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I think that I shall never see
A poem lovely as a tree.

A tree whose hungry mouth is prest
Against the earth’s sweet flowing breast;

A tree that looks at God all day,
And lifts her leafy arms to pray;

A tree that may in Summer wear
A nest of robins in her hair;

Upon whose bosom snow has lain;
Who intimately lives with rain.

Poems are made by fools like me,
But only God can make a tree.

- Joyce Kilmer, ”Trees” (poem), 1914
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Chapter 1

Introduction

1.1 RNA - A Key Player of Life

RNA (Ribonucleic Acid) is a chain molecule. It is built from nucleotides

containing the bases A(denine), C(ytosine), G(uanine), and U(racil). By fold-

ing back onto itself, an RNA molecule forms structure, stabilized by forces

of hydrogen bonds between certain pairs of bases (A–U, C–G, G–U), and dense

stacking of neighboring base pairs.

The central role of RNA in translation of the genetic code into proteins

was proposed by Watson & Crick shortly after their discovery of the three

dimensional structure of DNA in the early 50’s [226]. Besides ribosomal

RNA and transfer RNA, RNA was thought to be messenger RNA, carrying

the genetic code from inside the nucleus to the ribosomes in the cytoplasm.

The central dogma of molecular biology, enunciated by Crick in 1958, stated

that the flux of information from DNA to protein is a one-way; DNA is

transcribed into RNA which is subsequently translated into protein1. This

dogma was predominant for almost three decades2, but it turned out to

be an over-simplification. With the discovery of reverse transcriptase in

retroviruses [5, 199], the central dogma was extended, allowing information

1In fact, this is the propagated interpretation of Crick’s work. In [30] Crick points out
that this is due to a misunderstanding of his original work.

2It was still taught when I was in highschool in the 90’s.
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to be carried from RNA to DNA. In 1986, the discovery of catalytic RNA

[17], named ribozymes, suggested that RNA is involved more deeply in the

processes of living cells. This rekindled earlier speculations about the role of

RNA in the origin of life when researchers realized that they had a classic

chicken-and-egg problem. Proteins cannot exist without DNA that specify

their construction, and DNA cannot replicate without proteins. As a remedy,

Walter Gilbert proposed the RNA world hypothesis [60] which is, until now,

controversially discussed. He proposed that RNA molecules first catalyzed

their own replication and developed a repertoire of enzymatic activities. In

the next stage, RNA molecules began to synthesize proteins, which emerged

as superior enzymes because their 20 side chains are more versatile than

the four bases of RNA. Finally, DNA was formed by reverse transcription of

RNA. DNA replaced RNA as the generic material because its double helix is a

more stable and reliable storage of genetic information than is single stranded

RNA. At this point, RNA was left with roles it has retained to these days,

as information carrier (mRNA) and adapter in protein synthesis (tRNA)

and as critical component of ribosomes (rRNAs) and other assemblies that

mediate gene expression. The present intricate mechanism of information

transfer from gene to protein probably began when RNA alone wrote the

script, directed the action, and played all the key parts.

Gene regulation remained an important function of RNAs in cell even

after proteins were invented by nature. New regulation mechanisms that

involve RNA molecules were identified over the last years: A riboswitch,

sometimes referred to as regulon, is a part of mRNA that directly binds

a small molecule. Riboswitches are involved in regulating gene activity in

response to the presence or absence of their target which could be certain

molecules [230] or environmental parameters like temperature [145]. Thus,

mRNA that contains a riboswitch is directly involved in regulating its own

activity. Riboswitches are a demonstration that naturally occurring RNA

can bind small molecules, a capability that many previously believed to be

the domain of proteins. Small nuclear RNA (snRNA) is the name used to
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refer to a number of small RNA molecules found in the nucleus. These RNA

molecules are important in a number of processes including RNA splicing

and maintenance of telomeres, or chromosome ends [212]. Untranslated ter-

minal regions (UTRs) of mRNAs sometimes contain regulatory motifs which

are important for the posttranscriptional gene regulation. Such motifs can

affect mRNA localization [91], mRNA degradation [69], and translational

regulation [65]. The recently discovered microRNAs add another mechanism

to the pool of known posttranscriptional gene regulation methods [16]. A

comprehensive review of the modern RNA world is given in [43, 185]. It is

clear that the investigation of known and the discovery of new non coding

RNAs is a major task in modern molecular biology; without it, “the big

picture” of gene regulation would be incomplete. Comparative analysis of

RNA structures facilitates this research and the development of models and

algorithms is an expanding field in Bioinformatics.

1.2 Motivation and Organization of this The-

sis

Phylogenetic analysis of nucleotide sequences and amino acid sequences has

proven to be extremely powerful in the analysis of genomes. The compar-

ative analysis of coding regions, i.e. regions where the order of nucleotides

code for proteins, has been studied extensively. But what if the signal is not

sequential? As outlined in the previous section, there are numerous exam-

ples of RNA genes and motifs where the structure instead of the sequence

determines the function (and for sure, there are a lot of unknown ones to-

day). In this case the selective pressure acts on the structure, which conserves

structure istead of sequence. In spite of all its success, pure sequence based

comparative analysis gets to its limit when structural conservation is of in-

terest. In this thesis, I focus on strategies to align the structure of RNA

molecules.

In Chapter 2, I introduce basic terminology and outline topics that are
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related to structure comparison such as representation, visualization, and

prediction of RNA structures. Section 2.5 is the heart of the chapter. I

provide a complete in depth review of structure comparison approaches across

different areas. I emphasize the properties of different models and relate

different contributions.

In Chapter 3, I systematically derive dynamic programming algorithms

for the calculation of the global alignment similarity of two forests. More-

over, I introduce new local similarity variants. The resulting algorithms are

compact and suitable for a direct and efficient implementation in imperative

programming languages.

In Chapter 4, I apply my algorithms to the comparison of RNA secondary

structure forests. I introduce a new forest representation for RNA secondary

structures which, in conjunction with a refined forest alignment model, pro-

vides a reasonable scoring model for the evolution of RNA secondary struc-

tures. Beside a global RNA structure alignment, I introduce local variants for

RNA secondary structures. I demonstrate the performance of my algorithms

by providing exhaustive measurements concerning the practical runtime and

memory consumption. I introduce an intuitive 2d-plot for RNA secondary

structure alignments that makes the results of a structural comparison usable

without requiring knowledge in abstract structure representations.

In Chapter 5, I generalize the pairwise alignment model to align multiple

RNA secondary structures and provide an algorithm that calculates multiple

RNA secondary structure alignments. I propose a notion of consensus struc-

tures for a family of RNA molecules, the RNA secondary structure profiles,

and provide intuitive visualizations for them. To demonstrate the usefulness

of a multiple RNA secondary structure alignment, I propose a consensus

structure prediction strategy for families of RNA molecules that have low

sequence homology.

In Chapter 6, I present the structural alignment tool RNAforester.

RNAforester supports the computation of pairwise and multiple alignments

of RNA secondary structures based on the models and algorithms presented
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in Chapter 4 and Chapter 5.

In Chapter 7, I demonstrate the practical impact of the Algorithms that

were presented in this thesis. I present a joint work with T. Töller and R.

Giegerich concerning a strategy for the detection of new regulatory motifs

that, as an integral part, includes the computation of local structure align-

ments. I exemplify a structure prediction strategy that is based on a multiple

structure alignment of thermodynamically predicted structures for families

of RNA structures that have a low sequence homology.





Chapter 2

Introductory Material

2.1 Preliminaries

2.1.1 Metrics

Let M be a set. A nonnegative function f : M ×M → IR+ is a metric if the

following properties hold:

f(x, y) = 0⇔ x = y (identity)

f(x, y) = f(y, x) (symmetry)

f(x, y) ≤ f(x, z) + f(z, y) (triangle inequality)

If only the symmetry and the triangle inequality condition are satisfied and

the weaker condition f(x, x) = 0 holds, function f is denoted a pseudo-

metric.

2.1.2 Sequences

Let Σ be a finite set, the alphabet. The elements of Σ are characters.

ΣRNA = {A, C, G, U} is the RNA alphabet consisting of the bases Adenin,

Cytosin, Guanin and Uracil. Sequences or equivalently strings, or words are

written by juxtaposition of characters. In particular, let λ denote the empty
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character, also referred to as the gap character which acts as the neutral

element of the juxtaposition, i.e. λa = aλ = a. The set Σ∗ of strings over Σ

is defined by

Σ∗ =
⋃
i≥0

Σi,

where Σ0 = {λ} and Σi+1 = {aw | a ∈ Σ, w ∈ Σi}. The empty sequence

that contains no characters or only gap characters is denoted by ε. I define

the tuple alphabet as Σn = {(a1, a2, . . . , an) | a1, a2, . . . , an ∈ Σ}. For some

σ ∈ Σn, σi identifies the ith component of σ. The symbols a, b, c, d refer to

characters and S, S1, S2, . . . , Sn to sequences, unless stated otherwise.

The length of a string S, denoted by |S|, is the number of characters in

S. I make no distinction between a character and a string of length one. If

S = uvw for some (possibly empty) strings u, v and w, then

• u is a prefix of S,

• v is a substring of S, and

• w is a suffix of S.

A prefix or suffix of S is proper if it is different from S. S[i] is the i-th

character of S. S[i, j] is the substring of S beginning at S[i] and ending at

S[j]. If i > j, then S[i, j] is the empty string.

2.1.3 Trees and Forests

Generally, a tree is an acyclic connected graph. I consider rooted, ordered,

node-labeled trees, called trees for short. A distinguished node, the root node,

imposes a partial ancestor-descendant relation on the tree nodes. Naturally,

each path beginning at the root node whereas a node can be visited at most

once ends in some node where it can not be further extended, a leaf node.

A node v is a descendant of a node w, if v appears after w on such a path.

Conversely, w is an ancestor of v. If v and w are directly connected by an
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edge, w is the parent of v and v is a child of w. Two nodes are siblings if

they have the same parent node. The last common ancestor of v and w,

denoted by lca(v, w), is the node p that is an ancestor of v and w such that

there is no descendant of p that satisfies the condition of being ancestor of v

and w. A tree is ordered if the order among sibling nodes matters, i.e. there

exists an order relation for each set of sibling nodes. An ordered forest is a

sequence of trees, called forest for short. A function label assigns a character

from some alphabet Σ to each node in a forest. I use T (Σ) and F(Σ) for

the set of Σ-labeled trees and forests, respectively. The empty tree and the

empty graph which contain no nodes are denoted by ∅. Where convenient, I

identify a tree with the forest containing only this tree.

Since a tree is a special case of a forest, I give the following definitions

in terms of forests: Let F be a forest. V (F ) denotes the set of nodes in F .

The size of F , denoted by |F |, is the number of its nodes. The number of

leaf nodes is referred to as leaves(F ). The length of the longest path from

a root to a leaf is the depth of F , denoted by depth(F ). The preorder index

of a node in a tree is its position in the sequence of nodes that is obtained

by the following procedure: First, visit the root node. Second, apply this

procedure recursively to the trees induced by the children nodes according to

their left-to-right order. For forests, the preorder index is defined by the same

procedure assuming a virtual root node that is not counted in the indexing.

preF (v) denotes the preorder index of node v in F .

I now give definitions of substructures in trees and forests: A subtree at

node v of F consists of node v and all its descendants. Two subtrees are

siblings if their root nodes are siblings. A subforest is a sequence of sibling

subtrees. A tree pattern is a subtree T ′ whereas arbitrary subtrees of T ′ can

be removed.

2.1.4 The Sequence Edit Distance

A fundamental model for approximate string comparison is the model of edit

distance [113, 171, 213]. It measures the distance between strings in terms
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of edit operations, that is, deletions, insertions, and replacements of single

characters. Two strings are compared by determining a sequence of edit

operations that converts one string into the other and minimizes the sum of

the costs of edit operations. Nowadays, the edit distance between strings is

basic knowledge in computational biology and is an integral part of numerous

textbooks, lectures and seminars. I give a brief introduction based on [108].

The notion of edit operations is the key to the edit distance model. I define

the alignment alphabet Σn
λ as the tuple alphabet where for each of its elements

at least one component is different from λ. Formally, Σn
λ = (Σ∪{λ})n\{λ}n.

An edit operation is a pair (α, β) ∈ Σ2
λ. α and β are strings of length ≤ 1.

An edit operation (α, β) is usually written as α → β. This reflects the

operational view which considers edit operations as rewrite rules transforming

a source string into a target string, step by step. In particular, there are three

kinds of edit operations:

• α→ β denotes the relabeling of the character α by the character β,

• α→ λ denotes the deletion of the character α,

• λ→ β denotes the insertion of the character β.

A relabeling α → β where α = β is denoted a match. Notice that λ → λ

is not an edit operation. Insertions and deletions are sometimes referred to

collectively as indels.

Sometimes string comparison just means to measure how different strings

are. Often it is additionally of interest to analyze the total difference between

two strings into a collection of individual elementary differences. The most

important mode of such analysis is an alignment of the strings. An alignment

A of u and v is a sequence

(α1 → β1, . . . , αh → βh)

of edit operations, for short edit-sequence, such that u = α1 . . . αh and v =

β1 . . . βh.
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Note that the unique alignment of ε and ε is the empty alignment, that

is, the empty sequence of edit operations. An alignment is usually written

by placing the characters of the two aligned strings on different lines, with

inserted dashes “-” denoting λ. In such a representation, every column

represents an edit operation.

The alignment A = (λ→ d, b→ b, c→ a, λ→ d, a→ a, c→ λ, d→ d) of

the sequences u = bcacd and v = dbadad is written as follows:

(
- b c - a c d

d b a d a - d

)

The notion of optimal alignment requires some scoring or optimization

criterion. This is given by a cost function.

A cost function δ assigns to each edit operation α→ β, α 6= β a positive

real cost δ(α → β). The cost δ(α → α) of an edit operation α → α is 0. If

δ(α → β) = δ(β → α) for all edit operations α → β and β → α, then δ is

symmetric. δ is extended to alignments in a straightforward way: The cost

δ(A) of an alignment A = (α1 → β1, . . . , αh → βh) is the sum of the costs of

the edit operations A consists of. More precisely,

δ(A) =

h∑
i=1

δ(αi → βi).

The unit cost function scores zero for matches and score one otherwise. The

edit distance of S1 and S2, denoted by δSE(S1, S2), is the minimum possible

cost of an alignment of S1 and S2. That is,

δSE(S1, S2) = min{δ(A) | A is an alignment of S1 and S2}. (2.1)

An alignment A of S1 and S2 is optimal if δ(A) = δSE(S1, S2). Note that there

can be more than one optimal alignment. If δ satisfies the mathematical

axioms of a metric, then δSE is a metric.
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2.2 Primary, Secondary and Tertiary Struc-

ture of RNA

RNA molecules can be formally described on different levels of abstraction.

In messenger RNA (mRNA), coding regions of RNA molecules determine

the sequence of amino acids in proteins which in turn determines the pro-

tein structure. This information, the primary structure of an RNA molecule,

is carried as a sequence of nucleotides (bases) over the four letter alphabet

{A, C, G, U}. RNA molecules have the tendency to form a three dimensional

conformation, the tertiary structure. By folding back onto itself, an RNA

molecule forms structure, stabilized by the forces of hydrogen bonds between

certain pairs of bases, and dense stacking of neighboring base pairs. These

base-pairs G–C, A–U and G–U, in order of their strength, are denoted canonical

base-pairs. In fact, almost every other base-pair combination could exist,

and has been observed in nature, but their contribution to the stability of

the molecule are minor in comparison with the canonical base-pairs. Exter-

nal factors like cellular RNAs and proteins do also influence the structure.

Crystallographic studies by X-ray diffraction and nuclear magnetic resonance

(NMR) can reveal the tertiary structure of an RNA molecule with high ac-

curacy [89, 100]. Although great progress has been made, crystallographic

studies are still time consuming and expensive. Moreover, tertiary structure

eludes from efficient algorithms for structure prediction and comparison. In

particular, these problems are reported to be NP-hard for tertiary structures

[94, 122]. From a biological viewpoint, RNA tertiary structure is likely formed

hierarchically. First, stable stems are formed and afterward tertiary inter-

actions are built. The strength of additional tertiary interactions is thought

to be too small to significantly change the secondary structure conformation

[13, 152, 156, 202]. For economical, biological and computational reasons, a

subset of tertiary structures, the RNA secondary structures [36, 50], draw

researchers attention.

An RNA secondary structure (S, P ) consists of a sequence S ∈ ΣRNA and
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a set of base-pairs P = {(i, j)} such that i, j ∈ [1, . . . , |S|] and i < j. For all

(i, j), (i′, j′) ∈ P the following holds: W.l.o.g let i < i′,

1. i = i′ ⇔ j = j′, i.e. there is a one-to-one relation between paired bases.

2. and it holds either:

(a) i < j < i′ < j′, i.e. (i, j) precedes (i′, j′), or

(b) i < i′ < j′ < j, i.e. (i, j) includes (i′, j′).

(S, P ) is a tertiary structure if Condition 1 is satisfied. Figure 2.1 shows

an example of the primary, secondary, and tertiary structure of an RNA

molecule.

An intermediate between secondary and tertiary structures are pseudo-

knotted structures which consider certain kinds of tertiary interactions. This

is an emerging field but nowadays there is still a lack of algorithms and

Bioinformatics tools that handle pseudo-knotted structures efficiently.

2.3 Representation and Visualization of RNA

Structures

Understanding the macromolecular structure of an RNA molecule and its

relation to function still requires expert knowledge and intuition from biol-

ogists. Visualization of RNA structures is a preliminary for this task. The

topology of an RNA molecule is relevant to classify RNA structures or to

search for structurally homologous RNA molecules. This typically involves

the visualization of secondary and pseudo-knotted structures. A visualiza-

tion of tertiary structures, based on the relative position of atoms, obtained

by NMR spectroscopy or X-Ray diffraction, can give insights into macro-

molecular mechanisms.

The most common and biological informative drawing of RNA secondary

structures is a 2d-plot, sometimes referred to as squiggle-plot. Embedded in

a plane, paired bases are drawn adjacent to each other. Base-pair bonds
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Figure 2.1: [54] Primary, secondary and tertiary structures of yeast phenylala-
nine tRNA. A: The sequence was obtained from The Genomic tRNA Database
[116, 117]. B: The secondary structure was inferred from an alignment of yeast
tRNA-PHE sequences by RNAalifold [82], circled bases indicate neutral mutations
with respect to the displayed secondary structure. Pseudo-knots and non-canonical
base-pairs are indicated with a dashed line connecting squared bases [188]. C: A
cartoon representation of tRNA tertiary structure, based upon tertiary structures
obtained from the Protein Databank Bank (ID 6TNA,1EHZ) [99, 182].

and the backbone of an RNA molecule are indicated as lines that do ideally

not intersect. Several layout algorithms that generate 2d-plots have been

proposed in [14, 109, 143, 179, 234]. The RNAViz [33, 34] software allows a

manual fine tuning of drawings for producing publication-quality secondary

structure drawings, e.g. the display of structural elements such as pseudo-

knots or unformatted areas is possible. RNA d2 [153], RNAdraw [132] and

XRNA [233] are alternative tools within this scope. Recently, a layout algo-

rithm for pseudo-knotted structures that produces non-overlapping drawings

was proposed which is implemented in the tool Pseudoviewer [72, 74]. The

visualization of the three dimensional structure of an RNA molecule belongs

to the general field of three dimensional macromolecule visualization. Beside
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freely distributed software like RasMol [175], there are many commercial

tools that offer visualization of macromolecules in the framework of drug

discovery.

Although 2d-plots are pleasant to read, it is difficult to compare them

or extract topological information. The dome-, circle- and mountain-plot

address this problem. In a dome-plot, base-pair bonds are drawn as arcs

above the sequence which is drawn as a straight line. In a circle-plot, the

sequence is arranged as a circle and chords inside the circle connect base-

pairs [151]. The mountain-plot draws the mountain-function of an RNA

secondary structure which intuitively assigns to each nucleotide the number

of base-pairs that enclose it [87]. Formally, we define the mountain-function

for an RNA secondary structure (S, P ) as follows:

h(0) = 0

h(i) =




h(i− 1) + 1 if (i, j) ∈ P for some i ∈ [i, |S|]
h(i− 1)− 1 if (i, j) ∈ P for some j ∈ [1, |S|]
h(i− 1) otherwise

where i > 0

(2.2)

A more technical representation are RNA secondary structure strings, for

their exhaustive use in the Vienna RNA Package referred to as Vienna

strings [84]. Vienna strings are sequences where, in order of the primary

structure, the characters ’(’ and ’)’ denote the 5′ and 3′ bases of a base-pair,

respectively, while ’.’ denotes an unpaired base. In addition, a second string

can hold the primary structure information. Vienna strings and Zuker-CT

files of the mfold software [244] are the most common formats to electroni-

cally store RNA secondary structures. In the era of web services, RNAML

is a suggestion of a XML based standardization which is designed for the

transmission of information among the RNA community [227]. An example

of RNA secondary structure drawings and representations is given in Figure

2.2.
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(d) circle-plot generated by the mfold
server [244].

(e) mountain-plot. Hairpin loops ap-
pear as flat tops, interior loops and
bulges as intermediate plateau, helices
as sloping hillsides, and branching re-
gions as valleys.

Figure 2.2: Visualization of a secondary structure for the Nanos 3’ UTR trans-
lation control element taken from the Rfam database [67] (Id: RF00161, EMBL
Id: U24695.1).



2.3 Representation and Visualization of RNA Structures 17

These visualization show a single structure of an RNA sequence. Dot-plots

visualize the structure space of an RNA sequence with the potential to reveal

suboptimal structures that are biologically relevant. Arranged in a matrix,

the probabilities of base-pairs are plotted as dots whose diameter is propor-

tional to their probability in the structure space. The base-pair frequency

information has subsequently been included in single structure visualizations

and likely base-pairs can be distinguished from unlikely base-pairs by a color

gradient or some other indicator [245]. See Figure 2.3 for an example of a

dot-plot and an annotated 2d-plot. RNAmovies is an interactive software for

the visualization of secondary structure spaces [57]. It automatically gener-

ates animated 2d-plots where structures are morphed to explore the structure

space of an RNA molecule.

From the viewpoint of computer scientists, RNA secondary structures are

often represented as trees or forests. The parent and sibling relationship of

nodes is determined by the nesting of base-pair bonds. The 5′ to 3′ nature

of an RNA molecule imposes the order among sibling nodes. This produces

a forest structure in general but a virtual root node can always turn a for-

est into a tree. Different tree representations that vary in their resolution

have been proposed. A tree structure where base-pairs correspond to inter-

nal nodes while unpaired bases correspond to leaves in the tree was proposed

in [173]. I refer to it as the natural tree representation. A coarse grained

tree representation where nodes correspond to the structural components -

stacking regions, hairpins, bulges, internal loops and multiloops - was pro-

posed in [110, 178, 180]. Parse trees of grammar based prediction strategies

for RNA secondary structures represent the structure such that the sequence

information corresponds to the preorder sequence of leaves while the internal

nodes correspond to productions of the grammar [167]. An example of tree

representations of RNA structures is shown in Figure 2.4.
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Figure 2.3: (a) shows the base-pair probabilities as predicted by RNAfold [84].
The lower triangle show only the bases included in the minimum free energy struc-
ture and the upper triangle contains the full base-pair probabilities where the dia-
meter of a square is proportional to the probability of the corresponding base-pair.
(b) shows the 2d plot of the structure annotated with the probabilities of a base-
pair. The colors range from blue to red in correspondence to less and high frequent
base-pairs.
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Figure 2.4: (a) shows a secondary structure with colored components that indicate
the relation between the representations. (b) shows the natural tree representation
where internal nodes correspond to base-pairs and leaves correspond to unpaired
bases. (c) shows the coarse grained tree representation. The red and cyan part are
stacking region (S), the green part is a multiloop (M), the yellow part is an internal
loop (I), and the blue and magenta parts are hairpin loops (H). A bulge left (L)
and a bulge right (R) are internal loops that have only a left and right unpaired
region, respectively. Note that single stranded regions at the root level of the tree
and in multi-loops are omitted in this tree representation. (d) shows a simplified
parse tree for some grammar describing RNA secondary structures. The internal
nodes correspond to productions of the grammar and impose a structure on the
sequence that resides at the leaves. A virtual root node v is added in (b) and (d)
to guaranty a tree structure.
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2.4 RNA Secondary Structure Prediction

The structure of an RNA molecule can be crucial for its function (see Section

1.1). Accordingly, the automatic prediction of RNA structures from sequence

information is an important problem. Today, there are two prediction strate-

gies:

• Thermodynamic approaches: The conformation of paired and un-

paired regions in an RNA structure can be associated with an energy

value. Given some energy model, thermodynamic approaches find the

energetically most stable structures among all possible secondary struc-

tures of an RNA sequence. Such a structure is denoted the minimum

free energy (mfe) structure.

• Comparative approaches: In functional non-coding RNA, the struc-

ture of an RNA is conserved during evolution. Since a base-pair can

be formed by different combinations of nucleotides, different sequences

can have the same or a similar structure. If a family of structural

homolog RNA molecules has a sufficient amount of sequence conserva-

tion, a multiple sequence alignment can emphasize regions of sequence

variation. The regions containing structure-neutral mutations, denoted

as compensatory base changes, give clues to the structure of an RNA

molecule.

In 1978, Nussinov et al. introduced a first folding algorithm requiring a single

sequence as input [151]. They determine the structure that maximizes the

number of possible base-pairs for an RNA sequence. This problem is also

known as the maximum circular matching problem. The incorporation of

thermodynamics in this model assumes that the energy contribution of each

base-pair is independent from adjacent base-pairs in the structure. This as-

sumption is not realistic since the stability of RNA molecules is based on

the stacking of base-pairs. Zuker & Stiegler proposed a dynamic program-

ming algorithm that calculates the minimum free energy structure based on a
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model that considers base-pair stacking and destabilizing loops [247]. Their

algorithm uses thermodynamic parameters of Tinoco et al. [201]. The en-

ergy model and parameters were refined in [129, 209]. McCaskill introduced a

statistically motivated model based on Boltzmann’s distribution and thermo-

dynamic parameters, the partition function [133]. The most likely structure

under this model is the mfe structure. The main contribution of McCaskill is

the computation of probabilities for the individual base-pairs. Sakakibara et

al. and Eddy & Durbin invented a generalization of hidden markov models,

the stochastic context-free grammars, and formulated the RNA secondary

structure prediction problem in this context [42, 167, 168].

Thermodynamic folding relies on parameters that were measured in vitro

under fixed conditions which is a simplification of real conditions. The fold-

ing in vivo takes place in a dynamic, hence, more complex environment.

From the inaccuracy of energy parameters (and even the model itself), it is

possible that the mfe structure is not the biological correct one. The bio-

logical relevant prediction is often a suboptimal solution that has an energy

close to the mfe structure. Thus, the generation of suboptimal structures is

important for the practical impact of prediction algorithms based on ther-

modynamics [243, 246]. The assumption of equilibrium folding pathways is

another common simplification of thermodynamic folding models. Studies of

the folding of the Tetrahymena group I intron gave insights in the complex-

ity of the folding process [8, 208]. It has been observed that RNA can fold

during transcription, the folding process happens on a wide range of time

scales, and ions and macromolecules guide the folding. Thus, the kinetics of

RNA folding are important to understand the true folding pathway. Models

and algorithms for kinetic folding prediction are provided in [49, 70, 138, 232].

A further challenge for mfe folding algorithms are RNA secondary structures

that are known to have two conformations depending on some environmen-

tal parameters, known as RNA switches [126]. Recently, Giegerich et al.

provided a structure prediction algorithm based on thermodynamics that

compartmentalizes the suboptimal solution space into different shapes [59].
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The different shapes of an RNA molecule give a compact overview of the

structure space and are useful find the biological relevant prediction or to

detect different conformational states.

The most popular tools for energy-based RNA secondary structure pre-

diction from single sequences are mfold [243, 244] and RNAfold [79, 84]. The

former implements the mfe algorithm and the latter implement additionally

McCaskill’s partition function algorithm. Recently, the energy-based predic-

tion of pseudoknotted structures received more attention [35, 158, 161].

