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1 Introduction

Over the past two decades, estimates on the number of protein coding genes in a genome dropped
greatly. While early estimations gave numbers above 100,000 for the human genome, today, it ap-
pears to house only 20,000-25,000 protein-coding genes [1]. The genome of the fruit fly,Drosophila
melanogaster, underwent the same drop in gene coverage. It encodes approximately 13,600 genes
[2]. But with the decreasing number of genes in a genome, the intergenic regions became larger and
larger. Once believed to be mostly junk, in fact, the space is a place for many structural elements.

The most important of these structural elements serve in controlling and regulating the transcription
level of their attached genes. These so-calledcis-regulatory elements are fragments of the DNA
and can be found mostly upstream of the controlled genes. Regulatory elements are, for instance,
promoter elements for switching the gene transcription on or off, respectively. Additionally, enhancer
and silencer elements boost or restrain transcription to a certain degree. Another class of regulatory
elements are insulators, which separate and isolate the gene-regulatory element-complexes from each
other. A third and developmentally essential class of regulatory elements with direct influence on
transcription are Polycomb/Trithorax response elements, PRE/TREs. Their purpose is to maintain
transcriptional repression or activation, even after the transcription factors bound foremost to the
promoter or enhancer element are long gone [3]. Moreover, the transcription level is maintained over
many cell cycles.

All of these elements play their role in controlling and regulating the expression of genes. Identifi-
cation and functional analysis of such elements is a most important task, because it leads to a greater
understanding of the regulatory network of cells. Common to most if not allcis-regulatory DNA
elements is that they are characterized by short binding sites. Through these sites, the elements are
bound by transcription factors or other sequence-specific proteins. Often, multiple copies of binding
sites for one factor as well as for different factors are present within one element. This has been inves-
tigated for enhancer/silencer and promoter elements [4] as well as for PRE/TREs [5]. Consequently,
knowledge and identification of these binding sites is the basis for detectingcis-regulatory elements
and thus gaining greater understanding of the gene regulation network.

In this thesis, a framework is presented in order to work with motifs and to apply them to certain
tasks. The reason for working with motifs is that binding sites for one transcription factor incur
sequence variability. Therefore, such binding sites are aligned into and represented as a motif and
one motif is the computational representative of all binding sites for one transcription factor. Since
binding sites are fairly short, motifs are too. Different representation types of motifs exist, which
are presented in Chapter 2.2. Motifs can be used for searching binding sites in the genomein silico.
This is the foundation for the prediction of regulatory elements. Due to their shortness, however, they
occur in the genome frequently, and not every occurrence hints at a regulatory element. Therefore,
two other features of such elements are incorporated in the predictory process. First, binding sites are
enriched, and second, binding sites are clustered together in regulatory elements. These features are
incorporated into the prediction by combining the motifs to double motifs as well as by weighting the
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1 Introduction

motifs. Sequence fragments are scanned for the motif patterns and their corresponding weights are
added up. High sum-scores hint at PRE/TREs because many motifs are tightly clustered together. In
Chapter 4, an analysis of the complex prediction pipeline is presented, together with a new prediction
of PRE/TREs, based on already known motifs.

Transcription factors are not limited to bind to only one gene. One such factor may regulate the
transcription of many genes. High-throughput techniques such as ChIP-on-chip (Chromatin Immuno-
precipitation on chips, [6]) allow biologists to monitor protein-DNA interactionsin vivo for any given
protein. In the case of a transcription factor, the discovery of interactions hints at the regulation of
nearby genes by this factor. The commonly accepted assumption is that such co-regulated genes share
similarities in their regulatory mechanism. This leads to the hope that the upstream regions of these
co-regulated genes have transcription factor binding sites in common, which only need to be detected.
Upon success, this would either result in the identification of the target binding site for a transcription
factor or it would enable the prediction of other similar regulatory elements. Nevertheless, accurate
identification of motifs is difficult because they are short signals in the midst of a great amount of
statistical noise. Some algorithms incorporated into many computational tools were developed for the
de-novo identification of motifs. In Chapter 5 an “evolutionary algorithm” is added to the number of
algorithms. This novel approach makes use of the ideas behind evolution strategies in order to scan
the space of possible motifs for over-representation in model sequences with respect to background
sequences. The search space is not so large for basic binding sites, but it increases with the degen-
eration level of the motif and with the complexity of motif patterns. In particular, the evolutionary
approach was developed to evolve double motifs applicable in the prediction of PRE/TREs. Discov-
ery of such co-localized motifs and other high-complexity motifs is a novel feature, which was not
addressed to this extend before.

The motif discovery based on the evolutionary algorithm results in many over-represented motifs,
which are often very similar. In order to reduce the amount of similar motifs, a motif clustering was
developed and is presented in Chapter 5. This agglomerative hierarchical clustering combines similar
motifs to clusters and either stops in case the predefined number of clusters is reached or when a
threshold similarity is exceeded. If neither restriction is given, the outcome will be one super cluster
comprising all input motifs.

All three applications, the prediction of PRE/TREs, de-novo motif discovery based on evolution,
and the clustering of motifs, are incorporated into a software, thejPREdictor. In the first place, it
was developed to provide an easy and versatile way to define and represent motifs, and, moreover,
to use these motifs in the prediction of PRE/TREs and othercis-regulatory elements. Therefore, it
incorporates the functions, user interfaces, and parameters in order to define and work with a large
number of motifs. Considerable efforts were put into the development of the program, and great care
was taken to ensure easy maintenance and extendability. This paid off, when the motif evolution and
the motif clustering were incorporated into the program. By now, thejPREdictor is a powerful tool
for working with motifs. Simple tasks like searching are equally easy to perform as a motif discovery.
Weighting as well as clustering motifs presents no computational challenge anymore. ThejPREdictor
is available on the following website:

http://bibiserv.techfak.uni-bielefeld.de/jpredictor

2



Organization of this thesis

In Chapter 2, the background on motifs and all three applications is presented. For the motifs, not
only definition and representation issues are addressed, but also how the occurrence probability is
calculated with respect to the type of the background sequence. This was done with one problem in
mind: for a predicted DNA fragment with a certain score, what is the probability of reaching this or
a higher score merely by chance (p-value calculation). The task presented considerable difficulties
and was only solved for very simple motif settings. Following the background on PRE/TREs, the
background on motifs, motif discovery and motif clustering is given.

In Chapter 3, thejPREdictor program is presented. This chapter gives an overview on how the
jPREdictor is used and on the internal structures. At first, its history is outlined briefly, followed by
a general overview of thejPREdictororganization. After addressing how motifs and sequences are
represented in the program, the processing pipeline, user interfaces and the option file is presented.

In Chapter 4, the prediction of PRE/TREs as a class ofcis-regulatory elements is presented. Dif-
ferent motifs, motif sets, weighting, and scoring schemes are reviewed with the goal of a reliable
prediction with a high specificity.

Chapter 5 deals with the discovery of novel motifs via an evolutionary algorithm. This is combined
with a clustering approach for fusing similar motifs into one consensus motif. After introducing both
procedures, case studies are presented, where the single and the double motif dicovery are applied to
artificial sequence sets. In these studies, planted binding sites have to be identified. This chapter ends
by applying the motif evolution to the discovery of double motifs and the use of the resulting double
motifs in a prediction of PRE/TREs.

This thesis is concluded with a discussion and some implications of this work.

Previous work

The jPREdictorand its application in PRE/TRE prediction have already been published in the scien-
tific literature:

• Thomas Fiedler and Marc Rehmsmeier.jPREdictor: a versatile tool for the prediction of
cis-regulatory elements.Nucleic Acids Research, 34:W546-W550, 2006.
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2 Background

2.1 Polycomb/Trithorax Response Elements

Polycomb/Trithorax response elements (PRE/TREs, PREs for short) arecis-regulatory DNA ele-
ments. In general,cis-regulatory elements are fragments of the DNA that are recognized by special
protein complexes, which bind to the DNA at these positions. Thereby, they influence the expression
of nearby genes. Such regulatory fragments are calledcis, because they are located on the same strand
and, in addition, near or in the vicinity of their corresponding gene. The distance to the transcription
start site may be a few to several thousend nucleotides.Cis-regulatory elements other than PREs are
promoters for switching the transcription on or off for its gene or gene sequence, respectively, and en-
hancer and silencer elements that boost or repress transcription to a certain degree. Another class of
regulatory elements are insulators, which separate and isolate the gene-regulatory element-complexes
from each other. PREs are the third and developmentally essential class of regulatory elements with
direct influence on transcription. Their purpose is to maintain transcriptional repression or activation,
even after the transcription factors bound foremost to the promoter or enhancer element are long gone
[3]. Moreover, the transcription level is maintained over many cell cycles.

Two groups of proteins with antagonistic function make use of PREs in a competitional manner.
PcG (Polycomb group) proteins act as silencers, or, in other words, they maintain the previously es-
tablished silenced state of a gene. On the other hand, proteins of the TrxG (Trithorax group) maintain
the active state of a gene. For genes regulated by PcG/TrxG proteins the transcriptional level is pre-
served over many cell cycles, thus providing a transcriptional memory to and determining the fate of
a cell.

PcG proteins are highly conserved throughout different species and were initially discovered in
Drosophila ([7] and references therein). Up to date, no PREs have been identified in vertebrates,
although they likely exist, since many PcG and TrxG proteins have functional homologues. Neverthe-
less, the following description of PRE functionality will focus on flies, especially the model organism
Drosophila melanogaster.

The maintenance of a cellular memory involves dynamic interactions between the PcG and TrxG
proteins and their target genes, via PRE elements. The complicated theories and models behind the
necessary interactions are reviewed in [3]. In a first step, DNA binding proteins of both PcG and TrxG
must find the PRE while the determining transcription factors are still present at the corresponding
gene’s promoter. This recruitment is mainly accomplished by the proteins binding to their correspond-
ing DNA sites located on the PRE. Such sites are recognized and bound by different proteins, namely
GAGA factor (reviewed in [8]), Pipsqueak, Zeste, Pleiohomeotic, and Pho-like ([3] and references
therein). Recent publications reported some more proteins to play a role in recruitment [9, 10, 11].
Binding sites for members of the zinc-finger SP1/KLF protein family can be found in many confirmed
PREs and are in fact boundin vivo [9]. The Dorsal switch protein 1 binds to the Ab-Fab confirmed
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PRE and mutating the corresponding binding sites leads to a loss of silencing functionality [10].
Grainyhead (Grh) was reported to not only bind to theiab-7 confirmed PRE but also to cooperate
with Pho in order to increase both their binding affinities [11]. Recent studies suggest other recruit-
ing strategies involving non-coding RNAs [12, 13]. TrxG proteins like TRX and Ash1 are recruited
to Ubx PREs by non-coding RNAs originating from the actively transcribedUbx complex [12, 13].
Early models also hold histone modifications and chromatin binding responsible for PcG and TrxG
protein recruitment, but this is challenged by findings of the core PRE sequences being devoid of hi-
stones and such modifications being long-range [14]. Nevertheless, PcG protein complexes recruited
to the chromatin flanking the PRE sequence have been reported to be based on modified histones as
well as sequence specificity [15]. For the PRE to accomplish other functions than mere recruiting, the
binding proteins are embedded into large protein complexes. In this sense, PREs serve as "billboards"
not only by bringing DNA binding proteins into proximity but also by bringing the attached proteins
together.

In a second step, before the determining transcription factors disappear, the PcG and TrxG proteins
have to assess the activity of the promoter in order to maintain the transcription level [3]. Little is
known about this. It appears that protein recruitment is independent of the present transcription level,
since some proteins of both groups, PcG as well as TrxG, are bound to any PRE. However, PREs are
thought to act as silencers per default, and it seems that the TrxG proteins TRX and Ash1 counteract
the repression ([3] and references therein). As a consequence, assessing the active state would be
sufficient in order to circumvent repression. Such an actively transcribed gene construct produces the
non-coding RNAs necessary to recruit TRX and Ash1 to the PRE [12, 13]. Nevertheless, this easy
mechanism is challenged by recent findings and models proposing a role for non-coding RNAs not
only in activation but also in repression through transcriptional interference [13, 16].

The third step is that the proteins recruited to a PRE install their own system that reproduces the as-
sessed transcriptional level. For this, the chromatin is remodeled and several epigenetic marks are set
([3] and references therein). Proteins of the PcG group methylate histone 3 at several lysines, namely
H3K9 and H3K27. In addition, methylation is performed at H4K20 ([17] and references therein). On
the other hand, TrxG proteins, especially the histone methyltransferases TRX and Ash1, methylate
histone 3 at lysine 4 and 9 (H3K4, H3K9) and histone 4 at lysine 20 (H4K20). Other TrxG proteins
acetylate histone 3. Acting contrary, proteins of the PcG group possess deacetylation functionality.
In this light, the difference between repression and activation seems to be the presence or absence of
methylated H3K27, respectively, and the absence or presence of acetylated H3, respectively. Nev-
ertheless, the influence of H3K27 methylation is questionable because this modification is typically
present across the whole coding region [17, 18]. In addition, acetylation seems to play no part at all
because a presented working model [17] ignores this modification event entirely. In this model, which
aims at explaining the maintenance of theUbx gene’s activity [17], the OFF state is characterized by
the presence of trimethylated H3K27, H3K9, and H4K20 across the wholeUbx gene, while in the
ON state, trimethylated H3K27, H3K9, and H4K20 is only present throughout the upstream control
region, but is largely absent in the promoter and coding region and H4K20me1 and H3K4me3 are
present instead. All in all, as Ringrose and Paro [3] pointed out, the chromatin is in a fluid state and
the TrxG proteins are constantly battling for keeping the active state up.

The last step in PRE functionality is that after each cell division, this same transcriptional state
has to be correctly reinstalled. Ringrose and Paro [3] discuss some potential mechanisms, which
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give a head start in the possibly correct direction. The most attractive candidate is histone lysine
methylation, since it seems to be a very stable modification. Modified histones are distributed equally
between daughter strands after replication and may serve as a local mark for the history of the piece
of DNA that bears them. Recent analyses comfirm the subsequent formation of heterochromatin in
order to install a silenced state on the basis of lysine-modified histones [19, 20]. This could be the
missing link to remembering the transcriptional state over many cell cycles.

Concluding from the above, the task of orchestrating cellular memory of many different genes in
hundreds of different cell types is quite formidable and may involve many variations on this basic
four-step theme [3]. To increase the difficulty even further, the compositions and properties of PcG
and TrxG complexes are different at different target loci and, furthermore, expression profiles seem to
be tissue-specific and dependent on the current developmental stage.

Nevertheless, PcG and TrxG protein complexes have many target genes in flies, among them many
segmentation and developmental genes ([3] and references therein). In this light, discussing potential
new roles for PcG proteins is the next logical step (reviewed in [7]). It is a challenging task to identify
all targets and to compare their activation level in different cell types and across different genomes.
Recent protein binding studies (reviewed in [21]) indicate that up to 5% of all genes in flies are PcG
targets. Of further interest are the binding studies of Tolhuis et al. [22] and Negre et al. [23], as
this thesis uses the sequences they provided. Both groups publishedin vitro scans for Polycomb
binding domains in theD. melanogastergenome. Tolhuis et al. [22] provided 131 sequences with an
overall length of 3.7 Mb, Negre et al. [23] provided 41 sequences with overall length around 195 kb.
A conclusion from the review [21] is that although these studies provide us with an extensive list
of PcG targets, they do not add to the number of TrxG targets. In addition, it becomes clear that cell
differentiation is accompanied by shifts in the PcG target gene activity, which may explain the missing
overlap in the reviewed studies. Therefore, in order to understand the dynamic PcG regulation, cell
fate transitions in intact organisms have to be studied.

In this thesis, a sensitive approach for the computational prediction of PRE/TREs is presented.
Locating these regulatory elements in the genome is the first step in identifying target genes and it
also gives the starting point for further studies.

2.2 Motifs and motif probabilities on sequences

In genetics, motifs are short patterns, which are widespread and have a biological significance. Motifs
in this work are always built from DNA/RNA sequences. They may be 5−15 nucleotides long, rarely
shorter, sometimes longer. Due to their shortness they occur very often in the genome and act as
profiles to be recognized by binding proteins. In genomic regions with regulatory function, however,
binding sites may be accumulated, since said regions rely on proteins to bind there preferably.

Motifs can be searched on sequences by matching them to sequence sections. A sequenceS is
defined as a number of consecutive letterss1s2 . . .s|S|, where|S| denotes the length of the sequence
and every letter is taken from the finite alphabetΣ. For DNA sequences the alphabet may beΣDNA =
{A,C,G,T}, for RNA sequences the alphabetΣRNA = (ΣDNA\{T})∪{U} is used. A section of the
sequence is referred to asS[i, j] with si as first andsj as last letter (i ≤ j). For every letter ofΣ the
frequency f rσ∈Σ gives the probability of finding the letterσ in S. The sequence may be generated
under the model of a zeroth order Markov chain (denoted MC0, [24]), which is a Markov chain with
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no memory and non-uniform distribution for the letters of the alphabet. For example, the genome
of Drosophila melanogasterhas the non-uniform distributionp(A) = f rA = 0.2877, f rC = 0.2124,
f rG = 0.2124, f rT = 0.2877. This means if a letter is picked randomly from the genome it is anA in
29% of all cases.

For every motif type an equation is given to calculate the probability to find this motif merely by
chance. Different equations are necessary to address different background models. The probabilities
are given and used to solve the task of how likely it is to encounter a certain sum-score for a sequence
fragment. Sum-scores are calculated from weighted motifs, after they were found on a sequence. This
task presented some difficulties and was only solved for equal-weighting simple motifs. No solution
can be given for arbitrary-weighting motifs as well as motif patterns.

2.2.1 Sequence motifs

Sequence motifs are motifs which consist of only one well-defined short sequence. They are com-
posed of the same letters used in genomic sequences. ThusM ∈ Σk, whereM denotes the motif and
k its length. An example for this isTATAAA, the core motif of the TATA-box (also called Goldberg-
Hogness box according to its discoverers [25]). InDrosophila melanogastergenes theTATAAAmotif,
or the motif with one mismatch allowed, is enriched in promoter regions. This shows its importance
for gene regulation. It is present in 43% of 205 core promoters [26] or, according to another study,
in 33% of 1941 potential promoters [27]. Sequence motifs can be defined asM = m1m2 . . .mk with
mi ∈ Σ for all 1≤ i ≤ k. In theTATAAAexamplem1 andm3 map to aT, all other single letters are
A’s.

A match of a sequence motif on a genomic sequence is defined as indexi where the constraints
si = m1, si+1 = m2, . . . , si+k−1 = mk hold, thusi is the starting position andS[i,i+k−1] = M (the cutout
from Sis exactlyM). If mismatches are allowed, the required number of constraints to hold is reduced
by the number of mismatches allowed. However, if mismatches occurS[i,i+k−1] = M is not valid
anymore. In this case,S[i,i+k−1] 'M is used to state a match. Obviously, when a sequence motif has
to be searched on a genomic sequence the probability to find it relies on the motif itself. Calculating
that probability under the terms of different sequence types has often been investigated [28, 29, 30].
For sequences generated under a zeroth order Markov model (MC0) and matches without mismatches
allowed it can be given as

p(S[i,i+k−1] = M) =
k

∏
i=1

f rmi . (2.1)

If all letters in Σ are equally distributed, above equation simplifies top(S[i,i+k−1] = M) = 1
|Σ|k = 1

4k .
Note that Equation 2.1 holds under the assumption that all positions in both sequence and motif are
independent. For generated sequences this might be correct, but it is not obvious that this assump-
tion is fulfilled for arbitrary motifs. If, for instance, the motifAAAA is found on a DNA sequence
(generated with uniformly distributed letters) starting atsi , the probability of a match at positionsi+1

is rather1
4 and not 1

256, because three of four letters already match. On the other hand, in case the
motif ACGT was found atsi the probability of a match starting at positionsi+1, si+2, si+3 is zero.
Thus, one would assume motifs which overlap themselves to occur more often than motifs that are
not periodic. But the paradox regarding the waiting time before the occurrence of the next motif acts
contrary [31, 32]. In the mean, the next motifACGT occurs after 44 = 256 characters. In contrast,
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Table 2.1:Occurrences and waiting times for three different motifs. The random DNA sequences are
either generated with uniform nucleotide distribution, or with the base distribution of the
D. melanogastergenome. Both are of length 3×109.

Base Motif Occurrence Found Variation Mean waiting time
distribution probability occurrences overlap no overlap
uniform AAAAAA 4,096−1 731,411 −1,011 4,100 5,463
uniform ACGTAC 4,096−1 732,690 −468 4,098 4,114
uniform YGAGNCTCY 16,384−1 182,250 855 16,367 16,367
D.mel. AAAAAA ≈ 1,775−1 1,694,144 3,540 1,763 2,474
D.mel. ACGTAC ≈ 4,384−1 684,238 101 4,382 4,399
D.mel. YGAGNCTCY ≈ 23,705−1 127,023 −665 23,793 23,795

the waiting time for the next motifAAAAgives 340 characters due to its overlapping. Thus, periodic
motifs occur in clusters, e.g. theGAGA-factorbinding siteGAGAG. Since both effects rely on peri-
odicity they neutralize themselves. Therefore, Equation 2.1 holds for arbitrary motifs, which can be
seen experimentally proven in Table 2.1.

Equation 2.1 is easily adapted to other sequence-generating models, e.g. Markov chains of higher
order than zero. For this, probabilities for tuples, triples and quadruples of nucleotides must be known.
For instance, generating the background as a second order Markov chain changes Equation 2.1 to

p(S[i,i+k−1] = M) = f rm1 · f rm1m2 ·
k

∏
i=3

f rmi−2mi−1mi . (2.2)

If mismatches are allowed to occur in a match, above equations are both insufficient. Intuitively,
given e the number of mismatches allowed, the equationp(S[i,i+k−1] ' M, e) = 1

|Σ|k−e = 1
4k−e seems

correct at a first glance. With this equation, the probability of finding the motifACGTACin a sequence
with uniformly distributed nucleotides and one mismatch allowed would be≈ 1·10−3. This does not
apply, as can be seen in Table 2.2, because the real probability to find motifACGTACwith one
mismatch allowed is almost five times higher. Therefore, the following equation for calculating the
probability of a sequence motif with up toemismatches allowed is proposed:

p(S[i,i+k−1] 'M, e) =
1
4k ·

e

∑
i=0

(
k
i

)
·3i . (2.3)

Equation 2.3 is valid under a uniform nucleotide distribution. The term
(k

i

)
·3i gives the number of

possible sequences, if exactlyi nucleotides out ofk are exchanged by one of the other 3 bases from the
alphabet. This equation was practically proven (Table 2.2) and was actually derived from the much
more complicated one, which assumes a zeroth order Markov chain as background model:

p(S[i,i+k−1] ' M, e) = (2.4)

e

∑
e0=0


k−e0+1

∑
e1=1

k−e0+2

∑
e2=e1+1

. . .
k

∑
eeo=ee0−1+1︸ ︷︷ ︸

e0 sums

(1− f rme1
)

f rme1

·
(1− f rme2

)
f rme2

· . . .︸ ︷︷ ︸
e0 times

·
k

∏
i=1

f rmi

 .
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Table 2.2:Occurrences of the motifACGTACwith different number of nucleotide mismatches al-
lowed for a match. The random DNA sequences are either generated with uniform nu-
cleotide distribution, or with the base distribution of theD. melanogastergenome. Both
are of length 3×109.

Base Max Found Probability
distribution Errors occurrences
uniform 0 731,846 2.4·10−4

uniform 1 13,918,325 4.6·10−3

uniform 2 112,794,210 3.8·10−2

D.mel. 0 683,957 2.3·10−4

D.mel. 1 13,376,330 4.5·10−3

D.mel. 2 110,716,131 3.7·10−2

The bracket-enclosed sum terms in Equation 2.4 enumerate over the
( k

e0

)
sequences that are possible

by exchanginge0 nucleotides inM with other nucleotides fromΣ. Equation 2.4 was practically proven
as well (see Table 2.2). For higher order Markov models no formula is given here, because these
models do not work under the assumption of independent positions. In this case, an enumeration
approach as discussed for matrices (next chapter) is more appropriate.

The sequence motifs described above use the 4-letter alphabetΣ = {A, C,G,T}. But, in cases
where two or more bases are permitted at a particular position, an enhanced alphabet, the IUPAC one
letter code [33, pp. 123–126], may be used. The one letter code maps single-letter symbols to a set
of nucleotides. This nomenclature may also be applied where uncertainty exists as to extent and/or
identity. This enhanced alphabet comprises the 4-letter alphabet and adds 11 distinct letters, one for
every combination of two to four nucleotides. Possible combinations of two nucleotides are named
R= {A, G} (puRine),Y = {C, T} (pYrimidine),M = {A, C} (aMino),K = {G, T} (Keto),S= {C, G}
(Strong interaction, 3 H bonds) andW = {A, T} (Weak interaction, 2 H bonds). Three nucleotides are
comprised into the lettersB = {C, G, T} (not A), D = {A, G, T} (notC), H = {A, C, T} (not G) and
V = {A, C, G} (neitherT norU). All four nucleotides are denoted by the letterN (aNy). The letterN
is most often used to specify fixed-sized gaps occurring within motifs.

Motifs built from the IUPAC one letter alphabet are called regular expression motif. Because
this IUPAC alphabet comprises the 4-letter alphabet, all sequence motifs are a subtype of the regular
expression motifs. An example is the DNA binding site of the proteinZeste, YGAGYG. For calculating
the occurrence probability every letter from the IUPAC alphabet may be replaced by its mapped
characters set (similar to motif class 9 in [28]), forZesteit would be[ct]GAG[ct]G. TheY character
was replaced byC,T. The motifs characters are now indexed asmi, j , wherei is the position within the
motif and j is the position in the set. The length of the set at a position is referred to asl i . Clearly, the
probability for a position to match a letter of the sequence is the sum over the permitted nucleotides’
frequencies, thus Equation 2.1 is extended to be used with sets of characters:

p(S[i,i+k−1] 'M) =
k

∏
i=1

l i

∑
j=1

f rmi, j . (2.5)

Regular expression motifs bridge the gap between sequence motifs and more complicated ones like
matrix motifs (see next chapter). And even though the IUPAC code might need some getting used to,
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it is easier to read and its letters are easier to recognize than matrix motifs. Matching them against
each other and against genomic sequences can be done by hand, if a first glimpse is needed. And
since they can be represented as strings, simpler programs and algorithms like string/pattern matching
can be applied to them, making them easier to use. Nevertheless, regular expression motifs should
only be used in case the uncertainty in one position is not biased toward a specific nucleotide. If
one nucleotide at a certain position is preferred over another one, but both are valid, a nucleotide
distribution vector shall be defined for that position. With this in mind, a regular expression motif can
easily be converted into a matrix motif, namely a position specific probability matrix. Or, more simple,
single IUPAC letters have their counterpart as a probability vector. However, it is not recommended
to mix up such letters and vectors to form a motif, since the search issue is different. While IUPAC
letters match nucleotides on an all-or-nothing basis, vectors can match nucleotides partially and even
as a fraction. Rudimentary, this can be seen in Equation 2.5, where thef r vector (background) is used
for every position of the regular expression motif.

2.2.2 Position specific matrices

This motif type is represented by a matrixM = (mi, j) with i ∈ {1, . . . ,k} and j = {1, . . . , |Σ|}, where
k is the length of the motif andΣ is the alphabet. Thus, every position within the motif is specified
by a vector, namelymi , with numbers mapped to the letters of the alphabet. The numbers can be in-
terpreted either as occurrence counts, occurrence probabilities or weights. Typically, matrices found
in TRANSFAC consist of occurrence counts, while for instance Down et al. [34] give 30 position
weight matrices (PWMs) derived from FlyReg 2.0 [35] as occurrence probabilities. This latter ex-
ample shows that occurrence counts and probabilities can be handled as weights, on the other hand,
the opposite is not valid since weights may be negative. Additionally, careful differentiation between
weights and counts/probabilities has to be made with regards to searching and matching. This topic
will be covered below.

In this work, a motif represented by a matrix filled with occurrence counts/probabilities is denoted
as position specific probability matrix (PSPM),mPSPM. Similarly, if the matrix values are considered
to be weights or scores the motif is denoted as position specific score matrix (PSSM),mPSSM.

Position specific matrices are defined for binding factors which are rather lax in recognizing and
binding DNA sequences. Typically, few well-defined nucleotides make up the core sequence, often
trailed left and right by degenerated parts. In order to analyze which sites are bound by a transcription
factor, either DNase I footprinting [36] orin vitro binding site selection experiments [37] can be used.
Both yield a bunch of binding sites, and it depends on the resolution whether the resulting sequences
are pleasantly short or too long, either leading to an effective alignment or making motif discovery
algorithms like Gibbs sampling approaches [38, 39, 40] necessary. The Pho transcription factor was
analyzed in depth, and different groups have published slightly mismatching sites bound by the factor
[41, 42, 43, 44, 45]. In Table 2.3 these sites are listed, the core sequenceCCAT is marked in blue.
It has to be noted that most often in literature (e.g. [5]) and in this work, too, the core sequence for
Pho is given asGCCAT, since only one binding site was reported to differ. Based on that 5-base core,
the Pho motif has four preceding and five consecutive degenerated positions, thus, its length is 14
nucleotides. In order to build a matrix from all 23 binding sites the number of nucleotides has to be
counted in every position. Dividing the resulting occurrence counts by the number of binding sites
gives occurrence probabilities (Table 2.4). Positions are named after Mihaly et al. [42]. For better
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Table 2.3:Known and confirmed binding sites for the Pho transcription factor aligned after the mini-
mal coreCCAT.

No Binding site sequence Source inD. mel.genome Literature
1 GGCAGCCAT TTTCC engene, -550..-531 [43, 45]
2 CGCAGCCAT TTTCC D. vir. engene, -725..-712 [41]
3 GTCGGCCAT TAAAA PBX region [44]
4 GGAAGCCAT AACGG PRE_D binding site 1 [44, 45]
5 CGCAGCCAT TATGG PRE_D binding site 2 [44, 45]
6 GTTAGCCAT CTCGC PRE_D binding site 3 [44, 45]
7 CGTCGCCAT AACTG PRE_D binding site 4 [44, 45]
8 AACGA CCAT TACGA PRE_D binding site 5 [44, 45]
9 TGAGGCCAT CTCAG PRE_D binding site 6 [44, 45]
10 GGCAGCCAT GTTGG iab-2 (a) [42]
11 GGCGGCCAT TGCGG iab-2 (b) [42]
12 GGCAGCCAT CAATG Mcp [42]
13 GTCGGCCAT CTTGG iab-6 [42]
14 CTCGGCCAT CATGG iab-7 (a) [42]
15 GGCAGCCAT CATGG iab-7 (b) [42]
16 CTCTGCCAT CAGAG iab-8 [42]
17 GTCAGCCAT TTTGG Scr 10 Xba (a) [42]
18 TTCAGCCAT TATTG Scr 10 Xba (b) [42]
19 CTCCGCCAT CTGCG Scr 10 Xba (c) [42]
20 ATCCGCCAT GGTAG Scr 7.6 H III [42]
21 TACTGCCAT TACAG Scr 7.6 H III/6.5 KS [42]
23 TGCCGCCAT ATTAT ph 418 [42]

Table 2.4:Position specific matrix for the binding site of the Pho transcription factor, with occurrence
counts and occurrence probabilities derived from 23 known binding sites. The 5-base core
sequenceGCCAT is shaded in blue.

Position A C G T
-4 3 (0.1304) 6 (0.2609) 10 (0.4348) 4 (0.1739)
-3 2 (0.087) 0 (0) 12 (0.5217) 9 (0.3913)
-2 2 (0.087) 19 (0.8261) 0 (0) 2 (0.087)
-1 11 (0.4783) 4 (0.1739) 6 (0.2609) 2 (0.087)
1 1 (0.0435) 0 (0) 22 (0.9565) 0 (0)
2 0 (0) 23 (1) 0 (0) 0 (0)
3 0 (0) 23 (1) 0 (0) 0 (0)
4 23 (1) 0 (0) 0 (0) 0 (0)
5 0 (0) 0 (0) 0 (0) 23 (1)
6 3 (0.1304) 8 (0.3478) 2 (0.087) 10 (0.4348)
7 11 (0.4783) 0 (0) 3 (0.1304) 9 (0.3913)
8 2 (0.087) 7 (0.3043) 2 (0.087) 12 (0.5217)
9 6 (0.2609) 3 (0.1304) 10 (0.4348) 4 (0.1739)
10 2 (0.087) 3 (0.1304) 17 (0.7391) 1 (0.0435)
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Figure 2.1:Sequence logo for the Pho transcription factor, generated from 23 confirmed binding sites.
The core sequenceGCCATcan easily be spotted at position 0 to 4.

readability a sequence logo [46] was generated. In every position the height of each nucleotide is
made proportional to its occurrence probability, whereas the height of the entire stack is adjusted to
the information content. For the Pho sequence logo, which was generated withWebLogo[47], the
5-letter core is easily spotted (see Figure 2.1).

In a last step occurrence probabilities are recalculated to weights, which are defined as log-odd-
scores. For this purpose, an overall nucleotide distribution acting as background is necessary, here
denoted asf r. The formula for every position in this new weight matrix is

mPSSM
i, j = ln

(
mPSPM

i, j

f r j
+c

)
, (2.6)

wherei denotes the position within the motif,j the corresponding nucleotide in the positional vector.
The valuec > 0 denotes a small pseudo-count value, which is added to the fraction in order to avoid
infinite values. Applying Equation 2.6 to the Pho occurrence probabilities (Table 2.4) withc = 0.01
yields the weights in Table 2.5. Two different background nucleotide distributions were used, the
genome-wide one fromD. melanogaster, f rA = f rT = 0.2877, f rC = f rG = 0.2123, and a uniform
distribution, where every nucleotide has a probability of one fourth to occur. This results in different
weights depending on the used background distribution. In theD. melanogastergenome, the nu-
cleotidesA andT occur more often than nucleotidesC andG. Henceforth, even if two positions have
the same probability, they might have different weights. The nucleotide, whose background is less
frequent, is assigned a higher weight. This reflects its significance to the whole motif.

Recalculating probabilities to weights might seem inappropriate and unnecessary, but working with
weight matrices has some advantages over probability matrices. First of all, interpretation and read-
ability is much more straight forward, since weights are not limited to[0,1]. Second, since computing
probabilities means multiplying them, the resulting product uses only the exponent of floating point
numbers, which can easily overflow, especially, when working with “floats” (8 bit exponent). On the
contrary, scores are summed up.

Interpretation of weights is always done in relation to the background distribution. Finding a nu-
cleotide in one position with a probability equal to the background probability yields a weight of
slightly above zero. Sincec is added to all fractions, weights are shifted toward higher positive val-
ues. Nucleotides which may not occur in one position have a zero or very low probability (but always
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Table 2.5:Position specific score matrix representing the binding sites of the Pho transcription factor,
with log-odd-scores (weights) derived from recalculating nucleotide occurrence probabili-
ties. Two background nucleotide distribution were used: the one found in theD. melano-
gastergenome (left), and a uniform one (right, in parenthesis). The 5-base core sequence
GCCAT is shaded in blue.

Position A C G T
-4 -0.77 (-0.63) 0.21 (0.05) 0.72 (0.56) -0.49 (-0.35)
-3 -1.16 (-1.03) -4.61 (-4.61) 0.90 (0.74) 0.32 (0.45)
-2 -1.16 (-1.03) 1.36 (1.2) -4.61 (-4.61) -1.16 (-1.03)
-1 0.51 (0.65) -0.19 (-0.35) 0.21 (0.05) -1.16 (-1.03)
1 -1.83 (-1.69) -4.61 (-4.61) 1.51 (1.34) -4.61 (-4.61)
2 -4.61 (-4.61) 1.55 (1.39) -4.61 (-4.61) -4.61 (-4.61)
3 -4.61 (-4.61) 1.55 (1.39) -4.61 (-4.61) -4.61 (-4.61)
4 1.25 (1.39) -4.61 (-4.61) -4.61 (-4.61) -4.61 (-4.61)
5 -4.61 (-4.61) -4.61 (-4.61) -4.61 (-4.61) 1.25 (1.39)
6 -0.77 (-0.63) 0.50 (0.34) -0.87 (-1.03) 0.42 (0.56)
7 0.51 (0.65) -4.61 (-4.61) -0.47 (-0.63) 0.32 (0.45)
8 -1.16 (-1.03) 0.37 (0.2) -0.87 (-1.03) 0.60 (0.74)
9 -0.09 (0.05) -0.47 (-0.63) 0.72 (0.56) -0.49 (-0.35)
10 -1.16 (-1.03) -0.47 (-0.63) 1.25 (1.09) -1.83 (-1.69)

smaller than the background), and thus have weights smaller than zero. They will be avoided at that
specific position and are also called underrepresented. The opposite are nucleotides with high occur-
rence probability. They are called over-represented and yield weights greater zero. An example for
nucleotide over-representation are the weights for the core sequence of Pho, they are all above one.

