
layouts for the E. coli Genome 2.0 and Wheat Genome GeneChip arrays. Greedy+ and
Sequential run with border length and conflict index minimization (BLM and CIM, re-
spectively) as indicated. Greedy+ used k-threading with k = 5 for BLM and k = 0 for
CIM. Running times are reported in minutes and include placement (Greedy+) and 2
passes of re-embedding optimization with Sequential.

Array Layout NBL ACI Time
E. coli 2.0 Affymetrix with pair-wise left-most 14.4079 550.2014 —

Affymetrix after “pair-aware” Sequential (BLM) 13.5005 541.0954 —
Greedy+ with Q = 2K and Sequential (BLM) 13.3774 529.8129 46.9
Greedy+ with Q = 10K and Sequential (BLM) 13.2406 515.5917 218.3
Greedy+ with Q = 2K and Sequential (CIM) 17.6935 394.9905 54.9
Greedy+ with Q = 10K and Sequential (CIM) 17.5575 361.4418 225.7

Wheat Affymetrix with pair-wise left-most 13.7771 539.9632 —
Affymetrix after “pair-aware” Sequential (BLM) 12.9151 531.2692 —
Greedy+ with Q = 2K and Sequential (BLM) 12.7622 519.0869 279.2
Greedy+ with Q = 5K and Sequential (BLM) 12.6670 511.7193 676.0
Greedy+ with Q = 2K and Sequential (CIM) 17.1047 387.8430 322.7
Greedy+ with Q = 5K and Sequential (CIM) 17.1144 366.6045 704.7

Figure 8.5 shows the normalized border length per masking step of the layout produced
by Greedy+ and Sequential for the E. coli Genome 2.0 array in comparison with the
original Affymetrix layout. For comparison, we also show the result of running a
“pair-aware” version of Sequential on the original layout (this version ensures that
the embeddings of PM-MM pairs remain pair-wise “aligned”). The normalized border
length and average conflict indices of these layouts are shown in Table 8.2, together
with several layouts for the Wheat Genome array. Greedy+ with Q = 10K produced
a layout with 8.10% less border conflicts than the original layout for the E. coli array
(13.2406 versus 14.4079) in 218.3 minutes. With Q = 2K, this difference was 7.15%,
although that required only 46.9 minutes. For the Wheat array, Greedy+ with Q = 2K
generated a layout with 7.36% less border conflicts than the original layout (12.7622
versus 13.3771). It is not fair to compare the layouts in terms of CIM since the original
layouts were probably designed to minimize border conflicts (and not conflict indices).
Nevertheless, the results produced by Greedy+ and Sequential are comparable to the
results on random chips presented in Chapter 7.

8.4 Summary

We have analyzed the layout of several commercial microarrays with respect to border
length and conflict index. It is clear that placing perfect match (PM) and mismatch
(MM) probes on adjacent spots reduces the incidence of border conflicts. However,
this also has the disadvantage of concentrating the conflicts on the synthesis steps that
add the middle bases, precisely where the probes are most likely to be damaged.
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Figure 8.5: Normalized border length per masking step of several layouts for the E. coli
Genome 2.0 GeneChip array: original Affymetrix layout with pair-wise left-most embed-
dings (¯), original Affymetrix layout after running two passes of a “pair-aware” version of
Sequential re-embedding (+), layout produced by Greedy+ with Q = 10K and Sequential
with border length minimization (¡), and layout produced by Greedy+ with Q = 10K
and Sequential with conflict index minimization (×).

We have also showed that two algorithms presented in earlier chapters, Greedy+ and
Sequential re-embedding, performed well on real microarrays, including one of the
largest GeneChip arrays available, producing layouts with up to 8.10% less border
conflicts than the original layouts in reasonable time, and layouts with average conflict
index comparable to results on random arrays. In general, we believe that the quality
of currently available GeneChip arrays can be significantly improved with respect to
the problem of unintended illumination.
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Chapter 9

The Shortest Deposition Sequence
Problem

As we have seen in Chapter 2, the nucleotide deposition sequence N = N1N2 . . . NT

corresponding to the sequence of nucleotides Ni ∈ {A, C, G, T} added at each synthesis
step during the production of a microarray is a supersequence of all probe sequences.
Ideally, N should be as short as possible in order to reduce manufacturing cost and
time. By reducing the number of synthesis steps, the chances of unintended illumina-
tion are also reduced.