Comparative approaches require a set of homologous RNA sequences that

have a putative similar structure. The general idea is to exploit the covari-

ance that is expected to occur in aligned stem regions. Until the early 80’s the

structural inference from homologous RNA sequences had been hand-crafted.

Noller & Woese described a procedure to detect compensatory changes in

helical elements [147]. An algorithm building upon this strategy was pro-

vided by Waterman [224, 225]. Given a multiple sequence alignment, the

mutual information content and sequence covariation are measures that help

to automatically identify conserved stem regions [26, 229]. These pure phy-

logenetic approaches assume that the sequences, in fact, share a common

structure, which requires a careful choice of sequences. A combination of

phylogenetic information and thermodynamics can further improve the re-

sults. A multiple sequence alignment is used to validate predicted structures

in [81, 112, 121]. Conversely, Han & Kim resolve ambiguities in the align-

ment by thermodynamics [73]. As an extension of the minimum free energy

approach, RNAalifold [83] calculates the best folding using an objective func-

tion that combines energy contributions and covariance. Ruan et al.’s ILM

(iterated loop matching) optimizes a similar objective function [166]. As

the name suggests, the structure is iteratively constructed by adding non-

conflicting stem regions. ILM is capable of returning pseudoknotted RNA

structures. Knudsen & Hein predict a common RNA secondary structure by

stochastic context-free grammars, implemented in the tool Pfold [104].
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Sankoff opened a branch of comparative strategies considering the align-

ment and folding problem simultaneously [172]. The time complexity of

Sankoff’s algorithm is O(n6) where n is the length of RNA sequences. This

is too high to be practical even for two sequences. Mathews & Turner’s

DYNALIGN restricts the maximum distance of possible base-pairs to bound

the parameters that affect time complexity in Sankoff’s algorithm [130, 131].

Gorotkin et al.’s FOLDALIGN implements a modification of Sankoff’s algo-

rithm than does not allow branching structures, which reduces the time com-

plexity. Tabaska & Stormo used a graph theoretic approach, the maximum

weight matching to infer RNA secondary structures from different sources

[189, 190]. They consider a set of base pairing scores that can be derived

from a range of sources, such as free energy considerations, mutual informa-

tion, and experimental data. Hofacker et al. provide a strategy that is based

on aligning base-pair probability matrices, predicted by McCaskill’s partition

function algorithm [80]. Their algorithm is implemented in the tool pmmulti

in the Vienna RNA package.

According to Gardner & Giegerich, approaches that use phylogenetic in-

formation yield significant better predictions than pure thermodynamic ap-

proaches [55]. However, the quality of the multiple sequence alignment that

should reveal the phylogeny depends on the degree of sequence homology of

RNA molecules. The minimum homology that is necessary depends on the

particular prediction strategy, i.e. the sources of information that are used to

predict structures. Moreover, phylogenetic approaches require a large num-

ber of sequences which is a rare situation.

For families of RNA molecules with low sequence conservation, a strat-

egy that was proposed by Shapiro and Konings & Hogeweg more than a

decade ago is currently revitalized [105, 180]: First, structures are predicted

based on thermodynamics and then a structural alignment, instead of a se-

quence alignment, is done. Recent progress in structural comparison models

and algorithms make this strategy a promising candidate for low sequence

homologous, but (putative) structural homologous RNA molecules. In par-
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ticular, this strategy requires a model for structurally aligning multiple RNA

secondary structures. I will provide a structure prediction strategy based on

multiple structure alignment in Chapter 5.

2.5 RNA Structure Comparison

The field of RNA structure comparison emerged with the invention of RNA

secondary structure prediction algorithms. Since then, the resulting pool of

predicted structures, be they right or wrong, were available for analyzing

structural properties. The prediction of structural motifs, the inference of

a taxonomy based on structural similarity instead of sequence similarity,

and the prediction of consensus structures for a set of functionally related

RNA molecules are active research topics that involve the comparison of

RNA structures. I distinguish the following approaches to compare RNA

structures:

• Base-pair distances: Base-pair distances are classical mathematical

metrics that operate on the base-pair sets of RNA structures.

• Sequence alignment: RNA secondary structures are represented as

strings that in turn are compared in the sequence alignment model.

• Edit distances between ordered rooted trees: Since an RNA

secondary structure can be represented as a tree, distances on trees

can be applied to compare RNA secondary structures.

• Arc annotated sequences: Pure sequence alignment based approaches

are extended to incorporate structural constraints that are induced by

the structure of RNA. Constrained sequence edit models are generally

studied in the context of arc annotated sequences.

• Graphs: Graphs can express any sort of RNA structures. Algorithms

for the classification of graphs are applied to RNA structure analysis.
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Distance and Similarity The result of a comparison of RNA structures

can be quantified in two different ways: The first is distance and the second

is similarity. Distance measures satisfy the mathematical axioms of a metric

(or at least pseudo-metric). A similarity measure assigns a numeric value

to some pairs of structures such that the larger the value the more similar

the structures are. Distances are non-negative and the distance between two

structures is zero iff the structures are equal. In contrast, the similarity

of equal structures is an arbitrary positive number. Accordingly, a small

distance is equivalent to a large similarity.

In the following sections, I consider distance versions of models for RNA

structure comparison. The corresponding similarity versions can be derived

easily for distances that are based on optimization problems. For distance

problems, optimal means minimal, while for similarity problems optimal

means maximal. Throughout this section, (S1, P1), (S2, P2), . . . , (Sn, Pn) de-

note secondary structures.

2.5.1 Base-pair Distances

Base-pair distances are distance measures that are defined on the base-pair

sets of RNA structures. An analysis of some properties of base-pair distances

and their comparison with the tree edit distance is provided in [142].

Symmetric Set Difference

One of the simplest measures is defined by the symmetric set difference, that

is:

δSD(P1, P2) = P1 \ P2 ∪ P2 \ P1 (2.3)

Clearly, this simple measure is sensitive to the exact position of base-pairs

and is therefore not suitable to compare structures of different length. Also

if the structures have the same length, the measure is sensitive for shifted

structures. Consider the following structures:
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P1 = ............(((.....))).

P2 = ...........(((.....)))..

Intuitively, these structures should obtain a distance close to zero, but

δSD(P1, P2) = 6 since there is no common base-pair. This discrepancy gets the

larger the larger the shifted structures are. Still, for suboptimal structures

of the same sequence, δSD can be a useful ad hoc distance.

Hausdorff Distance

A more flexible metric is the Hausdorff distance which was applied by Zuker

to filter out similar suboptimal foldings in the original mfold program [243].

The Hausdorff distance measures the distance between non empty point sets

of some metric space. For the problem of RNA structure comparison, these

are the sets of base-pairs. Intuitively, the Hausdorff distance between struc-

tures P1 and P2 is the maximum of the distances between all nearest base-

pairs connecting P1 and P2. Formally, the distance between two base-pairs

(i, j) ∈ P1 and (i′, j′) ∈ P2 is defined as δ((i, j), (i′, j′)) = max{|i−i′|, |j−j′|}.
The distance of a base-pair to a set of base-pairs is defined as δ((i, j), P ) =

inf(i′,j′)∈P δ((i, j), (i′, j′)). Then the Hausdorff distance between P1 and P2 is

defined as

δH(P1, P2) = max(δasym(P1, P2), δasym(P2, P1)) where (2.4)

δasym(P1, P2) = sup
(i,j)∈P1

δ((i, j), P2)

Although this distance behaves reasonable for structure shifts, the distance

between structures that differ only in one base-pair depends on the position

of this base-pair. Consider the following structures:

P1 = ...........(((.....)))..

P2 = (...)......(((.....)))..

P3 = ....(...)..(((.....)))..
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P2 and P3 are both one base-pair apart from P1, but their Hausdorff distance

is different, i.e. δH(P1, P2) = 11 and δH(P1, P3) = 7. Thus, isolated base-pairs

can lead to high distance values depending on the distance to the next base-

pair. Aware of this problem, Zuker et. al defined a variant of δH that ignores

up to d bases to obtain a distance d [246]. This variant is a pseudo-metric,

since the triangle inequality is not satisfied as exemplified in [142].

Mountain Metric

Another application of a classical mathematical metric to RNA structures

is the mountain metric which is based on the lp-norm of the difference of

two mountain functions hP1 and hP2 (see Equation (2.2)) of RNA secondary

structures of length n [142]:

δp
M(P1, P2) = ‖hP1 − hP2‖p : = p

√√√√ n∑
i=1

|hP1(i)− hP2(i)|p (2.5)

For p = 2 this is the root mean square (RMS) distance between two functions

which is, followed by p = 1, the most frequent choice. This metric is more

flexible for shifted structures and isolated base-pairs and it can be computed

in linear time. A property of this distance that one must be aware of is that

the extension of stem regions does not have uniform costs. See the following

example:

P1 = ..(((.....)))..

P2 = .((((.....)))).

P3 = ..((((...))))..

P1 differs from P2 and P3 in just one base-pair but their mountain distances

(for simplicity I use p = 1) do not reflect that. In particular, δ1
M(P1, P2) =

13 and δ1
M(P1, P3) = 5. See Figure 2.5 for an illustration. A variant of

the mountain distance that re-scales mountain functions for structures of

different length is proposed and applied in [44].
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sequence position

δ1
M

P2 P1

P3

Figure 2.5: The difference between P2 and P1 is larger than the difference between
P3 and P1, though both differ in exactly one base-pair.

2.5.2 Sequence Alignment

Shapiro and Konings & Hogeweg simultaneously proposed the idea to com-

pare RNA secondary structures by well established sequence alignment algo-

rithms [105, 180]. While Konings & Hogeweg focused on pairwise alignments,

Shapiro considered multiple sequence alignments. In both approaches, the

key idea is to use a string representation of RNA secondary structures, in

flavor of the Vienna strings1, which are the data structures that are further

analyzed.

Konings & Hogeweg’s Encoding

Following Konings & Hogeweg, “A full linear representation is obtained by

transforming the mountain structure into a linear array of symbols represent-

ing the direction of base-pairing at each of the single positions: upstream

pairing (>), downstream pairing (<) or single strandedness (+) . . . Extra

information in terms of secondary structure can be included in the linear re-

presentation by distinct coding of hairpin loops (^) and other types of single

stranded positions (+)”. In this representation, the secondary structure in

Figure 2.2 is written as:

+>>>+>>>>>>+++++<<<<<<^^^^>>>>+>>>>>>^^^^^^^<<<<<<+<<<<++<<<+

1The Vienna format was established later, building upon the results of Shapiro and
Hogeweg & Konings.
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A potential disadvantage of this representation for a topological classification

is that basic secondary structure elements may be broken up in an alignment,

i.e. matching of individual parts of one helix to parts of two different helices,

not considering interruptions by internal loops and bulges.

Shapiro’s Encoding

Shapiro introduced a different string representation that circumvents this

problem. The coarse grained tree representation of an RNA structure is

transformed to a string by a left-to-right preorder traversal of the tree,

putting subtrees into brackets. The components are encoded as single letters.

In this representation the structure in Figure 2.2 is:

(S(M((H)(S(I(H)))))

To simplify the notation brackets are removed for non-branching subtrees:

(S(M(H (S I H))))

For a topological classification, this coarse grained representation is suitable.

However, if the aim is an improved sequence alignment that incorporates

structural constraints, it should be possible to match individual parts of one

helix with two different parts of another helix. For instance, there could

exist a larger helix that was broken during evolution resulting in two smaller

helices that are separated by a bulge.

Beside these effects, both methods suffer from the same inherent problem:

A pair of brackets is not treated as a unit by a sequence alignment and

thus the tree nature of a secondary structure is not treated appropriately.

Consider the following structures:

P1 = (((..(((....))))))

P2 = (((......)))

The following alignment is among the optimal alignments given a scoring

scheme that favors matches in contrast to mismatches, insertions and dele-

tions.
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(((..(((....))))))

(((..---....)))---

The opening brackets ‘(’ are not aligned to its corresponding closing brackets

‘)’ and in terms of structure this alignment is not meaningful. Shapiro was

aware of such problems but appropriate, efficient algorithms for comparing

RNA secondary structures as trees were just about to emerge.

2.5.3 Edit Distances between Rooted Ordered Trees

From the tree nature of RNA secondary structures, every distance measure

on trees can be applied to RNA secondary structures. Inspired by the se-

quence edit distance [113, 171, 213], different edit models for trees have been

invented [95, 118, 177, 191, 198] which result in various algorithms. Beside

the fact that tree editing is a challenging theoretical problem dealing with a

fundamental data structure, this field was (and is still) driven by the need

for such algorithms in a broad spectrum of applications. This includes the

comparison of RNA secondary structures [25, 110, 111, 178], the analysis of

structured documents and text databases [18, 96, 127, 144, 159], script recog-

nition [22, 118], fingerprint recognition [139], image analysis [165, 169], the

analysis of parse trees [97, 235], the comparison of assembly rules [48], and

the identification of common structural fragments among chemical structures

[192]. The semantic of tree edit distances in the scope of RNA structure com-

parison depends on the choice of the tree representation and the edit model.

A review of tree edit models that are particularly interesting for docu-

ment trees (but also for RNA secondary structures) was given in [7]. The

authors provide implementations of tree edit algorithms in the programming

language Turing [90]. A more recent survey on tree editing problems, in-

cluding unrooted, unordered variants, and different notions of tree editing,

was provided in [10, 11, 241]. The relation between tree-edit distances was

studied in [216] resulting in a hierarchy of edit-models.

In the world of sequences, the terms edit distance and alignment dis-

tance are used synonymously. For each optimal sequence of edit operations,
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an alignment achieving the same score can be constructed and vice versa.

However, on a conceptional level the models are different. While the edit

distance is an operational model of editing one sequence into another, an

alignment is a declarative model, a data structure rather than a process. In

the world of trees, these models turned out to be dual: The tree edit model

constructs a largest common subforest, while the tree alignment distance

constructs a smallest common supertree. Moreover, the higher complexity

of trees (in comparison to sequences) leads to a multitude of problems that

vary in the constraints that are imposed by the chosen model. The models

that are interesting for the comparison of RNA structures are introduced in

the following paragraphs, beginning with the most general model which is

successively restricted. Throughout this chapter, T, T1, T2 are trees unless

stated differently.

Tree Edit Distance

In the tree-to-tree correction problem [191], Tai introduced the generalization

of the string-to-string correction problem [213] which is also known as the edit

distance problem for strings. I refer to Tai’s model as the tree edit model2,

following the mainstream of literature.

Edit Operations The edit operations relabel , delete and insert generalize

from strings to trees (and forests) as follows:

• relabel : The label of a node v in T is changed. If a label is relabeled

by itself, this is denoted a match.

• delete: Deleting node v in T means that the children of node v become

the children of the parent node of v. Moreover, if v has any siblings,

the deletion preserves the preorder relation of these node. Note, if v is

the root node, the result is the forest consisting of the children nodes

of v.
2The same model was also, independently, proposed by Lu [118]. However, Lu consid-

ered an algorithm for a special case of the general tree edit distance.
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a
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f

T1

a

b x

d e

f

T2

a

b d e f

T3

x→ λ

x← λ
c→ x

c← x

Figure 2.6: To simplify the illustration, a node and its label are identical. T1

is transformed into T2, by relabeling c with x, which in turn is transformed into
T3 by deleting x. Note that the edit operations can be applied in both directions.
T2 results from T3 by inserting x as a child of node a whereas the nodes d and e
become the children of x.

• insert : This operation is complementary to delete. Inserting a new

node v into T results in a new tree T ′ such that the deletion of v in T ′

results in T . Intuitively, a node v is inserted as a child of v′ making v

the parent of a consecutive subsequences of children of v′.

According to the sequence edit model, I represent edit operations by α→ β

where (α, β) ∈ Σ2
λ. α→ λ and λ→ β denote the functions delete and insert

of a and b, respectively. Otherwise, a→ b is the relabel function, relabeling

a with b. An illustration of the tree edit operations is given in Figure 2.6.

Note, the node that is affected by an edit operations is defined by the edit

operation together with the tree to be edited and the resulting tree.

Let E be a sequence e1, e2, . . . , en of edit operations, for short edit-sequence.

Following Tai, E transforms T into T ′ if there is a sequence of trees T0, T1, . . . , Tn

such that T = T0, T
′ = Tn and Ti results from the application of ei to Ti−1

for i ∈ [1, n]. Let δ be a metric defined on edit operations. The cost of

an edit-sequence E is the sum of the costs of its edit operations, that is:

δ(E) =
∑n

i=1 δ(ei) which is also a metric [240]. The edit distance δTE be-

tween trees T1 and T2 is the minimum cost that is necessary to transform T1

into T2:
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δTE(T1, T2) = min{δ(E) | E is an edit sequence transforming T1 into T2}.
(2.6)

Edit sequences are an intuitive, operational concept that accounts for the

differences between trees. However, the infinite number of edit sequences that

can transform one tree into another make theoretical observations intricate.

Again inspired by the sequence edit model, Tai extended the concept of traces,

known from the sequence edit model [213], to trees, commonly referred to as

mappings.

Mappings A mapping establishes a one-to-one correspondence of nodes in

T1 and T2 which preserves the sibling and ancestor relation of nodes. For-

mally, a mapping between trees T1 and T2 is defined by a triple (M, T1, T2)

where M ⊆ V (T1)×V (T2) such that for all (v1, w1), (v2, w2) ∈M the follow-

ing holds:

v1 = v2 iff w1 = w2 (one-to-one correspondence)

v1 is ancestor of v2 iff w1 is ancestor of w2 (ancestor preservation)

preT1
(v1) < preT1

(v2) iff preT2
(w1) < preT2

(w2) (sibling preservation)

Let V (T1)\M and V (T2)\M be the nodes in T1 and T2 that are not mapped

by M , respectively. The cost of a mapping is given by:

δ(M) =
∑

(v,w)∈M

v → w +
∑

v∈V (T1)\M
v → λ +

∑
w∈V (T2)\M

λ→ w (2.7)

The following lemma shows that mapping are equivalent to edit-sequences.

Lemma 2.1. Given an edit-sequence E transforming T1 into T2, there exists

a mapping from T1 to T2 such that δTE(M) ≤ δTE(E). Conversely, for any

mapping M , there exists an edit-sequence such that δTE(E) = δTE(M).

Proof. See Proof of Lemma 2 in [240].
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Hence, the edit distance between trees can be defined likewise by

δTE(T1, T2) = min{δ(M) |M is a mapping from T1 to T2}. (2.8)

Isomorphic Subforests A third definition of the edit distance between

trees is more related to graph theory. Forests F1 and F2 are isomorphic,

denoted by F1
∼= F2 if they can be transformed into each other simply by

applying the relabel -function. For isomorphic forests, there exists a corre-

sponding mapping Mi including all nodes in F1 and F2. Such a mapping Mi

is denoted an isomorphism. For some D ⊆ V (T ), T \ D denotes the forest

that results from applying the delete-function to all nodes in D to T . This

definition, allowing isomorphic subforests instead of isomorphic subtrees, is

important since a valid mapping between trees can correspond to an isomor-

phic subforest. The edit distance between T1 and T2 can then be defined

as

δTE(T1, T2) = min{δTE(Mi) +
∑
v∈D1

v → λ +
∑

w∈D2

λ→ w |

D1 ∈ V (T1), D2 ∈ V (T2) such that T1 \D1
∼= T2 \D2}. (2.9)

It is obvious that this definition is equivalent to the definition of a map-

ping (2.8) and, consequently, to the edit sequence based definition. Figure

2.7 shows an example of a mapping and the correspondence to isomorphic

subforests.

Algorithms Algorithms that calculate the tree edit distance generally build

upon the mapping concept since the number of mappings for given trees

is finite. The first proposed algorithm is due to Tai and requires O(|T1| ·
|T2| · leaves(T1)

2 · leaves(T2)
2) time and space. It follows the strategy of ex-

tending mappings from the root of a tree to its leaves. A faster and much

simpler algorithm is due to Zhang & Sasha (Zhang-Shasha Algorithm) and

improves the time complexity to O(|T1| · |T2| · min{leaves(T1), depth(T1)} ·
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T1
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T2a

b c d

T3

Figure 2.7: The dashed lines indicate the mapping M =
{(a, a), (b, b), (c, c), (d, d)} of T1 and T2. T3 shows the maximum isomorphic
subforest (here a tree) that is obtained by deleting node x in T1 and node y in
T2. The edit sequence x → λ, λ → y together with the sequence of trees T1, T3, T2

determines the corresponding edit process.

min{leaves(T2), depth(T2)}) and the space complexity to O(|T1| · |T2|) [240].

In the worst case, which is a tree that grows linear in the number of leaves

and its depth, the time complexity is in O(|T1|2 · |T2|2). Special algorithms

for the tree edit distance under a unit cost scheme are studied in [181]. The

parallelization of tree edit algorithms is considered in [237, 239]. The average

runtime of the Zhang-Shasha Algorithm for RNA secondary structure trees

turned out to be O(|T1|
3
2 · |T2|

3
2 ) which essentially means that it is cubic

[39]. Klein improved the worst case runtime of the tree edit algorithm to

O(|T1|2 · |T2| · log |T2|) by applying a divide and conquer strategy (Klein’s

Algorithm) [102]. An analysis of the Zhang-Shasha Algorithm and Klein’s

Algorithm in a general framework of cover strategies is given by Dulucq

& Touzet [40]. Moreover, they present an improvement of Klein’s strategy

which can result in a better practical runtime. A different strategy is fol-

lowed by Chen, the tree edit problem is reduced to a matrix multiplication

problem and is solved by using results in this field [21]. This algorithm runs

in O(|T1| · |T2|+min{leaves(T1)
2 · |T2|+ leaves(T1)

2.5 · |T2|, leaves(T2)
2 · |T1|+
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leaves(T2)
2.5 · |T1|}) and improves the time complexity for certain kind of

trees in comparison to Klein’s algorithm, e.g. if one of T1 and T2 is thin and

deep.

Variants Touzet gave a definition of gaps in a tree [207]. The idea is to

consider contiguous gaps as a single large gap where the term contiguous is

equivalent to our definition of a tree pattern. They study convex scoring

functions for gaps, that is: gapscore(T1 ◦ T2) ≤ gapscore(T1) + gapscore(T2)

where T1 and T2 are tree patterns and T1 ◦ T2 means that T2 is attached to

a leaf node of T1. They proved that the calculation of the tree edit distance

with gaps for convex gap scores is a NP-hard problem.

Tree Alignment Distance

The tree alignment distance was introduced by Jiang et al. [95]. My cen-

tral notion is the following generic view of an alignment: An alignment

of two structures with labels from some alphabet Σ is the same type of

structure with labels from the alignment alphabet Σ2
λ. Labels of the form

(α, β), (α, λ), (λ, β) where α, β ∈ Σ denote the edit operations relabel , delete,

and insert , respectively. Applying this general concept to trees, a tree align-

ment A is an element of T (Σ2
λ). Its component-wise projections A|1 and A|2

are elements of T (Σ ∪ {λ}). For some T ∈ T (Σ ∪ {λ}), π(T ) ∈ F(Σ) is

the forest that results from the deletion of all nodes v with label(v) = λ.

Formally3:

π(T ) = T \D where D = {v | label(v) = λ} (2.10)

The following equation formally defines the notion of alignment of trees.

A ∈ T (Σ2
λ) is an alignment of trees T1, T2 ∈ T (Σ) iff

T1 = π(A|1) and T2 = π(A|2). (2.11)

3See the definition of T \D on Page 34.
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Figure 2.8: A is an alignment of T1 and T2.

Note that this definition forbids elements of T (Σ2
λ) where the deletion of a

root node results in a forest (A forest alignment model will be introduced in

Section 3.2). Figure 2.8 shows an example of a pairwise tree alignment. The

cost δ of an alignment A is the sum of the costs of its node labels, that is:

δ(A) =
∑

v∈V (A)

δ(label(v)). (2.12)

The alignment distance between T1 and T2 is the minimum cost that an

alignment of T1 and T2 can achieve. An alignment of T1 and T2 is optimal if

it achieves this score. Formally, the alignment distance δTA between trees T1

and T2 is defined as:

δTA(T1, T2) = min{δ(A) | A is an alignment of T1 and T2} (2.13)

For each alignment it is possible to construct a corresponding edit sequence

and a mapping. The converse does not hold in general: Consider the mapping

in Figure 2.7. In this mapping, nodes labeled with “c” are mapped to each
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other. Thus, in a possible alignment there must exist a node labeled with

“c, c”. Then, this node must be the son of the nodes labeled with “x, λ” and

“λ, y”. This is in contrast to the definition of a tree since a node can have at

most one parent node in a tree. From this observation, it is clear that tree

alignments form a subset of tree edit distance mappings. For trees T1 and T2

holds δTE(T1, T2) ≤ δTA(T1, T2).

Since the edit sequence definition is equivalent to the mapping definition,

it follows that not each edit sequence has a corresponding alignment. Jiang

et al. claimed that an “alignment of trees actually corresponds to a restricted

tree edit in which all the insertions precede all the deletions” [95]. This is

intuitive, but a formal proof is missing.

I now demonstrate that δTA does not satisfy the triangle inequality of

the metric axioms: An arbitrary edit sequence can be divided into two edit

sequences where the one includes all insert- and the other all delete- and

relabel-operations. Assuming Jiang et al.’s claimed property of alignment

compatible edit sequences (see above), the divided edit sequences are com-

patible with an alignment. From this and the fact that the tree edit distance

can be less than the tree alignment distance follows that it does not satisfy

the triangle inequality. Hence, the tree alignment distance is not a metric.

See Figure 2.9 for an example.

I am not aware of a constrained mapping definition that corresponds to

alignments, in literature.

Isomorphic Supertree A graph theoretical definition of the tree align-

ment distance is based on tree isomorphisms. In this context, the minimum

possible distance between isomorphic trees that result from the insertion of

“λ” labeled nodes in the original trees is sought. The forests that are con-

sidered by this procedure are isomorphic supertrees. Nodes that are labeled

with “λ, λ” should naturally score 0. Clearly, an overlay of such isomorphic

superforests and the deletion of possible “λ, λ” labeled nodes produces an

alignment and, hence, the models define the same distance.
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Figure 2.9: Consider the unit cost function, the triangle inequality of the tree
alignment distance is not satisfied since δTA(T1, T2) 6≤ δTA(T1, T3) + δTA(T3, T1).
In the tree edit model the triangle inequality is satisfied.

Algorithms Together with the definition of the tree alignment distance,

Jiang et al. proposed an algorithm that computes this distance in O(|T1| ·
|T2| · (degree(T1) + degree(T2))

2) time which is still the asymptotical best

algorithm [95]. For a fixed number d of possible deletions and insertions,

Jansson & Lingas presented an algorithm that calculates the tree align-

ment distance4 in O(n2 · log n · k3 · d2) where n = max{|T1|, |T2|} and k =

max{degree(T1), degree(T2)} [92].

Variants Wang & Zhao make three interesting contributions considering

the tree alignment distance for RNA structure comparison [221]:

1. They provide a model for the tree alignment distance including gaps

where the notion of gaps in a tree corresponds to tree patterns as

done in [207]. However, Wang & Zhao consider a simpler gap score

function where the score of a gap is a constant function. They derive

4Precisely, the similarity version.
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an algorithm from Jiang et al.’s algorithm that computes the alignment

distance, involving gap scores, in the same time complexity.

2. They present a modified version of Jiang’s algorithm that improves the

space complexity to O(degree(T1)·log |T1|·|T2|·(degree(T1)+degree(T2)))

while having the same time complexity as the Jiang algorithm. How-

ever, an optimal alignment can not be obtained by a straightforward

backtracking procedure. As space is crucial in their application they

use a naive algorithm that raises the time complexity to O(|T1|2 · |T2| ·
(degree(T1) · degree(T2))

2) while achieving their improved space com-

plexity.

3. They consider the problem of parametric tree alignment which was

studied earlier for sequences [71] and gives clues to the parameter space

of tree alignments. In particular, the scoring of edit operations is of-

ten not deducible from the problem and therefore somewhat arbitrary.

Parametric alignment partitions the parameter space into regions such

that in each region any alignment, that is optimal for some choice of

parameters inside the region, is optimal throughout that entire region

and nowhere else. A software to visualize and explore the parameter

space is also provided.