Searching and matching with matrices is not as straight forward as with regular expression motifs.
A matrix motif is searched on a sequence by summing up the positional weights for the letters of
the sequence. In case the values are handled as probabilities they are multiplied. The process of
searching yields a sum-score or a product for every starting position on the sequence (of lengthl ),
respectively, thus giving a total ofl−k+1 results. Note that the sequence has to be at least as long as
the matrix for matching. This sum-score is named the motif match score by Bailey and Gribskow and
they show in a picture how to calculate it for one position [48]. Figure 2.2 gives the sum-scores of
Pho calculated for two sequences at every position. For both random and non-random sequence the
sum-scores behave the same: they accumulate above the minimum sum-score, and are rarely close to
the maximum. Additionally, from one position to the next, sum-scores may change rapidly and it is
impossible to derive one sum-score from a previous one. Admittedly, their might be occasions where
this derivation is possible, e.g., when a matrix is searched on a sequence consisting of only the same
letter, but, generally spoken, it is not.

The time consumption for searching with matrices is increased in comparison to searching with
sequence motifs (strings). Optimal string matching has a time complexity (after processing the search
string) of O(n), with n being the length of the sequence the motif is searched on. Searching with
matrices has a time complexity ofO(k·n). Some tricks, e.g. look-ahead scoring [49], were developed
for speeding up searching, but they function only in conjunction with encountering a match. A match
of the matrix motif on a sequence is defined as the starting position, where the corresponding sum-
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Figure 2.2:Matching the Pho position specific score matrix to 100 positions of two sequences, red,
the D. melanogaster bithorax complex, and blue, a randomly generated sequence. For
every starting position a sum-score is yielded. The green line gives the threshold. High
sum-score exceeding this threshold are considered to be hits.

score exceeds a given threshold:

S[i,i+k−1] 'M ⇒
k

∑
j=1

mj,Si+ j−1 ≥ threshold. (2.7)

One big problem in working with matrices is to define an appropriate threshold. On the one hand, it
must be low enough to find real and potential binding sites, on the other hand, it must be high enough
to not report too many false positives. When searching for an appropriate threshold some guidelines
can be applied:

1. An intuitive approach takes the maximum possible sum-score, and sets the threshold for occur-
rence at some percentage of that maximum score.

2. If the binding sites used to generate the matrix motif are known, choose the highest threshold
such that all sites match.

3. If a complete binding profile for the matrix motif is available, including additional sites which
are tested to not be bound by the binding factor, choose the minimal threshold such that none
of the avoided sites match. Also apply guideline two and take the higher threshold.

4. Decide on a frequency (E-value) or a probability (p-value) how often the matrix motif is to be
found in a randomly generated sequence and calculate the threshold in accordance to this value.

The first guideline was shown to have merit by Tronche et al. [50], who pointed out that Hepatocyte
nuclear factor 1 (HNF1) binding sites with a sum-score greater than 83% of the maximum possible
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sum-score of the corresponding matrix showed experimental evidence of binding. Nevertheless, this
idea is not applied here, since it is expected that different binding factors will have different per-
centages of maximum scores allowed for binding. The matrix for the Pho motif yields a maximal
possible sum-score of approximately 14.2, for which the matrix matches exactly one site. The mini-
mal sum-score is−43.2, for which the motif would match every position in a sequence. Applying the
83% to 14.2 gives a threshold of 11.8. This seems very high, only around 300 different sites (out of
414≈ 2.7·108 possible ones) can reach this sum-score.

In order to follow the second guideline, binding sites used to build up the matrix motif are applied.
Nevertheless, experience has shown that the threshold defined this way is often to low, finding too
many matches in unknown sequences. To obtain the threshold by applying the third guideline, a com-
plete binding profile for the factor is needed, with sites known to be bound and other short sequences
known to be avoided. With binding site selection experiments [37] sequences can be tested for a weak
or not-at-all binding. It works by slightly altering known binding sites and checking whether the
factor binds or not. Unfortunately, very few binding factors were analyzed in such depths, since this
is costly and time-consuming. Fortunately, for Pho it was done. Besides the 23 sites the Pho motif
was found to bind (Table 2.3), 10 sites were reported, where Pho does explicitly not bind:GGCAG
CACG TTTCC[43], a mutated engrailed binding site,TTTTG CCAT GGCTA, ATGCG CCAT AAAAA,
AAGGT CCAT AATCT, TTGCA ACAT CTATA, CTTTG ACAT TTGCC, ATGAG CCAT AAAAC, and
CGTCG CACG AACTG[44], CTTTC TAGA CATGG, andGGAGA TATT CATGG[51]. Searching the
Pho motif on these sites results in a minimal threshold of 2.0, for which all of them are not matched.
The maximum threshold such that all 23 binding sites match is 4.2. Since 4.2 is higher than 2.0
the threshold of choice would be 4.2. Comparison with the maximum threshold of 14.2 gives the
impression that a threshold of 4.2 is rather low. Therefore, the last guideline is applied here, too.

To be able to follow the fourth guideline, a way to transform thresholds top-values and vice versa
has to be found. If a threshold is given, the correspondingp-value is the probability on how likely it is
to have a match on a random sequence generated under a certain model, i.e. to have a sum-score equal
or even exceeding the threshold. The naive way to obtain the corresponding occurrence probability is
to enumerate all possible sequences with lengthk and test for them to be equal or above the threshold:

pthreshold(M matches) =
|{S∈ Σk | ∑k

i=1mi,si > threshold}|
|{S∈ Σk | ∑k

i=1mi,si exists}|
, (2.8)

whereS= (s1, . . . ,sk) ∈ Σk are permutations over the alphabet. If all sum-scores exist, i.e. no weight
is infinity or undefined, the denominator resolves to|Σ|k. Since every enumerated sequenceShas the
same probability to occur, Equation 2.8 gives the correct probability only in case of random sequences
generated under a uniform nucleotide distribution model. For sequences generated as a zeroth order
Markov chain with a non-uniform letter distribution, Equation 2.8 has to be changed to

pthreshold(M matches) = ∑
S∈Σk

1{∑k
i=1mi,si > threshold}

∏k
i=1 f rsi

. (2.9)

Again, all possible sequences are enumerated, but now the indicator function in the enumerator is
normalized by the probability of each permutated sequence. The denominator can easily be adapted
to other sequence-generating models, e.g. Markov chains of higher order than zero, if probabilities
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2.2 Motifs and motif probabilities on sequences

for tuples, triples and quadruples of nucleotides are known. For instance, for sequences generated as
a first order Markov chain, the denominator changes tof rs1 ·∏k

i=2 f rsi−1si .

Both equations, 2.8 and 2.9, have a time complexity ofO([Σ]k) and a space complexity ofO(k).
This exponential time complexity is far too slow, because limits are already reached using the DNA
alphabet and a motif of length 16. In this case roughly four billion samples have to be generated and
scored. For getting only an estimate of the probability, one approach could be to generate a limited
number of samples and apply Equation 2.8 or 2.9, respectively. However, as Barash et al. [52] pointed
out, the main drawback of this method is the huge number of samples needed for the exact estimation
of the probability, due to the sparseness of high-scoring samples, e.g. if estimating a probability in
the order of 10−3 the number of samples must be around 105. Nevertheless, this randomly generating
and scoring samples is the same as randomly drawing from an unknownp-value distribution. The
compound importance sampling approach from Barash et al. [52] also draws a limited amount of
weighted samples from a knownp-value distribution and estimates the unknownp-value distribution.
This approach compares well to the full enumeration approach even for high thresholds (and therefore
low p-values), but it gets worse with the threshold approaching zero. This again reflects the sparseness
of high-scoring samples. Another approach would be to use generating functions [28, 53] and similar
methods based on the same idea [54, 48]. Again, these approaches yield ap-value distribution rather
than a singlep-value. Nevertheless, they require the weights from the matrix motif to be of limited
precision, e.g. to be integer numbers. This way, sum-scores for partial sequences will result in the
same value, maybe reducing the number of distinct partial results greatly, and tabulation can be applied
to store the number of sum-score occurrences. However, if dealing with arbitrary numbers or if a high
precision is wished, generating functions worst-case time complexity staysO(|Σ|k). And worse, since
partial results need to be tabulated, space complexity becomesO(|Σ|k) as well.

Figure 2.3 shows thep-value distribution for the Pho motif. It was created with thejPREdictorusing
parameter “—PSSMprobs” and default settings (see Chapter 3.8). The above mentioned threshold of
2.0 corresponds to ap-value of 1.4·10−3, and 4.2 corresponds to 4.7·10−4. Therefore, in a sequence
of one million nucleotides, Pho is expected to be found either 1,400 times or 470 times, respectively.

It is clear that a threshold cannot be defined independently from the matrix motif, whereas ap-
value can. Therefore,p-values or derivedE-values (expected number of occurrences) are sufficient
and the threshold is adapted accordingly. Knowing the completep-value distribution makes it easy
to obtain the threshold in question, but some other publications deal with this specialized problem
as well. Again, sampling approaches, e.g. used by MatInspector [55] or PRIMA [56], have to deal
with the sparseness problem. Beckstette et al. [57] present an approach calledLazyDistrib, which
is part of theirPoSSuMsearchpackage and mixes limited weight precision with look-ahead scoring
for precise threshold computation. Unfortunately, they assume independently distributed background
nucleotides.

Now thatp-values can be recalculated to thresholds, the question arises what a “good”p-value is. A
“good” p-value has the same requirements to fulfill as a threshold, stringent (close to zero) to minimize
false positives, but also high enough to find many true positives. If no a priori knowledge about
the expected number of motifs in a sequence is known (E-value), comparison to regular expression
motifs is useful. They can be seen as a precursor to matrix motifs. Therefore, one valid alternative to
obtain ap-value is to reconstruct the matrix motif to a regular expression motif, and use its calculated
occurrence probability (Equation 2.5) for thep-value. If done automatically, it will probably fail, since
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Figure 2.3:p-value distribution for the Pho PSSM under a zeroth order Markov model. Thep-value
for a threshold gives the probability to find the motif in a randomly generated sequence
with this specific or higher threshold.

the matrix may be too biased, i.e. too many positions allow most or even all nucleotides to occur. It
will cause the resulting sequence motif to consist of manyN nucleotides, for which the probability to
occur is always one. Therefore, the task is done manually. For every position a number between zero
and one reflecting the weight distribution is assigned. Non-degenerated positions receive a one, fully
degenerated positions a zero. A number close to zero is assigned to every positional vector in-between
these two extrema. The numbers are added and thep-value is calculated as 1/4n. For the Pho matrix
motif (Table 2.5) the resulting count was approximately 6.6, which in effect can be interpreted as the
new non-degenerated length of the matrix motif. The correspondingp-value was calculated as 10−4,
and therefore the chosen threshold was 7.0.

2.2.3 Other single motif types

Two major drawbacks with all previously described motifs exist, which make them insufficient to use
in special cases. Keeping in mind that a motif is meant to exhaustively represent all binding sites
for one binding factor, the first drawback occurs if the binding factor recognizes sites which allow
for gaps with variable length. Fixed-length gaps present no problem, since they can be modeled with
the N nucleotide in regular expression motifs, or with the background vector in PSPMs, or with a
zero-weight vector in PSSMs. One approach to solve this problem is to split the motif into fixed-
size blocks, and to search these blocks separately. Afterwards they are combined to one motif by
applying the gap constraints. For their index based search problem, Beckstette et al. (unpublished,
personal communication) use the local chaining approach [58] to combine lists of single PSSM hits
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to the full length motifs. The programfragrep2[59] applies a dynamic programming approach to the
problem even allowing for a deletion of single blocks. With thejPREdictorgaps of variable length
can be modeled building higher order motifs, called MultiMotifs (see Chapter 2.2.5). A MultiMotif
describes a motif pattern comprising single motifs linked together by gap constraints.

The second drawback occurs when a binding factor recognizes sites whose sequences are not
alignable, e.g.AAACCCandCCCAAA. If an alignment would be forced, the consensus site would be
MMMMMM. This consensus motif is very degenerated and can therefore also match sequences like
ACACAC, which may not be biological binding sites. To solve this problem, the corresponding motif
could be modeled to comprise alternative sites without aligning them. In thePatSearchprogram [60]
with its regular expression-like language, it is possible to specify such a motif. In thejPREdictor,
however, non-alignable binding sites must be split and defined as separate motifs.

Both these problems, variable-sized gaps and alternative sites, can effectively be modeled using
Hidden Markov models (HMM). Nevertheless, in Bioinformatics, HMMs are particularly used for
modeling protein families, thePfam(protein families, [61, 62]) database being the most prominent
example. This is because binding sites of nucleotides can often be modeled with simpler motifs.

2.2.4 Probabilities of sum-scores

In this chapter, a theoretical problem arising from the prediction of PRE/TREs (see Chapter 4) is
investigated. In the prediction, motifs are searched in a sequence fragment, and for all found motifs
the corresponding weights add up to a sum-score for the fragment. The theoretical task behind the
prediction is then to assign a probability to the sum-score (p-value) that tells how likely it is to obtain
this or a higher score merely by chance. An approach on how to calculate this probability is shown
here, even though it will not solve the task to its full extend.

At first, a probability is given to encounter a certain motifm exactlyx times. Letp(m) be the
probability for a single motifm∈M to occur on a sequence merely by chance. The equation to calcu-
late this probabilities is given in one of the previous chapters. Under the assumption of independent
positions, the decision is made for every position along the sequence whether the motif occurs or not.
This can be modeled as a Bernoulli experiment with success probabilityp(m). The probability of a
motif to occur exactlyx times within a sequence of sizel follows a binomial distribution with

pm,x =
(

l −|m|
x

)
· p(m)x · (1− p(m))l−x−|m| , (2.10)

where|m| denotes the length of motifm. Given a set of motifsM = (M1,M2, . . . ,MN) and specific
occurrence counts for these motifs on a sequence,n = (n1,n2, . . . ,nN), allows for the calculation of a
probability to see this merely by chance:

PM,n =
N

∏
i=1

pMi ,ni . (2.11)

Usingn, M and a previously defined weight functionw, which assigns weights to motifs, the score
for the sequence can be calculated as:scoreM,n = ∑N

i=1w(Mi) ·ni . Any calculated score for a given
n can directly be assigned to a corresponding probabilityPM,n using Equation 2.11. Therefore, the
function :n→ (scoreM,n,PM,n) holds. However, without a givenn, no one-to-one relationship between
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score and probability exists, and thus, the functions :scoreM,n→ PM,n as well as :PM,n→ scoreM,n

cannot be defined. This is true, since some permutations overn yield the same score as well as the
same probability.

As a consequence of a missing one-to-one relation between score and probability, the relationship
has to be defined overn. The task defined was to obtain a probability reaching or exceeding a defined
cut-off scorec. The naive way to obtain the probability is to enumerate over all possible settings
for n = (n1,n2, . . . ,nN), to calculate the sum-score, and to check whether this sum-score exceeds the
cut-off c:

P(scoreM(S)≥ c) =
∑(l ,l ,...,l)

n=(n1=0,n2=0,...,nN=0) PM,n ·1{scoreM,n≥ c∧ ∑N
i=1ni ≤ l}

∑(l ,l ,...,l)
n=(n1=0,n2=0,...,nN=0) PM,n ·1{∑N

i=1ni ≤ l}
. (2.12)

For computing this equation the time complexity isO(lN ·N), thus not practicable, the space com-
plexity would beO(N).

It becomes more practical if only theexpectedoverall-score (mean score) of an arbitrary sequence
is of interest. This can directly be calculated from the expected occurrences of the single motifs within
the window, thus

E(score) =
N

∑
i=1

El (Mi) ·w(Mi) = ∑
i≥1

(l −|Mi |+1) · p(Mi) ·w(Mi) . (2.13)

For instance, the motifsAAAAAA, ACGTAC, andYGAGNCTCYare searched on a uniformly dis-
tributed DNA sequence, therefore with occurrence probabilities given in Table 2.1. Let the weights
of the motifs be ln(4), ln(3) and ln(2), respectively. The sequence length may bel = 500. From
Equation 2.13 follows:E(score) = 0.3211. Simulations with a sliding window on a sequence of
length 2·109 yielded a mean score of 0.3204. Applying a sequence withDrosophila melanogaster
character distribution (for the probabilities of the single motifs refer to Table 2.1) Equation 2.13 gives
E(score) = 0.5250, whereas simulation yielded 0.5257.

The sum-of-faces problem was thought to give insights into how the probability for a certain cut-off
might be calculated. The problem definition is similar to the sum-of-weights problem. In addition,
the presented solution uses generating function, which can be applied to the sum-of-weights problem
as well. Prerequisite for the sum-of-faces problem is a die, which is rolledk times and the numbers
produced are summed. Applied to the sum-of-weights problem it would mean that motif occurrences
are rolled and the weights are summed. In the sum-of-faces problem, the probability that the die-sum
becomes exactlym is of interest. To calculate this probability, generating functions are used. Letf (m)
be the number of sequences of lengthk with all terms in{1,2,3,4,5,6} and with summ. Let F be
the polynomial inX with the coefficient ofXm being f (m). Let G = X +X2 +X3 +X4 +X5 +X6 =
X(1−X6)

1−X the generating function to get a number between one and six (in the powers) in only one
throw. Now the die is thrownk times, thus

F = Gk

= Xk · (1−X6)k · (
∞

∑
i=0

Xi)k .
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The first termXk means that the minimal sum to get isk, which occurs only once. Further transfor-
mation of the above equation yields

= Xk ·
k

∑
i=0

(−1)k ·
(

k
i

)
·X6i ·

∞

∑
i=0

(
i +k−1

k−1

)
·Xi

= Xk ·
∞

∑
i=0

min(k,b i
6c)

∑
j=0

(−1) j
(

k
j

)(
i−6 j +k−1

k−1

)
·Xi .

This givesf (m) = ∑
min(k,bm−k

6 c)
j=0 (−1) j

(k
j

)(m−6 j−1
k−1

)
. The probability is thenP(sumk = m) = f (m)

6k .

Applying the sum-of-faces problem to the sum-of-weights problem, the corresponding generating
function is

G = (1−
N

∑
i=0

pi)+ p1 ·xw1 + p2 ·xw2 + . . .+ pN ·xwN , (2.14)

with pi = p(Mi) andwi = w(Mi). CalculatingGl , which means that maximall single motifs would
fit on the sequence, yields the probability to reach exactly that sum-score (in the coefficient) for every
possible sum-scorec (in the power). This is written as[xc]GN. To makec a cut-off the probabilities to
exceed that cut-off have to be summed-up, thus[x≥c]GN = ∑∞

i=c[x
i ]GN = 1− [x<c]GN = ∑c−1

i=0 [xi ]GN.
Unfortunately, weights might be arbitrarily real numbers and not integers, thus computingGN together
with keeping track of all scores in all steps leads to a time/space complexity ofO(lN).

Therefore, the problem is simplified. All weights are set to one. This obviously disrupts the concept
behind the weights of motifs, but at least, the simplification leads to a solution. Letp = ∑N

i=0 pi and
q = 1− p. The generating function becomesG = q+ p · x and calculating this to the power ofl
(binomial theorem) gives

Gl = (q+ p·x)l =
l

∑
n=0

(
l
n

)
qnpl−nxl−n =

l

∑
n=0

(
l
n

)
pnxn(1− p)l−n . (2.15)

Finding a weight exactlyc, which is the same as encountering exactlyc single motifs, gives[xc]Gl =(l
c

)
pc(1− p)l−c. The probability to reach a cut-offc or higher is given by[x≥c]Gl = ∑l

n=c

( l
n

)
pn(1−

p)l−n.

In practice, for every sequence fragment the numbers of occurrences of all motifs are known, be-
cause the motifs are searched on the sequence fragment. Therefore, the probability of encountering
exactly this number of occurrences can easily be calculated using Equation 2.11. However, this is
not the probability of exactly obtaining the corresponding sum-score, because other combinations of
occurrences might produce the same sum-score. Therefore, the actual probability of approaching ex-
actly this sum-score is higher. This exact probability can be calculated, if all weights are one. Because
the motifs are assigned other weights, the problem for arithmetically calculating the question on how
likely it is to exceed a specific sum-score for a sequence fragment remains unsolved.

2.2.5 MultiMotifs

MultiMotifs are motifs of higher order, which comprise basic motifs and distance constraints. Basic
motifs are all kinds of single motifs as well as other MultiMotifs. Formally, they can be described in
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the formM = M1G1M2G2 . . .Mk−1Gk−1Mk. This is simply a concatenation of arbitrary motifs linked
by gap specifications, i.e. minimal and maximal distance. Distance is always measured from the end
of one to the beginning of the subsequent motif in terms of positions on a sequence. Examples for
MultiMotifs can be found in Chapter 4.1, where they are used in the prediction of PRE/TREs.

The expected number of one MultiMotif in a long sequenceScan be calculated using equations in-
troduced in [28]. For a MultiMotif consisting ofN basic motifs and with known distance constraints
between every two single motifs (Gmax maximal distance,Gmin minimal distance), the expected num-
ber of occurrences isE = ∏N

i=1PiRi with R1 = |S| andRi = Gmax
i −Gmin

i .

In statistical evaluation, MultiMotifs break the linear relationship between occurrences on a se-
quence and counting these occurrences. While each basic motif found on a sequence counts one as
occurrence, MultiMotifs depend on several motifs to occur cooperatively. A double motif, for in-
stance, is only found if both basic motifs not only occur, but also occur nearby, thus fulfilling the
distance constraints. Note that the distance constraints prevent occurrences of a double motif in case
only one basic motif is actually found. If a double motif contains the same motif twice, and if two
instances of this basic motif are found, the double motif is reported once. If a third instance of the
basic motif is found, the double motif is reported thrice already. A fourth instance rises this number to
6, a fifth to 10, and so on. Actually, under the assumption that all distance constraints are fulfilled, the
number of reported double motifs is calculated as

(k
2

)
, with k being the number of found basic motifs.

This is a quadratic increase. With triple motifs, the increase is to the power of three:
(k

3

)
.

As a consequence, even small assemblies of basic motifs in one spot on the sequence will produce
large numbers of matching MultiMotifs. If the number of reported MultiMotifs is rewarded, as in the
prediction process, enrichment and clustering of basic motifs are encouraged. However, if the distance
constraints are restrictive, more emphasis is placed on densification. With more relaxed distances, at
least the enrichment of basic motifs in the whole sequence fragment is strongly encouraged.

2.3 Basic motifs used in this thesis

In this chapter, the basic motifs are listed, which are used in this thesis. Basic motifs are sequence
motifs or matrix motifs, but not motif patterns or composite motifs. Normally, motifs and correspond-
ing transcription factor binding sites (TFBS) are curated and assembled in databases. This is the first
source for generating a motif from binding sites. The Regulatory Element Database (REDfly, [63])
is a collection of knownDrosophilatranscriptionalcis-regulatory modules (CRMs) and transcription
factor binding sites. Since October 2007 theDrosophilaDNase I footprint database (FlyReg) has
merged into REDfly, adding 1.365 DNase footprints obtained from systematic curation and genome
annotation [35]. TheDrosophilaTranscription Factor Database (FlyTF, [64]) stores characterized and
putative site-specific transcription factors. Like FlyBase [65], it lacks information about the motifs
bound by the transcription factors. FlyMine, on the other hand, is an integrated database of genomic,
expression and protein data, not only forDrosophila, but also forAnophelesand Caenorhabditis
elegans[66]. Integrating data makes it possible to run sophisticated data mining queries that span do-
mains of biological knowledge. TRANSFAC is a database on eukaryotic cis-acting regulatory DNA
elements and trans-acting factors [67].

For PRE/TRE regulatory elements, significant motifs, among others, are the binding site for the
GAGA factor (GAF) [68] and Pipsqueak (PSQ), for the Zeste (Z) protein [69], and for Pleiohomeotic
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Table 2.6:List of all basic motifs used in the prediction of PRE/TREs and in robustness tests, together
with their consensus sequence, number of errors allowed for a match (not applicable, n.a.,
in case of a PSSM), number of occurrences in theD. melanogastergenome and the cor-
responding log-odd against a random sequence generated under a zeroth order Markov
model.

Name Description Motif / Consensus sequence Errors Occurrence Odd
En1 Engrailed 1 GSNMACGCCCC 1 20,209 1.51
G10 GAF long GAGAGAGAGA 1 35,493 2.40
GA/
GAF GAF short GAGAG 0 184,542 -0.02
Grh Grainyhead PSSM BRRWCYGGTTTT n.a. 113,464 0.13
HB Hunchback PSSM TTTTTTRTKVB n.a. 1,049,224 1.16
Kni Knirps PSSM AACKAGAKCA n.a. 31,111 0.21
PF Pho trail GCCATHWY 0 62,473 0.39
Pho-
DSP1 Pho-DSP1 double GCCAT-(0,40)-GAAAA n.a. 119,119 2.39
PM Pho long CNGCCATNDNND 0 41,263 0.51
Pho Pleiohomeotic PSSM SKCRGCCATYWYGG n.a. 40,552 0.56
PS Pho core GCCAT 0 290,570 0.44
SP1 SP1/KLF RRGGYG 0 319,722 0.12
Z Zeste YGAGYG 0 193,733 0.17

(Pho, see Chapter 2.2.2). For the Pho motif binding experiments were performed [41, 43, 42, 44, 51,
45] resulting in a position specific score matrix (PSSM) for the motif. Recent publications reported
some more motifs to play a role in PRE/TRE functionality: SP1/KLF [9], Dorsal switch protein 1
(DSP1) [10] and Grainyhead (Grh) [11]. In Table 2.6, the sequence representations for these motifs
are listed.

Some motifs are reported ambiguous. In this case, the decision has to be made, which motif to use.
GAF and PSQ, for instance, bind repeated binucleotides,(GA)n, wheren can vary between 1.5 and 5
[70]. In vitro, GAF requires at least 2.5 repeats to be bound properly [71, 72]. Nevertheless, reports on
GAF binding to only the trinucleotideGAGexist [70], but this may be due to additional GAF binding
sites or other unrelated motifs nearby [73]. Consequently, two GAF motifs are used in this thesis,
a short one,(GA)2.5, and a long one,(GA)5, the latter with one mismatch allowed (Table 2.6). The
Zeste protein binding site was reported asYGAGYG[74] as well asBGAGTGV[75]. Here,YGAGYG
will be used as Zeste motif, because this one is well studied, whereas the other one was reported and
used only once [9].

The PSSM motifs used in this thesis are Pho, Grh, HB, and Kni (Table 2.6). Pho was already ex-
plained in Chapter 2.2.2. With a threshold of 7.0 it was designed to recognize 21 out of 23 reported
binding sites and to avoid 10 out of 10 sequence fragments reported to be not bound by Pho. Grainy-
head (Grh) was analyzed by Blastyak et al. [11] for its importance to PRE functionality. They report
Grh to interact with theiab-7 PRE and to work cooperatively with Pho. Consequently, the Grh motif
as presented in Table 2.7 was used in further studies.

Both, Hunchback (HB) and knirps (Kni) play a role in enhancer/silencer functionality. They are
included into PRE/TRE analysis as a kind of robustness test. The PSSM for HB (Table 2.8) as well
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Table 2.7:The Grainyhead (Grh) motif as a PSSM. The most significant positions are shaded in blue.
On the right side, the corresponding encoding into an option file format is shown. The
binding sites were reported in [11] and aligned and cut to a length of 12. A threshold of 5.9
corresponds to roughly 422 matches in a sequence of one million nucleotides.

Position A C G T
1 -4.61 0.57 0.17 0.27
2 0.27 -0.51 0.57 -0.81
3 0.78 -4.61 0.17 -0.81
4 0.27 -4.61 -0.51 0.56
5 -0.81 1.08 -0.51 -0.81
6 -4.61 1.08 -4.61 0.27
7 -4.61 -4.61 1.26 -0.13
8 -4.61 -4.61 1.55 -4.61
9 -4.61 -4.61 -4.61 1.25
10 -0.81 -0.51 -4.61 0.96
11 -0.81 -0.51 -4.61 0.96
12 -4.61 -0.51 -4.61 1.12

[Motif]
name = pssmGrh
motif = MULTI_SEQUENCE
CAATCCTGTTTT # FP1
TGATTCGGTATC # Ftz I
GGGAGCTGTTTT # Ftz II
TCGGATGGTTTT # Ftz IIIa
CTTTCTGGTTTT # Ftz IV
CAATCTGGTTTT # Ubx
GAAACCGGTTAT # Ddc be-I
TGAACCGGTCCT # Ddc be-II
background =
0.2877 0.2124 0.2123 0.2876
threshold = 5.9

as for Kni (Table 2.9) is the same as generated and used by Berman et al. [76, 77]. Note that current
versions of TRANSFAC as well as REDfly list additional binding sites, which were not taken into
account by Berman et al. However, both PSSMs are not recreated for reasons of comparability.

Very often it is not sufficient to use basic motifs, because distance or co-occurrence constraints with
other binding sites might exist, no matter if it is of the same or of another type. In this case, motifs
are combined to higher order motifs. Dejardin et al. [10] reported the DSP1 motif to occur near the
Pho motif. Therefore, the double motifGCCAT− (0,40)−GAAAAwas created, combining the Pho
core motif with DSP1 (Table 2.6). Other reports on co-occurrence constraints and context-dependent
binding exist for GAF [73] and Zeste [78, 79]. This is one reason for combining basic motifs to double
motifs in the prediction process.

2.4 Motif discovery and clustering

2.4.1 Motivation behind the de-novo motif discovery

In the process of transcription and translation genes act as templates for proteins. Regulation of the
protein production enables cells and organisms to react to changes in the environment and still fulfill
their needs. Therefore, the genetic machinery has means to activate, deactivate, up- and down-regulate
the expression of single genes. A major challenge in biology is to understand the regulation of gene
expression. Regulatory sequences such as promoters, enhancers/silencer, and PRE/TREs, control the
transcription process, and biologists and bioinformaticians strive to identify these regulatory elements.

Transcriptional control is often accomplished by the binding of multi protein factors to regulatory
sequences and thereby determination of the transcription level. Based on this mechanism, discover-

24



2.4 Motif discovery and clustering

Table 2.8:The Hunchback (HB) motif as a PSSM. The most significant positions are shaded in blue.
On the right side, the corresponding encoding into an option file format is shown. The
PSPM table was reported in [76]. A threshold of 4.4 corresponds to roughly 1.392 matches
in a sequence of one million nucleotides.

Position A C G T
-6 -0.78 -0.48 -0.66 0.80
-5 -4.61 -4.61 -4.61 1.25
-4 -3.05 -1.55 -2.20 1.17
-3 -4.61 -4.61 -4.61 1.25
-2 -4.61 -4.61 -4.61 1.25
-1 -4.61 -2.81 -4.61 1.24
1 0.61 -0.77 0.28 -1.06
2 -0.44 -0.14 -0.48 0.57
3 -2.47 -0.08 0.82 0.06
4 0.02 0.24 0.20 -0.44
5 -1.06 0.28 0.35 0.13

[Motif]
name = HB
motif = TABLE_PROB
#pos A C G T
-6 12 12 10 59
-5 0 0 0 93
-4 1 4 2 86
-3 0 0 0 93
-2 0 0 0 93
-1 0 1 0 92
1 49 9 26 9
2 17 17 12 47
3 2 18 45 28
4 27 25 24 17
5 9 26 28 30
background =
0.287 0.213 0.213 0.287
threshold = 4.4
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Table 2.9:The Knirps (Kni) motif as a PSSM. The most significant positions are shaded in blue. On
the right side, the corresponding encoding into an option file format is shown. The PSPM
table was reported in [76]. A threshold of 5.4 corresponds to roughly 107 matches in a
sequence of one million nucleotides.

Position A C G T
-5 1.25 -4.61 -4.61 -4.61
-4 1.25 -4.61 -4.61 -4.61
-3 -0.35 1.04 -0.05 -4.61
-2 -4.61 -4.61 0.64 0.74
-1 1.03 -0.05 -4.61 -4.61
1 -4.61 -4.61 1.55 -4.61
2 0.74 -0.05 -0.05 -4.61
3 -4.61 -0.05 0.64 0.34
4 -4.61 1.55 -4.61 -4.61
5 1.25 -4.61 -4.61 -4.61

[Motif]
name = Kni
motif = TABLE_PROB
#pos A C G T
-5 5 0 0 0
-4 5 0 0 0
-3 1 3 1 0
-2 0 0 2 3
-1 4 1 0 0
1 0 0 5 0
2 3 1 1 0
3 0 1 2 2
4 0 5 0 0
5 5 0 0 0
background =
0.287 0.213 0.213 0.287
threshold = 5.4
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2.4 Motif discovery and clustering

ing the binding sites of transcription factors would enable the identification of regulatory sequences.
Binding sites are computationally represented as motifs. If the binding sites are identified, they can
help to identify regulatory sequences, which are characterized by occurrences of these binding sites.

In case the motifs characterizing a regulatory element are unknown, they have to be discovered.
This goes as far as having only one upstream region of a gene, in which the binding site is suspected.
Dejardin et al. [10], for instance, filled the inter-motif space of the 219 nucleotides long PREAb-
Fab with random nucleotides, which caused the PRE to lose its functionality. This PRE could be
such a candidate for motif discovery, and, indeed, Dejardin et al. [10] came up with a novel motif,
DSP1, although they used no motif discovery tools. But this is an extreme scenario, having only a
single very short sequence, and to carry it even further, without information about existing motifs
and about the background. Normally, a set of upstream sequences is provided, and for all of them,
the corresponding gene is regulated by one or at least few transcription factors. There are many
possible sources for such putatively co-regulated genes, including expression microarray experiments
(e.g., following a gene knockout experiment) and functional classes from literature (gene ontology).
The working assumption is that all provided sequences house shared binding sites for one or more
transcription factors.

In molecular biology, either DNase I footprinting [36] orin vitro binding site selection experiments
[37] can be used in order to analyze which sites are bound by a transcription factor. For instance,
Mahmoudi et al. [80] used DNase I footprinting to reveal the binding sites of Pho, Zeste, GAF and
HB in theUbx PRE. However, such experiments have two major disadvantages: first, their resolution
is low, and second, they fail if the transcription factor is unknown. The binding sites Mahmoudi et
al. [80] revealed are more than 15 nucleotides in length. This first disadvantage can be overcome
by a good multiple alignment strategy, or, if the binding sites are too long, by motif discovery strate-
gies. Especially Gibbs sampling approaches will work well, since they assume one motif in every
sequence. The disadvantage of the unknown binding factor cannot be overcome so easily. Experi-
ments to test a set of sequences for co-regulation using all known factors are very expensive and time
consuming, and can fail, if a novel, up-to-now unknown factor is involved. In this case, powerful
computational algorithms for motif discovery are applied revealing the binding sites used for further
biological testing.

2.4.2 Motif discovery problem

The problem of motif discovery can be formulated as follows: given a set of sequences, find an
unknown motif that occurs frequently. An equivalent definition of this problem is given by Li et al.
[81] who proved it to be NP-hard. Nevertheless, if such a motif is of fixed lengthn and if it occurs
in all sequences, one single solution is to simply enumerate all possible binding sites of lengthn and
to report the ones fulfilling the constraints. However, the motif to discover usually is of unknown
length. This could be overcome by starting the enumeration approach with different lengths. The
real problem is that from one sequence to the next, the binding sites might change slightly due to
mutations and varieties of nucleotides. In this case the enumeration approach fails.

The unknown length of the motif and the level of degeneration result in a huge search space, which
cannot be exhaustively covered by enumeration methods. Nevertheless, biological binding sites are
of restricted length. Therefore, the length of the corresponding motif will not be arbitrary. Sample
motifs and the ones curated in databases like TRANSFAC suggest that motifs are 5 to 15 nucleotides
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long, rarely longer. Motifs can occur on both strands of the DNA. Computationally, this is solved by
matching the motif on the sequences either as it is, or after reversing and complementing (inversion)
the motif. The number of binding sites on one sequence of the set is not limited. It can have zero,
one, or multiple copies of a motif.