In this chapter, we study the shortest deposition sequence problem (SDSP), which
aims at finding a shortest supersequence N to synthesize a given set of probes. The
SDSP is an instance of a classical computer science problem known as the shortest
common supersequence problem (SCSP). The SCSP is NP-complete for strings over
an alphabet of size σ ≥ 2 (Räihä and Ukkonen, 1981). Although several heuristics for
the SCSP exist (for a survey, see Fraser, 1995), finding exact solutions seems to be
limited to small sets of sequences and reduced alphabet sizes. Nevertheless, we analyze
the feasibility of finding a shortest deposition sequence for a typical microarray.

Formally, we have a set of n probe sequences P = {p1, p2, . . . pn}, where each pk is
drawn from an alphabet Σ with size σ = |Σ|, that is, pk ∈ Σ∗ for 1 ≤ k ≤ n. For
simplicity, we assume that all probe sequences pk ∈ P have the same length `. Our
aim is to find the length T of a shortest common supersequence (SCS) N ∈ ΣT of all
pk ∈ P. The microarray production setting imposes the following constraints to the
problem: 10 000 ≤ n ≤ 1 500 000, 10 ≤ ` ≤ 70, Σ = {A, C, G, T}, σ = |Σ| = 4.

9.1 Our approach

Several efficient algorithms for the SCSP exist, but most are based on dynamic pro-
gramming and have a O(`n) space complexity (Itoga, 1981; Foulser et al., 1992), and
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Figure 9.1: Complete tree T with height h = 3 representing all sequences formed with
0 ≤ r ≤ h letters of the alphabet Σ = {A, B, C}. Each node has σ = |Σ| = 3 children.

they can thus only be used to solve problem instances with small n. The only fea-
sible approach to compute an exact solution to the SCSP for large n seems to be a
branch-and-bound search because its space complexity is merely O(n · `) for simple
implementations.

Consider a complete tree T of degree σ with edges labeled with the letters of the
alphabet Σ. The root node represents an empty sequence, and each node has σ
children, one for each possible letter of the alphabet. A node f of T represents a
sequence df formed by the sequence of letters in the path from the root to f . The
nodes of such a tree with height h contain all sequences formed with 0 ≤ r ≤ h letters
of Σ. Figure 9.1 shows T for Σ = {A, B, C}.

The SCSP can be solved by generating all possible candidate sequences N with a
length r (starting with r = `), checking whether each of them is a supersequence of
all p ∈ P . If no supersequence of length r is found, r is increased, and all candidate
sequences with the new length are generated and examined. When a supersequence is
found, the value of r denotes the length of the shortest common supersequence. This
corresponds to a breadth-first search on a tree T where the height h is increased until
a supersequence is found. In Figure 9.1, a possible breadth-first traversal of T is to
visit the nodes in the following order: A, B, C, AA, AB, AC, BA, BB, BC, CA, CB, CC, AAA, AAB,
AAC, ABA, ABB, ABC, ACA, . . . CCC. Alternatively, the nodes of T could be explored in a
depth-first fashion, which searches “deeper” in the tree whenever possible. In Figure
9.1, a possible depth-first traversal of T visits the nodes in the following order: A, AA,
AAA, AAB, AAC, AB, ABA, ABB, ABC, AC, ACA, ACB, ACC, B, BA, BAA, . . . CCC.

The advantage of a depth-first search is that, when combined with a branch-and-bound
strategy, it results in an efficient way of exploring the search space. A branch-and-
bound strategy means that, before exploring a branch of T , we check whether it has
a chance of leading to a better solution than the best solution found so far (Horowitz
et al., 1996); if it does not, the branch is skipped. The implications of this strategy are
two-fold. First, it requires that we already have a supersequence (although it might
not be the shortest one) even before the search starts. This approximate solution is
an upper bound on the length of the SCS used to delimit the search-space that needs
to be explored; the shorter it is, the more branches of the tree are likely to be skipped.
During the search, we keep track of the best solution found and update it whenever
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a shorter supersequence is encountered. Section 9.2 describes heuristic algorithms
that can be used to produce an approximate solution to the SCSP relatively quickly.
Second, the branch-and-bound strategy requires a way of checking whether a node
can lead to a better solution or not, i.e., we need a lower bound on the length of any
supersequence that can be found from a given node (each node in T is a prefix of a set
of candidate sequences). Section 9.3 discusses possible lower bounds for the SCSP. As
we shall see, the success of the branch-and-bound search depends on finding a good
lower bound that can be computed quickly.

