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Introduction

Let G be a semisimple linear algebraic group of inner type over a field F and
X be a projective homogeneous G-variety such that G splits over the function
field of X. We call such a variety generically split. In the present paper we
address the problem of computing the Chow motive M(X) of X or, in other
words, providing a direct sum decomposition of M(X) into indecomposable
summands.

When the group G is isotropic this problem was solved by B. Köck [Ko91]
(in the split case), V. Chernousov, S. Gille and A. Merkurjev [CGM05] (in
the case of an isotropic X) and P. Brosnan [Br05] (in the general case). In all
these proofs one constructs a (relative) cellular filtration on X, which allows
to express the motive of the total space X in terms of motives of the base.
Since the latter consists of homogeneous varieties of anisotropic groups, it
reduces the problem to the case of anisotropic G.

When G is an orthogonal group and X is an anisotropic quadric, M(X)
can be computed following the works of M. Rost [Ro98] (Pfister quadrics),
N. Karpenko, A. Merkurjev and A. Vishik (general case). For Severi-Brauer
varieties we refer to the paper by N. Karpenko [Ka96]. For some exceptional
varieties the motivic decompositions was found by J.-P. Bonnet [Bo03] (G2-
case) and by S. Nikolenko, N. Semenov, K. Zainoulline [NSZ] (F4-case). To
obtain all these results one essentially uses Rost Nilpotence Theorem which
says that in order to provide a desired decomposition it is enough to provide
it over the algebraic closure with the property that all respective idempotents
are defined over the base field. This reduces the problem to finding ratio-
nal idempotents in the Chow ring CH∗(X̄ × X̄). Observe that in all cases
above the respective idempotents were detected using specific geometrical
properties of X.

We uniformize all these proofs. The key idea comes from the paper [Kc85]
by V. Kac, where he invented the notion of p-exceptional degrees – numbers
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which encode the information about the Chow ring of a split group Ḡ modulo
a torsion prime p. The results of N. Karpenko, A. Merkurjev [KM05] and
K. Zainoulline [Za06] concerning canonical p-dimensions of algebraic groups
tell us that there is a strong interrelation between those numbers and the ‘size’
of the subgroup of rational cycles in CH∗(X̄ × X̄). All this together lead to
the notion of J-invariant Jp(G) of a group G modulo p (see Definition 4.5);
in the case of orthogonal groups this invariant was introduced by A. Vishik
in slightly different terms. Our main observation is that Jp(G) characterizes
the motivic decomposition of X with Z/p-coefficients.

The paper is organized as follows. In Chapter 1 we recall the definition of
Chow motives and show how to find certain rational cycles using the ‘generic
point’ diagram. In Chapter 2 we provide several ‘idempotent lifting’ tools
which will be used in the sequel. In particular, we show that decompositions
of motives with Z/m-coefficients, where m = 2, 3, 4, 6 can be always lifted to
integers. In Chapter 3 using the motivic version of the result of D. Eddidin
and W. Graham on cellular fibrations we prove Theorem 3.9 generalizing
and simplifying the results of paper [CPSZ]. In Chapter 4 we introduce
the notion of J-invariant, consider the case of the variety of complete flags
(Theorem 4.8) and extend the obtained result to arbitrary generically split
projective homogeneous varieties (Theorem 4.21). In Chapter 5 we describe
properties of J-invariant and its relations to the canonical dimension and
splitting behavior of a group. Chapter 6 is devoted to examples of motivic
decompositions.

Acknowledgements I am highly appreciated the hospitality of Bielefeld
University and especially of my advisor Prof. Anthony Bak. I would like to
gratitude Kirill Zainoulline and Nikita Semenov for fruitful discussions and
Ivan Panin for his attention to my work. The work is partially supported by
DAAD A/04/00348 and INTAS 03-51-3251.
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Chapter 1

Chow motives

1.1. In the present paper we work with the category of Grothendieck-Chow
motives Chow(F ; Λ) over a field F with coefficients in Λ, where Λ is a com-
mutative ring with identity. Recall briefly the definition of this category (we
refer to [Ka01, §2] and [Ma68] for details).

A correspondence between X and Y is an element of CH∗(X × Y ; Λ) =
CH∗(X × Y ) ⊗ Λ. A correspondence φ between X and Y determines a
homomorphism φ∗ : CH∗(X; Λ) → CH∗(Y ; Λ) called the realization of φ.
There is a bilinear composition rule

◦ : CH∗(Y × Z; Λ)× CH∗(X × Y ; Λ) → CH∗(X × Z; Λ)

compatible with the realization. The identity element is given by the diagonal
∆X ∈ CHdim X(X×X). A correspondence φ between X and Y may be viewed
as a correspondence between Y and X as well; we call this correspondence a
transpose of φ and denote it by φt.

An object of Chow(F ; Λ) is a pair (X,ϕ) consisting of a smooth projective
variety X and an idempotent (or projector) φ ∈ CHdim X(X × X; Λ). The
group of morphisms Hom((X,φ), (Y, φ′)) equals φ′ ◦ CHdim Y (X × Y ; Λ) ◦ φ;
the composition of morphisms is the usual composition of correspondences.
We denote an object (X,∆X) by M(X; Λ) and call it the motive of X with
coefficients in Λ. Observe that Chow(F ; Λ) is a tensor category, where the
tensor product is induced by the usual product of varieties over F .

Note that the motive of a projective line splits as a direct sum of two
motives M(P1; Λ) = Λ⊕ Λ(1), where Λ is the motive of a point and Λ(1) is
called Lefschetz motive. For a given motive M and i ∈ Z we denote by M(i)
the tensor product M ⊗ Λ(1)⊗i and call it the twist (or shift) of M .
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In the case Λ = Z we will often omit the coefficients in the notation.

1.2 Definition. We say L is a splitting field of a variety X or, equivalently,
a variety X splits over L if the motive M(X; Λ) splits over L as a direct
sum of twisted Lefschetz motives. To simplify the notation we will write
CH∗(X̄; Λ) for CH∗(XL; Λ) and CH

∗
(X; Λ) for the image of the restriction

map res : CH∗(X; Λ) → CH∗(X̄; Λ). Elements of CH
∗
(X; Λ) will be called

rational cycles. Observe that CH∗(X̄; Λ) and CH
∗
(X; Λ) don’t depend on

the choice of a splitting field.

1.3 Example. Let G be a semisimple linear algebraic group over F , X be
a projective G-homogeneous variety. If G becomes quasi-split over K as a
linear group (that is GK contains a Borel subgroup defined over K) then K
is a splitting field of X for Λ = Z (see [CGM05]) and therefore for any ring
Λ.

1.4. Assume X has a splitting field. Observe that the Chow ring CH∗(X̄; Λ)
is a free Λ-module. Denote by P (CH∗(X̄; Λ), t) =

∑
i≥0 rkΛ CHi(X̄; Λ) · ti the

respective Poincaré polynomial.
According to [KM05, Rem. 5.6] there is the Künneth decomposition

CH∗(X̄ × X̄; Λ) = CH∗(X̄; Λ)⊗CH∗(X̄; Λ) and Poincare duality. The latter
means that for a given Λ-basis of CH∗(X̄; Λ) there is a dual one with respect
to the pairing (α, β) 7→ deg(α · β).

Note that for correspondences in CH∗(X̄ × X̄; Λ) the composition rule is
given by the formula (α1×β1)◦(α2×β2) = deg(α1β2)(α2×β1), the realization
is given by (α× β)∗(γ) = deg(αγ)β and the transpose by (α× β)t = β × α.

1.5 Lemma. Let X and Y be two smooth projective varieties such that F (Y )
is a splitting field of X and Y has a splitting field. Consider the projection
on the first summand in the Künneth decomposition

pr0 : CHr(X̄ × Ȳ ; Λ) =
r⊕

i=0

CHr−i(X̄; Λ)⊗ CHi(Ȳ ; Λ) → CHr(X̄; Λ).

