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1 Introduction

In the last years, scientific progress in biotechnology has been enormous. Much of the
research effort has been spent on DeoxyriboNucleic Acid (DNA). DNA is one of the most
important molecules in the cell, as it contains the genetic code. For example, it describes
the sequences of animo acids of the proteins, and the structure of the organism as well.

The importance of DNA in the cell has led to much research effort being spent on the
properties of this molecule. Today, many applications are available, which did not exist
before:

• For example, it is now possible to identify people by their genetic fingerprint,
which is already a standard application in forensic research. In many cases, a
unique identification is still possible after years.

• Another application is the investigation of genealogies. Here, genetic fingerprints of
different persons are investigated. If the patterns show identical parts, the persons
are relatives of each other.

• By sequencing (i. e. analyzing the sequence of base pairs, Ch. 1.1) certain parts of
the DNA, it is possible to detect hereditary diseases even before the fetus is born.

• Another possibility is to inject a DNA molecule into a stem cell, or even a single egg
cell. This leads to an identical clone of a body part, or a complete new organism
with the same genes as the original one.

Note that all these applications have many benefits on the one hand. On the other
hand, all these applications may easily lead to problems. For example, if a prenatal
investigation indicates that the fetus will suffer from a hereditary disease at the age of
20, the decision whether to perform an abortion or not is a severe decision. In this case,
no investigation at all would have also been a considerable option. This example shows
that a thorough discussion about applications in biotechnology is needed, and already
performed.

I am convinced that acceptable solutions will be found, and will not discuss possi-
ble applications like the ones described above. The applications above rely on a set of
efficient tools to handle DNA. One of these tools is an efficient separation of DNA frag-
ments by length (without breaking the DNA), which I will investigate in this thesis. An
overview of the chemical structure of DNA is given in chapter 1.1, and current separa-
tion techniques are introduced in chapter 1.2. For simulation, I used Brownian dynamics
of a coarse-grained model of DNA. The simulation model is discussed in chapter 2. I
performed simulations on entropic trap arrays with a DC field (Ch. 3), on geometrically
structured micro channels with a DC field (Ch. 4), and an AC field on an array related
to the microchannel (Ch. 5). This thesis is concluded in chapter 6.
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1.1 Structure of double-stranded DNA

1.1 Structure of double-stranded DNA

Double stranded DNA (ds-DNA) consists of two complementary strands. Each of these
consists of a backbone, to which the nucleic acids are connected. The most common
nucleic acids are shown in figure 1.1. However, unusual acids also exist [1]. The acids

Figure 1.1: Acid bases of DNA [1]

are connected to a backbone, which is a periodic sequence of phosphoric acids and
sugars. In the double stranded form, two opposing nucleic acids form one base pair.
The opposing base pairs are:

• (T)hymine ↔ (A)denine

• (C)ytosine ↔ (G)uanine

Base pairs consisting of Thymine and Adenine are connected by two hydrogen bonds,
and Cytosine and Guanine are attached to each other by three hydrogen bonds [2]. This
pairing was discovered by Watson and Crick in 1953 [3]. The structure of double stranded
DNA is given in figure 1.2. As the two types of opposite base pairs occupy roughly the
same shape, the folding of double stranded DNA can be regarded as independent of the
base pair sequence.

These two strands form a double helix, with the sugar-phosphate backbone on the
outside, and the basepairs inside the double helix. Note that each single base pair is
located off the helix axis. Thus the two strands are not located symmetrically around the
helix axis, and the two strands can be distinguished from each other. DNA replication
is a rather complex procedure, as the two strands are not equal in the double helix, and
the backbone also defines a reading direction. Therefore, the replication process works
periodically in different stages. A description is given in references [4, 5].

7



1 Introduction

Figure 1.2: Structure of double stranded DNA, shown by calotte (left) and rod model
(right). Complemenatry base pairs are located inside the two sugar-
phosphate backbones. Taken from
http://www.oci.unizh.ch/edu/lectures/material/AC BII.

1.1.1 Properties of double-stranded DNA

When comparing simulation to experimental data, it is necessary to match the relevant
parameters of the experiment to the corresponding ones in simulation. The most relevant
properties of double stranded DNA, combined with their consequences to computer
simulations will be discussed below.

• DNA is a charged polyelectrolyte with two negative charges per base pair. Thus
each monomer is subject to and electric field, and the force on a single monomer
depends on the monomer’s position only.

• DNA molecules are usually investigated in aqueous solution. This implies that
the DNA fragment is surrounded by counter ions, which screen the charges of the
DNA molecule. This layer can be separated into the Stern layer, which is fixed
to the ion, and the diffuse layer, covering the Stern layer. In physiological con-
didtions, the thickness of the Stern layer is roughly given by the Bjerrum length,
which is typically around 0.7nm in water, and the Debye length, on which electro-
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1.2 Separation Devices

static interactions are screened, is around 2nm. A detailed discussion is given in
reference [6].

• As the base pairs occupy roughly the same space inside the double helix, the folding
of double stranded DNA is independent on the sequence of base pairs. Thus even
a coarse-grained DNA molecule is easy to describe. Note that this is much easier
than, for example, protein folding [7], or even RNA folding [8].

• The radius of gyration Rg is typically around a few µm, depending on the length
of the fragment. For example, λ-DNA consists of 48kbp, and exhibits a radius of
gyration Rg ≈ 0.7µm [9].

• The diameter of the DNA double helix is around 2nm, and thus comparable to the
Debye screening length.

• DNA is a rather stiff polymer. In water, the persistence length is typically around
45nm [10, 11]. Thus electrostatic interactions along the polymer backbone can be
neglected, as these are much shorter in range.

• The distance between two base pairs along the double helix is approximately 3.4Å,
and ten base pairs form one full turn of the double helix [1]. Thus each turn of the
helix has a length of 34Å.

• The number of base pairs stored in the DNA molecule reaches up to 3 · 109 for
human DNA. Note that this amount of DNA is not stored in one strand, but in 46
chromosomes [1]. Assuming that the DNA fragments are equal in length, human
DNA has a contour length of roughly 2cm.

To summarize, DNA is very interesting, not only for biologists, but for physicists
as well, as it is the ideal polyelectrolyte. Electrostatics along the backbone do not
contribute notably, as the double helix is rather stiff, but the application of an external
force is simple. Treating hydrodynamics of polymers in solution is, in general, a delicate
task [12]. In this case, however, electroosmotic and hydrodynamic interactions screen
each other [6]. Furthermore, the folding is independent of the sequence of base pairs,
allowing for a simple model. Thus it is possible to model double stranded DNA on
a coarse-grained level by a stiff bead-spring model. The model used in simulation is
described in chapter 2.

1.2 Separation Devices

Currently, many different separation devices are in use or under development [13, 6]. As
DNA is a charged polyelectrolyte, separation is usually achieved by a subtle interplay of
an applied electric field and geometric barriers of some kind.

One type of device uses a polymer gel as a sieving matrix. Here, the entangled polymer
strands form a random sieving matrix. Electrophoresis in polymer gels is widely used
and well understood.

9



1 Introduction

Another category of separation devices is based on artificial sieving matrices. An
overview of these µ − TAS (Total Analysis Systems) devices and their biological appli-
cations is given in reference [14]. These devices benefit from the possibility of being
designed for a special purpose, even sorting of cells is possible with a cheap device [15].
Whereas in gels the pore size varies and is statistically distributed, it is easy to construct
devices very accurately due to the recent advances in micro technology [16]. Furthermore,
it is possible to exploit interactions with the walls, as the surface to volume ratio cannot
be ignored [17]. In small microfluidic channels, the migration of long DNA molecules
is already affected when the walls are smooth and chemically neutral [18]. A thorough
examination of polyelectrolytes in solution and at walls by computer simulations is given
in reference [19]. Is is also possible to chemically modify the surface of the device for a
special purpose, like antibodies, polymer brushes, etc. [20]. In addition, the relaxation
times need to be considered while constructing a device, as it may easily exceed the
migration time from one obstacle to another [21]. This is also discussed in chapter 3.4.2
and reference [22]. As the cross section of the device is very small, it is now possible
to observe single molecules by video microscopy during migration [23]. With a proper
geometry and a pulsed field, it is also possible to mix sample volumes [24]. Mixing is also
possible by hydrodynamic focusing [25], or by a simple T-form device [26]. An overview
of some mixing techniques is given in references [27, 28]. Note that if the hydrodynamic
flow exceeds a critical value, DNA may fragment [29]. In that case, the device is not
useful for separation, as it destroys the sample DNA.

A few of these separation devices shall be described below. Note that separation
of DNA by electrophoresis in free solution does not work, as DNA exhibits a friction
that proportional to the number of base pairs, which just balances out the effect of the
homogeneous charge along its own contour [6].

1.2.1 Electrophoresis in a Gel

b ca
Figure 1.3: Electrophoresis in a gel: Ogston sieving (a), reptation without orientation

(b), and biased reptation (c)
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1.2 Separation Devices

Up to recent days, electrophoresis is often performed in polymer gels. A schematic
drawing of the different regimes is given in figure 1.3:

a: Very short DNA fragments with a diameter comparable to the pore size have to
squeeze through the pores of the gel as a whole. This regime is called Ogston
sieving.

b: At a certain length, the chains are no longer able to squeeze through a single pore
without large deformations. In this case, one loop of the DNA fragment will
penetrate a pore, and the rest will get pulled through that pore by the initial loop.
This regime is called “reptation without orientation”. The name “reptation” is
related to the movement of the DNA strand, which is very similar to that of a
snake moving between obstacles [30, 31, 32].

c: Long DNA fragments reveal a migration behavior which is very similar to that
described in (b), but in this case the DNA fragment is sufficiently long to exhibit
an orientation. This regime is called “biased reptation”.

Electrophoresis in a polymer gel has the advantage that it is widely used and well
understood [6]. However, the mobility µ of a DNA fragment with N base pairs in the
biased reptation regime is given by:

(

µ

µ0

)

BRM

≈ 1

3

(

1

N
+

ε2

3

)

, (1.1)

where µ0 is the free-flow mobility, and ε represents the reduced electric field [6]. As a con-
sequence, electrophoresis in a gel is unable to efficiently separate long DNA strands [33,
34]. In experiments, separation becomes inefficient for DNA strands longer than ∼
20kbp [35], and fragments longer than ∼ 40kbp cannot be separated any more [36].

One way to enhance the separation capability of electrophoresis in gels is to use pulsed
electric fields [37], which employ the direction of the DNA molecule in biased reptation:
the reorientation of the molecule direction does depend on the fragment’s length. Suc-
cessful separation of up to 10 Mbp has been reported [38, 39]. Unfortunately, the sepa-
ration in pulsed field gel electrophoresis needs the DNA fragments to relax. Therefore,
separation usually takes from many hours up to several days [40].

1.2.2 Capillary Gel Electrophoresis

One way to effectively enhance the separation performance of gels is to use gel elec-
trophoresis in a capillary [41]. Whereas the migration mechanisms of DNA in gels
are mostly unaffected, additional effects arise from the fact that the DNA fragments
are now interacting with the walls of the capillary, whose diameter is usually around
50− 100µm [6]. Furthermore, it is possible to enhance the separation performance in an
array [13], and it is possible to use it in a lab-on-a-chip device [16]. Books on capillary
electrophoresis are given in references [42, 43, 44].

Capillary gel electrophoresis has also been investigated by computer simulations. Dose
et al. [45] have computed the development of flows during the separation, and Mosher

11



1 Introduction

et al. [46] have presented a model to describe electrophoresis in capillaries including
electroosmotic flow.

The biggest success for gel electrophoresis in capillaries was the successful sequencing
of the human genome in the year 2000, years ahead of the original estimate [47, 48].

However, it is not trivial to incorporate a polymer gel into a capillary, especially those
used in ordinary gel electrophoresis. The polymers may break, bubbles can occur, or
the device gets clogged in the production process [6]. On the other hand, it is possible
to use fluids, which are not usable in free-flow electrophoresis.

1.2.3 Entropic Trap Arrays

Another length-dependent mechanism has been discovered by Baumgärtner and Muthu-
kumar [49, 50, 51]. It is different from the Ogston sieving and reptation described above
(Ch. 1.2.1, Ref. [52]). A schematic drawing of entropic trapping is shown in figure 1.4.

Figure 1.4: Entropic trapping: The penetration of the narrow region by the initial loop
reduces the entropic free energy of the coil.

Here, the polymer gets stuck at a sudden narrowing of the device, and an initial loop
penetrates the narrow region. This reduces the entropic free energy of the polymer,
hence the name. As the entropic energy loss increases with the chain length, long chains
are naively expected to migrate slower than short ones.

Han and Craighead have successfully constructed an entropic trap device, and found
length-dependent behavior due to entropic trapping [53, 54, 55, 56]. In their experiments,
the width of the narrow region is around 90nm, which is the same order of magnitude
as the persistence length of DNA. They also performed a simple analytic calculation,
and are able to explain the counter-intuitive finding that long chains migrate faster than
short ones.

These results have motivated several computer simulations. A small selection of these
is described below.

A simulation of the device presented by Han et al. has been performed by Tessier
et al. [57] by a Monte Carlo simulation on a lattice. The simulation results confirm the
findings of Han et al.. Later, an off-lattice, Brownian dynamics simulation was performed
by me (Ch. 3), and a new trapping mechanism discovered (Ch. 3.4.5), in collaboration
with Friederike Schmid [58].

An examination of the free-energy landscape of the escape process was performed by
Chen et al. [59]. The findings do not fully support the results found by Han et al..

12



1.2 Separation Devices

However, one possible explanation for the deviations can be found in the fact that long
chains are unable to relax into a coiled conformation, as is shown in chapter 3.4.2.
Therefore, back-to-back escape processes are correlated.

Tessier et al. [60] have also investigated the influence of a pulsed electric field with
mean 0. They find that entropic trapping can be exploited as a ratchet mechanism.

1.2.4 Geometrically structured Microchannels

Doung et al. have presented a device which is very similar to entropic traps [61, 62].
A schematic drawing is shown in figure 1.5, and an SEM picture of the actual device is
shown in figure 4.1. It also consists of a periodic sequence of wide and narrow regions,

Figure 1.5: Geometrically structured microchannel. The width of the narrow region
allows for a coiled conformation of the polymer.

but the width of the narrow regions is comparable to the radius of gyration of the DNA
coil. Thus no uncoiling is necessary when passing the narrow region, and an entropic
trapping mechanism cannot be applied here. However, chains may still get caught in
the wide region, as described in chapter 3.4.5, and long chains were expected to migrate
faster than short ones.

In experiments, the opposite migration order was observed, i. e. long DNA fragments
migrated slower than short ones [61, 62]. At even higher fields, two distinct migration
states are observed [63, 64]. This unforeseen behavior is discussed in detail in chapter 4.

1.2.5 Microsieves

Many more separation devices have been constructed. A brief overview of some is given
below.

Nixon et al. have investigated entropic trapping in channels with periodically varying
width [65]. In particular, they investigated two critical field strengths: the minimum
field that is necessary to overcome the entropic free energy barrier and also the field
for which the longitudinal diffusion reaches a maximum. In their simulations, they find
three regimes: at low fields, entropic trapping dominates the migration, and at high
fields the migration is not influenced by entropic trapping, but by an effective friction
due to the barriers. At intermediate fields, both these effects affect the migration.

Slater et al. have shown that asymmetric cavities are able to induce a net flow for
zero-mean, time-symmetric electric fields [66]. They also find that entropic trapping is
able to enhance ratchet effects.
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1 Introduction

It is also possible to exploit a complex flow pattern. In such a device, it is possible
to stretch DNA molecules by a hydrodynamic flow at channel junctions [67], or by an
induced shear [68].

Curves in the microchannel may also be used as an efficient separation device [69, 70].
Such a device is even capable of a separation in half a minute. DNA molecules may also
be sorted in a simple T-junction device [71], and this device does not depend on the
mobility of the sample DNA. Separation of a DNA-ladder from 2 − 200kbp is reported.

Turner et al. have presented length dependent mobility in an artificial gel consisting
of an rectangular array of sub-micron obstacles [72]. They reported successful separation
of the investigated DNA strands, and the mobilities differed by a factor of almost 2. A
very similar device has been presented by Bakajin et al. [35]. Here, the device consists
of a hexagonal array of pillars with 2µm width. Separation of 100kbp-DNA is reported
in ∼ 10 seconds with an asymmetrically pulsed electric field. Later, separation of DNA
fragments with 61 − 209kbp were separated in 15 seconds [40].

1.2.6 Ratchets

Ratchet effects can be used to induce a net flow with a mean zero field [73], and a few
examples have already been described above. Basically, a ratchet is driven periodically.
Furthermore, it is necessary to break the symmetry in either the time dependence of the
applied field, or the setup of the device. An example showing a ratchet mechanism due

a)

b)

c)

Figure 1.6: Ratchet effect due to an asymmetric electric field. When the field is switched
on, all particles move towards the minima of the potential (a). At some
time, the electric field is switched off, the particles can diffuse freely (b).
Afterwards, the electric field is switched on again. As the peaks of the
potential are not symmetric around the minima, a net flow to the right is
induced (c). For a better understanding, only one minimum is filled in the
initial state.

to broken symmetry of the space is shown in figure 1.6. In this case, an electric field
is switched on and off periodically. When the electric field is switched on, all particles
move towards the minima of the electric field (a). Later, the electric field is switched off,
and the particles may diffuse freely in both directions (b). At this point, the distribution
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1.2 Separation Devices

of the particles can be assumed Gaussian, the center located at the minimum. When
the field is switched on again, the particles move according to the electric field. As
the distances to the peaks surrounding the initial minimum differ on both sides, more
particles have diffused sufficiently to move to the right than to the left. Thus, a net
drift to the right is induced. Successful driving of DNA by this mechanism is reported
in reference [74, 75].

It is also possible to use a ratchet combined with a force gradient (pressure, gravity,
etc). In that case, a continuous operation of the device is possible, and particles below
a certain threshold move to the one side, and above the threshold to the other [76]. It is
also possible to combine a polymer gel with a ratchet mechanism [77]. Another way to
exploit a ratchet mechanism is to use a pulsed electric field with mean zero (Fig. 2.9),
or with an asymmetric geometry [78, 79].
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2 The Simulation Model

There are two major techniques in computer simulation. On the one hand side, Monte
Carlo (MC) simulations compute the partition function by proposing single moves which
are either rejected or accepted according to a “Metropolis” criterion [80]. Although
this method is very fast and efficient, it is not useful to study time-dependent or non-
equilibrium systems. In the work described here, the system is far from equilibrium due
to the external electric field.

The other common method is called molecular dynamics (MD) simulation [80, 81]. In
this case, the equations of motion are integrated numerically:

mi~̈ri = −∂V

∂~r

∣

∣

∣

∣

~r=~ri

(2.1)

MD simulation requires careful selection of the integration algorithm. First, the com-
putation of the forces f = − ∂V

∂~r may be complex. Thus a sophisticated algorithm has
to work properly with one evaluation of the forces per time step only. Moreover, it is
important that the algorithm provides accurate results:

• Short-time accuracy:
The integration algorithm has to be accurate in a single, finite time step. The time
step is favorably rather large to speed up simulations.

• Long-time stability:
It is most important that the algorithm is stable on long time scales, i. e., it
conserves conservation laws and symmetries. For example, in the micro canonical
ensemble, the energy of the system has to be conserved:

limt→∞

∣

∣

∣

E(t)−E(0)
E(0)

∣

∣

∣
� 1

2.1 Integration Algorithms

2.1.1 Verlet Algorithm

The usual integration algorithm for MD simulation is the Verlet algorithm. It is based
on the following time step:

~ri(t + ∆t) = 2~ri(t) − ~ri(t − ∆t) +
h2

mi

~fi(t) + O(∆4
t ) (2.2)

~vi(t) =
1

2∆t
[~ri(t + ∆t) − ~ri(t − ∆t)] + O(∆2

t ), (2.3)
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2.1 Integration Algorithms

which can be derived from the Taylor series of the real trajectory. In this form, it is
inconvenient for computer simulation. There is a subtraction of two large numbers in
equation 2.2, when the difference 2~ri(t)−~ri(t−∆t) is computed. This may lead to large
numeric errors in simulation. Furthermore, the velocities can only be computed after
one additional time step. However, it is possible to convert these equations to:

~ri(t + ∆t) = ~ri(t) + h~vi(t) +
∆2

t

2mi

~fi(t) + O(∆3
t ) (2.4)

~vi(t + ∆t) = ~vi(t) +
∆t

2mi

(

~fi(t) + ~fi(t + ∆t)
)

+ O(∆3
t ) (2.5)

These equations are algebraically equivalent to the equations 2.2 and 2.3, and are known
as the Velocity-Verlet algorithm. It has the same advantages as the Verlet algorithm,
which are:

• Local error of order ∆3
t

• Global error of order ∆2
t

• The two equations are symmetric in ∆t, hence the algorithm is time-reversible

• Exact phase-space conservation (”symplectic”)

Benefiting from the properties described above, the Velocity-Verlet algorithm has good
short-time accuracy and excellent long-time stability. Today, the Verlet algorithm is
standard in MD simulation [80].

2.1.2 Overdamped Dynamics

Although the Verlet algorithm provides excellent properties for MD simulation, some-
times it is necessary to perform simulations in the limit m → 0. Thus a definition of the
velocity is only possible by ~vi(t) ≈ ~ri(t+∆t)−~ri(t)

∆t
. A very simple algorithm that computes

the forces only once per time step and is capable of integrating overdamped systems is
the Euler algorithm. It is based on the time step

~ri(t + ∆t) = ~ri(t) + ∆t · ~fi(t). (2.6)

The properties of this algorithm are rather poor:

• Local error of order ∆2
t

• Global error of order ∆t

• The algorithm is not time-reversible

• The algorithm is not symplectic

However, in the case of Langevin dynamics (Ch. 2.2), time-reversibility and sym-
plecticity are destroyed by the friction and the random force. This also destroys any
higher-order convergence of the error. Thus the Euler algorithm is suitable for simulating
overdamped Langevin dynamics.
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2 Simulation Model

2.2 Langevin Dynamics

On the one hand, the interaction of the DNA molecule with the surrounding solvent
particles cannot be neglected during simulation. On the other hand, it is impossible
to incorporate a full-scale MD simulation, because in the limit of long polymers the
monomer density inside the coiled polymer goes to zero [82]. Thus the solvent particles
need to be replaced by an external interaction describing the impulse transfered by the
solvent molecules.

In this case, the effect of the solvent molecules is described by a Langevin equa-
tion (Eq. 2.7 and 2.8). The system is described by a Kramer’s equation [83]: the solvent
is replaced by an effective friction ζ and a random force ~η. Thus the equation of motion
for particle i becomes

~̇ri = ~vi (2.7)

m~̇vi = ~fi − ζ~vi + ~ηi, (2.8)

where ~ri is the position, ~vi is the velocity and ~fi is the deterministic force acting on
the particle. This kind of dynamics is also called Brownian dynamics, as it describes
Brownian motion of a particle on a coarse-grained level.

Given the friction ζ, the random force ~ηi has to fulfill [84]

< ~ηi > = 0 (2.9)

< ηi,α(t)ηj,β(t′) > = 2ζk BTδi,jδα,βδ(t − t′) (2.10)

with cartesian coordinates {α, β} = {x, y, z}, and t and t′ two given times. Equation 2.9
simply demands that the random force is unbiased and equation 2.10 demands that
the random force has to be uncorrelated for different particles, cartesian coordinates
and different times. Furthermore, it defines the variance of the random force. For the
particle i, this can be integrated to the well-known diffusion equation

〈

(~ri(t) − ~ri(0))
2
〉

= 6
kBT

ζ
t =: 6Dt (2.11)

with the diffusion constant D.

2.2.1 Langevin Dynamics in the Verlet Algorithm

Substitution of the Langevin equation into the Verlet algorithm leads to the following
time step:

~vi(t + ∆t

2 ) = ~vi(t) + ∆t

2mi

~fi(~ri(t)) − ζ
mi

∆t~vi(t) + 1
mi

√
2kBTζ∆tη̂i(t)

~ri(t + ∆t) = ~ri(t) + ∆t~vi(t + ∆t

2 )

~vi(t + ∆t) = ~vi(t + ∆t

2mi
) + ∆t

2
~fi(~ri(t + ∆t))

(2.12)
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2.3 The Simulation Model

The random number η̂i is proportional to ~ηi and fulfills

< (η̂i,α)2 >= 1. (2.13)

The random numbers ~ηi(t) do not have to be Gaussian, equally distributed random num-
bers are sufficient as well [85]. In the simulation, the random numbers η̂i are distributed
equally inside the unit sphere. These are computed much more easily [86].

Selection of the Time Step

To compute the short-time dynamics correctly, it is necessary to keep the time step low.
However, long-time averages are affected by the time step as well, which has already
been shown for a single particle [86]. In this case, the critical parameter of the time step
is ζ∆t, which should be kept low.

2.2.2 Overdamped Dynamics

It turns out that the simulation model described above shows inertia effects, which in
some cases is an artifact, as relaxation times may be prolonged compared to experi-
ment 4.3. Therefore, some simulations were performed using overdamped dynamics to
test the validity of the model.

In the case of m → 0, the equations of motion ((Eq. 2.7 and 2.8) become

ζ~̇ ir = ~fi + ~ηi. (2.14)

These are substituted into the Euler algorithm described above (Eq. 2.6):

~ri(t + ∆t) = ~ri(t) +
1

ζ

[

∆t
~fi +

√

2kBTζ∆tη̂i

]

, (2.15)

where η̂ fulfills equation 2.13.
This algorithm has been used successful before [87].

Diffusion

The mean quadratic drift of a free particle in one time step can be computed easily:

< (~ri(t + ∆t) − ~ri(t))
2 >=

2kBTζ∆t

ζ2
< η̂2

i >=
6kBT

ζ
∆t = 6D∆t (2.16)

Thus the equation of diffusion (Eq. 2.11) is fulfilled naturally in every time step.

2.3 The Simulation Model

The properties of a polymer of sufficient length are mostly dependent on the monomer
number, the internal structure becomes neglectable [84]. The simplest polymer model is
the Gaussian Chain Model (Fig. 2.1): in this model, neighboring monomers are connected
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2 Simulation Model

Figure 2.1: Gaussian chain model: Schematic drawing

by harmonic springs with spring constant k

Vbond =
1

2
kr2

bond. (2.17)

To model the excluded volume, a repulsive Weeks-Chandler-Andersen (WCA) potential
acting between all monomers is introduced. This is simply a Lennard-Jones potential
which has been cut off at the equilibrium point [88, 89, 81]:

Vpair(r)/kBT =

{

(σ
r )12 − (σ

r )6 + 1
4 : ( r

σ ) ≤ 21/6,
0 : otherwise,

(2.18)

Although the interaction is short ranged in position space, it is long ranged regarded as a
backbone interaction. Thus both local and global folding are affected and the exponent
ν changes to 0.588 ± 0.001 [90, 91]. The scaling has been tested in reference [86].

For simplicity, the mass m has been set to unity in the simulation. Proper behavior
of the model can be achieved by adjusting the parameters of the potentials.

This model is integrated with Langevin dynamics and a Verlet or Euler algorithm as
described above. A detailed discussion of the properties of Gaussian chains is given in
reference [84, 86]. Models of this kind have been used successfully before [92, 93, 94, 95,
96].

2.4 Natural Units of the Simulation

When adapting the simulation data to experimental data, it is necessary to match the
natural units of the simulation to those of the experiment. These are the length σLJ ≡ σ
of the Lennard-Jones potential (Eq. 2.18), the friction ζ, the charge per bead |q|, and
the Temperature T .

The energy unit of the simulation is ∈= kBT , which corresponds to the thermal
energy of 300kBK ≈ 0.026eV in experiments at room temperature. The time unit of
the simulation is given by t0 = σζ2/kBT , and the electric field unit is E0 = kBT/σ =
kBT/σ|q|. The free-flow mobility µ0 is given by µ0 = |q|/ζ = σ/t0E0.

These shall be related to experimental values in the chapters 3.3 and 4.3.
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2.5 Simulation Parameter Set

Figure 2.2: Entanglement: schematic drawing

2.5 Simulation Parameter Set

The mass has been set to unity during the simulation. The parameter values are:

T = 1 (2.19)

∆t =

{

10−2 : inertia dynamics
10−4 : overdamped dynamics

(2.20)

kB = 1 (2.21)

ζ = 1 (2.22)

εLJ = 1 (2.23)

σ = 1 (2.24)

k = 100 (2.25)

2.6 Entanglement

Another important effect in polymer dynamics is called entanglement. A schematic
drawing is given in fig. 2.2. A sufficiently high barrier of the potential ensures that no
bonds may cross each other. Usually, it is around 70kBT , thus the Boltzmann factor for
this event is neglectable [97]. In this simulation, the energy barrier is even higher, it is
around 160kBT . The bond length distribution agrees nicely with the prediction of the
Boltzmann factor [86]. To further ensure no bond crossing occurs during simulation, the
minimal and maximal bond length may be measured during simulation.

2.7 Properties of the free Chain

Most of the properties of the free chain have already been investigated in my diploma
thesis. Therefore only a brief summary will be given below:

• The critical parameter of the dynamics with inertia is ζ∆t = 0.01, which is quite
small. Therefore no correction of the temperature is necessary.

• Entanglement interactions (Ch. 2.6) are introduced by the tight springs. This has
been checked before.
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2 Simulation Model

Figure 2.3: Snapshot of a free polymer [86]

• The mobility of a free chain can be computed via

µ0 = 1/ζ ≡ 1

and is constant for all chains.

• The average bond length is 0.854σ, the equilibrium bond length is lb = 0.847σ.

• The excluded volume also introduces a persistence length, which is around lp ≈
1.6σ ≈ 1.9lb.

• The diffusion constant D is given by

D =
kBT

Nζ
(2.26)

• For long chains, the radius of gyration can be approximated by

Rg ≈ 0.5Nν , (2.27)

with N the number of monomers.

• Static properties of the chain, like the radius of gyration, Rg, or the persistence
length, lp, are independent of the dynamical model used in the simulation.

A snapshot of a polymer in free solution is given in figure 2.3.
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2.7 Properties of the free Chain
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Figure 2.4: Relaxation of a polymer with N = 10 monomers. For short time scales
(t < t0), inertia affects the relaxation. Thereafter, the graphs agree very
well.

2.7.1 Conformational Relaxation Time

One important property that has not been examined before for this parameter set is the
conformational relaxation time. It is the de-correlation time τ0 of the first Rouse mode

~X1 =
1

N

∑

n

(

(n + 1
2)π

N

)

~rn (2.28)

An example is given in figure 2.4. For short time scales (i. e. t < t0), inertia effects
dominate the decay of the correlation. On larger time scales, the agreement is very well.
A sophisticated extraction of a single relaxation time is difficult, because the correlation
on long time scales cannot be determined without huge errors. Therefore the values with
large errors have been neglected in the analysis. As the determination of a meaningful
cutoff is a delicate task for long chains, no errors were computed. The relaxation time
has been determined for chain lengths up to N = 100. The results of this analysis are
given in figure 2.5. The data for both dynamical models used agree very nicely, and can
be fitted by a power law very well. Note that the value of N = 100 has been omitted in
the analysis, as it deviates very strongly. The result of the regression is

τR = (0.048 ± 0.005)N 2.23±0.03 , (2.29)

which agrees very well with the prediction τR ∝ N1+2ν [84, 98].

2.7.2 Time of Diffusion by Rg

Another important time scale in polymer dynamics is the the time it takes the polymer
to diffuse by its own radius of gyration Rg. Using equation 2.11, this time τD can be
easily evaluated:

τD =
1

6
DR2

g =
1

6

Nζ

kBT
R2

g (2.30)
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Figure 2.5: Relaxation time τR for various chain lengths. For long chains, the results
deviate due to long relaxation times. Therefore the last value of the inertia
dynamics has been omitted. The relaxation time from the regression is τR =
(0.048 ± 0.005)N 2.23±0.03 .

The radius of gyration Rg has been computed before [86]. The radius of gyration was
found to be Rg ≈ 0.5Nν . Using equation 2.30, this leads to

τD ≈ 0.042N 1+2ν , (2.31)

which is very close to equation 2.29.
If the inertia of the chain is neglectable, i. e. a long chain or in the limit m → 0, the

conformational relaxation time τR can be estimated by evaluating the radius of gyration
Rg and the diffusion constant D, which are easier to determine both in simulation as
well as in experiment.

2.8 The Device

Generally, the device consists of a periodic sequence of thin and wide regions. A
schematic drawing can be found in Fig. 2.6. Basically, four parameters are needed

h w

h t

l t l w
x

z y

Figure 2.6: Schematic drawing of the investigated device. The coordinate system used
in the simulations is shown on the right.

to describe the geometry of the device:
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2.8 The Device

• the height of the wide region hw

• the length of the wide region lw

• the height of the thin region ht

• the length of the thin region lt.

Compared to my diploma work [86], tilted walls are no longer necessary because the
electric field is no longer homogeneous (chapter 2.9). The walls are set up soft and
purely repulsive. To describe the wall interaction, the Lennard-Jones potential that
describes the monomer repulsion (Eq. 2.18) is used. This implies that the walls are
covered with a repulsive layer of ≈ 1σ. To compute the force exerted on a monomer, the
nearest point of the wall is considered. In the corners, the forces of the adjacent walls
are summed up.

For the case of entropic trap arrays [53, 54, 55, 56], the device is very large in y-
direction. Thus no walls in that direction were introduced (Sec. 3). This idealization is
no longer valid in the case of the device presented by Duong et. al [62]. The depth of the
device is comparable to the radius of gyration of the DNA. To model the finite depth of
the device, walls in y-direction were also introduced in the simulation (Sec. 4).

2.8.1 Parallelization of the Device

To achieve better separation performance, a parallelized version of the device has been
simulated as well. A schematic drawing is given in figure 2.7. It consists of a periodic

Figure 2.7: Schematic drawing of the parallelized device. The single device unit is shown
in gray.

sequence of the device shown in fig. 2.6, which are alternatingly mirrored in the z-
direction. The walls covering the device in z-direction have been removed. Due to the
symmetry of this device, the electric field distribution inside the device is equivalent to
that of a single device (chapter 2.9).
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2 Simulation Model

2.9 Electric Field

DNA is charged uniformly along its contour. Thus in simulation each bead carries the
same charge, and is subject to an external force ~Fel = ~E(~r) · qbead. In simulation and
the following chapters qbead is set to unity. Charges do not interact with one another.

Figure 2.8: Electric field lines inside a sample device

Originally, the simulation program had been set up with a homogenous electric field.
Trajectories obtained from simulation revealed unrealistic long durations of stay [86],
which had not been reported before. In order to achieve results which were comparable
to experiment, the walls of the device had been tilted. Finding the correct tilt angle
remained very difficult and results were unfit for a detailed analysis.

However, a closer inspection reveals that the assumption of a homogenous electric field
cannot be justified. The device contains solvent molecules and thus mobile ions inside,
and consists of an insulator outside. The mobile charges will screen any local space
charge (Eq. 2.32) and also screen any electric field perpendicular to the wall (Eq. 2.33).
This leads to

∆Φ = 0 inside the device (2.32)

~n · ∇Φ = 0 at the walls (2.33)

Imposing a constant potential difference to a single device unit at the inlets now leads to
the electric potential Φ. Then the electric field can be computed by taking the derivative
of the potential Φ:

~fel ≡ ~E = −∇Φ (2.34)

Note the electric field is not homogeneous. The electric field of a sample device can be
found in fig. 2.8. Any given electric field refers to a potential difference applied to a
device and is thus some kind of average electric field.
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2.10 Neglected Interactions

2.9.1 Pulsed electric Field

As will be shown in chapter 4, there are combinations of electric field and device geome-
try, which are not favorable for separation. However, these exhibit two distinct migration
states. These are populated in different ratios depending on the electric field and the
chain length. To exploit these two migration states, a pulsed electric field is applied
to the device. A drawing of the pulsed electric field is given in figure 2.9. For a full

E
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E
1

t
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∆t
1

T = ∆t
1
 + ∆t

2

Figure 2.9: Schematic drawing of the pulsed electric field

description, only for parameters are necessary:

• The durations of the forward and backward pulse ∆t1 and ∆t2

• The electric fields applied during the two pulses E1 and E2

2.10 Neglected Interactions

Some important interactions are neglected by the simulation model. However, these
should not affect the simulation data seriously, as will be discussed below.

2.10.1 Electrostatic Interaction

Each base pair of DNA is charged with 2e−. Thus base pairs repel each other. How-
ever, electrostatic interactions are screened with a Debye length of roughly 2nm, which
is also roughly the diameter of the DNA strand. Taking into consideration the persis-
tence length of about 45nm [10, 11], electrostatic interactions along the DNA strand are
obviously neglectable.

2.10.2 Electroosmotic Flow

Another important effect of a charged object in solution is called electroosmosis. It occurs
when charged objects in solution are subject to an external electric field. Charged objects
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2 Simulation Model

Figure 2.10: Schematic drawing of electroosmotic flow: the surface is negatively charged.
Thus positive counterions are located near the walls. Application of an
electric field leads to a net flow.

in solution are always surrounded by counter ions, which are mobile. Thus application
of an electric field leads to a flow of the counter ions. My model does not consider
electroosmotic flow, or flow in general.

The experimental device used in chapter 4 is made of PDMS, which exhibits silanol
groups on its surface which dissociate under the experimental conditions. Thus the
experiments were carried out in microchannels with negatively charged surfaces. This
implies the generation of cathodic electroosmotic flow (EOF), which is shown in fig-
ure 2.10. The resulting mobility of DNA molecules is a sum of the electroosmotic and
electrophoretic mobilities. The DNA molecules migrate to the anode, indicating that
electrophoresis overcomes electroosmosis. However, recent experimental studies [99, 100]
show that under appropriate conditions, the EOF outside the Debye layer at the walls
of the device is directly proportional to the electric field. These are [100]:

• Low Reynolds number Re: Using the viscosity of water, an electroosmotic mobility
µeof = (2.9±0.6)·10−4cm2Vs [63], an electric field of 100V/cm, and a characteristic
length of 5µm, the Reynolds number turns out to be around 10−3.

• Low product of Reynolds and Strouhal number ReSt: The Strouhal number de-
scribes the relaxation of the flow into the steady state. The EOF relaxation time
is typically around 100µsec [45, 26], thus much shorter than experiments and ne-
glectable.

• Zero applied pressure difference between all inlets and outlets.

• Uniform fluid properties.

• Radii of curvature small compared to the Debye layer thickness: The PDMS pro-
duction process leads to slight deformations of the device, rounding off all corners
(see [63], Fig. 1a).

• Insulating walls: PDMS is an insulator and this assumption is also used to compute
the electric field.
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2.10 Neglected Interactions

Now, let α denote the proportionality constant between the electric field and the
electroosmotic flow: ~veof(~r) = α~E(~r), with α independent of ~r. Furthermore, let the
force ~fel denote the electric force and ~fo denote all other forces (Lennard-Jones, spring,
friction, walls) acting on a monomer. Hence the equation of motion for the velocity of
the monomer i (Eq. 2.8) becomes:

m~̇vi = ~fo,i + ~fel,i − ζ(~vi + ~veof(~r)) + ηi

= ~fo,i − (q + ζα) · ∇Φ(~r) + ηi,
(2.35)

where equation. 2.34 is used. Note that this equation is formally equivalent to the
original equation of motion (Eq. 2.8) with a rescaled charge q. In the overdamped case,
the equation of motion (Eq. 2.15) becomes

ζ~̇ri = ~fo,i − (q + ζα) · ∇Φ(~r) + ηi, (2.36)

which is again formally equivalent to the original equation of motion (Eq. 2.15). This
implies that for a proper adaptation, the total mobility µ has to be considered. It is the
sum of free flow mobility µ0 and electroosmotic mobility µeof. Note that this similitude
is not necessarily valid in the case of a time-dependent or high electric field.

