
agnes swadzba

T H E R O B O T ’ S V I S TA S PA C E – A C O M P U TAT I O N A L
A N A LY S I S





Universität Bielefeld

T H E R O B O T ’ S V I S TA S PA C E

A COMPUTATIONAL 3D SCENE ANALYSIS

wall cupboard

table
sofa

Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)

der Technischen Fakultät der Universität Bielefeld

vorgelegt von

agnes swadzba



dipl .-inf. agnes swadzba

Applied Informatics
Faculty of Technology
Bielefeld University
aswadzba@techfak.uni-bielefeld.de

Abdruck der genehmigten Dissertation zur Erlangung
das akademischen Grades Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Technischen Fakultät der Universität Bielefeld,
vorgelegt am 26.01.2011,
verteidigt am 23.03.2011.

gutachter:

PD Dr. Sven Wachsmuth, Universität Bielefeld
Prof. Dr. Jim Little, University of British Columbia
Prof. Dr. Christian Wöhler, Technische Universität Dortmund

prüfungsausschuss:

Prof. Dr. Mario Botsch, Universität Bielefeld
PD Dr. Sven Wachsmuth, Universität Bielefeld
Prof. Dr. Jim Little, University of British Columbia
Dr. Hendrik Koesling, Universität Bielefeld

Gedruckt auf alterungbeständigem Papier nach ISO 9706.



A C K N O W L E D G M E N T S

At this point, I would like to take the opportunity to thank for all the support
I have experienced. First of all, I would like to thank Sven for all the fruitful
discussions and his confidence in my various ideas and explorations. I would
like to thank Jim Little for his time spent on reading my thesis and joining my
defense and the encouraging feedback on my work. Last but not least, I thank
Christian Wöhler that he could review my thesis within one week allowing me
to keep the 23.03.2011 as date for my defense.

I want to thank the Applied Informatics group, especially, Gerhard Sagerer
for inviting me to Bielefeld which resulted in the opportunity to work in the
Collaborative Research Center 673 “Alignment in Communication” and to travel
to many interesting conferences and meetings. When studying Computer Science
in Erlangen I have had no idea that Bielefeld can offer such a wonderful work-
place. I would like to thank Niklas Beuter for being open-minded about all
my ideas how to combine our work on 3D data processing. I thank Frederic
Siepmann and my student helper Christian Thöns for supporting the integration
of some of my work on our robot BIRON and Marco Kortkamp, Julia Peltason,
Frederic Siepmann, and Marko Tscherepanow for their comments to this thesis
improving its readability. I thank all the members of AI and CLF for creating
such a nice working and socializing atmosphere. Altogether, I thank the CRC 673

for the environment inspiring interdisciplinary research and my colleagues Con-
stanze Vorwerg and Gert Rickheit from the A4 project “Alignment of Situation
Models” for introducing me to the linguistic perspective of my work. In memory
of Gert who died suddenly in April I feel honored that as one of his last research
activities he has attended my defense.

Last, I would like to thank my family, especially, my mother for her effort to
make my transition from Poland to Germany as a 6-year-old child as smooth as
possible. Her support during the first year at school and the confidence of my
primary school teacher in my capabilities has contributed to the fact that I have
not lost a year at school. I thank my parents and my brother for encouraging me
to follow my way. I thank Hans for his love, support, and patience in listening to
my problems. Hans, thanks for complementing my view on life. I hope I can do
the same for you. It’s not always easy but we will make it!

Agnes Swadzba
Bielefeld, May 2011

v





A B S T R A C T

The space that can be explored quickly from a fixed view point without locomotion
is known as the vista space. In indoor environments single rooms and room
parts follow this definition. The vista space plays an important role in situations
with agent-agent interaction as it is the directly surrounding environment in
which the interaction takes place. A collaborative interaction of the partners in
and with the environment requires that both partners know where they are,
what spatial structures they are talking about, and what scene elements they are
going to manipulate. This thesis focuses on the analysis of a robot’s vista space.
Mechanisms for extracting relevant spatial information are developed which
enable the robot to recognize in which place it is, to detect the scene elements
the human partner is talking about, and to segment scene structures the human
is changing. These abilities are addressed by the proposed holistic, aligned, and
articulated modeling approach. For a smooth human-robot interaction, the com-
puted models should be aligned to the partner’s representations. Therefore, the
design of the computational models is based on the combination of psychological
results from studies on human scene perception with basic physical properties
of the perceived scene and the perception itself. The holistic modeling realizes a
categorization of room percepts based on the observed 3D spatial layout. Room
layouts have room type specific features and fMRI studies have shown that some
of the human brain areas being active in scene recognition are sensitive to the
3D geometry of a room. With the aligned modeling, the robot is able to extract
the hierarchical scene representation underlying a scene description given by a
human tutor. Furthermore, it is able to ground the inferred scene elements in its
own visual perception of the scene. This modeling follows the assumption that
cognition and language schematize the world in the same way. This is visible
in the fact that a scene depiction mainly consists of relations between an object
and its supporting structure or between objects located on the same supporting
structure. Last, the articulated modeling equips the robot with a methodology for
articulated scene part extraction and fast background learning under short and
disturbed observation conditions typical for human-robot interaction scenarios.
Articulated scene parts are detected model-less by observing scene changes
caused by their manipulation. Change detection and background learning are
closely coupled because change is defined phenomenologically as variation of
structure. This means that change detection involves a comparison of currently
visible structures with a representation in memory. In range sensing this com-
parison can be nicely implement as subtraction of these two representations. The
three modeling approaches enable the robot to enrich its visual perceptions of
the surrounding environment, the vista space, with semantic information about
meaningful spatial structures useful for further interaction with the environment
and the human partner.
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I N T R O D U C T I O N

wall cupboard

table
sofa

Spatial awareness and the ability to communicate about the environment are
key capabilities enabling an agent to perform day-to-day navigation tasks. As
navigation is essential for agents, this explains the development and importance
of a spatial language [Sku04]. In general, space can be partitioned along the
actions that are required to perceive it [Kui00, Mon93]. For example, locomotion
is needed to record data about the large-scale space. While, the vista space can
be explored quickly from a single view point by eventually moving the gaze.
Applying this definition to domestic environments, a complete apartment has
the dimension of a large-scale space. Percepts of single rooms or room parts can
be assigned to the vista space. This distinction of space can also be applied to the
perception of a robot. Since the ability of navigation and localization is essential
for a mobile robot, much research has concentrated on approaches for modeling
the robot’s large-scale space. Especially, algorithms for Simultaneous Localization
And Mapping (SLAM), e. g., [Thr00], and motion planning, e. g., [Phi03], have
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been developed often using 2D representations like occupancy grids, metric
maps, or topological maps [Moz07]. The vista space becomes relevant for a robot
if obstacles must be avoided [Yua09] or an unknown environment needs to be
explored. For example, navigation from one room to another room requires
not only a path planning on a global map but also an analysis of local scans
to react to suddenly appearing objects. An analysis of the vista space is even
more important in situations with agent-agent interaction as it is the directly
surrounding environment in which the interaction takes place. A collaborative
interaction of the partners in and with the environment requires that both
partners know where they are, what spatial structures they are talking about,
and what scene elements they are going to manipulate. Therefore, a semantic
modeling of the vista space, especially in 3D, is essential. My thesis focuses
on the computational modeling from a robot’s perspective as less work can
be found in the area of 3D spatial modeling for human-robot interaction. The
goal is to design mechanisms for extracting relevant spatial structures allowing
the robot to recognize in which place it is, to detect the scene elements the
human partner is talking about, and to segment scene structures the human is
changing. For a smooth human-robot interaction, the models computed by the
robot should be aligned to the partner’s representations [Vas07a], which means
that similar scene information needs to be encoded [Pic04]. Towards a complete
spatial awareness, the models of a set of vista spaces could be fused with a
representation of the covered large-scale space, for example, using the Spatial
Semantic Hierarchies (SSH) proposed by Kuipers and colleagues [Bee07, Kui00].

A commonly used scenario where a robot is expected to acquire spatial know-
ledge in an interactive way is the so-called “home tour” scenario [COG04]. A hu-
man is instructed to guide a robot around while showing it relevant objects and
places in an apartment. This thesis is going to develop methods for analyzing
three situations that can arise during a “home tour”. The eye-catcher image at
the beginning of this section illustrates these situations. First, the robot should
be able to recognize the type of a room that has been entered (e. g., “this is a
living room”). Second, a description of the room should be analyzed for rele-
vant scene structures and grounded in the visual perception of the room. For
example, the relevant scene structure in “there is a bowl on the table” is the
“table” because it is the supporting structure for the “bowl”. The intention of
a room description could be an initial introduction of the room to the robot
or an explanation for a subsequent task instruction. In the third situation the
robot observes scenes where the human is acting and causing changes to the
environment, e. g., opening a cupboard door. The robot should be able to detect
the articulated parts of a scene. This is useful in a tutoring situation as it might be
easier to show something than to explain it verbally. Furthermore, movable scene
parts are relevant in situations where robot and human are going to execute a
task together. The following specific research questions arise from these three
situations faced:
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How can the type of a room be recognized independent from specific furniture
arrangements and contained objects?

How can the relevant supporting structures be inferred from a depiction and
grounded visually, so that the resulting model is aligned to the describer’s
representation?

How can articulated scene parts, that are manipulated by a human, be
extracted under short observation conditions?

The holistic, aligned, and articulated modeling approaches developed in this
thesis suggest solutions to the raised questions. They utilize results from psycho-
logical studies on these topics and combine them with basic physical properties
in 3D room perception.

The holistic modeling is based on the finding that a brain area being involved
in scene recognition is sensitive to the 3D geometry of a scene [Hen08]. As man-
made environments mostly consist of planar surfaces, these patches assemble
the 3D geometry of a room. Therefore, I am going to introduce a new 3D
feature vector which is computed on a set of bottom-up extracted planar patches
capturing the spatial layout of a room. The challenge is to define the feature
in a way that the encoding is independent from the view on the scene and
the arrangement of furniture in the scene. The contribution of my approach
is a global representation of a room similar to the well-known Gist feature
vector [Oli01] but based on the real 3D geometry. The advantage of global
representations is that it is independent from the detection of objects and their
assignment to a specific room type [Zen08].

The aligned modeling relies on parallels in the way language and cognition
schematize the spatial world [Tve98]. This means that a hearer can build from
a description a model of a scene that is similar to the scene model the speaker
has built from perception [Wal80]. Therefore, the goal is to equip the robot
with skills for inferring semantically meaningful spatial structures from spatial
descriptions. The challenge is to meet the given level of detail and to ground
the estimated structures in the visual perception. A spatial description mostly
consists of relations between an object and its supporting structure or relations
between objects located on the same structure. My contribution is a definition
of rules handling these two types of relations. The rules transform a depiction
into a set of trees encoding its hierarchical character. The grounding of relevant
supporting structures into the visual world is realized by utilizing object detec-
tion and planar surface extraction. This approach allows a more flexible scene
modeling than state-of-the-art approaches that extract semantic labels for spatial
structures in a bottom-up way by assigning labels to 3D points using classifica-
tion [Tri07] or to 3D planar surfaces using an ontology [Nüc08]. Furthermore,
ambiguities in the scene descriptions can be resolved by establishing the link
between depicted scene knowledge and their visual counterparts.
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The articulated modeling proposes to represent a dynamic scene in three layers:
one for the moving entities, one for the static scene background, and one for the
articulated scene parts. This partition follows the distinction of scene dynamics
into change and motion [Ren02]. Motion is defined as variation of location and
change as variation of structure. Therefore, moving persons are determined by a
particle filtering of small motion-annotated 3D clusters where velocity vectors
are provided by optical flow computation [Luc81]. The challenging problem
is to detect articulated scene parts like a cupboard door. Since the articulation
is an essential feature of the modeled scene parts, these scene structures can
be detected by observing changes in the spatial environment caused by their
manipulation. As phenomenologically a comparison of currently visible struc-
tures with a representation in memory is involved for change detection, this can
be realized by comparing a learned static background model with the current
perception. For range sensing, this comparison can be nicely implemented as
subtraction because the farthest static depth values of one view point belong
to the static scene background. Static depth measurements that appear in front
of a known static background are assumed to belong to an articulated scene
part. Subtracting the estimated background from the current perception gives a
methodology for fast segmentation of arbitrary articulated scene parts without
knowing them or the associated activities in advance [Peu04].

The thesis is organized as follows: Chapter 2 presents 3D perception suitable for
sensing the vista space. Furthermore, some bottom-up processing like planar
surface extraction and velocity annotation is introduced. Each of the three
modeling approaches is discussed in an own chapter. The chapters describe the
relevant related work, the computational models, and their evaluation. Chapter 3

deals with the holistic, Chapter 4 with the aligned, and Chapter 5 with the
articulated scene modeling. Chapter 6 summarizes the contributions of the thesis
and identifies possible future work.
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2
P E R C E P T I O N O F T H E V I S TA S PA C E

As the vista space is in focus of this thesis, first, a definition of the vista space is
given in Section 2.1. The vista space models are designed for a mobile robot like
the BIelefeld Robot CompaniON (BIRON) which is introduced in Section 2.2.
Furthermore, the section describes the “home tour” scenario which is an impor-
tant application of the robot. Scenarios within the “home tour” which fulfill the
definition of the vista space are presented in Section 2.1. Scene models providing
semantic information for spatial structures require a sensor system that is able
to provide dense 3D data from less-textured surfaces. Section 2.3 presents such
a 3D sensor used for sampling depth measurements from the environment. It
outlines the working principle of the camera and preprocessing methods for
the provided data. For a further spatial analysis it is necessary to extract some
basic information. Section 2.4 shows how planar surfaces can be extracted from
one frame. Section 2.5 shows for a sequence of frames how 3D data can be
enhanced with 3D velocity vectors (in the case of observing a dynamic scene
with a static camera) and how camera transformations can be computed (in the
case of observing a static scene with a moving camera).

5



perception of the vista space

2.1 definition of the vista space

The importance of scale to the psychology of space (perception, thinking, me-
mory, behavior) has been discussed by Montello in [Mon93]. He points out that
properties of space in human perception are scale-dependent. Based on this
assumption, he proposes definitions for the different types of space perceivable
with a sensory system. He distinguishes four major classes of psychological
space: figural, vista, environmental, and geographical. The distinction is based on
the projective size of the space in relation to the human body neglecting the
space’s actual or absolute size. The figural space is projectively smaller than the
body. Its properties can be perceived directly from one place without appreciable
locomotion. Figural space is the space of pictures, small objects, and distant
landmarks. The vista space is projectively as large or larger than the body but
can be visually apprehended from a single place without locomotion. Similar
to the vista space, Ullman [Ull96] has defined the so-called visual space which
is the immediately surrounding environment that can be explored quickly by
moving the gaze. It is the space of single rooms, town squares, small valleys,
and horizons. The environmental space is projectively larger than the body and
surrounds it. Locomotion is necessary to apprehend this type of space and
information has to be integrated over a significant period of time. In literature,
this type of space is also often referred to as large-scale space, e. g., [Kui00]. It is
the space of buildings, neighborhoods, and cities. Last, the geographical space
is projectively much larger than the body and cannot be apprehended directly
through locomotion. It must be learned via symbolic representations such as
maps which reduces the geographical space to the figural space.

2.2 biron – the bielefeld robot companion

The scene models in this thesis are developed with the robot platform BIRON,
the BIelefeld Robot companiON, in mind. Section 2.2.1 introduces the platform
and Section 2.2.2 describes the “home tour” scenario which is an important
application for BIRON. The focus of the thesis is to develop scene models
for vista space scenarios within the “home tour ”. Section 2.2.3 describes the
scenarios in the “home tour” which match the definition given in Section 2.1.

2.2.1 The Robot Platform

Figure 2.1(a) shows the current generation of the BIRON platform with the senors
attached to it [Wac10]. It is based on the research platform GuiaBot™ 1. The base
is a PatrolBot™ unit which is 59cm in length, 48cm in width, weighs approx.
45kg and is maneuverable with 1.7 meters per second maximum translation and
300+ degrees rotation per second. On top of the platform two MP CCD FireWire

1 http://www.mobilerobots.com
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2.2 biron – the bielefeld robot companion

Microphone

Camera

3D
 Sensor

Gripper

Laser

Person/Object

(a) BIRON platform (b) home-tour apartment

Figure 2.1: (a) shows the platform of the mobile robot BIelefeld Robot CompaniON (BIRON) with
close-ups of important hardware components. (b) shows the floor plan of our apartment used for
experiments within the “home tour” paradigm. The robot can freely drive around and can enter
the living room, the kitchen, the corridor, and the dining room.

cameras (Point Grey Grasshopper) are mounted which are used for person/object
detection and recognition. One is facing down for object detection/recognition
and one is facing up for face detection/recognition. A SwissRanger™ SR3100
from Mesa Imaging 2 is located on top of the robot providing 3D data used
in object grasping and scene analysis. The 3D sensor is either mounted on a
pan-tilt unit so that the camera can be moved independently from the robot’s
body or the camera is fixed facing down by ca. 10◦. A chess pattern placed on
the floor in front of the robot can be used to compute exactly the transformation
of the camera coordinate system to the robot’s vertical body and the horizontal
ground plane the robot is driving on. Practical details can be found in [Yua09].
For grasping and manipulating objects the robot is equipped with a Katana IPR
5 degrees-of-freedom (DOF) arm, a small and lightweight manipulator driven
by 6 DC-Motors. The end-effector is a sensor-gripper with distance and touch
sensors being able to lift objects of up to 400g. The upper part of the robot’s
body comprises a touch screen and a system speaker. The on-board microphone
has a hyper-cardioid polar pattern and is mounted on top of the upper part of
the robot. The overall height is approximately 140cm.

The software architecture of the BIRON system consists of many different com-
ponents, each a piece of software providing functionality allowing the robot
to interact with humans, to move collision-free around, and to solve tasks
given in a “home tour” scenario (→ Section 2.2.2). Example components are
speech recognition, person following, map building using SLAM, face recog-
nition, obstacle avoidance, and so on. All components follow the concept of
Information-Driven-Integration (IDI) [Wre08] by sharing their data via an Active
Memory (AM) [Wre06] on the basis of flexible event notification and XML-based
representations with a document-oriented data model. All information genera-
ted and revised by components in the system are mediated through this active

2 http://www.mesa-imaging.ch
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perception of the vista space

memory, where it can persistently be stored and retrieved from. The event-driven
AM concept is directly supported by the open-source integration framework
XCF 3 [Fri07]. On top of this memory architecture, the functional API BirON
Sensor Actuator Interface (BonSAI) is defined that abstracts from specific compo-
nents. This Java API encapsulates hardware sensor information and cross-modal
sensors in a sensor class. In the same way actuators are defined that directly
control the hardware, e. g., the Pan-/Tilt-/Zoom-Camera or provide cross-modal
actuators such as the NavigationActuator that employs different components of
the system to get the robot to a certain location. The BonSAI abstraction layer
facilitates the implementation of new components and applications making use
of all available components of the BIRON platform. So far, less components are
realized for processing data of the 3D sensor. Hence, my motivation was also to
extend BIRON’s abilities for analyzing this type of data.

2.2.2 The “Home Tour” Scenario

A main scenario BIRON is designed to deal with is widely known as the “robot
home tour” [Han08]. It follows the vision of a (service) robot being delivered to
peoples’ houses without prior knowledge about the particular environment. It is
equipped with capabilities that allow it to learn in an interactive fashion. Hence,
the user has to show the robot around the domestic environment and teach it
rooms and objects that are relevant. Afterwards, the robot is expected to be able
to provide services in a user- and situation-aware manner. The “home tour” is
mainly focused on the interactive acquisition of human-adequate representations
and on the interaction itself rather than on any specific service. Knowledge
of interest thereby comprises topological representations of the living space,
models about relevant objects and functional spaces [Zie10], and about different
users. The “home tour” scenario recently also gained particular interest by the
RoboCup@Home competition 4 where BIRON has participated successfully as
part of the Team of BIelefeld (ToBI) 5 [Wac10, Wac09].

Figure 2.1(b) shows the apartment of the Applied Informatics group permanently
rented to tackle real-world challenges and to move out of the lab into realistic
settings. Non-expert users should interact with BIRON regularly. The goal of the
“home tour” is to enable non-expert users to teach a robot about their own living
environment in a rather intuitive way, emulating human-human interaction to
a certain extent. The user is engaged in interaction with the robot by means
of verbal dialog, joint spatial exploration, and gestural reference, to mention
only some relevant abilities. Resulting real-world challenges range from small
doorways, uncontrolled visual and acoustic conditions to unpredictable human
behaviors and reactions.

3 http://xcf.sf.net
4 http://www.robocupathome.org
5 http://www.citec.de/ToBI
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2.2 biron – the bielefeld robot companion

2.2.3 Vista Space Scenes in the “Home Tour”

A robot acting in a “home tour” scenario (→ Section 2.2.2) mostly encounters
vista and large-scale space situations. A large-scale space in an apartment is the
complete apartment as locomotion is required to perceive it in total. Pieces of
data are integrate in one global map, for example, using SLAM. Such maps are
mostly used for navigation so that details are often skipped for efficient path
planning. All observations of indoor rooms taken from a certain view point
belong to the vista space. Within an apartment these areas are room parts or
single rooms. They are either observed with a static camera or a camera rotated
around its axes. I assign methods for analyzing percepts from one view point
to the field of vista space analysis. Methods that integrate vista space percepts
along paths and examine the integrated data belong to the field of large-scale
space analysis. Vista space and large-scale space analysis can differ in the level
of details that are modeled.

The goal of this thesis is to provide modeling abilities resulting in a spatial
awareness for scenes belonging to the vista space. The robot gains knowledge
about meaningful structures enabling later resource conserving strategies for
providing services. I focus on three specific situations. First, the robot is instructed
to explore the apartment by itself. The goal is to get an overall impression of the
apartment. Therefore, the robot needs abilities to determine the room type of
visited rooms. Second, a certain room part is described explicitly to the robot
in order to enable the robot to solve a specific task for which knowledge about
meaningful spatial structures is essential. Here, methods are needed which allow
the robot to process verbal descriptions given during an interaction between
human and robot. These descriptions reveal important structures like a table
where objects can be placed. Third, scene changes need to be handled which
provide a further input to a spatial analysis system. For example, if the robot
has “spare time”, it can observe the human interacting with the environment
when he/she cleans up the room. The robot learns from observing scene changes
which room parts are static and which have been relocated. This general scene
encoding provides additional information about functional structures like, e. g.,
a door, just by opening and closing it.

Definition. Scene.