Isolated Subtree Distance

The isolated subtree distance was first proposed in [198]5 and is also referred

to as the structure respecting edit distance or structure preserving mapping

distance. Intuitively, it restricts mappings such that two separate subtrees

in T1 are mapped to two separate subtrees in T2. Alternatively formulated,

trees can only be mapped to trees and not to forests.

5In [198], Tanaka & Tanaka refer to an earlier publication that introduce this dis-
tance [197]. As it is written in Japanese I was not able to validate this. Further early
contributions in the field of tree editing, again in Japanese, are given in [1, 193–196].



2.5 RNA Structure Comparison 41

Mappings A mapping M between trees T1 and T2 is an isolated subtree

mapping if for all (v1, w1), (v2, w2), (v3, w3) ∈M holds:

lca(v1, v2) = lca(v1, v3) iff lca(w1, w2) = lca(w1, w3)

(isolated subtree condition)

The isolated subtree distance δTI between T1 and T2 is the minimum cost that

an isomorphic subtree mapping between them can achieve. Formally,

δTI(T1, T2) = min{δ(M) |M is an isolated subtree mapping

between T1 and T2}. (2.14)

Figure 2.10 shows an example of a mapping that is not an isolated subtree

mapping, but corresponds to an alignment. The metric properties of the

isolated subtree distance are proven in [236].

Algorithms Tanaka & Tanaka proposed an algorithm that computes the

isolated subtree distance in O(|T1| · |T2| · min{leaves(T1), leaves(T2)}) time

and O(|T1| · |T2|) space [198]. Zhang improved the worst case complexity to

O(|T1| · |T2|) time and space [236]. Later, Richter presented an algorithm that

computes the isolated subtree distance in O(|T1| · |T2| ·degree(T1) ·degree(T2))

time and O(|T1| ·depth(T2) ·degree(T2)) space. For balanced trees of bounded

degree k, i.e. each internal node has k children, this algorithm consumes less

space than Zhang’s Algorithm.

Top-Down Distance

Although I introduce the top-down distance at the end of this survey, its

introduction by Selkow opened the discipline of tree edit distances in 1977

[177]. He considered a tree edit distance model where insertions and deletions

are restricted to the leaves of a tree: Only leaves may be deleted, and a node

may be inserted only as a son of a leaf.



42 Introductory Material

a

x

b c

d

T1

a

b c d

T2

a, a

x, λ

b, b c, c

d, d

A

Figure 2.10: The mapping between T1 and T2 is not an isolated subtree mapping,
since it violates the isolated subtree condition. In particular, for T1 holds lca(b, c) 6=
lca(b, d) but for T2 holds lca(b, c) = lca(b, d). Even this mapping is not a valid
isolated subtree mapping, there exists a corresponding alignment A.

Mappings In terms of mappings, this has the consequence that whenever

w.l.o.g a node v in T1 is mapped to some node in T2, all ancestor nodes of

v must be included in the mapping. Given some mapping M between T1

and T2, let M |1 and M |2 be the nodes in T1 and T2 that are touched by M ,

respectively. Let ancsT (v) denote the set of all ancestor nodes of v. Formally,

a mapping M between trees T1 and T2 is a top-down mapping if the following

holds:

(v, w) ∈M ⇒ ancsT1(v) ⊆M |1 and ancsT2(w) ⊆M |2 (2.15)

The top-down distance δTD between T1 and T2 is the minimum cost that an
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top-down mapping between them can achieve:

δTD(T1, T2) = min{δ(M) |M is a top-down mapping between T1 and T2}
(2.16)

Recently, Valiente proposed a “dual” model, a bottom-up distance between

Trees, where deletions and insertions must begin at the root level [210].

Algorithms Selkows algorithm computes the top-down distance in O(|T1| ·
|T2|) time and space [170, 177]. The algorithm was implemented and applied

to the problem of identifying syntactic differences in [235].

2.5.4 Related Problems

Similar Consensus Problems

The similar consensus problem is the problem of finding a largest approxi-

mately common substructure in trees. For strings, a substructure is a sub-

word. For graphs, a substructure can be defined as a connected subgraph

which for trees results in my definition of a tree pattern. Let d be an integer,

the similar consensus problem is to find pattern trees T ′
1 of T1 and T ′

2 of

T2 such that the distance between T ′
1 and T ′

2 is within distance d and there

does not exists any other substructure T ′′
1 of T1 and T ′′

2 of T2 that satisfy

the distance constraint and |T ′
1| + |T ′

2| ≤ |T ′′
1 | + |T ′′

2 |. The similar consensus

problem was studied for the different distances that were presented in this

section:

distance time complexity studied in

tree edit distance
O(d2 · |T1| · |T2| · C (T1) · C (T2)),

where C (Ti) = min{leaves(Ti), depth(Ti)}
[214]

tree alignment distance O(|T1| · |T2| · (degree(T1) + degree(T2))
2) [215]

isolated subtree distance O(d2 · |T1| · |T2|) [216]

top-down distance O(d2 · |T1| · |T2|) [217]
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Tree Inclusion Problems

The tree inclusion problem is a variant of the general tree edit distance. In

terms of a maximum isomorphic subtree, a tree pattern Tp is included in a

target tree T if Tp can be obtained from T by node deletions. This corre-

sponds to an edit model that only supports the functions relabel and insert

where Tp is the first and T the second tree. Kilpäinen & Mannila presented

an algorithm that solves this problem in O(|Tp| · |T |) [98]. Improvements and

variations of their algorithm are proposed in [3, 20, 160]. The classic problem

of tree pattern matching is a restricted version of the tree inclusion problem.

The deletion of nodes in the target tree is only allowed for leaf nodes in T

(and the trees that result from such deletions), which is equivalent to subtree

removals in T . This corresponds to the tree inclusion problem in the domain

of Selkow’s top-down distance. Among others, substantial contributions are

reported in [28, 38, 86, 106, 119, 125, 157].

Zhang et al. considered the approximate tree matching in the presence of

variable length don’t cares (VLDC) [219]. The query tree can contain wild-

cards that may match multiple nodes. For example, symbol “|” substitutes

for a part of a path from the root to a leaf in the target tree. Symbol “^”

matches a path and all subtrees emanating from the nodes on that path.

Building upon that wildcards, the authors introduced a querying language

for inexact matching of trees.

2.5.5 Arc Annotated Sequences

The pure sequence based approaches to compare RNA secondary structures

are known to have the problem of violating the tree structure (see Section

2.5.2). On the other hand, tree edit based approaches are so far limited to

compare RNA secondary structures. Moreover, in the coarse grained tree

representation the meaning of tree edit operations in the process of editing

RNA structures is difficult to motivate biologically. In the natural tree re-

presentation, the tree edit model cannot account adequately for a deletion
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of a base-pair bond. This gave rise to the idea of incorporating structural

constraints into sequence alignment strategies.

The first structural refined sequence alignment algorithm was proposed

by Sankoff [172], although for the more sophisticated problem of folding and

aligning simultaneously. Bafna et. al. introduced the concept of RNA strings

which include both, the primary sequence and the secondary structure in-

formation [4]. Beside matching problems on RNA strings, they introduced

an alignment model for RNA strings. Evans generally studied annotation

schemes that add auxiliary information to a sequence. These can be taken

into account when the sequences are analyzed [45]. Evans introduced the

general notion of arc-annotated sequences. An arc is a link joining two dif-

ferent symbols of a sequence and can be used to represent a binary relation

between them. The definition of an arc-annotated sequence complies to the

definition of a tertiary structure6 (see Section 2.2). As a natural extension

of the longest common subsequence problem, Evans introduced the longest

arc-preserving common subsequence problem [45]. This problem is not only

studied extensively due to its potential application for RNA structure com-

parison, but also because it has a compact definition, is easy to understand

and turned out to be NP-hard even for RNA secondary structures [114].

Zhang et al. introduced a further edit model for RNA structures includ-

ing tertiary interactions [242]. For RNA secondary structures, their model

corresponds to the tree edit model in conjunction with the natural tree re-

presentation. Finally, Jiang et al. suggested a set of edit operations for RNA

structures that are biological motivated and form a superset of edit opera-

tions of the formerly mentioned models [94]. I introduce this general edit

model for RNA structures first and use its terminology to give a uniform

description of the other models.

6A general arc-annotated structure additionally allows a connection of one to many
characters. I neglect this case since complex interactions like base-triplets are beyond the
scope of this thesis.
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AAAGAAUAAUAUUACGGGACCCUAUAAACGAAAACCG
AGAGAAUAACAUU-CGGGACCCUAUAAAC-AAAAC-G

base-pair mismatch base-pair deletion
base-pair altering

base-pair match

base-pair breaking

Figure 2.11: Structural edit operations of Jiang et al.’s general edit model for
RNA structures. Sequence edit operations that do not involve base-pairs are omitted
in this figure.

A General Edit Model for RNA Structures

Jiang et al. proposed a set of edit operations for RNA structures that are

motivated by the evolution of structural RNA [94].

Edit operations An edit operation that affects the primary and the sec-

ondary structure transforms an RNA structure (S1, P1) into a structure

(S2, P2) by modifying both, S1 and P1. Since a deletion or insertion of a base

in S1 requires to “adjust” the indexes of the base-pairs in P1, the definition of

edit operations is intricate on that level. I introduce a terminology for struc-

tural edit operations that is consistent with the terminology of the sequence

and tree edit model. To uniquely define structural edit operations, the posi-

tions that are affected by the operation must be specified as well as the new

base for base-replacements. For convenience, I define the rules in terms of

their effect on sequence and structure. The parameterized edit operations can

be derived from this description. Let be u, v, w ∈ Σ∗
RNA and a, b, c, d ∈ ΣRNA.

Let the concatenated string u′v′w′ be a dot-bracket sequence in spirit of the

Vienna strings that defines an RNA structure. Moreover, let the brackets

“(” and “)” uniquely identify a base-pair. Note, the unique correspondence

of a bracket string to an RNA structure requires different pairs of brackets in

the presence of tertiary interactions. The symbol “.” denotes an unpaired

base. I arrange structure and sequence such that the structure is shown on

top of the sequence. The changes by an edit operation are indicated as bold
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characters.

A family of structural conserved RNA molecules does often exhibit com-

pensatory base mutations in stem regions. The replacement of a base-pair is

modeled by the following edit operation:

u′ ( v′ ) w′

u a v b w
7→ u′ ( v′ ) w′

u c v d w
(base-pair replacement)

This notation is read as follows: (S1, P1) is edited to (S2, P2) where S1 =

uavbw, P1
∼= u′(v)w′, S2 = ucvdw′, and P2

∼= u′(v′)w. The operator ∼=
means that the lefthand set of base-pairs is compatible with the base-pair

pattern given by the righthand string. If a = c and b = d then the operation

is also referred to as a base-pair match, otherwise it is denoted a base-pair

mismatch. The disappearance of a base-pair, i.e. two pairing bases are lost

during evolution, is given by:

u′ ( v′ ) w′

u a v b w
7→ u′ v′ w′

u v w
(base-pair deletion)

During the evolution of an RNA structure, it can happen that the bond

between two bases becomes too weak due to mutations in other regions of

the structure. Accordingly, the disappearance of a base-pair bond is among

the structural edit operations:

u′ ( v′ ) w′

u a v b w
7→ u′ . v′ . w′

u a v b w
(base-pair breaking)

The scenario where a base-pair bond disappears because one of the pairing

bases is deleted is modeled by either of the following two edit-operations.

u′ ( v′ ) w′

u a v b w
7→ u′ v′ . w′

u v b w
(base-pair altering right)
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u′ ( v′ ) w′

u a v b w
7→ u′ . v′ w′

u a v w
(base-pair altering left)

Bases that are not paired undergo the classical sequence edit operations:

u′ . v′

u a v
7→ u′ . v′

u c v
(base-replacement)

u′ . v′

u a v
7→ u′ v′

u v
(base-deletion)

Each of the edit operations can also be read and applied from right to left.

For edit operations that involve the deletion of bases or base-pairs this defines

the corresponding insert versions. Figure 2.11 shows the edit operations in

an alignment on the sequence and structure level.

The concept of edit-sequences can be naturally applied: Let E be an

edit-sequence e1, e2, . . . , en. E transforms (S, P ) into (S ′, P ′) if there is

a sequence of structures (S0, P0), (S1, P1), . . . , (Sn, Pn) such that (S, P ) =

(S0, P0), (S ′, P ′) = (Sn, Pn) and (Si, Pi) results from the application of ei to

(Si−1, Pi−1) for i ∈ [1, n]. Let δ be a cost function defined on edit operations.

The cost of an edit-sequence E is the sum of costs of its edit operations,

that is: δ(E) =
∑n

i=1 δ(ei). The general edit distance δGE between structures

(S1, P1) and (S2, P2) is the minimum cost that is necessary to transform

(S1, P1) into (S2, P2). Formally,

δGE((S1, P1), (S2, P2)) = min{δ(E) | E is an edit sequence

transforming (S1, P1) into (S2, P2)}. (2.17)

Algorithms Jiang et al. provided algorithms and complexity results for

a fixed scoring scheme, i.e. the cost of an edit operation does not account
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for the involved bases, or equivalently, it is a constant [94]. Computing δGE

between (S1, P1) and (S2, P2) where P1 is a tertiary structure and P2 = ∅ is

MAX SNP-hard. For a restricted model that omits the base-pair altering and

base-pair deletion edit operations, they propose an algorithm that requires

O(|S1|2 · |S2|2) time. If P1 is a secondary structure and P2 = ∅ the general

(unrestricted) problem is solvable in O(|S1| · |S2|) time. The case when both

P1 and P2 are secondary structures is not considered in [94]. I will show in

Section 2.5.5 that the the general edit model with a certain scoring function

is NP-hard.

Bafna et al.’s Model

Bafna et al. introduced a sequence alignment problem for RNA secondary

structures that maximizes both, base and base-pair replacement scores [4].

Let α(a, b) be the score for replacing base a by base b and let β(a◦b, c◦d) be

the score for relabeling a base-pair a◦b by base-pair c◦d. Given an alignment

A of sequences S1 and S2, I define ASi
to be the ith row in A. Let gapSi

[j]

be the number of gaps that are inserted in Si up to the jth position in A.

Formally:

gapSi
[j] =


j if ASi

[j] =’λ’,

|{l | ASi
[l] =’λ’ and l ≤ j}| otherwise.

Bafna et al. do the following trick to for a compact definition of their model:

They define Si[0] =′ λ′. If there is a gap in S1 at position i, S1[i − gapS1
[i]]

evaluates to “λ” which corresponds to an insertion. The corresponding holds

for S2. Let m be the number of columns in an alignment A. The score of A

is the sum of scores of the aligned bases, be they paired or unpaired, and the

scores of the aligned base-pairs. The sequence score α is defined as

α(A) =
∑

1≤i≤m

α(S1[i− gapS1
[i]], S2[i− gapS2

[i]]).
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The base-pair scoring is defined as:

β(A) =
∑

1≤i≤j≤m

β(S1[i− gapS1
[i]]◦S1[j − gapS1

[j]], S2[i− gapS2
[i]]◦S2[j − gapS2

[j]])

where (i− gapS1
[i], j − gapS1

[j]) ∈ P1

and (i− gapS2
[i], j − gapS2

[j]) ∈ P2.

Bafna et al.’s score σBAF is the sum of these scores:

σBAF(A) = α(A) + β(A) (2.18)

The similarity score of secondary structures (S1, P1) and (S2, P2) is then given

by:

σBAF((S1, P1), (S2, P2)) = max{σBAF(A) | A is an alignment of S1 and S2}
(2.19)

Note that S1 and S2 are sequences and, thus, A is a sequence alignment.

Algorithms Bafna et al. provide an algorithm that computes

σBAF((S1, P1), (S2, P2)) in O(|S1|2 · |S2|2).

Bafna et al.’s Model Revisited Bafna et al.’s model has been criti-

cized for not systematically treating base-pairs as basic units [45, 94]. I show

that their model can be expressed in the general edit model with a special

scoring scheme: Function α scores base replacements, base-insertions and

base-deletions. The scoring contributions are α(a, b), α(λ, b) and α(a, λ), re-

spectively. Clearly, function β in Equation (2.18) does only account for

base-pair replacements. In this case, the function α contributes additionally

to the overall score for the aligned base-pairs. Thus, the score for a base-pair

replacement of a◦b with c◦d is β(a◦b, c◦d) + α(a, c) + α(b, d). Otherwise, a

base, be it paired or unpaired, can be aligned with any other base and the

scoring contributions for aligning a base a with a base b is α(a, b). A scoring

contribution of 0 for the base-pair breaking operation allows to align paired
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bases to unpaired bases without a penalty. The deletion of a base-pair is

composed of a base-pair breaking and two base-deletions. The correspond-

ing holds for the base-pair insertion. A base-pair altering is composed of a

base-pair breaking, a base-match and a base-indel. Summarizing these ob-

servations, σBAF can be calculated by employing the following scoring scheme

for Jiang et al.’s general edit model:

edit operation score

base replacement α(a, b)

base indel α(a, λ) and α(λ, b)

base-pair replacement β(a◦b, c◦d) + α(a, c) + α(b, d)

base-pair breaking 0

I conclude that Bafna et al.’s model is a proper structural alignment model

which means that it can be expressed in Jiang et al.’s general edit model.

Whether the scoring of edit operations is a good choice or not remains to be

analyzed.

The Longest Arc-Preserving Common Subsequence Problem

The longest arc-preserving common subsequence problem is an extension of

the classic longest common subsequence problem. A sequence S ′ is a subse-

quence of a sequence S if S ′ can be obtained from S by deleting characters.

Given a set of sequences S1, S2, . . . , Sn, the longest common subsequence prob-

lem asks for the longest sequence S ′ that is a subsequence of S1, S2, . . . , Sn.

Mostly driven by the application of RNA structure comparison, includ-

ing tertiary structures, Evans generalized the problem for arc-annotated se-

quences [45]. Let (S1, P1) and (S2, P2) be arc annotated sequences which

means that P1 and P2 can be tertiary structures throughout this section.

A longest common subsequence S ′ of S1 and S2 induces a mapping between

characters in S1 and S2 by associating the characters ik in S1 and jk in S2, that

correspond to the kth position of S ′. Suppose M = {(i1, j1), (i2, j2), . . . , (i|S′|, j|S′|)}
is such a mapping. The longest common subsequence S ′ is arc-preserving if
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the arcs touched by the mapping are preserved. That is, for any (ik, jk), (il, jl) ∈ M

holds:

(ik, il) ∈ P1 iff (jk, jl) ∈ P2. (2.20)

The longest arc-preserving common subsequence (LAPCS) problem is to find

a longest common subsequence S ′ that is arc-preserving.

Different instances of the problem, depending on the complexity of the arc set

(here the complexity of RNA structures), are studied in the literature. The

relevant instances in the context of RNA sequence and structure comparison

are LAPCS(P1, P2) where Pi belongs to one of the following classes:

• PLAIN: no structure, i.e. Pi = ∅

• NESTED: Pi is a secondary structure

• CROSSING: Pi is a tertiary structure

I follow this terminology since it is established in the literature concerning

LAPCS problems [2, 45, 93, 114]. I review the most important results and

comment on the LAPCS(NESTED,NESTED) problem which is particularly

interesting for comparing RNA secondary structures in the following.

Algorithms LAPCS(PLAIN,PLAIN) is the well known longest common

subsequence problem which can be solved in O(|S1| · |S2|) [76]. If the num-

ber of sequences is unrestricted this problem is NP-complete [124]. Oth-

erwise, if at least one structure is CROSSING, the problem is NP-hard

[45]. A maximization optimization problem, such as the LAPCS problem, is

α-approximable if there exists a polynomial time algorithm A and a positive

number α such that the output of A is within a factor 1
α

of the optimum. If

at least one structure is CROSSING. the LAPCS problem is also MAX SNP-

hard which has the consequence that it is not approximable within α = 1+ ε

for some positive ε [93]. A 2-approximation algorithm for these problems is

proposed in [93].
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The probably most relevant problem in the context of RNA structures is

the LAPCS(NESTED,NESTED) problem to compare RNA secondary struc-

tures. The NP-hardness of this problem was shown in [114].

A LAPCS(NESTED,NESTED) that can be obtained by at most k1 and k2

character deletions (together with the corresponding arcs) can be calculated

in O(3.31k1+k2) [2]. A polynomial time algorithm for the LAPCS(NESTED,

PLAIN) problem, running in O(|S1| · |S2|3) time, is presented in [93].

LAPCS(NESTED,NESTED) Revisited A longest arc-preserving com-

mon subsequence of secondary structures (S1, P1) and (S2, P2) maps charac-

ters from S1 to S2. In the following, I observe which edit operations of

the general edit model are compatible with such a mapping, resulting in an

equivalent edit based description of the LAPCS(NESTED,NESTED) prob-

lem. The arc-preserving property (2.20) of a longest arc-preserving common

subsequence guarantees that if both bases of a base-pair are mapped, then

they must be mapped to bases that are also paired. In terms of the general

edit model for RNA structures this means that there must exist a base-

pair match operation but no base-pair breaking. The base-pair match adds

two new characters to the longest arc-preserving common subsequence. The

base-pair breaking operation can be excluded by assigning an infinite nega-

tive score to it. If only one base of a base-pair is mapped, then the other base

must not exist in the mapping. This adds one new character to the longest

arc-preserving common subsequence. The arc-altering operations model ex-

actly this scenario. Clearly, a base-pair deletion, i.e. both partners and the

connecting arc are deleted, is also compatible with a LAPCS mapping. If a

character is not paired, it can be mapped (matched) to another unpaired base

(the mapping to a paired base is treated by the base-pair altering function)

or not appear in the mapping. The sequence edit operations base-match and

base-indel handle these cases. Clearly, a longest arc-preserving common sub-

sequence does not allow any mismatches and, hence, the scoring contribution

for those cases must be −∞. Summarizing these observations, the length of
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a LAPCS can be calculated in Jiang et al.’s general edit model using the

following scoring scheme:

edit operation score

base match 1

base mismatch −∞
base indel 0

base-pair match 2

base-pair mismatch −∞
base-pair indel 0

base-pair breaking −∞
base-pair altering 1

The LAPCS can be derived from the resulting alignment. The complexity of

the LAPCS(NESTED,NESTED) problem was an important question until

Lin et al. proved it to be NP-hard [114]. Since the computation of the general

edit distance using the above scores solves the LAPCS problem, I conclude

that the computation of the general edit distance for RNA secondary struc-

tures is a NP-hard problem for the above scoring scheme. I assume that the

complexity results from the presence of the base-pair altering operations. If

those must be considered explicitly, i.e. the score is not build from simpler

edit operations, the number of resulting subproblems grows exponentially.

This remains to be further analyzed.

Zhang et al.’s Model

Zhang et al. considered RNA secondary structure trees in the natural re-

presentation that are compared under the tree edit and alignment model in

[238]. The entities of the tree nodes are bases and base-pairs (see Section 2.3).

Thus, the classic edit operations replace, insert and delete can be applied to

either an unpaired base or a base-pair. A replacement of a base by a base-

pair is prohibited. Ma et al. extended this model for general RNA structures

by extending the mapping concept of the tree edit model for general RNA
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structures which is the central definition of this line of work [123, 222, 242].

The essential extension of the mapping is a new condition for “crossing”

base-pairs. Intuitively, the crossing pattern of tertiary interactions should

be conserved. I do not go into the details of their mapping definitions, since

their model was constructed on the assumption of certain edit operations on

structures. I will revisit their models in terms of Jiang et al.’s general model.

Algorithms Computing δZHA((S1, P1), (S2, P2)) where P1 and P2 are ter-

tiary structures is MAX-SNP hard [123]. Ma et al. considered a sim-

pler edit model for tertiary structures which restricts mappings between

tertiary structures to preserve secondary structure. Essentially, their al-

gorithm deletes tertiary structure interactions such that the resulting sec-

ondary structure alignment is optimal. Let stem(P ) be the number of stack-

ing regions (stems) in an RNA structure (S, P ). Their algorithm requires

O(stem(P1) · stem(P2) · |S1| · |S2|) time and O(stem(P1) · stem(P2)) space.

Collins et al. presented a variant of δZHA with the constraint that bases and

base-pairs can be specified that must be replaced by each other. They do

not improve the complexity, but their technique reduces the search space and

consequently the runtime [29]. Moreover, they propose a two step strategy

for tertiary structures: In the first step, tertiary structures are ignored re-

sulting in a secondary structure alignment. In the second step, the secondary

structure alignment is used to restrict the tertiary structure alignment.

Zhang et al.’s Model Revisited The edit operations in Zhang et al.’s

edit model can be applied to either unpaired bases or base-pairs. According to

Jiang et al.’s model the structural edit operations are: base-pair replace and

base-pair indel. The sequence counterparts are the operations base-replace

and base-indel. An edit operation that works on both unpaired base and a

base-pair is not defined in their model. Thus, there is no base-pair altering

and base-pair breaking operation. An infinite negative score for these edit

operations is sufficient to calculate Zhang et al.’s model under the general

edit model for RNA structures:
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edit operation score

base match αm

base mismatch αmm

base indel αid

base-pair match βm

base-pair mismatch βmm

base-pair indel βid

base-pair breaking −∞
base-pair altering −∞

2.5.6 Graphs

The most general mathematical construct to model relations between certain

objects is a graph. Clearly, an RNA tertiary structure can be modeled as

a graph where the vertices are bases and the edges are interactions between

them. Note, this concerns topological rather than geometric aspects of RNA

molecules. For example, such a graph abstracts from the relative angles

between stems.

Edit Models

Wan et al. considered the generalization of the tree edit model for graphs,

these are approximate graph isomorphism and subgraph isomorphism [218].

Both are known to be NP-complete. They outline an application where RNA

structures (not restricted to secondary structures) are compared under this

model.

Eigenvalue Spectrum of the Laplacian Matrix

In the Schlicks’s group two simpler types of graphs are considered [47, 52, 53].

The one are tree graphs, corresponding to a collapsed form of the natural

tree representation (see Section 2.3), where collapsed means that connected

non-branching nodes are merged to one node (ignoring labels). The other
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is dual graphs. A dual graph can represent all tree like RNA structures as

well as pseudoknotted structures. They focus on the problem of quantita-

tively characterizing known structural motifs to identify missing or favored

motif topologies. For the topological classification of structures they consider

the eigenvalue spectrum of the Laplacian matrix obtained from the graph’s

adjacency matrix. In particular, the second eigenvalue reflects the overall

pattern of connectivity for a graph. Barash used the second eigenvalue to

detect structural changes in RNA that are caused by single point mutations

[6].

2.6 Discussion

The multitude of structure comparison models presented in Section 2.5 gives

rise to the question why this thesis presents another RNA structure com-

parison model. Otherwise, this shows that RNA structure comparison is an

active research field and the problem is not sufficiently solved.

Nowadays, the detection of locally structure conserved motifs in RNA

molecules is a hot topic in molecular biology. On the algorithmic side, the

problem of finding local similar structures, given RNA secondary structures,

has not been studied thoroughly. The similar consensus problem for trees is

the only contribution, I am aware of, to detect local similar regions in RNA

secondary structures (see 2.5.4). However, this model calculates distance

instead of similarity. As the distance between equal substructures is always

zero, the size of substructures must be considered additionally. Hence, in the

similar consensus problem, the largest subtree within some distance threshold

is sought. A similarity version in spirit of the Smith-Waterman algorithm

[184] for trees would be more convenient to calculate local similar structures.

Moreover, the similar consensus problem consideres subtrees. This is too

restrictive since neighboring subtrees should be considered as local structures

as well, i.e. two adjacent stems in a multiloop could be the most similar

substructure which corresponds to two different subtrees.
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Another problem that has not been addressed thoroughly is the prob-

lem of comparing multiple RNA secondary structures. As multiple sequence

alignments emphasize sequence conserved regions, multiple structure align-

ments emphasize structural conserved regions. A multiple structural align-

ment is useful for phylogenetic analyses, identification of conserved motifs,

and domain and structure prediction.

In the follwowing, I motivate my choice of the tree alignment model to

address the above problems. The model that I consider should have the

following properties:

• a biologically reasonable edit model,

• suitable for a generalization to multiple structures,

• build upon an adequate data structure for local similarity problems,

• allow algorithms with a low computational complexity.