2.10.3 Hydrodynamics

Hydrodynamic effects are not taken into account. This approximation must be ques-
tioned. On the one hand, DNA is always surrounded by counter ions, which are dragged
into the opposite direction of the DNA. Thus the DNA molecule experiences not only
hydrodynamic drag, but also an extra friction from the solvent molecules. In free solu-
tion, these two effects cancel each other [6]. This “hydrodynamic screening” accounts
for the free-draining property of DNA. However, the total cancellation fails if the DNA
molecule is blocked by a geometric barrier [101]. In that case, the counter ions will not
be immobilized, since counterions are still free to move. Furthermore, hydrodynamic
interactions affect the diffusion constant D. In our model, it scales with the chain length
N like a Rouse chain (D ∝ 1/N). Including hydrodynamic interactions, one would ex-
pect Zimm scaling (D ∝ 1/Rg ∝ 1/Nν). In experiments, the diffusion constant of DNA
is found to scale as D ∝ 1/N 0.672 [102].
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3 Simulation of Migration in Entropic Trap

Arrays

Parts of the results presented in this chapter have been published before by M. Streek,
F. Schmid, T. T. Duong and A. Ros in ref. [58]. The analytical calculations presented
in chapter 3.4.5, together with the necessary data evaluations, have been performed by
Friederike Schmid.

3.1 Introduction

A successful separation by length has been demonstrated by Han and Craighead in a
device called “entropic trap” [53, 54, 55, 56]. It is a periodic sequence of deep and
shallow regions which have been etched into a silicon surface and is covered by a pyrex
coverslip. The depth of the deep regions is around a few µm and thus allow for a coiled
conformation. The shallow regions are only 90nm in depth, and force the polymer into
an uncoiled state. A schematic drawing of the device is given in figure 3.1. To pass

t =90nmt =1.5−3  ml sµ y
z

x

L

Figure 3.1: Schematic drawing of the device presented by Han and Craighead [55]. The
width of the channel is much larger (≈ 30µm).

the shallow region, the polymers have to uncoil and thus overcome an entropic energy
barrier ∆FC (hence the name, “entropic trap”). Thus longer chains are expected to
migrate slower than short ones, as the energy barrier is higher.

Experimentally, it is observed that long chains migrate faster than short ones. This
implies that the simple picture given above cannot be applied in this way.

The energy barrier ∆FC has to be overcome and the escape process is initiated by a
thermal stretching (length x) of the polymer into the shallow constriction. On the one
hand, penetration of the shallow region costs entropic free energy proportional to x [103].
This assumption remains valid in the “blob” picture as well [104]. On the other hand,
there is an energy gain due to the electric field which is proportional to Ex2, where E
is the electric field [54]. Hence, there exists a critical length xc ∝ 1/E, below which the
entropic penalty dominates and the chain is driven back. For x > xc, the energy gain
dominates and the chain is driven through the constriction. The energy barrier ∆FC of
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3.2 Simulation Setup

the escape process is solely described by the free energy at xc, which depends only on the
electric field E. The rate of escape attempts, 1/τ0, increases with the chain size, since
longer chains have a greater contact area with the constriction. In this simple model,
the mean trapping time is given by [54]

τ = τ0 exp

(

∆F C

kBT

)

. (3.1)

This implies long chains migrate faster.

These results have motivated recent computer simulations. Tessier et al. have investi-
gated the migration in entropic traps using the bond fluctuation model [57]. This model
describes the polymer as a sequence of lattice sites which are either free or occupied. The
results confirm the trapping picture by Han et al. [53, 54, 55, 56]. They even present
evidence that the penetration depth x of the chain into the constriction can be used
as a “reaction coordinate” for escaping, with a critical value xc ∝ 1/E. However, the
simulation data reveal unexpected strong trapping of the polymer chains. Compared to
the persistence length, the width of the constriction is almost twice as large as that used
in experiment. This effect might be related to the lattice model used. The width of
the constriction is just 10 lattice sites, and each monomer occupies a cube with 8 lattice
sites. This leads to a persistence length of 2.8 lattice sites. Moreover, Monte Carlo (MC)
is not appropriate to simulate time-dependent phenomena, or driven systems. MC simu-
lations have been very successful for equilibrium systems, extensions to near-equilibrium
systems are available. In this system, each monomer is pulled by the electric field. It is
not clear how realistic MC moves describe directed motion, especially at high fields or
outside the deep regions, in which the chains may reach equilibrium.

Another interesting work has been presented recently by Chen et al. [59]. They inves-
tigate the free energy land scape of a single escape process by an off-lattice bead-spring
model with Monte Carlo methods. The initial configuration is that of a fully relaxed
chain in the absence of an electric field. With this starting point, the energy barrier
∆FC turns out to depend on the chain length for short chains, and levels off for longer
chains. The data do not seem to support the relation presented by Han and Craighead,
∆FC ∝ 1/E. The same limitations described for Monte Carlo simulations above also
apply here. Furthermore, the relaxation time of long chains may easily exceed the migra-
tion time of a single device period. Thus it is not clear if back-to-back escape processes
are uncorrelated.

3.2 Simulation Setup

For entropic traps, the width of the shallow regions is typically around 90nm [55]. This is
comparable to the persistence length of the DNA molecule, which is around 45nm [10, 11].
The height of the shallow region is set to 7σ, which leads to an effective height of 5σ if
the repulsive layer is subtracted. The length of the shallow region is set to 20σ, and the
depth of the deep region is (80 + 7)σ = 87σ. The total length of the device is 100σ. In
the lateral direction, the device is infinite. A snapshot of N = 1000 monomers is given
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3 Entropic Trap Arrays

Figure 3.2: Snapshot of N = 1000 monomers in an entropic trap device. The electric
field lines are shown as dashed lines.

in figure 3.2. This device has successfully been simulated before with a homogeneous
electric field [86].

Simulations were performed at electric fields ranging from 0.0025 . . . 0.04E0. Run
lengths varied from 4 · 108 . . . 2 · 109 with inertia dynamics, thus from 4 to 20 million t0.
The investigated chain lengths are N = 10, 20, 50, 100, 200, 500 and 1000 monomers.

3.3 Correspondence to Experimental Data

As the shallow regions exhibit a width comparable to the persistence length lp, it is
necessary to perform the length comparison with respect to this length scale. In this
case, 45nm correspond to 1.6σ, or σ ≡ 30nm. The effective width of the shallow region
is 5σ or 3lp, which corresponds to 150nm. In experiment, the width of the constriction
is 90nm, which is only twice the persistence length lp, but still comparable. The depth
of the deep region is tl = 1 − 3µm in experiment. In simulation, the depth is tl = 85σ,
which corresponds to 2.6µm and compares well to the experimental value.

The persistence length is also used to determine the number of base pairs per bead.
In this case, we have 1.9 beads per persistence length. A DNA molecule contains ap-
proximately 150 base pairs per persistence length. This leads to 1bead ≈ 80bp. Thus
the simulation covers the range of 0.8 . . . 80kbp. Han and Craighead [55] investigated
T2- and T7- DNA, which have 164 and 37.9 kilo base pairs, respectively. Thus the
investigated chain lengths are comparable to each other.

The time t0 is calculated from the diffusion constant D. For Rouse chains of length
N , D is given by

D =
kBT

Nζ
=

σ2

Nt0
. (3.2)

Experimentally, Stellwagen et. al have reported the relation [102]

D = 7.73 × 10−6(number of base pairs)−0.672cm2s−1 (3.3)
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3.4 Simulation Results and Discussion

Choosing N = 500 beads (40kbp) as a reference, one obtains t0 ≡ 2.9×10−6s. Simulation
times cover the range from 4 · 106 . . . 2 · 107, thus covering experimental times from 10
to 60 seconds.

The mobility µ0 can be found by matching the mobility of free chains. Unfortunately,
Han and Craighead do not provide explicit measurements. They only present a maximum
apparent mobility µmax ≈ 0.13 · 10−8m2/Vs [54]. Using the approximation that the
electric field consists of two distinct field strengths, it is possible to estimate the free-
flow mobility µ0 [58]. Applying the formula presented leads to µ0 = 0.55 · 10−8m2/Vs.
This value is untypically low [102]. Furthermore, the free-flow mobility µ0 is strongly
dependent on the buffer [105]. Using the free-flow mobility estimate given above, one
finds E0 ∼ 2·104V/cm. In experiment, electric field values ranging from 20 up to 80V/cm
have been investigated. Assuming a free-flow mobility as reported by Stellwagen et al.,
the electric fields correspond to ∼ 0.006−0.03E0 in simulation. Note this is just a rough
order-of-magnitude estimate.

The model parameter that has yet to be determined is the mass m of a single monomer.
Note this parameter does not influence the static properties of the polymer, like chain
flexibility or radius of gyration. The mass of the monomers does, however, influence
the vibrational modes of the polymer. One important property is the electrophoretic
relaxation time τe. It determines the time scale, on which the initial velocity of a molecule
in an electric field decays when it is suddenly switched off. In experiment, this time is
around 10−9 to 10−12s [42]. In simulation, the appropriate mass would be represented
by m ∼ 10−3 − 10−6ζt0. This implies that

〈

v2
〉

= 2kBT/m becomes large and thus
requires a small time step. To keep the simulation efficient, an unrealistic high mass
of m = 1ζt0 is used. However, both in simulation and in experiment, the properties of
interest (like traveling times) take place on time scales much larger than τe, and do not
depend on short-time details of the dynamics.

3.4 Simulation Results and Discussion

3.4.1 Trajectories from Simulation

Sample trajectories of N = 10, N = 100, and N = 1000 monomers are given in figure 3.3.
The dashed horizontal lines show the onset of the shallow regions, and the dashed lines
indicate the leading and the most backwards monomers. For N = 10, these cannot be
distinguished from one another, even in the case of N = 100 this is hardly possible.
However, these chains are quite small compared to the device dimensions.

For short chains (N = 10), the movement is dominated by diffusion. Occasionally,
the chain diffuses even backwards by a whole device geometry (data not shown). The
overall trajectory is quite irregular and the chain explores the whole device by diffusion.
For chains of medium length (N = 100), the trajectory is still affected by diffusion, but
it is much less pronounced. However, the chain may still get trapped for a considerable
amount of time. In the case of long chains (N = 1000), the movement of the center
of mass is almost smooth. Nevertheless, the movement of the single monomers is still
affected by the device geometry, which is easy to see in figure 3.3c. A comparison with
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Figure 3.3: Trajectory of N = 10 (a), N = 100 (b), and N = 1000 (c) monomers at
E = 0.005E0 in an entropic trap device. The solid line shows the movement
of the center of mass. The x-position of the leading and trailing monomers
are indicated by dashed lines. The dashed horizontal lines represent the
beginning of the shallow regions.

the simulation data obtained with homogeneous electric fields [86] shows that the strong
trapping observed in devices with untilted walls has vanished.

Comparing these trajectories with the data presented by Tessier et al. [57], one sees
that the trapping is comparable only in the case of N = 100. As will be shown below,
an efficient separation requires stronger electric fields.

3.4.2 Relaxation of the Chains during Migration

Assuming a homogeneous electric field of E = 0.01E0, a free chain is expected to migrate
through the device in L/E0 = 104t0. Using equation 2.29, the associated chain length
is Nc ≈ 270 monomers. Thus chains longer than Nc are unable to relax during the
migration through the device. This implies the picture presented by Chen et al. [59] of
independent escape processes is no longer valid. The normalized expectation value of
the radius of gyration, split into its components, inside the device is shown in figure 3.4.

All chains are stretched considerably in x-direction when passing the shallow region.
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Figure 3.4: Normalized components of Rg inside the Device. Short chains are able to
relax when passing the deep region, whereas long chains are unable to do so.
The limits of the deep region in the middle are shown by the vertical long
dashed lines.

In the case of N = 10 monomers, the stretching is very small, because the shallow region
itself is longer than the contour length of the chain.

In the y-direction, the chains are mostly unaffected by the device. This is hardly
surprising, as the device is infinite in that direction. However, when passing the shallow
region, the chains do get stretched because of the stress exerted onto the chain by the
device. In the case of N = 1000 monomers, the chain is stretched permanently, and does
not recover its size in free diffusion.

When passing the shallow region, all chains are limited in the z-direction. Therefore,
all chains are squeezed when passing this region. However, except in the case of N = 1000
monomers, the chains are able to regain their free size, only the chain with N = 1000
monomers is unable to adapt to the unperturbed size.

To summarize, the simulation data prove the ideas presented above. Whereas short
chains are able to relax in the deep regions, long chains do not regain their unperturbed
properties during migration, even if the device would allow for a coiled conformation [86].
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3.4.3 Mobilities from Simulation
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Figure 3.5: Mobility µ in units of the free-flow mobility µ0 as a function of the chain
length N , for various electric fields E. The dashed lines show the approxi-
mation given in equation 3.10, for E = 0.04E0, 0.02E0, 0.01E0, and 0.005E0

(top to bottom).
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Figure 3.6: Mobility µ in units of the free-flow mobility µ0 as a function of the electric
field E, for various chain lengths N . The dashed lines show the approxima-
tion given in equation 3.10, for N = 1000, 100, and 10 (top to bottom).

From the simulation data described above, it is easy to compute the mobility µ of a
chain with N monomers in the device for a given electric field E:

µ = 〈v〉 /E. (3.4)

Mobilities obtained by this method are given in figure 3.5 as a function of the chain
length N , for various electric fields E. In the case of the lowest field E = 0.0025E0, the
mobility depends only slightly on the chain length and decreases with chain length for
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small N . This can be explained by the fact that short chains explore the whole device.
Therefore, in the limit E → 0, the escape rate depends only on the diffusion constant
D, which decreases for increasing chain length. For stronger electric fields, the mobility
increases with the chain length and apparently levels off at µmax ≈ 0.5µ0.

The dependence of the mobility µ on the electric field E is shown in figure 3.6 for
various chain lengths N . The mobility µ increases as a function of the electric field E for
all chain lengths. However, for N = 10 monomers the dependence is only slight. This
can be explained by the fact that short chains underly a strong diffusion, which actually
dominates the escape process.
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Figure 3.7: Theoretical plate number per trap as a function of the chain length N for
different electric fields

The quality of molecular separation can be determined in terms of the theoretical
plate number. It is defined as

Nplate = 16(tR/t W)2, (3.5)

with the total retention time tR, i. e., the total time spent in the system, and tW is the
width of the peak at the baseline. The results of this analysis are given in figure 3.7.
In the interesting regime, typical plate numbers are around 10 − 100. Assuming ∼ 105

traps per meter, this corresponds to 106 − 107 plates per meter. This is quite good and
in agreement with the data presented by Han et al. [55].

3.4.4 Detailed Analysis of the Migration

To achieve a deeper understanding of the migration, the retention times of the different
chain lengths in the device were investigated. These were defined as the time difference
tn+1 − tn of the times tn when the leading monomer first entered the deep region. A
distribution of the data obtained for E = 0.01E0 is given in figure 3.8. After an
initial “dead” time of about ∼ (1 − 1.5) · 104t0, the chains start leaving the trap. This
time can easily be related to length of the device, as already described in chapter 3.4.2.
After that, the histogram rises rapidly and reaches a maximum at tmax ≈ 2 · 104t0. A
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Figure 3.8: Distribution of retention times in one trap for different chain lengths at
E = 0.01E0. The solid line is a fit to the initial exponential decay at chain
length N = 100

comparison of all histograms yields that the maximum of the distribution tmax is almost
independent on the chain length N . However, it is proportional to the inverse of the
electric field 1/E, which can be directly related to the migration time. Apparently, the
product L/t maxE = µmax ≈ 0.5µ0 is fulfilled for sufficient electric fields, which can be
seen in figure 3.9. The decay of the distribution after the maximum is not independent
of the electric field.

Beyond the maximum, the histogram decays rapidly for N = 1000. In the case of
N = 10, the decay is much slower and follows an exponential law. This is characteristic
for the existence of a single escape rate 1/τ , as described by Han et al. [53, 54, 55, 56].
In the case N = 100, this simple picture is no longer applicable. After the maximum,
the data indicates an initial exponential decay, which is shown in figure 3.8 with a solid
line. For long times, the data does not match the fit any more. Apparently, there is
another trapping mechanism, which has its own timescale, τslow, which differs from the
first, τfast.

These two mechanisms can already be guessed from the trajectory presented in fig-
ure 3.3b. On the one hand, the chain passes many traps smoothly without getting
trapped for a long time. Occasionally, however, it gets stuck for a reasonable amount of
time. In that case, it gets stuck at the border of the constriction.

As the trapping mechanism presented by Han et al. exhibits only one time scale τ , it
cannot explain this behavior alone. Thus a detailed look at possible trapping mechanisms
is necessary and will be given in the following sections.

3.4.5 Trapping in the deep Region of the Device

As seen in chapter 3.4.4, the trapping mechanism proposed by Han et al. [53, 54, 55, 56]
alone cannot explain the results obtained. Here, we present a second trapping mecha-
nism, which also favors fast migration of long chains. A schematic drawing of the two
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Figure 3.9: Distribution of retention times in one trap for different electric fields at chain
length N = 100. The data has been normalized. All distributions exhibit a
maximum at t max ≈ 2L/E.

trapping mechanisms is shown in figure 3.10:

(a) This is the mechanism presented by Han et al.. This mechanism is related to the
time τfast.

(b) Chains may also get trapped in the field-free region in the lower part of the device.
Here, the chain experiences almost no force, and it may leave this region only by
diffusion. Furthermore, it is able to form a coil. This escape process is related to
the time τslow. Leaving this region implies stress on the coil due to inhomogeneous
electric field, or moving against the electric field. Hence there is an entropic or
energetic penalty for leaving this region. To enter this region, the chains have to be
sidetracked from the field lines considerably. Thus short chains exhibit a greater
probability to get stuck.

We will now investigate the data in more detail and check if the data supports this
picture. In the following analysis, only data for N ≥ 20 and E ≥ 0.005E0 were analyzed.

Indeed, two time scales were found in most of the analyzed systems. It turned out
that the fast time scale, τfast, could be determined quite easy by fitting the initial decay
distribution H(t) with an exponential function (A exp(−t/τfast)). Unfortunately, the
slow time scale, τslow, is much harder to obtain. The reason is simply the poor statistics
of the late time tails of the distribution H(t). Therefore, this time scale was obtained
in two different ways: First, an exponential function was fitted to the long tail. The
obtained value was used as a rough estimate. Another way to obtain τslow) is to assume
that H(t) ∝ e−t/τ . Then, a cut off for the decay time was introduced, tcut, and only
data for t ≥ tcut was taken into consideration. The slow decay time τslow can now be
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(a)

(b)

Figure 3.10: Trapping mechanisms in the device. Chains may get stuck at the entrance
of the constriction (a). Furthermore, chains may get stuck in the field-free
region in the lower parts of the device (b). These chains experience a net
force towards the wall.

determined by

R

∞

tcut
dt(t−tcut)H(t)

R

∞

tcut
dtH(t)

=

R

∞

tcut
dt tH(t)

R

∞

tcut
dt H(t)

− tcut

=
tcutτslow exp(−tcut/τslow)+τ2

slow
exp(−tcut/τslow)

τslow exp(−tcut/τslow) − tcut

= τslow,

(3.6)

which is independent of tcut. For analysis, we set tcut = 500t0E0/E. This result was
tested against the previously obtained estimate. If it deviated too strong, it was dis-
carded.

If the suspicion presented above is correct, the fast time scale τfast is corresponds to the
mechanism presented by Han et al.. In this case, the escape rate 1/τfast is proportional
to the amount of polymer which in contact with the wall. As the entrance of the
constrictions is basically one dimensional, the escape rate should be proportional to the
radius of gyration, Rg. This leads to τfast ∝ N−3/5. The relation between τfast and
E is more complex and not as easy to determine. According to Han et al., the chains
have to overcome a free energy barrier ∆F ∝ 1/E when escaping. On the other hand,
equation 3.1 does not determine τ0. Thus the resulting E-dependence may be complex.

The results from this analysis are given in figure 3.11, together with a power law
as indicated. The fit for τfast ∝ N−3/5 fits very well. With my data, we find that
τfast ∝ E−1.55 by empiric evaluation.

The slow time scale τslow decays with the chain length N , but the dependence is weak.
Furthermore, the quality of the data is poor, and no quantitative analysis is possible. If
the picture presented above is correct, τslow is related to the escape from the low-field
region of the trap. In this region, chains may form a coil and thus experience a weak
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Figure 3.11: Characteristic time scales (rescaled) of the retention time distribution for
different chain lengths, N , and different electric fields, E. Filled symbols
correspond to the fast time scale, τfast, and open symbols refer to the slow
time scale, τslow. The thick lines show power laws for comparison, as indi-
cated.

electric field which results into a net force towards the wall (Fig. 3.10b). The escape
process from this area implies either uncoiling due to the inhomogeneous electric field,
or moving against the electric field. In both cases, there is an energy barrier (either
entropic or electric), before the chain is pulled to the entrance of the constriction by the
electric field. A simple Ansatz predicts that the escape probability is proportional to the
diffusion constant, D, and diffusion by either one radius of gyration Rg or the total chain
length N is necessary. This results in a chain length dependence of either τslow ∝ N−1/5,
or τslow ∝ N0. The data obtained is consistent with these results (Fig. 3.11).

The chain length dependence of the slow time scale τslow is small. On the other hand,
the probability of getting caught depends on the chain length, as the relative number of
chains getting caught strongly depends on the chain length N . We use the assumption
that the travel time from one trap to the next one is roughly

tmax = L/Eµmax, (3.7)

and that the chains have to diffuse a minimum distance z0 into the deep region of the
trap. After the time tmax, the distribution of the center of mass in the z-direction is
roughly Gaussian: N(z) ∝ exp(−z2/6Dtmax). Thus the probability of getting caught
can be estimated:

P =

∫

∞

z0

dz N(z) = erfc(z0/
√

6Dtmax) = erfc(α
√

NE), (3.8)

where erfc(y) is the complementary error function erfc(y) = 2/
√

π
∫

∞

y dx exp(−x2).
Using the assumption that the two time scales, τslow and τfast are sufficiently apart

from each other, it is possible to perform a simple analysis, as is shown below. In this
case, all the chains in the fast mode have left the trap after a time tcut, and no chains
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in the slow mode have left the trap before tcut. Thus only fast escape processes provide
a noteworthy contribution to the decay. Then an approximation of P0 is possible, and
it is given by the fraction of chains that are left in the trap after tcut. The results of
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Figure 3.12: Probability P0(t) that chains are still in the deep region after tcut =
350/E(t0E0), shown as a function of NE, in units of E0. The solid line
shows a fit to equation 3.8, with α = 0.59

this analysis are shown in figure 3.12, the solid line a fit of the data to equation. 3.8.
The data collapse is good and the fit function agrees well with the data for α = 0.59.
Substituting equation 3.7 into equation 3.8, it is easy to find

z0 = α
√

6DtNE = α

√

6L

µmax
. (3.9)

Inserting µmax = 0.5µ0 and L = 100σ, one finds that z0 ∼ 20σ. Thus chains get caught
in the deep region, if they diffuse more than 20σ from the main path into the deep
region, which is defined by the electric field lines.

A detailed plot showing both trapping mechanisms is given in figure 3.13. In the insets,
a side-view of the migration over the length indicated by the dashed lines is shown:

(a) In the fast escape process, the polymer trajectory does not deviate considerably
from the main path, and the migration is rather smooth.

(b) During the slow escape process, the polymer indeed deviates from the main path,
and gets trapped for a rather long time. In this case, it may explore the whole
trap.

The considerations presented above establish a new trapping mechanism, which also
produces chain length dependent behavior and favors long chains. To evaluate the
importance of the new mechanism, let us consider a very simple model and compare
the results with the simulation data. In this model, chains either travel smooth, or
get sidetracked and caught in the field-free region of the trap. In the first case, all
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Figure 3.13: Detailed trajectory of N = 100 monomers at E = 0.005E0. The entrances
of the constrictions are marked by dotted lines. The insets show a side view
of the movement inside the trap, as indicated by the dashed lines. Chains
either move along the electric field lines (a), or get trapped in the field-free
region at the bottom (b). In that case, the escape rate is very low.

chains need the minimum travel time tmax = L/Eµmax (Eq. 3.7). If chains get caught
in the field-free region, they spend an additional time τslow in the deep region, thus the
total time spent in the trap is tmax + τslow. We use the simplification that the product
Eτslow is independent of both chain length N , and electric field E and assume that it
is given by Eτslow = 400E0t0. This is roughly the value obtained for N ∼ 100, and
E = 0.01−0.02E0. The relative number of chains caught in the deep region is computed
by equation 3.8, with α set to 0.59. In this model, the resulting mobility is given by

µ

µ0
=

[

µ0

µmax
+

τslowE

L
erfc(α

√
NE)

]−1

. (3.10)

A comparison with real mobility data obtained by simulation is given in figures 3.5
and 3.6. The agreement is remarkably good, despite the simplicity of the model. The
agreement is very good for high electric fields E = 0.04E0. For low fields, the agreement
is not as good, which can probably be related to the fact that at low fields, E = 0.0025E0,
the separation becomes inefficient.

3.5 Conclusions

To conclude this chapter, I have presented the first off-lattice Brownian dynamics simu-
lation of DNA migration in an entropic trap array. Even with the simple model used, it
is possible to reproduce the experimental behavior, i. .e., that long chains migrate faster
than short chains. This effect can be tracked down to two distinct trapping mechanisms.
The first mechanism has been presented and discussed by Han et al. [53, 54, 55, 56]
before. Chains are trapped at the entrance of the constriction, and need to overcome a
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3 Entropic Trap Arrays

barrier in the entropic free energy. This effect leads to an escape rate proportional to the
radius of gyration of the chain, and thus scales as N 3/5. However, this effect accounts
only for part of the chain length dependence presented here. A detailed analysis of the
migration data revealed a second time scale, and thus a second trapping mechanism:
chains may get stuck in the deep region of the trap. In that region, there is almost no
electric field, and chain may only escape by diffusion. Thus trapping times may become
quite long, and in this case almost independent on the chain length. The chain length
dependence of the second mechanism comes from the fact that the probability of getting
caught is dependent on the diffusion constant, and decreases with chain length.

To our best knowledge, this mechanism has not been described in literature before.
This mechanism becomes relevant, if the period L of the device becomes small. Han et al.

have investigated device lengths between 4− 40µm, but they reported trapping only for
the shortest geometry, L = 4µm. Thus, the geometry presented here is comparable to
the device used by Han et al.

My data further proves that the picture of independent escape processes proposed by
Chen et al. [59] cannot be applied here. In my simulations, I present true non-equilibrium
systems. Long chains do not recover the ideal coil structure in the deep regions, even
if the device dimensions suggest so. The simulation data suggests that the chains do
have a memory of the previous escape process, as successive escape processes seem to
be correlated, especially at high fields. Unfortunately, the data obtained does not allow
for a thorough analysis, because the statistics is too poor.

44



4 Two-State Migration

Parts of the results presented in this chapter have been published by Martin Streek,
Friederike Schmid, Thanh Tu Duong, Dario Anselmetti, and Alexandra Ros in refer-
ence [63], which at the time of writing has been accepted for publication by Physical
Review E. An extended abstract can be found in reference [64].

This work was created in a collaboration of the Condensed Matter and the Experimen-
tal Biophysics and applied Nanosciences Groups at the University of Bielefeld, Germany.

4.1 Introduction

In this chapter, I will investigate a device presented by Duong et al. [62, 64], which also
is capable of a successful separation. It is very similar to entropic traps [53, 54, 55, 56],
as it also consists of a periodic sequence of wide and narrow regions. The main difference
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Figure 4.1: (a) SEM image of the experimental device [63], and (b) Schematic drawing
of the investigated device. All size parameters of the device are equal. Thus
only one parameter describes the geometry, the height of the thin region, H.
The dotted lines represent the electric field lines, and the coordinate system
used in the simulations is given on the right. Also shown is a simulation
snapshot of N = 320 monomers.

compared to entropic traps is that width of the narrow regions is a few µm, which is
much larger than the persistence length. Furthermore, only one parameter is necessary to
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4 Two-State Migration

describe the device, the height H of the narrow region, as all device parameters are equal.
An SEM image of the experimental device and a schematic drawing of the investigated
device are shown in figure 4.1. Experimentally, the device has been integrated into a
PDMS surface, and is covered by a glass plate. This device has the nice feature that it is
possible to observe chain migration from the side and thus investigate chain movements
in more detail than in the entropic traps presented by Han et al., who were only able
to look at chain migration from above. Details of the production process are given in
reference [62, 63].

In this device, the trapping mechanism observed by Han et al. [53, 54, 55, 56] cannot
be applied, because the narrow regions do allow for a coiled conformation of the polymer.
However, the second mechanism, which is described in chapter 3.4.5, does not depend
on extremely narrow channels, and can be applied here. Therefore, one would naively
expect long chains to migrate faster than short ones.

Indeed, Duong et al. [62] have reported length dependant mobility in these structured
microchannels. Unexpectedly, the migration order observed is inverse to the one observed
by Han et al. In these microchannels, long chains migrate slower than short ones. In
this chapter, I will investigate the reasons for this unforeseen behavior.

4.2 Simulation Setup

Duong et al. have investigated structures with channel heights H = 1.5, 3, and 5µm [61],
and length dependent mobilities have been reported for H = 1, 5µm and H = 3µm [62].
In the lateral direction, all channels are limited to a thickness of 2.8µm. During the
production process, PDMS slightly changes its shape. Therefore, channel exhibit more
than one length parameter, which can be seen in figure 4.1a. Details on the device
dimensions in experiment are given in references [62, 63].

In the simulations, I use the idealization that all channel dimensions are equal and
comparable to the radius of gyration of the investigated chains. I set the channel width
of the narrow region to H = 60σ, which is also true for the limitations in the lateral
direction. Thus the repulsive layer covering the walls (Ch. 3.3) becomes neglectable.
The electric fields investigated cover the range from E = 0.0005−1E0. The electric field
lines are shown in figure 4.1b.

Simulations have been carried out covering times from 4− 20 · 108∆t, or 4− 20 · 106t0
for inertia dynamics. For equilibration, 2 · 107∆t were used. Chain lengths investigated
covered the range from N = 10 up N = 2000 monomers.

In some cases, simulations in the overdamped limit (m → 0 or τ → 0) were carried out
for comparison. In that case, simulation was carried out for 4·108∆t, or 4·104t0. Starting
configurations were taken from equilibrated systems with inertia dynamics. Due to the
reduced time step, chain lengths investigated cover the smaller range from N = 10 up
to N = 100 monomers. Electric fields investigated are E = 0.04, 0.08, 0.15, 0.25, 0.5,
and 1E0.
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4.3 Correspondence to experimental Data

4.3 Correspondence to experimental Data

The correspondence of the energies has already been described in chapter 2.4, and it
yields ∈≡ 300kBK ≈ 0.026eV.

In this case, the width of the narrow regions is comparable to the radius of gyration,
which is also true for all other length parameters. Therefore, the persistence length is
not a relevant length scale, because all device parameters are much larger. This leads
to a comparison of the channel heights, H. Note that this implies that it is possible to
match all three experimental devices to the single geometry of the simulation device, if
the parameters are adjusted accordingly. In simulation, I used H = 60σ. In the case of
5µm structures, this leads to 1σ ≡ 83nm.

Next, a comparison of the radii of gyration is performed. For comparison, λ-DNA
(48 kbp, Rg = 0.7µm [106]) was used. Using σ ≡ 83nm from above, one finds that
λ-DNA is represented by a chain with Rg = 8.4σ. Using the free-flow simulation data
obtained earlier [86] yields that λ-DNA is represented by 140 beads, or 1 bead ≡ 340 bp.

In the third stage, the time scale t0 is adjusted to experimental time. Here, I compare
the diffusion constants, D. Experimentally, Smith et al. [9] have reported Dλ = (0.47 ±
0.03)µm2/s. In simulation, D is given by kBT

Nζ . Matching the time it takes the polymer

to diffuse along its own radius of gyration, I find that 1sec ≡ 9.5 · 103t0. Note that this
time is the same as the conformational relaxation time (Ch. 2.7.1).

At last, the electric field is adjusted by comparing the mobilities of the chains. Note
that it is necessary to use the absolute mobility to take electroosmotic flow into account
(Ch. 2.10.2). In the simulation, the mobility µ0 is simply the inverse of the friction, ζ =
1/µ0. In experiments, Duong et al. [62] have found µ0 = 1.84·10−4cm2/s. Comparing the
time it takes the polymer to migrate a fixed distance to the mean quadratic drift induced
by diffusion during that migration leads to the time correspondence E0 ≡ 430V/cm.

These values, together with the values obtained for H = 3 and 1.5µm, are given
in table 4.1. Adaptations given in chapter 4.4 refer to the 3µm channels. All other
adaptations in this chapter refer to the 5µm channels, unless stated otherwise.

H = 1.5µm H = 3µm H = 5µm

1 bead 48 bp 150 bp 340 bp

λ-DNA 1000 beads 330 beads 140 beads

T2-DNA 3500 beads 1200 beads 490 beads

1µm 40σ 20σ 12σ

1s 7.5 · 105t0 6.2 · 104t0 9.5 · 103t0
1V/cm 9.8 · 10−5E0 5.9 · 10−4E0 2.3 · 10−3E0

E0 10kV/cm 1.7kV/cm 430V/cm

Table 4.1: Adaptation of the simulation units to various channel sizes. All values have
been rounded to two digits.

47



4 Two-State Migration

4.4 Simulation at low electric Field

80 85 90 95 100

Simulation time [units of 10
4
 t

0
]

4200

4400

4600

4800

5000
Po

si
tio

n 
[u

ni
ts

 o
f 

σ] N = 10

a)

80 85 90 95 100

Simulation time [units of 10
4
 t

0
]

4000

4200

4400

4600

4800

Po
si

tio
n 

[u
ni

ts
 o

f 
σ] N = 100

b)

80 85 90 95 100

Simulation time   [units of 10
4
 t

0
]

4800

5000

5200

5400

5600

Po
si

tio
n 

[u
ni

ts
 o

f 
σ] N = 1000

c)

Figure 4.2: Trajectory of N = 10 (a), N = 100 (b), and N = 1000 (c) monomers at
E = 0.005E0 in the structured microchannel. The beginning of the narrow
regions is marked by dashed, horizontal lines. The solid line show the center
of mass, and the dashed lines show the leading and trailing monomers. For
short chains (a, b), these cannot be distinguished from one another.

Duong et al. have presented successful separation in the 1.5 and 3µm channels [62].
Investigated electric fields covered the range from 10 − 100V/cm. In simulation, I used
electric fields of 0.0025, 0.005, 0.01, 0.02, and 0.04E0. This corresponds 4.3 − 68V/cm
in experiment, when the 3µm adaptation is used. As can be seen in table 4.1, this
corresponds to rather low fields in larger structures. Chain lengths cover the range
from N = 10 up to N = 2000 monomers, which corresponds to DNA strands with
1.5 − 290kbp. The investigated DNA strands exhibit lengths of 48kbp in the case of λ-
and 164kbp in the case of T2-DNA. Thus the simulation data covers the experimental
ranges for both the chain length and the electric field.

Sample trajectories of the simulation are given in figure 4.2 for various chain lengths.
In the case of N = 10 (a), the trajectory is dominated by diffusive motion, and is quite
irregular on short time scales. Sometimes, the chain even moves back by one device
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4.4 Simulation at low electric Field

length. The trajectory looks very similar to that presented in figure 3.3a. In the case
N = 100 (b), the trajectory is much smoother, but occasionally, trapping may still
occur. For long chains, N = 1000 (c), the trajectory is very smooth, even the leading
and trailing monomers do not indicate much interaction with the walls. This emphasizes
the new trapping mechanism presented in chapter 3, because the mechanism presented
by Han et al. does not apply here. The narrow regions do allow for a coiled conformation
and do not force the polymer to uncoil. However, trapping in the deep region may still
occur.
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Figure 4.3: Mobility µ in the microchannel at low fields, E = 0.005 (8.4V/cm) and
0.04E0 (67V/cm). The vertical dashed lines indicate the length of λ- and T2-
DNA, with adaptations for 3µm channel width setup. Experimentally, Duong
et al. have reported µ/µ0 = 0.99 ± 0.1 for λ-DNA and µ/µ0 = 0.63 ± 0.03
for T2-DNA. [62]

Mobilities obtained from simulation are shown in figure 4.3 for E = 0.005, and 0.04E0.
Also indicated is the corresponding chain length for the 3µm adaptation.

At low fields, E = 0.0025E0,the simulation data indicates that the longer chains
migrate faster than short chains, as expected from chapter 3 and reference [58]. This
is in contrast to the observations presented by Duong et al. [62]. However, at such
small fields it is very hard to determine mobilities experimentally, as the migration is
dominated by diffusion, and the separation length is rather short. In my simulations, I
am able to average over very long runs, and thus minimize diffusive effects.

For greater fields, E = 0.04E0, however, the mobility exhibits a maximum at N ≈ 200
monomers (28 kbp), and decreases for longer chains. This is in agreement with the
observations presented by Duong et al.: they also observe that the longer T2-DNA
migrates slower than the shorter λ-DNA. However, the decrease in mobility is not as
pronounced as in experiment.

This result is gratifying, but it does not explain the sudden reversal of the migration
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4 Two-State Migration

order. To understand this effect, even stronger fields are applied. The results of those
investigations shall be described below.

4.5 Simulation at high electric Field

To understand the reversal in the chain length dependent mobility (Fig. 4.3), even more
extreme conditions were investigated. The range of the electric field was extended up to
E0. Experimentally, it is difficult to operate at very high fields. Alternatively, table 4.1
suggests the use of larger devices, which have been used in experiments [63]. Using the
adaptation for the 5µm channels, the electric field in simulation new covers the range
up to 430V/cm.

4.5.1 Trajectories from Simulation
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Figure 4.4: Trajectory of a) N = 10 (3.4 kbp), and b) N = 400 (140 kbp) monomers at
E = E0(430V/cm) in the structured microchannel. The dashed lines in the
inset of N = 400 show the beginning of the narrow regions.

Trajectories obtained from simulation at E = E0 (430V/cm) are given in figure 4.4
for chain lengths N = 10 (3.4 kbp) and N = 400 monomers (140 kbp). On long time
scales, both trajectories are quite regular. The insets show the migration on short time
scales.

In the case N = 10, trapping may still occur. This underlines the effect described
in chapter 3.4.5, because the short chains exhibit a contour length that is shorter than
the width of the narrow region, and thus may pass in any conformation. Furthermore,
successive escape processes are correlated, even though the escape time is longer than
the relaxation time. This effect comes from the diffusion during the passing of a single
device unit. It allows for a mean quadratic drift of only ≈ 8.5σ, which is smaller than
the width of the narrow region.