Then for any ρ ∈ CHr(X̄; Λ) we have pr−1
0 (ρ) ∩ CH

r
(X × Y ; Λ) 6= ∅.

Proof. Lemma follows from the commutative diagram

CHr(X × Y ; Λ)
resL/F //

��

CHr(X̄ × Ȳ ; Λ)

��

pr0

((QQQQQQQQQQQQQ

CHr(XF (Y ); Λ) ' // CHr(X̄F̄ (Ȳ ); Λ) ' // CHr(X̄; Λ)
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where the vertical arrows are taken from the localization sequence for Chow
groups and, hence, are surjective and the bottom horizontal maps are iso-
morphisms.

We will extensively use the following version of Rost Nilpotence Theorem.

1.6 Lemma. Let X be a smooth projective variety such that it splits over any
field K over which it has a rational point. Then for any α in the kernel of
the natural map End(M(X; Λ)) → End(M(X̄; Λ)) we have α◦(dim X+1) = 0.

Proof. Follows from [EKM, Theorem 68.1].
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Chapter 2

Lifting of idempotents

2.1. Given a Z-graded ring A∗ and two idempotents φ1, φ2 ∈ A0 we say φ1

and φ2 are orthogonal if φ1φ2 = φ2φ1 = 0. We say an element θ12 provides
an isomorphism of degree d between idempotents φ1 and φ2 if θ12 ∈ φ2A

−dφ1

and there exist θ21 ∈ φ1A
dφ2 such that θ12θ21 = φ2 and θ21θ12 = φ1.

2.2. Consider the graded ring End∗(M(X; Λ)), where

Endi(M(X; Λ)) = CHdim X+i(X ×X; Λ),

with respect to the usual composition of correspondences. Note that an
isomorphism θ12 of degree d between φ1 and φ2 provides an isomorphism
between the motives (X,φ1) and (X,φ2)(d). By End

∗
(M(X; Λ)) we denote

the subring of End∗(M(X̄; Λ)) consisting of rational cycles.

2.3. Given a Z-graded Λ-module V ∗ we denote by End∗(V ∗) the graded
ring whose d-th component consists of all endomorphisms of V ∗ of degree
d. Note that using Poincaré duality one can identify End∗(M(X̄; Λ)) with
End∗(CH∗(X̄; Λ)).

2.4 Definition. Let f : A∗ → B∗ be a homomorphism of Z-graded rings.
We say that f is decomposition preserving if given a family φi ∈ B0 of pair-
wise orthogonal idempotents such that

∑
i φi = 1B, there exists a family of

pair-wise orthogonal idempotents ϕi ∈ A0 such that
∑

i ϕi = 1A and each
f(ϕi) is isomorphic to φi by means of an isomorphism of degree 0. We say
f is strictly decomposition preserving if, moreover, one can choose ϕi such
that f(ϕi) = φi. We say f is isomorphism preserving if for any idempotents
ϕ1 and ϕ2 in A0 and any isomorphism θ12 of degree d between idempotents
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f(ϕ1) and f(ϕ2) in B0 there exists an isomorphism ϑ12 of degree d between
ϕ1 and ϕ2. We say f is strictly isomorphism preserving if, moreover, one can
choose ϑ12 such that f(ϑ12) = θ12.

2.5 Lemma. Let f : A∗ → B∗ and g : B∗ → C∗ be homomorphisms such that
g ◦ f is decomposition (resp. isomorphism) preserving and g is isomorphism
preserving. Then f is decomposition (resp. isomorphism) preserving.

Proof. Obvious.

2.6 Lemma. Assume we are given a cartesian square

A∗ f // //
� _

i
��

B∗
� _

j

��
C∗ g // // D∗.

(it means that Ker g ⊂ Im i) such that g is strictly decomposition (resp.
strictly isomorphism) preserving. Then f is strictly decomposition (resp.
strictly isomorphism) preserving.

Proof. An easy diagram chase.

2.7 Lemma. Let f : A∗ → B∗ be a surjective homomorphism such that the
kernel of the restriction of f to A0 consists of nilpotent elements. Then f is
strictly decomposition and strictly isomorphism preserving.

Proof. We show that f is strictly decomposition preserving. Suppose we
are given pair-wise orthogonal idempotents φ1, . . . , φm in B0 whose sum is
the identity. The proof goes by induction on m. Let m = 2. Choose ψ
such that f(ψ) = φ1. Then f(ψ(1 − ψ)) = 0 and therefore ψn(1 − ψ)n =
0 for some n. Split the expression (ψ + (1 − ψ))2n−1 into two summands
ϕ1 =

∑2n−1
k=n

(
2n−1

k

)
ψk(1 − ψ)2n−1−k and ϕ2 =

∑2n−1
k=n

(
2n−1

k

)
ψ2n−1−k(1 − ψ)k.

Now ϕ1 + ϕ2 = 1 and ϕ1ϕ2 = 0; it means that ϕ1 and ϕ2 are orthogonal
idempotents. It is easy to see that f(ϕ1) = φ1 and f(ϕ2) = φ2.

Now consider the general case. Choose an idempotent ϕm such that
f(ϕm) = φm and consider the ring (1−ϕm)A0(1−ϕm). Its image under f is
(1− φm)B0(1− φm) and therefore contains idempotents φ1, . . . , φm−1 whose
sum is 1 − φm which is the identity in that ring. Applying the induction
hypothesis we can find pair-wise orthogonal idempotents ϕi, i ≤ m − 1,
whose sum is 1− ϕm, such that f(ϕi) = φi.

Now the fact that f is strictly isomorphism preserving follows from the
following more general lemma.
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2.8 Lemma. Let A, B be two rings, A0, B0 be their subrings, f 0 : A0 → B0

be a ring homomorphism, f : A→ B be a map of sets satisfying the following
conditions:

• f(α)f(β) equals either f(αβ) or 0 for all α, β ∈ A;

• f 0(α) equals f(α) if f(α) ∈ B0 or 0 otherwise;

• Ker f 0 consists of nilpotent elements.

Let ϕ1 and ϕ2 be two idempotents in A0, ψ12 and ψ21 be elements in A such
that ψ12A

0ψ21 ⊂ A0, ψ21A
0ψ12 ⊂ A0, f(ψ21)f(ψ12) = f(ϕ1), f(ψ12)f(ψ21) =

f(ϕ2). Then there exist elements ϑ12 ∈ ϕ2A
0ψ12A

0ϕ1 and ϑ21 ∈ ϕ1A
0ψ21A

0ϕ2

such that ϑ21ϑ12 = ϕ1, ϑ12ϑ21 = ϕ2, f(ϑ12) = f(ϕ2)f(ψ12) = f(ψ12)f(ϕ1),
f(ϑ21) = f(ϕ1)f(ψ21) = f(ψ21)f(ϕ2).