Throughout this thesis, a scene is a specific observation during one of
the described situations, namely, exploring autonomously an apartment,
listening to spatial descriptions about spatial arrangements, and
monitoring spatial changes.
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perception of the vista space

2.3 a sensor for perceiving spatial structures in 3d

My goal is to develop modeling approaches for 3D percepts acquired from vista
space situations as described in Section 2.2.2. The models should equip the robot
with a spatial awareness, which means that 3D perception should be able to
perceive spatial structures that are present in every-day indoor environments.
Together with the specification that the vista space can be perceived quickly at
a glance this leads to some requirements for a suitable acquisition of 3D data.
First, it must be able to provide reliable 3D data from less-textured surfaces as
indoor environments are oft assembled by homogeneous surfaces like tables,
walls, modern sofas, etc. Second, the 3D sensing has to happen at a proper frame-
rate allowing a quick gaze on scenes and observations of dynamics scenes like
moving persons. Third, a dense 3D point cloud should to be delivered ideally.
Basically, three different sensor types for 3D perception are in use on robot
platforms: Time-of-Flight cameras, 2D camera based vision like stereo cameras
or Structured-Light cameras, and Laser range finders. Each of the three sensor
types operates best under specific conditions. The Time-of-Flight sensors fulfill
the three requirements listed above. They sample from scene surfaces a dense 3D
point cloud using infrared light at a frame rate of up to 30fps. In contrast to ToF
cameras, stereo cameras estimate depth by computing the disparity of the two
cameras from detected point correspondences. The stereo cameras deliver precise
3D data for textured objects but often fail to provide dense and reliable 3D data
for homogeneous areas. This could be handled by enhancing the sensor system
with Structured-Light projectors. For example, WillowGarage has mounted on
their PR2 robot 6 a LED Texture Projector that is triggered with a stereo camera.
However, such projections might disturb the interaction between human and
robot. Recently, Microsoft has launched the Kinect camera 7 8 9 which uses an
infrared emitter to project a point pattern being invisible for the human eye. The
depth information is calculated from the distortion of the pattern. In principle, it
is also possible to get dense 3D from a Laser range finder, but its operation mode
does not allow to get it in real-time. As the Laser beam has to be redirected for
every measurement only one distance can be sampled in parallel. The algorithms
presented in Chapter 3 to Chapter 5 are developed without a special device in
mind. They only require a dense 3D point cloud which is delivered with at least
10fps. Currently, Time-of-Flight cameras like the PMD[vision]® camera 10 or the
SwissRanger™ camera 11 and Structured-Light cameras like the Kinect camera
are best suited to deliver in real-time reliable and dense 3D point clouds. Due to
its small and lightweight body, the SwissRanger™ SR3100 (→ Figure 2.2(a)) has
been mounted on the BIRON platform (→ Section 2.2.1). The following sections
shortly introduce the working principle of the SwissRanger camera and some
preprocessing of the output data.

6 http://www.willowgarage.com/pages/pr2/overview
7 http://www.xbox.com/en-US/kinect
8 http://openkinect.org/wiki/Main_Page
9 http://openni.org

10 http://www.pmdtec.com
11 http://www.mesa-imaging.ch
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2.3 a sensor for perceiving spatial structures in 3d

(a) SR3100 (b) measurement principle

Figure 2.2: The measurement principle of a SwissRanger camera comprises a measurement of
four values {mi}(i=1, ..., 4) per period done at equal intervals. They allow to recover the measured
modulated sinusoidal that is entirely determined by its phase shift ϕ, its average intensity I, and
its amplitude A [Wei04].

2.3.1 Working Principle of the SwissRanger Camera

The use of SwissRanger cameras in the field of robotics has been initially pre-
sented by Weingarten [Wei04]. The camera is a solid-state imaging device that
delivers distances and intensity images [Ogg04, Lan01]. The camera is based
on CMOS pixel sensors arranged into one image plane and a modulated light
source. The SR3100 assembles 176× 144 pixel sensors allowing the camera to
deliver simultaneously 25344 distance measurements. The SwissRanger camera
relies on the time-of-flight principle. The distance d between the camera and
an object is determined by measuring the time ∆t an emitted light signal needs
from the camera to the object and back:

∆t =
2d
c

with c the speed of light. (2.1)

As the infrared light emitted by the camera is modulated by a single frequency fm

the time-of-flight ∆t can be directly computed from the phase shift ϕ between
the signal sent and received:

ϕ = 2π · fm · ∆t . (2.2)

This phase shift is determined by sampling per pixel sensor the amount of
modulated light reflected by objects in the scene. This is done four times every
period of the modulation signal at equal intervals.
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perception of the vista space

The four measurements – m1, m2, m3, and m4 – allow a recovering of the incom-
ing sinusoidal signal. The phase shift ϕ and the corresponding distance d are
computed by:

ϕ = arctan
(

m4 −m2

m1 −m3

)
, (2.3)

d = dmax ·
ϕ

2π
, (2.4)

dmax =
c

2 fm
. (2.5)

where dmax is the non-ambiguity range of the sensor determined by the modula-
tion frequency of the emitted light. The amount of reflected light can be used to
recover the intensity I and amplitude A of the measured sinusoidal:

I =
m1 + m2 + m3 + m4

4
, (2.6)

A =

√
(m3 −m1)2 + (m4 −m2)2

2
. (2.7)

The amount of reflected light is later used to estimate the reliability of a distance
measurement as different materials have different reflection properties disturbing
the measurement by more or less noise.

The pixel sensors of the SR3100 have a height of h = 40µm and a width of
w = 40µm. The default modulation frequency of 20MHz results in a non-
ambiguity range of dmax = 7.5m. For distances between 0.3 and 3m the frame
rate deviates between 12 and 29 Hz with a depth resolution of 2.5 to 22mm at the
central pixel. The central pixel is located at position ( 92, 60 )T. The modulated
illumination is generated by a set of 48 near-infrared LEDs. The lens of the
camera has a focal length of 8mm and a field of view of about 43◦ horizontally
and 46◦ vertically. Figure 2.4 shows an example output of the SwissRanger
camera. An amplitude and a distance image can be seen.

2.3.2 Preprocessing of SwissRanger Data

The raw output of the SwissRanger is quite noisy. The following paragraphs
introduce some basic preprocessing of the output data. Distance values are
smoothed using a distance-adaptive median filter, unreliable measurements are
determined with respect to their amplitude values and their membership to
depth edges. Further, back-projection is utilized to convert the distance values to
real 3D world coordinates.
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2.3 a sensor for perceiving spatial structures in 3d

Figure 2.3: The figure illustrates schematically the SwissRanger image plane and the ray propor-
tions necessary to transform the measured distance dw to a world coordinate ~fw. Front view: each
pixel in the image plane is uniquely tagged with [ c r ] or a index i = (r− 1) · 176 + c iterating
the image plane row-wise. Top view: the origin of the world coordinate system is located in the
optical center~o of the camera. The ray proportions in the spanned triangle are used to scale the
local pixel coordinates to global world coordinates.

back-projection. For later use in this thesis the measured distances of one
frame F have to be transformed into 3D world coordinates { ~fi }. The origin of
the coordinate system is aligned to the optical center~o of the camera. Given some
parameters of the camera – like the focal length do (here, in mm), the principal
point ( co, ro )T (provided by perpendicular projection of the optical center ~o),
the pixels width w and pixels height h (also in mm) – the local 3D coordinates ~fl
of a pixel ~p = ( cp, rp )T ∈ R2 can be computed by:

~p =

(
cp

rp

)
∈ R2 → ~fl =

xl

yl

zl

 ∈ R3 with
xl = (cp − co) · w
yl = (ro − rp) · h
zl = do.

(2.8)

The corresponding world point ~fw is computed by scaling the local coordinates
xl, yl, and zl by the factor θp that is determined using the distance value dw

measured in the pixel ~p = ( cp, rp )T and the ray relations in the corresponding
triangle (→ Equation 2.9). As shown in Figure 2.3 the triangle is spanned by the
optical axis and the ray with length dw through the pixel ( cp, rp )T.

~fw =

xw

yw

zw

 ∈ R3 with
xw = θp · xl

yw = θp · yl

zw = θp · zl

(2.9)

and θp =
dw

dl
where dl =

√
x2

l + y2
l + z2

l .
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perception of the vista space

Sensors like the SwissRanger camera give in a nice way a 2D arrangement for a
3D point cloud. Throughout this thesis it can be seen that this combination of 3D
and 2D information reduces computational costs as standard 2D techniques can
be utilized. For example, adjacent points can be determined much easier on the
2D image plane than in the complete 3D space. In Figure 2.6(a) the resulting 3D
point cloud can be seen when applying back-projection to the original distance
image given in Figure 2.4(b).

distance-adaptive median filtering. Figure 2.4(b) shows a raw dis-
tance image with some noise from bad reflecting areas like the floor. As argued
above the 3D point could can be smoothed efficiently by applying 2D filter
techniques to the distance image. A standard approach is to use a median filter
which smooths homogeneous regions and preserves edges. Choosing the ade-
quate filter size is the crucial point as on the one hand noise should be removed
and on the other hand details should be preserved. Taking into account the
different distance measurements a proper size can be identified in a nice way.
Due to projection properties an object is going to cover an increasingly smaller
area on the image plane if it is moving away from the camera. Therefore, large
distance measurements have to be smoothed with a small filter in order to keep
details while small depth values can be convolved with a bigger filter. In [Swa07],
I have introduced a distance-adaptive median filter which takes into account this
projection property. The size of the filter applied to a distance value depends
on the assignment to one of the three intervals: [ 0, 1

3 dmax ], ] 1
3 dmax, 2

3 dmax ],
and ] 2

3 dmax, dmax ] with dmax = 7.5m. Possible filter sizes are 7× 7, 5× 5, and
3× 3 (the order here determines the association of a filter size with an interval
mentioned before). Applying back-projection to the smoothed depth map leads
to a smooth 3D point cloud. Figure 2.5(a) shows the smoothed distance image.
Hedge and Ye [Hed08] have proposed a Singular Value Decomposition (SVD)
based filtering method of SwissRanger data. They convert a conventional range
image into an enhanced range image where each pixel’s intensity embodies the
surface normal and the depth information of the corresponding pixel in the
original image. This enhanced image is decomposed via SVD into the matrices
U, V, and the diagonal matrix D. The smoothed depth image is reconstructed
from multiplying the three matrices after setting small diagonal values in D to
0. Even though the smoothed results are quite convincing this approach has
the drawback of high computational costs as for each point a surface normal
has to be estimated, for example, using the method presented in Section 2.4.1.
This results in a reduction of the output frame rate thus the SVD based filtering
might not be applicable in dynamic scenes like encountered in Chapter 5 where
a reasonable frame rate is required for robust entity tracking. As a consequence,
I continued to use my distance-adaptive median filtering throughout this thesis.
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2.3 a sensor for perceiving spatial structures in 3d

(a) amplitude image (b) distance image

Figure 2.4: This figure shows an example amplitude and distance image delivered by a SwissRanger
SR3100. In the amplitude image white pixels denote a huge amount of reflected infrared light
while black pixels denote bad reflection properties. Black pixels in the distance image refer to
small distance values and white pixels to large distance values.

(a) smoothed distance image (b) depth edges

Figure 2.5: (a) This distance image has been smoothed using the distance-adaptive median filter.
(b) Depth edges can be computed on the smoothed distance image. Here, the Sobel filter has been
applied.

(a) raw 3D point cloud (b) smoothed and valid 3D point cloud

Figure 2.6: This figure shows in (a) the raw 3D point cloud computed via back-projection from the
original distance image. (b) displays the 3D point cloud after smoothing the distance image with
the distance-adaptive median filter and removing invalid points via amplitude thresholding and
depth edge detection.
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amplitude filtering. As outlined in Section 2.3.1 the amplitude image
(→ Figure 2.4(a)) provided by the SwissRanger camera holds for each pixel the
amount of reflected infrared light. Surfaces which reflect infrared light well will
have a large amplitude value and will appear in light colors in the amplitude
image. The more light is reflected the more information is accumulate by the
pixel sensor for measuring the phase shift in the light signal. Hence, amplitude
values indicate indirectly the reliability of the distance measurements. A depth
value with an amplitude value below a certain threshold θa is declared to be
an invalid or noisy measurement. For an arbitrary amplitude image A the
corresponding threshold θa is a fraction of the mean amplitude value:

θa =
1
3

Ā with Ā =
1
n

n

∑
i=1

Ai and (2.10)

A =
{

Ai

}
i=1 ..., n

(here, n = 176 · 144).

edge filtering. A common problem in actively sensing systems are the
so-called “flying pixels”. Especially at edges, a pixel sensor may collect simulta-
neously light reflected from a foreground object and a background surface. Both
signals cannot be distinguished which results in a hallucination of a 3D point
somewhere “flying” between the foreground and the background. In [Swa07],
I have proposed to determine for each 3D point the amount of near neighboring
points. Points are declared as valid if there are enough near points in their
3× 3 neighborhood. Even though, this method removes some flying pixels the
definitions for “near point” and “enough points” have to be estimated empiri-
cally. This parameter tuning can be skipped by computing edges in the distance
image using, e. g., a Sobel filter (→ Figure 2.5(b)). Points located on these depth
edges are removed from the valid point cloud. This approach removes success-
fully noisy points where the previous method has failed since a set of scattered
points appearing along an edge leads to the effect that flying pixels have enough
close points supporting each other.

Figure 2.6(b) shows the final 3D point cloud after all preprocessing steps have
been applied. Compared to the raw point cloud in Figure 2.6(a) the 3D points
are smoothed convincingly and scattered points along depth edges and from
badly reflecting surfaces like the floor are removed reliably.
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2.4 basic processing of a single percept

2.4 basic processing of a single percept

This section presents some extraction of basic information from one scene snap-
shot. Section 2.4.1 describes how 3D points can be enhanced with local surface
information. Section 2.4.2 discusses the extraction of geometric primitives suit-
able as first abstraction from raw data.

2.4.1 Computing Oriented Particles

As the SwissRanger camera samples 3D points from surfaces in the scene,
estimating the orientation of the 3D points will allow to infer characteristics of
the scanned surfaces. Fua has proposed to define a point ~fi as an oriented particle
Pi which means that a 3D point is enhanced with a normal vector ~ni encoding
the point’s orientation [Fua97]:

Pi : ~ni ·~x− di = 0. (2.11)

Equation 2.11 describes the oriented particle in Hessian Normal form. di is the
Euclidean distance of the particle’s centroid to the origin of the world coordinate
system. Assuming piecewise planarity of surfaces, points in the neighborhood
of a point can be used to estimate the normal of this point. In principle, one
can think of using k-nearest neighbors or points in a fixed distance [Rab06].
Independent from the chosen approach, searching for neighboring points directly
in the 3D space has an increased complexity and requires some effort for efficient
space representation. Representations can range from a decomposition of the
3D space into regular cubes [Wei03] to a data-driven one into octrees [Sam02] or
kD-trees [Lee77]. Alternatively, approximate nearest neighbor methods like “best
bin first” [Bei97] can increase the search efficiency. In my case, the SwissRanger

Figure 2.7: The right image shows an example frame of the scene shown in Figure 2.4(a) where the
3D points { ~fi } are replaced by small planar patches representing the computed oriented particles
{ Pi | ~ni, di } (see zoom in the left bottom edge of the right image). The patches are colored
according to their orientations to the axes of the coordinate system. Parallel planes like the wall in
the back and the cupboard doors are colored equally (e. g., orange) or with a complementary color
(e. g., blue) depending on the sign of the normal. The left image shows the 2D image where each
pixel is colored according to the orientation of the corresponding 3D point. (best viewed in color)
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Figure 2.8: This figure shows the points of
an example frame which have been declared
as planar when defining oriented particles.
Points at sharp edges are not planar. This is
an advantage for the planar surface extrac-
tion because these points stop growing of
regions at edges.

characteristics provide a by-pass to the nearest neighbor computation in 3D
space. As illustrated in Figure 2.3, each 3D point of a SwissRanger frame has a
corresponding 2D pixel in the camera’s image plane. Points are neighbors in 3D
if their corresponding 2D pixels are neighbors on the image plane. Therefore,
the normal vector ~ni of a point ~fi is computed from a set of neighboring points
{ ~f j } selected through determining the 8-neighborhood N3×3 of point ~fi on the
image plane:

{
~f j | ~f j ∈ N3×3 of ~fi

}
. (2.12)

Applying Principal Component Analysis (PCA) to this set of points estimates
the normal vector ~ni by choosing the eigenvector with the smallest eigenvalue.
The centroid point computed from the point set { ~f j } ∪ ~fi is used to compute
di in Equation 2.11. Figure 2.7 shows for an example point cloud the computed
oriented particles. A particle Pi is colored according to its orientation to the axis
~x, ~y, and ~z of the world coordinate system. The color [Ri, Gi, Bi ] is determined
by:

[ Ri, Gi, Bi ] =
[ αx

π
,

αy

π
,

αz

π

]
with (2.13)

αx = arccos(~x ·~ni), αy = arccos(~y ·~ni), αz = arccos(~z ·~ni)

“ · ” : scalar product

It can be seen that parallel planes like the wall and the cupboard doors contain
points with normals of similar orientation (here, orange). Particles colored with
the complementary color (here, blue) have the same orientation but the normal
is reflected along the plane resulting flipped signs. I am going to tackle the
problem of different normal signs by just considering the acute angles between
normals when extracting planar patches.

According to [Sta02], the deviation σi of the point ~fi to the fitted plane Pi can
be used as a measurement to judge the quality of the plane fitting. Points with
a deviation below a threshold θσ are classified as locally planar otherwise as
non-planar. Points which are not part of locally planar surfaces are detected in
this way. Figure 2.8 highlights in the example point cloud the planar points in
red. As expected, points at sharp edges are labeled as non-planar.
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2.4 basic processing of a single percept

2.4.2 Extracting Planar Surfaces

While the normal vectors just hold local characteristics of the 3D points, extraction
of large continuous surfaces can be used to represent the scene on a more abstract
level. If you look around in a standard indoor room most surfaces are planar.
Hence, focusing on the extraction of planar surfaces as geometric primitives is an
acceptable restriction. First, some related work is presented and their advantages
and disadvantages are discussed. Second, the implemented algorithm is outlined.

related work. In principle there are three main algorithms for extracting
planar surfaces in 3D data. Expectation Maximization (EM) and Region Growing
(RG) are the most used techniques while pure RANdom SAmple Consensus
(RANSAC) [Fis81] is less frequently used.

The advantage of the RANSAC algorithm is that planes can be fitted robustly
into data while omitting outliers. In general, three points are chosen randomly
determining a plane and the remaining points are added if they fulfill the plane
equation. This scheme is rerun several times and the most supported plane is
selected. Nüchter [Nüc08] runs RANSAC several times to find iteratively the
main planes by choosing randomly a point, fitting a plane to this point by
using its neighboring points and adding points to the current set that fulfill the
plane equation. The resulting set of points is refined by the Iterative Closest
Points (ICP) algorithm. Lee [Lee05] enhances Scale-Invariant Feature Transform
(SIFT) features with 3D positions and extracts planes via RANSAC from these
stereo-sis SIFT features. The extracted planes are priors for the subsequent object
detection. The main drawback of pure RANSAC-based methods is the fact that
a boundary constraint cannot be simply integrated. In cluttered scenes, planes
can be extracted which consist of two or more unconnected patches or contain
points from the intersection of planes with other planes. As shown by Nüchter,
RANSAC performs well in convex scenes like a floor but cannot be applied
directly to crowded rooms of the living space.

The second method, Expectation Maximization (EM), estimates plane models
and main directions for a given number of planes such that the likelihood of the
data is maximized. During expectation (E-step), for each point probabilities are
estimated that encode the belonging of the point to planes estimated during the
previous run using its distances to the planes. During maximization (M-step), the
new positions of the planes are computed using a regression weighted with the
probabilities of the E-step. Afterwards, the number of planes is optimized. The
EM optimization is normally point-based however Andreasson et al. [And05]
propose also to incorporate color information. The purpose is to support plane
estimation in noisy data but has the drawback to produce a huge amount
of patches in textured scenes. As EM needs to know the number of planes
beforehand this number has to be estimated outside the EM computation. In
literature, different methods are reported for estimating the correct number of
planes. For example, the Bayesian Information Criterion (BIC) [Sch78] can be
minimized by dropping planes as a high BIC value denotes redundancy in the
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model [Tri05, And05]. Lakaemper [Lak06] divides patches into tiles which drive
splitting and merging of patches if they are unsupported. Martin [Mar02] uses
a straightforward Bayesian prior to penalize complex maps. The complexity
penalization is combined with the data likelihood through a maximum posterior
probability estimator.

The last set of methods are based on the Region Growing (RG) technique. If
using RG, the number of patches needs not to be adjusted beforehand. The algo-
rithm starts with a seed point and extends the current set with points from the
neighborhood if a homogeneity criterion (mostly, planarity criterion) is fulfilled.
After the growing has stopped, a new plane is initialized by selecting randomly
a point from the set of remaining points [Dor07]. Resulting patches are often
noisier compared to those produced by EM and requires therefore subsequent
smoothing such as restarting region growing several times in a RANSAC-like
manner [Häh03], refining seed regions using graph-cuts where additional edge
information is incorporated [Käh08], or introducing intensity similarity as an
additional homogeneity criterion [Cob01]. Alternatively, enhancing 3D points
with information from its local neighborhood, in particular surface orientation
through normal vectors, has shown a positive effect on planar surface extraction
using RG [Hoi08, Rab06, Wei03, Sta02].

An interesting combination of Region Growing (RG), RANSAC, EM, and 3D
point enhancement with orientations is proposed by Murray and Little [Mur04].
They assume the number of planar regions via RG over patch-lets (oriented 3D
points) and rerun it several times to avoid the problem of explicitly estimating
the planar boundaries. Subsequently, the found planar surfaces are refined using
the EM paradigm.

Recent approaches also have started to recover the spatial scene layout from 2D
images. The spatial layout of the scene is mainly inferred from extracted line
segments. For example, Yu et al. [Yu08] cluster lines to obtain depth-ordered
planes, while Lee et al. [Lee09] analyze sets of lines with rules describing geo-
metric constraints. Using the Manhattan World assumption saying that indoor
rooms mainly consist of orthogonal planes, a geometric reasoning delivers the
most plausible physical interpretation for a set of lines. Alternatively, a Markov
Random Field (MRF) model can be used to identify the different planes and
edges in the scene, as well as their orientations [Del05]. Hedau et al. [Hed09] and
Wang et al. [Wan10] jointly estimate a coarse space model for an indoor room
by fitting a parametric 3D box to the extracted lines and locate walls, the floor,
the ceiling, and objects via surface labels of pixels [Sax08, Hoi07]. The strength
of their approach is the ability to deal with clutter in the scene disturbing the
visibility of the room frame.