For long chains (N = 400), the trajectory is very smooth. It does, however, exhibit a
regular pattern, which can be seen in the inset. This effect is simply related to the fact
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4.5 Simulation at high electric Field

that the chain penetrates the deep region of the device. In that region, the electric field
is low, which visibly affects the migration.
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Figure 4.5: Trajectory of N = 200 monomers (70 kbp) at E = E0(430V/cm) in the struc-
tured microchannel along the x-axis (top), and along the z-axis (bottom).
The trajectory exhibits two distinct migration speeds, which can be related
to the penetration depth of the wide regions. Thus two different migration
states exist. The horizontal lines are just guides to the eye.

The situation is different for chains of medium length. A trajectory of N = 200
monomers (70 kbp) is shown in figure 4.5. The trajectory exhibits two distinct migration
states, one of which is slow and the other is fast. Both migration states exhibit smooth
trajectories on short time scales, and occasionally change into one another. Also shown
is the penetration depth of the deep region during migration. Apparently, the migration
speed is directly correlated to the penetration depth. If the chain enters the low-field
area in the deep region (z < 0), it gets slowed down notably. Figure 4.5 also shows that
the two migration states have long life times. In experiment, two migration states were
found as well [63].

4.5.2 Snapshots

Snapshots obtained from simulation and experiment [63] are given in figure 4.6. The
experimental snapshots show a time series taken with 40 ms time step. Both reveal that
the two migration states are substantially different from each other.

In the fast state, the chains remain in the upper, homogeneous part of the field and are
able to form a coil during migration. As the chains are permanently in the homogeneous
part of the field, they migrate at a constant speed and do not lose time by passing
low-field regions or getting stuck at walls. Thus the migration is fast.

The situation is different for the slow state. In this state, chains penetrate the wide
regions of the device, and get slowed down by the reduced electric field in that area.
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Figure 4.6: Snapshots obtained from (a) an experiment with T2-DNA [63] and (b) simu-
lation with 200 beads at E = E0. The experimental snapshots show a series
taken with 40 ms time step (fast state shown by red arrows pointing down,
slow state indicated by green arrows pointing up). Both snapshots show
chains in the slow and the fast state. In the slow state, the chains penetrate
the wide region, form a coil inside and stretch when passing into the narrow
region. Chains in the fast state are also shown. Here the polymer remains
permanently coiled in the homogeneous part of the field.

Inside the wide region, chains are able to form a coil. Note that a coiled conformation
does not indicate that the chains are able to relax in this region, as the passing time
is too short for long chains. When leaving the wide region, an initial loop enters the
narrow region. Thus the chains get stretched, as they experience an inhomogeneous
electric field. When leaving the narrow regions, the chains get pulled back into the wide
regions considerably by the electric field lines.

4.5.3 Monomer Density Histograms

Monomer density histograms obtained from simulation are given in figure 4.7 for N =
100, 200, and 500 monomers at electric fields E = 0.02, 0.08, 0.5, and 1E0.

At low electric fields, E = 0.02E0, all chains explore the full width of the continuous
region. Short chains also explore parts of the wide regions, which is not penetrated by
long chains.

At E = 0.08E0, the situation is different. Whereas short chains still explore the
full width of the continuous region, long chains are confined to a narrow region which
enters the deep region. This confinement region compares well with the electric field
lines (Fig. 4.1). Chains of intermediate length (N = 200 monomers) show an almost
continuous depletion from the monomer density peak at the bottom of the narrow region
to the top of that region and are thus some kind of intermediate of the densities exhibited
for N = 100 and 500 monomers.

At even higher fields, E = 0.5E0, even short chains exhibit a depletion zone between
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Figure 4.7: Monomer density histograms obtained from simulation for N = 100, 200, and
500 monomers at E = 0.02, 0.08, 0.5, and 1E0. For low fields (E = 0.02E0),
all chains explore all of the continuous region. At E = 0.08E0, long chains
(N = 500 monomers) occupy the slow state only, and at E = 0.5E0 this is
true for N = 200 monomers as well. At E = E0, inertia comes into play, and
shifts the transition region to longer chains. At N = 200 and E = E0, the
depletion zone between the two states can be identified nicely.

the two states, which is unfortunately hardly visible. This is caused by the fact that the
chains still have a certain size. On the other hand, the density distribution of the center
of mass is not very suitable as well: it may easily extend to outside of the device, if the
chain is bend around a corner of the device (Fig. 4.6). Chains of intermediate length
(N = 200 monomers) and longer ones are confined to the slow state.

At E = E0, long chains still occupy the slow state only. Chains with a length in the
range from N = 120−250 monomers alternatingly migrate in the fast and the slow state
(Fig. 4.5), and long chains occupy the slow state more often (Fig. 4.9). Short chains
(N = 50 − 100 monomers) migrate in the fast state only, and even shorter ones still
explore the whole device. Surprisingly, chains of length N = 200 monomers now exhibit
two distinct states again. Between the two states, a rather wide depletion zone is visible.
At this field, short chains (N = 100 monomers) are confined to a region at the top of
the continuous region. These effects are caused by the inertia of the model and will be
discussed in chapters 4.5.4 and 4.6.3.

A monomer density histogram obtained from experiment [63] is given in figure 4.8. It
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Figure 4.8: Monomer density histogram obtained from experiment at E = 86V/cm
(0.20E0) for λ-DNA in 5µm channels [63]. Note the depletion zone between
both states, which has been found in the simulations as well.

also shows a depletion zone between the two states, and therefore agrees to simulation
data very well.

4.5.4 Population Density of the two States

Monomer density histograms such as those shown in figure 4.7 allow for determining the
population densities of the two migration states. I chose the z-coordinate of the center
of mass to determine the current migration state. If the center of mass is below 8σ,
the chain is assumed to migrate in the slow state, and if it is above 20σ, it is assumed
to be in the fast state. Furthermore, one of these conditions has to be fulfilled for at
least 5 ·106∆t, otherwise the migration state is called “undefined”. Figure 4.9 shows the
average mobilities in the two states together with the total average of the mobility. Also
shown in the lower panels are the population densities of the states.

The data proves that long chains are more likely to populate the slow state. Further-
more, the migration of short chains is dominated by diffusion, which is reflected by the
amount of “undefined” population. At high fields (E = E0), the transition is very sharp,
and at low fields (E = 0.04E0), it vanishes. However, a slight decrease of the mobility
remains, thus explaining the reversal in the chain length dependence of the mobility.

The mobility as a function of the applied field for various chain lengths is shown in
figure 4.10. Also shown are the mobilities of the fast and the slow states, as well as the
population densities thereof.

For N = 100 monomers, the population density of the slow state rises with the electric
field up to a critical value of E ≈ 0.35E0, and decreases for stronger fields. In that range,
the amount of undefined data also decreases, which was roughly constant for lower fields.
The overall mobility also exhibits a local minimum at E = 0.35E0.

The situation is similar for N = 200 monomers and electric fields E > 0.5E0. The
amount of undefined data, however, has decreased considerably before. For electric fields
E > 0.5E0, the population densities suddenly start to reverse. This effect is probably
an artifact of the simulation model, and is related to the mass m of a single monomer,
and this effect is discussed in detail in chapter 4.6.3. For low fields, the chain mostly
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Figure 4.9: Mobility as a function of the chain length at E = E0 (a), E = 0.25E0 (b) and
E = 0.04 E0 (c). Note the decrease in mobility at N = 100 − 250 (34 kbp –
85 kbp) at E = E0, which is also reflected by the population densities given
in the lower panel. For short chains, diffusion dominates the migration, and
most of the time, it is not possible to assign unambiguously a single migration
state. This is reflected by the amount of “undefined” population. The error
bars of the slow and fast mobilities show the statistical error, based on the
spread of the values. Note that the transition fades away when the electric
field is decreased.

occupies the fast state, and at electric fields E & 0.11E0, the chain prefers to populate
the slow state, before the population density is reversed.

In the case of N = 500 monomers, the chain occupies the fast state for E . 0.05E0.
This can simply be related to the fact that it is favored to occupy the large region on
top, where the chain may form a coil. For greater fields, the favored migration state
changes to the slow state, which is caused by the inhomogeneous field in the device and
is discussed in chapter 4.6.1.

4.5.5 Infinitely deep Device

An important point that has been neglected in the matching of the experimental to the
simulation parameters is the depth of the device. In experiment [62, 63], the depth is
always 2.8µm, and thus comparable to the other device dimensions, and to the diameter
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Figure 4.10: Mobility as a function of the electric field for N = 100 (a, 34 kbp), N =
200 (b, 68 kbp), and N = 500 (c, 170 kbp). Also shown are the mobilities
in the slow and the fast state. Note the error of the latter is based on the
statistical spread of the value. In the lower panel, the population densities
of the two states are shown. For low fields or short chains, the assignment
criterion may fail. The amount of unassigned migration data is marked by
“undefined”. Long chains tend to populate the slow state at high fields. For
N = 100 and N = 200 monomers, the overall mobility and the population
density exhibit a local minimum, which can be related to inertia effects
(Ch. 4.6.3).

of the investigated DNA molecules. In simulation, the depth is set to 60σ, and one

adaptation has been made to all three experimental setups (Ch. 4.3).

To test the influence of the device depth on the simulation results, simulations with
infinite depth, or no walls in y-direction, were performed. Sample trajectories of N =
100, 200, and 500 monomers at E = E0 are given in figure 4.11. Long chains migrate
in the slow state, and short chains occupy the fast state. Chains of intermediate length
migrate alternatingly in the fast and slow state. Apparently, the mobilities in the fast
and slow state do not differ significantly, and the chain length dependent mobility is
again mainly caused by the different population densities of the two states.

As the simulation data presented here is in very good agreement with the data obtained
from the device with finite depth (Ch. 4.5.1), no further investigation is necessary.
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Figure 4.11: Trajectories in the infinitely deep microchannel for N = 100, 200, and 500
monomers at E = E0. Short chains still migrate in the fast state, and
long chains still occupy the slow state only. Chains of intermediate length
migrate alternatingly in the fast and the slow state.

4.5.6 Meta-stable States

The population densities presented above suggest that it is impossible for long chains to
populate the fast state at high fields. This suggestion implies that these chains, initially
set up in the fast state, should change to the slow state in very short time.

Sample trajectories of these simulations are given in figure 4.12. A starting configu-
ration of N = 500 monomers was taken from simulation at low field, where these chains
populate the fast state (Fig. 4.10c). Unexpectedly, the long chains are able to populate
the fast state for a very long time. The life time of the fast state turned out to be so
large, that it was impossible to determine it in detail.

This data also explains why two migration states have been observed for T2-DNA
(164 kbp, ≈ 480 monomers). As the experimental device exhibits a length of a few
cm, it contains roughly roughly 103 trapping geometries. Thus the experimental setup
hardly corresponds to the long-time limit investigated in my simulations. Furthermore, it
is difficult to control the precise way how the chains enter the microchannel and thereby
the initial migration state.

4.5.7 Parallelized Device

A device consisting of a single period in the z-direction is not convenient for separation,
because it is unable to separate a large amount of samples in short time. Fortunately, an
extension of the device to a parallel version, or array, of the device can be constructed
very easily (Fig. 2.7).

Simulations of an array of geometrically structured microchannels have been carried
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Figure 4.12: Trajectories of N = 500 at E = E0, initially set up in the fast state. The
chains are able to populate the fast state for a longer time, even though
long-time averages predict the chains to be in the slow state only. The
opposite transition has never been observed in the simulations.

out at electric fields E = 0.001, 0.002, 0.005, 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5E0.
The simulated chain lengths were N = 10, 20, 50, 100, 200, 500, and 1000 monomers.
Simulations were carried out for 7 · 108∆t, or 7 · 106t0 with inertia dynamics. The
device geometry was left unchanged, H = 60σ. Note this implies that the width of
the continuous region between the obstacles is now 120σ. Due to the symmetry of the
device, the electric field distribution is equal to that used above.

A sample trajectory of N = 200 monomers at E = 0.5E0 is shown in figure 4.13.
Again, the trajectory exhibits two distinct migration speeds, which correlate with the
penetration depth of the deep regions. The limits of the deep regions are shown by
horizontal dotted lines, and are now on both sides of the continuous region in the middle.
Thus my data proves that the two migration states also exist in an array device.

To check whether the migration is affected notably by the change to the array geom-
etry, the mobilities were computed. Comparisons of the mobilities obtained from the
array device and the single channel are shown as a function of the chain length, N , in
figure 4.14. The agreement is excellent for all three electric fields E investigated. Note
that the slight deviation for E = 0.1/0.08E0 simply comes from the fact that two slightly
different electric fields are compared.

Furthermore, the mobility as a function of the electric field has been investigated, and
the results are shown in figure 4.15. As expected from the previous analysis, the results
are in complete agreement with one another. For low fields, the separation becomes
inefficient. This is caused by diffusion, which dominates the migration at low fields.
For long chains at low fields (N = 500 at E ≤ 0.001E0), the chain migrates faster in
the array. This is probably caused by the fact that the array device exhibits a wider
continuous region than the single channel.
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Figure 4.13: Trajectory of N = 200 monomers at E = 0.5E0 in the parallel device. The
trajectory in the upper panel exhibits two distinct migration states. Again,
the migration speed can be related directly to the penetration depth of the
wide regions in the lower panel. The limits of the continuous region are
marked by dotted lines. Note that the wide regions are now on both sides
of the continuous region.

All investigations presented indicate that the array device and the single channel
exhibit exactly the same physics. This is gratifying, as it allows for an efficient separation
device, and the results obtained for the single channel remain valid.

4.6 Transition Mechanism

To achieve a better understanding of the migration states and the mechanisms stabilizing
them the transitions from the fast to the slow and from the slow to the fast state were
investigated. The results obtained are discussed below.

4.6.1 Transition from the fast to the slow State

The simulation data presented in chapter 4.5.6 contains several transitions. A detailed
analysis of one of these is described below.

To understand the mechanism, the changes of the conformation of the polymer chain
during the transition was investigated. The radius of gyration was split into its compo-
nents, and normalized with respect to its free-flow value. The results of this analysis,
together with the actual height z of the polymer, are shown in figure 4.16.

At the beginning (x = 0σ), the polymer chain migrates in the fast state. However, the
polymer is not able to form an unperturbed coil, which can be seen from the components
of the radius of gyration. This is caused by the size of the polymer. In free flow, the
radius of gyration for chains with N = 500 monomers is Rg = 18.0±0.5σ [86]. Therefore,
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Figure 4.14: Comparison of the mobilities of the single channel to the array device as
a function of the chain length, N , for electric fields E = 0.01, 0.08/0.1,
and 0.5E0. Note that at E = 0.08/0.1E0, the mobilities slightly deviate
from each other as the electric fields simulated differ. A comparison with
the mobility depending on the electric field 4.15 yields good agreement for
various chain lengths.

it is unable to fully extend in the y- and z-direction. The center of mass is slowly falling.
A snapshot of this state is shown in figure 4.17a.

At some stage (x ≈ 7500σ), the extension in the z-direction starts to rise slightly,
whereas to other components are rather unperturbed. This indicates that an initial loop
has started to penetrate the wide region.

A little later (x ≈ 10000σ), the stretching in the z-direction has reached a considerable
amount, and starts to affect the other extensions as well. A snapshot of this stage is
shown in figure 4.17b. The initial loop has grown to a large amount of polymer, and
is already being slowed down by the weak field in the wide region. As the polymer
backbone is not parallel to the electric field, the inhomogeneous electric field induces a
net down drift, which is also shown in the snapshot. Furthermore, the polymer is unable
to withstand the inhomogeneity of the electric field, and starts to stretch the coil in
the x-direction. This leads to a slight decay of the extension in the y-direction. The
extension in the z-direction is still rising, but will soon start to decrease at x ≈ 11700σ.

The polymer reaches a fully stretched conformation some time later, at x ≈ 12800σ.
At this point, the extensions in the y- and z-direction are minimal, and a snapshot is
given in figure 4.17c. The leading monomers, which are still in the homogenous part of
the field, are being pulled down very quick now.

Eventually (x ≈ 13000σ), the leading monomer fails to enter the narrow region im-
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Figure 4.15: Comparison of the mobilities of the single channel to the array device as a
function of the electric field, E, for chain lengths N = 100, 200, and 500.
For long chains at low fields, the total width of the continuous region comes
into play. This is wider for the array device, hence the increased mobility.

mediately, and it gets stuck in the wide region. Then, the whole polymer chain, which
was stretched completely, collapses in a single device unit, as shown in figure 4.17d. At
this point, the extensions in the y- and z-direction start to increase again, as the stress
on the polymer chain is reduced. In the x-direction, the electric field still stretches the
polymer considerably.

To summarize, the slow state exists because the electric field is inhomogeneous, and
is able to stretch the polymer chain to a certain amount. This will be discussed in
chapter 4.6.5.

4.6.2 Inertia dynamics

Snapshots of the transition from the slow to the fast state are not as easy to understand
as those of the opposite transition described above. Simulations of a single monomer in
the limit T → 0 reveal an artifact of the simulation model with finite mass. The result
of that simulation is shown in figure 4.18.

When migrating around the corners of the device, the monomer migrates at high speed.
Therefore, it is unable to follow the electric field lines exactly. Thus, there is an up drift
induced by the inhomogeneous electric field. On the other hand, the velocity in the wide
regions is rather low, and the down drift induced by the finite mass is much smaller than
the up drift at the corners. This results in a net up drift of a single monomer, and short
chains, in strong electric fields.

The electrophoretic relaxation time τel in my model with inertia dynamics is 1t0,
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Figure 4.16: Radii of gyration during the transition from the fast to the slow state of N =
500 monomers, together with the height z of the center of mass. For a better
understanding, the radius of gyration has been split into its components,
which are given in the insets, and has also been normalized with respect to
the free-flow expectation value. The positions of the snapshots presented
in figure 4.17 are shown by dotted lines.

which corresponds to ∼ 10−4sec in experiment. Grossmann has reported τel = 10−9 −
10−12sec [42]. Thus the up drift induced by the electric field is an artifact of the inertia
dynamics.

4.6.3 Overdamped Dynamics

Figure 4.18 also reveals that for overdamped dynamics (Eq. 2.14) even a single particle
does not drift upwards except for numerical errors. The time step used for overdamped
dynamics is ∆t = 10−4t0. Thus numeric errors are insignificant, which is proven in
figure 4.18. To prove that the two migration states are not an artifact of the simulation
model, chains in the overdamped limit m → 0 were simulated. Due to the reduced time
step, only short chains with N ≤ 100 were investigated. Details of the simulations are
given in chapter 4.2.

Sample trajectories for N = 100 monomers at E = 0.5E0 for different starting con-
figurations are shown in figure 4.19. The system still exhibits two distinct migration
speeds, and the transition still occurs in both directions. Thus the two migration speeds
are not an artifact of the simulation model. A detailed analysis of the data is not pos-
sible, because the time step ∆t was reduced by a factor of 100 in order to integrate the
harmonic springs properly.

Examining the mobility as a function of the electric field, one finds that chains from
N = 100 up to N = 250 exhibit a minimal mobility at high fields (Fig. 4.10). The
associated electric field of the minimal mobilities turned out to be Emin = 0.35E0 for
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Figure 4.17: Transition snapshots from the fast to the slow state. The snapshots are
shifted by the number of device lengths given on the right. (b) also shows a
force parallelogram indicating the generation of a net down drift: the force
Fe and the spring force Fc on the leading monomers add up to a total force
that points downwards.

N = 100, Emin = 0.7E0 for N = 250, and Emin = 0.5E0 for all intermediate chain
lengths. Shorter chains exhibit monotonous increase of the mobility as a function of
the applied field, and long chains show a monotonous decrease in the two-state region
of the electric field. The electric field, at which the field dependent mobility reaches
a minimum, can be taken as an estimate of the electric field strength at which inertia
effects come into account. Therefore, electric fields were limited up to Emax = 0.5E0 in
the case of pulsed fields (Ch. 5).

To conclude, the inertia of the monomers does suppress the transition to the slow
state for short chains at high fields and therefore shift the transition region, but it does
not explain the two migration states.

4.6.4 Transition from the slow to the fast State

As shown above, the transition regime at high fields is related to an artifact of the sim-
ulation model, but it is not an artifact of the model itself. Unfortunately, the snapshots
of the transition from the slow to the fast state do not reveal the transition mechanism
as easily.

One possible explanation is the fact that stretching of a polymer chain costs entropic
free energy [104]. Especially when migrating around the corners, the polymer is forced
into a fully stretched conformation. Thus the urge of the polymer to form a coil induces
a drift upwards into the homogeneous field region. This effect is quite similar to the
trapping of chains in the wide region of the device (Ch. 3.4.5): the polymer favors
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Inertia dynamics
Overdamped dynamics
Electric Field

Figure 4.18: Up drift induced by inertia dynamics. At the corners, the electric field is
very strong, and single monomers and short chains are unable to follow
the electric field exactly. Also shown is the trajectory of an overdamped
monomer, which is able to follow the electric field lines exactly.

to be in a homogeneous field area, as this area does not exert stress on the polymer
conformation.

Another conceivable mechanism is that the chain migration is affected by diffusion.
However, when migrating along the wall in the narrow region, diffusion is possible in
only one direction, towards the homogeneous region. This also leads to a net up drift.
This effect can also be seen in the monomer density histograms (Fig 4.7): at the top of
the channel exists such a depletion zone as well.

A detailed analysis of the transition is difficult, because both transitions are triggered
by diffusion. Thus the transition mechanism from the slow to the fast state remains an
open problem.

4.6.5 Crossover Chain Length

As already seen in chapter 4.6.1, chains need to be stretched above a critical limit
to remain in the slow state. The stretching itself is induced by the inhomogeneous
electric field, and thus works against the entropic spring force of the polymer. The mean
elongation 〈r〉 of a self-avoiding polymer subject to an external force f , which pulls on
both ends, is given by [104]

〈r〉 ∝ Na(fa/kBT )2/3 (4.1)

for strongly stretched polymers and

〈r〉 ∝ a2N2ν

kBT
f (4.2)
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Figure 4.19: Trajectories of N = 100 monomers with overdamped dynamics (Ch. 2.2.2)
at E = 0.5E0, for different starting configurations. Two distinct migration
states still exist.

for weakly stretched polymers, where a ≈ 0.5σ is the proportionality constant in equa-
tion 2.27. In this case, the force acts on all monomers, and is not constant along the
polymer chain. Nevertheless, I will use f ∝ E, together with equations 4.1 and 4.2, to
roughly estimate the amount of stretching exerted by the inhomogeneous electric field
onto the chain.

It is not yet clear how much the chain has to be stretched in order to remain in the
slow state. Generally, there are two possibilities: the chain has either to be stretched to
an amount determined by its own size, or it has to be stretched to an amount determined
by the size of the device.

Assuming that it is necessary to stretch the chain to a length proportional to its own
size, both equations 4.1 and 4.2 yield NE5/3 to be a constant. On the other hand, a
length proportional to the size of the device represents a strong stretching (Eq. 4.1), and
this estimate predicts NE2/3 to be constant.

I use the chain length Nc, at which both states are equally populated, as a refer-
ence. Both predictions are tested against simulation data in table 4.2. Obviously, the
prediction NcE

5/3 is not constant, as it raises monotonously with the electric field,
E. On the other hand, NcE

2/3 is almost constant for electric fields E ≤ 0.5E0, but
rises for stronger fields. However, the simulation data exhibits inertia related effects for
E & 0.5E0, which is shown in chapters 4.5.3, 4.5.4, 4.6.2, and 4.6.3. For lower fields, the

rule NcE
2/3 ≈ 50E

2/3
0 is roughly fulfilled. Assuming that this rule is valid, simulations

of the overdamped dynamics should lead to a crossover chain length of

Nc ≈ 50 (4.3)

at E = E0. Sample trajectories of N = 50 monomers at E = E0 are shown in figure 4.20.
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4 Two-State Migration

E/E0 Nc Nc · (E/E0)
5/3 Nc · (E/E0)

2/3

0.08 290 ± 25 4.3 ± 0.4 55 ± 5

0.15 174 ± 20 7.4 ± 0.9 50 ± 6

0.25 124 ± 15 12.3 ± 1.5 50 ± 6

0.35 120 ± 15 20.9 ± 2.6 60 ± 8

0.50 106 ± 10 33.4 ± 3.2 67 ± 6

0.70 125 ± 10 71.7 ± 5.7 103 ± 8

1.00 200 ± 5 200.0 ± 5.0 200 ± 5

Table 4.2: Crossover lengths Nc for various electric fields. Errors of the crossover lengths
are estimates of the population density histograms.

The chains exhibit two distinct migration states. Unfortunately, the data is too poor to
determine a crossover length Nc.

Nevertheless, my data suggests that the crossover chain length depends on the device
length, and not on the chain length itself. This result also gives a possible explanation
why the transition mechanism fails at low fields: equation 4.3 predicts the crossover
chain length at E = 0.04E0 to be Nc ≈ 500. The simulation data, however, does not
support this finding (Fig. 4.9). On the other hand, chains of N = 500 monomers exhibit
an end-to-end distance of roughly 46σ. Hence, the polymer is not able to form a coiled
conformation in the homogenous field region, and the transition mechanism fails.

The results presented here also suggests strategies for enhancing/ suppressing the tran-
sition mechanism presented here: the two-state behavior can be promoted by increasing
the homogeneous field region at the top of the device. This can be easily achieved by
increasing the channel height, c, in figure 4.1.

4.7 Conclusions

To summarize, I have investigated the migration of DNA by a coarse-grained model
with a Brownian dynamics simulation. My simulations reproduce the migration order
of λ- and T2-DNA reported by Duong et al. [62]. In particular, my simulation data
explains why the chain length dependent mobility is suddenly reversed. In channels
such as shown in figure 4.1, and at moderate electric fields, the longer T2-DNA molecule
migrates slower than the shorter λ-DNA molecule.

This behavior, which is opposite to that expected at lower fields, is a signature of
a high-field non-equilibrium bistability. At very high fields (or in larger structures,
cf. table 4.1), chains migrate with two distinct migration speeds, indicating two differ-
ent states of migration. This two-state behavior has been observed in experiments as
well [63]. Factors which stabilize the two states have been discussed, and thus strategies
to construct separation devices, which either promote or suppress this behavior, can be
proposed.

A comparison of the experimental to the simulation data yields that the data obtained
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Figure 4.20: Trajectories of N = 50 monomers with overdamped dynamics (Ch. 2.2.2)
at E = E0, for different starting configurations. Two distinct migration are
clearly visible.

in experiment and from simulations agree very well. This implies that my simulation
model, which disregards electrostatic and hydrodynamic interactions, and assumes a
simple electroosmotic flow, nevertheless captures the essential physics of the migration
of DNA in an external field with geometrically structured microchannels. However, the
interplay of DNA motion and buffer flow is non-trivial and may be neglected for low fields
outside the Debye layer only. As reported in reference [63], the electrophoretic mobility
is of the same order of magnitude as the electroosmotic mobility. This should give rise to
induces interesting flow patterns and non-trivial behavior in the case of DNA migrating
along the Debye layer, or at high fields. Such flows have already been investigated for an
inhomogeneous space charge density [107]. Moreover, electrostatic and hydrodynamic
interactions are not entirely screened in the presence of geometric barriers. This leads
to additional effects [101]. In order to investigate such phenomena, systematic studies
are necessary, and efficient new separation techniques need to be developed as well.

An array of microchannels such as those described here may easily be constructed.
In such a device, a large amount of sample DNA can be separated in parallel, and the
separation of large amounts of sample DNA can be accelerated considerably. As shown
here, the simulation data shows that the data obtained for a single channel is the same
as for the array device, given a sufficient electric field. In this case, the data can be
transfered directly, and the effect of the covering walls are indeed neglectable.

From a practical point of view, these results have two implications:
One the one hand, the results show that the migration of DNA may be surprisingly

complex. DNA may exhibit non-monotonic length dependence of the mobility, and
even bistabilities during migration. These effects are non-trivial and must be considered
during development of new separation devices, and a thorough theoretical analysis is
recommended.
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4 Two-State Migration

On the other hand, the observed two-state behavior might be exploited successfully
when a time dependent electric field is applied. My data suggests that the mobilities of
the fast and the slow state differ by a factor of almost 2 (Fig. 4.9 and 4.10), whereas the
dependence of the mobility in the two states is rather weak. Furthermore, the crossover
chain length Nc, at which both states are equally populated, may be easily adjusted
by changing the size of the device. However, in order to benefit from this two-state
migration behavior, the switching times between the two states need to be reduced
considerably.

In the next chapter, I will investigate the effects of a time dependent electric field in
the array device.

68



5 Pulsed electric Field

5.1 Introduction

The latest separation devices do not operate with a static geometry or an AC field alone,
but on a combination of an AC field combined with a specific geometry.

Recently, Austin’s group has presented a device consisting of a hexagonal array of
posts [35, 40]. Electric fields and the direction thereof vary with time. With a proper
setup, one can achieve that the field distribution around each post is the same inside the
twodimensional device for any average field direction [108]. Note that does not imply
that the local electric field itself is homogeneous.

Another ratchet device has been presented by Huang et al. [109], and the influence of
the molecular size on the fractionation was investigated. Here, rectangular obstacles are
placed with an orientation off the direction of the electric field. Migration of particles
according to electric field lines is reported, and “memory” effects induced by the particles
are discussed. Particles with a size comparable to the device dimensions lose their
conformation memory when migrating through the barriers. This can be compared to
the slow state described in chapter 4.5. The resolution reported of this device is 3 times
better than Brownian ratchet arrays [110].

In this chapter, I will investigate another effect that should be applicable as a ratchet
mechanism: the two-state migration presented in chapter 4. According to my results
and those found in experiment [63], polymer chains populate both states depending on
the electric field applied. With a proper setup, it should be possible to force the chain
into the slow state with a strong field, and favor the fast state with a weak field. As the
mobilities in these states differ by a factor of almost 2, a net drift in the direction of the
weak field should occur. On the other hand, the transition rates between the two states
are very low, indicating that the electric fields applied need to switched very slow.

This chapter is organized as follows: the setup of the simulations is described in
chapter 5.2. The investigation is performed in two steps. First, I will investigate the
influence of a time-symmetric electric field with mean zero in chapter 5.3, and compare
the results to those expected from those presented in chapter 4. In a second step, I apply
an asymmetric field with mean zero (Ch. 5.4) and investigate the minimum switching
time necessary to exploit the ratchet effect.

5.2 Simulation Setup

To exploit the two-state migration behavior, the device dimensions of chapter 4 were
used. In that simulation, I set H = 60µm, which is also the depth of the device in the
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lateral direction. Furthermore, the extension to an array device was used. A comparison
of array data to data of a single microchannel is given in chapter 4.5.7. For an efficient
simulation, I used the dynamics with inertia, and electric fields were limited to a max-
imum field strength of Emax = 0.5E0 to avoid artifacts caused by the dynamics with
inertia (Ch. 4.6.5). As the adaptation to experimental values presented in chapter 4.3
remains valid, no new matching of parameters was performed.

Compared to a static electric field, a pulsed field offers three additional parameters
(Ch. 2.9.1). This implies that looking for a proper parameter set can be very time
consuming. To reduce the number of parameters, initial investigations were restricted
to a mean-zero, time-symmetric electric field. Electric fields applied covered the values
E = 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5E0, and switching times of the electric field were
adjusted so that in free flow, the chains would have migrated ∆x = {2.5, 5, 10}(lb + lt).
Figure 2.6 shows that the total length L of the device is the sum of the length of the
wide region, lb, and the length of the narrow region, lt. This implies that the switching
time tsw = ∆x/Eµ0 varied from tsw = 24 · 103 − 12 · 106∆t. Note that the switching time
depends on the electric field. If the switching time was independent of the electric field,
the chains would either not have migrated considerably, or over very long distances,
before the field is reversed. Simulations were carried out over 9 · 109∆t for chain lengths
of N = 10, 20, 50, 100, 200, 500, and 1000 monomers.

In a second analysis, electric fields with mean-zero, but with a broken time symmetry
were applied to the device. As the field exhibits a mean-zero value, the field consists of
two different pulses: a short and strong, and a weak and long one. In my simulations,
the strong pulse is always directed in the positive x-direction. I investigated two cases
(Fig. 2.9): ∆t1/T = 0.2 and ∆t1/T = 0.3, with t1 the application time of the strong
pulse, and the period T . Note that ∆t1/T = 1/2 leads to the time-symmetric field
described above. Application of E1∆t1 = −E2∆t2 yields E1/E2 = −1/4 and E1/E2 =
−3/7, respectively. Electric fields applied cover the range E1 = 0.1, 0.2, and 0.5E0.
Thus the electric fields cover the range of the two-state behavior (Ch. 4). Switching
times were chosen so that the chains are able to migrate distances ∆x = {1, 2, 3, 5}L in
free flow. This implies that the strong pulse is applied for ∆t1 = 24 · 103 − 1.2 · 106∆t,
and the total period of the electric field ranges from T = 80 ·103 −6 ·106∆t. Simulations
were carried out for 6 · 108∆t for migration distances ∆x = {1, 2, 3}L, and for 109∆t in
the case of ∆x = 5L. Investigated chain lengths were N = 10, 20, 50, 100, 200, 500, and
1000 monomers.

Note that the simplification of an electroosmotic flow similar to the electric field out-
side the Debye layer at the walls (Ch. 2.10.2, Ref. [99, 100]) is only true for a static electric
field. However, the shortest time of application of the strong pulse is 24 · 103∆t = 240t0.
The adaptation given in table 4.1 for the 5µm structures yields that 1sec ≡ 104t0. Thus
electric fields are applied for at least 24msec in experiment. Experiment reports indicate
that electroosmotic flow establishes to its steady state behavior in about 100µsec [45, 26].
These considerations clearly show that the assumption of an electroosmotic flow similar
to the electric field can still be justified.
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Figure 5.1: Position of the center of mass at the field reversal of chains with N = 10 and
100 monomers in the pulsed time-symmetric electric field at E1 = 0.1E0. As
the field exerts a time-averaged mean-zero force, the chains exhibit diffusive
effects on long time scales only. For short time scales, however, the migration
of the chain is controlled by the electric field. Here, one single pulse of the
electric field allows for a free-flow migration distance of ∆x = 5L.

Sample trajectories of N = 10 and 100 monomers in an electric field E1 = −E2 =
0.1E0 at pulse times of tsw = 6·103t0 are shown in figure 5.1. This implies that chains are
able to migrate 5L in free flow during one single pulse. As the migration is dominated
by the forward and backward movements of the electric fields, only the positions of the
center of mass at the reversal of the field are shown. Thus the trajectory oscillates
between the two lines shown. Apart from the direct migration induced by the electric
field pulses, the chains still exhibit diffusive motion, which is much stronger in the case
of N = 10 monomers.

The trajectories differ from those shown above if the chain exhibits two states of
migration, as described in chapter 4.5. A trajectory of N = 200 monomers at E1 =
−E2 = 0.5E0, combined with the penetration depth of the wide region is shown in
figure 5.2. If the chain is in the continuous region of the device, the deviation from
the free-flow migration behavior is small and can be related to free-flow diffusion. This
situation is changed considerably if the chains penetrate the wide regions. In this case,
the migration is influenced by the device walls, and the inhomogeneous electric field. This
leads to a reduced drift during a single pulse, which is described below. Furthermore,
the diffusive motion in field direction is enhanced, which is apparent from the trajectory.
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Figure 5.2: Trajectory of N = 200 monomers at E = 0.5E0 in the time-symmetric
pulsed electric field with tsw = 5L/E0µ0, marked by the positions at field
reversal. Two distinct states of forward and backward migration are visible.
As in chapter 4.5, these are correlated to the level of penetration of the wide
region shown in the lower panel. The horizontal dotted lines indicate the
borders of the continuous region, and the vertical dashed lines are just guide
to the eye.

5.3.2 Drift Histograms

Trajectories oscillate between the points when the electric field is reversed, and exhibit
mean zero total drift. However, the change of position during one single (forward or
backward) electric pulse, ∆x, is influenced by the parameters of the pulse, like switching
time tsw, and E1. The drift lengths of the trajectory presented in figure 5.2 are shown in
figure 5.3. As was already visible before, the drift length does depend on the penetration
depth of the wide region. If the chain is in the continuous region of the device, the
drift length roughly corresponds to the free-flow expectation value ∆x = 600σ, and
penetration of the wide region results in a reduced drift length per pulse. The amount
of reduction depends on the interaction with the walls and the electric field along the
migration path very sensitively, which explains why the drift length is spread over a wide
range.

The probability density distribution of the drift lengths of chains with N = 100, 200,
and 500 monomers is shown in figure 5.4.

For N = 100, only one peak exists, and it is roughly located at the free-flow expectation
value ∆x,free = 600σ. For N = 500 monomers, a single peak at ∆x ≈ 360σ exists.

However, at N = 200 monomers, two distinct peaks are visible. The peak at ∆x =
600σ corresponds to the free-flow expectation value. In free flow, the width of that peak
can be computed by equations 2.11 and 2.26:

〈

(rx(t) − rx(0))
2
〉

= 2Dt. (5.1)
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Figure 5.3: Drift lengths of N = 200 monomers at E = 0.5E0 in the time-symmetric
pulsed electric fieldwith pulse length tsw = 5L/E0µ0. Inside the continuous
region, the drift length during one single pulse of the electric field agrees very
well with the free-flow prediction. If the chain penetrates the wide region,
the drift length is reduced notably.

Note that in this case, only one direction, x, is considered. Substitution of N = 200
monomers and t = 1200t0 yields a mean quadratic offset from the expectation value of

〈

(∆x − 〈∆x〉)2
〉

= 12σ2. (5.2)

Here, the peak width is apparently comparable to the theoretical prediction. Unfortu-
nately, the available data does not allow a thorough analysis.

The other peak is related to the slow state described in chapter 4.5, and is located at
∆x ∼ 365 − 370σ. A comparison with the two-state mobility data shown in figure 4.10
yields a mobility of µ/µ0 = 0.635 ± 0.003. This leads to a mean drift length of 〈∆x〉 =
(381 ± 2)σ, which is slightly deviates from the location of the maximum found here.
However, a closer inspection reveals that

〈∆x〉 =

∫

dx ∆xP (∆x). (5.3)

Here, the probability distribution P (∆x) is not symmetrical around the maximum.
Performing the integration shown above, the expectation value of the drift length is
〈∆x〉 ≈ 390σ, where the data with ∆x > 550σ has been cut off. This agrees very well
with the prediction of the slow state.

To summarize, these data are almost identical to that obtained from the static electric
field (Ch. 4.5.4): Short chains favor the fast state, long chains prefer the slow state, and
chains of intermediate length migrate alternatingly in the fast and the slow state.
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Figure 5.4: Drift length probability density of N = 100, 200, and 500 monomers at
E = 0.5E0 in the time-symmetric pulsed electric field with tsw = 5L/E0µ0.
The probability distribution exhibits two distinct peaks, which can easily be
related to the penetration depth of the wide region.

5.3.3 Drift Length

Mean drift lengths 〈∆x〉 at E1 = 0.2E0 as a function of the chain length, N , are shown
for switching times tsw = 1500, 3000, and 6000t0. For a better comparison, all drift
lengths have been normalized to the free-flow drift length, i. e. a value equal to unity
indicates that the chain has not been influenced by the electric field or the walls at all.
Here, the free-flow drift length is represented by tswE1µ0 = 2.5, 5, and 10L. These drift
lengths have also been compared to those expected from mobilities in a static electric
field, which are indicated by dashed lines.

