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Abstract   

 

ABSTRACT 
Neuroplasticity, the brain’s ability to respond to environmental and intrinsic stimulation, is a 

prerequisite for an adaptive structural development. One of its most extraordinary examples is 

neurogenesis – the generation of new neurons – in the adult hippocampus. The examination of 

the postnatal development of neuroplasticity in the hippocampus and its dependence on 

environmental stimulation was the aim of the present work. The main focus was on the regula-

tory mechanisms on both the local level and the level of the whole prefrontal-limbic system.  

First, we found that CD1 mice reared under deprivation of a stimulating social and 

physical environment did not differ in rates of hippocampal cell proliferation or cell survival 

from their enriched-reared littermates. However, only in deprived-reared animals a wheel-

running challenge led to a significant increase in cell proliferation and cell survival (project I). 

This different reactiveness was tried to explain by local (neurotrophic and growth factors, 

neurotransmitter influences) as well as systemic mechanisms, and a hypothetical model was 

proposed (project II) involving the whole prefrontal-limbic system. Like neurogenesis, synap-

tic remodeling (project III) was not affected by social and physical deprivation during rearing. 

However, wheel running affected synaptic remodeling independent of the rearing conditions 

by leveling layer-specific distribution patterns.  

To test the hypothesis that the maturation of the prefrontal cortex is jointly responsible 

for regulating adult hippocampal neuroplasticity, we used an approach with wheel running as a 

stimulus of cell proliferation and, afterwards, environmental enrichment or a prefrontal-cortex 

dependent working-memory task in an automated T-maze to enhance prefrontal activity 

(project IV). We could, indeed, demonstate that the prefrontal cortex is causally involved in 

the regulation of cell proliferation in the dentate gyrus.  

Finally, a strain comparison within the species Mus musculus domesticus (project V) 

revealed that environmentally-dependent plasticity is similar between outbred CD1 and inbred 

C57Bl/6 mice. Contrastingly, an effect of neither environmental deprivation during adoles-

cence nor adult wheel running on cell proliferation was found in wild house mice.  

The present work provides evidence that environmental stimulation during juvenile 

brain development determines neuroplastic potentials at least in the adult hippocampus of 

domesticated mouse strains. However, the reactiveness of neuroplasticity seems to be a conse-

quence of genetic modifications by domestication and even in domesticated mice an outcome 

of deprivation from natural environmental stimulation during juvenile brain development. The 

prefrontal cortex might be causally involved in the regulation of cell proliferation in the hippo-

campal dentate gyrus. These findings draw attention to a more systemic view of the regulation 

of neuroplasticity in the hippocampus as an interplay of limbo-prefrontal circuits. 



Zusammenfassung (deutsch)   

 

ZUSAMMENFASSUNG (deutsch) 
Neuroplastizität, die Fähigkeit des Gehirns auf umweltbedingte und intrinsiche Stimulation zu 

reagieren, ist eine Grundvoraussetzung für eine adaptive Strukturentwicklung. Eines ihrer 

ungewöhnlichsten Beispiele ist die Neurogenese - die Bildung neuer Nervenzellen - im 

adulten Hippokampus. Die Untersuchung der postnatalen Entwicklung der Neuroplastizität im 

Hippokampus und ihrer Abhängigkeit von einer stimulierenden Umwelt war das Ziel der 

vorliegenden Arbeit. Das Hauptaugenmerk lag dabei auf den regulatorischen Mechanismen 

sowohl auf der lokalen Ebene als auch auf der Ebene des gesamten limbo-präfrontalen 

Systems.  

Als erstes fanden wir heraus, dass CD1-Mäuse, die unter Deprivation von einer 

stimulierenden, sozialen und physikalischen Umwelt aufgezogen wurden, sich in ihren Zell-

proliferations- und Zellüberlebensraten nicht von ihren angereichert aufgezogenen Artge-

nossen unterschieden. Jedoch führte eine Laufradintervention nur in depriviert aufgezogenen 

Tieren zu einem signifikanten Anstieg der Zellproliferation und des Zellüberlebens 

(Projekt I). Diese unterschiedliche Reaktivität der Neurogenese wurde durch lokale 

(neurotrophe Faktoren und Wachstumsfaktoren, Transmittereinflüsse) sowie systemische 

Mechanismen zu erklären versucht, und es wurde ein hypothetisches Modell unter 

Einbeziehung des gesamten limbo-präfrontalen Systems vorgeschlagen (Projekt II). Wie die 

Neurogenese, so wurde auch der synaptische Umbau (Projekt III) nicht durch soziale und 

physische Deprivation während der Aufzucht beeinträchtigt. Laufradlaufen beeinflusste den 

synaptischen Umbau jedoch unabhängig von den Aufzuchtbedingungen, indem es die lamina-

spezifische Verteilung einebnete.  

Um die Hypothese zu überprüfen, dass die Reifung des präfrontalen Kortex für die 

veränderte Neuroplastizität mitverantwortlich ist, wurde ein Ansatz mit Laufradlaufen als 

einem Stimulus der Zellproliferation und anschließender Umweltanreicherung oder einer 

Präfrontalkortex abhängigen Arbeitsgedächtnisaufgabe in einem automatisierten T-Labyrinth 

eingesetzt, um die Aktivität im präfrontalen Kortex zu erhöhen (Projekt IV). Wir konnten in 

der Tat zeigen, dass der präfrontale Kortex kausal an der Regulation der Zellproliferation im 

Gyrus dentatus beteiligt ist.  

Schließlich zeigte ein Stammesvergleich innerhalb der Spezies Mus musculus 

domesticus (Projekt V), dass die umweltbedingte Plastizität zwischen Auszucht-CD1-Mäusen 

und Inzucht-C57Bl/6-Mäusen ähnlich ist. Im Gegenteil dazu wurde in wilden Hausmäusen 

weder ein Effekt der Umweltdeprivation während der juvenilen Gehirnentwicklung noch des 

Laufradlaufens im Erwachsenenalter auf die Zellproliferation gefunden. 
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Die vorliegende Arbeit liefert Anhaltspunkte dafür, dass Umweltstimulation während 

der jugendlichen Gehirnentwicklung die neuroplastischen Potentiale zumindest im adulten 

Hippokampus domestizierter Mausstämme determiniert. Die Reaktivität der Neuroplastitzität 

scheint jedoch eine Folge von genetischen Modifikationen durch Domestikation und darüber 

hinaus auch in domestizierten Mäusen eine Folge der Deprivation von natürlicher 

Umweltstimulation während der jugendlichen Gehirnentwicklung zu sein. Der präfrontale 

Kortex scheint kausal an der Regulation der Zellproliferation im hippokampalen Gyrus 

dentatus beteiligt zu sein. Diese Befunde lenken die Aufmerksamkeit auf einen syste-

mischeren Blick der Regulation der Neuroplastizität im Hippokampus als einem Zusammen-

spiel von limbo-präfrontalen Schaltkreisen.  
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1. GENERAL INTRODUCTION 
Neuroplasticity is the brain's ability to change itself in response to environmental and intrinsic 

stimulation. It grants the compensation for injury and disease and the adaptation to new 

situations or changes in the environment. In the last decades, since its potential to generate 

new neurons was discovered in 1965 (Altman & Das, 1965), the hippocampus has gained a lot 

of attention. Indeed, neurogenesis is one of the most extraordinary examples of 

neuroplasticity. It holds the hippocampus in a state of lifelong development. Lifelong 

development bears high plastic capacities but makes also susceptible to external influences.  

The development of the individual brain is a continuous process which is defined by 

genetic and epigenetic factors. The characteristic of the phenotype is determined by the inter-

action of the individual with its environment and is, thus, the outcome of an adaptive 

structural development (Wolff, 1982a). Hence, an environment rich in physical structure and 

populated with conspecifics and so providing stimuli for various sensory, motoric and asso-

ciative systems, is crucial for the neural developmental program (Würbel, 2001).  

The central aim of the present work was to examine whether and how the environment 

during juvenile development determines neuroplastic potentials in the hippocampus not only 

for the short term, but even in adulthood. The main focus was, thereby, on the biological 

mechanisms mediating these influences. It has been suggested that it is a network of regula-

tory pathways whose activation over many intermediate steps, supposedly in many different 

brain regions, ultimately leads to a particular change in the cellular niche of the precursor cell 

(Kempermann, 2006). For that reason, attention was not only paid to the local regulatory 

mechanisms, but a systemic approach was chosen involving the whole prefrontal-limbic 

system. 

This approach was based on previous work on environmental influences on develop-

mental plasticity mainly in gerbils (Meriones unguiculatus). In gerbils, deprivation of “natu-

ral” environmental stimulation during brain development leads to severe alterations in the 

maturation of the prefrontal cortex, i.e., in dopaminergic, serotoninergic and GABAergic 

innervation (Winterfeld et al., 1998; Neddens et al., 2001, 2003), and its efferents to caudal 

limbic areas (Bagorda et al., 2006). In contrast, neurotransmitter innervation is enhanced in 

limbic circuits (Neddens et al., 2002; Lehmann et al., 2003; Busche et al., 2004, 2006; Lesting 

et al., 2005) leading to a dysbalance between these systems and a “dysconnection” of the 

prefrontal cortex (Bagorda et al., 2006). Numerous findings in other rodents support the 

assumption of a severely impacted prefrontal cortex after deprivation during brain 

development (Dalley et al., 2002; Ago & Matsuda, 2003; Melendez et al., 2004; Leng et al., 
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coupled attentional processes seem to be tied to the hippocampal formation, especially driven 

by its cholinergic and GABAergic septal inputs, which create a signal of presence (Buzsaki, 

2002, 2005) in the so called theta-rhythm (4-7 hertz; Smythe et al., 1992; Lee et al., 1994). 

This facilitates the registration and integration of simultaneously converging information and 

is, therefore, also a prerequisite for memory processing (Thomas et al., 1994; Edwards, 1995; 

Kandel et al., 2000). 

One of the most intriguing features of the hippocampal formation is its relatively 

simple organization of its principal cell layers together with its highly organized laminar 

distribution of many of its extrinsic and intrinsic connections.  

 The dentate gyrus is composed of three layers: the granule cell layer (stratum granu-

lare) formed by densely packed granule cells, the relatively soma free molecular layer (stra-

tum moleculare), and the polymorphic layer or hilus, which is passed through by the axons of 

the granule cells, the mossy fibers. The molecular layer can be further subdivided based on its 

inputs: the outer molecular layer receives extrinsic glutamatergic inputs from the lateral ento-

rhinal cortex via the lateral perforant path, and the middle molecular layer from the medial 

entorhinal cortex via the medial perforant path (Van Groen et al., 2002). Via the perforant 

path, the dentate gyrus receives highly preprocessed information (Knowles, 1992; Amaral & 

Witter, 1995). In contrast, in the inner molecular, primarily associational and commissural 

fibers from mossy cells and interneuronal feedback and feed-forward loops terminate as well 

as modulatory inputs from the septum (Amaral & Witter, 1995; Amaral & Lavanex, 2006). 

The so called germinative zone, in which the precursor cells are located and give birth to new 

neurons, lies between the granule cell and polymorphic layer and is, thus, also named sub-

granular zone. This zone receives 

modulatory transmitter influences from 

the locus coeruleus (norepinephrine), the 

raphe (serotonin) and the ventral teg-

mental area (dopamine; Amaral & 

Witter, 1995; Vizi & Kiss, 1998; Amaral 

& Lavanex, 2006). Topographically, the 

dentate gyrus can be devided into a 

suprapyramidal and an infrapyramidal 

blade, which join in the crest.  

 

CA1 

CA3 

suprapyramidal blade 

infrapyramidal blade 
crest 

hilus 

Fig. 1-2: Nissl-stained sagittal section of the rat hippo-
campus (100-fold). Indicated are the CA3 and CA1 region 
of the hippocampus proper, the supra- and infrapyramidal 
blade, the crest and the hilus of the dentate gyrus. 
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 The principal cell layer of the hippocampus proper is the pyramidal cell layer. Deep to 

it, the relatively cell-free stratum oriens is located and contains the basal dendrites of the pyra-

midal cells. In CA3, this layer also contains commissural and associative fibers (Amaral & 

Witter, 1995; Vizi & Kiss, 1998; Amaral & Lavanex, 2006). In CA3, but not in CA2 or CA1, 

a narrow acellular zone, the stratum lucidum, is located just above the pyramidal cell layer 

and contains the terminals of the mossy fibers. Superficial to the stratum lucidum in CA3 and 

immediately above the stratum pyramidale in CA2 and CA1 the stratum radiatum, one finds 

the stratum radiatum, in which the commissural and associational connections as well as the 

CA3 to CA1 Schaffer collaterals terminate. The most superficial layer is the stratum lacuno-

sum moleculare, in which fibers from the entorhinal cortex terminate. In CA1, this layer also 

receives inputs from the thalamus and perirhinal cortex. Inputs from the septum and the 

amygdala terminate in the stratum radiatum and stratum oriens. Serotoninergic inputs from 

the raphe are distributed throughout all layers, while noradrenergic fibers only terminate in 

the stratum lacunosum moleculare and stratum lucidum (Vizi & Kiss, 1998). In general, CA1 

receives much lighter monoaminergic innervation than CA3 (Amaral & Lavanex, 2006). CA3 

and CA1 differ in their intrinsic and extrinsic connectivity pattern underlying different 

functions (Amaral & Witter, 1989; Leutgeb et al., 2004). CA3 is characterized by a recurrent 

network of densely interconnected pyramidal cells, while CA1 constitutes a feed-forward 

network with almost no intrinsic excitatory connections.  

 The entorhinal cortex is called the entry port of the hippocampal formation. It can be 

subdivided into two areas: the lateral entorhinal cortex and the medial entorhinal cortex 

(Amaral & Witter, 1995; Van Groen et al., 2002; Amaral & Lavanex, 2006). The entorhinal 

cortex is composed of six layers: four cellular (layer II, III, V, VI) and two acellular layers 

(Peretto et al., 1999). Layer II and III receive the main inputs; in the lateral entorhinal cortex 

especially from sensory modalities, the amygdala, the prefrontal cortex and the perirhinal cor-

tex, which itself receives similar inputs as the lateral entorhinal cortex; in the medial ento-

rhinal cortex especially visual and visual spatial inputs converge as well as inputs from the 

postrhinal cortex, which itself gets similar inputs like the medial entorhinal cortex. The 

layer II and III pyramidal cells convey this topographical distribution to the dentate gyrus via 

the perforant path (Van Groen et al., 2002). Fibers from the lateral entorhinal cortex terminate 

as lateral perforant path in the outer molecular layer, while fibers from the medial entorhinal 

cortex terminate as medial perforant path in the middle molecular layer. Furthermore, the per-

forant path also terminates in CA3, CA1 and the subiculum. The layer V cells of the ento-

rhinal cortex receive one of the main outputs of the hippocampus and reciprocate connections 
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from other cortical areas that project to the superficial entorhinal cortex (Amaral & Lavanex, 

2006).  

 The subiculum is the transition region between the hippocampus proper and the ento-

rhinal cortex and, thus, gradually changes from three to six layers (Amaral & Witter, 1995). 

Its principal cell layer contains pyramidal cells that are the main output targets of the CA1 

pyramidal cells. As the main output region of the hippocampal formation it projects to the 

neocortex, the amygdala, the entorhinal cortex and the mammillar bodies of the hypotha-

lamus. Figure 1-3 summarizes the main connections within the hippocampal formation. 

 

 

 

Fig. 1-3: Main connections within the hippocampal formation. 
The input to the hippocampal formation converges in the entorhinal cortex. The entorhinal cortex projects via 
the perforant path (PP) to the outer and middle molecular layer of the dentate gyrus (DG) as well as to CA1 and 
CA3 of the hippocampus proper. The granule cells project as mossy fibers (MF) to CA3. Collaterals innervate 
the mossy cells and hilar interneurons which project as commissural and associative fibers back to the inner 
molecular layer. The axons of the CA3 pyramidal cells innervate as Schaffer collaterals (SC) the pyramidal cells 
of CA1. Collaterals of CA3 pyramidal axons project back to the polymorphic layer of the DG innervating hilar 
interneurons (Amaral & Witter, 1995; Wu et al., 1998). CA1 pyramidal cells project to the subiculum as well as 
to the entorhinal cortex. CA3, CA1 and subiculum project via the fornix to the hypothalamus (cf. Papez circuit;
for further details and references see main text; modified according to documents of Teuchert-Noodt). 
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1.2. THE PREFRONTAL-LIMBIC SYSTEM 
The limbic system is a functional unit of the brain which is implicated in the processing of 

emotion, motivation and memory. It was first described by Paul Broca as the «grand lobe 

limbique» (1878). Its central part is the Papez circuit (Papez, 1937), a neuronal circuit 

involving the hippocampus, the fornix projecting to the mammillar bodies of the hypothala-

mus, the projection from there to the cingulate gyrus and back to the hippocampal formation. 

This circuit was first believed to play a central role in the processing of emotion. Meanwhile, 

however, it is clear that it rather takes part in the consolidation of memory. Today, further 

structures have been added to the limbic system like the amygdala, the nucleus accumbens 

and the monoaminergic nuclei in the brain stem, which are all functionally and anatomically 

connected (Krettek & Price, 1977; Cassell & Wright, 1986; Le Moal & Simon, 1991; 

Totterdell & Meredith, 1997; Pikkarainen et al., 1999; Pitkanen et al., 2000; Pikkarainen & 

Pitkanen, 2001).  

After all, the numerous reciprocal connections of the limbic system with the prefrontal 

cortex (Swanson, 1981; Jay & Witter, 1991; Sesack & Pickel, 1992; Mc Donald et al., 1996; 

Rosenkranz & Grace, 2001, 2002) led to the broader description of a prefrontal-limbic 

system.  

The prefrontal cortex is defined as the region lying rostrally to the motor and premotor 

cortex, where the cortical projection of the mediodorsal thalamus and the dopaminergic pro-

jections form the ventral tegmental area overlap (Ray & Price, 1992; Divac et al., 1993). As a 

higher associational area (Kolb & Wishaw, 1990), the prefrontal cortex is connected with di-

verse parts of the brain like the thalamus, sensory and motor areas, limbic circuits, hypothala-

mus and the brain stem (Öngur & Price, 2000). It is mostly responsible for executive 

functions, for attentional processes, inhibitory control, social behavior, working memory and 

action planning (Fuster, 1979).  

 Especially the two cortical structures, the prefrontal cortex and the hippocampus, seem 

to be essential integration centers of the prefrontal-limbic system. They receive multimodal 

afferences from associative areas as well as from subcortical nuclei and project back to 

various regions of the brain (Fuster, 1979; Sesack et al., 1989; Amaral & Witter, 1995; 

Insausti et al., 1997). They are implicated in higher cognitive functions, which are charac-

terized by long developmental periods. The prefrontal cortex, due to the slowly developing 

mesoprefrontal dopamine projection (Kalsbeek et al., 1988; Dawirs et al., 1993; Rosenberg & 

Lewis, 1995), does not reach maturation until young adulthood (Mrzljak et al., 1990; Casey et 

al., 2000), whereas the hippocampus, due to its lifelong neurogenesis in the dentate gyrus 
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(Altman & Das, 1965; Kaplan & Bell, 1984; Eriksson et al., 1998), remains in a state of con-

tinuous development. These developmental patterns leading to the high plastic capacities of 

these regions predict, on the one hand high learning and memory capabilities, but on the other 

hand, enhanced vulnerability to environmental influences and disturbances. Furthermore, both 

structures influence each other in their development insofar that disturbances in one of these 

areas lead to adaptive alterations in the other (Schroeder et al., 1999; O'Donnell et al., 2002; 

Lipska et al., 2002) or even in the whole prefrontal-limbic system (Friston, 1998; Lipska et 

al., 2000). 

 

1.3. NEUROPLASTICITY 
Neuronal connections are not fixed and invariable. They can change in response to lesions as 

well as functional events like learning (Kampfhammer, 2001). In the latter case one can say 

that form follows function in the brain (Kempermann, 2006).  

Neuroplasticity involves several levels. On the level of the synapse, changes in the 

strength of synaptic transmission can take place (synaptic plasticity). This involves, on the 

one hand, functional plasticity without anatomical alterations, meaning changes in the 

quantity of transmitter release (presynaptic events) or in receptor densities (postsynpatic 

events), and, on the other hand, structural plasticity meaning anatomical changes like the en-

largement or reduction of the synaptic contact area and the remodeling of whole synapses. 

Structural plasticity can even go beyond the synapse. Complete axons or dendrites can be re-

tracted or extended and the number of branches or spines can be altered. Moreover, the gene-

ration of new neurons, neurogenesis, also constitutes a form of structural plasticity.  

 

1.3.1. NEUROGENESIS 
Neurogenesis is functionally defined as the generation of new neurons from undifferentiated 

precursor cells (stem cells or progenitor cells). Two regions in the mammalian brain were 

found, were neurogenesis takes place even in the adult; the subgranular layer of the hippo-

campal dentate gyrus (Altman & Das, 1965) and the subventricular zone from where the 

newborn neurons migrate via the rostromigratory stream to the olfactory bulb (Kaplan & 

Hinds, 1977). Neurogenesis is more than an event of cell division. It is a process involving 

cell proliferation, migration, differentiation and integration, with the latter determining cell 

survival (Fig. 1-4). For the dentate gyrus this means that after the completion of the last cell 

cycle, the cells start to extend their dendrites towards the molecular layer (Zhao et al., 2006) 

and their axons through the hilus towards CA3 (Hastings & Gould, 1999; Zhao et al., 2006). 
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Meanwhile, the cell migrates into the 

granule cell layer (Fig. 1-4; Zhao et 

al., 2006). Already after about one 

week, the newborn cells receive the 

first GABAergic inputs, which, 

however, are excitatory for the young 

cells. One week later, these inputs are 

replaced by glutamatergic ones 

(Esposito et al., 2005; Ge et al., 2006). 

The axons of the maturing neurons 

reach their targets in the stratum 

lucidum of CA3 4-10 days after 

division (Hastings & Gould, 1999; 

Zhao et al., 2006). Although the cells begin to express mature neuronal markers like NeuN 

already three weeks after becoming postmitotic (Kempermann et al., 2004; Fig. 1-5), it takes 

them up to 4-7 weeks to become undistinguishable from mature granule cells (van Praag et 

al., 2002; Jessberger & Kempermann, 2003).  

Neurogenesis can be visualized and de-

tected by labeling the dividing cells with exoge-

nous markers like tritiated ([3H]) thymidine and 

5-bromo-2-deoxyuridine (BrdU; Fig. 1-5) or the 

detection of endogenous markers (e.g., Ki67) and 

proteins expressed by immature neurons (e.g., 

doublecortin, PSA-NCAM). Meanwhile the fluo-

rescence labeling (green fluorescence protein, 

GFP) of newborn neurons using retroviral vectors 

allows even the observation of neurons during 

their course of maturation (cf. van Praag et al., 

2002).  

 But for all that, the regulation of the different processes of neurogenesis is still rather 

unknown. A lot of factors were identified that exert an influence on cell proliferation or cell 

survival, but often it remains undecided whether influence actually reflects regulation 

(Kempermann, 2006). Neurogenesis is highest after birth and declines with age (Kuhn et al., 

1996; Cameron & McKay, 1999; Dawirs et al., 2000). Thus, aging seems to be an important 

Fig. 1-5: Double immunofluorescence labeling
for mature neurons (NeuN, green) and BrdU (red)
in the mouse dentate gyrus 21 days after BrdU-
injection. Double labeled cells (yellow) indicate
newborn neurons. 

Fig. 1-4: Development of newly generated granule cells in
the adult dentate gyrus. Neural progenitors in the subgranular
zone give birth to young neurons. While a young neuron
matures, extends dendrites and its axon, it migrates into the
granule cell layer (cf. text; modified according to
Bischofberger 2007). 
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regulating factor. Stress decreases neurogenesis (Gould et al., 1998), most likely by increasing 

glucocorticoid levels, which in turn suppress cell proliferation (Gould et al., 1992; Cameron 

& Gould, 1994). In contrast, mild and challenging stressors like enriched environment or 

running seem to increase neurogenesis (Kempermann et al., 1997a; van Praag et al., 1999a, b; 

Nilsson et al., 1999; Uda et al., 2006). However, how these effects are mediated is still subject 

to current research. It seems that neurotrophic factors, like brain-derived neurotrophic factor, 

vascular endothelial growth factor or insulin-like growth factor 1 (Wagner et al., 1999; Aberg 

et al., 2000; O'Kusky et al., 2000; Trejo et al., 2001; Fabel et al., 2003; Cao et al., 2004; 

Scharfman et al., 2005), neurotransmitters (Hildebrandt et al., 1999; Brezun & Daszuta, 1999; 

Teuchert-Noodt et al., 2000; Malberg et al., 2000; Kulkarni et al., 2002; O'Keeffe et al., 

2009), and NMDA-receptor activation (Gould et al., 1994; Cameron et al., 1995; McEwen, 

1996) are involved.  

Probably regulation is coupled to function. Since neurogenesis takes place in a region 

which is involved in learning, it could be assumed that neurogenesis plays an essential role in 

learning as well. Indeed, blocking neurogenesis leads to impairments in hippocampus-depen-

dent but not hippocampus-independent learning tasks (Shors et al., 2001; Madsen et al., 2003; 

Rola et al., 2004) and in turn hippocampus-dependent learning enhances the survival of newly 

generated granule cells (Gould et al., 1999; Ambrogini et al., 2000; Döbrössy et al., 2003; 

Leuner et al., 2004; Olariu et al., 2005). However, not all studies could support this view and 

the functional implication of neurogenesis in learning is still a matter of debate (rev. in Leuner 

et al., 2006). 

With the findings that depressed patients show hippocampal symptoms and hippocam-

pal atrophy (Sheline, 1996; Stockmeier et al., 2004; Greenberg et al., 2008) and that a de-

creased hippocampal neurogenesis can be restored by antidepressant drugs like selective 

serotonin reuptake inhibitors or tricyclic antidepressants in the animal model (Malberg et al., 

2000; Santarelli et al., 2003; Malberg & Duman, 2003), the hypothesis came up that a failure 

of neurogenesis could (at least partially) underlie the pathogenesis of major depression. This 

putative link between new neurons and emotional behavior is particularly interesting, because 

it widens the discussion beyond reductionistic learning paradigms (Kempermann, 2006). 

Moreover, the assumption of an implication of neurogenesis in both hippocampus-dependent 

learning and emotional processes fits to the probable functional dissociation of the hippocam-

pal formation as a whole (cf. chapter 1.1).  
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size and complexity (Woolley et al., 1990; Watanabe et al., 1992; McEwen, 1996; Magarinos 

et al., 1996), while living in enriched environments enhances synaptophysin and psd-95 levels 

(Frick & Fernandez, 2003; Nithianantharajah et al., 2004), synaptic densities (Briones et al., 

2005), dendritic branching  and spine growth (Green et al., 1983; Juraska et al., 1985; Faherty 

et al., 2003) compared to isolated housing (Silva-Gómez et al., 2003) as well as axonal re-

modeling (Keller et al., 2000; Butz et al., 2008). Similar but less clear effects are seen con-

cerning physical activity (but also see Faherty et al., 2003; Eadie et al., 2005; Stranahan et al., 

2007). It is plausible that also the underlying regulating mechanisms of neurogenesis and 

other forms of structural plasticity are similar: involved are especially neurotrophic factors 

(McAllister et al., 1996; O'Kusky et al., 2000; Tolwani et al., 2002; Tyler & Pozzo-Miller, 

2003) as well as the activity state of the system (rev. in Butz et al., 2009).  

 

1.3.3. NEUROGENESIS AND STRUCTURAL PLASTICITY 
Newborn neurons are a considerable source of neuroplasticity. They demand integration and, 

thus, induce a cascade of structural changes (rev. in Lehmann et al., 2005; Gould, 2006). 

Newborn neurons are more excitable than mature ones and long-term potentiation as a form 

of synaptic plasticity can be more easily evoked in them (Schmidt-Hieber et al., 2004; rev. in 

Bischofberger, 2007). At last, neurogenesis induces neuronal turnover; since the dentate gyrus 

and especially the number of granule cells does not substantially grow in the course of life 

(Heine et al., 2004), not even after treatments which enhance neurogenesis substantially 

(Nilsson et al., 1999; Kitamura & Sugiyama, 2006), a lot of newborn as well as mature gra-

nule cells must undergo apoptosis. They leave free synapses which have to degrade and form 

new contacts with other cells.  

Although the relationship between neurogenesis and other forms of structural plasti-

city is obvious, the correlation between them seems to be a negative one. Studies in gerbils as 

well as theoretical models suggest that a moderate number of newborn cells is a prerequisite 

for a fully functional structural plasticity, since manipulatively enhanced rates of cell prolife-

ration lead to a decrease of synaptic remodeling rates measured by the amount of degrading 

synapses (Keller et al., 2000; Butz et al., 2008). This at first sight counterintuitive inverse 

relationship can be explained by an overstressed plasticity when too many newborn neurons 

demand integration (Teuchert-Noodt, 2000; Butz et al., 2008). This assumption finds support 

by behavioral studies showing that moderate proliferating activities in the dentate gyrus are 

conducive to or coincident with more efficient memory processing in the hippocampus (Epp 

& Galea, 2009).  
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1.4. AIMS AND APPROACH 
The aim of the present work was to investigate developmental neuroplasticity in the hippo-

campus in the interplay of prefrontal-limbic circuits with the widely-used mouse model (Mus 

musculus domesticus). This aim was approached with four experimental studies and a 

theoretical work on a hypothetical model based on the experimental findings and the current 

literature: 

 

Project I)   In case that it is a general principle that environmental stimulation during juvenile 

brain development is so crucial that it determines neuroplasticity in the hippocampus even in 

the adult, it should be detectable also in the widely-used mouse model. To follow this issue, 

female CD1 mice were reared under social and physical deprivation and exposed to wheel 

running in young adulthood. We wanted to know, whether baseline neurogenesis or the 

reactiveness of neurogenesis in the adult dentate gyrus is affected by deprivation of “natural” 

environmental stimulation during juvenile brain development.   

 

Project II)   Based on the findings of project I and a review of the current literature, a hypo-

thetical model was proposed to follow the question, how the environment during juvenile de-

velopment determines the response of neurogenesis to wheel running in adulthood.  

 

Project III)   Neurogenesis induces structural changes, neuronal and synaptic turnover. We 

wanted to know, if and how far a relationship between neurogenesis and synaptic remodeling 

exists in the mouse dentate gyrus and even beyond in the entire hippocampal formation. We 

exposed male CD1 mice to the same treatments as in project I, and examined the effects on 

synaptic remodeling in the hippocampal formation.  

 
Project IV)   In the theoretical project II, it was hypothesized that beside local mechanisms 

the prefrontal cortex is causally involved in the regulation of cell proliferation in the hippo-

campal dentate gyrus. To test this hypothesis, CD1 mice were reared under social and physi-

cal deprivation, exposed to wheel-running in young adulthood and, afterwards, to either envi-

ronmental enrichment or a prefrontal-cortex-dependent working-memory task as stimuli for 

prefrontal activity. The question was, whether an enhancement of prefrontal activity can 

suppress the increased cell proliferation after wheel running.  
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Project V)   Deprivation of environmental stimulation during juvenile brain development 

affects neuroplasticity in the hippocampus in CD1 mice in a qualitatively similar manner as in 

gerbils (project I, project II). However, the strength of the deprivation effect is less pro-

nounced. The questions remained, what determines the strength of the deprivation effect, and 

whether differences exist even within the species Mus musculus domesticus. To answer these 

questions, a strain comparison on the effects of deprivation during juvenile brain development 

was conducted including domesticated (outbred C57Bl/6, inbred CD1 in project I) as well as 

undomesticated mouse strains (wild-caught house mice).  
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Six running wheels (circumference 46 cm) 

were mounted side by side on a metal rod with a 

distance of 6 cm between wheels and hung up in a 

wooden rack (Fig. 2-6, A). For the experiments, the 

rack was placed into an enclosure. Each running 

wheel was equipped with a magnet on one of its 

spokes. A reed switch was placed close to the 

wheel, so that the magnet would pass close by the 

switch on every turn of the wheel (like with a 

cyclometer; Fig. 2-6, C). The reed switches were 

connected with a computer via a digital I/O device 

(USB, National Instruments, Munich, Germany). 

Both reed switches and connection cables were 

protected from mice by thin stainless steel tubes 

which were screwed onto the rod and led the cables 

out of the enclosure (Fig. 2-6, A, B). The connected 

laptop computer (IBM, think pad T41) registered 

the closing of the switches and, thus, the wheel revolutions.  