2.4.3 Available tools

The discovery of motifs in a given set of sequences has been addressed often before and a large num-
ber of algorithms have been developed. Das and Dai [82] survey several motif finding algorithms and
conclude that, despite considerable effort, the problem remains a complex challenge. Motif discovery
algorithms can be categorized into two major classes: (1) word-based methods, and (2) probabilistic
models such as Gibbs-sampling approaches. Since word-based methods most often exhaustively enu-
merate the search space, they guarantee global optimality. They are a good choice for finding totally
preserved binding sites. However, this is the weak spot as they ignore degenerated positions or only
allow for few positions to be degenerated. Nevertheless, Sinha and Tompa [83] argue that, since the
number of well conserved nucleotides is usually in the range of 6 to 10, and since positional variations
are rare and can be covered mostly by the letters of the IUPAC code, the use of enumerative methods
can be afforded. Consequently, they present their Yeast Motif Finder (YMF, [84]), which enumerates
motifs over 8 letters of the IUPAC code, and allows for spacers in the middle of the motif.

Probabilistic approaches represent a motif as a position weight matrix (PSPM or PSSM).MEME
(Multiple EM for Motif Elicitation, [85]) is its most famous member and uses an expectation max-
imization approach. The software Consensus [86], on the other hand, uses a greedy approach for
aligning sequence fragments into a position probability matrix. With every cycle of the algorithm, the
matrices with the highest information content are kept.

Among the probabilistic approaches, Gibbs sampling is used most extensively. It was introduced
by Lawrence et al. in 1993 [38]. The central idea is to construct a position weight matrix from one
short fragment randomly chosen out of every sequence from the set. In every cycle, one sequence is
drawn and the pattern is constructed excluding the fragment of the chosen sequence. Every position
in that sequence is then matched by the pattern, forming a distribution over the sequence (similar to
Figure 2.2). The starting position for the new fragment from the left-over sequence is then drawn in
accordance to the normalized probabilities of the distribution.

The main criticism with probabilistic approaches is that they often get stuck in local optima. This
is a criticism for most, if not all, hill-climbing strategies. Great care must be taken in order to allow
an algorithm to jump over the search space and try to climb many hills. For sampling approaches this
is solved by restarting them multiple times. With every restart they are randomly initialized.

Algorithms based on Gibbs sampling are AlignACE (Aligns Nucleic Acid Conserved Elements,
[87]), MotifSampler [88], and BioProspector [89]. All algorithms more or less extend the origi-
nal Gibbs sampling approach, mostly in terms of improving the background model to higher-order
Markov chains, but also in terms of masking out already found motifs, in improving sampling strate-
gies, or in judging the significance of motifs. Recent extensions are the recursive [39] and the centroid
Gibbs sampler [40].
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2.4 Motif discovery and clustering

2.4.4 Motif discovery through motif evolution

In this work, a motif discovery approach based on thein silico evolution of motifs is presented.
Starting with randomly chosen motifs or most unspecific motifs, mutations are introduced from one
generation to the next. The children have to compete against their parents as well as themselves in
terms of high weights. In order to avoid local optima, first, the number of motifs in one generation
is practically large, and second, a simulated annealing process is applied for the number of mutations
allowed in-between generations. To balance occurrences among all provided sequences, the selection
is preceded with a rewarding step.

The idea behind an evolution strategy is that small changes in the properties of an object lead to
an improvement of the objective function. This general optimization strategy can be visualized as
hill-climbing. For motifs, the changes include base replacements, and increasing or decreasing the
positional degeneration level. From one generation to the next, the motifs are mutated to identify a
motif, which maximizes the weight. Jumps over the search space are possible by strongly mutating
the motifs.

Applying evolutionary algorithms to motif discovery is novel. Recently, Wei and Jenson introduced
a software, GAME, which utilizes a genetic algorithm to find optimal motifs in DNA sequences [90].
The tool works similar to the approach presented here in that it evolves motifs with high fitness from
a population of randomly generated starting motifs. Nevertheless, it lacks the ability to give motifs as
a prior knowledge. It also lacks the ability to evolve motif patterns as well as certain characteristics
of motifs, e.g. the error number allowed for a match. Recently, Chan et al. [91] introduced a genetic
algorithm for motif discovery. They restrict the search to one binding site per sequence like in Gibbs
sampling approaches. ThejPREdictorallows for arbitrary many motif matches in every sequence,
and even zero occurrences are possible.

In addition, thejPREdictor’s in silico evolution of motifs makes use of background sequences,
which only few motif discovery algorithms do. Most often, they rely on more or less powerful back-
ground models like Markov chains. Algorithms that use sequences as background are called “dis-
criminative”. Such approaches, among others, areALSE[92] andDIPS [93]. Recently,DEME [94]
was introduced, adding to the number of discriminative algorithms. Redhead and Bailey [94] showed
that with artificial dataDEME is more effective than a non-discriminative approach when there are
"decoy" motifs or when a variant of the motif is present in the "negative" sequences. Nevertheless,
applyingDEME to real data showed that it is as good as non-discriminative algorithms at discovering
yeast transcription factor binding motifs [94].

The motif discovery incorporated into thejPREdictorspecifically was developed to identify over-
represented double motifs. The novelty is that the allowed distances in the double motifs can have
almost arbitrary values up to a maximum. Another novelty is that the distance is subject to mutation,
too. Other tools for the discovery of co-localized binding sites are BioProspector, when run in two-
block mode [89], and a tool called HeliCis [95], which relies on periodic spacing. Nevertheless,
BioProspector limits the allowed distance to 50, and HeliCis was developed with periodic distances
of 10 to 11 nucleotides in mind. Additionally, thejPREdictor features the identification of motif
patterns with higher order than double, a feature both BioProspector and HeliCis cannot afford.
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2.4.5 Objective functions

The basic idea behindin silico motif discovery is over-representation. A binding site remains unde-
tected, if it does not occur more frequent than a background model suggests. This over-representation
is somehow expressed as an objective function, which is to be maximized throughout the motif dis-
covery process. Li and Tompa [96] analyzed certain objective functions used in recent motif discovery
tools for their usefulness: the famous log-likelihood ratio,Z-score, and sequence specificity. The log-
likelihood compares two likelihoods: the likelihood of approaching the given set of sequences under
the current motif model and the likelihood of approaching the sequences under a background model.
It is a relational measure and used, for instance, byMEME [85]. TheZ-score simply calculates the
distance between the number of observed motifs and the number of expected motifs. It is used, for
instance, by theYMF program [84]. The sequence specificity function emphasizes on the fact that
a predicted motif should have a balanced number of binding sites over all provided sequences. This
concept is carried to the extreme by Gibbs sampling approaches, which assume exactly one binding
site on every provided sequence. Nevertheless, balancing out the occurrences of motifs is important,
and therefore it is incorporated into the evolutionary process presented in this thesis as well. For all
discussed objective functions, Li and Tompa [96] concluded that they alone are not able to separate
the true motifs from the background noise. As a result, they discussed a new objective function, and
tested it with theMEME tool (see [96]). It performed very well in terms of separation. However,
the disadvantage is that it adds to the number of free parameters, for which a training step would be
necessary.

In this work, the weights of motifs act as objective function. Weights are very similar to log-
likelihood ratios in the way how they are calculated (see Chapter 4.4 for the implementation details
into thejPREdictor). Nevertheless, no probabilities are used, but the weight calculation directly sets
off the numbers of found motifs from both training sets. The negative training set acts as background,
and the positive training set as model. No probabilities or expectations are incorporated into the
equation. It is conveniently simple, the background sequences define the binding sites to avoid and
the model defines the site which has to be matched frequently by the motif.

In this thesis, the evolution of motifs for the purpose of discovering over-represented motifs uses
the weight function for measuring the enrichment. In other words, motifs are evolved to have maximal
weight. Nevertheless, the used objective function gives rise to a dilemma briefly explained now and
referred to in this thesis as the weight dilemma. The weight function is a relational function, and
this relation is expressed as a fraction. As with all objective functions, occurrences of a motif in the
model result in higher weights the fewer the occurrences in the background are. The dilemma is now
that occurrences in the background have more impact on the weight than occurrences in the model
sequences. This results in discovered motifs mainly avoided in the background.

This dilemma is of highest consequence, if motifs are to be discovered which are short and highly
degenerated. Such motifs occur very frequently in the model, but also relatively often in the back-
ground. Because of its occurrences in the background, this motif will have a low weight, almost no
matter how often it occurs in the model. Few motif discovery tools will find such a motif. The reason
is that most tools use a relational objective function similar to the log-likelihood [96]. In contrast, tools
using theZ-score objective function, e.g. ANN-Spec [97], and YMF [84], have the highest chance
of capturing such a motif. An example might make this clear (also see Figure 2.4). A certain motif
occurs 100 times in the model sequences. If it occurs 10 times in the background its weight is around
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Figure 2.4:Visualization of the weight dilemma. The x-axis gives the number of occurrences of a mo-
tif in the model sequences. The motif does occur in the background sequences once (red
line), twice (green line), 5 times (blue), or 10 times (violet). In order to obtain a weight of
2.3 (horizontal line), 100 occurrences of a motif in the model and 10 occurrences in the
background are necessary. In contrast, if the motif occurs only once in the background,
not more than 10 occurrences in the model sequences are necessary. As a result, motif
discovery tools based on maximization of log-likelihoods or relative objective functions
mainly report back motifs which are avoided in the background sequences.
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2.3. Considering the most simpleZ-score as the distance between both occurrences, the correspond-
ing Z-score would be 90. Now note that motif discovery relies on maximizing the objective function,
in case of thejPREdictor, any motif with a higher weight than 2.3 would be preferred. Consequently,
any motif occurring only twice in the background gets a higher weight if it occurs more than 20 times
in the model. For motifs occurring once in the background, 10 occurrences in the model are enough to
exceed the weight of 2.3. In both latter cases theZ-score would be 18 and 9, respectively. This shows
that thejPREdictorand most other tools will discover motifs almost non-present in the background,
while tools using theZ-score would find motifs largely present in the model. In this sense, combining
both objective functions would certainly be beneficial to motif discovery, but remains a task for the
future [96].

2.4.6 Motif clustering background

The goal of clustering is to reduce the amount of data by categorizing or grouping similar data items
together. Clustering methods can be divided into two basic (non-probabilistic) methods: hierarchical
and partitional clustering. Hierarchical clustering either combines cluster objects together to form
higher order clusters (agglomerative, bottom-up) or breaks up big clusters to form smaller ones (di-
visive, top-down). As representation of this hierarchy a dendrogram is often used. The other method
is partitional clustering, which tries to directly decompose the data set into disjoint clusters (e.g. K-
means and derivatives).

Motif discovery approaches, especially when combined, yield many motifs that are very similar
in terms of nucleotide arrangement. Often, two motifs differ only in one or two positions. In this
case, a subsequent clustering of the motifs has to be applied. Jensen et al. [98], for instance, rerun the
BioProspector tool [89] multiple times with different starting parameters, followed by an optimization
step via BioOptimizer [99] and the actual clustering step. Their clustering model is very complex: they
combine a Bayesian model to calculate the probability for a motif to belong to a certain cluster and
a Gibbs sampling algorithm to find the optimal cluster for that motif. Opposed to this probabilistic
approach, hierarchical clustering methods are much simpler. Matlign [100], for instance, calculates
the distance between each two motifs and clusters according to the lowest distance. However, the
clustering used in Matlign is problematic, since the alignment allows for gaps. The problem is that a
match of a motif is gapless and that the insertion of gaps into a motif changes the motif to a degree,
where it matches to binding sites different from the ones it was discovered to bind to.

Clustering methods rely on measurements that describe in one way or another how close two ob-
jects from the data set are. This can be distances or similarities. Two objects with a low distance are
preferably joined into the same cluster as compared to two objects with higher distance. Measure-
ments also must be defined between cluster and single object and between two clusters. Calculation
methods for this in turn rely on the representation of a cluster, either as a composition of single ele-
ments or with a representative, centroidic, or consensus element. Single linkage, complete linkage,
average linkage, and average group linkage see a cluster as a composition of single elements, whereas
median, centroid and Ward’s method take the cluster’s representative for distance calculation. The
clustering implemented into thejPREdictordoes not use linkage distances, because comprising mo-
tifs into a central motif is preferred. The representative of a cluster will be the average motif after
alignment of all of its members. Ward’s distance is also not implemented, because it favors clusters
to be homogenous in size.
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Test Condition
Outcome Illness Health

Positive True positive (TP) False positive (FP) → Positive predictive value
PPV = TP

TP+FP

Negative False negative (FN) True negative (TN) → Negative predictive value
NPV = TN

TN+FN
↓ ↓

Sensitivity= TP
TP+FN Specificity= TN

TN+FP

Figure 2.5:Statistical measures for the evaluation of a test. Every sample/object is in one of two well
defined conditions, e.g. illness/health. The test has to guess which condition it is. Both,
condition and test outcome are binary.

Applying hierarchical clustering yields a dendrogram, where the lowest level, 0, consists of single
element clusters. The highest level is occupied by only one cluster comprising all motifs. If the
number of resulting clusters is not known beforehand, the decision has to be made, at what height the
dendrogram is to be cut in order to yield the optimal number of clusters. This is one of the central
problems both in hierarchical and non-hierarchical clustering. Visual inspection of the dendrogram is
not preferred, since it is error prone and unfeasible due to the large data set. Many formal methods
to get the optimal number of clusters have been proposed ([101] and references therein). Not only do
they vary widely in terms of accuracy, but their performance also depends on the distance measure
used. ThejPREdictorimplements three different distance measures. For the Manhattan and Euclidean
distance measure, the cut-off is directly defined in terms of the measure. If the distance measure is
likelihood, the information criteria is checked at every clustering level. When it decreases too much
from one level to the next clustering stops.

2.5 Statistical evaluation

The statistical measures used in this thesis are shown in Figure 2.5. In a test environment, each object
or sample, respectively, is in one of two well-known conditions. In case the condition is illness, the
patient is either sick or not. Note that the condition is binary, there is no such thing as being a little
ill. A test is applied to guess the condition of the patients. The null hypothesis is that the patient is
sick. Again, the test is binary. It yields a positive, i.e. confirming, or a negative, i.e. rejecting, result,
whether it tests the patient to be sick or not, respectively. The statistical outcomes of the test are
true positives (abbreviated TP, the patient is really sick and the test confirms this), false positives (FP,
patient is healthy, but is tested to be ill), false negatives (FN, patient is ill, but is tested to be healthy),
and true negatives (TN, patient is healthy and tested accordingly).

In order to estimate the performance of the test, several statistical parameters can be calculated
using the tests outcomes. Such parameters are the positive predictive value (PPV), negative predictive
value, sensitivity and specificity (for the equations refer to Figure 2.5). PPV and sensitivity relate
the number of true positives to the overall number of positively tested cases (TP+ FP) and to the
overall number of ill cases (TP+ FN), respectively. On the other hand, negative predictive value
and specificity relate the number of true negatives to the overall number of negatively tested cases
(TN+ FN) and to the overall number of healthy cases (TN+ FP), respectively. Another parameter
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is the performance coefficient that is calculated asPC = TP/(TP+ FN + FP) ([102] and reference
therein). This parameter relates the correctly identified ill cases (TP) to all ill and all positively tested
cases.

Providing sensitivity without specificity as well as vice versa has to be taken with care. Declaring
all patients as ill gives a sensitivity of 100%. The same applies to the specificity, if all patients are
declared healthy. In the first case specificity and in the second case sensitivity would be zero. Testing
environments strive for maximizing both characteristics. However, it is very difficult to reduce the
number of false positives while at the same time reducing the number of false negatives. Therefore,
fixing either sensitivity or specificity and increasing the other value is an accepted approach.

For all applications in this thesis, prediction as well as evolution and clustering, sensitivity, speci-
ficity, and positive predictive value are valuable characteristics. Another characteristic is theE-value
which represents the number of expected false positives for the outcome of an application. Note that
in case of the prediction, theE-value is not calculated afterwards, but the application is adjusted to
yield a well-defined number of false positives. Setting theE-value fixes the specificity to high values.
At the same time, in order to increase sensitivity the number of predicted PREs is tried to maximize.

For some applications the specificity cannot be calculated because the number of true negatives is
unknown and cannot be determined. An example is the genome-wide prediction of PREs. This is the
reason, especially in the biological literature, why the PPV is often referred to as specificity. However,
in this thesis, PREs are not only predicted genome-wide but also in training data. Consequently, PPV
and specificity will be used as specified in Figure 2.5.
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3 jPREdictor

The jPREdictoris a program written in Java to support the genome-wide prediction ofcis-regulatory
regions on the basis of predefined motifs. It is fast, easy to use, and allows for great versatility. The
program supports the definition of a wide spectrum of motifs, basic ones as well as more complicated,
i.e. assembled, ones. Many tasks can be performed using the motifs: searching sequences, weighting
them on training sets, scoring sequences, and certain others, like clustering motifs. ThejPREdictor
comes either as a command-line tool, as an applet in websites, or with a graphical front end.

A number of programs exists dealing with the task of searching motifs on sequences. Schones et al.
[103], for instance, developed a tool for the detection and statistical evaluation of single transcription
factor binding sites andcis-regulatory modules (Search Tool for Occurrences of Regulatory Motifs -
STORM and MODSTORM software). It is very powerful in statistical evaluation, but cannot handle
certain aspects of motif types, e.g. MultiMotifs. The same applies to the MAST software (Motif
Alignment & Search Tool, [48]). Another program isPatSearch[60], which is very powerful in
defining motifs and even allows for complicated motif patterns. However, no possibility exists to
assign weights to motifs. All these programs can search sequences, thus reporting a list of found
motifs, which can be statistically analyzed. In addition, thejPREdictorcan process this list of motifs
by scoring a sequence.

3.1 History

The originalPREdictorsoftware existed for more than two years, when the decision was made in April
2005 to rewrite the underlying computer program in order to increase versatility and user-friendliness.
ThePREdictorprogram was developed by Marc Rehmsmeier to predict PRE/TREs in theDrosophila
melanogastergenome, and was successfully used by Ringrose et al. [5]. For the new program the pro-
gramming language of choice was Java due to excellent portability and superior support of graphical
front ends. The basic functionality was preserved and built into the newjPREdictor, where the first
letter of the name was dedicated to the programming language it was developed in. Great efforts were
put into the design of the program, and finally, in February 2006, after 10 months of development,
programming, debugging, and testing the first release candidate was published.

At the same time, a paper about thejPREdictorand a new genome-wide prediction of PRE/TREs
in D. melanogasterwas submitted toNucleic Acid Research(NAR) Webserver issue 2006. When
the paper, sent to NAR in the middle of February, was finally accepted at the end of March 2006,
jPREdictorversion 1.04 was released and at the time when the NAR Webserver issue was published
in July 2006 [104], version 1.1 was out. This shows that thejPREdictorprogram is under constant
development. Many additional features were built in, e.g. multi file support and the cut-off calculator.
Major release candidate 1.2 was published in June 2007, the latest release (April 2008) has version
number 1.22.
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From writing the first code line until the most recentjPREdictorversion (1.22), the program has
grown significantly. It has seen some design changes and many extensions. The most recent version
contains 78 Java classes and 9 interfaces. The number of code lines including documentation (in
Java doc style) is about 28,800. In order to run thejPREdictorprogram a functional Java, at least
in version 1.5, is necessary. While the early versions of thejPREdictorwere designed to run with
Java version 1.4, the recent major release will run only partially with that Java version. It is therefore
strongly recommended to use Java 1.5 or higher.

With release candidate 1.01 of the jPREdictor and with the beginning of version numbering a
history was written into the program, which contains not only a complete overview over all versions
so-far, but also a list of additions, bug-fixes, and changes made to the program. In the graphical front
end it can be found in theHelpsection. For the command-line interface two parameters are supported,
which either output the version number or the release history, respectively:

--version

--history

Always, the latest version of thejPREdictorcan be found in the download section of the corre-
sponding website, which is administered and updated together with thejPREdictorprogram. Besides
welcome and download site it contains a manual section to explain parts of thejPREdictorusage. The
website can be found here:

http://bibiserv.techfak.uni-bielefeld.de/jpredictor

The jPREdictorwas well received in the scientific community. In 2006, it was used by 65 different
groups (unique internet addresses according to the download statistic). In 2007, another 86 groups
tried out the program.

3.2 General overview over the jPREdictor organization

The jPREdictor is organized into four main units, responsible for the basic functionality in working
together smoothly. The first unit deals with representing and handling motifs, and is described in
Chapter 3.3. The second unit deals with all kinds of sequences thejPREdictorhas to work on, and
is described in Chapter 3.4. An operator is built upon the motif and sequence handler to control their
working, and forms the third unit together with the communicator (Chapter 3.5).

Both operator and communicator are designed for bridging the gap between the two handlers and
the several user interfaces, which build the fourth unit. In Figure 3.1 this relationship is illustrated.
Shaded in blue are the basic functional units, motif and sequence handler, and the part to control them,
the operator. Shaded in red and yellow are the several user interfaces together with the communicator
they interact with.

The jPREdictor comes with several different front ends. A graphical user interface is available
as both, stand-alone program and applet, the latter to be started within a website. The more pow-
erful command-line interface requires the program to be started from a terminal. Additionally, the
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Figure 3.1:General organization of thejPREdictorunits. Motif and sequence handler are controlled
by the Operator that, together with the Communicator, bridges the gap to the various user
front ends.

jPREdictor is able to recognize and evaluate option files, which allows the program to be run semi-
automatically, e.g. in a computer cluster environment.

Several advantages arise from the chosen design. Every unit can be edited separately and in keep-
ing the defined interfaces, they can be improved or updated without disrupting the basic functionality.
Additionally, single units can be extended, upgraded, and tested separately. In possessing and follow-
ing a clear command pipeline, i.e. operator and communicator, program errors and inconsistencies are
easier to check, grasp, and correct. ThejPREdictor is easily extendable with new units and program
parts, which has proven to be a major advantage at least twice, when adding the motif evolution and
the motif clustering program parts (see special task section, Chapter 3.8).

3.3 Motif representation

Motifs are the key to the functionality of thejPREdictor, no task is performed without defined motifs.
Common to all motifs are an identifier and a description. Thus, the base classMO T I F contains getter
and setter methods for these parameters. Since a motif can be reversed and complemented, the abstract
methodC R E A T ERE V E R S E DCO M P L E M E N T E Dwas introduced. This method is especially needed,
when the motif is matched to sequences on both the plus and the minus strand. Additionally, methods
for printing and representing, i.e. as a consensus string, and methods for comparing and cloning are
defined.

The five supported motif types (simple sequence motif, regular expression motif, PSPM motif,
PSSM motif and multi motif, see Chapter 2.2) are derived from the basicMO T I F class. Figure 3.2 il-
lustrates these dependencies. In the classRE G U L A REX P R E S S I O NMO T I F the motif is represented in
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Figure 3.2:UML diagram of all supported motif types represented in thejPREdictor. The base class
MO T I F and the derived motif types are extended by interfaces adding searching and scor-
ing functionality. The classMU L T I MO T I F can in turn contain otherMO T I F s.

aST R I N G type, with restriction to the IUPAC one letter code. This restriction is achieved by applying
a filter step to anyST R I N G before it is accepted as a motif representation. ClassSE Q U E N C EMO T I F

in turn is derived fromRE G U L A REX P R E S S I O NMO T I F , the only difference being a harsher filter
step, in which the givenST R I N G is restricted to the basic nucleotide alphabet.

The classesPSPMO T I F andPSSMO T I F (position specific probability/score matrix motif) are used
for representing a motif as a matrix, either containing probabilities or log-odd-scores. This matrix is
stored as an array ofD O U B L Evalues. At every position a vector of probabilities or scores is mapped
to the four nucleotides. In case both matrix motifs were created by computing an aligned set of short
sequences, these sequences are stored as well. For the creation of aPSSMO T I F a vector defining
the background nucleotide probabilities is necessary. This vector is stored along with the original
sequences. Note that storage of all this information (sequences, background vector) other than the
mere matrix is unnecessary when working with the motif, but becomes a must if the motif has to be
stored back into an option file. In this case, e.g. when working with the MotifMaker in the graphical
user interface, no information about how the matrix motif was originally created must get lost. The
guideline is that a motif read from the file has to be equivalent to a motif written to an option file.

The classMU L T I MO T I F was implemented to define and store a motif pattern composed of other
motifs. Such other motifs are any of the five supported types, even of typeMU L T I MO T I F . Nesting
MultiMotifs into other MultiMotifs allows for arbitrarily complicated motifs. They can be visualized
as connected, rooted graphs, which are trees. The inner nodes are MultiMotifs and the leaves are
sequence or matrix motifs. In Figure 3.3, an example is illustrated. A MultiMotif that does not
contain other MultiMotifs is called flat. To define a complete motif pattern twoA D D-methods are
provided. The first one,A D D(MO T I F , M I N, M A X) , gets aMO T I F and two distances, the minimal
and maximal distance to the next motif. ThisA D D-method can be called as often as necessary as
long as the secondA D D-method is not called. By invoking the secondA D D-method,A D D(MO T I F ) ,
the motif pattern is completed, since this method only takes the finalMO T I F without further distance
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Figure 3.3:Example for a flat and a non-flat motif pattern both represented as MultiMotifs, and
their matching behavior to three sequences with planted binding sites. MM1 and MM2
each contain the motifs Zeste (matches toYGAGYG), the core Pho (GCCAT), and DSP1
(GAAAA). Three sequences are drawn with the binding sites marked as red, upper-cased
letters. Each sequence contains one binding site for Zeste, one for Pho, and one for DSP1
- in different orders. MM1 matches the upper sequence, but cannot match the two lower
sequences, because it is flat, and Pho always has to occur in-between Zeste and DSP1.
On the other hand, the non-flat MM2 matches the upper two sequences, because the motif
order of the inner MultiMotif can be switched. Nevertheless, it does not match the lower
sequence, because Zeste may not occur in-between Pho and DSP1.
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information.
A motif pattern only stores references to the motifs it is composed of, no motif is cloned. Thus,

any motif can be part of more than oneMU L T I MO T I F . This reusability has some advantages for
functionality, especially when searching the motif on a sequence. When a motif is searched on a
sequence it produces a list of match results. All MultiMotifs this motif belongs to will use this list
in order to determine matches of their pattern. This means, the need for searching the motif twice or
more often is eliminated. The impact of this behavior can easily be seen on the motif sets used in this
thesis. The sets consist of up to 9 single motifs that are combined to up to 36 double motifs. If each
motif combined in the 36 double motifs would be searched separately on the sequences, 72 of such
search runs would be necessary. With the chosen approach of making a single motif part of more than
one MultiMotif only 9 search runs are necessary.

While reusing motifs in more than one MultiMotif has functional advantages two problems arise.
The first problem is that changing a motif will affect all motif patterns this motif is a part of. Some-
times, such a change might be intended for one pattern but unintended for another. The workaround is
to clone the motif before changing it. This problem cannot occur, neither by defining motifs via option
file nor by MotifMaker, because the name of every new motif has to be unique. It is only interesting
to note for programmers who want to use theMO T I F classes in their programs. The second problem
could occur with thejPREdictorprior version 1.22, but is now only interesting for programmers. It is
possible, even though useless, to create a motif pattern by storing references to itself, or, if it is part of
a hierarchy, to other patterns higher in the hierarchy. Such a MultiMotif would not be representable
as a tree anymore, because it now contains cycles. This problem does not arise if motifs are defined
via option file, because the option file is evaluated top-to-bottom. For the MotifMaker, the problem
was not fixed until version 1.22 of the jPREdictor, when a check for cycles in motif patterns was
implemented.

For all motifs but motif patterns the space consumption isO(m), with m the length of the motif.
MultiMotifs can be represented as an arbitrarily complicated tree, where every inner node, always
a MultiMotif, has an arbitrary number of children. Such a tree may havek leaves, which are either
sequence or matrix motifs. Every possible tree overk leaves can be mapped one-to-one to a binary
tree, which marks the upper bound for space consumption, sincek−1 inner nodes exist in this case.
Therefore, space consumption isO(k·m+(k−1) ·c) = O(k·m), with c the number of bytes per stored
motif reference and corresponding distance information in aMU L T I MO T I F .

The number of motifs thejPREdictorcan theoretically handle is not limited. All motifs are stored
in memory and as a disadvantage, this and the missing limit make it possible to let the program run
out of memory, if too many motifs are specified. In such a case, a meaningful error message is output.
With the amounts of memory available in current computers, the problem should pose no threat. In
tests, all possible sequence motifs of length 8 were created and weighted, all in all, about 65,000
motifs.

3.3.1 Matching motifs to sequences

Functionality is added to motifs by implementing certain interfaces. For searching and matching
motifs on sequences, the interfacesMO T I F SE A R C H E R, MO T I F SE A R C HWI T H ER R O R, andMO T I F -

SE A R C HWI T H TH R E S H O L Dare defined. The classMO T I F extends the adapter class for theMO T I F -

SE A R C H E Rinterface,MO T I F SE A R C HAD A P T E R. Note thatMO T I F SE A R C HAD A P T E Ris not a stub
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Zeste Sequence
Pattern A C G A G T G T G T G C

Y 1 0 1 1 1 0 1 0 1 0 1 0
G 2 0 2 1 2 0 2 0 2 0 2
A 3 0 3 2 3 1 3 1 3 1
G 4 0 4 2 4 1 4 1 4
Y 5 0 5 2 5 1 5 1
G 6 0 6 2 6 1 6

Figure 3.4:Shift-add algorithm for matching a pattern (here, the motifZeste) to a sequence [106]. The
vector at every position is recalculated from the previous one, first by shifting all values
once to the end, second by adding one or zero, representing a match or mismatch at that
position. A zero in the last row indicates a perfect match. In the example, only one perfect
match exists starting at position 2 and ending at position 7 (shaded in blue).

(implementing an interface with methods that do nothing) like theWI N D O WAD A P T E Rclass for the
WI N D O WL I S T E N E R interface, but that it is a slightly distorted adapter class in the sense of design
patterns [105]. It is used to pre-implement some advanced methods related to searching, i.e. the
S E A R C HAL L method, which returns all occurrences of a motif on a sequence section. Additionally,
it provides a method to initialize the search,I N I T SE A R C H, and getter and setter methods for the
motifs search mode, i.e. whether a motif is to be searched only on the plus strand or on the minus
strand or on both representations of the given sequence. The only method the motifs themselves have
to implement isS E A R C H( S T A R T, W I D T H) , with S T A R Tbeing the index on the sequence were to
start the search andW I D T Hbeing the width of the sequence window to search.

Sequence motifs are searched with a defined number of errors allowed in a match. Therefore, they
implement the interfaceMO T I F SE A R C HWI T H ER R O R, where the getter and setter method for the er-
ror parameter is defined. Likewise, a matrix motif is reported as a match on a sequence if a predefined
threshold is exceeded. Consistently, the classPSPMO T I F implements the interfaceMO T I F SE A R C H-

WI T H TH R E S H O L Ddefining getter and setter method for the threshold parameter.

For searching sequence motifs on a sequence, the shift-add algorithm by Baeza-Yates and Gonnet
[106] was implemented. It was chosen because it is a straight forward approach without preprocessing
the pattern, it is already adapted to mismatches, and can handle character sets due to a sourced-out
match method. Despite a time complexity ofO(m·n), with mandn the length of motif and sequence,
respectively, the authors point out that the algorithm is about to be equally fast as an implementation of
the Knuth-Morris-Pratt algorithm [107], which has a time complexity ofO(n). This shift-add method
works by processing a vectorv for every position on the sequence (denoted assi), which counts the
number of mismatches approached so far (see Figure 3.4 for an example). The formula behind the
vector reprocessing is

vi
j = vi

j−1 +

{
0 p j ' si

1 otherwise
, (3.1)

with j running fromm−1 to zero, wherem is the length of the motif. Forj = 0, vi
−1 = 0. Note that

in the theoretical approachvi
j is calculated usingvi−1

j−1 and notvi
j−1 [106]. The change was made to

emphasize an implementation detail, since no vector is ever duplicated or copied from one sequence
position to the next but reprocessing works in-place. Further note that the termp j ' si already implies
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the use of character sets, sincep j can be any character from the IUPAC one letter code. An example
can be seen in Figure 3.4, wherep0 = Y = [C, T] is matched to each character of the sequence. After
processing the vector for a certain sequence positioni, its last value states the number of mismatches
occurring when matching the motif to the sequence cutoutS[i−m+1, i]. This number is then simply
compared to the number of mismatches allowed, and if it is less or equal a match is reported.

Searching matrix motifs on sequences is accomplished by using a threshold. A sum-score or a
product probability is calculated and if it is greater or equal to a predefined threshold a match is
reported. The formula implemented intoPSPMO T I F , and therefore dealing with position-specific
nucleotide probabilities, is

S[i,i+k−1] 'M ⇒
k

∏
j=1

mj,Si+ j−1 ≥ threshold, (3.2)

and the formula implemented intoPSSMO T I F , and therefore dealing with log-odd-scores, is

S[i,i+k−1] 'M ⇒
k

∑
j=1

mj,Si+ j−1 ≥ threshold. (3.3)

Look-ahead scoring [49] is used to speed up searching, which means that calculating the sum-score or
the product probability is aborted, if the threshold cannot be reached anymore, even assuming the use
of always the maximal values in all positions yet to come. Nevertheless, theoretical time complexity
staysO(m·n).

Searching motif patterns was implemented into theMU L T I MO T I F class by matching the distance
information to the reported matches of all comprised basic motifs. The first step is that all comprised
motifs report their occurrence list to the MultiMotif. Since these occurrences reported for the basic
motifs are, first, in separate lists, and, second, in ascending order, a bottom-up approach over the hit
lists is implemented. It works by taking the occurrences of the first motif, and then using the distance
information between the first and second motif of the pattern to filter the reported matches of the
second motif by discarding all occurrences not fulfilling the distance constraints. All matches of the
second motif which are not discarded are processed likewise one after another, but now with respect
to the third motif and the distance constraints between second and third motif. In ascending order
all motifs of the pattern are processed in the same way. If approaching the last list and if at least
one value remains after the filter step, a match for theMU L T I MO T I F is found. Note that distance is
always measured between the end of the previous and the beginning of the next motif.

Note also an advantageous implementation detail for speeding up the search. It results from the
previously mentioned fact that motif patterns only store references to the motifs which are part of
their pattern. Thus, even if a motif is part of more than one pattern, it is always only searched once.
When working with double motifs, the advantage becomes quite obvious. Having onlyk single motifs
results in

(k
2

)
double motifs (without self-coupling). Therefore, one basic motif is part ofk−1 double

motifs, and without this implementation detail, the search overhead would be quite large.

All search methods are implemented with respect to the search mode, which determines the ori-
entation of a hit and which must be specified for every motif by the user. The search mode restricts
the search to the plus strand, or the minus strand, or allows matches on both strand orientations. For
motif patterns this might cause some non-intended behavior, because the search mode can be set in-
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dividually for every motif within the pattern. Note that the order of motifs within a pattern is never
disrupted. Therefore, the patternA−B−C will always be found either asA−B−C (plus strand) or
asC−B−A (minus strand), theB motif is always located in-betweenA andC (see Figure 3.3). This
can be overcome by creating non-flat patterns, likeA− (B−C). The partial patternB−C is a Multi-
Motif on its own, and therefore has its individual search mode. Setting both search modes to plus as
well as minus will cause four different patterns to be reported as matches,A− (B−C), A− (C−B),
(B−C)−A, and(C−B)−A. Restricting the search mode for the inner patternB−C to plus leaves
A− (B−C) and(B−C)−A as valid matches, and so on. But, no matter how the search mode is
chosen, it is not possible to have theA motif stand betweenB andC.

3.3.2 Weighting motifs

Another functionality implemented into theMO T I F class enables it to score sequence windows.
The corresponding interface is theSE Q U E N C EWI N D O WSC O R E R, which provides a getter and setter
method for the weight parameter and a method for scoring a part of the sequence, namelyS C O R E-

SE Q U E N C EWI N D O W( S T A R T, W I D T H) , with S T A R Tbeing the index on the sequence were to start
the search andW I D T Hbeing the width of the sequence window. The latter method is implemented by
simply multiplying the weight with the number of reported matches on the sequence.