Apparently, the data agree if the chain is either short, or the switching rate of the
electric field is low. One convincing explanation is that short chains are able to adapt to
the steady-state behavior very quickly, as these exhibit both a short relaxation time τR

(Ch. 2.7.1), and a large diffusion constant, D (Eq. 2.26). On the other hand, long chains
need much time to adapt to a new electric field, as these have a long relaxation time
and a low diffusion constant, D. However, as the pulses are symmetrical, the migration
states in both forward and backward pulses are identical. The reason why long chains
obviously need time to adapt to the reversed field, can be seen in figure 4.6: in the slow
state, a chain consists of two parts. One part of the chain is coiled in the wide region, and
the other is stretched into the narrow region. Thus the chains exhibit an orientation, and
need to adapt to a new electric field direction, even if it is simply reversed. However, this
process is much faster than a full relaxation of the conformation, which is τR ≈ 5200t0
for N = 200 monomers.

Mean drift lengths 〈∆x〉 of chains with N = 100, 200, and 500 monomers as a function
of the electric field E1 are shown in figure 5.6 for a switching time tsw = 2.5L/E1µ0. As
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Figure 5.5: Drift lengths as a function of the chain length at E1 = 0.2E0, for switching
times tsw = 1500, 3000, and 6000t0. For a better comparison, the drift lengths
have been normalized by the free-flow expectation value. The expectation
value in the adiabatic limit is shown by the dashed lines.

before, the drift lengths have been normalized with the free-flow expectation value,
∆x,free = 2.5L = 300σ, and the expectation value from the steady-state migration
(Ch. 4.5) is shown by a dashed line. Apparently, the drift lengths of all three chains show
deviations from the steady-state prediction at high fields. Notable deviations are found
at E1 ≥ 0.5E0 for N = 100, E1 ≥ 0.1E0 for N = 200, and E1 ≥ 0.05E0 for N = 500
monomers. A comparison with figure 4.10 yields that in all three cases, the slow state
is populated with at least ∼ 20%. Thus this analysis underlines the finding presented
above. In the fast state, the chains are unaffected by a sudden reversal of the electric
field, as the migration conformation does not exhibit an orientation. In the slow state,
the migration conformation does exhibit an orientation, which needs to be adjusted after
the reversal of the electric field. The time of adaptation τa can be roughly estimated by
the time it takes the polymer to migrate one device length in free flow: τa ∼ L/E1µ0.

5.4 Asymmetric pulsed electric Field

As clearly indicated by the simulation data presented above, even time-symmetric pulsed
electric fields may affect the migration notably. This is caused by a reorientation of the
migration orientation in the slow state. However, the application of an electric field with
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Figure 5.6: Drift lengths as a function of the electric field E1 for chain lengths N = 100,
200, and 500 monomers at switching time tsw = 2.5L/E1µ0. The values have
been normalized by the free-flow expectation value. The expectation value
in the adiabatic limit is shown by the dashed lines.

a broken time symmetry demands an adaptation to different migration states, which
may exhibit very long relaxation times.

5.4.1 Trajectories from Simulation

Trajectories of N = 10, 100, and 1000 monomers in an electric field with t1 = 1200t0,
E1 = 0.5E0, and t1/T = 0.2 are shown in figure 5.7. Note that for a better recognizabil-
ity, only the position of the center of mass at the field reversal at the end of the strong,
forward electric pulse, which is directed in positive x-direction, are shown.

The chain with N = 10 monomers seems to migrate slightly in the direction of the
strong pulse. Qualitatively, this behavior can be explained by the adiabatic mobilities
(Ch 4 and Fig 4.10), as the mobility steadily increases with the field strength and the
chain is able to adapt to a new field very quickly. This finding also complies with the
probability of getting caught in the wide region (Ch. 3.4.5).

For N = 100 monomers, the chain, on average, mostly keeps its position, and almost
no drift can be seen. As seen in chapter 5.3.3, these chains are able to adapt to the
steady-state value during the pulse.

The situation is different for N = 1000 monomers. Here, the chain is not able to
adapt to an electric field in any of the pulses. However, a migration in direction of the
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Figure 5.7: Trajectories of N = 10, 100, and 1000 monomers in the asymmetric electric
field with t1 = 1200t0, E1 = 0.5E0, and t1/T = 0.2. For a better recogniz-
ability, only the positions at the point of field reversal at the end the strong
electric pulse, which is directed in positive x-direction, are shown.

weak pulse nevertheless occurs. To achieve a better understanding of the two migration
states during the different pulses, the average z-position of the center of mass has been
recorded as a function of the x-position in the unit cell of the device. The result is shown
in figure 5.8. The narrow region is marked by a grey background. Note that the center
of mass may be located outside the device walls, if the chain is bent around a corner.
The figure clearly shows that the chain is pulled into the wide region by the electric field.
Furthermore, the penetration depth of the wide region clearly depends on the electric
field, and the strong electric pulse pulls the chain further into the wide region than the
weak pulse. As the migration speed is directly related to the penetration depth of that
region (Fig. 4.5), a net drift in the direction of the weak field occurs. Thus the chain
exhibits two different states of migration, even if the fields do not allow for a relaxation
into the steady-state migration.

5.4.2 Drift Lengths from Simulation

Drift lengths of N = 200 monomers at E1 = 0.5E0, t1 = 5L/E1µ0 = 1200t0, and
t1/T = 0.2 are shown in figure 5.9. On the right side, the drift length probability
densities are shown. Apparently, both drift length histograms exhibit two distinct peaks,
as in figure 5.4. The histograms of the forward and backward drift are obviously highly
correlated, and they are almost equal. This is also reflected by the drift length probability
densities shown in the inset. Thus two states of migration still exist. As a consequence,
the drift largely unaffected by the current electric field, and is mostly determined by the
previous migration state.

Drift lengths a a function of the chain length in a electric field with E1 = 0.5E0,
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Figure 5.8: Average position of the center of mass for N = 1000 monomers during the
strong (forward) and weak (backward) pulses inside the device. The narrow
region is marked by a grey background. Note that the center of mass may
be located outside the device walls, if the chain is bend around a corner.

t1 = 1200t0, and t1/T = 0.2 are shown in the upper panel of figure 5.10. For comparison,
the expected drift lengths in the case of symmetric pulses are given in the middle panel,
and the case of a static electric field is shown in the lower panel. For comparison, all
values have been normalized by the free flow value ∆x,free = E1t1 = 600σ.

A was already seen in chapter 5.3.3, the steady-state and the symmetric pulse value
agree quite well for short chains, and slight deviations occur for long chains. However,
these data obviously cannot be applied to an electric field with a broken time symmetry.
In this case, the forward drift induced by the strong field and the backward pulse induced
by the weak field are almost identical, regardless of the chain length. Slight deviations
of these drifts are only found for short chains, where the chains favor the direction of
the strong pulse, and for long chains, which favor the direction of the weak pulse.

5.4.3 Migration speeds from Simulation

As the forward and backward drift lengths do not differ significantly in most cases
(Fig. 5.10), and are even highly correlated (Fig. 5.3), the analysis of a single drift length
is inappropriate. However, slight deviations of the forward and backward drift lengths
do exist for long and for short chains. Thus the total drift length

∆x,tot = ∆x,forw + ∆x,backw (5.4)

obviously depends on the electric field, and the chain length (Fig. 5.7). Furthermore,
this observable offers the advantage that the sum of the two drift lengths do not scatter
as much as the single drift lengths. This observable can be easily related to the total
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Figure 5.9: Normalized drift lengths of N = 200 monomers at E1 = 0.5E0, t1 =
5L/E1µ0 = 1200t0, and t1/T = 0.2 (left side). The plot on the right shows
drift length histograms of the forward and backward pulses.

drift velocity 〈vd〉:
〈vd〉 =

〈∆x,tot〉
T

(5.5)

Mean migration speeds 〈vd〉 as a function of the chain length in an electric field
with E1 = 0.2 and 0.5E0, t1 = 5L/E1µ0, and t1/T = 0.2 are shown in figure 5.11. For
comparison, the expectation values from static electric fields are also shown. Apparently,
the migration speeds in the pulsed field are much lower than expected from the values of
static electric field. At E1 = 0.2E0, the drift velocity 〈vd〉 is very small, and a significant
drift could not be detected for any chain length. At E1 = 0.5E0, however, short chains
drift in the direction of the strong pulse, and long chains show a mean drift in the
direction of the weak pulse, as already seen in figure 5.7. Thus the electric field E1

needs to exceed a minimum value for a ratchet effect to occur. This agrees with the idea
that the ratchet effect is based on the two-state migration, as this effect also needs a
minimum electric field.

5.4.4 Minimum Pulse Time

To find out the minimum switching time, simulations with t1 = 1, 2, 3, and 5L/E1µ0 at
an electric field E1 = 0.5E0 were performed. The mean drift speeds 〈vd〉 for t1 = 1, 3,
and 5L/E1µ0 are shown in figure 5.12.

At t1 = 1 and 3L/E1µ0 (240 and 720t0), the mean drift velocity 〈vd〉 does not differ
significantly from zero. Here, the chains are obviously unable to adapt to two different
migration states. The situation is different at t1 = 5L/E1µ0 = 1200t0. After such an
adaptation time, the chains are able to adjust to two different states of migration. With
the data shown here, longer pulse times t1 should result in a greater drift velocity 〈vd〉.
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Figure 5.10: Normalized drift lengths as a function of the chain length in the asymmetric
electric field with t1 = 5L/E0µ0, E1 = 0.5E0, and t1/T = 0.2. For compar-
ison, the expectation value for the symmetric electric field is shown in the
middle, and the steady-state values are given in the lower panel.

5.4.5 Ratio of the Pulse Times

As already mentioned in chapter 5.2, simulations were carried out at t1/T = 0.3 as well.
As described above, only one parameter set exhibits a mean drift of the chains induced
by a ratchet effect: E1 = 0.5E0 and t1 = 5L/E1µ0 = 1200t0. Mean drift velocities 〈vd〉
obtained from simulation are shown in figure 5.13. Short chains seem to drift in the
direction of the strong pulse, and long chains drift in the direction of the weak pulse.
Except for a slight difference of the drift velocity for short chains, no notable difference to
the data for t1/T = 0.2 is found. One the one hand, one expects the ratchet mechanism
to vanish in the limit t1/T → 1/2 (t1 → t2). On the other hand, the two different
migration states do not differ that much, and the chains are able to adjust to the new
electric field quicker. Here, these two effects seem to cancel each other.

5.4.6 Theoretical plate number

As already mentioned in chapter 3.4.3, the separation efficiency of a device is often
measured in terms of the theoretical plate number, Nplate (Eq. 3.5). A net drift is
clearly exhibited at E1 = 0.5E0, t1 = 5L/E0µ0, and t1/T = 0.2 and 0.3 (Fig. 5.13) for
long and short chains. Therefore, I have investigated the plate number of these runs.
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Figure 5.11: Migration speeds as a function of the chain length at E1 = 0.2 and 0.5E0,
t1 = 5L/E1µ0, and t1/T = 0.2. For comparison, the expectation value from
the steady-state limit is also shown by the dotted lines.

These results are shown in table 5.1. Theoretical plate numbers per device roughly cover
the range from 2 to 20, which is smaller than for entropic traps. Using a total device
length of 10µm, one finds 0.2 − 2 · 106 plates per meter.

Note that in the case of N = 200 monomers at t1/T = 0.3, a plate number of the
forward drift could be assigned. In this case, the adiabatic limit predicts a backward
motion of (−23 ± 4) · 10−3σ/t0. Here, the drift velocity in the pulsed field is 〈vd〉 =
(3.2 ± 3.4) · 10−4σ/t0. Thus the chain almost exhibits a significant drift in the opposite
direction than the adiabatic prediction.

N direction Nplate at t1/T = 0.2 Nplate at t1/T = 0.3

10 forward 3.1 1.8

20 forward 4.8 1.8

50 n.a. n.a. n.a.

100 n.a. n.a. n.a.

200 forward n.a. 3.0

500 backward 9.3 8.2

1000 backward 26.2 19.2

Table 5.1: Theoretical plate number Nplate per device for different chain lengths at E1 =
0.5E0, t1 = 5L/E0µ0, and t1/T = 0.2 and 0.3. Sets with less than 30 samples
have not been considered.
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Figure 5.12: Migration speeds as a function of the chain length at E1 = 0.5E0, t1 =
{1, 3, 5}L/E1µ0, and t1/T = 0.2.

5.5 Conclusions

To summarize, I have performed an off-lattice Brownian dynamics simulation of a coarse-
grained model of DNA in a rectangular array of obstacles with a pulsed electric field
with mean zero. The electric field distribution inside the device geometry corresponds
to that presented in chapter 4, and thus allows for two distinct migration states. The
only difference is that the microchannel is now replaced by an array, see figure 2.7.

In a first stage, I have investigated the effects caused by a time-symmetric electric
field, i. e. E1 = −E2, with mean zero. Again, two distinct migration states are found,
which exhibit different properties even in the pulsed electric field. For long pulse times,
and short chains, the drift widths can be described by the data obtained in the static
electric field case. Notable differences occur when the field is strong, and long chains are
investigated. These deviations can be explained by a non-vanishing population density
of the slow state, which has a migration orientation. The point of divergence of the data
has been examined, and a parameter to predict this point from steady-state simulation
data has been found.

In a second stage, I have investigated the effects of an electric field with a broken
time symmetry, i. e. E1 6= −E2, with mean zero. Two distinct states of migration still
exist, and the migration during a single pulse is almost defined by the previous state of
migration. However, I have found that it is possible to exploit the two-state behavior as
a ratchet mechanism with moderate switching rates of the electric field. The influence
of the electric field strength itself was discussed, and the ratchet mechanism also needs a
minimum electric field to occur. I have also investigated the influence of the ratio of the
applied electric fields, and did not find a notable difference. This is probably accidental
and related to the fact that my set of simulation parameters only covered one set which
exhibited the ratchet effect.
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5.5 Conclusions
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Figure 5.13: Migration speeds as a function of the chain length at E1 = 0.5E0, t1 =
5L/E1µ0, and t1/T = {0.2, 0.3}.
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6 Conclusions and Outlook

To summarize, I have presented an off-lattice simulation of a simple bead-spring model,
which represents a coarse-grained model of DNA, with Brownian dynamics. In contrast
to the preliminary work in my diploma thesis, the electric field in the device is no longer
assumed to be homogeneous, and much better agreement with experimental data is
achieved. Nevertheless, some important interactions are neglected by the model. It is
shown that none of these should affect the simulation data notably, if the parameters of
the model are matched to those of the experiment appropriately.

First I have considered entropic traps. My data reproduces the migration order re-
ported by Han and Craighead [53, 54, 55, 56], who have reported that long chains migrate
faster than short ones. Furthermore, Han and Craighead have proposed entropic trap-
ping as a length-dependent trapping mechanism. In that case, the escape rate should
be proportional to N 3/5, with N the number of monomers. Indeed, my simulation data
supports this picture. However, they also reveal an additional trapping mechanism with
an escape rate proportional to N 1/5. In this case, chains deviate from the main path into
the deep region of the device, and get stuck in the field-free region. From my simulation
data, an estimate of the mobility due to this new trapping mechanism in the device is
obtained. This is compared to the simulation data, and good agreement is found.

I have also investigated the migration of model DNA in geometrically structured mi-
crochannels presented by Duong et al. [62]. With my data, it is possible to explain the
reversal of the chain length dependent mobility reported. This reversal turns out to be
the signature of a high-field, non-equilibrium bistability. This bistability has also been
observed in experiments as well [63]. A detailed analysis, including the mobilities and
the population densities of the two states, is given. At high fields, the main contribution
to the chain length dependent mobility comes from the different population densities of
the two states. Furthermore, I have shown that this behavior can be found in an array
of microchannels as well.

As the two migration states exhibit two distinct migration speeds, which differ by
a factor of almost 2, I have also investigated the influence of a pulsed electric field
in an array of microchannels. The investigation is performed in two steps: first, the
influence of a time-symmetric electric field with mean zero is analyzed. Differences to
the steady-state behavior are only found if the slow state is populated notably. As the
migration conformations during the two pulses are equal, this underlines that the slow
state exhibits an orientation, which does not exist in the fast state. In a second step,
I applied an electric field with mean zero, but a broken time symmetry, i. e. the field
consists of a strong and a weak pulse. My simulation data shows that the two-state
migration can indeed be exploited as a ratchet mechanism, given a strong electric field,
and if the electric field pulses are applied for a sufficient amount of time. However, the

84



simulation parameter range did not cover the full range of the ratchet effect, and further
investigations are necessary.

As shown above, my simple model captures the essential physics in geometric struc-
tured devices like entropic traps and microchannels. As my model incorporates inertia,
it is not useful at very high fields, which are necessary to exploit the ratchet effect.
On the other hand, my model is inefficient in the overdamped limit. Currently, efforts
are being made to use stiff bonds, which hopefully allow for a larger time step in the
overdamped case. Another promising way is to use optimized channel geometries, which
still need to be developed.
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A Modifications of the Simulation Program

The simulation program has already been described in ref. [86]. However, a few exten-
sions are applied. These shall be described below.

A.1 Walls in y-direction

These are necessary to model the finite depth of the device presented in chapter 4. The
same potential as that describing the interaction with the other walls is used.

A.2 Inhomogeneous electrical field

A numerical solution for Φ is obtained from the software program “Matlab” (Mathworks,
US, http://www.mathworks.com). The solution is computed by a finite element solver
with an adaptive triangulation and evaluated on a square grid. The grid values are read
in by the simulation program. To compute the electric field at a given point ~r, the grid
values of the derivatives are interpolated bilinearly.

A.2.1 Potential File

The solution Φ(x, z) on a square lattice has to be stored in a file that needs to fulfill the
following requirements. Basically, this file consists of two parts: a header line, and the
raw data.

An example header line looks like this:

# 1 60 60 60 60 0 0.5 0.0083333 58081

Parts of that line are used by the simulation program to determine whether the file fits
to the parameter set described in the constants file (App. B). The meaning of the
device size parameters is described in chapter 2.8. From left to right, the meaning of the
entries is interpreted by the simulation program to be:

#: To comment out the header line when importing the data into another
program, like XmGrace.

1: The version of the file, 1 representing the microchannel setup described
in chapter 2.8. Up to now, this is the only version of file supported.

60: The height ht of the narrow region.

60: The height hw of the wide region.
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A.2 Inhomogeneous electrical field

60: The length lw of the wide region.

60: The length Lt of the narrow region.

0: The tilt of the walls.

0.5: Represents the distance of the grid points, h. As the simulation pro-
gram needs a square grid, this represents the distance of the grid points
in both the x and the z direction.

0.0083333: This entry characterizes the electric field strength of the potential Φ.
In this case, Φ(90, z) − Φ(−30, z) = 1 is fulfilled, resulting in a mean
field strength E = 1/120E0.

58081: The number of data sets stored in the file. Here, the unit cell of the
device has 120× 120σ2. With the grid distance h = 0.5σ, this leads to
a grid of 241 × 241 = 58081 data sets.

The data sets in the file consist of three values: x, z, and Φ(x, z), and are stored in
this order. However, the ranges covered need to fulfill (Fig. A.1):

x direction: The range from −lt/2 up to lw + lt/2

z direction: The range from −hw up to ht

-l
t
/2 0 l

w
l
w

+l
t
/2

-h
w

0
h

t

Figure A.1: Ranges covered by the potential file. All points need to be inside the area
shown, with the coordinate system indicated. Inside the walls (gray area),
data points may be given, as the simulation program neglects these.

These ranges need to be fully covered by the square grid. Inside the walls (gray areas),
data sets may be given as well, as these are neglected during evaluation. Note that the
simulation program is not able to handle the string “NaN” (Not a Number) properly.
This is given as a result by the software program “Matlab” when computing the solution
outside the device boundaries.
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A Simulation Program

A.3 Observables

For a simpler analysis, some observables were added to the simulation program, which
originally only recorded the center of mass and the positions of the most extended
monomers. These are:

• First Rouse mode X1 = 1
N

∑N
i=1 cos

(

(n+ 1

2
)π

N

)

~rn: This observable allows for an

analysis of the conformational relaxation time, as it is the Rouse mode which has
the longest decorrelation time.

• Radius of Gyration R2
g,α = 1

N

∑

n(rn,α − RG,α)2 for each configuration and each
direction α = {x, y, z}, where RG is the center of mass

• End-to-End vector ~R = ~rN − ~r1

• The measurement of the most extended monomers now records both monomer
index i and full position ~ri

• The contour length c =
∑N−1

n=1 |~rn+1 − ~rn|

• The velocity of the center of mass ~vG = 1
N

∑

n ~vn

• The angular momentum in the center of mass system ~L =
∑

i(~ri − ~RG) ⊗ ~vi

• The energy of the polymer, split into purely kinetic energy of the monomers, both
external (walls) and internal (Lennard-Jones, harmonic spring) interaction energy

• The mean cosine of the bond angle, < cos Θ >

• The scalar product of the first bond with the end-to-end vector, (~r2−~r1) ·(~rN −~r1)

• The longest and the shortest bond length in a given snapshot. This allows for
ensuring that no bond crossing occurs during simulation (Ch. 2.6, ref. [86]).

• The current multiplication factor τ for the electric field (Ch. 2.9.1). This is for
checking the correct implementation of the code as well as analysis.

Furthermore, the simulation program is now capable of appending configuration snap-
shots regularly to a file, allowing for a detailed analysis afterwards.

A.4 Computation of the Lennard-Jones Potential

The data structure hash map [111] is no longer supported by the Standard Template Li-
brary (STL). Therefore, the simpler and slightly slower data structure map is used, which
is based on a red-black search tree. However, recent advances in compiler technology
ensure a ≈ 40% gain in speed of the compiled code.
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A.5 Overdamped Dynamics

A.5 Overdamped Dynamics

For special tests, dynamics in the limit m → 0 have been implemented. A detailed
description is given in chapter 2.1.2 and 2.2.2.

A.6 Pulsed Field

As shown in chapter 2.9.1, four parameters are needed to fully describe any rectangular
pulsed electric field. In the simulation program, the parameters E1, τ = E2/E1, ∆t1 and
T = ∆t1 + ∆t2 have been implemented. It is checked which of the two fields has to be
applied in each time step. For a simpler implementation, the electric force is computed
for E = E1 in every case, and multiplied with a factor of either one or τ afterwards.

A.7 Parallelization of the Device

To compute the forces inside the array device (fig. 2.7), the particle position is trans-
formed into the unit cell shown. If necessary, it is mirrored into the unit cell of the
simple device (fig. 2.6). Then the forces are computed and, if necessary, retransformed.
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B Source Code of the Simulation Program

Below you find the complete sources of the simulation program, a sample parameter file
(constants), a sample random seed file (random-seed), and a list of possible error codes
and the meaning thereof
(errorlist.txt).

The initial configuration file contains the time steps already computed in the first
line, and the number of monomers stored in the file in the second. In the next lines,
the locations and velocities of the monomers are given, in the x-, y-, and z-direction. A
sample configuration file of N = 10 monomers after 0 time steps looks like:

# 0

# 10

40 0 -40 0 0 0

40 1 -40 0 0 0

40 2 -40 0 0 0

40 3 -40 0 0 0

40 4 -40 0 0 0

40 5 -40 0 0 0

40 6 -40 0 0 0

40 7 -40 0 0 0

40 8 -40 0 0 0

40 9 -40 0 0 0
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#include<mat h. h>
#include<st dl i b. h>
#include<st di o. h>
#include" point.hh"
#include" constants.hh"

#ifndef CONFI G_UTI LS_I NCLUDED
#define CONFI G_UTI LS_I NCLUDED

/ /  Thi s  f i l e cont ai ns a f ew r out i nes t o handl e conf i gur at i on snapshot s,  and t o per f or m a f ew 
/ /  basi c measur ement s.  
/ /  Funct i ons used:
/ /  − r ouse_mode       :  comput es t he r ouse−modes of  a conf i gur at i on
/ /  − del t a            :  s i mpl e Kr onecker −del t a
/ /  − t het a            :  mean of  t he cosi ne of  t he bond−angl es
/ /  − gyr at i on−r adi us  :  comput es t he r ai us of  gyr at i on of  a conf i gur at i on
/ /  − angul ar  moment um :  comput es t he angul ar  moment um of  a conf i gur at i on
/ /  − val i d_checkpoi nt  :  checks t he val i di t y  of  a checkpoi nt  f i l e
/ /  − r ead_conf i g      :  r eads i n a conf i gur at i on f r om a f i l e
/ /  − wr i t e_conf i g     :  wr i t es a conf i gur at i on t o a f i l e
/ /  −count _conf i g      :  count s t he number  of  snapshot s i n a conf i gur at i on f i l e

using namespace s t d;

const i nt  number _of _bl ocks = 10;

poi nt  r ouse_mode( poi nt *  r ,  i nt  N,  i nt  mode)  {
  poi nt  hel p = poi nt ( 0, 0, 0) ;
  for ( i nt  i  = 0;  i  < N;  i ++)
    hel p += cos( mode *  M_PI  *  ( i +0. 5)  /  N)  *  r [ i ] ;
  hel p / = ( N) ;
  return hel p;
}

i nt  del t a( i nt  i ,  i nt  j )  {
  return ( i ==j )  ? 1 :  0;
}

doubl e t het a( poi nt *  r ,  i nt  number ) {
  doubl e sum_t het a = 0;
  for ( i nt  i  = 1;  i <number −1;  i ++)
    sum_t het a += ( r [ i −1] −r [ i ] ) * ( r [ i ] −r [ i +1] ) / ( abs( r [ i −1] −r [ i ] ) * abs( r [ i ] −r [ i +1] ) ) ;
  if ( number  > 2)  
    return sum_t het a/ ( number −2) ;
  else 
    return 0;
}

poi nt  gyr at i on_r adi us( poi nt *  r ,  i nt  N) {
  poi nt  cent er  = poi nt ( 0, 0, 0) ;
  for ( i nt  i  = 0;  i  < N;  i ++)
    cent er  += r [ i ] ;
  cent er  / = N;
  doubl e sum_sqr _x = 0;
  doubl e sum_sqr _y = 0;
  doubl e sum_sqr _z = 0;
  for ( i nt  i  = 0;  i  < N;  i ++)  {  
    sum_sqr _x += ( r [ i ]  − cent er ) . x_( )  *  ( r [ i ]  − cent er ) . x_( ) ;
    sum_sqr _y += ( r [ i ]  − cent er ) . y_( )  *  ( r [ i ]  − cent er ) . y_( ) ;
    sum_sqr _z += ( r [ i ]  − cent er ) . z_( )  *  ( r [ i ]  − cent er ) . z_( ) ;
  }
  return poi nt ( sqr t ( sum_sqr _x/ N) ,  sqr t ( sum_sqr _y/ N) ,  sqr t ( sum_sqr _z/ N) ) ;   
}

poi nt  angul ar _moment um( poi nt *  r ,  poi nt *  v ,  i nt  number )  {
  poi nt  cent er  = r ouse_mode( r ,  number ,  0) ;
  poi nt  sum_ang_moment um = poi nt ( 0, 0, 0) ;
  for ( i nt  i  = 0;  i  < number ;  i ++)
    sum_ang_moment um += vect or pr od( r [ i ] −cent er ,  v [ i ] ) ;
  return sum_ang_moment um;
}

i nt  val i d_checkpoi nt ( char *  s t ar t _name,  char *  checkpoi nt _name,  i nt  number )  {
  char *  command = new char [ 2* st r l en( st ar t _name)  + 2* st r l en( checkpoi nt _name)  + 100] ;
  spr i nt f ( command,  " rm −f %s.tmp" ,  checkpoi nt _name) ;
  syst em( command) ;                              / /  Avoi d r ace condi t i on when st ar t i ng mul t i pl e j obs s i mul t aneousl y
  spr i nt f ( command,  " head −n %i %s | wc −l > %s.tmp ; head −n %i %s | grep −v nan | wc −w >> %s.tmp" ,  

  number  + 2,  s t ar t _name,  checkpoi nt _name,  number  + 2,  s t ar t _name,  checkpoi nt _name) ;
  if ( syst em( command) )  {                        / /  Check whet her  f i l e ex i st s
    spr i nt f ( command,  " rm −f %s.tmp" ,  checkpoi nt _name) ;
    syst em( command) ;                            / /  Remove t empor ar y f i l e
    return 0;                                   / /  I nval i d s t ar t −f i l e ( not  f ound)
  }
  spr i nt f ( command,  " %s.tmp" ,  checkpoi nt _name) ;  / /  command i s used as f i l ename i n t hi s  case
  FI LE*  i nput  = f open( command,  " r" ) ;
  i nt  l i nes,  wor ds;
  f scanf ( i nput ,  " %i %i" ,  &l i nes,  &wor ds) ;
  spr i nt f ( command,  " rm −f %s.tmp" ,  checkpoi nt _name) ;
  syst em( command) ;                              / /  Remove t empor ar y f i l e
  if ( ( l i nes ! = number +2)  | |  ( wor ds ! = 6* number  + 4) )  {  / /  Check number  of  l i nes and wor ds
    return 0;                                   / /  I nval i d s t ar t −f i l e ( i ncompl et e)
  }
  return 1;                                     / /  No er r or s det ect ed
}

voi d r ead_conf i g( FI LE* & i nput ,  poi nt *  r ,  poi nt *  v ,  i nt  number ,  i nt & t i mest eps,  doubl e& ener gy,  
 i nt  i ni t  = 0)  {

  i nt  number 2;
  f scanf ( i nput ,  " %*s %i %*s %i" ,  &t i mest eps,  &number 2) ;
  for ( i nt  i  = 0;  i  < number ;  i ++)  {
    doubl e x ,  y ,  z ,  vx,  vy,  vz;
    f scanf ( i nput , " %lf %lf %lf %lf %lf %lf" ,  &x,  &y,  &z,  &vx,  &vy,  &vz) ;
    r [ i ]  = poi nt (  x,   y ,   z) ;  

config_utils.cc
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B Sources

    v [ i ]  = poi nt ( vx,  vy,  vz) ;
  }
  if ( ! i ni t )                                  / /  St ar t −f i l es need not  have a val i d ener gy
    f scanf ( i nput ,  " %*s %lf"  , &ener gy) ;
}

voi d wr i t e_conf i g( poi nt *  r ,  poi nt *  v ,  doubl e ener gy,  i nt  number ,  i nt  t ot al _t i mest eps,  
  char *  f i l ename,  char *  open_mode)  {

  FI LE*  out ;
  out  = f open( f i l ename,  open_mode) ;
  f pr i nt f ( out ,  " # %i\n" ,  t ot al _t i mest eps) ;
  f pr i nt f ( out ,  " # %i\n" ,  number ) ;
  for ( i nt  k  = 0;  k<number ;  k++)  {
    f pr i nt f ( out ,  " %lf  %lf  %lf    " ,  r [ k ] . x_( ) ,  r [ k ] . y_( ) ,  r [ k ] . z_( ) ) ;
    f pr i nt f ( out ,  " %lf  %lf  %lf  \n" ,  v [ k ] . x_( ) ,  v[ k] . y_( ) ,  v [ k] . z_( ) ) ;
  }
  f pr i nt f ( out ,  " # %lf\n" ,  ener gy) ;
  f pr i nt f ( out ,  " \n" ) ;
  f cl ose( out ) ;
}

i nt  count _conf i gs( char *  f i l ename)  {
  i nt  number _of _monomer s;
  FI LE * i nput  = f open( f i l ename,  " r" ) ;
  f scanf ( i nput ,  " %*s %*i %*s %i" ,  &number _of _monomer s) ;  / /  Det er mi ne t he number  of
  f cl ose( i nput ) ;                                         / /  monomer s i n t he f i l e
  i nt  number _of _conf i gs;
  char  * command = new char [ 100 + st r l en( f i l ename) ] ;
  syst em( " rm −f tmp.conf" ) ;
  spr i nt f ( command,  " wc %s > tmp.conf" ,  f i l ename) ;   / /  Read t he number  of  l i nes
  syst em( command) ;                                  / /  i n t he f i l e
  i nput  = f open( " tmp.conf" ,  " r" ) ;
  f scanf ( i nput ,  " %i" ,  &number _of _conf i gs) ;
  number _of _conf i gs / = ( number _of _monomer s+4) ;      / /  and comput e t he number  of  conf i gs
  f cl ose( i nput ) ;
  syst em( " rm −f tmp.conf" ) ;
  return number _of _conf i gs;
}

#endif

config_utils.cc
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#include<mat h. h>
#include<st dl i b. h>
#include<st di o. h>
#include" point.hh"
#include" constants.hh"

#ifndef CONFI G_UTI LS_I NCLUDED
#define CONFI G_UTI LS_I NCLUDED

/ /  Thi s  f i l e cont ai ns a f ew r out i nes t o handl e conf i gur at i on snapshot s,  and t o per f or m a f ew 
/ /  basi c measur ement s.  
/ /  Funct i ons used:
/ /  − r ouse_mode       :  comput es t he r ouse−modes of  a conf i gur at i on
/ /  − del t a            :  s i mpl e Kr onecker −del t a
/ /  − t het a            :  mean of  t he cosi ne of  t he bond−angl es
/ /  − gyr at i on−r adi us  :  comput es t he r ai us of  gyr at i on of  a conf i gur at i on
/ /  − angul ar  moment um :  comput es t he angul ar  moment um of  a conf i gur at i on
/ /  − val i d_checkpoi nt  :  checks t he val i di t y  of  a checkpoi nt  f i l e
/ /  − r ead_conf i g      :  r eads i n a conf i gur at i on f r om a f i l e
/ /  − wr i t e_conf i g     :  wr i t es a conf i gur at i on t o a f i l e
/ /  −count _conf i g      :  count s t he number  of  snapshot s i n a conf i gur at i on f i l e

using namespace s t d;

const i nt  number _of _bl ocks = 10;

poi nt  r ouse_mode( poi nt *  r ,  i nt  N,  i nt  mode) ;

i nt  del t a( i nt  i ,  i nt  j ) ;

doubl e t het a( poi nt *  r ,  i nt  number ) ;

poi nt  gyr at i on_r adi us( poi nt *  r ,  i nt  number ) ;

poi nt  angul ar _moment um( poi nt *  r ,  poi nt *  v ,  i nt  number ) ;

i nt  val i d_checkpoi nt ( char *  f i l ename,  char *  checkpoi nt _name,  i nt  number ) ;

voi d r ead_conf i g( FI LE* & i nput ,  poi nt *  r ,  poi nt *  v ,  i nt  number ,  i nt & t i mest eps,  doubl e& ener gy,
 i nt  i ni t  = 0) ;

voi d wr i t e_conf i g( poi nt *  r ,  poi nt *  v ,  doubl e ener gy,  i nt  number ,  i nt  t ot al _t i mest eps,  
  char *  f i l ename,  char *  open_mode) ;

i nt  count _conf i gs( char *  f i l ename) ;

#endif

config_utils.hh
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ver si on                7
use_ver l et              1
enabl e_LJ              1
backbone_LJ            1
enabl e_BL              0
enabl e_BA              0
enabl e_FR              1
enabl e_BM              1
enabl e_SP              1
enabl e_t r ap            1
enabl e_mi r r or _t r ap     0
enabl e_wal l _y          1
enabl e_el               0
enabl e_el _t r ap         1
enabl e_pul se_el         0
di spl ay_mode_1         1
di spl ay_gyr at i on       1
di spl ay_end_t o_end     1
di spl ay_mi n_max        0
di spl ay_mi n_max_mon    0
di spl ay_mi n_max_al l     1
di spl ay_cont our         1
di spl ay_mi n_max_bond   0
di spl ay_mean_speed     1
di spl ay_ang_moment um   1
di spl ay_ener gy         1
di spl ay_spl i t _ener gy   1
di spl ay_cos_t het a      1
di spl ay_bond_cor r el     1
di spl ay_cur r ent _f act or  0
di spl ay_const ant s      1

Number _of _st eps        1000
Out put _st eps           100
Conf i g_st eps           100
t hr ow_away             0
Ti me−st ep              0. 010000

zet a_FR                1. 000000

Temper at ur e            1. 000000
epsi l on_BM             1. 000000
save_new_seed          1

epsi l on_SP             100. 000000

epsi l on_LJ             1. 000000
si gma_LJ               1. 000000

epsi l on_BL             10. 000000
d_BL                   1. 000000
d_0_BL                 1. 000000

epsi l on_BA             5. 000000

epsi l on_LJ_wal l         1. 000000
si gma_LJ_wal l           1. 000000
l _cut of f _LJ_wal l        1. 122462

h_t op_t r ap             60. 000000
h_bot t om_t r ap          60. 000000
l _bot t om_t r ap          60. 000000
l _t op_t r ap             60. 000000
wal l _t i l t _t r ap         0. 000000

wal l _y                 60. 000000

epsi l on_el _x           −0. 010000
epsi l on_el _y           0. 000000
epsi l on_el _z           0. 000000

epsi l on_el _t r ap        −0. 040000
pot ent i al _f i l e_t r ap    / scr at ch_cm/ st r eek/ r eal _f i el d_60_60_60_60/ mi sc/ f i el d

pul se_per i od_el         0
pul se_up_el             0
pul se_f act or _el         0

constants
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#include<i ost r eam>
#include<f st r eam>
#include<st r i ng>
#include<mat h. h>
#include<st di o. h>

#ifndef CONSTANTS_I NCLUDED
#define CONSTANTS_I NCLUDED

using namespace s t d;

/ /  Thi s  f i l e r eads t he const ant s f or  t he mai n pr ogr am and a f unct i on f or  di spl ay i ng
/ /  t hem,  i f  desi r ed.