20



2.4 basic processing of a single percept

implementation. For extracting planar patches in SwissRanger data with
the aim to use them for 3D scene analysis the algorithm should be able to
extract an unknown number of bounded connected patches in data from a
cluttered scene. My algorithm for decomposing a point cloud into connected
planar regions is based on Region Growing (RG) [Swa08c]. Further, surface prop-
erties like a normal orientation are incorporated which decreases, in contrast
to edge-based methods, the sensitive of the segmentation to noise [Rab06]. An
additional dimensionality is provided that reduces ambiguity of segmentation-
by-clustering [Mur04]. A final refinement of the extracted regions is done via
RANSAC. Iteratively, a point is selected as seed of a new region and extended
with points of the 8-neighborhood N3×3 if four criteria are fulfilled. A neighbor-
ing point can be added to the region if it is valid (→ Section 2.3.2) and planar
(→ Section 2.4.1). Further, the conormality and coplanarity criterion has to apply
between the seed point and the neighboring point [Sta02]. Two points ~f1 and
~f2 are conormal if for the acute angle α between their normals ~n1 and ~n2 the
following statement holds:

α =

arccos(~n1 ·~n2) :<= π
2

π − arccos(~n1 ·~n2) : else
(2.14)

α < θα ⇔ conormal
(
~f1, ~f2

)
. (2.15)

Taking into account the noise level of the camera the threshold θα is set to
θα = 10◦. Two points ~f1 and ~f2 are coplanar if the distance d is smaller than a
threshold θd:

d = max
(
|~r12 ·~n1|, |~r12 ·~n2|

)
, (2.16)

~r12 = ~f1 − ~f2

d < θd ⇔ coplanar
(
~f1, ~f2

)
. (2.17)

Figure 2.9: The red colored patch pair is
conormal and coplanar, while the blue col-
ored one is conormal but not coplanar.
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(a) Patches provides by Region Growing. (b) Planar patches {Pk}k=1, ..., m after
RANSAC post-processing.

Figure 2.10: (a) shows the initially extracted bounded patches applying Region Growing (RG) on
normal vectors. Points are added to a region if they fulfill the validation, planarity, coplanarity,
and conormality measurement. Due infrared light reflections in corners normals change at the
transition between different oriented walls less strong (e. g., cupboard doors to wall, table to
chairs). As a consequence, they are merged during RG. (b) Resulting planar surfaces after RANSAC
post-processing. Problems with smooth transitions between neighboring surfaces are solved.

The distance d is computed with respect to the orientation and distance of the
oriented particles. For every newly added point the described selection of neigh-
boring points is repeated. The growing stops if no point can be added to the
region. From the remaining points a new point is selected to initialize a new re-
gion. The result is a set of nearly planar patches where Region Growing over the
8-neighborhood and the coplanarity measurement ensures their connectivity and
compactness because it deals especially with the situation at depth jumps. Fig-
ure 2.9 shows in blue the case where the conormality measurement would fail to
assign the two particles to different planar regions. While both pairs have nearly
the same Euclidean distance the coplanarity measurement differs significantly.
Figure 2.10(a) shows the initial Region Growing result. Due to infrared light
reflections in inward-looking corners the normals at the transition between two
neighboring scene surfaces differ less strong. As a consequence, such surfaces
fall into one smooth patch like the table and the chairs or the cupboard doors
and the right wall. Nevertheless, Region Growing separates a cluttered scene into
a set of convex subparts. These subparts can be further decomposed using some
RANSAC iterations extracting the largest planes while omitting outliers [Nüc08].
Per region, a point is chosen randomly which determines through its normal
vector a candidate plane. For all remaining points of the region their distance to
this plane is used to decide whether the point is an inlier or an outlier. An inlier
is found if the distance is smaller than 100mm. A minimum patch size ensures
noise reduction by dropping patch candidates with less than 30 points. This
procedure is rerun several times with different points determining the reference
plane. The largest set of inlier points determines the largest planar patch Pk. The
plane parameters of (Pk | ~nk, dk ) are computed using PCA. RANSAC is applied
on the remaining outlier points to find the second, third, . . . largest planar patch.
Figure 2.10(b) shows the final patches after RANSAC post-processing: cupboard
doors and wall as well as table and chairs are separated into own planar patches.
Further, patches that are too small have been removed.
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2.5 basic processing of consecutive percepts

A sequence of SwissRanger frames is required for analyzing dynamic scenes
(→ Chapter 5) or for perceiving larger regions than provided by one SwissRanger
frame. Considering two consecutive frames, Section 2.5.1 shows how 3D data can
be enhanced with 3D velocity vectors. Section 2.5.2 sketches how information
from several frames can be fused to one consistent 3D point cloud.

2.5.1 Extending 3D Data with Velocities

The analysis of dynamic scenes often requires knowledge about motion present
in the scene. If the SwissRanger camera observes the scene from a static view
point the high frame rate of the camera results in small changes between two
consecutive frames. This allows to use local techniques like dense optical flow
computation for estimating motion in the scene. The optical flow of a 2D image
pixel is the distribution of apparent velocity of moving brightness pattern in
an image which can arise both from the relative objects’ and the viewer’s
motion [Gib50]. The flow of a constant brightness profile I(c, r) is described by a
constant velocity vector ~v 2D = ( vc, vr )T:

I( c, r, t ) = I( c + dc, r + dr, t + dt ) (2.18)

= I( c + vc · dt, r + vr · dt, t + dt )

⇒ −∂I
∂t

=
∂I
∂c
· vc +

∂I
∂r
· vr (2.19)

where Equation 2.19 is the optical flow constraint which has to be solved. Usually,
differential methods estimate the optical flow. They optimize either a global
energy functional like proposed by Horn and Schunck [Hor81] or a local energy
like expression like proposed by Lucas and Kanade [Luc81]. Lucas and Kanade
find for each pixel ~pi in the image I1 a good match in the image I2 using a

(a) (b) (c)

Figure 2.11: (a) shows the 2D optical flow field computed using two consecutive amplitude images.
(b) shows the 3D velocity vectors resulting from point correspondences in 3D established by the
underlying 2D pixel correspondences given through the 2D optical flow field. (c) shows the final
3D velocity vectors smoothed with median filters. For clarity each 3th velocity vector is displayed
and colored with respect to its length (red = large and blue = small velocity vectors).
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type of Newton-Raphson iteration. They assume the optical flow to be constant
within a certain neighborhood N which allows to solve Equation 2.19 via least
square minimization.

For SwissRanger data the optical flow computation can be performed on the
amplitude images of two consecutive frames (Ft, Ft−1 ). I use the hierarchical
implementation of Sohaib Khan 12 13. As can be seen in Figure 2.11(a) each pixel
of frame Ft is annotated with a 2D velocity vector providing a corresponding
pixel in frame Ft−1. As each 2D pixel ~pi is associated with a 3D point ~fi a pixel
correspondence (~pt

k, ~pt−1
l ) can be transformed directly to a correspondence of

3D points ( ~f t
k , ~f t−1

l ). The 3D velocity vector ~v 3D
k which enhances the 3D point

~fk in frame Ft is computed through:

~v 3D
k =

vk
x

vk
y

vk
z

 = ~f t
k − ~f t−1

l . (2.20)

Figure 2.11(b) shows for an example frame F the estimated 3D velocity field
V = {~v 3D

i }. Each 3D point ~fi has a velocity vector ~v 3D
i . The vectors are colored

according to their length. In contrast to stereo cameras, Time-of-Flight (ToF) ca-
meras have a good depth resolution so that the challenging estimation of a
reliable z component of a velocity vector can be done in a satisfying way. Er-
roneous velocity vectors are estimated only at depth edges due to noise and
inaccuracies of the optical flow computation. One can get rid of these outliers
by applying a 5× 5 median filter to { vi

x }, { vi
y }, and { vi

z } separately as the
velocity components can also be arranged in a 2D matrix. Figure 2.11(c) shows
the smoothed 3D velocity field. The computation of 3D velocity vectors is utilized
in Section 5.3.1 to track persons moving through the observed scene.

2.5.2 Fusing Sets of Point Clouds

So far, data has been recorded with a static camera. Due to limitations in the
field of view of an arbitrary sensory system, agents will also try to acquire
more data from the environment by moving the head simulating an eye saccade.
The challenge is to fuse the acquired data to a consistent representation of the
scene. In the case of 3D point clouds provided by the SwissRanger camera, this
means that they have to be registered into one global world coordinate system.
In [Swa07], I present a registration approach which fuses a sequence of frames
acquired during an arbitrary tilting of the camera. The goal is to computed the
rotation Rt ∈ R3×3 and translation tt ∈ R3 of the camera made between two

12 http://www.cs.ucf.edu/~khan
13 http://server.cs.ucf.edu/~vision/source.html
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2.5 basic processing of consecutive percepts

consecutive frames Ft and Ft−1. Referring to Ft−1 as the model point set B and
to Ft as the data point set A a set of point correspondences C has to be found

C =
{
( k, l ) |~ak ∈ A, ~bl ∈ B

}
. (2.21)

Ideally, these correspondences correlate with distinct 3D world points which
belong to static scene parts and are located in the area covered by both views. The
minimization of the mean square objective function fmin provides the optimal
transformation (R, t ) of the local coordinate system of A to the coordinate
system of B:

fmin
(

R, t
)
=

1
|C| ∑

(k,l)∈C

∥∥∥~bl − R ·~ak − t
∥∥∥2

. (2.22)

According to Schönemann [Sch66], the cross-covariance matrix K contains all
necessary information to find the motion solution. Whereas, Lorusso [Lor97]
has pointed out that a Singular Value Decomposition (SVD) of K solves the
optimization problem with biggest accuracy and stability:

K = ∑
(k,l)∈C

(
~bl −~b

)
·
(
~ak −~a

)T
= VDUT with (2.23)

~a =
1
|C| ∑

(k,l)∈C
~ak, ~b =

1
|C| ∑

(k,l)∈C

~bl ,

R =

VUT : det(R) = 1

V′UT : det(R) = −1
with

V =
(
~v1, ~v2, ~v3

)
V′ =

(
~v1, ~v2, −~v3

) (2.24)

t = ~b− R ·~a (2.25)

My registration system consists of two steps: a coarse registration providing an
initial transformation between two consecutive frames and a fine registration
refining this initial guess. During coarse registration significant structures like,
e. g., edges and corners, are extracted in the amplitude image of B using the
structure tensor operator [För87]. The corresponding pixels in A are determined
by applying the optical flow computation of Section 2.5.1 to the outstanding
pixels. The resulting pixel correspondences can be transformed directly to the
required 3D point correspondences C from which an initial transformation
from B to A is computed using Equations 2.23 to 2.25. This initial guess is
refined using the Picky Iterative Closest Points (ICP) approach proposed by
Zinßer [Zin03]. Here, corresponding points are determined by estimating in
A nearest neighbors for points in B. This system has accomplished successful
registration of test sequences with an average reconstruction error between 9mm
and 86mm. As the development of this reconstruction system has been the topic
of my Diploma thesis I refer for more details to my Diploma thesis [Swa06].
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Figure 2.12: This figure shows a 2D visual-
ization of a clustering of redundant points
using a virtual plane. The dashed lines in-
dicate the projection pyramids of the pixels
on the image plane.

Instead, I am going to discuss a possible post-processing of the registered 3D
point cloud. If perfect data is available and a optimal registration is possible the
same world points of two different scans will have equal 3D coordinates. Due
to sensor noise the mean square minimization runs into local minima resulting
in noisy and thickened surfaces in the registered point cloud (→ Figure 2.13(b)
and 2.13(g)). These surfaces contain redundant information. The goal is to thin
out the point cloud while preserving structural information in the data and
accumulating redundant information to increase the reliability of the final 3D
coordinates. In [Swa08b], I present a Virtual Image Plane Projection (VIPP) for
fusing several registered scans acquired while observing a vista space scene
(→ Section 2.2.3). This means that the camera is tilted at most by 180◦. My
approach profits from the projection properties of range cameras and is inspired
by reverse calibration [Bla95]. The general idea is to project the registered point
cloud on a plane and to extract from discretization on the plane candidates for
fusion. The registration system outlined above integrates all frames into the
coordinate system of the first frame which forms the global coordinate system.
Further, the intrinsic parameters of the camera are considered, either extracted
from a parameter sheet or obtained by calibration: the focal length do, pixel
width w, pixel height h, and principal point ( co, ro )T (compare Figure 2.3). The
image plane of the first frame is extended to an infinite virtual plane with pixel
size and projection properties being equal to the original bounded image plane.
The registered point cloud is positioned parallel to this virtual image plane in
order to evenly distribute the points into the pixels. This is done by computing
the two orthogonal principal axes via PCA. The axes span a plane which fits the
point cloud with smallest least square error. The point cloud is rotated around its
barycenter so that this major plane is located parallel to the virtual image plane.
Now, each point ~p = ( x, y, z )T is projected on the virtual plane by connecting
the point with the optical center~o of the virtual image plane. The corresponding
the pixel ( c, r )T is located where this ray intersects the plane:

c = co +
x

θ · w , r = ro +
y

θ · h , with θ =
z
do

(2.26)

As can be seen in Figure 2.12 the projection pyramid of each pixel collects like a
container points which form a set of candidates for fusion. The points have to
be clustered locally to keep the additional information provided from multiple
scans. Among the candidates of one container, clusters are found by means of
Region Growing over the Euclidean distance [Ada94].
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2.5 basic processing of consecutive percepts

Finally, each cluster is replaced by its centroid. This approach keeps the property
that objects near to the camera are sampled at a higher resolution than objects
which are further away.

The thinning using Virtual Image Plane Projection (VIPP) is evaluated on two test
sequences (→ Figure 2.13(a), Figure 2.13(f)). Both sequences consist of 11 frames
recorded while turning the camera by 70◦. For comparison, two other fusion
techniques are implemented. Voxel Sampling (VS) discretizes the 3D space into
voxels with size 20× 20× 20(mm3). Points within one voxel are replaced by their
centroid point. Fua’s Patch Merging (FPM) uses the particle-based representation
introduced in [Fua97]. The 3D points are binned into voxels. For each of these
voxels a plane is estimated using PCA. The center of each voxel is projected onto
the plane and the voxel is rejected if the projected center lies outside the voxel.
Otherwise, the points in the voxel are replaced by the projected voxel center.
In both test point clouds ground truth planes are extracted manually. A point
assigned to a ground truth plane is colored according to its distance to this plane.
The colors range from blue meaning small deviation (less than 10mm) to red
meaning large deviation (more than 40mm). Figure 2.13 presents the ground
truth planes in the original point clouds, (b) and (g), and in the thinned point
clouds using VIPP, (c) and (h), FPM, (d) and (i), and VS, (e) and (j). The more
points of a plane are colored in blue the smoother is the planar surface. Visually,
VIPP seems to improve the planes in the sense of computing 3D points that
form a smoother surfaces than those points computed by FPM and VS. For a
quantitative analysis, the percentage of points per plane with a deviation smaller
than 10mm is compared. A good thinning method will increase the percentage
of points with a small deviation, the so-called smooth points. In Figure 2.14 for
each plane four bars are plotted which describe per merging method the relative
amount of smooth points (blue: no merging, orange: VIPP, yellow: FPM, green:
VS). In most planes, VIPP achieves an increasing of the percentage of smooth
points independent from the original smoothness of a plane. In average, the
percentage of smooth points is increased by 5% while the amount of points is
reduced by ca. 64%. The reduction rate of VIPP is implicitly given by the setup
of the camera towards the scene and the amount of frames registered. Whereas,
FPM and VS are less suited for fusing redundant data while improving or at least
preserving the smoothness of surfaces. Their reduction rate is directly influenced
by the voxel size which has to be specified explicitly. Also, they do not consider
the different sampling rates of objects which dependent on their distance to the
camera. To conclude, it can be stated that VIPP successfully merges redundant
points in registered range data while preserving the objects’ sampling rate and
smoothing planar structures.

Even though, I have shown here that fusion of frames is possible, I have decided
to examine in the following chapters the performance of frame-based modeling.
If necessary, fusion is performed on a higher level by, e. g., classifier fusion
(→ Section 3.3.3).
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(a) scene 1

(b) Original: #194538 (c) VIPP: #53601

(d) FPM: #38820 (e) VS: #39101

(f) scene 2

(g) Original: #229682 (h) VIPP: #91161

(i) FPM: #48577 (j) VS: #48577

Figure 2.13: Subplots (a) – (e) belong to test scene 1 and (f) – (j) to test scene 2. Below each 3D
plot the number of contained points is listed. The points are colored according to their deviation
of the chosen ground truth planes. (a) and (f) visualize the test scenes and (b) and (g) show the
original point clouds after registration. Thinned out point clouds using VIPP are given in (c) and
(h), using FPM in (d) and (i), and using VS in (e) and (j).

(a) scene 1 (b) scene 2

Figure 2.14: The bars plot for each test plane and each thinning method the percentage of smooth
points. They are characterized by a deviation smaller than 10mm.
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3
L E A R N I N G H O L I S T I C S C E N E M O D E L S
F R O M S PAT I A L L AY O U T S

Recognizing the type of an indoor room, e. g., “living room”, is a basic spatial
ability. The aim of this chapter is to realize indoor scene classification using the
3D spatial layout of rooms. In contrast to classical object based classification
approaches, the focus on spatial layout provides a modeling of rooms that is
independent from the specific design of rooms. I am going to introduce a 3D
feature capturing characteristics of spatial room structures in a holistic way.
Classifiers trained on these 3D features extracted from example rooms form the
room models, the so-called Holistic Scene Models. This holistic scene models give
a robot like BIRON the ability to categorize rooms perceived with a 3D sensor
during a “home tour”.

Section 3.1 motivates the use of spatial structures for solving the categorization
task in domestic rooms. In Section 3.2 related approaches to scene classification of
indoor rooms and scenes in general are presented. The 3D spatial feature defined
on extracted planar surfaces capturing the spatial layout of a room is introduced
in Section 3.3. Additionally, the learning stage, fusion of classification results
over time, and possible combination schemes with the popular 2D Gist feature
are presented. Section 3.4 evaluates diverse aspects of the indoor categorization
system utilizing a special 3D database recorded in a regular IKEA home store
and test sequences acquired in two real apartments. Section 3.5 summarizes the
contributions and results of this chapter.
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3.1 motivation

Any kind of holistic high-level concept of the surrounding is important for
activating top-down knowledge that can guide the visual analysis in further tasks
like, for example, enhancing object detection by context [Div09, Kim06, Tor03a].
A nowadays popular approach is the so-called Gist feature vector developed
by Oliva and Torralba [Oli01]. It represents the spatial envelope of a 2D scene
image and models the human ability of providing quickly a scene impression
before recognizing any object in the scene. Evidence for this ability is given
by several studies discussed in [Oli01]. Based on this general idea a variety of
scene recognition approaches have been proposed that work well for outdoor
scenes like “city”, “street”, “landscape”, “mountains”, etc. but, as reported by
Quattoni and Torralba [Qua09], break down for indoor scenes like “kitchen”,
“living room”, and so on. Therefore, Quattoni and Torralba have tackled the
indoor problem by combining global information with local object information
to achieve a better performance on different indoor categories. Although, they
have achieved significant improvement the drawback of their method is that the
training relies on a previous hand labeling of relevant regions of interests.

In general, object-based approaches need knowledge about interdependencies
between objects and places. These interdependencies can be learned from training
data [Vis09, Vas07c] or can be given as predefined ontologies [Zen08, Gal05].
Vasudevan et al. [Vas07b] have shown in their user study that an object based
representation seems to be used by humans and might be useful for a robots
in order to develop a human compatible representation of space. But the main
problem is to define objects that are relevant for a certain room type. Some objects,
e. g., a coffee machine in a kitchen, may be typical for a certain place but can
be removed without changing the room type. While other objects like furniture,
e. g., a sofa or a bed, form the functional and spatial layout of places but are hard
to detect with conventional object detectors. Furthermore, psychological studies
have shown that perceptual mechanisms of humans which are optimized for the
room schemata rely on the spatial layout in general and not on the detection of
specific objects. For example, Brewer and Treyen [Bre81] have found that with
the perception of the room type, objects (e. g., books) are memorized to be in
the experimental room (here, office) even though they have not been present
and thus not perceivable. Nevertheless, the subject is able to determine the room
type. Also, there exists a brain area, called Parahippocampal Place Area (PPA),
that shows strong response to stimuli with spatial layout but does not respond to
arrays of objects without three-dimensional spatial context [Eps98]. Henderson et
al. [Hen08] have refined this finding in their fMRI studies showing that close-up
views of scene-relevant objects (e. g., kitchen oven) produce less activation in
this area than full-view indoor scenes, and that full-view indoor scenes produce
more activation than outdoor scenes [Hen07]. This emphasizes the special nature
of the indoor scene categorization problem and has motivated me to examine
the contribution of the scene geometry to this problem.
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As man-made environments mainly consist of planar surfaces and it is often
assumed that objects lie on these surfaces, e. g., [Lee05]. I will investigate through-
out this chapter whether generating holistic scene models from planar patches
is a suitable approach. In contrast to my patch-based approach, point-based
3D features which are mostly used to classify single 3D points [Mun09a, Rus08,
Tri07, Joh99] only encode local information. They are not applicable for classi-
fying a point sets as a whole. A prove of concept for my 3D spatial features is
given in [Swa08c]. Here, I have examined the performance in categorizing and
recognizing 3 room types in a university, namely “office”, “seminar room”, and
“corridor”, using statistics defined on extracted planes 14. Per category 2 different
rooms have been selected with 300 frames acquired per room. One room per
category has been used for training while the remaining rooms have formed
the test set. A categorization rate of up to 0.81 is achieved for unknown rooms
and a recognition rate of up to 0.99 for the known rooms. This performance has
motivated me to extend the idea to broader classes, e. g., those of a flat (here:
“bathroom”, “bedroom”, “eating place”, “kitchen”, “living room”, and “office”).
The remaining chapter focuses on the design of the global 3D feature and its
combination with a local 2D feature. The goal is to acquire holistic scene models
optimized for the indoor classification problem of percepts from the vista space.

14 The computed values and statistics slightly differ from those introduced later in this chapter. Only
three characteristics have been considered: the patch size, the size ratio and the angles between
patches. The size of a patch is estimated by the number of points establishing the patch. The
patch shape is ignored. More details on the feature definition, the training and test rooms, and the
classification results can be found in Appendix A.1.
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3.2 related work

This section reports on relevant work in the field of robotics and computer vision.
Approaches from robotics mostly concentrate on recognizing and categorizing
indoor scenes (→ Section 3.2.1). These approaches utilize data acquired with
robot platforms driving around in an apartment or laboratory. Approaches from
computer vision categorize 2D images showing any scene (→ Section 3.2.2).
They rely on databases collecting images from the web. This images mostly show
outdoor scenes like “building”, “coast”, or “mountains” but have been recently
extended to indoor scenes like “store”, “living room”, “gym”. Section 3.2.3
describes in more details two approaches which have been chosen for comparison
in this chapter.