In principle, a branch-and-bound strategy could also be used with a breadth-first
search. However, doing so would require keeping track of the branches of the tree
that need to be further investigated, which would consume a prohibitive amount of
memory as the search reaches deeper levels of the tree. A depth-first search, on the
other hand, does not require such bookkeeping. Each child of a node is reached by
a different letter of the alphabet, and they can be examined in a pre-defined order,
e.g., alphabetical order. When a node is skipped because it cannot lead to a better
solution, the search backtracks and continues on the next branch in the depth-first
order.

When the search is at a node f of the tree, its corresponding sequence df is a prefix
of a set of candidate sequences. For each sequence pk ∈ P , df is a supersequence of a
(possibly empty) prefix of pk. Let ck be the longest prefix of pk which is a subsequence
of df , and c̄k be the remainder of pk such that pk is a concatenation of ck and c̄k. In
order to be a proper supersequence of P , df must be extended with a suffix that is a
supersequence of the set R = {c̄1, c̄2, . . . c̄n}. The lower bounds discussed in Section
9.3 are used to estimate the minimum length Lf of the SCS of all c̄k ∈ R. Since we
know the length of df , the length of any supersequence of all pk ∈ P that can be
reached from f is at least |df | + Lf .

9.2 Upper bounds

Two well-known heuristics are used to compute an approximate solution to the SCSP
and set an initial upper bound on the length of the SCS for our branch-and-bound
search: Alphabet-leftmost and Majority-merge (see Fraser and Irving, 1995; Jiang and
Li, 1995; Rahmann, 2003).

Majority-merge. The Majority-merge algorithm starts with an empty supersequence
and builds it, iteratively, by keeping track of the prefixes of each input sequence that
have already been “consumed” by the supersequence. At each step, it selects the next
character of the supersequence by examining the first non-consumed characters of each
input sequence and picking the most frequent one.
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Alphabet-leftmost. Let ψ be a permutation of the letters of Σ. If ` is the length of
the longest input sequence and N is an `-fold repetition of ψ, N is a supersequence of
the set. Alphabet-leftmost heuristically finds a shorter supersequence by computing
a left-most embedding of each input sequence in N and removing the last “unused”
characters of N . According to Rahmann (2003) and to our own empirical results, this
algorithm is hard to be outperformed in practice. The choice of the permutation ψ is
not important, but if the alphabet is small (as it is in our setting), it is worth trying
all possible permutations of Σ and selecting the shortest one.

9.3 Lower bounds

Perhaps the simplest lower bound on the length of the SCS is to take the length of
the longest sequence in P . In this section we examine more interesting (and tighter)
lower bounds that can be used in our branch-and-bound search.

Counting occurrences of single letters. Let N (c) be the maximum number of oc-
currences of the letter c over all sequences pk ∈ P . Clearly, a shortest common
supersequence must have, at least, N (c) occurrences of each c ∈ Σ.

For instance, consider the set of sequences P = {p1, p2, p3} of length ` = 8, where
Σ = {A, B, C}, p1 = CABBABAC, p2 = CCABBABC and p3 = BBBBAACC. The maximum
number of occurrences of A is N (A) = 3. Similarly, N (B) = 4 and N (C) = 3. The SCS
must thus contain, at least, 3 As, 4 Bs, and 3 Cs, i.e., its length cannot be shorter than
N (A) + N (B) + N (C) = 10.

Counting pairs and triples. The same idea can be extended to count occurrences
of pairs of letters or even triples, using the same reasoning as above. For instance,
let N (ci cj) be the maximum number of occurrences of the subsequence ci cj (i.e., the
subsequence consisting of letters ci and cj, in this order) over all sequences pk ∈ P .
A shortest common supersequence must have, at least, N (ci cj) occurrences of each
subsequence formed with letters ci, cj ∈ Σ.