/ /  These ar e t he swi t ches f or  t he pot ent i al s ,  al gor i t hms and out put
i nt  use_ver l et ;
i nt  enabl e_LJ;
i nt  backbone_LJ;
i nt  enabl e_BL;
i nt  enabl e_BA;
i nt  enabl e_FR;
i nt  enabl e_BM;
i nt  enabl e_SP;
i nt  enabl e_t r ap;
i nt  enabl e_mi r r or _t r ap;
i nt  enabl e_wal l _y;
i nt  enabl e_el ;
i nt  enabl e_el _t r ap;
i nt  enabl e_pul se_el ;
i nt  di spl ay_const ant s;
i nt  di spl ay_mi n_max;
i nt  di spl ay_mi n_max_mon;
i nt  di spl ay_mi n_max_al l ;
i nt  di spl ay_cont our ;
i nt  di spl ay_mi n_max_bond;
i nt  di spl ay_gyr at i on;
i nt  di spl ay_end_t o_end;
i nt  di spl ay_mode_1;
i nt  di spl ay_mean_speed;
i nt  di spl ay_ang_moment um;
i nt  di spl ay_ener gy;
i nt  di spl ay_spl i t _ener gy;
i nt  di spl ay_cos_t het a;
i nt  di spl ay_bond_cor r el ;
i nt  di spl ay_cur r ent _f act or ;
i nt  di spl ayed_var i abl es;
i nt  save_new_seed;
i nt  append_conf i gs;

/ /  Thi s  i s  t he number  of  st eps
i nt  s t eps;
/ /  Thi s  i s  t he number  of  di spl ayed conf i gur at i ons
i nt  out put _st eps;
/ /  Thi s  i s  t he number  of  di spl ayed conf i gur at i ons i n f ul l
i nt  conf i g_st eps;
/ /  Thi s  i s  t he number  of  t hwr ow−away−st eps f or  i ni t i al i sat i on
i nt  t hr ow_away;

/ /  Thi s  i s  t he t i me−st ep
doubl e del t a_t ;
doubl e sqr t _del t a_t ;

/ /  Thi s  i s  t he f r i ct i on−const ant
doubl e zet a_FR;
doubl e decay_v;

/ /  Thi s  i s  t he t emper at ur e
doubl e T;
doubl e sqr t _T;

/ /  Thi s  i s  f or  t he br owni an mot i on
doubl e eps i l on_BM;
doubl e pr ef act or _BM;
unsi gned l ong r and_seed;

/ /  Thi s  i s  t he spr i ng−const ant
doubl e eps i l on_SP;
doubl e pr ef act or _SP;

/ /  These ar e t he const ant s f or  t he Lennar d−Jones pot ent i al  bet ween t wo monomer s
doubl e eps i l on_LJ;
doubl e si gma_LJ;
doubl e v_cut of f _LJ;
doubl e l _cut of f _LJ;
doubl e l _cut of f _LJ_sqr ;
doubl e si gma_6;
doubl e pr ef act or _LJ;

/ /  These ar e t he const ant s f or  t he bond−l engt h−ener gy bet ween t wo monomer s
/ /  on t he chai n
doubl e eps i l on_BL;
doubl e d_BL;
doubl e d_BL_sqr ;
doubl e d_0_BL;
doubl e pr ef act or _BL;

/ /  Thi s  i s  t he const ant  f or  t he bond−angl e−ener gy
doubl e eps i l on_BA;
doubl e pr ef act or _BA;

/ / Thi s i s  t he wal l  Lennar d−Jones−pot ent i al
doubl e eps i l on_LJ_wal l ;
doubl e si gma_LJ_wal l ;
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doubl e s i gma_6_wal l ;
doubl e l _cut of f _LJ_wal l ;
doubl e l _cut of f _LJ_wal l _sqr ;
doubl e v_cut of f _LJ_wal l ;
doubl e pr ef act or _LJ_wal l ;

/ / Thi s i s t he ent r opi c t r ap/ st r uct ur ed mi cr ochannel
doubl e h_t op_t r ap;
doubl e h_bot t om_t r ap;
doubl e l _bot t om_t r ap;
doubl e l _t op_t r ap;
doubl e wal l _t i l t _t r ap;
doubl e l _sur f ace_t r ap;
doubl e h_t ot al _t r ap;

/ / Thi s i s t he wal l  i n y−di r ect i on f or  ent r opi c  t r ap
doubl e wal l _y;

/ /  Thi s  i s  t he homogeneous ext er nal  el ect r i c  f i el d
doubl e eps i l on_el _x;
doubl e eps i l on_el _y;
doubl e eps i l on_el _z;
doubl e pr ef act or _el _x;
doubl e pr ef act or _el _y;
doubl e pr ef act or _el _z;

/ / Thi s i s t he el ect r i cal  f i el d i ns i de t he t r ap
doubl e eps i l on_el _t r ap;
char *  pot ent i al _f i l e_t r ap;
i nt  t r ap_max_x = 0;
i nt  t r ap_max_z = 0;
i nt  t r ap_t op_x = 0;
i nt  t r ap_t op_z = 0;
doubl e t r ap_scal i ng_f act or  = 0;
doubl e t r ap_di scr et i ze = 0;

/ / Thi s t he pul sed el ect r i cal  f i el d
i nt  pul se_per i od_el ;       / /  Pul se per i od( =( upt i me+downt i me)  i n t i mest eps
i nt  pul se_upt i me_el ;       / /  Upt i me begi ns at  begi nni ng of  per i od
doubl e pul se_f act or _el ;    / /  Rescal e−f act or  i n t he downt i me
doubl e cur r ent _f act or _el ;  / /  Changes dur i ng si mul at i on bet ween 1 and Rescal e−f act or

/ /  Thi s  i s  f or  anal yz i ng t he out put −f i l es
char * *  s t dout _component ;

/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i nt  cr eat e_out put _st r i ngs( voi d) {
  i nt  col umn = 1;
  s t dout _component  = new char * [ di spl ayed_var i abl es+2] ;
  s t dout _component [ col umn    ]  = " time−step" ;
  s t dout _component [ col umn + 1]  = " center−of−mass.x" ;
  s t dout _component [ col umn + 2]  = " center−of−mass.y" ;
  s t dout _component [ col umn + 3]  = " center−of−mass.z" ;
  col umn += 4;
  if ( di spl ay_mode_1)  {
    s t dout _component [ col umn    ]  = " rouse−mode−1.x" ;
    s t dout _component [ col umn + 1]  = " rouse−mode−1.y" ;
    s t dout _component [ col umn + 2]  = " rouse−mode−1.z" ;
    col umn += 3;
  }
  if ( di spl ay_gyr at i on)  {
    s t dout _component [ col umn    ]  = " radius−of−gyration.x" ;
    s t dout _component [ col umn + 1]  = " radius−of−gyration.y" ;
    s t dout _component [ col umn + 2]  = " radius−of−gyration.z" ;
    col umn += 3;
  }
  if ( di spl ay_end_t o_end)  {
    s t dout _component [ col umn    ]  = " end_to_end.x" ;
    s t dout _component [ col umn + 1]  = " end_to_end.y" ;
    s t dout _component [ col umn + 2]  = " end_to_end.z" ;
    col umn += 3;
  }     
  if ( di spl ay_mi n_max)  {
    s t dout _component [ col umn    ]  = " min−value.x" ;
    s t dout _component [ col umn + 1]  = " min−value.y" ;
    s t dout _component [ col umn + 2]  = " min−value.z" ;
    s t dout _component [ col umn + 3]  = " max−value.x" ;
    s t dout _component [ col umn + 4]  = " max−value.y" ;
    s t dout _component [ col umn + 5]  = " max−value.z" ;
    col umn += 6;
  }
  if ( di spl ay_mi n_max_mon)  {
    s t dout _component [ col umn    ]  = " min−monomer.x" ;
    s t dout _component [ col umn + 1]  = " min−monomer.y" ;
    s t dout _component [ col umn + 2]  = " min−monomer.z" ;
    s t dout _component [ col umn + 3]  = " max−monomer.x" ;
    s t dout _component [ col umn + 4]  = " max−monomer.y" ;
    s t dout _component [ col umn + 5]  = " max−monomer.z" ;
    col umn += 6;
  }
  if ( di spl ay_mi n_max_al l )  {
    s t dout _component [ col umn     ]  = " min_x.mon" ;
    s t dout _component [ col umn +  1]  = " min_x.x" ;
    s t dout _component [ col umn +  2]  = " min_x.y" ;
    s t dout _component [ col umn +  3]  = " min_x.z" ;
    s t dout _component [ col umn +  4]  = " min_y.mon" ;
    s t dout _component [ col umn +  5]  = " min_y.x" ;
    s t dout _component [ col umn +  6]  = " min_y.y" ;
    s t dout _component [ col umn +  7]  = " min_y.z" ;
    s t dout _component [ col umn +  8]  = " min_z.mon" ;
    s t dout _component [ col umn +  9]  = " min_z.x" ;
    s t dout _component [ col umn + 10]  = " min_z.y" ;
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    s t dout _component [ col umn + 11]  = " min_z.z" ;
    s t dout _component [ col umn + 12]  = " max_x.mon" ;
    s t dout _component [ col umn + 13]  = " max_x.x" ;
    s t dout _component [ col umn + 14]  = " max_x.y" ;
    s t dout _component [ col umn + 15]  = " max_x.z" ;
    s t dout _component [ col umn + 16]  = " max_y.mon" ;
    s t dout _component [ col umn + 17]  = " max_y.x" ;
    s t dout _component [ col umn + 18]  = " max_y.y" ;
    s t dout _component [ col umn + 19]  = " max_y.z" ;
    s t dout _component [ col umn + 20]  = " max_z.mon" ;
    s t dout _component [ col umn + 21]  = " max_z.x" ;
    s t dout _component [ col umn + 22]  = " max_z.y" ;
    s t dout _component [ col umn + 23]  = " max_z.z" ;
    col umn += 24;
  }
  if ( di spl ay_cont our )  {
    s t dout _component [ col umn]  = " contour" ;
    col umn += 1;
  }
  if ( di spl ay_mi n_max_bond)  {
    s t dout _component [ col umn    ]  = " min_bond_length" ;
    s t dout _component [ col umn + 1]  = " max_bond_length" ;     
    col umn += 2;
  }
  if ( di spl ay_mean_speed)  {
    s t dout _component [ col umn    ]  = " mean_speed.x" ;
    s t dout _component [ col umn + 1]  = " mean_speed.y" ;
    s t dout _component [ col umn + 2]  = " mean_speed.z" ;
    col umn += 3;
  }
  if ( di spl ay_ang_moment um)  {
    s t dout _component [ col umn    ]  = " ang_momentum.x" ;
    s t dout _component [ col umn + 1]  = " ang_momentum.y" ;
    s t dout _component [ col umn + 2]  = " ang_momentum.z" ;
    col umn += 3;
  }
  if ( di spl ay_ener gy)  {
    s t dout _component [ col umn]  = " energy" ;
   col umn += 1;
  }
  if ( di spl ay_spl i t _ener gy)  {
    s t dout _component [ col umn    ]  = " energy−pot−int" ;
    s t dout _component [ col umn + 1]  = " energy−pot−ext" ;
    s t dout _component [ col umn + 2]  = " energy−kin" ;
    col umn += 3;
  }
  if ( di spl ay_cos_t het a)  {
    s t dout _component [ col umn]  = " cos−theta" ;
    col umn += 1;
  }
  if ( di spl ay_bond_cor r el )  {
    s t dout _component [ col umn]  = " bond−correl" ;
    col umn += 1;
  }
  if ( di spl ay_cur r ent _f act or )  {
    s t dout _component [ col umn]  = " current_factor_el" ;
    col umn += 1;
  }
}

voi d i ni t _const ant s( char *  f i l ename)  {
  FI LE*  i nput  = f open( f i l ename,  " r" ) ;
  if ( ! i nput )  {
    cer r  << " Invalid constants file−name!\n" ;
    exi t ( 2) ;
  }
/ /  Check f or  cor r ect  ver s i on of  const ant s−f i l e
  i nt  ver s i on;
  f scanf ( i nput ,  " %*s%i" ,  &ver si on) ;
  if ( ver s i on ! = 7)  {
    cer r  << " Wrong version of constants−file!\n" ;
    exi t ( 3) ;
  }
/ /  I ni t i al i sat i on of  t he swi t ches
  f scanf ( i nput ,  " %*s%i" ,  &use_ver l et ) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_LJ) ;
  f scanf ( i nput ,  " %*s%i" ,  &backbone_LJ) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_BL) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_BA) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_FR) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_BM) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_SP) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_t r ap) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_mi r r or _t r ap) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_wal l _y) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_el ) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_el _t r ap) ;
  f scanf ( i nput ,  " %*s%i" ,  &enabl e_pul se_el ) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_mode_1) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_gyr at i on) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_end_t o_end) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_mi n_max) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_mi n_max_mon) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_mi n_max_al l ) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_cont our ) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_mi n_max_bond) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_mean_speed) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_ang_moment um) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_ener gy) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_spl i t _ener gy) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_cos_t het a) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_bond_cor r el ) ;
  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_cur r ent _f act or ) ;
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  f scanf ( i nput ,  " %*s%i" ,  &di spl ay_const ant s) ;
  if ( di spl ay_mi n_max_al l )  {
    di spl ay_mi n_max     = 0;
    di spl ay_mi n_max_mon = 0;
  }
  di spl ayed_var i abl es = 4 + 3* di spl ay_mode_1 + 3* di spl ay_gyr at i on + 3* di spl ay_end_t o_end + 
                        6* di spl ay_mi n_max + 6* di spl ay_mi n_max_mon + 24* di spl ay_mi n_max_al l  + 
                        di spl ay_cont our  + 2* di spl ay_mi n_max_bond + 3* di spl ay_mean_speed +
                        3* di spl ay_ang_moment um + di spl ay_ener gy + 3* di spl ay_spl i t _ener gy + 
                        di spl ay_cos_t het a + di spl ay_bond_cor r el  + di spl ay_cur r ent _f act or ;
/ /    i f  ( ( enabl e_el _t r ap && ! enabl e_t r ap) )  {
/ /      cer r  << " I ncompat i bl e swi t ches − Fi el d i n t r ap enabl ed,  but  t r ap mi ssi ng! \ n" ;
/ /      exi t ( 18) ;
/ /    }

/ /  I ni t i al i sat i on of  st eps + out put s + t i mest ep
  f scanf ( i nput ,  " %*s%i" ,  &st eps) ;
  f scanf ( i nput ,  " %*s%i" ,  &out put _st eps) ;
  f scanf ( i nput ,  " %*s%i" ,  &conf i g_st eps) ;
  f scanf ( i nput ,  " %*s%i" ,  &t hr ow_away) ;
  f scanf ( i nput ,  " %*s%lf" ,  &del t a_t ) ;
  sqr t _del t a_t  = sqr t ( del t a_t ) ;
  if ( ( conf i g_st eps % out put _st eps ! = 0)  | |  ( s t eps % out put _st eps ! = 0) )  {
    cer r  << " Incompatible step−sizes!\n" ;
    exi t ( 11) ;
  }

/ /  I ni t i al i sat i on of  f r i c t i on
  f scanf ( i nput ,  " %*s%lf" ,  &zet a_FR) ;                      
  if ( ! use_ver l et )
    zet a_FR = 1;
  decay_v = ( 1−del t a_t  *  zet a_FR) ;

/ /  I ni t i al i sat i on of  t emper at ur e + br owni an mot i on
  f scanf ( i nput ,  " %*s%lf" ,  &T) ;
  sqr t _T = st d: : sqr t ( T) ;
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_BM) ;                  / /  eps i l om_BM equal s t he st ephan−bol t zmann−const ant
  pr ef act or _BM = st d: : sqr t ( 40 *  epsi l on_BM *  T *  ( 1−del t a_t * zet a_FR/ 2)  *  zet a_FR *  del t a_t ) ;
  f scanf ( i nput ,  " %*s%i" ,  &save_new_seed) ;
  FI LE*  r seed = f open( " random_seed" ,  " r" ) ;
  if ( ! r seed)  {
    cer r  << " Random−seed not found!\n" ;
    exi t ( 4) ;
  }
  f scanf ( r seed,  " %lu" ,  &r and_seed) ;
  f cl ose( r seed) ;

/ /  I ni t i al i sat i on of  spr i ng
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_SP) ;
  pr ef act or _SP = epsi l on_SP *  del t a_t  /  2;

/ /  I ni t i al i sat i on of  Lennar d−Jones
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_LJ) ;
  f scanf ( i nput ,  " %*s%lf" ,  &s i gma_LJ) ;
  v_cut of f _LJ = epsi l on_LJ *  0. 25;
  l _cut of f _LJ =  s i gma_LJ *  1. 1224620483093;
  l _cut of f _LJ_sqr  = l _cut of f _LJ *  l _cut of f _LJ;
  s i gma_6 = pow( si gma_LJ,  6) ;
  pr ef act or _LJ = epsi l on_LJ *  s i gma_6 *  6 *  del t a_t  /  2;

/ /  I ni t i al i sat i on of  bond−l engt h
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_BL) ;
  f scanf ( i nput ,  " %*s%lf" ,  &d_BL) ;
  f scanf ( i nput ,  " %*s%lf" ,  &d_0_BL) ;
  d_BL_sqr  = d_BL *  d_BL;
  pr ef act or _BL = epsi l on_BL *  del t a_t  /  2;

/ /  I ni t i al i sat i on of  bond−angl e
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_BA) ;
  pr ef act or _BA = epsi l on_BA *  del t a_t  /  2;

/ /  I ni t i al i sat i on of  wal l −Lennar d−Jones
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_LJ_wal l ) ;
  f scanf ( i nput ,  " %*s%lf" ,  &s i gma_LJ_wal l ) ;
  f scanf ( i nput ,  " %*s%lf" ,  &l _cut of f _LJ_wal l ) ;
  l _cut of f _LJ_wal l  * = s i gma_LJ_wal l ;
  s i gma_6_wal l  = pow( si gma_LJ_wal l ,  6) ;
  v_cut of f _LJ_wal l  = epsi l on_LJ_wal l  *  
    ( pow( s i gma_LJ_wal l / l _cut of f _LJ_wal l ,  6)  − pow( s i gma_LJ_wal l / l _cut of f _LJ_wal l ,  12) ) ;
  l _cut of f _LJ_wal l _sqr  = pow( l _cut of f _LJ_wal l ,  2) ;  
  pr ef act or _LJ_wal l  = epsi l on_LJ_wal l  *  s i gma_6_wal l  *  6 *  del t a_t  /  2;

/ /  I ni t i al i sat i on of  ent r opi c  t r ap/  st r uct ur ed mi cr ochannel
  f scanf ( i nput ,  " %*s%lf" ,  &h_t op_t r ap) ;
  f scanf ( i nput ,  " %*s%lf" ,  &h_bot t om_t r ap) ;
  f scanf ( i nput ,  " %*s%lf" ,  &l _bot t om_t r ap) ;
  f scanf ( i nput ,  " %*s%lf" ,  &l _t op_t r ap) ;
  f scanf ( i nput ,  " %*s%lf" ,  &wal l _t i l t _t r ap) ;
  l _sur f ace_t r ap = l _bot t om_t r ap + l _t op_t r ap;
  h_t ot al _t r ap = h_t op_t r ap + h_bot t om_t r ap;
  if ( enabl e_mi r r or _t r ap && ( wal l _t i l t _t r ap ! = 0) )  {
    cer r  << " Tilt trap is only allowed non−mirrored!\n" ;
    exi t ( 19) ;
  }

/ /  I ni t i al i sat i on of  wal l  i n y−di r ect i on
  f scanf ( i nput ,  " %*s%lf" ,  &wal l _y) ;

/ /  I ni t i al i sat i on of  homogeneous ext er nal  el ect r i c f i el d
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_el _x) ;
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_el _y) ;
  f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_el _z) ;
  pr ef act or _el _x = epsi l on_el _x *  del t a_t  /  2;
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  pr ef act or _el _y = epsi l on_el _y *  del t a_t  /  2;
  pr ef act or _el _z = epsi l on_el _z *  del t a_t  /  2;

/ /  I ni t i al i sat i on of  el ect r i c f i el d i nsi de t r ap
  {
    f scanf ( i nput ,  " %*s%lf" ,  &epsi l on_el _t r ap) ;
    char *  t emp_name = new char [ 1000] ;
    f scanf ( i nput ,  " %*s %s" ,  t emp_name) ;
    pot ent i al _f i l e_t r ap = new char [ s t r l en( t emp_name) +1] ;
    s t r cpy( pot ent i al _f i l e_t r ap,  t emp_name) ;
    delete [ ]  t emp_name;
    if ( enabl e_el _t r ap)  {
      doubl e t mp_t r ap_l _t op;
      doubl e t mp_t r ap_h_t op;
      doubl e t mp_t r ap_l _bot ;
      doubl e t mp_t r ap_h_bot ;
      doubl e t mp_t i l t _t r ap;
      doubl e t mp_t r ap_di scr et i ze;
      doubl e t mp_t r ap_epsi l on;
      i nt    t ype;
      FI LE*  i nput _pot ent i al  = f open( pot ent i al _f i l e_t r ap,  " r" ) ;
      if ( ! i nput _pot ent i al )  {

cer r  << " Potential−file not found!\n" ;
ex i t ( 9) ;

      }     
      f scanf ( i nput _pot ent i al ,  " %*s%i%lf%lf%lf%lf%lf%lf%lf" ,  &t ype,  &t mp_t r ap_h_t op,  &t mp_t r ap_h_bot ,  

     &t mp_t r ap_l _bot ,  &t mp_t r ap_l _t op,  &t mp_t i l t _t r ap,  &t mp_t r ap_di scr et i ze,  &t mp_t r ap_epsi l on) ;
      f cl ose( i nput _pot ent i al ) ;
      if ( ( t mp_t r ap_l _t op ! = l _t op_t r ap)  | |  ( t mp_t r ap_l _bot  ! = l _bot t om_t r ap)  | |

  ( t mp_t r ap_h_t op ! = h_t op_t r ap)  | |  ( t mp_t r ap_h_bot  ! = h_bot t om_t r ap)  | |  
  ( t mp_t i l t _t r ap ! = 0)  | |  ( t ype ! = 1) )  {
cer r  << " Potential−file and/or geometry do not fit!\n" ;
ex i t ( 10) ;

      }
      t r ap_scal i ng_f act or  = epsi l on_el _t r ap/ t mp_t r ap_epsi l on;
      t r ap_di scr et i ze = t mp_t r ap_di scr et i ze;
      t r ap_max_x = i nt ( st d: : f l oor ( l _sur f ace_t r ap /  t r ap_di scr et i ze + 0. 5) ) ;
      t r ap_max_z = i nt ( st d: : f l oor ( ( h_t op_t r ap+h_bot t om_t r ap)  /  t r ap_di scr et i ze + 0. 5) ) ;
      t r ap_t op_x = i nt ( st d: : f l oor ( l _t op_t r ap /  t r ap_di scr et i ze + 0. 5) ) ;
      t r ap_t op_z = i nt ( st d: : f l oor ( h_t op_t r ap /  t r ap_di scr et i ze + 0. 5) ) ;
    }
  }

/ /  Read par amet er s f or  pul sed el ect r i cal  f i el d
  f scanf ( i nput ,  " %*s%i" ,   &pul se_per i od_el ) ;
  f scanf ( i nput ,  " %*s%i" ,   &pul se_upt i me_el ) ;
  f scanf ( i nput ,  " %*s%lf" ,  &pul se_f act or _el ) ;
  cur r ent _f act or _el  = 1;
  / /  cur r ent _f act or _el  wi l l  be pr oper l y set  af t er  r eadi ng checkpoi nt /  s t ar t f i l e

/ /  Cor r ect  pr ef act or s i f  necessar y
  if ( ! use_ver l et )  {
    pr ef act or _SP      * =2;
    pr ef act or _LJ      * =2;
    pr ef act or _BL      * =2;
    pr ef act or _BA      * =2;
    pr ef act or _LJ_wal l  * =2;
    pr ef act or _el _x    * =2;
    pr ef act or _el _y    * =2;
    pr ef act or _el _z    * =2;
  }
/ /  Cr eat e out put −st r i ngs f or  easi er  anal ysi s
  cr eat e_out put _st r i ngs( ) ;
}

voi d di spl ayconst ant s ( char *  s t dout _f i l ename)  {
  FI LE*  s t dout _f i l e = f open( st dout _f i l ename,  " a" ) ;
  f pr i nt f ( st dout _f i l e,  " # use_verlet             = %i\n" ,  use_ver l et ) ;
  f pr i nt f ( st dout _f i l e,  " # enable_LJ              = %i\n" ,  enabl e_LJ) ;
  f pr i nt f ( st dout _f i l e,  " # backbone_LJ            = %i\n" ,  backbone_LJ) ;
  f pr i nt f ( st dout _f i l e,  " # enable_BL              = %i\n" ,  enabl e_BL) ;
  f pr i nt f ( st dout _f i l e,  " # enable_BA              = %i\n" ,  enabl e_BA) ;
  f pr i nt f ( st dout _f i l e,  " # enable_BM              = %i\n" ,  enabl e_BM) ;
  f pr i nt f ( st dout _f i l e,  " # enable_FR              = %i\n" ,  enabl e_FR) ;
  f pr i nt f ( st dout _f i l e,  " # enable_SP              = %i\n" ,  enabl e_SP) ;
  f pr i nt f ( st dout _f i l e,  " # enable_trap            = %i\n" ,  enabl e_t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # enable_mirror_trap     = %i\n" ,  enabl e_mi r r or _t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # enable_wall_y          = %i\n" ,  enabl e_wal l _y) ;
  f pr i nt f ( st dout _f i l e,  " # enable_el              = %i\n" ,  enabl e_el ) ;
  f pr i nt f ( st dout _f i l e,  " # enable_el_trap         = %i\n" ,  enabl e_el _t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # enable_pulse_el        = %i\n" ,  enabl e_pul se_el ) ;
  f pr i nt f ( st dout _f i l e,  " # display_mode_1         = %i\n" ,  di spl ay_mode_1) ;
  f pr i nt f ( st dout _f i l e,  " # display_gyration       = %i\n" ,  di spl ay_gyr at i on) ;
  f pr i nt f ( st dout _f i l e,  " # display_end_to_end     = %i\n" ,  di spl ay_end_t o_end) ;
  f pr i nt f ( st dout _f i l e,  " # display_min_max        = %i\n" ,  di spl ay_mi n_max) ;
  f pr i nt f ( st dout _f i l e,  " # display_min_max_mon    = %i\n" ,  di spl ay_mi n_max_mon) ;
  f pr i nt f ( st dout _f i l e,  " # display_min_max_all    = %i\n" ,  di spl ay_mi n_max_al l ) ;
  f pr i nt f ( st dout _f i l e,  " # display_contour        = %i\n" ,  di spl ay_cont our ) ;
  f pr i nt f ( st dout _f i l e,  " # display_min_max_bond   = %i\n" ,  di spl ay_mi n_max_bond) ;
  f pr i nt f ( st dout _f i l e,  " # display_mean_speed     = %i\n" ,  di spl ay_mean_speed) ;
  f pr i nt f ( st dout _f i l e,  " # display_ang_momentum   = %i\n" ,  di spl ay_ang_moment um) ;
  f pr i nt f ( st dout _f i l e,  " # display_energy         = %i\n" ,  di spl ay_ener gy) ;
  f pr i nt f ( st dout _f i l e,  " # display_split_energy   = %i\n" ,  di spl ay_spl i t _ener gy) ;
  f pr i nt f ( st dout _f i l e,  " # display_cos_theta      = %i\n" ,  di spl ay_cos_t het a) ;
  f pr i nt f ( st dout _f i l e,  " # display_bond_correl    = %i\n" ,  di spl ay_bond_cor r el ) ;
  f pr i nt f ( st dout _f i l e,  " # display_current_factor = %i\n" ,  di spl ay_bond_cor r el ) ;
  f pr i nt f ( st dout _f i l e,  " # append_configs         = %i\n" ,  append_conf i gs) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # steps                  = %i\n" ,  st eps) ;
  f pr i nt f ( st dout _f i l e,  " # output_steps           = %i\n" ,  out put _st eps) ;
  f pr i nt f ( st dout _f i l e,  " # config_steps           = %i\n" ,  conf i g_st eps) ;
  f pr i nt f ( st dout _f i l e,  " # throw_away             = %i\n" ,  t hr ow_away) ;
  f pr i nt f ( st dout _f i l e,  " # delta_t                = %lf\n" ,  del t a_t ) ;
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  f pr i nt f ( st dout _f i l e,  " # sqrt_delta_t           = %lf\n" ,  sqr t _del t a_t ) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # zeta_FR                = %lf\n" ,  zet a_FR) ;
  f pr i nt f ( st dout _f i l e,  " # decay_v                = %lf\n" ,  decay_v) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # T                      = %lf\n" ,  T) ;
  f pr i nt f ( st dout _f i l e,  " # sqrt_T                 = %lf\n" ,  sqr t _T) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_BM             = %lf\n" ,  epsi l on_BM) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_BM           = %lf\n" ,  pr ef act or _BM) ;
  f pr i nt f ( st dout _f i l e,  " # rand−seed              = %u\n" ,  r and_seed) ;
  f pr i nt f ( st dout _f i l e,  " # save−new−seed          = %u\n" ,  save_new_seed) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_SP             = %lf\n" ,  epsi l on_SP) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_SP           = %lf\n" ,  pr ef act or _SP) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_LJ             = %lf\n" ,  epsi l on_LJ) ;
  f pr i nt f ( st dout _f i l e,  " # sigma_LJ               = %lf\n" ,  s i gma_LJ) ;
  f pr i nt f ( st dout _f i l e,  " # v_cutoff_LJ            = %lf\n" ,  v_cut of f _LJ) ;
  f pr i nt f ( st dout _f i l e,  " # l_cutoff_LJ            = %lf\n" ,  l _cut of f _LJ) ;
  f pr i nt f ( st dout _f i l e,  " # l_cutoff_LJ_sqr        = %lf\n" ,  l _cut of f _LJ_sqr ) ;
  f pr i nt f ( st dout _f i l e,  " # sigma_6                = %lf\n" ,  s i gma_6) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_LJ           = %lf\n" ,  pr ef act or _LJ) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_BL             = %lf\n" ,  epsi l on_BL) ;
  f pr i nt f ( st dout _f i l e,  " # d_BL                   = %lf\n" ,  d_BL) ;
  f pr i nt f ( st dout _f i l e,  " # d_0_BL                 = %lf\n" ,  d_0_BL) ;
  f pr i nt f ( st dout _f i l e,  " # d_BL_sqr               = %lf\n" ,  d_BL_sqr ) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_BL           = %lf\n" ,  pr ef act or _BL) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_BA             = %lf\n" ,  epsi l on_BA) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_BA           = %lf\n" ,  pr ef act or _BA) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_LJ_wall        = %lf\n" ,  epsi l on_LJ_wal l ) ;
  f pr i nt f ( st dout _f i l e,  " # sigma_LJ_wall          = %lf\n" ,  s i gma_LJ_wal l ) ;
  f pr i nt f ( st dout _f i l e,  " # sigma_6_wall           = %lf\n" ,  s i gma_6_wal l ) ;
  f pr i nt f ( st dout _f i l e,  " # l_cutoff_LJ_wall       = %lf\n" ,  l _cut of f _LJ_wal l ) ;
  f pr i nt f ( st dout _f i l e,  " # l_cutoff_LJ_wall_sqr   = %lf\n" ,  l _cut of f _LJ_wal l _sqr ) ;
  f pr i nt f ( st dout _f i l e,  " # v_cutoff_LJ_wall       = %lf\n" ,  v_cut of f _LJ_wal l ) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_LJ_wall      = %lf\n" ,  pr ef act or _LJ_wal l ) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # h_top_trap             = %lf\n" ,  h_t op_t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # h_bottom_trap          = %lf\n" ,  h_bot t om_t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # l_bottom_trap          = %lf\n" ,  l _bot t om_t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # l_top_trap             = %lf\n" ,  l _t op_t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # wall_tilt_trap         = %lf\n" ,  wal l _t i l t _t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # l_surface_trap         = %lf\n" ,  l _sur f ace_t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # h_total_trap           = %lf\n" ,  h_t ot al _t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # wall_y                 = %lf\n" ,  wal l _y) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_el_x           = %lf\n" ,  epsi l on_el _x) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_el_y           = %lf\n" ,  epsi l on_el _y) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_el_z           = %lf\n" ,  epsi l on_el _z) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_el_x         = %lf\n" ,  pr ef act or _el _x) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_el_y         = %lf\n" ,  pr ef act or _el _y) ;
  f pr i nt f ( st dout _f i l e,  " # prefactor_el_z         = %lf\n" ,  pr ef act or _el _z) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # epsilon_el_trap        = %lf\n" ,  epsi l on_el _t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # potential_file_trap    %s\n" ,  pot ent i al _f i l e_t r ap) ;
  f pr i nt f ( st dout _f i l e,  " # trap_scaling_factor    = %lf\n" ,  t r ap_scal i ng_f act or ) ;
  f pr i nt f ( st dout _f i l e,  " # trap_discretize        = %lf\n" ,  t r ap_di scr et i ze) ;
  f pr i nt f ( st dout _f i l e,  " # trap_max_x             = %i\n" ,  t r ap_max_x) ;
  f pr i nt f ( st dout _f i l e,  " # trap_max_z             = %i\n" ,  t r ap_max_z) ;
  f pr i nt f ( st dout _f i l e,  " # trap_top_x             = %i\n" ,  t r ap_t op_x) ;
  f pr i nt f ( st dout _f i l e,  " # trap_top_z             = %i\n" ,  t r ap_t op_z) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # pulse_period_el        = %i\n" ,  pul se_per i od_el ) ;
  f pr i nt f ( st dout _f i l e,  " # pulse_uptime_el        = %i\n" ,  pul se_upt i me_el ) ;
  f pr i nt f ( st dout _f i l e,  " # pulse_factor_el        = %lf\n" ,  pul se_f act or _el ) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # displayed_variables  = %i\n" ,  di spl ayed_var i abl es) ;
  f pr i nt f ( st dout _f i l e,  " # " ) ;
  for ( i nt  i  = 1;  i  <= di spl ayed_var i abl es;  i ++)
    f pr i nt f ( s t dout _f i l e,  " %s[%i] " ,  st dout _component [ i ] ,  i ) ;
  f pr i nt f ( st dout _f i l e,  " \n" ) ;
  f pr i nt f ( st dout _f i l e,  " # \n" ) ;
  f cl ose( st dout _f i l e) ;
}

voi d wr i t e_const ant s( char *  f i l ename)  {
  FI LE*  i nput  = f open( f i l ename,  " r" ) ;
  if ( i nput )  {                                            / /  Do not  over wr i t e an ex i st i ng f i l e
    cer r  << " Modified−constants−file already exists!\n" ;
    exi t ( 17) ;
  }
  FI LE*  out put  = f open( f i l ename,  " w" ) ;
  f pr i nt f ( out put ,  " version                7\n" ) ;
  f pr i nt f ( out put ,  " use_verlet             %i\n" ,  use_ver l et ) ;
  f pr i nt f ( out put ,  " enable_LJ              %i\n" ,  enabl e_LJ) ;
  f pr i nt f ( out put ,  " backbone_LJ            %i\n" ,  backbone_LJ) ;
  f pr i nt f ( out put ,  " enable_BL              %i\n" ,  enabl e_BL) ;
  f pr i nt f ( out put ,  " enable_BA              %i\n" ,  enabl e_BA) ;
  f pr i nt f ( out put ,  " enable_FR              %i\n" ,  enabl e_FR) ;
  f pr i nt f ( out put ,  " enable_BM              %i\n" ,  enabl e_BM) ;
  f pr i nt f ( out put ,  " enable_SP              %i\n" ,  enabl e_SP) ;
  f pr i nt f ( out put ,  " enable_trap            %i\n" ,  enabl e_t r ap) ;
  f pr i nt f ( out put ,  " enable_mirror_trap     %i\n" ,  enabl e_mi r r or _t r ap) ;
  f pr i nt f ( out put ,  " enable_wall_y          %i\n" ,  enabl e_wal l _y) ;
  f pr i nt f ( out put ,  " enable_el              %i\n" ,  enabl e_el ) ;
  f pr i nt f ( out put ,  " enable_el_trap         %i\n" ,  enabl e_el _t r ap) ;
  f pr i nt f ( out put ,  " enable_pulse_el        %i\n" ,  enabl e_pul se_el ) ;
  f pr i nt f ( out put ,  " display_mode_1         %i\n" ,  di spl ay_mode_1) ;
  f pr i nt f ( out put ,  " display_gyration       %i\n" ,  di spl ay_gyr at i on) ;
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  f pr i nt f ( out put ,  " display_end_to_end     %i\n" ,  di spl ay_end_t o_end) ;
  f pr i nt f ( out put ,  " display_min_max        %i\n" ,  di spl ay_mi n_max) ;
  f pr i nt f ( out put ,  " display_min_max_mon    %i\n" ,  di spl ay_mi n_max_mon) ;
  f pr i nt f ( out put ,  " display_min_max_all    %i\n" ,  di spl ay_mi n_max_al l ) ;
  f pr i nt f ( out put ,  " display_contour        %i\n" ,  di spl ay_cont our ) ;
  f pr i nt f ( out put ,  " display_min_max_bond   %i\n" ,  di spl ay_mi n_max_bond) ;
  f pr i nt f ( out put ,  " display_mean_speed     %i\n" ,  di spl ay_mean_speed) ;
  f pr i nt f ( out put ,  " display_ang_momentum   %i\n" ,  di spl ay_ang_moment um) ;
  f pr i nt f ( out put ,  " display_energy         %i\n" ,  di spl ay_ener gy) ;
  f pr i nt f ( out put ,  " display_split_energy   %i\n" ,  di spl ay_spl i t _ener gy) ;
  f pr i nt f ( out put ,  " display_cos_theta      %i\n" ,  di spl ay_cos_t het a) ;
  f pr i nt f ( out put ,  " display_bond_correl    %i\n" ,  di spl ay_bond_cor r el ) ;
  f pr i nt f ( out put ,  " display_current_factor %i\n" ,  di spl ay_bond_cor r el ) ;
  f pr i nt f ( out put ,  " display_constants      %i\n" ,  di spl ay_const ant s) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " Number_of_steps        %i\n" ,  st eps) ;
  f pr i nt f ( out put ,  " Output_steps           %i\n" ,  out put _st eps) ;
  f pr i nt f ( out put ,  " Config_steps           %i\n" ,  conf i g_st eps) ;
  f pr i nt f ( out put ,  " throw_away             %i\n" ,  t hr ow_away) ;
  f pr i nt f ( out put ,  " Time−step              %lf\n" ,  del t a_t ) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " zeta_FR                %lf\n" ,  zet a_FR) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " Temperature            %lf\n" ,  T) ;
  f pr i nt f ( out put ,  " epsilon_BM             %lf\n" ,  epsi l on_BM) ;
  f pr i nt f ( out put ,  " save_new_seed          %i\n" ,  save_new_seed) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " epsilon_SP             %lf\n" ,  epsi l on_SP) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " epsilon_LJ             %lf\n" ,  epsi l on_LJ) ;
  f pr i nt f ( out put ,  " sigma_LJ               %lf\n" ,  si gma_LJ) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " epsilon_BL             %lf\n" ,  epsi l on_BL) ;
  f pr i nt f ( out put ,  " d_BL                   %lf\n" ,  d_BL) ;
  f pr i nt f ( out put ,  " d_0_BL                 %lf\n" ,  d_0_BL) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " epsilon_BA             %lf\n" ,  epsi l on_BA) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " epsilon_LJ_wall        %lf\n" ,  epsi l on_LJ_wal l ) ;
  f pr i nt f ( out put ,  " sigma_LJ_wall          %lf\n" ,  si gma_LJ_wal l ) ;
  f pr i nt f ( out put ,  " l_cutoff_LJ_wall       %lf\n" ,  l _cut of f _LJ_wal l / si gma_LJ_wal l ) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " h_top_trap             %lf\n" ,  h_t op_t r ap) ;
  f pr i nt f ( out put ,  " h_bottom_trap          %lf\n" ,  h_bot t om_t r ap) ;
  f pr i nt f ( out put ,  " l_bottom_trap          %lf\n" ,  l _bot t om_t r ap) ;
  f pr i nt f ( out put ,  " l_top_trap             %lf\n" ,  l _t op_t r ap) ;
  f pr i nt f ( out put ,  " wall_tilt_trap         %lf\n" ,  wal l _t i l t _t r ap) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " wall_y                 %lf\n" ,  wal l _y) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " epsilon_el_x           %lf\n" ,  epsi l on_el _x) ;
  f pr i nt f ( out put ,  " epsilon_el_y           %lf\n" ,  epsi l on_el _y) ;
  f pr i nt f ( out put ,  " epsilon_el_z           %lf\n" ,  epsi l on_el _z) ;
  f pr i nt f ( out put ,  " \n" ) ;
  f pr i nt f ( out put ,  " epsilon_el_trap        %lf\n" ,  epsi l on_el _t r ap) ;
  f pr i nt f ( out put ,  " potential_file_trap    %s\n" ,  pot ent i al _f i l e_t r ap) ;
  f pr i nt f ( out put ,  " \n" ) ;  
  f pr i nt f ( out put ,  " pulse_period_el        %i\n" ,  pul se_per i od_el ) ;
  f pr i nt f ( out put ,  " pulse_uptime_el        %i\n" ,  pul se_upt i me_el ) ;
  f pr i nt f ( out put ,  " pulse_factor_el        %lf\n" ,  pul se_f act or _el ) ;
  f pr i nt f ( out put ,  " \n" ) ;  
  f c l ose( out put ) ;
}

#endif
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B Sources

#include<i ost r eam>
#include<f st r eam>
#include<st r i ng>
#include<mat h. h>
#include<st di o. h>

#ifndef CONSTANTS_I NCLUDED
#define CONSTANTS_I NCLUDED

using namespace st d;

/ /  Thi s  f i l e r eads t he const ant s f or  t he mai n pr ogr am and a f unct i on f or  di spl ay i ng
/ /  t hem,  i f  desi r ed.