Proof. Since Ker f 0 consists of nilpotents, f 0 sends non-zero idempotents
in A0 to non-zero idempotents in B0; in particular, f(ϕ1) = f 0(ϕ1) 6= 0,
f(ϕ2) = f 0(ϕ2) 6= 0. Observe that

f(ψ12)f(ϕ1) = f(ψ12)f(ψ21)f(ψ12) = f(ϕ2)f(ψ12)

and, similarly, f(ψ21)f(ϕ2) = f(ϕ1)f(ψ21). Changing ψ12 to ϕ2ψ12ϕ1 and
ψ21 to ϕ1ψ21ϕ2 we may assume that ψ12 ∈ ϕ2Aϕ1 and ψ21 ∈ ϕ1Aϕ2. We
have

f 0(ϕ2) = f(ϕ2) = f(ψ12)f(ψ21) = f(ψ12ψ21) = f 0(ψ12ψ21);

therefore α = ψ12ψ21 − ϕ2 ∈ A0 is nilpotent, say αn = 0. Note that ϕ2α =
α = αϕ2. Set α∨ = ϕ2 − α + . . . + (−1)n−1αn−1 ∈ A0; then αα∨ = ϕ2 − α∨,
ϕ2α

∨ = α∨ = α∨ϕ2 and f(ϕ2) = f 0(ϕ2) = f 0(α∨) = f(α∨). Therefore
setting ϑ21 = ψ21α

∨ we have ϑ21 ∈ ϕ1Aϕ2, ψ12ϑ21 = ϕ2 and f(ϑ21) = f(ψ21).
Now ϑ21ψ12 is an idempotent. We have

f 0(ϕ1) = f(ϕ1) = f(ϑ21)f(ψ12) = f(ϑ21ψ12) = f 0(ϑ21ψ12);

therefore β = ϑ21ψ12−ϕ1 ∈ A0 is nilpotent. Note that βϕ1 = β = ϕ1β. Now
ϕ1 + β = (ϕ1 + β)2 = ϕ1 + 2β + β2 and therefore β(1 + β) = 0. But 1 + β is
invertible and hence we have β = 0. It means that ϑ21ψ12 = ϕ1 and we can
set ϑ12 = ψ12.
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2.9 Corollary. The map End∗(M(X; Z/pn)) → End∗(M(X; Z/p)) is strictly
decomposition and strictly isomorphism preserving.

2.10 Lemma. Let m = m1m2 be a product of two coprime integers. Then
the map End∗(M(X; Z/m)) → End∗(M(X; Z/m1)) × End∗(M(X; Z/m2))
is an isomorphism.

Proof. Follows from Chinese Remainder Theorem.

2.11 Definition. We say that a field extension E/F is rank preserving with
respect to X if the restriction map resE/F : CH∗(X) → CH∗(XE) becomes
an isomorphism after tensoring with Q.

2.12 Lemma. Assume X has a splitting field. Then for any finite rank
preserving field extension E over F we have [E : F ] · CH

∗
(XE) ⊂ CH

∗
(X).

Proof. Let L be a splitting field containing E. Let γ be any element in
CH

∗
(XE). By definition there exists α ∈ CH∗(XE) such that γ = resL/E(α).

Since resE/F ⊗ Q is an isomorphism, there exists an element β ∈ CH∗(X)
and a non-zero integer n such that resE/F (β) = nα. By projection formula

n · coresE/F (α) = coresE/F (resE/F (β)) = [E : F ] · β.

Applying resL/E to both sides we obtain n(resL/E(coresE/F (α))) = n[E : F ]·γ.
Therefore, resL/E(coresE/F (α)) = [E : F ] · α.

From now on we assume that X is a smooth projective variety which has
a splitting field, with a property that the kernel of the map

End∗(M(XE; Λ)) → End∗(M(X̄; Λ))

consists of nilpotent elements for all extensions E/F and all rings Λ. Say,
that is the case when X satisfies the condition of Lemma 1.6.

2.13 Lemma. The map End∗(M(XE; Λ)) → End
∗
(M(XE; Λ)) is strictly

decomposition and strictly isomorphism preserving for any extension E/F .

Proof. Follows from Lemma 2.7.

2.14 Lemma. Assume X has a splitting field, E/F is a field extension of
degree coprime with m, which is rank preserving with respect to X × X.
Then the map End∗(M(X; Z/m)) → End∗(M(XE; Z/m)) is decomposition
and isomorphism preserving.
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Proof. By Lemma 2.12 we have End
∗
(M(XE; Z/m)) = End

∗
(M(X; Z/m)).

Now apply Lemma 2.13 and Lemma 2.5 with A∗ = End∗(M(X; Z/m)), B∗ =
End∗(M(XE; Z/m)), C∗ = End

∗
(M(XE; Z/m)).

2.15 Lemma. Let V ∗ be a graded Z-module whose components are free and
have finite ranks. Then the reduction map End∗(V ∗) → End∗(V ∗ ⊗Z Z/m)
strictly preserves decompositions with the property that the graded components
of Imφi are free Z/m-modules.

Proof. We are given a decomposition V k ⊗Z Z/m = ⊕iW
k
i , where W k

i is the
k-graded component of Imφi. Present V k as a direct sum V k =

⊕
i V

k
i of

free Z-modules such that rkZ V
k
i = rkZ/mW

k
i . Fix a Z-basis {vk

ij}j of V k
i .

For each W k
i choose a basis {wk

ij}j such that the linear transformation Dk of
V k ⊗Z Z/m sending each vk

ij ⊗ 1 to wk
ij has determinant 1. By Lemma 2.16

there is a lifting D̃k of Dk over Z. So we obtain V k =
⊕

i W̃
k
i , where

W̃ k
i = D̃k(V k

i ) satisfies W̃ k
i ⊗Z Z/m = W k

i . Define ϕi on each V k to be the
projection onto W̃ k

i .

2.16 Lemma. The map SLl(Z) → SLl(Z/m) induced by the reduction mod-
ulo m is surjective.

Proof. Since Z/m is a semi-local ring, the group SLl(Z/m) is generated by
elementary matrices (see [HOM89, Theorem 4.3.9]).

2.17 Lemma. In the statement of Lemma 2.15 assume additionally that
(Z/m)× = {±1}. Then the reduction map is strictly isomorphism preserving.

Proof. Let ϕ1, ϕ2 be two idempotents in End∗(V ∗); denote by V k
i the k-

graded component of Imϕi. An isomorphism θ12 between ϕ1 ⊗ 1 and ϕ2 ⊗
1 of degree d can be identified with a family of isomorphisms θk

12 : V k
1 ⊗

Z/m→ V k−d
2 ⊗Z/m. Now by Lemma 2.16 we can lift them to isomorphisms

ϑk
12 : V k

1 → V k−d
2 , and we are done.

2.18 Lemma. Assume X has a splitting field of degree m which is rank
preserving with respect to X ×X. Then the map

End∗(M(X)) → End∗(M(X; Z/m))

preserves decompositions with the property that Im res(φi) are free Z/m-
modules, where

res : End∗(M(X; Z/m)) → End∗(M(X̄; Z/m))
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is the restriction. If additionally (Z/m)× = {±1} then this map is isomor-
phism preserving.

Proof. Consider the diagram

End∗(M(X)) // //

����

End∗(M(X; Z/m))

����

End
∗
(M(X)) // //

� _

��

End
∗
(M(X; Z/m))� _

��
End∗(M(X̄)) // // End∗(M(X̄; Z/m)).

The bottom arrow strictly preserves decompositions with the property stated
by Lemma 2.15 with V ∗ = CH∗(X̄); in the case this map is isomorphism pre-
serving by Lemma 2.17. By Lemma 2.12 the bottom square is cartesian and
therefore we may apply Lemma 2.6 and obtain that the middle arrow pre-
serves decompositions and isomorphisms as well. Now in the top square ver-
tical arrows are decomposition and isomorphism preserving by Lemma 2.13.
It remains to apply Lemma 2.5.
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Chapter 3

Motives of fibered spaces

3.1 Definition. Let X be a smooth projective variety over a field F . We
say a smooth projective morphism f : Y → X is a cellular fibration if it is
a locally trivial fibration whose fiber F is cellular, i.e., has a decomposition
into affine cells.

3.2 Lemma. Let f : Y → X be a cellular fibration. Then M(Y ) is (non-
canonically but compatible with base change) isomorphic to M(X)⊗M(F).