3.2.1 From Robotics Perspective

In the field of robotics, literature about scene classification has to main directions.
One focuses on recognizing unknown rooms often with the purpose to enhance
navigation allowing the robot to understand and execute commands like “go
into the kitchen”. The other direction aims at concept knowledge about indoor
environments. Most approaches categorize room percepts based on the contained
objects where the interdependencies between objects and rooms are either given
top-down or learned in a bottom-up manner.

place recognition. Early spatial abilities of robots have been developed
in the context of determining drivable areas, e. g., encoded in a navigation
map [Yua09]. It has been followed by decomposing such maps into places
in general and providing labels to these places by recognizing known rooms.
Places are mostly defined as some continuous area that is extracted by detecting
transitions like doorways between two places [Zen08, Bee07] or by segmenting
the open space into connected room-like places by, e. g., watersheding [Bus02].
The set of places and doorways can then be arranged to topological maps. The
re-detection of known rooms is often realized by comparing 2D features in the
current camera image to those in saved views [Ull08, Spe06] or by matching
invariant features in laser scans [Top08]. Pronobis and colleagues provide indoor
databases recorded from the view point of moving robots: INDoor Environment
under Changing conditionS (INDECS) 15, Image Database for rObot Localization
(IDOL) 16 [Pro10a], and COsy Localization Database (COLD) 17 [Ull08]. The
databases contain 2D images of different rooms like “kitchen”, “printer area”,
and “office” acquired by different robot platforms driving around in three
different laboratories. The purpose of the databases is to capture rooms under
varying illumination and whether conditions and changing environments. Using
these databases room recognition experiments were performed using Composed

15 http://cogvis.nada.kth.se/INDECS
16 http://cogvis.nada.kth.se/IDOL
17 http://cogvis.nada.kth.se/COLD
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DoorwayRoomCorridor

Figure 3.1: Mozos et al. has developed simple
geometric features defined on laser scans (bot-
tom row) to classify these scans as “corridor”,
“room”, or “doorway” [Moz05].
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Figure 3.2: Zender et al. use the commonsense
ontology of interdependencies between objects
and room concepts for classifying a room as
“kitchen”, “lab”, or “office” [Zen08].

Receptive Field Histograms (CRFH) as global features [Pro06] and Harris-Laplace
detectors and Scale-Invariant Feature Transform (SIFT) descriptors as local
features [Pro10a]. Further, global, local, and laser features have been fused to
realize a multi-modal place classification [Pro10b].

place categorization. A basic place categorization has been developed by
Zender and colleagues [Zen08]. 360◦ Laser scans are categorized as “corridor”,
“hallway”, “room” or “doorway” using simple geometrical features [Moz05].
Figure 3.1 shows some standard single-value geometrical features like average
difference between the length of consecutive beams or area covered by the
polygonal approximation of the beams. In a further step, they distinguish places
recognized as rooms into finer concepts like “kitchen”, “lab”, or “office” using
detected objects [Zen08]. They use the commonsense ontology of office environ-
ments displayed in Figure 3.2 which gives interdependencies between objects and
room concepts. Noise in determining the room concept is treated by introducing
consistency within a place using HMMs [Moz07] or Markov networks [Tri07].
A similar idea is proposed by Galindo et al. [Gal05]. They determine the semantic
label (e. g., “bedroom”) of an extracted place by inferring the room concept from
detected objects via anchoring the objects in the conceptual hierarchy of an
indoor ontology.

Instead of encoding the interdependency between object and room type in a
top-down way through ontologies, it can be also learned from trainings data.
Often graphical models are utilized for representing place through local ob-
ject graphs [Vas07a, Kim06] or constellation models incorporating objects and
their 3D positions [Ran07]. Figure 3.3 shows such hierarchical graphical model
proposed by Kim and Kweon [Kim06]. From detected objects room labels are
inferred using well established techniques like belief propagation or computa-
tion of joint posterior distributions [Vis09]. An important information for object
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Figure 3.3: The hierarchical graphical model
used by Kim et al. for representing visual scene
context, objects, and parts [Kim06] is shown
schematically and as an example.

Figure 3.4: The spatial-semantic modeling sys-
tem of Viswanathan and colleagues can cluster
objects maps and label these clusters with ac-
cording place names [Vis09].

based approaches is the occurrence of objects [Vas07d]. Some objects may be less
informative as they appear across different room types like shown in Figure 3.4
or the absence of some objects is the significant information [Vas07c].

3.2.2 From Vision Perspective

A famous approach for real world scene recognition that bypasses segmentation
of individual objects is proposed by Oliva and Torralba [Oli01]. Their procedure
is based on a low dimensional representation, the Spatial Envelope. A set of
perceptual dimensions represent the dominant spatial structure of a scene. These
dimensions are naturalness, openness, roughness, expansion, and ruggedness.
Figure 3.5 shows three dimensions on which man-made and natural scenes have
differences. This modeling is referred to as Gist feature of a scene and allows a
reliable categorization of outdoor scenes but has problems with indoor scenes.
To tackle this problem, Quattoni and Torralba recently have extended the global
Gist vector with local information prototypes [Qua09]. For each scene category
prototype images are segmented into candidate regions for which histograms
are computed. During categorization the candidate regions are allowed to move
within a small window and the similarity between two regions is determined
from the distance between the region histograms.

The Gist descriptor encodes properties of a scene on a global level in one feature
vector. In contrast to that, a whole bunch of codebook based approaches is
using visual words that encode local properties [Bos08, Laz06, Pos06, FF05,
Pir04, Vog04]. Such local information are, for example, textures or intermediate
themes as shown in Figure 3.6. Visual words are obtained by clustering of
local features. As shown in Figure 3.7 the association between words and room
types can be done by assigning probabilities which describe how likely a word
can be found within a certain concept. Alternatively, the occurrence of words
can be utilized [Bos08, Pos06, Vog04] similar to object occurrences described in
Section 3.2.1.
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Figure 3.5: Dimensions of the spatial envelope approach proposed by [Oli01] are displayed.
Differences between natural and man-made scenes can be observed.
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Figure 3.6: This example visual-
ize some intermediate themes
used by [Vog04] for natural
scene categorization.

Texture Furniture Wall Pavement ...
Closet Bed Bookcase Curtain Wallpaper Carpet Brick Tile

0.02 0.13 0 0.01 0.15 0.12 0 0.04

0 0.1 0 0.2 0.1 0.1 0 0

0 0.02 0.1 0.1 0 0.01 0.02 0.27

0.14 0.02 0 0 0 0 0.01 0

0 0 0 0 0.12 0.1 0.37 0

0.01 0 0 0.01 0.01 0 0.12 0.23

0 0.01 0.17 0.02 0 0.01 0.01 0
...

...
...

...
...

...
...

...
...

Figure 3.7: This table shows an excerpt of Pirri’s texture
data where confidence vectors are kept with one element
for each indoor object [Pir04]. These values are interpreted
as an object belonging probability distribution.

3.2.3 Approaches Chosen for Comparison

From the previous sections I have chosen two approaches for comparison which
are described here in detail. Originally, the COLD database presented in Sec-
tion 3.2.1 has been designed to test recognition of known place under different
illumination conditions. Place recognition is done on local features provided
by a Harris-Laplace detector and a SIFT descriptor for which SVM models are
trained using the match kernel [Wal03]. As the same rooms have been recorded
in different laboratories Ullah and colleagues [Ull08] also tested whether their
models can be used for categorizing unknown rooms. The models are trained on
data from two laboratories and test on data from the third laboratory. Figure 3.8
shows the achieved performances. The rates result from classifying single images.
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Figure 3.8: This diagram is taken from [Ull08].
It shows the classification rates of the room
types “printer area” (PA), “corridor” (CR), “two-
person office” (2PO), and “bathroom” (BR) from
the COLD database. Single frames are catego-
rized based on visual similarity. Frames from
two sub-databases are used for training and
from the remaining database for testing. The
sub-databases are: ’SR’ for Saarbrücken, ’FR’
for Freiburg, and ’LJ’ for Ljubljana.
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Figure 3.9: This confusion table shows on the
diagonal the performance of the approach pro-
posed by Lazebnik [Laz06]. A scene category
database is tested which is mainly based on
the database provided by [FF05]. It contains 15
categories with 200 to 400 images per category.
The vocabulary size has been M = 200.

The “corridor” can be categorized with a rate of 0.76 while the rates for the other
rooms are quite low (PA: 0.12, 2PO: 0.13, BR: 0.10).

As state-of-the-art computer vision approach that is based on local features I have
chosen Lazebnik’s approach [Laz06] which is on-line available 18. In this work
edge points at two scales and eight orientations are extracted as local features.
Further, SIFT descriptors of 16× 16 pixel patches are computed over a grid
with spacing of 8 pixels. Then, the image is partitioned into increasingly finer
sub-regions and histograms of local features found inside each sub-region are
computed. The resulting spatial pyramid introduces an order to the so far orderless
bag-of-features image representation. The histograms are computed based on a
visual vocabulary which is formed by k-means clustering of features extracted in
the training set. The set of histograms is concatenated to one vector on which
they train a SVM. Figure 3.9 visualizes the performance of this approach as
confusion table. They utilize a scene category database with 15 classes provided
by [FF05] and originally collected by [Oli01]. Confusion occurs between the
indoor classes (kitchen, bedroom, living room), and between some natural
classes, such as coast and open country. The drawback of Lazebnik’s approach
is the high dimensionality of the final image descriptors. The vectors are even
at coarser resolution still 8500-dimensional. Learning with such large vectors
theoretically requires an enormous amount of training examples due to the
curse of dimensionality and the empty space phenomena [Sco83, Bel61]. Also,
classifying with a vector that large is time consuming. This limits an application
of these features on a robot platform with limited resources and time constraints.

18 http://www.cs.unc.edu/~lazebnik/research/spatial_pyramid_code.zip
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3.2 related work

3.2.4 Contribution of the Holistic Scene Model

The holistic scene model provides 3D features capturing holistically the spatial
layout of indoor rooms. This approach is independent from detection of specific
objects and knowledge about interdependencies between objects and room types.
The features are optimized for 3D data collected in indoor rooms of conventional
apartments. The scene classification focuses on data that is typical for a robot’s
view. Each scene view is encoded by a light-weighted 3D feature vector that
nicely complements the scene encoding with a classical Gist feature vector. A 3D
indoor database is put together from 3D data collected in a main furniture store.
This database is utilized to learn room type models on the basis of 3D features.
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3.3 the holistic scene representation

Figure 3.10 visualizes the main phases of my indoor scene classification problem.
First, suitable features for given percepts have to be extracted. Second, for each
class a classifier (→ gi) is trained based on these features. Here, the set of
classifiers { gi }n

i=1 forms the holistic scene model. In the recognition phase the
classification responses of each classifier are fused with a proper combination
scheme (→ E(~d)) to provide for a percept its class label (here, label of room).
Section 3.3.1 presents the computation of a novel 3D spatial scene descriptor
capturing the spatial layout of the 3D point cloud given by a SwissRanger frame.
In Section 3.3.2 it is shown how the well known 2D Gist scene descriptor can
be computed for a SwissRanger frame. As the goal is to achieve a robust scene
categorization of data from a so far unseen room, Section 3.3.3 gives details on
the learning of room models from these features. Further, a decision function
optimized for the room type categorization problem is presented allowing a
combination of single 3D spatial and 2D Gist feature responses and responses of
these features over a couple of consecutive frames. I have presented this work at
the Asian Conference on Computer Vision in 2010 [Swa10b].

Figure 3.10: This flow chart describes schematically the important steps necessary during training
classifiers and testing classification. For each percept a feature is extracted. A model per class is
learned based on these features. For recognizing an unknown percept the extracted feature vector
is fed into the class models and a decision is done upon the model responses.
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3.3.1 The Scene Descriptor from 3D Data

For transforming a SwissRanger frame into an appropriate 3D spatial scene
descriptor the challenge is to find adequate statistics capturing the spatial layout.
Thereby, certain requirements have to be considered like:

• robustness to dynamic changes: robustness against changes in the particular
arrangement of furniture [Ull08],

• robustness to non-categorical changes: place models have to be independent
from specific layouts, furniture’s colors and textures, and

• robustness to view changes: robustness to view changes on the scene.

For encoding 3D scene geometry in a simple way independent from scene
colors and textures, a set of planar patches is extracted from a 3D point cloud.
Figure 3.11 shows a SwissRanger frame on which a set of m planar patches is
extracted by decomposing the 3D point cloud into connected planar regions
using the approach presented in Section 2.4.2. Defining appropriate features for
a set of 3D planar patches could be inspired by shape analysis of 2D patches
and feature definition based on 3D points. For example, Mozos [Moz05] has
transformed 360◦ laser scans to 2D patches and has analyzed their shape in order
to assign them to one of the three classes: “corridor”, “room”, or “doorway”.
The area covered by a patch and the shape of a patch are two basic properties
which can be also computed for 3D planar patches. View changes and changes
of their arrangement do not influence their size and shape. In the context of
analyzing 3D data, point-based features have been used to recognize objects
given as 3D scan [Hub04, Csá03, Het01, Joh99]. Local features defined for each
3D point have also been used to assign each point of a 3D scene to a predefined
class like “vegetation”, “facade”, ... [Mun09a], “chair”, “table”, ... [Tri07], or
“plane”, “sphere”, “cylinder”, ... [Rus08]. As most of the cited work use surface
normals, this information is also incorporated into my 3D scene descriptor.
This is done by computing angles between patch normals. Patch normals are
more robust to noise than normals computed for single 3D points. Further,
histograms over angles between normals are invariant to view changes which is
not the case for histograms over angles computed in relation to a vertical and a
horizontal reference plane [Mun09b]. The angle between two patches captures
the orientation of the patches to each other. While size and shape are properties
of the patch itself, features capturing the relation between patches can be less
found in literature. Therefore, the ratio of patch sizes is introduced as a further
feature capturing the relationship between patches.

Abstractly spoken, the 3D feature vector

~x 3D ∈ R25 (3.1)

is computed from patch characteristics of a set of m planar patches
{
Pj
}m

j=1
which have been extracted from the 3D point cloud of frame F .
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Definition. Patch characteristics.

Each planar patch element in
{
Pj
}m

j=1 is characterized by:

cs
j , the shape characteristic and cA

j , the size characteristic.

Each pair of planar patches in
{
(Pk,Pl)

}(m−1,m)

(k,l)=(1,2) is characterized by:

c^kl , the angle characteristic and c÷kl , the size ratio characteristic.

For each of the four sets of values

Cs =
{

cs
j

}m

j=1
, CA =

{
cA

j

}m

j=1
, (3.2)

C^ =
{

c^kl

}(m−1,m)

(k,l)=(1,2)
, C÷ =

{
c÷kl

}(m−1,m)

(k,l)=(1,2)

a histogram H(.) encoding the distribution of the values is computed and nor-
malized to length 1. The four histogram vectors are concatenated to one feature
vector ~x 3D defining the 3D spatial scene descriptor. Using plane pairs ensures
independence from a specific spatial arrangement and from the orientation of
the camera.

The computation of the wanted patch characteristics requires to known for each
patch its orientation, the area covered, and the patch outline. The orientation
of a patch is given through a normal vector ~n that is provided during the
planar surface extraction presented in Section 2.4.2. The computation of the
patch size and patch outline can be approximated by area and outline of the
minimum bounding box enclosing the patch points. The box approximation
has the advantage that area and outline of a box can be computed easily. For
calculating the minimum bounding box of a patch, it is necessary to compute
the direction along which the points have the largest variance. This direction
determines the orientation of the bounding box with respect to the points
that have to be enclosed. A suitable algorithm is the Principal Component
Analysis (PCA) which provides three vectors:~a,~b, and ~n with

~a indicating the direction of the largest variance in the data,

~b the direction orthogonal to~a with the second largest variance, and

~n the normal vector of the planar patch.

The right close-up of Figure 3.11(b) shows a planar patch P transformed so that
~a and~b are parallel to the coordinate axes x and y. The edges of the resulting
minimum box are parallel to the coordinate axis denoting the length of the edge
parallel to vector ~a by a and of the other edge by b. The following paragraphs
describe in more details how to compute the plane characteristics mentioned
above and how to transform them to a feature vector.

40



3.3 the holistic scene representation

(a) SR amplitude image
x

y

(b) extracted 3D planes and their properties

(c) computed 3D spatial feature ~x 3D

Figure 3.11: This figure shows an example output of the SwissRanger camera (frame 162 of living
room liv.5) – (a): the amplitude image, (b): the 3D point cloud with points highlighted by color
according to their patch membership; the left close-up shows the acute angle between two patches;
the right close-up shows a plane transformed so that the vectors indicating the two largest variance
directions in the data are parallel to the coordinate axis. (c) visualizes the 3D spatial feature vector
~x 3D computed based on the set of planes presented in (b).

the shape characteristic cs. To compute the shape of a patch P the
estimated minimum 2D bounding box is utilized. Considering the length of the
edges which are denoted by a and b, the shape characteristic computes from

cs = s
(
P
)
= min(a,b)

max(a,b) . (3.3)

The possible values for cs are lying between 0 and 1. The smaller cs is the more
elongated is the shape, a value near 1 denotes a quadratic shape. For a set of
patches a set of shape values is computed:

{
Pj

} s(.)−→ Cs =
{

cs
j

}
, j = 1, . . . , m. (3.4)

For the histogram Hs over these values the range [ 0, 1 ] is divided into five bins
h1, . . ., h5 with bin width ∆h = 0.2. The histogram vector is then transformed to
a feature vector by normalizing its length to 1:

~x s =
1
m
·Hs

(
Cs ), with (3.5)

Hs
(
Cs ) =


m
∑

j=1
δ( cs

j , h1 )

...
m
∑

j=1
δ( cs

j , h5 )

 , δ( cs
j , hi ) =

1 : cs
j ∈ hi

0 : else
. (3.6)
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This feature vector encodes for a room whether there are a lot of elongated
structures or more quadratic like or a mixture of both. The introduced encoding
of the shape slightly differs from the standard encoding of the shape of an
arbitrary 2D patch which is s = U2

4π·A [ASM00] where U is the outline of the
region and A its area. In the case of 2D boxes, the content of both values cs and s
is equivalent as there exists a strictly monotonic function f (x) = 1

π · (2 + x + 1
x )

that allows bijective mapping between them. The advantage of the shape factor
cs is as mentioned above the built-in normalization because cs can only take
values in the interval of ]0, 1]. The derivation of the function f (x) can be looked
up in Appendix A.2.

the size characteristic cA. The area covered by a patch P is computed
using its minimum bounding box:

cA = A
(
P
)
= a · b, (3.7){

Pj

} A(.)−−→ CA =
{

cA
j

}
, j = 1, . . . , m. (3.8)

This estimation of the patch size is more reliable compared to our initial approach
used in [Swa08c] where the number of points assembling the patch has been
used. Assuming two patches containing the same amount of points, the patch
localized nearer to the camera will cover due to general projection properties a
smaller area in 3D. As the size values {cA

j } are not normalized the histogram HA

consists of h = 6 bins h1, . . ., h6 with the following boundaries in cm2: [0, 252[,
[252, 502[, [502, 1002[, [1002, 2002[, [2002, 3002[, and [3002, ∞[. The first interval
captures small objects located on/in the furniture, the second interval bigger
objects and small furniture or furniture parts, and the third interval mid-size
furniture. The remaining intervals aim for the large spatial structures. A further
distinction on patches larger than (300cm)2 is not necessary as such big patches
rarely occur in the case of perceiving indoor environments. The corresponding
feature vector computes as follows:

~x A =
1
m
·HA

(
CA ), with (3.9)

HA
(
CA ) =


m
∑

j=1
δ( cA

j , h1 )

...
m
∑

j=1
δ( cA

j , h6 )

 . (3.10)

It captures the occurrence of small, medium-size, and large patches.
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the size ratio characteristic c÷. Considering the computed sizes
(→ Equation 3.7) of two patches (P1,P2) the size ratio is computed by:

c÷12 = R
(
P1,P2

)
=

min(cA
1 , cA

2 )

max(cA
1 , cA

2 )
= c÷21, (3.11){ (

Pk,Pl
) } R(.)−−→ C÷ =

{
c÷kl

}
, (k, l) = (1, 2), . . . , (m− 1, m). (3.12)

A value near 0 means that two planes significantly differ in their size whereas
two planes cover the same area if the value is near 1. The histogram H÷ for the
size ratio values {c÷kl} is designed equally to histogram Hs (dividing the range
[ 0, 1 ] in five bins h1, . . ., h5 of width ∆h = 0.2). Given m planes, m (m − 1)

2 number
of plane pairs can be chosen. The feature vector is calculated through:

~x÷ =
2

m(m− 1)
·H÷

(
C÷
)
, with (3.13)

H÷
(
C÷
)

=


m−1
∑

k=1

m
∑

l=k+1
δ( c÷kl , h1 )

...
m−1
∑

k=1

m
∑

l=k+1
δ( c÷kl , h5 )

 . (3.14)

This feature vector focuses on the question whether a room contains a lot of
similar sized patches or not. As can be seen in Figure 3.12 the only size ratio
can separate the “eating place” class from the other room classes. This feature is
unique for this class because an eating place can be thought of a set of equally
sized small patches which are the chairs and one big patch which is the table.

the angle characteristic c^. A feature vector based on angles between
planar patches encodes the geometric configuration of the presented scene,
e. g.whether there are a lot of patches parallel or orthogonal to each other. For
two planes (P1,P2) the angle characteristic c^12 holds the acute angle between
them. It is computed by applying Equation 3.15 to their normals ~n1 and ~n2. A
scalar product of these two vectors is computed and the arc-cosine of the result
delivers the corresponding angle. The left close-up of Figure 3.11(b) shows an
example of an angle between two patches.

c^12 = ^
(
P1,P2

)
=

arccos(~n1 ·~n2) :<= π
2

π − arccos(~n1 ·~n2) : else
(3.15)

{ (
Pk,Pl

) } ^(.)−−→ C^ =
{

c^kl

}
, (k, l) = (1, 2), . . . , (m− 1, m). (3.16)
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Figure 3.12: (left) The 25-dimensional 3D spatial features ~x 3D extracted on frames of the 3D
database are plotted in 2D using the multidimensional scaling method. Per category the mean
feature vector is computed and those 50 feature vectors are extracted which are nearest to this
mean vector. The mean feature vectors are labeled by N, �, �, •, H, I. The Euclidean distance is
used as inter-point distance. Four of six categories (bathroom, bedroom, kitchen, living room) are
already in 2D nicely clustered. (right) shows plots of the sub-feature vectors ~x^, ~x s, ~x A, and ~x÷.
They give an impression by which plane property a class separation may be caused.