Base-pair distances are suitable to compare structures that have the same

length, i.e. the same number of nucleotides. If the structures to be compared

have a different length, edit based approaches provide a better distance mea-

sure.

The approach to apply classical sequence alignments to string represen-

tations of RNA secondary structures is more a historical remark. At the

time these were invented, structural alignment strategies were just about to

emerge. More elaborate models are edit and alignment models for trees and

arc-annotated sequences.

Unlike sequences, trees are convenient to express substructures of RNA

secondary structures as coherent parts of the data structure. In explanation,

adjacent base-pairs are neighbored in a tree while in a sequence they are

split in the 5′ and 3′ bases connected by arcs. From the viewpoint of being

able to generalize the model to align multiple structures, the tree alignment

model has an interesting property. Alignments of trees are trees. Thus, a tree

alignments can, again, be aligned in the tree alignment model. This makes
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virtually every progressive strategy known for the calculation of multiple se-

quence alignments applicable to the calculation of multiple tree alignments.

Another property of tree based approaches is that the chosen tree represen-

tation can control the level of abstraction of RNA secondary structures. In

the end, the time complexity for calculating tree alignments meets practical

requirements.



Chapter 3

Algorithms for Global and

Local Forest Similarity

The tree alignment distance and a dynamic programming algorithm that cal-

culate this distance was introduced by Jiang et al. [95]. In this chapter, I

extend Jiang et al.’s tree alignment model to forests. Unlike Jiang et al., I

consider the similarity version of the alignment problem and introduce new

local similarity variants. A uniform, purely forest based notation makes, as

I believe, the understanding of the concepts easier. I systematically identify

the subproblems that must be considered to get an overall solution. Based

on these observations, I provide an efficient tabulation technique for interme-

diate results. The resulting algorithms are more compact and, hence, easier

and faster to implement. From a practical viewpoint, RNA secondary struc-

tures have a forest structure in general and the introduction of a virtual root

node requires special cases for the application of a tree distance. In partic-

ular, the scoring function must guarantee to match the virtual root nodes

and in the structural alignment these must be omitted. It is much more

convenient to compare forests directly. I have published central ideas of this

Chapter in [77].
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3.1 Preliminaries

Recall that a forest F is a sequence of trees. Let len(F ) be the number of

trees in F , i.e. the length of sequence F . Let i:F be the forest consisting

of the first i trees of F (prefix ), while F :j is the forest consisting of the last

j trees of F (suffix ). i]F [j denotes the forest F without the prefix i:F and

the suffix F :j (subword). I use this notation, since the identification of a

subword as a prefix of a suffix, e.g. i:F :j, could also be read as a suffix of a

prefix, which is ambiguous without introducing brackets. For each node v in

F , preF (v) is the index of v according to the left-to-right pre-order traversal

of F . I define F [i] to identify a node by its index, i.e. F [preF (v)] = v. If

F is not the empty forest, F⊥ is the root node of the first tree in F , that is

F [1]. I define F ↓ to be the forest consisting of the children trees of F⊥ and

F→ = F :(len(F ) − 1) to be the forest of the right sibling trees of F⊥. Note

that F ↓ and F→ can be empty forests. Throughout this section, I refer to

the two forests that are aligned as F and G.

3.2 Alignment of Forests

An alignment of trees is a tree. Following the general concept of an alignment

(see Section 2.5.3), an alignment of forests is a forest. The tree alignment

definition is generalized straightforward to forests as follows:

A ∈ F(Σ2
λ) is an alignment of forests F, G ∈ F(Σ) iff

F = π(A|1) and G = π(A|2). (3.1)

I consider the similarity version of the forest alignment which is important to

define local similarity variants of the problem (This will be further explained

in Section 3.4). The alignment similarity σFA of forests F1 and F2 is the

maximum score that an alignment of F1 and F2 can achieve. That is:

σFA(F, G) = max{σ(A) | A is an alignment of F and G}. (3.2)
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3.3 A Global Forest Alignment Algorithm

Jiang et al. presented an algorithm for the calculation of the tree align-

ment distance which has the best known worst case complexity O(|T1| · |T2| ·
(degree(T1) + Degree(T2))

2) [95].

The recursive nature of forests leads naturally to dynamic programming

algorithms. This sort of algorithms is structurally recursive and avoid recal-

culation of the same subproblem by tabulating intermediate results. Adher-

ing to the principles of algebraic dynamic programming [56, 58], I consider the

search space of a problem (all possible alignments) and its evaluation (e.g.

scoring, counting) separately. To derive a dynamic programming algorithm

from the search space observations, two question must be answered:

1. Which subproblems arise in the recursion scheme?

2. What is the order of calculation?

The answer to the first question identifies the relevant subforests of the prob-

lem. Thereupon, an index based notation that is necessary for an imple-

mentation based on matrix recurrences can be derived. The answer to the

second question is important to formulate an imperative algorithm. Clearly,

everything must be calculated before it is used1.

3.3.1 The Search Space of Forest Alignments

To calculate similarity of forests, all their alignments must be considered.

This set is the search space. The enumeration of all possible alignments of

two forests can be done in a structurally recursive fashion. Suppose A is an

alignment of F and G. Depending on label(A⊥), the possible forests A↓ and

A→ are determined. The following case analysis is based on Definition (3.1).

1The principle of referential transparency makes this obsolete in functional program-
ming languages like Haskell [155] which is exploited in Giegerich’s algebraic dynamic
programming approach [56].
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Lemma 3.1. Let A be an alignment of F, G ∈ F(Σ). If F or G are empty

forests, A is either the empty forest, or its labels are solely deletions or solely

insertions. If F and G are both non-empty forests, then label(A⊥) is of the

form (a, b), (λ, b) or (a, λ) for some a, b ∈ Σ. This leads to the following case

distinction:

1. If label(A⊥) = (a, b), then the following is true:

• a = label(F⊥) and b = label(G⊥),

• A↓ is an alignment of F ↓ and G↓ and A→ is an alignment of F→

and G→.

2. If label(A⊥) = (a, λ), then the following is true:

• a = label(F⊥),

• for some r ∈ [0, len(G)], A↓ is an alignment of F ↓ and r:G and

A→ is an alignment of F→ and G:(len(G) − r).

3. If label(A⊥) = (λ, b), then the following is true:

• b = label(G⊥),

• for some r ∈ [0, len(F )], A↓ is an alignment of r:F and G↓ and

A→ is an alignment of F:(len(F )− r) and G→.

Proof. Follows directly from Definition (3.1) and the definition of function π

in Equation (2.10).

Figure 3.1 gives a graphical view of Lemma 3.1. The search space of all possi-

ble alignments of F and G is determined by the Cases 1-3, and by all possible

choices of split position r in Cases 2 and 3. Scoring the alignments of the

search space follows the same structural recursive pattern. The similarity of

F and G is the maximum of the scores σ(a, b), σ(a, λ) and σ(λ, b), each added

to the similarity scores of the appropriate subforests. Figure 3.2 shows the

recursive formula for the calculation of the forest alignment similarity that
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F→ G→

A→

F ↓ G↓

A↓

a b

(a, b)

(a) Case 1

F→ r:G G:len(G) − r

A→

F ↓ G↓

A↓

a b

(a, λ)

(b) Case 2

Figure 3.1: Illustration of Case 1 and Case 2 of Lemma 3.1. The shaded triangle
symbolizes F ↓ and the shaded rectangle symbolizes F→. The prefix/suffix pairs of
G are indicated by the vertical line “splitting” G.

follows directly from this observation. Clearly, Bellman’s principle of opti-

mality is satisfied [9]. To turn our case analysis into a dynamic programming

algorithm, intermediate results must be tabulated.

3.3.2 Implementation based on Matrix Recurrences

The key notion for forest alignment problems (and also for the tree alignment

model) is the closed subforest:

A consecutive sequence T1, . . . , Tn of sibling trees in F

is a closed subforest (csf ) of F . (3.3)

A csf F ′ of F is maximal if it cannot be extended to the left or right,

formally, there is no csf F ′′ of F such that F ′ is a proper prefix or suffix

of F ′′. Clearly, the empty forest ∅ and forest F itself are csfs of F . It is

easy to see that if F ′ is a csf of F and F ′′ is a csf of F ′, then F ′′ is a

csf of F (closed subforest transitivity). The pairs of subforests that actually

arise in the recursive calculation of the tree alignment similarity, the relevant

subforests, are subject of the following Lemma.

Lemma 3.2. Let F̄ and Ḡ be maximal closed subforests of F and G, re-

spectively. The pairs of subforests that are relevant for the calculation of
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relabel(F, G) = δ(label(F⊥)→ label(G⊥)) + σFA(F ↓, G↓) + σFA(F→, G→)

delete(F, G) = δ(label(F⊥)→ λ) + max
r∈[0,len(G)]

{
σFA(F ↓, r:G) + σFA(F→, G:(len(G)− r))

}
insert(F, G) = δ(λ→ label(G⊥)) + max

r∈[0,len(F )]

{
σFA(r:F, G↓) + σFA(F:(len(F )− r), G→)

}

σFA(F, G) =




0 if F = ∅ and G = ∅
δ(label(F⊥)→ λ) + σFA(F ↓, ∅) + σFA(F→, ∅) if F 6= ∅ and G = ∅
δ(λ→ label(G⊥)) + σFA(∅, G↓) + σFA(∅, G→) if F = ∅ and G 6= ∅

max




relabel(F, G)

delete(F, G)

insert(F, G)

otherwise

Figure 3.2: Recursive function to calculate the forest alignment similarity σFA of
forest F and G.

σFA(F, G) due to Figure 3.2 have the form (F̄:j, k]Ḡ[l) and (j]F̄ [i, Ḡ:l).

Proof. Both pairs of csfs (F̄ :j, k]Ḡ[l) and (i]F̄ [j, Ḡ:l) where each of i, j, k, l

equals 0 represent the csf pair (F̄ , Ḡ). I consider all possible transitions to

subforests due to Lemma 3.1. These are:

• Case 1: (F ↓, G↓), (F→, G→),

• Case 2: (F ↓, k:G), (F→, G:l),

• Case 3: (i:F, G↓), (F:j, G→).

The following graph shows the pairs of csfs (F̄ : j, k]Ḡ[l) and (j]F̄ [i, Ḡ : l)

surrounded by boxes. The arrows indicate possible transitions targeting to

the index pair that is sufficient to represent the result of the transition.
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(F̄:j, l]Ḡ[k) (j]F̄ [i, Ḡ:l)

(F ↓, G↓)

(F→, G→)

(F ↓, r:G)

(F→, G:r)

(r:F, G↓)

(F ↓, G↓)

(F→, G→)

(r:F, G↓)

(F:r, G→)

(F ↓, r:G)

Each transition results in pairs of closed subforests that can be expressed in

one of the two forms. Thus, the subforests (F̄ :j, k]Ḡ[l) and (i]F̄ [j, Ḡ:l) are

sufficient to describe the relevant subforests. For all combinations of i, j, k, l,

the subforests (F̄ :j, k]Ḡ[l) and (i]F̄ [j, Ḡ:l) can be reached from the pair (F, G)

by a series of transitions. Hence, Lemma 3.2 describes exacltly the relevant

subforests.

It is obvious that each relevant subforest is a closed subforest. Note that

the converse does not hold, i.e. the pair of csfs (i]F [j, k]G[l) where each of

i, j, k, l is greater than 0 is not a relevant pair of subforests for the calculation

of σFA(F, G).

Tabulation

For a transparent description of my algorithms, I use a two stage mapping

βF · αF . The function αF provides a mapping from csfs of F to index pairs

and allows for efficient transitions from a csf to its relevant subforests. The

function βF maps these index pairs to linear table indices. In this way, I

reduce table dimension and space consumption in practice. For any non-

empty csf F ′ of F , I define

αF (F ′) = (preF (F ′⊥), len(F ′)). (3.4)

The empty forest is represented ambiguously by any index pair (i, 0). If (i, j)

is an index pair representing a csf , then i is called the node index and j the

length index.
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1

2 3

4 5 6

7 8

9 10

αF (F ′) = (3, 3)

αF (F ′↓) = (4, 3)

αF (F ′→) = (7, 2)

(3 + 1, nocF [3])

(rbF [3], 3 − 1)

F

Figure 3.3: This figure illustrates the closed subforest index pair representation.
The transitions of the csf F ′ to F ′↓ and F ′→ are indicated by the arrows which are
annotated by the corresponding calculations involving the tables nocF and rbF .

Let nocF [i] be the number of children of F [i] and let rbF [i] be the pre-

order index of the right brother node of F [i]. If there is no right brother,

then rbF [i] = 0. If F ′ is a non-empty csf of F and αF (F ′) = (i, j), then:

• αF (F ′↓) = (i + 1, nocF [i]). If F [i] is not a leaf, i + 1 is the index of

the leftmost child of F [i] and nocF [i] = len(F ′↓). If F [i] is a leaf,

the resulting csf is the empty forest represented by (i + 1, nocF [i]) =

(i + 1, 0).

• αF (F ′→) = (rbF [i], j − 1). If F [i] has a right brother, this is quite

obvious. Otherwise j − 1 = 0 and the resulting forest is empty.

Clearly, αF (F ′↓) and αF (F ′→) can be computed in constant time, given

αF (F ′). Splitting F ′ into r :F ′ and F ′ : r yields to subforests represented

by (i, r) and (rbr
F [i], j − r) where rbr

F is the r-fold application of rbF . Since

the splits will be determined in order of increasing r, the amortized cost

of each split is O(1). Figure 3.3 illustrates the α-mapping and the index

transitions on closed subforest-index pairs.

Now it is easy to derive matrix recurrences for a dynamic programming

algorithm calculating forest alignment similarity. I just have to substitute the

subforests in the formula in Figure 3.2 by the corresponding index pairs, and
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switch from enumeration of the search space to maximization of similarity.

A four-dimensional matrix S4
σ such that S4

σ(αF (F ′), αG(G′)) is the similarity

of csfs F ′ and G′ of F and G, respectively, would allow a straightforward

tabulation. Such a tabulation technique requires O(|F | · degree(F ) · |G| ·
degree(G)) space. However, the four-dimensional tabulation wastes space for

two reasons:

• The empty forest is represented ambiguously by all index pairs (i, 0).

• Matrix S4
σ is sparse. In explanation, let p be the number of siblings to

the right of F [i] plus one (including F [i]). For all p < j ≤ degree(F ),

(i, j) does not represent an existing csf of F . Hence, for these csfs (i, j),

the matrix elements S4
σ((i, j), (k, l)) are not used. The corresponding

holds for csfs of G.

The concrete shape of the forests to be aligned determines the number of

unused entries in S4
σ. Even in the best case, when all internal nodes in the

forests have the same out-degree p, nearly half of the table is not used. This

becomes worse if the node degree varies. The second stage mapping βF from

indices pairs to one dimensional indices eliminates all unused entries2. For

that purpose, an auxiliary table offsetF stores for each node index i the

number of non-empty csfs having a node index less than i. The second stage

mapping βF is defined by

βF (i, j) =


0 if j = 0

offsetF [i] + j otherwise
(3.5)

Table offsetF can be precomputed in O(|F |) time and space. I define the

right inverse β−1
F of βF by β−1

F (0) = (1, 0) and β−1
F (βF (i, j)) = (i, j) for

βF (i, j) 6= 0.

I combine the previous ideas to give a dense tabulating algorithm calcu-

lating global forest alignment similarity. I compute matrix Sσ defined by

2It cannot eliminate entries that correspond to pairs of csfs that are not relevant due
to Lemma 3.1.
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Sσ(x, y) =




0 if x = 0 and y = 0 (1)

σ(lbF [i], λ)
+Sσ(βF (i + 1, nocF [i]), 0))
+Sσ(βF (rbF [i], j − 1), 0) if x > 0 and y = 0 (2)

σ(λ, lbG[k])
+Sσ(0, βG(k + 1, nocG[k]))
+Sσ(0, βG(rbG[k], l − 1)) if x = 0 and y > 0 (3)

max




relabel(x, y)
delete(x, y)
insert(x, y)

otherwise (4)

where (i, j) = β−1
F (x) and (k, l) = β−1

G (y)

relabel(x, y) = σ(lbF [i], lbG[k])
+Sσ(βF (i + 1, nocF [i]), βG(k + 1, nocG[k]))
+Sσ(βF (rbF [i], j − 1), βG(rbG[k], l − 1))

delete(x, y) = σ(lbF [i], λ)

+ max
0≤r≤l

{
Sσ(βF (i + 1, nocF [i]), βG(k, r))
+Sσ(βF (rbF [i], j − 1), βG(rbr

G[k], l − r))

}
insert(x, y) = σ(λ, lbG[k])

+ max
0≤r≤j

{
Sσ(βF (i, r), βG(k + 1, nocG[k]))
+Sσ(βF (rbr

F [i], j − r), βG(rbG[k], l − 1))

}

Figure 3.4: The recurrences for Sσ for computing the entries of Sσ. The Cases
(1)-(3) of the recurrences involving empty forests are obvious. The similarity of
two non-empty forests is determined by the maximum score for alignments A that
have a relabeling, or a deletion, or an insertion at the root. The functions relabel ,
delete, and insert reflect the case distinction in Lemma 3.1.

Sσ(βF (αF (F ′)), βG(αG(G′))) = σFA(F ′, G′) (3.6)

for all csfs F ′ and G′ of F and G, respectively. Since αF (F ) = (1, len(F ))

and αG(G) = (1, len(G)), the value in Sσ(βF (1, len(F )), βG(1, len(G))) gives

the similarity of F and G. The recurrences for Sσ are given in Figure 3.4.
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The Order of Calculation

To complete the dynamic programming algorithm, the order of evaluating the

entries in Sσ must be considered. Each element must be evaluated before it is

used. Evaluating Sσ row by row or column by column, as done in the dynamic

programming algorithm for sequence similarity [184], does not work here.

Consider the data dependencies in the recurrences of Figure 3.4. Obviously,

Sσ(0, 0) can be initialized to zero. If βF (i, j) > 0, then Sσ(βF (i, j), 0) depends

on entries Sσ(βF (i+1, nocF [i]), 0) and Sσ(βF (rbF [i], j−1), 0). That is, either

the node index strictly increases, or if rbF [i] = 0, then j = 1 and hence

βF (rbF [i], j − 1) = 0. If βG(k, l) > 0, then the corresponding holds for

Sσ(0, βG(k, l)). If βF (i, j) > 0 and βG(k, l) > 0 in the delete case (Lemma 3.1

Case 2), Sσ(βF (i, j), βG(k, l)) depends on Sσ(βF (i+1, nocF [i]), βG(k, r)) and

Sσ(βF (rbF [i], j−1), βG(rbr
G[k], l−r)) for some r ∈ [0, l]. Thus, either the node

index increases strictly, or the length index decreases. The corresponding

holds for the insert case (Case 3). Thus, Sσ can be evaluated in decreasing

order of the node index and increasing order of the length index. This is done

in Algorithm 3.1 that tabulates gsσ(F, G) for all relevant pairs of csfs F ′ and

G′ of F and G, while fulfilling the data dependencies that were just discussed.

The iteration over the length index makes use of a table maxcsflenF , defined

by:

maxcsflenF [i] = max{j | (i, j) is a csf of F}. (3.7)

The table maxcsflenF can be precomputed in O(|F |) time and space, since

maxcsflenF [i] =


1 if rbF [i] = 0

maxcsflenF [i] = 1 + maxcsflenF [rbF [i]] otherwise.

The corresponding holds for table maxcsflenG. An optimal alignment can be

obtained by backtracking. To facilitate this, the split position r should be

stored with each optimal value resulting from a deletion or an insertion.
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Input: Forests F and G, given by tables
lbF , lbG, nocF , nocG, rbF , rbG, offsetF , offsetG,
maxcsflenF ,maxcsflenG

Output: σFA(F, G) stored at
Sσ(βF (i,maxcsflenF [i]), βG(k,maxcsflenG[k]))

Sσ(0, 0)← 01

for i← |F | to 1 do2

for j ← 1 to maxcsflenF [i] do Calculate Sσ(βF (i, j), 0)3

end4

for k ← |G| to 1 do5

for l← 1 to maxcsflenG[k] do Calculate Sσ(0, βG(k, l))6

end7

for i← |F | to 1 do8

for k ← |G| to 1 do9

for j ← 1 to maxcsflenF [i] do10

Calculate Sσ(βF (i, j), βG(k,maxcsflenG[k])) as in Figure 3.411

end12

for l← 1 to maxcsflenG[k] do13

Calculate Sσ(βF (i,maxcsflenF [i]), βG(k, l)) as in Figure 3.414

end15

end16

end17

Algorithm 3.1: Algorithm for the calculation of global forest align-
ment similarity σFA.

Efficiency Analysis

Time Efficiency According to the recurrences in Figure 3.4, each Sσ(x, y)

is calculated in O(degree(F )+degree(G)) time. Elements of table maxcsflenF

and table maxcsflenG are bounded by degree(F ) and degree(G), respec-

tively. Thus, the initialization steps in Line 2-4 and Line 5-7 require O(|F | ·
degree(F )2) and O(|G| · degree(G)2) time. The main loop structure, ranging

from Line 8 to 17, requires O(|F | · |G| · (degree(F ) · (degree(F )+degree(G))+

degree(G) · (degree(F )+degree(G))) time. After rearrangement of the terms,

the overall time complexity of Algorithm 3.1 is O(|F | · |G| · (degree(F ) +

degree(G))2).
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Space Efficiency The size of the table Sσ depends on the number of csfs

in F and G. The following theorem gives an upper and lower bound for the

number of closed subforests for forests with a fixed size and degree.

Theorem 3.1. Let F be a forest with size n and degree k. The number of

closed subforests in F , denoted by csf (F ), is bounded by:

n + 1 ≤ csf (F ) ≤ n · (k − 1)

2
+ 1

Proof. First, I consider the upper bound: Assume that n = p · k for some

integer p, and there are p sequences S1, S2, . . . , Sp of sibling nodes each of

length k. For each of the p sequences, there are
∑k

i=1 i = k·(k−1)
2

different,

non-empty csfs where the node index is an element of the sequence. For

all p = n
k

sequences of sibling nodes the total number of csfs is n·(k−1)
2

.

Adding the empty forest gives n·(k−1)
2

+ 1. Assume there exist non-empty

sequences of sibling nodes S and S ′ such that |S|+ |S ′| = k. Since
∑|S|

i=1 i +∑|S′|
i=1 i <

∑|S|+|S′|
i=1 , the number of csfs is less than n·(k−1)

2
. This argument

holds recursively if there exist more than two sets of siblings. Clearly, if

n 6= p · k there exists a sequence of sibling nodes of size less than k and the

number of csfs is less than n·(k−1)
2

+ 1. Thus, n·(k−1)
2

+ 1 is an upper bound.

Now, I consider the lower bound. If the forest is a tree that has exactly

one leaf (there is no branching node) then there are n sequences of sibling

nodes, each of length 1. Hence, the number of closed subforests is n. Adding

the empty forest results in n + 1. Every other tree contains at least one set

of siblings with more than one element which increases the number of closed

subforests. Thus, n + 1 is a lower bound.

From Theorem 3.1, it follows that Algorithm 1 runs in O(|F | · degree(F ) ·
|G| · degree(G)) space. Note that the asymptotic space complexity is not

reduced by using dense two-dimensional tables. However, the space reduction

can be huge in practice which is measured in Section 4.8.2.
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Reducing the Search Space of Forest Alignments

The number of forest alignments grows exponentially with the number of

nodes in the tree, which is clear since the forest alignment model is a gen-

eralization of the sequence alignment model. In fact, the number of for-

est alignments exceeds the number of sequence alignments, because a forest

alignment is constructed from more combinations of problems. There are

two embeddings of a sequence in a forest. In the first, the vertical embed-

ding, the parent-child relation of a forest corresponds to the sequence. In the

second, the horizontal embedding, the sibling order reflects the sequence, i.e.

a sequence corresponds to a forest consisting solely of leaves. I now observe

how the forest alignment model treats the two embeddings.

Assume a forest F , that begins as a sequence at F⊥ (horizontally or

vertically), and some forest G. The general definition of the search space

(see Lemma 3.1) considers in Case 2 and Case 3 alignments that differ only

in the split position of G whereas both parts are aligned with the empty forest

(because F begins as a sequence). In particular, the score of an alignment is

build additively from the scores of the edit operations relabel , delete, insert .

If F⊥ is a leaf (horizontal embedding), it is unnecessary to align each prefix

of G with F ↓, the empty forest. Here is why: Nodes of G can be deleted also

if the opposing forest is not the empty forest, thus an equivalent alignment of

F→ and G exists. Accordingly, if F has no right brother (vertical embedding),

it is unnecessary to align each suffix of G with F→, the empty forest. The

following Lemma shows that in these cases the splitting of forests can be

omitted and it is still guaranteed to find σFA(F, G).

Lemma 3.3. Let A be an alignment of forests F and G. Without loss of

generality, assume label(A⊥) = (a, λ). For all r ∈ [0, len(G)] the following is

true:

• if F⊥ has no right brother (vertical embedding):

σFA(F ↓, G) ≥ σFA(F ↓, r:G) + σFA(F→, G:(len(G)− r)) (3.8)
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• if F⊥ has no child (horizontal embedding):

σFA(F→, G) ≥ σFA(F ↓, r:G) + σFA(F→, G:(len(G) − r)) (3.9)

Proof. In the vertical embedding, F→ is the empty forest. Consequently,

the alignment of F→ and G:(len(G) − r) consists completely of insertions.

There is also an alignment of F ↓ and G where all nodes in G:(len(G) − r)

are deleted. Thus, an alignment of F ↓ and G can achieve at least the same

score. The inequality for the horizontal embedding follows analogously.

If G complies to a sequence, Case 3 of Lemma 3.1 is adjusted accordingly.

Figure 3.5 shows the improved recurrence relations for the functions relabel

and delete.

The search space reduction does not reduce the asymptotic time complex-

ity. It is always possible to construct a forest with n nodes where a fractional

amount of nodes is neither in the horizontal nor in the vertical embedding.

For these nodes the regular recurrences (see Figure 3.4) are applied and, thus,

the complexity is not improved. However, in Section 4.8.2 I consider RNA

secondary structure forests and measure a constant speedup for these kind

of forests.

3.4 Local Similarity in Forests

A global alignment between forests can lead to undesired results if the forests

that are aligned share a high similarity only in (coherent) parts but not en-

tirely. Whether the global alignment is the right model or not, depends

largely on the data that is observed. The comparison of nucleotide and pro-

tein sequences motivated some variants of the sequence alignment model that

consider local similar regions in sequences. I concentrate on the local simi-

larity and a small-in-large variant of this problem [184]. For these problems

I give corresponding definitions for forests. It turns out that these variants



3.4 Local Similarity in Forests 75

delete(F, G) = σ(label(F⊥), λ)

+




σFA(F ↓, G) if F⊥ has no child

σFA(F→, G) if F⊥ has no right brother

max
r∈[0,len(G)]

{
σFA(F ↓, r:G)

+σFA(F→, G:(len(G)− k))
otherwise

insert(F, G) = σ(λ, label(G⊥))

+




σFA(F, G↓) if G⊥ has no child

σFA(F, G→) if G⊥ has no right brother

max
r∈[0,len(F )]

{
σFA(r:F, G↓)
+σFA(F:(len(F )− k), G→)

otherwise

(a)

delete(x, y) = σ(lbF [i], λ)

+




Sσ(βF (i + 1, nocF [i]), βG(k, l)) if rbF [i] = 0

Sσ(βF (rbF [i], j − 1), βG(k, l) if nocF [i] = 0

max
0≤r≤l

{
Sσ(βF (i + 1, nocF [i]), βG(k, r))
+Sσ(βF (rbF [i], j − 1), βG(rbr

G[k], l − r))
otherwise

insert(x, y) = σ(λ, lbG[k])

+




Sσ(βF (i, j), βG(k + 1, nocG[k])) if rbG[k] = 0

Sσ(βF (i, j), βG(rbG[k], l − 1) if nocG[k] = 0

max
0≤r≤j

{
Sσ(βF (i, r), βG(k + 1, nocG[k]))
+Sσ(βF (rbr

F [i], j − r), βG(rbG[k], l − 1))
otherwise

where (i, j) = β−1
F (x) and (k, l) = β−1

G (y)

(b)

Figure 3.5: (a) shows improved recurrence relations for the functions delete and
insert in search space notation. (b) shows the matrix recurrences. The tables
rbF ,nocF , rbG and nocG can be utilized to check whether a node has a child or
bother node or not.
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have interesting applications in the comparison of RNA structures (see Sec-

tion 4.6 and Section 7.1).