In the example above, N (AA) = 3 as p1 = CABBABAC contains 3 distinct AA subsequences.
Similarly, N (AB) = 4, N (AC) = 4, N (BA) = 8, N (BB) = 6, N (BC) = 8, N (CA) = 4,
N (CB) = 6, and N (CC) = 3. Each pk ∈ P has length ` = 8, and can thus accommodate(
8
2

)
= 28 pairs. The SCS must contain at least∑

ci,cj∈Σ

N (ci cj) = 46
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distinct pairs, and its length thus cannot be shorter than 11 (a sequence of length 10
can only contain

(
10
2

)
= 45 pairs).

It might seem intuitive to think that counting pairs should produce tighter lower
bounds than counting single letters (as it did in this example, giving a lower bound
of 11 instead of 10) because the former is based on “more information”. In practice,
however, counting pairs or triples rarely produced better results than counting single
letters in our microarray production setting. Another disadvantage of counting pairs
and triples is that they require O(`2) and O(`3) time for each pk ∈ P , respectively. In
contrast, we can count the occurrences of single letters in linear time.

9.3.1 Looking for better lower bounds

We investigated two relations on strings in an attempt to find tighter lower bounds
on the length of the SCS. The first one was the following relation, valid for any string
w ∈ Σ∗ and letters x, y ∈ Σ, with x 6= y:

|w|xy + |w|yx = |w|x × |w|y,

where |w|x refers to the number of occurrences of x in w, and |w|xy refers to the number
of occurrences of the subsequence xy in w.

Since this relation holds for any sequence, it should also hold for the supersequence.
We then analyzed a similar relation based on the least number of occurrences of single
letters and pairs over all sequences p ∈ P , N (x) and N (x y), respectively, and found
that, in the majority of cases,

N (x y) + N (y x) ≤ N (x) ×N (y).

This contrasted with our initial intuition that counting pairs would “carry more in-
formation” than counting single letters. If we had found that N (x y) + N (y x) >
N (x) ×N (y), we could produce a lower bound on the length of the SCS by creating
several relations of this form, and forcing an increase in the values of N (x) and N (y)
for each x, y ∈ Σ, until N (x y) + N (y x) = N (x) ×N (y).

Another interesting relation that seemed promising in the beginning was the Cauchy
inequality (Salomaa, 2003; Mateescu et al., 2004):

|w|y × |w|xyz ≤ |w|xy × |w|yz,

where the notations |w|y, |w|xy and |w|xyz refer to the number of occurrences of single
letters, pairs and triples in w, respectively, for x, y, z ∈ Σ and w ∈ Σ∗.

Again, we analyzed a similar relation with respect to the minimum number of occur-
rences of single letters, pairs, and triples over all sequences p ∈ P , N (x), N (x y) and
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N (x y z), respectively, and found that, in all cases we examined,

N (y) ×N (x y z) ≤ N (x y) ×N (y z).

Contrary to the previous relation, there was no intuitive notion to predict how this
relation behaves in practice. Nevertheless, if we had found that, in some cases, N (y)×
N (x y z) > N (x y) × N (y z), we could estimate the length of the SCS by increasing
the values of N (yz) and N (xy) until N (y) ×N (x y z) ≤ N (x y) ×N (y z).

Since we could not use any of these two relations to compute a lower bound on the
SCS, the method of counting single letters remains, to our knowledge, the best lower
bound for our setting.

9.4 Implementation

In this section, we describe in more detail an implementation of the branch-and-bound
search to solve the shortest deposition sequence problem for a set of probe sequences
P = {p1, p2, . . . pn} of a typical microarray, where pk ∈ Σ` for 1 ≤ k ≤ n, and
Σ = {A, C, G, T}.

Before the search starts, both Majority-merge and Alphabet-leftmost are used to find
a supersequence U and set an initial upper bound on the length of the SCS. Since the
alphabet in our problem is small (σ = 4), Alphabet-leftmost is run with all 4! = 24
permutations of Σ. Both algorithms are relatively fast, and their influence on the total
running time is negligible because they are executed only once. During the search, U
is updated whenever a shorter supersequence is found.

The search starts from the root node and proceeds down the tree T in a depth-first
fashion. At every node f , we first check whether the sequence df represented by f is
a supersequence of all probe sequences pk ∈ P. If it is not, a lower bound Lf on the
length of the shortest supersequence having df as a prefix is computed. The search
proceeds to a child of f only if |df | + Lf < |U |. Otherwise, the branch rooted at f
is skipped, and the search proceeds to a non-visited sibling node of f . If all sibling
nodes of f have already been visited, the search backtracks and continues on the next
node in the depth-first order.