The corresponding histogram H^ over the set of angle values {c^kl} consists of
nine bins h1, . . ., h9 between 0 and π

2 with a bin width of ∆h = π
18 . The feature

vector results from:

~x^ =
2

m(m− 1)
·H^

(
C^
)
, with (3.17)

H^
(
C^
)

=


m−1
∑

k=1

m
∑

l=k+1
δ( c^kl , h1 )

...
m−1
∑

k=1

m
∑

l=k+1
δ( c^kl , h9 )

 . (3.18)

This feature is best suited to separate between cluttered rooms like a bedroom
and less cluttered rooms like a bathroom or a corridor.

concatenation. The above partial feature vectors are concatenated to a
25-dimensional feature vector, the so-called 3D-based spatial feature vector,

~x 3D =


~x^

~x s

~x A

~x÷

 . (3.19)

It captures the spatial properties of the planar patches in a scene, like the
orientation of the patches to each other, their shapes, and their size characteristics.
Figure 3.11(c) visualizes the 3D feature vector computed from the set of planes
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Figure 3.13: This figure shows 32 response images acquired by applying 32 Gabor filters to
the input image, a SwissRanger amplitude image. The input image is a 144× 144 clipping of
the original 176× 144 amplitude image resized to the size of 256× 256. The response images
are sampled down to 4× 4 and concatenated to one 512-dimensional Gist feature vector ~x Gist.
Averaging over the response images gives an impression of the information encoded.

shown in Figure 3.11(b). Further, the quality of the separation of different room
categories in the feature space is shown on features extracted from the IKEA
database (→ Section 3.4.1). For each frame in the IKEA database the 3D feature
vector is extracted. For each room category a mean feature vector is computed
and 50 feature vectors are selected which are closest to the mean. Figure 3.12

visualizes this subset of feature vectors in 2D by a classical multidimensional
scaling [Kru78] which computes a projection of features in, e. g., 2D, while trying
to preserve the original inter-point distances. There are four clusters clearly
visible which corresponds with the room categories bathroom, bedroom, kitchen,
and living room. Only office and eating place are not clearly distinguishable
in the 2D plot. Recalling the spatial layouts of the two room types they share
some similarities which are that at least a table and a chair are contained in
a room being an office or an eating place. In contrast to the 2D plot of the
Gist features (see Section 3.3.2 and Figure 3.14) the living room features form
a compact cluster clearly separated from the other clusters. This explains the
substantial contribution of the 3D features in categorizing percepts from living
rooms as observed during evaluation (see Section 3.4). In Figure 3.12, the plots
of the sub-features ~x^, ~x s, ~x A, and ~x÷ give an impression which plane property
describes a room class best. For example, angle, shape, and size characteristic
separate “bathroom” percepts from other percepts. “Bedroom” percepts only
differ clearly from other rooms when the size characteristic is observed and
“eating place” percepts when the size ratio characteristic is observed. In both
characteristics also a definite “kitchen” cluster is visible. A clear “office” cluster
is not noticeable in the defined patch characteristics. A further analysis of the
correlations between the sub-vectors is given in Section 3.4.7.

3.3.2 The Scene Descriptor from 2D Data

Torralba [Tor03b] has developed a powerful feature for scene classification in 2D.
The Gist feature vector is a further approach to encode holistically spatial char-
acteristics of a scene. Therefore, it is worth investigating whether it can extend
the information captured by the previously defined 3D spatial feature vector.
The Gist computation relies on a wavelet image decomposition. Each image
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Figure 3.14: Using multidimensional scaling the 512-dimensional Gist feature vectors is plotted
in 2D. Per category the mean feature vector (labeled by N, �, �, •, H, I) and the 50 closest
vectors are displayed. The clusters of bathroom, bedroom, and a sub-cluster of the office category
are already nicely separated in 2D even though plotting 512-dimensional feature vectors under
preserving their inter-point distances is a hard problem. The sub-window shows the 3D plot of
the features with convex hulls enclosing features of one category. Here, the features of the eating
place category occurred to be linear separable from the other features while living room and
kitchen features are still mixed.

location is represented by the output of filters tuned to different orientations
and scales. As the SwissRanger ToF camera delivers besides a 3D point cloud
an amplitude image generated from the amount of infra-red light reflected, the
implementation of the Gist features 19 can be applied directly to the amplitude
image. Here, I have used 8 orientations and 4 scales of the Gabor filters applied
to a 144× 144 clipping of the 176× 144 amplitude image resized bilinearly to
256× 256. The clipping is anchored in the center of the original image. The
resulting representation is sampled down to 4× 4 pixels resulting in a dimen-
sionality of 8× 4× 16 = 512 for ~x Gist. Figure 3.13 shows some filter responses
resulting from convolving the input image with the 32 different Gabor filters.
While the 3D feature vector ~x 3D captures information about the arrangement of
planar patches in the scene, ~x Gist encodes additional global scene information
on the level of edges. The bright pixels in the averaged response image visualize
the peaks of the wavelet responses.

Figure 3.14 shows a 2D plot of some Gist features computed on amplitude
images in the 3D IKEA database. Per category the mean feature vector and
the 50 closest vectors are displayed. The clusters for bathroom, bedroom, and
a subpart of the office category are already in the 2D nicely separated. As
plotting 512-dimensional feature vectors in 2D under preserving their inter-point
distances is a hard problem I have also examined the 3D feature plot. It turns
out that the eating place forms a compact cluster in 3D while kitchen, a subpart
of the office cluster, and especially the living room cluster have still intersections
and are not linearly separable. As mentioned above, this impression explains to
a certain point the poor categorization performance of Gist features for “living
room”-percepts.

19 http://people.csail.mit.edu/torralba/code/spatialenvelope/
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3.3.3 Training Room Models and Combining Single Classifications

The next step after computing suitable features is to train classifiers that estimate
the boundaries between the different classes. Theoretically, for each class a dis-
criminant model has to be learned which can be used to compute the probability
that a feature belongs to a class. For example, this probability could dependent
on the distance of a feature vector to the class boundary. This set of classifiers
form the holistic scene model. Formally written, for a set of 6 classes

Ω = {ωi }i=1,...,6 with (3.20)

ω1 =̂ bath., ω2 =̂ bed., ω3 =̂ eat.,

ω4 =̂ kit., ω5 =̂ liv., ω6 =̂ off.

a vector of discriminant functions G(~x) is learned where each function gi(~x)
maps the n-dimensional feature vector ~x on a scalar value di encoding how likely
~x lies in class ωi [Kun04]:

G : Rn → R|Ω| (3.21)

gi : Rn → R, i = 1, . . . , |Ω| = 6

G
(
~x
)

=


g1(~x)

...

g6(~x)

 =


d1
...

d6

 with, e. g., di =

> 0 : ~x ∈ ωi

< 0 : ~x /∈ ωi

.

The result for an input feature vector ~x is a |Ω|-dimensional vector ~d (here:
6-dimensional) which holds for each class the likelihood that ~x is in this class.
Finally, classification of a feature vector ~x means to perform a decision based on
the likelihood stored in ~d. In the simplest case, the maximum value is determined
and the corresponding class is selected to be the classification answer. Mathemat-
ically, this can be formulated by a decision function E(.) which maps the vector
~d on a binary vector ~e with the i1-th component equal to 1 if i1 = arg maxi di is
the maximum value in ~d. All other components are set to 0:

E
(
~d
)

=


e1
...

e6

 , ei =

1 : i = i1

0 : else
, i1 = arg max

i
di. (3.22)

A classification result based on a single feature vector might not be very reliable
because a SwissRanger frame contains only a small part of the recorded room
due to the limited view field of the camera. Fortunately, our envisioned scenario
allows for a stabilization of the room categorization over several consecutive
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frames as the robot would record with its camera a sequence of frames from
the unknown room while tilting and panning the camera. By considering the
classification results of a sequence of consecutive frames

{ Ft−i }∆t−1
i=0 (3.23)

in a time window [ t − ∆t, t ] it is assumed that the decision becomes more
reliable and less vulnerable to uninformative views on the scene like, e. g., walls,
ceiling, floor or furniture that is spread over all room types. Seeing the set
of classifications { ~dt−i }i=0, ..., ∆t−1 as results of independent classifiers simple
classifier combination schemes are an obvious choice [Kun02]. According to
Kittler’s theoretical framework [Kit98] the fusion can then be done through the
product, sum, max, min, median, or majority vote rule. Among those listed,
majority voting is very popular due to its simplicity and has demonstrated
experimentally and theoretically its effectiveness in combining individual clas-
sifiers [Nar05, Lam97]. In my case, fusing by majority voting means that classi-
fication results {~et−i }i=0, ..., ∆t−1 achieved during a time window [ t− ∆t, t ] are
summed to a new voting vector ~d∗. The decision function E(.) is then applied a
second time on this accumulated distance vector:

~e∗ = E
(
~d∗
)

, (3.24)

~d∗ =
∆t−1

∑
i=0

~et−i, ~et−i = E
(
~dt−i

)
, ~dt−i = G

(
~xt−i

)
.

~xt−i is the feature vector encoding characteristics of frame Ft−i.

In the following, I am going to present two different fusion schemes, VS and
VM optimized for the indoor scene classification problem during a “home tour”
of a robot. VM slightly extends the classical majority voting by introducing
weights for the single classifiers (here, classification answers over time). In an
experimental comparison, Kittler and colleagues [Kit98] have shown that the
sum rule outperforms the other classifier combination schemes. Therefore, voting
scheme VS is based on the sum rule where the class hard decision on the frame-
level is skipped. The class decision is just taken on the sum of normalized model
answers. This allows to pass the support for all classes to the final classification.
The benefit of this scheme arises in cases where some frames give more or less
equal support for two or more classes. The idea is to lower the risk of making a
wrong decision by relying on frames in ∆t which enable a clearer decision.
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Figure 3.15: The logistic function l(x) =
1

1+e−x is plotted for visualization on the
range [ −20, 20].

the voting scheme VM. In some cases, several classes are similar likely
as ~d hold similar values. In other cases, clear class decision can be taken as
one value in ~d is clearly outstanding. This means that there are views on a
scene which are more or less informative which means that the quality of the
decision varies. This can be incorporated in the classical majority voting scheme
by weighting each decision vector~et−i with a factor αt−i while summing over the
window [ t− ∆t, t ]:

~e M = E
(
~d M
)

, (3.25)

~d M =
∆t−1

∑
i=0

αt−i ·~et−i, αt−i = A
(
~dt−i

)
, ~et−i = E

(
~dt−i

)
.

An intuitive definition for the reliability of a classification decision ~e is given
for a distance vector ~d by the difference between the distance value of the most
supported class di1 = maxi di and the distance value of the second best class
di2 = maxi\i1 di. The bigger the difference the more reliable is the decision. For
comparison reasons, a normalization function l(.) is applied to the distance
values. As can be seen in Figure 3.15 the logistic function l(x) is a strictly
monotonic function mapping values of the interval ]−∞, ∞[ to values out of
]0, 1[:

l(x) =
1

1 + e−x , lim
x→−∞

l(x) = 0, lim
x→∞

l(x) = 1. (3.26)

Due to the steepest gradient around 0 constellations like di1 > 0 and di2 < 0 are
higher weighted than those with di1 , di2 > 0 or di1 , di2 < 0. This means that a case
where ~x is found to be in class ωi1 and not in class ωi2 is weighted higher than a
case where the likelihood for being in class ωi1 is just higher than the likelihood
for being in class ωi2 . Function A(.) shows how the weight is computed which
encodes the reliability of a classification ~d:

A
(
~d
)

= l
(
di1
)
− l
(
di2
)
, (3.27)

di1 = max
i

di, di2 = max
i\i1

di.
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the voting scheme VS. Making a winner-takes-all class decision based
on one frame might be vulnerable to noise. Therefore, an alternative approach is
the sum rule which skips the decision on the frame-level. Instead, the responses
of each model gi are collect over time resulting in some kind of accumulated
distance vector ~dS on which the decision function E(.) is applied. In this case,
a classification is performed on a bigger amount of data compared to the classifi-
cation on frame-level which hopefully leads to a more stable result. As outlined
above the output distances of the discriminant functions have to be normalized.
This can be realized by extending the logistic function of Equation 3.26 to vectors
by applying l(.) to each entry of the input vector:

L
(
~d
)
=


l(d1)

...

l(d6)

 (3.28)

The final decision vector ~e S is defined as follows:

~e S = E
(
~d S
)

, (3.29)

~d S =
∆t−1

∑
i=0

L
(
~dt−i

)
, ~dt−i = G

(
~xt−i

)
.

combining different feature types. As described above, the fusion
of feature vectors over time is realized by summing up weighted decision
vectors or normalized distance vectors to a voting vector on which the final
classification decision is taken. This voting technique can be easily extended
to fuse responses of different features. First, a set of discriminant functions
per feature type has to be learned. Second, responses over time are combined
to different voting vectors, one per feature type. Third, the fusion of feature
types is then realized by simply summing these voting vectors to one final
voting vector on which the classification function E(.) is applied to get a final
class decision. The following formulas give details on the fusion of 3D features
and Gist features

{
(~x 3D

t−i, ~x
Gist
t−i )

}∆t
i=0 extracted from a sequence { Ft−i }∆t

i=0. The
discriminant functions learned from 3D features are denoted by G3D(.) and those
learned from Gist features by GGist(.). Using voting scheme VM (→ Equation 3.25)
the decision vector ~e M

C is computed by:

~e M
C = E

(
~d M

3D + ~d M
Gist

)
, (3.30)

~d M
3D =

∆t−1

∑
i=0

A
(
~d 3D

t−i
)
E
(
~d 3D

t−i
)
, ~d 3D

t−i = G3D(~x 3D
t−i
)
,

~d M
Gist =

∆t−1

∑
i=0

A
(
~d Gist

t−i
)
E
(
~d Gist

t−i
)
, ~d Gist

t−i = GGist(~x Gist
t−i
)
.
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3.3 the holistic scene representation

For voting scheme VS (Equation 3.29) the final classification ~e S
C results from:

~e S
C = E

(
~d S

3D + ~d S
Gist

)
, (3.31)

~d S
3D =

∆t−1

∑
i=0

L
(
~d 3D

t−i
)
, ~d 3D

t−i = G3D(~x 3D
t−i
)
,

~d S
Gist =

∆t−1

∑
i=0

L
(
~d Gist

t−i
)
, ~d Gist

t−i = GGist(~x Gist
t−i
)
.

rejection. Depending on the selected window size, the speed of the camera
drive, and the current frame rate of the camera the actually acquired frames
might only show uninformative scene views or may be disturbed by persons
moving in front of the camera. It is clear that classifications results on frames
acquired in such situations will barely be correct. As in some human-robot
scenarios a robust scene classification will be requested the robot should rather
reject some classification results than provide uncertain class labels. Rejection
can be introduces by modifying the decision function E(.) of Equation 3.22 in
the following way

Erej
(
~d
)

=


e1
...

e6

 , where ei =

1 : i = i1 ∧
di1−di2

di1
> θrej

0 : else.
(3.32)

i1 = arg max
i

di, i2 = arg max
i\i1

di

It means that the maximum value determining the resulting class must signifi-
cantly differ from the second best value. Otherwise, the classification cannot be
conducted reliably enough and is therefore rejected. During evaluation θrej = 0.05
has turned out to be best suited as not more than 20% of the test frames have
been rejected. Erej(.) replaces E(.) only at the final decision stage where the
summed voting vector ~d∗ is mapped on the final decision vector

~erej = Erej
(
~d∗
)
, (3.33)

~d∗ = ~d S or ~d∗ = ~d M.
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3.4 evaluation

This section is going to evaluate the 3D features and voting schemes proposed
in Section 3.3. This is done on the basis of a newly recorded 3D indoor database
introduced in Section 3.4.1 and on test sequences acquired in real homes. Sec-
tion 3.4.2 presents the specific classifiers and training strategy used to learn room
models from the database. The following evaluation focuses on different aspects
of the 3D indoor categorization problem. Section 3.4.3 analyzes the performance
of both voting schemes VM and VS for integrating classification responses over
time and different feature types proposed in Section 3.3.3. Additionally, the
influence of rejecting unstable classification results on the error rate is examined.
In Section 3.4.4 the best combination of voting scheme and rejection is picked
for a detailed analysis of the appearing inter-class confusions using different
features. Section 3.4.5 deals with the question how to combine features best.
It is possible to either concatenate feature vectors or to fuse classifier outputs.
Section 3.4.6 investigates the room label distribution and frame rejection along
selected test sequences. And finally, the correlations between sub-vectors of the
3D feature vector are investigated in Section 3.4.7.

3.4.1 The 3D Indoor Database

For studying the classification performance of my 3D features, a suitable database
is required containing snapshots of diverse indoor rooms from a robot perspec-
tive consisting of dense 3D point clouds. In the area of scene classification based
on 2D images some databases are available on the web 20 21 22 23. These databases
mainly contain pictures of natural outdoor scenes like “forest”, “mountain”,
“coast” and pictures of man-made outdoor scenes like “building”, “highway”,
“suburb”. Sometimes the databases also include man-made indoor scenes like
“store”, “living room”, “kitchen”. An interesting benchmark for visual indoor
place recognition from a robot’s point of view is provided by Pronobis and
colleagues 24. The COLD database contains 2D images of a one-person office,
a two-person office, a kitchen, a corridor and a printer area acquired at three
different laboratory environments under various weather and illumination con-
ditions.

Even though, the rough 3D spatial layout can be estimated from a single 2D
image – e. g.via estimating the surface orientation [Sax08, Hoi07], the 3D room
frame from line segments [Lee09, Hed09], or depth-ordered planes [Yu08] – the
resulting 3D layout is not detailed enough for capturing all spatial structures
given by scene-typical furniture. Further, the existing databases fail to capture
indoor rooms from a robot perspective. Therefore, I have recorded an own indoor

20 http://web.mit.edu/torralba/www/indoor.html [Qua09]
21 http://people.csail.mit.edu/torralba/code/spatialenvelope [Oli01]
22 http://www.emt.tugraz.at/~pinz/data/tinygraz03 [Wen07]
23 http://vision.stanford.edu/Datasets/SceneClass13.rar [FF05]
24 http://cogvis.nada.kth.se/COLD [Ull08]
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bath.1 bath.2 bath.3 bed.1

bed.2 bed.3 bed.4 eat.1
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eat.6 kit.1 kit.2 kit.3

kit.4 kit.5 kit.6 kit.7

liv.1 liv.2 liv.3 liv.4

liv.5 off.1 off.2 off.3

Figure 3.16: This figure shows photos of 28 different rooms that have been scanned with the
SwissRanger SR3100 in an IKEA home-center. The images have been taken from the view the
3D camera. The database contains 3 bathrooms, 4 bedrooms, 6 eating places, 7 kitchens, 5 living
rooms, and 3 offices.
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database 25 capturing 3D point clouds from a sufficient number of different
rooms. As outlined in Chapter 2 3D ToF sensors are best suited for capturing
quickly dense 3D point clouds from indoor rooms, especially, from homogeneous
furniture areas. For acquiring many different arranged rooms per category we
have taken the SwissRanger SR3100 camera to a regular IKEA home-center 26.
The exhibition is ideally organized for our purpose, because it is assembled by
opened 3D boxes showing example rooms. Therefore, it is possible to acquire per
room category a proper number of differently arranged rooms in a short time. To
simulate a robot-like view on the scene the 3D camera is placed at an arbitrary
position of the open box side at a height of 140cm scanning the room for 20
to 30 seconds. Round about 300 to 400 frames are acquired while continuously
moving the camera by ca. 40◦ left/right and ca. 10◦ up/down. This simulates a
robot moving its head around for perceiving the entire scene. We have acquired
data from 3 bathrooms, 4 bedrooms, 6 eating places, 7 kitchens, 5 living rooms,
and 3 offices. Figure 3.16 shows digital photos of the scanned rooms taken at the
positions of the 3D camera. As IKEA has stores all over the world a database on
IKEA data can be easily extended and holds furniture arrangements available in
real rooms all over the world.

3.4.2 Classifier Selection and Training

The 3D feature plot in Figure 3.12 suggests that the room classification us-
ing these features can be solved by using linear classifiers. Support Vector
Machines are such widely used classifiers [Vap95]. Also, in my exploration phase
(→ Section A.1), SVMs have turned out to work well for the indoor classifi-
cation problem. Therefore, I have selected the SVM approach to learn room
models on features extracted from SwissRanger frames. I utilize the SVMlight

library 27 [Joa99]. It comes with four built-in kernels which are the linear kernel,
the polynomial kernel, a kernel based on the radial basis function, and a kernel
based on the sigmoid function. Due to impressions gained in an empirical testing,
the Radial Basis Function (RBF) is used as SVM kernel here:

K
(
~x,~y
)
= e−γ·‖~x−~y‖2 . (3.34)

The parameter γ of the RBF kernel and the regularization parameter c (trade-off
between training error and margin) are optimized in a 10-fold-cross-validation
scheme choosing a model with a small number of support vectors while reducing
the classification error. Here, c = 900 and γ = 2 turned out to produce models
which perform well. These parameter values are fixed over the following test
runs and feature sets in order to get comparable results.

25 It can be downloaded from this website http://www.techfak.uni-bielefeld.de/~aswadzba/
3D-IKEA-database.tar.gz

26 http://www.ikea.com/us/en
27 http://svmlight.joachims.org
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The nature of the SVM approach is that it has been designed to solve a two-class
problem. This means that one hyperplane is estimated through the Support
Vectors defining the boundary between these two classes. One procedure to
transfer the SVM approach to a multiple-class classification problem is to train
for each class (here, room type) a SVM model in an one-vs-all way. All features
belonging to one room type are the positive samples for the model. The negative
examples are uniformly sampled from features of the remaining room classes.
Per model the amount of positive and negative samples is kept equally. Finally,
for m classes m models will be trained.

An analysis of the classification performance of features requires a separated
training and test set. Here, the training and test sets are generated by choosing
randomly from the 3D database one room per room type as test sequence. The
remaining rooms of one type form the training set for this room class. This
selection is repeated 10 times. Averaging the classification rates over these 10
runs should ensure comparability of the classification rates of different features
and voting schemes as a bias arising from differences in the performance of
individual test sequences is averaged out.

3.4.3 Classification Performance for Different Window Sizes

This section contrasts the performance of the features ~x 3D, ~x Gist, (~x 3D, ~x Gist ),
(~x DGist, ~x Gist ), and ~x SP. The calculation of ~x 3D is given in Section 3.3.1 and of
~x Gist in Section 3.3.2. Both features are fused to (~x 3D, ~x Gist ) using the voting
schemes presented in Section 3.3.3. ~x DGist is a so-called Depth-Gist feature vector.
It is computed in the same way as ~x Gist. But for the Gist computation the
SwissRanger depth image instead of the SwissRanger amplitude image is used.
~x SP is computed according to Lazebnik’s approach presented in Section 3.2.3.
The curves in Figure 3.17 show the classification rates where the window size ∆t
is varied from 1 to 300 frames. A curve is plotted per feature type. Given models
trained with a certain feature type, the classification rate for a certain window
size ∆t is computed by counting the correct labels over the different test classes
and averaging this overall performance over 10 runs.