Local similarity means finding the maximal similarity between two sub-

structures. If these substructures are extended, the score decreases. This

requires a scoring scheme that balances positive and negative scoring contri-

butions. Otherwise, the similarity of the complete structures would always

achieve the maximum score. It is generally assumed that an alignment of two

empty structures scores zero. A localized variant of distance makes no sense,

as empty forests have always the lowest possible distance of zero. A simi-

lar problem studied for distance based alignments is the similar consensus

problem (see Section 2.5.4).

The question is, what are the substructures in a forest? A substring

of a string is a prefix of a suffix, and local similarity on strings means the

highest similarity over all pairs of substrings. The problem of finding most

similar (complete) suffixes is not of great interest in the domain of strings.

Moving from strings to forests, local similarity problems come in a greater

variety: On trees, the counterpart of a suffix is a subtree. Finding the most

similar subtrees is an interesting problem, and for forests it generalizes to

the problem of finding the most similar closed subforests. Continuing the

analogy, the prefix of a (sub)tree T is a tree T ′ that is obtained by removing

subtrees from T which is a tree pattern. I do not consider local similarity of

tree patterns in this thesis. However, a pattern similarity algorithms can be

derived by search space considerations analogous to the presented ones.

3.4.1 Local Closed Subforest Similarity

The local closed subforest similarity problem consists in finding the most

similar csfs F ′ and G′ of F and G. That is:

σCSF(F, G) = max{σFA(F ′, G′) | F ′ is a csf of F and G′ is a csf of G}.
(3.10)
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For the calculation of global similarity, Algorithm 3.1 calculates the global

similarity between all relevant pairs of closed subforests due to Lemma 3.2.

This algorithm can be easily modified to calculate the similarity between all

combinations of closed subforests by modifying the loop structure.

Iterating over all possible combinations of closed subforests as in Algo-

rithm 3.2 is consistent with the dependencies of the recurrences in Figure 3.4

and Figure 3.5.

Input: Forests F and G, given by tables
lbF , lbG, nocF , nocG, rbF , rbG, offsetF , offsetG,
maxcsflenF ,maxcsflenG

Output: σCSF(F, G) is the maximum value stored in Sσ

Sσ(0, 0)← 01

for i← |F | to 1 do2

for j ← 1 to maxcsflenF [i] do Calculate Sσ(βF (i, j), 0)3

end4

for k ← |G| to 1 do5

for l← 1 to maxcsflenG[k] do Calculate Sσ(0, βG(k, l))6

end7

for i← |F | to 1 do8

for k ← |G| to 1 do9

for j ← 1 to maxcsflenF [i] do10

for l← 1 to maxcsflenG[k] do11

Calculate Sσ(βF (i, j), βG(k, l))12

end13

end14

end15

end16

Algorithm 3.2: Algorithm for the calculation of local closed subforest
alignment similarity σCSF.

Algorithm 3.2 tabulates σFA(F ′, G′) for a all pairs of csfs F ′ and G′ of

F and G. Thus, scanning the matrix Sσ for maximum elements yields to

σCSF(F, G). An optimal alignment can be obtained by backtracking.
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Space and Time Complexity I apply the same tabulation technique as

for the calculation of global similarity. Hence, the space complexity is the

same as for Algorithm 3.1, O(|F | · degree(F ) · |G| · degree(G)). However, now

each element of Sσ is calculated and the tabulation is dense.

According to the recurrences in Figure 3.4, each element of Sσ is calcu-

lated in O(degree(F ) + degree(G)) time. Since each entry in Sσ is calcu-

lated exactly once, the overall time complexity of Algorithm 3.2 depends on

the size of Sσ. This in turn depends on the number of csfs in F and G

which was analyzed in Theorem 3.1. Consequently, Algorithm 3.2 runs in

O(|F | · |G| · degree(F ) · degree(G) · (degree(F ) + degree(G))) time.

3.4.2 Small-in-Large Closed Subforest Similarity

The small-in-large closed subforest similarity is the maximum similarity be-

tween a (smaller) forest F and a csf G′ of G. That is,

σSIL CSF(F, G) = max{σFA(F, G′) | G′ is a csf of G}. (3.11)

Algorithm 3.2 calculates the similarity between all closed subforests and,

since F is also a csf , also between F and all csfs of G. Thus, scanning the

matrix Sσ for maximum elements Sσ(x, y), such that x = βF (αF (F )), yields

to σCSF(F, G).

Space and Time Complexity The space and time complexity is the

same as for the calculation of σCSF since the scanning of matrix Sσ is the only

difference. The time complexity could be further reduced since, in analogy to

the global similarity, not each pair of closed subforests is a relevant subforest.

A combination of Algorithm 3.1 and Algorithm 3.2 that has a loop structure

as in Algorithm 3.1 for forest F and as in Algorithm 3.2 for forest G would

reduce the time complexity. I do not provide a formal analysis since the time

improvement relies on the smaller of both forests and Algorithm 3.2 yields

to good practical runtime (see Section 4.8.2).
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3.4.3 Suboptimal Solutions

Possibly, there is more than one highly similar region in two forests or that a

smaller forest appears more than once in a larger one. If so, all solutions above

a certain threshold of similarity are of interest. To avoid redundant align-

ments, i.e. alignments that “intersect” with previously reported solutions are

excluded. I define csfs F ′ and F ′′ of F to intersect if they share a common

node. For the calculation of small-in-large similarity, the non-intersecting

property is obsolete for the smaller forest F . The test for intersection can be

easily done in the index pair representation of csfs .

The generation of suboptimal solutions within a percentage t of the opti-

mal solution follows a simple procedure: For each reported solution the local

similar csfs of F and G are stored in lists LF and LG, respectively. A solution

is reported if it is within t percent of the optimal score and at least one of the

local similar forests does not intersect with forest in LF or LG. The solutions

are considered in order of their closeness to the optimum, starting with the

optimum.





Chapter 4

Pairwise Comparison of RNA

Secondary Structures in the

Forest Alignment Model

The tree alignment distance can be applied straightforward to the natural

and coarse tree representation, resulting in a distance measure on RNA sec-

ondary structures. The coarse grained representation produces smaller trees

than the natural tree representation, which in turn reduces the practical

runtime. On the other hand, the natural tree representation allows for sim-

pler scoring functions, i.e. edit operations on structural components of an

RNA are hard to motivate biologically since these are not the entities on

which the evolution of a structure actually happens. Mutations happen on

the nucleotide level and bases and base-pairings are subject to the selective

pressure. Beside a structural alignment, an alignment of trees in the natu-

ral representation produces an alignment of nucleotide sequences. Such an

alignment is desirable to analyze the evolution of a structural RNA which

happens on the sequence level. For example, compensatorial mutations in

stem regions or sequence variations in loop regions can be detected. However,

a base-pair breaking, i.e. a bond between two bases becomes too weak (refer

to Section 2.5.5), cannot be modeled adequately by aligning RNA structures
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in the natural tree representation. Here is why: A base-pair is represented as

a single node and two unpaired bases are represented as two single nodes. In

a tree alignment, each node of the aligned trees is involved in exactly one edit

operation. It can be relabeled, deleted or inserted. Thus, it is not possible

to associate a base-pair with two unpaired bases. Figure 4.1 gives a concrete

example.

These limitations of tree based approaches to compare RNA secondary

structures gave actually rise to the arc-annotated sequence approaches (see

Section 2.5.5). Here, I introduce a new forest representation1 for RNA sec-

ondary structures that, in conjunction with a slight modification of the forest

alignment model, allows for explicit scoring of base-pair breakings. Beside

a global RNA structure alignment, I introduce local variants in analogy to

Section 3.4. I demonstrate the performance of my algorithms by provid-

ing exhaustive measurements concerning the practical runtime and mem-

ory consumption. An intuitive 2d-plot for RNA secondary structure align-

ments makes the results of a structural comparison usable without requiring

knowledge in abstract structure representations. A prediction strategy for

structural motifs in RNA molecules that, at its heart, uses local structure

alignments is provided in Section 7.1.

1A tree representation can be defined analogously. For convenience, I switch to forests
again.
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(a)

C◦G,C◦G

λ,C◦G

C◦G,C◦G

C◦G,C◦G

C,λ A,A A,A A,A U,λ

(b)

C
C
C
C

A
A

A
G
G
G
G

(c)

C◦G

C◦G

C◦G

C A A A U

(d)

C◦G

C◦G

C◦G

C◦G

A A A

(e)

Figure 4.1: The RNA structures (a) and (c) differ in the length of the stacking
region and the loop size. A reasonable theory for their evolution is that the red
U in (a) mutated to G in (c), allowing for an additional base-pair. (d) and (e)
show the tree representation of (a) and (c), respectively. (b) shows an alignment of
these trees. Each node of a tree is involved in exactly one edit operation in a tree
alignment. Since a base-pair is encoded as a single node, the score for deleting the
pairing between bases a and b is σ(a◦b, λ) + σ(λ, a) + σ(λ, b). The insertions and
deletions are not “coordinated” in (b), i.e. the base-pair G◦C is inserted some bases
away from the deleted free bases. Another consequence is that sequence similarity
cannot contribute to an optimal alignment in a base-pair breaking operation since
bases are never relabeled but inserted and deleted.
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4.1 Preliminaries

I extend the notation introduced in Section 3.1: I define F~⊥ to be the root

node of the rightmost tree in a forest F . The forest ◦|F |◦ denotes the forest

F omitting the leftmost and the rightmost tree.

4.2 The Extended Forest Representation of

RNA Secondary Structures

The extended forest representation extends the natural tree representation

of RNA secondary structures2 such that base-pairs are represented by three

connected nodes: The pair-node, for short P-node, stands for a base-pair

bond and is labeled with P. Its children nodes are ordered according to the

5′ to 3′ ordering of bases and the leftmost and the rightmost child are the

bases that pair. A node that is not a P-node is a base-node, for short B-node,

and is labeled with one of the bases A,C,G,U. Note that the children nodes

of a P-node can be P-nodes except for the leftmost and the rightmost child.

Hence, a P-node is always an internal node, whereas a B-node is always

a leaf. In this sense, the structure given by the P-nodes is imposed on the

sequence of B-nodes. Figure 4.2 gives an example of the extended RNA forest

representation which is in flavor of parse trees for context free grammars that

describe RNA secondary structures [37, 168].

2Precisely, the forest counterpart.
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Figure 4.2: (a) shows the natural tree representation of structure (b), and (c)
shows the extended forest representation of structure (b) (in this case a tree).
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(a)

P,P

C,U P,P

C,C P,P

C,C λ,P

C,C A,A A,A A,A G,U

G,G

G,G

G,G

(b)
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C A A A G

G

G
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Figure 4.3: (a) and (c) show the extended forest representations of the struc-
tures shown in Figure 4.1(a) and 4.1(c), respectively. The alignment (b), which is
optimal for a scoring scheme that favors base matches, accounts for the base-pair
breaking by the deletion of a P-node, a match of the conserved base, and a mismatch
of the mutated base. Thus, the scoring contribution is σ(λ, P )+σ(C,C)+σ(G,U).

4.3 The Welformed Alignment Model

An alignment of forests in the extended forest representation is a simul-

taneous alignment of sequence and structure. The sequence and structure

alignment mutually improves the quality of the whole sequence-structure

alignment. Figure 4.3 shows how a forest alignment using the extended for-

est representation can account for the differences of the structures studied in

Figure 4.1.

However, a straightforward application of the classical forest alignment

model (see Section 3.2) to the extended forest representation of RNA sec-

ondary structures results in the following problems:

1. A match of a P-node with a B-node cannot be interpreted as an edit

operation on RNA structures.

2. It is not guaranteed by the model that, once a P-node is matched, the

corresponding paired bases are relabeled by each other. See Figure 4.4

for an example of an alignment that should be avoided.

3. The score of a base-pair replacement is built from the independent

scores of a P-node match and the matches (or replacements) of the
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P

G C C C U

(a)

P

G U U U C

(b)

P,P

G,G C,U C,U C,λ U,U λ,C

(c)

P,P

G,G C,U C,U C,U U,C

(d)

Figure 4.4: Consider a feasible scoring scheme that gives better scores to base
matches than to mismatches and indels. (c) shows an alignment of (a) and (b) that
is not welformed, i.e. the base-pairs G◦U and G◦C are not aligned on the sequence
level, though the corresponding P-nodes are matched. (d) shows a welformed tree
alignment of the same structures where paired bases are aligned to each other.

paired bases. Thus, an empirical derived scoring scheme based on base-

pair substitution frequencies as proposed by Klein & Eddy cannot be

used [103].

Case 1 can be easily avoided by assigning an infinite negative score to a

relabeling of a P-node with a B-node. The limitations explained in Case 2

and Case 3 result from the following fact: A base-pair replacement is not an

elementary edit operation in the tree edit model but affects three nodes in the

extended forest representation. In analogy to the base-pair replace operation

in the general edit model for RNA secondary structures (see Section 2.5.5), I

introduce a base-pair replace operation for the extended forest representation.

I extend Tai’s edit model (see Section 2.5.3) introducing a new edit operation

for the P-nodes in the extended forest representation. Intuitively, this means

whenever a P-node is matched, the corresponding paired bases are relabeled

by each other. I refine the relabel function by introducing two new edit

operations that can be applied to either P-nodes or B-nodes:

• basepair relabel : Two P-nodes are matched and their leftmost and

rightmost children are relabeled by each other.

• base relabel : The label of a B-node is replaced by another, possibly the
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same, B-node label.

An alignment that results from this extended edit model is denoted a welformed

alignment. It is obvious that the following holds:

An alignment A of forests F and G is a welformed forest alignment iff

for all relabeled P-nodes in A the corresponding B-nodes are relabeled in A.

(4.1)

The welformed tree alignment similarity σWFA is defined as:

σWFA(F, G) = max{σ(A) | A is a welformed forest alignment of F and G}.
(4.2)

4.4 A Global RNA Secondary Structure Align-

ment Algorithm

4.4.1 The Search Space of RNA Secondary Structure

Alignments

Remember the observations concerning the search space of forest alignments

in Lemma 3.1. Clearly, the search space definitions of Case 2 (delete) and

Case 3 (insert) are not affected by the constraints that make an alignment a

welformed alignment. Case 1 treats the relabeling of nodes and I refine this

case to be consistent with the definition of welformed forest alignments. The

following case analysis replaces Case 1 in Lemma 3.1 resulting in a definition

of the search space for welformed forest alignments.

Lemma 4.1. Let A be a welformed alignment of forests F and G in the

extended forest representation such that (a, b) = label(A⊥) and a, b 6∈ λ. Let

(c, d) = A↓⊥ and (e, f) = A↓
~⊥.

1. if label(A⊥) = (P, P ) then the following is true:
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F→ G→

A→

◦|F ↓|◦ ◦|G↓|◦

◦|A↓|◦

P P

(P, P )

(c, d) (e, f)

c d e f

Figure 4.5: Search space implications of Lemma 4.1 are indicated by the lines
connecting alignment A and forests F and G. The lines connecting ◦|A↓|◦, ◦|F ↓|◦
and ◦|G↓|◦ are omitted.

• label(F⊥) = P and label(G⊥) = P ,

• c = F ↓⊥, d = F ↓
~⊥, e = G↓⊥ and f = G↓

~⊥,

• ◦|A↓|◦ is an alignment of ◦|F ↓|◦ and ◦|G↓|◦.

2. if label(A⊥) 6= (P, P ) then A→ is an alignment of F→ and G→.

Proof. Case 1 follows directly from the definition of welformed alignments.

Case 2 handles the relabeling of B-nodes and is a special case of Case 1 in

Lemma 3.1. In this case, F⊥ and G⊥ are leaves and an alignment of the

children forest is always the empty forest.

Figure 4.5 illustrates the search space implications that follows from Lemma

4.1. The recursive function for the new relabel operation follows directly

from Lemma 4.1 and is shown in Figure 4.6 (a).

4.4.2 Implementation based on Matrix Recurrences

The calculation of matrix elements as in Algorithm 3.1 is not directly suitable

for the calculation of welformed forest alignment similarity. The reason is

that the calculation of the similarities between all pairs of relevant csfs due

to Lemma 3.2 is not sufficient for the recurrences in Figure 4.6 (a). In expla-

nation, the recurrences in Figure 4.6 (a) can lead to pairs of csfs (◦|F̄ |◦, ◦|Ḡ|◦)
which are not relevant due to Lemma 3.2 and, hence, are not calculated by
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Algorithm 3.1. The following Lemma identifies the relevant subforest for the

calculation of σWFA(F, G).

Lemma 4.2. The pairs of subforests that are relevant for the calculation of

σWFA(F, G) due to the combined recurrences in the Figures 3.2 and 4.6 have

the form (F̄ :j, k]Ḡ[l), (i]F̄ [j, Ḡ:l), (◦|F̄ |◦:j, k]Ḡ[l), and (i]F̄ [j, ◦|Ḡ|◦:l) where F̄

and Ḡ are maximal closed subforests of F and G, respectively.

Proof. I consider all possible transitions to subforests resulting from the def-

inition of the search space of welformed forest alignments. These are:

• Case 1 (from Lemma 4.1): (◦|F ↓|◦, ◦|G↓|◦), (F→, G→)

• Case 2 (from Lemma 3.1): (F ↓, k:G), (F→, G:l)

• Case 3 (from Lemma 3.1): (i:F, G↓), (F:j, G→)

Referring to the transition graph in the proof of Lemma 3.2, all pairs of sub-

forests (F̄:j, k]Ḡ[l) and (i]F̄ [j, Ḡ:l) can be reached by transitions to subforests,

even though there is no (F ↓, G↓) transition. The transition (◦|F ↓|◦, ◦|G↓|◦)
results in pairs of forests of the form (◦|F̄ |◦, ◦|Ḡ|◦). Considering the possi-

ble transition in Lemma 3.2 again, this can lead to the pairs of subforest

(◦|F̄ |◦:j, k]Ḡ[l) and (i]F̄ [j, ◦|Ḡ|◦:l). Hence, Lemma 4.2 identifies the relevant

pairs of subforests for the calculation of σWFA(F, G).

Obviously, each relevant subforest for the calculation of σWFA(F, G) is a

csf and the tabulation technique introduced in Section 3.3.2 can be applied

to derive a dynamic programming algorithm. Figure 4.6 (b) shows the matrix

recurrences for the relabel operation in the welformed forest alignment model.

For constant time access to the rightmost child of a P-node, the new table

rmbF stores at position i the preorder index of the rightmost brother node.

Note that rmbF is only looked up for the leftmost child of a P-node. This is

why a one dimensional lookup table is sufficient.
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relabel(F, G) =




σ(label(F⊥), label(G⊥))

+σ(label(F ↓⊥), label(G↓⊥))

+σ(label(F ↓
~⊥), label(G↓

~⊥))

+σWFA(◦|F ↓|◦, ◦|G↓|◦)
+σWFA(F→, G→)

if label(F⊥) = P and label(G⊥) = P

σ(label(F⊥), label(G⊥))

+σWFA(F→, G→)
otherwise

(a)

relabel(x, y) =




σ(lbF [i], lbG[k])

+σ(lbF [i + 1], lbG[k + 1])

+σ(lbF [rmbF [i]], lbF [rmbG[k]])

+Sσ(βF (rbF [i + 1], nocF [i]− 2), βG(rbG[k + 1], nocG[k]− 2))

+Sσ(βF (rbF [i], j − 1), βG(rbG[k], l − 1))

if lbF [i] = P and lbG[k] = P

σ(lbF [i], lbG[k])

+Sσ(βF (rbF [i], j − 1), βG(rbG[k], l − 1))
otherwise

where (i, j) = β−1
F (x) and (k, l) = β−1

G (y)

(b)

Figure 4.6: Recurrences for the refined relabel function for welformed forest align-
ments resulting from the search space observations in Lemma 4.1. (a) shows the
recursive formula in search space notation. (b) shows the corresponding matrix
recurrences using the tabulation technique introduced in Section 3.3.2.
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The Order of Calculation

A straightforward solution would be to use Algorithm 3.2 with the refined

relabel recurrences in Figure 4.5 (b). However, for the calculation of global

similarity this would increase the time complexity unnecessarily since Al-

gorithm 3.2 calculates the similarity between all pairs of closed subforests.

Algorithm 4.1 calculates only the closed subforests that are relevant for the

calculation of the global welformed forest alignment similarity. This algo-

rithm is obtained by including the missing calculations for the welformed

alignment model in Algorithm 3.1.

Efficiency Analysis

The space and time efficiency for the calculation of σWFA(F, G) is the same

as for the corresponding version of the classical forest alignment similar-

ity (see Section 3.3.2). This is obvious since the refined relabel operation

can be calculated in constant time, the loop structure of Algorithm 3.1 and

Algorithm 4.1 is the same, and the same tabulation technique is used. Re-

stating the complexity results, the time complexity for the calculation of

σWFA(F, G) is O(|F | · |G| · (degree(F ) + degree(G))2) and the space complex-

ity is O(|F | · degree(F ) · |G| · degree(G)). In Section 4.8.2, I will observe

how the critical parameters, size and degree, scale for the extended forest

representation of RNA secondary structures.

4.5 Scoring Schemes

The extended forest representation is suitable to score both structure and

sequence similarity. The structural edit operations affect the P-nodes and se-

quence edit operations affect the B-nodes. I will present two scoring schemes:

First, a pure structure based scoring where sequence information is neglected

or only contributes marginally to the overall score, such that structure is

dominating. The scoring contributions of a base-pair is built from the in-

dependent scores of the aligned P-node and B-nodes. Second, I employ a
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Input: Forests F and G, stored as tables
lbF , lbG, nocF , nocG, rbF , rbG, offsetF , offsetG,
maxcsflenF ,maxcsflenG, rmbF ,rmbG

Output: σWFA(F, G) stored at
Sσ(βF (i,maxcsflenF [i]), βG(k,maxcsflenG[k]))

Sσ(0, 0)← 01

for i← |F | to 1 do2

for j ← 1 to maxcsflenF [i] do Calculate Sσ(βF (i, j), 0)3

end4

for k ← |G| to 1 do5

for l← 1 to maxcsflenG[k] do Calculate Sσ(0, βG(k, l))6

end7

for i← |F | to 1 do8

for k ← |G| to 1 do9

for j ← 1 to maxcsflenF [i] do10

Calculate Sσ(βF (i, j), βG(rbG[k],maxcsflenG[k]− 1))11

Calculate Sσ(βF (i, j), βG(k,maxcsflenG[k]))12

end13

for l← 1 to maxcsflenG[k] do14

Calculate Sσ(βF (rbF [i],maxcsflenF [i]− 1), βG(k, l))15

Calculate Sσ(βF (i,maxcsflenF [i]), βG(k, l))16

end17

end18

end19

Algorithm 4.1: Algorithm for the calculation of welformed global for-
est alignment similarity σWFA. The calculation of elements of Sσ in-
cludes the recurrences in Figure 4.6 (b). In comparison to Algorithm
3.1, there are additional computations in Line 11 and Line 15 for the
similarity calculations of the pairs (◦|F̄ |◦ : j, k]Ḡ[l) and (i]F̄ [j, ◦|Ḡ|◦ : l).
Note that if, e.g. in Line 11, k has no right brother, the term
βG(rbG[k],maxcsflenG[k] − 1) evaluates to βG(0, 0) which is the empty
forest. This calculation is not necessary since the alignments involving
the empty forest are already calculated in Line 1-7. However, the al-
ternative would be a case distinction in the loop structure which makes
the algorithm more complicated.
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A C G U P λ

A 1

C 0 1

G 0 0 1

U 0 0 0 1

P −∞ −∞ −∞ −∞ 10

λ -10 -10 -10 -10 -5 n.d .

Figure 4.7: Scoring values for the scoring function σP . Since scoring functions
are generally considered to be symmetric, a triangle matrix is sufficient to define
the scoring function. The substitution of λ by λ is not defined since it never
happens in an alignment model.

scoring scheme based on empirically derived substitution scores for aligned

bases and base–pairs, the RIBOSUM score. In this scoring scheme, the

aligned bases in a base-pair replacement are considered simultaneously.

4.5.1 Pure Structure Alignment Score

A pure structure alignment of RNA secondary structures is an alignment due

to a scoring scheme that is guided by the structure and not by the sequence.

However, it makes sense that, especially in aligned loop regions, sequence

information can be used to improve the results. Therefore, I give a positive

score to a base-match which is much smaller than the score for a base-pair

match, or precisely, the match of a base-pair bond represented by a P-node.

The score of a base-pair replacement is built from the match of two P-nodes

plus the replacement scores of the involved bases (refer to the recurrences

in Figure 4.6). Clearly, the deletion of base-pair bonds (P-nodes) and the

deletion of bases (B-nodes) should be penalized, but the deletion of a base-

pair bond should not cost as much as the deletion of a base. Based on these

considerations, I define the scoring function σP given by the scoring matrix

in Figure 4.7.
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4.5.2 RIBOSUM Scores

The scoring of sequence alignments received much attention and a good scor-

ing scheme is a prerequisite to produce biological meaningful alignments es-

pecially for protein sequences. For sequences, log-odds position independent

substitution matrices were successfully applied to compute the alignment

scores. Most prominent are BLOSUM 3 and PAM 4 matrices [31, 75]. The

former is generally acknowledged to produce better results for evolutionary

distantly related sequences.

Recently, Klein & Eddy generalized Henikoff & Henikoff’s BLOSUM idea

to structural RNA resulting in two substitution matrices: One for unpaired

bases and one for base-pairs. According to the BLOSUM matrixes, they

called their scoring matrices RIBOSUM (RIBOsomal RNA SUbstitution

Matrix) [103]. I now resemble the idea for the calculation of RIBOSUM

matrices and how they can be used in my structure comparison algorithms.

The substitution scores are empirically derived from hand-crafted high-

quality alignments of the small subunit RNA from the European Ribosomal

RNA Database [32]. The scoring matrices give the log-odds ratio for observ-

ing a given substitution relative to background nucleotide frequencies. For

single base substitutions this is a 4 × 4 matrix S given by

sij = log2

fij

gi · gj
, (4.3)

where i and j are the two aligned nucleotides, fij is the empirically observed

frequency of i aligned to j in homologous RNAs, and gi and gj are the back-

ground frequencies of the individual nucleotides. For base-pair substitutions

this is a 16× 16 matrix S ′ given by

s′ijkl = log2

f ′ijkl

gi · gj · gk · gl
, (4.4)

3BLOck SUbstitution Matrix
4Percent Accepted Mutations
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where i is base-paired to j, k is base-paired to l, i is aligned with k, and j

is aligned with l. In this case, f ′ijkl is the observed frequency of the two base

pairs i◦j and k◦l aligned to each other in homologous RNAs. g again is the

background frequency of the individual nucleotides.

A naive counting of the frequencies fij and f ′ijkl could bias the substitution

scores towards overrepresented sub-families in the alignment. To eliminate

this risk, clusters of similar sequences are formed that weight the individual

sequences in the alignment, i.e. a member of a large cluster has a small

weight. A single linkage clustering technique groups sequences with a per-

centage identity above some threshold x. To allow shorter evolutionary dis-

tances than the original BLOSUMmatrices, Klein & Eddy added a second

sequence identity cutoff y. Only pairs of sequences that exceed y percent

identity are counted at all. By adjusting x and y, a specific RIBOSUMx-y

matrix can be constructed. Klein & Eddy observed that the RIBSOUM85-60

matrix (see Figure 4.8) is a good ab initio choice.

The recurrences in Figure 4.6 can be easily adapted to score base-pair

substitutions. Instead of adding the scores for a P node and the aligned

bases, a scoring function σBP accepts the whole base-pairs as its parameter.

In particular in Figure 4.6 (a) the terms

σ(label(F⊥), label(G⊥)) + σ(label(F ↓⊥), label(G↓⊥)) + σ(label(F ↓
~⊥), label(G↓

~⊥))

are substituted by

σBP(label(F ↓⊥)◦label(F ↓
~⊥), label(G↓⊥)◦label(G↓

~⊥)).