Motif weights depict over- and under-representation in one sequence with respect to another se-
quence. Consequently, the weight of a motif is calculated using its occurrences on the sequences of
the positive training set (denotedpos) versus its occurrences on the negative training set (denoted
neg). The full formula containing all possible normalizations is given as

w(M) = ln
f (M | pos)
f (M |neg)

= ln

 ∑S∈pos
f r(M |S)
|S| ·1000+c

|pos|

∑S∈neg
f r(M |S)
|S| ·1000+c

|neg|

 , (3.4)

with f r(M |S) denoting the number of occurrences of motifM on sequenceS (frequency). The first
logarithm is the same as given by Ringrose et al. [5] and is stated here to emphasize the equality. Note
that a training set usually comprises more than one sequence, which is the reason for the two sums.

Two normalizations are applied, first, sequence length normalization, where the number of motif
occurrences is divided by the length of the sequence. Per default (as of version 1.2), this kind of
normalization is switched on in thejPREdictorprogram, but can be switched off using parameter

-A

The second kind of normalization is by the number of sequences within a set. This normalization
cannot be switched off in the program.

The pseudo-count valuec is normally zero. But, if either sum resolves to zero,c is set to one and is
added to both sums. This prevents the logarithm from becoming minus infinity.

An analysis of weights for different motifs is given in Chapter 4.4.
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Figure 3.5:UML diagram of sequences represented in thejPREdictor. A file is read sequentially, its
content is filtered for information and sequence blocks, which in turn are enumerated. The
classMA P P E DCH A RSE Q U E N C Eallows for random access to a sequence.

3.4 Sequence representation

Sequences are used in thejPREdictor to match motifs against them. In contrast to motifs they are
not held in memory but loaded when necessary. This reduces memory consumption to a minimum.
Nevertheless, since searching motifs is done in windows on the sequence, at least this window needs
to be buffered. Additionally, this sequence window must provide random access, since not only one
motif after another starts searching itself at the beginning of the window, but within a motif matcher
certain positions are read multiple times.

Consequently, a framework is provided within thejPREdictor, where sequential reads on one file or
several consecutive files are mapped to a string-like structure allowing full random access. Figure 3.5
illustrates the steps needed. Within this framework, additional functionality is implemented, (1) filter-
ing the characters read from the file to allow only valid characters to pass, (2) transforming characters,
e.g. upper-casing them, and (3) analyzing the files for informative structures like headlines.

In order to provide full random access to a sequence while buffering only the last few characters
read, it might become necessary to re-read a file from the beginning, i.e. performing a reset on the
reader and re-open the file. This always needs to be done if a character is requested with an index
position before the start of the buffer. Note that there is no class in Java providing the mentioned func-
tionality. Therefore,RE S E T A B L ERE A D E Rwas implemented to ensure the reset functionality, which
means, re-open the file if necessary and read up to a previously set mark. Additionally, theMU L T I -

FI L E RE A D E Rclass was implemented to link up several files into one reader, which is processed
afterwards as if it would be one big file. Again, it was ensured that reset functions properly.

Filtering and transforming functionality within the framework is provided by theSE Q U E N C E-

RE A D E Rand derived classes,FA S T ARE A D E RandRA WRE A D E R. They filter sequence data and scan
for sequence information blocks, in case of a file in FASTA format, this is any line starting with the
greater-sign, “>”. Generally, in all stream data, new-lines and carriage-return characters are discarded.
The raw reader does not filter the character stream any further, whereas the FASTA reader upper-cases
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all characters read and passes only the ones defined in the IUPAC one letter code. In order to store
sequence information for every separate sequence an instance of classSE Q U E N C EI N F O R M A T I O N-

BL O C Kis created and written. The raw reader does not know separate sequences and therefore writes
only one such block. The FASTA reader starts writing a sequence information block whenever a line
beginning with the greater-than character, “>”, is approached.

The software design was chosen to ensure easy extendability. Additional filters for sequence
formats can be included by deriving theSE Q U E N C ERE A D E R class, and overwriting theR E A D-

FI L T E R E D method.

The information stored in the blocks is evaluated, when all sequences are enumerated one after
another. For this, theSE Q U E N C EEN U M E R A T I O Ninterface was implemented by theSE Q U E N C E-

EN U M E R A T O Rclass, its only method,N E X TSE Q U E N C E, returning instances of theSE Q U E N C Eclass
(see Figure 3.5). This ensures that dependent classes can correctly count number and length of single
sequences. These characteristics are used for instance for weight calculation and normalization.

Each separated sequence is then mapped to a character sequence, providing random access to its
characters. For this, theMA P P E DCH A RSE Q U E N C Ebuffers a certain amount of characters and if
a character is requested from a position before the start of the buffer a reset is performed on the
sequence ensuring that the requested character comes into focus once more. The size of the buffer,
the jPREdictoris working with, is chosen as 64 kB.

The framework can handle files of sizes up to 16 Million TB (tera bytes) due to 64 bit file pointers.
Nevertheless, character sequences supported by Java are restricted to 32 bits, therefore the size is
limited to four GB. As a consequence, files may be of any size, while each separate (FASTA) sequence
is limited to four GB.

3.5 Communicator and Operator - Processing pipeline

Both communicator and operator make up the third unit in thejPREdictororganization. They were
designed to bridge the gap between the user interfaces and the motif and sequence handlers (Fig-
ure 3.1). The advantage of separating user interfaces and the units performing the basic functions
is that the definition of higher-order tasks or applications built upon the basic functions is possible,
without the need for the user interfaces to control their execution.

The communicator itself has one major task to perform, the storage of all possible parameters,
such as the size of the sequence window and the list of motifs. The default settings are stored in
the ST A T E S class. By extending theST A T E S class and by implementing theIC O M M U N I C A T O R

interface, which defines getter and setter methods and other accessible methods and objects, the
DE F A U L TCO M M U N I C A T O Rclass can fulfill the storage task.

The operator was designed for initializing and starting the threads dealing with the main functional-
ity, which is searching motifs on sequences, weighting motifs by searching them on the sequences of
the positive and negative training set, and scoring a sequence window-by-window. Threads run con-
currently to the main program and allow for in-time and more precise control of their execution. The
operator consists of an interface,IO P E R A T O R, and the implementing class,OP E R A T O R. In order to
initialize and start the threads, a valid communicator must have been provided previously, containing
all necessary parameters.

The chain of command starts with the user, which tells the program to perform a certain task (see
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Figure 3.6:Chain of command and result processing pipeline in thejPREdictorprogram. The user
defines the task and provides the necessary parameters to the communicator, which or-
ders the operator to start a thread. Results are preprocessed in the operator, then sent to
and stored in the communicator. After creating the final output format the user interface
receives the results.

Figure 3.6). The user interfaces instruct the communicator, which orders the operator to start the
corresponding thread. Thread control is done by the communicator, in response to or after consulting
the user. At the moment the thread is started it produces results. Results are passed in reverse order
along the chain of command. They are first evaluated and preprocessed by the operator in accordance
to the started task. Afterwards, they are sent to the communicator, which stores them and may process
them further to a format the user interface expects.

3.6 User interfaces

Interfaces reflect the tasks a program is capable of performing to the user. The basic task thejPREdic-
tor is capable of is the search of motifs on sequences. Additionally, as an extension to the search task,
the jPREdictorassigns weights to motifs by recalculating the results from searching the sequences of
positive and negative training set. Scoring sequences, the third major task, combines search results
from weighted motifs to score a sequence window.

Tasks have parameter settings, which may change them to a degree that they seem to be different
tasks. All these parameters need representations in the user interfaces.

Note that both interfaces, graphical and command-line, are not equally powerful. The motif maker
and the cut-off calculator can only be found in the graphical interface. Nevertheless, their functionality
can be mimicked in the command-line interface, which, by giving more options and parameters,
makes the task more adjustable and configurable.

On the other hand, many specialized tasks can only be started via command line, and have no
counterpart in the graphical interface, i.e. the calculation of PSSM occurrence probabilities.
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3.6.1 Graphical user interfaces

The graphical user interface was implemented to give an easy access point to the user, and to make
working with thejPREdictormore comfortable. All settings and parameters can be found here, the
tasks are easily started by just pressing the corresponding action buttons.

The graphical part of thejPREdictoris started either as a stand alone program or within a website,
as a Java Applet or as a Java WebStart application. Both Applet and WebStart application are imple-
mented into thejPREdictorwebsite:

http://bibiserv.techfak.uni-bielefeld.de/jpredictor

To start the program with the graphical user interface simply type

java -jar jPREdictor.jar

into the terminal. Prior to version 1.2 this was the only way to get the GUI started, and no pa-
rameters were allowed at start-up. Now, with version 1.2 and newer, parameters were introduced to
force thejPREdictor into certain actions. One of these actions is to start the GUI regardless of other
settings. It is done with:

java -jar jPREdictor.jar [parameters] --forceGUI [parameters]

The jPREdictorprogram will first evaluate all other parameters given and then start the graphical
user interface. Note that all other force parameters are ignored.

3.6.1.1 Main window

The main window of thejPREdictoris organized into sections, each corresponding to different com-
ponents related to each other (Figure 3.7). In Section 1 all components are related to file input and
output, namely the sequence files to search or score, the positive and negative training sets, and the
output file. The files may be browsed by pressing the corresponding buttons or by directly typing
them in. As an alternative, sequence data can be given directly by pressing the “Paste...” button.

Section 2 contains additional parameters and settings (Figure 3.7). Both window parameters are
necessary for scoring a sequence, since the score will be calculated within a window that slides over
the sequence. The width is defined in number of nucleotides, e.g. 500. The shift value denotes the
number of nucleotides lying between the starts of two consecutive windows, e.g. the first window
starts at position 700 on the sequence, the second at 710, which would mean a shift value of 10. The
cut-off value is a parameter which changes the output of the score sequence task. If it is omitted,
the scoring prints the score for every possible sequence window. If it is specified, only windows
with scores higher than the cut-off are output after an additional step, which combines overlapping
windows to so-called bands.

Four checkboxes can be found in Section 2 (Figure 3.7). The first checkbox, “Output motif occur-
rences”, is available for the “Search for motifs” task. Normally, searching motifs does not return the
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Figure 3.7:Main window of thejPREdictorprogram. Section 1 and 2 contain certain settings and
parameters, Section 3 lists all usable motifs in a tree structure, Section 4 contains the
action buttons for starting tasks and Section 5 has two output fields, the upper for “normal”
output and the lower for “error” messages.

single hits but the number of found motifs per sequence. With this checkbox activated, every and all
single hits are printed. The second checkbox, “Weight normalization” enables or disables sequence
length normalization while calculating the weights (see Chapter 3.3.2 for an explanation). This check-
box is related to the “Weight motifs” task. The last two checkboxes exist to redirect the output. The
first one, “Mirror output”, prints all the text, which is normally sent to the output file given in Section
1, to the output Section 5. If much output is produced this may rapidly slow down thejPREdictor,
since the text fields supported by Java are not meant for very large amounts of text. The graphical
output available by checking the last box in Section 2 will only affect the “Score sequence” task. After
starting the task a window will pop up, theScorePlotBrowser, showing a graph over the scores (see
Figure 3.8).

In Section 3 (Figure 3.7) the list of motifs is shown to be used to search and score with. Motifs can
be checked and unchecked to include or exclude them from being used in the tasks. This list can be
filled and edited either by loading an option file via menu,File→Load..., by selecting a predefined set
of motifs from the menuPresets, or by comfortably designing motifs using the availableMotifMaker.
Together with most parameters and settings, the list of motifs can be saved to an option file via the
File→Save...menu.

In Section 4 (Figure 3.7) the buttons to start certain tasks are located. By pressing the first button,
“Search for motifs”, thejPREdictorsearches the checked motifs in the given sequence file or in the
pasted sequence, and outputs either for every motif and every given sequence the number of motifs
found, or, if the box “Output motif occurrences” is checked, returns a exhaustive list of all motif
occurrences. Pressing the second button, “Weight motifs”, performs a search in both positive and
negative set for all checked motifs. As a result, the motifs are assigned weights as explained in
Chapter 3.3.2. If they were already weighted, these weights are discarded. By pressing the third
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Figure 3.8:Example score plot over the bithorax complex ofD. melanogaster. The grey vertical bar
marks the position of the sequence cutout, which can be seen in the lower section of the
window, and which shows single motifs on the sequence highlighted in green colors.

button, “Score sequence”, the task to score a sequence window-by-window is started. Note that all
checked motifs must have been weighted previously, otherwise an error message will pop up. These
three tasks can be canceled at any time by pressing the “Cancel” button, which is only available if a
task really was started. Another commonality between these three tasks is that they send their status
and error messages to the output section, numbered as 5 in Figure 3.7.

3.6.1.2 Cut-off calculator

In Section 4, a fourth button exists, the one to start a cut-off calculation via the CutoffCalculator
(see Figure 3.9). The cut-off calculator works by randomly generating a large amount of sequences.
A zeroth order Markov chain model is used by the underlying generator. The vector of nucleotide
distribution is either the program-wide one or it is calculated by counting the number of nucleotides
in the sequence file given in the main window (Section 1 in Figure 3.7). This counting is started by
pressing the “Get Distribution”-button. The number of sequences to be generated is given in the text
field “Sample Size” (Figure 3.9). The length of each generated sequence can be given in the text field
“Genome length”.

In order to get a valid cut-off all sequences are scored and the number of windows with scores
above each possible cut-off is counted. The motifs needed for the scoring are the ones set in the
main window of thejPREdictor. As a result a window pops up with the optimal cut-off for every
E-value. When scoring the real genome, the E-value is the number of sequence windows above the
corresponding cut-off to be expected merely by chance.
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Figure 3.9:The CutoffCalculator built into thejPREdictor. Performs a cut-off calculation by scoring
randomly generated sequences, using the motifs from the main window of thejPREdic-
tor. After start-up (left), while performing a calculation (middle), and after finishing the
calculation (right).

3.6.1.3 Motif maker

The motif maker is started via pressing the button “MotifMaker” in Section 3 of thejPREdictormain
window (Figure 3.7). It allows for easy creation and editing of motifs and for re-arranging the list of
used motifs. In Figure 3.10 two windows with different activated tabs are shown, on the left for editing
a regular expression motif, and on the right for editing a matrix motif. All attributes and characteristics
of a motif are accessible for change, e.g. identifier (name), description, weight, and search direction.
In order to get bothMotifMaker windows, selectPresets→New (2006) PRE/TRE prediction on
D. melanogasterin the jPREdictor’s main window, followed by clicking the “MotifMaker”-button.
Within the MotifMaker, expand the tree to the left until an En1 or a pssmPHO, respectively, is se-
lectable. Press “Edit” to automatically switch to the tab necessary for displaying all attributes of the
motif. For the pssmPHO motif, it is possible to see all sequences the matrix was created from by
clicking the “Paste...”-button.

After finishing all changes the newly created motif can either be a replacement for selected motifs
from the tree (button “Overwrite”), or it can simply be registered as a new motif (button “Register”).
Note that the name acts as unique identifier, and no duplicate names are allowed.

In Figure 3.11 the tab to create and edit motif patterns, also called MultiMotifs, is shown. Since
MultiMotifs might become very complicated, the usual procedure starts with creating simple, flat
MultiMotifs, which are afterwards combined to higher-order MultiMotifs of any complexity. The
intermediate motifs are all stored in the list of motifs to the left, and have to be deleted after the
assembly process. To insert distance constraints between the motifs, the “Add”-button has to be
pressed after the minimal and maximal distance was typed in. Note that in order to append a distance
constraint or a motif at the end, the insert policy requires that nothing is selected. If a selection is
made, the constraint or motif is placed before it.
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Figure 3.10:The MotifMaker with two out of five tabs for editing a RegularExpressionMotif and a
PSSM motif. In the left picture, the regular expression motif Engrailed, and in the right
picture, the position specific score matrix for the Pho motif is shown.

Figure 3.11:The MotifMaker with the selected tab for creating and editing motif patterns, so called
MultiMotifs. A non-flat sample motif was created containing one MultiMotif, PHO-
DSP1, followed by a matrix motif, pssmPHO, and terminated by another MultiMotif,
Z:Z.
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3.6.2 Command-line interface

For the command-line interface to be available, the user has to start thejPREdictorprogram within a
terminal. Many parameters and options are recognized by the program, the typical call looks like this:

java -jar jPREdictor.jar [parameters]

Simple parameters start with a single dash (minus sign) followed by a letter. Many parameters that
contribute to an extended functionality start with a double-dash, followed by a word. Some parameters
need arguments to be specified as well. Omitting these arguments, or using non-recognized parameters
will result in meaningful error messages. ThejPREdictorprovides several help pages for using the
command-line interface and certain parameters. The typical call for help uses one of these parameters:

-?

-h[o|s]

Parameter “–?” and “–h” behave the same and print the help explaining how to use thejPREdic-
tor via command-line interface. Also, most simple parameters and options are listed and explained.
Parameter “–hs” prints help on specialized tasks thejPREdictor is capable of performing, while pa-
rameter “–ho” prints a help on how to write an option file. Another helpful parameter is “–v” which
enables meaningful verbose messages to be printed along the normal output.

The following example shows a standard call. ThejPREdictor is instructed to score a sequence
file. The motifs used are the built-in ones. They are weighted using two other sequence files (given in
FASTA format), model (positive training set) and background (negative training set).

java -jar jPREdictor.jar -m model,FASTA -b background -f sequ_file

Three parameters are available to provide sequences to thejPREdictor. The arguments for the first
parameter, “–f”, are files holding sequences to be searched for motifs or to be scored. This parameter
can be given arbitrary many arguments (filenames). Additionally, it is possible to provide a dash
(minus), which indicates standard input. Thus, thejPREdictoris able to directly process data coming
from the preceding process in the pipe, which may be a sequence-generating program. An example
can be seen here, which produces 1 as an output:

echo "ACGTAAAACC" | java -jar jPREdictor.jar -d AAAA -f - -p single

The other two parameters for providing sequences are “–m” and “–b”. Both have to be given
together or have to be left out together, because their arguments name the files to be used as pos-
itive (model) or negative (background) training set. Note that if only one file is given to both, the
jPREdictorinterprets its content as a table of motif occurrences (unless the filenames are appended a
sequence-format identifier). This table can be produced with thejPREdictorby searching for motifs
using default settings.
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The jPREdictor normally guesses the tasks to perform from the given sequence parameters. If
only “–f” is specified, without “–m” and “–b”, the search-for-motifs task is started. Omitting “–
f” but giving “–m” and “–b” will start the weighting of motifs. By specifying all three sequence
parameters, first, the weighting is carried out, followed by scoring a sequence. Nevertheless, there
may be situations, where the guessing should be switched off, for instance, if all motifs given, i.e. via
option file, are already weighted. In this case a weighting would be unnecessary, and only the scoring
of a sequence should be performed. For these situation, parameters to force thejPREdictor into
certain actions were included in version 1.2, i.e. “—forceGUI” (already discussed in Chapter 3.6.1),
“—forceSearchMotifs”, “—forceWeightMotifs”, and “—forceScoreSequence”. They do exactly as
their names suggest. Note that forcing a task will disable all task-guessing.

Via command line, only regular expression motifs and rudimentary motif patterns can be specified.
Regular expression motifs are defined using the parameter “–d” with an option. For every motif
to be defined, another parameter “–d” must be provided. Options for this parameter are the motif
representation as a string, the name of the motif, the number of errors allowed for a match, and the
search direction. For example, defining the engrailed motif with one error allowed and to be matched
only reversed-complementary would look like this:

-d GSNMACGCCCC,engrailed,1,minus

Creating MultiMotifs is done automatically by thejPREdictor. Without the help of an option file
or the graphical user interface, creation is restricted to double motifs. The option “–p” specifies the
distance between each two motifs. The default option for “–p” is “BELOW_220”, which means that
double motifs are created from the given basic motifs with a minimal distance of zero and a maximal
distance of 219. It is very important to note that the automatic creation of double motifs is done
in every case, where no MultiMotif is specified. And in some other cases, too. To switch it off, use
parameter “–p” with option “single”. In this example two motifs are defined,AAAAandTTTT, either
as singles or as double motifs.

-d AAAA,polyA -d TTTT,polyT -p single

-d AAAA,polyA -d TTTT,polyT -p BELOW_220

The first line yields two motifs, which are used for searching and scoring, namelypolyAandpolyT.
The second example yields 3 double motifs,polyA−(0,219)− polyA, polyA−(0,219)− polyT, and
polyT− (0,219)− polyT.

Most other parameters are available for fine-tuning the tasks of thejPREdictor. The task of search-
ing motifs is altered by parameter “–t”, which makes sure that individual motif positions are printed
instead of numbers on how often the motifs occur. Parameter “–a” and “–A” switch on (default) and
off, respectively, the sequence length normalization while weighting motifs. Finally, scoring a se-
quence is influenced by the arguments given to parameter “–w” and “–s”, which state width and shift
value of the sliding sequence window. Normally, scoring prints the score for every window on the
sequence. Nevertheless, this behavior is altered by parameter “–u”, which, if given, would cause the
scoring process to output only the window with the highest score, and also by parameter “–c”, whose
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argument states a cut-off, and only bands above that cut-off are output. Note that bands are sequence
windows merged due to overlapping.

The last parameter to discuss is “–o”, which is used to load an option file while starting thejPREdic-
tor. The option file is always evaluated after all other parameters were recognized. This is important
to note, because it is often the reason behind error messages and unintended behavior.

3.7 Option file

The capability of recognizing option files was included into thejPREdictor, first, for providing a
way to store different sets of settings, and second, to make complicated motifs available to the
command-line interface. This makes option files very helpful and handy when running the program
semi-automatically. Additionally, they can be easily created on the fly due to the intuitive language.

Option files are very powerful tools. They allow for precise and comprehensive creation of motifs
and motif patterns. Additionally, storing complete settings into option files makes working easily re-
traceable and therefore repeatable. The option file is the interlocking part of thejPREdictor, bringing
the different front ends together. For example, an option file is created in the GUI when the settings
are saved viaFile→Save..., and this option file can be read via parameter “–o” in the command line.

An option file is separated into sections; each section starts with a keyword in brackets. Every sec-
tion may occur more than once, if need be. Recognized keywords are “Sequence”, “Motif”, “Multi-
Motif”, and “MultiMotifList”. Within a section, special parameters can be specified, always followed
by an equal sign and the argument. In the following example a motif section is started, wherein the
name of the motif, its representation and finally the regular expression sequence itself are specified:

[Motif]

name=SP1/KLF

motif=SEQUENCE

RRGGYG

Within the section “Sequence”, filenames for the sequence to score as well as positive and neg-
ative training set can be given. Additionally, settings already known from the command-line inter-
preter may be specified, namely “windowWidth”, “windowShift”, “sequenceLengthNormalization”,
“cutoff”, and “global_background”. Except the last, the parameters are self-explanatory, or can be
looked up in the help text (produced by starting thejPREdictorwith parameter “–ho”). The global
background specifies a nucleotide distribution, which is either used when generating a PSSM motif
from a probability matrix, or to generate sequences under a zeroth order Markov chain. The latter
is performed by the CutoffCalculator in the graphical front end (see Chapter 3.6.1.2), or when the
probabilities for a PSSM to reach certain thresholds are calculated (see Chapter 3.8).

All other sections are dedicated to motif generation. In section “Motif”, sequence and matrix
motifs can be specified. The parameters “name”, “description”, “weight”, and “searchDirection” are
common to both types. The “motif” parameter knows four arguments, “SEQUENCE”, “MULTI_-
SEQUENCE”, “TABLE_PROB”, and “TABLE_SCORE”. As a result from using the first argument a
regular expression motif is created. The second and third argument yield a position specific probability
matrix (in the first place), and when using the last argument, the complete score-matrix has to be
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given representing a PSSM. The sequences or the table, respectively, follow right after the line with
the “motif” parameter.

The next examples define the Zeste motif, either as an aligned set of short binding sites or directly
as a table. While the first example results in a regular expression sequence, namelyYGAGYG, the
other two examples are interchangeable in the sense that they both yield a probability table in a PSPM
motif:

[Motif]

name=Zeste

motif=SEQUENCE

CGAGCG

CGAGTG

TGAGCG

TGAGTG

[Motif]

name=Zeste

motif=MULTI_SEQUENCE

CGAGCG

CGAGTG

TGAGCG

TGAGTG

[Motif]

name=Zeste

motif=TABLE_PROB
1 0 2 0 2

2 0 0 4 0

3 4 0 0 0

4 0 0 4 0

5 0 2 0 2

6 0 0 4 0

Note that the table provided when using “TABLE_PROB” need not contain probabilities. Nu-
cleotide counts are also allowed, since the table is recalculated to probabilities. Defining a motif by
using “MULTI_SEQUENCE” and “TABLE_PROB” will result in a PSPM in the first place. Absence
or presence of the parameter “background” decides, whether the probability table is recalculated to a
score table, to be used in a PSSM. The implemented equation behind the recalculation can be found
in Chapter 2.2.2. The pseudo-count value is set toc = 0.01.

For working with sequence and regular expression motifs the error number allowed for a match
has to specified. Consequently, the parameter’s name is “errorNumberAllowedForMatch”. Likewise,
matching PSPMs and PSSMs on sequences requires a threshold. Both, error number and threshold,
are optional and therefore have a defined default value, which is zero for the number of matching
errors, and the highest reachable value for the threshold.

For creating motif patterns, the two sections “MultiMotif” and “MultiMotifList” are available. In
the “MultiMotif” section, the pattern is created step-by-step. The underlying parser of the “Mul-
tiMotifList” mimics in some detail the creation of MultiMotifs as known from the command-line
interface. In both sections motif names are used to identify motifs. It is therefore mandatory that
they are unique. A motif pattern is created by giving the first motif after the parameter “first_motif”,
followed by one or more subsequent motifs together with the distance information as arguments to the
parameter “next_motif”. The next example creates the flat MultiMotif from Figure 3.3 on Page 39:

[MultiMotif]

name=MM1

first_motif=Zeste

next_motif=0,220,Pho

next_motif=0,40,DSP1
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Note that for the above lines to function all three motifs, Zeste, Pho, and DSP1, have to be specified
before, i.e. with three “Motif” sections. Only one motif pattern can be specified within a “MultiMotif”
section. On the contrary, a “MultiMotifList” section is used to describe rules for automatic creation
of motif patterns. Only one parameter is recognized, “distance”, which has minimum and maximum
value as arguments and which is used between every two motifs in all motif patterns to be created
within this section. The distance is followed by one or more lines with motif-pattern specifications,
each consisting of a list of motif names either separated by colon or comma. In the next example two
motifs similar toMM1from above are created:

[MultiMotifList]

distance=0,220

Zeste:Pho:DSP1

Zeste:DSP1:Pho

Note that the created motifs are given names which reflect the composition. The two names as-
signed in the example would beZeste− (0,220)−Pho− (0,220)−DSP1 andZeste− (0,220)−
DSP1−(0,220)−Pho. The separator used above is the colon. Replacing the colon by a comma starts
the automatic creation of double motifs, separately for each line. Since in the above example both
lines list the same motifs, the same double motifs would be created. Additionally, the created motifs
would have been assigned the same names. But because this violates the uniqueness-of-names rule,
double motif creation for the second line is aborted after the first encountered name conflict. The
adjusted example looks like this:

[MultiMotifList]

distance=0,220

Zeste,Pho,DSP1

Here, six double motifs are created, namelyZeste− (0,220)− Zeste, Zeste− (0,220)− Pho,
Zeste− (0,220)−DSP1, Pho− (0,220)−Pho, Pho− (0,220)−DSP1, DSP1− (0,220)−DSP1.
Every motif is paired with itself, afterwards with all residual motifs, and finally removed from the list.
If the list initially containsn motifs, all-in-all

(n
2

)
+n double motifs are created.

3.8 Special tasks

In this chapter, parameters are listed, which do not belong to the original functionality of thejPREdic-
tor, but which proved useful for the work with motifs and scores. They are necessary for re-processing
results or provide motif statistics. Note that these parameters have to be given in the command-line
interface, and that they are not part of the graphical front end. Further note that they cannot be used
stand-alone, but only in combination with other parameters. This also was a reason for embedding
them into thejPREdictor.

The jPREdictor is able to calculate a completep-value distribution for any given PSSM (back-
ground and details in Chapter 2.2.2). The parameter for this is
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--pssmProbs

The PSSM motifs must be provided to thejPREdictor via option file. The program will then
output the probabilities for every PSSM to exceed specific thresholds in the range from minimum to
maximum sum-score in steps of 0.1. Figure 2.3 on Page 18 was created using the output of such a
calculation performed for the Pho PSSM.

For calculating the probability of every threshold, thejPREdictor uses the full enumeration ap-
proach under a zeroth order Markov chain. It is implemented recursively by adding scores and multi-
plying nucleotide probabilities for every position starting at the end of the matrix. Look-ahead scoring
in both directions (as described in [49]) is used to speed up the calculation. This way, computing the
p-value for low thresholds (therefore many matches) may break earlier if the threshold can be reached
with any partial sequence yet to come. On the other hand, for high thresholds, computation may also
break earlier if the threshold at hand cannot be exceeded anymore. The background distribution over
the single nucleotides used for the calculation is either the default one, or provided via option file.

One special parameter was implemented into thejPREdictordealing with the task of calculating
cut-offs. Other than the “—pssmProbs” parameter, the cut-off calculation has its counterpart in the
graphical front end. To start such a calculation via command line use this parameter:

--cutoffCalc

It will perform a cut-off calculation by directly invoking the scoring of a sequence (for which the
parameters must be given, too). The scores for every window on the sequence are therefore not
output, as they normally would, but used in the calculation process. Note that overlapping windows
are combined to bands if their corresponding scores exceed the defined cut-off. As a result, bands are
maximal in width and do not overlap each other. However, this is also the reason, why very small cut-
off values yield less bands than mediocre cut-offs. The smallest cut-off will yield only one band, since
all sequence windows have higher scores. If more than one sequence is provided for the calculation,
it is combined to one big sequence. However, every sequence will start a new band, which results in
the number of sequences for the lowest possible cut-off.

Another special parameter, “—compriseToBands”, is also capable of invoking a cut-off calculation,
albeit it was implemented with another intention in mind. Two differences in the behavior must be
considered. The first difference is that it does not invoke a scoring, but that it gets its scores from a
file. This file contains the resulting scores from a previous scoring. The second difference is that the
calculation is restarted every time the beginning of a sequence is encountered.

Originally, the parameter was designed to comprise sequence-window scores to bands. This is
where the name originates:

--compriseToBands

Comprising scores to bands follows the same rules as mentioned for a cut-off calculation. Bands
are maximally in width and do not overlap each other. However, to start the comprising a valid cut-off
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must be provided to the program via command-line parameter “–c”. In this case, the file with the
scores is read and every band with scores above the cut-off is output in the form: “seq#:start_pos-
end_pos:max_score;min_score;mean_score”. In the beginning, the sequence number is given, fol-
lowed by start and end position of the band. The last three values give maximal, minimal and mean
score, which were encountered and calculated from the scores before being comprised to a band.

The following special parameter will start a clustering (see Chapter 5.3 for details). The name of
the parameter is a composition of different adjustment values used to fine-tune the clustering:

--clusteringXxxxYyyy

A clustering is performed over all motifs provided via option file. “Xxxx” can be ’Manhattan’, ’Eu-
clidean’, or ’Likelihood’ and specifies the relation measure between motifs. “Yyyy” can be ’Greedy’
or ’Forward’, and specifies the algorithm used to form a cluster. Additionally, a valid term for “Yyyy”
is ’Relation’, which prints the relation value between each two motifs in a big table without forming
clusters. A threshold can be defined using parameter “–c”, which causes the clustering to stop when
the used relation measure exceeds this value. If the number of clusters is known beforehand, use
parameter “–C” to set the number of clusters to reach. If both parameters are omitted a full clustering
is performed, yielding only one super cluster.

The last special parameter was implemented to perform an evolution on motifs with the goal to
maximize the weights. Consequently, positive and negative training set must always be provided
(parameter “–m” and “–b”), along with the parameter itself:

--motifEvolutionZzzz

Again, the parameter’s name adapts with the evolutionary machinery chosen by replacing “Zzzz”
with either “ES”, or “RewardedSelection”. The details on the approaches can be found in Chap-
ter 5.2. After performing the evolution thejPREdictorprints the 20 highest-weighting motifs. Both
approaches are capable of evolving basic motifs as well as double motifs. In either case, parameter
’-c’ denotes the starting temperature in the process of simulated annealing. High temperatures mean
many mutations from parent to child generation and, thus, big jumps over the search space. For low
temperatures the evolutionary process tends to preserve the high weighting motifs found so far. The
temperature is reduced by one every generation and if it reaches zero the process ends. Thus, the
starting temperature denotes the number of generations as well. The default value is 1,000. Param-
eter ’-C’ alters how the motifs are changed from one generation to the next. It is possible to assign
probabilities for different mutation events and to switch recombination on or off. Mutations affect the
length of a motif, the distance constraint in a MultiMotif, the number of errors allowed for a match,
and the nucleotides in a motif.
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4 Prediction and properties of PRE/TREs

This chapter deals with the prediction of Polycomb/Trithorax response elements (PREs) on sequences
of theDrosophilaspecies. PREs are one kind ofcis-regulatory elements. Motifs are the fundamental
element in the prediction process. Basic motifs are presented in Chapter 2.3. In the first section, the
motif sets built from the basic motifs are listed. Then, based on the work of Ringrose et al. [5], the
prediction pipeline is presented, followed by summarizing the results from their work. All subsequent
chapters address the question, how the prediction process can be improved without losing statistical
significance.

Emphasis of this chapter is placed on the analysis of the basics of the predictory process. Adding
new motifs, creating different motif sets, using different training sets to weight the motifs, and chang-
ing the underlying null model for cut-off creation all lead to a deeper understanding on how the
prediction works. Experience shows that there is not the one motif set or the one training set that
covers all possible PREs in an organism, but normally different motif sets yield different predicted
PREs, albeit often overlapping.

4.1 Motif sets

The basic motifs to be analyzed for their use in the prediction of PREs are listed in Table 2.6 on
Page 23. In this table, the log-odd-value (column “Odd”) is comparable to the weight of a motif.
Thus, it reveals over- and under-representation, but on a genome wide scale. Essentially, no motif is
underrepresented, all show a log-odd-value near or above zero. However, some motifs, especially the
longer ones, i.e. En1, and G10, occur more often than expected. This hints at their importance for the
organism. Hunchback (HB) and Knirps (Kni) normally play a role in enhancer/silencer functionality
and are included in the PRE/TRE analysis as a kind of robustness test.

These basic motifs are combined to double motifs and only these double motifs are used in the
prediction process. This was done, because single motifs are often too unspecific. Even many of them
found in a tight spot cannot ensure the spot to be the element in question. This was first shown in
detail by Ringrose et al. [5], and to overcome the limited specificity, Ringrose et al. composed all
single motifs into double motifs. In addition, this approach is consistent with reports of single-type
basic motifs to act cooperatively. It was shown for the Zeste motif [78] as well as the GAF motif [73].
Furthermore, this co-occurrence approach was also used for predicting transcription factor binding
sites inEscherichia coli[108]. Combining the basic motifs to double motifs shifts the emphasis from
simple motif enrichment to clustering of motifs in a dense spot.

Not all motifs were used in all predictions. To reveal influences of certain motifs on the prediction
results, nine different motif sets were created. Table 4.1 lists these motif sets and their corresponding
basic motifs which will be used for further analysis. Note that before a prediction is made all basic
motifs in the different motif sets are combined with each other to form double motifs, where the
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4 Prediction and properties of PRE/TREs

Table 4.1:Motif sets used for the prediction of PRE/TREs and in robustness tests. The column “Dou-
bles” specifies the number of double motifs resulting from combining the single motifs.

Name Single Motifs Doubles
Original En1, GA, G10, Z, PH, PM, PS 28
DSP1 En1, GAF, G10, Pho-DSP1, Pho, Z 21
SP1 like DSP1, but +SP1 28
Grh like SP1, but +Grh 36
HB+ like SP1, but +HB 36
Kni+ like SP1, but +Kni 36
HBKni like SP1, but +HB and +Kni 45
HB- like DSP1, but +HB 28
Kni- like DSP1, but +Kni 28

distance between two motifs may not exceed 219 nucleotides. The row “Doubles” in Table 4.1 gives
the number of double motifs resulting from such combinations. The term “double motif” might be
a bit misleading, because any motif paired with Pho-DSP1 will be a non-flat triple motif, and self-
pairing Pho-DSP1 results in a non-flat quadruple motif.