The adjustable parameter in the voting schemes presented in Section 3.3.3 is ∆t
the size of the window [ t− ∆t, t ] over which classification results are fused. ∆t
is expressed by the number of consecutive frames necessary for determining
the correct class label. As our sequences are recorded with a camera roughly
standing at one or two positions and being moved continuously simulating a
robot’s head looking around, the possible values could range from one frame to
all frames of the sequence. Performing room category decision on one frame is
expected to be very fast but vulnerable to noise. The more frames are integrated
the more stable the classification result should become and the longer the robot
has to collect data before a decision can done. There is a trade-off between
getting a room type label quickly and reliably. The curves in Figure 3.17 show
the development of the classification rates if the window size ∆t is enlarged
from 1 frame to 300 frames. It can be observed over all tested features that
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(a) voting scheme: VS; rejection: θrej = 0.05
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(b) voting scheme: VS; rejection: no
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(c) voting scheme: VM; rejection: θrej = 0.05
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(d) voting scheme: VM; rejection: no
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Figure 3.17: This figure shows the development of the classification results while enlarging the
window ∆t from 1 to 300 frames (→ x-axis). The voting schemes VM and VS are evaluated as
introduced in Equation 3.25 and 3.29. Additionally, rejection using θrej = 0.05 is contrasted with
no rejection. The tested feature types and combinations are: � (~x 3D,~x Gist), • (~x DGist,~x Gist), J
~x Gist, I ~x DGist, � ~x 3D, and � ~x SP. σ̄ denotes the mean standard deviation of the corresponding
classification curve. r̄ denotes the mean rejection rate. cr∆t=1, cr∆t=50, and cr∆t=300 in the tables
are the classification rates at the corresponding window sizes while cr∅ is the classification rate
averaged over the different window sizes. (best viewed in color)
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the classification rates increase if the ∆t becomes larger. The steepest ascent is
located at the first part of the curves for ∆t = 1, . . . , 50 followed by a smoother
increasing over the rest of the curve. The gradient ∂ cr(∆t)

∂ ∆t of a curve cr(∆t) can
be computed by dividing the difference of two classification rates in percent
by the difference of the corresponding window sizes. For example, the green
curve in Figure 3.17(a) has between the classification rates of cr∆t=1 = 0.52 and
cr∆t=50 = 0.80 a much higher gradient (here, 0.56) than between cr∆t=50 and
cr∆t=300 = 0.94 (which is 0.056).

Taking a deeper look on the curves in Figure 3.17 and the classification rates in
the tables it can be seen that our proposed combination (~x 3D,~x Gist) of spatial and
gist features (green curve) clearly outperforms the other features under all voting
and rejection conditions. The classification rates (e. g., cr∅ = 0.84, cr∆t=300 = 0.94)
are significantly higher than the corresponding rates of the second best feature
combination (~x DGist,~x Gist) (orange curve, e. g., cr∅ = 0.71, cr∆t=300 = 0.79). The
corresponding error reduction of, e. g., 45% and 71% is quite impressive. In
general, the error reduction lies between 29% and 71%. Contrasting the two
curves reveals insights in the nature of information that is encoded by the feature
vectors ~x 3D and ~x DGist, respectively. Though the performance of both features
used alone is comparable only ~x 3D encodes information of room types that is
complementary to the information encoded by ~x Gist. Consequently, using ~x 3D

in combination with ~x Gist boosts the room type categorization performance.
This points out that a 25-dimensional feature vector ~x 3D carefully defined on
3D data captures spatial structures in a sufficiently generalized way compared
to a 512-dimensional Depth-Gist feature vector ~x DGist. Of further interest, is a
comparison between ~x 3D (red curves) and the 8500-dimensional feature vector
~x SP (black curves). The curves of both features show a similar performance which
is positively remarkable for the ~x 3D as it shows that meaningful information is
encoded in order to be able to recognize the room type of a newly presented
room at an acceptable performance level (cr∅ = 0.65). But it is also visible
that the codebook based approach producing 8500-dimensional feature vectors
~x SP is far too costly for not improving classification. Especially, the large mean
standard deviation of about σ̄ = 0.14 to σ̄ = 0.19 is due to the fact that some
room types are well recognized (like bathroom and kitchen) while others are not.
As computation and training of such big features is quite time consuming the
application of these features on a mobile platform with limited computational
power is currently not realistic and not necessary since as shown other well
performing features are available.

Figure 3.17 contrasts the different voting and rejection schemes. Figure 3.17(b)
shows the results acquired by integrating over time using Equation 3.29 and
3.31 for combining features of different types. In Figure 3.17(a) also rejection is
considered by replacing the final decision function E(.) with Erej(.), introduced
in Equation 3.32. Figure 3.17(c) and 3.17(d) show results using the voting scheme
VM (Equation 3.25 and 3.30). The results in Figure 3.17(c) are achieved by rejecting
in the final classification step unclear classification decisions. Considering all
feature curves the rejection of undecidable frames influences mostly voting
scheme VS. The mean improvement is about 0.04 while VM is only improved
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by 0.01. That is because taking decisions on the frame level leads to clearer
decisions on the window-level which leads to less influence of the rejection.
It comes with the drawback of being more vulnerable to noise. If rejection is
enabled the rate of dismissed frames range from r̄ = 3% to r̄ = 20% leaving a fair
amount of classifiable frames. Skipping the decision on the frame-level (sum rule)
improves classification results by round about 0.03. Especially, the classification
based on the 3D spatial features ~x 3D shows a considerable improvement by 0.10
and 0.06 if the voting scheme VS is used. 3D features profit at most from keeping
the normalized support for all classes when fusing over several consecutive
frames. The mean difference between results based on VM without rejection
(see Figure 3.17(d)) and VS (Figure 3.17(a)) with rejection is 0.06. The following
evaluations are based on results achieved by using VS as voting scheme and
rejection with θrej = 0.05.

3.4.4 Classification Performance per Class

This section examines the classification performance for each class by analyzing
confusion tables. As I aim for a realistic robotic scenario, integration times
of up to 60 frames are of interest as there will be an initial delay of 2 to 6
seconds before the robot would deliver class labels when continuously scanning
a room. Therefore, classification results achieved by a window size of ∆t = 60
are presented in Figure 3.18 for a detailed analysis.

Contrasting Figure 3.18(a) and Figure 3.18(c) with Figure 3.18(d) and Fig-
ure 3.18(b) it can be seen that the Gist features and the 3D spatial features
provide complementary information because the Gist features perform well
for the bathroom, the bedroom, the eating place and the kitchen while the 3D
features work for the bathroom, the kitchen, the living room, and the office.
So, combining both feature types covers all room types contained in the 3D
database. The high classification rate of 0.97 of ~x 3D for the “living room”-class
has to be emphasized especially in contrast to the low rate of 0.27 for ~x Gist.
The 2D and 3D projection of both features (see Figure 3.12 and 3.14) visualize
reasons for this behavior. Features of living rooms form a compact and well
separable cluster in the feature space of the 3D spatial features which is not
the case in the Gist feature space. The projections give also an explanation for
the mix-up between “living room”, “kitchen”, and “bedroom” in the Gist space
as the clusters for these room types are close to or even intersect each other.
While “office”-percepts are often classified as “eating place”, “kitchen”, or “living
room” and seldom as “bathroom” or “bedroom” as these two clusters are quite
distant and separated from the other clusters. Figure 3.12 shows a proximity of
features from the “office”-class and the “eating place”-class. This explains why
“office”-percepts are often mistaken for “eating place”-percepts and vice versa
in the confusion matrix. This proximity may arise for views on an eating place
where only one chair is visible together with a table whereas normally eating
places consist of a table and at least two chairs positioned around the table.
Lazebnik’s 8500-dimensional reference features (see Figure 3.18(f)) perform well
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Figure 3.18: This figure shows the confusion matrices of all examined features and feature
combinations: (a) (~x 3D,~x Gist), (b) ~x Gist, (c) ~x 3D, (d) (~x DGist,~x Gist), (e) ~x DGist, (f) ~x SP . Here,
the window size over which consecutive frames are integrated using the VS scheme is set to
∆t = 60. The classification rates per room type are listed along the diagonal, all other entries show
misclassifications. The ground truth labels are highlighted through bold letters.
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Figure 3.19: The bars in the diagram
show the classification rates of the
room types “bathroom”, “bedroom”,
“eating place”, “kitchen”, “living
room”, and “office” from the 3D IKEA
database. { (~x 3D

t−i,~x
Gist
t−i ) }i=1, ..., ∆t−1

has been used as features integrated
over a window of size ∆t = 1 and
∆t = 60. Per room type a room is
chosen randomly as test sequence
while the remaining rooms form the
training sequences. The selection is
repeated 10 times. The classification
rates are averaged over this runs.
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for the “bathroom” and the “kitchen”, acceptably for the “eating place” and the
“office”, and badly for “bedroom” and “living room”.

Ullah and colleagues [Ull08] have presented in their paper an an indoor cate-
gorization approach which is trained with 2D images of the COLD database
collected in a robot-like fashion in different rooms of three universities. They
assessed their database using a purely appearance-based method. Local 2D
features were extracted from the training images using Harris-Laplace detectors
and SIFT descriptors. For classification SVM models are trained. Even though
the COLD database and our 3D IKEA database contain different room types
both have been recorded from the perspective of robots. The COLD database
consists of 2D images and the IKEA database of 3D point clouds. Ullah and me
extract features optimized for the data, train SVM models for room types con-
tained in the utilized database, and classify single images or frames. Comparing
Figure 3.8 with Figure 3.19 showing the per-class classification rates it can be
seen, that Ullah has only been able to train a good model for the “corridor” (CR)
class (CR: 0.76, PA: 0.12, 2PO: 0.13, BR: 0.10). We are able to provide several good
holistic models, one for the “bath room”, the “eating place”, the “kitchen”, and
the “living room” (with bath.: 0.79, bed.: 0.38, eat.: 0.49, kit.: 0.52, liv.: 0.58,
off.: 0.33 for ∆t = 1 and even better if the window size ∆t is enlarged).

3.4.5 Feature Concatenation vs. Classifier Fusion

Features of different type can be either combined by concatenating them to one
vector or by fusing classifier outputs using a certain rule. Here, feature combina-
tion is necessary two times. First, ~x^, ~x÷, ~x s, and ~x A have to be combined. And
second, ~x 3D and ~x Gist have to be fused. Figure 3.20 compares the classification
performances of the two different combination strategies, feature concatenation
and classifier fusion. Voting scheme VS presented in Equation 3.31 is used to fuse
the different features. If features are concatenated to one vector, SVM models
are trained with the same parameters used for the training of models for the
individual features. The features capturing patch properties are combined best by
concatenation as proposed in Section 3.3.1. A gain of 10% in average is achieved
against classifier fusion of the spatial features. ~x 3D and ~x Gist are slightly better
combined by fusing their classifier outputs. The performance gain compared to
concatenation is 5% at average.
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Figure 3.20: This figure shows the per-
formance curves of different feature
combinations. Different feature types
are combined by either concatenating
them to one vector or by fusing classi-
fier outputs. Voting scheme VS given in
Equation 3.31 is used to fuse the differ-
ent features.
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3.4.6 Room Label Distribution along Example Sequences

As I aim for a reliable classification of a continuously acquired sequence of a new
room similar to the “looking around” or “eye saccade” paradigm, this section
is going to analyze the label distribution along several test sequences. The test
sequences come from the IKEA database and are recorded in two real apartments,
my own one and a visitor apartment of the Applied Informatics Group at
Bielefeld University. The purpose of this section is to give an impression of the
label distribution utilizing different window sizes. Additionally, the performance
of the holistic scene model learned from the IKEA database is tested if applied
on data of real flats. 3D spatial features and Gist features are used together
combined by voting scheme V̇ with the rejection parameter θrej set to 0.05.

First, a test run is analyzed where bath.3, bed.3, eat.5, kit.1, liv.3, and off.3

have been chosen from the IKEA database as test sequences while the remaining
sequences have been used for training the SVM models. Figure 3.21 gives an
overview of the label distributions assigned in the classification process using dif-
ferent window sizes for voting. The sequences are concatenated in the figure but
they are analyzed individually. The continuous red line denotes the ground truth
labeling and the black circles mark the classification results. Figure 3.21(a) shows
the label distribution when classifying each frame individually. As expected
the distribution is quite noisy and only a fraction (0.53) of the frames meet the
ground truth. In Figure 3.21(b) for each frame the preceding 59 frames contribute
to the classification by voting. It can be seen that classification is much more
stable and meets the ground truth quite well. Only few frames are misclassified,
the majority of undecidable frames are rejected. Last, in Figure 3.21(c) a dynamic
window expanding from 1 frame to the whole sequence is used for voting. For
each frame all foregoing frames influence the classification. Especially, at the
beginning of a sequence the classification could be unstable resulting in some
rejections which is due to the fact that only a small part of the room is already
known and only a small number of frames can be considered for room type
categorization.

The right column of Figure 3.21 presents examples of rejected frames. Among
them are a lot of close-up views on the current scene like views on diverse
tables for which the spatial layout of the scene cannot be estimated and thus
not decided to which class this view belongs. Other frames are rejected due
to their noise in the raw data or because they belong to a sequence which
contains views on furniture that can be found across different room types like,
e. g., shelves or sideboards. Further, rejected frames cluster in time. This means
that if consecutive frames are combined together for classification often sets of
consecutive frames are rejected. This is due to the fact that the camera is moved
continuously while recording so that a set of consecutive frames will contain
close-up views or uninformative views on furniture.
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(a) voting window size: ∆t = 1
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(b) voting window size: ∆t = 60
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(c) dynamic voting window

Figure 3.21: This figure shows the classification results of six test sequences (bath.3, bed.3, eat.5,
kit.1, liv.3, and off.3). The red line refers to the ground truth and the black circles mark the
classification results. The shown results are achieved by using 3D features and Gist features in
combination and voting over a frame window (a) ∆t = 1, (b) ∆t = 60, and (c) a dynamic window
which means that for all frames of a sequence all previous frames are considered during voting.
The right column gives examples of rejected frames.

This paragraph is going to examine the generalizing abilities of the room models
trained on the IKEA database. These models are applied to sequences acquired
in real flats. Figure 3.22(a) and 3.22(b) show pictures of the rooms recorded in
flat F1 and flat F2. These pictures are roughly taken from the position where
the SwissRanger camera recorded 300 frames per room. These sequences form
unknown rooms that are tested against SVM models trained by utilizing the
complete IKEA database. Here, also ~x 3D

t−i and ~x Gist
t−i are integrated over a window

∆t = 60 using VS and a rejection with θrej set to 0.05. Figure 3.22(c) and 3.22(d)
present the classification results for each sequence. The “kitchen” sequences,
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kit.F1 and kit.F2, the “living room” sequences, liv.F1 and liv.F2, and the
“eating place” sequence, eat.F2, are most of the time correctly recognized. Only
some frames in the middle of kit.F2 are rejected or wrong classified. This
is because the camera has been directed towards the kitchen window. As the
sun light contains infrared light the SwissRanger measurement principle gets
confused (→ Section 2.3.1). This effect is also responsible for the misclassification
of the complete eat.F1 sequence. Suppressing this effect is a subject to a technical
solution since there already exists a suppression of background illumination for
ToF sensors [Möl05]. Also, atypical missing or arrangement of furniture leads to
misclassifications and rejections as happened for bed.F1 and bed.F2. Here, the
bedroom of flat F1 contains only a bed and no further furniture that structures
the room. In bed.F2, the bed is placed atypically in a corner of the room so that
it is not visible in most views from the room entrance. It could be expected that
classification rates will improve here when the room is entered to get a more
typical view on the scene.

bed.F1 eat.F1 F1.kit liv.F1

(a) Rooms of flat F1.

bed.F2 eat.F2 kit.F2 liv.F2

(b) Rooms of flat F2.
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(c) Label distributions over room sequences of
flat F1
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(d) Label distributions over room sequences of
flat F2

Figure 3.22: Here, photos show the rooms recorded from two flats F1 and F2. Per flat 4 rooms,
namely bedroom, eating place, kitchen, and living room, have been recorded. For each room 300
frames are acquired with the SwissRanger camera. In (c) and (d), the red line refers to the ground
truth and the black circles mark the classification results.
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3.4.7 Correlations between Sub-Vectors of the 3D Feature Vector

The 3D feature vector ~x 3D consists of four sub-vectors capturing four properties
of planar patches assembling a room (→ Section 3.3.1). This section explores
the contribution of the sub-vectors on the classification performance of the 3D
feature vector.

Identically to the evaluation setup presented in Section 3.4.2, test rooms are
sampled 10 times randomly from the 3D IKEA database. Data of the remaining
rooms is used to train Support Vector Machines (SVM) models based on the
sub-vectors ~x^, ~x÷, ~x A, and ~x s. Figure 3.23 displays for the different sub-vectors
the classification performances averaged over the room types. The curves give
the classification progress when the fusion window is increased from ∆t = 1
to ∆t = 300. The best performing sub-vector is ~x A followed by ~x^, ~x÷, and ~x s.
For some window sizes the classification rate of ~x A even exceeds the rate of the
composed 3D vector ~x 3D. However, if ~x A or ~x 3D is fused with ~x Gist nearly no
difference in the classification power can be observed. The confusion tables in
Figure 3.24 mediate contributions of the sub-vectors to the room class recognition
problem. More than 50% of percepts captured in “bathrooms”, “bedrooms”,
“living rooms”, and “offices” are categorized correctly using ~x A. ~x^ can reliably
categorize percepts of “bathrooms” and “living rooms”. ~x÷ is specialized on
percepts of “bathrooms” and “eating places” and ~x s on percepts of ‘bathrooms”
and “kitchen”.
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Figure 3.23: The curves show the
classification power of the four
sub-vectors, ~x A, ~x^, ~x÷, and ~x s.
For comparison reasons, the curve
of the concatenated vector ~x 3D is
displayed.
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Figure 3.24: The confusion tables show the per class performances of the sub-vectors, ~x A, ~x^, ~x÷,
and ~x s. The ground truth is marked in bold letters.
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# SV models:

gbath. gbed. geat. gkit. gliv. goff.
features: averaged over 10 models

~x 3D 431 498 575 759 394 553

~x A 851 659 829 1058 609 752 ← increase of ∅ 51%

of models trained on the entire database

~x 3D 685 712 1004 1165 725 880

~x A 1190 848 1324 1593 933 1134 ← increase of ∅ 37%

Table 3.1: For each room model, gbath., gbed., geat., gkit., gliv., and goff., the number of support
vectors (# SV) is listed. The values are computed either by averaging the support vector counts over
the 10 test runs or by counting the support vectors in the models trained on the entire database.
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(
~x A, ~x Gist ) applied on flat F2

Figure 3.25: This figure illustrates the classification performance of the ~x A feature on recordings
from real apartments. The red line refers to the ground truth and the black circles mark the
classification results. The distributions show the limited generalization performance of ~x A.

The evaluation of the sub-vectors on the 3D database gives the impression
that the models learned on the basis of the sub-vector ~x A encode the essential
information for 3D indoor categorization. However, the question arises whether
these models are sufficiently general. If the training parameters are fixed, the
number of support vectors per model can serve as indicator for the generalization
ability of the models. Table 3.1 lists the number of support vectors in each room
model. Counts are either averaged of 10 models per room type or are given
for models learned on the entire database. The models based on sub-vector
~x A contain on average 50 or 37 percent more support vectors than the models
based on ~x 3D. It can be assumed, that the higher the number of support vectors
the worse the models can be transferred to new rooms. Test sequences of real
homes are classified with models based on ~x A fused with models for ~x Gist to
test the hypothesis. Figure 3.25 shows the distribution of class labels along the
test rooms of two real apartments. Comparing Figure 3.25 with Figure 3.22 a
categorization utilizing the sub-vector ~x A produces an exceptionally increased
rejection of 0.25 and 0.32. This is probably because classification decisions are
not as clear as when ~x 3D is used. Since the furnishing of the rooms in apartment
F2 have many similarities with rooms in the database, the frames which are not
rejected are mostly classified correctly. The total rate is 0.87. But, the models
trained on the database cannot be transferred to the rooms of apartment F1.
The overall classification rate is 0.30. It is quite small compared to 0.65 which is
achieved when ~x 3D and ~x Gist are calculated.
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3.5 conclusion and outlook

In this chapter, I have presented a holistic scene model providing a rough scene
impression of the robot’s vista space. It relies on spatial information rather
than on object information. 3D spatial features are defined encoding the 3D
scene geometry given as a set of planar patches. Shape and size are a standard
characteristic of patches, while angle and size ratio between two patches are a
novel idea in such kind of particle analysis. I focus on analyzing the relation
between patches for extracting information about the spatial layout. Evaluating
the defined 25-dimensional 3D feature vector on the 3D IKEA database has
shown a remarkable performance. It emphasizes the careful design of this new
feature vector. As 3D and Gist feature vector capture complementary aspects
of a spatial layout fusing both vectors leads to an error reduction of about
50%. Further, I have developed voting techniques for combining classification
responses over different feature types and over time. Best results are achieved by
keeping the support for all classes during summing over different responses from
3D and Gist features till a final decision has to be taken. The holistic scene model
consisting of SVM models learned on the complete IKEA database have enough
generalizing power for providing correct room labels for test sequences acquired
in real flats. I have shown that rooms have room type specific arrangements
which can be captured by my 3D feature vector.