Proof. We follow the proof of [EG97, Prop. 1]. Define the morphism

ϕ :
⊕
i∈I

M(X)(codimBi) →M(Y )

to be the direct sum ϕ =
⊕

i∈I ϕi, where each ϕi is given by the cy-
cle [pr∗Y (Bi) · Γf ] ∈ CH∗(X × Y ) produced from the graph cycle Γf and
the chosen (non-canonical) basis {Bi}i∈I of CH∗(Y ) over CH∗(X). The
realization of ϕ coincides exactly with an isomorphism of abelian groups
CH∗(X) ⊗ CH∗(F) → CH∗(Y ) constructed in [EG97, Prop. 1]. By Manin’s
identity principle [Ma68] ϕ is an isomorphism and we are done.

3.3 Lemma. Let G be a linear algebraic group over a field F , X be a pro-
jective homogeneous G-variety and Y be a G-variety. Let f : Y → X be a
G-equivariant projective morphism. Assume that the fiber of f over F (X) is
isomorphic to FF (X) for some variety F over F . Then f is a locally trivial
fibration with the fiber F .

Proof. By the assumptions, we have Y×XSpecF (X) ' (F×X)×XSpecF (X)
as schemes over F (X). Since F (X) is a direct limit of O(U) taken over all
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non-empty affine open subsets U of X, by [EGA IV, Corollaire 8.8.2.5] there
exists U such that f−1(U) = Y ×XU is isomorphic to (F×X)×XU ' F×U
as a scheme over U . Since G acts transitively on X and f is G-equivariant,
the map f is a locally trivial fibration.

3.4 Corollary. Let X be a projective G-homogeneous variety, Y be a projec-
tive variety such that YF (X) ' FF (X) for some variety F . Then the projection
map X × Y → X is a locally trivial fibration with the fiber F .

Proof. Apply Lemma 3.3 to the projection map X × Y → X.

3.5 Corollary. In the statement of Corollary 3.4 assume that F is cellular.
Then M(X × Y ) 'M(X)⊗M(F).

Proof. Follows from Lemma 3.2.

3.6. Let G be a semisimple (connected) linear algebraic group over a field F ,
X be a projective G-homogeneous variety. Denote by D the Dynkin diagram
of G. Galois descent shows that one can choose a quasi-split group G0 over
F with the same Dynkin diagram, a parabolic subgroup P of G0 and a cocyle
ξ ∈ H1(F,G0) such that G is isogenic to ξG0 and X is isomorphic to ξ(G0/P ).
G is called of inner type if one can take split G0 and of strongly inner type if
one can take simply-connected split G0.

3.7 Lemma. Let G be a semisimple linear algebraic group over F , X and Y
be projective G-homogeneous varieties corresponding to parabolic subgroups
P and Q of G0, Q ≤ P . Denote by f : Y → X the natural map corresponding
to the quotient map G0/Q→ G0/P . If G becomes quasi-split over F (X) then
f is a cellular fibration with the fiber F = P/Q.

Proof. Since G becomes quasi-split over F (X), the fiber of f over F (X) is
isomorphic to (P/Q)F (X) = FF (X). Now apply Lemma 3.3 and note that F
is cellular.

3.8 Example. Let P = PΘ be the standard parabolic subgroup of a quasi-
split group G0, corresponding to a ∗-invariant subset Θ of the respective
Dynkin diagram D (enumeration of roots follows Bourbaki). In this notation
the Borel subgroup corresponds to the empty set. Let ξ be a cocycle in
H1(F,G0); set G = ξG0 and X = ξ(G0/P ). We denote by q the degree of
a splitting field of G0. In the cases of An, Dn, E6 and E7 we denote by d
the index of the associated central simple algebra over F or over a quadratic
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extension of F (note that d = 1 if G0 is simply-connected). Analyzing Tits
indices ([Ti66, Table II]; cf. [KR94, §7]) we see that G becomes quasi-split
over F (X) (or, in other words, X is generically split) in the following cases.
If G0 is split it suffices to require that the subset D \ Θ contains one of the
following vertices k:

G0
1An Bn Cn

1Dn

k gcd(k, d) = 1 k = n; k is odd; k = n− 1;
any k in the k = n if 2 - n or d = 1;
Pfister case any k in the Pfister case

G0 G2 F4
1E6 E7 E8

k any k = 1, 2, 3; k = 3, 5; k = 2, 5; k = 2, 3, 4, 5;
any k if k = 2, 4 if d = 1; k = 3, 4 if d = 1; any k if
q = 3 any k if d = 1 k 6= 7 if q = 3 q = 5

and q = 3

By the Pfister case we mean the case when the cocycle ξ corresponds to a
Pfister form or its maximal neighbor.

If G0 is quasi-split but not split it suffices to require that the subset D\Θ
contains one of the following ∗-invariant subset K:

G0
2An, m = [n+1

2
] 2E6

K K = {m,n+ 1−m,m− 1, n+ 2−m}; K = {3, 5}
K = {m,n+ 1−m} if gcd(m, d) = 1

G0
2Dn

3D4,
6D4

K K = {n− 2, n− 1, n}; K = {1, 3, 4}
K = {n− 1, n} if 2 | n or d = 1

Case-by-case arguments of paper [CPSZ] show that under certain condi-
tions the Chow motive of a twisted flag variety X can be expressed in terms
of the motive of a minimal flag. These conditions cover almost all twisted
flag varieties corresponding to groups of types An and Bn together with some
examples of types Cn, G2 and F4. Using the following theorem we provide a
uniform proof of these results as well as extend it for groups of types Dn and
exceptional types.

3.9 Theorem. Let Y and X be taken as in Lemma 3.7. Then the Chow
motive M(Y ) of Y is isomorphic to a direct sum of twisted copies of the
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motive M(X), i.e.,

M(Y ) '
⊕
i≥0

M(X)(i)⊕ci ,

where
∑
cit

i = P (CH∗(Ȳ ), t)/P (CH∗(X̄), t).

Proof. Follows from Lemma 3.7 and Lemma 3.2.

3.10 Remark. The explicit formula for P (CH∗(X̄), t) involves the degrees of
basic polynomial invariants of G0 and is provided in [Hi82, Ch. IV, Cor. 4.5].
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Chapter 4

Complete flag varieties

4.1. Let G0 be a split semisimple linear algebraic group with a maximal
split torus T and a Borel subgroup B containing T . Let G = ξG0 be a
twisted form of G0 given by a cocyle ξ ∈ H1(F,G0) and X = ξ(G0/B) be
the corresponding variety of complete flags. Observe that the group G splits
over any field K over which X has a rational point, in particular, over the
function field F (X). According to [De74] CH∗(X̄) can be expressed in purely
combinatorial terms and therefore depends only on type of G and not on the
base field F .

4.2. Let p be a torsion prime of G0. Let T̂ denote the group of characters of
T and S∗(T̂ ) be the symmetric algebra. By R∗ we denote the image of the
characteristic map c : S∗(T̂ ) → CH∗(X̄; Z/p) (see [Gr58, (4.1)]). According
to [KM05, Thm.6.4.(i)] we have R∗ ⊂ CH

∗
(X; Z/p).

Consider the Chow ring CH∗(Ḡ; Z/p) of the split group Ḡ and the induced
by the quotient map π : CH∗(X̄; Z/p) → CH∗(Ḡ; Z/p). According to [Gr58,
Rem. 2◦] π is surjective with the kernel generated by R+, where R+ stands
for the ideal of constant-free elements in R∗. In particular, CH∗(Ḡ; Z/p)
depends only on type of G and p and does not depend on the base field F .

4.3. The explicit presentation of CH∗(Ḡ; Z/p) in terms of generators and
relations is known for all types of G and all p. The most uniform description
can be found in the paper by V. Kac [Kc85]. Namely, by [Kc85, Thm. 3]

CH∗(Ḡ; Z/p) ' (Z/p)[x1, . . . , xr]/(x
pk1

1 , . . . , xpkr

r ),

where xi is a generator of codimension di, p - di, and the numbers dip
ki ,
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i = 1, . . . , r, are known as p-exceptional degrees of Ḡ. We assume that the
order of xi is compatible with their codimension, that is di ≤ dj when i ≤ j.