 

2.5.2. AUTOMATED T-MAZE 
For the spatial delayed-alternation task in project IV, an automated T-Maze was constructed. 

The delayed-alternation task using a T-Maze is a widely used experiment to investigate 

working memory in rodents (Olton, 1979; Morris et al., 1986; Zahrt et al., 1997; Baeg et al., 

2003; see also Dalley et al., 2004; Dudchenko, 2004; Clinton et al., 2006). In the first phase, 

the animal is placed at the base of the T and required to run up the stem and enter one arm, 

which is open, while the other one is closed. A reward is available at the end of the arm. Then, 

the animal runs back or is placed back to the start position and is required to enter the arm 

opposite to the previously visited arm. The correct choice results in a reward, whereas the 

incorrect choice is not rewarded. A delay period can be introduced between first and second 

run, in which the animal is prevented from responding until a certain time period has elapsed. 

By extending or shortening the delay period one can vary the working-memory load (or task 

difficulty; Pedigo et al., 2006). 

Manually-operated or semi-automated T-mazes have the disadvantage that the experi-

menter can introduce variability and that frequent handling of the animals can influence their 

Fig. 2-6: A) Automated running wheels in an 
enclosure; B) Example of a running wheel; C)
Magnet close to a reed switch. 
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attention, emotion and behavior. To circumvent these unintentional effects on the outcome of 

the experiment, we constructed an automated T-maze, which the animals can enter voluntary 

and without any handling. To ensure that only one animal at a time could enter the T-maze, a 

sorting system was inserted between the home cage and the T-maze. 

 

2.5.2.1. Apparatus 
Sorting system 

The sorting system consisted of a pipe (plexiglas for stability and wire mesh, because animals 

dislike to rest in wire mesh; diameter 40 mm), through which the animal could go from the 

home cage to the maze, three transponder readers (Fig. 2-7, A,B: T1-T3; 684-52 REV6 OEM 

proximity reader, Aceprox, Helpsen, Germany) and two computer-controlled gates (Fig. 2-7, 

A,B: gate 1 and 2). Each gate was operated by means of a servomotor (Top-line Servo RS-2; 

Modelcraft, Blaine, WA, USA) with a catch so that it could either be opened in the direction 

left-to-right (towards the T-maze), right-to-left (towards the home cage), in both directions or 

completely closed by the experimental computer. The transponder readers were situated di-

rectly adjacent to the pipes of the sorting system; one between the home cage and the first 

gate (T1), the other two between the gates, one close to the first (T2), the other close to the 

second gate (T3). When an animal entered the pipe leading from the home cage to the sorting 

system, it was registered by the first transponder reader (T1). Upon this registration, the first 

gate opened towards the T-maze to let the animal into the sorting system. When the animal 

passed through the pipe and reached the second gate, it was registered by the second (T2) and 

third transponder reader (T3), which caused the computer to close the first gate. Now the 

animal was confined in the wire-mesh pipe between the two gates for 30 sec. Meanwhile, the 

computer “checked” that no other animal was in the sorting system, i.e. that no other animal 

was registered by transponder reader T2 or T3. If this was the case, the second gate opened 

towards the T-maze and the sorted animal could enter the maze. Otherwise the first gate was 

opened again to release all animals into the home cage and the sorting had to start over.  

 

T-maze 

The T-Maze consisted of plexiglas pipes, PVC connectors and wire mesh (see Fig. 2-7, C, 

diameter ca. 40 mm). The central T-pipe had a transponder reader at its base (T4; Fig. 2-7, A, 

C). Two feeders equipped with light-barriers delivered water as reward at the end of each arm. 

The animals could return to the base of the T through two return pipes that formed a figure 8 

together with the T. Despite the fact that this maze looked like a figure 8 maze from above, 
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the functionality is that of a T-maze. Water was provided by a 50 ml syringe operated by a 

computer-controlled step-motor pump (stepping motor and threaded spindle, Nanotec, 

Landsham, Germany, resolution 0.0254 mm/step). The two feeders were equipped with a 

computer-controlled valve each (PS-1615NC, Takasago Electric, Nagoya, Japan). Depending 

on which valve was opened, the water reward was given either at the one or the other feeder. 

The pipes of the T-maze were a one-way-street system due to four one-way flaps that allowed 

passage in one direction only (Fig. 2-7, A, C).  

 

Fig. 2-7: Experimental setup. A) To scale scheme of the apparatus, including home cage, sorting system
and T-maze; B) Photo of the sorting system with indication of the main components; C) Photo of the T-maze
with indication of the main components; T, transponder reader. 
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Like in a manually operated T-maze, guillotine gates controlled the access to the arms, and 

thus, the initiation of forced or choice runs and delay periods, (see chapter 2.5.2.2). These 

were actuated as well by servomotors and controlled by the computer program (Fig, 2-7, A, 

C). An air valve (EV-3M-24 VDC with electronic valve booster EVB-3, Clippard, Cincinnati 

OH, USA) was installed in the stem of the T (Fig. 2-7, A,C) to enable the system to chase the 

animal out, if it was inactive for a certain time, e.g., if it wanted to sleep or groom in the 

maze, thereby blocking it for other animals.  

 

Computer 

The sorting system and the T-Maze were controlled by a laptop computer (IBM, think pad 

T41) which was connected to the system via an I/O device (IO-warrior24 Starterkit, Code 

Mercenaries, Schönefeld, Germany). The computer was equipped with a self-developed 

computer program. The different experimental parameters could be adjusted in parameter 

files. Moreover, the computer recorded the movements of the animals (by registrations at the 

transponder readers and light barriers) as well as delivered rewards.  

 

2.5.2.2. Protocol and training phases 
The performance of a delayed-alternation task requires certain habituation and training phases 

to introduce the animals to the task step-by-step. The protocol used here was developed on the 

base of the protocols for manually-operated T- or Y-mazes used by Winterfeld and colleagues 

(1998) and Ivkovich and Stanton (2001). It included two habituation phases, a Pretraining 

phase, in which the animals learned to alternate in the maze, a Training phase without delay, 

in which they learned the actual alternation task, and the Training with delay, which consti-

tuted the actual delayed alternation und thus the working-memory task. Beside this protocol 

leading to the working-memory task, further programs (PretrainingRandom and 

TrainingRandom) were developed to allow the examination of control animals without alter-

nation and working-memory load to check for unspecific effects of the exposure to the 

apparatus and the protocol.  

 
Habituation Phase 1 

During this phase, the animals were habituated to the apparatus for the first time. All gates 

were open, and animals were allowed to explore the maze together. They could receive 20 µl 

of water every 5 sec. when breaking the light barrier of a feeder.  
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Habituation Phase 2 

During this phase the sorting system allowed only one animal to enter the maze in the way 

described above (cf. chapter 2.5.2.1). In the maze, both guillotine gates were open, and 

animals could receive 20 µl of water every 5 sec. by breaking the light barrier of a feeder. 

After 5 min., the door of the sorting system opened, and the feeders did not give reward any 

more, marking that the animal should leave the maze and make room for others. If an animal 

remained in the maze for more than 1 hour after opening of the door (e.g., sleeping, 

grooming), it was chased out by activation of the air puff from the air valve. 

 

Pretraining 

During this phase, the sorting system allowed only one animal to enter the maze, while both 

gates within the maze were closed. When an animal reached transponder reader T4, one of the 

two gates opened allowing the animal to enter this arm and get a single water reward of 20 µl 

at the respective feeder. Induced by the breaking of the light barrier of the feeder, the gate of 

the arm was closed again. When the animal returned to reader T4 via the return pipe, the other 

gate opened and so on and so forth. Thereby, the animals were trained to alternate in the 

maze. After 10 single runs, the guillotine gates closed, while the sorting system opened to 

direct the animal back to the home cage. When an animal remained inactive between the runs 

for more than 3 min. (inactive time, meaning that it was not registered by a reader or a light 

barrier), the gates of the maze did not open either but the gate of the sorting system opened 

towards the home cage. When an animal did not reach reader T3 of the sorting system within 

2 min. after opening of the gate, it was chased out by activation of the air puff from the air 

valve.  

 

Training without delay 

During the training period, the sorting system allowed only one animal to enter the maze, 

while both gates within the maze were closed. When an animal reached reader T4, the forced 

run was started, meaning that one gate opened randomly allowing the animal to enter the 

respective arm and get a single water reward of 20 µl at the feeder. Induced by the breaking of 

the light barrier, the gate of the arm was closed. When the animal returned to reader T4 via 

the return pipe, the animal was confronted with the choice run, meaning that the gates of both 

arms opened, but only the arm opposite to the previously visited arm delivered a reward, 

when the animal broke the light barrier of the feeder. If the animal chose the same arm as 

before, it was not rewarded. Induced by the breaking of a light barrier (never mind which 
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one), both gates were closed again. After the animal had returned to reader T4, it had to wait 

for 30 sec., before the next forced run was started. After 5 single runs, the guillotine gates 

closed, while the sorting system opened to direct the animal back to the home cage. The 

inactive time was again 3 min. and 2 min. after the opening of the sorting system.  

 

Training with delay 

The procedure was the same as in the training with delay, but between the forced and the 

choice run a delay of 15 sec. was introduced, in which both gates remained closed. This phase 

presented the actual working-memory load.  

 

PretrainingRandom  

This program was used with the control animals and was similar to the Pretraining with the 

exception that the gates did not open in an alternating but in a random fashion. Thus, the 

control animals were not trained to alternate.  

 

TrainingRandom  

The TrainingRandom was also used with the control animals and was similar to the Training, 

but no delay was introduced between the forced and the choice run. Furthermore, in the 

choice run, the animals were not rewarded depending on their correct choice, but at both 

feeders with a certain probability. This probability could be adjusted at the performance of the 

experimental animals (e.g., 80%) to confront the control animals with the same frustration as 

the experimental animals but without any working-memory load.  

 

2.6. NEUROGENESIS 
For quantification of proliferating and surviving cells in the dentate gyrus (project I, IV, V) 

the in vivo labeling with the DNA-synthesis marker 5-bromo-2-deoxyuridine (BrdU) was 

used. BrdU is a thymidine analog which is incorporated into the DNA of dividing cells during 

the S-phase of the cell cycle. After systemic injection, BrdU is available in the adult organism 

for at least two hours (Packard et al., 1973; Hayes & Nowakowski, 2000). Thus, it marks only 

a fraction of newborn cells, but it allows rather precise birth dating of cells and the obser-

vation of cell survival.  
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2.6.1. BRDU-LABELING 
In all experiments examining neurogenesis, a dose of 50 mg/kg BrdU (Sigma-Aldrich, 

Steinheim, Germany) was used. The animals were weighed prior to the injection, and the 

adequate amount of BrdU was dissolved in 0.9% NaCl. The solution was injected 

intraperitoneally (i.p.). For this the animal was removed from its cage or enclosure and placed 

on a grid, so that it could grab hold of it. The tail and rump were lifted, and the injection was 

made from behind into the abdominal cavity. The procedure lasted about 20-30 sec., and all 

efforts were made to minimize stress for the animals.  

   

2.6.2. PERFUSION AND TISSUE PREPARATION 
Perfusion  

After a certain survival time after the BrdU-injections (depending on the experiment), animals 

were perfused with 4% paraformadehyde (solved in 0.1M phosphate buffer). Each animal was 

deeply anaesthetized by an overdose of diethyl ether. As soon as it ceased to breath, the 

abdomen was opened by an abdominal incision. The thorax was opened, and a cannula was 

inserted into the left heart ventricle. Additionally, the right atrium and the vena cava were 

incised to ensure the drainage of blood and perfusion solution. With a tube pump (Cyclo II, 

Carl Roth, Karlsruhe, Germany) the perfusion solution was pumped through the body loop of 

the blood circulation and left it trough the right incised ventricle and vena cava. The perfusion 

was carried out with 150-200 ml 4% paraformaldehyde in about 15-20 min.  

 

Dissection 

Immediately after the perfusion, the brain was dissected. Therefore, the head was cut off from 

the body. The scalp, neck and temporal muscles were removed, till the cranial bone was ex-

posed. The bone and the meninges were carefully removed with tweezers beginning caudally 

at the brain stem and cerebellum and operating rostrally. Last, the ossicles and the bones 

covering the olfactory bulb were cracked. Then, the brain could be released from the base of 

the scull with concomitant transection of the brain nerves. It was put into 

4% paraformaldehyde for postfixation over night at 4°C. 

 

Brain sectioning 

On the next day, brains were transferred to a 30% sucrose solution in 0.1M phosphate buffer 

for cryoprotection for at least 24 hours. Then, the brains were taken out and the hemispheres 

were transected with a razor blade. Cerebellum and olfactory bulb were cut off, and the re-
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maining part was placed with the rostral part onto the plate of the freezing microtome (Frigo-

mobil, Reichert-Jung, Vienna, Austria). 40 µm coronar sections were made throughout the 

septotemporal axis of the hippocampus and every third section was collected in a cryopro-

tectant solution (8.56 g Sucrose, 0.14 g magnesium chloride hexahydrate (MgCl2 x 6H2O), 

50 ml 99% glycerol, 50 ml 0.1M phosphate buffer). Then, sections were stored at -20°C until 

further processing. 

 

2.6.3. IMMUNOHISTOCHEMISTRY 
The immunohistochemical detection of BrdU-labeled cells was based on the two-step indirect 

ABC-(Avidin-Biotin-Complex-) method involving an unlabeled primary antibody (anti-BrdU) 

and a biotinylated secondary antibody that reacts with the anti-BrdU.   

After defrosting, the sections were rinsed in phosphate-buffered saline (10mM PBS, 

pH=7.4) containing 0.1% Triton X-100, pretreated in 0.6% H2O2 for 30 min. to block endo-

genous peroxidases, rinsed again in PBS and denaturated at 37°C in 2N HCl for 60 min. The 

acid was neutralized by 0.1M Borate buffer, pH 8.5. After rinsing, the sections were incubated 

in M.O.M. blocking reagent (Vector Laboratories, Burlingname, USA) for 60 min., rinsed 

again in PBS and M.O.M. diluent (8% M.O.M. Protein concentrate (Vector Laboratories, 

Burlingname, USA) in PBS/T) and then incubated in the primary antibody (mouse anti-BrdU, 

Roche Molecular Biochemicals, Indianapolis, USA) over night at 4°C. After rinsing, the 

sections were incubated in the secondary antibodies, (M.O.M. anti-mouse reagent, Vector 

Laboratories, Burlingname, USA, and biotinylated goat anti-mouse, Vector Laboratories, 

Burlingname, USA) dissolved in M.O.M. diluent, for 2 hours at room temperature. Then, after 

another rinsing step, the sections were transferred to the Avidin-Biotin-Complex (Vectastain 

Elite ABC-Kit, Vector Laboratories, Burlingname, USA) and incubated for 1 hour at room 

temperature. The DAB reaction was conducted using 25 mg diaminobenzidine (DAB) 

dissolved in 50 ml PBS, filtered and supplemented with 0.5 ml of 1% H2O2. The sections 

were incubated in DAB for about 4 min., depending on the intensity of the staining. The 

sections were mounted on slides in a rostro-caudal order, air-dried over night and dehydrated 

on one of the consecutive days in an ascending series of alcohol. After replacing the alcohol 

by immersion in xylene, the slides were cover-slipped with the xylene-soluble mounting 

medium DePeX (Serva, Heidelberg, Germany) and allowed to harden for at least 1 day 

(staining protocol, appendix IV). 
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2.6.4. QUANTITATIVE EVALUATION/STEREOLOGY 
The number of BrdU-positive cells was estimated by counts made systematically on every 

third consecutive section along the rostrocaudal axis of the hippocampal formation. Counting 

was started when both blades of the dentate gyrus fully appear (Bregma -1.34 mm; Fig. 2-8, 

A) and ended just before the blades ventrally start to form a circle (Bregma -3.40 mm; 

Fig. 2-8, B; following the Mouse brain atlas of Franklin & Paxinos, 2008). On each section, 

BrdU-positive cells were counted in the granule cell and subgranular layer using a light 

microscope (400-fold magnification, Olympus BX41, Olympus Europa Holding GmbH, 

Hamburg, Germany).  

 

 

 

 

 

Fig. 2-8: First and last evaluated section. 
Counting was started when both blades of the dentate gyrus appear (A) Bregma – 1.34 mm) 
and ended just before the blades start to form a circle (B) Bregma -3.40 mm). Counts were 
made systematically on every third section. 
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Additionally the volume of the granule and subgranular layer was measured using a light 

microscope (Olympus BX61, Olympus Europa Holding GmbH, Hamburg, Germany), a digi-

tal camera (Color View, Soft Imaging Systems GmbH, Münster, Germany) and software for 

image analysis (Cell*, Olympus Soft Imaging Solutions, Münster, Germany). Therefore, a 

picture was taken at 100-fold magnification, and the granule and subgranular layer was 

circumscribed on the picture (Fig. 2-9, A). For some studies, the dentate gyrus was subdivided 

into supra- and infrapyramidal blade and the area of the hilus was additionally measured (Fig. 

2-9, B). The data were provided in a table by the program, and then transferred to Excel 

(Microsoft Office 2003) for further analyses.  

The reference volume was esti-

mated according to the Cavalieri 

principle: Vref=T x ΣA x 1/ssf, where T 

is the thickness of the section, A is the 

area of the granule cell layer and 1/ssf 

is the inverse of the section sampling 

fraction (1/ssf=3). The number of 

BrdU-positive cells was then related to 

the granule cell layer sectional volume 

to obtain the density of BrdU-positive 

cells per mm3. Additionally, the 

number of BrdU-positive cells was 

multiplied by the reference volume to 

estimate the total number of BrdU-

positive cells per dentate gyrus.  

In some studies it was additionally tested, whether the effects were equally distributed 

along the septotemporal axis of the dentate gyrus. Therefore, three different regions, a septal, 

a temporal and an intermediate region, were defined and compared to each other. Within these 

regions, the average densities of BrdU-positive cells over two sections were calculated. 

 

2.6.5. IMMUNOFLUORESCENCE 
In the projects involving the investigation of cell survival, a triple fluorescence staining was 

additionally performed to get a qualitative overview over the phenotype of the surviving cells. 

Therefore, antibodies against BrdU, NeuN (a marker of mature neurons), and GFAP, (glial 

fibrillary acidic protein, a marker for glia cells) were used. 

Fig. 2-9: Measuring fields. A) Measuring field around the
dentate gyrus (green); B) Measurement of supra- and
infrapyramidal blade separately (green) and of the hilus (blue;
wild house mouse). 
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After defrosting, the sections were rinsed in phosphate-buffered saline (10mM PBS, 

pH=7.4), and DNA denaturation was carry out at room temperature in 2N HCl for 60 min. 

The acid was neutralized by 0.1M Borate buffer, pH 8.5. After rinsing, the sections were 

incubated in 5% donkey serum in PBS containing 0.1% Triton X-100 (PBS/T) for 60 min. 

Afterwards, sections were rinsed again in PBS and incubated in the primary antibody cocktail 

solved in 5% donkey serum in PBS/T for 45 min., rinsed again and incubated in the secondary 

antibodies solved in 2% bovine serum albumin in PBS for 45 min. The antibodies used were 

rat anti-BrdU (AbD Serotec, Kidlington, Oxford, UK), mouse anti-Neun (Millipore, 

Schwalbach/Ts., Germany), rabbit anti-GFAP (dianova, Hamburg, Germany), donkey anti-rat 

Rhodamin Red-X (Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK), donkey anti-

mouse FITC (Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK), and donkey anti-

rabbit AMCA (Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK). After the anti-

bodies were rinsed out, the sections were transferred to distilled water and therefrom mounted 

on slides. Slides were dried on a hot plate at 30°C, cover-slipped with Aqua-Poly/Mount 

(Polysciences Inc., Eppelheim, Germany) and allowed to harden for at least one day in the 

dark (staining protocol, appendix IV). Pictures for qualitative evaluation were taken with a 

fluorescence microscope (Olympus BX61, Olympus Europa Holding GmbH, Hamburg, 

Germany) at magnifications of 100-600-fold. 

 

2.7. GALLYAS SILVER IMPREGNATION 
Nondegenerative processes of presynaptic degradation as a prominent form of synaptic 

remodeling are characterized by a transient accumulation of secondary lysosomes and 

degenerating organelles in the degrading axonal terminal (Dean, 1978; Wolff et al., 1989; 

Wolff & Missler, 1993). Electron microscopy and ultrathin section analyses of silver 

impregnated material have proven that the Gallyas silver impregnation (Gallyas et al., 1980) 

selectively stains secondary lysosomes, degrading mitochondria, lamellar bodies and 

multivesicular bodies in remodeling axonal terminals (Wolff et al., 1989; Teuchert-Noodt et 

al., 1991; Dawirs et al., 2000). Even to date, the Gallyas silver impregnation seems to be the 

best method to specifically detect synaptic remodeling by staining the transient phase of 

presynaptic lysosomal accumulation (for further explanation and validation of this method cf. 

Butz et al., 2008; Neufeld et al., 2009). We used the Gallyas silver impregnation of lysosomal 

accumulations to quantify presynaptic degradation in different regions of the hippocampal 

formation. 
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2.7.1. PERFUSION AND TISSUE PREPARATION 
Animals were perfused according to the procedure described in chapter 2.6.2 with ca. 200 ml 

of 5% formaldehyde. Immediately after the perfusion, the brain was dissected as described in 

chapter 2.6.2 and the brain was stored in 5% formaldehyde at 4°C until further processing. 

60 µm coronar sections were made throughout the septotemporal axis of the hippocampus 

(see chapter 2.6.2) with a freezing microtome (Frigomobil, Reichert-Jung, Vienna, Austria). 

Every slice was collected in distilled water. 

 

2.7.2. SILVER IMPREGNATION 
According to the procedure described by Gallyas et al. (Gallyas et al., 1980), the free floating 

sections were prepared in an alkalinic acid (pH 13) containing 9% sodium hydroxide and 1% 

ammonium nitrate and, subsequently, silver impregnated by a silver-nitrate solution contai-

ning 9% sodium hydroxide, 16% ammonium nitrate and 50% silver nitrate. The optimal silver 

concentration was estimated by examining stained test-sections by light microscopy. After 

impregnation, the sections were rinsed three times in changing rinsing solutions (solution: 

30% ethyl-alcohol with 0.5 g sodium carbonate mixed with 1% ammonium nitrate). The de-

veloper contained 15 ml 40% formalin and 0.5% citric acid in 1000 ml 10% ethyl alcohol. 

After another rinsing step, the sections were air-dried, mounted on slides and embedded in 

DePeX (Serva, Heidelberg, Germany; staining protocol, appendix IV (German version)). 

 

2.7.3. MEASURING FIELDS AND COMPUTERIZED ASSESSMENT OF 
LYSOSOMAL ACCUMULATIONS 

Silver impregnated lysosomal accumulations can be viewed and counted in the dark field at 

100-fold magnification. For computer-assisted quantification of the number of these lyso-

somal accumulations, pictures were taken from the dentate gyrus, CA1, CA3, subiculum and 

entorhinal cortex using a light microscope (Olympus BX41, Olympus Europa Holding 

GmbH, Hamburg, Germany), a digital camera (Color View, Soft Imaging Systems GmbH, 

Münster, Germany) and software for image analysis (Cell*, Olympus Soft Imaging Solutions, 

Münster, Germany). Within the respective areas, well-defined measuring fields consisting of 

three joined rectangular-shaped sub-fields (200 x 50 pixels, sized 600 x 50 pixel in total) were 

set to estimate the numbers of lysosomal accumulations per layer. The assessment was carried 

out by a self-developed classification algorithm implemented in MATLAB Vers. 6 (cf. Butz 

et al., 2008) that assesses the average number of lysosomal accumulations in every measured 

layer.  
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2.8. TIMM STAINING 
For morphometric analyses of the dentate gyrus, the different layers were visualized with a 

method modified after Timm (1962). This method is based on the conversion of available 

heavy metals in the tissue into heavy metal sulphide, upon which silver is deposited, when the 

tissue is placed in a solution containing gum arabic, citrate buffer, hydroquinone and silver 

nitrate (Danscher & Zimmer, 1978). Zinc is a modulatory substance in the vesicles of mossy 

fibers in the dentate gyrus (Haug, 1967). Thus, by detecting zinc, one can visualize granule 

cells and mossy fibers as well as the termination fields in the dentate gyrus (Fig. 2-10; 7-5).  

 

2.8.1. PERFUSION AND TISSUE PREPARATION 
Perfusion and dissection 

Animals were anaesthetized, and the needle was positioned in the left heart ventricle as de-

scribed in chapter 2.6.2. The perfusion was performed in three steps. It was initiated with 

150 ml of 1.17% sodium sulphide in phosphate buffer (pH 7.35) and continued with 400 ml of 

fixation solution composed of 3% glutaraldehyde in 0.15M Sörensen buffer (1.47 g potas-

siumhydrogenphosphate and 7.57 g disodiumhydrongenphosphate, pH 7.35). With 250 ml of 

the initial sulphide solution the perfusion was terminated. Immediately after the perfusion, the 

brain was dissected as described in chapter 2.6.2 and stored in the fixation solution containing 

additionally 20% sucrose at 4°C for at least 24 hours.  

 

Brain sectioning 

Brains were taken out, and the hemispheres were transected with a razor blade. Cerebellum 

and olfactory bulb were cut off, the remaining part of the left hemisphere was placed with the 

rostral part onto the plate of the cryostat (Frigocut 2700, Reichert-Jung, Wien, Austria) em-

bedded with TissueTek (Sakura, Tokyo, Japan). 20 µm coronar sections were made through-

out the septotemporal axis of the hippocampus, and every third section was mounted on 

slides. Slides were stored in the dark at room temperature until further processing. 

 

2.8.2. SILVER IMPREGNATION 
Preparation of solutions 

Due to the sensitivity of the Timm reaction, all vessels had to be incubated in 10% RBS for at 

least 24 hours, rinsed in tip and distilled water afterwards, and allowed to dry in the hot cup-

board. The Timm solution was prepared out of gum arabic solution (50 g in 100 ml distilled 

water), citrate buffer (5.1 g citric acid and 4.7 g sodium citrate in 20 ml distilled water), hy-
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droquinone solution (3 g hydroquinone in 60 ml distilled water) and 0.5 ml of 17% silver-

nitrate solution, while the hydroquinone solution and the citrate buffer were mixed first, be-

fore the gum arabic solution was added. This solution was incubated in the hot cupboard for 

30 min., before the silver nitrate solution was added. 

 

Staining procedure 

The slides were placed in vessels containing the Timm solution. For incubation, the vessels 

were placed in the hot cupboard (Adams et al., 2002) at 30°C. The incubation time was varied 

and tested to obtain the optimal staining of the layers of the dentate gyrus (Coleman et al., 

1987). The reaction was stopped by rinsing slides under running tip water followed by rinsing 

in tip water for 10 min. The sections were dehydrated in ethanol (96%, 100%). The alcohol 

was replaced by immersion in xylene, and the slides were coverslipped with Eukitt (Kindler, 

Freiburg, Germany; staining protocol, appendix IV (German version)).  

 

2.8.3. QUANTITATIVE EVALUATION 
The quantitative evaluation of the different layers was carried out according to descriptions of 

Hildebrandt (1999) on every third section along the septotemporal axis of the hippocampus. 

As start point the slice was taken, on which both blades of the dentate gyrus first appear, and 

as endpoint the last slice, before the blades start to form a circle (cf. Fig. 2-8). For each animal 

14-19 sections were analyzed. Pictures were taken of the dentate gyrus at 100-fold magnifi-

cation using a light microscope (Olympus BX61, Olympus Europa Holding GmbH, Hamburg, 

Germany), a digital camera (Color View, Soft Imaging Systems GmbH, Münster, Germany) 

and software for image analysis (Cell*, Olympus Soft Imaging Solutions, Münster, Germany). 

Fig. 2-10: Measurements on Timm-stained sections of the dentate gyrus (100-fold, wild house mouse).  
A) Dimension line with rectangular reference lines in the granule cell layer; B) dimension lines in the granule
cell (gcl), inner (iML), middle (mML) and outer molecular layer (oML) of the supra- and infrapyramidal blade
of the dentate gyrus. 
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With help of dimension lines between rectangular reference lines (Fig. 2-10, A), the height of 

the granule cell, inner, middle and outer molecular layer in each blade was measured at three 

different points (Fig. 2-10, B). All data were provided in a table and transferred to an Excel 

sheet (Microsoft Office 2003). The mean over the three measurements and the sections were 

taken to get a value for every layer.  

 

2.8.4. IMMUNOFLUORESCENCE 
A fluorescence staining against the zinc transporter 3 (ZnT 3) was additionally performed to 

get a qualitative validation of the zinc content of the different dentate layers.  

Paraformaldehyde fixated tissue was used (for perfusion and tissue preparation see 

chapter 2.6.2). After defrosting, the 40 µm sections were rinsed in phosphate-buffered saline 

(10mM PBS, pH=7.4) and incubated in 5% donkey serum in PBS containing 0.1% Triton X-

100 (PBS/T) for 60 min. Afterwards, sections were rinsed again in PBS and incubated in the 

primary antibody (rabbit anti-ZnT 3, Synaptic Systems, Göttingen, Germany) solved in 5% 

donkey serum in PBS/T for 45 min., rinsed again and incubated in the secondary antibody 

(donkey anti-rabbit AMCA, Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK) 

solved in 2% bovine serum albumin in PBS for 45 min. After the secondary antibody was 

rinsed out, the sections were transferred to distilled water and therefrom mounted on slides. 

Slides were dried on a hot plate at 30°C, cover-slipped with Aqua-Poly/Mount (Polysciences 

Inc., Eppelheim, Germany) and allowed to harden for at least one day in the dark (staining 

protocol, appendix IV). Pictures for qualitative evaluation were taken with a fluorescence 

microscope (Olympus BX61, Olympus Europa Holding GmbH, Hamburg, Germany) at 

magnifications of 100-200-fold. 
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3. PROJECT I:  
 

DISTINCT EFFECTS OF REARING CONDITIONS AND 
WHEEL RUNNING ON NEUROGENESIS IN ADULT CD1 MICE 

 

3.1. INTRODUCTION 
The development of the brain is strongly influenced by environmental conditions. Especially 

in the phase after weaning, when an individual begins to independently interact with its social 

and physical environment, this development is under considerable influence of external 

factors. The natural environment of an animal in this phase is both rich in physical structure 

and populated with conspecifics providing necessary input for neural development. Depri-

vation or impoverishment of such social and physical stimulation can lead to differences in 

behavioral and neuroplastic development (Olsson & Dahlborn, 2002). In gerbils, (Meriones 

unguiculatus) social and physical deprivation (impoverishment) during juvenile development 

leads to a reduced dopamine innervation of the prefrontal cortex (Winterfeld et al., 1998; 

Neddens et al., 2001) and reduced maturation of both prefrontal layer II/III and layer V/VI 

pyramidal efferents to frontal, parietal and limbic areas (Bagorda et al., 2006; Witte et al., 

2007). In contrast, dopaminergic fibers in limbic structures mature excessively under deprived 

conditions (Neddens et al., 2002; Busche et al., 2004; Lesting et al., 2005) and further neuro-

transmitters like serotonin and acetylcholine are also altered in these structures. 

This dysbalance and reduced prefronto-cortico-limbic connectivity have been postulated to be 

causally involved in deprivation-induced effects on neuroplastic potentials in the hippo-

campus (Keller et al., 2000; Teuchert-Noodt, 2000; Butz, 2006). On the one hand, juvenile 

deprivation in gerbils leads to an increased adult hippocampal cell proliferation (Hildebrandt, 

1999; Keller et al., 2000) while at the same time synaptic-remodeling rates in the dentate 

gyrus are decreased (Hildebrandt, 1999; Butz et al., 2008).  

However, other studies in mice and rats found diminished neurogenesis after juvenile 

physical (not social) deprivation (Kempermann et al., 1997a; Young et al., 1999; Nilsson et 

al., 1999; Iso et al., 2007). These contradictory results could be due to different designs of the 

experimental conditions. The control condition, the so called semi-natural or enriched envi-

ronment confounds animate (social group) and inanimate factors (tunnels, hiding places, 

running wheels…), although, e.g., wheel running on its own is sufficient to enhance neuroge-



Project I – Neurogenesis in CD1 mice  33 

nesis at least in adult individuals (van Praag et al., 1999a, b; Holmes et al., 2004; Uda et al., 

2006).  

The present study was conducted to examine to which extent the findings on the epi-

genetic effects of juvenile environmental stimulation for gerbils are also valid for the mouse 

model. We focused on measuring adult neurogenesis, i.e., cell proliferation and cell survival 

in the dentate gyrus, as a representative parameter for the epigenetic effects of environmental 

deprivation/stimulation on juvenile neural developmental (weaning, postnatal day (pd) 21 to 

young adulthood, pd 66). We applied the same experimental treatment as in the gerbil studies, 

and, in contrast to former studies in mice and rats, excluded running wheels from the enriched 

environment. Additionally, we employed a wheel-running challenge in young adulthood (pd 

70-74) to examine the reactiveness of neuroplasticity to external neurogenic stimulation.  