Unlike the initial upper bound computation, we cannot afford to compute all lower
bounds described in Section 9.3 to choose the best result because this estimation is
done at every node of the tree. In fact, finding a good lower bound that can be
computed quickly is the key to the success of our search. Initial experiments revealed
that the best alternative is to compute the lower bound based on the number of
occurrences of single letters, as it produces the best results in the majority of cases (in
our experiments, counting pairs produced tighter bounds in only 10% of the cases).
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Moreover, it is significantly faster to compute and consumes less memory than the
other lower bounds.

Because of the branch-and-bound strategy, whenever another supersequence is found,
we know that it is shorter than the previously known supersequence (otherwise the
search would not reach its corresponding node). In this case, U is updated and the
search backtracks to a node f where |df | + Lf < U .

Visiting Order. The sooner a shorter supersequence is found during the search, the
higher is the chance of skipping branches of T . The order in which the children of a
node are examined is important because it may help finding a shorter supersequence
earlier rather than later. According to Chase (1976), a supersequence that is a repeated
permutation of the alphabet maximizes the number of distinct subsequences that can
be embedded in it. Hence, using a fixed visiting order for the branch-and-bound search,
e.g., (A, C, G, T), is not a good strategy because doing so results in the first candidate
sequences having a prefix consisting of a repetition of the same letter.

For this reason, the first children of a node to be visited, in our implementation,
depends on the last letter appended to the sequence represented by the current node
(i.e., the label of the last edge on the path to the current node), in such a way that
the first candidate sequences consist of a repeated permutation of the alphabet. For
instance, if a permutation (A, C, G, T) is fixed, and the last appended letter is G, then
the first child node to be visited is the one reached with T, followed by the one reached
with A and so on.

Computing lower bounds. In order to speed up the lower bound computation, we
keep track of the length Ik of the longest prefix ck of each sequence pk ∈ P that is a
subsequence of the df corresponding to the current node f . When the search proceeds
to a child node g (incrementing the sequence df with a letter x to produce dg), we
examine every input sequence pk ∈ P , and increment Ik if and only if pk[Ik +1] = x.

When the search proceeds from the child node back to its parent, a similar procedure
must also be executed to update each Ik. In order to make the updates reversible,
however, we need to know whether the last letter of ck corresponds to the letter
that is being deleted from dg. Therefore, when an index Ik is incremented, we set
Rk[Ik] = |dg|. When the search goes from child node g to parent node f , index Ik is
decremented if and only if a) pk[Ik] = x, where x corresponds to the edge of the tree
that is being traversed back, and b) Rk[Ik] = |dg|. Indices Ik and Rk require, in total,
O(n) and O(n · `) space, respectively.

During the search, we also keep track of the number of occurrences of each letter of the
alphabet for each input sequence pk ∈ P , and the maximum number of occurrences of
each letter over all sequences. This requires an extra O(n · σ) space.
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Table 9.1: Initial upper bound (IUB), length of the shortest common supersequence (SCS)
and approximate running time (in minutes) for problem instances with varying alphabet
sizes σ, length ` and number n of probe sequences.

σ ` n IUB SCS Time
3 10 1 000 28 27 0.1
3 10 10 000 29 28 0.2
3 15 10 000 40 39 6.3
3 17 100 40 39 34.3
3 20 1 000 53 ? > 720
4 10 10 000 36 36 37.1

Finally, we also store the lower bounds for every node in the path from the root to the
current node, so that they do not need to be re-computed when the search backtracks.
The maximum size required for these values is O(T ), where T is the length of the
SCS. In this way, we significantly reduce the total running time of the search at the
expense of an increase in space complexity of the branch-and-bound search from O(n)
to O(n(` · σ) + T ).

9.5 Results

Three variables determine the time required to completely traverse the search space
with our branch-and-bound algorithm: σ, ` and n. The size of the alphabet, σ,
determines the breadth of the tree and the number of candidate sequences of a given
length. The length ` of the probe sequences will ultimately affect the length of the
shortest common supersequence and, as a result, the depth of the search. The number
of sequences, n, influences the time spent at each node computing the lower bounds.