4.4. We will use the standard notation concerning multi-indices (or tuples).
Given an r-tuple M = (m1, . . . ,mr) denote xM =

∏r
i=1 x

mi
i and |M | =

codimxM =
∑r

i=1 dimi. Operations between r-tuples are assumed to be
componentwise. Denote also

(
M
L

)
=

∏r
i=1

(
mi

li

)
.

We will write M 4 L if mi ≤ li for all i. Note that 4 is just a partial
order. We also introduce a well-order on the set of all r-tuples, usually called
DegLex. Namely, we will write M ≤ N if either |M | < |N |, or |M | = |N |
and mi ≤ ni for the greatest i such that mi 6= ni. Obviously the order is
compatible with addition.

4.5 Definition. For each i = 1, . . . , r let ji be the smallest non-negative
integer such that the image of CH

∗
(X; Z/p) under π contains an element with

the leading term xpji

i (with respect to the DegLex order). Clearly ji ≤ ki.
Define the J-invariant of G modulo p to be the r-tuple Jp(G) = (j1, . . . , jr).

4.6 Example. In the case when G corresponds to the generic G0-torsor
we have CH

∗
(X; Z/p) = R∗ (see [KM05, Theorem 6.4 (2)]) and, therefore,

Jp(G) = (k1, . . . , kr).

4.7 Example. Let φ be a quadratric form with trivial discriminant. A. Vishik
defined J(φ) in terms of rationality of cycles on the maximal orthogonal
Grassmannian (see [Vi05, Definition 5.11] or [EKM, § 88]). Using Theo-
rem 3.9 one can show that J(φ) can be expressed in terms of J2(O

+(φ)) =
(j1, . . . , jr) as follows:

J(φ) = {2ldi | i = 1, . . . , r, 0 ≤ l ≤ ji − 1}.

Since all di are odd, J2(O
+(φ)) is determined by J(φ) as well.

4.8 Theorem. Given G and p with Jp(G) = (j1, . . . , jr) the motive of X is
isomorphic to the direct sum

M(X; Z/p) '
⊕
i≥0

R(i)⊕ci ,

where the motive R is indecomposable,

P (R̄, t) =
r∏

i=1

1− tdip
ji

1− tdi
,
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and ci are the coefficients of the polynomial∑
i≥0

cit
i = P (CH∗(X̄), t)/P (R̄, t).

Fix preimages ei of xi in CH∗(X̄). Set K = (k1, . . . , kr) and N = pK − 1.

4.9 Claim. The Chow ring CH∗(X̄; Z/p) is a free R∗-module with a basis
{eM}, M 4 N .

Proof. Note that R+ is a nilpotent ideal in R∗. Applying Nakayama Lemma
we obtain that {eM} generate CH∗(X̄; Z/p). By [Kc85, (2)] CH∗(X̄; Z/p) is
a free R∗-module, hence, for the Poincaré polynomials we have

P (CH∗(X̄; Z/p), t) = P (CH∗(Ḡ; Z/p), t) · P (R∗, t).

Substituting t = 1 we obtain that

rkZ/p CH∗(X̄; Z/p) = rkZ/p CH(Ḡ; Z/p) · rkZ/pR
∗.

To finish the proof observe that rkZ/p CH∗(Ḡ; Z/p) coincides with the number
of generators {eM}.

Set d = dimX − |N | = deg(P (R∗, t)).

4.10 Claim. The pairing R∗×Rd−∗ → Z/p given by (α, β) 7→ deg(eNαβ) is
non-degenerated.

Proof. We have to show that for any α ∈ R∗ there exists β such that
deg(eNαβ) 6= 0. Let α∨ be a Poincare dual of α. Expanding α∨ we ob-
tain

α∨ =
∑

M4N

eMβM , where βM ∈ R∗.

Note that if M 6= N then codimαβM > d, therefore, αβM = 0. So we can
set β = βN .

Fix a homogeneous basis {αi} of R∗ and its dual {βj} with respect to the
pairing introduced in 4.10.

4.11 Claim. For |M | ≤ |N | we have

deg(eMαiβj) =

{
1, M = N and i = j

0, otherwise
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Proof. If M = N , then it follows from the definition of the dual basis.
Assume |M | < |N |. If deg(eMαiβj) 6= 0, then codim(αiβj) > d, a con-
tradiction with the fact that αiβj ∈ R∗. Hence, we reduced to the case
M 6= N and |M | = |N |. Since |M | = |N |, codim(αiβj) = d and, hence,
R+αiβj = 0. From the other hand side there exists i such that mi ≥ pki and

epki ∈ CH∗(X̄; Z/p)R+. Hence, eMαiβj = 0.

4.12. Given two pairs (M, t) and (L, s), where M,L are r-tuples and t, s
are integers, we will write (M, t) ≤ (L, s) iff M ≤ L and in the case M = L
t ≤ s (the lexicographical order). Consider the following filtration on the ring
CH∗(X̄): the (M, t)-th term CH∗(X̄)M,t is the subring generated by elements
eIα with I ≤M , α ∈ R∗, codimα ≤ t. The associated graded ring is defined
as follows:

A∗ =
⊕
M,t

AM,t, where AM,t = CH∗(X̄)M,t/
⋃

(L,s)<(M,t)

CH∗(X̄)L,s.

Actually the unions stabilize at finite steps. As usual, A∗ can be equipped
with a structure of a graded ring. Clearly AM,t consists of the images of
elements eMα with α ∈ R∗, codimα ≤ t when M 4 N ; such an image will
be denoted by eMα too. Since rkZ/pA

∗ = rkZ/p CH∗(X̄), AM,t is trivial when

M 64 N . We also consider the subring CH
∗
(X) of rational cycles with the

induced filtration. The associated graded ring will be denoted by A∗
rat; it

may be naturally identified with a subring of A∗.
Similarly, consider the filtration on the ring CH∗(X̄× X̄) whose (M, t)-th

term is generated by elements eIα× eLβ, I + L ≤ M , α, β ∈ R∗, codimα +
codim β ≤ t. The associated graded ring will be denoted by B∗. It is easy to
see that B∗ is isomorphic to A∗ ⊗Z/p A

∗ as a graded ring. The graded ring

associated to CH
∗
(X ×X) will be denoted by B∗

rat.

4.13. The key observation is that due to Claim 4.11 we have

CH∗(X̄ × X̄)M,t ◦ CH∗(X̄ × X̄)L,s ⊂ CH∗(X̄ × X̄)M+L−N,s+t−d,

and therefore we have the correctly defined composition law

◦ : BM,t ×BL,s → BM+L−N,s+t−d.

In particular, BN+∗,d+∗ can be viewed as a graded ring with respect to the
composition.

Similarly, (CH∗(X̄×X̄)M,t)∗(CH∗(X̄)L,s) ⊂ CH∗(X̄)M+L−N , and therefore
we have the realization map ∗ : BM,t × AL,s → AM+L−N,s+t−d.
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4.14 Claim. The elements el ⊗ 1− 1⊗ el, l = 1, . . . , r, belong to B∗
rat.