/ /  These ar e t he swi t ches f or  t he pot ent i al s ,  al gor i t hms and out put
extern i nt  use_ver l et ;
extern i nt  enabl e_LJ;
extern i nt  backbone_LJ;
extern i nt  enabl e_BL;
extern i nt  enabl e_BA;
extern i nt  enabl e_FR;
extern i nt  enabl e_BM;
extern i nt  enabl e_SP;
extern i nt  enabl e_t r ap;
extern i nt  enabl e_mi r r or _t r ap;
extern i nt  enabl e_wal l _y;
extern i nt  enabl e_el ;
extern i nt  enabl e_el _t r ap;
extern i nt  enabl e_pul se_el ;
extern i nt  di spl ay_const ant s;
extern i nt  di spl ay_mi n_max;
extern i nt  di spl ay_mi n_max_mon;
extern i nt  di spl ay_mi n_max_al l ;
extern i nt  di spl ay_cont our ;
extern i nt  di spl ay_mi n_max_bond;
extern i nt  di spl ay_gyr at i on;
extern i nt  di spl ay_end_t o_end;
extern i nt  di spl ay_mode_1;
extern i nt  di spl ay_mean_speed;
extern i nt  di spl ay_ang_moment um;
extern i nt  di spl ay_ener gy;
extern i nt  di spl ay_spl i t _ener gy;
extern i nt  di spl ay_cos_t het a;
extern i nt  di spl ay_bond_cor r el ;
extern i nt  di spl ay_cur r ent _f act or ;
extern i nt  di spl ayed_var i abl es;
extern i nt  save_new_seed;
extern i nt  append_conf i gs;

/ /  Thi s  i s  t he number  of  s t eps
extern i nt  s t eps;
/ /  Thi s  i s  t he number  of  di spl ayed conf i gur at i ons
extern i nt  out put _st eps;
/ /  Thi s  i s  t he number  of  di spl ayed conf i gur at i ons i n f ul l
extern i nt  conf i g_st eps;
/ /  Thi s  i s  t he number  of  t hwr ow−away−st eps f or  i ni t i al i sat i on
extern i nt  t hr ow_away;

/ /  Thi s  i s  t he t i me−st ep
extern doubl e del t a_t ;
extern doubl e sqr t _del t a_t ;

/ /  Thi s  i s  t he f r i ct i on−const ant
extern doubl e zet a_FR;
extern doubl e decay_v;

/ /  Thi s  i s  t he t emper at ur e
extern doubl e T;
extern doubl e sqr t _T;

/ /  Thi s  i s  f or  t he br owni an mot i on
extern doubl e epsi l on_BM;
extern doubl e pr ef act or _BM;
extern unsi gned l ong r and_seed;

/ /  Thi s  i s  t he spr i ng−const ant
extern doubl e epsi l on_SP;
extern doubl e pr ef act or _SP;

/ /  These ar e t he const ant s f or  t he Lennar d−Jones pot ent i al  bet ween t wo monomer s
extern doubl e epsi l on_LJ;
extern doubl e s i gma_LJ;
extern doubl e v_cut of f _LJ;
extern doubl e l _cut of f _LJ;
extern doubl e l _cut of f _LJ_sqr ;
extern doubl e s i gma_6;
extern doubl e pr ef act or _LJ;

/ /  These ar e t he const ant s f or  t he bond−l engt h−ener gy bet ween t wo monomer s
/ /  on t he chai n
extern doubl e epsi l on_BL;
extern doubl e d_BL;
extern doubl e d_BL_sqr ;
extern doubl e d_0_BL;
extern doubl e pr ef act or _BL;

/ /  Thi s  i s  t he const ant  f or  t he bond−angl e−ener gy
extern doubl e epsi l on_BA;
extern doubl e pr ef act or _BA;

/ / Thi s i s t he wal l  Lennar d−Jones−pot ent i al
extern doubl e epsi l on_LJ_wal l ;
extern doubl e s i gma_LJ_wal l ;
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extern doubl e s i gma_6_wal l ;
extern doubl e l _cut of f _LJ_wal l ;
extern doubl e l _cut of f _LJ_wal l _sqr ;
extern doubl e v_cut of f _LJ_wal l ;
extern doubl e pr ef act or _LJ_wal l ;

/ / Thi s i s  t he ent r opi c  t r ap/ st r uct ur ed mi cr ochannel
extern doubl e h_t op_t r ap;
extern doubl e h_bot t om_t r ap;
extern doubl e l _bot t om_t r ap;
extern doubl e l _t op_t r ap;
extern doubl e wal l _t i l t _t r ap;
extern doubl e l _sur f ace_t r ap;
extern doubl e h_t ot al _t r ap;

/ / Thi s i s  t he wal l  i n y−di r ect i on f or  ent r opi c  t r ap
extern doubl e wal l _y;

/ /  Thi s  i s  t he homogeneous ext er nal  el ect r i c  f i el d
extern doubl e eps i l on_el _x;
extern doubl e eps i l on_el _y;
extern doubl e eps i l on_el _z;
extern doubl e pr ef act or _el _x;
extern doubl e pr ef act or _el _y;
extern doubl e pr ef act or _el _z;

/ / Thi s i s  t he el ect r i cal  f i el d i nsi de t he t r ap
extern doubl e eps i l on_el _t r ap;
extern char *  pot ent i al _f i l e_t r ap;
extern i nt  t r ap_max_x;
extern i nt  t r ap_max_z;
extern i nt  t r ap_t op_x;
extern i nt  t r ap_t op_z;
extern doubl e t r ap_scal i ng_f act or ;
extern doubl e t r ap_di scr et i ze;

/ / Thi s t he pul sed el ect r i cal  f i el d
extern i nt  pul se_per i od_el ;       / /  Pul se per i od( =( upt i me+downt i me)  i n t i mest eps
extern i nt  pul se_upt i me_el ;       / /  Upt i me begi ns at  begi nni ng of  per i od
extern doubl e pul se_f act or _el ;    / /  Rescal e−f act or  i n t he downt i me
extern doubl e cur r ent _f act or _el ;  / /  Changes dur i ng si mul at i on bet ween 1 and Rescal e−f act or

/ /  Thi s  i s  f or  anal yzi ng t he out put −f i l es
extern char * *  s t dout _component ;

/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

i nt  cr eat e_out put _st r i ngs( voi d) ;

voi d i ni t _const ant s( char *  f i l ename) ;

voi d di spl ayconst ant s ( char *  s t dout _f i l ename) ;

voi d wr i t e_const ant s( char *  f i l ename) ;

#endif
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B Sources

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Code Modul e Er r or
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−− I ni t i al i sat i on er r or s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
1 mai n_pol ymer . cc I nval i d number  of  Ar gument s
2 const ant s. cc Const ant s−f i l e not  f ound
3 const ant s. cc Wr ong ver s i on of  const ant s−f i l e
4 const ant s. cc Random−seed not  f ound
5 ver l et . cc I nval i d s t ar t −f i l e name
6 ver l et . cc Too f ew monomer s i n st ar t −f i l e
7 ver l et . cc St ar t − and checkpoi nt  ar e i dent i cal  and not  al l  monomer s used
8 ver l et . cc Checkpoi nt −f i l e exi s t s  and st ar t f i l e i s di f f er ent
9 const ant s. cc Pot ent i al −f i l e not  f ond
10 const ant s. cc Pot ent i al −f i l e and/ or  geomet r y do not  f i t
11 const ant s. cc I ncompat i bl e s t ep−si zes
18 const ant s. cc I ncompat i bl e swi t ches ( Fi el d_t r ap enabl ed,  t r ap di sabl ed)
19 conf i g_ut i l s . cc I ncompl et e checkpoi nt
20 const ant s. cc Ti l t  t r ap i s  onl y  al l owed non−mi r r or ed
21 conf i g_ut i l s . cc Thr ow away may onl y  be appl i ed wi t h ol d t i mest eps == 0!
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−− Er r or s t hat  shoul d not  happen −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
12 i poi nt _map. cc Er r or :  Box−r ef er ences ar e f aul t y  ( r ef er ence == 0)
13 i poi nt _map. cc I nval i d access i n f ast _LJ_updat e − cube i s not  i n map
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−− Run−t i me er r or s t hat  may occur  dur i ng s i mul at i on −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
14 ver l et . cc Rupt ur e i n    ver l et −t i mest ep − bond l onger  t han cut of f −pot ent i al
15 ver l et . cc Rupt ur e i n no−ver l et −t i mest ep − bond l onger  t han cut of f −pot ent i al
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−− Anal ys i s  er r or s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
16 mai n_anal yse_r ouse. cc Di f f us i on can onl y be det er mi ned us i ng a f i ni t e t i me−st ep
17 const ant s. cc Modi f i ed−const ant s−f i l e al r eady exi st s
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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#include<mat h. h>
#include<i ost r eam>
#include" point.hh"

#ifndef I POI NT_I NCLUDED
#define I POI NT_I NCLUDED

using namespace s t d;

/ /  Thi s  i s  a cl ass of  3−di mensi onal  i nt eger s.  I t  i ncl udes a conver s i on−oper at or
/ /  i poi nt ( doubl e,  doubl e,  doubl e)  and al so i poi nt ( poi nt )  f or  easy conver si on of
/ /  3−di mensi onal  poi nt s .  I t  i s  necessar y t o i ncl ude " poi nt . hpp"  f i r st  i n t he 
/ /  mai n pr ogr am.  I t  al so i nc l udes or der −oper at or s ( <,  >,  <=,  >=)  whi ch f i r s t
/ /  sor t  t he i poi nt s by t he f i r s t  component ,  t hen by t he second component  and 
/ /  at  l ast  by t he t hi r d ent r y.  Thi s  i s  used f or  sor t i ng t he i poi nt s  i n t he
/ /  i ndex−map.  

class i poi nt  {
  i nt  x ;  i nt  y;  i nt  z;
public:
  i poi nt ( )
  { }
  i poi nt ( i nt  xx,  i nt  yy,  i nt  zz) {
    x  = xx;  y  = yy;  z = zz;
  }
  i poi nt ( doubl e xx,  doubl e yy,  doubl e zz) {
    x  = i nt ( s t d: : f l oor ( xx) ) ;  y  = i nt ( s t d: : f l oor ( yy) ) ;  z = i nt ( st d: : f l oor ( zz) ) ;
  }
  i poi nt ( poi nt  p) {
    x  = i nt ( s t d: : f l oor ( p. component ( 1) ) ) ;  
    y  = i nt ( s t d: : f l oor ( p. component ( 2) ) ) ;
    z  = i nt ( s t d: : f l oor ( p. component ( 3) ) ) ;
  }
  friend ost r eam& operator<<( ost r eam& os,  i poi nt  p) {
    return os << " ("  << p. x << " ,"  << p. y << " ,"  << p. z << " )" ;
  }
  friend bool  operator<( i poi nt  p1,  i poi nt  p2) {
    if ( ( p1. x == p2. x)  && ( p1. y == p2. y) )  return ( p1. z < p2. z) ;
    if ( p1. x == p2. x)  return ( p1. y < p2. y) ;
    return ( p1. x < p2. x) ;
  }
  friend bool  operator>( i poi nt  p1,  i poi nt  p2) {
    return ( p2 < p1) ;
  }
  friend bool  operator<=( i poi nt  p1,  i poi nt  p2) {
    return ( p1 == p2)  | |  ( p1 < p2) ;
  }
  friend bool  operator>=( i poi nt  p1,  i poi nt  p2) {
    return ( p1 == p2)  | |  ( p1 > p2) ;
  }
  friend bool  operator==( i poi nt  p1,  i poi nt  p2) {
    return ( ( p1. x==p2. x)  && ( p1. y==p2. y)  && ( p1. z==p2. z) ) ;
  }
  friend bool  operator! =( i poi nt  p1,  i poi nt  p2) {
    return ! ( p1==p2) ;
  }
  friend i poi nt  operator+( i poi nt  p1,  i poi nt  p2) {
    return i poi nt ( p1. x + p2. x,  p1. y + p2. y,  p1. z + p2. z) ;
  }
  i poi nt  operator+=( i poi nt  p) {
    x  += p. x;  y  += p. y;  z  += p. z;
    return i poi nt ( x, y, z) ;
  }
  friend i poi nt  operator−( i poi nt  p) {
    return i poi nt ( −p. x,  −p. y,  −p. z) ;
  }
  friend i poi nt  operator−( i poi nt  p1,  i poi nt  p2) {
    return i poi nt ( p1. x−p2. x,  p1. y−p2. y,  p1. z−p2. z) ;
  }
  i poi nt  operator−=( i poi nt  p) {
    x  −= p. x;  y  −= p. y;  z  −= p. z;
    return i poi nt ( x, y, z) ;
  }
  i nt  component ( i nt  choi ce) {    
    return ( choi ce==1 ? x :  ( choi ce==2 ? y :  z) ) ;
  }
  i nt  x_( voi d) {
    return x ;
  }
  i nt  y_( voi d) {
    return y ;
  }
  i nt  z_( voi d) {
    return z ;
  }
} ;

#endif
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B Sources

#include<i ost r eam>
#include<map>
#include<st di o. h>
#include" ipoint.hh"
#include" point.hh"
#include" potentials.hh"
#include" constants.hh"

#ifndef MAP_I POI NT_I NCLUDED
#define MAP_I POI NT_I NCLUDED

using namespace st d;

/ /  Thi s  i s  t he i mpl ement at i on of  t he r ed−bl ack−t r ee cont ai ni ng t he i ndi ces
/ /  of  each cube.  I t  cont ai ns f unct i ons f or  i nser t i ng/  r emovi ng i ndi ces
/ /  ( t he appr opr i at e cubes ar e i nser t ed/  del et ed aut omat i cal l y t o save 
/ /  memor y) ,  di spl ayi ng a cer t ai n cube pl us i t s  i ndi ces and nei ghbour s,
/ /  count i ng t he i ndi ces i n a cer t ai n cube and f unct i ons t o cr eat e an
/ /  ar r ay cont ai ni ng al l  i ndi ces wi t hi n a cube and of  a cer t ai n amount
/ /  of  nei ghbour s.  For  t he near est  nei ghbour s and an i ncl uded cent er −
/ /  cube,  a speci al i zed f unct i on f or  r eadout  ex i st s.  I t  gai ns speed by
/ /  accessi ng t he nei ghbour s di r ect l y  t hr ough t he r ef er ences.
/ /
/ /  I n many f unct i ons,  a poi nt er  ’ mouse’  i s used.  I t  i s  used t o navi gat e wi t hi n
/ /  t he t r ee,  l i ke a comput er −mouse i s used t o navi gat e on t he scr een.
/ /
/ /  St r uct ur es used:
/ /    − node :  cont ai ns t he cur r ent  cube,  t he number  of  i ndi ces i n t he cur r ent  
/ /             cube,  an ar r ay of  i ndi ces,  t he s i ze of  t he ar r ay,  t he r ef er ence
/ /             −f i el d t o t he near est  nei ghbour s and a st andar d−const r uct or
/ /  
/ /  Const ant s used:
/ /    − max_nei ghbour s  :  t he maxi mum number  of  near est  nei ghbour s of  a cube
/ /                        ( equal s 3* 3* 3,  a cube wi t h si de−l engt h 3)
/ /   
/ /   Funct i ons used ( f unct i ons i n br acket s ar e not  i nt ended t o be cal l ed di r ect l y
/ /                   by t he user  and ar e not  i n t he header −f i l e) :
/ /    − ( cr eat e_new)  :  Thi s  f unct i on cr eat es a new node.  St or es t he cube i n t he 
/ /                     node,  cr eat es an ar r ay f or  t wo i ndi ces,  set s t he number
/ /                     of  val i d ent r i es t o zer o.  Cr eat es t he r ef er ence−ar r ay
/ /                     and f i l l s  i t  wi t h t he val i d r ef er ences.  Updat es t he
/ /                     r ef r ences of  t he nei ghbour i ng cubes as wel l .
/ /    − map_i nser t _i ndex :  I nser t s  an i ndex i n t he r ed−bl ack−t r ee.
/ /                         I f  necessar y,  i t  cr eat es a new node f or  t he cube.
/ /                         Checks,  i f  t he i ndex−ar r ay i s bi g enough t o st or e
/ /                         anot her  i ndex.  I f  not ,  t he s i ze of  t he i ndex i s  
/ /                         doubl ed.  St or es t he new i ndex at  t he end of  t he ar r ay
/ /                         and i ncr eases t he number  of  val i d ent r i es by one.
/ /    − map_out put  :  Di spl ays t he desi r ed cube,  and,  i f  val i d,  t he i ndi ces wi t hi n
/ /                   t he cube and t he val i d near est −nei ghbour  cubes.
/ /    − ( dest r oy)  :  Thi s  f unct i on dest r oys a node.  Del et es t he r ef er ences and t he
/ /                  backpoi nt i ng ones ( f r om t he nei ghbour s)  as wel l .  Del et es t he
/ /                  i ndex−ar r ay and at  l ast  t he node i t sel f .
/ /    − map_r emove_i ndex :  Removes an i ndex f r om t he r ed−bl ack−t r ee.  Checks,  i f  t he cube
/ /                         i s  val i d and cont ai ns t he cor r ect  i ndex.  Swaps t he i ndex 
/ /                         t o be del et ed t o t he end of  t he f i el d.  Decr eases t he number
/ /                         of  val i d ent r i es by one.  I f  no val i d ent r i es ar e l ef t ,  
/ /                         t he node i s dest r oyed.
/ /    − i ndex_count  :  Count s t he i ndi ces wi t hi n a cer t ai n cube.  Ret ur ns zer o f or
/ /                    a non−exi s t i ng cube.
/ /    − i ndi ces_i n_cube :  Ret ur ns an ar r ay cont ai ni ng al l  val i d i ndi ces wi t hi n cube.
/ /                        Cr eat es a new i nt eger −ar r ay,  so don’ t  f or get  t o f r ee t he
/ /                        memor y f or  i t  af t er war ds.  Al so r et ur ns t he number  of
/ /                        val i d i ndi ces.
/ /    − ol d_nei ghbour s_of _cube :  Ret ur ns an ar r ay cont ai ni ng t he i ndi ces i n t he 
/ /                               cube and t hose of  t he near est  nei ghbour s ( def aul t  
/ /                               i s  one) .  Thi s f unct i on i s  non−r ecur si ve,  but  s l ow due
/ /                               t o many scans of  t he r ed−bl ack−t r ee.
/ /    − nei ghbour s_of _cube :  Checks,  i f  cube i s  l ocat ed i n t he r ed−bl ack−t r ee and i f  t he number
/ /                           of  desi r ed near est  nei ghbour s i s  set  t o one ( t he def aul t ) .
/ /                           I f  not ,  a war ni ng i s wr i t t en on st der r  and ol d_nei ghbour s_of _cube 
/ /                           i s cal l ed,  i t  i s  abl e t o handl e t hese di f f i cul t i es.  I f  t he
/ /                           check i s  OK,  i t  accesses t he cur r ent  cube di r ect l y  and 
/ /                           t he near est  nei ghbour s by t he r ef er ence−l i st ,  whi ch i s  i n
/ /                           each node and t hus savi ng a l ot  of  t i me.
/ /    − f ast _LJ_updat e :  Scans t hr ough t he t r ee f or  al l  cubes,  and eval uat es t he Lennar d−Jones−
/ /                       i nt er act i on pot ent i al .  Al most  si mi l ar  t o nei ghbour s_of _cube and 
/ /                       LJ_updat e,  but  avoi des copyi ng of  i ndi ces.  

st r uct  node {
  i poi nt  cube;                      / /  s t or es t he ( l at t i ce−) cube
  i nt  max_i ndi ces_i n_cube;          / /  t he s i ze of  t he i ndex−ar r ay
  i nt  i ndi ces_i n_cube;              / /  t he number  of  i ndi ces i n t he cube
  i nt *  i ndex;                       / /  l ocat i on of  t he i ndi ces wi t hi n t he cube ( ar r ay)
  node * *  r ef er ence;                / /  s t or es t he r ef er ences t o t he near est  nei ghbour s
  i nt  number _of _r ef er ences;         / /  t he number  of  occupi ed r ef er ences
  node( )  { }                         / /  Def aul t −const r uct or
} ;

/ /  Maxi mum number  of  near est  nei ghbour s of  a cube
const i nt  max_nei ghbour s = 27;

typedef map<i poi nt ,  node* > map_i poi nt ;

node*  cr eat e_new( map_i poi nt  &i dx_map,  i poi nt  cube)  {
  node*  mouse = new node;                       / /  cr eat e t he new node
  mouse−>cube = cube;
  mouse−>max_i ndi ces_i n_cube = 2;               / /  cr eat e an ar r ay f or  2 i ndi ces
  mouse−>i ndi ces_i n_cube = 0;                   / /  and set  t he number  of  val i d ent r i es t o 0
  mouse−>i ndex = new i nt [ mouse−>max_i ndi ces_i n_cube] ;
  mouse−>r ef er ence = new ( node* ) [ max_nei ghbour s] ;
  mouse−>number _of _r ef er ences = 0;
  for ( i nt  i  = 0;  i  < max_nei ghbour s;  i ++)
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    mouse−>r ef er ence[ i ]  = 0;                     / /  scan t he t r ee f or  al l  near est  nei ghbour s
  for ( i nt  dx = −1;  dx <= 1;  dx++)
    for ( i nt  dy = −1;  dy <= 1;  dy++)
      for ( i nt  dz = −1;  dz <= 1;  dz++)

if ( i poi nt ( dx,  dy,  dz)  ! = i poi nt ( 0, 0, 0) )  {
  map_i poi nt : : i t er at or  sear ch = i dx_map. f i nd( i poi nt ( dx,  dy,  dz)  + cube) ;  
  if ( sear ch ! = i dx_map. end( ) )  {
    node*  sear ch_mouse = i dx_map[ i poi nt ( dx,  dy,  dz)  + cube] ;
    mouse−>r ef er ence[ mouse−>number _of _r ef er ences]  = sear ch_mouse;
    mouse−>number _of _r ef er ences++;   
    sear ch_mouse−>r ef er ence[ sear ch_mouse−>number _of _r ef er ences]  = mouse;
    sear ch_mouse−>number _of _r ef er ences++;
  }
}

  return mouse;
}

voi d map_i nser t _i ndex( map_i poi nt & i dx_map,  i poi nt  cube,  node* & box_r ef ,  i nt  i ndex)  {
  node*  mouse = i dx_map[ cube] ;
  if ( mouse == 0)  {                                  / /  cube i s  not  i n t he map
    mouse = cr eat e_new( i dx_map,  cube) ;               / /  and has t o be cr eat ed
    i dx_map[ cube]  = mouse;
  }
  if ( mouse−>i ndi ces_i n_cube == mouse−>max_i ndi ces_i n_cube)  {
    mouse−>max_i ndi ces_i n_cube * = 2;
    i nt *  new_i ndex = new i nt [ mouse−>max_i ndi ces_i n_cube] ;   / /  cr eat e a new ar r ay capabl e
    for( i nt  i  = 0;  i  < mouse−>i ndi ces_i n_cube;  i ++)         / /  of  s t or i ng al l  ol d i ndi ces
      new_i ndex[ i ]  = mouse−>i ndex[ i ] ;                       / /  and t he new one 
    {
      i nt  *  t mp = mouse−>i ndex;                           / /  swap i ndex−f i el ds
      mouse−>i ndex = new_i ndex;
      new_i ndex = t mp;
    }
    delete [ ]  new_i ndex;
  }
  mouse−>i ndex[ mouse−>i ndi ces_i n_cube]  = i ndex;          / /  ent er  t he new i ndex i nt o t he ar r ay
  mouse−>i ndi ces_i n_cube++;
  box_r ef  = mouse;
}

voi d map_out put ( map_i poi nt & i dx_map,  i poi nt  cube,  char *  s t dout _f i l ename)  {
  FI LE*  s t dout _f i l e = f open( st dout _f i l ename,  " a" ) ;
  node*  mouse = i dx_map[ cube] ;
  if ( mouse == 0)  {
    f pr i nt f ( s t dout _f i l e,  " >> (%i,%i,%i) <<\n" ,  cube. x_( ) ,  cube. y_( ) ,  cube. z_( ) ) ;
    i dx_map. er ase( cube) ;
  }  else {
    f pr i nt f ( s t dout _f i l e,  " (%i,%i,%i) { " ,  cube. x_( ) ,  cube. y_( ) ,  cube. z_( ) ) ;
    for ( i nt  i  = 0;  i  < mouse−>i ndi ces_i n_cube;  i ++)
      f pr i nt f ( s t dout _f i l e,  " %i," ,  mouse−>i ndex[ i ] ) ;
    f pr i nt f ( s t dout _f i l e,  " %c} , " ,  8) ;
    f pr i nt f ( s t dout _f i l e,  " %i Neighbours: >> " ,  mouse−>number _of _r ef er ences) ;
    for ( i nt  i  = 0;  i  < mouse−>number _of _r ef er ences;  i ++)
      if ( mouse−>r ef er ence[ i ]  ! = 0)

f pr i nt f ( s t dout _f i l e,  " (%i,%i,%i)" ,  mouse−>r ef er ence[ i ] −>cube. x_( ) ,  mouse−>r ef er ence[ i ] −>cube. y_( ) ,  
mouse−>r ef er ence[ i ] −>cube. z_( ) ) ;

    f pr i nt f ( s t dout _f i l e,  " <<\n" ) ;
  }
  f c l ose( st dout _f i l e) ;
}

voi d dest r oy( node* & mouse)  {
/ /  Thi s  f unct i on act ual l y  del et es t he mouse,  al so del et es t he r ef er ences 
/ /  i n bot h di r ect i ons
  for ( i nt  i  = 0;  i  < mouse−>number _of _r ef er ences;  i ++)  {                / /  scan al l  val i d r ef er ences 
    for ( i nt  j  = 0;  j  < mouse−>r ef er ence[ i ] −>number _of _r ef er ences;  j ++)  / /  l ocat e t he back−poi nt i ng r ef er ence
      if ( mouse−>r ef er ence[ i ] −>r ef er ence[ j ]  == mouse)  {

mouse−>r ef er ence[ i ] −>r ef er ence[ j ]  = 
  mouse−>r ef er ence[ i ] −>r ef er ence[ ( mouse−>r ef er ence[ i ] −>number _of _r ef er ences) −1] ;  / /  and del et e i t
( mouse−>r ef er ence[ i ] −>number _of _r ef er ences) −−;

      }
  }
  delete [ ]  mouse−>r ef er ence;                                     / /  del et e al l  poi nt er s and ar r ays
  delete [ ]  mouse−>i ndex;
  delete mouse;
}

voi d map_r emove_i ndex( map_i poi nt & i dx_map,  i poi nt  cube,  node* & box_r ef ,  i nt  i ndex)  {
  node*  mouse = i dx_map[ cube] ;
  if ( mouse == 0)  {                                    / /  cube has t o be wi t hi n t he map
    i dx_map. er ase( cube) ;
    cer r  << " Invalid Deletion − cube is not in tree!\n" ;
  }  else {
    bool  f ound = f al se;
    for ( i nt  i  = 0;  i <mouse−>i ndi ces_i n_cube;  i ++)     / /  sear ch t he r i ght  i ndex
      if ( mouse−>i ndex[ i ]  == i ndex)  {
        f ound = t r ue;
        i nt  t mp = mouse−>i ndex[ i ] ;                                 / /  swap t he i ndex whi ch i s  t o be
        mouse−>i ndex[ i ]  = mouse−>i ndex[ mouse−>i ndi ces_i n_cube−1] ;  / /  del et ed t o t he end of  t he f i el d
        mouse−>i ndex[ mouse−>i ndi ces_i n_cube−1]  = t mp;
        i  = mouse−>i ndi ces_i n_cube;
      }
    if ( ! f ound)  {
      cer r  << " Invalid Deletion − index is not in cube!\n" ;
    }  else {
      mouse−>i ndi ces_i n_cube−−;            / /  and r educe t he number  of  val i d i ndi ces by one
    }
    if ( mouse−>i ndi ces_i n_cube == 0)  {     / /  r emove t he cube,  i f  necessar y
      dest r oy( mouse) ;
      i dx_map. er ase( cube) ;       
    }
  }
  box_r ef  = 0;
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B Sources

}

i nt  i ndex_count ( node* & box_r ef )
/ /  Count s t he number  of  i ndi ces wi t hi n t he node,  r et ur ns 0 when cube i s not  i n 
/ /  t he r ed−bl ack−t r ee.
{
  if ( box_r ef  == 0)  {
    return 0;
  }  else {
    return box_r ef −>i ndi ces_i n_cube;
  }
}

i nt *  i ndi ces_i n_cube( node* & box_r ef ,  i nt & number )
/ /  Ret ur ns an ar r ay of  t he i ndi ces l ocat ed i n cube.  Does not  r et ur n empt y
/ /  i ndi ces.  The si ze of  t he ar r ay i s  al so r et ur ned i n number .  Thi s f unct i on
/ /  al l ocat es t he memor y f or  t he ar r ay,  so don’ t  f or get  t o f r ee t he memor y 
/ /  af t er  usage.
{
  if ( box_r ef  == 0)  {
    number  = 0;
    return 0;
  }  else {
    number  = box_r ef −>i ndi ces_i n_cube;
    i nt *  i dx_l i s t  = new i nt [ number ] ;
    for ( i nt  i  = 0;  i  < number ;  i ++)  
      i dx_l i s t [ i ]  = box_r ef −>i ndex[ i ] ;
    return i dx_l i s t ;
  }
}

i nt *  nei ghbour s_of _cube( node* & box_r ef ,  i nt & number )  {
/ /  Thi s  f unct i on checks i f  t he cube i s  l ocat ed i n t he t r ee and i f  onl y
/ /  t he f i r st  near est  nei ghbour s ( def aul t )  ar e desi r ed.  I f  one of  t hese
/ /  checks f ai l ,  a war ni ng i s  pr i nt ed on st der r  and ol d_nei ghbour s_of _cube
/ /  i s  cal l ed,  whi ch i s capabl e of  handl i ng t hese di f f i cul t i es,  but  sl ow.
/ /  I f  t hese t est s ar e successf ul l y  passed,  i t  r eads out  t he i ndi ces i n t he
/ /  cur r ent  cube and i t s  near est  nei ghbour s,  whi ch ar e accessed di r ect l y
/ /  vi a t he r ef er ence−l i st .
  if ( box_r ef  == 0)  {
    cer r  << " Error: Box−references are faulty!\n" ;
    exi t ( 12) ;
  }
  number  = box_r ef −>i ndi ces_i n_cube;                       / /  count  t he number  of  i ndi ces t o be r et ur ned
  for ( i nt  i  = 0;  i  < box_r ef −>number _of _r ef er ences;  i ++)
    number  += box_r ef −>r ef er ence[ i ] −>i ndi ces_i n_cube;
  i nt *  i dx_l i st  = new i nt [ number ] ;
  number  = 0;
  for ( i nt  i  = 0;  i  < box_r ef −>i ndi ces_i n_cube;  i ++)  {
    i dx_l i st [ number ]  = box_r ef −>i ndex[ i ] ;
    number ++;
  }
  for ( i nt  i  = 0;  i  < box_r ef −>number _of _r ef er ences;  i ++)
    for ( i nt  j  = 0;  j  < box_r ef −>r ef er ence[ i ] −>i ndi ces_i n_cube;  j ++)  {
      i dx_l i s t [ number ]  = box_r ef −>r ef er ence[ i ] −>i ndex[ j ] ;
      number ++;
    }
  return i dx_l i s t ;
}

voi d f ast _LJ_updat e( poi nt *  r ,  poi nt *  dv,  node* * & box_r ef ,  i nt  N)  {
/ /  Scans t hr ough t he t r ee f or  al l  i ndi ces,  eval uat es t he Lennar d−Jones−i nt er act i on.
/ /  Al most  si mi l ar  t o nei ghbour s_of _cube and LJ_updat e,  but  avoi des copyi ng of  i ndi ces.  
  for ( i nt  i  = 0;  i  < N;  i ++)  {
    node*  mouse = box_r ef [ i ] ;
    if ( mouse == 0)  {                                   / /  i f  i t  i s not  f ound,  ex i t  t he pr ogr am
      cer r  << " Invalid access in fast_LJ_update − cube is not in red−black−tree!\n" ;
      ex i t ( 13) ;
    }
    for ( i nt  j  = 0;  j  < mouse−>i ndi ces_i n_cube;  j ++)  {  / /  scan t he cube i n t he cent er
      i nt  i ndex = mouse−>i ndex[ j ] ;
      if ( ( i ndex < i )  && ( backbone_LJ | |  ( i −i ndex ! = 1) ) )  {
        poi nt  d_V_LJ = d_V_LJ_dr _t i mes_t i mest ep( r [ i ndex]  − r [ i ] ) ;
        dv[ i ]      +=  d_V_LJ;
        dv[ i ndex]  += −d_V_LJ;
      }
    }
    for ( i nt  k = 0;  k  < mouse−>number _of _r ef er ences;  k++)  {   / /  and al l  nei ghbour s t hr ough t he r ef er ences
      node*  sear ch_mouse = mouse−>r ef er ence[ k] ;
      for ( i nt  j  = 0;  j  < sear ch_mouse−>i ndi ces_i n_cube;  j ++)  {

i nt  i ndex = sear ch_mouse−>i ndex[ j ] ;
if ( ( i ndex < i )  && ( backbone_LJ | |  ( i −i ndex ! = 1) ) )  {
  poi nt  d_V_LJ = d_V_LJ_dr _t i mes_t i mest ep( r [ i ndex]  − r [ i ] ) ;
  dv[ i ]      +=  d_V_LJ;
  dv[ i ndex]  += −d_V_LJ;
}          

      }
    }
  }
}

#endif
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#include<i ost r eam>
#include<map>
#include<st di o. h>
#include" ipoint.hh"
#include" point.hh"
#include" potentials.hh"
#include" constants.hh"

#ifndef MAP_I POI NT_I NCLUDED
#define MAP_I POI NT_I NCLUDED

using namespace s t d;

/ /  Thi s  i s  t he i mpl ement at i on of  t he r ed−bl ack−t r ee cont ai ni ng t he i ndi ces
/ /  of  each cube.  I t  cont ai ns f unct i ons f or  i nser t i ng/  r emovi ng i ndi ces
/ /  ( t he appr opr i at e cubes ar e i nser t ed/  del et ed aut omat i cal l y  t o save 
/ /  memor y) ,  di spl ayi ng a cer t ai n cube pl us i t s  i ndi ces and nei ghbour s,
/ /  count i ng t he i ndi ces i n a cer t ai n cube and f unct i ons t o cr eat e an
/ /  ar r ay cont ai ni ng al l  i ndi ces wi t hi n a cube and of  a cer t ai n amount
/ /  of  nei ghbour s.  For  t he near est  nei ghbour s and an i ncl uded cent er −
/ /  cube,  a speci al i zed f unct i on f or  r eadout  ex i s t s.  I t  gai ns speed by
/ /  accessi ng t he nei ghbour s di r ect l y  t hr ough t he r ef er ences.
/ /
/ /  I n many f unct i ons,  a poi nt er  ’ mouse’  i s used.  I t  i s  used t o navi gat e wi t hi n
/ /  t he t r ee,  l i ke a comput er −mouse i s used t o navi gat e on t he scr een.
/ /
/ /  St r uct ur es used:
/ /    − node :  cont ai ns t he cur r ent  cube,  t he number  of  i ndi ces i n t he cur r ent  
/ /             cube,  an ar r ay of  i ndi ces,  t he s i ze of  t he ar r ay,  t he r ef er ence
/ /             −f i el d t o t he near est  nei ghbour s and a st andar d−const r uct or
/ /  
/ /  Const ant s used:
/ /    − max_nei ghbour s  :  t he maxi mum number  of  near est  nei ghbour s of  a cube
/ /                        ( equal s 3* 3* 3,  a cube wi t h s i de−l engt h 3)
/ /   
/ /   Funct i ons used ( f unct i ons i n br acket s ar e not  i nt ended t o be cal l ed di r ect l y
/ /                   by t he user  and ar e not  i n t he header −f i l e) :
/ /    − ( cr eat e_new)  :  Thi s f unct i on cr eat es a new node.  St or es t he cube i n t he 
/ /                     node,  cr eat es an ar r ay f or  t wo i ndi ces,  set s t he number
/ /                     of  val i d ent r i es t o zer o.  Cr eat es t he r ef er ence−ar r ay
/ /                     and f i l l s  i t  wi t h t he val i d r ef er ences.  Updat es t he
/ /                     r ef r ences of  t he nei ghbour i ng cubes as wel l .
/ /    − map_i nser t _i ndex :  I nser t s  an i ndex i n t he r ed−bl ack−t r ee.
/ /                         I f  necessar y,  i t  cr eat es a new node f or  t he cube.
/ /                         Checks,  i f  t he i ndex−ar r ay i s bi g enough t o s t or e
/ /                         anot her  i ndex.  I f  not ,  t he s i ze of  t he i ndex i s 
/ /                         doubl ed.  St or es t he new i ndex at  t he end of  t he ar r ay
/ /                         and i ncr eases t he number  of  val i d ent r i es by one.
/ /    − map_out put  :  Di spl ays t he desi r ed cube,  and,  i f  val i d,  t he i ndi ces wi t hi n
/ /                   t he cube and t he val i d near est −nei ghbour  cubes.
/ /    − ( dest r oy)  :  Thi s  f unct i on dest r oys a node.  Del et es t he r ef er ences and t he
/ /                  backpoi nt i ng ones ( f r om t he nei ghbour s)  as wel l .  Del et es t he
/ /                  i ndex−ar r ay and at  l ast  t he node i t sel f .
/ /    − map_r emove_i ndex :  Removes an i ndex f r om t he r ed−bl ack−t r ee.  Checks,  i f  t he cube
/ /                         i s  val i d and cont ai ns t he cor r ect  i ndex.  Swaps t he i ndex 
/ /                         t o be del et ed t o t he end of  t he f i el d.  Decr eases t he number
/ /                         of  val i d ent r i es by one.  I f  no val i d ent r i es ar e l ef t ,  
/ /                         t he node i s dest r oyed.
/ /    − i ndex_count  :  Count s t he i ndi ces wi t hi n a cer t ai n cube.  Ret ur ns zer o f or
/ /                    a non−exi s t i ng cube.
/ /    − i ndi ces_i n_cube :  Ret ur ns an ar r ay cont ai ni ng al l  val i d i ndi ces wi t hi n cube.
/ /                        Cr eat es a new i nt eger −ar r ay,  so don’ t  f or get  t o f r ee t he
/ /                        memor y f or  i t  af t er war ds.  Al so r et ur ns t he number  of
/ /                        val i d i ndi ces.
/ /    − ol d_nei ghbour s_of _cube :  Ret ur ns an ar r ay cont ai ni ng t he i ndi ces i n t he 
/ /                               cube and t hose of  t he near est  nei ghbour s ( def aul t  
/ /                               i s one) .  Thi s f unct i on i s  non−r ecur si ve,  but  sl ow due
/ /                               t o many scans of  t he r ed−bl ack−t r ee.
/ /    − nei ghbour s_of _cube :  Checks,  i f  cube i s  l ocat ed i n t he r ed−bl ack−t r ee and i f  t he number
/ /                           of  desi r ed near est  nei ghbour s i s set  t o one ( t he def aul t ) .
/ /                           I f  not ,  a war ni ng i s  wr i t t en on st der r  and ol d_nei ghbour s_of _cube 
/ /                           i s  cal l ed,  i t  i s  abl e t o handl e t hese di f f i cul t i es.  I f  t he
/ /                           check i s  OK,  i t  accesses t he cur r ent  cube di r ect l y and 
/ /                           t he near est  nei ghbour s by t he r ef er ence−l i s t ,  whi ch i s  i n
/ /                           each node and t hus savi ng a l ot  of  t i me.
/ /    − f ast _LJ_updat e :  Scans t hr ough t he t r ee f or  al l  cubes,  and eval uat es t he Lennar d−Jones−
/ /                       i nt er act i on pot ent i al .  Al most  si mi l ar  t o nei ghbour s_of _cube and 
/ /                       LJ_updat e,  but  avoi des copyi ng of  i ndi ces.  