Future steps will concentrate on defining further patch characteristics similar to
those listed by Mozos [Moz05] and others capturing the relation between patches.
I have shown that a fusion of classification results from consecutive frames
provides a more stable scene categorization results because more information
about the room is available than provided by one frame. Instead of classifier
fusion, it would be interesting to investigate whether data fusion could be
utilized for the indoor categorization problem. Registering several SwissRanger
frames leads to a bigger 3D point cloud holding a larger part of the scene. The
question is whether it is possible to learn better models from such point clouds
enabling a more stable scene classification compared to the models learned
from partial scene views. As 3D point cloud registration is a hard and resource
consuming problem a significant improvement must be observed in order to
recommend its application on a mobile robot. Additionally, the problem of
computing the Gist feature vector for registered frames has to be solved as
it captures an important part of the spatial layout. Due to these problems, it
could be interesting to investigate to which extend the holistic approach would
work on class hierarchies. On the top level of such hierarchies could be room
types like “kitchen”, “living room”, etc. and on the lower levels functional
subparts of a scene like “a wall with bookshelves” or “sideboard-like-furniture
for placing things on it”. Such scene subparts could be specific for a top level
room type or could appear across different room types. Such a distinction could
be used to introduce different weights for different scene subparts encoding
their contribution to their parent scene. The weights could tackle the problem
of the current classification scheme where views on furniture appearing across
different room types (e. g., shelves) corrupt the room labeling procedure.
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4
L E A R N I N G A L I G N E D S C E N E M O D E L S
F R O M S PAT I A L D E S C R I P T I O N S

wall cupboard

table
sofa

The holistic scene model introduced in Chapter 3 provides a room label for
a set of planar patches by analyzing the spatial layout of these patches. As
the computed 3D features only capture global scene information intermediate
scene structures like “table”, “shelf”, or “sofa” are not available. On the way
towards a completely spatial aware robot such knowledge is important for
understanding tasks like “Please, fetch the bowl on the table, which stands
in front of the sofa!”. The set of bottom-up extracted planar patches contains
a mixture of meaningful and non-meaningful structures. The challenge is to
find a representation which encodes only informative intermediate structures.
For a smooth communication this representation and its level of details should
be aligned to the one of the human tutor which means that similar structures
should be represented with similar labels [Vas07a, Pic04]. As human scene
models differ over different humans, tasks, and situations, a generation of a
universally valid model is not desirable or even possible. In principle, three
strategies for communicating meaningful structures to a robot are thinkable.
The robot could be taught explicitly important spatial structures by the human
companion, it could take the initiative by iterating through perceived patches
and asking for information, or it could be equipped with abilities for inferring
meaningful structures during ongoing interaction. In a long-running interaction
between human and robot all three strategies will be applied. During an initial
introduction of a room, some important elements in the room will be presented
roughly to the robot. As the introduced structures will not cover every spatial
structure in the room, the robot could demand information about the missing
ones by asking for additional information, e. g., [Pel09]. The challenge for the
robot is to guess when it is appropriate to take the initiative and ask questions.
Also, the relevance of spatial structures changes with the tasks given to the
robot. In the above example instruction the “sofa” and the “table” are important
while the “cupboard” also contained in the room could be neglected. If the task
would be to find something in the “cupboard”, the relevance of the “cupboard”
should increase. These relevance shifts have not be incorporated, so far. Therefore,
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the third strategy is necessary. It allows the robot to infer the current relevant
spatial structures. As within an instruction relevant structures are communicated
by a spatial description, I focus here on the development of mechanisms for
inferring scene models which hold spatial structures contained in general verbal
descriptions of a room scene. The way verbal scene descriptions are constructed
communicates which scene elements are currently relevant for the task or to the
tutor (→ Section 4.1). This chapter is going to present how scene descriptions and
bottom-up planar patches can be utilized to come up with an Aligned Scene Model
providing meaningful structures with semantic labels. I suspect the envisioned
descriptions to arise during a “home tour” where a human guides the robot into
a room and describes what it can see in the room (→ Section 2.2.2 and 2.2.3).

This chapter is organized as follows: Section 4.1 provides insights from literature
on the nature of spatial descriptions and shows why the descriptions can be
utilized for building-up high-level scene models. Section 4.2 presents related
work on models providing such semantic information. Section 4.3 gives an em-
piric analysis of spatial descriptions about two vista space scenarios. Section 4.4
explains the computational approach for generating the aligned scene model. It
consists of rules for transforming a description into a set of trees, which encodes
the given relations in a hierarchical way, and a grounding of the abstract trees
to the visual perception of the according scene. This connection is established
by utilizing 3D locations of detected objects and bottom-up extracted planar
patches. In Section 4.5 the approach is applied to 30 descriptions from two
different rooms. The resulting models are analyzed for consistency and recur-
ring structures. Further, different errors in object detection are tested for their
influence on the model generation process. Section 4.6 summarizes this chapter.
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4.1 motivation

From psychological research we know, that the state of affairs is represented
mentally by situation models. For example, Zwaan [Zwa99] has analyzed situation
models arising during narration comprehension. Results from research on situa-
tion models in narrative comprehension suggest that comprehenders behave as
though they are in the narrated situation rather than outside of it. The compre-
hension is influenced by the nature of the situation not by the structure of the
text. In general, situation models arise as multi-dimensional representation of
situations under discussion [Pic04] and encode space, time, causality, intention-
ality, and reference to main individuals [Zwa98]. People have for every situation
their own representation of it, but, according to Pickering and Garrod [Pic04],
these representations become aligned to the representation of the communication
partner if the partners start a conversation. The term “alignment” originates
from the research on comprehension in dialog situations. It defines a subcon-
scious adaptation of representations at different levels. Such levels could be
word choice, syntactic constructions of sentences, or interpretations of situations.
Pickering and Garrod have presented as a catchy example a maze that can be
represented as arrangement of patterns (like “right turn indicator, upside down
T shape, or L on its side”) or as a network of paths linking prominent points (e. g.,
“the bottom left corner”). Alignment means that both communication partners
develop the same representation. Alignment is not necessary for a successful
communication. But a dialog becomes more effective with alignment, as the part-
ner’s representation needs not to be modeled in addition to the own model. So
far, only language has been examined as communication channel for alignment.
But recently, other modalities like vision, gestures, or facial expressions 28 have
raised research interest. The goal of this chapter is to develop a mechanism that
enables the robot to infer a model of space present in its sensory input. It should
be aligned to the tutor’s situation model concerning space. The resulting aligned
scene model will provide semantic structures the human has had in mind and
will map them on perceived sensor data.

As I focus on modeling of space, especially vista space, spatial descriptions play
an important role in exchanging concepts about the surrounding. Studying
spatial descriptions can reveal insights on people’s representations of space.
Many linguistic experiments have already focused on analyzing spatial lan-
guage [Sku04, Reg01, Tve98]. They show parallels in the way cognition and lan-
guage schematize the spatial world [Tve98, Fre08]. According to Talmy [Tal83],
language provides a systematic framework to describe space by selecting cer-
tain aspects of a referent scene while neglecting others. From this, Tversky and
Lee [Tve98] have concluded that language will be successful in conveying space.
For a robot this means, that it is reasonable to consider descriptions of space dur-
ing the model building process. This follows also Waltz’s premise where he has
assumed that scene descriptions allow a hearer to build models similar to those
the speaker has built via perceptual processing [Wal80]. Further, he has postu-

28 http://www.sfb673.org/. In the project A4 we contribute with our approach to the question of
how to realize alignment based on linguistic and vision input.
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lated that an entity would need a sensory system for comparing representations
generated from the input data with those generated from verbal descriptions.
Instead of just comparing both representations, my approach attempts to inte-
grate both representations following the “alignment”-paradigm introduced in
the previous paragraph. The generated high-level model meets the description
content and the scene perception. As descriptions are underspecified [Wal80]
visual input can help to solve ambiguities arising from descriptions.

The nature of spatial descriptions and the corresponding cognition have been
examined in more details by Hirtle and Jonides [Hir85]. They have found ev-
idence for a hierarchical organization of spatial knowledge. To Tversky and
Lee [Tve98], the hierarchical organization is visible through the decomposition of
space into figures and spatial relations showing schematically their topological
nature. This means that figures are located relatively to other figures or reference
frames. As people’s conception includes knowledge about gravity and mobil-
ity of objects [Tve99] their reference frames are often horizontal and vertical
planes. Further, there is a tendency to use relatively large and fix objects as refer-
ences [Her85]. The most frequently used spatial relations are prepositions like
“at”, “on”, “in”, “in front of”, “on top of”, or “parallel to”. The empirical analysis
in Section 4.3 shows that these findings are also visible in our scene descriptions
collected for two home-tour scenarios. It also presents new insights for deriv-
ing models from spatial prepositions. Further work on understanding locative
expressions will be discussed there [Reg01, Tom98, Log96, Gap95, RS88, Hut79].
To conclude, the essential step of the aligned scene model is a transformation
of spatial object relations to a hierarchical representation of the described space.
This representation estimates intermediate 3D scene structures fitting both the
description schema and the perceptual reality.
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4.2 related work

As our computational model is combining verbal descriptions and bottom-up
visual processing, related work about methods for deriving scene models from
verbal descriptions only and from visual structures only are introduced. Further,
work is discussed which deals with the integration of verbal and visual scene
interpretations. Finally, the contribution of my aligned scene model to this
research field is outlined.

4.2.1 Scene Interpretation from Verbal Input

First systems for depicting scene knowledge from descriptions have already
been developed in the late 70’s. Boggess [Bog79] has developed a program that
accepts spatial prepositions like “the box is on the table, the table is on the
floor, the floor is in the room” and creates a 3D box model only based on this
sequence. The mentioned objects are modeled by open boxes of standard height
and weight resulting in a model satisfying the gravity conditions. The model is
called Spatial Analog Model and looks like displayed in Figure 4.1(a). Their aim
was to develop a representation for linguistic scene descriptions compatible with
representations generated with a vision system [Wal80]. Similar to this early
approach, the Words-into-Pictures approach of Olivier and colleagues [Oli94]
automatically generates 3D depictions from natural language descriptions like
shown in Figure 4.1(b). They model objects qualitatively including the explicit
representation of their deictic and intrinsic sides and quantitatively through
constructing them from a finite set of geometric primitives. Unconstrained
degrees of freedom are set to default values. The given spatial prepositions are
modeled as potential fields incorporating constraints on orientation and position
of an object located relatively to a reference object. Computations of the fields’
minima provide acceptable interpretations of the given spatial predication.

(a) Spatial Analog Model of Boggess [Bog79] (b) Words-into-Picture approach
of Olivier et al. [Oli94]

Figure 4.1: Example results of two approaches for depicting scene knowledge from descriptions.
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4.2.2 Scene Interpretation from Visual Input

The function of scene descriptions is to provide high-level knowledge that
support the interpretation of a visually perceived scene. Such semantic analysis
of 3D scenes is, for example, a meaningful labeling of compact sets of points or
extracted planar patches. Such labeling can be achieved in a top-down manner
using an ontology or in a bottom-up manner using proper classifiers. Nüchter
and others [Nüc08, Can02, Gra97] have used semantic nets implementing general
knowledge about the corresponding context, e. g., indoor environments. Planes
are labeled according to their relative orientation or by inference on the given
knowledge database. As example, Nüchter’s semantic net and the resulting
scene model is presented in Figure 4.2. Alternatively, a semantic labeling is also
possible with bottom-up based approaches. They rely on training of appropriate
classifiers for point-based classification providing a meaningful label for each
data point. In general, each point is transformed into a feature vector encoding
its special characteristic which could be neighborhood characteristic, orientation
to a horizontal and vertical plane, or its normal. Based on such feature vectors
each point is classified into given classes which could be, for example, {wire,
vegetation, tree trunk, facade} [Mun09a], {chair, table, screen, fan, trash
can} [Tri07] or {plane, sphere, cylinder, cone, torus, edge, corner} [Rus08].
Figure 4.3 shows Triebel’s labeling of an indoor scene.
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Figure 4.2: This figure shows the semantic net Nüchter applied to a set of extracted planar resulting
in the semantic labeling of the patches displayed to the right [Nüc08].
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Figure 4.3: This figure shows a semantic labeling of 3D points of an indoor scene using the
point-based classification proposed by Triebel [Tri07].
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Figure 4.4: Wachsmuth et al. [Wac02] show here their Bayesian network which is used for
integrating speech and image interpretations given in the faced table-top scenario.

4.2.3 Integration of Verbal and Visual Scene Interpretations

According to Waltz [Wal80] scene descriptions are underspecified. This means
that spatial descriptions has to be correlated with visual perceptions for a full
spatial awareness. Achieving a suitable combination of both modalities is a
challenging problem. Therefore, researchers have first started to find ways for
matching simple projective spatial relations between objects like “above”, “left”,
“right”, or “below” on visual perceptions of the corresponding situation. Studying
the generation of such relations can give insights for developing mechanisms for
judging whether a given spatial relationship fits the perceived reality. Methods
for generating relations are histograms of angles [Miy94], histograms of forces
between objects [Mat99], acceptance volumes [Soc00, Vor97], and attentional
vector-sum models [Reg01]. Acceptance volumes rely on inducing a binary
acceptance relation that expresses whether an object intersects with the volume
scoring it by calculating the corresponding degree of containment. Attentional
vector-sum models combine orientational and height components of objects.
Based on the gained insights robots have been equipped with modules for
understanding commands like “go to the right of the object”. For example,
Skubic et al. [Sku04], are able to compute the correct target destination in
unoccupied space for the four primary directions “left”, “right”, “front”, and
“rear” of an object with respect to the robot’s perspective. They have utilized
force histograms which provide confidence about how well a position meets the
instruction. Moratz et al. [Mor01] have found in their experiments that humans
mostly take the robot’s perspective. Therefore, they have equipped their robot
with an ego-centered reference frame by partitioning the environment along
a reference direction into left-right and front-back. This reference direction is
defined through a vector from the robot’s center of mass to a relatum. A relatum
could be the centroid of all perceived objects or a salient object.

The next challenge has been the integration of scene descriptions and visual
perception where either the descriptions get more complex and the scenarios
stay simple or vise versa. Simple scenarios are single table-top setups like a
table-setting or a grasping scenario. Single caption words accompanying pictures
of scenes are said to be simple descriptions.
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For the first case, Wachsmuth and Sagerer [Wac02] have integrated verbal and
visual descriptions in a probabilistic manner using Bayesian networks. Object
descriptions from vision and language as well as relations between objects
have been modeled as nodes in this network which is sketched in Figure 4.4.
The system determines the desired object in instructions like “Take the small
ring in front of the rotor” by a Bayesian inference process. The probabilistic
approach is also followed by Mavridis and Roy [Mav06]. They model their
table-top scenario as a stochastic layer where vision percepts are integrated
as well as “imagined” descriptions of unseen scene parts like “there is a blue
object at the left”. New information, either visual or linguistic, is continuously
added by updating the probabilities in the stochastic layer. Another approach
is followed by Brenner et al. [Bre07]. They have built a robot that can manage
instructions like “put object1 to the left of object2”. This qualitative description is
first transformed to a potential field in the continuous space. It is then mapped to
a geometric description like way-points which are passed together with symbolic
representations of visible objects to a planner that generates acceptable actions.
An integration of visual perception and high-level concepts through description
logics is proposed by Neumann and Möller [Neu08]. There, table-setting scenes
are transformed into partial geometric scene descriptions. Symbolic constants
from a given concept are then connected to individual entities in the scene using
description logics resulting in an interpretation of the current scene. An approach
combining the probabilistic and logical area in scene analysis is proposed by
Hois et al. [Hoi08]. Their system analyzes a partial 3D scene, e. g., a table-top
setting. First, objects are extracted as compact 3D point clouds located on planar
patches. Second, objects are identified automatically. And third, assistance of a
user is demanded to resolve unknown objects. The detected objects are integrated
in a domain ontology which models the objects of the presented office scene
and the spatial relations between them. The spatial relations are estimated from
the arrangement of objects in the scene using heterogeneous non-overlapping
acceptance areas of [Her94]. This allows the user to ask the system during the
action phase questions about objects including their relations, e. g., “what are
the objects to the right of the stapler?”.

The previous work has in common that linguistic information is either used in or
derived from simple scenes. In contrast to that, recent work from computer vision,
e. g., [Jam10, Wan09], enhances visual interpretation like object classification in
complex scenes by using words given in the caption accompanying an image.
The idea is to learn strong correspondences between names and visual features
during training of classifiers.
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4.2.4 Contribution of the Aligned Scene Model

Summarizing this section it can be stated that bottom-up extraction of high-level
scene descriptions from scene percepts, e. g., using semantic nets, leads to a
predefined and static model (→ Section 4.2.2). It does not take into account the
representation of the communication partner which changes depending on the
situation. It cannot be ensured that mentioned scene parts are modeled. This
could mean that the robot cannot solve the task. 3D modeling of the interlocutor’s
representation has only be done on an abstract level without grounding it into
the visual reality (→ Section 4.2.1). So far, the link between descriptions and real
percepts has only been established for complex descriptions and simple table-top
scenarios which can be handled in 2D or simple caption words and complex
environments (→ Section 4.2.3). The new computational model presented in this
chapters attempts to close the observed gap in 3D scene analysis. The goal is
to infer the partner’s structural model from complex scene descriptions and to
ground it in the perceived visual 3D data of a complex environment. In more
details, the outcome is an aligned scene model that estimates the interlocutor’s
representation of space and grounds it to the perceived planar patches. The
purpose is to give the robot knowledge about meaningful scene structures and
their localization in the real world. The scene layout is concluded from objects
and relations between them.
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4.3 empirical analysis of spatial scene descriptions

Here, the focused scenarios are vista space scenes appearing during a “home
tour” where a human tutor guides the robot to a certain room or room part
(→ Section 2.2.3). The robot stays still and records the scene with its 3D sensor
while the tutor describes what can be seen. For analyzing these vista space
descriptions, my colleague Constanze Vorwerg has designed a study to collect
these descriptions in a controlled way [Swa09]. I have made photos of 2 scenes,
a children’s playroom and a living room. At the same position SwissRanger data
is captured with the camera positioned on a tripod at a height and orientation
comparable to the camera mounted on our BIelefeld Robot CompaniON (BIRON)
platform (→ Section 2.2). Figure 4.5 shows the 2 photos and the corresponding
3D point clouds. Extracted planar patches as bottom-up scene representation are
displayed on the right side (for the extraction algorithm see Section 2.4.2). In the
pilot study the picture of scene S1 was presented as print-out to 10 students (all
native speakers of German). Their task was to describe what they “see in the
picture”. In the second study 10 students (all native speakers of German) has been
presented scene S1 and S2 on a computer screen. The task has been to describe
what they “see in the room”. These room depictions are true scenes [Hen99]. They
are views of a natural environment that is semantically coherent and contains
both background elements and genuinely spatially arranged objects.

(a) scene S1: playroom (b) scene S2: living room

Figure 4.5: These are the two scenes (a) S1 and (b) S2 which have been recorded for the study. The
subjects have been told to freely describe the photographs. On the right, plots of the acquired 3D
point clouds are displayed. The colors encode the extracted planar patches from the point cloud.
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Figure 4.6: (a) visualizes the two types of relations which are orthogonal relations between objects
and its supporting structures and parallel relations between objects located on the same structure.
(b) gives the distribution of relations appearing across all acquired scene descriptions [Vor09].

Alternatively, many psycholinguistic studies use ersatz scenes which are displays
of arbitrary arrayed objects [Hen04]. Here, true scenes are used as it can be
assumed that the realistic setup will lead to realistic descriptions. A robot like
BIRON can then utilize the given descriptions directly as it can observe the
same scenes with its sensors. The descriptions are analyzed for new insights
about vista space descriptions. Furthermore, these descriptions can simulate
descriptions given to a robot. Whereas, in a natural human-robot dialog a scene
descriptions will not be given in total as a block of relations but sequence-wise
providing one relation after the other. The robot is expected to give feedback from
time to time showing that it still follows the human tutor. As my computational
model processes descriptions sequentially, such a dialog design can be realized
straight-forward.

My colleague Constanze Vorwerg, a researcher in psycholinguistics, has con-
ducted the experiments and has analyzed the data [Vor09]. In the following,
I am going to summarize the results and to describe consequences for the de-
velopment of a computational model generating a scene model from spatial
descriptions. Vorwerg’s analysis shows that spatial room structures like pieces
of furniture or other room parts serve as crystallization points for room descrip-
tions. Typical relations are for example “the lion is on the chair” or “a toy car is
in front of the koala” (see Figure 4.6(a)). Objects are put into relation with their
supporting room structure or with other objects on the same room structure.
Therefore, spatial aspects of visual scenes seem to be memorized hierarchically
as already proposed by Hirtle and Jonides [Hir85].

Spatial relations like “in front of”, “left”, “right”, “above”, “below”, “on”, and
“in” are an important part of spatial descriptions and have been examined
exhaustively. Spatial templates [Log96] and angular deviations [Gap95] have been
found to play an important role in understanding such relations. Traditionally,
it is assumed that inferring the correct frame of reference is an essential task even
though it is challenging [RS88]. Here we show that it is possible to model spatial
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relations without knowing the used reference system by utilizing the observation
that objects are related to their supporting structures or to other objects located
on the same supporting structure. We assign all relations to a super-ordinate
structure like “on the table” or “in the cupboard” to a so-called orthogonal relation
type. Co-ordinate relations between elements located on the same super-ordinate
structure like “on the right side of the sofa is a table” are referred to as parallel
relation type. This view and reference frame independent modeling of spatial
relations gives a nice methodology for extracting hierarchical representations
from given spatial descriptions (→ Section 4.4.1). The importance of these
orthogonal and parallel relations is also emphasized by a quantitative analysis of
the descriptions gained in the studies. Table 4.1 lists all relationship types which
can occur. Summed over all descriptions, Figure 4.6(b) shows the counts for each
relation type. The majority of specified relations belongs to the parallel (B) or
to the orthogonal relation type (A, nearly never R). Relations between same-
level objects from different super-ordinate structures almost never occur (D).
This leads to the assumption that the descriptions are organized hierarchically.
Therefore, relations between objects can be used to derive knowledge about
their supporting structures. This knowledge can facilitate the visual processing
since objects occlude their supporting structures at least partially. Therefore,
it is more robust to detect these objects and to infer the supporting structure
from given spatial relations than to identify these structures in a bottom-up
way in visual data. Our computational model supports the visual detection of
spatial structures. While the visual processing that provides objects and their 3D
positions simplifies the understanding of spatial depictions as only a distinction
between parallel and orthogonal relations is necessary.

A detailed analysis of a playroom description is given in Figure 4.7. Each entry of
the table is a relation given in the depiction. The last column holds the assigned
relation type. The description is organized in a structured way. The participant
follows the spatial layout by scanning one piece of furniture after another (red
shelf, white shelf, table, stool). All relations to a specific structure are given as a
block of successive relations. The connected blocks are highlighted in the figure
by different colors. Relations introducing a new spatial structure mostly relate the
new structure to an already mentioned one. The remaining relations in a block
focus on objects located on/in the corresponding spatial structure. Here, a main
pattern is that the first object is related orthogonally to the supporting structure
while the other objects are related to each other through parallel relations. This
strategy of describing a super-ordinate relatum with its objects followed by a
related or next super-ordinate relatum is called structure-detail strategy. Vorwerg
has also found other linearization patterns: overview first strategy first lists super-
ordinate relata (chair, table, shelves) and then relates small objects to them and
the overview only strategy simply itemizes objects and furniture with respect to the
room (“in the room is a chair, ..., a koala, ...”). This strategies are more advanced
compared to the basic strategy reported by Vasudevan et al. [Vas07b] where
objects are described from one to the other.
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A super-ordinate relatum (orthogonal relation)

A1 relatum is room or room part (wall, floor, ceiling)

A2 relatum is furniture

A3 relatum is object

B co-ordinate relatum (parallel relation)

B1 relation between furniture, the super-ordinate structure is the room or a room part

B2 relation between objects, they have furniture as supporting structure

M meta relatum (room as relatum for small objects)

D same-level object from different super-ordinate structure as relatum

R reverse of A (occurs only once following an according A localization)

R∼ seeming reverse of A (paraphrased with “is where ... stands”)

X object is localized relative to the image plane (“in the top-left corner of the image”)

Table 4.1: This table lists the relationship types which can occur in spatial descriptions [Vor09].