4.2 Prediction pipeline

Performing anin silico prediction of PREs follows a set of instructions, depicted in Figure 4.1. To
this extend, the pipeline was first presented and used by Ringrose et al. [5]. A score graph, which
is laid over the sequence, is the final outcome of this process, with all high scores above a certain
threshold being the sought-after elements, and all low scores considered to be background and noise.
An example of such a score plot can be seen in Figure 3.8 on Page 49.

The prediction starts with a set of motifs. These motifs must have certain properties. First, they
should be specific enough to not occur too often in the genome. Second, they should be relevant for
the element in question and therefore, third, either be enriched or avoided in the element. As such,
finding them in a genomic sequence gives strong evidence that either the element was found or that
this sequence position cannot house an element. The latter ensures that the element in question is
predicted against the noise of the residual genome and, moreover, against other similarcis-regulatory
elements.

In the next step the motifs are weighted (for the equation see Chapter 3.3.2). For this, positive and
negative training set have to be provided. The sequences of the positive training set are the model
sequences, they act as templates for the sought-after elements in the genome-wide prediction. On the
other hand, the sequences of the negative training set can be seen as the background, representing
noise or elements, which should be avoided. Consequently, the calculated weights should reflect
this relationship. Motifs with high weights are important for the element, since they are strongly
over-represented in the sequences of the positive training set in comparison to the sequences of the
negative training set. Motifs with negative weights act vice versa. Motifs with small weights around
zero do not contribute to the discrimination effect.

In the second-last step, a cut-off score is obtained. In the last step, this cut-off is used in the actual
prediction. Both steps make use of weighted motifs in order to score sequences. The difference lies
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4.2 Prediction pipeline

Figure 4.1:Pipeline for the prediction of regulatory elements. In the first step, the initial set of motifs
is weighted. Using the weighted motifs random and genomic sequences are scored. Scor-
ing applied to random sequences yields a cut-off, which in turn is used in the prediction
process. Every sequence fragment exceeding the cut-off is reported to be a regulatory
element.
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4 Prediction and properties of PRE/TREs

in the kind of sequences to score. In the process of scoring, a window is shifted over the sequence
and every window gets a score. In order to obtain the cut-off for the genome-wide scoring, random
sequences, many times the size of the genome and generated under a null model, are scored. This
calculation yields the cut-off corresponding to an expected number of elements to occur merely by
chance.

Finally, in the last step, the genomic sequence is scored. Every sequence window above the cut-off
is treated as the candidate element, all other parts of the genome are considered noise.

Running a prediction yields a number of short sequences considered to be candidate PREs. The cut-
off was chosen so that only few elements would occur by chance while scoring the whole genome.
This E-value represents the false positive (FP) rate. All other predicted elements are considered
true positives (TP). Therefore, the higher the number of predicted elements the higher the positive
predicted value (PPV, also called precision rate, for the equation see Chapter 2.5). Note that this is
only truein silico, since in this case the number of false positives rate can be well-controlled.In vivo
or in vitro the precision rate might drop drastically.

For a genome-wide prediction the number of true as well as false negatives is not known. Based
on the assumption that the sought-after elements rarely occur in the genome, a guess for the number
of true negatives would be the number of adjacent sequence windows. In this case, specificity is very
high. Sensitivity, on the other hand, cannot be specified, since the real number of positives is not
known, at least not genome-wide.

While the presented prediction pipeline is not altered, the single steps are subject to change in
order to increase the number of predicted PREs. A higher number of predicted elements increases the
PPV. While the specificity stays the same, because it is determined by theE-value, the sensitivity will
increase together with the PPV (even though it cannot be specified). The latter is the big goal in all
analysis, increasing sensitivity while at the same time maintaining a very high specificity.

4.3 Predictions in 2003

All predictions presented here are based on the ideas and data of Ringrose et al. [5]. The authors
performed a genome-wide prediction of PRE/TREs and used the motifs GA, G10, Z, PF, PM, PS, and
theengrailed(En1) binding site (Table 2.6 on Page 23). These seven motifs were combined pairwise
to 21 double motifs, with distance zero to 219. After weighting them, random sequences generated
under a zeroth order Markov model were scored. This led to a cut-off score of 157, which corresponds
to anE-value of 1, i.e. one predicted element is expected to be a false positive.

On a genome wide scale inDrosophila melanogaster167 PRE/TREs were predicted [5]. Only one
is expected to be a false positive, which gives a positive predictive value of 99.4%. The genome length
of D. melanogasteris around 117 Mbases. Since prediction was performed with a window width of
500, around 234,000 of such windows exist non-overlapping. The majority of the genome does not
house a PRE/TRE, and even if this number drops by a few thousand, the specificity stays higher than
99,9%.

After running thein silico prediction, Ringrose et al. [5] evaluated the results biologically. They
performed chromatin immunoprecipitation (ChIP) to detect enrichment for Polycomb binding inDro-
sophila Schneider cells. Twenty-nine of their 43 tested PRE/TRE fragments showed a very high
enrichment. The residual 14 fragments might not be PRE/TREs. Alternatively, they could still be
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PRE/TREs, but without enrichment in this special cell type. Assuming the prediction results to be
correct, the sensitivity of the biological test is 67%. Assuming the biological test to be correct, the
positive predictive value of the prediction drops to 67% as well. Therefore, at least two out of three
predicted PRE/TREs are correct, which is a great result for a computational prediction.

The number of predicted PRE/TREs can be increased by simple means. In the original prediction by
Ringrose et al. [5] the sequence window moving over the genome was of width 500 and was shifted in
steps of 100. Reducing the shift value to 10 means capturing all PRE/TREs previously missed because
their motif-enriched sequence fragments were not covered precisely enough by the shifting window.
The result was an increase in the number of predicted PRE/TREs to 201 (unpublished data). The best
shift value would be one, because it ensures that every two motifs at the beginning and at the end
of the window are captured correctly. Nevertheless, considering the number of predicted PRE/TREs,
virtually no difference exists to a shift value of 10. However, computation is faster for a higher shift
value, therefore, in all future predictions a shift value of 10 will be taken.

The first application done with the newjPREdictorwas to redo the PRE/TRE prediction inD. me-
lanogaster. The motifs used were GA, G10, Z, and En1 (Table 2.6 on Page 23). Additionally, instead
of the three Pho derivatives the Pho PSSM was used (Table 2.5 on Page 14). A new motif, DSP1,
was coupled with the Pho core motif toGCCAT− (0,40)−GAAAA. These 6 motifs were combined
pairwise to 21 motif patterns. Scoring random sequences yielded a cut-off score of 70. As a result,
344 PRE/TREs on a genome wide scale were predicted [104]. This number is slightly lower than the
published one due to a methodic error in evaluation.

4.4 Motif weights

Motif weights depict over- and under-representation in one sequence set with respect to another se-
quence set. This alone makes them very meaningful, since different sequence sets can be compared
for their motif composition via the weights of motifs.

Equation 3.4 for calculating weights can be found in Chapter 3.3.2. If both sets, positive and
negative, contain only one random sequence generated under the same model, and if|S| → ∞, the
motif weights becomew(M) = 0, since for each setf r(M |S)

|S| resolves to the probability of approaching
a motif as discussed in Chapter 2.2.

Due to both normalization steps, by sequence length and by number of sequences within a set,
the equation is very well balanced and motif weights obtained from applying different sequence sets
can be compared without further conversions. Nevertheless, one side effect must be mentioned when
working with the formula. It results from adding the pseudo-countc before applying the second
normalization. While this is necessary to avoid dividing by zero, the pseudo-count is normalized,
too. Therefore, if the motif is not found in both sequence sets, the number of sequences in either set
decides on the weight. This can be seen in Figure 4.2. If both sequence sets contain an equal number
of sequences, a weight of zero is obtained for any non-occurring motif. The weight becomes negative,
if the positive training set contains more sequences, and negative otherwise. Nevertheless, this side
effect normally causes no trouble, since sequences and motifs were chosen beforehand to be in a way
compatible, i.e. the sequences contain the motifs.

In the PRE/TRE prediction from 2003, Ringrose et al. [5] used confirmed PRE/TREs as the positive
training set, and heatshock (HS) gene promoters as a negative training set. In Figure 4.3 the weights of
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Figure 4.2:Weights for a motif, which is not found in either sequence set, dependent on the numbers
of sequences in the positive (x-axis) and in the negative training set (1, 5, 10, and 20),
These weights result from the normalization of the pseudo count value.

all double motifs of the Grh motif set can be seen for this training set, as well as for two other training
sets. For the first two sets, PREs vs. HS promoters, high negative weights are obtained for some GAF
and G10 double motifs due to frequent(GA) repeats in HS promoters [5]. However, GAF motifs must
not be completely avoided in PRE sequences, since double motifs containing only one GAF as part of
their pattern obtain mediocre or high positive weights. Especially, any motif pattern containing En1
and Pho gets high weights. On the other hand, the Grh double motif has a weight around zero, and is
therefore neither over- nor underrepresented in the PREs with respect to HS promoters. Therefore, at
least it cannot be used to distinguish between PREs and HS promoter sequences.

The negative training set “promoters” (Figure 4.3) contains 28 promoter sequences, 16 of them are
the aforementioned HS promoters. The residual 12 promoters are from cell cycle genes and chosen
to not play any role as PRE/TRE or HS promoter (see Table A.4 in the Appendix). Therefore, they
represent random sequences in some way. Adding them to the negative training set, shifts the weight
for most double motifs toward higher positive values. The reason for this is that the used motifs occur
very rarely in the new promoters. This is not true for some patterns of Zeste, Grh, and SP1, their
weights drop with the new negative training set. This is because these three motifs are very frequent
in at least two of the new background sequences, namely cycA and dp.

For the third training set in Figure 4.3, the model consists of 15 sequences predicted by Negre to be
PRE/TREs [23] and the background consisted of the same promoters as in the second set. Especially
double motifs containing the two GAF variants and Grh have low weights. Thus, Negre sequences
seem to lack GAF binding sites. This was the reason why Negre et al. [23] suggested that GAF
is not necessary for PRE/TRE functionality, despite the fact that all previously described PRE/TRE
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4.4 Motif weights

Figure 4.3:Weights of double motifs calculated using different training sets. The positive training set
“PREs” contains 12 confirmed PRE/TRE sequences, while the negative training set “HS
promoters” contains 16 promoter sequences of heatshock proteins. These two sets are the
same as used in [5]. The set “promoters” consists of the 16 HS promoter sequences and
additional 12 promoter sequences from cell cycle genes. The 15 sequences in the “Negre
PREs” set are predicted in [23].
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4 Prediction and properties of PRE/TREs

sequences contain these binding sites.

In general, the sequences which are part of one of both training sets should be chosen with care,
since they determine the motifs weights. This is especially true, if the weights are not only used for
comparative reasons, but are used in further analysis, e.g., in the process of scoring sequences. They
define which motifs are avoided and which motifs are preferred in the model sequences with respect
to the background sequences. Examples for over-representation are the Pho variants, while the GAF
variants are under-represented. Additionally, they define which motifs are actually unimportant for
the distinguishing process, i.e. the Grh motif.

In order to use weighted motifs in the process of scoring sequences, which results in the prediction
of regulatory sequences, the positive training set should consist ofcis-regulatory sequences similar
to the ones that are to be predicted. The sequences of the negative training set should consist of
sequences whose motif composition should be avoided. This is necessary, because during the scoring
process motifs are not simple counted but their weights are added. Therefore, one motif can add
greatly to the score of a sequence window while another with a score around zero might occur a lot
but adds nothing to the score. Negative weights may be assigned to motifs that are to be avoided in
the predicted sequences.

Another intricacy is the use of motif patterns. Again, some patterns might have low weights, but
some others might have high weights. In this sense, avoidance of basic motifs which later form the
patterns cannot mean complete absence. One basic motif can be part of several motif patterns, and if
the basic motif is absent on a sequence, all patterns with this basic motif are not found.

Additionally, motif weights are essential for distinguishing different types of sequences. For a
genome-wide analysis, high scoring sequences are distinguished against noise or background se-
quences, which are assigned lower sum-scores. In accordance to the motif composition of the an-
alyzed training sequences different sum-scores are yielded. High weights for found motifs add up
fast to a high sum-score. In comparison, low weighting motifs contribute to the sum-score to a lesser
extend, more of them are needed to compensate for one high-weighting motif. On the other hand, mo-
tifs with high negative weights countervail the motifs with high positive weights. Therefore, since the
sum-score is strived for being maximal, this motif is seen to be avoided in the high-scoring sequences.

On a smaller scale other than genome-wide, the distinguishing process works as well. Sequence by
sequence is scored and classified after the yielded sum-score, which was calculated in accordance to
its motif composition. In this process, sequences with similar motif frequencies, but different motif
composition can be distinguished, i.e. PREs vs. heatshock promoters [5].

4.5 Scoring null models and resulting cut-offs

In order to predict PREsin silico, genomic sequences are scored in accordance to the found motifs.
Every found motif adds its weight to the score of a sequence fragment, the latter of length 500 in
PRE/TRE prediction. Sequence fragments with high sum-scores hint at the desired functionality, low
scoring parts of the genome are meant to be noise or background. In this sense, a score is needed to
distinguish PREs from the noise level. In order to obtain such a cut-off, background sequences are
scored, too. This leads to a score, the distinguishing cut-off, for which only one regulatory element is
expected to be found in the genomic sequence. Therefore, this cut-off score corresponds to anE-value
of one, which is at the same time the number of expected false positives in the prediction. Every other
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Table 4.2:Comparison of null models derived from theD. melanogastergenome. Values are cal-
culated as sum over absolute log-odds of normalized occurrences from all possible DNA
motifs of length 5 (upper right part of the matrix) and 6 (blue shaded area). Two null models
differ more from each other in terms of motif occurrences the higher the numbers.

Shuffled Markov chain
D. mel. Out In MC2 MC1 MC0 Probability

D. mel. 0 56 - 116 178 306 306
Shuffled-Out 301 0 - 88 134 260 260
Shuffled-In 431 141 0 - - - -

MC2 627 445 442 0 142 285 285
MC1 878 639 571 650 0 251 250
MC0 1440 1194 1079 1291 1117 0 2

Probability 1440 1194 1079 1291 1117 15 0

sequence fragment exceeding the cut-off counts as identified PRE.

4.5.1 Null model analysis

The background sequences are the null model for the prediction. They are random sequences, some-
how derived from the original genomic sequence. And since there exist multiple ways to derive a
background sequence the cut-off for the prediction of regulatory elements is not fixed. It is rather far
from it.

The best null model would be the original genome where all sought elements are eliminated. But
since the sought elements are unknown other methods to build the null model must be used. The
task is to build a background sequence closest to theD. melanogastergenome. In Table 4.2 different
background sequences are analyzed for their motif occurrence counts and compared to each other.
The table was built by searching all possible motifs of length five and six in all sequences.

The shuffled-out sequence was created by concatenating fragments of length 10 that were randomly
chosen from theD. melanogastergenome. This is the same as drawing with replacement. The
disadvantage of this method is that there might be fragments of the source genome which are not
represented in the background and others which are represented twice or more. Of course, such
probabilities are very small if the shuffled sequence is for instance 100 times the size of the source
genome. Nevertheless, for comparative reasons, another way to create a shuffled background sequence
was applied, shuffled-in. It works by systematically exchanging two randomly chosen fragments of
length 10. This leads to a background sequence which consists completely of the source genome.
Therefore, nucleotide composition is exactly the same and no fragment occurs twice like in a shuffled-
out genome.

To generate the Markov chain sequences labeled MC2, MC1, and MC0, theD. melanogasterge-
nome was analyzed for its nucleotide composition and for its transition probabilities between nu-
cleotides. The number gives the order of the Markov chain, e.g. for MC2 the transition probabilities
used areP(xi+2 = σ2|xi+1 = σ1& xi = σ0), wherexi gives the nucleotide at sequence positioni and
everyσ denotes a nucleotide from the alphabet. In the appendix, the tables of transition probabilities
corresponding to a Markov chain of order one and two can be found (Table A.2 and Table A.3).

As a result of all derivation methods from theD. melanogastergenome, higher order structures in
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Table 4.3:Score cut-offs for different motif sets, different training sets and different null models.
Cut-offs corresponding to anE-value of 1 are shown. Training set “orig” refers to the PRE
sequences vs. HS promoters. Training set “ext” refers to the PREs vs. promoters.

Motif set Training set MC0 MC1 MC2 Shuffled
Original orig 159 185 215 216

ext 162 195 223 231
DSP1 orig 73 87 105 112

ext 86 106 126 141
SP1 orig 99 118 131 141

ext 108 136 158 171
Grh orig 109 129 144 154

ext 120 145 164 179
HB+ orig 132 216 263 287

ext 124 160 186 203
Kni+ orig 98 120 133 142

ext 117 139 159 173
HBKni orig 131 215 263 287

ext 124 162 191 204
HB- orig 96 175 223 240

ext 94 129 157 169
Kni- orig 72 88 107 113

ext 87 106 132 142

the genome, like genes, promoters, and repetitive elements occur merely by chance. Table 4.2 shows
that both shuffled sequences are the closest representatives of theD. melanogastergenome in terms
of motif preservation. Nevertheless, the shuffled-out approach is superior to the shuffled-in approach.
The reason for that is that the repeated exchange of sequence fragments disrupts the fragments of
formerly length 10. Therefore, in all further analyses, the shuffled-in approach is omitted.

4.5.2 Cut-off scores

The cut-offs used in further predictions are not fixed, but depend on the null models scored. Of
course, they depend on the used motif sets and the motif’s weights, too. In Table 4.3 score cut-offs for
different motif sets weighted using different training sets are shown. They correspond to an E-value
of 1 and result from scoring random sequences 100 times the size of theD. melanogastergenome,
around 11,7 Gb. In Figure 4.4 the curves for different cut-off calculations are shown for the “Original”
motif set.

The first trend to be seen is that the closer a null model is to the original genome the higher is the
cut-off. This is valid for each motif set and each training set. Second, the cut-offs for the extended
training set are higher in comparison to the original training set, except for every motif set containing
HB. The reason is that the weights are shifted to higher positive values when the extended training
set is applied. Double motifs containing HB are an exception to this observation. HB occurs not only
frequently in heatshock promoters but also in cell cycle promoters. This leads to higher weights for
double motifs containing HB for the extended training set in comparison to the original training set.
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Figure 4.4:Results from a cut-off calculation: number of windows in randomly generated sequences
exceeding the cut-off. The sequences are scored using the “Original” motif set, weighted
with the PREs vs. HS promoters training set. The random sequences are derived from the
D. melanogastergenome and are 100 times the size of the genome. A window number
of 100 marks anE-value of 1 (dashed-dotted line), a window number of 1000 marks an
E-value of 10 (dashed line).
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Figure 4.5:Cut-offs for different sequence sizes (in 105 nucleotides), color-coded corresponding to an
E-value. This picture was drawn from a cut-off calculation using the following settings:
“Original” motif set, PREs vs. promoters training set, shuffledD. melanogastergenome.
A cut-off of 216 corresponds to anE-value of 1 in theD. melanogastergenome of size
117 million nucleotides.

From the “Original” to the “DSP1” motif set, the cut-offs drop drastically, although the sets differ
only in their Pho representation and in the new motif DSP1. But that explains the difference very
well. A Pho binding site found in the genome counts multiple times in the “Original” motif set, since
this set contains 18 out of 28 double motifs, which have a Pho motif as part of their pattern. In the
contrary, in the “DSP1” motif set, only 11 out of 21 double motifs have Pho as part of their pattern.
Additionally, the Pho representatives from the “DSP1” set are more restrictive in matching.

Adding Kni to the “SP1” motif set does not change the score cut-off. Adding Grh rises the cut-offs
by up to 10%. The greatest impact has HB, which, after adding it to the “SP1” motif set, rises the
cut-off by up to 100%. This can only be explained by the probability with which the three motifs
match on a random sequence: HB is ten times more frequent than Kni and 2.5 times more than Grh.
Therefore, finding HB near the other motifs is much more probable than finding Kni or Grh close by.

Cut-off calculation can be applied to otherE-values as well. Figure 4.5 gives an overview, how the
cut-offs are distributed in accordance to different sequence lengths and differentE-values. This picture
was drawn by a short self-written Java program called “CutoffrecalcDraw”, which recycles the cut-off
calculation results obtained from running thejPREdictor. This recycling is necessary, since a cut-off
calculation is done with a specificE-value in mind, in this case 1. Therefore, subsequent recalculation
of the results for otherE-values, especially for smaller ones, have to be taken with care. The reason
is that smallerE-values require the null model to be larger in order to minimize the variance. While
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Table 4.4:Numbers of predicted PRE/TREs in theD. melanogastergenome and other sequences
using several motif sets. All predictions use a window of width 500, shifted in steps of 10.
The training set is the extended one, 12 confirmed PREs vs. 28 promoters from heatshock
and cell cycle genes. Cut-offs were calculated using a zeroth order Markov chain. The
131 and 30 domains provided by Tolhuis et al. [22] and Negre et al. [23], respectively, are
sequences from theD. melanogastergenome enriched for PcG proteins. In parenthesis are
the predicted number of sequences using the lower cut-off.

Motif set Cut-off PRE/TREs Training set Cut-off Tolhuis Negre
117 Mb pos neg 3.7 Mb (131) (30)

Original 162 301 3 0 101 7 (26) 0 (1)
DSP1 86 481 4 0 50 12 (43) 0 (3)
SP1 108 708 5 0 73 17 (42) 0 (2)
Grh 120 602 4 0 77 14 (45) 0 (2)
HB+ 124 934 6 0 80 20 (53) 2 (5)
Kni+ 117 566 5 0 74 15 (44) 0 (2)
HBKni 124 947 6 0 81 22 (49) 2 (5)
HB- 94 840 4 0 58 24 (51) 2 (5)
Kni- 87 470 4 0 53 12 (43) 0 (4)

for anE-value of one a null model 100 times the size of the genome is sufficient, anE-value of 0.1
already requires the null model to be 1,000 times larger. The influence of variance can be seen in
Figure 4.4, where the linear relationship is disturbed for high cut-offs.

Nevertheless, Figure 4.5 gives an impression how the cut-off changes with the size of the source
sequence and with differentE-values. The smaller the size of the genome the smaller the cut-off
becomes, since it gets more and more improbable to obtain such a high score merely by chance.
Nevertheless, this decrease is not linear, a root function more accurately describes the shape of the
curve. On the other hand, the cut-off becomes higher and higher, the smaller theE-value becomes.
This relationship again is not linear, but seems to be close to exponential. Changing theE-value from
10 to 1 rises the cut-off almost by the same amount as changing theE-value from 1 to 0.1.

The conclusions from the null model analysis is that a shuffled genome is closest to the original
genome in terms of motif occurrences. This results in very high cut-offs for each motif set in compari-
son to other null models. As a consequence, the number of predicted PREs will be reduced. However,
the chance for a predicted PRE to be a false positive is reduced, too. This higher reliability of the
prediction is the reason, why the shuffled-out null model is used as a further reference model.

4.6 Prediction results

In this chapter different predictions of PRE/TREs are presented and analyzed. In Table 4.4 the influ-
ence of different motif sets on the prediction can be seen. The high cut-offs ensure that the sequences
of the negative training set are not predicted to contain PREs. The specificity is therefore 100%. On
the other hand, the high cut-offs also prevent in part the prediction of PREs in the true PRE/TREs of
the positive training set. However, the sensitivity changes with the motif sets. Applying the “Orig-
inal” motif set, three out of 12 sequences from the positive training set are predicted to contain a
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Table 4.5:Numbers of overlapping PRE/TREs previously predicted in theD. melanogastergenome
using several motif sets. In parenthesis are percentage values of overlapping sequences.

Motif set Original DSP1 SP1 Grh HB+ Kni+ HBKni
Predicted
PREs 301 481 708 602 934 566 947
Original - 158 (33) 183 (26) 165 (27) 184 (20) 170 (30) 184 (19)
DSP1 158 (52) - 396 (56) 366 (61) 402 (43) 351 (62) 400 (42)
SP1 183 (61) 396 (82) - 575 (96) 624 (67) 565 (99) 626 (66)
Grh 165 (55) 366 (76) 575 (81) - 562 (60) 530 (94) 563 (59)
HB+ 184 (61) 402 (84) 624 (88) 562 (93) - 548 (97) 929 (98)
Kni+ 170 (56) 351 (73) 565 (80) 530 (88) 548 (59) - 551 (58)
HBKni 184 (61) 400 (83) 626 (88) 563 (94) 929 (99) 551 (97) -

PRE (namelyiab7, iab2, andbxd, see [5]). This leads to a sensitivity of33+9 = 1
4 = 25%. Using

the “DSP1” motif set correctly identifies four sequences from the positive training set (namelyiab7,
iab2, bxd, andengrailed). Despite the great changes in the motifs, the three model sequences con-
firmed with the “Original” motif set to contain a PRE are included. Applying the “SP1” motif set
adds another PRE sequence to the set of correctly predicted ones (namelypolyhomeotic PRE distal),
increasing the sensitivity to 42%.

The number of predicted PREs shows great variety. Ringrose et al. [5] predicted 167 PREs on a
genome-wide scale, the number increased to 201 by changing the shift-value for the sliding window
from 100 to 10 (results not shown). Fiedler et al. [104] changed the motif set to “DSP1”, but pre-
served the training sets, and predicted 344 PREs in theD. melanogastergenome. On the contrary,
all predictions in Table 4.4 are made using the PREs vs. promoters training set. With it, the number
of predicted PREs was increased from 201 to 301 for the “Original” motif set, and from 344 to 481
for the “DSP1” motif set. All further predictions presented here are based on the “DSP1” motif set,
which is extended motif-by-motif to show the impact of every motif on the predictions (Table 4.1).

Adding the SP1 motif to the “DSP1” motif set increases the number of predicted PREs by roughly
47% to 708. Both predictions share 396 fragments (see Table 4.5). Therefore, 85 sequences are
uniquely predicted with the “DSP1” set due to the lower cut-off. The novel 312 sequences, almost
45% of the predicted 708 ones, are caused by the SP1 motif. Thus, the SP1 motif frequently occurs
near the other motifs, such that motif patterns containing SP1 are often found. Adding Grh to the
“SP1” motif set does not add to the number of predicted PREs. On the contrary, the higher cut-off
causes the number of predicted PREs to drop significantly. Additionally, only 27 novel PREs are
predicted (Table 4.5). Therefore, Grh occurs rarely near the other motifs and its impact on PRE/TRE
functionality seems to be limited, at least in comparison to adding SP1.

Adding Hunchback (HB) and Knirps (Kni) to the “SP1” as well as the “DSP1” motif set was meant
to be a robustness test for the prediction. It was assumed that HB and Kni occur within functional
PRE/TREs merely by chance, which would have caused the number of predicted sequences to stay
the same or to increase only slightly.

However, the basic HB motif occurs very frequently in all sequences of the positive training set,
often much more frequent than even the core Pho motif. Nevertheless, in few sequences of the negative
training set, in HS as well as cell cycle promoters, HB also occurs very frequently. This leads to a
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negative weight of−0.13 for the HB-HB double motif. However, combined with other motifs, HB
yields positive weights, e.g. 1.5 if combined with En1 as well as with the Pho PSSM motif. The
reason for the positive weights is that Hunchback binding sites occur enriched near the other motifs.
The positive weights for double motifs containing HB as well as the high occurrence probability of
HB in theDrosophila melanogastergenome result in a huge number of predicted PREs for the “HB+”
motif set. Additionally, due to a cut-off only slightly higher than the one yielded with the “SP1” motif
set, the prediction results for “HB+” overlap strongly with the ones for “SP1”.

Contrary to including HB, adding Knirps to the “SP1” motif set changes almost nothing in the pre-
diction results. The higher cut-off of 117 decreases the number of predicted elements (566, Table 4.4)
much more than adding a new motif could rise them. This also can be seen in Table 4.5, only one
result predicted with the “Kni+” motif set is novel, the other 565 are already predicted using the “SP1”
motif set.

All motif sets were also applied to the prediction of PcG protein enriched sequence fragments.
Tolhuis et al. [22] provided 131 fragments with an overall length of 3.7 Mb. Negre et al. [23]
provided 30 sequences each of length 4,000 nucleotides. Using the genome-wide cut-off, a PRE
was predicted in at most 18% of the Tolhuis sequences. Reducing the cut-off in order to adjust it
to the smaller sequence length increases the number of Tolhuis fragments with at least one PRE to
34% (Table 4.4, numbers in parenthesis). This contrast might reveal a drawback in the biological
experiment: association of PcG proteins to the DNA might not hint at a PRE at this position, because
PcG proteins are discussed to play a role in many cell-regulatory processes. On the other hand,
assuming all reported sequence fragments to be real PREs, the reason might be that functional PREs
are content with a smaller density of binding sites than required for producing a signal in thein silico
prediction. Applying the prediction to the sequences provided by Negre et al. [23] gives zero hits
for almost all motif sets (Table 4.4). Exceptions are the three motif sets containing the Hunchback
motif. Applying these sets results in always the same two sequences predicted to contain a PRE. Using
the smaller cut-off results in 10% of the sequence fragments predicted to contain a PRE (Table 4.4,
numbers in parenthesis, corrected for the HB predicted sequences). The same already discussed for
the Tolhuis sequences applies to the Negre sequences, too.

From the previous analyses, especially from the genome-wide prediction, the most promising
(stand-alone) motif set for the prediction of PREs seems to be the “SP1” motif set. It produces a
high number of predicted PREs while statistically being the most sensitive. In addition, it contains
all motifs contributing the most to the number of PREs. Consequently, it is used to demonstrate the
influence of different sequence windows on the number of predicted PREs (Figure 4.6). The higher
the width of the sequence window the higher the possible sum-scores. This leads to higher cut-offs,
which, in order to predict more PREs, have to be countervailed by the higher sum-scores.

At a first glance, the number of predicted PREs rises the larger the widths of the sequence windows
are (Figure 4.6). Nevertheless, at a second glance, this is only true to its full extend for the MC0
background model, where the number of predicted PREs increased by around 300% from a window
width of 50 to a window width of 1,500. The prediction process applied by Ringrose et al. [5] used
the very same background and a window width of 500. On the other hand, Berman et al. [77] used
a window width of 700 for their enhancer prediction. For the MC0 background, Figure 4.6 shows
that from a width of 100 up to a width of 550 the number of predicted PREs increases stronger in
comparison to the widths of 600 and higher. This forms a kind of “elbow” and choosing a width from
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Figure 4.6:Number of PREs predicted in theD. melanogastergenome using the “SP1” motif set,
dependent on the window width and certain background models. The cut-offs for the
prediction correspond to anE-value of 1.

this “elbow” is reliable in terms of a maximizing the sensitivity. Applying higher ordered Markov
chains and the shuffling of the genome as the background model clears out the “elbow” and also
shows that the number of predicted PREs only slowly increases with the sequence window width.

This analysis was also applied to the sequences of both training sets. In Figure 4.7 the influence of
the sequence window width on the number of sequences containing at least one predictable PRE can
be seen. The used motif set is again “SP1”. The cut-offs chosen are the same as for a genome-wide
prediction and each cut-off corresponds to anE-value of one. As background model, the shuffled-out
D. melanogastergenome was taken. The negative training set contains 28 sequences, and for almost
all sequence windows, none of them contains a predictable PRE. Only for smaller sequence window
widths, the cut-off is low enough to have one or two sequences to contain such a PRE. In this case,
specificity dropped from 100% to 96% or 93%, respectively.

The positive training set contains 12 confirmed PREs. Only one is found for high window widths
larger than 920 (Figure 4.7). This number slowly rises with the sequence window width becoming
smaller and smaller. For a width of 500, two sequences are found to contain a PRE. This number is
contrasted by the 5 sequences, which are found if the background model is a zeroth order Markov
chain (Table 4.4). At a sequence window width of 180, for which the specificity is still 100%, 5 out
of 12 sequences contain at least one predictable PRE. This corresponds to a sensitivity of 42%.

For the genome-wide prediction of PREs, higher window widths yield more predicted PREs. While
this is preferable in terms of a higher sensitivity (specificity remains the same), it is contrasted by the
finding that a prediction in confirmed PREs prefers small widths in order to increase the sensitivity.
This contradiction can be solved repeating the predictions with a very small, a mediocre, and a large

74



4.6 Prediction results

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 200  400  600  800  1000  1200  1400

N
um

be
r 

of
 s

eq
ue

nc
es

 p
re

di
ct

ed
 to

 c
on

ta
in

 a
 P

R
E

Window width

PREs
Promoters

Figure 4.7:Number of sequences of the positive and negative training set predicted to contain at least
one PRE, dependent on the window width. The motif set used is “SP1”. The cut-offs
for the prediction correspond to anE-value of 1 and are calculated using the shuffled-out
D. melanogastergenome as background.
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sequence window width. After analyzing the overlap for such a prediction, the predicted PREs can be
classified as short, mediocre, and long.

4.7 Smoothing sum-scores

In the prediction process each sequence window is assigned a sum-score resulting from adding up
the weights of found motifs. This window is shifted along the sequence in small steps. Therefore,
adjacent windows overlap with large areas. As a result, sum-scores for adjacent sequence windows
often differ by only small amounts, if they differ at all.

Moreover, adjacent sequence windows with sum-scores exceeding the cut-off are combined to
bands. This ensures that predicted regulatory elements (which are bands after all) are maximal in
width and do not overlap each other. As a consequence, a band fully covers a regulatory element, and
adding more windows from left and right to the band will not improve the mean sum-score.

Sum-scores are smoothed before bands are created. Smoothing means calculating the mean value
over K adjacent sequence windows, one half before the intial window, the other half following that
window. It is applied to both background and genomic data. In general, smoothing lowers high
peaks and flattens high-scoring areas. This results in lower cut-offs. However, the hope is that high-
scoring areas in genomic data either span over more adjacent windows or are higher in comparison
to background data. This would enable them to exceed the cut-off even after the smoothing. In this
sense, the lower cut-off will countervail the smoothing process, eventually resulting in more predicted
regulatory elements.

Together with the smoothing process the width of the sequence window is changed. Smaller se-
quence windows have two advantages. First, they can cover small regulatory regions. Functional
PRE/TREs are reported to be as small as 138 (MCP138, [109]) or 219 (Ab-Fab, [110]) nucleotides
long. Second, they can cover larger regulatory regions with many adjacent sequence windows having
high scores. This makes the smoothing of sum-scores valuable. However, small sequence windows
mean overall smaller sum-scores and cut-offs, since fewer motifs fit into such windows. This is ex-
pected to be a disadvantage, since high-scoring windows will not easily rise above the noise level.

In Figure 4.8, cut-offs for different widths of the sequence window are shown. As expected, for
the same window width, smoothing in general lowers the cut-off. The cut-offs are calculated for two
fixed-sizeK’s, K = 11 andK = 17, and three variable-sizedK’s. The varyingK’s are calculated from
the width of the sequence window:

K =
(⌊

α · width
shi f t

+1

⌋
& ∼ 1

)
+1. (4.1)

The term(. . .& ∼ 1) + 1 makes sure that eachK is odd (by switching the last bit off, and adding
one to the then even number). The factorα is 0.5 for the variable sizedK’s named “One half”, 1 for
“Double” and 2 for “Triple”. The names correspond to the overall width of the smoothing window. For
instance, a window width of 500 corresponds to aK of 27, 49, and 101, respectively. And calculating
the mean over 101 adjacent sequence windows, each shifted by 10, gives an overall window width of
101·10+ 500≈ 1500, which triples the original width. Note that for “Double”, the 1 is not added
before rounding down, but subtracted (Equation 4.1). This change leads to appropriateK’s for very
small window sizes.
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to sequence window scores. All cut-offs correspond to anE-value of 1 and were calculated
under the following terms: “SP1” motif set, PREs vs. promoters training set, sequence
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Figure 4.9:Number of PREs predicted in theD. melanogastergenome dependent on the window
width and certain smoothing strategies. The cut-offs for the prediction correspond to an
E-value of 1 and were calculated under the following terms: “SP1” motif set, PREs vs.
promoters training set, sequence window shifted by 10, 11.7 Gb of shuffled-outD. mela-
nogastergenome.