The corresponding holds for the table based recurrences in Figure 4.6 (b). A

problem that remains is to set the score for P-node and B-node deletions. I

set both to −2. However, these parameters should be empirically adjusted

for the particular application.



4.6 Local Similarity in RNA Structures 97

A C G U

A 2.22

C -1.86 1.16

G -1.46 -2.48 1.03

U -1.39 -1.05 -1.74 1.65

(a)

AA AC AG AU CA CC CG CU GA GC GG GU UA UC UG UU

AA -2.49

AC -7.04 -2.11

AG -8.24 -8.89 -0.80

AU -4.32 -2.04 -5.13 4.49

CA -8.84 -9.37 -10.41 -5.56 -5.13

CC -14.37 -9.08 -14.53 -6.71 -10.45 -3.59

CG -4.68 -5.86 -4.57 1.67 -3.57 -5.71 5.36

CU -12.64 -10.45 -10.14 -5.17 -8.49 -5.77 -4.96 -2.28

GA -6.86 -9.73 -8.61 -5.33 -7.98 -12.43 -6.00 -7.71 -1.05

GC -5.03 -3.81 -5.77 2.70 -5.95 -3.70 2.11 -5.84 -4.88 5.62

GG -8.39 -11.05 -5.38 -5.61 -11.36 -12.58 -4.66 -13.69 -8.67 -4.13 -1.98

GU -5.84 -4.72 -6.60 0.59 -7.93 -7.88 -0.27 -5.61 -6.10 1.21 -5.77 3.47

UA -4.01 -5.33 -5.43 1.61 -2.42 -6.88 2.75 -4.72 -5.85 1.60 -5.75 -0.57 4.97

UC -11.32 -8.67 -8.87 -4.81 -7.08 -7.40 -4.91 -3.83 -6.63 -4.49 -12.01 -5.30 -2.98 -3.21

UG -6.16 -6.93 -5.94 -0.51 -5.63 -8.41 1.32 -7.36 -7.55 -0.08 -4.27 -2.09 1.14 -4.76 3.36

UU -9.05 -7.83 -11.07 -2.98 -8.39 -5.41 -3.67 -5.21 -11.54 -3.90 -10.79 -4.45 -3.39 -5.97 -4.28 -0.02

(b)

Figure 4.8: RIBOSUM85-60 matrix. Watson-Crick base-pairs substitutions are
emphasized.

4.6 Local Similarity in RNA Structures

In Section 3.4, two local similarity algorithms for forests were presented: The

closed subforest similarity σCSF and the small-in-large similarity σSIL CSF.

Since I represent RNA secondary structures as forests, these local similarity

algorithms can be used directly to find local similarities in RNA secondary

structures. The local substructures that are considered are closed subforests

of the forest representation. Figure 4.9 explains what kind of substructures

of RNA secondary structures corresponds to closed subforests.

Algorithm 3.2 calculates both the local similarities σCSF and σSIL CSF in

RNA secondary structures in the extended forest representation. The only

difference is that the recurrences for the relabel function in welformed forest

alignment (Figure 4.6) replace the relabel function in the classic forest align-

ment model (Figure 3.4). The control structure of Algorithm 3.2 remains the

same and so does the efficiency.
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Figure 4.9: Closed subforests correspond to closed substructures in RNA sec-
ondary structures. Intuitively, this means that the substructures are contiguous
and “closed” by hairpin loops. Closed subforests are sequences of consecutive sub-
trees. In my definition, a subtree contains all edges and nodes emanating from its
root. The blue regions shows a substructure in (a) that corresponds to a closed sub-
forest in (b). The green part of the structure is not a closed subforest because the
descending nodes are not included, it is not closed. The red part shows a substruc-
ture that is not considered as a local structure for the same reason. However, this
is less obvious since only the U , which is a child of the root of this subtree, is not
included. If the top-level P node would not be included in the red substructure, this
part would correspond to a closed subforest. The yellow part does not correspond
to a closed subforest since the subtrees are not consecutive siblings.
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4.7 Visualization of RNA Secondary Struc-

ture Alignments

4.7.1 ASCII Representation

The ASCII representation of an RNA secondary structure alignment extends

the sequence alignment representation that arranges the aligned sequences

on top of each other. Essentially, it is an alignment of Vienna strings (see

Section 2.3) and there is a gap in the structure line iff there is a gap in the

sequence line. See the following example where a “*” character highlights

sequence or structure conservation:

Input

> alanine
ggggcuauagcucagcugggagagcgcuugcauggcaugcaagaggucagcgguucgaucccgcuuagcuccacca
(((((((..((((........)))).(((((.......))))).....(((((.......))))))))))))....
> leucine
gccgaaguggcgaaaucgguagacgcaguugauucaaaaucaaccguagaaauacgugccgguucgaguccggccu
(((((((..(((...........))).(((((.......))))).(((....)))..(((((.......)))))))
ucggcacca
)))))....

Output

alanine ggggcuauagcucagcugggag-agcgcuugcauggcaugcaagag--g---u-c

leucine gccgaaguggcgaaaucgguagacgcaguugauucaaaaucaaccguagaaauac

* * * ** * ** ** ** *** * * *** * * * *

alanine --agcgguucgaucccgcuuagcuccacca

leucine gugccgguucgaguccggccuucggcacca

******** *** * *****

alanine (((((((..((((........)-))).(((((.......)))))..--.---.-.

leucine (((((((..(((...........))).(((((.......))))).(((....)))

************ ******** ********************** *

alanine --(((((.......))))))))))))....

leucine ..(((((.......))))))))))))....

****************************
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4.7.2 2d-Plot

RNA secondary structures are represented graphically as circle plots, dot

plots, mountain plots or 2d-plots (refer to Section 2.3). I present a 2d-

plot variant for RNA secondary structure alignments that emphasizes both

sequence and structure similarity. I follow the strategy of using well estab-

lished layout algorithms for 2d-plots of RNA secondary structure [14, 109,

143, 179, 234]5. Therefore, I derive a secondary structure from a structure

alignment which is drawn and annotated further. Since bases paired in a

structure S1 can be aligned to bases unpaired in a structure S2, the presenta-

tion of a common secondary structure leaves some choice. For an alignment

A of structures S1 and S2, I draw an RNA secondary structure “S2-at-S1”

that highlights the differences as deviations of S2 from S1, or vice versa “S1-

at-S2”. Both are alternative visualizations of the same alignment A. The

drawings can be annotated using all the information of the alignment, e.g.

show alternative base pairings as dashed lines connecting bases.

Figure 4.10 explains the visualization by an example. The visualization of

local similarity follows the same strategy. If suboptimal local alignments are

calculated, the local similar regions are highlighted in the original structures.

Figure 4.13 shows local similar regions of the structures in Figure 4.11 and

Figure 4.12. I am sure to make comparing RNA secondary structures quite

comfortable by using this visualization.

5I use an implementation of Bruccoleri et al.’s NAVIEW algorithm [14].
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(c) Alanine-at-Leucine
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(d) Leucine-at-Alanine

Figure 4.10: Secondary structures of E.coli tRNA for leucine (Anticodon CAA)
(a) and alanine (Anticodon GGC) (b), taken from the Genomic tRNA Database
[116]. 2d-plot of the structure alignment of tRNAs for Alanine-at-Leucine (c)
and Leucine-at-Alanine (d). The acceptor stem (red), anticodon stem (green) and
TψC stem (blue) have the same length in both structures, but some differences with
regard to the sequence. There are also sequence variations in the single-stranded
regions, especially at the anticodon position. The visualization emphasizes this
automatically by using red letters. For the double-stranded regions an accentuation
of compensatory base exchanges is achieved by this presentation. Bases printed in
black show structure elements that occur in both structures with the same sequence.
The CCA at the 3’ end is a typical invariant feature of tRNAs and so its printed
in black. Structural elements, which can only be found in the first structure are
printed in blue. Thus, the fourth base-pair in the D-stem (magenta) of tRNA for
alanine is shown with the dashed blue line in the alignment. In contrast, structural
elements shown in green occur only in the lysine structure. The extra stem of the
leucine tRNA is highlighted that way.
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Figure 4.11: Predicted structure of the human transferrin receptor 3’ UTR. The
sequence was taken from the UTR database, accession number 3HSA008842 [154].
The colored regions highlight the local similar parts to the structure in Figure 4.12.
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Figure 4.12: Predicted structure of the human ferritin 5’ UTR. The sequence was
taken from the UTR database, accession number 5HSA015337 [154]. The colored
regions highlight the local similar parts to the structure in Figure 4.11.
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Figure 4.13: Local alignments of the human transferrin receptor 3’ UTR (Figure
4.11) and the human ferritin 5’ UTR (Figure 4.12). (red) shows the best scoring
local alignment which is found at the positions 932 in transferrin and position 26 in
ferritin. This motif is the well studied Iron Responsive Element(see 7.1). (green),
and (blue) show suboptimal local alignments that were found in the structures.
These were found at the positions 2392 and 147, and 1765 and 104, respectively.
As I focus on the visualization technique here, the putative biological function of
these regions is not further discussed.
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4.8 Performance of Forest Alignment Algo-

rithms

In Section 4.8.1, I analyze the parameters of an RNA secondary structure

that affect the complexity of the algorithms presented in this chapter. In

Section 4.8.2, I provide measurements concerning the practical runtime and

space requirement of my algorithms.

4.8.1 Efficiency Considerations for RNA Secondary Struc-

ture Alignments

The efficiency analysis of Algorithm 4.1 in terms of RNA secondary structures

requires to observe which parameters of an RNA secondary structure affect

the size and the degree of a forest in the extended forest representation.

The total number of forest nodes consists of the sum of P-nodes and

B-nodes. The number of B-nodes equals the sequence length. Each P-node

“consumes” two B-nodes and, thus, there are at most half as many P-nodes as

B-nodes. Hence, in extended forest representation, the number of tree nodes

grows linear with the sequence length. The length of unpaired regions and

the branching degree of multiloops determine the degree of a forest. For RNA

secondary structures that exist in nature the maximum length of an unpaired

region can be considered to be bounded by some constant. For reasons of

thermodynamic stability, loops cannot be arbitrary large. Hopefully, above

a certain sequence length, the number of branches in a multiloop can also be

considered to be constant or at least to grow slowly. I now turn to measure

these parameters.

4.8.2 Measurements

For the following experiments, I generated a sample set of RNA secondary

structures which consists of predicted RNA secondary structures for se-

quences ranging from length 5 to 1000. For each sequence length, 10 se-
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Figure 4.14: Degree measurements on forests in the extended forest representation
for RNA secondary structures generated from folded random sequences: The degree
of a forest is plotted against the number of nodes.

quences are generated assuming an equal distribution of the bases A, C, G, U .

The prediction was done using RNAfold [84]. The complete dataset includes

9960 structures. I argue that the results show the worst case when analyz-

ing real RNA structures (or real sequences that are folded). A structure

that occurs in nature should obtain, if at all, slightly better energy values

and contain smaller loops. The following measurements were done for the

extended forest representation of RNA secondary structures.

In Figure 4.14, I plot the degree of a forest against the number of nodes.

It turns out that the degree of a forest converges to an average value of

approximately 30. The maximum degree measured is 60. This shows that

the practical runtime can be expected to be quadratic in the number of

nucleotides in a structure.

In Figure 4.15, I plot the depth of a forest against the number of nodes.
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Figure 4.15: Depth measurements on forests in the extended forest representation
for RNA secondary structures generated from folded random sequences: The depth
of a forest is plotted against the number of nodes.

The depth of a forest is not relevant for the forest alignment algorithms but is

crucial for the tree edit algorithms (refer to Section 2.5.3). In contrast to the

degree, the depth does not converge, but seems to grow sub-linear. Hence,

considering the proposed algorithms for computing the tree edit distance,

the practical runtime of RNA secondary structure comparison in the tree edit

model is more than quadratic. This result is consistent with the theoretically

derived average runtime for the Zhang-Shasha tree edit algorithm which is

O(|T1|
3
2 · |T2|

3
2 ) [39]. I assume that the average of the measured degrees

approximates some root function.

For space complexity, the combined measure of the number of nodes and

the degree is the number of closed subforests of a forest. The square of this

number determines the size of the tabulation matrix, and the number of rel-

evant closed subforests for the local closed subforest similarity. Figure 4.16
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Figure 4.16: The number of closed subforests for forests in the extended forest
representation for RNA secondary structures generated from folded random se-
quences: The number of closed subforests is plotted against the number of leaves
(or equivalently the sequence length).

shows how the number of closed subforests scales depending on the sequence

length. It turns out that the number of closed subforests grows linearly and,

thus, the practical space complexity of Algorithm 4.1 is quadratic. Figure

4.17 shows the space consumption in Megabyte for the 4-dimensional (with-

out the second stage mapping β, see Section 3.3.2) and the 2-dimensional

tabulation, respectively. Figure 4.18 shows the percentage of space that the

2-dimensional tabulation consumes in comparison to the 4-dimensional tab-

ulation.
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Figure 4.17: Space requirement of the 2- and 4-dimensional tabulation for two
forests of the same size (meaning that they have the same number of closed sub
forests).
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Figure 4.18: The space improvement of the 2-dimensional tabulation is measured
in terms of the percentage of space that the 2-dimensional tabulation consumes in
comparison to the 4-dimensional tabulation.

The time measurements consider the practical runtime of the global and

local welformed forest alignment model. For both variants, I distinguish

between algorithms that implement the reduced search space recurrences

(see Section 3.3.2) and those that do not. The calculations were done on a

SunFire V60x with 2GB RAM, Intel Xeon CPUs (2 x 2.8 GHz), and Solaris

10 operating system. All algorithms are implemented in the tool RNAforester

(see Section 6) which was used for these measurements. Figure 4.19 shows

the measured time for the calculation of global and local similarity depending

on the sequence length. The reduced search space variant of global and local

similarity gives a constant speedup of approximately 2.5.

All these measurements document that my algorithms have time and

memory demands that are suitable for the analysis of real data, even in large

scale applications.
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Figure 4.19: Time in seconds for the calculation of global and local forest align-
ments with and without the reduced search space recurrences due to Section 3.3.2.
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Figure 4.20: (a)-(d) show how the alignment structure is related to edit opera-
tions.

4.9 The Welformed Forest Alignment Model

Revisited

Continuing the uniform description of edit based models for RNA structures

in Section 2.5.5, I analyze the welformed forest alignment model under the

scope of Jiang et al.’s general edit model for RNA structures.

The classical sequence edit operations affect the leaf nodes in the extended

forest representation (B-nodes). The structural edit operations are assem-

bled from edit operations on P-nodes and B-nodes: The base-pair breaking

corresponds to the deletion of a P-node. The base-pair deletion is modeled

by the independent deletions of a P-node and the two paired B-nodes. The

corresponding holds for the base-pair replacement and the base-pair altering

edit operation. Figure 4.20 shows how the forest alignment model is related

to the described edit operations.

edit operation score

base replacement σ(B, B)

base indel σ(B, λ) and σ(λ, B)

base-pair replacement σ(a◦b, c◦d) or σ(P, P ) + 2 · σ(B, B)

base-pair breaking σ(P, λ) and σ(λ, P )

In terms of edit operations, the welformed alignment model is closest to

Bafna et al.’s model. Their model also builds structural edit operations from

base-pair breaking and base replace and indel operations. However, there is

a substantial difference between the welformed alignment model and the edit
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models presented in Section 2.5.5: The alignment model is not an operational

model. A model consisting of the above operations does not correspond to the

welformed alignment model. The following example elucidates this: Consider

a scoring contribution of zero for the relabeling, insertion, and deletion of

a P-node. In this case, an operational model corresponds to the classical

sequence alignment model, i.e. an optimal score can always be obtained by

first deleting all P-nodes. This does not hold for the forest alignment model

where relabeling, insertions, and deletions must be consistent with the forest

structure. Refer to Section 2.5.3 for the properties of tree/forest alignment

models.





Chapter 5

Multiple Alignment of RNA

Secondary Structures

In the world of biomolecular sequences, the multiple sequence alignment is

an ubiquitous, indispensable means to reveal the traces left by the evolution

of a group of related nucleic acid sequences. The calculation of multiple

sequence alignments has become a discipline on its own in Bioinformatics

and numerous publications exists in this still highly active field. Surveys

are provided in [41, 63, 148]. Multiple sequence alignment tools, among the

most popular ones are ClustalW [200], DiAlign [140, 141], Prrp [62], MSA

[115], DCA [186] and T-Coffee [149], find brisk application in phylogenetic

analyses, the identification of conserved motifs, and domain and structure

prediction. These applications are interesting for amino acid sequences as

well as nucleic acid sequences. Their success depends largely on the quality

of the multiple alignments. The quality in turn depends on the level of

sequence conservation.

Structural RNA can exhibit low sequence conservation, though the sec-

ondary structure is highly conserved, i.e. the same structure can be formed

by different sequences with that same base-pair pattern. Thus, bases that

form base-pairs are expected to be less sequence conserved than unpaired

bases after some (for a human life-span incredibly large) time of evolution.
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This has consequences for the above applications for structural RNA:

• After some point in time in the evolution of structural RNA, the se-

quence diversity is no longer a measure for the evolutionary distance

between sequences; sequences are just dissimilar. The selective pressure

is on the structural level and, though the sequence changes permanently

during evolution, the structure remains similar. Accordingly, a distance

on structures should be a better measure to construct phylogenies for

distantly related structural RNA molecules.

• The identification of conserved motifs is limited to the identification

of sequence motifs. If a motif is structurally conserved, a biological

correct alignment of the motif depends on the conservation of the se-

quences that surround it. Homologous sequence regions are matched in

the alignment and force regions of sequence diversity between them to

align to each other. If the surrounding parts are sufficiently sequence

conserved, there is a chance to align the “non-fitting” structural parts

correctly. If not, the method will fail. Moreover, the detection of struc-

tural conserved regions requires additional effort since the sequence

alignment score for these regions does not identify them. A multiple

alignment that considers both sequence and structure would eliminate

these problems.

• The structure prediction of RNA molecules by a multiple sequence

alignment has the same intrinsic problem as the identification of struc-

tural motifs. If sequences are not sufficiently conserved, the structural

regions cannot be aligned correctly.

It is obvious that additional structural information can improve the quality of

a multiple alignment of structural RNA. In the following, the multiple forest

alignment model is considered. I propose a notion of consensus structures

for a family of RNA molecules, the RNA secondary structure profiles, and

provide intuitive visualizations for them. To demonstrate the usefulness of a

multiple RNA secondary structure alignment, I propose a consensus structure
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prediction strategy for families of RNA molecules that have low sequence

homology. I have published central ideas of this Chapter in [78].

Related work has been done by Torsello et al. [204, 206]. They considered

the clustering and classification of shape abstracted images which are repre-

sented as skeletal trees. Similar to my approach, the clustering is done by

merging trees to get a kind of representative for multiple trees. I will further

comment on their approach in Section 5.4.

5.1 Multiple Alignment Strategies

The exact calculation of multiple sequence alignments is extremely demand-

ing for computer resources. The complexity of this problem depends on the

scoring function. Among different scoring schemes, the sum-of-pairs score is

the one that received most attention [15]. Wang and Jiang showed that the

problem of computing a multiple sequence alignment with optimal sum-of-

pairs score is NP-complete [220]. This remains true if the scoring scheme is

a metric one [12]. Therefore, one cannot hope to compute the edit or align-

ment distance (or similarity) exactly within polynomial time. Driven by the

importance of multiple sequence alignments in the field of molecular biol-

ogy, several heuristics and approximation schemes have been developed that

produce “good” alignments. Essentially, there are two general ideas how to

produce near optimal multiple sequence alignments, the progressive strategy

and the simultaneous strategy:

• Progressive strategy: A progressive alignment is sometimes also re-

ferred to as an iterative alignment. However, there is no strict conven-

tion about this terminology and the term iterative alignment is also

used for the following strategy: A multiple alignment is constructed,

by whatever heuristic, and refined through a series of iterations until

no further improvements can be made. A genetic algorithm approach

as implemented in the tool SAGA is an example of an iterative strategy

[150].
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In a progressive strategy, the calculation of a multiple alignment is re-

duced to an iterated application of pairwise alignments. This requires

a concept to align alignments or join a sequence to an existing align-

ment. The first description of a progressive algorithm is due to Hogeweg

& Hesper [88]. ClustalW is the most prominent implementation of a

progressive algorithm [46]: From the pairwise comparison of all com-

binations of sequence pairs, a guide tree is constructed by hierarchical

clustering. The multiple alignment is then built from pairwise align-

ments along this guide tree. Additionally, ClustalW includes features

such as affine gap penalties, automatic substitution matrix choice or

the automatic gap penalty adjustment to improve the quality of the

multiple alignment.

• Simultaneous strategy: Another way to speed up the calculation of

multiple alignments is to reduce the problem size. Larger sequences

are divided into smaller sequences and those are aligned. Afterwards,

the whole alignment is built by merging the smaller alignments. This

is the general idea of divide and conquer algorithms. The difficulty is

to cut the sequences at the correct point. Among others, the multiple

alignment tools Prrp [62], DCA [186] and DiAlign [140, 141] follow this

strategy. The latter is also progressive, since the global alignment is

constructed by progressively arranging highly similar regions of the

sequences.

Alignment of Multiple RNA Secondary Structures While multiple

sequence alignment strategies are getting more and more sophisticated and

specialized, multiple RNA secondary structure alignment strategies are just

at the beginning. Driven by the now generally acknowledged importance of

structural RNA, new approaches were proposed recently: Interactive tools

like ESSA [24], ConStruct [120] and Stemtrace [231] analyze conserved pat-

terns and consensus structures by combining thermodynamic and compar-

ative methods. These tools allow and often require manual intervention.
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Thus, they are not suitable for analyzing large data sets automatically. How-

ever, they are extremely helpful in refining the results of computational ap-

proaches.

Siebert & Backofen provided a multiple alignment strategy for structural

RNA based on the multiple sequence alignment tool T-Coffee [149, 183].T-

Coffee optimizes a multiple alignment according to a library of pairwise align-

ments. In their multiple alignment tool MARNA, Siebert & Backofen calcu-

late pairwise alignments using Zhang et al.’s method [242]. Since T-Coffee

computes a sequence alignment, the problems that were reported for sequence

alignment strategies in Section 2.5.2 cannot be avoided.

Hofacker et al. provided a strategy that is based on aligning base-pair

probability matrices, predicted by McCaskill’s partition function algorithm

[80]. Their strategy is in flavor of Sankoff’s algorithm [172] and is imple-

mented in the tool pmmulti of the Vienna RNA package.

Wang & Zhang generalized Zhang et al.’s structural alignment model for

more than two structures in a progressive fashion [222]. Their model lacks

the base-pair breaking operation (refer to Section 2.5.5), which limits the

quality of structural alignment especially on the sequence level.

In the following, I will provide a multiple RNA secondary structure align-

ment algorithm based on the forest alignment model.

5.2 Multiple Alignment of Forests

In Section 2.5.3, I reviewed the tree editing distances and gave alternative

formulations of the problems in terms of edit sequences, mappings and graph

isomorphisms. Here, I consider the extension for the multiple, not necessarily

pairwise, case. A natural extension of the tree edit and tree alignment dis-

tance is motivated by the graph isomorphism definitions of these problems.

The tree edit model considers isomorphic subforests, while the tree align-

ment model considers isomorphic supertrees. This concept can be extended

directly to an arbitrary number of trees and forests. I concentrate on the
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alignment model for the following reasons:

• An alignment of forests is a forest and, hence, can again be aligned

in the forest alignment model. This makes virtually every progressive

strategy that was reported for multiple sequence alignment applicable

to multiple forest alignments. The idea of the algorithms persists even if

the type of the alignment is not a sequence. Remember that a mapping

between forests is not necessarily consistent with the forest structure

and the generalization of the edit based approach would require the

definition of a ”multi-mapping”.

• Based on the observations in Section 4.8.2, I expect to achieve a better

practical runtime using the alignment model.

• A multiple forest alignment is a compact data structure that is suitable

to represent a family of RNA structures. The concept of sequence

profiles can be naturally extended to forests, which results in a profile

representation of RNA secondary structures.

I now turn to formalize the multiple forest alignment model. Consider the

definition of function π in Equation (2.10), an alignment of n forests is defined

as follows:

A ∈ F(Σn
λ) is an alignment of forests F1, F2, . . . , Fn ∈ F(Σ) iff

Fi = π(A|i) for i ∈ [1, n]. (5.1)

Note that the labels of a multiple forest alignment are n-tuples. Figure

5.1 shows an example of an alignment of four RNA secondary structures in

the extended forest representation. As an optimization criterion, a scoring

function for multiple forest alignments is required. The sum-of-pairs score

introduced by Carillo & Lipman [15] defines the score of each column of

a multiple sequence alignment as the sum of scores of all combinations of

pairwise scores for the column. Let n be the number of columns which
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corresponds to the number of aligned forests in a forest alignment A. The

sum-of-pairs (SP) score is defined formally as:

σSP(A) =
∑

v node in A

∑
1≤p≤q≤n

σ(label(v)p, label(v)q). (5.2)

As I represent RNA secondary structures in the extended forest representa-

tion, I concentrate on the welformed alignment similarity σWFA (see Section

4.3). The definition of welformed forest alignments that was given in the con-

text of pairwise alignments (see Definition (4.1)) applies to the multiple case

as well. I define the alignment similarity σWFA between forests F1, F2, . . . , Fn

as the maximum SP-score that a welformed alignment of F1, F2, . . . , Fn can

achieve1.

σWFA(F1, F2, . . . , Fn) = max{σ(A) | A is a welformed alignment of F1, F2, . . . , Fn}.
(5.3)

5.3 A Forest Profile for RNA Secondary Struc-

tures

Multiple alignments of protein sequences are useful to group proteins of sim-

ilar functions into protein families. The identification of proteins that also

belong to a certain family gives naturally rise to the question of finding a

kind of representative sequence for a protein family. Such representations,

that are well known for multiple sequence alignments, are profile and con-

sensus sequence. Here I restrict my attention to the profile representation

[66]. A profile for a multiple sequence alignment consists of the frequencies

of characters in each row and is also known as a weight matrix.

In analogy to view sequence alignments as sequences of edit operations,

1The generalization of the classic forest alignment model follows analogously.
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Figure 5.1: A is an alignment of F1, F2, F3, F4. The 2d-plot of the secondary
structure is shown at the top right corner of the forests. The 2d-plot for the align-
ment A will be explained in Section 5.3.1. Intuitively, it shows an overlay of the
single structures.
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and tree alignments as trees labeled with edit operations (see Section 2.5.3), I

consider a profile for a sequence alignment as a sequence of relative frequency

vectors. Consequently, a profile for a forest alignment is a forest labeled with

relative frequency vectors. Let k = |Σ ∪ {λ}|, I give the following definition

of a profile for a forest alignment:

Given a multiple forest alignment A ∈ F(Σn
λ), its profile alignment

PA ∈ F(IRk) is obtained by converting each label in A to its relative

frequency vector. (5.4)

An example of a multiple forest alignment and its corresponding profile is

shown in Figure 5.2. Since a profile for a forest alignment is also a forest, it

is straightforward to define a profile-forest to profile-forest alignment.

Adhering to the sequence alignment tradition, I use the analog scheme to

the sum-of-pairs score for frequency vectors. The profile sum-of-pairs score

σSP of two relative frequency vectors p, q ∈ IRk is defined as follows:

σSP(p, q) =
∑

(a,b)∈Σ2
λ

pa · qb · σ(a, b). (5.5)

Unlike for distances where the score of two equal forests is zero, the similarity

value can be an arbitrary positive value. The similarity score of two equal

forests of size n can be the same as for two different forests of size m where

m > n. Therefore, I introduce relative scores that are upper bounded by 1.