st r uct  node {
  i poi nt  cube;                      / /  st or es t he ( l at t i ce−) cube
  i nt  max_i ndi ces_i n_cube;          / /  t he s i ze of  t he i ndex−ar r ay
  i nt  i ndi ces_i n_cube;              / /  t he number  of  i ndi ces i n t he cube
  i nt *  i ndex;                       / /  l ocat i on of  t he i ndi ces wi t hi n t he cube ( ar r ay)
  node * *  r ef er ence;                / /  st or es t he r ef er ences t o t he near est  nei ghbour s
  i nt  number _of _r ef er ences;         / /  t he number  of  occupi ed r ef er ences
  node( )  { }                         / /  Def aul t −const r uct or
} ;

typedef map<i poi nt ,  node* > map_i poi nt ;

voi d map_i nser t _i ndex( map_i poi nt & i dx_map,  i poi nt  cube,  node* & box_r ef ,  i nt  i ndex) ;

voi d map_out put ( map_i poi nt & i dx_map,  i poi nt  cube,  char *  s t dout _f i l ename) ;  

voi d map_r emove_i ndex( map_i poi nt & i dx_map,  i poi nt  cube,  node* & box_r ef ,  i nt  i ndex) ;

i nt *  nei ghbour s_of _cube( node* & box_r ef ,  i nt & number ) ;

voi d f ast _LJ_updat e( poi nt *  r ,  poi nt *  dv,  node* * & box_r ef ,  i nt  N) ;

#endif
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#include<i ost r eam>
#include<i omani p>
#include<mat h. h>
#include<f st r eam>
#include<st dl i b. h>
#include<gsl / gs l _r ng. h>
#include<gsl / gs l _r andi st . h>
#include<st di o. h>
#include" point.hh"
#include" ipoint.hh"
#include" ipoint_map.hh"
#include" constants.hh"
#include" potentials.hh"
#include" verlet.hh"
#include" config_utils.hh"

using namespace st d;

char *  r un_i nf o;
char *  r m_r un_i nf o;
char *  backup_ckpt ;
char *  r m_backup;
i nt    pr ev i ous_ki l l ed;

voi d i ni t _st r i ngs( char *  checkpoi nt _name)  {
  i nt  l engt h  = st r l en( checkpoi nt _name) ;
  r un_i nf o    = new char [     l engt h + 20] ;
  r m_r un_i nf o = new char [     l engt h + 20] ;
  backup_ckpt  = new char [ 2 *  l engt h + 20] ;
  r m_backup   = new char [     l engt h + 20] ;
  spr i nt f ( r un_i nf o,  " %s.info" ,  checkpoi nt _name) ;
  spr i nt f ( r m_r un_i nf o,  " rm −f %s" ,  r un_i nf o) ;
  spr i nt f ( backup_ckpt ,  " mv %s %s.bak" ,  checkpoi nt _name,  checkpoi nt _name) ;
  spr i nt f ( r m_backup,  " rm −f %s.bak" ,  checkpoi nt _name) ;
  FI LE*  t est _ki l l ed = f open( r un_i nf o,  " r" ) ;
  if ( t est _k i l l ed)  {
    pr i nt f ( " Old info file found, restoring old state\n" ) ;
    pr ev i ous_ki l l ed = 1;
    f cl ose( t est _ki l l ed) ;
  }  else {
    pr i nt f ( " No info file found, starting from new state\n" ) ;
    pr ev i ous_ki l l ed = 0;
  }
}

voi d i ni t _r er ead_r est ar t _i nf or mat i on( i nt & ol d_t i mest eps)  {
  FI LE * ol d_r un_i nf o = f open( r un_i nf o,  " r" ) ;                             / /  Test  f or  pr ev i ousl y k i l l ed pr ocess
  if ( ol d_r un_i nf o)  {                                                    
    i nt  i ni t i al _ol d_t i mest eps;
    f scanf ( ol d_r un_i nf o,  " %i" ,  &i ni t i al _ol d_t i mest eps) ;                  / /  r ead ol d pr ocess dat a
    if ( ol d_t i mest eps < 0)  {                                             / /  pr ocess was i n t hr ow−away−phase
      t hr ow_away    = − ol d_t i mest eps;
      ol d_t i mest eps = i ni t i al _ol d_t i mest eps;
    }  else {
      s t eps      = s t eps − ( ol d_t i mest eps − i ni t i al _ol d_t i mest eps) ;      / /  comput e r emai ni ng st eps
      t hr ow_away = 0;                                                    / /  do not  pr ef or m i ni t −st eps
    }
  }  else {                                                               / /  No pr ev i ousl y  r unni ng pr ocess k i l l ed
    if ( t hr ow_away && ol d_t i mest eps)  {                                      / /  Do no i ni t i al i sat i on wi t h dat a
      cer r  << " Throw away may only be applied with old timesteps == 0!\n" ;  / /  al r eady comput ed
      ex i t ( 20) ;
    }
    ol d_r un_i nf o = f open( r un_i nf o,  " w" ) ;                                 / /  wr i t e dat a f or  new pr ocess
    f pr i nt f ( ol d_r un_i nf o,  " %i\n" ,  ol d_t i mest eps) ;
  }
  pr i nt f ( " Starting from timestep %i, %i throw away and %i regular remaining\n" ,  ol d_t i mest eps,  t hr ow_away,  st eps) ;
  f cl ose( ol d_r un_i nf o) ;
}

i nt  mai n( i nt  ar gc,  char *  ar gv[ ] )  {
  if ( ( ar gc ! = 6)  && ( ar gc ! = 7) )  {
    s t d: : cer r  << " Invalid number of arguments − \n" ;
    s t d: : cer r  << " Calling sequence: <program name> constant−file start−config−file number−of−monomers " ;
    s t d: : cer r  << " checkpoint−file stdout−file [append−config−file] \n" ;
    exi t ( 1) ;
    }
  i ni t _st r i ngs( ar gv[ 4] ) ;
  i ni t _const ant s( ar gv[ 1] ) ;
  if ( ar gc == 7)
    append_conf i gs = 1;
  else 
    append_conf i gs = 0;
  if ( di spl ay_const ant s)  
    di spl ayconst ant s( ar gv[ 5] ) ;
  poi nt  * r ;
  poi nt  * v ;
  node  * * box_r ef ;
  i nt  number ;
  i nt  ol d_t i mest eps;
  map_i poi nt  i dx_map;
  if ( pr ev i ous_ki l l ed)       / /  avoi d checki ng of  st ar t − and checkpoi nt −f i l e i f  pr ev i ousl y k i l l ed
    i ni t _pol ymer  ( r ,  v,  box_r ef ,  i dx_map,  number ,  ar gv[ 4] ,  ar gv[ 4] ,  ar gv[ 3] ,  ol d_t i mest eps) ;
  else
    i ni t _pol ymer  ( r ,  v,  box_r ef ,  i dx_map,  number ,  ar gv[ 2] ,  ar gv[ 4] ,  ar gv[ 3] ,  ol d_t i mest eps) ;
  i ni t _r er ead_r est ar t _i nf or mat i on( ol d_t i mest eps) ;
  for ( i nt  i  = −t hr ow_away;  i  < 0;  i ++)  {
    if ( use_ver l et )
      ver l et _t i mest ep( r ,  v ,  box_r ef ,  i dx_map,  number ,  i ) ;
    else
      no_ver l et _t i mest ep( r ,  v ,  box_r ef ,  i dx_map,  number ,  i ) ;
    if ( i  % out put _st eps == 0)  {                              / /  Checkpoi nt  dur i ng l ong i ni t i al i zat i on
      syst em( backup_ckpt ) ;
      wr i t e_conf i g( r ,  v ,  0,  number ,  i ,  ar gv[ 4] ,  " w" ) ;
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    }
  }
  FI LE*  s t dout _f i l e = f open( ar gv[ 5] ,  " a" ) ;
  f pr i nt f ( st dout _f i l e,  " # N = %i\n" ,  number ) ;
  f c l ose( st dout _f i l e) ;
  for ( i nt  i  = 0;  i  <= st eps;  i ++)  {
    if ( i  % out put _st eps == 0)  {
      / /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      / /  −−− Comput e possi bl e measur ement s −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      / /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      poi nt  cent er      = r ouse_mode( r ,  number ,  0) ;            / /  Comput e cent er  of  mass
      poi nt  mode_1     = r ouse_mode( r ,  number ,  1) ;            / /  f i r st  r ouse−mode
      poi nt  gyr at i on   = gyr at i on_r adi us( r ,  number ) ;          / /  r adi us of  gyr at i on
      poi nt  end_t o_end = r [ number −1]  − r [ 0] ;                  / /  end−t o−end vect or
      poi nt  mi n_x      = r [ 0] ;                                / /  f i nd mi ni ma/  maxi ma
      poi nt  max_x      = r [ 0] ;
      poi nt  mi n_y      = r [ 0] ;
      poi nt  max_y      = r [ 0] ;
      poi nt  mi n_z      = r [ 0] ;
      poi nt  max_z      = r [ 0] ;
      i nt    mi n_x_mon  = 0;
      i nt    mi n_y_mon  = 0;
      i nt    mi n_z_mon  = 0;
      i nt    max_x_mon  = 0;
      i nt    max_y_mon  = 0;
      i nt    max_z_mon  = 0;
      for ( i nt  j  = 0;  j  < number ;  j ++)  {

if ( mi n_x. x_( )  > r [ j ] . x_( ) )  {
  mi n_x_mon = j ;
  mi n_x     = r [ j ] ;
}
if ( max_x. x_( )  < r [ j ] . x_( ) )  {
  max_x_mon = j ;
  max_x     = r [ j ] ;
}
if ( mi n_y. y_( )  > r [ j ] . y_( ) )  {
  mi n_y_mon = j ;
  mi n_y     = r [ j ] ;
}
if ( max_y. y_( )  < r [ j ] . y_( ) )  {
  max_y_mon = j ;
  max_y     = r [ j ] ;
}
if ( mi n_z. z_( )  > r [ j ] . z_( ) )  {
  mi n_z_mon = j ;
  mi n_z     = r [ j ] ;
}
if ( max_z. z_( )  < r [ j ] . z_( ) )  {
  max_z_mon = j ;
  max_z     = r [ j ] ;  
}

      }
      doubl e cont our  = 0;                                             / /  Comput e cont our −l engt h
      doubl e mi n_bond_sqr  = 0;                                        / /  Mi ni mum bond−l engt h
      doubl e max_bond_sqr  = 0;                                        / /  Maxi mum bond−l engt h
      if ( number  > 1)  {

mi n_bond_sqr  = abs_sqr ( r [ 1] −r [ 0] ) ;
max_bond_sqr  = abs_sqr ( r [ 1] −r [ 0] ) ;

      }
      for ( i nt  j  = 1;  j  < number ;  j ++) {

cont our  += abs( r [ j ] −r [ j −1] ) ;
if ( abs_sqr ( r [ j ] −r [ j −1] )  < mi n_bond_sqr )
  mi n_bond_sqr  = abs_sqr ( r [ j ] −r [ j −1] ) ;
if ( abs_sqr ( r [ j ] −r [ j −1] )  > max_bond_sqr )
  max_bond_sqr  = abs_sqr ( r [ j ] −r [ j −1] ) ;

      }
      poi nt  mean_speed   = r ouse_mode( v,  number ,  0) ;                  / /  comput e mean−speed
      poi nt  ang_moment um = angul ar _moment um( r ,  v ,  number ) ;            / /  comput e angul ar  moment um;
      doubl e ener gy      = ener gy_al l ( r ,  v,  box_r ef ,  number ) ;         / /  comput e ener gy
      doubl e e_pot _i nt    = ener gy_pot _i nt ( r ,  v ,  box_r ef ,  number ) ;     / /  comput e ener gy_pot , i nt er nal
      doubl e e_pot _ext    = ener gy_pot _ext ( r ,  v ,  box_r ef ,  number ) ;     / /  comput e ener gy_pot , ext er nal
      doubl e e_ki n       = ener gy_ki n( r ,  v,  box_r ef ,  number ) ;         / /  comput e ener gy_ki n
      doubl e cos_t het a   = t het a( r ,  number ) ;                          / /  comput e cos_t het a
      doubl e bond_cor r el  = 0;
      if ( number  > 1)                                                 / /  comput e cor r el at i on of  f i r st

bond_cor r el  = ( r [ number −1] −r [ 0] ) * ( r [ 1] −r [ 0] ) ;                 / /  bond wi t h t he end−t o−end−vect or
      / /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      / /  −−− Begi n wr i t i ng dat a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      / /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      syst em( backup_ckpt ) ;
      wr i t e_conf i g( r ,  v ,  ener gy,  number ,  i  + ol d_t i mest eps,  ar gv[ 4] ,  " w" ) ;      / /  Wr i t e checkpoi nt
      FI LE*  s t dout _f i l e = f open( ar gv[ 5] ,  " a" ) ;
      f pr i nt f ( s t dout _f i l e,  " %i  %lf  %lf  %lf" ,  i +ol d_t i mest eps,  cent er . x_( ) ,  cent er . y_( ) ,  cent er . z_( ) ) ;
      if ( di spl ay_mode_1)

f pr i nt f ( s t dout _f i l e,  "     %lf  %lf  %lf" ,  mode_1. x_( ) ,  mode_1. y_( ) ,  mode_1. z_( ) ) ;
      if ( di spl ay_gyr at i on)

f pr i nt f ( s t dout _f i l e,  "     %lf  %lf  %lf" ,  gyr at i on. x_( ) ,  gyr at i on. y_( ) ,  gyr at i on. z_( ) ) ;
      if ( di spl ay_end_t o_end)

f pr i nt f ( s t dout _f i l e,  "     %lf  %lf  %lf" ,  end_t o_end. x_( ) ,  end_t o_end. y_( ) ,  end_t o_end. z_( ) ) ;
      if ( di spl ay_mi n_max)  {

f pr i nt f ( s t dout _f i l e,  "     %lf  %lf  %lf" ,  mi n_x. x_( ) ,  mi n_y. y_( ) ,  mi n_z. z_( ) ) ;
f pr i nt f ( s t dout _f i l e,  "     %lf  %lf  %lf" ,  max_x. x_( ) ,  max_y. y_( ) ,  max_z. z_( ) ) ;

      }
      if ( di spl ay_mi n_max_mon)  {

f pr i nt f ( s t dout _f i l e,  "     %i  %i  %i" ,  mi n_x_mon,  mi n_y_mon,  mi n_z_mon) ;
f pr i nt f ( s t dout _f i l e,  "     %i  %i  %i" ,  max_x_mon,  max_y_mon,  max_z_mon) ;

      }
      if ( di spl ay_mi n_max_al l )  {

f pr i nt f ( s t dout _f i l e,  "     %i  %lf  %lf  %lf" ,  mi n_x_mon,  mi n_x. x_( ) ,  mi n_x. y_( ) ,  mi n_x. z_( ) ) ;
f pr i nt f ( s t dout _f i l e,  "     %i  %lf  %lf  %lf" ,  mi n_y_mon,  mi n_y. x_( ) ,  mi n_y. y_( ) ,  mi n_y. z_( ) ) ;
f pr i nt f ( s t dout _f i l e,  "     %i  %lf  %lf  %lf" ,  mi n_z_mon,  mi n_z. x_( ) ,  mi n_z. y_( ) ,  mi n_z. z_( ) ) ;
f pr i nt f ( s t dout _f i l e,  "     %i  %lf  %lf  %lf" ,  max_x_mon,  max_x. x_( ) ,  max_x. y_( ) ,  max_x. z_( ) ) ;
f pr i nt f ( s t dout _f i l e,  "     %i  %lf  %lf  %lf" ,  max_y_mon,  max_y. x_( ) ,  max_y. y_( ) ,  max_y. z_( ) ) ;
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f pr i nt f ( st dout _f i l e,  "     %i  %lf  %lf  %lf" ,  max_z_mon,  max_z. x_( ) ,  max_z. y_( ) ,  max_z. z_( ) ) ;
      }
      if ( di spl ay_cont our )  

f pr i nt f ( st dout _f i l e,  "     %lf" ,  cont our ) ;
      if ( di spl ay_mi n_max_bond)

f pr i nt f ( st dout _f i l e,  "     %lf  %lf" ,  sqr t ( mi n_bond_sqr ) ,  sqr t ( max_bond_sqr ) ) ;
      if ( di spl ay_mean_speed)

f pr i nt f ( st dout _f i l e,  "     %lf  %lf  %lf" ,  mean_speed. x_( ) ,  mean_speed. y_( ) ,  mean_speed. z_( ) ) ;
      if ( di spl ay_ang_moment um)

f pr i nt f ( st dout _f i l e,  "     %lf  %lf  %lf" ,  ang_moment um. x_( ) ,  ang_moment um. y_( ) ,  ang_moment um. z_( ) ) ;
      if ( di spl ay_ener gy)  

f pr i nt f ( st dout _f i l e,  "     %lf" ,  ener gy) ;
      if ( di spl ay_spl i t _ener gy)  

f pr i nt f ( st dout _f i l e,  "     %lf  %lf  %lf" ,  e_pot _i nt ,  e_pot _ext ,  e_ki n) ;
      if ( di spl ay_cos_t het a)  

f pr i nt f ( st dout _f i l e,  "     %lf" ,  cos_t het a) ;
      if ( di spl ay_bond_cor r el )  

f pr i nt f ( st dout _f i l e,  "     %lf" ,  bond_cor r el ) ;
      if ( di spl ay_cur r ent _f act or )

f pr i nt f ( st dout _f i l e,  "     %lf" ,  cur r ent _f act or _el ) ;
      f pr i nt f ( s t dout _f i l e,  " \n" ) ;
      f c l ose( st dout _f i l e) ;
      if ( ( ( i  + ol d_t i mest eps)  % conf i g_st eps == 0)  && ( append_conf i gs)  && 

  ( ( i  ! = 0)  | |  ( t hr ow_away ! = 0)  | |  ( ol d_t i mest eps == 0) ) )
wr i t e_conf i g( r ,  v ,  ener gy,  number ,  i  + ol d_t i mest eps,  ar gv[ 6] ,  " a" ) ;    / /  Append checkpoi nt ,  i f  desi r ed

       / /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      / /  −−− End wr i t i ng dat a −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
      / /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    }
    if ( i  ! = st eps)                                                       / /  Comput e next  t i mest ep
      if ( use_ver l et )  

ver l et _t i mest ep( r ,  v ,  box_r ef ,  i dx_map,  number ,  i  + ol d_t i mest eps) ;
      else

no_ver l et _t i mest ep( r ,  v ,  box_r ef ,  i dx_map,  number ,  i  + ol d_t i mest eps) ;
  }
  wr i t e_conf i g( r ,  v,  ener gy_al l ( r ,  v ,  box_r ef ,  number ) ,  number ,  s t eps + ol d_t i mest eps,  ar gv[ 4] ,  " w" ) ;
  syst em( r m_backup) ;
  syst em( r m_r un_i nf o) ;                                                      / /  Remove r est ar t −i nf or mat i on
}
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CC=g++
CFLAGS=−O3 −I / usr / l ocal / i ncl ude
LDFLAGS=−L/ usr / l ocal / l i b −l m −l gs l  −l gsl cbl as

polymer :  conf i g_ut i l s . o const ant s. o i poi nt _map. o mai n_pol ymer . o pot ent i al s. o ver l et . o 
$( CC)  −o $@ $+ $( CFLAGS)  $( LDFLAGS)  −st at i c

clean :  
r m −f  * . o pol ymer

%. o:  %. cc
$( CC)  −c $( CFLAGS)  $<

makefile
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#include<i ost r eam>
#include<i omani p>
#include<mat h. h>

#ifndef POI NT_I NCLUDED
#define POI NT_I NCLUDED

using namespace st d;

/ /  Thi s  i s  a cl ass of  3−di mensi onal  poi nt s wi t h t he common al gebr ai c r ul es.
/ /  The f unct i on abs_sqr  cal cul at es t he sqar e of  t he l engt h of  a poi nt ,  
/ /  i t  avoi des t aki ng t he squar e−r oot .

class poi nt {
  doubl e x ;  doubl e y ;  doubl e z;
public:
  poi nt ( )
  { }
  poi nt ( doubl e xx,  doubl e yy,  doubl e zz)
  {  
    x  = xx;  y  = yy;  z  = zz;  
  }
  friend doubl e abs( poi nt  p) {
    return sqr t ( p. x* p. x + p. y* p. y + p. z* p. z) ;
  }
  friend doubl e abs_sqr ( poi nt  p) {
    return ( p. x* p. x + p. y* p. y + p. z* p. z) ;
  }
  friend ost r eam& operator<<( ost r eam& os,  poi nt  p) {
    return os << " ("  << set w( 9)  << p. x << " ,"  << set w( 9)  << p. y << " ,"  

      << set w( 9)  << p. z << " )" ;
  }
  doubl e component ( i nt  choi ce) {                    / /  al l ows di r ect  access t o a s i ngl e
    switch( choi ce)  {                               / /  component ,  1 . .  3
    case 0 :  return sqr t ( x* x+y* y+z* z) ;         / /  0 r et ur ns t he absol ut e of  t he poi nt  
    case 1 :  return x ;
    case 2 :  return y ;
    case 3 :  return z ;
    }
  }
  doubl e x_( voi d) {
    return x ;
  }
  doubl e y_( voi d) {
    return y ;
  }
  doubl e z_( voi d) {
    return z ;
  }
  friend poi nt   operator+( poi nt  p1,  poi nt  p2) {
    return poi nt ( p1. x + p2. x,  p1. y + p2. y,  p1. z + p2. z) ;
  }
  friend poi nt   operator* ( poi nt  p,  doubl e d) {
    return poi nt ( p. x  *  d,  p. y  *  d,  p. z  *  d) ;
  }
  friend poi nt   operator* ( doubl e d,  poi nt  p) {
    return p *  d;
  }
  friend doubl e operator* ( poi nt  p1,  poi nt  p2) {
    return p1. x* p2. x + p1. y* p2. y + p1. z* p2. z;
  }
  friend poi nt   operator−( poi nt  p) {
    return ( −1) * p;
  }
  friend poi nt   operator−( poi nt  p1,  poi nt  p2) {
    return p1+( −p2) ;
  }
  friend poi nt   operator/ ( poi nt  p,  doubl e d) {
    return p* ( 1/ d) ;
  }
  poi nt   operator* =( doubl e d) {  
    x  * = d;  y* =d;  z* =d;
    return poi nt ( x , y , z) ;
  }
  poi nt   operator+=( poi nt  p) {
    x  += p. x;  y  += p. y;  z  += p. z;
    return poi nt ( x , y , z) ;
  }
  poi nt   operator−=( poi nt  p) {
    x  −= p. x;  y  −= p. y;  z  −= p. z;
    return poi nt ( x , y , z) ;
  }
  poi nt   operator/ =( doubl e d) {  
    x  / = d;  y  / = d;  z  / = d;
    return poi nt ( x , y , z) ;
  }
  friend bool    operator==( poi nt  p1,  poi nt  p2) {
    return ( p1. x == p2. x)  && ( p1. y == p2. y)  && ( p1. z == p2. z) ;
  }
  friend bool    operator! =( poi nt  p1,  poi nt  p2) {
    return ! ( p1 == p2) ;
  }
  friend poi nt  vect or pr od( poi nt  a,  poi nt  b) {
    return poi nt ( a. y* b. z − a. z* b. y,  a. z* b. x − a. x* b. z,  a. x* b. y − a. y* b. x) ;
  }
} ;

#endif
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#include<mat h. h>
#include<st di o. h>
#include<st dl i b. h>
#include<gsl / gs l _r ng. h>
#include<gsl / gs l _r andi st . h>
#include" point.hh"
#include" constants.hh"

#ifndef POTENTI ALS_I NCLUDED
#define POTENTI ALS_I NCLUDED

using namespace s t d;

/ /  Thi s  f i l e cont ai ns t he i nt er act i on pot ent i al s  f or  t he monomer s.
/ /
/ /   − The Lennar d−Jones pot ent i al  bet ween t wo monomer s,  whi ch i s  cut  of f  at  a
/ /     l engt h of  r  = 2* s i gma
/ /   − The bond−l engt h pot ent i al  bet ween t wo bonds on t he chai n,  l i mi t i ng
/ /     t he maxi mum bond−l engt h
/ /   − The bond−angl e−pot ent i al ,  whi ch pr ef er s bond−angl e = 0
/ /   − The ent r opi c−t r ap pot ent i al
/ /   − The spr i ng−pot ent i al  f or  t he Rouse−model
/ /   − The ent r opi c−t r ap pot ent i al
/ /   − The br owni an mot i on−f or ce
/ /   − Comput at i on of  t he new scal i ng−f act or  f or  t he pul sed ext er nal  f i el d
/ /   − The ext er nal  el ect r i c  f i el d f or  t he homogeneous case,  t he st r uct ur ed 
/ /     mi cr ochannel ,  and t he ar r ay devi ce,  wi t hout  a pot ent i al

doubl e sqr ( doubl e x)  {
  return x* x;
}

doubl e V_LJ( poi nt  r )  {
  doubl e r _2 = abs_sqr ( r ) ;
  if ( r _2 > l _cut of f _LJ_sqr )  return 0;
  doubl e r _4 = r _2 *  r _2;
  return eps i l on_LJ* ( s i gma_6* s i gma_6/ ( r _4* r _4* r _4)  − s i gma_6/ ( r _4* r _2) )
         + v_cut of f _LJ;
}

poi nt  d_V_LJ_dr _t i mes_t i mest ep( poi nt  r )  {
  doubl e r _2 = abs_sqr ( r ) ;
  if ( r _2 > l _cut of f _LJ_sqr )  return poi nt ( 0, 0, 0) ;
  doubl e r _4 = r _2* r _2;
  doubl e r _8 = r _4* r _4;
  return r  *  ( pr ef act or _LJ *  ( 1/ r _8 − 2* s i gma_6/ ( r _8* r _4* r _2) ) ) ;
}

doubl e V_BL( doubl e d)  {
  return −epsi l on_BL/ 2 *  d_BL_sqr  *  
         s t d: : l og( 1 − ( d−d_0_BL) * ( d−d_0_BL)  /  d_BL_sqr ) ;
}

poi nt  d_V_BL_dr _t i mes_t i mest ep( poi nt  r ,  doubl e d)  {
  doubl e hel p = pr ef act or _BL /  ( 1 − ( d−d_0_BL) * ( d−d_0_BL) / d_BL_sqr ) ;
  return r  *  ( ( d−d_0_BL) / d *  hel p) ;
}

doubl e V_BA( poi nt  a,  poi nt  b,  doubl e r _a,  doubl e r _b)  {
  return eps i l on_BA *  ( 1 − a* b /  ( r _a* r _b) ) ;
}

poi nt  d_V_BA_da_t i mes_t i mest ep( poi nt  a,  poi nt  b,  doubl e r _a,  doubl e r _b)  {
  if ( a == b)  return poi nt ( 0, 0, 0) ;
  poi nt  hel p = ( a* b)  *  r _b/ r _a *  a − b *  r _a *  r _b;
  return hel p *  ( pr ef act or _BA /  ( r _a* r _a *  r _b* r _b) ) ;
}

poi nt  d_V_BA_db_t i mes_t i mest ep( poi nt  a,  poi nt  b,  doubl e r _a,  doubl e r _b)  {
  if ( a == b)  return poi nt ( 0, 0, 0) ;
  poi nt  hel p = ( a* b)  *  r _a/ r _b *  b − a *  r _a *  r _b;
  return hel p *  ( pr ef act or _BA /  ( r _a* r _a *  r _b* r _b) ) ;
}

doubl e V_SP( poi nt  r )  {
  return eps i l on_SP/ 2 *  abs_sqr ( r ) ;
}

poi nt  d_V_SP_dr _t i mes_t i mest ep( poi nt  r )  {
  return pr ef act or _SP *  r ;
}

poi nt  d_V_BM_dr _t i mes_del t a_t ( voi d)  {
  static i nt  i ni t  = 0;
  static gsl _r ng*  r andom = gsl _r ng_al l oc( gs l _r ng_t aus2) ;
  if ( ! i ni t )  {
    i ni t  = 1;
    gsl _r ng_set ( r andom,  r and_seed) ;
    r and_seed = gs l _r ng_get ( r andom) ;
    if ( save_new_seed)  {
      FI LE*  r seed = f open( " random_seed" ,  " w" ) ;
      f pr i nt f ( r seed,  " %lu\n" ,  r and_seed) ;
      f cl ose( r seed) ;
    }
  }
  doubl e x  = gs l _r ng_uni f or m( r andom) −0. 5;
  doubl e y  = gs l _r ng_uni f or m( r andom) −0. 5;
  doubl e z  = gs l _r ng_uni f or m( r andom) −0. 5;
  while ( x* x + y* y + z* z > 0. 25)  {
    x  = gs l _r ng_uni f or m( r andom) −0. 5;
    y  = gs l _r ng_uni f or m( r andom) −0. 5;
    z  = gs l _r ng_uni f or m( r andom) −0. 5;
  }
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  return pr ef act or _BM *  poi nt ( x ,  y ,  z) ;
}

double V_LJ_wal l ( double r _2)  {
  if ( r _2 > l _cut of f _LJ_wal l _sqr )  
    return 0;
  double r _4 = r _2 *  r _2;
  return eps i l on_LJ_wal l * ( si gma_6_wal l * si gma_6_wal l / ( r _4* r _4* r _4)  − s i gma_6_wal l / ( r _4* r _2) )
         + v_cut of f _LJ_wal l ;
}

poi nt  d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt  r )  {
  double r _2 = abs_sqr ( r ) ;
  if ( r _2 > l _cut of f _LJ_wal l _sqr )  return poi nt ( 0, 0, 0) ;
  double r _4 = r _2* r _2;
  double r _8 = r _4* r _4;
  return r  *  ( pr ef act or _LJ_wal l  *  ( 1/ r _8 − 2* s i gma_6_wal l / ( r _8* r _4* r _2) ) ) ;
}

double V_t r ap( poi nt  r )  {
  double ener gy = 0;
  double x  = r . x_( ) ;
  double z  = r . z_( ) ;
  x  −= st d: : f l oor ( x /  l _sur f ace_t r ap)  *  l _sur f ace_t r ap;
  if ( z  > ( h_t op_t r ap−l _cut of f _LJ_wal l ) )  
    ener gy += V_LJ_wal l ( ( z−h_t op_t r ap) * ( z−h_t op_t r ap) ) ;
  if ( z  < l _cut of f _LJ_wal l )  {
    if ( x > l _bot t om_t r ap)
      ener gy += V_LJ_wal l ( z* z) ;
    else {
      if ( z < l _cut of f _LJ_wal l  − h_bot t om_t r ap)

ener gy += V_LJ_wal l ( ( z + h_bot t om_t r ap) * ( z + h_bot t om_t r ap) ) ;
      if ( x < l _cut of f _LJ_wal l  + h_bot t om_t r ap *  wal l _t i l t _t r ap)  {

double z_ = 1 /  ( 1 + wal l _t i l t _t r ap* wal l _t i l t _t r ap)  *  ( z  − wal l _t i l t _t r ap *  x) ;
if ( z_ > 0)
  z_ = 0;
double x_ = −wal l _t i l t _t r ap *  z_;
if ( ( x − x_)  < l _cut of f _LJ_wal l )
  ener gy += V_LJ_wal l ( ( x−x_) * ( x−x_)  + ( z−z_) * ( z−z_)  ) ;

      }
      if ( x > l _bot t om_t r ap − l _cut of f _LJ_wal l  − h_bot t om_t r ap *  wal l _t i l t _t r ap)  {

double z_ = 1 /  ( 1 + wal l _t i l t _t r ap* wal l _t i l t _t r ap)  *  ( z  − wal l _t i l t _t r ap *  ( l _bot t om_t r ap − x) ) ;
if ( z_ > 0)
  z_ = 0;
double x_ = l _bot t om_t r ap + wal l _t i l t _t r ap *  z_;
if ( ( x_ − x)  < l _cut of f _LJ_wal l )
  ener gy += V_LJ_wal l ( ( x−x_) * ( x−x_)  + ( z−z_) * ( z−z_) ) ;

      }
    }
  }
  return ener gy;
}

poi nt  d_V_t r ap_dr _t i mes_t i mest ep( poi nt  r )  {
  poi nt  f or ce = poi nt ( 0, 0, 0) ;
  double x  = r . x_( ) ;
  double z  = r . z_( ) ;
  x  −= st d: : f l oor ( x /  l _sur f ace_t r ap)  *  l _sur f ace_t r ap;
  if ( z  > ( h_t op_t r ap−l _cut of f _LJ_wal l ) )  
    f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( 0,  0,  z−h_t op_t r ap) ) ;
  if ( z  < l _cut of f _LJ_wal l )  {
    if ( x > l _bot t om_t r ap)
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( 0,  0,  z) ) ;
    else {
      if ( z < l _cut of f _LJ_wal l  − h_bot t om_t r ap)

f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( 0,  0,  z  + h_bot t om_t r ap) ) ;
      if ( x < l _cut of f _LJ_wal l  + h_bot t om_t r ap *  wal l _t i l t _t r ap)  {

double z_ = 1 /  ( 1 + wal l _t i l t _t r ap* wal l _t i l t _t r ap)  *  ( z  − wal l _t i l t _t r ap *  x) ;
if ( z_ > 0)
  z_ = 0;
double x_ = −wal l _t i l t _t r ap *  z_;
if ( ( x − x_)  < l _cut of f _LJ_wal l )
  f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x−x_,  0,  z−z_) ) ;

      }
      if ( x > l _bot t om_t r ap − l _cut of f _LJ_wal l  − h_bot t om_t r ap *  wal l _t i l t _t r ap)  {

double z_ = 1 /  ( 1 + wal l _t i l t _t r ap* wal l _t i l t _t r ap)  *  ( z  − wal l _t i l t _t r ap *  ( l _bot t om_t r ap − x) ) ;
if ( z_ > 0)
  z_ = 0;
double x_ = l _bot t om_t r ap + wal l _t i l t _t r ap *  z_;
if ( ( x_ − x)  < l _cut of f _LJ_wal l )
  f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x−x_,  0,  z−z_) ) ;