Among them, σ is the most critical factor as it increases the size of the search-space
exponentially (the number of nodes in level h of the tree is σ(h−1)). Empirical results
showed that the smallest variation in σ can drastically increase total running time.
In contrast, the value of n is the less critical one, since the work done at each node
is nearly O(n). Fortunately, the microarray production setting constrains σ and `
to relatively small values, although n is much larger than any other known similar
study — a branch-and-bound depth-first search was also used by Fraser (1995), but
the problem instances had n ≤ 24.

Table 9.1 shows the results of running our branch-and-bound search on several problem
instances. In order to evaluate the impact caused by varying σ, ` and n more quickly, in
most experiments we used a smaller alphabet (σ = 3) than required by the microarray
production setting.

With σ = 3 and ` = 10, increasing n by a factor of 10 (from 1 000 to 10 000), resulted
in an increase in running time by a factor of only 2.6 (from 5 to 13 seconds), approx-
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imately. In contrast, fixing ` = 10 and n = 10 000, and increasing the alphabet size
from σ = 3 to σ = 4, resulted in an increase in running time by a factor of about
171.2 (from 13 seconds to 37.1 minutes). The impact of increasing ` is also significant.
For example, with σ = 3 and n = 10 000, increasing the probe length from ` = 10
to ` = 15 resulted in a 29.1-time increase in running time (from 13 seconds to 6.3
minutes).

In some cases, the search found a supersequence shorter than the one computed with
the heuristic algorithms in relatively short time. For instance, with σ = 4, ` = 10 and
n = 10 000, a supersequence of length 50, three characters less than the one found
with the heuristic algorithms, was found in less than a minute. With σ = 3, ` = 17
and n = 100, a SCS was found in the first minute of execution, although the search
required 34.3 minutes to complete.

Our results suggest that the time required to search for a shortest deposition sequence
of a typical microarray is prohibitive, except for unusually small probe lengths (` = 10).
For sequences of length ` = 20, even with an alphabet of size σ = 3 and a reduced
input of only 1 000 sequences, the search did not finish after more than 12 hours. In
fact, an estimation based on the point where it was interrupted suggested that it would
take several days to terminate.

Running times of up to a few days might be acceptable in case of commercial mi-
croarrays produced in large scale. For custom microarrays, it does not seem practical
to wait for more than a day to find a shortest deposition sequence. Unfortunately,
our results suggest that, with σ = 4 and more common probe lengths (e.g. ` = 25),
running times of, at least, several weeks should be expected. There are three factors
that can reduce the total running time of this approach: using significantly faster
computers, introducing parallel processing (running several instances of the search on
different branches of the search tree), and finding tighter lower bounds on the length
of the SCS that can be computed quickly.

Perhaps because this problem seems intractable, sometimes the deposition sequence is
fixed beforehand, and only subsequences of that sequence are selected as probes. As
discussed in Chapter 8, this seems to be the case with Affymetrix GeneChip arrays.
This approach clearly restricts the sequences that can be used as probes. A different
approach to reduce the length of the deposition sequence that might not compromise
the range of probe sequences of a microarray so severely was proposed by Tolonen
et al. (2002). Their method consists of defining a set of probe sequences that could be
used to query each gene of interest satisfying the usual homogeneity, sensitivity and
specificity criteria, and selecting, iteratively, a single probe or a sub-set of probes for
each gene in such a way that the number of synthesis steps is minimized.
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Chapter 10

Discussion

We have focused on two computational problems related to the production of oligo-
nucleotide microarrays: the microarray layout problem (MLP) and the shortest depo-
sition sequence problem (SDSP). With respect to the former, this thesis constitutes a
detailed study of strategies and algorithmic approaches that can be used to design the
layout of high-density microarrays. Because of the super-exponential number of pos-
sible layouts and the relation to the quadratic assignment problem (QAP), we cannot
expect to find optimal solutions. Indeed, the algorithms we presented are heuristics
with an emphasis on good scalability and, ideally, a user-controllable trade-off between
running time and solution quality, albeit without any known provable guarantees. We
have concentrated our work on algorithms that can handle, in reasonable time, rel-
atively large chips with the 25-mer probes typically found on GeneChip arrays, pre-
senting an extensive range of empirical results on the best known methods. We hope
that this work will help improving the quality of the next generation of microarrays.
In summary, we have made the following contributions.