 

3.2. MATERIAL & METHODS 

3.2.1.  ANIMALS AND REARING CONDITIONS 
49 female CD1 mice were bred in our facility in standard type III cages (42.5 x 26.5 x 18 cm) 

with one litter per cage. At weaning (postnatal day (pd) 21), animals were randomly assigned 

to one of two rearing conditions, enriched (ERSPW-) or socially (S) and physically (P) deprived 

(DRSPW-) rearing without running wheels (W-; rearing conditions are specifically described in 

chapter 2.2). ERSPW- animals were reared in two groups of 15 and 10 individuals in large en-

closures (200 x 100 x 50 cm) that contained items such as tunnels, tubes, and solid hiding 

places (Fig. 2-4, A). DRSPW- animals were reared individually in standard type III cages 

(Fig. 2-4, B). Animals were kept under their respective experimental rearing conditions for 45 

days from pd 21 to pd 66 (Fig. 3-1). 

 

3.2.2. WHEEL-RUNNING CHALLENGE 
On pd 66, all individuals from the previous two experimental groups were now united, and 

two mixed groups were formed (n=24 and n=25). Each group was placed into a large enclo-

sure (100 x 100 x 50 cm). One of the mixed groups had access to running wheels (as de-

scribed in chapter 2.3) from pd 70 to pd 74 (Fig. 2-5; 3-1).  
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3.2.3. BRDU-LABELING, PERFUSION, IMMUNOHISTOCHEMISTRY 
All animals received injections of the DNA synthesis marker 5-bromo-2-deoxyuridine (BrdU) 

on pd 71 to pd 73 at 5 p.m., thus, just before the dark period and the onset of the active phase 

of the animals (see chapter 2.6.1). After a survival time of 5 days (for detecting cell prolife-

ration) or 21 days (for detecting cell survival), the animals were deeply anaesthetized by an 

overdose of diethyl ether and transcardially perfused with 200 ml of 4% paraformaldehyde 

solution (for details see chapter 2.6.2). The brains were immediately dissected and stored over 

night in 4% PFA at 4°C. On the next day, brains were transferred to a 30% sucrose solution 

for cryoprotection for at least 24 hours. Then, the left hemispheres of the brains were freeze-

sectioned with a Frigomobil. 40 µm coronar sections were made throughout the septotemporal 

axis of the hippocampus (see chapter 2.6.2), collected in a cryoprotectant solution and stored 

at -20°C until further processing.  

The immunohistochemical detection of BrdU-labeled cells was based on the two-step 

indirect ABC-(Avidin-Biotin-Complex-) method involving an unlabeled primary antibody 

(mouse anti-BrdU, Roche Molecular Biochemicals, Indianapolis, USA) and a biotinylated 

secondary antibody (M.O.M. anti-mouse reagent, Vector Laboratories, Burlingname, USA, 

and biotinylated goat anti-mouse, Vector Laboratories, Burlingname, USA; for further expla-

nations see chapter 2.6.3). To get a qualitative overview over the phenotype of the BrdU 

labeled cells, on some sections a triple fluorescence staining was additionally performed in-

volving the antibodies mouse anti-BrdU (AbD Serotec, Kidlington, Oxford, UK), anti-Neun 

Fig. 3-1: Experimental design with time axis showing animal age in postnatal days (pd); pd 21-66, rearing phase
under socially and physically enriched conditions (ERSPW-) or socially and physically deprived conditions
(DRSPW-); pd 66, forming of the wheel-running and non-wheel-running group; pd 70-74, 4-day wheel-running
challenge for one of the groups; pd 71-74, BrdU-injections for all animals; The resultant four groups were split
in half for sampling of cell proliferation (pd 79) or cell survival (pd 95). 



Project I – Neurogenesis in CD1 mice  35 

(Millipore, Schwalbach/Ts., Germany), rabbit anti-GFAP (dianova, Hamburg, Germany), 

donkey anti-rat Rhodamin Red-X (Jackson ImmunoResearch Europe, Newmarket, Suffolk, 

UK), donkey anti-mouse FITC (Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK), 

and donkey anti-rabbit AMCA (Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK; 

for further explanations see chapter 2.6.5) 

 

3.2.4. QUANTITATIVE EVALUATION/STEREOLOGY 
The slides were coded prior to quantitative analysis and the code was not broken, until the 

analysis was completed. The number of BrdU-positive cells was estimated by counts made 

systematically on every third consecutive section along the rostrocaudal axis of the hippo-

campal formation (see chapter 2.6.4). On each section, BrdU-positive cells were counted in 

the granule cell layer and subgranular zone under the light microscope at 400-fold magnifi-

cation. Additionally the volume of the granule cell and subgranular layer was measured at 

100-fold magnification (see chapter 2.6.4). The reference volume was estimated according to 

the Cavalieri principle: Vref=T x ΣA x 1/ssf, where T is the thickness of the section, A is the 

area of the granule cell layer and 1/ssf is the inverse of the section sampling fraction 

(1/ssf=3). 

The number of BrdU-positive cells was then related to the granule cell layer sectional 

volume to obtain the density of BrdU-positive cells per mm3. Additionally, the number of 

BrdU-positive cells was multiplied by the reference volume to estimate the total number of 

BrdU-positive cells per dentate gyrus. 

For testing, whether the effects were equally distributed along the septotemporal axis 

of the dentate gyrus, three different regions, a septal, a temporal and an intermediate region, 

were compared to each other. Within these regions, the average densities of BrdU-positive 

cells over two sections were calculated.  

 

3.2.5. STATISTICAL ANALYSES 
The data were analyzed by ANOVA. Specific comparisons were made with Tukey HSD and 

Unequal N HSD post-hoc tests. Data analyses were performed with Excel (Microsoft Office 

2007), statistical analyses with Statistica 6.0 (StatSoft, Tulsa, USA). 
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3.3. RESULTS 
Cell proliferation was assessed by BrdU labeling of dividing cells over three days and immu-

nohistochemical detection five days after the last injection. For assessing cell survival, BrdU-

positive cells were detected after 21 days of survival.  
 

3.3.1. QUALITATIVE RESULTS 
The immunohistochemical detection of cell proliferation and cell survival revealed BrdU-

positive cells in all animals. BrdU-positive cells appear as brown to dark brown precipitates 

either in the whole cell or in parts of it. The majority of BrdU-positive cells resides in the 

subgranular zone and granule cell layer. Five days after the last BrdU injection, nearly all 

BrdU-positive cells are located in the subgranular zone (Fig. 3-2, A-D), while 21 days after a 

large part of the cells can also be seen in the granule cell layer indicating migrating cells (Fig. 

3-2 E-H). Triple stainings against BrdU, NeuN, a marker for mature neurons, and GFAP, a 

marker for glia cells, demonstrate that most of the BrdU-positive cells after a survival time of 

21 days are neurons (Fig. 3-3). 

 Photomicrographs of animals from socially and physically enriched and deprived 

rearing without and after the adult wheel-running challenge exemplary illustrate the 

distribution of BrdU-positive cells in the dentate gyrus (Fig. 3-2). Qualitatively, there appears 

hardly no difference between deprived (Fig. 3-2, B,F) and enriched-reared animals (Fig. 3-2, 

A,E) as well as enriched-reared animals after wheel running (Fig. 3-2, C,G). However, it is 

apparent that the number of BrdU-positive cells is higher in deprived-reared animals after 

wheel running (Fig. 3-2, D,H).  
 

3.3.2. QUANTITATIVE RESULTS 
In the following the statistical data for the total number of BrdU-positive cells per dentate 

gyrus are given. Similar results were seen for density of BrdU-positive cells per mm3 and can 

be drawn from table 3-1 and Fig. 3-4, B,D). 
 

3.3.2.1. Effect of the rearing conditions 
Cell proliferation in the dentate gyrus was not affected by the conditions of social and physi-

cal deprivation or enrichment during rearing alone (ERSPW- 2193 vs. DRSPW- 2364 cells per 

dentate gyrus; ANOVA, rearing condition F1,21=13.65, p < 0.01; Post-hoc Unequal N HSD, 

p > 0.05) Fig. 3-4, A). The number of surviving cells was also not affected by the rearing 

conditions (ERSPW- 1250 vs. DRSPW- 1407 cells per dentate gyrus; ANOVA, rearing conditions 

F1,20=9.47, p < 0.01; Post-hoc Tukey HSD, p > 0.05, Fig. 3-4, C).  
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Fig. 3-2: Photomicrographs of BrdU-positive cells (200-fold magnification) 5 days (A-D) and 21 days (E-H)
after the last injection in socially and physically enriched-reared animals without (A+E) and after wheel running
(C+G), socially and physically deprived-reared animals without (B+F) and after wheel running (D+H). 
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any significant effect on cell proliferation (ERSPW-, after wheel running 2852 cells per dentate 

gyrus; Post-hoc Unequal N HSD, p > 0.05; Fig. 3-4, A). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The general effect of our experimental treatment on cell proliferation was also found for cell 

survival. Wheel running only led to an increase in the number of surviving cells when animals 

had been reared under deprivation. For animals reared under enriched conditions, four days of 

wheel running had no effect on the rates of cell proliferation or cell survival (Fig. 3-4, C; 

Tab. 3-1).  

Table 3-1 indicates the mean total number and the mean density of BrdU-counts for 

cell proliferation and cell survival for the four different groups as well as significant diffe-

rences between the groups. 

Fig. 3-4: A) Total number of BrdU-positive cells in the granule cell layer 5 days after BrdU-injection; B)
Density of BrdU-positive cells per mm3 in the granule cell layer 5 days after BrdU injection; C) Total number of
BrdU-positive cells in the granule cell layer 21 days after BrdU-injection; D) Density of BrdU-positive cells per
mm3 in the granule cell layer 21 days after BrdU-injection. ERSPW-, socially and physically enriched-reared
animals; DRSPW-, socially and physically deprived-reared animals; wheel running, additional wheel running
challenge (pd 70-74); data given as means ± S.E.M. 
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ERSPW- DRSPW- ERSPW- 

ERSPW-  
after wheel running 

value  value  p value  value  p 
C

P 

Total number 2193 2364 n.s. 2193 2852 n.s. 

Density 9699 10251 n.s. 9699 11965 n.s. 

C
S 

Total number 1250 1407 n.s. 1250 1926 n.s. 

Density 3894 4987 n.s. 3894 6360 n.s. 
 

 

DRSPW- 
(100%) 

DRSPW- 
after wheel running 

ERSPW-  

after wheel 
 running (100%) 

DRSPW- 
after wheel running 

value value diff. in % p value value diff. in % p 

C
P 

Total number 2364 5671 +140 <0.001 2852 5671 +99 <0.001

Density 10251 22933 +124 <0.001 11965 22933 +92 <0.001

C
S Total number 1407 3785 +169 <0.001 1926 3785 +97 <0.01 

Density 4987 14096 +183 <0.001 6360 14096 +122 <0.001

 

 

 

 

 

3.3.2.3. Cell proliferation and cell survival along the septotemporal axis 
Three different regions within the dentate gyrus, a septal, a temporal and an intermediate 

region, were defined and compared to each other to test, whether the effects were equally dis-

tributed along the septotemporal axis of the dentate gyrus. As expected, the analysis of this 

subset of already analyzed count data revealed the same effects for the rearing conditions and 

the wheel-running challenge. All these effects were equally distributed along the septotem-

Fig. 3-5: Rates of cell proliferation A) and cell survival B) along the septotemporal axis of the dentate gyrus. 
ERSPW-, socially and physically enriched-reared animals; DRSPW-, socially and physically deprived-reared 
animals; wheel running, additional wheel running challenge (pd 70-74); data given as means ± S.E.M. 

Tab. 3-1: Group comparison of total numbers and densities of BrdU-positive cells 
ERSPW-, socially and physically enriched-reared aninmals; DRSPW-, socially and physically deprived-reared 
animals; after wheel-running, after an additional wheel running challenge in adulthood (pd 70-74); CP, cell 
proliferation; CS, cell survival; total number of BrdU-positive cells per dentate gyrus; density of BrdU-
positive cells per mm3; given are absolute values (means), differences between the groups if significant, and 
p-values. 
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poral axis. Neither the regions within the groups showed different numbers of cell prolife-

ration or cell survival, nor did differences along the septotemporal axis vary between the four 

groups (Post-hoc Unequal N HSD or Tukey HSD, p > 0.05; Fig. 3-5). 

 

3.3.2.4. Effect of rearing conditions and wheel running on the reference 
volume of the granule cell layer 

The reference volume comprising the granule cell layer and subgranular zone was not affected 

by the rearing conditions or the wheel-running challenge neither when it was measured 

together with cell proliferation (5 days after the last BrdU injection; ANOVA rearing con-

dition F1,21=4.01, p > 0.05; wheel running F1,21=1.14, p > 0.05; interaction effect of rearing 

condition*wheel running F1,21=0.04, p > 0.05) nor when it was measured together with cell 

survival (21 days after the last BrdU injection; ANOVA rearing condition F1,20=2.07, 

p > 0.05; wheel running F1,20=0.35, p > 0.05; interaction effect of rearing condition*wheel 

running F1,20=0.32, p > 0.05; Fig. 3-6). Interestingly, when the groups were taken together and 

the reference volume of animals 5 days after the last BrdU injection, thus 79 days old, and 21 

days after, thus 95 days old, were compared, a significant increase in the reference volume 

(Welch two-sample t-test, t=-3.62, df=47, p < 0.001) was found. 

 

3.4. DISCUSSION 
Our results demonstrate that brain maturation in CD1 mice is susceptible to environmental 

deprivation during rearing. However, this effect is subtle: social and physical deprivation 

during rearing did, at first sight, not cause different rates of cell proliferation or cell survival 

Fig. 3-6: Reference volume of the granule cell layer and subgranular zone A) 5 days (pd 79) and B) 21 days after
BrdU-injection (pd 95); ERSPW-, socially and physically enriched-reared animals; DRSPW-, socially and physically
deprived-reared animals; wheel running, additional wheel running challenge (pd 70-74); data given as means
± S.E.M. 
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in young-adult animals if compared to enriched rearing. This result stands in contrast to other 

studies. In mice, individuals from standard rearing had lower rates of cell survival than indivi-

duals reared under environmental enrichment including running wheels (Kempermann et al., 

1997a; van Praag et al., 1999b; Brown et al., 2003). In contrast, in gerbils, deprived-reared 

individuals - treated similarly to the animals from this study - had higher rates of cell prolife-

ration than individuals reared under enriched conditions without running wheels (Keller et al., 

2000; Butz et al., 2008). In line with this latter finding, our further analyses did show that also 

our deprived-reared CD1 mice were affected in their neuroplastic development with conse-

quences on the regulation of neurogenesis in adulthood. Social and physical deprivation 

(DRSPW-) led to a significant increase in cell proliferation and cell survival as compared to 

enrichment (ERSPW-), when young adult individuals received a neurogenic stimulation through 

a 4-day exposure to running wheels.  

All these effects were equally distributed along the septotemporal gradient of the 

hippocampus notwithstanding the different connectivities and functional embeddings of these 

two hippocampal subregions (Bannerman et al., 1999, 2004). Both treatments had no effect on 

the reference volume of the granule cell layer and subgranular zone neither 5 nor 21 days after 

the last BrdU injection, so after the wheel-running challenge. This result is in line with other 

findings that adult neurogenesis does not alter the volume of the dentate gyrus (Kitamura & 

Sugiyama, 2006). However, surprisingly, we found an increase in the reference volume in all 

groups between the 5th and the 21th day after the last BrdU injection and thus between pd 79 

and pd 95. Hence, it seems that in CD1 mice, unlike in C57Bl/6 mice (Kitamura & Sugiyama, 

2006), even in this age the granule cell layer still grows.  

In three aspects our experimental results regarding neurogenesis differed in positive or 

negative direction from previous results and from what we have expected: First, in gerbils, 

post-weaning rearing under social and physical deprivation by itself leads to a significant in-

crease in cell proliferation, when compared to enriched rearing (Keller et al., 2000; Butz et al., 

2008). Such an effect was not seen in our CD1 mice. The reason for this difference may stem 

from a species-dependent effect. Or it could be due to different levels of domestication, with 

the consequence that environmentally-dependent neuroplasticity is generally lower in CD1 

mice than in gerbils.  

Secondly, our rearing under environmental deprivation did not lead to lower rates of 

cell survival in young-adult animals compared to our individuals from enriched rearing with-

out running wheels. The effect of reduced cell survival could have been expected considering 

other studies which, however, included a running wheel as a component of enrichment 
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(Kempermann et al., 1997a; van Praag et al., 1999b; Brown et al., 2003). This difference in 

results could be due to the different reference groups. We compared deprivation versus 

enrichment, while others compared standard housing versus enrichment. Alternatively, the 

absence (in our case) or presence of a running wheel (in other studies) as part of environ-

mental enrichment during rearing might have exerted this effect. 

Last, the effects of the adult wheel-running challenge were weaker than might have 

been expected. Our individuals from enriched rearing did not respond to wheel-running activi-

ty with any changes in cell proliferation or cell survival. This seems surprising if one assumes 

that it is the wheel-running stimulation that is mostly responsible for the effects of enrichment 

found in other studies (Kempermann et al., 1997a; van Praag et al., 1999b; Brown et al., 

2003). One reason for this could be the time point, duration and intensity of the wheel-running 

activity. The long-term exposure to a single running wheel included in an enriched environ-

ment during development could lead to long-lasting structural alterations. In contrast, our 

wheel-running exposure of four days during young adulthood with one running wheel per 

animal could lead to strong, but only short-term effects, which – as we observed – depend on 

the rearing history of the animals. Unfortunately, the available studies on the effects of wheel 

running on neurogenesis have been performed with animals reared and housed under standard 

conditions so that a comparison to enriched or deprived-reared individuals is not possible. 

The reactiveness of neurogenesis was significantly higher in socially and physically 

deprived-reared animals as we could demonstrate by our adult wheel-running challenge. This 

raises the question, how deprivation affects the maturing brain during juvenile development. 

In gerbils, deprived rearing causes a dysbalance in the dopamine system with a dopamine 

hypofunction in frontal and a hyperfunction in limbic areas (Winterfeld et al., 1998; Busche et 

al., 2004). It has been argued that this dysbalance is causally involved in the mechanism 

underlying enhanced cell proliferation after deprived rearing observed in this species (Keller 

et al., 2000; Teuchert-Noodt, 2000). Unfortunately, comparable data for mice are missing. In 

order to help understand the underlying mechanisms that may lead to the higher neurogenic 

reactiveness after deprivation, we analyze and compare in the following available findings 

about the effects of environmental conditions and wheel running on the developing rodent 

brain. 

Stress and corticosterone are negative regulators of neurogenesis (Gould et al., 1992; 

Cameron & Gould, 1994) and can delay the effects of wheel running on neurogenesis in the 

adult (Stranahan et al., 2006). However, deprived and enriched-reared animals have the same 

basal corticosterone levels, and it is the deprived-reared animals, which show higher corti-
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costerone levels in response to stress (Shrijver et al., 2002; Bartolomucci et al., 2003; 

Stranahan et al., 2006). Thus, a corticosterone effect is unlikely to play a role in this case, as 

the deprived-reared animals from our study responded with higher not lower rates of neuro-

genesis to wheel running. 

Neurotrophic and other growth factors play a major role in neuroplasticity, especially 

in the upregulation of neurogenesis (Wagner et al., 1999; O'Kusky et al., 2000; Aberg et al., 

2000; Cao et al., 2004; Scharfman et al., 2005). They are found at higher levels in enriched-

reared animals (with or without wheel running; Torasdotter et al., 1998; Young et al., 1999; 

Ickes et al., 2000; During & Cao, 2006; Lehmann et al., 2007) and also after wheel running 

(Trejo et al., 2001; Fabel et al., 2003; Vaynman et al., 2004a, b). Furthermore, cholinergic 

activity from the medial septum increases neurotrophic factors in the hippocampus (Lapchak 

et al., 1993; Knipper et al., 1994; Berchtold et al., 2002) and upregulates neurogenesis directly 

via granule cells (Cooper-Kuhn et al., 2004; Mohapel et al., 2005). In gerbils, acetylcholine is 

enhanced in deprived-reared individuals (Lehmann et al., 2004; Busche et al., 2006), and in 

rats, adult wheel running increases acetylcholine (Dudar et al., 1979) and activates the septo-

hippocampal axis (Lawson & Bland, 1993). Thus, one interpretation might be that, if deprived 

rearing already enhances acetylcholine, a running-induced additional increase could lead to 

stronger effects on neurogenesis in these animals either directly or indirectly via 

neurotrophins. 

Wheel running is rewarding (Iversen, 1993; Brene et al., 2007) and shares characte-

ristics of stereotypies like high repetition, self reinforcement and the lack of any obvious 

function or goal (rev. in Sherwin, 1998). However, in contrast to stereotypies, which can be 

environmentally-induced (rev. in Cabib, 1993), wheel running occurs irrespective of the envi-

ronment (de Kock & Rohn, 1971; Roper & Polioudakis, 1977; Sherwin & Nicol, 1996). Also 

in our experiments, deprived-reared animals ran the same distance and made the same number 

of running bouts as enriched-reared animals (supplemental experiment II, chapter 3.6; Haupt 

& Schaefers, accepted). Thus, the amount and frequency of wheel running does not seem to 

be responsible for the enhanced neurogenesis in deprived-reared animals. Neuronal substrates 

for these rewarding and reinforcing aspects of wheel running are related to the mesolimbic 

dopamine-opioid system (Werme et al., 2000, 2003; Lett et al., 2002; Vargas-Perez et al., 

2004). Administration of opioids or dopamine agonists decreases cell proliferation in the den-

tate gyrus (Hildebrandt et al., 1999; Teuchert-Noodt et al., 2000; Eisch et al., 2000; 

Yamaguchi et al., 2004). Though, opioids influence neurogenesis via local mechanisms in the 

dentate gyrus (Drake & Milner, 2002; Persson et al., 2003), while dopamine exerts its effects 
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mainly indirectly via modulation of other inputs to the dentate gyrus, of neurotransmitters and 

opioids. Wheel running enhances e.g. beta-endorphin, which is required for the effects of 

wheel running on cell proliferation (Colt et al., 1981; Goldfarb & Jamurtas, 1997). The influ-

ence of wheel running via dopamine has to be described rather on a systemic level: running-

induced beta-endorphin binds to GABA in the VTA, attenuates the inhibition and leads to a 

higher dopamine release in Ncl. accumbens and caudate putamen (Johnson & North, 1992; 

Spanagel et al., 1992).  Additionally, wheel running leads to an increase in dopamine syn-

thesis and a reduction of inhibition in the substantia nigra (Foley & Fleshner, 2008). Thus, 

dopamine is enhanced in motor circuits as a response to wheel running. This could lead to a 

diminished control of the prefrontal cortex and hippocampus, the structures which normally 

control the reward system (rev. in White, 2002) and inhibit stereotypies (Whishaw & 

Mittleman, 1991; Whishaw et al., 1992; Schaub et al., 1997). A lack of cortical input and thus 

NMDA-receptor activation in the hippocampus was shown to increase cell proliferation 

(Cameron et al., 1995; Bernabeu & Sharp, 2000; Nacher et al., 2001). Thus, a possible 

mechanism might be that differences in the dopamine-opioid system of socially and physi-

cally deprived-reared animals compared to their enriched-reared littermates are responsible 

for the different neuroplastic response to the wheel-running challenge in young adulthood.  

This interpretation finds support, since data from gerbils suggest a differentially 

matured dopamine-system in socially and physically deprived-reared individuals. Deprived-

reared gerbils show severely reduced maturation patterns of both prefrontal layer II/III and 

layer V/VI pyramidal efferents to frontal, parietal and limbic areas (Bagorda et al., 2006; 

Witte et al., 2007) as a consequence of diminished dopamine maturation (Winterfeld et al., 

1998). This reduced prefronto-cortico-limbic connectivity may be an underlying cause of the 

increase in cell proliferation in deprived-reared gerbils (Keller et al., 2000; Teuchert-Noodt, 

2000). Since socially and physically deprived-reared mice responded with a qualitatively 

similar increase in neurogenesis to wheel-running stimulation, the development of their 

mesolimbocortical dopamine system may have been similarly affected. 

Social and physical deprivation during rearing led to changes in neuroplastic de-

velopment of the mouse brain such as observed for the gerbil brain. Differences in the de-

velopment of neurotransmitter systems and in the regulation and expression of neurotrophic 

factors may account for this enhanced reactiveness of a brain developed under deprived 

rearing. Since wheel running affected cell proliferation and cell survival only under specific 

conditions of a deprived rearing history, this study also points out that the effects of wheel 

running have to be observed more specifically.  



Project I – Neurogenesis in CD1 mice  46 

3.5. SUPPLEMENTAL EXPERIMENT I:  
THE INFLUENCE OF CAGE SIZE IN DEPRIVED REARING 

The present study was conducted to examine to which extent the findings on the epigenetic 

effects of juvenile environmental stimulation for gerbils are also valid for the mouse model. 

For this, the same rearing conditions as in the gerbil studies were applied. Beside the omission 

of running wheels in the enrichment, this referred also to the cage size. We used standard 

type III cages with a size of 42.5 x 26.5 x 18 cm, while it is more usual to keep mice matched 

to their smaller body size in smaller cages, e.g., standard type II cages with a size of 

26.5 x 20.5 x 14 cm.  

The effect of cage size on neuroplasticity is not well examined, but there are indi-

cations that at least adult behavior is influenced by cage size during development: rats, e.g., 

remain similar explorative as their non-deprived conspecifics when physical deprivation 

involves only minimal decreases in cage size (Zhu et al., 2006), but are clearly less explora-

tive when it is restricted drastically (Joseph & Gallagher, 1980). Also mice seem to be 

affected by cage-size restriction, since they are willing to work for additional space (Sherwin 

& Nicol, 1997), although in a recent study with C57Bl/6Tac mice, no direct relationship be-

tween cage size and behavioral performance in adulthood could be proven (Whitaker et al. , 

2009). 

It seems possible that the difference in the strength of the deprivation effect on cell 

proliferation between gerbils and mice could be an outcome of the - relatively to the body 

size - bigger cage size used in mice than in gerbils.  

To examine, if cage size played a role in the outcome of the present study, we 

additionally reared a group of female CD1 mice (n=8) individually in standard type II cages 

(26.5 x 20.5 x 14 cm) from weaning (pd 21) to young adulthood (pd 66). Except cage size, the 

other components of the social and physical deprivation remained unchanged (for a detailed 

description see chapter 2.2; 3.2.1). Like the other groups, the animals were united on pd 66 

and placed into a large enclosure. From pd 71 to pd 73, animals received BrdU injections of 

50mg/kg i.p. at 5 p.m. and were sacrificed 5 days later for examining cell proliferation (for 

details see chapters 3.2.3). The immunohistochemical detection of BrdU-labeled cells and the 

quantification of BrdU-positive cells were performed as described earlier (chapter 2.6; 3.2.3). 

 The different rearing groups (ERSPW-, DRSPW- type III from the main study and DRSPW-

 type II) were statistically compared with one-way ANOVA.  
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Although socially and physically deprived-reared individuals from type II cages 

seemed to have slightly more BrdU-positive cells (Fig. 3-7), this difference failed to be 

significant (ANOVA cells per DG: rearing condition F2,17=2.38, p = 0.12; ANOVA cells per 

mm3: rearing condition F2,17=2.0, p = 0.17).  

These findings argue in favor, that cage size differences in this scale do not play a decisive 

role for the different strenght of the effects of socially and physically deprived rearing on cell 

proliferation in adult gerbils and adult mice.  

 

3.6. SUPPLEMENTAL EXPERIMENT II:  
EFFECTS OF REARING CONDITIONS ON WHEEL-RUNNING ACTIVITY 

Four days of wheel running in young adulthood enhanced hippocampal cell proliferation and 

cell survival only in CD1 mice which were reared under social and physical deprivation, but 

not in their enriched-reared littermates. An obvious question is whether differences in wheel-

running activity may account for the different rates in neurogenesis.  

To answer this question, we measured wheel-running activity of enriched and de-

prived-reared animals (each group separately) over four days in young adulthood with auto-

mated running wheels. Two additional groups of female CD1 mice (n=6) were reared either 

under enriched or socially and physically deprived conditions as described before (see chapter 

2.2 and 3.2.1). In young adulthood (ERSPW- pd 62; DRSPW- pd 66), animals were habituated to 

an enclosure which contained nothing than animal bedding, food and water ad libitum as well 

Fig. 3-7: A) Total number of BrdU-positive cells in the granule cell layer 5 days after BrdU-injection; B)
Density of BrdU-positive cells per mm3 in the granule cell layer 5 days after BrdU injection; ERSPW-, socially 
and physically enriched-reared animals; DRSPW- type III, in type III cages socially and physically deprived-reared 
animals; DRSPW- type II, in type II cages socially and physically deprived-reared animals; data given as means 
± S.E.M. 
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as a solid hiding place. These conditions equated the habituation conditions in the main 

experiment (see chapter 3.2.2) except that the rearing groups were not mixed. Four days later 

(ERSPW- pd 66; DRSPW- pd 70) the automated running wheels were introduced into the 

enclosure. One running wheel per animal was provided, which was connected to a computer 

measuring the wheel revolutions (for detailed description of the apparatus see chapter 2.5.1).  

 Running analysis was started at the end of the first dark phase to get three complete 

24-h cycles and include the three dark phases in which the BrdU labeling was performed in 

the main experiment. We included only long-term running events (>10 sec.) and excluded 

short-term running events, which often had purely investigative character (sniffing, outer 

touches, wheel crossings). Number of long-term running events and total distance covered in 

24 hours were scored. As individual data points for number of events and distance we took 

days. These values were divided by the number of individuals (n=6). Normally distributed 

data (Shapiro Wilks test for normality) were analyzed using Welch two-sample t-test.  

 Differences were found neither in total running distance (ERSPW- 5.9 + 0.47 km, 

DRSPW- 6.2 + 0.43 km) nor in the number of daily long-term events (ERSPW- 287 + 27, DRSPW- 

269 + 16) between the two treatment groups (Welch two-sample t-tests, p > 0.05; Fig. 3-8).  

Hence, enriched and socially and physically deprived-reared CD1 mice did not differ in their 

wheel-running activity in a 4-day wheel-running challenge in young adulthood. This indicates 

that differences in wheel-running activity cannot account for the different neuroplastic 

responses to wheel running.  

Fig. 3-8: Wheel running activity of enriched (ERSPW-) and deprived-reared CD1 mice (DRSPW-). 
A) Running distance covered in 24 hours; B) Long-term running events (>10 sec.) in 24 hours; data given as
means ± S.E.M. 
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4. PROJECT II: 
 

A REVIEW AND HYPOTHETICAL MODEL OF  
THE EFFECTS OF WHEEL RUNNING ON NEUROGENESIS IN MICE 

WITH DIFFERENT REARING HISTORIES 
 

4.1. INTRODUCTION 
Environmental conditions especially during development as well as wheel running exert 

strong effects on hippocampal neurogenesis. Thus, they provide a good method to manipulate 

ontogenic plasticity and investigate biological mechanisms of neuroplastic differentiation.  

Nevertheless, results concerning the effects of different rearing environments on 

neurogenesis are contradictory: studies in mice and rats using the experimental setup of an 

enriched environment with running wheels observed a reduced cell survival of adult born 

neurons in animals reared under standard-housing conditions compared to their enriched-

reared littermates (Kempermann et al., 1997a; Nilsson et al., 1999). In contrast, studies in ger-

bils without running wheels in the enrichment found an enhanced cell proliferation in the den-

tate gyrus after socially and physically deprived rearing compared to enriched rearing 

(Hildebrandt, 1999; Keller et al., 2000).  

Thus, the different designs of the environmental set-ups of enriched, deprived or stan-

dard housing create problems in interpreting the data. Concerning the enriched environment 

especially the running wheel is a matter of debate. Some authors even state that wheel running 

is essential to environmental complexity-related hippocampal neurogenesis (van Praag et al., 

2000; Lewis, 2004).  

Recently, we could support this by demonstrating that, in CD1 mice, enriched rearing 

without wheel running or socially and physically deprived rearing do not cause different rates 

neither of cell proliferation nor of cell survival. However, neuroplasticity in adulthood was 

influenced by our rearing conditions: neurogenic stimulation by an adult wheel-running chal-

lenge (postnatal day 70-74) enhanced cell proliferation and cell survival only in socially and 

physically deprived-reared animals (project I, chapter 3). 