The relative similarity score σSP REL of forests F1 and F2 is defined as:

σSP REL(F1, F2) =
2 · σSP(F1, F2)

σSP(F1, F1) + σSP(F2, F2)
(5.6)

The self-similarity score of a forest results from a perfect matching alignment

for reasonable scoring schemes. This score can be computed, without self-

aligning the forests, in O(|F |). It is simply the sum of the self-relabeling
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Figure 5.2: (a) shows a multiple tree alignment for the extended forest represen-
tation of RNA secondary structures and (b) its corresponding profile. The rows
of the frequency vectors stand, from top to bottom, for the frequencies of the sym-
bols A,C,G,U,P ,λ. Note that the frequency of a base is zero iff the frequency of a
base-pair bond is greater than zero.

scores for each node. A new profile-forest can be constructed in O(|F |)
from an alignment of profiles using the weighted mean values of the aligned

frequency vectors as the frequency vector of the profile. The number of

forests in the aligned profiles determines the weight. Formally, let n and m

be the number of aligned forests for the profiles P1 and P2, respectively. For

each relabeled node in the alignment of P1 and P2, I define p1 and p2 as the

aligned frequency vector in P1 and P2, respectively. For each insertion and

deletion node, I define the p1 and p2 to be the frequency vector of a gap node,

the vector (0, 0, 0, 0, 0, 1)T . The combined frequency vector pa is calculated
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as follows:

pa =
n

n + m
· p1 +

m

n + m
· p2 (5.7)

Note that also single structures in the extended forest representation can be

converted to a corresponding profile.

5.3.1 Visualization of RNA Secondary Structure Pro-

files

A profile for a forest alignment can represent multiple RNA secondary struc-

tures and gives rise to the question to find a consensus structure. Since bases

paired in one structure can be aligned to bases unpaired in another structure,

this leaves some choice.

An RNA profile is compatible to a single structure if the leftmost and

rightmost child of each P -node is a B-node. A compatible profile can be

obtained from an arbitrary profile by deleting P -nodes. An optimal consensus

structure corresponds to a compatible profile that maximizes the sum of P -

node frequencies.

I provide a console output and a 2-d plot visualization for consensus

sequence and structure.

ASCII Representation

In the ASCII representation, I draw the consensus sequence on top of the

consensus structure. The height of “*” symbols on top and below the con-

sensus sequence-structure gives the frequency of bases and base-pairs in the

consensus. Each “*” means 10% frequency. Sequence and structure conser-

vation and the relation between them can be read from this arrangement.

An example is given in Figure 5.3.

2d-plot

The 2d-plot visualization for RNA secondary structures was refined to visu-

alize consensus structures by adding reliability information to the drawing
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Figure 5.3: ASCII representation of a consensus sequence and structure.

using some color schemes [24, 105]. I draw the consensus structure in two

forms that differ only in the way sequence information is included. Both

express the frequency of base-pairs and the presence (or absence) of gaps as

a gradient from light grey to black. A base-pair is only drawn if it is present

in at least fifty percent2 of the structures. With respect to sequence infor-

mation, I provide either the most frequent base at each residue, or indicate

the base and gap frequencies in an arrangement of colored dots3. In contrast

to others, my visualization includes the full sequence information of the con-

sensus structure. This information is useful to relate structure and sequence

2This parameter is adjustable.
3This arrangement was the result of a discussion with Peter Stadler who I gracefully

acknowledge here.
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Figure 5.4: 2d-plots of a multiple alignment of 20 secondary structures of E.coli
tRNAs. In both plots, the consensus structure is shown. The lighter a base-pair
bond is drawn, the less frequent does it exist in the structures. Bases or base-
pair bonds that have a frequency of one are drawn in red. The darkness of the
lines connecting adjacent bases (the backbone, not base-pairs) is proportional to
the product of frequencies that there is no gap at the residues. Again, if there is no
gap the connecting line is drawn red. (a) The most frequent base at each residue is
printed with the base frequency indicated by greyscale. (b) The frequencies of the
bases a,c,g,u are proportional to the radius of circles that are arranged clockwise
on the corners of a square, starting at the upper left corner. Additionally, these
circles are colored red, green, blue, magenta for the bases a,c,g,u, respectively. The
frequency of a gap is proportional to a black circle growing at the center of the
square.

conservation. Figure 5.4 shows an example of these profile drawings.
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5.4 A Progressive Profile Algorithm

The alignment based comparison of RNA secondary structures allows to har-

ness multiple sequence alignment strategies almost straightforward. Here, I

introduce an algorithm that is inspired by the progressive calculation of mul-

tiple sequence alignments as in ClustalW [200]. In contrast to ClustalW,

my algorithm does not calculate a guide tree solely based on initial pairwise

similarities. It has been observed (A. Dress, personal communication) that

any such phylogeny tends to reproduce the guide tree, no matter how well

this tree really suits the data.

My strategy is as follows: As in ClustalW, I start with the computation

of all pairwise profile distances. From these comparisons, the profiles with

the highest similarities are merged and (unlike ClustalW ) the similarity of

the new combined profile to all other profiles is calculated. This procedure

is repeated until only one profile is left.

A well known problem of the progressive strategy is that errors made

early in an alignment cannot be rectified when further sequences are added.

To reduce the greediness of my strategy, I do not simply merge the pair of

profiles that obtains the highest similarity, but consider also the similarity

to, and between, other profiles. Therefore, a maximum weighted matching

between profiles is calculated in each step: Consider profiles as vertices in

a graph. Each pair of vertices is connected by an edge that has a weight

corresponding to the similarity of the profiles. A maximum weighted matching

is a subset of edges such that no two edges share a common endpoint and the

sum of edge weights is maximal. I use Gabow’s N-cubed weighted matching

algorithm to find the best matching pairs of profiles [51]. The pair of profiles

with the highest similarity according to this matching is the one that is

merged. Algorithm 5.1 computes a multiple forest alignment according to

the proposed strategy.

To facilitate joining multiple pairs of profiles in Step 4, the algorithm could

join the best n pairs or all pairs that exceed a certain similarity threshold.

Figure 5.5 shows an example of a progressive profile alignment of RNA sec-
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Input: Forests F1, F2, . . . , Fn in the extended forest representation.
Output: A profile forest P for the multiple alignment of F1, F2, . . . , Fn

Convert F1, . . . , Fn into single structure profiles P1, . . . , Pn.1

Construct all n(n−1)
2

pairwise relative similarity scores σSP REL of2

P1, . . . , Pn.
Compute a maximum weighted matching M for the pairwise3

similarities.
Choose Pi and Pj of maximal similarity according to M , compute4

their alignment Pij, and replace both by Pij.
Compute the relative similarity score of Pij with all others.5

Iterate Steps 3 to 5, until only a single profile alignment P1...n is left.6

Algorithm 5.1: Progressive profile alignment of forests.

ondary structures.

A related strategy has been suggested by Torsello et al. [204, 205]. In con-

trast to the forest alignment similarity, they compute the tree edit distance

between trees. In the progressive calculation, they merge trees based on the

edit distance mapping. As was shown in Section 2.5.3, such a mapping is

not always consistent with a consensus tree structure. Torsello et al. simply

reject the merge and search for another pair of trees to be merged.
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Figure 5.5: A progressive profile alignment of predicted structures for ROSE
elements. These genes encode for RNA molecules that have regulatory function
triggered by the environmental heat, so called RNA thermometers [27, 146]. The
structures were predicted by RNAfold using the default parameters. In the shown
progressive alignment a single structure profile is joined to a cluster of profiles in
each step. Note that this is the optimal joining procedure in this example but it is
also possible to merge clusters of profiles: If the score between the two rightmost
structures would be slightly better, these structures were joined and the resulting
cluster would be merged with the profile of the two leftmost structures.
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5.4.1 Efficiency Analysis

Time Complexity The asymptotic time complexity of Algorithm 5.1 is

as follows: Let there be n structures of average size s, measured in terms of

nodes in the corresponding forest. Let d be the average degree of a forest

node. The pairwise algorithm has time efficiency O(s2 · d2) and space effi-

ciency O(s2 · d2), see Section 3.3.2. In Step 2, this algorithm is called for

all pairs of tree profiles yielding time efficiency O(s2 · d2 · n2). Both, Step 3

and 4 are repeated n− 1 times. In Step 3, a maximum weighted matching is

calculated in O(n3) using Gabow’s algorithm [51]. In the ith iteration, Step 4

computes n− i pairwise alignment scores. Consequently, the overall runtime

of Step 3 to 5 is in O(s2 · d2 · n2 + n4). Thus, the runtime of Algorithm 5.1

is in O(s2 · d2 · n2 + n4).

Space Complexity In Step 1, n forests are stored, requiring O(n·s) space.

The allocated space of a pairwise alignment can be freed after the alignment

score is calculated. The scores are stored in a table of size n2. In Step

4, the optimal alignment is obtained by recalculating the alignment and a

backtracking procedure in O(s2 · d2) time and O(s2 · d) space. Thus, the

overall space requirement of Algorithm 5.1 is O(n · s + n2 + s2 · d2).

From the observations in Section 4.8, the degree of an RNA secondary

structures can be considered as a constant. Hence, multiple RNA structure

alignments under the tree alignment model can be calculated with the same

asymptotic efficiency as multiple sequence alignments.

5.5 A Structure Prediction Strategy based

on Multiple RNA Secondary Structure

Alignment

A multiple sequence alignment is often the first step in determining a consen-

sus structure (see Section 2.4). Homologous sequence regions are matched
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in the alignment and force regions of sequence diversity between them to be

aligned to each other. Among a family of structural RNAs, bases-pairs are

expected to be less sequence conserved in an alignment than unpaired bases.

Thus, regions of diversity in an alignment are subject to structural observa-

tions. It is obvious that such a strategy requires a considerable amount of

sequence conservation to be successful.

I use the multiple structure alignment to predict consensus structures

the other way around. First, the structure of each RNA is predicted ther-

modynamically. Second, a pure multiple structure alignment is computed

by the algorithm presented in the previous section. A pure structure align-

ment means that sequence conservation is not favored by the scoring scheme

(see Section 4.5). In contrast to the sequence based approach, structural

conserved regions are the anchor regions of the alignment.

The success of this strategy depends largely on the accuracy of secondary

structure prediction from single sequences. Unfortunately, for a set of RNA

sequences that belong to the same family, the predicted structures are often

diverse and not always compatible with a similar consensus structure. For

instance, in the multiple alignment example in Figure 5.5 the rightmost struc-

ture does not fit “well” to the others. Looking at the suboptimal structures

reveals a structure that is in better correspondence to the others. Further-

more, for a successful application of Algorithm 5.1 to the proposed structure

prediction strategy the following must be guaranteed: First, all sequences

share a similar structure, i.e. they belong to the same family. Second, there

is only one structural conformation for the sequences.

The remedy is a clustering of predicted structures in the progressive calcu-

lation of the structural alignment. To facilitate clustering of forests, joining

alignments in Step 4 is restricted to a minimal cutoff value c. If the best

alignment score of Pi and Pj in Step 3 is below c, these profiles are put into

the result list of clusters which are not aligned further.

The structures that are aligned are the result of structure prediction algo-

rithms based on thermodynamics. If only the base-pair information of a pre-
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diction is used, a base is either paired or unpaired. Thus, stable and unstable

base-pairs are indistinguishable. Reasonably, the deletion of a weak base-pair

should not be penalized as high as the deletion of a strong base-pair. The pro-

file representation of structures allows an elegant way to weight base-pairs by

incorporating base-pair probabilities. I calculate base-pair probabilities using

McCaskill’s partition function algorithm and weight the P-nodes in the initial

profile forests according to the base-pair probabilities. It has been observed

by Gardner & Giegerich that pruning of base-pairs with a low probability

can improve the results of a structural alignment of predicted structures. A

threshold value p determines the minimum probability of a base-pair that

is required to generate a corresponding P-node in the extended forest repre-

sentation. Algorithm 5.2 shows the modified multiple structure alignment

algorithm for consensus structure prediction from RNA sequences.

Input: RNA sequences S1, S2, . . . , Sn,
clustering cutoff c, minimum base-pair probability p.

Output: A list of profile forest.
Calculate McCaskill’s partition function for S1, S2, . . . , Sn and build1

the weighted single structure profiles P1, P2, . . . , Pn according to the
mfe structure and threshold p.
Construct all n(n−1)

2
pairwise relative similarity scores of P1, . . . , Pn.2

Compute a maximum weighted matching M for the pairwise3

similarities.
Choose Pi and Pj of maximal similarity according to M4

if σSP REL(Pi, Pj) > c then5

Compute their alignment Pij and replace both by Pij.6

else7

Put Pi and Pj in the result list.8

end9

Compute the relative similarity score of Pij with all others.10

Iterate Lines 3 to 8, until no profiles are left.11

Algorithm 5.2: Progressive profile alignment of forests.

I suggest to set the clustering cutoff c to zero, as zero separates the structures

that are rather similar from those that are rather dissimilar due to some

similarity scoring scheme that includes positive and negative contributions.
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Complexity Algorithm 5.2 calculates the partition function for all n se-

quences of average length s. Each prediction is done in O(s3). Thus, Step 1

requires O(n · s3) time. The complexity of the remaining calculations is the

same as for Algorithm 5.1. That is, the time complexity of Algorithm 5.2 is

O(n · s3 + s2 · d2 ·n2 +n4) time where d is the average degree of the predicted

profiles. The O(n · s+n2 + s2 · d2) space complexity remains unaffected since

each calculation of the partition function requires O(s2) space.



Chapter 6

RNAforester : A Tool for

Comparing RNA Secondary

Structures

RNAforester is a command line based tool for comparing RNA secondary

structures. It supports the computation of pairwise and multiple alignment

of structures based on the models and algorithms presented in Chapter 4

and Chapter 5. The user interface follows the philosophy of the Vienna

RNA Package [84] and will be part of the forthcoming Vienna RNA Package

Version 1.6. The tools and technologies that are behind RNAforester are

outlined in Section 6.1. The command line usage and options are explained

in Section 6.2. The online interface of RNAforester is shown in Section 6.3.

6.1 Implementation Notes

RNAforester is implemented in the programming language C++ [187]. The

source code distribution is freely available at http://bibiserv.uni-bielefeld.

de/rnaforester. The source code distribution is packaged using the GNU

Build Tools : autoconf and automake [61]. The source code of RNAforester

is documented using the documentation system Doxygen [211]. Doxygen can
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generate an on-line documentation in HTML and off-line reference manual in

various formats. It can visualize the relations between the various elements

by means of include dependency graphs, inheritance diagrams, and collabo-

ration diagrams, which are all generated automatically. The documentation

is extracted directly from the sources, which makes it comfortable to keep

the documentation consistent with ongoing development.

The generation of 2d plots is facilitated by Milanovic &Wagner’s g2 graph-

ics library [136]. The clustering of profiles in the progressive calculation of

multiple alignments employs Ed Rothberg’s implementation of Gabow’s N-

cubed weighted matching algorithm [137]. The clusters that are built during

the calculation of multiple alignments are written to Graphviz compatible

files for further analysis [64].

The data structures and algorithms of RNAforester are designed using

C++’s template mechanism. Templates are very useful for the implementa-

tion of generic constructs like vectors, stacks, lists, queues which can be used

with any arbitrary type. Accordingly, a forest alignment can have any type

of labels. In data types and algorithms the labels become a type parameter.

C++ templates provide a way to re-use source code as opposed to inheritance

and composition which provide a way to re-use object code. C++ provides

two kinds of templates: class templates and function templates. In the Stan-

dard Template Library (STL) generic algorithms have been implemented as

function templates, and the containers have been implemented as class tem-

plates. These implementations achieve excellent practical runtime, since the

expensive type replacements happen at the compile time. Since I followed

the STL’s template philosophy, my algorithms can easily be integrated in

tools beyond the scope of RNA secondary structure comparison.

6.2 User Manual

By default, RNAforester calculates pairwise similarity between RNA sec-

ondary structures under the scoring scheme proposed in Section 4.5.1. RNAforester
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reads RNA secondary structures from stdin in Fasta format where matching

brackets symbolize base-pairs and unpaired bases are represented by dots.

An example is given below:

> test

accaguuacccauucgggaaccggu

.((..(((...)))..((..)))).

All characters after a ”blank” are ignored and all “-” characters are removed.

The program will continue to read new structures until it encounters a “@”

character or the end of file. Lines starting with “>” can contain a structure

name.

The similarity scores, alignments, and consensus sequences and structure

are written to stdout. The default format for alignments is ClustalW format.

6.2.1 Options

RNAforester has a number of options that control the alignment mode and

the output. In the following description, int and dbl stand for integers and

floating numbers, respectively.

--help: Shows the synopsis of RNAforester.

--version: Shows version information of RNAforester.

-f=filename: This option lets RNAforester read input from filename.

2d-plots are written to files prefixed with filename.

-d: This option lets RNAforester calculate distance instead of simi-

larity. In contrast to similarity, scoring contributions are minimized.

This parameter cannot be used in conjunction with multiple align-

ment. (This restriction is due to technical difficulties with the maxi-

mum weighted matching algorithm used in the progressive calculation

of multiple alignments.)
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-r: Calculate relative similarity scores for pairwise alignments, see

Equation (5.6) in Section 5.3.

-l, -s, -so=int: Option -l and -s let RNAforester calculate local sim-

ilarity and small-in-large similarity (see Section 4.6). If parameter -so

is used additionally, suboptimal solutions are calculated such that the

score is within so percent of the optimum.

-m, -mc=dbl, -mt=dbl: Option -m activates the multiple alignment

mode of RNAforester. The clustering cutoff can be adjusted by param-

eter -mc, the default value is zero. To facilitate joining multiple clusters

in each step, parameter -mt can be adjusted (see Section 5.5). The de-

fault value is 0.7 (relative similarity). All pairs above this threshold

are joined in each step of the multiple alignment calculation (see Sec-

tion 5.4). The clusters are written to a file cluster.dot in Graphviz ’s

dot format. If a filename was specified by parameter -f the filename is

”filename cluster.dot”.

-p, -pmin=dbl: Structures are predicted from the partition func-

tion algorithm in the Vienna RNA library. The P-nodes (representing

base-pair bonds) in the corresponding forests are weighted according

to base-pair probabilities from the partition function (see Section 5.5).

Parameter -pmin sets the minimum frequency that is required to create

a P-node in the extended forest representation. The default value is

0.5. By this parameter, a pruning of high entropy base-pairs is possible.

-cmin=dbl: This parameter sets the minimum frequency that is re-

quired for a base-pair to appear in final the consensus structure.

-pm=int, -pd=int, -bm=int, -br=int, -bd=int: Set the scoring

values for a base-pair bond match, a base-pair bond deletion, a base

match, a base replacement, and a base deletion according to the scoring

model described in Section 4.5.1. The default values are -pm=10, -pd=-

5, -bm=1, -br=0, and -bd=-10.
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--RIBOSUM: Uses the scoring model described in Section 4.5.2 with

the RIBOSUM85-60 matrix. The RIBOSUM score is only supported

for pairwise alignments.

-2d, --2d hidebasenum, --2d basenuminterval=int, --2d grey,

--2d scale=dbl, --2d png, --2d jpg: Option -2d activates the gen-

eration of 2d-plot postscript files. In the pairwise alignment mode,

the drawings are written to files x n.ps and y n.ps where n is an

index. If local similarity (-l,-s) in conjunction with suboptimal solu-

tion (-so) is set, n enumerates the suboptimal solutions. The region

of local similarity are highlighted in the 2d-plots of the original struc-

tures that are written to the files x str.ps and y str.ps. Parameter

--2d hidebasenum disables the numbering of bases according to the in-

terval --2d basenuminterval. Colors can be turned into gray-scale by

parameter --2d grey. The size of the drawing can be adjusted by pa-

rameter --2d scale. The drawing is scaled by the given factor. The

parameters --2d png and --2d jpg let RNAforester write 2d-plots in

PNG and JPG format.

--fasta: Alignments are printed to the console in Fasta format.

--score: Only the optimal score of an alignment is printed. This option

is useful when RNAforester is called by another program that only

needs a similarity or distance value.

6.3 RNAforester Web Interface

The online version of RNAforester is available at the Bielefeld Bioinformat-

ics Server (http://bibiserv.uni-bielefeld.de/rnaforester) [176]. A

screenshot is shown in Figure 6.1. For more informations refer to the online

manual.



140 RNAforester : A Tool for Comparing RNA Secondary Structures

Figure 6.1: Screenshot of the web interface of RNAforester.



Chapter 7

Applications

In this chapter, I demonstrate the practical impact of the Algorithms that

were presented in this thesis. In Section 7.1 I present a joint work with T.

Töller and R. Giegerich that is initially described by Töller in [203]. We

present a pipeline for the detection of new regulatory motifs that, as an inte-

gral part, includes the computation of local structure alignments. Multiple

alignment of RNA secondary structures is helpful to reveal a common struc-

tural property of RNAs. We present two applications for multiple structure

alignment, motif discovery and consensus structure prediction in Section 7.2.

The latter application is initially based on sequence information where no

verified structures are given as proposed in Section 5.5.

7.1 Local Structure Alignment as a New Strat-

egy for RNA Motif Detection

This section presents joint work with T.Töller and R. Giegerich. The investi-

gation of structural RNAs or RNA motifs is a major task in modern molecular

biology. Untranslated terminal regions (UTRs) of mRNAs sometimes con-

tain regulatory motifs which are important for the posttranscriptional gene

regulation. Such motifs can affect mRNA localization [91], mRNA degra-

dation [69], and translational regulation [65]. One of the best investigated
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regulatory motifs in UTRs is the Iron Responsive Element (IRE). It is a

specific stemloop structure that can be found in the 5’UTRs and 3’UTRs

of various mRNAs [101]. There is for example one IRE in the 5’UTR of

the vertebrate ferritin mRNAs where it regulates the translational efficiency

depending on the amount of iron in the cell. If there is no iron in the cell

regulatory proteins bind to the IRE which results in a translational block of

the ferritin mRNA. In contrast, protein binding to five IREs in the 3’UTR of

the human transferrin receptor mRNA leads to a stabilization of this mRNA

at a low iron-level in the cell. Thus, the same structural RNA motif func-

tions in different posttranscriptional regulatory pathways depending on its

location in the 5’UTR or 3’UTR.

7.1.1 Strategies for the Detection of RNA Motifs

Regulatory RNA motifs like the IRE often consist of both, sequence and

structure features. Therefore special requirements exist for the prediction of

such regulatory RNA motifs. There are essentially three strategies that can

be used for RNA motif detection (refer also to Section 2.4).

The simultaneous strategy is the joint optimization of sequence alignment

and RNA folding and was first postulated by Sankoff [172]. But because of

its time complexity it cannot be used for real data.

The sequenced based strategy, in the initial step, calculates a sequence

alignments to identify regulatory motifs by their conservation on sequence

level. In a second step an RNA folding program like RNAfold can be used

to verify that the conserved sequences can built a common structure motif.

Since regulatory motifs in RNAs are often more conserved in structure then

in sequence this strategy will fail to identify such motifs.

The pure structure alignment strategy (for short pure strategy) was in-

troduced and applied by Töller in [203]. It is based on RNA folding and

subsequent detection of conserved motifs. These are purely structure motifs

and require no sequence alignment - this explains the name of the strategy.

The calculation of local structure alignments with the algorithms that were
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introduced throughout this chapter, implemented in the tool RNAforester

(see Chapter 6), is an essential step of the strategy. The pure strategy fol-

lows the protocol shown in Figure 7.1, and will be explained throughout the

next sections. We will report on a viability study using IRE motifs, and on

the prediction of a new regulatory motif and its wet lab validation.

7.1.2 The Pure Structure Alignment Strategy

Pattern Definition

Experimental Validation

(ADP)

(RNAMotif)
Database Search

Significance Evaluation

(RNAforester)
Pure Structure Alignment

(RNAfold)
RNA Folding

Figure 7.1: Essential Steps of the Pure Structure Alignment Strategy.

The pure strategy (see Figure 7.1) comprises six steps where RNA folding,

structure alignment, significance evaluation and pattern search are based on

suitable Bioinformatics methods. All steps may include some variation of

parameters. Pattern design and significance analysis is a somewhat mathe-

matical activity, while validation means experimental work with its typical

fallacies. We describe these steps and the considerations that guide them in

the context of two applications of our strategy.
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Figure 7.2: Iron Responsive Element: eukaryotic consensus structure (H:
A,C,U). The cytosin bulge can be extended to an internal loop.

Proof of Concept

To validate the pure strategy we focus on the investigation of structural motifs

in untranslated terminal regions (UTRs) of mRNAs. As mentioned before

one of the best investigated regulatory motifs in UTRs is the Iron Responsive

Element. Figure 7.2 shows a consensus structure of eukaryotic IREs. It is a

specific stem-loop structure which consists of a helix region that contains a

cytosin bulge (this bulge is sometimes extended to an internal loop) and a

loop of six bases with a consensus sequence. All this knowledge is not to be

used in our proof-of-concept study.

UTRs which are known to contain IREs were taken from the UTR data

base [154]. We chose the ferritin 5’UTR from human and the succinate

dehydrogenase 5’UTR from Drosophila which are in a size range of 200 nu-

cleotides and both contain one IRE. The pure strategy was also applied for

the detection of an IRE in a larger UTR, namely the transferrin receptor

3’UTR which consists of nearly 2500 nucleotides and contains five IREs.

First the mfe (minimal free energy) structures of the UTRs were predicted.

Because we are interested in regulatory motifs which can be seen as small

substructures in the complete UTR secondary structures, we calculated local

structure alignments with RNAforester.

In Figure 7.3 the local alignment of the 5’UTRs of the human ferritin

heavy chain mRNA and the Drosophila succinate dehydrogenase mRNA is
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Figure 7.3: Local structural alignment of the 5’UTRs of the human ferritin heavy
chain mRNA and the drosophila succinate dehydrogenase mRNA, extracted as the
best common motif from two structures comprising about 200 bases. The stem
regions of both IREs differ extremely in sequence.

displayed. The IRE was detected as the most similar substructure in both

UTR secondary structures.

Because it is not guaranteed that the energetically best structure is the

biologically correct one, suboptimal structures should always be investigated

too. In this example we were successful by aligning only the two mfe struc-

tures, which contained the IRE. The investigation of larger structures like the

transferrin receptor 3’UTR, structure prediction becomes a general problem.

Structure predictions based on thermodynamic parameters are only reliable

for smaller structures and even then, energetically suboptimal structures have

to be considered. Still, folding long sequences and investigation of the struc-

tures does make sense for finding smaller motifs in these larger structures. If

a structural RNA motif has an important biological function (e.g. the IRE) it

should be very stable and we can expect to find it in the structure prediction

of a long sequence even if the folding of the complete sequence makes no sense

biologically. To show this we have calculated the local structure alignment

of the human ferritin heavy chain 5’UTR (208 nucleotides) and the human

transferrin receptor 3’UTR (2464 nucleotides). We detect the IRE again (see

Figure 7.4), although it occurs at completely different positions in the two

UTRs. Thus, using the pure strategy for RNA motif detection we are not
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Figure 7.4: Local structural alignment of the 5’UTR of the human ferritin heavy
chain mRNA (208 nucleotides) and the 3’UTR of the human transferrin receptor
mRNA (2464 nucleotides). The IRE was detected as the most similar motif in
both structures.

restricted to small structures.

It is important to note that we are able to discover regulatory motifs

solely by their structural preservation, and independent of their sequence

conservation and position in the UTR. The further steps of the pure strat-

egy according to Figure 7.1 will be presented in the next section, where we

describe the prediction of a potential new regulatory RNA motif.

Prediction of a new Regulatory RNA Motif in the RAB1A 3’UTR

After demonstrating the viability of the pure strategy using the familiar IRE

motif, we ventured out to discover something new.

RAB1A is a ubiquitous protein with a role in Endoplasmatic Retikulum

(ER) to Golgi transport [128]. In previous work a high sequence conservation

in several vertebrate RAB1A 3’UTRs was shown [228]. Therefore a function

of a structural motif for the posttranscriptional regulation of the RAB1A

mRNA is possible. The pure strategy was used for the prediction of potential

regulatory elements in the RAB1A 3’UTR. We started with the investiga-

tion of the human and electric ray RAB1A 3’UTRs, which have much less

sequence-conservation than the UTRs described in [228]. In Figure 7.5 the

mfe structure of a part of the human RAB1A 3’UTR and in Figure 7.6 the
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Figure 7.5: mfe structure for a part of the human RAB1A 3’UTR.

mfe structure of the electric ray RAB1 3’UTR is displayed.

For these structures a local alignment was calculated using RNAforester.