Extended model for microarray layout evaluation. In Chapter 2 we gave a formal
definition of the microarray layout problem and introduced the conflict index model
for evaluating a microarray layout and estimating the risk of unintended illumination.
This model extends the border length definition of Hannenhalli et al. (2002) by taking
into account the position inside the probe where the conflict occurs and the distance
between the spots.

Although adjusting this model to a particular fabrication technology is beyond the
scope of this thesis, all algorithms discussed in later chapters make no assumption
about the range of values returned by the weighting functions used in our definition
of conflict index. Consequently, our empirical results should be reproducible using
different constants or even similarly-defined functions.
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QAP formulation of MLP. In Chapter 4 we showed that the microarray layout prob-
lem can be formulated as a quadratic assignment problem (QAP). We then showed
how a microarray can be designed using QAP heuristics, and reported experimental re-
sults using a QAP algorithm, known as GRASP, to design the layout of small artificial
microarrays. Although GRASP was able to produce good layouts, there was clearly
a problem of running time, and we do not expect any QAP algorithm to outperform
the best known placement algorithms. Nevertheless, our formulation is of interest as
there is a rich literature on QAP and numerous methods that can now be applied for
the MLP. As a suggestion for further work, we discussed how an existing layout could
be improved using our QAP approach, iteratively.

Algorithms. After describing all known placement algorithms in detail, we intro-
duced a new algorithm, called Greedy (Section 3.6), in Chapter 3. In terms of border
length minimization, Greedy achieved results comparable to Row-Epitaxial (Kahng
et al., 2003a), the previously best known placement algorithm, although Greedy was
slower in our results. In terms of conflict index minimization, however, Greedy clearly
outperformed Row-Epitaxial.

Chapter 5 was devoted to the re-embedding phase that usually follows the placement
in an attempt to further reduce conflicts. After describing all known algorithms of this
kind, we introduced a new algorithm, called Priority re-embedding. In our results, Pri-
ority achieved marginal improvements compared to Sequential, the best re-embedding
algorithm to our knowledge. Unfortunately, the extra complexity and slower perfor-
mance of Priority make it hard to justify its use. In fact, we view these results as
a further indication that there is little room for improvements on the re-embedding
phase.

In Chapter 6, we first described 1-Dimensional and 2-Dimensional Partitioning (de Car-
valho Jr. and Rahmann, to appear). We demonstrated how these two algorithms
can be used to generate a few masks with extremely low levels of conflicts, which
can be especially helpful in case of conflict index minimization. We also described
two partitioning algorithms, Centroid-based Quadrisection (Kahng et al., 2003b) and
Pivot Partitioning (de Carvalho Jr. and Rahmann, 2006a), that offer a more uni-
form optimization over all synthesis steps. Earlier results on chips with relatively long
deposition sequences suggested that Pivot Partitioning is better than Centroid-based
Quadrisection, and that these algorithms improve solution quality and reduce running
times.

Our new results on chips with the shorter deposition sequence used by Affymetrix,
however, showed that the restriction in number of candidates per probe during place-
ment of the last spots of a region (when algorithms such as Row-Epitaxial and Greedy
are used for the placement) often impacts the solution quality more significantly than
the gains due to grouping similar probes together. As a result, Pivot Partitioning
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improved solution quality only in terms of conflict index, although it often reduced
running time. Nevertheless, we believe that there is still room for improvements on
partitioning algorithms.

Our new approach to the layout problem that merges the placement and re-embedding
phases was discussed in Chapter 7, where we presented Greedy+ (de Carvalho Jr. and
Rahmann, to appear). Our results showed that Greedy+ outperforms previous al-
gorithms based on the traditional approach, such as Greedy and Row-Epitaxial, in
terms of border length as well as conflict index minimization. Although Greedy might
produce better results on large chips if time is restricted, we believe that Greedy+
has a greater potential for producing the best layouts in both quality measures be-
cause it needs to examine fewer probe candidates to achieve similar results. Among
all presented algorithms, Greedy+ and Pivot Partitioning indicate that the traditional
“place first and then re-embed” approach can be improved upon by merging the par-
titioning/placement and (re-)embedding phases.