Hence, it is postulated that the effects of individual components of the environmental 

set-ups have to be examined more specifically (Shrijver et al., 2002; Lewis, 2004). In this re-

view, this is tried to realize for the effects of wheel running. Studies on wheel running and its 

effects on neurogenesis are normally performed under deprived or standard-housing con-
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ditions in animals which were also reared under these conditions (van Praag et al., 1999a, b; 

Holmes et al., 2004; Uda et al., 2006). In all these studies a strong cell proliferation enhancing 

effect of wheel running was found. However, most of the newborn cells do not reach 

maturation but undergo apoptosis before. Thus, enriched rearing including wheel running and 

wheel running itself under standard-housing conditions have nearly the same net effect on 

neurogenesis: while wheel running on its own enhances cell proliferation, enriched rearing 

including wheel running enhances cell survival. Thus, both experimental manipulations seem 

to affect differentially mechanisms that are involved in distinct phases in the process of 

neurogenesis (Olson et al., 2006).  

Before the main issue of this review can be addressed, viz., how wheel running affects 

neuroplasticity in under different rearing environments grown up individuals, it should be 

dipped into the question, what wheel running actually is for the rodent brain. At the end, a 

hypothetical model is to be proposed of the underlying mechanisms mediating the distinct 

neuroplastic responses of animals with different rearing histories to wheel running.  

 

4.2. WHAT IS WHEEL RUNNING? WHAT DOES IT DO? 
The significance of wheel running and its effects on the brain are a matter of debate: Some 

positive effects of wheel running on the brain were shown like improved learning, better 

mental performance and enhanced brain plasticity (Cotman & Berchtold, 2002; Ehninger & 

Kempermann, 2003; van Praag et al., 2005). Nevertheless, wheel running is also discussed 

under the aspects of stereotypy and reinforcing behavior. Wheel running is rewarding 

(Iversen, 1993; Brene et al., 2007) and animals are willing to work for it, e.g., unlock wheels 

(Tepper & Weiss, 1986; Collier et al., 1990; Iversen, 1993; Belke & Heyman, 1994) or work 

for access to areas containing wheels (Collier et al., 1989; Sherwin & Nicol, 1996; Sherwin, 

1996). It may be addictive (Belke, 1996) and self-reinforcing, as animals disregard hunger 

and thirst (Melcer & Timberlake, 1986; Looy & Eikelboom, 1989; Bauman, 1992). Food 

deprived animals run even more (Routtenberg & Kuznesof, 1967; Roper, 1976), and animals 

continue to run even when they are injured (Richards, 1966; de Kock & Rohn, 1971; Sherwin, 

1998). Moreover, similar behavioral effects of wheel running as of stimulant drugs like 

amphetamine were described (Lett et al., 2002).  

On the other hand, wheel running shares characteristics of stereotypies like high repe-

tition, invariance and the lack of any obvious function or goal (Sherwin, 1998). Self reinforce-

ment is also a typical feature of stereotypies (Fox, 1965, 1971; rev. in Robbins et al., 1990; 

Mason, 1991), and it seems that beginning stereotypies are even rewarding (Robbins et al., 
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1990). Both wheel running and stereotypies can serve the coping with stress and show an 

inverse relationship to corticosterone (Mittleman et al., 1991; Würbel & Stauffacher, 1996). 

However, there exist also clear differences between wheel running and stereotypies: Wheel 

running can take very complex forms, when the animals perform acrobatics, probably to in-

crease stimulation, such as running on the outside or clinging to the wheel and allowing them-

selves to be carried around (Sherwin, 1998). While stereotypies can be environmentally-

induced (rev. in Cabib, 1993), wheel running occurs irrespective of the environment (Brant & 

Kavanau, 1964; de Kock & Rohn, 1971; Roper & Polioudakis, 1977; Sherwin & Nicol, 1996; 

Sherwin, 1998). Also in our experiments, socially and physically deprived-reared laboratory 

mice ran the same distance and showed the same number of running bouts as enriched-reared 

animals notwithstanding whether they ran individually or in a group (Haupt & Schaefers, 

accepted; cf. chapter 3.6). Thus, the amount and frequency of wheel running cannot account 

for the distinct neuroplastic responses of differently reared animals to wheel running. 

 

4.3. WHEEL RUNNING AND NEUROGENESIS IN MICE  
WITH DIFFERENT REARING HISTORIES 

Wheel running as a strong physical exercise with features of rewarding as well as of 

stereotypical behavior leads to numerous changes in the brain, namely in neurotrophic and 

other growth factors, endogenous opioids, neurotransmitters and especially in the mesolimbic 

dopamine-opioid-system (Werme et al., 2000, 2003; Lett et al., 2002; Vargas-Perez et al., 

2004). Hence, some questions come up: Do socially and physically deprived-reared animals 

potentially differ in one or more of these systems? And if so, could these differences account 

for the different neuroplastic responses to the neurogenic stimulation by wheel running in 

adulthood? 

It is known that the effects of wheel running are delayed by stressors which enhance 

corticosterone levels (Stranahan et al., 2006), because corticosterone suppresses neurogenesis 

(Gould et al., 1992; Cameron & Gould, 1994). In this regard, it is astonishing that wheel 

running itself increases corticosterone levels (Droste et al., 2003), what does not seem to 

interfere with the neurogenesis-stimulating effect of wheel running. Nevertheless, it could be 

argued that higher stress levels in enriched-eared animals could prevent an increase in 

neurogenesis after wheel-running (project I, chapter 3). However, deprived and enriched-

reared animals have the same basal corticosterone levels, and it is the deprived-reared 

animals, which show higher corticosterone levels in response to stress (Shrijver et al., 2002; 

Bartolomucci et al., 2003; Marashi et al., 2004). Thus, if corticosterone determined the effects 
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of wheel running, it should have delayed the effects of wheel running in deprived-reared and 

not in enriched-reared individuals (cf. Stranahan et al., 2006).  

Neurotrophic and other growth factors play a major role in the upregulation of 

neurogenesis (Wagner et al., 1999; Aberg et al., 2000; O'Kusky et al., 2000; Trejo et al., 2001; 

Kitamura et al., 2003; Fabel et al., 2003; Cao et al., 2004; Scharfman et al., 2005) and most of 

them, including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor 

(VEGF), fibroblast growth factor 2 (FGF-2) and insulin-like growth factor 1 (IGF-1), are also 

enhanced after wheel running in the rodent dentate gyrus (Gomez-Pinilla et al., 1997; Oliff et 

al., 1998; Trejo et al., 2001; Fabel et al., 2003; Farmer et al., 2004; Vaynman et al., 2004a, b). 

Most studies revealing an increase in neurotrophic or growth factors after enrichment, 

included wheel running in the enriched condition (Falkenberg et al., 1992; Young et al., 1999; 

Pham et al., 1999; Ickes et al., 2000; During & Cao, 2006). These studies could be 

misleading, because the observed effects could be due to wheel running in the enrichment. 

However, studies in which the enriched condition was designed without wheel running in rats 

(Torasdotter et al., 1998; Stranahan et al., 2007) and gerbils (Lehmann et al., 2007) found the 

same effect for NGF and neurotrophin as well as BDNF, namely that deprived-reared animals 

show lower levels of these neurotrophic factors than their enriched-reared littermates.  

For VEGF and IGF-1 it was even shown that they are necessary for the running-in-

duced increase in neurogenesis (Trejo et al., 2001; Fabel et al., 2003). However, blocking 

VEGF returned neurogenesis to baseline but not below suggesting that central regulators of 

baseline neurogenesis are not influenced by running (Fabel et al., 2003). Thus, it could be 

hypothesized that factors regulating running-induced neurogenesis are affected by rearing 

conditions without any impact on baseline neurogenesis.  

Acetylcholine is a neurotransmitter which exerts influence on BDNF. Cholinergic 

activity especially from the medial septum increases BDNF gene expression in the hippo-

campus (Lapchak et al., 1993; Knipper et al., 1994; French et al., 1999; Berchtold et al., 

2002). Wheel running activates the septo-hippocampal axis (Lawson & Bland, 1993; Lee et 

al., 1994), which in turn activates the hippocampus by way of theta rhythms (Smythe et al., 

1992; Lawson & Bland, 1993; Lee et al., 1994), and increases acetylcholine in the hippo-

campus (Dudar et al., 1979). Unfortunately, studies on the effects of rearing conditions with-

out wheel running in the enrichment on the levels of neurotrophic and growth factors are rare. 

We know from studies in gerbils that acetylcholine is enhanced in deprived-reared individuals 

(Lehmann et al., 2004; Busche et al., 2006). In the case that this also holds true for other 

rodents, it might be reasonable that, if acetylcholine is already enhanced in deprived-reared 
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animals, a running-induced increase in acetylcholine could lead to stronger effects on 

neurogenesis than in enriched-reared animals either directly or indirectly via BDNF. 

Serotonin is another neurotransmitter, which exerts an enhancing effect on neuroge-

nesis in the dentate gyrus (Jacobs & Fornal, 1997; Brezun & Daszuta, 1999, 2000; Malberg et 

al., 2000; Wakade et al., 2002), while it is more instrumental in cell proliferation than in cell 

survival (Olson et al., 2006). Results concerning the effects of exercise on serotonin levels are 

fragmentary and partly contradictory. In one case treadmill running decreased serotonin in 

limbic structures including the hippocampus (Chen et al., 2008). In other studies, treadmill 

running increased serotonin in the rat brain (Chaouloff et al., 1985) including the cortex and 

hippocampus (Gomez-Merino et al., 2001; Bequet et al., 2001). Data for the effects of rearing 

conditions on serotoninergic fiber distribution or serotonin levels are also rare. In gerbils, 

deprived rearing increased serotoninergic fiber densities in caudate putamen, amygdala 

(Lehmann et al., 2003), insular and entorhinal cortex (Neddens et al., 2003). Thus, it could 

only be speculated that the effects of serotonin are similar to those of acetylcholine, viz., that 

serotonin levels are enhanced in deprived-reared animals and undergo a further increase after 

wheel running leading to the strong neurogenic response. However, since clear results 

concerning the effects of rearing conditions and wheel running on serotonin are missing, this 

has to remain speculation.  

As aforementioned, wheel running has rewarding and reinforcing aspects. These are 

related to the mesolimbic dopamine-opioid system (Werme et al., 2000, 2003; Lett et al., 

2002; Vargas-Perez et al., 2004). Furthermore, dopamine function is altered in mice bred for 

high wheel-running activity (Rhodes et al., 2001; Rhodes & Garland, 2003).  

Administration of dopamine as well as of opioids decrease cell proliferation in the 

dentate gyrus (Dawirs et al., 1998; Hildebrandt et al., 1999; Eisch et al., 2000; Teuchert-

Noodt et al., 2000; Persson et al., 2003; Yamaguchi et al., 2004). Dopamine and endogenous 

opioids influence each other via connections between the striatum and the ventral tegmental 

area (VTA): dynorphin coexpressing cells in the striatum coexpress D1-receptors and project 

to the substantia nigra and the ventral tegmental area (Gerfen et al., 1991; Le Moine et al., 

1991). Beta-endorphin from the arcuate nucleus projects also to the ventral tegmental area and 

the nucleus accumbens (Khachaturian et al., 1985). Dopamine in turn regulates the expression 

of dynorphin and enkephalin in the striatum (Gerfen et al., 1991; Hurd & Herkenham, 1992; 

Lindefors, 1992; Spangler et al., 1993).  

Opioids can influence neurogenesis either directly via acting on µ-receptor-expressing 

progenitors in the dentate gyrus (Persson et al., 2003) or indirectly via µ-receptor-expressing 
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GABAergic interneurons (Drake & Milner, 2002). In contrast, dopamine from the ventral 

tegmental area innervates the dentate gyrus only very sparsely (Swanson, 1982) and mainly in 

the polymorphic layer (Amaral & Lavanex, 2006). Thus, dopamine exerts its effects mainly 

indirectly via inputs to other structures projecting to the dentate gyrus as well as modulation 

of other neurotransmitters and opioids.  

Wheel running enhances, e.g., beta-endorphin, which is required for the effects of 

wheel running on cell proliferation (Colt et al., 1981; Hoffmann et al., 1990; Goldfarb & 

Jamurtas, 1997). The influence of wheel running via dopamine has to be described on a more 

systemic level: running-induced beta-endorphin binds to GABA in the VTA, attenuates the 

inhibition and leads to more dopamine release in the nucleus accumbens and caudate putamen 

(Johnson & North, 1992; Spanagel et al., 1992). Additionally, wheel running leads to an 

increase in dopamine synthesis and a reduction of inhibition in the substantia nigra (Foley & 

Fleshner, 2008). Thus, as a response to wheel running, there is an increase of dopamine in 

motor circuits. This may diminish the control of the prefrontal cortex (PFC) and 

hippocampus, which normally control the reward system (rev. in White, 2002) and inhibit 

stereotypies (Whishaw & Mittleman, 1991; Whishaw et al., 1992; Lipska et al., 1995; Schaub 

et al., 1997). A lack of cortical input and thus entorhino-dentate N-methyl-D-aspartate 

(NMDA) receptor activation increases cell proliferation in the dentate gyrus (Cameron et al., 

1995; Bernabeu & Sharp, 2000; Nacher et al., 2001). Thus, differences in the dopamine-

opioid system between socially and physically deprived and enriched-reared animals might 

present a reason for the different neuroplastic response to wheel running. 

Indeed, a differently matured dopamine system after deprived rearing has been demon-

strated at least in gerbils. Deprived-reared gerbils show an impaired dopamine maturation into 

the prefrontal cortex with subsequent impairments in PFC-dependent tasks (Winterfeld et al., 

1998) and reduced maturation patterns of both prefrontal layer II/III and layer V/VI pyramidal 

efferents to frontal, parietal and limbic areas (Bagorda et al., 2006; Witte et al., 2007). In 

contrast, dopamine fibers in limbic structures mature excessively (Neddens et al., 2002; 

Busche et al., 2004; Lesting et al., 2005). This leads to a dysconnectivity of the PFC with 

caudal limbic areas as well as deficient connections with the corticostriatal circuit (Bagorda et 

al., 2006). Diminished PFC activity to the limbic system was assumed to cause an inefficient 

entorhino-dentate NMDA-receptor activation and thus an increase in cell proliferation in these 

animals (Hildebrandt, 1999; Keller et al., 2000; Teuchert-Noodt et al., 2000). In our 

experiments with CD1 mice, socially and physically deprived rearing did not cause increased 

rates of cell proliferation in adulthood (project I, chapter 3) suggesting that mice experience 
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less strong impacts after deprivation. This would correspond to observations that mice do not 

show so many and not so various forms of stereotypies compared to gerbils (Würbel & 

Stauffacher, 1996; Wiedenmayer, 1996; own observations). Nevertheless, socially and 

physically deprived-reared mice underwent a different neuroplastic development compared to 

their enriched-reared littermates, which was revealed by the adult wheel-running challenge. 

Only deprived-reared, but not enriched-reared individuals responded to the wheel-running 

challenge with a significant increase in neurogenesis. This suggests perhaps not a dysbalance, 

but at least an enhanced vulnerabilty to external influences that can easily lead to disturbances 

in the interplay of prefrontal and caudal limbic areas.  

 

4.4. SUMMARY AND PROPOSAL OF A HYPOTHETICAL MODEL 
Taking all these factors together, this leads to the proposal of a hypothetical model of matu-

ration-determined differences in the prefrontal-limbic system of socially and physically de-

prived and enriched-reared mice which – concerning neurogenesis – can be buffered under 

sedentary conditions, but become evident in adulthood after additional stimulation with a 

wheel-running challenge (Fig. 4-1). 

During wheel running, subcortical motor circuits between the nucleus accumbens, the 

striatum and dopaminergic nuclei in the substantia nigra and VTA undergo stronger 

activation. The septo-hippocampal axis is activated and amplifies the cholinergic input to the 

dentate gyrus. On the local level, neurotrophic and growth factors, perhaps additionally 

incited by the cholinergic activity, are enhanced. In the brains of enriched-reared animals 

these activations remain without any impact on the PFC-hippocampus-interaction and 

neurogenic activity can be stabilized (Fig. 4-1, A). In contrast, in socially and physically 

deprived-reared mice, which already show higher cholinergic activity and a disturbed 

interplay in prefrontal-limbic circuits, the alterations induced by wheel running cannot be 

compensated. The already enhanced cholinergic activity found in these animals is additionally 

amplified by wheel running. Furthermore, the strong activation in extrapyramidal motor cir-

cuits could have far-reaching consequences on the whole prefrontal-limbic system. It leads to 

a shift of dopaminergic activity from the PFC to the motor circuits. As a consequence 

glutamatergic activity from the PFC to other cortical and limbic areas is lowered. The lack of 

prefrontal control over corticostriatal motor circuits allows them to further reinforce, what, in 

turn, leads to more dopaminergic activity in motor circuits, but less in the PFC. Hence, the 

balance shifts from the PFC-striatum-circuit to the motor circuits. This results in further 

changes in the interplay with other neurotransmitter systems and a lack of activity from the 
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Fig. 4-1: A hypothetical model of the effects of wheel running on neurogenesis in mice reared A) under social
and physical enrichment, B) under social and physical deprivation (explanation in the main text). 

PFC to the entorhinal cortex and perforant path. The consequential reduced NMDA-receptor-

activation leads - together with the other afore mentioned factors - to an enhancement of 

proliferating activity in the dentate gyrus (Fig. 4-1, B).  
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5. PROJECT III:  
 

SYNAPTIC REMODELING IN THE DENTATE GYRUS,  
CA3 AND CA1 IS NOT AFFECTED BY SOCIALLY OR PHYSICALLY 

DEPRIVED REARING BUT BY WHEEL RUNNING  
IN ADULT CD1 MICE 

 

5.1. INTRODUCTION 
Synaptic plasticity in higher brain regions of mammals is not restricted to prenatal ontoge-

nesis, but occurs also postnatally during development and even in the adult brain. Beside 

reactive synaptogenesis following lesions and deafferentiation (Holzgraefe et al., 1981; 

Merzenich et al., 1984; Steward et al., 1988), synaptic turnover in axon terminals is a natu-

rally-occuring process of structural plasticity in the adult rodent brain (Dawirs et al., 1992; 

Keller et al., 2000; Dawirs et al., 2000; Neufeld et al., 2009). These nondegenerative synaptic 

degradation events of remodeling synaptic connections or revision of transmitter release 

(Wolff et al., 1989; Teuchert-Noodt, 2000) are activity-dependent processes (Wolff & 

Wagner, 1983; van Ooyen & van Pelt, 1994; Dawirs et al., 2000; Nägerl et al., 2004; Tailby et 

al., 2005; Fox & Wong, 2005; Hua et al., 2005; Butz et al., 2008) permitting the animal to 

learn and to adapt to environmental changes (Black et al., 1990; rev. in Morris et al., 2003). 

Within the hippocampal formation, the generation of new neurons (neurogenesis) adds 

a further level of complexity of structural plasticity to the preexisting neuronal network even 

in the mature brain (rev. in Teuchert-Noodt, 2000; Lehmann et al., 2005; Gould, 2006). There 

are strong indications that neurogenesis is interrelated to synaptic remodeling, since new neu-

rons demand synaptic integration (rev. in Teuchert-Noodt, 2000; Lehmann et al., 2005) and 

their survival depends on their functional integration into the existing neuronal network (van 

Praag et al., 2002; Overstreet et al., 2004; Kempermann et al., 2004). Both processes, 

neurogenesis and synaptic remodeling, are susceptible to environmental manipulations 

(Turner & Greenough, 1985; Kempermann et al., 1997a, 1998; Keller et al., 2000; Faherty et 

al., 2003; Briones et al., 2005; Iso et al., 2007) and voluntary physical activity (van Praag et 

al., 1999a, b; Eadie et al., 2005; Redila et al., 2006; Stranahan et al., 2006, 2007). Up to now, 

an interrelation of both processes and their susceptibility to environmental conditions has only 

been shown in gerbils. Intriguingly, an inverse relationship between adult hippocampal cell 

proliferation and synaptic remodeling in the inner molecular layer of the dentate gyrus was 
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found under different rearing conditions: Individuals reared under social and physical 

deprivation (impoverishment) had higher rates of adult hippocampal cell proliferation than 

enriched-reared animals while synaptic-turnover rates in the inner molecular layer were 

reduced (Hildebrandt et al., 1999; Keller et al., 2000, see also Butz et al., 2008 for a 

theoretical model). In CD1 mice, rates of cell proliferation and cell survival were not different 

between socially and physically deprived and enriched-reared individuals per se. However, 

only deprived-reared animals responded to a wheel-running challenge in adulthood with a 

significant increase in neurogenesis. Thus, conditions during rearing do affect the neuroplastic 

potential of the adult animals (project I, chapter 3).  

The present study examined, whether CD1 mice reared under different environmental 

conditions have different rates of synaptic turnover in adulthood either under sedentary condi-

tions or after wheel running. Specifically, we tested the prediction of an inverse relationship 

between adult hippocampal cell proliferation and synaptic turnover in the inner molecular 

layer as suggested by the model of Teuchert-Noodt and coworkers (Keller et al., 2000; 

Teuchert-Noodt, 2000; Butz et al., 2008). To obtain a comprehensive picture of the effects in 

the regions down- and upstream of the neurogenesis site, we included the CA3 and CA1 

regions of the hippocampus proper and the subiculum and entorhinal cortex in our analyses. 

We applied the same experimental treatment as in the gerbil studies which, in contrast to most 

studies in mice and rats, excluded running wheels from the enriched environment during 

rearing. As an indicator of synaptic turnover we stained lysosomal accumulations with the 

Gallyas silver impregnation and quantified silver-stained precipitates in the dentate gyrus, 

CA3, CA1, subiculum and entorhinal cortex. 

 

5.2. MATERIAL & METHODS 
5.2.1. ANIMALS AND REARING CONDITIONS 

25 male CD1 mice were bred in our facility in standard type III cages (42 x 26 x 18 cm) with 

one litter per cage. At weaning (postnatal day (pd) 21), animals were transferred to one of the 

two rearing conditions, enriched (ERSPW-) or socially (S) and physically (P) deprived (DRSPW-) 

rearing, both without running wheels (W-). The particular parameters of the rearing conditions 

were described previously (chapter 2.2). The ERSPW- animals (n=13) were kept in one group 

in a large enclosure (200 x 100 x 50 cm). DRSPW- animals (n=12) were kept individually in 

standard type III cages. All animals were on a 12-h-light-dark schedule and received 

laboratory animal feed (Höveler, Dormagen, Germany) and water ad libitum. Animals were 

kept under their respective rearing conditions till pd 74. 
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5.2.2. WHEEL-RUNNING CHALLENGE 
On pd 74, the enrichment (tunnels, toys etc.) was removed from the enclosure of the ERSPW--

animals and the enclosure was devided by a wooden wall. Half of the group got access to 

running wheels (one per animal; n=6). Accordingly, half of the DRSPW--animals received a 

running wheel into their cages (n=5). The wheel-running challenge lasted 4 days from pd 74 

to pd 78. After the wheel-running challenge the animals remained under the respective condi-

tions without running wheels for 3-7 days. 

 

5.2.3. TISSUE PREPARATION AND STAINING 
Animals were deeply anaesthetized by an overdose of diethyl ether and transcardially per-

fused with 5% formalin. The brains were subsequently kept in formalin for at least two weeks 

at 4°C. The left hemispheres were freeze-sectioned into 60 μm thick coronar sections and 

collected in distilled water (for tissue preparation see chapter 2.7.1). Every second section 

from the septal pole to the temporal pole of the hippocampus was used for staining. 

According to the procedure described by Gallyas and colleagues (Gallyas et al., 1980), the 

sections were silver impregnated as described in chapter 2.7.2.  

 

 

Fig. 5-1: Experimental design with time axis showing animal age in postnatal days (pd); pd 21-74,
rearing phase under socially and physically enriched conditions (ERSPW-) or socially and physically
deprived conditions (DRSPW-); pd 74-78, 4-day wheel-running challenge for the half of each rearing
group; synaptic-remodeling rates were assessed between pd 80-84. 
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5.2.4. MEASURING FIELDS AND COMPUTERIZED ASSESSMENT OF 
LYSOSOMAL ACCUMULATIONS  

Silver-impregnated lysosomal accumulations can be viewed and counted in the dark field at 

100-fold magnification. For computer-assisted quantification of precipitates, pictures were 

taken from the dentate gyrus, CA1, CA3, subiculum and entorhinal cortex (for details see 

chapter 2.7.3). For the subiculum and entorhinal cortex 6-8 sections per animal, for the 

dentate gyrus, CA1 and CA3 14-20 sections per animal were taken for quantification. Within 

the respective areas, well-defined measuring fields were set to estimate the numbers of 

precipitates per layer by a self-developed classification algorithm implemented in MATLAB 

Vers. 6 (cf. Butz et al., 2008; for details see chapter 2.7.3). Within the dentate gyrus, 

measuring fields were set in the outer, intermediate and inner molecular layer, in the granule 

cell layer and subgranular layer. Within the CA3 region, fields were set in the stratum oriens, 

stratum pyramidale, stratum lucidum and stratum radiatum. Since the stratum radiatum and 

stratum lacunosum-moleculare in CA3 were not distinguishable in this staining, only a 

measuring window in stratum radiatum could be set.  Within the CA1 region measuring fields 

were set in the stratum oriens, stratum pyramidale, stratum radiatum and Stratum lacunosum-

moleculare. Within the subiculum, fields were set in layer III, within the entorhinal cortex in 

layer II and III (Fig. 5-2). Measuring fields consisted of three joined rectangular-shaped sub-

fields (200 x 50 pixels) sized 600 x 50 pixel in total. Pictures and measurements were 

performed by a person blind to the group membership of the individuals. 

 

5.2.5. STATISTICAL ANALYSIS 
According to the high connectivity of the layers within the different hippocampal regions, 

statistical analyses were conducted in each of the different regions comprising all layers 

respectively. Thus, factorial analyses of variance (ANOVA) with the dependent variable 

“precipitates” and the categorical predictors “rearing condition”, “wheel running” and “layer” 

were performed in all examined regions separately. Subsequent specific comparisons were 

made with Unequal N HSD post-hoc test. All statistical analyses were computed with 

Statistica 6 (StatSoft, Tulsa, USA).  
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Fig. 5-2: Dark field light microscopic images of the dentate gyrus (DG), CA3, CA1, subiculum (Sub), and
entorhinal cortex (EC) with silver-impregnated lysosomal accumulations appearing as bright precipitates. In the
dentate gyurs, five measuring fields were positioned in the outer (oML), intermediate (mML) and inner molecular
layer (iML) as well as in the granule cell (gcl) and subgranular layer (sgl) of both the suprapyramidal and
infrapyramidal blade (not indicated). In CA3, measuring fields were positioned in the stratum radiatum (Sr), stratum
lucidum (Sl), stratum pyramidale (Sp) and stratum oriens (So). In CA1, an additional field was set in the stratum
lacunosum moleculare (Slm). One measuring field was positioned in the subiculum, and two in the entorhinal cortex
in lamina II (ECII) and III (EC III), respectively. 
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5.3. RESULTS 
5.3.1. QUALITATIVE RESULTS 

The qualitative evaluation of the Gallyas silver impregnation in the dark field (100-200-fold 

magnifications) revealed precipitates throughout the hippocampal formation in all treatment 

groups. The staining appears as a fine granulation of silver precipitates of a size between 0.02-

0.05µm (cf. Gallyas et al., 1980). Region and layer-specific differences are visible (Fig. 5-2), 

whereas no differences appear among the treatment groups.  

 

5.3.2. QUANTITATIVE RESULTS 
The amount of synaptic turnover in axon terminals was assessed by quantification of silver 

impregnated lysosomal accumulations in the dark field (100-fold, magnification; Fig. 5-2). In 

the following the statistical data for the mean total number of precipitates in the measuring 

fields of each layer are given. 

 

5.3.2.1. Layer-specific differences in the number of precipitates in the 
dentate gyrus and hippocampus proper 

In our socially and physically enriched-reared control animals significant differences 

appeared in the number of precipitates between the layers of the dentate gyrus (ANOVA, 

layer F9,21=35.37, p < 0.0001), CA3 (ANOVA, layer F3,84=31.87, p < 0.0001) and CA1 

(ANOVA, layer F3,84=82.33, p < 0.0001).  

In the dentate gyrus, post-hoc tests revealed that these differences in the number of 

precipitates were mainly present between the granule cell layer with a rather low density (92 

in the suprapyramidal, and 109 in the infrapyramidal blade) and the molecular layers (Post 

hoc Unequal N HSD, p < 0.01 – 0.001) as well as the subgranular layer (Post-hoc Unequal N 

HSD, p < 0.001), while the subgranular layer showed the highest amount of precipitates (292 

in the suprapyramidal, and 344 in the infrapyramidal blade) followed by the inner molecular 

layer (270 in the suprapyramidal, and 258 in the infrapyramidal blade). 

In CA3, a similar pattern could be observed with most significant differences between 

the rather acellular layers and the pyramidal cell layer with the lowest number of precipitates 

(91; Post-hoc Unequal N HSD, p < 0.001). However, there was also a trend towards a 

difference between the stratum radiatum with the highest number of precipitates (333) and the 

stratum oriens (230; Post-hoc Unequal N HSD, p = 0.07). 

CA1 resembled the distribution of CA3 with the highest differences between the rather acellu-

lar layers and the pyramidal cell layer with the lowest amount of precipitates (57; Post-hoc 
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Unequal N HSD, p < 0.001). However, in CA1, the stratum lacunosum moleculare appeared 

with the highest number of precipitates (335), although the difference to the stratum oriens or 

stratum radiatum was not significant. 

 

5.3.2.2. No differences in the distribution of precipitates between socially 
and physically enriched and deprived-reared animals 

Synaptic-turnover rates indicated by the number of silver impregnated lysosomal accumula-

tions were neither in the dentate gyrus nor in CA3 or CA1 affected by the rearing conditions 

of social and physical deprivation or enrichment alone. Although there were significant main 

effects of rearing in the dentate gyrus (ANOVA, rearing F1,21=9.85, p < 0.01) and CA3 

(ANOVA, rearing F1,84=10.36, p < 0.01), post-hoc tests did not reveal any significant differ-

ences between the two rearing groups (Tab. 5-1), and also the pattern of distribution of 

turnover processes between the layers appeared to be similar (Fig. 5-3). 

 

5.3.2.3. Leveling of layer-specific differences after adult wheel running 
Wheel running exerted strong effects on synaptic-turnover rates in the dentate gyrus 

(ANOVA, wheel running, F1,21=50.06, p < 0.0001), CA3 (ANOVA, wheel running F1,84=21.2, 

p < 0.0001; interaction effect wheel running*layer F3,84=14.71, p < 0.0001) and CA1 

(F1,84=54.57, p < 0.0001; wheel running*layer F3,84=6.91, p < 0.001).  

It obviously leveled the afore seen differences in synaptic-turnover rates between the 

layers in both enriched and deprived-reared individuals mainly by decreasing turnover rates in 

all layers except the granule or pyramidal cell layer (Fig. 5-3). Surprisingly, this decrease was 

especially significant in CA1 in the stratum radiatum of enriched-reared (Post-hoc Unequal N 

HSD, p < 0.05) and the stratum lacunosum moleculare of deprived-reared individuals (Post-

hoc Unequal N HSD, p < 0.05).  

 

5.3.2.4. No effects beyond the dentate gyrus and hippocampus proper 
No effects of either treatment were found beyond the dentate gyrus and hippocampus proper 

in the entorhinal cortex or subiculum (Tab. 5-1; Fig. 5-3). 
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Fig. 5-3: Number of precipitates for each layer in the A) suprapyramidal and B) infrapyramidal blade of the dentate
gyrus, in the C) CA3, D) CA1, E) entorhinal cortex and F) subiculum fo the different treatment groups; ERSPW-, so-
cially and physically enriched-reared animals; DRSPW-, socially and physically deprived-reared animals; wheel
running, additional wheel-running challenge (pd 74-78); oML, outer molecular layer; mML, intermediate molecular
layer; iML, inner molecular layer; gcl, granule cell layer; sgl, subgranular layer; spb, suprapyramidal blade; ipb,
infrapyramidal blade; So, stratum oriens, Sp, stratum pyramidale; Sl, stratum lucidum; Sr, stratum radiatum; Slm,
stratum lacunosum moleculare; EC II, entorhinal cortex lamina II; EC III, entorhinal cortex lamina III; data given as
means ± S.E.M. 
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5.4. DISCUSSION 
We quantified naturally-occurring presynaptic turnover rates in the hippocampal formation. 

Synaptic remodeling is a naturally-occuring process of structural plasticity in the juvenile and 

adult brain that occurs in two major forms: structural modification and synapse elimination. 

Within the synapse, this process is accompanied by autophagy and lysosomal degradation of 

presynaptic components (Wolff et al., 1989).  

Tab. 5-1: Absolute numbers of silver-stained precipitates in equally-sized measuring fields in different 
hippocampal regions and laminae. 
ERSPW-, socially and physically enriched-reared animals; DRSPW-, socially and physically deprived-reared 
animals; after wheel running, additional wheel-running challenge in adulthood (pd 70-74); oML, outer molecular 
layer; mML, intermediate molecular layer; iML, inner molecular layer; gcl, granule cell layer; sgl, subgranular 
layer; spb, suprapyramidal blade; ipb, infrapyramidal blade; So, stratum oriens, Sp, stratum pyramidale; Sl,
stratum lucidum; Sr, stratum radiatum; Slm, stratum lacunosum moleculare; EC, entorhinal cortex; L, lamina;
statistical differences between laminae only shown in Fig. 5-3. 