Proof. Since X splits over F (X), by Lemma 1.5 there exists a cycle in

CH
dl

(X × X; Z/p) of the form ξ = el × 1 +
∑

i µi × νi + 1 × µ, where
codimµi, codim νi < dl. Then the cycle

pr∗13(ξ)− pr∗23(ξ) = (el × 1− 1× el)× 1 +
∑

i

(µi × 1− 1× µi)× νi

is rational in CH∗(X̄ × X̄ × X̄; Z/p). Applying Corollary 3.5 to the variety
X ×X ×X → X we see that the pull-back map pr∗3 : CH∗(X) → CH∗(X ×
X × X) has a left inverse, say, δ3. Passing to a splitting field we obtain a
map δ3 : CH∗(X̄ × X̄ × X̄) → CH∗(X) which is left inverse to pr∗3, preserves
codimension and respects rationality of cycles. Hence we obtain a desired
rational cycle

δ3(pr∗13(ξ)− pr∗23(ξ)) = el × 1− 1× el +
∑

i

(µi × 1− 1× µi)δ3(νi)

whose image in B∗
rat is el ⊗ 1− 1⊗ el.

4.15 Claim. The elements epjl

l , l = 1, . . . r, belong to A∗
rat.

Proof. Follows immediately from the definition of the J-invariant.

We will write (e⊗ 1− 1⊗ e)M for
∏r

i=1(ei ⊗ 1− 1⊗ ei)
mi .

4.16 Claim. Let α be an element of R∗, α∨ be a dual, that is deg(eNαα∨) =
1. Then we have

((e⊗ 1− 1⊗ e)M(α∨ ⊗ 1))∗(e
Lα) =

(
M

M + L−N

)
(−1)M+L−NeM+L−N .

Proof. Direct computations using Claim 4.11.

Set for brevity J = Jp(G).

4.17 Claim. The elements epJLαi, L 4 pK−J − 1, form a basis of A∗
rat over

Z/p.
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Proof. Clearly, these elements are linearly independent. Assume there exists
a homogeneous element which can not be presented as a linear combination
of these elements; choose such an element eLα with the smallest L. Obviously
L can not be presented as pJM ; it means that there exists an index i such
that in the presentation li = psl′i with p - l′i we have s < ji. We show
that L = (0, . . . , li, . . . , 0); indeed, otherwise we can set M = N − L +
(0, . . . , li, . . . , 0) and obtain the element ((e ⊗ 1 − 1 ⊗ e)M(α∨ ⊗ 1))∗(e

Lα)
which by Claim 4.16 has the degree (0, . . . , li, . . . , 0). Assume that l′i > 1.

By Lucas’ theorem on binomial coefficients we have p -
(

pki−ps(l′i−1)−1)
ps

)
. Set

M = N + (0, . . . , pki − ps(l′i − 1)− 1, . . . , 0); then applying Claim 4.16 again
we obtain an element of degree (0, . . . , ps, . . . , 0), a contadiction. It means
that l′i = 1. Let γ be a representative of eps

i in CH
∗
(X); then the element

π(γ) has the leading term xs
i with s < ji, a contradiction to the definition of

the J-invariant.

4.18 Claim. The elements (e⊗1−1⊗e)S(epJLαi⊗epJMβj), L,M 4 pK−J−1,
S 4 pJ − 1, form a basis of B∗

rat over Z/p.

Proof. Clearly, these elements are linearly independent and their number is
p|2K−J |(rkZ/pR

∗)2. On the other hand, by Corollary 3.5, Lemma 4.9 and
Lemma 4.17 we have

rkZ/pB
∗
rat = rkZ/p CH

∗
(X ×X; Z/p) = rkZ/p CH

∗
(X; Z/p) · rkZ/p CH∗(X̄; Z/p)

= rkZ/pA
∗
rat · p|K| rkZ/pR

∗ = p|2K−J |(rkZ/pR
∗)2.

4.19 Claim. The elements

θL,M,i,j = (e⊗ 1− 1⊗ e)pJ−1(epJLαi ⊗ epJ (pK−J−1−M)βj), L,M 4 pK−J − 1,

satisfy the relation θL,M,i,j ◦ θL′,M ′,i′,j′ = δLM ′δij′θL′Mi′j.

Proof. Follows from Claim 4.11.

Proof of Theorem 4.8. Consider the projection map

f 0 : CH
∗
(X ×X)N,d → BN,d

rat .

Its kernel is nilpotent, and therefore by Lemma 2.7 there exist pair-wise or-
thogonal idempotents ϕL,i in CH

∗
(X × X) which map to θL,L,i,i and whose
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sum is the identity. Their (N + d)-graded components also have these prop-

erties and therefore we may assume that ϕL,i belong to CH
dim X

(X ×X).
We show that ϕL,i are indecomposable. Claim 4.18 and Claim 4.19 show

that the ring BN,d
rat is isomorphic to a direct product of matrix rings over Z/p:

BN,d
rat '

∏
s

End((Z/p)p|K−J| rkZ/p Rs

).

Under this identification elements θL,L,i,i correspond to idempotents of rank
1 and therefore are indecomposable. Since f 0 preserves isomorphisms, ϕL,i

are indecomposable as well.
We show that ϕL,i is isomorphic to ϕM,j. In the ring B∗

rat mutually inverse
isomorphisms between them are given by θL,M,i,j and θM,L,j,i. Let

f : CH
∗
(X ×X) → B∗

rat

be the leading term map; it means that for any ξ ∈ CH
∗
(X ×X) we find the

smallest degree (I, s) such that ξ belongs to CH
∗
(X×X)I,s and set f(ξ) to be

the image of γ in BI,s
rat. Note that f is not a homomorphism but satisfies the

condition that f(ξ)◦f(η) equals either f(ξ◦η) or 0. Choose preimages ψL,M,i,j

and ψM,L,j,i of θL,M,i,j and θM,L,j,i by means of f . Applying Lemma 2.8 we
obtain mutually inverse isomorphisms ϑL,M,i,j and ϑM,L,j,i between ϕL,i and
ϕM,j. It remains to take their homogeneous components of the appropriate
degrees.

Now applying Lemma 1.6 and Lemma 2.13 we obtain the desired motivic
decomposition.

4.20 Remark. The proof actually shows that every direct summand of
M(X; Z/p) is isomorphic to a direct sum of twisted copies of R. Indeed, in
the ring BN,d

rat any idempotent is isomorphic to a sum of idempotents θL,L,i,i,
and the map f 0 preserves isomorphisms. It is no wonder: results of [CM06]
show that for motives of G-homogeneous varieties with Z/p-coefficients the
Krull-Schmidt Theorem holds.

In the sequel we will denote the motive R introduced in Theorem 4.8 by
Rp(G).

4.21 Theorem. Let X be a projective G-homogeneous variety, where G is a
semisimple group of inner type which splits over F (X). Then the motive of
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X is isomorphic to the direct sum

M(X; Z/p) '
⊕
i≥0

Rp(G)(i)⊕ai ,

where ai are the coefficients of the polynomial∑
i≥0

ait
i = P (CH∗(X̄), t)/P (R̄p(G), t).

Proof. Let Y be the variety of complete G-flags. Apply Theorem 3.9 and
Remark 4.20.

We describe some properties of Rp(G) in the following theorem.

4.22 Theorem. Let G and G′ be two semisimple groups of inner type, X
and X ′ be corresponding varieties of complete flags.

• (base change) For any field extension E/F we have

Rp(G)E '
⊕
i≥0

Rp(GE)(i)⊕ai ,

where
∑
ait

i = P (R̄p(G), t)/P (R̄p(GE), t).

• (transfer argument) If E/F is a field extension of degree coprime
to p then Jp(GE) = Jp(G) and Rp(GE) = Rp(G)E. Moreover, if
Rp(GE) ' Rp(G′

E) then Rp(G) ' Rp(G′).

• (comparison theorem) If G splits over F (X ′) and G′ splits over
F (X) then Rp(G) ' Rp(G′).

Proof. The first claim follows from Theorem 4.8 and Remark 4.20. To prove
the second claim note that E is rank preserving with respect to X and
X × X by Lemma 4.24 below. Now Jp(GE) = Jp(G) by Lemma 2.12, and
hence Rp(GE) = Rp(G)E by the first claim. The remaining part of the claim
follows from Lemma 2.14 applied to the variety X

∐
X ′.