      }
    }
  }
  return f or ce;
}

double V_wal l _y( poi nt  r )  {
  double y  = r . y_( ) ;
  return V_LJ_wal l ( y* y)  + V_LJ_wal l ( ( y  − wal l _y) * ( y  − wal l _y) ) ;
}

double V_mi r r or _t r ap( poi nt  r )  {
  double pot ent i al  = 0;
  double x  = r . x_( ) ;
  double z  = r . z_( ) ;
  x  −= st d: : f l oor ( x /  l _sur f ace_t r ap)  *  l _sur f ace_t r ap;
  z  −= st d: : f l oor ( z /  ( 2* h_t ot al _t r ap) )  *  ( 2* h_t ot al _t r ap) ;
  if ( z  <= l _cut of f _LJ_wal l )  {
    if ( x <= l _cut of f _LJ_wal l )
      pot ent i al  += V_LJ_wal l ( x* x+z* z) ;
    if ( ( x  >= l _bot t om_t r ap − l _cut of f _LJ_wal l )  && ( x < l _bot t om_t r ap) )
      pot ent i al  += V_LJ_wal l ( ( l _bot t om_t r ap−x) * ( l _bot t om_t r ap−x) +z* z) ;
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    if ( x  >= l _bot t om_t r ap)
      pot ent i al  += V_LJ_wal l ( z* z) ;
  }
  if ( ( z >= 2* h_t op_t r ap − l _cut of f _LJ_wal l )  && ( z < 2* h_t op_t r ap) )  {
    if ( x  <= l _cut of f _LJ_wal l )
      pot ent i al  += V_LJ_wal l ( x* x+( 2* h_t op_t r ap−z) * ( 2* h_t op_t r ap−z) ) ;
    if ( ( x  >= l _bot t om_t r ap − l _cut of f _LJ_wal l )  && ( x < l _bot t om_t r ap) )
      pot ent i al  += V_LJ_wal l ( ( l _bot t om_t r ap−x) * ( l _bot t om_t r ap−x) +( 2* h_t op_t r ap−z) * ( 2* h_t op_t r ap−z) ) ;
    if ( x  >= l _bot t om_t r ap)
      pot ent i al  += V_LJ_wal l ( ( 2* h_t op_t r ap−z) * ( 2* h_t op_t r ap−z) ) ;
  }
  if ( z  >= 2* h_t op_t r ap)  {
    if ( x  <= l _cut of f _LJ_wal l )
      pot ent i al  += V_LJ_wal l ( x* x) ;
    if ( ( x  >= l _bot t om_t r ap − l _cut of f _LJ_wal l )  && ( x < l _bot t om_t r ap) )  
      pot ent i al  += V_LJ_wal l ( ( l _bot t om_t r ap−x) * ( l _bot t om_t r ap−x) ) ;
  }
  return pot ent i al ;
}

poi nt  d_V_mi r r or _t r ap_dr _t i mes_t i mest ep( poi nt  r )  {
  poi nt  f or ce = poi nt ( 0, 0, 0) ;
  doubl e x  = r . x_( ) ;
  doubl e z  = r . z_( ) ;
  x −= st d: : f l oor ( x /  l _sur f ace_t r ap)  *  l _sur f ace_t r ap;
  z −= st d: : f l oor ( z /  ( 2* h_t ot al _t r ap) )  *  ( 2* h_t ot al _t r ap) ;
  if ( z  <= l _cut of f _LJ_wal l )  {
    if ( x  <= l _cut of f _LJ_wal l )
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x,  0,  z) ) ;
    if ( ( x  >= l _bot t om_t r ap − l _cut of f _LJ_wal l )  && ( x < l _bot t om_t r ap) )
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x−l _bot t om_t r ap,  0,  z) ) ;
    if ( x  >= l _bot t om_t r ap)
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( 0,  0,  z) ) ;
  }
  if ( ( z >= 2* h_t op_t r ap − l _cut of f _LJ_wal l )  && ( z < 2* h_t op_t r ap) )  {
    if ( x  <= l _cut of f _LJ_wal l )
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x,  0,  z−2* h_t op_t r ap) ) ;
    if ( ( x  >= l _bot t om_t r ap − l _cut of f _LJ_wal l )  && ( x < l _bot t om_t r ap) )
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x−l _bot t om_t r ap,  0,  z−2* h_t op_t r ap) ) ;
    if ( x  >= l _bot t om_t r ap)
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( 0,  0,  z−2* h_t op_t r ap) ) ;
  }
  if ( z  >= 2* h_t op_t r ap)  {
    if ( x  <= l _cut of f _LJ_wal l )
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x,  0,  0) ) ;
    if ( ( x  >= l _bot t om_t r ap − l _cut of f _LJ_wal l )  && ( x < l _bot t om_t r ap) )  
      f or ce += d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( x−l _bot t om_t r ap,  0,  0) ) ;
  }
  return f or ce;
}

poi nt  d_V_wal l _y_dr _t i mes_t i mest ep( poi nt  r )  {
  doubl e y  = r . y_( ) ;
  return d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( 0,  y ,  0) )  + 
    d_V_LJ_wal l _dr _t i mes_t i mest ep( poi nt ( 0,  y  − wal l _y,  0) ) ;  
}

voi d set _cur r ent _f act or ( i nt  t i mest eps) {
  i nt  r educed_t i mest ep = t i mest eps % pul se_per i od_el ;
  if ( r educed_t i mest ep < 0)                              / /  Cor r ect  t i mest ep dur i ng i ni t i al i zat i on
    r educed_t i mest ep += pul se_per i od_el ;
  if ( r educed_t i mest ep < pul se_upt i me_el )
    cur r ent _f act or _el  = 1;
  else
    cur r ent _f act or _el  = pul se_f act or _el ;
}

poi nt  d_V_el _dr _t i mes_t i mest ep( voi d)  {
  return poi nt ( pr ef act or _el _x,  pr ef act or _el _y,  pr ef act or _el _z) ;
}

inline i nt  i dx( i nt  i ,  i nt  j )  {
  return i  *  ( t r ap_max_z+1)  + j ;
}

poi nt  d_V_el _t r ap_dr _t i mes_t i mest ep( poi nt  r ) {
  static i nt  i ni t  = 0;
  static poi nt  ( * f i el d)  = new poi nt [ ( t r ap_max_x+1) * ( t r ap_max_z+1) ] ;
  if ( ! i ni t )  {
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ /  begi n i ni t i al i sat i on
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    doubl e ( * pot ent i al )  = new doubl e[ ( t r ap_max_x+1) * ( t r ap_max_z+1) ] ;
    doubl e ( * f i el d_x)    = new doubl e[ ( t r ap_max_x+1) * ( t r ap_max_z+1) ] ;
    doubl e ( * f i el d_z)    = new doubl e[ ( t r ap_max_x+1) * ( t r ap_max_z+1) ] ;
    for ( i nt  i  = 0;  i  <= t r ap_max_x;  i ++)
      for ( i nt  j  = 0;  j  <= t r ap_max_z;  j ++)  {
        pot ent i al [ i dx( i , j ) ]  = 0;
        f i el d_x[ i dx( i , j ) ]  = 0;
        f i el d_z[ i dx( i , j ) ]  = 0;
      }
    i nt  number _of _poi nt s;
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ /  r ead dat a f r om f i l e
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    FI LE*  i nput  = f open( pot ent i al _f i l e_t r ap,  " r" ) ;
    f scanf ( i nput ,  " %*s %*i%*lf%* lf%*lf%*lf%*lf%*lf%* lf%i" , &number _of _poi nt s) ;
    for( i nt  i  = 0;  i  < number _of _poi nt s;  i ++) {
      doubl e x,  y ,  u;
      f scanf ( i nput ,  " %le %le %le" ,  &x,  &y,  &u) ;
      if ( x <= 0)
        pot ent i al [ i dx( i nt ( s t d: : f l oor ( ( x+l _sur f ace_t r ap) / t r ap_di scr et i ze) +0. 5) ,
          i nt ( s t d: : f l oor ( ( y+h_bot t om_t r ap) / t r ap_di scr et i ze) +0. 5) ) ]
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          = u* t r ap_scal i ng_f act or  + l _sur f ace_t r ap* epsi l on_el _t r ap;
      if ( x >= 0)
        pot ent i al [ i dx( i nt ( st d: : f l oor ( ( x) / t r ap_di scr et i ze) +0. 5) ,
          i nt ( s t d: : f l oor ( ( y+h_bot t om_t r ap) / t r ap_di scr et i ze) +0. 5) ) ]
          = u* t r ap_scal i ng_f act or ;
    }
    f cl ose( i nput ) ;
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ /  comput e f i el d i n x−di r ect i on
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    for ( i nt  j  = 0;  j  <= t r ap_max_z;  j ++)  {
      f i el d_x[ i dx( 0, j ) ]  = ( pot ent i al [ i dx( 1, j ) ]  − pot ent i al [ i dx( 0, j ) ] )  /  t r ap_di scr et i ze;
      for ( i nt  i  = 1;  i  < t r ap_max_x;  i ++)
        f i el d_x[ i dx( i , j ) ]  = ( pot ent i al [ i dx( i +1, j ) ]  − pot ent i al [ i dx( i −1, j ) ] )  /  ( 2 *  t r ap_di scr et i ze) ;
      f i el d_x[ i dx( t r ap_max_x, j ) ]  = f i el d_x[ i dx( 0, j ) ] ;
    }
    for ( i nt  j  = 0;  j  < t r ap_max_z − t r ap_t op_z;  j ++)  {
      f i el d_x[ i dx( t r ap_max_x − t r ap_t op_x, j ) ]
        = ( pot ent i al [ i dx( t r ap_max_x − t r ap_t op_x, j ) ]  −
           pot ent i al [ i dx( t r ap_max_x − t r ap_t op_x−1, j ) ] )  /  t r ap_di scr et i ze;
      for ( i nt  i  = t r ap_max_x−t r ap_t op_x+1;  i  < t r ap_max_x;  i ++)
        f i el d_x[ i dx( i , j ) ]  = 0;
    }
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ /  comput e f i el d i n z−di r ect i on
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    for ( i nt  i  = 0;  i  <= t r ap_max_x;  i ++)  {
      f i el d_z[ i dx( i , 0) ]           = ( pot ent i al [ i dx( i , 1) ]  − pot ent i al [ i dx( i , 0) ] )  /  t r ap_di scr et i ze;
      for ( i nt  j  = 1;  j  < t r ap_max_z;  j ++)
        f i el d_z[ i dx( i , j ) ]  = ( pot ent i al [ i dx( i , j +1) ]  − pot ent i al [ i dx( i , j −1) ] )  /  ( 2 *  t r ap_di scr et i ze) ;
      f i el d_z[ i dx( i , t r ap_max_z) ]  = ( pot ent i al [ i dx( i , t r ap_max_z) ]  − pot ent i al [ i dx( i , t r ap_max_z−1) ] )  /
        t r ap_di scr et i ze;
    }
    for ( i nt  i  = t r ap_max_x−t r ap_t op_x+1;  i  < t r ap_max_x;  i ++)  {
      f i el d_z[ i dx( i , t r ap_max_z−t r ap_t op_z) ]  = ( pot ent i al [ i dx( i , t r ap_max_z−t r ap_t op_z+1) ]  −
                                           pot ent i al [ i dx( i , t r ap_max_z−t r ap_t op_z) ] )  /  t r ap_di scr et i ze;
      for ( i nt  j  = 0;  j  < t r ap_max_z−t r ap_t op_z;  j ++)
        f i el d_z[ i dx( i , j ) ]  = 0;
    }
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ /  f i l l  f i el d−ar r ay wi t h dat a
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    doubl e pr ef act or  = del t a_t ;
    if ( use_ver l et )
      pr ef act or  / = 2;
    for ( i nt  i  = 0;  i  <= t r ap_max_x;  i ++)
      for ( i nt  j  = 0;  j  <= t r ap_max_z;  j ++)
        f i el d[ i dx( i , j ) ]  = poi nt ( f i el d_x[ i dx( i , j ) ] , 0, f i el d_z[ i dx( i , j ) ] )  *  pr ef act or ;
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ /  del et e t empor ay dat a
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
    delete [ ] pot ent i al ;
    delete [ ] f i el d_x;
    delete [ ] f i el d_z;
    i ni t  = 1;
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
/ /  end i ni t i al i sat i on
/ / −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  }
  doubl e x  = r . x_( ) ;
  doubl e z  = r . z_( ) ;
  x  −= st d: : f l oor ( x /  l _sur f ace_t r ap)  *  l _sur f ace_t r ap;
  z  += h_bot t om_t r ap;
  i nt  i _x = i nt ( st d: : f l oor ( x  /  t r ap_di scr et i ze) ) ;
  i nt  i _z = i nt ( st d: : f l oor ( z  /  t r ap_di scr et i ze) ) ;
  doubl e l ambda_x = x /  t r ap_di scr et i ze − i _x;
  doubl e l ambda_z = z /  t r ap_di scr et i ze − i _z;
  return l ambda_z * ( l ambda_x* f i el d[ i dx( i _x+1, i _z+1) ]  + ( 1−l ambda_x) * f i el d[ i dx( i _x, i _z+1) ] )  +
    ( 1−l ambda_z) * ( l ambda_x* f i el d[ i dx( i _x+1, i _z) ]  + ( 1−l ambda_x) * f i el d[ i dx( i _x, i _z) ] ) ;
}

poi nt  d_V_el _mi r r or _t r ap_dr _t i mes_t i mest ep( poi nt  r )  {
  doubl e x  = r . x_( ) ;
  doubl e z  = r . z_( ) ;
/ /  shi f t  z−var i abl e t o uni t  cel l  ( x wi l l  be shi f t ed dur i ng comput at i on of  t he f i el d)
  z  −= st d: : f l oor ( z /  ( 2* h_t ot al _t r ap) )  *  ( 2* h_t ot al _t r ap) ;
  if ( z  <= h_t op_t r ap)
    return d_V_el _t r ap_dr _t i mes_t i mest ep( poi nt ( x,  0,  z) ) ;                        / /  Usual  t r ap
  if ( z  >= 2* h_t op_t r ap + h_bot t om_t r ap)
    return d_V_el _t r ap_dr _t i mes_t i mest ep( poi nt ( x,  0,  z  − 2* h_t ot al _t r ap) ) ;       / /  Shi f t ed,  usual  t r ap
  poi nt  f or ce = d_V_el _t r ap_dr _t i mes_t i mest ep( poi nt ( x,  0,  2* h_t op_t r ap − z) ) ;
  return poi nt ( f or ce. x_( ) ,  0,  −f or ce. z_( ) ) ;                                      / /  Mi r r or ed f or ce
}

#endif
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#include<mat h. h>
#include<st di o. h>
#include<gsl / gs l _r ng. h>
#include<gsl / gs l _r andi st . h>
#include" point.hh"
#include" constants.hh"

#ifndef POTENTI ALS_I NCLUDED
#define POTENTI ALS_I NCLUDED

using namespace s t d;

/ /  Thi s  f i l e cont ai ns t he i nt er act i on pot ent i al s  f or  t he monomer s.
/ /
/ /   − The Lennar d−Jones pot ent i al  bet ween t wo monomer s,  whi ch i s  cut  of f  at  a
/ /     l engt h of  r  = 2* s i gma
/ /   − The bond−l engt h pot ent i al  bet ween t wo bonds on t he chai n,  l i mi t i ng
/ /     t he maxi mum bond−l engt h
/ /   − The bond−angl e−pot ent i al ,  whi ch pr ef er s bond−angl e = 0
/ /   − The ent r opi c−t r ap pot ent i al
/ /   − The spr i ng−pot ent i al  f or  t he Rouse−model
/ /   − The br owni an mot i on−f or ce
/ /   − Comput at i on of  t he new scal i ng−f act or  f or  t he pul sed ext er nal  f i el d
/ /   − The ext er nal  el ect r i c  f i el d,  wi t hout  a pot ent i al ,  f or  t he homogeneous,  
/ /     t he st r uct ur ed mi cr ochannel ,  and t he ar r ay devi ce

doubl e V_LJ( poi nt  r ) ;

poi nt  d_V_LJ_dr _t i mes_t i mest ep( poi nt  r ) ;

doubl e V_BL( doubl e d) ;

poi nt  d_V_BL_dr _t i mes_t i mest ep( poi nt  r ,  doubl e d) ;

doubl e V_BA( poi nt  a,  poi nt  b,  doubl e r _a,  doubl e r _b) ;

poi nt  d_V_BA_da_t i mes_t i mest ep( poi nt  a,  poi nt  b,  doubl e r _a,  doubl e r _b) ;
poi nt  d_V_BA_db_t i mes_t i mest ep( poi nt  a,  poi nt  b,  doubl e r _a,  doubl e r _b) ;

doubl e V_SP( poi nt  r ) ;

poi nt  d_V_SP_dr _t i mes_t i mest ep( poi nt  r ) ;

poi nt  d_V_BM_dr _t i mes_del t a_t ( voi d) ;

doubl e V_LJ_t r ap( doubl e r _2) ;

doubl e V_t r ap( poi nt  r ) ;

poi nt  d_V_t r ap_dr _t i mes_t i mest ep( poi nt  r ) ;

doubl e V_mi r r or _t r ap( poi nt  r ) ;

poi nt  d_V_mi r r or _t r ap_dr _t i mes_t i mest ep( poi nt  r ) ;

doubl e V_wal l _y( poi nt  r ) ;

poi nt  d_V_wal l _y_dr _t i mes_t i mest ep( poi nt  r ) ;

voi d set _cur r ent _f act or ( i nt  t i mest eps) ;

poi nt  d_V_el _dr _t i mes_t i mest ep( voi d) ;

poi nt  d_V_el _mi r r or _t r ap_dr _t i mes_t i mest ep( poi nt  r ) ;

poi nt  d_V_el _t r ap_dr _t i mes_t i mest ep( poi nt  r ) ;

#endif
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#include<f st r eam>
#include<i ost r eam>
#include<mat h. h>
#include<st di o. h>
#include" point.hh"
#include" ipoint.hh"
#include" ipoint_map.hh"
#include" constants.hh"
#include" potentials.hh"
#include" config_utils.hh"

#ifndef VERLET_I NCLUDED
#define VERLET_I NCLUDED

using namespace s t d;

/ /  Thi s  f i l e i ncl udes t he Ver l et −Al gor i t hm,  a f unct i on f or  i ni t i al i sat i on of  t he pol ymer
/ /  and a f unct i on f or  cal cul at i ng t he ener gy of  t he pol ymer .
/ /
/ /  Funct i ons used:
/ /   − i ni t _pol ymer  :  r eads t he pol ymer −conf i gur at i on f r om an i nput −f i l e
/ /   − LJ−updat e    :  comput es t he f or ce on al l  monomer s cr eat ed by t he Lennar d−Jones−pot ent i al
/ /   − v−updat e     :  comput es al l  f or ces act i ng on al l  monomer s cr eat ed by t he pot ent i al s,
/ /                    does not  comput e t he br owni an f or ce or  t he f r i ct i on f or ce
/ /   − t i mest ep     :  t hi s  i s  t he ver l et −al gor i t hm usi ng al l  enabl ed f or ces ( i nc l udi ng 
/ /                    f r i c t i on and br owni an f or ce)
/ /   − r −updat e     :  comput es al l  f or ces act i ng on al l  monomer s cr eat ed by t he pot ent i al s,
/ /                    does not  comput e t he br owni an f or ce or  t he f r i ct i on f or ce
/ /   − no_ver l et _t i mest ep :  t hi s  i s t he eul er −al gor i t hm usi ng al l  enabl ed f or ces ( i nc l udi ng 
/ /                    f r i c t i on and br owni an f or ce)  f or  over damped dynami cs
/ /   − ener gy_al l      :  comput es t he ener gy of  t he pol ymer ,  i nc l udi ng al l  enabl ed pot ent i al s
/ /   − ener gy_pot _i nt  :  comput es t he pot ent i al  ener gy of  t he pol ymer ,  r egar di ng onl y i nt er nal  pot ent i al s
/ /   − ener gy_pot _ext  :  comput es t he pot ent i al  ener gy of  t he pol ymer ,  r egar di ng onl y ext er nal  pot ent i al s
/ /   − ener gy_ki n     :  comput es t he ki net i c  ener gy of  t he pol ymer

voi d i ni t _pol ymer ( poi nt * & r ,  poi nt * & v,  node* * & box_r ef ,  map_i poi nt & i dx_map,  i nt & number ,  char *  f i l ename,  
  char *  checkpoi nt _f i l e,  char *  number _of _monomer s,  i nt & ol d_t i mest eps)

{
  number  = at oi ( number _of _monomer s) ;
  FI LE*  i nput ;
  if ( val i d_checkpoi nt ( f i l ename,  checkpoi nt _f i l e,  number ) )  {
    pr i nt f ( " Using normal checkpoint ’%s’ \n" ,  f i l ename) ;
    i nput  = f open( f i l ename,  " r" ) ;
  }  else {
    char *  backup_name = new char [ st r l en( checkpoi nt _f i l e) +10] ;
    spr i nt f ( backup_name,  " %s.bak" ,  checkpoi nt _f i l e) ;
    if ( val i d_checkpoi nt ( backup_name,  checkpoi nt _f i l e,  number ) )  {
      pr i nt f ( " Using backup ’%s’  and restoring checkpoint from backup\n" ,  backup_name) ;
      i nput  = f open( backup_name,  " r" ) ;
      char *  command = new char [ st r l en( backup_name)  + st r l en( checkpoi nt _f i l e)  + 10] ;
      spr i nt f ( command,  " cp %s %s" ,  backup_name,  checkpoi nt _f i l e) ;
      syst em( command) ;
    }  else {
      cer r  << " Neither startfile/checkpoint nor backup valid!\n" ;
      exi t ( 5) ;
    }
    delete[ ]  backup_name;
  }
  doubl e x ,  y ,  z;
  i nt  number _f i l e;
  f scanf ( i nput ,  " # %i # %i" ,  &ol d_t i mest eps,  &number _f i l e) ;
  if ( number  > number _f i l e)  {                        / /  Make sur e t hat  t her e ar e enough monomer s i n 
    cer r  << " Too few monomers in start−file!\n" ;     / /  t he st ar t −f i l e
    exi t ( 6) ;
  }
  if ( ( st r cmp( f i l ename,  checkpoi nt _f i l e)  == 0)  && ( number  ! = number _f i l e) )  {       / /  When over wr i t i ng a checkpoi nt
    cer r  << " Start− and checkpoint−file are identical and not all monomers used!\n" ;  / /  wi t h i t sel f  ,  al l  monomer s
    exi t ( 7) ;                                                                          / /  have t o be used 
  }
  if ( s t r cmp( f i l ename,  checkpoi nt _f i l e)  ! = 0) {          / /  Do not  over wr i t e a checkpoi nt  i f  s t ar t −f i l e i s di f f er ent
    FI LE*  t est  = f open( checkpoi nt _f i l e,  " r" ) ;
    if ( t est )  {
      cer r  << " Start− and checkpoint−file differ and checkpoint−file exists!\n" ;
      exi t ( 8) ;
    }
  }
  r  = new poi nt [ number ] ;
  v = new poi nt [ number ] ;
  box_r ef  = new node* [ number ] ;
  f c l ose( i nput ) ;                                       / /  Reset  t he r ead−buf f er
  i nput  = f open( f i l ename,  " r" ) ;
  doubl e t r ash;                                        / /  St ar t −f i l es need not  have a val i d ener gy
  r ead_conf i g( i nput ,  r ,  v ,  number ,  ol d_t i mest eps,  t r ash,  1) ;
  for ( i nt  i  = 0;  i  < number ;  i ++)
    map_i nser t _i ndex( i dx_map,  r [ i ] / l _cut of f _LJ,  box_r ef [ i ] ,  i ) ;
  f c l ose( i nput ) ;   
}

voi d v_updat e( poi nt *  r ,  poi nt *  v,  poi nt *  dv,  node* * & box_r ef ,  i nt  N,  i nt  t i mest eps)
{
  doubl e * d = new doubl e[ N] ;
  if ( enabl e_BL | |  enabl e_BA)
    for ( i nt  i  = 0;  i  <= N−2;  i ++)  {
      d[ i ]  = abs( r [ i +1]  − r [ i ] ) ;
    }
  for ( i nt  i  = 0;  i  < N;  i ++)
    dv[ i ]  = poi nt ( 0, 0, 0) ;
  if ( enabl e_LJ)
    f ast _LJ_updat e( r ,  dv,  box_r ef ,  N) ;
  if ( enabl e_BL)
    for ( i nt  i  = 0;  i  < N−1;  i ++)  {
      if ( d[ i ]  >= d_0_BL + d_BL)  {

cer r  << " Rupture at t = "  << t i mest eps* del t a_t  << " ("  << t i mest eps << "  timesteps), monomer "  
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     << i  << " !\n" ;
ex i t ( 14) ;

      }
      poi nt  V_BL_dr  = d_V_BL_dr _t i mes_t i mest ep( r [ i +1] −r [ i ] ,  d[ i ] ) ;
      dv[ i ]    +=  V_BL_dr ;
      dv[ i +1]  += −V_BL_dr ;
    }
  if ( enabl e_BA)
    for ( int i  = 1;  i  < N−1;  i ++)  {
      poi nt  V_BA_da = d_V_BA_da_t i mes_t i mest ep( r [ i −1]  − r [ i ] ,  r [ i ]  − r [ i +1] ,  d[ i −1] ,  d[ i ] ) ;
      poi nt  V_BA_db = d_V_BA_db_t i mes_t i mest ep( r [ i −1]  − r [ i ] ,  r [ i ]  − r [ i +1] ,  d[ i −1] ,  d[ i ] ) ;
      dv[ i −1]  += −V_BA_da;
      dv[ i ]    += ( V_BA_da − V_BA_db) ;
      dv[ i +1]  +=  V_BA_db;
    }
  if ( enabl e_SP)
    for ( int i  = 0;  i  < N−1;  i ++)  {
      poi nt  d_V_SP = d_V_SP_dr _t i mes_t i mest ep( r [ i +1] −r [ i ] ) ;
      dv[ i ]    +=  d_V_SP;
      dv[ i +1]  += −d_V_SP;
    }
  if ( enabl e_t r ap)
    if( enabl e_mi r r or _t r ap)
      for ( int i  = 0;  i  < N;  i ++)

dv[ i ]  += −d_V_mi r r or _t r ap_dr _t i mes_t i mest ep( r [ i ] ) ;
    else
      for ( int i  = 0;  i  < N;  i ++)

dv[ i ]  += −d_V_t r ap_dr _t i mes_t i mest ep( r [ i ] ) ;
  if ( enabl e_wal l _y)
    for ( int i  = 0;  i  < N;  i ++)
      dv[ i ]  += −d_V_wal l _y_dr _t i mes_t i mest ep( r [ i ] ) ;
  if ( enabl e_pul se_el )
    set _cur r ent _f act or ( t i mest eps) ;
  if ( enabl e_el )  {
    for ( int i  = 0;  i  < N;  i ++)
      dv[ i ]  += −d_V_el _dr _t i mes_t i mest ep( )  *  cur r ent _f act or _el ;
  }
  if ( enabl e_el _t r ap)  
    if ( enabl e_mi r r or _t r ap)
      for ( int i  = 0;  i  < N;  i ++)  

dv[ i ]  += −d_V_el _mi r r or _t r ap_dr _t i mes_t i mest ep( r [ i ] )  *  cur r ent _f act or _el ;
    else
      for ( int i  = 0;  i  < N;  i ++)

dv[ i ]  += −d_V_el _t r ap_dr _t i mes_t i mest ep( r [ i ] )  *  cur r ent _f act or _el ;
  delete [ ] d;
}

void ver l et _t i mest ep( poi nt * & r ,  poi nt * & v,  node* * & box_r ef ,  map_i poi nt & i dx_map,  int N,  int t i mest eps)  {
  static i poi nt *  ol d_cube;
  static poi nt  * dv;
  static int i ni t  = 0;
  if ( ! i ni t )  {
    i ni t  = 1;
    dv = new poi nt [ N] ;
    v_updat e( r ,  v,  dv,  box_r ef ,  N,  t i mest eps) ;
    ol d_cube = new i poi nt [ N] ;
    for ( int i  = 0;  i  < N;  i ++)  
      ol d_cube[ i ]  = i poi nt ( r [ i ] / l _cut of f _LJ) ;
  }  
  for ( int i  = 0;  i  < N;  i ++)  {
    if ( enabl e_FR)
      v [ i ]  * = decay_v;
    if ( enabl e_BM)
      v [ i ]  += d_V_BM_dr _t i mes_del t a_t ( ) ;
    v [ i ]  += dv[ i ] ;
  }
  for ( int i  = 0;  i  < N;  i ++)  {
    r [ i ]  += v[ i ]  *  del t a_t ;
    i poi nt  new_cube = i poi nt ( r [ i ] / l _cut of f _LJ) ;
    if ( ol d_cube[ i ]  ! = new_cube)  {
      map_r emove_i ndex( i dx_map,  ol d_cube[ i ] ,  box_r ef [ i ] ,  i ) ;
      map_i nser t _i ndex( i dx_map,  new_cube,  box_r ef [ i ] ,  i ) ;
      ol d_cube[ i ]  = new_cube;
    }
  }
  v_updat e( r ,  v ,  dv,  box_r ef ,  N,  t i mest eps) ;
  for ( int i  = 0;  i  < N;  i ++)  {
    v [ i ]  += dv[ i ] ;
  }
}

void r _updat e( poi nt *  r ,  poi nt *  dr ,  node* * & box_r ef ,  int N,  int t i mest eps)
{
  static double * d = new double[ N] ;
  if ( enabl e_BL | |  enabl e_BA)
    for ( int i  = 0;  i  <= N−2;  i ++)  {
      d[ i ]  = abs( r [ i +1]  − r [ i ] ) ;
    }
  for ( int i  = 0;  i  < N;  i ++)
    dr [ i ]  = poi nt ( 0, 0, 0) ;
  if ( enabl e_LJ)
    f ast _LJ_updat e( r ,  dr ,  box_r ef ,  N) ;
  if ( enabl e_BL)
    for ( int i  = 0;  i  < N−1;  i ++)  {
      if ( d[ i ]  >= d_0_BL + d_BL)  {

cer r  << " Rupture at t = "  << t i mest eps* del t a_t  << " ("  << t i mest eps << "  timesteps), monomer "  
     << i  << " !\n" ;
ex i t ( 15) ;

      }
      poi nt  V_BL_dr  = d_V_BL_dr _t i mes_t i mest ep( r [ i +1] −r [ i ] ,  d[ i ] ) ;
      dr [ i ]    +=  V_BL_dr ;
      dr [ i +1]  += −V_BL_dr ;
    }
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  if ( enabl e_BA)
    for ( i nt  i  = 1;  i  < N−1;  i ++)  {
      poi nt  V_BA_da = d_V_BA_da_t i mes_t i mest ep( r [ i −1]  − r [ i ] ,  r [ i ]  − r [ i +1] ,  d[ i −1] ,  d[ i ] ) ;
      poi nt  V_BA_db = d_V_BA_db_t i mes_t i mest ep( r [ i −1]  − r [ i ] ,  r [ i ]  − r [ i +1] ,  d[ i −1] ,  d[ i ] ) ;
      dr [ i −1]  += −V_BA_da;
      dr [ i ]    += ( V_BA_da − V_BA_db) ;
      dr [ i +1]  +=  V_BA_db;
    }
  if ( enabl e_SP)
    for ( i nt  i  = 0;  i  < N−1;  i ++)  {
      poi nt  d_V_SP = d_V_SP_dr _t i mes_t i mest ep( r [ i +1] −r [ i ] ) ;
      dr [ i ]    +=  d_V_SP;
      dr [ i +1]  += −d_V_SP;
    }
  if ( enabl e_t r ap)
    if( enabl e_mi r r or _t r ap)
      for ( i nt  i  = 0;  i  < N;  i ++)

dr [ i ]  += −d_V_mi r r or _t r ap_dr _t i mes_t i mest ep( r [ i ] ) ;
    else
      for ( i nt  i  = 0;  i  < N;  i ++)

dr [ i ]  += −d_V_t r ap_dr _t i mes_t i mest ep( r [ i ] ) ;
  if ( enabl e_wal l _y)
    for ( i nt  i  = 0;  i  < N;  i ++)
      dr [ i ]  += −d_V_wal l _y_dr _t i mes_t i mest ep( r [ i ] ) ;
  if ( enabl e_pul se_el )
    set _cur r ent _f act or ( t i mest eps) ;
  if ( enabl e_el )
    for ( i nt  i  = 0;  i  < N;  i ++)
      dr [ i ]  += −d_V_el _dr _t i mes_t i mest ep( )  *  cur r ent _f act or _el ;
  if ( enabl e_el _t r ap)
    if ( enabl e_mi r r or _t r ap)
      for ( i nt  i  = 0;  i  < N;  i ++)

dr [ i ]  += −d_V_el _mi r r or _t r ap_dr _t i mes_t i mest ep( r [ i ] )  *  cur r ent _f act or _el ;
    else
      for ( i nt  i  = 0;  i  < N;  i ++)

dr [ i ]  += −d_V_el _t r ap_dr _t i mes_t i mest ep( r [ i ] )  *  cur r ent _f act or _el ;
}

voi d no_ver l et _t i mest ep( poi nt * & r ,  poi nt * & v,  node* * & box_r ef ,  map_i poi nt & i dx_map,  i nt  N,  i nt  t i mest eps)  {
  static i poi nt *  ol d_cube;
  static poi nt  * dr ;
  static i nt  i ni t  = 0;
  if ( ! i ni t )  {
    i ni t  = 1;
    dr  = new poi nt [ N] ;
    ol d_cube = new i poi nt [ N] ;
    for ( i nt  i  = 0;  i  < N;  i ++)
      ol d_cube[ i ]  = i poi nt ( r [ i ] / l _cut of f _LJ) ;
  }
  r _updat e( r ,  dr ,  box_r ef ,  N,  t i mest eps) ;
  if ( enabl e_BM)
    for ( i nt  i  = 0;  i  < N;  i ++)
      dr [ i ]  += d_V_BM_dr _t i mes_del t a_t ( ) ;
  for ( i nt  i  = 0;  i  < N;  i ++)  {
    r [ i ]  += dr [ i ] ;
    v [ i ]   = dr [ i ]  /  del t a_t ;
    i poi nt  new_cube = i poi nt ( r [ i ] / l _cut of f _LJ) ;
    if ( ol d_cube[ i ]  ! = new_cube)  {
      map_r emove_i ndex( i dx_map,  ol d_cube[ i ] ,  box_r ef [ i ] ,  i ) ;
      map_i nser t _i ndex( i dx_map,  new_cube,  box_r ef [ i ] ,  i ) ;
      ol d_cube[ i ]  = new_cube;
    }
  }
}

doubl e ener gy_al l ( poi nt *  r ,  poi nt *  v ,  node* * & box_r ef ,  i nt  number )  {
  doubl e ener gy = 0;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  for ( i nt  k  = 0;  k<number ;  k++)               / /  ki net i c  ener gy
    ener gy += v[ k ] * v [ k ] / 2;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_LJ)                               / /  Lennar d−Jones
    for ( i nt  k = 0;  k<number ;  k++)  {
      i nt  number ;
      i nt *  nei ghbour s = nei ghbour s_of _cube( box_r ef [ k] ,  number ) ;
      for ( i nt  j  = 0;  j  < number ;  j ++)  

if ( nei ghbour s[ j ]  < k)  
  ener gy += V_LJ( r [ k ] −r [ nei ghbour s[ j ] ] ) ;

      delete [ ] nei ghbour s;   
    }
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_BL)                               / /  bond−l engt h
    for ( i nt  k = 0;  k<number −1;  k++)
      ener gy += V_BL( abs( r [ k+1] −r [ k ] ) ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_BA)                               / /  bond−angl e
    for ( i nt  k = 1;  k<number −1;  k++)
      ener gy+=V_BA( r [ k−1] −r [ k] , r [ k] −r [ k+1] , abs( r [ k−1] −r [ k ] ) , abs( r [ k+1] −r [ k ] ) ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_SP)                               / /  spr i ng
    for ( i nt  k = 0;  k<number −1;  k++)
      ener gy += V_SP( r [ k+1] −r [ k ] ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_t r ap)                             / /  ent r opi c  t r ap,  mi r r or ed
    if ( enabl e_mi r r or _t r ap)
      for ( i nt  i  = 0;  i  < number ;  i ++)  

ener gy += V_mi r r or _t r ap( r [ i ] ) ;
    else
      for ( i nt  i  = 0;  i  < number ;  i ++)         / /  pur e ent r opi c  t r ap

ener gy += V_t r ap( r [ i ] ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_wal l _y)                           / /  wal l _y
    for ( i nt  i  = 0;  i  < number ;  i ++)
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      ener gy += V_wal l _y( r [ i ] ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  return ener gy;
}

doubl e ener gy_pot _i nt ( poi nt *  r ,  poi nt *  v,  node* * & box_r ef ,  i nt  number )  {
  doubl e ener gy = 0;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_LJ)                               / /  Lennar d−Jones
    for ( i nt  k = 0;  k<number ;  k++)  {
      i nt  number ;
      i nt *  nei ghbour s = nei ghbour s_of _cube( box_r ef [ k ] ,  number ) ;
      for ( i nt  j  = 0;  j  < number ;  j ++)  

if ( nei ghbour s[ j ]  < k)  
  ener gy += V_LJ( r [ k ] −r [ nei ghbour s[ j ] ] ) ;

      delete [ ] nei ghbour s;   
    }
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_BL)                               / /  bond−l engt h
    for ( i nt  k = 0;  k<number −1;  k++)
      ener gy += V_BL( abs( r [ k+1] −r [ k] ) ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_BA)                               / /  bond−angl e
    for ( i nt  k = 1;  k<number −1;  k++)
      ener gy+=V_BA( r [ k−1] −r [ k ] , r [ k ] −r [ k+1] , abs( r [ k−1] −r [ k ] ) , abs( r [ k+1] −r [ k] ) ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_SP)                               / /  spr i ng
    for ( i nt  k = 0;  k<number −1;  k++)
      ener gy += V_SP( r [ k+1] −r [ k ] ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  return ener gy;
}

doubl e ener gy_pot _ext ( poi nt *  r ,  poi nt *  v,  node* * & box_r ef ,  i nt  number )  {
  doubl e ener gy = 0;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_t r ap)                             / /  ent r opi c  t r ap,  mi r r or ed
    if ( enabl e_mi r r or _t r ap)
      for ( i nt  i  = 0;  i  < number ;  i ++)  

ener gy += V_mi r r or _t r ap( r [ i ] ) ;
    else
      for ( i nt  i  = 0;  i  < number ;  i ++)         / /  pur e ent r opi c  t r ap

ener gy += V_t r ap( r [ i ] ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  if ( enabl e_wal l _y)                           / /  wal l _y
    for ( i nt  i  = 0;  i  < number ;  i ++)
      ener gy += V_wal l _y( r [ i ] ) ;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  return ener gy;
}

doubl e ener gy_ki n( poi nt *  r ,  poi nt *  v ,  node* * & box_r ef ,  i nt  number )  {
  doubl e ener gy = 0;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  for ( i nt  k  = 0;  k<number ;  k++)               / /  ki net i c  ener gy
    ener gy += v[ k] * v [ k] / 2;
/ /  −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
  return ener gy;
}

#endif

verlet.cc
 

124



#include<f st r eam>
#include<i ost r eam>
#include<mat h. h>
#include<st di o. h>
#include" point.hh"
#include" ipoint.hh"
#include" ipoint_map.hh"
#include" constants.hh"
#include" potentials.hh"

#ifndef VERLET_I NCLUDED
#define VERLET_I NCLUDED

using namespace s t d;

/ /  Thi s  f i l e i ncl udes t he Ver l et −Al gor i t hm,  a f unct i on f or  i ni t i al i sat i on of  t he pol ymer
/ /  and a f unct i on f or  cal cul at i ng t he ener gy of  t he pol ymer .
/ /
/ /  Funct i ons used:
/ /   − i ni t _pol ymer    :  r eads t he pol ymer −conf i gur at i on f r om an i nput −f i l e
/ /   − t i mest ep       :  t hi s  i s  t he ver l et −al gor i t hm usi ng al l  enabl ed f or ces ( i ncl udi ng 
/ /                      f r i c t i on and br owni an f or ce)
/ /   − no_ver l et _t i mest ep :  t hi s  i s t he eul er −al gor i t hm usi ng al l  enabl ed f or ces ( i nc l udi ng 
/ /                      f r i c t i on and br owni an f or ce)  f or  over damped dynami cs
/ /   − ener gy_al l      :  comput es t he ener gy of  t he pol ymer ,  i nc l udi ng al l  enabl ed pot ent i al s
/ /   − ener gy_pot _i nt  :  comput es t he pot ent i al  ener gy of  t he pol ymer ,  r egar di ng onl y i nt er nal  pot ent i al s
/ /   − ener gy_pot _ext  :  comput es t he pot ent i al  ener gy of  t he pol ymer ,  r egar di ng onl y ext er nal  pot ent i al s
/ /   − ener gy_ki n     :  comput es t he ki net i c  ener gy of  t he pol ymer

voi d i ni t _pol ymer ( poi nt * & r ,  poi nt * & v,  node* * & box_r ef ,  map_i poi nt & i dx_map,  i nt & number ,  char *  f i l ename,
                  char *  checkpoi nt _f i l e,  char *  number _of _monomer s,  i nt & ol d_t i mest eps) ;

voi d ver l et _t i mest ep( poi nt * & r ,  poi nt * & v,  node* * & box_r ef ,  map_i poi nt & i dx_map,  i nt  N,  i nt  t i mest eps) ;
voi d no_ver l et _t i mest ep( poi nt * & r ,  poi nt * & v,  node* * & box_r ef ,  map_i poi nt & i dx_map,  i nt  N,  i nt  t i mest eps) ;

doubl e ener gy_al l     ( poi nt *  r ,  poi nt *  v ,  node* * & box_r ef ,  i nt  number ) ;
doubl e ener gy_pot _i nt ( poi nt *  r ,  poi nt *  v ,  node* * & box_r ef ,  i nt  number ) ;
doubl e ener gy_pot _ext ( poi nt *  r ,  poi nt *  v ,  node* * & box_r ef ,  i nt  number ) ;
doubl e ener gy_ki n    ( poi nt *  r ,  poi nt *  v ,  node* * & box_r ef ,  i nt  number ) ;

#endif
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Diese Arbeit ist als Teil des Teilprojekts D2 des Sonderforschungsbereichs 613 “Physik
von Einzelmolekülprozessen und molekularer Erkennung”, der von der DFG finanziert
wurde, entstanden.

Parts of the results presented here were obtained on compute clusters using the job
queuing system “Condor.” The Condor Software Program (Condor) was developed by
the Condor Team at the Computer Sciences Department of the University of Wisconsin-
Madison. All rights, title, and interest in Condor are owned by the Condor Team [112].

Meinen Eltern, die mich während meines gesamten Studiums stets mit Rat und Tat
unterstützt haben.

137