ERSPW -

value 
(abs)

value 
(abs)

difference 
ERSPW- - 

DRSPW- (%) p
value 
(abs)

difference 
ERSPW- - 

ERSPW-, after 
wheel 

running (%) p
value 
(abs)

difference 
DRSPW- - 

DRSPW-, after 
wheel 

running (%) p

spb 224 242 8 n.s. 195 -13 n.s. 181 -25 n.s.

ipb 217 216 -1 n.s. 167 -23 n.s. 194 -10 n.s.

spb 224 240 7 n.s. 182 -19 n.s. 182 -24 n.s.

ipb 233 240 3 n.s. 168 -28 n.s. 184 -23 n.s.

spb 270 291 8 n.s. 205 -24 n.s. 228 -21 n.s.

ipb 258 275 7 n.s. 190 -26 n.s. 209 -24 n.s.

spb 92 106 16 n.s. 70 -23 n.s. 125 18 n.s.

ipb 109 131 20 n.s. 76 -31 n.s. 129 -2 n.s.

spb 292 334 14 n.s. 228 -22 n.s. 265 -21 n.s.

ipb 344 381 11 n.s. 250 -27 n.s. 284 -25 n.s.

230 265 15 n.s. 164 -29 n.s. 171 -35 n.s.

91 105 16 n.s. 127 40 n.s. 224 113 0.09

267 292 9 n.s. 159 -41 0.09 208 -29 n.s.

333 368 11 n.s. 221 -34 0.07 253 -31 n.s.

273 284 4 n.s. 184 -33 n.s. 169 -40 0.06

57 89 56 n.s. 62 8 n.s. 94 6 n.s.

294 302 3 n.s. 179 -39 <0.05 195 -36 n.s.

335 378 13 n.s. 250 -25 n.s. 249 -34 <0.05
213 170 -20 n.s. 201 -6 n.s. 202 19 n.s.

269 219 -18 n.s. 195 -28 n.s. 196 -11 n.s.

250 267 7 n.s. 224 -11 n.s. 237 -11 n.s.
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Through the method of silver impregnation of lysosomal accumulations (Gallyas et al., 1980) 

the transient accumulations can be visualized and quantified (Wolff et al., 1989; Teuchert-

Noodt et al., 1991; Wolff and Missler, 1993).  

We specifically investigated whether being deprived of rich social and physical stimuli 

during adolsescent brain development (pd 21-74) leads to alterations in synaptic turnover 

rates in young adult animals either under sedentary conditions and/or after additional wheel 

running.  

Significant layer-specific differences in the amount of synaptic turnover were found 

both in the dentate gyrus and in the CA3 and CA1 region of the hippocampus proper of our 

enriched-reared control animals. The same pattern of a layer-specific distribution was seen in 

socially and physically deprived-reared animals. Thus, unlike the finding of much stronger 

effects in gerbils (Keller et al., 2000; Butz et al., 2008), social and physical deprivation during 

rearing seemed to have less effect on synaptic remodeling in CD1 mice. However, four days 

of subsequent wheel running exerted strong effects, both in enriched and deprived-reared 

individuals. It led to a leveling of layer-specific differences. This was mainly by decreasing 

synaptic-turnover rates in all layers except the granule cell and pyramidal cell layer. These 

effects were limited to the dentate gyrus and hippocampus proper. No effects of our treatment 

conditions were found for the entorhinal cortex and subiculum.  

According to these findings, three main questions will be discussed in the following: 

Since noteworthy layer-specific differences in synaptic-turnover rates occurred, we will first 

address the issue what may determine these layer-specific differences in enriched-reared 

individuals. We expect this group to exhibit rather natural, intact plastic capacities within the 

hippocampal formation.  

Secondly, we will follow the question why social and physical deprivation during 

rearing did not affect these capacities in CD1 mice, such as was found in gerbils.  

Finally, we try to explain how wheel running might affect synaptic turnover in both 

enriched and deprived-reared individuals, and what the potential relationship may be between 

the stimulation of cell proliferation and the leveling of layer-specific differences of synaptic-

turnover rates. 

 

Synaptic remodeling in the hippocampal formation of enriched-reared CD1 mice 

The dentate gyrus as well as the CA3 and CA1 region of the hippocampus proper displayed 

high amounts of synaptic turnover, indicating a high dynamic in these structures. In the 

dentate gyrus this is conceivable, since especially the inner molecular layer shows high plastic 
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capacities. Following lesions of the perforant path that terminates in the outer molecular layer, 

commissural and associative fibers normally terminating as recurrents in the inner molecular 

layer are able to sprout and make contacts with targets in the outer molecular layer, a 

phenomenon which is not seen vice versa (reactive synaptogenesis; Lynch et al., 1973; 

Cotman & Lynch, 1978; Frotscher et al., 1995). Beside the recurrent commissural and 

associative fibers, hilar commissural-associational pathway-related cells (HICAP cells), a 

class of interneurons located in the subgranular layer, innervate the proximal dendrites of 

granule cells in conjunction with commissural-associational afferents (Han et al., 1993; Sik et 

al., 1997), all together forming a highly plastic canonical microcircuit (Teuchert-Noodt, 2000; 

Fig. 5-4). Additional inputs from the septum are also open to shaping or tuning processes (rev. 

in Frotscher et al., 1996). These plastic processes in the inner molecular layer are susceptible 

to environmental manipulations (naturally-occuring synaptic remodeling; Hildebrandt, 1999; 

Butz et al., 2008).  

The subgranular layer showed similar if not higher amounts of synaptic turnover espe-

cially in the infrapyramidal blade. In the subgranular layer, granule cells form synapses with 

mossy cells as well as interneurons like basket cells, the hilar commissural-associational path-

Fig.  5-4: Layer-specific connectivity patterns of the dentate gyrus.  
oML, outer molecular layer; mML, middle molecular layer; iML, inner molecular layer; gcl, granule cell layer;
pl, polymorphic layer; EC, entorhinal cortex; PP, perforant path; Glu, glutamate; ACh, acetylcholine; NA,
noradrenaline; DA, dopamine; VTA, ventral tegmental area; GC, granule cell; MC, mossy cell; PBC, pyramidal
basket cell; AA, axo-axonic cell; MOPP, HICAP, HIPP, further interneurons; C/A-fibres, commissural-
associative fibres; (for further explanations of the connectivity see text). 
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way-related cells and hilar perforant path-associated cells (Freund & Buzsaki, 1996; for 

details see Amaral & Lavanex, 2006; Fig. 5-4). In addition, the subgranular layer - like the 

inner molecular layer - receives inputs from the septum, and further neurotransmitters like 

dopamine, serotonin and norepinephrine act in a modulatory way (rev. in Vizi & Kiss, 1998). 

As the only layer of the dentate gyrus, the subgranular layer receives collaterals of especially 

proximally located CA3-pyramidal cells (Amaral & Lavanex, 2006). Thus, both the inner 

molecular layer and the subgranular layer have in common to be the target of feed-back and 

feed-forward loops and modulatory transmitter influences (Fig. 5-4).  

Furthermore, adult neurogenesis adds a further source of structural plasticity to the 

dentate gyrus, since thousands of new neurons are added to the granule cell layer every day 

and demand synaptic integration (for reviews see Teuchert-Noodt, 2000; Lehmann et al., 

2005; Gould, 2006). The inner molecular and the subgranular layer are the first layers, in 

which dendrites (inner molecular) and axons (subgranular layer) of newborn neurons grow in, 

express neurotrophins (Seki & Arai, 1993; Cameron et al., 1993) and demand integration 

(Kaplan & Bell, 1983; Cameron et al., 1993; Kempermann et al., 2004). Thereby, they first 

receive GABAergic innervation, which is later partially replaced by glutamate (Ge et al., 

Fig. 5-5: Layer-specific connectivity patterns of the CA3 region.  
Slm, stratum lacunosum moleculare; Sr, stratum radiatum; Sl, stratum lucidum; Sp, stratum pyramidale; So,
stratum oriens; EC, entorhinal cortex; ACh, acetylcholine; NA, noradrenaline; PC, pyramidal cell; PBC,
pyramidal basket cell; BC, basket cell; AA, axo-axonic cell; RTC, HTC, O-LM, Bist., further interneurons; C/A-
fibres, commissural-associative fibres; DG, dentate gyrus; HC, hippocampus (for further explanations of the
connectivity see text). 
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2006). Both features, the specific connectivity and the challenge to integrate new neurons, 

may account for the high rates of naturally-occurring synaptic turnover in these layers.  

A similar layer-specific distribution of synaptic turnover can be seen in CA3 and CA1 

and also in these regions this distribution can be explained by innervation patterns. Like in the 

dentate gyrus, the layers with commissural and associative and collateral fibers as well as 

interneuronal modulation targets show the highest amount of synaptic turnover. This is the 

stratum radiatum of CA3, in which - like in the dentate gyrus - commissural and associative 

fibers as well as inputs from the septum terminate and most of the interneurons synapse on the 

pyramidal dendrites (Freund & Buzsaki, 1996; Amaral & Lavanex, 2006; Fig. 5-5).  

Also the stratum radiatum of CA1 is the target of collaterals (Schaffer collaterals) and 

commissural projections as well as septal inputs and interneuronal modulation (Freund & 

Buzsaki, 1996; Amaral & Lavanex, 2006; Fig. 5-6). This innervation pattern is similar to that 

of the stratum oriens in CA1, which receives as intensive Schaffer collateral innervation as the 

stratum radiatum, and thus could explain the rather identical synaptic-turnover rates. 

Interestingly, the stratum oriens in CA3, although it is also target of commissural and 

associative fibers and septal inputs (Amaral & Lavanex, 2006), strikes with its rather few 

synaptic turnover. One reason could be that in CA3 this layer receives rather few commissural 

and associative fibers compared to the massive innervation of Schaffer collaterals in the CA1 

stratum oriens.  

Another interesting result is that in the stratum lacunosum moleculare of CA1, even 

higher synaptic-turnover rates occured than in the stratum radiatum and oriens of this region. 

It is the target of perforant path fibers mainly from layer III of the entorhinal cortex (and to 

lesser extent also from layer II) and gets modulatory influence from the locus coeruleus 

(Kulkarni et al., 2002), perirhinal cortex and thalamus (Amaral & Lavanex, 2006; Fig. 5-6). 

Perhaps, especially the modulatory influences may account for the high naturally-occurring 

structural plasticity of this layer.  

Astonishingly, the mossy fiber targets in the stratum lucidum in CA3 (Fig. 5-5) were 

not the site of the highest amounts of synaptic turnover. The extent of the mossy fiber targets 

is known to be correlated to spatial learning abilities in rats and mice (Lipp et al., 1987; 

Schwegler & Crusio, 1995). However, an effect of learning on their extent was only proven in 

rats (Holahan et al., 2006). Mice do not show mossy fiber sprouting in response to learning 

and thus seem to have rather low plastic potentials in mossy fiber targets (Rekart et al., 2007). 

This may explain why we did not find higher rates of synaptic turnover in the stratum lucidum 

than in the other molecular layers of CA3.  
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Compared with the dentate gyrus and hippocampus proper, the subiculum and 

entorhinal cortex layer II and III displayed lesser and more equal synaptic remodeling. In the 

subiculum, we could only set one measuring window and in the entorhinal cortex we choose 

the main output layers for analysis. Perhaps, one would get a different pattern of synaptic 

remodeling, if one compares these output layers with the layers where inputs and modulatory 

transmitter influences converge. However, as we wanted to focus on the significance of 

neurogenesis for synaptic remodeling, we constrained our observations to the layers giving 

the main input to the dentate gyrus. 

 

Synaptic remodeling in mice reared under social and physical deprivation 

Remarkably, in CD1 mice, no statistically significant effects of social and physical 

deprivation during rearing could be seen on synaptic remodeling, neither in the dentate gyrus 

nor in the hippocampus proper, subiculum or entorhinal cortex. By contrast, in adult gerbils, 

synaptic-turnover rates decrease in the inner molecular layer, as well as in the intermediate 

and outer molecular layer, in response to deprived rearing. In the left hemisphere, further 

decreases are apparent in the subgranular a nd even in the granule cell layer (Butz et al., 

Fig. 5-6: Layer-specific connectivity patterns of the CA1 region.  
Slm, stratum lacunosum moleculare; Sr, stratum radiatum; Sp, stratum pyramidale; So, stratum oriens; EC,
entorhinal cortex; ACh, acetylcholine; NA, noradrenaline; PC, pyramidal cell; PBC, pyramidal basket cell; BC,
basket cell; AA, axo-axonic cell; RTC, HTC, Bist., further interneurons; HC, hippocampus; EC, entorhinal 
cortex; L, lamina (for further explanations of the connectivity see text). 
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2008). However, the gerbil also shows an increase in cell proliferation after deprived rearing 

(Hildebrandt, 1999; Keller et al., 2000). At first sight, this inverse relationship is surprising, 

since newborn neurons constitute a further source of structural plasticity, and one would 

expect that more newborn neurons should lead to more synaptic remodeling. In fact, it seems 

that an exhaustion of available synapses is the consequence, if too many newborn neurons 

demand integration, making the inverse relationship between neurogenesis and synaptic 

remodeling feasible (Keller et al., 2000; Teuchert-Noodt, 2000; Butz et al., 2008). Since we 

did not find an effect of deprived rearing on cell proliferation in CD1 mice (project I, chapter 

3), it is conceivable that also no alterations in synaptic-remodeling rates occurred in these 

animals.  

 

Synaptic remodeling after wheel running 
Four days of wheel running in young adulthood exerted strong effects on synaptic remodeling 

in the dentate gyrus and hippocampus proper of both socially and physically deprived and 

enriched-reared CD1 mice. It led to a leveling of the layer-specific differences mainly by de-

creasing synaptic-turnover rates in all layers except the granule and pyramidal cell layer. 

These effects did not extend to the subiculum or entorhinal cortex, indicating a lower dynamic 

and sensitivity to external influences in these regions.  

Socially and physically deprived-reared CD1 mice showed the same inverse 

relationship between cell proliferation and synaptic remodeling in the dentate gyrus as found 

in gerbils. No enhancement of cell proliferation was found after wheel running in these 

animals (project I, chapter 3), and here we now found a strong effect on synaptic turnover 

rates, too. However, in enriched-reared CD1 mice, an effect of wheel running on cell 

proliferation was not found (project I, chapter 3), while synaptic turnover rates were, 

nevertheless, affected. Hence, factors other than the enhancement of cell proliferation played 

a role in affecting synaptic-turnover rates after the wheel-running challenge. A crucial point 

may be the duration of the intervention and the resulting response of cell-proliferating 

activity. Socially and physically deprived rearing is a chronic challenge during brain 

development leading to chronically enhanced cell proliferation in adult gerbils. In contrast, 

our only four days lasting adult wheel-running challenge enhanced cell proliferation rates 

acutely and only in deprived-reared individuals (project I, chapter 3). Three to six days after 

the challenge, cell proliferation rates reach a normal level again (Santoso, 2009). Thus, the 

time window, in which enhanced cell proliferation rates can affect synaptic remodeling, may 
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be narrow. It is likely, that other factors mediated the effects of wheel running on synaptic 

turnover. 

In fact, wheel running seems to enhance long-term potentiation (van Praag et al., 

1999a), dendritic growth and complexity as well as spine densities (Eadie et al., 2005; 

Stranahan et al., 2007), although not all studies could confirm this (Faherty et al., 2003; Zhao 

et al., 2006). These latter postsynaptic processes can be directly influenced by, e.g., neuro-

trophic factors like brain derived neurotrophic factor (McAllister et al., 1996; Tolwani et al., 

2002; Tyler & Pozzo-Miller, 2003), which is enhanced in the dentate gyrus and hippocampus 

proper in response to wheel running (Neeper et al., 1995, 1996; Farmer et al., 2004). Thus, it 

seems feasible, that neurotrophic factors might also affect presynaptic remodeling processes. 

The assumption that other, perhaps intrinsic influences, must account for the effects of 

adult wheel running on synaptic remodeling is supported by the fact that altered synaptic-

turnover rates did not only occur in the dentate gyrus, but also in CA3 and CA1. Axons of 

newborn neurons reach CA3 already 4-10 days after birth (Hastings & Gould, 1999; Zhao et 

al., 2006), thus, in the time window in which we analyzed synaptic turnover after wheel 

running. However, if alterations in the number of newborn neurons already affected synaptic 

plasticity in the hippocampus proper, one would expect the greatest effects in the mossy-fiber 

termination field, the stratum lucidum of CA3, and not in CA1. It seems in fact that in CD1 

mice, CA3 and CA1 exhibit also intrinsic plasticity. This assumption finds support in recent 

findings of a systematic analysis of synaptic-turnover rates in diverse cortical areas of the 

gerbil, showing that also associative cortical areas display synaptic remodeling and region- as 

well as layer-specific differences which are mainly determined by local and distant 

associative connections (Neufeld et al., 2009). These layer-specific differences were leveled 

after environmental deprivation during rearing, an effect that parallels our findings after wheel 

running in CD1 mice.  

Taken together, our results concerning synaptic remodeling in CD1 mice confirm our 

former hypothesis that environmentally-dependent plasticity in the hippocampal formation is 

generally lower in CD1 mice than in gerbils, perhaps as a consequence of domestication or as 

a species-dependent effect. Furthermore, they provide more support for a relationship between 

neurogenesis and synaptic remodeling in the rodent brain.  
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6. PROJECT IV:  
 

PREFRONTAL ACTIVITY REGULATES CELL PROLIFERATION IN 
THE ADULT MOUSE DENTATE GYRUS 

 

6.1. INTRODUCTION 
Many local mechanisms have been demonstrated to regulate cell proliferation and neuroge-

nesis in the adult dentate gyrus. These include neurotrophic and other growth factors (Wagner 

et al., 1999; Aberg et al., 2000; O'Kusky et al., 2000; Trejo et al., 2001; Fabel et al., 2003; 

Cao et al., 2004; Scharfman et al., 2005), local transmitter influences (Jacobs & Fornal, 1997; 

Brezun & Daszuta, 1999, 2000; Malberg et al., 2000; Kulkarni et al., 2002; Wakade et al., 

2002; Cooper-Kuhn et al., 2004; Mohapel et al., 2005), glucocorticoids (Gould et al., 1992; 

Cameron & Gould, 1994) and opioids (Eisch et al., 2000; Persson et al., 2003).  

However, external influences like deprivation of natural environmental stimulation 

during brain development impact not only neuroplasticity in the hippocampus but have far-

reaching consequences on the whole brain. Social and physical deprivation during juvenile 

development leads to reduced dopaminergic innervation of the prefrontal cortex (Winterfeld 

et al., 1998; Neddens et al., 2001), and abnormalities in transmission and receptor expression 

of neurotransmitters (Dalley et al., 2002; Ago & Matsuda, 2003; Melendez et al., 2004; Leng 

et al., 2004; Brummelte et al., 2007; Gregory & Szumlinski, 2008; Bloomfield et al., 2008). 

Moreover, maturation of prefrontal pyramids (Pascual et al., 2007) and their efferents to 

frontal, parietal and limbic areas is reduced (Bagorda et al., 2006; Witte et al., 2007). In con-

trast, transmitter innervation and activity is enhanced in limbic circuits (Neddens et al., 2002, 

2003; Lehmann et al., 2003, 2004; Busche et al., 2004, 2006; Lesting et al., 2005; Galani et 

al., 2007).  

It has often been suggested that these dysbalances in the prefrontal-limbic system im-

pact neuroplasticity in the adult hippocampus (Teuchert-Noodt, 2000; Keller et al., 2000; Butz 

et al., 2006; project I, chapter 3; project II, chapter 4). Nevertheless, there is so far no exami-

nation of the particular involvement of the prefrontal cortex in the regulation of cell prolife-

ration in the hippocampus. We proposed a hypothetical model integrating local as well as 

systemic mechanisms involved in the regulation of adult hippocampal cell proliferation and 

drew particular attention to the prefrontal cortex (project II, chapter 4). We hypothesized that 
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activity from the prefrontal cortex is a negative regulator of cell proliferation via activation of 

the NMDA-receptor system at the entorhino-dentate interface.  

The present study was conducted to test the hypothesis that the prefrontal cortex is 

causally involved in the regulation of cell proliferation. In a first step, we employed stimu-

lation of cell proliferation and, in a second step, stimulation of prefrontal activity. Female 

CD1 mice were reared under socially and physically deprived conditions and exposed to a 

4-day wheel-running challenge in young adulthood. Wheel running is a common stimulator of 

cell proliferation in deprived-reared CD1 mice (project I, chapter 3). Furthermore, it was 

demonstrated that the pro-proliferating effect of running in these animals persists for at least 

three days after withdrawal of the running wheel (Santoso, 2009). Afterwards we examined, 

whether stimulation of prefrontal activity by either environmental enrichment and/or a pre-

frontal-cortex-dependent (PFC-dependent) behavioral task (Dudchenko, 2004) during this 

short time window can decrease cell proliferation compared to control conditions, i.e., 

continued deprived housing or an unspecific behavioral control task. As working-memory 

task we chose a spatial-delayed alternation task, because it is an established task undoubtfully 

involving and activating the prefrontal cortex (Wikmark et al., 1973; Larsen & Divac, 1978; 

Nonneman & Kolb, 1979; Thomas & Brito, 1980; Brito et al., 1982; Silva et al., 1986; de 

Brabander et al., 1991; Baeg et al., 2003, 2007). Since stress is a negative regulator of cell 

proliferation (Gould et al., 1992; Cameron & Gould, 1994), our main concern was to 

minimize stress by using an automated spatial-delayed alternation task in a T-maze, instead of 

a manually-operated which would involve frequent handling of animals.  

 

6.2. MATERIAL & METHODS 

6.2.1. ANIMALS AND REARING CONDITIONS 
34 female CD1 mice at the age of postnatal (pd) 21 were obtained from Charles River 

Laboratories (Sulzfeld, Germany) and reared in our animal facility under socially and physi-

cally deprived conditions (see chapter 2.2) until young adulthood. They received food and 

water ad libitum and were on a 12h-light-dark schedule.  

 

6.2.2. TRANSPONDER TAGGING 
For individual identification, all animals were equipped with transponders on pd 50 (for de-

tails see chapter 2.4). After 24 hours and again after one week, all animals were checked for 

retention of transponders, and if necessary the transponder was reinjected.  
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6.2.3. EXPERIMENTAL TREATMENT IN ADULTHOOD 
Four different groups were defined on the basis of the treatment following a 4-day wheel-

running challenge in young adulthood: socially and physically deprived (DC) or enriched-

housing conditions (EC), a PFC-dependent working-memory task in an automated T-maze 

(PFC) or a T-maze control task (TC; Fig. 6-1). At the beginning of the wheel-running 

challenge, animals were 10-13 weeks old. Since the exposure to tasks in the automated 

T-maze required previous habituation of the animals to the apparatus, the wheel-running 

challenge had to take place in a home cage already connected to the apparatus. This led to a 

slightly different protocol for PFC, TC than for DC and EC animals. The different wheel-

running environment was supposed not to cause differences in running activity, since wheel 

running occurs irrespective of the environment (Brant & Kavanau, 1964; de Kock & Rohn, 

1971; Roper & Polioudakis, 1977; Sherwin & Nicol, 1996; Sherwin, 1998), what has recently 

been shown also for female CD1 mice (Haupt & Schäfers, accepted). 

 

 

 

 

Fig. 6-1: Experimental design with time axis showing animal age in postnatal days (pd) and weeks (pw);  
from pd 21, rearing under socially and physically deprived conditions; on pd 50, all animals were equipped with
transponders; in pw 10-13, wheel-running challenge for four days; animals assigned to deprived (DC) or
enriched housing (EC) after wheel running ran individually in their home cages; animals assigned to the PFC
(PFC) or T-maze control task (TC) ran in groups of four in the home cage connected to the T-maze; all animals
received three BrdU-injections in the last dark phase of the experiment and survived for 24 hours.  



Project I

 

6.2.3.1
At the b

in adult

were we

dark ph

equippe

After th

removed

socially

The EC

an encl

tained e

(for det

Both gr

tum (Fig

 

6.2.3.2
PFC (n=

into two

exposed

procedu

experim

group w

of the d

T-maze 

habituat

were m

running

access 

running

some an

Melcer 

watered

individu

IV - Prefront

. DC and
beginning o

thood, DC (

eighed 2 ho

ase. 4 hours

ed with a ru

he fourth d

d. The DC

y and phys

C-animals w

osure (100 

enrichment 

tails of the e

roups receiv

g. 6-3, colum

2. PFC an
=8) and TC

o groups of 

d to the ap

ure successi

mental treat

was weighe

dark phase 

 (for detail

te to the ap

ounted into

g wheels wa

to running 

g over explo

nimals disr

& Timber

d additional

ual cage, an

tal cortex and

d EC grou
of the experi

(n=7) and E

ours prior to

s later, indiv

unning whe

dark phase, 

C-animals 

sically depr

were united a

x 100 x 5

items but n

enrichment 

ved food an

mn DC and

nd TC gro
 animals (n

f four anima

pparatus an

vely. At the

tment in 

ed 2 hours p

and transfe

led descript

pparatus (st

o the cage (F

as necessary

wheels di

oring the ma

regarded thi

rlake, 1986

lly. They w

nd received 

d adult hippo

p 
imental trea

EC animals 

o the onset 

vidual cage

eel (Fig. 6-

the wheels

remained 

rived cond

and transfer

50 cm) tha

no running w

see chapte

nd water ad

d EC).  

up 
n=8) were de

als each and

nd the resp

e beginning

adulthood, 

prior to the

rred to a ty

tion of the 

tart of Hab

Fig. 6-2, B)

y, because 

irectly after

aze and thus

irst, althoug

; Looy & 

were briefl

water ad li

ocampal cell 

atment 

(n=7) 

of the 

s were 

-2, A). 

s were 

under 

ditions. 

rred to 

at con-

wheels 

er 2.2). 

d libi-

evided 

d were 

pective 

 of the 

each 

e onset 

ype IV cage

T-maze se

ituation Ph

). The habit

in a prelim

r introduct

s did not re

gh they had

Eikelboom

ly taken ou

ibitum for 1

Fig
A) A
enri
indi
assi
afte
cag
case

A

proliferation

e, which wa

ee chapter 2

hase 1). 4 h

tuation phas

minary expe

ion to the 

ceive water

d learned b

m, 1989; Ba

ut of the h

10 min. The

. 6-2: Wheel-
Animals assi
iched condit
ividually in 
igned to perfo
er wheel runni
e connected 
es one wheel p

A 

B 

n

as connecte

2.5.2) to al

hours later, t

se of 4 hour

eriment, in 

apparatus,

r. Also in th

before wher

auman, 199

home cage,

en, they we

-running chal
igned to be 
tions after 

their home
orm a PFC- o
ing ran in gro
to the autom
per animal wa

ed to the au

low the an

the running

rs without a

which anim

 animals p

he main exp

re to get w

92), and ha

, transferre

ere set back 

llenge  
kept in dep
wheel runn

e cages. B)
or T-maze con
oups of four in

mated T-maze
as provided. 

76 

utomated 

nimals to 

g wheels 

access to 

mals had 

preferred 

periment, 

water (cf. 

ad to be 

ed to an 

into the 

prived or
ning ran
) Animals
ntrol task
n a home
. In both



Project IV - Prefrontal cortex and adult hippocampal cell proliferation 77 

 

home cage. This additional watering was counted 

and later correlated to the number of BrdU-positive 

cells to check for an unwanted side effect).  

Habituation Phase 1, in which the animals 

could explore the apparatus all together without 

restraints, lasted 24 hours. During the subsequent 

Habituation Phase 2, which lasted 72 hours, the 

interposed sorting system (see chapter 2.5.2.1) 

allowed only one animal at a time to enter the auto-

mated T-maze. After the running wheels were re-

moved from the cage at the end of the fourth dark 

phase and the animals were transferred to a 

type II cage, Habituation Phase 2 still continued 

for 10 hours (see Fig. 6-3, column for PFC and TC 

animals).  

After habituation, PFC animals were trained 

successively on a PFC-dependent working-memory 

task, i.e., spatial-delayed alternation task (for de-

tails concerning the task and the use of a T-maze 

see chapter 2.5.2). First, animals were trained to 

alternate in the T-maze during the Pretraining, 

which lasted 24 hours. Afterwards, during the 

Training without delay, which lasted 10 hours, the 

animals learned in forced and subsequent choice 

runs to keep alternating, even if they were allowed 

to choose the arm in the second run voluntary. The 

last phase, the Training with delay, in which a de-

lay of 15 seconds was interposed between the forced and the choice run, during which the 

animal had to remember which arm it visited before, constituted the actual working-memory 

load and lasted 37 hours.  

The TC animals performed a control task in the T-maze without alternation or 

working-memory load. Accordingly, after Habituation Phase 2, during the 

PretrainingRandom, TC animals were rewarded not in an alternating but in a random fashion, 

so that they were not trained to alternate. Also during the subsequent TrainingRandom, the 

Fig. 6-3: Procedure of experimental treatment 
in adulthood with arrow on the left indicating 
the alternation of light (LP) and dark phases 
(DP) and colums showing the sequence of 
treatments for each group: DC, animals 
assigned for deprived housing after wheel 
running; EC, animals assigned for enriched 
housing after wheel running; PFC, animals 
assigned for the PFC-dependent task; TC, 
animals assigned for the T-maze control task 
(for further explanations see main text). 
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animals were rewarded in the choice run not depending on their choice, but randomly with a 

probability of 90% (adapted at the percentage of correct choices of the PFC animals in the 

respective phase). In the last phase, no delay was interposed between the forced and the 

choice run to avoid any working-memory load for animals of this group. However, the reward 

probability was adapted at 80%, i.e., at the percentage of correct choices of the PFC animals 

in this phase (for detailed descriptions of the individual protocols see chapter 2.5.2.2).  

During all phases, PFC and TC animals received food ad libitum in the home cage and 

water in the T-maze with 20 µl as a single reward. At the end of the experiment, the T-maze 

was disconnected and animals remained in their home cage with food and water ad libitum 

until sacrification.  

 

6.2.4. BRDU-LABELING, PERFUSION, IMMUNOHISTOCHEMISTRY 
All animals received three injections of the DNA synthesis marker 5-bromo-2-deoxyuridine 

(BrdU; chapter 2.6.1) in the last dark phase of their respective housing or training condition 

beginning at the onset of the dark phase and followed by further injections in 4-hour intervals. 

24 hours after the last injection, animals were deeply anaesthetized by an overdose of diethyl 

ether and transcardially perfused with 200 ml of 4% paraformaldehyde solution (for details 

see chapter 2.6.2). The brains were immediately dissected and stored over night in 4% PFA at 

4°C. On the next day, brains were transferred to a 30% sucrose solution for cryoprotection for 

at least 24 hours. Then, the left hemispheres of the brains were freeze-sectioned with a Frigo-

mobil. 40 µm coronar sections were made throughout the septotemporal axis of the hippo-

campus (see chapter 2.6.2), collected in a cryoprotectant solution and stored at -20°C until 

further processing.  

The immunohistochemical detection of BrdU-labeled cells was based on the two-step 

indirect ABC-(Avidin-Biotin-Complex-) method involving an unlabeled primary antibody 

(mouse anti-BrdU, Roche Molecular Biochemicals, Indianapolis, USA) and a biotinylated 

secondary antibody (M.O.M. anti-mouse reagent, Vector Laboratories, Burlingname, USA, 

and biotinylated goat anti-mouse, Vector Laboratories, Burlingname, USA; for further expla-

nations see chapter 2.6.3).  

 

6.2.5. QUANTITATIVE EVALUATION/STEREOLOGY 
The slides were coded prior to quantitative analysis and the code was not broken until the 

analysis was completed. The number of BrdU-positive cells was estimated by counts made 

systematically on every third consecutive section along the rostrocaudal axis of the hippo-
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campal formation (see chapter 2.6.4). On each section, BrdU-positive cells were counted in 

the granule cell layer and subgranular zone as well as in the hilus separately under the light 

microscope at 400-fold magnification. Additionally the volume of the granule cell and subgra-

nular layer as well as the hilus was measured at 100-fold magnification (see chapter 2.6.4). 

The reference volume was estimated according to the Cavalieri principle: Vref=T x ΣA x 1/ssf, 

where T is the thickness of the section, A is the area of the granule cell layer and 1/ssf is the 

inverse of the section sampling fraction (1/ssf=3). 

The number of BrdU-positive cells was then related to the granule cell layer sectional 

volume to obtain the density of BrdU-positive cells per mm3. Additionally, the number of 

BrdU-positive cells was multiplied by the reference volume to estimate the total number of 

BrdU-positive cells per dentate gyrus. 