For large sequence windows a smoothing with fixed-sizedK does not result in a reduced cut-off.
The reason is that the relative impact of 10 exchanged nucleotides (a loss of 10 nucleotides at the
beginning, and an additional 10 nucleotides at the end) is smaller the larger the windows are. In
addition, small high-density areas of motifs are covered by more adjacent windows if they are larger,
resulting in such areas to survive the smoothing, ifK is relatively small. An example might make this
clear. A small high-density area of size 250 is fully covered by 25 adjacent sequence windows if the
window width is 500, in comparison to only 5 if the width is 300. WithK = 17 and a width of 300 the
area will not survive the smoothing, whereas for a width of 500 and higher the area is not smoothed
out.

All three variable-K strategies led to lower cut-offs in comparison to without smoothing (Fig-
ure 4.8). The lowest cut-offs are obtained with the most extensive smoothing. But the question
is, how does such smoothing affect the prediction of PREs?

In Figure 4.9, the prediction of PREs in theD. melanogastergenome is shown, dependent on
window width and three varied-K smoothing strategies. In general the number of predicted PREs
increases with increasing the window width. Even for small window widths up to 150 candidate PREs
are successfully predicted. Nevertheless, there is no difference in the applied smoothing strategy for
such small widths. Thus, these regulatory elements must be much longer.

In comparison to omitting a smoothing, the “One half” as well as the “Double” smoothing strategy
has lower cut-offs (Figure 4.8). Nevertheless, in the prediction process, the lower cut-offs do not result
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in more predicted PREs (Figure 4.9). Only in applying the “Triple” strategy, the very low cut-offs pay
off, resulting in up to 30% more predicted PREs.

4.8 Discussion

In this chapter the complex prediction pipeline was analyzed with the task in mind to increase the
number of predicted PREs, while maintaining a high specificity. Several statistical considerations
make the task harder, since the question needs to be answered whether a prediction can be trusted or
not.

The first task is always to choose motifs that are significant for the elements to be predicted. In
general, the more significant the used motifs are the higher the number of predicted regulatory ele-
ments. The significance of a motif can be judged in comparison to a background. Weighting motifs
is a first indicator of a motif’s significance, because enrichment or avoidance of a motif can be recog-
nized. Enrichment in the positive training set in comparison to the negative training set leads to high
positive weights, avoidance leads to negative weight. Combining the single motifs to double motifs (a
motif pattern containing two single motifs with a distance constraint in-between them) and weighting
the double motifs gives insights not only into whether the motifs are enriched/avoided but also into
whether the motifs occur closely together. Such double motifs are only found if both comprised single
motifs occur close to each other. Judging double motifs by the weight, the most important motif for
PRE prediction is the Pho motif. It is assigned very high weights not only as a single motif [5] but
also as a double motif in combination with all other motifs. In the latter sense, other important motifs
are En1 and SP1. Contrary to this high weighting motif, both the long (G10) and short (GA) GAF
motif yield negative weights. The reason is that motif pairs composed of these two motifs occur rarely
in the positive training set, but frequently in the negative training set. Nevertheless, combined with
other motifs than themselves both GAF varieties yield high weights showing that co-operation and
teamwork of different binding factors are very important for the functionality of a PRE.

The background model in order to obtain a cut-off is important for statistical evaluation. The more
the background model resembles the target genome the higher the cut-offs for the sameE-value will
become. In this thesis the target genome is fromDrosophila melanogaster. The consequence of a
higher cut-off is a smaller number of predicted elements. But what are characteristics of the genome a
randomly generated sequence lacks? From the genetic point of view, a random sequence lacks genes,
regulatory elements, repeats, and low-complexity regions. Such elements resemble the semantic of
the genome and are built upon shorter units that have to occur in the correct order and with a certain
arrangement. Such short units are motifs, exons, nucleotide boxes, start sites, and so on. From the
point of view of the prediction of PREs, a random sequence should conserve the motifs as much as
possible while disrupting the structure of a regulatory element. This would lead to the correct number
of motifs in the background model, while clusters and assemblies of motifs occur merely by chance.
Markov chains of low order cannot preserve the number of motifs, because the order of the chain is
normally shorter than the length of the motif, and therefore the motifs occur by chance. However,
with the hexanucleotide 5th order Markov chain suggested by Thijs et al. [88], the number of motifs
of length 6 and less is preserved, if the model was trained on the target genome. Such a model has
already 4,096 parameters. The advantage of shuffling the source genome is that it can preserve the
number of motifs very well. This was shown by calculating the sum over the log-odd-scores for all
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motifs of length 5 and 6 in comparison to the target genome. For the generation of random sequences it
is therefore strongly recommended to replace Markov chains by shuffling the genome. This produces
sequences most similar to the target genome in terms of motif occurrences.

In the prediction process, several motif sets (a list of single motifs combined to double motifs) were
used for the prediction of PRE/TREs. Such motif sets differ in only few motifs. In general, the larger
the motif set was the higher became the cut-off (corresponding to anE-value of one), first, due to
more double motifs contributing to the score of a sequence window, and second, due to the higher
chance of single motifs occurring close together. When using the same motif set, a higher cut-off
would reduce the number of predicted elements, because fewer sequence windows exceed the cut-off
with their scores. Adding a motif to an already existing motif set increases the cut-off as well. Two
cases are now possible. If the number of predicted elements increases despite the higher cut-off, the
motif seems to occur frequently near the other motifs. In this case, the double motifs comprising the
new motif add to the score of a sequence window in a way that more sequence windows exceed the
cut-off. The addition to the scores of sequence windows is higher than the addition to the cut-off. This
leads to the conclusion that the motif is important for the predicted elements and, moreover, to their
functionality. The other case is when adding a motif to a set causes a drop in the number of predicted
elements. The new motif seems to not occur near the other motifs from the set. This leads to the
conclusion that the new motif has no impact on the functionality of the predicted element.

In the performed PRE prediction on a genome-wide level, adding SP1 to the DSP1 motif set in-
creased the number of predicted elements from 481 to about 700. Therefore, SP1 is very important
for PRE functionality. This supports the findings of Brown et al. [9], now not only limited to the
analyzedengrailedgene but genome-wide. Grainyhead, on the other hand, was proposed to interact
with Pleiohomeotic [11]. This cannot be confirmed, because in the prediction process adding Grh to
the SP1 motif set leads to a drop in the number of predicted PREs by about 100. It is probable that
only the Grh protein is involved in PRE functionality and not the corresponding binding site.

Two robustness tests were performed. For motifs added to the sets in the context of a robustness
test, the number of predicted elements should not increase. Consistently, adding Knirps to the SP1
motif set led to a drop in the number of predicted elements. Knirps is unrelated to PRE functionality
and the test was passed for this motif. On the other hand, adding HB to the SP1 motif set increased
the number of predicted PREs by about 200.

As a consequence, concluding that SP1 is important for PRE/TRE functionality imposes the ques-
tion whether HB is somehow important, too, and if not, why not. The first possibility is that, by
including HB into the SP1 motif set, additional enhancer elements are predicted. This is supported
by the fact that Pho was reported to occur in enhancer elements [111]. Nevertheless, the sole pres-
ence of Pho does not give the high scores necessary to exceed the cut-off. The other motifs must
be present as well. The second possibility is that PREs are predicted that contain many HB binding
sites. Mahmoudi et al. [80] showed that binding sites for hunchback occur frequently in theUbx
PRE. The authors suggest a potential role for HB, not only during the initiation ofUbx repression,
but also during the transition from establishment to maintenance. This transition seems to involve
dMi-2 recruitment by HB [112]. Other authors show that Hunchback is an early regulator for some
PRE/TREs [113]. The results from the genome-wide prediction support the assumption that HB plays
an important role in PRE functionality. However, it is noteworthy that Poux et al. [114] were able
to establish HB-independent PcG repression of theUbx promoter. But this does not contradict the
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importance assumption. It merely shows that the role of HB during the transition from establishment
to maintenance can be adopted by other factors as well.

All in all, the prediction pipeline knows many variables, and all such parameters influence the
prediction results to a certain extend. The most promising prediction uses a window width of 500,
the “SP1” motif set, the PREs vs. promoters training set, and a cut-off obtained with the shuffled-out
D. melanogastergenome as background without smoothing. This results in 150 PREs, which need to
be checked for their biological relevance.
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5 Motif discovery by evolutionary means and
motif clustering

In this chapter a motif discovery approach for the de-novo identification of over-represented motifs is
presented. It was developed foremost for the identification of double motifs in the training sets used
in the prediction of PREs. The goal was to identify double motifs and to repeat the genome-wide
prediction of PRE/TREs in order to find sequences similar to the already confirmed PREs from the
positive training set. In addition to the motif discovery, a motif clustering approach is presented in
this chapter. It was developed to subsequently reduce the number of de-novo discovered motifs, but
can be applied to any number of motifs with any order and complexity. The clustering is based on
aligning motifs gap-free and also on calculating the distance between the motifs using this alignment.

Both, the motif discovery and the clustering of motifs were implemented into thejPREdictor. The
reason was that this allowed for the reuse of all classes and methods dealing with motif definition,
sequence reading, and motif weighting. However, plans exist to source out the discovery and cluster-
ing from the originaljPREdictorand to incorporate them into a new program calledjEvolver. While
this is not a difficult task, it is time-consuming, especially the development and implementation of
adjusted (graphical) user interfaces. As a consequence, the details on function and implementation of
motif discovery and clustering are presented in this chapter, and not in Chapter 3.

5.1 Problem definition

The task of the motif discovery approach presented here is to identify an unknown motif over-
represented in the sequences of the model with respect to the sequences of the background. The
objective function to maximize is the weight of the motif, defined as the normalized log-ratio between
the number of matched binding sites in the model versus the number of sites in the background (see
Equation 3.4 on Page 43). This task is addressed with an evolutionary approach.

Some characteristics of the motifs used in this work make the situation for a motif discovery unique.
While all presented motif discovery approaches strive to find optimal single motifs based on certain
objective functions, the evolution built into thejPREdictor is able to evolve not only basic motifs
but also motif patterns. Therefore, it is possible to obtain, for instance, double motifs with high
weights, which fit into the prediction process presented in Chapter 4. For all motifs, a high degree
of degeneration is allowed. In addition, the error number allowed for a match is subject to evolution
as well. Such characteristics increase the search space by a great amount, which is the reason, why
enumeration approaches cannot be applied. Nevertheless, the main design reason behind the evolution
built into thejPREdictorwas the discovery of high-weighting double motifs.

Some restrictions to motifs and the complexity of motifs exist, which makes them more practical
to handle. The length of the motif can vary in the limits of 5 to 10 nucleotides. It was chosen in
accordance to the length of most motifs presented in this work, i.e. Zeste, the core Pho, DSP1, and the

83



5 Motif discovery by evolutionary means and motif clustering

two GAF motifs. Longer motifs are available by using the basic motifs in motif patterns with a small
maximal distance. Both evolution strategies are capable of evolving basic motifs as well as double
motifs. Basic motifs are regular expression motifs. Double motifs comprise two such motifs. No
restriction exists to the number of degenerated positions, nor to the amount of degeneration. All letters
of the IUPAC code are available for mutation. The distance between two basic motifs comprised in
one double motif is restricted to a maximum of 440. This is twice as much as the distance used in the
PRE/TRE prediction.

One run of the motif discovery based on motif evolution already yields 20 motifs with high weights.
These motifs are never identical. Invoking the motif evolution a number of times increases the num-
ber of high-weighting motifs significantly. Even after removing duplicates, the number stays high.
In order to reduce the number of motifs to a manageable degree, a motif clustering was implemented
into thejPREdictor. Since the number of clusters is unknown beforehand, a hierarchical clustering is
performed. The task behind is to calculate the distance between each two gaplessly-aligned motifs,
and to combine the motifs with the least distance into one cluster (agglomerative approach). Then,
a consensus motif for the cluster is calculated, which acts as representative. What makes the task
interesting, and more complicated, too, is that the clustering has to deal with different motif repre-
sentations as well as different orientations of motifs. In addition, clustering should not only function
with basic motifs, but also with motif patterns. This was also the reason, why the clustering was
implemented into thejPREdictor. The full algorithm is explained in Chapter 5.3.

5.2 Evolution strategy with and without rewarded selection

Two evolution strategies are built into thejPREdictor, a basic and an extended one. The basic one is
abbreviated “ES” (evolution strategy), the extended one is named “RewardedSelection”. Both can be
invoked via command-line interface using one of the following special parameter:

--motifEvolutionES

--motifEvolutionRewardedSelection

The evolution strategy implemented into thejPREdictor is (n/2+ 5n). This annotation describes
the following steps. With the beginning of each cycle, the parental generation containsn motifs. In
the evolution step, two of them are randomly selected, recombined, mutated, and afterwards added to
the offspring generation. This is repeated 5n = 100 times. In the evaluation step the offsprings are
weighted. Then, in the selection step, parents and children are mixed and the best-weightingn motifs
are chosen to make up the next generation. ThejPREdictorworks with n = 20. This procedure is
repeated a number of times, per default 1000. The number of cycles can be set via command-line
parameter:

-c 1000

Simulated annealing is incorporated into the cycles to allow jumps over the search space in order to
cover it as much as possible and to allow for suboptimal motifs to survive into the next generation. The
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starting temperature of the annealing process is the number of cycles to perform. The end temperature
is always zero. In every cycle the temperature is reduced by one. The first task of search space
covering is achieved by coupling the number of mutations introduced from parent to offspring with
the temperature. The formula, which gives the number of mutations, is 1+blog10(temperature+1)c.
The minimum number of mutations is one for temperatures below 10. When motifs are strongly
mutated they may get assigned a low weight, which would prevent them from surviving the subsequent
selection step. But the possibility exists that this motif has just discovered a higher hill to climb, but
has landed on the base. Thus, the motif must be allowed to survive the selection step and to be
part of the next parental generation. Therefore, before the selection step is performed, the weight of
every motif of parental and offspring generation is increased by a random number. The numbers are
uniformly distributed in the range zero to a maximum numberr, which is calculated by incorporating
the temperature:

r =
∣∣∣∣max

M
{w(M)}−min

M
{w(M)}

∣∣∣∣ · √temperature
5

, (5.1)

with w(M) being the weight of the motif. For high temperatures,r is large and for small temperatures
below 20,r is small. However,r only amplifies the range of weights already there. The existence
of large differences in the motif weights supports the low-weighting motifs, becauser becomes large
and their chance to overpower the high-weighting ones is increased.

The actions performed in the evolution step depend on the motif type. Double motifs are recom-
bined before they are mutated. Non-pattern motifs are directly mutated. For the recombination, two
motifs are randomly chosen from the parental generation, and from each motif, one basic motif is
drawn. Together they build the new double motif. The distances between the two basic motifs are
also drawn completely at random from the parents. The recombination step is repeated 100 times, and
afterwards, all 100 double motifs are mutated. For non-pattern motifs, a motif is repeatedly drawn
from the parental generation and mutated.

Mutation events mainly affect the sequence of regular expression motifs. Mutation events are mu-
tually exclusive and can only happen simultaneously to a basic motif, if the number of mutations is
greater one. The first mutation event is length alteration, either at the end or at the beginning. The
motif is either shortened by one position, or elongated. In case of elongation, a randomly chosen nu-
cleotide is introduced. The second mutation event is applied to the error number allowed for a match.
This number is switched between zero and one. The third mutation event affects base alterations. One
position in the motif is randomly chosen, and either increased or decreased in its degeneration level,
or the nucleotide is replaced. An increase in degeneration level reflects the mutation of one binding
site, while other binding sites are not changed. Nevertheless, the change does not cause a complete
lose in binding affinity. Decreasing the degeneration level reflects a change in the binding factor,
which is more selective and does not bind to all sites anymore. To increase the degeneration level
bases are added to the position, e.g., adding anA to aC yields aM, and adding aT to theM yields an
H. Reducing the degeneration level acts vice versa.

For double motifs, an additional characteristic under mutation is the distance between the two
motifs. Either the minimum distance or the maximum distance is mutated, both in the range[0,440].
In order to change the distance a random number from a normal distributionN(0,10) is drawn and
added to the distance. If the minimum is no longer smaller than the maximum, both distances are
exchanged.
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5 Motif discovery by evolutionary means and motif clustering

The mutation events have certain probabilities to occur. If one mutation event is incurred into a
motif, the probability that this event has changed the motif in length is 5%. With 2%, the number of
errors allowed for a match is altered. In case of a double motif, another 5% are allotted to distance
mutations. As a consequence, for double motifs, nucleotide alterations have an 88% probability. For
basic motifs, the 5% probability for distance mutations is divided between the other probabilities on
equal terms. ThejPREdictorallows the user to change the probabilities and even to switch recombi-
nation on or off. The command-line parameter is:

-C length,distance,error,nucleotides,recombination

The values given for length, distance, error, and nucleotides, can have an arbitrary range. They are
recalculated to probabilities. Negative values are assumed to be zero. The value for “recombination”
is either zero or one to switch it off or on, respectively. The settings can become quite handy, if only
single motif characteristics should be under evolution. In order to evolve the distances between al-
ready known double motifs, distance mutations should have a probability of 100%, and recombination
events have to be switched off:

-C 0,100,0,0,0

Another application would be the discovery of a basic motif with prior knowledge about its length.
In this case, the motif must be given as a pattern to determine the length (e.g. 7), and double motif
creation must be switched off. In addition, length alterations have to be disabled:

-d NNNNNNN -p single -C 0,0,5,95

In the selection process, the 20 highest-weighting motifs are chosen to form the parental generation
for the next evolutionary step. As was already discussed, simulated annealing affects the weights
to introduce a random element into the selection. The procedure “RewardedSelection” changes the
selection process once more in order to balance out the number of binding sites over the model se-
quences. The normal “ES” strategy does not incorporate the balancing. “ES” should only be used, if
great uncertainty exists about the input sequences carrying the binding site. Nevertheless, balancing
out does not mean that all model sequences are forced to contain a specific amount of binding sites.
Motifs occurring everywhere, or almost everywhere are rewarded and survive with greater probability.
Motifs, which already occur frequently, and therefore have high weights, survive regardless.

The rewarding system uses the information entropy to calculate a factor, which is afterwards mul-
tiplied to the weight. The formula for the entropy factor is

fM =−
k

∑
i=1

pM,i · ln(pM,i) , (5.2)

with k being the number of sequences in the positive training set (model) andpM,i = f rM,i

∑k
j=0 f rM, j

being

the probability mass function of the occurrences of motifM in the model sequences. In Figure 5.1,
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Figure 5.1:Entropy calculation in a system with two random variables. In this example, the variables
are the occurrences of a motif in two sequences. The occurrences are recalculated to
probabilities via probability mass function. These probabilities are used in calculating the
information entropy afterwards.
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Table 5.1:Influence of a rewarded selection step in the evolution on the number of occurrences of
discovered motifs (M1 to M5) in sequences of the positive training set (model seq 1 to
12). The motifs were previously discovered running the motif evolution in either “ES” or
“RewardedSelection” approach. The rewarded selection algorithm alters the weights before
the selection step by multiplying them with the information entropy factor. The maximal
information entropy is 1.08 (column “Opt”).

ES Opt Rewarded Selection
M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Model seq 1 16 0 3 0 0 1 15 1 5 4 0
Model seq 2 0 2 7 0 0 1 5 3 4 0 1
Model seq 3 0 0 0 2 1 1 0 1 0 4 1
Model seq 4 6 1 0 3 4 1 7 2 0 0 3
Model seq 5 0 2 9 0 0 1 6 0 0 21 4
Model seq 6 12 0 0 0 0 1 0 9 10 1 3
Model seq 7 1 0 0 1 0 1 0 0 0 0 6
Model seq 8 5 11 0 3 0 1 4 12 17 3 1
Model seq 9 0 0 0 1 0 1 0 0 0 2 2
Model seq 10 0 18 0 0 65 1 6 12 15 6 6
Model seq 11 0 1 0 2 0 1 4 3 3 5 0
Model seq 12 0 0 0 0 0 1 2 1 1 9 0
Entropy 0.59 0.54 0.44 0.74 0.13 1.08 0.84 0.78 0.72 0.81 0.87

the information entropy for a model containing only two sequences is shown. This entropy factor
maximizes for one motif, if its occurrences in all model sequences are equal. The influence of the
rewarding system on the discovery of motifs can be seen in Table 5.1. Most motifs obtained by
applying the “ES” strategy yield low entropy factors, because they are present in only few model
sequences. In comparison, the motifs obtained by applying the “RewardedSelection” strategy occur
more uniformly and equally distributed over the sequences of the model, and therefore have high
entropy factors. However, rewarding balanced-out motifs does not guarantee that the motifs occur in
all sequences. This is an advantage over other motif discovery strategies, especially probabilistic ones
like Gibbs sampling.

As a consequence of both rewarding system and simulated annealing the motif’s weights are
changed. The selection step chooses the 20 highest-weighting motifs always after all changes are
incorporated into the weights. The final weightw′(M) of a motifM in the “ES” strategy, thus without
rewarding factor, is calculated as:

w′(M) = w(M)+F(0, r) . (5.3)

The complete formula including both rewarding factor and random number from the annealing process
looks like this:

w′(M) = w(M)+F(0, r)+w(M) · fM = w(M) · ( fM +1)+F(0, r) . (5.4)

In both equations,F(0, r) specifies the uniform distribution, from which a random number is drawn.
Note that both weight changing processes are applied to the original weight. This is the reason, why
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5.3 Motif clustering

the complete formula looks a little bit strange. First, the random number from the simulated annealing
is added, and in the second step, the original weight is rated with the rewarding factor and added as
well.

One cycle in the evolutionary process consists of mutating, weighting, and selecting. With every
cycle, the temperature is reduced by one. If it reaches zero, the evolution ends and the 20 highest-
weighting motifs are printed out by thejPREdictor. The results produced by the evolution also depend
on the initial generation. Two ways exist to set the initial generation, either by letting it be created
randomly, and by providing it to the program. If no motif is given to thejPREdictor(use command-
line parameter “–G” to prevent an accidental start of the evolution with the built-in motifs), double
motifs are generated randomly. For the evolution of basic motifs, one or more template motifs are
always necessary, which either consist of allN nucleotides or which are randomly generated outside
the jPREdictorprogram.

5.3 Motif clustering

An agglomerative (bottom-up) and hierarchical clustering is performed over all motifs provided via
option file. An example for a dendrogram formed after a complete clustering can be seen in Figure 5.5.
Note that the clustering performed is bottom-up, even if the term in this example is unsuited, since
the unclustered motifs are not arrayed at the bottom, but at the top. The command-line parameter to
invoke a clustering is:

--clusteringXxxxYyyy

Xxxx specifies the distance metric, and Yyyy identifies the clustering approach. If the number of
clusters is known beforehand, use parameter ’-C’ to provide it to the program. Parameter ’-c’ defines
a threshold to stop the clustering, when the optimal distance exceeds this value. If both parameters
are omitted a full clustering is performed, yielding only one super cluster.

Each basic motif to be clustered is represented internally as a PSPM. Consequently, motif patterns
contain two or more such PSPM motifs as well as minimal and maximal distance in-between each
two. Accessing a single motif out of a pattern and the values in its two-dimensional matrix is done
in the formmk,l ,n, wherek represents the motif order,l a position andn the value within the vector.
If single motifs are clustered,k is constant withk = 0. Indices can be omitted to refer to the motif
alone (onlyk is given), or a special position within the motif (k andl are given). Counting for all three
indices starts with zero.

5.3.1 Distance measure

In order to cluster motifs correctly a relation measure between two motifs must be defined. The
jPREdictorprovides several relation measures. Using distances is one possibility. Given an alignment
(explained below) for two double motifs, the distance can easily be calculated as sum of sum over each
two positional vectors. The shift value represents an alignment without gaps and defines the number
of nucleotides the first single motif is shifted against the second one. Since double motifs consist of
two single motifs, two shift values must be defined for an alignment between two double motifs. A
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shi f tvalue=−2 shi f tvalue= 0 shi f tvalue= 1
A C G T n
| | | | |
n n G T A

A C G T
| | | |
G T A n

n A C G T
| | | | |
G T A n n

Figure 5.2:Gapless alignment of two nucleotide sequences (ACGT andGTA) using the shift value,
which defines the number of nucleotides the first motif is moved against the second. The
n letter defines a position, where all nucleotides are possible to occur.

shift value of zero means, both single motifs start at the same position. For values smaller than zero
the first motif starts earlier than the second (see Figure 5.2).

The distance value between two single motifsmx andmy is calculated with the following equation:

distshi f t(mx,my) =
max(|my|,shi f t+|mx|)

∑
i=min(0,shi f t)

distnuc

(
{

mx,i−shi f t i ≥ shi f t∧ i < shi f t+ |mx|
N otherwise

,{
my,i i ≥ 0∧ i < |my|
N otherwise

) (5.5)

whereN denotes a vector of background probabilities for all nucleotides of the alphabet. Indices to
denote the positional vectors start with zero, and thus are always less than the length of the motif. The
distnuc function is defined for two positional vectors the size of the alphabetΣ:

distnuc(p,q) =
|Σ|−1

∑
i=0

|pi−qi |a . (5.6)

In case ofa = 1, the simple distances over every pair of values is summed up. This is called the
Manhattan distance. For the Euclidean distance to be calculated,a = 2. In both cases, the distance
measure has a range of[0,∞] and if comparing two distances, the minimal value is the optimum.

5.3.2 Likelihood measure

Another way to express the relationship between two motifs would be using a likelihood measure.
The value expresses, how well one matrix explains the other one, and vice versa. It is calculated
similar to the distance measure, but multiplies over probabilities:

Lshi f t(mx,my) =
max(|my|,shi f t+|mx|)

∏
i=min(0,shi f t)

con fnuc

(
{

mx,i−shi f t i ≥ shi f t∧ i < shi f t+ |mx|
N otherwise

,{
my,i i ≥ 0∧ i < |my|
N otherwise

) (5.7)
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The used functioncon fnuc is defined similar to thedistnuc function, but adds products and not dis-
tances:

con fnuc(p,q) =
|Σ|−1

∑
i=0

pi ·qi . (5.8)

It is possible thatcon fnuc yields a zero value if one or both factors are zero. In this case, the pseudo
count value 0.01 is taken instead, which preventsLshi f t from becoming zero overall. The likelihood
measure has a range of[0,1] and is often used as a log-likelihood with the new range[−∞,0]. In both
cases, the optimal value when comparing two likelihoods is the maximum.

The likelihood of one motif to express another one is given by the above equation forLshi f t. As-
suming both matrices to be of the same length, and to be aligned without shift gives a much simpler
equation:

L(mx,my) =
|mx|−1

∏
i=0

|Σ|−1

∑
j=0

mx,i, j ·my,i, j . (5.9)

where|Σ| is the size of alphabet, 4 in the case of DNA bases. This approach has a complexity of
|mx| · |Σ|. A much more straight-forward approach is working with sequences. This is much more
intuitive, because a motif is the representation of binding sites. Binding sites are simple sequences
and not as complex as motifs. Therefore, the best would be to generate all possible binding sites for
one motif, and afterwards add the probabilities that they can be generated with the second motif. This
should give the likelihood for the first motif under the second. More formally, generate all possible
sequences using matrixmx, S←mx, and then add their probabilities under the matrixmy, normalized
with the occurrence probability of their creation. The equation for this is

p(mx|my) = ∑
S←mx

p(S|my) · p(S|mx)

= ∑
S←mx

|S|−1

∏
i=0

my,i,Si ·mx,i,Si .
(5.10)

The termmy,i,Si refers to motif matrixmy, positional vectori, and nucleotideSi within i, for mx,i,Si

accordingly. This approach has a complexity of|Σ||mx| · |mx|. The complexity is much higher than
calculatingL. Now, it should be proven that this sequence generating approach is interchangeable
with the likelihood calculation, and that they give the same result:L(mx,my) = p(mx|my). The proof
can be found in Figure 5.3. It starts withp(mx|my) and transforms this intoL(mx,my). First, a
generalization is made. The sum then runs over all possible sequences of length|mx|, not only the
ones that can be created from matrixmx. This presents no problem, because the probability for a
sequence that is not creatable undermx is zero at one or more positions and thus the overall product
turns zero as well. At line three sequences are expressed as single nucleotides, as references into the
alphabet. Line four and five show how different sums can be treated as constants under the former
sums, and thus can be moved to almost every position in the sum chain. This reflects the independence
of positional order. At the last three lines, this independence is utilized to obtain a product of every
positional sum, which eventually leads to the likelihood function, thus givingL(mx,my) = p(mx|my).
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p(mx|my) = ∑
S←mx

|S|−1

∏
i=0

my,i,Si ·mx,i,Si

= ∑
S

|S|−1

∏
i=0

my,i,Si ·mx,i,Si

=
|Σ|−1

∑
n0=0

|Σ|−1

∑
n1=0

. . .
|Σ|−1

∑
n|S|−1=0

|S|−1

∏
i=0

my,i,ni ·mx,i,ni

=
|Σ|−1

∑
n0=0

|Σ|−1

∑
n1=0

. . .
|Σ|−1

∑
n|S|−1=0

my,0,n0 ·mx,0,n0 ·my,1,n1 ·mx,1,n1 · . . .︸ ︷︷ ︸
constant under the last sum overn|S|−1

·

my,|S|−1,n|S|−1
·mx,|S|−1,n|S|−1

=
|Σ|−1

∑
n0=0

. . .
|Σ|−1

∑
n|S|−2=0

my,0,n0 ·mx,0,n0 · . . . ·my,|S|−2,n|S|−2
·mx,|S|−2,n|S|−2

·

(
|Σ|−1

∑
n|S|−1=0

my,|S|−1,n|S|−1
·mx,|S|−1,n|S|−1

)︸ ︷︷ ︸
constant under every sum before

= (
|Σ|−1

∑
n0=0

my,0,n0 ·mx,0,n0) · (
|Σ|−1

∑
n1=0

my,1,n1 ·mx,1,n1) · . . . ·

(
|Σ|−1

∑
n|S|−1=0

my,|S|−1,n|S|−1
·mx,|S|−1,n|S|−1

)

=
|S|−1

∏
i=0

|Σ|−1

∑
ni=0

my,i,ni ·mx,i,ni

=
|mx|−1

∏
i=0

|Σ|−1

∑
j=0

mx,i, j ·my,i, j = L(mx,my) .

Figure 5.3:Proof of p(mx|my) = L(mx|my). mx andmy are both matrix motifs of type PSPM. The
equations calculate the probability of matrixmx under the given matrixmy. p(mx|my) enu-
merates over all possible sequences generated frommx andL(mx|my) directly multiplies
the matrix values. For further explanations see text.
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5.3 Motif clustering

5.3.3 Alignment

Aligning two motifs means the optimization of their relation measure. An alignment of two single
motifs is defined by ashi f t-value, which expresses how the first motif is shifted against the sec-
ond one. This alignment has to be gapless. An example can be seen in Figure 5.2. The pre- and
post-matching sites that miss a corresponding partner are paired with either theN nucleotide (equal-
distributed probability for every nucleotide) or another probability vector. Per default, thejPREdictor
uses the background probability vector. The equation for distances is the following:

shi f tmx,my = argminshi f t≥−|mx|,shi f t<|my|{distshi f t(mx,my)} . (5.11)

Since likelihoods have to be maximized, the equation looks like this:

shi f tmx,my = argmaxshi f t≥−|mx|,shi f t<|my|{Lshi f t(mx,my)} . (5.12)

Motif patterns are aligned basic motif by basic motif. Thus, two motif patterns should only be
aligned if they comprise the same number of basic motifs. Each pair of basic motifs is aligned on
its own yielding ashift-value which is only valid between the two basic motifs. Consequently, align-
ments of motif patterns consist of two or more alignments of basic motifs. In case of distances, the
results from these basic motif alignments are added up to obtain the alignment value for the two motif
patterns. In case of likelihoods, the results from all basic motif alignments are multiplied.

5.3.4 Consensus motif

In the clustering process two motifs with minimal distance or maximal likelihood must be combined
to form a new motif, the consensus motif, which, at the same time, represents the cluster. In order to
create the consensus motif theshift value for the motif pair has to be known. Given theshift value a
new single motifmz is built from the two basic motifsmx andmy using this formula:

\
i≥min(0,shi f t),i<max(|my|,shi f t+|mx|)

mz,i−min(0,shi f t)←meannuc

(
{

mx,i−shi f t i ≥ shi f t∧ i < shi f t+ |mx|
N otherwise

,{
my,i i ≥ 0∧ i < |my|
N otherwise

) (5.13)

It is actually nearly the same formula as calculating the distance between two motifs. The first
difference is that the functionmeannuc is called instead of functiondistnuc. The second difference is
that the result of the function call is not used for calculation, but rather it is assigned to build up the
new motif. The functionmeannuc builds a new positional vector from two given ones by calculating
the mean:

meannuc(p,q) =
p+q

2
. (5.14)

When a motif is fitted into an existing cluster or when two clusters are combined, calculations are
done with the respective representative of the clusters. In this case, the functionmeannuc is changed
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5 Motif discovery by evolutionary means and motif clustering

�� ��Initialization

• add motifs into a list

• calculate distance or likelihood between each two motifs�� ��Loop

• check break condition (number of clusters, cut-off) and break accordingly

• search motif pair with minimal distance/maximal likelihood

• remove both motifs from the list

• generate consensus motif

• add consensus motif to the list

• calculate distance or likelihood between consensus motif and all remaining motifs

• repeat loop until list contains exactly one motif�� ��Afterwork

• print the consensus motifs of all remaining clusters

• generate dendrogram

Figure 5.4:The motif clustering algorithm as implemented into thejPREdictor. The distance mea-
sures are either Manhattan, Euclidean, or Likelihood. While the first two have to be min-
imized between motifs in order to form a cluster, the likelihood measure is to be maxi-
mized. The break condition is checked before the first clustering step in order to avoid a
clustering, if the user-given requirements are not met.

in a way to normalize the two vectors by the cluster size:

meannuc(p,q,cp,cq) =
p·cp +q·cq

cp +cq
. (5.15)

Thus, the new consensus motif is truly the average motif over all motifs of one cluster.

The consensus motif for two motif patterns is obtained accordingly. Equation 5.13 is applied to
each aligned pair of basic motif. The new consensus motif obtains the mean distances between the
basic motifs.

5.3.5 Clustering algorithm

The clustering algorithm has three steps: initialization, the main loop, and follow-up work at the
end. It is depicted in Figure 5.4. A dendrogram generated from an example clustering can be seen
in Figure 5.5. Under the assumption that every initial motif is a one-element cluster, every run of the
main loop reduces the number of clusters by one.
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5 Motif discovery by evolutionary means and motif clustering

The motifs to cluster are given via option file. Any number of motifs can be clustered. Note that
basic motifs and motif patterns are not mixed in the clustering. This also applies to motif patterns
with a different number of comprised basic motifs. Also note that the length of basic motifs does not
handicap the clustering. Therefore, if the clustering itself is not restricted to end earlier, it is possible
to cluster a sequence of length 100 to a short motif of length 5. Of course, in such a case, the distance
would be very high, the likelihood would be low, respectively, which would cause these two motifs to
be clustered together very late in the process.

In the clustering process, every cluster has a representative, a consensus motif. At the end, it is
printed for every remaining cluster. The type of the final representative motif depends on the original
motif. Motif patterns to cluster have motif patterns of the same complexity as representative. Basic
motifs are output as regular expressions, PSPMs or PSSMs. Regular expression motifs are only
possible, if the initial motif was of this type, and if the motif remains unclustered to the very end. In
every other case, regular expression motifs become PSPMs. Note that in the current version of the
jPREdictorPSSMs are not recalculated to PSPMs or vice versa, and that it is therefore possible, to
mix both types of matrices, even if it is not recommended. The reason for the missing recalculation of
PSPMs to PSSMs or vice versa is that the calculation method thejPREdictoruses might be insufficient
to the user. In addition, thejPREdictorrecalculation method uses knowledge about the background
nucleotide distribution, which is normally unknown to the clustering process. And since the user has
no means to make his method known to thejPREdictor, neither matrix is recalculated. If a PSPM is
output as representative of a cluster, its threshold is set to the maximum possible threshold divided
by 10. In case of a PSSM, the threshold is set to the maximum score minus two. Both thresholds are
very restrictive and are more or less equal to search a sequence motif with one mismatch allowed.

5.3.6 End of clustering

If the clustering is unrestricted, it yields one super cluster comprising all available motifs into one
representative. Note that certain kinds of motifs are not mixed together. Therefore, there may exist
more than one super cluster at the end. But let’s assume, all motifs have the same kind of complexity.
Let N be the number of motifs, the level of this super cluster would beN−1 (also called fusion level,
see Figure 5.5).