Figure 7.7 shows this alignment. The detected stemloop is not only highly

conserved in structure but also in sequence. Although RNAforester can make

use of such sequence similarity, the scoring contribution for a base-matches

was set to zero1, thus purely relying on structure conservation. Analysis

of base pair probabilities confirmed the stability of this stemloop in many

energetically suboptimal structures (data not shown).

For the computational validation of the predicted stemloop we performed

a database search. First a search pattern was defined that should be general

enough to find as many occurrences as possible. At the same time it should

be specific enough to find as few false positives as possible. Therefore we used

significance evaluation based on the ADP method [58, 135] for the definition

of a search pattern. Figure 7.8 shows the pattern for the predicted stemloop.

1A small contribution of sequence similarity in comparison with structural similarity
is also feasible. Loop regions would be aligned on the sequence level without dominating
the sequence structure alignment, see Section 4.5)
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Figure 7.6: mfe structure for the electric ray RAB1A 3’UTR.
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C N N N N     N N N N − 3’

N N N N − 5’
A

G N N N N
C

AC

Y
  R

Figure 7.8: RAB1 stemloop pattern for the database searches. The adenine bulge
and the loop with the closing base pair was fixed in sequence with some variability
in the second (U or C) and third (A or G) position.
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The length of the helix was fixed but the sequence was kept variable.

Bulges promote RNA-protein interactions, thus the adenine bulge is an im-

portant element of the pattern. The loop sequence was predefined with

partial variations at the second and third position. Pattern design and sig-

nificance evaluation is an iterated process. For the resulting pattern, we

computed an expectation value of 0.8 hits in a random sequence with size

and base composition of the 3’UTR collections of the UTRdb version 15.0

[154]. These collections contain about 47 million bases. For the database

search we used the program RNAMotif. Combined sequence and structure

motifs can easily be described within a descriptor file and that file can than

be used for database searches. Our defined pattern for the RAB1 stemloop

was described with RNAMotif as follows:

parms
wc += gu;

descr
h5(tag=’stem1’, len=4)

ss(len=1, seq="a")
h5(tag=’stem2’,len=5,seq="g$")
ss(len=5, seq="cyrca")

h3(tag=’stem2’, seq="^c")
h3(tag=’stem1’)

The 5’ site of the first helix with fixed length 4 is followed by the adenin

bulge and the 5’ site of the second helix with fixed lenght 5 and a guanine

at the end. The loop region of length 5 has variable sequence at position 2

(uracil or cytosin) and position 3 (guanine or adenine). The 3’ site of the

second helix must start with a cytosin. We used this pattern for searching

the 3’UTR collections of the UTRdb. The result of this search is summarized

in Table 7.1.

Significantly more hits (13) than would have been expected in a random

database (0.8) were found and these hits were exclusively to RAB1 and Sir2α

3’UTRs. There were no hits found in the 3’UTRs of invertebrates or viruses
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UTRdb collection Hits
Human
3’UTR

RAB1A
Sir2α

Rodent
3’UTR

RAB1A (mouse)
Sir2α, clone (similar to Sir2α)(mouse)

Other Mammals RAB1A (cat), RAB1A (opossum),
3’UTR RAB1A (bull), RAB1A (quolls),

RAB1A (kangaroo)
Other Vertebrates RAB1A (alligator), RAB1A (chicken)
3’UTR RAB1 (electric ray)
Invertebrates 3’UTR ——
Virus 3’UTR ——

Table 7.1: Results of the database search for the RAB1A stemloop pattern. The
stemloop occured only in RAB1A and Sir2α 3’UTRs of vertebrates. There were
no hits in 5’UTRs.

or in any of the 5’UTR collections. This makes a biological function of the

stemloop very likely.

Gelmobility-Shift Experiments

To get further hints for the biological function of the stemloop we did sev-

eral laboratory experiments. Posttranscriptional gene regulation is often the

result of specific protein interactions with regulatory motifs in UTRs. There-

fore protein binding to the predicted stemloop is very likely if the stemloop

has a biological function. We performed gelmobility-shift assays for showing

such an RNA protein interaction (see Figure 7.9).

Digoxigenin labeled RNA oligos whose sequence matched the mouse (and

also human) stemloop (Lane 1) were incubated with protein extract from

mouse kidney (Lanes 2-5). In Lanes 3-5 complex formation was reduced us-

ing rising amounts of unlabeled RNA oligos. The control in Lane 6 (only

protein extract) shows that the band on the top is the result of a cross reac-

tion of the Digoxigenin antibody with the protein extract. Below this band

a small complex band can be seen but most of the labeled oligos didn’t run

into the gel and we assume that’s the result of a large protein complex inter-

acting with the RNA stemloop. We also tried to isolate the binding proteins

using RNA oligos bound to magnetic beads and here we found lots of pro-

tein bands (data not shown) which can be another hint for a large protein
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1        2        3        4        5                  6

Figure 7.9: Gelmobility-shift assay: lane 1: RNA-Oligo (DIG-labeled), lane 2:
RNA-Oligo(DIG) + protein extract, lane 3: RNA-Oligo (labeled:unlabeled= 1:50)
+ protein., lane 4: RNA-Oligo (labeled:unlabeled = 1:150) + protein, lane 5: RNA-
Oligo (labeled:unlabeled= 1:300) + protein, lane 6: only protein as negative control
for DIG-detection; lanes 2-5 contained an excess of yeast RNA as an unspecific
competitor.

complex interacting with the stemloop (even though some unspecific RNA

protein interactions might occur). Although more experiments have to be

done to elucidate the exact biological function of the predicted stemloop, the

high conservation of the stemloop in different vertebrates, its main restric-

tion to RAB1 3’UTRs and the first experimental hints for specific protein

interactions with the stemloop let us assume, that we found a new RNA

motif for posttranscriptional gene regulation.

The new Potential Regulatory Motif in the RAB1A 3’UTR The

pure strategy was used for the prediction of a structural motif in the RAB1A

3’UTRs of human and electric ray. The predicted stemloop is very stable

and highly conserved in sequence. Although we created a search pattern for

this stemloop, that is highly variable on sequence level in the stem region,

a database search in the UTRdb showed hits only in RAB1A 3’UTRs of 10

vertebrates and also in the Sirtuin 2α 3’UTR of human and mouse. This

restriction of the stemloop to only 2 different mRNAs makes a biological

function very likely. The gelmobility-shift assays revealed protein interac-

tions with the stemloop and in ongoing experiments we try to identify the

binding proteins for getting more information about a possible posttranscrip-
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Figure 7.10: Multiple alignment of the four 5’UTRs of human and mouse ferritin
heavy chain mRNA (5HSA015337, 5MMU002159) and SLC11A3 iron-transporter
mRNA (5HSA023193, 5MMU011005). The alignment clearly superposes the IRE
elements, automatically marked red by our visualization

tional gene regulation of the RAB1A mRNA. Because the RAB1A protein

is localized near the cis-golgi membrane [174] we assume that the RAB1A

mRNA could be localized previously. Identification of the binding proteins

should give us hints for a role of the stemloop in a possible localization of

the RAB1A mRNA.

7.2 Multiple Alignment

7.2.1 Motif Discovery

Multiple structure alignment can be used for searching regulatory structural

motifs common to several RNAs. One of the best investigated regulatory

motifs is the iron responsive element (IRE), which is a specific stem-loop

structure and can be found in the untranslated terminal regions (UTRs) of
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many mRNAs. It regulates for example the translational efficiency of these

mRNAs according to the amount of iron in the cell [10]. The 5’UTRs of hu-

man and mouse ferritin heavy chain mRNA and SLC11A3 iron-transporter

mRNA were taken from the UTR data base [154]. These UTRs are known

to contain iron responsive elements. Their secondary structures were pre-

dicted with mfold (Version 3.1) [244] and a multiple structure alignment of

the UTRs was calculated using RNAforester. In Figure 7.10, the resulting

alignment is displayed. The red colored stemloop shows the conserved iron

responsive element that occurs in all structures. All other structural elements

shown in black or gray can only be found in some of the structures. Thus,

the described approach is useful for the detection of common structural mo-

tifs in a set of RNA secondary structures. This example works well because

the element of interest resides in similar positions in the globally aligned

structures. Should this positions vary, a local similarity comparison can be

employed [77]. Unfortunately, this is restricted to pairwise comparisons.

7.2.2 Consensus Structure Prediction

In this Section, I exemplify the structure prediction strategy proposed in Sec-

tion 5.5 that is based on a multiple structure alignment of thermodynamically

predicted structures. Throughout this section this strategy is referred to as

the structure alignment strategy. The converse to the the structure alignment

strategy is a strategy that first calculated a multiple sequence alignment and

then derives a consensus structure by analyzing covariance and thermody-

namic considerations. This strategy is referred to as the sequence alignment

strategy.

Structure prediction strategies that build upon an initial multiple se-

quence alignment are limited in their success if the sequence identity is too

high or too low. In the first case, the covariance of conserved base-pairs is

low and the prediction is guided mainly by thermodynamics. In the second

case, the quality of the sequence alignment is often too low in a biological

sense and, hence, covariance can not be inferred from the multiple align-
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ment. In particular, the objective function for a multiple sequence alignment

aims for maximization of identity and penalizes covariance. According to

McCutcheon & Eddy, for multiple sequence alignment based strategies, “the

’sweet spot’ is at ∼= 75− 85% sequence identity” [134]. Washietl & Hofacker

gave a slightly lower bound stating “we can conclude that there is obvi-

ously no need for structure alignments above 65% pairwise identity [223].

Thus, a good candidate family for exemplifying my strategy should have

lower sequence homology than 70% to demonstrate that the structure align-

ment strategy is suitable to predict a common fold. The structure alignment

strategy depends on predicted structures from single sequences and the pre-

diction accuracy gets the worse the longer the sequences are. From personal

experience, the sequence length should be less than 300.

The RNA families for my experiments are taken from the Rfam database

(Version 6.1, August 2004) [67, 68]. Rfam is a large collection of multiple se-

quence alignments and covariance models covering many common non-coding

RNA families. The covariance models in Rfam result from hand-crafted

multiple sequence alignments that were collected from serious publications.

These alignments are the seed alignments in the Rfam database. From sev-

eral interesting candidates, I choose two families of riboswitches, the Lysine

Riboswitch and the TPP Riboswitch, and a family of splicosomal RNA, the

U1 spliceosomal RNA.

For the following experiments, I used RNAforester for the structure align-

ment strategy. Note that the prediction of structures is done automatically

by RNAforester as proposed in Section 5.5 where the base-pairs of the pre-

diction are weighted according to the base-pair probabilities. I use the pure

structure scoring scheme proposed in Section 4.5. The clustering threshold

c is zero. According to the observations of Gardner & Giegerich, pruning

high entropy base-pairs can improves the results of structural comparison for

predicted structures [55]. Therefore, I set the minimum probability p that is

required for base-pairs to occur in the predicted structures to 0.8. The cluster

join threshold t is set to 0.7. Except for the minimum probability p these are
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the standard setting for RNAforester. The command line for RNAforester

for these settings is: RNAforester -p -2d -pmin=0.8 -f=sequences.fas

where sequences.fas is the file containing the RNA sequences in Fasta

format. For the sequence alignment strategy I calculate multiple sequence

alignment using the online Version of ClustalW from the European Bioinfor-

matics Institute [23]. I use the default parameters. The structure prediction

form the multiple alignment is done by RNAalifold again using default pa-

rameters [82]. The score of an RNAalifold prediction consists of an energy

term (first term) and a covariance term (second term). Recently Washietl &

Hofacker provided a method how to test a multiple sequence alignment for the

existence of an unusually stable prediction. Their method relates RNAalifold

predictions of a given multiple sequence alignment to the predictions of shuf-

fled alignments. The significance is assessed in terms of z-scores2. In their

experiments, a Z-score below −3 have a false positive rate below 1%. For

the calculation of Z-scores, I used the Perl program alifoldz.pl as provided

in the supplemental material of [223]. alifoldz.pl computes two scores, one

for the forward and one for the backward strand of the sequences. I did no

further fine tuning of parameters for any of the tools used for the following

experiments.

Lysine Riboswitch

Riboswitches are metabolite binding domains within certain messenger RNAs

that serve as precision sensors for their corresponding targets. Allosteric

rearrangement of mRNA structure is mediated by ligand binding, and this

results in modulation of gene expression. This family includes riboswitches

2A Z-score is a measure of the distance from the mean of a distribution normal-
ized by the standard deviation of the distribution. Mathematically: Z-score = (value-
mean)/standard deviation. Z-scores are useful for quantifying how different from normal
a recorded value is. Z-scores are particularly useful when combining or comparing different
features or measures. A Z score of 0 represents the mean of counts for all periods. Assum-
ing a normal distribution, Z scores of -1, -2, -3 and +1, +2, +3 indicate that about 67%,
95% and 99%, respectively, of all values are expected by change to fall within this count.
In short, higher (in absolute value) Z scores are likely to be more statistically significant
in their deviation from the mean.
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that sense lysine in a number of genes involved in lysine metabolism [126].

The 48 sequences from the Rfam seed alignment for the Lysine Riboswitch

(Accession number: RF00168) have an average length of 181.3 and an average

identity of 48%. The published consensus structure is shown in Figure 7.11.

RNAforester outputs six clusters that contain more than one structure. The

consensus structure drawings for these clusters are shown Figure 7.12-7.17.

The structure in Figure 7.12 is in good correspondence with the published

one. The clusters in Figure 7.13-7.17 share at most smaller regions with

the published structure. Apparently, The relative sum-of-pairs σSP REL score

for the clusters does not correlate with the reliability of the predictions.

However, looking at the sequence level, the consensus structure in Figure 7.12

have a considerable amount of sequence variation while the others are highly

sequence conserved. I identify correct predictions based on the following

hypothesis: The more structurally conserved and the less sequence conserved

a multiple alignment is, the more reliable are the predicted structures. In

contrast to the sequence alignment strategy that uses covariation to predict

structures, in the structure alignment method thermodynamic predictions

are validated by covariance. So far, I only consider sequence identity to

identify the best cluster.
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Figure 7.11: Consensus structure of the Lysine riboswitch as published in [126].

Figure 7.12: Lysine Riboswitch. Consensus structure of 18 sequences as predicted
by RNAforester. The sum-of-pairs score σSP for this cluster is 436.177.
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Figure 7.13: Lysine Riboswitch. Consensus structure of 7 sequences as predicted
by RNAforester. The sum-of-pairs score σSP for this cluster is 485.696.

Figure 7.14: Lysine Riboswitch. Consensus structure of 7 sequences as predicted
by RNAforester. The sum-of-pairs score σSP for this cluster is 312.722
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Figure 7.15: Lysine Riboswitch. Consensus structure of 5 sequences as predicted
by RNAforester. The sum-of-pairs score σSP for this cluster is 349.197

Figure 7.16: Lysine Riboswitch. Consensus structure of 3 sequences as predicted
by RNAforester. The sum-of-pairs score σSP for this cluster is 562.263
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Figure 7.17: Lysine Riboswitch. Consensus structure of 2 sequences as predicted
by RNAforester. The sum-of-pairs score σSP for this cluster is 414.111
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A RNAforester structure alignment produces a sequence alignment as a

coproduct3. In the following, I compare the results of the structure alignment

strategy to results of the sequence alignment strategy. Figure 7.18 shows the

RNAalifold prediction for the hand-crafted seed alignment from the Rfam

database. This prediction is in good correspondence with the published one.

Figure 7.19 shows the prediction for the ClustalW alignment of the seed

sequences. Clearly, the sequence alignment can not arrange the bases such

that RNAalifold can derive a common structure. Since RNAforester does

a clustering of the structures, I also compare the RNAalifold prediction for

sequence alignment derived from RNAforester ’s best alignment (7.12) and

the ClustalW alignment for the sequences that belong to this cluster. The

results are shown in Figure 7.20 and Figure 7.21. In Figure 7.22, I show the

RNAalifold prediction of the Rfam seed alignment restricted to the sequences

belonging to RNAforester ’s best cluster.

I do the same experiments for the TPP Riboswitch and the U1 spliceoso-

mal RNA and then discuss the results.

3In the extended forest representation the sequence alignment is the alignment of leaf
nodes.
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Figure 7.18: Lysine Riboswitch. RNAalifold prediction for the seed alignment
taken from the Rfam database. RNAalifold score: −37.70 = −22.44 +−15.26, Z:
−3.1(−2.3).
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Figure 7.19: Lysine Riboswitch. RNAalifold prediction for the ClustalW align-
ment of seed sequences taken from the Rfam database. RNAalifold score: −2.68 =
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Figure 7.20: Lysine Riboswitch. RNAalifold prediction for the RNAforester se-
quence alignment from the consensus structure in Figure 7.12. RNAalifold score:
−25.65 = −12.04 +−13.62, alifoldz score: −1.9(−2.7).
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Figure 7.21: Lysine Riboswitch. RNAalifold prediction for the ClustalW align-
ment for the sequences belonging to the consensus structure in Figure 7.12.
RNAalifold score: −27.72 = −19.08 +−8.65, alifoldz score: −2.3(−1.1).
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Figure 7.22: Lysine Riboswitch. RNAalifold prediction for the Rfam seed align-
ment restricted to sequences belonging to the consensus structure in Figure 7.12.
RNAalifold score: −44.05 = −25.75 +−18.29, alifoldz score: −6.8(−6.6).
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Figure 7.23: Consensus structure of TPP riboswitch as published in [164].

TPP Riboswitch (THI Element)

Vitamin B(1) in its active form thiamin pyrophosphate (TPP) is an essential

coenzyme that is synthesized by coupling of pyrimidine and thiazole moieties

in bacteria. The previously detected thiamin-regulatory element, thi box was

extended, resulting in a new, highly conserved RNA secondary structure, the

THI element, which is widely distributed in eubacteria and also occurs in

some archaea [164].

The 141 sequences from the Rfam seed alignment for the TPP riboswitch

(Accession number: RF00059) have an average length of 104.9 and an average

identity of 52%. Figure 7.23 shows the consensus structure as published in

Rfam. The Figures 7.24-7.29 show the structure predictions analog to the

experiments for Lysine Riboswitch.
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Figure 7.24: TPP Riboswitch. Consensus structure of 31 sequences as predicted
by RNAforester.
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Figure 7.30: Consensus structure of TPP riboswitch as published in [107].

U1 spliceosomal RNA

U1 is a small nuclear RNA (snRNA) component of the spliceosome (involved

in pre-mRNA splicing). Its 5’ end forms complementary base pairs with

the 5’ splice junction, thus defining the 5’ donor site of an intron. There are

significant differences in sequence and secondary structure between metazoan

and yeast U1 snRNAs, the latter being much longer (568 nucleotides as

compared to 164 nucleotides in human). Nevertheless, secondary structure

predictions suggest that all U1 snRNAs share a ’common core’ [107].

The 54 sequences from the Rfam seed alignment for the U1 spliceoso-

mal RNA (Accession number: RF00003) have an average length of 154.9

and an average identity of 59%. This family does not contain the larger

yeast sequences. Figure 7.30 shows the consensus structure as published in

Rfam. The Figures 7.31-7.36 show the structure predictions analog to the

experiments for Lysine Riboswitch.
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Figure 7.31: U1 RNA. Consensus structure of 14 sequences as predicted by
RNAforester.
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Figure 7.34: U1 RNA. RNAalifold prediction for the RNAforester sequence align-
ment for the consensus structure in Figure 7.31. RNAalifold score: −36.50 =
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restricted to sequences belonging to the consensus structure in Figure 7.31.
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Discussion

Evidently, the sequence alignment strategy is not a successful strategy to

predict a consensus structure for RNA families that are distantly related

(applied to the complete Rfam seed sequences). For the structure alignment

strategy, the RNAforester cluster with the highest sequence diversity was

always in good correspondence with the published consensus structure. The

clusters that are not shown for the TPP riboswitch and the U1 splicosomal

RNA were either diverse in their sequence and similar to the published struc-

ture4, or similar in their sequence with a structural topology that is different

to the published one. It seems to be unlikely that different sequences fold

into a similar structure just by chance. Interestingly, RNAalifold was not

able to repredict all stems of the consensus structure for the TPP riboswitch

and the U1 splicosomal RNA for the hand-crafted seed alignments taken from

the Rfam database.

To assess the quality of the sequence alignment that can be derived from

RNAforester ’s best cluster, I ran RNAalifold on the sequence alignment that

was derived from the structural alignment. Additionally, I considered the

RNAalifold predictions for the ClustalW alignment and the resticted seed

alignment for the sequences belonging to this cluster. The predictions from

the ClustalW alignments achieved a similar quality as the predictions from

the RNAforester derived sequence alignments. However, the RNAalifold pre-

dictions detected different parts of the consensus structure. In particular, for

the Lysine riboswitch, a stem that was detected with the RNAforester se-

quence alignment was not detected with the ClustalW alignment, and vice

versa (see Figure 7.20 and 7.21). What remains is to observe whether the

improved quality of the ClustalW alignments is simply due to a reduced se-

quence identity or a good pre-selection by RNAforester. In contrast to the

unrestricted seed alignments, the restricted seed alignments let RNAalifold

predict consensus structures that are in almost perfect correspondence to the

published ones.

4A tuning of the RNAforester parameters could join them in a larger cluster.
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My initial strategy was to use the zscores as a measure for the quality of

the alignment. In contrast to my expectation, the zscores did not strongly

identify the (unrestricted) seed alignments as an alignment of functional non-

coding RNA sequences (A zscore below −4 would be a good indicator). The

restricted seed alignments always achieved negative scores that gave strong

evidence for a functional RNA.

Alignments of predicted minimal free energy structures can rightfully be

criticized, because structure prediction may produce “optimal” structures

quite different to the (suboptimal) native structure. The use of sequence

similarity, if sufficient, is advocated as a means to avoid this dilemma. How-

ever, my experiments contribute two new considerations to this issue:

• They demonstrate an effect that, at the first sight, is paradoxical:

strong sequence similarity can mislead the determination of the con-

sensus structure. This happens because very similar sequences tend to

fold into a similar structure, be it wrong or right.

• They demonstrate that a multiple structure alignment when applying

the cutoff value in the clustering step, may produce meaningful align-

ments even in the presence of incorrect predictions.

As a consequence, a new approach to consensus construction becomes feasi-

ble, where first a good candidate consensus (or several) is constructed and

subsequently, sequences that do not fall into a consensus cluster are refolded,

given the candidate consensus as a target structure.
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Conclusions

In this thesis, I have analyzed the tree alignment model for the comparison

of RNA secondary structures. I gave a systematic generalization of the align-

ment model from strings to trees and forests. I provided carefully engineered

dynamic programming implementations using dense, two-dimensional tables

which considerably reduces the space requirement. I introduced local simi-

larity problems on forests and provided efficient algorithms that solve them.

Since the problem of aligning trees occurs in many different disciplines, I

untied my algorithmic contributions from the problem of aligning RNA sec-

ondary structures. For instance, using my algorithms I could contribute to

address problems in the field of robotics [48, 165].

However, the main focus of this thesis is to provide algorithms to analyze

RNA secondary structures. To improve the biological semantic of aligning

RNA secondary structures as forests, I introduced an extended forest repre-

sentation and a refined forest alignment model. The local similarity variants

that were introduced on an abstract level of forests turned into local simi-

larity notions for RNA secondary structures. The joined work with Thomas

Töller showed that local structural motifs in RNA molecules can be success-

fully detected using my algorithms [203]. To make the results of structure

comparison visually available, I invented a 2d-plot for RNA secondary struc-

ture alignments that highlights the differences and similarities of structures.

This visualization is more intuitive than comparing abstract representations
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of RNA secondary structures, e.g. dot-plots, mountain plots, and makes it

efficient to present results from structure comparison.

I generalized the forest alignment model to the case of multiple forests

and, thus, made it applicable to compare multiple RNA secondary structures.

My approach is a faithful generalization of established techniques used in

sequence comparison. All the experience that has accumulated for multiple

sequence alignments therefore carries over now to RNA secondary structures.

I generalized the idea of sequence profiles to forests profiles, resulting in a

profile of RNA secondary structures which groups different RNA secondary

structures into a single data structure. To visualize a common consensus

structure, I proposed a 2d-plot visualization that, in addition to structural

similarity, can display the sequence diversity of the aligned structures. Based

on these techniques, I proposed a consensus structure prediction strategy for

families of RNA molecules that have low sequence homology. I demonstrated

that this is a promising approach by successfully predicting the consensus

structures for low sequence conserved RNA families taken from the Rfam

database.

I implemented all algorithms presented in this thesis in the RNA struc-

ture comparison tool RNAforester. RNAforester is designed in spirit of

the programs in the Vienna RNA package and will be distributed in the

forthcoming Vienna RNA Package Version 1.6. The online version and the

stand-alone application is publicly available at http://bibiserv.techfak.

uni-bielefeld.de/rnaforester.

Future Work Several research activities open directly from the contribu-

tions in this thesis:

• The success of the structure prediction strategy that was presented

in this thesis depends largely on the quality of thermodynamic pre-

dictions. It is well known that the biologically meaningful structure

often hides in the space of suboptimal solutions. I argue that results

of my structure prediction strategy can be improved significantly by
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considering suboptimal solutions. However, the exponential number

of suboptimal solutions prohibits a straightforward strategy. Recently,

Giegerich et al. provided the structure prediction program RNAshapes

based on thermodynamics that compartmentalizes the suboptimal so-

lution space into different shapes [59]. A combination of RNAshapes

and RNAforester is the logically next step.

• That locally similar structures can be detected with RNAforester with-

out prior knowledge was demonstrated in this thesis. The application

of my algorithms on a genome-wide scale is a challenging task. Lo-

cally stable structures could be predicted on genome-wide surveys us-

ing RNALfold [85] and the resulting data could be analyzed for locally

conserved structures using RNAforester, after it has been preprocessed

for length and energy constraints. Thorough statistics have to be done

to rank the locally conserved structures and distinguish biologically

relevant conservations from those that are found just by chance.

• A well known problem of the progressive strategy is that errors made

early in an alignment cannot be rectified when further sequences are

added. Notredame et al. present a strategy that can minimize this

effect in the multiple sequence alignment tool T-Coffee [149]. Instead

of using substitution scores for the calculation of pairwise alignments,

they propose a position dependent scoring. A primary library gathers

information from heterogeneous sources for pairwise alignments, such

as sequence alignments (global and local), structural alignments and

manual alignments. These sources are combined in an extended li-

brary such that each pair of characters in the sequences has a position

specific weight. The pairwise alignments are then optimized accord-

ing to this extended library. Misplacing gaps in the earlier steps of the

progressive calculation become less likely and significantly improves the

quality of the alignment in comparison to ClustalW and other tools.

An analogous strategy for trees could further improve the quality of

multiple tree alignments.



178 Conclusions

• Various tree distances have been discussed in the introductory chapter

of this thesis. However, a thorough analysis of their quality for RNA

secondary structures is missing. It would be interesting to observe

whether, and under which circumstances, the distances can be replaced

by each other and provide similar results. The complexities of the tree

distances depend on different parameters of the tree structure, e.g. the

number of nodes, the depth, the number of leaves, and the degree. All

these parameters are known and, thus, the computational effort can be

determined in advance. At the end, a flexible strategy could always

chose the “cheapest” model.

• Today, the detection of unknown non-coding RNA from genomic data is

one of the biggest challenges in molecular biology. First successes were

achieved with tools that infer a structure from a (multiple) sequence

alignment by thermodynamic and phylogenetic information, comparing

the result of the predictions with randomized data [163, 223]. However,

there is an inherent problem: If the sequences are highly conserved,

the alignment is good but the covariance of base-paired regions is low.

Thus, the thermodynamic considerations dominate the structure pre-

diction. Unlike stated by Maizel and coworkers, energy seems not to be

a good discriminator to separate structural from non structural RNAs

[19, 162]. If the sequence conservation is too low, regions of covariance

are not aligned accurate and the alignment can mislead the predictions.

As in my structure prediction strategy, I am thinking about a strategy

that goes the other way around: I could start with thermodynamic

considerations and then use phylogenetic information to estimate the

reliability of predictions.

A multiple and local structure alignment program will become a basic tool,

just like the sequence counterparts. With RNAforester, I provide a program

that can be embedded in a larger framework of structure analysis, contribut-

ing to solve problems beyond the ones I proposed.
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