 

6.2.6. DATA ANALYSES 
During all phases of pretraining and training, the amount of runs, choices, correct (PFC ani-

mals) respectively rewarded choices (TC animals), and water intake of the individual animals 

were recorded and analyzed. Additionally, weight loss or gain of all animals during 

experimental treatment in adulthood as an indicator of, e.g., water deprivation (Bing & 

Mendel, 1931) or stress (Wallace, 1976), were documented, as well as necessary additional 

watering during the habituation/wheel-running of PFC and TC animals as another potential 

stressor.  

In order to assess activity patterns of animals in the automated T-maze, the number of 

runs in 24 hours of Pretraining and Training with delay/TrainingRandom with 80% proba-

bility were calculated for dark and light phases.  

One-way ANOVA was conducted over normal distributed data (Shapiro Wilks test for 

normality) with dependent variables of total number of BrdU-positive cells and density of 

BrdU-positive cells in the granule cell layer and hilus separately. Specific comparisons were 

made with Unequal N HSD post-hoc test. Pearson product-moment correlations were per-

formed on total numbers and densities of BrdU-labeled cells in the granule cell layer of PFC 

and TC animals with weight loss or gain and water intake/24 h. Further correlations were 

made in PFC animals with number of correct choices during the Training with delay.  

Data analyses were performed with Excel (Microsoft Office 2007), statistical analyses 

with Statistica 6.0 (StatSoft, Tulsa, USA). 
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6.3. RESULTS 
6.3.1. QUALITATIVE RESULTS 

All animals were visually checked for their wheel-running activity and could all be observed 

while running in a wheel. PFC, TC and EC animals were united with conspecifics for the 

treatments after the wheel-running challenge. No aggressive interactions were observed 

between animals in any of the groups. Contrastingly, social interactions like reciprocal 

grooming and sleeping together could be noticed already in the first hours.  

All PFC and TC animals explored the automated T-maze during Habituation Phase 1 

and learned where to get water. However, during access to running wheels, most of them 

preferred running over entering the maze and drinking, so that water intake droped rapidely. 

For some animals additonal watering was even necessary.  

Interestingly, although TC animals were not trained to alternate during the 

PretrainingRandom, they showed alternation behavior in the subsequent TrainingRandom 

phases.  

 

 

 

Fig. 6-4: Photomicrographs of BrdU-positive cells (200-fold magnification) 24 hours after the last BrdU 
injection in socially and physically deprived-reared CD1 mice after a 4-day wheel running challenge in young 
adulthood and subsequent A) socially and physically deprived or B) enriched housing, C) a PFC-dependent or 
D) a T-maze control task. 
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The immunohistochemical detection of cell proliferation revealed BrdU-positive cells 

indicated as brown to dark brown precipitates in all animals. The majority of BrdU-positive 

cells resides in the subgranular zone (Fig. 6-4). Photomicrographs of the dentate gyrus of DC, 

EC, PFC and TC animals exemplary illustrate the distribution of BrdU-positive cells 

(Fig. 6-4). Qualitatively, it is apparent that the number of BrdU-positive cells in the granule 

cell layer is lower in EC and PFC than in DC and TC animals. No differences are apparent 

concerning BrdU-positive cells in the hilus.  

 

6.3.2. QUANTITATIVE RESULTS 
In the following the statistical data for the total number of BrdU-positive cells per dentate 

gyrus are given. Similar results were seen for density of BrdU-positive cells per mm3 and can 

be drawn from tables 6-1 and 6-2 and Fig. 6-5 and 6-6. 

Fig. 6-5: A) Total number and C) density of BrdU-positive cells in the granule cell layer 24 hours after the last 
BrdU-injection; B) total number and D) density of BrdU-positive cells in the hilus 24 hours after the last BrdU-
injection; DC, animals housed under socially and physically deprived conditions after wheel running; EC, 
animals housed under socially and physically enriched conditions after wheel running; PFC, animals which 
performed a PFC-dependent task after wheel running; TC, animals which performed a T-maze control task after 
wheel running; data given as means ± S.E.M. 
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6.3.2.1. Enriched housing or performing a PFC-dependent task decreased 
cell proliferation in the granule cell layer after wheel running  

Cell proliferation in the granule cell layer of the dentate gyrus was stimulated by a wheel-

running challenge in young adulthood. Subsequent housing or training conditions had a strong 

impact on the total number of BrdU-positive cells (ANOVA, F3,26=6.39, p < 0.01). Housing in 

an enriched environment for three days reduced the number of BrdU-positive cells signifi-

cantly compared to control animals housed under continued deprivation (DC 7010 vs. EC 

3716 cells per dentate gyrus; Post-hoc Unequal N HSD, p < 0.01) Fig. 6-5, Tab. 6-1). An 

equally strong effect was seen after the PFC-dependent task (PFC 3701 cells per dentate 

gyrus; Post-hoc Unequal N HSD, p < 0.01), but not after the T-maze control task (Post-hoc 

Unequal N HSD, p > 0.05).  

Cell proliferation in the hilus was affected by neither enriched housing nor PFC-

dependent nor T-maze control task after wheel running (ANOVA, F3,26=1.39, p > 0.05; 

Fig. 6-5; Tab. 6-1). 

 

6.3.2.2. PFC and TC animals displayed most activity in dark phases 
With the use an automated instead of a manually-operated T-maze we intended to enable the 

animals to display their main activity in the dark, i.e., their natural active phase. Accordingly, 

PFC as well as TC animals displayed most of their activity during the dark phases as indicated 

by the number of runs performed in 24 hours Pretraining (73% during the dark phase) and 

Training with delay, respectively TrainingRandom with 80% reward probability (75% of the 

runs during the dark phase).  

  

 DC 
(100%) 

EC PFC TC 

value value diff. in % p value diff. in % p value diff. in % p 

gc
l Total number 7010 3716 -47 < 0.01 3701 -47 < 0.05 5725 -18 > 0.5

Density 20681 12086 -42 < 0.01 12801 -38 < 0.05 18226 -12 > 0.7

hi
lu

s Total number 187 178 - n.s. 116 - n.s. 143 - n.s. 

Density 1049 1159 - n.s. 636 - n.s. 839 - n.s. 

Tab. 6-1: Group comparison of total numbers and densities of BrdU-positive cells 
DC, animals housed under socially and physically deprived conditions after wheel running; EC, animals 
housed under socially and physically enriched conditions after wheel running; PFC, animals which performed 
a PFC-dependent task after wheel running; TC, animals which performed a T-maze control task after wheel 
running; gcl, granule cell layer; total number of BrdU-positive cells per dentate gyrus; density of BrdU-positive 
cells per mm3; given are absolute values (means), differences between the groups if significant, and p-values. 
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Tab. 6-2: Correlation of total numbers and densities of BrdU-positive cells with additional 
watering in the habituation phases, weight gain or loss and water intake/24 h during 
Pretraining/PretrainingRandom and Training with delay/TrainingRandom (reward 
probability 80%) for PFC (performed PFC-dependent task) and TC animals (performed 
T-maze control task); Pearson product-moment correlation; given are r-and p-values. 

6.3.2.3. Water deprivation or handling during additional watering does not 
account for the decrease in cell proliferation 

All animals were weighed prior to the onset of experimental treatment in adulthood and at the 

end of the experiment to check for weight loss or gain as an indicator of, e.g., water depri-

vation or other stressors. No significant differences were found in weight loss or gain between 

the four experimental groups (ANOVA F3,26=2.9, p > 0.05).  

PFC animals made about 50 decisions in the Training with delay constituting a 

working-memory load during 50 delays. In doing so, they made 83 ± 3% correct choices. Due 

to the lack of a delay in the last training phase (TrainingRandom), TC animals could perform 

more runs, viz., about 100 decisions with a preset reward probability of 80% (according to the 

percentage of correct choices of the PFC animals). The resultant difference in water intake as 

well as interindividual drinking differences could have affected cell proliferation. However, 

no significant correlation was found between water intake in 24 hours of PFC and TC animals 

as well as weight loss or gain as another indicator of water deprivation with the number of 

proliferating cells in the granule cell layer (Tab. 6-2). 

Some animals needed additional watering during the habituation phases, since they 

preferred wheel running over entering the maze for drinking. This involved short handling of 

the animals as a potential stressor. However, no correlation was found between additional 

watering and cell proliferation (Tab. 6-2).  

 

 

 

 

 

 

 

 

 

6.3.2.4. Performing a PFC-dependent task affects cell proliferation 
independently of the number of correct choices 

The number of BrdU-positive cells was not significantly correlated with the number of correct 

choices during the Training with delay in PFC animals (Pearson product-moment correlation 

r = -0.58, p ≥ 0.13). 

 

Total number of BrdU-
positive cells  

Density of BrdU-positive 
cells per mm3 

r  p r p 

Additional watering -0.13 > 0.05 -0.25 > 0.05 

Weight gain or loss 0.22 > 0.05 0.18 > 0.05 

Water intake/24 h 0.29 > 0.05 0.29 > 0.05 
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6.4. DISCUSSION 
The aim of the present study was to investigate the role of the prefrontal cortex in the 

regulation of cell proliferation in the dentate gyrus. We hypothesized that activity from the 

prefrontal cortex is a negative regulator of cell proliferation via activation of the NMDA-re-

ceptor system at the entorhino-dentate interface (project II, chapter 4). This hypothesis was 

based on previous results that the reactiveness of cell proliferation is higher in socially and 

physically deprived-reared mice (project I, chapter 3) and the assumption that a disturbed 

maturation of the prefrontal cortex and its efferents to caudal limbic areas (e.g., Winterfeld et 

al., 1998; Ago & Matsuda, 2003; Melendez et al., 2004; Bagorda et al., 2006) determines this 

different reactiveness (project I, chapter 3; project II, chapter 4).  

In the present study we enhanced cell proliferation by an adult wheel-running 

challenge in deprived-reared CD1 mice and strived to decrease it afterwards by stimulating 

prefrontal activity either by environmental enrichment or a PFC-dependent behavioral task. 

Indeed, three days of stimulation by environmental enrichment were sufficient to suppress cell 

proliferation after wheel running, while cell proliferation in control animals which were 

housed under continued deprivation, remained at a high level. These results correspond to 

other findings in so far that environmental enrichment even in adulthood and even if brief can 

exert strong effects on the brain, e.g., on cortical gene expression (Ferchmin et al., 1970; 

Ferchmin & Eterovic, 1986; Rampon et al., 2000), synaptophysin levels (Frick et al., 2003) 

and on neurogenesis in the dentate gyrus (Bruel-Jungerman et al., 2005; Iso et al., 2007). 
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Fig.  6-6: Correlations between BrdU-positive cells in the granule cell layer and number of correct choices 
during Training with delay for PFC animals. There is no significant relationship between A) the total number of 
BrdU-positive cells or B) the density of BrdU-positive cells in the granule cell layer with the number of correct 
choices.   
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Recently, it was demonstrated that already 24 hours of exposure to environmental enrichment 

activate the medial prefrontal cortex as well as the hippocampus (Ali et al., 2009).  

Short-term exposure to an enriched environment also involves exposure to novelty and 

thus mingles these effects. This was not necessarily undesirable in our study, since also 

novelty represents an environmental stimulus activating the prefrontal cortex (Wirtshafter, 

2005; Ali et al., 2009) and enhancing catecholamine signaling (Rebec et al., 1997; Pudovkina 

et al., 2001). Hence, short-term environmental enrichment providing stimulation by novelty, 

contact to conspecifics and rich physical structure is able to suppress enhanced cell prolife-

ration after wheel running. It can be assumed that the prefrontal cortex is causally involved in 

mediating these effects. However, environmental enrichment has various consequences not 

only for the prefrontal cortex but for the whole brain, so that further regulatory mechanisms 

could be implicated as well. Also stress effects due to exposure to novelty or sudden contact 

to conspecifics - even if we did no observe any aggressive interactions among individuals - 

cannot be ruled out.  

To examine the contribution of the prefrontal cortex more specifically, we also applied 

stimulation of prefrontal activity by a PFC-dependent behavioral task, i.e., a spatial-delayed 

alternation task requiring working memory, and, to control for unspecific side effects of the 

procedure and the apparatus, compared it to a control task without working-memory load. To 

minimize stress by handling or shift in activity (manually-operated tasks are normally per-

formed during the light phase, thus the inactive phase of the animals), we used an automated 

T-maze, which the animals entered voluntarily and - as intended - primarily during their 

active phase.  

We found, that the PFC-dependent but not the control task decreased cell proliferation 

in the dentate gyrus significantly. This demonstrates that, indeed, the continuous working-

memory load of the spatial-delayed alternation task and not stress or unspecific factors of the 

procedure or the apparatus caused the significant decrease in cell proliferation. That stress 

was not primarily responsible for the effect, gets further support, as there was no relationship 

between the rate of cell proliferation and stress indicators like weight loss, necessary addi-

tional watering in the habituation phases or water intake per 24 hours.  

Interestingly, we did not find a significant relationship between the percentage of re-

warded decisions and the rate of cell proliferation. Hence, it seems that not the performance in 

the working-memory task played the decisive role but the working-memory load per se. Since 

working memory - like it is required for spatial-delayed alternation in a T- or figure-8-maze - 

undoubtfully depends on the prefrontal cortex (Wikmark et al., 1973; Larsen & Divac, 1978; 
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Nonneman & Kolb, 1979; Thomas & Brito, 1980; Simon et al., 1980; Brito et al., 1982; Silva 

et al., 1986; Stam et al., 1989; Bubser & Schmidt, 1990; de Brabander et al., 1991; Murphy et 

al., 1996; Zahrt et al., 1997; Clinton et al., 2006) and activates it (Baeg et al., 2003; Baeg et 

al., 2007), we can conclude that enhanced activity in the prefrontal cortex was relevant for the 

decrease in cell proliferation in the dentate gyrus.  

However, there is evidence that beside the prefrontal cortex also the hippocampus 

plays a role in spatial-delayed alternation mainly in the reference-memory component (rev. 

Dudchenko, 2004; Yoon et al., 2008), and in working memory during long delays (> 1 min.; 

Steele & Morris, 1999; Maruki et al., 2001; Lee & Kesner, 2003). To minimize an involve-

ment of the hippocampus in the present task, we chose a short delay of 15 seconds. Moreover, 

hippocampus-dependent learning exerts only an effect on cell survival but not on cell prolife-

ration, and this effect is even a positive and not a negative one (Gould et al., 1999; Ambrogini 

et al., 2000; Döbrössy et al., 2003; Leuner et al., 2004; Olariu et al., 2005; rev. in Leuner et 

al., 2006). Since we found lower and not higher rates of cell proliferation after the spatial-

delayed alternation task, we can conclude that not the hippocampus, but activation of the 

prefrontal cortex due to working-memory requirements caused the decrease in cell prolife-

ration in the dentate gyrus.  

The prefrontal cortex is connected to the dentate gyrus mainly indirectly via the ento-

rhinal cortex, the so called entry port of the hippocampal formation. Most prefrontal afferents 

terminate in the lateral entorhinal cortex (Burwell & Amaral, 1998; Kerr et al., 2007), from 

where the lateral perforant path conveys the input to the outer molecular layer of the dentate 

gyrus (Van Groen et al., 2002). The outer molecular layer contains a huge amount of 

N-methyl-aspartate (NMDA) receptors (Knowles, 1992; Kandel et al., 2000), through which 

the granule cells receive their major excitatory input from the entorhinal cortex (Collingridge, 

1989). NMDA receptors are strongly involved in the regulation of cell proliferation. Acti-

vation of the NMDA-receptor system and thus excitation decreases cell proliferation, while 

deactivation increases it (Cameron et al., 1995; Bernabeu & Sharp, 2000; Nacher et al., 2001). 

Thus, the NMDA-receptor system at the entorhino-dentate interface provides a key 

mechanism through which the prefrontal cortex can exert its control over cell proliferation in 

the dentate gyrus.  
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Taken together, our results reveal that activation of the prefrontal cortex by either en-

vironmental enrichment or a PFC-dependent behavioral task can decrease cell proliferation 

after an increase evoked by socially and physically deprived-rearing and a subsequent wheel-

running challenge. This demonstrates for the first time that the prefrontal cortex is causally 

involved in the regulation of cell proliferation in the dentate gyrus.  
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7. PROJECT V:  
 

HIPPOCAMPAL CELL PROLIFERATION IS ONLY AFFECTED  
BY ENVIRONMENTAL MANIPULATIONS IN DOMESTICATED BUT 

NOT IN WILD HOUSE MICE (MUS MUSCULUS DOMESTICUS) 
 

7.1. INTRODUCTION 
Developmental neuroplasticity is highly susceptible to environmental influences. Rodents 

reared under deprivation (or impoverishment) of their natural social and physical environment 

show differences in neuronal development especially in the prefrontal-limbic system. This 

comprises a reduced dopaminergic innervation of the prefrontal cortex (Winterfeld et al., 

1998; Neddens et al., 2001), abnormalities in transmission of neurotransmitters and in re-

ceptor expression (Dalley et al., 2002; Ago & Matsuda, 2003; Melendez et al., 2004; Leng et 

al., 2004; Brummelte et al., 2007; Gregory & Szumlinski, 2008; Bloomfield et al., 2008) as 

well as reduced maturation of prefrontal pyramids (Pascual et al., 2007) and their efferents to 

frontal, parietal and limbic areas (Bagorda et al., 2006; Witte et al., 2007). In contrast, 

dopaminergic, cholinergic, and serotoninergic innervation and activity is enhanced in limbic 

circuits (Neddens et al., 2002, 2003; Lehmann et al., 2003, 2004; Busche et al., 2004, 2006; 

Lesting et al., 2005; Galani et al., 2007). Taken together, this leads to a dysbalance and a shift 

from prefrontal to limbic activities. 

Such severe alterations impact neuroplasticity even in the adult. Effects on the regu-

lation of neurogenesis in the hippocampal dentate gyrus, e.g., were demonstrated in different 

rodents. Nevertheless, the results remain inconsistent.  

In gerbils, socially and physically deprived rearing causes increased rates of hippo-

campal cell proliferation in adulthood compared to enriched rearing (Hildebrandt, 1999; 

Keller et al., 2000).  

In contrast, in C57Bl/6 and 129/SvJ mice, physical (but not social) deprivation during 

rearing compared to enrichment including wheel running has no effect on cell proliferation 

but leads to a decrease in cell survival (Kempermann et al., 1997a, 1998). Even a decrease in 

cell proliferation was found in C57Bl/6 mice, when social and physical deprivation was 

compared to enrichment with wheel running (Iso et al., 2007).  
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In a recent study, in which we applied the same rearing conditions as in the gerbil 

studies, i.e., excluded running wheels from the enrichment, we found no per se effect of the 

rearing conditions on neither cell proliferation nor cell survival in adult CD1 mice (project I, 

chapter 3). Nevertheless, the deprived-reared individuals were affected in their neuroplastic 

development, as only these animals responded to an adult wheel-running challenge with a 

significant increase in cell proliferation and cell survival revealing a higher reactiveness of 

neurogenesis in these animals. This demonstrates that deprivation affects developmental 

neuroplasticity in a similar manner in CD1 mice, but that the strength of the deprivation effect 

is less pronounced than in gerbils. 

An important question to address is therefore, what determines the strength of this 

deprivation effect. Is it species dependent and are the differences based on the different 

genetic backgrounds of Mus musculus and Meriones unguiculatus? Or is it domestication 

dependent? CD1 as well as C57Bl/6 mice are highly domesticated mouse strains and a lot of 

genetic modifications were performed to achieve these strains adapted at specific needs of 

research experiments (cf. chapter 2.1). On the other hand, despite decades of domestication, 

laboratory gerbils retained most behavioral traits and behavioral regulation mechanisms of 

their wild ancestors (Wiedenmayer, 1995; Stuermer, 1998; Waiblinger, 2002).  

Another important issue is, for what reason the results within the species Mus muscu-

lus are so divergent. Do there strain or breeding-dependent differences exist, since C57Bl/6 

mice are bred for high learning performance (Crawley et al., 1997; Owen et al., 1997; Baron 

& Meltzer, 2001), while CD1 mice show rather average learning abilities (Dellu et al., 2000; 

Adams et al., 2002)? Or are the divergent results just a matter of the study design, e.g., the use 

or omission of running wheels in the enrichment or the BrdU-labeling protocol?  

To address these questions we examined the effects of social and physical deprivation 

and wheel running in young adulthood on hippocampal cell proliferation in adults of C57Bl/6 

and the F2 generation of wild-caught house mice. Comparing deprivation effects in mouse 

strains of the same species (Mus musculus domesticus), but with different domestication back-

ground, enables us to investigate, whether the variability of neuronal plasticity in response to 

environmental stimulation is a unique feature in mice or if genetic background plays a role, 

too.   
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7.2. MATERIAL & METHODS 

7.2.1. ANIMALS AND REARING CONDITIONS 
27 female C57Bl/6 mice were bred in the central animal facility of Bielefeld University in 

Makrolon® type II cages (42.5 x 26.6 x 18.5 cm) and transferred on postnatal day (pd) 21 to 

our own facility. Wild house mice (F1 generation born in captivity) were obtained from the 

Institute of Zoology, Animal Behavior in Zurich for breeding. 31 female individuals of the 

next generation (F2 generation) were bred in our facility in Makrolon type III cages with one 

litter per cage (for further information see chapter 2.1). The entire experiment including 

rearing and adult intervention was performed with individuals of each strain separately. 

According to the experiment performed with CD1 mice, C57Bl/6 and wild house mice 

were randomly assigned to one of two rearing conditions, enriched (ERSPW-) or socially (S) 

and physically (P) deprived (DRSPW-) rearing without running wheels (W-; rearing conditions 

are specifically described in chapter 2.2) at the day of weaning (postnatal (pd)). C57Bl/6 

ERSPW- animals were reared in a group of 11, wild caught ERSPW- animals in three groups of 

six individuals each in large enclosures (100 x 100 x 50 cm) that contained items such as 

tunnels, tubes, and solid hiding places (Fig. 2-4, A). DRSPW- animals were reared individually 

in standard type III cages (Fig. 2-4, B). All animals were kept under their respective experi-

mental rearing conditions for 45 days from pd 21 to pd 66. 

 

7.2.2. WHEEL-RUNNING CHALLENGE 
On pd 66, within each strain, two mixed groups of ERSPW- and DRSPW-animals were formed. 

Each group was placed into a large enclosure (100 x 100 x 50 cm) and one of them had access 

to running wheels (as described in chapter 2.3) from pd 70 to pd 74, while the other received 

no further treatment. Wheel-running activity was checked by visual observations of the ani-

mals, while rearing-group members could be identified by earmarks.   

 

7.2.3. BRDU-LABELING, PERFUSION, IMMUNOHISTOCHEMISTRY 
All animals received injections of the DNA-synthesis marker 5-bromo-2-deoxyuridine (BrdU) 

on pd 71 to pd 73 at 5 p.m., thus, just before the dark period and the onset of the active phase 

of the animals (see chapter 2.6.1 and 3.2.3). 24 hours later, the animals were deeply anaesthe-

tized by an overdose of diethyl ether and transcardially perfused with 200 ml of 4% 

paraformaldehyde solution (for details see chapter 2.6.2). The brains were immediately 
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dissected and stored over night in 4% PFA at 4°C. On the next day, brains were transferred to 

a 30% sucrose solution for cryoprotection for at least 24 hours. Then, the left hemispheres of 

the brains were freeze-sectioned with a Frigomobil. 40 µm coronar sections were made 

throughout the septotemporal axis of the hippocampus (see chapter 2.6.2), collected in a 

cryoprotectant solution and stored at -20°C until further processing.  

The immunohistochemical detection of BrdU-labeled cells was based on the two-step 

indirect ABC-(Avidin-Biotin-Complex-) method involving an unlabeled primary antibody 

(mouse anti-BrdU, Roche Molecular Biochemicals, Indianapolis, USA) and a biotinylated 

secondary antibody (M.O.M. anti-mouse reagent, Vector Laboratories, Burlingname, USA, 

and biotinylated goat anti-mouse, Vector Laboratories, Burlingname, USA; for further 

explanations see chapter 2.6.3).  

 

7.2.4.  QUANTITATIVE EVALUATION/STEREOLOGY 
All slides were coded prior to quantitative analysis and the code was not broken until the 

analysis was completed. The number of BrdU-positive cells was estimated by counts made 

systematically on every third consecutive section along the rostrocaudal axis of the hippo-

campal formation (see chapter 2.6.4). On each section, BrdU-positive cells were counted in 

the granule cell layer and subgranular zone under the light microscope at 400-fold magnifi-

cation. Additionally the volume of the granule cell and subgranular layer was measured at 

100-fold magnification (see chapter 2.6.4). The reference volume was estimated according to 

the Cavalieri principle: Vref=T x ΣA x 1/ssf, where T is the thickness of the section, A is the 

area of the granule cell layer and 1/ssf is the inverse of the section sampling fraction 

(1/ssf=3). 

The number of BrdU-positive cells was then related to the granule cell layer sectional 

volume to obtain the density of BrdU-positive cells per mm3. Additionally, the number of 

BrdU-positive cells was multiplied by the reference volume to estimate the total number of 

BrdU-positive cells per dentate gyrus. 

 

7.2.5. STATISTICAL ANALYSES 
The data were analyzed by ANOVA. Specific comparisons were made with Unequal N HSD 

post-hoc tests. Data analyses were performed with Excel (Microsoft Office 2007), statistical 

analyses with Statistica 6.0 (StatSoft, Tulsa, USA). 
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 Two wild mice escaped during transposition or injections (cf. description of mouse 

strains in chapter 2.1), could be trapped later, but had to be excluded from the sample due to 

‘undesired housing conditions’ during the escape period. 

 

7.3. RESULTS 

7.3.1 QUALITATIVE RESULTS 
In both C57Bl/6 and wild house mice, members of both rearing groups could be observed 

frequently while running in wheels (visual observations).  

The immunohistochemical detection of cell proliferation revealed BrdU-positive cells 

indicated as brown to dark brown precipitates in all animals. The majority of BrdU-positive 

cells resides in the subgranular zone (Fig. 7-1). Photomicrographs of C57Bl/6 and wild house 

mice from both socially and physically enriched and deprived rearing without and after the 

adult wheel-running challenge exemplary illustrate the distribution of BrdU-positive cells in 

the dentate gyrus (Fig. 7-1). Qualitatively, there appears hardly difference between deprived 

and enriched-reared as well as enriched-reared C57Bl/6 mice after wheel running. Only 

deprived-reared C57Bl/6 mice after wheel running show an apparent increase in the number 

of BrdU-positive cells (Fig. 7-1, G). No difference is observable in wild house mice after the 

different experimental treatments.  

 

7.3.2. QUANTITATIVE RESULTS 

7.3.2.1. Effects of rearing conditions and wheel-running challenge in 
C57Bl/6 mice 

The total number of BrdU-positive cells in dentate gyrus of C57Bl/6 mice was not affected by 

the conditions of social and physical deprivation or enrichment during rearing alone (ERSPW- 

5045 vs. DRSPW- 4883 cells per dentate gyrus; ANOVA, rearing condition F1,23=2.36, 

p > 0.05; Post-hoc Unequal N HSD, p > 0.05) Fig. 7-2, A). Similar effects were found for 

densities of BrdU-positive cells (ERSPW- 22691 vs. DRSPW- 24012 cells per mm3; ANOVA, 

rearing condition F1,23=9.98, p < 0.01; Post-hoc Unequal N HSD, p > 0.05) Fig. 7-2, B).  
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However, the effect of wheel running on the total number of BrdU-positive cells was signifi-

cantly dependent on the previous rearing history of the animals (ANOVA, wheel running 

F1,23=13.96, p < 0.01; interaction effect rearing condition*wheel running F1,23=3.54, p = 0.07). 

Wheel running caused an increase in the total number of BrdU-positive cells in DRSPW- ani-

mals (+54%; Post-hoc Unequal N HSD, p < 0.01), but not in ERSPW- animals (ERSPW-, after 

wheel running 5910 cells per dentate gyrus; Post-hoc Unequal N HSD, p > 0.05; Fig. 7-2, A). 

These effects were even stronger for density of BrdU-positive cells (ANOVA, wheel running 

F1,23=14.9, p < 0.001; interaction effect rearing condition*wheel running F1,23=5.68, p < 0.05). 

Wheel running caused an increase in the density of BrdU-positive cells in DRSPW- animals 

(+44 %; Post-hoc Unequal N HSD, p < 0.001), which was even significant against the density 

found in ERSPW- animals after wheel running (+38 %; Post-hoc Unequal N HSD p < 0.05; Fig. 

7-2, B) 
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Fig. 7-2: A) Total number of BrdU-positive cells in the granule cell layer of C57Bl/6 mice; B) Density of BrdU-
positive cells per mm3 in the granule cell layer of C57Bl/6 mice; C) Total number of BrdU-positive cells in the
granule cell layer of wild house mice; D) Density of BrdU-positive cells per mm3 in the granule cell layer of wild
house mice; ERSPW-, socially and physically enriched-reared animals; DRSPW-, socially and physically deprived-
reared animals; wheel running, additional wheel running challenge (pd 70-74); data given as means ± S.E.M. 
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7.3.2.2. Effects of rearing conditions and wheel-running challenge in  
wild house mice 

Cell proliferation in the dentate gyrus of wild house mice was not affected neither by socially 

and physically deprived rearing (ANOVA, rearing condition, cells per dentate gyrus 

F1,27=0.02, p > 0.05; density of cells F1,27=0.1, p > 0.05) Fig. 7-2, C, D) nor by the wheel run-

ning challenge in young adulthood (ANOVA, wheel running, cells per dentate gyrus 

F1,27=0.26, p > 0.05; density of cells F1,27=0.78, p > 0.05; interaction effect rearing con-

dition*wheel running, cells per dentate gyrus F1,27=0.23, p > 0.05; density of cells F1,27=0.64, 

p > 0.05; Fig. 7-2, C, D) 

Table 7-1 indicates the mean total number and the mean density of BrdU-counts for 

cell proliferation and cell survival for the four different groups as well as significant diffe-

rences between the groups. 
 

 

ERSPW- DRSPW- ERSPW- ERSPW- 
after wheel running 

value value p value value p 

C
57

B
l/6

 Total 
number 5045 4883 n.s. 5045 5910 n.s. 

Density 22691 24012 n.s. 22691 25207 n.s. 

W
ild

 h
ou

se
 

m
ou

se
 Total 

number 5865 5444 n.s. 5865 5888 n.s. 

Density 18660 16000 n.s. 18660 18758 n.s. 

 

 

DRSPW- 
(100%) 

DRSPW- 
after wheel running 

ERSPW-  

after wheel 
 running (100%) 

DRSPW- 
after wheel running 

value value diff. in % p value value diff. in % p 

C
57

B
l/6

 Total 
number 4883 7505 +54 <0.01 5910 7505 +27 n.s. 

Density 24012 34653 +44 <0.001 25207 34653 +38 <0.05 

w
ild

 h
ou

se
 

m
ou

se
 Total 

number 5444 6104 - n.s. 5888 6104 - n.s. 

Density 16000 19851 - n.s. 18758 19851 - n.s. 

 

 

 

 

 

Tab. 7-1: Group comparison of total numbers and densities of BrdU-positive cells 
ERSPW-, reared under socially and physically enriched conditions; DRSPW-, reared under socially and 
physically deprived conditions; ERSPW- after wheel running, reared under socially and physically enriched 
conditions with an additional wheel-running challenge in adulthood (pd70-74);  DRSPW-, reared under 
socially and physically deprived conditions with an additional wheel-running challenge in adulthood; total 
number of BrdU-positive cells per dentate gyrus; density of BrdU-positive cells per mm3; given are absolute 
values (means), differences between the groups if significant, and p-values. 
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7.3.2.3. Effects of rearing conditions, wheel running or domestication back-
ground on the reference volume of the granule cell layer 

The reference volume comprising the granule cell layer and subgranular zone was not affected 

by the rearing conditions or the wheel-running challenge neither in C57Bl/6 (ANOVA rearing 

condition F1,23=1.571, p > 0.05; wheel running F1,23=0.61, p > 0.05; interaction effect of 

rearing condition*wheel running F1,23=0.005, p > 0.05) nor in wild house mice (ANOVA 

rearing condition F1,27=0.53, p > 0.05; 

wheel running F1,27=0.16, p > 0.05; inte-

raction effect of rearing con-

dition*wheel running F1,27=0.64, 

p > 0.05). However, taking the treatment 

groups together and comparing the 

reference volumes between the strains 

by Welch two-sample t-test revealed a 

significantly greater volume in wild 

house mice (C57Bl/6 0.218 

± 0.006 mm3, wild house mice 

0.325 ± 0.01 mm3, p < 0.0001; Fig. 7-3).  