The question now is, at which clustering level belowN the clustering has to stop, on the one hand, to
yield a reasonable amount of motifs, and on the other hand, such that all remaining consensus motifs
are most different to each other. It is important to note that no limitation is set to the cluster size.
Thus, a situation is imaginable, where the clustering stops at levelN−3, and yields 2 non-clustered
motifs and one super cluster comprising all residual motifs.

If the number of clusters to build is known beforehand, this number is simply provided to the
program via command-line parameter ’-C’. If this number is not known, an early stop must be reached
by other means.

The rule of thumb is to draw the distance measure against the clustering level and use the “elbow”-
criterion: at some point in clustering the distance will leave its near linear increase to rise more
strongly. But note that the actual “elbow” might not be identified unambiguously. For this, the first
step is a complete clustering with switched on verbose messages (command-line option ’-v’). This
will print out, among much other text, the actual clustering level and the corresponding best distance
measure. Another very simple rule is to run the clustering until the amount of motifs is reduced to
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10% of the original set. But note that this step has to be preceded by an evaluation by-hand on which
motifs to keep and which to remove. In case of initial motifs that are obtained by a motif evolution,
the motifs yielded by the clustering should be weighted once more and the 10 to 20 highest-weighting
ones should be kept. Another way to automate the stopping rule is given now.

The information criterion used to describe the stopping rule (after Akaike, therefore abbreviated
AIC, [115]) defines a relationship between the number of clusters present and the likelihood how well
the original objects are represented in their clusters. While the clustering level increases by one per
step the number of clusters actually is decreased by one, because two clusters are combined in every
clustering step. Now, for every cluster a representative, the consensus motif, is always present. This
consensus motif “explains” in a way all motifs comprised in this cluster. The degree of explanation is
expressed as a likelihood measure: the probability of motifX given motifY, p(X|Y). When clusters
are merged, the newly generated consensus motif most often explains the comprised motifs worse,
thus the within-cluster likelihood decreases. For defining the stopping rule at every clustering level
the AIC is calculated as:

AIC = 2·k−2· logL
k

, (5.16)

with k the actual number of clusters, andL the product of likelihoods over all clusters present at the
moment:L = ∏k

i=1LCi . The likelihood for one clusterC = Ci is defined as the product of likelihoods
of the consensus to all motifs comprised within:

LC = ∏
c∈C

Lshi f t(mCconsensus,mc) . (5.17)

Sincek is to be minimized and− logL is to be minimized, too, the clustering process stops when
the minimum AIC is reached. Dividing logL by k averages the log-likelihood over the number of
clusters. Another possibility would be to average over the number of original objects, by dividing
by n, thus stating how well the original motifs are explained by their respective consensus motif. In
Figure 5.6, the two formulas are visualized. Usingn is closer to the original definition of the AIC, but
it also causes the clustering to end very late, which is not preferred, since the final motifs become too
degenerated.

Note that the AIC is an incorporation of the “elbow” criterion. The AIC becomes smaller with
every clustering level, if− logL

k increases more slowly thank can fall. In every stepk decreases by
one, therefore, ifd = logLk

k − logLk−1
k−1 < 1, the AIC will decrease further. Ifd becomes greater one,

the AIC will rise. ThejPREdictordefines the cut-off for the stopping rule in terms ofd. Experience
shows that ad = 0.1 is often sufficient, when clustering few or very similar motifs.

If the clustering is invoked using the Manhattan or the Euclidean distance measure, the cut-off is
given in terms of this distance. The clustering ends, if no two motif pairs exist that have a distance
smaller than the cut-off.

In general, the clustering ends if the specified number of clusters is reached, or if the criterion
is fulfilled, whichever comes first. In all further evaluations presented in this work, the clustering
performed uses the likelihood measure in combination with the “Forward” approach. They belong
together either way, and the two main reasons for using them over distance measure and Greedy
approach is that the “Forward” approach checks the cluster beforehand, whether the new motif fits
into the cluster, and that the automated stopping rule according to the information criterion can be
applied.

97



5 Motif discovery by evolutionary means and motif clustering

Figure 5.6:The Akaike information criterion dependent on the clustering level. The initial number
of motifs wasn = 1,000. Thus,k is calculated asn minus clustering level. The motifs
originate from a motif discovery using several evolutionary runs.
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5.4 Single motif discovery: continuing the Tompa assessment

While the jPREdictormotif evolution and clustering was foremost developed to discover motif pat-
terns in model versus background sequences, it can be applied to single motifs as well. In this chapter,
the discovery of single motifs is presented in order to show the performance of thejPREdictorin re-
lation to other motif discovery tools. For this purpose, Tompa et al. [102] created a framework, which
is applied here.

5.4.1 Study design and assessed tools

Tompa et al. [102] assessed 13 motif discovery tools for the correctness of their discovery of bind-
ing sites. These sites were taken from TRANSFAC and were planted into sequences. Tompa et al.
specifically did not work with motifs but with binding sites, and they specifically did not plant sites
generated from motifs into sequences. Rather they planted confirmed binding sites from TRANSFAC
into the sequences. This is a difference, because sites generated from motifs, i.e. sites matched by mo-
tifs due to the degeneration level of the motif, need not necessarily be true binding sites. Eventually,
Tompa et al. [102] used binding sites from 26 human transcription factors, and from 6Drosophilafac-
tors. The corresponding binding sites for the factors were planted into three different sequence types,
first, the binding sites’ real promoter sequences (’real’), second, randomly chosen promoter sequences
from the same genome (’generic’), and third, sequences generated under a third order Markov model
(’markov’). All in all, this procedure leads to 76 human and 18 fly data sets.

The following tools were assessed: AlignACE [87], ANN-Spec [97], GLAM [116], MotifSampler
[117, 88], and SeSiMCMC [118] are based on Gibbs sampling, Improbizer [119], and MEME [85]
are based on expectation maximization, Consensus [86] tries to maximize the information content of
a PSPM, MITRA [120], Oligo/dyad-analysis [121], QuickScore [122], Weeder [123, 124], and YMF
[84] are word-based. In the assessment, the creators of the respective motif discovery tools were
permitted to vary parameter settings from data set to data set, mask repeats in the input sequences,
post-process the output to eliminate low-complexity motifs and generally perform any pre- and post-
processing deemed appropriate. Neither consultation of TRANSFAC nor the employment of methods
that would not be available in a real application of novel motif discovery were permitted. In order to
learn as much as possible from running thejPREdictormotif evolution any pre- and post-processing
was excluded. Additionally, no parameter adaptation was performed in order to input any prior infor-
mation about length and nucleotide composition of the motif.

Tompa et al. [102] designed a website (http://bio.cs.washington.edu/assessment/) that allows to
compare the motif discovery results of other programs to the tools used in the assessment. On the
website, the sequences (called benchmark data sets) can be downloaded and own results can be up-
loaded. Uploading means reporting predicted sites for each data set. Note that Tompa et al. created
a few data sets without any planted site. The creators of the tools could decide on how many sites
they report. After the upload, the website will output a table that contains the evaluation results of the
comparison of predicted versus planted binding sites for each data set. In addition, an applet can be
started that gives the results in a graphical form. Some pictures presented here are screenshots from
that applet.
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5.4.2 Running the jPREdictor motif discovery on the human data set

From motif discovery to binding sites: a framework

The jPREdictormotif evolution was first applied to all 76 human data sets. This was done, because
the human data set is much greater than the fly one, and thus gives a general overview on how the
jPREdictor performs. A framework was created around the motif discovery approach. The first
step in the framework was the evolution. For each of the 76 human data sets, the motif evolution
“RewardedSelection” was run 10 times. The command-line call for every run was:

-m model -b background --motifEvolutionRewardedSelection

-d NNNNNNNN -d NNNNNNN -v -p single -c 1000

In the assessment, the motif discovery tools were not informed about the sequence type. For com-
parability, the same condition is assumed here and the evolutions were run with only one background
sequence set. This negative training set (background) consisted of 10 randomly chosen promoters
from the human genome, each of length 10 kb.

The evolution was repeated 10 times and yielded up to 200 unique motifs for every data set. After-
wards, the motifs were clustered using the “Likelihood” measure and the “Forward” algorithm. The
cut-off was set to 0.1. On average, this reduced the number of motifs to 14 for each data set. The
motifs resulting from the clustering were reweighted using model and background sequences, and for
each set, the highest-weighting motif was chosen.

Each highest-weighting motif was then matched to the sequences of its corresponding data set
(model) and the obtained positions together with the extracted binding sites were reported to the
webpage (http://bio.cs.washington.edu/assessment/).

Results of the motif discovery in the human data set

For each human data set a highest-weighting motif existed. No motif was rejected. Thus, for each data
set binding sites were reported to the website. In fact, rejecting motifs is very difficult without ample
knowledge about real biological binding sites. A possible approach in order to support the rejection
decision could be to mark low-weighting motifs. Nevertheless, with this approach, the rejection task
is shifted to answering the question what low means in the context of weights. The problem is that
the maximal weight for a motif is unknown within one data set as well as from one data set to the
next. In addition, even discovering motifs in randomly generated sequences yields motifs with high
weights. These two problems are the reason for refraining from a rejection scheme. Along with
the jPREdictor, Improbizer, SeSiMCMC, MITRA, and MotifSampler also predicted binding sites for
each human data set [102].

For the jPREdictor, the mean positive predictive value for all 78 human data sets was 6.8% on
both nucleotide and site level (Table 5.2). The sensitivity was 2.9% on nucleotide level and 5.3%
on binding site level. This means that only very few binding sites were predicted correctly. For the
other tools Tompa assessed, the results are listed in Table 5.2, too. These results were obtained from
the website. Consensus is missing in the list, because it was not applied to the human dataset. The
best tools in terms of the performance coefficient are ANN-Spec and Weeder. They found the most
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Table 5.2:Assessment results for the human data sets. Abbreviations used for the statistical param-
eters: PC performance coefficient, PPV positive predictive value. The abbreviations for
the motif discovery tools are: E expectation maximization based, G Gibbs sampling based,
W word-based. On the human data set, thejPREdictormotif discovery shows a mediocre
performance in comparison to the other tools.

Nucleotide level Site level
PC Sensitivity PPV Specificity Sensitivity PPV

AlignACE G 2.92 3.93 10.26 99.38 7.38 12.36
ANN-Spec G 5.06 9.03 10.32 98.59 16.44 9.84
GLAM G 1.46 2.36 3.68 98.88 4.03 6.00
Improbizer E 2.27 4.16 4.76 98.50 7.05 4.84
MEME E 2.39 3.81 6.04 98.93 6.04 8.11
MEME3 E 2.27 4.20 4.71 98.47 6.38 7.88
MITRA W 1.63 2.44 4.71 99.11 4.03 4.69
MotifSampler G 1.59 2.50 4.17 98.96 4.70 4.31
oligodyad W 3.27 3.71 21.40 99.75 6.04 15.00
QuickScore W 0.34 0.51 0.99 99.09 0.00 0.00
SeSiMCMC G 1.77 4.59 2.80 97.13 6.71 6.31
Weeder W 4.75 5.43 27.47 99.74 10.74 25.81
YMF W 2.97 4.10 9.67 99.31 7.38 8.03
jPREdictor W 2.06 2.87 6.83 99.29 5.26 6.79

true positives while keeping the number of false negatives and false positives low. AlignACE and
ANN-Spec have almost the same PPV (nucleotide level), but differ in their sensitivity. Therefore,
AlignACE missed a lot of planted binding sites, even though the ratio of true positives among all
positives is high. This means that ANN-Spec predicted many more binding sites than AlignACE. In
fact, AlignACE reported no binding sites for 17 out of 26 human binding factors (for each of the three
sequence types, thus 51 out of 76 data sets), whereas ANN-Spec for only one [102]. The best tools in
terms of true positive ratio (PPV) seem to be Weeder and oligodyad, as their predicted binding sites
cover planted sites with a probability higher than 20% (nucleotide level). This is expressed as a high
performance coefficient. Both tools are word-based and (almost) exhaustively enumerate sequences.

The jPREdictormotif discovery performs with a low sensitivity, and a moderate PPV compared to
the other tools. In this analysis, the word-based tools are the best in terms of PPV, their accuracy is
the highest. Nevertheless, in terms of sensitivity, all tools perform comparably low, with ANN-Spec
being the most sensitive, because its number of predicted sites was very high. The specificity was
higher than 95% for every data set, mostly around 99%. This means that the predicted number of
binding sites always was low enough to not cover large areas of the sequences.

Two examples

Applying the jPREdictormotif discovery to the human data sets produced a mix of very accurately
predicted binding sites for some sets and, for other sets, an utter lack of conformance between pre-
dicted and planted sites. A very good prediction result is shown in Figure 5.7. In the example, the PPV
was 73.5% for nucleotide positions, and 80% for site positions. The latter means that four out of five
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5 Motif discovery by evolutionary means and motif clustering

Figure 5.7:The prediction of binding sites in the data set hm08r, consisting of 15 real human promoter
sequences, each of length 500. The first seven sequences are shown, depicted as black
horizontal lines. The blue bars are the planted transcription factor binding sites, the green
bars are the predicted binding sites using thejPREdictor’s motif discovery. For this data
set, the positive predictive value on nucleotide level was over 73%.
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Figure 5.8:The prediction of binding sites in the data set hm22r, consisting of 6 real human promoter
sequences, each of length 500. All six sequences are shown, depicted as black horizontal
lines. The blue bars are the planted transcription factor binding sites, the green bars are
the predicted binding sites using thejPREdictor’s motif discovery. For this data set, the
positive predictive value on both nucleotide and site level was zero percent.

predicted binding sites correctly shared two third of their nucleotides with the planted binding site, on
nucleotide level, this PPV drops a little due to fewer overlap. The sensitivity in the example was 39%
for nucleotide coverage, and 61% for site coverage. This means that three out of five planted binding
sites were correctly covered by the predicted ones and that almost 40% of the known nucleotides from
the planted sites had their counterpart in the predicted sites.

An example for a very bad prediction is shown in Figure 5.8. The positive predictive value as well
as the sensitivity was zero on both nucleotide and site level. This means that none of the predicted
binding sites covered the planted sites, not even partially. Actually, having a zero PPV and a zero
sensitivity for a data set happened very often. On nucleotide level, this was the case for 54 out of 76
human data sets. On site level, no overlap existed in 59 cases (Table A.1 in the appendix). Performing
with zero PPV and sensitivity was not limited to thejPREdictormotif discovery, but all assessed tools
performed this way for the majority of the data sets ([102], supplementary material).

However, performing with zero sensitivity does not mean that no real transcription factor bind-
ing sites were predicted. It simply means that the planted binding sites were missed. Some of the
sequences the binding sites were planted into are real promoter sequences. As Tompa et al. [102] al-
ready pointed out, these sequences may contain other true transcription factor binding sites that were
predicted by the motif discovery tools instead of the planted ones.

103



5 Motif discovery by evolutionary means and motif clustering

Discussion

Tompa et al. [102] gave many reasons, why all motif discovery tools performed so badly. One of
these reasons is that the planted binding sites for one transcription factor differ in length. The sites
are cataloged in TRANSFAC and reflect the resolution of experimental approaches. The true binding
site may actually be a shorter subsequence. Tompa et al. [102] used sites up to a length of 71, and
35 binding sites planted were of length longer than 31 nucleotides. In Figure 5.7 the smallest binding
site has a length of 5, but the largest was of size 34. Like the other tools, thejPREdictorhas no means
to evolve a motif based on binding sites of different lengths. It is able to evolve motifs of length
in-between 5 to 10, but the each motif itself is of fixed size.

Tompa et al. [102] gave another reason for the low performance of the tools. Each tool was allowed
to report the sites for only one motif. Tompa et al. [102] argue that the choice of this one motif is
subjective and error-prone. However, in the framework, the highest-weighting motif was chosen as
the one motif, and this is an objective decision. Nevertheless, it remains error-prone. In practice, a
reasonable approach would be to pursue the top several motifs discovered by any given tool. Allowing
for more than one motif and therefore allowing for more reported sites would have a drastic positive
effect on the sensitivity. This effect is shown in the next chapter, when thejPREdictormotif discovery
is applied to the fly data set. The assessment designed by Tompa et al. [102] is based on binding sites
and not on motifs and therefore supports the report of sites for multiple motifs.

5.4.3 Running the jPREdictor motif discovery on the fly data set

Altering the framework

In the next step, the framework was applied to the fly data sets. Different configurations of the
framework give insights into how the discovery can be improved. Two different sequence sets were
used as background (negative training set), first, the heatshock and cell cycle promoter sequences used
in the prediction, and second, 10 sequences of length 10 kb randomly generated under a second order
Markov model. ThejPREdictormotif discovery was applied several times to both the fly data set
versus promoters and the fly data set versus MC2 sequences.

For the promoter training set as background model, two changes in the framework are made. Both
are introduced to see their impact on the results and maybe to improve accurateness. First, after clus-
tering, the 5 highest-weighting motifs are checked for how often they occur in the model sequences.
The motif with the most occurrences was taken, regardless of its occurrence number and how balanced
the occurrences were, and also regardless on how often it occurred in the background sequences. This
step was made because Tompa et al. [102] planted more than one motif in such small sets and this
approach is aiming at maximizing the motifs occurrences in each fly set. The second change is that the
orientation of the motifs is either unrestricted (as above) or restricted to the plus strand. The restriction
could easily be made by altering the template motifs. This means changing both “-d” parameters in
the command-line call:

-d NNNNNNNN,temp8,0,plus -d NNNNNNN,temp7,0,plus

Contrary to the human data sets, the fly data sets are more challenging, because they are very
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limited in length and in the number of sequences. The smallest set consisted of only one sequence of
length 2,000. All in all, 6 sets out of 22 contained only one sequence, namely set 2 and 6 for all three
sequence types. Both the limited number of sequences per set and the shortness of the sequences led
to a third alteration in the framework. For every transcription factor, all three data sets were combined
into one set.

Results of the motif discovery in the fly data set

The results of applying the framework to the fly data sets can be seen in Table 5.3. In general,
many of the motif discovery tools reported zero correct binding sites. Among the others, the best was
SeSiMCMC with a sensitivity of about 10% on both site and nucleotide level. This value was reached,
because SeSiMCMC reported overlapping binding sites for three out of six binding factor sets, and
because the sensitivity was very high for the first set. The same applies to both MEME tools, they
reported overlapping sites for two out of six sets, and the sensitivity was very high for the first set.
For all other tools, it is more or less random, whether an overlapping site could be reported or not. As
was said, the fly data sets are very challenging, since they are extremely small.

Running the motif discovery framework with the promoter background set yielded few correctly
identified binding sites. Thus, sensitivity and PPV are below 1% on nucleotide level (Table 5.3). The
higher values on site level in the “Promoter, plus” run result from one correctly predicted binding
site for exactly one data set, dm01r. In this set, 7 sites were planted, thejPREdictorreported only 3,
one was correct. This gives a sensitivity 14% and a PPV of 33% on site level. Again, this tells how
small these sets are and that correct predictions are more or less random. In this sense, restricting the
search for binding sites to the plus strand has no impact, as well as choosing the most occurring motif
among the five best-weighting ones. Consequently, in order to improve the prediction results, other
steps have to be taken.

In four runs, the motif discovery was run with randomly generated sequences as a background
model. Applying the second order Markov model (MC2) resulted in a significant increase of sensitiv-
ity and PPV on both site and nucleotide level in comparison to the runs using the promoter background
(Table 5.3). While the latter had a non-zero sensitivity and PPV for only two sets, under the MC2
model it was increased to 4 sets. This shows that the choice of a good background is very important.
Either the promoter sequences are not random enough, or they are too biased. The latter might be
more probable, since all sequences are promoters from either heatshock or cell cycle genes.

In Table 5.3, both “all” strategies refer to reporting all possible binding sites for all clustered motifs.
Normally, one evolution run yields 20 motifs. Repeating this 10 times results in up to 200 unique
motifs. Applying the clustering reduced this number to 4 to 21, in the mean around 10. For all
these motifs, the corresponding binding sites were reported to the webpage. The results can be seen
in Table 5.3 in the row “MC2, both, all”. In comparison to row “MC2, both”, sensitivity on both
nucleotide and site level rises to 15% and 21%, respectively. At the same time, specificity drops
significantly to 93%. This shows that many overlapping sites are reported, but at the same time many
false positives, too. In fact, very often the correct motif is among the ones obtained after evolution
and clustering, even if it is not the highest-weighting one. This is a problem with all motif discovery
tools. Since they rely on statistical over-representation, they will report many false positive motifs
and the correct one is hidden among them.

For the two last discovery runs, all three sequence sets for one factor, i.e. real, generic, and markov,
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Table 5.3:Assessment results for the fly data sets. Abbreviations used for the statistical parameters:
PC performance coefficient, PPV positive predictive value. The abbreviations for the motif
discovery tools are: E expectation maximization based, G Gibbs sampling based, I infor-
mation content based, W word-based. ThejPREdictormotif evolution and clustering was
started in 6 different configurations. Either promoters from heatshock and cell cycle genes
(=”Promoters”) or sequences generated under a second order Markov model (=“MC2”)
served as background set. The other mnemonics mean (refer to the text for further ex-
planations): plus, motif discovery was restricted to the plus strand; both, plus and minus
strand allowed; all, binding sites from all resulting motifs (not only from the one best) are
reported; combined, the 3 data sets for one binding factor are combined to one bigger set.

Nucleotide level Site level
PC Sensitivity PPV Specificity Sensitivity PPV

AlignACE G 0 0 0 99.74 0 0
ANN-Spec G 1.05 2.53 1.75 97.75 1.96 0.94
Consensus I 0 0 0 99.22 0 0
GLAM G 0.19 0.30 0.49 99.04 0 0
Improbizer E 0.81 1.49 1.76 98.68 1.96 2.27
MEME E 2.14 4.17 4.21 98.50 5.88 5.56
MEME3 E 1.57 3.73 2.64 97.82 5.88 4.48
MITRA W 0 0 0 99.61 0 0
MotifSampler G 0.29 0.45 0.82 99.14 0 0
oligodyad W 0 0 0 98.58 0 0
QuickScore W 0 0 0 98.44 0 0
SeSiMCMC G 3.65 10.13 5.39 97.18 9.80 12.50
Weeder W 0.89 1.19 3.45 99.47 1.96 3.45
YMF W 0 0 0 98.79 0 0
jPREdictor W
Promoter, plus 0.74 0.99 2.82 99.41 1.96 4.23
-, both 0.23 0.35 0.68 99.12 0.65 0.89
MC2, both 1.22 1.94 3.21 98.99 2.61 2.82
-, -, all 2.89 15.25 3.44 92.60 20.92 2.57
-, -, combined 8.29 10.28 30.00 99.49 13.73 23.60
-, -, -, all 12.46 32.54 16.80 96.60 37.91 10.32
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Figure 5.9:The prediction of binding sites in the fly data set dm05r, consisting of 3 realDrosophila
promoter sequences, each of length 2,500. All three sequences are shown, depicted as
black horizontal lines. The blue bars are the planted transcription factor binding sites of
the factor Zeste, the green bars are the predicted binding sites using thejPREdictor’s motif
discovery. For this data set, the positive predictive value on both nucleotide and site level
was zero percent.

are combined to one model set (Table 5.3). For one of them, the binding sites from the best motif are
reported, for the other run, all binding sites from all remaining motifs after clustering are reported to
the webpage. The consequences are dramatic. In comparison to the non-combined run sensitivity is
increased from around 2% to about 10% while maintaining a very high specificity. This shows that
the reported binding sites covered many true binding sites. The PPV rises significantly by a factor of
ten. Therefore, many true sites are among the reported ones. More clearly than before, this shows
that the data sets in general are too small when uncombined. Combining the three data sets for one
factor increases the over-representation level for the binding sites of this factor with respect to the
background. This leads to a better separation of motifs over the noise.

Example motif: Zeste

The fly data sets contained binding sites of the motif Zeste. Nevertheless, thejPREdictorevolution
and subsequent clustering was never able to find this motif. This was true for all assessed tools.
Any overlap in reported binding sites was due to the degeneration level of other motifs. The data
set containing Zeste binding sites can be seen in Figure 5.9. This data set consists of 3 sequences
(all-in-all, 9 sequences). Tompa et al. [102] planted 5 binding sites in the second sequence and 9 in
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the third.
The Zeste motif is defined asYGAGYG. Searching this motif gives 3 occurrences in the first

sequence, 7 in the second, and 13 in the third. This applies to the real data set. For the generic and
the markov set, the occurrence counts are 3, 10, and 11, respectively, for both sets. This reveals one
problem. Zeste is too unspecific. The weight as a measure for over-representation is very small for
the Zeste motif, around 0.6 no matter which one of the two background models is applied, and also
no matter whether all three sequence sets or only one is applied. Therefore, the Zeste motif was never
discovered by the motif evolution and subsequent clustering.

Discussion

The fly data set as a subset of the Tompa assessment [102] depicts the most adverse conditions for
running motif discovery tools. The data sets are small and only the binding sites for the best motif are
allowed to be reported. Allowing for binding sites of more motifs to be reported drastically increases
the sensitivity. This shows that the true motif often is among the top several ones.

As already addressed by Tompa et al. [102], the type of the sequence the binding sites are planted
in had almost no effect on the prediction results. This was true for all tools used in the assessment, as
well as forjPREdictor. In addition, no simple feature such as motif type or used algorithm determined
the accuracy of the tools [102]. Therefore, despite considerable efforts in the field of motif discovery,
it remains a complex challenge.

5.5 Double motif discovery

In this chapter the de-novo discovery of motif patterns is discussed. ThejPREdictor’s motif discovery
via evolution was specifically designed with the task in mind to be applicable to motifs of arbitrary
complexity. Therefore, it is not only possible to discover single motifs as discussed in the last chapter,
but the discovery of over-represented double, triple and higher-order motif patterns is also possible.
The default setting, however, is the discovery of double motifs. In this chapter, the abililty of the
jPREdictorto find planted motifs in randomly generated sequences will be discussed.

5.5.1 Study design

At first, the model sequences planted with actual binding sites were created. The task was to mimic
the occurrences in confirmed PREs as much as possible. The study of confirmed PREs revealed an
overall high number of the three motifs Zeste, GAF, and Pho. However, the motifs do not occur
equally distributed over the whole sequence, but they occur in dense spots (clearly visible as peaks
in the weight plot, top picture in Figure 5.10). Based on this observed arrangement, a method was
developed for introducing binding sites into template sequences. At first, ten blocks of length 500
were created. Randomly, 10 up to 20 binding sites of Zeste, Pho, and GAF were planted into each
block. In accordance to the procedure used by Tompa et al. [102], the single binding sites are taken
from TRANSFAC, and are not generated from the motifs. Afterwards, one to two randomly chosen
blocks are planted into each sequence of length 10,000. The whole positive training set contains 10 of
these sequences and therefore has a length of 100 kb. The planted blocks are visible in the weight plot
(bottom picture in Figure 5.10), since they rise above the noise level. A second data set was created,
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Figure 5.10:Weights of single motifs in confirmed PREs (top) and in random sequences planted with
binding sites (bottom). The weights itself are counts of the three motifs,YGAGYG(Zeste
binding motif),GCCAT(Pho core motif), andGAGAG(GAF/Psq binding site), per se-
quence window of width 500. In both plots, the baselines of the sequences are offset in
multiples of 10. The planting of binding sites into random sequences was done in order
to mimic the occurrences in confirmed PREs, which show not only enrichment but also
densification.
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for which the single blocks contained 20 to 30 binding sites. This gives even stronger signals. In
contrast to the low-planted set, this data set is referred to as “high-planted”.

Note that the planting of binding sites into sequences is in accordance to the Tompa assessment
[102]. Nevertheless, one criticism on the Tompa assessment [102] was that the signal-to-noise ratio
was very low. In this analysis, the number of planted sites is much higher. Another criticism with the
Tompa assessment [102] was that the tools were only allowed to report the sites for best motif. As
was shown in the last chapter, thejPREdictorcan perform much better (in terms of sensitivity), if the
binding sites for more than one motif are allowed to be reported. Therefore, in this analysis, the tools
are allowed to report the binding sites for several motifs. To counter this, they have to find not only
one but three motifs.

All sequences, including the blocks of length 500, are generated under a second order Markov
model obtained fromDrosophila melanogaster. The same applies to the sequences of the negative
training set. This latter set also contains 10 sequences of length 10 kb each.

The task of mimicking the appearance of the confirmed PREs in the weight plot (Figure 5.10) was
not only fulfilled for single motif occurrences but also for co-occurrences of motifs (Figure 5.11).
Counting co-occurrences (expressed as double motifs) amplifies the signal in comparison to counting
mere single motifs and gives strong peaks high above the noise level (Figure 5.11). In this light, the
discovery of motifs appears much more promising by preferring double motifs over single motifs.

Beside thejPREdictorseveral other motif discovery programs were chosen and ran on the generated
data set. First, MEME [85] was used because of its status as famous motif discovery program and
because it is a representative of the expectation maximization approaches. MotifSampler [117, 88] as
well as BioProspector [89] are representatives of the Gibbs sampling approach. BioProspector was
chosen in addition to MotifSampler, because it can be run in two-block mode to identify motif co-
occurrences. The fourth motif discovery tool applied to the data set was Weeder [123, 124]. It was
chosen, first, as a representative of the word-based approaches and, second, because it was one of the
best-performing programs in the Tompa assessment [102].

The results from the motif discovery tools were evaluated in accordance to the Tompa assessment
[102]. For each of the two data sets, the number of planted binding sites, their positions, and the
coverage over the sequences is known. Applying each of the motif discovery tools to a certain data
set yields a second set of predicted binding sites that has to be crosschecked with the planted ones. At
nucleotide level,nTPgives the number of nucleotides in both planted and predicted sites,nFN gives
the number of nucleotides in planted but not in the predicted sites,nFP is the number of nucleotides in
the predicted but not in the planted sites, andnTN gives the number of nucleotides in neither planted
nor predicted sites. From these values several statistical parameters can be calculated, sensitivity,
specificity, PPV, and the performance coefficient (see Chapter 2.5).

On site level,sTPgives the number of planted sites overlapped with at least one nucleotide by a
predicted sites. Contrary,sFN gives the number of planted sites not overlapped by anyone of the
predicted sites, andsFPspecifies the number of predicted sites not overlapping any planted site. On
site level, the true negatives, i.e. the number of sites neither planted nor predicted, cannot be given,
because such sites are unknown and therefore neither their position nor their length is known. As a
consequence, only sensitivity and the PPV can be calculated on site level.
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Figure 5.11:Weights of double motifs in confirmed PREs (top) and in random sequences planted with
binding sites (bottom). The weights itself are counts of six double motifs per sequence
window of width 500. The double motifs are composed ofYGAGYG(Zeste binding
motif), GCCAT (Pho core motif), andGAGAG(GAF/Psq binding site) with a distance
of (0,219) nucleotides. In both plots, the baselines of the single sequences are offset in
multiples of 10. The planting of binding sites into random sequences was done in order
to mimic the occurrences in confirmed PREs, which show not only enrichment but also
densification.
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5 Motif discovery by evolutionary means and motif clustering

5.5.2 Running the tools and a first analysis

jPREdictor

ThejPREdictormotif discovery tool was applied to both sequence sets, low- and high-planted, in two
ways. First, the discovery of single motifs was applied, and second, the motif discovery using double
motifs was tested. This resulted in four runs, and in each run, thejPREdictorwas started 10 times.
The resulting 200 motifs from each run were clustered using the likelihood measure together with the
“Forward” approach. ThejPREdictorclustering was instructed to stop if the threshold ofc = 0.1 was
reached or in case 5 clusters were already created, whichever comes first. In case the clustering yields
more than 5 motifs, they were re-weighted and the 5 highest-weighting motifs were taken. In every
case, the five best-weighting motifs were used to predict binding sites on the sequences of both data
sets.

Applying the single motif discovery to the low-planted sequences yielded 12 motifs after cluster-
ing. In Figure 5.12, the five best-weighting motifs are pictured as sequence logos. These logos and all
following ones were created using R and the “seqLogo” library. While Pho and Zeste can be recog-
nized in these motifs, GAF cannot be found. Applying the single motif discovery to the high-planted
sequences yields exactly 5 motifs. These motifs are depicted, again as sequence logos, in Figure 5.13.
Contrary to the motifs from the low-planted sequences, GAF is very dominant here and occurs in
4 out of 5 motifs. The Zeste motif does not occur. Nevertheless, occurrences ofT at certain motif
positions can be interpreted as Zeste influence lost in the clustering. Pho does appear twice in one (al-
most) palindromic motif. It is questionable, however, whether such a specific motif can be effectively
matched to many binding sites.

Running the discovery of double motifs yields motif patterns consisting of two motifs. All of
these runs produced among others certain double motifs that can be used as examples for the weight
dilemma (described in Chapter 2.4.5). The first motif in such motif patterns was a motif only occur-
ring in the model sequences and never in the background sequences. The second motif was highly
degenerated, up to the case, where the motif consisted of onlyN nucleotides. In addition, the distance
between the two motifs was very high. Such a motif pattern is found extremely often in the model, and
never in the background. Thus, the weight is very high. The weight dilemma tells that maximizing the
weight means first and foremost the avoidance of occurrences in the background sequences, which is
the case here with the first motif. In the evaluation, double motifs consisting of a motif specific to the
model and a highly degenerated motif were removed after the clustering step.

Two ways are applied in order to evaluate the double motifs resulting from the motif discovery. The
first way is to discard all patterns and to further work with the single motifs previously contained in the
double motifs. This would mean that the single motifs need to be re-weighted in order to select the 5
highest-weighting ones. The reason for this evaluation scheme is to increase comparability of double
and single motif discovery. Now, both result in 5 single motifs. The second way is to keep the double
motifs and to do all evaluation steps with the binding sites reported for the motif patterns. Keeping
the motif patterns intact seems most promising in reported binding sites which lie in the dense spots.
But note that despite the restriction to the five best-weighting double motifs, the underlying number
of single motifs might be only 3, but could also rise up to 10. In the latter case, every double motif
would consist of two different single motifs.

Applying the discovery of double motifs to the low-planted sequences reveals the Pho motif in
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Figure 5.12:Sequence logos of the five best-weighting motifs from the single motif discovery applied
to the low-planted sequences. A distorted Pho motif appears in the upper left motif
(reversed complemented, positions 5 to 1) and in the middle right motif (positions 5
to 9). The upper right motif (positions 7 to 2) and the bottom motif (positions 1 to 6)
resemble the Zeste motif. The GAF motif does not appear. The middle left motif is
unknown.
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Figure 5.13:Sequence logos of the five best-weighting motifs from the single motif discovery applied
to the high-planted sequences. All motifs except the middle left one more or less resem-
ble the GAF motif (reversed complemented in the bottom motif). In the middle left motif
Pho appears (asCCATat position 1 to 4 and reversed complemented at position 10 to 6).
The Zeste motif does not occur.
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two varieties, both embedded in larger motifs. In addition, 3 unknown motifs are discovered, such as
CCA[ag]GATG, GCC[ct][ac]GCGTC, andG[cg]CCACGG[ag]G. Zeste and GAF could not be found.
Applying the discovery to the high-planted sequence yielded GAF in all varieties. Neither Pho nor
Zeste occurred as the five best-weighted single motifs.

MotifSampler

MotifSampler [117, 88] was run with a second order Markov model obtained fromDrosophila mela-
nogasteras background. It was started ten times and instructed to report the five best motifs for each
of the five repeats in every run. This yielded 250 motifs. After sorting for the information content, the
five highest ranking, unique motifs were chosen that have non-overlapping binding sites. In the low-
planted sequences, only Zeste in several varieties was among these motifs. MotifSampler was unable
to combine these varieties to a more degenerated motif. In the high-planted sequences, binding sites
for GAF resided at rank one, Zeste was at rank two and Pho was found at rank 5.

MEME

MEME was run without restrictions to the number of motif occurrences per sequence. The program
was instructed to return the five best motifs. The minimal motif width was set to 5 and the maximal
width set to 10. This reflects the settings possible with thejPREdictor. Motifs were allowed on
both strands. As background, the second order Markov model specific toDrosophila melanogaster
was used. MEME was run 10 times, but, afterwards, this turned out to be an unnecessary step,
because every run returned the exact same 5 motifs as the best ones. In the low-planted sequences,
the GAF motif was never reported. Applying MEME to the high-planted sequence, all three motifs
were discovered.