Now we prove the last claim. The variety X×X ′ is the variety of complete
G×G′-flags. Applying Corollary 3.5 we can express M(X×X ′; Z/p) in terms
of Rp(G) and Rp(G′). Now apply Remark 4.20.
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4.23 Corollary. We have Rp(G) ' Rp(Gan), where Gan is the anisotropic
kernel of G.

4.24 Lemma. Let G be a group of inner type, X be a projective G-homogeneous
variety. Then any field extension E/F is rank preserving with respect to X
and X ×X.

Proof. By [Pa94, Theorem 2.2 and 4.2] the restriction mapK0(X) → K0(XE)
becomes an isomorphism after tensoring with Q. Now the Chern character
ch : K0(X) ⊗ Q → CH∗(X) ⊗ Q is an isomorphism and respects pull-backs,
hence E is rank preserving with respect to X. It remains to note that X×X
is G×G-homogeneous variety.
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Chapter 5

Properties of J-invariant

5.1. Recall (see [Br03]) that if the characteristic of the base field F is different
from p then one can construct Steenrod p-th power operations

Sl : CH∗(X; Z/p) → CH∗+l(p−1)(X; Z/p)

such that S0 = id, Sl restricted to CHl(X; Z/p) coincides with the taking to
the p-th power, and the total Steenrod operation S• =

∑
l≥0 S

l is a homo-
morphism of Z/p-algebras compatible with pull-backs. In the case of varieties
over the field of complex numbers Sl compatible with their topological coun-
terparts: reduced power operations P l if p 6= 2 and Steenrod squares Sq2l if
p = 2 (recall that CH∗ in this case may be viewed as a subring in H2∗).

When X is the variety of complete G-flags the action of Steenrod opera-
tions on CH∗(X̄) can be described in purely combinatorial terms (see [Du05])
and therefore does not depend on the base field. Since Steenrod operations
respect pull-back they respect rationality as well.

Over the field of complex numbers CH∗(Ḡ) may be identified with the
image of the pull-back map H2∗(X̄) → H2∗(Ḡ). An explicit description of
this image and formulae describing the action of P l and Sql on H∗(Ḡ) are
given in [IKT76, KoMi77, BB65].

5.2. Assume that in CH∗(Ḡ) we have Sl(xi) = xm and Sl(xi′) < xm with
respect to the order DegLex when i′ < m. Then jm ≤ ji. Indeed, by
definition there exists a cycle α ∈ CH

∗
(X) such that the leading term of

π(α) is xpji

i . Applying Slpji we obtain a rational cycle whose image under π
has the leading term xpji

m .
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5.3. We summarize information about restrictions on J-invariant which can
be obtained using the method described in 5.2 into the following table (num-
bers di and ki are taken from [Kc85, Table II]).

G0 p r di ki ji
SLn /µm, m | n p | m 1 1 pk1 ‖ n
PGSpn, 2 | n 2 1 1 2k1 ‖ n
SOn 2 [n+1

4
] 2i− 1 [log2

n−1
2i−1

] ji ≥ ji+l if 2 -
(

i−1
l

)
Spinn 2 [n−3

4
] 2i+ 1 [log2

n−1
2i+1

] ji ≥ ji+l if 2 -
(

i
l

)
PGO2n 2 [n+2

2
] 1, i = 1 2k1 ‖ n

2i− 3, i ≥ 2 [log2
2n−1
2i−3

] ji ≥ ji+l if 2 -
(

i−2
l

)
Ss2n, 2 | n 2 n

2
1, i = 1 2k1 ‖ n
2i− 1, i ≥ 2 [log2

2n−1
2i−1

] ji ≥ ji+l if 2 -
(

i−1
l

)
G2, F4, E6 2 1 3 1
F4, Esc

6 , E7 3 1 4 1
Ead

6 3 2 1, 4 2, 1
Esc

7 2 3 3, 5, 9 1, 1, 1 j1 ≥ j2 ≥ j3
Ead

7 2 4 1, 3, 5, 9 1, 1, 1, 1 j2 ≥ j3 ≥ j4
E8 2 4 3, 5, 9, 15 3, 2, 1, 1 j1 ≥ j2 ≥ j3
E8 3 2 4, 10 1, 1 j1 ≥ j2
E8 5 1 6 1

We give some applications of the notion of J-invariant. First, as a by-
product of the proof of Theorem 4.8 we obtain the following expression for
the canonical p-dimension of the variety of complete flags (cf. [EKM, Theo-
rem 90.3] for the case of quadrics).

5.4 Theorem. In the notation of Theorem 4.8 we have

cdp(X) =
r∑

i=1

di(p
ji − 1).

Proof. Follows from Claim 4.17 and [KM05, Theorem 5.8].

Let for a momentX be any smooth projective variety which has a splitting
field.

5.5 Lemma. For any φ, ψ ∈ CH∗(X̄ × X̄) one has

deg((pr2)∗(φ · ψt)) = tr((φ ◦ ψ)∗).
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Proof. Choose a homogeneous basis {ei} of CH∗(X̄); let {e∨i } be its Poincaré
dual basis. Since both sides are bilinear, it suffices to check the assertion for
φ = ei × e∨j , ψ = ek × e∨l . Now the both sides equal δilδjk.

Denote by d(X) the greatest common divizor of the degrees of all zero
cycles on X and by dp(X) its p-primary component.

5.6 Corollary. For any φ ∈ CH
∗
(X ×X; Z/m) we have

gcd(d(X),m) | tr(φ∗).

Proof. Set ψ = ∆X̄ and apply Lemma 5.5.

5.7 Lemma. Let X be a variety which has a splitting field. Assume that
M(X; Z/p) has a direct summand M . Then

1. dp(X) | P (M̄, 1);

2. if dp(X) = P (M̄, 1) and the kernel of the map

End(M(X; Z/p)) → End(M(X̄; Z/p))

consists of nilpotents then M is indecomposable.

Proof. Set q = dp(X) for brevity. Let an idempotent φ ∈ End(M(X); Z/p)
present M . By Lemma 2.9 there exists an idempotent ϕ ∈ End(M(X); Z/q)
such that ϕ mod p = φ. Then res(ϕ) ∈ End(M(X̄); Z/q) is a rational
idempotent. Since every projective module over Z/q is free, we have

tr(res(ϕ)∗) = rkZ/q(res(ϕ)∗) = rkZ/p(res(φ)∗) = P (M̄, 1) mod q,

and the first claim follows by Corollary 5.6. The second claim follows from
the first, since the assumption implies that for any nontrivial direct summand
M ′ of M we have P (M̄ ′, 1) < P (M̄, 1).

5.8. Let G be a group of inner type. Denote by n(G) the greatest common
divisor of degrees of all finite splitting field of G and by np(G) its p-primary
component. Note that n(G) = d(X) and np(G) = dp(X), where X is the
variety of complete G-flags.

We have the following estimation on np(G) in terms of J-invariant (cf.
[EKM, Proposition 88.11] for the case of quadrics).
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5.9 Theorem. For any group G of inner type with Jp(G) = (j1, . . . , jr) we
have

np(G) ≤ p
∑

i ji .

Proof. Follows from Theorem 4.8 and Lemma 5.7.

5.10 Corollary. The following statements are equivalent:

• Jp(G) = (0, . . . , 0);

• np(G) = 1;

• Rp(G) = Z/p.

Proof. If Jp(G) = (0, . . . , 0) then np(G) = 1 by Theorem 5.9. If np(G) = 1
then there exists a splitting field L of degree m prime to p, and therefore
Rp(G) = Z/p by the transfer argument (see Theorem 4.22). The remaining
implication is obvious.

Finally, we give some kind of a ‘reduction formula’ (cf. [EKM, Corol-
lary 88.7] for the case of quadrics).