 

 

7.4. DISCUSSION 
The effects of our treatments on neuroplasticity in C57Bl/6 mice were similar to those in CD1 

mice: social and physical deprivation during rearing did not cause different rates of hippo-

campal cell proliferation in young-adult animals if compared to enrichment without wheel 

running. However, also deprived-reared C57Bl/6 mice were affected in their neuroplastic 

development with consequences on the regulation of neurogenesis in adulthood. A neurogenic 

stimulation through a 4-day wheel-running challenge caused an increase in hippocampal cell 

proliferation only in deprived-reared, but not in enriched-reared individuals. These effects 

were somewhat less pronounced than in CD1 mice, probably because baseline cell prolife-

ration is already higher in C57Bl/6 mice (cf. also Kempermann et al., 1997b), and after an 

additional stimulation, the maximum of newborn cells per dentate gyrus is reached. 

Fig. 7-3: Reference volume comprising the granule cell layer
and subgranular zone in C57Bl/6 and wild house mice; data
given as means ± S.E.M. 
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 In contrast, the effects found in the progeny of wild house mice were completely unex-

pected. Neither the rearing conditions nor the wheel-running challenge exerted an effect on 

cell proliferation in the adult dentate gyrus of these animals. This argues in favor that the 

reactiveness of cell proliferation is lower in wild house mice than in laboratory mice.  

The reference volume of the granule cell layer and subgranular zone was not affected 

neither by the rearing conditions nor the wheel-running challenge in any of the strains. How-

ever, a comparison of the reference volume between the strains revealed a significantly 

greater volume in wild house mice than in C57Bl/6, while the latter exhibited a volume simi-

lar to that of CD1 mice. Further morphometric analyses revealed that it is, indeed, only the 

granule cell layer - especially in the suprapyramidal blade - which has a greater extension in 

wild than in the laboratory strains (cf. supplemental experiment II, chapter 7.6). A larger 

granule cell layer was also found in other wild-living rodents compared to laboratory mice 

(Amrein et al., 2004), and we could demonstrate this now even within one and the same 

species.  

 

The effect of social and physical deprivation during brain development depends on the 

domestication background 

For two reasons the present results demonstrate that the effects of social and physical depri-

vation during brain development in mice strongly depend on genetic modifications by 

domestication. First, outbred C57Bl/6 mice responded to social and physical deprivation 

during rearing with similar alterations in hippocampal cell proliferation as inbred CD1 mice 

(project I, chapter 3), although both strains show different (spatial) learning abilities (Crawley 

et al., 1997; Owen et al., 1997; Dellu et al., 2000; Baron & Meltzer, 2001; Adams et al., 

2002), and even significantly differ in their baseline cell proliferation and neurogenesis. In 

this way, our results correspond to others that cell proliferation in C57Bl/6 mice is about 

1.5 fold higher than in CD1 mice (Kempermann et al., 1997b). However, our findings stand in 

contrast to the effects of environmental stimulation or deprivation during rearing found in 

C57Bl/6 mice so far, namely that deprived rearing decreased hippocampal cell proliferation in 

the adult (Iso et al., 2007). The different findings may be due to differences in the study 

design, e.g., the use or omission of running wheels in the enrichment, the BrdU-labeling 

protocol or the survival time after BrdU injections. Since, we applied the same experimental 

treatment to C57Bl/6 mice in the present study as previously to CD1 mice, and found similar 

effects on cell proliferation in adulthood, we can conclude that deprivation affects the regu-
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lation of cell proliferation in the adult dentate gyrus equally in these two laboratory strains, 

and that there are no strain- or breeding-dependent differences. 

Secondly, undomesticated wild house mice did not respond neither to deprivation 

during rearing nor to the wheel-running challenge with any significant differences in hippo-

campal cell proliferation. This result stands in contrast to expectations, since with regard to 

the findings from gerbils (Hildebrandt, 1999; Keller et al., 2000) we expected a higher and not 

a lower neuroplastic response in wild house mice. Herefrom, we cannot exclude that the 

strength of the deprivation effect is also subject to species-specific differences in the regu-

lation of neuroplasticity between Meriones unguiculatus and Mus musculus domesticus. But it 

is also feasible that differences are due to the study design, e.g., the BrdU-labeling protocol or 

the survival time after the labeling. In this case, it might be that the effect of domestication in 

laboratory gerbils has been underestimated so far.   

The missing effect of wheel running in deprived-reared wild house mice is even more 

surprising, since these animals ran twice as much in the wheels as their enriched-reared litter-

mates, whose running distance was in the range of C57Bl/6 and CD1 mice (cf. supplemental 

experiment I, chapter 7.5). This argues in favor that adult hippocampal cell proliferation is 

only in domesticated mouse strains susceptible to environmental manipulations in ado-

lescence and young adulthood, and that this susceptibility is a consequence of genetic modifi-

cation by domestication. This assumption gets support from a recent study in wild-caught 

wood mice (Apodemus sylvaticus, Hauser et al., 2009). Also in these animals, which were in 

contrast to ours caught as adults and directly exposed to either deprived housing or wheel 

running, no effect of housing or running on neurogenesis was found. Although it concerns 

another species and does not regard developmental effects, these results together with ours 

indicate that undomesticated mice are more robust in their neurogenic regulation against 

environmental influences than domesticated mice.  

 

Why are wild house mice more robust in their neurogenic regulation against environmental 

influences? 

It can be assumed that in individuals of wild-living strains the reactivity of cell proliferation is 

buffered by mechanisms which are not effective in domesticated mice anymore. Indeed, there 

are indications that the developmental timing of neurochemical and neuroendocrinological 

mechanisms change in the route of domestication (Trut, 1999). Furthermore, melatonin is a 

key candidate to be involved. Melatonin influences proliferative and differentiative activity of 
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neural stem cells in the dentate gyrus (Moriya et al., 2007; Ramirez-Rodriguez et al., 2009). 

While wild mice synthesize pineal melatonin with a circadian rhythmicity (Ebihara et al., 

1986, 1987), most domesticated mouse strains including C57Bl/6 have more or less no 

melatonin in their pineal glands (Ebihara et al., 1986, 1987; Goto et al., 1989; Conti & 

Maestroni, 1996; Vivien-Roels et al., 1998). 

Finally, the maturation of the prefrontal cortex is severely affected by social and 

physical deprivation during rearing in gerbils (Winterfeld et al., 1998; Neddens et al., 2001; 

Bagorda et al., 2006; Witte et al., 2007; Brummelte et al., 2007). This coincides with an en-

hanced cell proliferation in these animals (Hildebrandt, 1999; Keller et al., 2000). A similar 

effect of deprived rearing was now demonstrated in the domesticated mouse strains CD1 and 

C57Bl/6, although the effects were less pronounced and more subtle. Therefore, we suggested 

that the maturation of the prefrontal cortex and its interaction with limbic structures is also in 

domesticated mice causally involved in the regulation of proliferating activity in the dentate 

gyrus (project I, chapter 3, project II, chapter 4; an involvement of the prefrontal cortex in the 

regulation of cell proliferation was demonstrated in project IV, chapter 6). Since wild house 

mice irrespective of their rearing history - like the enriched-reared domesticated mice - did 

not exhibit enhanced cell proliferation after wheel running, it might be assumed that in 

undomesticated animals the mesoprefrontal-limbic axis can buffer not only short lasting 

manipulations like a wheel-running challenge but even long-lasting deprivation of environ-

mental stimulation during development. 

 

Conclusion  

This is the first study to demonstrate that cell proliferation in wild house mice cannot be 

manipulated by social and physical deprivation during adolescence or a 4-day wheel-running 

challenge, thus, by stimuli which are sufficient to alter cell proliferation rates in domesticated 

mice of the same species (Mus musculus domesticus). The investigation of the exact mecha-

nisms determining the reactiveness or stability of proliferating activity in the adult dentate 

gyrus is an important issue for future research, since they may provide a key to a better under-

standing of the regulation of hippocampal cell proliferation in the intact and disturbed brain.  
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7.5. SUPPLEMENTAL EXPERIMENT I:  
EFFECTS OF REARING CONDITIONS ON WHEEL-RUNNING ACTIVITY IN 
C57BL/6 AND WILD HOUSE MICE 

Four days of wheel running in young adulthood enhanced hippocampal cell proliferation only 

in C57Bl/6 mice that were reared under socially and physically deprived conditions, but not in 

their enriched-reared littermates. Similar results were seen in CD1 mice (project I, chapter 3). 

Although enriched and deprived-reared CD1 mice did not differ in their wheel-running 

activity (cf. chapter 3.6; Haupt & Schaefers, accepted) and members of both rearing groups of 

C57Bl/6 could also be observed while running in the wheels, it is still not quantitatively 

substantiated that enriched and deprived-reared C57Bl/6 mice really show the same running 

activity. Furthermore, in neither enriched nor deprived-reared wild house mice the wheel-

running challenge affected adult cell proliferation in the dentate gyrus. Thus, it has to be 

clarified if wild house mice, although they could be watched running in the wheels, really 

show similar running activity as individuals of the two laboratory strains.   

To address these issues, we measured wheel-running activity of enriched and de-

prived-reared C57Bl/6 and wild house mice (each group separately) over four days in young 

adulthood with automated running wheels. Additional groups of female C57Bl/6 and wild 

house mice were reared either under enriched (ERSPW-, n=6) or socially and physically de-

prived conditions (DRSPW-, n=6) as described before (see chapter 2.2 & 7.2.1). In young adult-

hood (C57Bl/6 ERSPW- pd 63; DRSPW- pd 67, wild house mice ERSPW- pd 62; DRSPW- pd 66), 

animals were habituated to an enclosure which contained nothing than animal bedding, food 

and water ad libitum as well as a solid hiding place. These conditions equated the habituation 

conditions in the main experiment (see chapter 7.2.2) except that the rearing groups were not 

mixed. Four days later (C57Bl/6 ERSPW- pd 67; DRSPW- pd 71, wild house mice ERSPW- pd 66; 

DRSPW- pd 70) the automated running wheels were introduced into the enclosure. One running 

wheel per animal was provided, which was connected to a computer measuring the wheel 

revolutions (for detailed description of the apparatus see chapter 2.5.1).  

 Running analysis was started at the end of the first dark cycle to get three complete 

24-h cycles and include the three dark phases in which the BrdU labeling was performed in 

the main experiment. We included only long-term running events (>10 sec.) and excluded 

short-term running events, which often had purely investigative character (sniffing, outer 

touches, wheel crossings). Number of long-term running events, and total distance covered in 

24 hours were scored. As individual data points for number of events and distance we took 
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days. These values were divided by the number of individuals (n=6). Normally distributed 

data (Shapiro Wilks test for normality) were analyzed using Welch two-sample t-test.  

 One group of enriched-reared C57Bl/6 showed hardly running activity. Since visual 

observations had proven that ERSPW- animals showed running activity in the main experiment 

(see chapter 7.3.1), the measurement was repeated with two additional groups of female 

C57Bl/6 ERSPW- animals (2 x n=6). Both groups showed a running activity measured by 

running distance and number of long-term running events per 24 h, which was not signifi-

cantly different from that of DRSPW- animals (Welch two-sample t-tests, p < 0.05). Data of all 

three groups are shown in table 7-2 in comparison to C57Bl/6 DRSPW- animals.  

  ERSPW- 1 ERSPW- 2 ERSPW- 3 DRSPW- 

distance covered in 24 h 0.36 ± 0.11 km 4.33 ± 0.9 km 5.42 ± 0.15 km 5 ± 0.24 km 

long-term running events in 24 h 31 ± 8 159 ± 21 159 ± 5 169 ± 1 

 

 

Wild house mice of both rearing groups disliked the apparatus and even avoided exploring the 

automated running wheels for to date unexplained reasons. After introduction of the indivi-

dual wheels which were used in the main experiment (cf. chapter 2.3 and 7.2.2), they started 

running immediately (own observations) and afterwards ran also in the automated running 

wheels, so that the measurements could be achieved at a later time point. Thus, data starting at 

the end of the 6th dark phase after the introduction of the apparatus were taken for 

comparison.  

Tab. 7-2: Wheel-running acitivity of enriched (ERSPW-) and deprived reared (DRSPW-) C57Bl/6 mice.  
Data given as means ± S.E.M. 
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Fig. 7-4: Wheel running acitivity of enriched (ERSPW-) and deprived reared wild house mice (DRSPW-). 
A) Running distance covered in 24 hours; B) Long-term running events (>10 sec.) in 24 hours; data given as 
means ± S.E.M. 
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Within this time, enriched-reared wild house mice showed a running activity in the range of 

the domesticated mouse strains (ERSPW- 6.3 ± 0.57 km, 207 ± 23 long-term running events), 

whereas deprived-reared wild house mice covered a significantly larger distance each night 

(DRSPW- 11.1 ± 0.21 km, Welch two-sample t-test, p < 0.01) and also showed significantly 

more long-term running events (DRSPW- 309 ± 15, Welch two-sample t-test, p < 0.05).  

These results together with the afore made visual observations (see chapter 7.3.1) 

suggest that also socially and physically deprived-reared C57Bl/6 mice do not differ from 

their enriched-reared littermates in a 4-day wheel-running challenge in young adulthood. 

Thus, differences in wheel-running activity cannot account for the different neuroplastic 

responses to wheel running. Interestingly, the large running distance covered by deprived-

reared wild house mice seemed to have, nevertheless, no impact on cell proliferation in these 

animals.  

 

7.6. SUPPLEMENTAL EXPERIMENT II:  
MORPHOMETRIC ANALYSIS OF THE DENTATE GYRUS –  
WILD HOUSE MICE HAVE A LARGER GRANULE CELL LAYER THAN 
DOMESTICATED MICE  

Domestication seems to affect the volume of the hippocampus and its subregions. In rats 

domestication is accompanied by a reduction of the hippocampus of about 10% (Kruska, 

1975). Also in mice, a reduced volume of the granule cell layer was found in domesticated 

compared to wild mice (Amrein et al., 2004). This corresponds to our results of a bigger refe-

rence volume comprising the granule cell and adjacent subgranular zone in wild house mice 

(see chapter 7.3.2.3). It is, therefore, feasible that beside the granule cell layer also other 

layers of the dentate gyrus are affected by domestication. It is known that in rats, strain-spe-

cific differences exist in the occurrence of the distinct layers of the dentate gyrus (Lipp et al., 

1987). In rats and mice, the extension of the mossy fiber bundle in different domesticated and 

wild strains is correlated with performance in spatial learning tasks (Crusio et al., 1987; Lipp 

et al., 1988; Schwegler & Crusio, 1995). Especially the inner molecular layer bears high 

plastic capacities (for detailed explanations see chapter 5.4). In gerbils, it covers about one 

third of the whole molecular layer and its extension was shown to be sensitive to environmen-

tal deprivation during rearing (Hildebrandt, 1999).  
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Hence, two interesting questions emerge: first, whether domestication led to a reduction of the 

whole dentate gyrus or only of the granule cell layer within the species Mus musculus domes-

ticus; and second, whether other layers of the dentate gyrus also exhibit domestication- or 

strain-dependent differences in their extension.  

To answer these questions, male CD1 (n=4), C57Bl/6 (n=7) and wild house mice 

(n=5) were reared under socially and physically deprived conditions from the day of weaning 

(pd 21; for more details see chapter 2.2). Adult animals were deeply anaesthetized by an over-

dose of diethyl ether and transcardially perfused with sodium sulphide solution and 3% 

glutaraldehyde (for detailed description see chapter 2.8.1). Brains were immediately dissected 

and stored over night in 3% glutaraldehyde and 20% sucrose. 20 µm coronar sections were 

made throughout the septotemporal axis of the hippocampus with a FrigoCut and every third 

section was mounted on slides (see chapter 2.8.1). Sections were stained with the Timm silver 

impregnation as described in chapter 2.8.2. Incubation times were adjusted to obtain the 

optimal staining of the layers of the dentate gyrus (Coleman et al., 1987) leading to a certain 

overstaining of the mossy fiber bundle, hippocampus proper and other cortical areas 

(Fig. 7-5, A).  

Morphometric measurements were made on photomicrographs (100-fold magnifi-

cation) of every section with the help of dimension lines between rectangular reference lines. 

The mean over three measurements and the sections were taken to get a value for every layer 

(for details see chapter 2.8.3).  

 To get a qualitative comparison of the Timm staining with a selective 

immunohistochemical staining against zinc containing fibers, a fluorescence staining against 

the zinc transporter 3 (ZnT 3) was additionally performed on paraformaldehyde fixated 

40 µm sections (for perfusion and tissue preparation see chapter 2.6.2) of socially and physi-

cally deprived-reared females of each strain. Therefore, a primary antibody against ZnT 3 

(rabbit anti-ZnT 3, Synaptic Systems, Göttingen, Germany) and a secondary antibody 

(donkey anti-rabbit AMCA, Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK) 

were used (for staining protocol see chapter 2.8.4).  

Examination of Timm impregnated sections under light microscopy revealed a clearly 

distinguishable lamination in the dentate gyrus as well as a black-brown staining of the 

mossy-fiber bundle reaching from the dentate gyrus to CA3 of the hippocampus proper. The 

granule cell layer appears relatively light and somata of individual granule cells are visible.  
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Upside the granule cell layer, the inner molecular appears as a darker band, which can be easi-

ly distinguished from the adjacent lighter middle molecular layer. Directly below the hippo-

campal fissure in the supra- and directly above the border of the lateral ventricle in the 

infrapyramidal blade, a dark-brown staining marks the outer molecular layer. The intensity of 

the Timm staining is similar in all groups, although the color can vary among individuals 

from reddish brown to grey brown. Differences among the strains in the extension of the 

individual layers are not obvious (Fig. 7-5, B, C, D).  

Fig. 7-5: Timm staining.  
A) Overview (wild house mouse, 20-fold magnifi-
cation); B-C) Dentate gyrus of a B) CD1, C) C57Bl/6
and D) wild house mouse (100-fold magnification);
layers are indicated: oML, outer molecular layer;
mML, middle molecular layer; iML, inner molecular
layer; gcl, granule cell layer; MF, mossy fiber bundle.
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Further analyses of the relative 

thickness of the individual layers within 

the dentate gyrus revealed a signifi-

cantly thicker granule cell layer in the 

suprapyramidal blade of wild house 

mice than in the domesticated mouse 

strains (ANOVA interaction effect 

strain*layer F14,1=6.6, p < 0.001, Post-

hoc Unequal N HSD wild house mice 

vs. CD1 p < 0.05, vs. C57Bl/6 

p < 0.001), although the other layers, 

except the middle molecular layer of 

the infrapyramidal blade (Post-hoc Unequal N HSD wild house mice vs. CD1 p < 0.01, vs. 

C57Bl/6 p < 0.05), were not subject to significant reductions (Fig. 7-8).  

 

Fig. 7-7: Absolute thickness of the dentate gyrus in
different mouse strains. Data given as means ± S.E.M. 
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Fig. 7-8: Relative thickness of the layers of the dentate gyrus within one blade of different mouse strains.  
oML, outer molecular layer; mMl, middle molecular layer; iMl, inner molecular layer; gcl, granule cell layer; 
data given as means ± S.E.M.; all layers of one blade = 100%. 
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In all strains the inner molecular was found to cover about 16% (infrapyramidal blade) to 20% 

(suprapyramidal blade) of the whole molecular layer, while it was significantly thinner in the 

infrapyramidal blade of CD1 as well as of C57Bl/6 mice (Post-hoc Unequal N HSD p < 0.05; 

Fig. 7-9).  

 These results indicate that it is, 

indeed, the granule cell layer - especially in 

the suprapyramidal blade - which has a 

greater extension in wild than in the 

domesticated mouse strains CD1 and 

C57Bl/6. This corresponds to other findings 

of a larger granule cell layer in wild mice 

(cf. chapter 7.3.2.3; Amrein et al., 2004). A 

reduction in the thickness of the complete 

dentate gyrus in the course of domestication 

in Mus musculus domesticus was not found. 

However, in the Timm staining only the 

thickness of the layers was measured, so that a potential reduction of the volume of the 

dentate gyrus e.g. by a decrease in its rostrocaudal extension cannot be ruled out.  

 The infrapyramidal blade seemed to be thinner in all mouse strains, although this 

turned out to be significant only in C57Bl/6 mice. This finding corresponds to the fact that 

during ontogeny the suprapyramidal blade starts its differentiation before the infrapyramidal 

blade (Altman & Bayer, 1990).  

Surprisingly, the inner molecular layer covered only about 16-20% of the whole 

molecular layer in all examined mouse strains without any significant differences among the 

strains. In contrast, in the gerbil, the inner molecular layer represents one third of the molecu-

lar layer (Hildebrandt, 1999). Therefrom, we expected a more prominent inner molecular 

layer at least in wild house mice. However, these results suggest that the ratio of the inner 

molecular layer is species-specific in Mus musculus domesticus and Meriones unguiculatus 

and that, at least in mice, it has not been reduced in the course of domestication. 

Fig. 7-9: Relative thickness of the inner molecular
layer of the whole molecular layer within each blade.
iMl, inner molecular layer, Ml, molecular layer taken as
100% within each blade, data given as means ±S.E.M. 
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8. CONCLUDING DISCUSSION 
The aim of the present work was to investigate developmental neuroplasticity in the 

hippocampus in the interplay of prefrontal-limbic circuits with the widely-used mouse model 

(Mus musculus domesticus). The main focus was on whether and how the environment during 

juvenile brain development determines neuroplastic potentials in the hippocampus even in 

adulthood. Four experimental studies were carried out and a hypothetical model was 

developed integrating local as well as potential systemic mechanisms.  

We first found out (project I) that adult neurogenesis indicated by the rates of cell 

proliferation and cell survival in the adult dentate gyrus was, at first sight, not affected by 

deprivation of “natural” environmental stimulation during juvenile brain development in CD1 

mice, when wheel running was excluded from the enriched-environmental setup. 

Nevertheless, socially ad physically deprived-reared CD1 mice were affected in their 

neuroplastic development as was revealed by an adult wheel-running challenge. Only 

deprived-reared individuals responded to the wheel-running challenge with a significant 

increase in cell proliferation and cell survival indicating a higher reactiveness of neurogenesis 

in these animals. Since wheel-running activity measured by the running distance covered and 

running bouts made per night did not differ between rearing groups, it cannot be responsible 

for this effect. Hence, it can be concluded that developmental neuroplasticity in CD1 mice is 

susceptible to environmental deprivation during brain development, although it seems to be 

lower in CD1 mice than in gerbils.  

The mechanisms underlying the different neuroplastic response to wheel running 

might lie on the local level: deprivation leads to alterations in the level of neurotrophic and 

growth factors (Falkenberg et al., 1992; Pham et al., 1999; Ickes et al., 2000; During & Cao, 

2006; Lehmann et al., 2007), opioids (Eisch et al., 2000; Persson et al., 2003) and 

neurotransmitters (Busche et al., 2002, 2004, 2006) in the hippocampal formation. Wheel 

running affects these levels as well (e.g., Dudar et al., 1979; Colt et al., 1981; Goldfarb & 

Jamurtas, 1997; Gomez-Pinilla et al., 1997; Oliff et al., 1998; Trejo et al., 2001; Fabel et al., 

2003; Vaynman et al., 2004a, b), probably leading to a greater shift in deprived-reared than in 

enriched-reared individuals. Furthermore, the maturation of the mesolimbocortical dopamine 

system, which was demonstrated to be severely affected by deprivation in gerbils (e.g., 

Winterfeld et al., 1998; Busche et al., 2004), might be affected in CD1 mice as well. A 

hypothetical model (project II) was proposed integrating these local and systemic 

mechanisms. It was proposed that, beside local effects, the maturation of the prefrontal cortex 

and its efferents and, thus, its control function over motor circuits and limbic areas including 
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the hippocampus might be affected by deprivation. A resulting lack of glutamatergic 

excitation at the NMDA-receptor system at the entorhino-dentate interface might cause the 

increase in cell proliferation in deprived-reared mice after wheel running.     

Neurogenesis induces structural changes, neuronal and synaptic turnover. 

Nevertheless, in gerbils an inverse relationship between the rate of neurogenesis and the rate 

of synaptic remodeling in the dentate gyrus was found (Hildebrandt, 1999; Butz et al., 2008). 

In CD1 mice, we extended our observations even beyond the dentate gyrus to the entire 

hippocampal formation (project III). Like on neurogenesis, we found no effect of deprivation 

from environmental stimulation during brain development on synaptic remodeling in any 

region of the hippocampal formation. Both enriched and deprived-reared mice displayed high 

layer-specific differences in the rates of synaptic remodeling in the dentate gyrus, CA3 and 

CA1, which were equal in amount and distribution between the rearing groups. These layer-

specific rates can be explained on the basis of the layer-specific connectivities as well as 

especially in the dentate gyrus on the background of the challenge to integrate new neurons 

into existing networks. Thus, these results emphasize a relationship between neurogenesis and 

synaptic remodeling in the hippocampal formation of the mouse. Surprisingly, a wheel-

running challenge in young adulthood leveled the layer-specific differences in both deprived 

and enriched-reared individuals in the dentate gyrus, CA3 and CA1. The effects did not 

extend to the entorhinal cortex or subiculum. These findings argue in favor that beside 

neurogenesis further mechanisms mediate the effects of wheel running on synaptic turnover in 

the hippocampal formation and that beside the dentate gyrus, also CA3 and CA1 possess high 

plastic capacities. 

Although the findings on neurogenesis and synaptic remodeling indicate that 

environmentally-dependent plasticity in the hippocampal formation is generally lower in CD1 

mice than in gerbils, they confirm, nevertheless, that also in CD1 mice the environment 

during juvenile brain development determines plastic potentials even in the adult. 

It was hypothesized that the prefrontal cortex respectively its maturation is jointly 

responsible for this altered neuroplasticity. It was, moreover, proposed that it constitutes a 

negative regulator of cell proliferation via excitation of the NMDA-receptor system at the 

entorhino-dentate interface. However, there was so far no evidence for an involvement of the 

prefrontal cortex in the regulation of neurogenesis in the dentate gyrus at all. We enhanced 

cell proliferation in CD1 mice reared under social and physical deprivation by adult wheel 

running. Afterwards we exposed the animals to either environmental enrichment or a 

prefrontal-cortex dependent working memory task to stimulate prefrontal activity (project IV). 
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Both environmental enrichment and the working-memory task decreased the enhanced cell 

proliferation compared to continued deprivation after wheel running. In contrast, a control 

task without working-memory requirements, which we applied to observe unspecific side 

effects of the behavioral task and the apparatus, did not lead to a significant effect on cell 

proliferation. This demonstrates, indeed, that the stimulation of the prefrontal cortex by a 

continuous working-memory load exerted the effect on cell proliferation. This provides 

evidence that the prefrontal cortex is causally involved in the regulation of cell proliferation in 

the dentate gyrus. 

Finally, the questions remained why environmentally-dependent plasticity is lower in 

CD1 mice than in gerbils, concretely, why the effect of deprivation of environmental 

stimulation during brain development is less pronounced in these animals, and, furthermore, 

whether differences might exist even within the species Mus musculus domesticus. 

Comparing deprivation effects in mouse strains of the same species (Mus musculus 

domesticus), but with different domestication background (project V), enabled us to 

investigate, whether the variability of neuronal plasticity in response to environmental 

stimulation is a unique feature in mice or if genetic background plays a role, too. The effects 

of social and physical deprivation and subsequent wheel running in young adulthood were 

similar in inbred C57Bl/6 as in outbred CD1 mice. Deprived rearing did not cause different 

rates of cell proliferation in young-adult animals compared to enriched rearing, but led to a 

different neuroplastic development in so far that only deprived-reared individuals responded 

to the wheel-running challenge with a significant increase in cell proliferation. Astonishingly, 

in wild house mice, neither the rearing conditions nor the wheel-running challenge exerted an 

effect on cell proliferation in the adult dentate gyrus. Interestingly, whereas C57Bl/6 

independently of the rearing history displayed wheel-running activity in the range of CD1 

mice, deprived-reared wild house mice ran twice as much as their enriched-reared littermates. 

Nevertheless, this huge amount of running remained without impact on hippocampal cell 

proliferation. It can be assumed that in wild house mice the reactivity of cell proliferation is 

buffered by mechanisms which are not effective in domesticated mice anymore. Furthermore, 

in the course of domestication, anatomical modifications in the dentate gyrus occurred, that 

became manifest especially in a reduction of the granule cell layer.  
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The present work demonstrated that environmental stimulation during juvenile brain 

development determines neuroplastic potentials in the adult hippocampus of the domesticated, 

laboratory mouse strains CD1 and C57Bl/6. However, the reactiveness of neuroplasticity 

seems to be a consequence of genetic modifications by domestication, since it was not found 

in wild house mice of the same species. Furthermore, evidence could be given that it is even 

in domesticated mice an outcome of deprivation from natural environmental stimulation 

during juvenile brain development. As a key candidate to be affected by environmental 

deprivation during juvenile brain development and to be involved in the regulation of 

neuroplasticity in the hippocampus, the prefrontal cortex could be expounded. This draws 

attention to a more systemic view of the regulation of neuroplasticity in the hippocampus as 

an interplay of limbo-prefrontal circuits.  