BioProspector

BioProspector [89] was started in two-block mode and instructed to report the five best motif pairs.
The motif width was fixed at 6 as a kind of a-priori knowledge. The distances between the two
motifs was zero to 50 nucleotides. The program was started several times and the reason for this
was that neither Pho nor GAF were among the five best motif pairs in the first run on the low-planted
sequences. From the 5 runs, the binding sites for each best motif pair were used. This running strategy
can best be described as horizontal gathering. It disagrees with the vertical strategy (start once, gather
5 best motif pairs) used by Jensen and Liu [99] in combination with the BioOptimizer program, but it
gives better results at least when binding sites for more than one motif were planted. Nevertheless, the
run on the low-planted sequence yielded Zeste as part of the first, second and third motif pair. In the
fourth pair Pho showed up asGCCATand the fifth motif pair contained the GAF sequenceGAGAG.
Applying BioProspector to the high-planted sequence, the Pho motif was never reported using the
horizontal gathering. All 5 highest-scoring motif pairs contained both Zeste and GAF. Checking each
result file for occurrences of Pho uncovered the Pho motif only once. This shows how weak the Pho
signal is in comparison to the Zeste and GAF signals. Nevertheless, this one occurrence of Pho among
all 25 motif pairs was not reason enough to change the gathering strategy.
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5 Motif discovery by evolutionary means and motif clustering

Weeder

Weeder [123, 124], on the other hand, was only capable of finding the Pho motif. This motif was
always embedded into larger motifs, either fully asGCCAT or without the startingG. Pho was
reported exhaustively for all lengths, 6, 8, and 10. After instructing Weeder to report the 10 best
motifs for each length, a variety of the Zeste motif, namelyTGAGCG, was reported at rank 7 for
the low-planted sequence. For the high-planted sequences, neither Zeste nor GAF were reported.
One reason for missing the Zeste motif could be that Zeste contains two degenerated positions while
Weeder allows for only one such position in motifs of length 6. Instructing Weeder to discover motifs
of length 6 with two degenerated positions fails, because it is not supported by the program (Weeder
quits with an error message). And although Weeder allows for two degenerated positions for motifs of
length 8, the Zeste motif could not be discovered. This may be due to the other two nucleotides being
randomly distributed, which would increase the necessary number of degenerated positions to 4. The
opposite applies to finding the GAF motif. In its simplest form (length 5) no degenerated positions
are necessary. Therefore, discovering motifs of length 6 and using the one degenerated position for
the residual nucleotide seems to make GAF an ideal candidate for motif discovery. Nevertheless, it
was not reported, neither for length 6 nor for any higher length. In order to improve the performance
of Weeder, the developer suggest in the manual to mask out all reported sites and restart Weeder.
However, this would have only been beneficial to discovering GAF and Zeste in case Weeder would
have reported these two motifs in the list of the 10 best. But this was the case only once. As Weeder
presents its results, only the sites for the first two motifs are reported. Masking out these sites would
cause Weeder to report the next two sites on top position and so on. For reporting the Zeste motif
(which occurred once at rank 7) at the top position, 4 restarts are necessary. In a real world application
with genomic sequences, this number of restarts is normally not applicable, because the true motifs
are not known beforehand. In such a case, other motif discovery programs will be used for cross
checking and the most-conserved motifs will be taken for further analysis.

5.5.3 Results

In accordance to the Tompa assessment [102], several statistical parameters are measured and calcu-
lated using the binding sites predicted with the chosen motifs from the different discovery tools. In
Table 5.4, these statistics are shown. In the table, both rows “Motif search” were obtained by search-
ing the Pho, Zeste, and GAF consensus motifs in the model sequences. In a way, these rows represent
the truth. Nevertheless, the low sensitivity on site-level of around 40% shows two facts. The first is
that the consensus motifs do not fully cover each of the planted binding sites from TRANSFAC. The
Pho motif, for instance, matches 22 out of 23 binding sites. The Zeste motif matches 21 out of 24
binding sites from Zeste. The lowest coverage shows the GAF consensus motif, as it only matches
10 out of 25 TRANSFAC binding sites for the GAF factor. However, an additional 4 GAF binding
sites are covered by the Zeste motif. This means that 15 out of 72 binding sites are not covered by the
consensus motifs. The second fact is that the binding sites were arbitrarily planted without keeping
them from overlapping. And this could mean that some early planted binding sites were (partially)
overwritten by subsequently planted ones.

For the low-planted sequences, MEME outperforms every other tool in terms of positive predictive
value. This means that most of the predicted binding sites by MEME are true, both on nucleotide
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5 Motif discovery by evolutionary means and motif clustering

and on site level. In terms of sensitivity, MEME is outperformed by BioProspector, but only because
BioProspector predicts five times more sites. The latter fact is also reflected by the lower specificity
of BioProspector in comparison to MEME. ThejPREdictorshows an average performance. The dis-
covery of double motifs performs on par with Weeder. In the high-planted sequences thejPREdictor
is among the better performing tools with a high positive predictive value.

For both models the discrepancies in thejPREdictorperformance between single and double mo-
tif discovery can be explained with discarded motifs, being not among the five best-weighted ones.
The two ways of evaluating the double motifs obtained from a discovery have an impact on the per-
formance, too. Keeping the 5 best-weighted double motifs means more predicted binding sites, and
therefore higher sensitivity, because double motifs normally consist of more than 5 single motifs.
However, with the higher number of predicted sites the PPV decreases. All in all, the assessment
shows that the discovery of double motifs not only functions but yields reasonably good results.

Future developments should focus on automatically masking out already found sites and restarting
the discovery. This would make repeating restarts of thejPREdictorprogram unnecessary. This also
would solve the problem that it is probable that every run yields the exact same results. Another way
of improving the discovery would be to add another requirement for double motifs in order to become
discovered. Not only the double motif itself has to have a high weight, but also the single motifs
comprised in the double motif need to occur over-represented.

5.6 Double motif discovery in confirmed PREs and a new prediction

In this chapter the evolution of double motifs for the prediction of PRE/TREs is presented. The
reference prediction used the “SP1” motif set, under a null model of the shuffled-outDrosophila
melanogastergenome. This scoring of shuffled-out sequences yielded a cut-off of 171 corresponding
to anE-value of one. The genome-wide prediction itself yielded 150 PREs in theDrosophilagenome.

The evolution of double motifs was tested in three ways. Both evolutionary approaches, “ES” and
“RewardedSelection” are applied on the 12 confirmed PRE/TREs (positive training set, model) versus
the 16+12= 28 heatshock and cell cycle promoters (negative training set, background). Third, the
evolution with rewarded selection was applied to 12 (model) versus 28 (background) sequences of
length 3,000, randomly generated under a zeroth order Markov model.

The evolution was therefore not only applied to the PRE sequences and non-PRE promoters, but
also to randomly generated sequences. Doing so provides a robustness test. ThejPREdictors evolu-
tion will discover over-represented motifs in the random sequences, because it is able to find over-
representation in every kind of model and background (as long as both are different). Nevertheless, it
is unclear, whether the discovered motifs lead to many nonsense predictions or no predicted fragments
at all.

For each of the three settings, the evolution was started 50 times yielding up to 1000 unique motifs.
Afterwards, the discovered motifs were selected. Two selection strategies were applied, the first was
based on GC-content and the second was based on clustering. In order to perform the first strategy,
the discovered motifs were rated according to their GC-content and put into bins for every 5% of
GC-content. From each bin the highest weighting motif was chosen. With this approach, 20 bins are
possible. Most often, however, the discovered motifs had mediocre or high GC-content. No motif
was discovered with a GC-content smaller than 20%. In Figure 5.14, for all resulting double motifs
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Figure 5.14:Weights and GC-content of discovered double motifs. Two evolution strategies are ap-
plied in the discovery process: “ES” and “RewardedSelection”. Both are applied to the
PREs vs. promoters training set, the latter also on sequences randomly generated under
a zeroth order Markov model.
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5 Motif discovery by evolutionary means and motif clustering

Table 5.5:Double motifs discovered by applying the motif evolution approach “RewardedSelection”
to PREs vs. promoter sequences. For every 5% of GC-content, these motifs are the highest-
weighting ones. For every double motif, the regular expression sequence together with the
number of errors allowed for a match are given for both comprised basic motifs, as well
as minimal and maximal distances. Note that no motif was discovered with a GC-content
smaller than 25%.

First motif Distance Second motif Weight GC-content
Min Max

GCGCGT’0 34 351 GGGSCG’0 5.55 0.92
CSGCCSC’1 49 413 CGTCGCT’0 6.32 0.86
GCGCRDG’0 133 405 GCGCRKV’0 6.34 0.82
GCGCRDG’0 123 427 GCSCRT’0 6.51 0.79
CMGCGAC’0 84 316 VYVTCKC’0 6.85 0.70
GTCGCTG’0 87 424 SWCTCY’0 6.59 0.65
RTCGCTG’0 87 424 CWCTCY’0 6.42 0.62
ATKGCTS’0 63 436 MATGGSYG’0 6.26 0.57
ATKGCTS’0 43 436 AABGGCYK’0 6.29 0.54
BAATGGC’0 65 355 KAATGKC’0 6.13 0.48
ARATTAAK’0 73 418 CGWCGS’0 5.96 0.43
CSATSTG’0 86 360 AACAATD’0 5.59 0.38
CGAAKAB’0 73 357 CTTATA’0 5.27 0.32
ATCAAW’0 289 416 AMTCTGT’0 4.33 0.27

of the three different settings, the weights are plotted against the GC-content. The plots show that
high-weighting double motifs exist regardless of GC-content. They also show that even randomly
generated training sets are capable of housing high-weighting motifs, and that the weights are not that
much smaller.

In Table 5.5, the highest-weighting double motif for each 5% of GC-content resulting from the
“RewardedSelection” evolution are listed. These motifs have very high weights in comparison to the
SP1 motif set that serves as reference. In the SP1 motif set, only thepssmPho:pssmPhodouble motif
has a weight higher than six, all other motifs have weights around and lower than three, even double
motifs with negative weights occur (see Figure 4.3 on Page 65). In addition, even the double motifs
evolved on randomly generated sequences have high weights. On average, the weights for such double
motifs are a little lower than the weights of the double motifs obtained using the PREs vs. promoters
training set (Figure 5.14, the cloud is a little bit downshifted in comparison). Nevertheless, because
the motifs are sorted into bins according to their GC-content, and also because the highest-weighting
double motif is taken out of each bin, the slightly “shifted” cloud has no impact on the weights of the
chosen double motif used in further analysis. For the bin-selected double motifs, weights are equally
high regardless of training set and initial setting.

In order to reduce the number of motifs obtained from evolution, a step other than selection after the
GC-content was applied. The discovered motifs were clustered using the likelihood measure together
with the “Forward” approach and a threshold ofc= 0.1. This effectively reduced the number of motifs
by a factor of about 20 (Table 5.6). After this step, the motifs from the clustering were reweighted
and the 10 to 12 highest weighting ones were chosen for the prediction.
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5.6 Double motif discovery in confirmed PREs and a new prediction

Table 5.6:Prediction of PREs using discovered motifs. The two evolutionary strategies “ES” and
“RewardedSelection” are applied to confirmed PREs vs. Promoters sequences, or ran-
domly generated sequences under a zeroth order Markov model. From the evolved mo-
tifs, the highest-weighting ones are chosen, either for every 5% of GC-content, or after
a “Likelihood”-clustering (in parenthesis: number of motifs after clustering). Using the
motifs, the prediction of PREs was performed genome-wide inD. melanogaster, in the
confirmed PREs, in the promoters, in the 131 domains provided by Tolhuis et al. [22], and
in the 30 domains provided by Negre et al. [23]. All predictions use the genome-wide
(117 Mb) cut-off. For the Tolhuis and Negre sequences, the lower cut-off was applied, too
(numbers in parenthesis).

Selection Double Cut-off D. PREs Pro- Cut-off Tolhuis Negre
method motifs 117 Mb mel. moters 3.7 Mb (131) (30)

SP1 motif set 28 171 150 2 0 73 17 (42) 0 (2)
ES on confirmed PREs vs. Promoter sequences (n = 1000)

GC-content 12 311 74 1 0 144 0 (5) 0 (2)
Clustering (39) 10 230 81 1 0 129 1 (9) 1 (1)

Rewarded selection on confirmed PREs vs. Promoter sequences (n = 923)
GC-content 14 221 188 2 0 142 7 (23) 0 (2)
Clustering (40) 10 132 197 2 0 88 8 (27) 0 (2)

Rewarded selection on randomly generated model and background sequences (n = 844)
GC-content 14 2493 1 0 0 1818 1 (1) 0 (0)
Clustering (42) 12 88 43 0 0 60 1 (8) 0 (0)

The motif sets resulting from either of the two selection steps were then used to predict PREs in
theD. melanogastergenome. In addition, the prediction was also applied to the PcG protein enriched
sequence fragments provided by Tolhuis et al. [22] and Negre et al. [23]. For all predictions, the
motifs were weighted with their corresponding training set, and the cut-off was obtained under the
most restrictive null model, the shuffled-outD. mel.genome. The results can be found in Table 5.6.

The reference prediction using the SP1 motif set yielded 150 identified PREs. Applying the set of
double motifs obtained under the “ES” evolution to a genome-wide prediction yielded 74 sequences.
From these 74 sequences, none overlaps with the previously identified 150 PREs. Applying the evo-
lution containing rewarded selection yielded 188 sequence fragments. Again, none of them overlaps
with any fragment predicted with the double motifs from the “ES” strategy, but at least 13 overlap
with the reference prediction. The missing overlap between the prediction results from “ES” and
“RewardedSelection” shows that the motifs used in these predictions are not even similar. To be more
precise, maybe they are similar but with slight alterations of their nucleotide arrangement. Because
the motifs were picked from bins in accordance to their GC-content, these similarities are not discov-
ered. The conclusion from this is that sorting and picking after the GC-content is inappropriate for
discovering motifs.

Clustering the motifs and drawing the highest-weighting ones afterwards induced a significant re-
duction in the cut-offs in comparison to picking the motifs in accordance to their GC-content. This
led to the assumption that the number of predicted PREs has to increase significantly, too. However,
this was not the case: the increase in the number of predicted PREs is rather small. Also expected
is an increase in the overlaps of the predicted PREs, because model and background were the same
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5 Motif discovery by evolutionary means and motif clustering

for both evolutionary approaches. However, the clustering did not standardize the motifs, and the
subsequently predicted fragments did not overlap any more than using drawn motifs in accordance to
their GC-content.

Applying the motifs obtained from an evolution on randomly generated training sets to a PRE
prediction yielded exactly one fragment. This fragment is expected to be a false positive, because
the cut-off was adjusted to correspond to anE-value of 1. This can be interpreted as a success of the
robustness test. While the motif evolution on meaningless training data yields double motifs that have
high weights, these double motifs neither occur clustered nor enriched in one spot in theDrosophila
genome.

Using the genome-wide cut-off, a PRE was predicted in at most 6% of the Tolhuis sequences.
Reducing the cut-off in order to adjust it to the smaller sequence length increases the number of
Tolhuis fragments with at least one PRE to 21% (Table 5.6, numbers in parenthesis). As already
discussed in Chapter 4.6. the reason for the low coverage might be that there exists no PRE in some
of the Tolhuis sequences. However, it is far more probable that the motifs specific for the training
sequences are non-relevant to the Tolhuis sequences. This assumption is contrasted by the fact that
exchanging the positive training set with the Tolhuis sequences yields only slightly reduced weights
for the motifs (data not shown). While the weights with the confirmed PREs as positive training set are
around five to seven, the Tolhuis sequences as model yields weights around four to six. Therefore, the
reason might again be that the density of relevant binding sites is not high enough to exceed the cut-
off. Applying the prediction to the sequences provided by Negre et al. [23] gives zero hits for almost
all motif sets (Table 5.6) and one to two sequences with at least one PRE in case the lower cut-off was
applied. The same already discussed for the Tolhuis sequences applies to the Negre sequences, too.

In this chapter, motif discovery in confirmed PREs was shown with the goal to use the discovered
motifs in order to predict similar fragments in the genome. This goal was achieved in the sense
that the predicted fragments contained clustered and enriched motifs that also occured clustered and
enriched in the confirmed PREs. However, enrichment was measured using the weight and, thus,
the discovered motifs are subject to the weight dilemma. This means that the discovered motifs are
more likely avoided in the promoter sequences than enriched in the confirmed PREs. This would
explain the missing overlap between all predicted fragments, because very many motifs exists that are
avoided in the background and all have a chance to be discovered. As a consequence, future work
should focus on other strategies of drawing high-weighting motifs. One drawing strategy could be to
take the motifs showing high occurrances in the model sequences regardless of their occurrences in
the background. Another strategy could be to combine the discovered motifs with the already known
ones and to reweight the resulting double motifs. This would lead to a good estimate on whether the
discovered motifs lie near the known ones. This strategy, for instance, worked for Dejardin et al. [10],
when they discovered the DSP1 motif near the Pho core motif.
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6 Discussion

In this thesis, thejPREdictorsoftware package was presented. It was developed as a computational
tool for representing and working with motifs. The first applications incorporated into thejPREdictor
is the prediction of Polycomb/Trithorax response elements, PRE/TREs. In addition, thejPREdictor
can be applied to the de-novo discovery of motifs. For this, an evolutionary algorithm was developed,
examining the space of possible motifs by introducing mutations into motifs or mutating specific motif
characteristics. The last application is the clustering of motifs, which combines similar motifs to a
probability matrix.

Design and implementation details of thejPREdictorare shown in Chapter 3. Development of the
program started in spring 2005, and it is being updated and improved constantly. The latest version,
with number 1.22, is from April 2008. ThejPREdictor is available as Java Applet or stand-alone
program for download from the following webpage:

http://bibiserv.techfak.uni-bielefeld.de/jpredictor

Since making thejPREdictoravailable on the website and the corresponding publication in 2006,
[104], the program was downloaded about 180 times from unique internet sources. Note that in 2006,
the motif evolution as well as the motif clustering had not been incorporated into the program. The
usefulness of thejPREdictorwas considerably increased since its launch in 2006, first by including
the motif evolution in early 2007, and then by inserting the clustering approach in late 2007.

A first application is the prediction of Polycomb/Trithorax response elements, PRE/TREs.Cis-
regulatory elements of this type are effectively identified by finding dense motif clusters. Crucial for
this task is the knowledge of motifs. Fortunately, binding sites for certain transcription factors are
known to occur in PRE/TREs, the most important being Pho (in the sense of a high weight). The
prediction of PRE/TREs is based on the work of Ringrose et al. [5]. The authors generated double
motifs out of the known motifs, weighted the motifs using model versus background sequences and
afterwards performed a genome-wide scoring of theDrosophila melanogastergenome. Sequence
fragments with a score exceeding a cut-off were assumed to be candidate PRE/TREs. It was demon-
strated using ChIP experiments that the assumption was correct for a sample of predicted PRE/TREs.

Obviously, the prediction depends on the motifs used. In the early prediction of PRE/TREs the
following motifs were used: En1, two motifs derived from the GAF binding sites (GA and G10),
Zeste, and three variants of the Pho binding sites. In a first analysis, this set was changed in the way
that the Pho motifs are combined to a position specific score matrix. Additionally, the DSP1 motif
recently discovered by Dejardin et al. [10] was included. After the creation of double motifs, the
prediction with the new set resulted in 344 PRE/TREs [104], in comparison to 167 predicted with
the original set [5]. Both predictions were repeated using the newly introduced negative training set
including more promoter sequences from theD. mel. genome. The new negative training set led to
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6 Discussion

higher weights for the motifs, which in turn increased the cut-off score. Nevertheless, it was possible,
to increase the number of predicted PRE/TREs to 301 and 481, respectively, on the same level of
specificity.

Other motifs were reported to play a role in PRE/TRE functionality. Consequently, SP1 was in-
cluded in the motif set, and increased the number of predicted PRE/TREs to 708. On the other hand,
adding the Grainyhead motif to the “SP1” motif set had a negative impact on the number of predicted
PRE/TREs: it dropped to 602. In the prediction process, adding new motifs is balanced out with
a higher cut-off. This higher cut-off reflects the fact that the new motif might occur near the other
motifs of the set merely by chance. In order to exceed this higher cut-off when scoring real genomic
sequences, the new motif has to occur in the vicinity of the other motifs more often than expected.
For SP1/KLF, this is true, but not for Grainyhead.

The prediction process was also performed with two motifs known to occur in enhancer/silencer
elements, Knirps and Hunchback. This was thought as a robustness test for the prediction. The
number of predicted PREs should not increase with these two motifs added to the set. For Knirps, the
test was passed. On the other hand, adding Hunchback to the “SP1” motif set increased the number of
predicted PREs to 934. This shows that many PRE elements comprise binding sites for Hunchback.
This finding is in accordance to several reports of Hunchback binding sites to occur in PREs [80, 5]
and also to reports of Hunchback playing a role as an early regulator at some PRE/TREs [113].

The choice of the background model has the highest impact on the prediction of PRE/TREs, be-
cause it influences the cut-off for the prediction score. Since the prediction is genome-wide, the best
null model would be the complete genome free from the elements in question. However, such a null
model is impossible, since the sought-after elements are unknown. Various null models were tested
for their impact on the number of predicted PRE/TREs. Note that in every case, the cut-off was cho-
sen to correspond to exactly one expected false positive predictions (E-value=1). Further note that
every null model was derived from theD. melanogastergenome. With the null models representing
the genome better and better, the number of predicted PRE/TREs dropped more and more. Under a
zeroth order Markov model, the cut-off was 108 for the “SP1” motif set. This led to the mentioned
708 predicted PREs. Under a first and second order Markov model, the cut-off increased to 136 and
156, respectively. The highest impact on the cut-off had the shuffling of the genome. Under this null
model, the cut-off was 171 resulting in 150 predicted PRE/TREs. Such a high cut-off means that only
the most dense clusters of motifs had a chance to be reported as candidate PREs, which makes it very
unlikely that these candidate PREs are false positives. In this sense, higher order background models
do not improve prediction in terms of the number of predicted PREs but in terms of reliability.

The jPREdictorprovides a powerful framework for the prediction of PREs and maybe other cis-
regulatory elements. In order to prove, whether the predicted elements truly have regulatory function,
biological approaches like ChIP experiments have to be performed. The amount of binding site enrich-
ment and clustering in these very tight spots strongly suggests that the candidate PREs are functional
PREs.

The prediction of PREs is based on known motifs. The prediction process itself is based on double
motifs. They award clustering and enrichment of motifs in short fragments much more than single
motif occurrences would be able to. If motifs are unknown they have to be discovered. The de-novo
discovery of motifs is a very challenging task. It is based on measuring over-representation of a motif
in model sequences with respect to some background.
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Consequently, the second application of thejPREdictoris the de-novo identification of over-repre-
sented motifs. It was specifically implemented in order to find double motifs. The measure of choice
for over-representation is the weight. It incorporates model and background sequences and therefore
acts discriminative. Using this measure it is possible to tell whether a motif is enriched or avoided
in the model with respect to the background. High positive weights hint at enrichment and over-
representation, negative weights hint at avoidance. The model sequences can be promoter sequences
from co-regulated genes. In this thesis, the model sequences are confirmed PRE/TRE sequences
and the background sequences are promoters from heatshock and cell cycle genes. The background
sequences were chosen to be in fact non-PRE/TREs, but to be upstream regions as well.

For motif discovery an evolutionary approach is used. It tries to discover motifs over-represented
in the model sequences with respect to the background sequences. Based on an initial set of motifs,
the search space is evaluated by mutating the motifs from one generation to the next. Parents and
children compete against each other in order to maximize their weights. Simulated annealing affects
this competition by introducing a random element. It also affects the mutation strength.

Motif discovery yields many high-weighting but similar motifs. In order to reduce the amount
of motifs, the third application incorporated into thejPREdictor is the clustering of motifs. The
clustering algorithm is agglomerative and hierarchical. Several distance measures are available. Two
motifs are aligned in order to optimize their distance and also when they are combined into one
cluster. The clustering was specifically designed to be able to cluster motifs of high complexity and
of different representation. Sequence motifs can be clustered with matrix motifs, and motif patterns
can be clustered together. Above all, the search orientation of the motifs is paid attention to.

By continuing an assessment initiated by Tompa et al. [102], thejPREdictormotif discovery ap-
proach is compared to other motif discovery tools. Tompa et al. [102] planted transcription factor
binding sites from human and fly into sequence sets and the tools had to correctly predict the location
of the planted binding sites. Applying thejPREdictormotif evolution to the data sets yielded high-
weighting motifs for each data set. After clustering the motifs together, they remained high-weighting.
For the human data set, thejPREdictorwas among the better performing tools. Nevertheless, the as-
sessment also showed that the de-novo discovery of motifs remains a very challenging task and that
there is much space for improvements. The task presented some difficulties, because the noise level
was very high and the data sets were small. In the fly data set, for instance, the Zeste motif was not
found, because it not only occurred frequently in the model sequences, but is also occurred very often
in the background set. Nevertheless, on the fly data sets, thejPREdictoroutperformed all other tools
after the sets for one binding factor were combined. This reduced the noise level to a manageable
amount and it also amplified the over-representation level.

Applying the jPREdictor to the discovery of double motifs yielded good results. The data sets
in this assessment consisted of randomly generated sequences planted with binding sites of Zeste,
Pho, and GAF. Constructing the data sets was done in order to mimic the motif arrangements of the
confirmed PREs as much as possible. ThejPREdictorsingle motif discovery was able to successfully
identify motifs for all three binding factors, while the discovery of double motifs revealed motifs for
Pho and GAF. However, this assessment showed as well that the discovery built into thejPREdictor
needs some fine-tuning in order to support the user at the decision which motifs to keep and which
motifs to discard. In addition, user friendliness can be improved by implementing a masking out of
already discovered binding sites.
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6 Discussion

The evolution of motifs means many free parameters, which can be varied independently. These
parameters were set to the most reasonable values. For instance, mutation events on nucleotide level
are much more frequent than elongating or shortening a binding site. Therefore, mutation of a nu-
cleotide was set to an 88% probability, while changes in the length of a motif were set to occur with
a probability of 5%. However, in order to investigate all settings and all combinations of settings, an
additional algorithm around the motif evolution is necessary. An approach would be to fix all except
one parameter. This one parameter is changed in order to investigate its impact on the motif evolution
and then also fixed to its most useful setting. However, this algorithm is a task that remains for the
future.

The number of mutations introduced into the motifs is changed with the temperature in the process
of simulated annealing. A temperature of 1,000 allows for 3 mutation events. This enables jumps
over the search space. It is questionable, however, whether three mutation events allow for really
big jumps and whether they are enough to exhaustively explore the search space. This reasoning
leads to another optimal strategy for search space explorations. The strategy would allow certain
motifs to survive and proliferate separately from the residual individuals of the generation. After a
time, the separate populations are to be combined. This exploration scheme should also be subject to
simulated annealing. In early evolution, many separate populations are allowed, while in late evolution
combining the patches should be forced. Nevertheless, such a complicated evolutionary process was
only incompletely incorporated into thejPREdictorand was not yet subject to investigations.

Another improvement of the evolutionary algorithm would be the introduction of a more sophis-
ticated break criterion. By now, the evolution stops if the temperature value drops to zero. Another
break criterion would make use of convergence. After a number of generations in which the children
are not better than the parents, evolution should stop and be restarted. Obviously, an optimum is
reached, either a local or a global one.

All-in-all, the jPREdictorsoftware is a very powerful computational tool. It supports numerous
functions when working with motifs and sequences, be it the prediction of regulatory elements, or the
de-novo discovery of over-represented motifs. In addition, it is able to cluster motifs independently of
their complexity. These abilities in combination with its versatility and easy-to-use interfaces make
the software a leading capacity in the field of bioinformatics.
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A Additional tables

Table A.1:Assessment results for the single human data sets. Abbreviations used: PC performance
coefficient, PPV positive predictive value.

Data set PC Nucleotide level Site level
Sensitivity PPV Specificity Sensitivity PPV

hm01g 0 0 0 0.9958 0 0
hm01m 0 0 0 0.9925 0 0
hm01r 0.0055 0.0085 0.0154 0.9964 0.0625 0.0769
hm02g 0 0 0 0.9897 0 0
hm02m 0 0 0 0.9920 0 0
hm02r 0 0 0 0.9953 0 0
hm03g 0.0063 0.0074 0.0429 0.9954 0 0
hm03m 0.0078 0.0098 0.0364 0.9927 0 0
hm03r 0.0079 0.0098 0.0400 0.9934 0 0
hm04g 0.0459 0.0595 0.1667 0.9981 0 0
hm04m 0 0 0 0.9933 0 0
hm04r 0 0 0 0.9961 0 0
hm05g 0 0 0 0.9857 0 0
hm05m 0 0 0 0.9822 0 0
hm05r 0 0 0 0.9822 0 0
hm06g 0.5253 0.6933 0.6842 0.9946 0.6667 0.8571
hm06m 0 0 0 0.9765 0 0
hm06r 0 0 0 0.9842 0 0
hm07g 0 0 0 0.9838 0 0
hm07m 0.0565 0.0787 0.1667 0.9897 0.1667 0.1667
hm07r 0 0 0 0.9934 0 0
hm08g 0.3592 0.3895 0.8222 0.9978 0.6154 0.8889
hm08m 0.0069 0.0105 0.0194 0.9862 0.0769 0.0769
hm08r 0.3456 0.3947 0.7353 0.9963 0.6154 0.8000
hm09g 0 0 0 0.9908 0 0
hm09m 0 0 0 0.9894 0 0
hm09r 0 0 0 0.9910 0 0
hm10g 0 0 0 0.9859 0 0
hm10m 0 0 0 0.9863 0 0
continued...
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Continuing Table A.1

Data set PC Nucleotide level Site level
Sensitivity PPV Specificity Sensitivity PPV

hm10r 0 0 0 0.9828 0 0
hm11g 0 0 0 0.9855 0 0
hm11m 0 0 0 0.9909 0 0
hm11r 0.0257 0.0297 0.1600 0.9946 0 0
hm12g 0.1250 0.1429 0.5000 0.9892 0.2000 0.5000
hm12m 0 0 0 0.9753 0 0
hm12r 0.1340 0.1857 0.3250 0.9710 0.4000 0.5000
hm13g 0 0 0 0.9931 0 0
hm13m 0 0 0 0.9863 0 0
hm13r 0.1231 0.1463 0.4364 0.9947 0.2222 0.4000
hm14g 0 0 0 0.9896 0 0
hm14m 0 0 0 0.9791 0 0
hm14r 0.0980 0.1220 0.3333 0.9896 0.2500 0.3333
hm15g 0 0 0 0.9937 0 0
hm15m 0 0 0 0.9886 0 0
hm15r 0 0 0 0.9949 0 0
hm16g 0 0 0 0.9971 0 0
hm16m 0 0 0 0.9911 0 0
hm16r 0 0 0 0.9966 0 0
hm17g 0.2202 0.2552 0.6167 0.9957 0.4000 0.6667
hm17m 0 0 0 0.9851 0 0
hm17r 0.1598 0.1862 0.5294 0.9955 0.3000 0.5000
hm18g 0 0 0 0.9953 0 0
hm18m 0 0 0 0.9893 0 0
hm18r 0 0 0 0.9966 0 0
hm19g 0.0496 0.0690 0.1500 0.9859 0.2500 0.2500
hm19m 0 0 0 0.9876 0 0
hm19r 0 0 0 0.9834 0 0
hm20g 0 0 0 0.9963 0 0
hm20m 0.0049 0.0069 0.0167 0.9923 0.0132 0.0185
hm20r 0 0 0 0.9980 0 0
hm21g 0 0 0 0.9870 0 0
hm21m 0.0362 0.0538 0.1000 0.9908 0.1429 0.2000
hm21r 0 0 0 0.9916 0 0
hm22g 0 0 0 0.9793 0 0
hm22m 0 0 0 0.9862 0 0
hm22r 0 0 0 0.9793 0 0
hm23g 0 0 0 0.9515 0 0
hm23m 0.0613 0.0699 0.3333 0.9892 0.2000 0.3333
continued...
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Continuing Table A.1

Data set PC Nucleotide level Site level
Sensitivity PPV Specificity Sensitivity PPV

hm23r 0 0 0 0.9838 0 0
hm24g 0 0 0 0.9719 0 0
hm24m 0.1722 0.2826 0.3059 0.9849 0.3750 0.3750
hm24r 0 0 0 0.9780 0 0
hm25g 0.1111 0.1429 0.3333 0.9785 0.2000 0.3333
hm25m 0 0 0 0.9785 0 0
hm25r 0.0909 0.1429 0.2000 0.9570 0.2000 0.2000
hm26g 0 0 0 0.9909 0 0
hm26m 0 0 0 0.9886 0 0
hm26r 0 0 0 0.9931 0 0
Human 0.0206 0.0287 0.0683 0.9929 0.0526 0.0679

Table A.2:Transition probabilities for a first order Markov model (MC1), obtained by a genome-
wide analysis of binucleotides in theD. melanogastergenome. Each probability is defined
as p(a1|a0). The MC1 table consists of 16 probabilities, i.e. 12 free parameters. This
table can directly be used as input for the “mksequ” program in order to generate random
sequences under a Markov model.

First Second nucleotidea1

a0 A C G T
A 0.3504 0.1812 0.1884 0.2800
C 0.3254 0.2223 0.1972 0.2552
G 0.2607 0.2715 0.2223 0.2455
T 0.2172 0.1926 0.2399 0.3504

129



A Additional tables

Table A.3:Transition probabilities for a second order Markov model (MC2), obtained by a genome-
wide analysis of trinucleotides in theD. melanogastergenome. Each probability is defined
as p(a2|a0a1). The MC2 table consists of 64 probabilities, i.e. 48 free parameters. This
table can directly be used as input for the “mksequ” program in order to generate random
sequences under a Markov model.

First Third Second nucleotidea1

a0 a2 A C G T
A A 0.3625 0.4159 0.3220 0.2603
A C 0.1628 0.2154 0.2035 0.1767
A G 0.2326 0.0485 0.2419 0.2591
A T 0.2421 0.3203 0.2326 0.3039
C A 0.2501 0.3459 0.2345 0.1875
C C 0.2064 0.2559 0.2167 0.2278
C G 0.2834 0.0478 0.2654 0.2874
C T 0.2601 0.3503 0.2835 0.2973
G A 0.3369 0.3474 0.3081 0.2220
G C 0.1762 0.2515 0.2094 0.2031
G G 0.2720 0.0468 0.2558 0.2883
G T 0.2148 0.3543 0.2266 0.2865
T A 0.3122 0.3266 0.2695 0.2181
T C 0.1807 0.2539 0.1970 0.2208
T G 0.2102 0.0348 0.2355 0.1986
T T 0.2969 0.3846 0.2980 0.3625
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Table A.4:Sequence fragments added to the negative training set. All fragments originate fromDro-
sophila melanogasterand are upstream regions of genes dedicated to cell cycle. If the
start position is larger than the end position, the fragment was reversed complemented.
Abbreviations: Chr=Chromosome.

Code Adjacent gene or fragment Type Chr Start End Length
downstream upstream

promCycA Cyclin A CG12521 Promoter 3L 11,840,434 11,826,678 13,757
promCycB Cyclin B st1 Promoter 2R 18,696,491 18,694,491 2,001
promRux roughex CG5941 Promoter X 5,931,563 5,931,210 354
promE2f E2F CG6353 Promoter 3R 17,486,907 17,486,128 780
intronE2f E2F-RB

first exon
E2F-RB
second exon

Intron 3R 17,485,937 17,471,266 14,672

promDap dacapo CG10459 Promoter 2R 5,596,045 5,599,827 3,783
promDp Umbrea CG15636 Promoter 2L 4,606,963 4,591,964 15,000
promCdc2c cdc2c CG31205 Promoter 3R 16,558,265 16,561,341 3,077
VanIntrFor-
Cdc37 dlt-RA

second exon
dlt-RA first
exon

Intron 3L 1,793,501 1,795,198 1,698

promCycE Cyclin E CG13240 Promoter 2L 15,749,608 15,748,156 1,453
promCdk4 Cyclin-

dependent
kinase 4

CG8317 Promoter 2R 12,465,534 12,466,980 1,447

promCdk8 Cyclin-
dependent
kinase 8

GTPase-
activating
protein 1

Promoter 3L 9,832,194 9,831,751 444
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