5.11 Theorem. Let G be a group of inner type, X be the variety of complete
G-flags, Y be a projective variety such that the map CHl(Y ) → CHl(YF (x))
is surjective for all x ∈ X and l ≤ n. Then ji(G) = ji(GF (Y )) for all i such
that pji(GF (Y ))di ≤ n.

Proof. Indeed, by [EKM, Lemma 88.5] the map CHl(X) → CHl(XF (Y )) is
surjective for all l ≤ n, and therefore ji(G) ≤ ji(GF (Y )). The converse
inequality is obvious.

5.12 Corollary. Jp(G) = Jp(GF (t)).

Proof. Take Y = P1 and apply Theorem 5.11.
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Chapter 6

Examples

Types An and Cn Let G be a group of inner type An or Cn corresponding
to a central simple algebraA = Mm(D), whereD is a division algebra of index
d over a field F . Let p be a prime divisor of d (p = 2 in the case of Cn). Let
XΘ be the projective homogeneous G-variety given by a subset Θ of vertices
of the respective Dynkin diagram such that p - j for some j /∈ Θ. Then
the Chow motive of XΘ modulo p decomposes into a direct sum of shifted

copies of some indecomposable motive Rp,2 such that P (R̄p,2, t) = 1−tp
j1

1−t
,

pj1 | deg(A). Using the comparison theorem we see that Rp,2 depends only
on D, so we may assume m = 1. Now pj1 | ind(D), but on the other hand
side np(G) ≤ pj1 by Theorem 5.9. Therefore we have pj1 ‖ ind(D).

Now we identify Rp,2. Present D in the form Dp ⊗F D
′, where p - indD′.

By the transfer argument passing to a splitting field of D′ will not affect the
motive Rp,2 up to an isomorphism; so we may assume D = Dp. But in this
case M(SB(Dp); Z/p) is isomorphic to Rp,2 by dimensional reasons. Finally,
we have J = (j1), where ind(Dp) = pj1 , and Rp,2 'M(SB(Dp); Z/p).

Types Bn and Dn Let G = O+(φ), where φ is a k-fold Pfister form or
its maximal Pfister neighbor. Assume J2(G) 6= (0, . . . , 0); by Springer’s
theorem this holds iff φ doesn’t split. The Chow motive of any projective
homogeneous G-variety X modulo 2 decomposes into a direct sum of shifted
copies of some indecomposable motive R2,k known as the Rost motive (see
[Ro98]). According to Lemma 2.18 this decomposition can be lifted to Z.
Observe that the notation R2,k and Rp,2 agree when k = 2, p = 2, since
2-fold Pfister quadrics correspond to quaternion algebras.
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Now we compute J2(G). Let Y be a projective quadric corresponding
to φ; then G splits over F (Y ) and Y splits over F (x) for any x ∈ X. It is
known that CHl(Ȳ ) for l < 2k−1 − 1 is generated by CH1(Ȳ ) and therefore
is rational. Applying Theorem 5.11 we see that ji(G) = 0 for i < r = 2k−2.
Therefore, we have J2(G) = (0, . . . , 0, 1) and P (R̄2,k, t) = 1 + t2

k−1−1.

Type G2 Let G = Aut(O), where O is an octonion algebra. Assume
J2(G) 6= (0); this holds iff G doesn’t split and in this case J2(G) = (1).
The Chow motive of any projective homogeneous G-variety X modulo 2 de-
composes into a direct sum of shifted copies of R2,3, where, as the comparison
theorem shows, R2,3 is the Rost motive of a quadric given by the Pfister form
NO. By Lemma 2.18 this decomposition can be lifted to Z. This result was
proved first in [Bo03].

Type F4 Let G be a group of type F4. Let XΘ be the projective homo-
geneous G-variety corresponding to a subset Θ of vertices of the respective
Dynkin diagram.

p=2 Assume J2(G) 6= (0); this holds iff G does not split over a cubic
field extension and in this case J2(G) = (1). For any Θ 6= {1, 2, 3} the Chow
motive of XΘ modulo 2 decomposes into a direct sum of shifted copies of
some indecomposable motive R2,3. The comparison theorem and the transfer
argument show that R2,3 is the Rost motive of the Pfister quadric given by
the norm of the coordinate algebra of G. In the case when G is reduced (that
is splits over a quadratic extension) this decomposition can be lifted to Z by
Lemma 2.18.

p=3 Assume J3(G) 6= (0); this holds iff G is not reduced and in this
case J3(G) = (1). For any Θ the Chow motive of XΘ modulo 3 decomposes
into a direct sum of shifted copies of some indecomposable motive R3,3,
P (R̄3,3, t) = 1 + t4 + t8. If G splits over a cubic field extension then this
decomposition can be lifted to Z by Lemma 2.18. This result was proved
first in [NSZ].

Z-coefficients If Θ 6= {1, 2, 3} using Lemma 2.10 and Lemma 2.18 we
obtain that the motive of XΘ over Z decomposes into a direct sum of shifted
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copies of some motive R such that

R⊗ Z/2 =
⊕

i∈{0,1,2,6,7,8}

R2,3(i),

R⊗ Z/3 =
⊕

i∈{0,1,2,3}

R3,3(i).

Type E6 Let G be a group of type E6. Let XΘ be the projective homo-
geneous G-variety corresponding to a subset Θ of vertices of the respective
Dynkin diagram.

p=2 Assume J2(G) 6= (0); this holds iff the cohomological invariant
f3(G) 6= 0 and in this case J2(G) = (1). For any Θ 6⊃ {2, 3, 4, 5} the Chow
motive of XΘ modulo 2 decomposes into a direct sum of shifted copies of
some indecomposable motive R2,3. The comparison theorem and the trans-
fer argument show that R2,3 is the Rost motive of the Pfister quadric corre-
sponding to f3(G). In the case when G is strongly inner and isotropic the
same decomposition holds with integer coefficients.

p=3 We consider only the case when G is strongly inner. Assume
J3(G) 6= (0); this holds iff G is anisotropic and in this case J3(G) = (1).
For any Θ the Chow motive of XΘ modulo 3 decomposes into a direct sum
of shifted copies of R3,3, where, as comparison theorem shows, R3,3 is the
same as in F4-case (to be precise, one should take a group G′ of type F4 with
g3(G

′) = g3(G)). If G splits over a cubic field extension then this decompo-
sition can be lifted to Z.

Z-coefficients IfG is strongly inner and Θ 6= {1, 2, 3} using Lemma 2.10
and Lemma 2.18 we obtain that the motive of XΘ over Z decomposes into a
direct sum of shifted copies of R, where R is the same as in F4-case.

Type E7, p=3 Let G be a group of type E7. Assume that J3(G) 6= (0); this
holds iff the cohomological invariant g3(G) 6= 0 and in this case J3(G) = (1).
Let XΘ be the projective homogeneous G-variety given by a subset Θ of
vertices of the respective Dynkin diagram, Θ 6= {1, 2, 3, 4, 5, 6}. Then the
Chow motive of XΘ modulo 3 decomposes into a direct sum of shifted copies
of R3,3, where, as comparison theorem shows, R3,3 is the same as in F4-case
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(to be precise, one should take a group G′ of type F4 with g3(G
′) = g3(G)).

If G splits over a cubic field extension then the decomposition can be lifted
to Z.

Type E8, p=5 Let G be a group of type E8. Assume that J5(G) 6= (0);
this holds iff the Rost-Serre invariant modulo 5 h3(G) 6= 0 (see [Ch94]) and
in this case J5(G) = (1). The motive of any projective G-homogeneous
variety X modulo 5 decomposes into a direct sum of shifted copies of some
indecomposable motive R5,3, where P (R̄5,3, t) = 1 + t6 + t12 + t18 + t24.
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