The investigation of the exact mechanisms determining its reactiveness or stability is 

an important issue for future research, since they may provide a key to a better understanding 

of the regulation of neuroplasticity in the intact and disturbed brain.  
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f Geh 4 AF ERSPW- enriched 15 - 70 3 1 5d
f Geh 7 AF ERSPW- enriched 15 - 70 3 1 5d
f Geh 16 AF ERSPW- enriched 15 - 70 3 1 5d
f Geh 22 AF ERSPW- enriched 15 - 70 3 1 5d
f Geh 116 AF ERSPW- enriched 10 - 70 3 1 5d
f Geh 217 AF ERSPW- enriched 10 - 70 3 1 5d
f Geh 19 run AF ERSPW-, after wheel running enriched 15 x 70 3 1 5d
f Geh 33 run AF ERSPW-, after wheel running enriched 15 x 70 3 1 5d
f Geh 35 run AF ERSPW-, after wheel running enriched 15 x 70 3 1 5d
f Geh 37 run AF ERSPW-, after wheel running enriched 15 x 70 3 1 5d
f Geh 111 run AF ERSPW-, after wheel running enriched 10 x 70 3 1 5d
f Geh 112 run AF ERSPW-, after wheel running enriched 10 x 70 3 1 5d
f Geh 213 run AF ERSPW-, after wheel running enriched 10 x 70 3 1 5d
f Box 60 AF DRSPW- deprived 1 - 70 3 1 5d
f Box 37 AF DRSPW- deprived 1 - 70 3 1 5d
f Box 27 AF DRSPW- deprived 1 - 70 3 1 5d
f Box 25 AF DRSPW- deprived 1 - 70 3 1 5d
f Box 106 AF DRSPW- deprived 1 - 70 3 1 5d
f Box 207 AF DRSPW- deprived 1 - 70 3 1 5d
f Box 4 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 5d
f Box 1 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 5d
f Box 34 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 5d
f Box 69 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 5d
f Box 101 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 5d
f Box 202 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 5d
f Geh 25 AF ERSPW- enriched 15 - 70 3 1 21d
f Geh 17 AF ERSPW- enriched 15 - 70 3 1 21d
f Geh 38 AF ERSPW- enriched 15 - 70 3 1 21d
f Geh 118 AF ERSPW- enriched 10 - 70 3 1 21d
f Geh 119 AF ERSPW- enriched 10 - 70 3 1 21d
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f Geh 13 run AF ERSPW-, after wheel running enriched 15 x 70 3 1 21d
f Geh 34 run AF ERSPW-, after wheel running enriched 15 x 70 3 1 21d
f Geh 31 run AF ERSPW-, after wheel running enriched 15 x 70 3 1 21d
f Geh 114 run AF ERSPW-, after wheel running enriched 10 x 70 3 1 21d
f Geh 115 run AF ERSPW-, after wheel running enriched 10 x 70 3 1 21d
f Box 47 AF DRSPW- deprived 1 - 70 3 1 21d
f Box 2 AF DRSPW- deprived 1 - 70 3 1 21d
f Box 35 AF DRSPW- deprived 1 - 70 3 1 21d
f Box 108 AF DRSPW- deprived 1 - 70 3 1 21d
f Box 109 AF DRSPW- deprived 1 - 70 3 1 21d
f Box 110 AF DRSPW- deprived 1 - 70 3 1 21d
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f Box 103 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 21d
f Box 104 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 21d
f Box 205 run AF DRSPW-, after wheel running deprived 1 x 70 3 1 21d
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f K2 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
f K3 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
f K4 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
f K6 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
f K7 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
f K8 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
f K11 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
f K12 CR DRSPW- deprived (type II) 1 - 70 3 1 5d
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f Geh 1 CR ERSPW- enriched 6 x 66 - - -
f Geh 2 CR ERSPW- enriched 6 x 66 - - -
f Geh 3 CR ERSPW- enriched 6 x 66 - - -
f Geh 4 CR ERSPW- enriched 6 x 66 - - -
f Geh 5 CR ERSPW- enriched 6 x 66 - - -
f Geh 6 CR ERSPW- enriched 6 x 66 - - -
f Box 1 CR DRSPW- deprived 1 x 70 - - -
f Box 2 CR DRSPW- deprived 1 x 70 - - -
f Box 3 CR DRSPW- deprived 1 x 70 - - -
f Box 4 CR DRSPW- deprived 1 x 70 - - -
f Box 5 CR DRSPW- deprived 1 x 70 - - -
f Box 6 CR DRSPW- deprived 1 x 70 - - -
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m C13 AF ERSPW- enriched 13 - 74 - - 7
m C15 AF ERSPW- enriched 13 - 74 - - 7
m C16 AF ERSPW- enriched 13 - 74 - - 7
m C17 AF ERSPW- enriched 13 - 74 - - 7
m C19 AF ERSPW- enriched 13 - 74 - - 7
m C20 AF ERSPW- enriched 13 - 74 - - 7
m C21 AF ERSPW- enriched 13 - 74 - - 7
m C27 AF ERSPW-, after wheel running enriched 13 x 74 - - 3
m C28 AF ERSPW-, after wheel running enriched 13 x 74 - - 3
m C29 AF ERSPW-, after wheel running enriched 13 x 74 - - 3
m C30 AF ERSPW-, after wheel running enriched 13 x 74 - - 3
m C31 AF ERSPW-, after wheel running enriched 13 x 74 - - 3
m C32 AF ERSPW-, after wheel running enriched 13 x 74 - - 3
m C1 AF DRSPW- deprived 1 - 74 - - 7
m C3 AF DRSPW- deprived 1 - 74 - - 7
m C4 AF DRSPW- deprived 1 - 74 - - 7
m C5 AF DRSPW- deprived 1 - 74 - - 7
m C7 AF DRSPW- deprived 1 - 74 - - 7
m C8 AF DRSPW- deprived 1 - 74 - - 7
m C9 AF DRSPW- deprived 1 - 74 - - 7
m C10 AF DRSPW-, after wheel running deprived 1 x 74 - - 3
m C22 AF DRSPW-, after wheel running deprived 1 x 74 - - 3
m C23 AF DRSPW-, after wheel running deprived 1 x 74 - - 3
m C24 AF DRSPW-, after wheel running deprived 1 x 74 - - 3
m C25 AF DRSPW-, after wheel running deprived 1 x 74 - - 3

Projcet III: Synaptic remodelling in CD1 mice
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f DC18 CR DC deprived 0416ECEEEE 50; RT 56 x 79 29.4 1 1 3 24h 27.8
f DC19 CR DC deprived 0416ECE006 50 x 79 27.0 1 1 3 24h 28.0
f DC21 CR DC deprived 0416ECDD8B 50 x 79 30.4 1 1 3 24h 30.9
f DC22 CR DC deprived 0416ECE638 50 x 79 24.5 1 1 3 24h 23.8
f DC25 CR DC deprived 0416ECE680 50 x 79 30.2 1 1 3 24h 29.5
f DC30 CR DC deprived 0416ECD2AB 50 x 79 26.5 1 1 3 24h 26.8
f DC35 CR DC deprived 0416ECC45B 50; RT 56 x 79 26.1 1 1 3 24h 26.2
f EC2 CR EC deprived 0416ECEEF0 50 x 79 33.5 1 1 3 24h 30.5
f EC4 CR EC deprived 0416ECE203 50 x 79 28.4 1 1 3 24h 27.0
f EC10 CR EC deprived 0416ECD414 50 x 79 29.9 1 1 3 24h 27.5
f EC11 CR EC deprived 0416ECCF05 50 x 79 29.7 1 1 3 24h 30.4
f EC17 CR EC deprived 0416ECD147 50; RT 56 x 79 26.0 1 1 3 24h 25.4
f EC24 CR EC deprived 0416ECCC21 50 x 79 27.7 1 1 3 24h 26.2
f EC33 CR EC deprived 0416ECE65E 50 x 79 30.5 1 1 3 24h 29.3
f P5 CR PFCII deprived 0416ECDA8D 50 x 72 26.5 4 1 3 24h 29.6
f P8 CR PFCII deprived 0416ECDB0C 50; RT 56 x 72 29.0 4 1 3 24h 27.6
f P16 CR PFCII deprived 0416ECC45E 50; RT 56 x 72 27.5 4 1 3 24h 30.5
f P31 CR PFCII deprived 0416ECD76F 50; RT 56 x 72 30.3 4 1 3 24h 31.0
f P7 CR PFCIII deprived 0416ECE680 50; RT 56 x 86 30.6 4 1 3 24h 29.0
f P9 CR PFCIII deprived 0416ECCF05 50; RT 56 x 86 31.7 4 1 3 24h 28.2
f P12 CR PFCIII deprived 0416EC D8AF 50; RT 56 x 86 32.0 4 1 3 24h 29.5
f P34 CR PFCIII deprived 0416ECE52D 50; RT 56 x 86 26.7 4 1 3 24h 27.2
f T14 CR TCI deprived 0416ECD3ED 50; RT 56 x 79 28.2 4 1 3 24h 28.1
f T26 CR TCI deprived 0416ECEA33 50 x 79 32.5 4 1 3 24h 29.6
f T27 CR TCI deprived 0416ECD15F 50 x 79 30.5 4 1 3 24h 31.5
f T28 CR TCI deprived 0416ECEAEE 50 x 79 29.0 4 1 3 24h 32.0
f T15 CR TCII deprived 0416ECC2DC 50; RT 56 x 93 26.1 4 1 3 24h 27.2
f T20 CR TCII deprived 0416ECD85C 50 x 93 29.2 4 1 3 24h 31.4
f T29 CR TCII deprived 0416ECE46E 50 x 93 28.4 4 1 3 24h 32.0
f T32 CR TCII deprived 0416ECDFAF 50 x 93 29.4 4 1 3 24h 3.0

Project IV: PFC and hippocampal cell proliferation
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f Geh 1 CAF ERSPW- enriched 11 - 70 3 1 24h
f Geh 2 CAF ERSPW- enriched 11 - 70 3 1 24h
f Geh 3 CAF ERSPW- enriched 11 - 70 3 1 24h
f Geh 4 CAF ERSPW- enriched 11 - 70 3 1 24h
f Geh 5 CAF ERSPW- enriched 11 - 70 3 1 24h
f Geh 6 CAF ERSPW- enriched 11 - 70 3 1 24h
f Geh run 15 CAF ERSPW-, after wheel running enriched 11 x 70 3 1 24h
f Geh run 16 CAF ERSPW-, after wheel running enriched 11 x 70 3 1 24h
f Geh run 17 CAF ERSPW-, after wheel running enriched 11 x 70 3 1 24h
f Geh run 18 CAF ERSPW-, after wheel running enriched 11 x 70 3 1 24h
f Geh run 19 CAF ERSPW-, after wheel running enriched 11 x 70 3 1 24h
f Box 7 CAF DRSPW- deprived 1 - 70 3 1 24h
f Box 8 CAF DRSPW- deprived 1 - 70 3 1 24h
f Box 9 CAF DRSPW- deprived 1 - 70 3 1 24h
f Box 10 CAF DRSPW- deprived 1 - 70 3 1 24h
f Box 11 CAF DRSPW- deprived 1 - 70 3 1 24h
f Box 12 CAF DRSPW- deprived 1 - 70 3 1 24h
f Box 13 CAF DRSPW- deprived 1 - 70 3 1 24h
f Box 14 CAF DRSPW- deprived 1 - 70 3 1 24h
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Project V: Strain comparison
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f Box run 21 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box run 22 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box run 23 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box run 24 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box run 25 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box run 26 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box run 27 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box run 28 CAF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Geh 7 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 8 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 19 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 20 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 21 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 119 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 120 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 121 Z-AF ERSPW- enriched 6 - 70 3 1 24h
f Geh 4 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Geh 5 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Geh 22 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Geh 23 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Geh 24 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Geh 123 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Geh 125 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Geh 124 run Z-AF ERSPW-, after wheel running enriched 6 x 70 3 1 24h
f Box 2 Z-AF DRSPW- deprived 1 - 70 3 1 24h
f Box 12 Z-AF DRSPW- deprived 1 - 70 3 1 24h
f Box 13 Z-AF DRSPW- deprived 1 - 70 3 1 24h
f Box 14 Z-AF DRSPW- deprived 1 - 70 3 1 24h
f Box 101 Z-AF DRSPW- deprived 1 - 70 3 1 24h
f Box 102 Z-AF DRSPW- deprived 1 - 70 3 1 24h
f Box 104 Z-AF DRSPW- deprived 1 - 70 3 1 24h
f Box 1 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box 15 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box 16 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box 18 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box 105 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box 106 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box 107 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
f Box 108 run Z-AF DRSPW-, after wheel running deprived 1 x 70 3 1 24h
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f Geh 1 CAF ERSPW- enriched 6 x 67 - - -
f Geh 2 CAF ERSPW- enriched 6 x 67 - - -
f Geh 3 CAF ERSPW- enriched 6 x 67 - - -
f Geh 4 CAF ERSPW- enriched 6 x 67 - - -
f Geh 5 CAF ERSPW- enriched 6 x 67 - - -
f Geh 6 CAF ERSPW- enriched 6 x 67 - - -
f Geh 21 CAF ERSPW- enriched 6 x 67 - - -
f Geh 22 CAF ERSPW- enriched 6 x 67 - - -
f Geh 23 CAF ERSPW- enriched 6 x 67 - - -
f Geh 24 CAF ERSPW- enriched 6 x 67 - - -
f Geh 25 CAF ERSPW- enriched 6 x 67 - - -
f Geh 26 CAF ERSPW- enriched 6 x 67 - - -
f Geh 31 CAF ERSPW- enriched 6 x 67 - - -
f Geh 32 CAF ERSPW- enriched 6 x 67 - - -
f Geh 33 CAF ERSPW- enriched 6 x 67 - - -
f Geh 34 CAF ERSPW- enriched 6 x 67 - - -
f Geh 35 CAF ERSPW- enriched 6 x 67 - - -
f Geh 36 CAF ERSPW- enriched 6 x 67 - - -
f Box 1 CAF DRSPW- deprived 1 x 71 - - -
f Box 2 CAF DRSPW- deprived 1 x 71 - - -
f Box 3 CAF DRSPW- deprived 1 x 71 - - -
f Box 4 CAF DRSPW- deprived 1 x 71 - - -
f Box 5 CAF DRSPW- deprived 1 x 71 - - -
f Box 6 CAF DRSPW- deprived 1 x 71 - - -
f Geh 1 Z-AF ERSPW- enriched 6 x 66 - - -
f Geh 2 Z-AF ERSPW- enriched 6 x 66 - - -
f Geh 3 Z-AF ERSPW- enriched 6 x 66 - - -
f Geh 4 Z-AF ERSPW- enriched 6 x 66 - - -
f Geh 5 Z-AF ERSPW- enriched 6 x 66 - - -
f Geh 6 Z-AF ERSPW- enriched 6 x 66 - - -
f Box 1 Z-AF DRSPW- deprived 1 x 70 - - -
f Box 2 Z-AF DRSPW- deprived 1 x 70 - - -
f Box 3 Z-AF DRSPW- deprived 1 x 70 - - -
f Box 4 Z-AF DRSPW- deprived 1 x 70 - - -
f Box 5 Z-AF DRSPW- deprived 1 x 70 - - -
f Box 6 Z-AF DRSPW- deprived 1 x 70 - - -

Project V: Strain comparison
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f, female; m, male; AF, own animal facility; CAF, central animal facility of Bielefeld University; Z-AF, 
own animal facility, parents obtained from Zürich; CR, Charles River; pd, postnatal day; DC, deprived 
condition; EC, enriched condition; PFC, PFC-task; TC, T-maze, control (for more explanations see 
detailed descriptions of the projects) 
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m C3 AF DRSPW- deprived 1 - 63
m C4 AF DRSPW- deprived 1 - 63
m C5 AF DRSPW- deprived 1 - 63
m C6 AF DRSPW- deprived 1 - 63
m B1 CAF DRSPW- deprived 1 - 82
m B2 CAF DRSPW- deprived 1 - 75
m B3 CAF DRSPW- deprived 1 - 77
m B4 CAF DRSPW- deprived 1 - 81
m B5 CAF DRSPW- deprived 1 - 81
m B6 CAF DRSPW- deprived 1 - 81
m B7 CAF DRSPW- deprived 1 - 75
m W1 Z-AF DRSPW- deprived 6 - 59
m W2 Z-AF DRSPW- deprived 6 - 59
m W3 Z-AF DRSPW- deprived 6 - 59
m W4 Z-AF DRSPW- deprived 6 - 59
m W6 Z-AF DRSPW- deprived 6 - 64
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STAINING PROTOCOLS 

BRDU-DAB 
 
Labelling with BrdU 
  
BrdU solution (e.g. 50mg/kg dose  5mg for 100g of mice) 
(prepare just before use) 

 5mg BrdU (from freezer) in a centrifuge tube (2ml capacity) 
 ad 1ml of saline and vortex 

 
Inject 1ml per 100g, e.g. a 30g mouse would receive 0,3 ml of solution.  
 
 
 
Preparation 
 
Day 1 
 
Preperfusion buffer, pH 7.4, = PB 0,1M (see stock solutions)  

 
Perfusion solution  
(prepare just before use) 
8% Paraformaldehyde solution (PFA) 

 80g Paraformaldehyde (CH2O)n  
 fill wiht A. dest. to 1000ml  

 Heat solution to 60°C (not above). Turn off heat source.  
 Add some drops of NaOH until the solution becomes clear (~10ml). Allow PFA to cool to 

RT. Filter the solution. Dilute 8% PFA to 4% PFA as described below. 
 
4% Paraformaldehyde in 0.1M PB 

 500ml 8% Paraformaldehyde solution 
 250ml 0.4M PB  
 250ml A. dest.                   

 
After the perfusion brains are carefully removed and stored overnight in 4% (PFA).  
 
Day 2 
 
Then they are transferred to a 30% succrose solution for cryprotection for another 24 hours.   
 
Cryoprotectant 1 : 30 % Succrose, 0.1M phosphat buffer (PB) 

 30g Succrose 
 In 100ml PB (see stock solutions) 

 
 
Day 3 
 
Brains were cut with the FrigoMobil into 40 µm coronar sections and collected in: 
Cryoprotectant 2: 8.6% Succrose, 7mM/l Magnesium chloride, 0.05M PB, 44% glycerol 

 8.56g Succrose 
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 0.14g Magnesium chloride hexahydrate (MgCl2×6H2O) 
 50ml 0.1M PB 
 50ml 99% Glycerol 

 
Sections can then be stored at -20°C until further processing. 
 
Immunohistochemistry: 
 
Slowly defrost sections at 4°C for several minutes followed by half an hour at room 
temperature 
 

Treatment Substance Dilution Incubation 

Rinse 10 mM PBS/T (see stock solutions) 5x5 

H2O2-treatment 0.6% H2O2 in 10 mM PBS e.g. 2,94ml PBS + 0.06ml H2O2 
(30%ige)= 3ml (0.6%) 30´ 

Rinse 10 mM PBS  5 x 5´ 

DNA-denaturation 2 N HCL 1ml/cavity 60´, 37°C 

Neutralization 0.1 M Borate buffer, pH 8.5 3.09 g Boric acid (H3BO3) per 
500 ml A. dest., pH 8.5 2 x 5´ 

Rinse 10 mM PBS  3 x 5´ 

Block M.O.M. Blocking reagent e.g. 2 drops to 2.5ml PBS/T per 3 cav. 60' 

Rinse 10 mM PBS  2 x 5´ 

M.O.M Protein concentrate M.O.M. Diluent 
200µl of Proteinconcentrate 

to 2.5ml PBS  80μl/ml 
(0.83ml/cav.) 

5´ 

Primary Antibody 
Anti-BrdU (mouse) 1:400 M.O.M. Diluent 

See above for M.O.M. diluent, 
6µl of AB /2,4ml 

(0.8ml/cav; aliquots) 
≈ 20 h, 4°C 

 
Day 4 
 

Rinse 10 mM PBS  5 x 5´ 

Secondary Antibody 
M.O.M. anti-mouse reagent + 
biotin. goat anti-mouse 1:266 

M.O.M. Diluent 

10µl of M.O.M. anti-mouse reagent 
to 2.5ml of M.O.M.™ Diluent 

+ 
12,5µl biotin. goat anit-mouse to 

2.5ml M.O.M. Diluent incl. anti-mouse 
reagent  (as described above) 

2 h 

Rinse 10 mM PBS  5 x 5´ 

Avidin Biotin Complex ABC-Kit in 10mM PBS 1drop sol. A + 1drop sol. B / 2,5ml 
PBS (mix 30min. before use!!) 1 h 

Rinse 10mM PBS  2 x 5´ 

DAB-reaction DAB-solution + 1% H2O2 

25mg DAB in 50ml PBS, filtrieren (just 
prepare before use !), 

+ 0,5ml 1% H2O2 
(1% H2O2: 2,9ml PBS + 0,1ml H2O2 

(30%)) 

~ 4min. 

Rinse 10mM PBS  3 x 5´ 

Rinse 10mM PBS/T (It is easier to mount out of PBS/T) 2 x 5´ 

After rinsing, mount the sections on slides. The mounted sections should be air-dried over 
night. 
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Day 5 
 
The slides should be dehydrated through an ascending series of alcohol:  
2 × 5min. in 70% 
2 × 5min. in 96% 
2 × 5min. 100%  
 
The alcohol must be replaced by immersion of the slides 3× 5min. in xylene and then be 
cover-slipped with the xylene-soluble mounting medium DePeX (Serva) and allow them to 
harden for at least 3 days. 
 
 
 
Stock solutions 
 
0.4M Phosphate buffer, pH 7.4 (PB) 

 114g Di-sodium hydrogenphosphate-dihydrate (Na2HPO4*2H2O) 
 24,8g Sodium dihydrogenphosphate-dihydrate (NaH2PO4*2H2O) 
 fill with A. dest. to 1800ml 
 adjust pH to 7.4 (with 1N NaOH) 
 fill with A. dest. to 2000ml 

 store at RT 
 

0.1M PB, pH 7.4 
 250ml 0.4M PB 
 750ml A. dest. 

 store in frigde 
 
10mM Phosphate buffered saline, pH 7.4 (PBS): 0.15M Sodium chloride (2 liter) 

 50ml 0.4M PB 
 1950ml A. dest. 
 17g NaCl 

 
10mM Phosphate buffered saline, pH 7.4 (PBS/T): 0.15M Sodium chloride, 0.1% Triton 

(1l.) 
 1000ml 10mM PBS 
 1ml Triton X-100 

 
 
Stock solutions for M.O.M. kit 
 
M.O.M.™ Mouse Ig Blocking Reagent:  

 2 drops (2 x 45µl) of stock solution to  
 2.5ml of PBS/T (10mM) 

 
M.O.M.™ Diluent:  

 600µl of Protein Concentrate stock solution to  
 7.5ml of PBS 
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LIST OF REAGENTS AND CHEMICALS FOR BRDU-DAB-STAINING IN MICE 
 

Name Product number Supplier Amount (Price) 
BrdU: 5-Bromo-2’-
deoxyuridine 

B5002 Sigma-Aldrich 500mg (38.20€) 

Diethylether 03024 Chemical store University  
Paraformaldehyde 
(CH2O)n 

00074 Chemical store University  

Succrose 107687 Merck 1kg (in request) 
Magnesium chloride 
hexahydrate 
(MgCl2×6H2O) 

00187 Chemical store University  

Glycerol min. 99% G5516 Sigma-Aldrich 500ml (63.60) 
H2O2 30% p.A. 00091 Chemical store University  
2 N HCL T134.1 Carl Roth 1l (10.45€) 
Boric acid (H3BO3) p.A. 00060 Chemical store University  
Anti-bromodeoxyuridine 11170376 Roche Diagnostics 50µg (341.50€) 
Vector M.O.M. 
Immunodetection Kit 

BMK-2202 Vector Laboratories over 
Linaris 

Kit (252€-10%) 

biotinylated goat anti-
mouse IgG 

BA-9200 Vector Laboratories over 
Linaris 

1.5mg (131€-
10%)) 

Vectastain Elite ABC-Kit  
 

PK-6100 Vector Laboratories over 
Linaris 

Kit (260€-10%) 

Triton X-100 93443 Fluka (Sigma-Aldrich) 500ml (158€) 
Diaminobenzidine D5637 Sigma-Aldrich 10g (135€) 
Di-sodium 
hydrogenphosphate-
dihydrate 
(Na2HPO4*2H2O) 

106580 Merck 1-5kg (in request) 

Sodium 
dihydrogenphosphate-
dihydrate 
(NaH2PO4*2H2O) 

106345 Merck 1-5kg (in request) 

Sodium chloride (NaCl) 221 Chemical store University  
Xylol Isomerengemisch 
technisch 

00095 Chemical store University  

DePex 18243 Serva 500ml (in request) 
 
 
  



Appendix III  146 
 

TRIPLE LABELING IMMUNOFLUORESCENCE (BRDU, NEUN, GFAP) 
 
Defrost the slices (paraformaldehyde fixated) 
 

Treatment Substance Dilution Incuba-
tion 

Washing 10 mM PBS (s. stock sol.) 4x5’ 

DNA-Denaturation* 2 N HCl  1 ml/ cavity 60’ 

Neutralization* 0.1 M Borate buffer, pH 8.5 3.09 g Boric acid (H3BO3) 
500 ml A. dest.,  pH 8.5 

(l t MOM)

2 x 5´ 

Washing* 10 mM PBS (s. stock sol.) 2x5’ 

Blocking 5% Donkey Serum 0,15ml DS in 2,85ml PBS/T 
(1ml/cavity.; 3 cav./animal) 

60’ 

1st Antibodies Antibodies in 5% DS-PBS/T 
Anti-BrdU: 1:200 
Anti-NeuN: 1:500 
Anti-GFAP: 1:50 

Per cav.: 
Anti-BrdU: 4µl 

Anti-NeuN: 1.6µl 
Anti-GFAP: 16µl 

Over 
night;  

RT 

Washing 10 mM PBS (s. Stock sol.) 4x5’ 

2nd Antibodies Antibodies in 2%BSA-PBS 1:50 
(possilbe 1:50/1:100/1:200) 

(60mg BSA in 2,94ml PBS) 
16µl, 16µl, 16µl + 0,704µl in 2% BSA-

PBS/ cav. 
(AB solved 1 :1 in glycerol  total 

volume 32µl each) 

45’ 

Washing 10 mM PBS (s. Stock sol.) 3x5’ 

Washing A. dest. - 1x5’ 

 
Mount on slides and dry on heater; coverslip with AquaPolyMount. Store in the dark. 
 
 
Antibodies 
 
Rat anti-BrdU: AbD Serotec, Kidlington, Oxford UK (OBT0030G), 1:200 
Mouse anti-NeuN: Millipore, Schwalbach/Ts., Germany (MAB377), 1:500 
Rabbit anti-GFAP: dianova, Hamburg, Germany (PA1-23702), 1:50 
 
Donkey anti-rat Rodamin Red-X: Jackson ImmunoResearch Europe, Newmarket, Suffolk, 
UK (712-295-153), 1:50 
Donkey anti-mouse FITC: Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK (715-
095-151), 1:50 
Donkey anti-rabbit AMCA: Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK 
(711-155-152), 1:50 
 
Stock solutions  
 
0.4M Phosphate buffer, pH 7.4 (PB) 
114g Dinatriumhydrogenphosphatdihydrat (Na2HPO4*2H2O) 
24,8g Natriumdihydrogenphosphatdihydrat (NaH2PO4*2H2O) 
Fill with A. dest to 1800ml 
Adjust pH 7.4 (with 1N NaOH) 
Fill with A. dest to 2000ml 
Store at RT. 
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10mM Phosphate buffer Saline, pH 7.4 (PBS/T): 0.15M Natriumchlorid, 0.1% Triton 
50ml 0.4M PB 
1950ml A. dest. 
17g NaCl  
2 ml Triton X-100 
Store at 4°C. 
 
* Only necessary if used for BrdU. 
 
 
 
LIST OF REAGENTS AND CHEMICALS USED FOR TRIPLE FLUORESCENCE 
 

Name Product number Supplier Amount (Price) 
BrdU: 5-Bromo-2’-
deoxyuridine 

B5002 Sigma-Aldrich 500mg (38.20€) 

Diethylether 03024 Chemical store University  
Paraformaldehyde 
(CH2O)n 

00074 Chemical store University  

Succrose 107687 Merck 1kg (in request) 
Magnesium chloride 
hexahydrate 
(MgCl2×6H2O) 

00187 Chemical store University  

Glycerol min. 99% G5516 Sigma-Aldrich 500ml (63.60) 
2 N HCL T134.1 Carl Roth 1l (10.45€) 
Boric acid (H3BO3) p.A. 00060 Chemical store University  
Bovine Serum Albumin A4503 Sigma-Aldrich 50g 
Normal Donkey Serum S30 Chemicon (Millipore) 100ml (79€) 
Mouse Anti-NeuN MAB377 Chemicon (Millipore) 500µg (312€) 
Rat-Anti-BrdU OBT0030G AbD Serotec 250µg (299) 
Rabbit-Anti-GFAP PA1-23702 Dianova 500µg (262€) 
Rhodamine Red-X-
conjugated Donkey Anti-
Rat IgG 

712-295-153 Jackson ImmunoResearch 500µg (120€) 

FITC-conjugated 
Donkey Anti-Mouse IgG 

715-095-151 Jackson ImmunoResearch 500µg (120€) 

AMCA-conjugated 
Donkey Anti-Rabbit IgG 

711-155-152 Jackson ImmunoResearch 500µg (125€) 

Di-sodium 
hydrogenphosphate-
dihydrate 
(Na2HPO4*2H2O) 

106580 Merck 1-5kg (in request) 

Sodium 
dihydrogenphosphate-
dihydrate 
(NaH2PO4*2H2O) 

106345 Merck 1-5kg (in request) 

Sodium chloride (NaCl) 221 Chemical store University  
Triton X-100 93443 Fluka (Sigma-Aldrich) 500ml (158€) 
Aqua-Poly/Mount 18606 Polysciences 20ml (45.50€) 
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TIMM STAINING (GERMAN VERSION)  

  

Timm Färbung 
Schwegler and Lipp 1983, Behav. Brain Res.7, 1-38_____________________________________________ 
 
Narkose: 
Äther 
 
Perfusion: 
 
1.        Vorspülen: 1.17% Na+-Sulfid gepuffert (pH 7.35) 
   3 min  
2.        Perfusion:  3% Glutaraldehyd in 0.15M Sörensen´s  
   Phosphatpuffer (pH 7.35) 
   5 min 
3.      Nachspülen: 1.17% Na+-Sulfid gepuffert  
   (pH 7.35) 
   7 min 
 
Nachfix 
ganze Gehirne über Nacht in Glutaraldehyd  
(s.o) mit 20% Saccharose 
 
Schneiden 
Gefriermikrotom 
20 μm Horizontalschnitte auf Objektträger 
 
Timm´s Lösung 
180 ml gefilterte 50%ige Akaziengummi-Lsg.  
 + 30 ml Zitrat-Puffer  
 + 90 ml 5%ige Hydrochinon-Lsg 
 + 0,75 ml 17%iges AgNO3 
 

 
Entwicklung 
60-120 min im Dunkeln im Wärmeschrank bei 30°C inkubieren lassen 
Prüfen ob sich innere von äußerer Molekularschicht abgrenzt 
Schnitte einmal unter fließendes Leitungswasser halten 
Anschließend 10 min im selbigen spülen 
Entwässern (3X5min 96% EtOH, 3x5 100% EtOH, 3x5 min Xylol),Eindeckeln

Natriumsulfid gepuffert: 
33,42g Na-sulfid (Na2S 7-9 
H2O) und 11,9g Na-hydrogen 
phosphat (NaH2PO4 x H20) in 
800ml Aqua dest. lösen, pH 7,35 
einstellen, und auf 1l auffüllen.  

Stammlösung A:  
9.078g Kaliumhydrogenphosphat (KH2PO4) 
in 1000 ml Aqua dest. lösen. 
Stammlösung B: 
11.876g Di-natriumghydrogenphosphat 
(Na2HPO4x2H20) in 1000 ml Aqua dest 
lösen. 
Glutaraldehyd in Sörensen´s Puffer (für 
800 ml) 
638ml der Lsg B und 162 ml der Lsg A und 
96 ml 25%iges GA mischen und pH 7,35 
einstellen. 100 ml davon für Nachfix in 20% 
Saccharose geben. 
Akaziengummi-Lösung (50%ig) 
500g Acacia in 1000ml A.dest lösen 
(Wasser langsam dazu geben). Etwa 1 
Woche  bei RT rühren lassen. Dann 
(abfiltrieren) und in 60ml Portionen 
einfrieren. 

Ansetzen der TIMM-Lösung 
Hydrochinonlsg. und Zitratpuffer gut mischen. 
50%-ige Akaziengummi-Lsg. dazu geben 
(WICHTIG: Reihenfolge beachten!) und gründlichst 
mischen (alles bei RT, es darf kein 
Raumtemperaturgradient entstehen!!) 
Diese Lsg 15 min. bei 28 °C warm stellen. Erst kurz 
vor der Reaktion die Silbernitrat-Lösung zugeben. 
Wenn ein Nierderschlag entsteht, Lösung nicht 
mehr verwenden und neu ansetzen. 200 ml 
Färbelösung reichen für 4 hohe Färbeküwetten (= 2 
Gehirne à 12 Objektträger 

Zitrat-Puffer (immer frisch ansetzen) 
7,65 g Zitronensäure (1 H20) und 7,05g 
Natriumcitrat (2 H2O) mit Aqua dest auf 30 
ml auffüllen.  
 

Silbernitrat-Lsg 
0,85g Silbernitrat (AgNo3) in 5ml Aqua dest. 
lösen. In Alufolie aufbewahren.  

Hydrochinon-Lsg 
4,5g Hydrochinon mit Aqua dest auf 90ml 
auffüllen. Die Lsg kann bei längerer 
Lagerung gelblich werden. Hat jedoch 
keinen Einfluß auf die Qualität. 

Wichtig: Alle für diesen Versuch verwendeten Gefäße müssen mindestens 
24h in 10% RBS eingelegt und 10x mit warmen, 10x mit kalten Wasser und 
10x mit Aqua dest. gewaschen und im Wärmeschrank getrocknet werden. 

Alle Angaben für 2 Gehirne (die der 
Versuchsleiter ausgeschlossen) 
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IMMUNOFLUORESCENCE AGAINST ZNT3 
 
Defrost the slices (paraformaldehyde fixated) 
 

Treatment Substance Dilution Incuba-
tion 

Washing 10 mM PBS (s. stock sol.) 4x5’ 

Blocking 5% Donkey Serum 0,15ml DS in 2,85ml PBS/T 
(1ml/cavity.; 3 cav./animal) 

60’ 

1st Antibodies Antibody rabbit anti-ZnT3 
1:500 in 5% DS-PBS/T 

 

Per cav.: 
1,6µl to 788,4µl 5% DS-PBS/T 

Over 
night;  

RT 
Washing 10 mM PBS (s. Stock sol.) 4x5’ 

2nd Antibodies Antibody donkey anti-rabbit 
AMCA in 2% BSA-PBS 1:50 

 

(60mg BSA in 2,94ml PBS) 
16µl, 768µl in 2% BSA-PBS/ cav. 

(AB solved 1 :1 in glycerol  total volume 32µl) 
 

45’

Washing 10 mM PBS (s. Stock sol.) 3x5’ 

Washing A. dest. - 1x5’ 

 
Mount on slides and dry on heater; coverslip with AquaPolyMount. Store in the dark. 
 
 
Antibodies 
 
Rabbit anti-ZnT3: Synaptic Systems, Göttingen, Germany, 1:500 
 
Donkey anti-rabbit AMCA: Jackson ImmunoResearch Europe, Newmarket, Suffolk, UK 
(711-155-152), 1:50 
 
Stock solutions  
 
0.4M Phosphate buffer, pH 7.4 (PB) 

 114g Dinatriumhydrogenphosphatdihydrat (Na2HPO4*2H2O) 
 24,8g Natriumdihydrogenphosphatdihydrat (NaH2PO4*2H2O) 
 Fill with A. dest to 1800ml 
 Adjust pH 7.4 (with 1N NaOH) 
 Fill with A. dest to 2000ml 

 Store at RT. 
 

10mM Phosphate buffer Saline, pH 7.4 (PBS/T): 0.15M Natriumchlorid, 0.1% Triton 
 50ml 0.4M PB 
 1950ml A. dest. 
 17g NaCl  
 2 ml Triton X-100 

 Store at 4°C.
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