As a suggestion for further work on placement algorithms, we note the possibility of
improving the order in which probe candidates are considered for filling each spot by
algorithms such as Row-Epitaxial, Greedy, and Greedy+. Sorting the probes lexi-
cographically tends to improve the first synthesis steps more than the others. One
possibility is to use the TSP-based approach described in Section 3.2. However, it is
unlikely that the time-consuming TSP computation will pay off, especially for large
chips — instead, we could use this extra time to look at more probe candidates. As
discussed in the end of Chapter 7, sorting the probes with an emphasis on the middle
bases is likely to improve the layouts in terms of conflict index. For Greedy+, how-
ever, it remains to be seen whether a different implementation of OSPE can be used
in combination with such an ordering without incurring in increased running times.

Analysis of Affymetrix microarrays. In Chapter 8 we used the border length and
conflict index quality measures to make, for the first time, an evaluation of the layout
of several GeneChip arrays. Our analysis revealed that the design approach used by
Affymetrix evolved since the first generation of chips, probably as a result of attempt-
ing to reduce border conflicts. We showed that the current approach of placing perfect
match (PM) and mismatch (MM) probes on adjacent spots reduces border conflicts,
but it also results in a concentration of conflicts on the synthesis steps where an error
is more likely to damage the probes. This fact could add to the argument that the
PM/MM pairing used by Affymetrix should be dropped altogether, as some researchers
have recently proposed (Lauren, 2003). Although the PM probe is expected to have
a higher affinity for the specific target than the MM probe, it has been reported that
sometimes the signals from the mismatch spots are stronger than the perfect match
(Naef and Magnasco, 2003). The reliability of the PM/MM approach to account for
nonspecific hybridizations has not yet been established by published experiments, and
some researches claim that comparable or better analysis are possible without the MM
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signals (Irizarry et al., 2003). In fact, there is a wide range of alternative methods for
analyzing the gene expression experiments obtained from Affymetrix chips (Irizarry
et al., 2006; Millenaar et al., 2006).

Since the position of the probe on the chip bears no relation with its function, we
proposed different layouts for two of the latest GeneChip arrays, where the PM and
MM probes were allowed to occupy non-adjacent spots. Our results showed that the
Affymetrix layouts can be significantly improved, especially in terms of conflict index.
Even in terms of border length, we managed to produce layouts with as much as 8.10%
less border conflicts using the algorithms presented in earlier chapters.

Shortest common supersequence. In Chapter 9, we studied the shortest deposi-
tion sequence problem as an instance of the shortest common supersequence problem
(SCSP). Although several heuristic algorithms exist for the SCSP, our goal was to
determine the feasibility of finding the shortest deposition sequence for a given set of
probes. We employed a branch-and-bound algorithm, the only approach that seems
feasible for our setting. Our results indicate that the problem remains intractable
for a typical high-density microarray. This, however, does not seem to be a major
problem for microarray production because, commonly, a deposition sequence is fixed
even before the probe sequences are selected.

10.1 Outlook

Today, Affymetrix produces up to 1 164 × 1 164 arrays in large scale, and we have
showed that good layouts for arrays of this size can be designed in a few hours. When
the best results are required, one or two days are enough, with reasonable computing
power. We expect to see larger microarrays being produced in the near future as
there is an increasing need for widening the range of genes that can be monitored in a
single experiment. Still, we believe that this should cause no major problems in terms
of layout design, for two reasons. First, because a continuous increase in computing
power should also be expected. Second, because it is possible to control the running
time of the best algorithms presented here (Greedy and Greedy+), so they can be
configured to compute the best layout in the available time.

For commercial microarrays, we believe that, even if an algorithm takes a week to
complete, it is time well spent given that they are likely to be produced in large
quantities and that the layout needs to be designed only once. This is specially true
if we consider that a week is a relatively short time compared to the time required for
the entire design process of an off-the-shelf microarray chip.

The fact that it is possible to control the running time of the best algorithms is
also good news for custom microarray production, because, in this case, only a few
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units are usually produced, and there is an obvious need to design them as quickly
as possible. Custom chips produced today are still relatively small when compared
to chips produced in large scale. This could change as technologies, such as the self-
contained geniom platform of febit biotech GmbH, become increasingly more mature
and affordable.
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