Spatial relation & relatum Things to be localized RT

In dem Raum befinden sich

In the room are
Spielsachen

toys
M

Da ist

There is
ein rotes Regal *mit einem schwarzen Raben und …

a red shelf *with a black raven and 2 … figures
A1/
*A2

Darunter

Below of them
ein Hase und ein Frosch

a hare and a frog
B2

Darunter befinden sich

Below of them
Bücher

books
B2

und darunter befinden sich

and below of them there are
Spiele

games
B2

Daneben ist

Beside of it is
ein weißes Regal

a white shelf
B1

dort sitzt

there sits
ein Hase

a hare
A2

da ist

There is
eine Schale

a bowl
B2

Daneben sind rechts daneben

Beside of them there are to the right
Arbeitsmaterialien

printed materials
B2

Darunter befinden sich

Below of them there are

Spiele

games
B2

Daneben

Beside of them
ein Kerzenständer

a candlestick
B2

in der Mitte # des Raumes

In the center # of the room
Dann ist da ein Tisch

Then there is a table
A1#

darauf befinden sich auch

on it there are also
Stofftiere, ähm eine Vase <>, ein Auto

stuffed animals, um a vase <>, a car
A2

<… darin>

<… in it>
<mit einer Blume …>

<with a flower‘ …>

A3

Davor ist

In front of it is
ein Hocker

a stool
B1

Darauf befindet sich

On it there is also
ein Löwe

a lion
A2

Davor befindet sich

In front of it is
irgendein roboterartiges Spielzeug

some robot-like toy
B2

und hinter dem Tisch steht

and behind the table stands
´ne Lampe

a lamp
B1

Figure 4.7: An example description of a playroom is transformed to a list of relations with the
first column holding the relatum and the given relation and the second column the referenced
object. The last column (RT) specifies the relation type: A indicates an orthogonal relation and
B a parallel relation. Additional details to the other relation types can be found in Table 4.1.
Relations to a specific structure like a table are tagged with the same color. The arrows visual-
ize interdependencies given between higher-level supporting structures. This diagram is taken
from [Vor09].
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4.4 the computational model

This section introduces the computational model for acquiring the Aligned Scene
Model. It reflects the tutor’s scene representation which is communicated by a
verbal description and the visual reality perceived as bottom-up extracted 3D
planar patches. Figure 4.8 gives an overview over the necessary steps. Based
on the results of the empirical analysis of spatial descriptions (→ Section 4.3)
a methodology is developed that transforms a verbal description to a repre-
sentation keeping the hierarchical character of the description. This hierarchical
character can be encoded suitably by a set of trees. The trees are constructed by
applying structuring rules specifically designed to handle orthogonal and parallel
spatial relations. Details on this processing step are given in Section 4.4.1. The
next step is presented in Section 4.4.2. Given an object detector that provides
small objects with their 3D positions this output is used to infer the hypothetical
position, size, and orientation of the spatial structures given in the set of trees. As
scene descriptions are ambiguous and underspecified, Section 4.4.3 introduces a
way to solve this problem by integrating the visual reality. Bottom-up extracted

corner

chair

table

cupboard2
cupboard3

Figure 4.8: The main steps for acquiring an aligned scene model using the interplay of verbal
description and visual perception are: (1) transforming a spatial description into a hierarchical
representation, it consists of a set of trees generated from specific structuring rules, (2) estimating
an initial scene model using 3D object positions provided by an object detector, the model
assembles from supporting structures given in the tree set, (3) matching and adapting the initial
model to the visual reality resulting in the final aligned scene model, more precisely the potential
patches from the initial model are matched to the bottom-up extracted 3D planar patches.
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3D planar patches are used to adapt and correct the initial scene model. The
resulting aligned scene model meets both the intermediate structures provided
by the human tutor and the robot’s visual perception. I have presented the main
idea of this work at the International Joint Conference on Artificial Intelligence
in 2009 [Swa09].

4.4.1 From Verbal Descriptions to Set of Trees

As outlined in Section 4.1 spatial descriptions reveal information about the
situation model of the communication partner. Due to an empirical analysis
(→ Section 4.3) spatial descriptions mainly consist of explicit and implicit relations
to supporting structures. These relations are named orthogonal and parallel
relations and defined as follows:

Definition. Orthogonal relation.

A relation is of the orthogonal type if an object is related explicitly to its
super-ordinate structure as in, e. g., “a lion on the chair”.

Definition. Parallel relation.

A relation is a parallel relation when two items localized on the same
structure are related to each other like in “a car in front of the koala (both
objects are lying on the table)”. The supporting structure (here, “table”)
is referenced implicitly.

This definition follows the basic physical fact that gravity causes objects not to
float in the air but to be placed on tables, attached to walls, or contained in
cupboards [Tor09, Oli94]. These explicit and implicit references to super-ordinate
structures reflect the hierarchical character of the underlying situation models,
so that trees are a suitable structure for maintaining such models. Unfortunately,
human-given descriptions are incomplete, ambiguous, and are not provided
ideally arranged for tree construction. Consequently, a set of dependency trees,
indicated by T , is a proper representation format for the spatial content given in
a description. The objective of this section is to illustrate the transforming of a
scene description to a suitable set of trees.

Scene descriptions can be assumed to be sequences of object relations. At any
point in time there exists a tree set Tt−1 (at the beginning of a description it will
be the empty set T0 = ∅). The current relation updates this tree set Tt−1 to a
new tree set Tt following certain rules. Our system has to deal with two types
of relations, parallel and orthogonal one. The parallel relations are relations
between items on the same level and orthogonal relations are relations between
items at different levels in the model hierarchy. The structuring rules for handling
these two reference types are presented below, but first I would like to give a
short introduction to my notations.
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Figure 4.9: On the left side, a set of three trees is visualized as three directed graphs. For example,
the node a is the parent node of the nodes a1 and a2. The right side shows the compact notation
of the set of three trees. All children of a node are listed directly below the parent node. The
indentation before a node (denoted by `) corresponds to the position of the node in the tree. The
node label can have a specific value (like a, b1, . . .) or can be empty if the supporting structure is
not named explicitly.

Figure 4.9 introduces a compact illustration of a tree set. Nodes are indicated by
`. The size of the indentation before a node corresponds to its position in the
tree. All children of a node are listed directly below it. The node labels could
have a specific value like “a”, “a1”, . . ., or could be empty like the root node
of tree b. An empty label represents the fact that the supporting structure has
not be named explicitly which is the case when a parallel relation between two
objects is specified. The nodes of the trees correspond to scene items in general
while the edges indicate the relations between them. Due to the hierarchical
character of scene descriptions, each parent node constitutes the supporting
structure of all its children. This interpretation goes along with the fact that
descriptions consist of naming objects and providing relations between them. A
typical expression like

“o1 is related to o2”

can be formally written as

o1 = obj( “o1” ), o2 = obj( “o2” ), rel{‖,⊥}( o1, o2 )

assuming that the type of the relation can only be parallel or orthogonal. A tree
set is updated according to certain rules:

Definition. Rule.

relation ⇒ sequence of tree operations.

The available tree operations are three modification operations and one query
operation:

Definition. Tree operations.

obj( . ) adding nodes,

delete( . ) deleting nodes,

child( ., . ) adding edges, and

ischild( ., . ) indicating the existence of an edge.
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4.4 the computational model

The following listing gives details for these four tree operations:

o = obj( “o” )→ no

An object label “o” in a description means that there exists an object
o. The obj-function returns a pointer (→) to the object node no in T
representing the mentioned object. Depending on the type of the object
label “o” different inserting behaviors are required. If an object label can
be grounded to exactly one object in the scene than it is called distinct
object label. Distinct object labels are, for example, “the blue doll” or “a
radio”. In the first case, the robot knows two dolls but the accompanying
adjective allows to determine the doll that have been referenced. In the
second case, the robot knows only one radio in beforehand so that it can
easily assign the label “radio” without having to resolve ambiguities. A
node representing a distinct object label is added to the tree set T when
the object is referenced the first time. All further references are handled
by just returning a pointer to this node. An object label matching several
objects is called category label. This is the case if the label is in plural like
“soft toys” or if a distinguishing adjective is missing when a label fits more
than one object like “a doll”. Category labels are handled by creating a
new node in T every time this category label occurs as it cannot be said
whether the same objects are meant or not. There exists only one exception
when directly consecutive relations contain the same category label. Here,
it can be assumed that the same objects are meant so that it is reasonable
to provide for the second relation a pointer to the corresponding node
generated in the preceding relation.

child(no, np)

A directed edge is inserted from the parent node np to the child node no

expressing the supporting characteristic of the parent structure to the child
object.

bool = ischild(no, np)

true is returned if the nodes no and np exist in T
(
∃{no, np} ∈ T

)
con-

nected with a directed edge from np to no. Else, false is returned.

delete(n)

The node n is deleted from the tree set T .
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handling parallel relations. All relations between object o1 and o2

assigned to the parallel type, rel‖( o1, o2 ), are of the form

“o1 lies in front of /behind /next to /above /below o2”

like “the car is in front of the koala”. Due to the empirical finding that only
objects located on or in the same super-ordinate structure are related in this way,
it can be inferred that both objects are located on the same supporting element
(e. g., the table). Hence, the basic rule for updating T given rel‖(o1, o2) is:

rel‖(o1, o2) ⇒ ∃p = obj(“ ”)→ np with (4.1)

child(no1, np) and child(no2, np)

It states, that there exists a supporting element p = obj(“ ”) for which currently
no label is known. This object is inserted as new node np in T . The hierarchical
relation between o1, o2 and p is established by inserting edges using the child-
operation. It sets no1 and no2 as child nodes of np regardless if the object nodes
have further children or not. There exists only one exception when no1 has
already a parent node np. In this case Equation 4.1 is altered to

rel‖(o1, o2) ∧ ∃np ∈ T : ischild(no1, np)⇒ child(no2, np). (4.2)

This means that no2 becomes with all its children the child of np. The parallel
relation is commutative in the mathematical sense as rel‖(o1, o2) and rel‖(o2, o1)

point to the same supporting structure thus update T in the same way. Fig-
ure 4.10 illustrates the update behavior of rule 4.1and rule 4.2.

(a) rule 4.1 (b) rule 4.2

Figure 4.10: Visualization of rules handling parallel relations. (a) the basic rule, (b) handling the
case that the node no1 has already a parent node np.

(a) rule 4.3 (b) rule 4.4

Figure 4.11: Visualization of rules handling orthogonal relations. (a) the basic rule, (b) handling
the case that the node no1 has already a parent node np.
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handling orthogonal relations . A relation having the form

“o1 lies on /in o2”

like “there are soft toys on the table” is called orthogonal relation, rel⊥(o1, o2). It
provides a relationship between an object o1 and its super-ordinate structure o2

by locating o1 relative to o2. Formally, this can be written down as:

rel⊥(o1, o2)⇒ child(no1, no2) (4.3)

Between the nodes no1 and no2, standing for the named objects, a directed edge
is introduced turning no2 to be the parent of no1. The exceptional case, that
no1 has already a parent node, can appear, too. It is handled by the following
modification of the basic rule 4.3:

rel⊥(o1, o2) ∧ ∃np ∈ T : ischild(no1, np) (4.4)

⇒ ∀n : ischild(n, np) do child(n, no2), delete(np)

This rule is only applicable if no label is specified for this parent node or if the
existing label is identical to the label of no2. In this case both trees or subtrees can
be fused to one tree with no2 as the root node. If a label different to the label of
no2 is assigned to the original parent node a conflict arises that cannot be resolved
automatically. Relations causing this conflict are postponed for clarification in a
subsequent dialog with the communication partner. Figure 4.11 visualizes both
rules for orthogonal relations showing the tree set T before and after the update.

A basic principle of the rules is to fuse two originally independent trees when
an according association is provided by a new spatial relation. This construction
procedure is found to be similar to the assumed procedure in humans building
their mental models. Johnson-Laird [JL80] has conducted an experiment where
he has examined subjects’ mental models constructed from a given instruction.
He has contrasted, for example, the continuous description, “the knife is in front
of the spoon, the spoon is on the left of the glass, and the glass is behind the
dish”, with a discontinuous one, “the glass is behind the dish, the knife is in front
of the spoon, and the spoon is on the left of the glass”. He has found that a task
following the instruction is much harder to accomplish if the instruction is given
in the discontinuous order. Johnson-Laird argues that subjects first construct
two models and combine them afterwards. This is also the main construction
principle in the computational model proposed here, because the rules defined
cause always a fusion of trees representing the known spatial relations.
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learning aligned scene models from spatial descriptions

Figure 4.12: Top: Example description about the playroom given by subject 3(p) in the pilot study.
The red framed words mark the objects and the green underlined words the relations. Double
underlined means parallel relation and single underlined means orthogonal reference. Bottom: If
processing the above description as a sequence of relations the displayed development of tree set
T can be observed.
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processing of an example description. Finally, I am going to show
the changes of the tree set T when processing an example description. Here, the
scene description of the playroom (→ Figure 4.5(a)) given by subject 3(p) in the
pilot study is utilized (→ Section 4.3). The verbal description is interpreted as a
sequence of relations, see the top box of Figure 4.12. Figure 4.12 shows also the
development of tree set T while processing the description sequence-wise. The
(i)-th tree set is a result of updating the (i− 1)-th tree set with the (i)-th relation.
As an example, I am going to discuss relation (3) (“a rose is on the table”) and
(4) (“a car is front of the koala”) in more details. Relation (3) is a standard
orthogonal relation producing a tree in T with “table” being the parent node
and “rose” the child node. As the relations are treated independently from each
other, my algorithm does not catch the fact that “car” and “koala” are located
on the table. This information is only given implicitly through the connection
of the two sentences by the word “and”. Directly, it can only be assumed that
“koala” and “car” have a common supporting structure which is modeled in the
(4)-th tree set by a common parent node with an empty label. Humans infer the
information that “car” and “koala” are on the “table” by analyzing the sentence
context. For example, they see that both relations are combined by an “and”.
Alternatively, this information can be concluded from the visual perception of
the scene. In my system, I have modeled the second option by implementing
a mechanism which allows the robot to infer from bottom-up extracted planar
patches trees in T that can be merged (→ Section 4.4.3).

4.4.2 Inferring Initial 3D Scene Structures

This section describes how a set of trees can be transformed to a set of 3D
planar patches. These patches assemble the Initial Scene Model by estimating
potential supporting structures of objects given in a description (→ Figure 4.16).
The described room is characterized on an intermediate scene level. As man-
made environments contain many planar patches, it is reasonable to model
supporting structures as planes. Instead of detecting meaningful structures like
“table” or “cupboard” in a bottom-up way, the main idea is to infer their 3D
location, orientation, and expansion from small movable objects attached to them.
I suppose that detectors for small compact objects, which do not contribute to
the spatial layout of a room like “lion”, “koala”, . . ., are easier to train and can
provide much more stable detections [Nüc08] than detectors for spatial structures
like “chair” or “table”. The common property of these detectable objects is that
they are located in the leafs of my trees. A potential planar surface representing
a parent node can be estimated from the 3D world positions of the assigned
objects. This models the gravity constraint since no movable object can float
in the air. As the camera orientation is known (→ Section 2.2.1) the 3D point
cloud can be transformed so that the ground plane is parallel to the xz-plane
of a left-handed coordinate system. The orientation of a supporting structure
depends on the type of the used relation. Supporting structures where objects are
placed on them can be estimated as horizontal planes. While supporting structure
for objects being placed in or attached at are typically vertical planes. The second

87



learning aligned scene models from spatial descriptions

assumption is not valid in general. In exceptional cases, it could happen that an
at-relation is used as parallel relation (“lamp at the wall” has let to competing
labels for a supporting structure in Figure 4.25(g) so that relations have to be
ignored) or that an in-relation is better modeled by a horizontal plane. But, the
evaluation in Section 4.5 shows that the initial assumptions on the orientation of
the supporting patches are sufficient for processing most depictions reliably.

Figure 4.13 shows two outputs of an automatic object detection using Scale-
Invariant Feature Transform (SIFT) matching [Low99] and a RANdom SAmple
Consensus (RANSAC) based rejection of outliers [Fis81]. SIFT features from
several object views are matched to the scene image and rated regarding to
their error. The Sift features of the best matching view are enclosed by a 2D box
providing an object detection result. If, for example, a calibration of a 2D camera
and a 3D ToF camera is given the corresponding 3D object hull can be extracted
by mapping the 2D object box into the SwissRanger image. SIFT feature based
object detectors work well for textured objects, like the toy car or the toy robot,
but will fail for less-textured objects, like the teddy bear. As development of a
robust object detection system is out of the scope of this work, objects are labeled
manually in the SwissRanger amplitude image simulating an output of an object
detector. Figure 4.14 shows all objects known to the robot in the playroom scene
S1 (→ Figure 4.5(a)). A 2D box is drawn manually around each object in the
SwissRanger amplitude image. The pixels within an object box determine the
corresponding 3D points which are used (after removing some outlier points
lying outside a 3D bounding box) to compute the 3D object hull providing object
location and extension in 3D space. The object location is assumed to be the
3D object point with the smallest y-value (due to gravity this point will touch
the supporting structure first). Table 4.2 gives the known objects O and their
categories of different degree of universality.

An initial scene model is derived for a set of trees T by estimating for each parent
node on the level above the leaves in T a potential patch which represents the
supporting nature of the node. The following algorithm shows how to compute
a patch P for a node np by encountering the 3D locations of the objects assigned
to the node np. The parameters of a patch are a normal vector ~n and a distance d.
The estimated structures are so-called level-1 structures since their child nodes are
leaves in the trees. If the child nodes are distinct objects, like “koala”, “games1”,
... and their relations to the parent node are known, the patch parameters can be
computed directly from the object locations. A problem arises in cases where
the human tutor has given a category label which refers to a set of objects, e. g.,
“there are soft toys on the table”. Normally, only a subset of soft toys will be
on the table. If distinct objects are known to be on the table, the planar patch
computed from these objects can be used to resolve the ambiguous labels. This is
done by picking those objects from an object set that have the specified category
and are located on the computed planar patch. Category labels can be resolved if
at least one distinct object per parent node exists. In the following, the necessary
steps for estimating a potential planar patch P p

pot for a node np are explained
in more details. The steps are illustrated by processing the example tree set T
shown in Figure 4.12(12).
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4.4 the computational model

(a) detecting the toy car (b) detecting the toy robot

Figure 4.13: Two outputs of an automatic object detection using Sift matching are shown. The toy
car and the toy robot are best suited for this kind of object detector.

(a) Manually drawn object boxes with labels.
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(b) 3D object hulls.

Figure 4.14: This figure shows all objects known to the robot. (a) The object boxes are manually
drawn around each object. (b) Considering the 3D points of an object box a 3D convex hull can be
computed.

Table 4.2: The list gives for each object the assigned categories of different generality.
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(i) O (→ Figure 4.14) holds the set of objects known to the robot. This set is
divided into a set of confirmed objects Ocon and a set of potential objects Opot. Ocon

is comprised of the distinct objects in T and Opot holds the remaining objects
which are not part of T . It is named potential because it is used for resolving
ambiguous labels in T . In our example the two object sets are:

Ocon =
{

lamp, rose, koala, car, lion, robot, books, fred, (4.5)

raven, pokemon, candle, dog
}

and

Opot =
{

bear, bowl, cube, cup, frog, games1, games2,

kangaroo, obelix, stitch
}

.

(ii) For each parent node np ∈ T its potential planar patches Pp
pot is computed

using the distinct objects Op
con ⊂ Ocon assigned as child nodes to np. In general, a

planar patch is described by an orientation and a position in the global coordinate
system:

P : ~n ·~x− d = 0. (4.6)

Its expansion can be modeled by an ellipse enclosing the locations of the assigned
object. There are three cases inducing different patch computations:

1. If the objects are related to their parent in an on-relation the potential
planar patch Pp

pot is estimated as a horizontal plane parallel with:

~np =

0

1

0

 and dp = ~np ·~cp. (4.7)

~cp is the ellipse centroid computed from the 3D locations of the confirmed
objects. E. g., Pchair

pot of nchair is computed using the 3D convex hulls of the

objects Ochair
con = {lion, robot}. The object’s 3D location, here~llion and~lrobot,

is the object point with the smallest y-value. Figure 4.15(a) visualizes the
computed patch Pchair

pot .

2. If objects are related by an in-relation to their supporting structure, a
vertical plane models the parent node best. The normal vector ~np is a
cross-product of the vectors~ap and~bp spanning the vertical plane:

~np =~ap ×~bp. (4.8)

where ~ap = ( 0, 1, 0 )T. The vector ~bp is obtained by estimating the best
line through all objects points of Op

con projected in the xz-plane (ground
plane) via RANSAC [Har03]. The distance dp is determined by applying
Equation 4.7 to the centroid ~cp of all object points. Figure 4.15(b) visualizes
the computed vertical patch Ppot using the confirmed objects Ocon =

{fred, raven, pokemon}.
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(a) a horizontal plane (b) a vertical plane

Figure 4.15: The figures show two example potential patches. A patch is represented by an ellipse,
its normal vector (~nchair, ~n ), and its centroid (~cchair, ~c ). Each object is represented by its convex
hull and its 3D location (~llion,~lrobot,~lraven,~lfred,~lpokemon).

3. In the case that the relation between child and parent node is unknown, the
3D arrangement of the confirmed objects determines the orientation of the
plane. The orientation of the plane is computed from the object locations
and compared to with the orientation of the ground plane. Depending on
the result one of the above computations is chosen. An angle smaller than
45◦ votes for the first computation, otherwise the second computation is
chosen. Figure 4.15(b) shows an example where the object positions vote
for a vertical supporting plane.

(iii) The resulting patch Pp
pot can be utilized to resolve category labels. Objects

inOpot having the specified category are tested for their distance to the computed
planar patch. If the distance is smaller than a given threshold it is assumed that
the human tutor has referred to these objects. Therefore, they can be assigned
to the potential patch. Finally, all object points projected on the patch plane are
used to recompute the expansion of the patch ellipse by determining its two
principal axis using Principal Component Analysis (PCA).

Figure 4.16 shows the computed initial scene model. It consists of patches for
“corner”, “table”, “chair”, “cupboard2”, and “cupboard3”, and two patches with
an empty label “ ”. The category label “softtoy on the table” is resolved to “kan-
garoo”, “bear”, “frog”, and “stitch”. The category label “games” in “cupboard3”
is resolved to “games1” and “games2” (highlighted in red in Figure 4.16). Due
to wrong object assignments and underspecified descriptions the initial scene
model contains erroneous and fictive potential patches. Finding solutions for
these problems is the scope of the next section.
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cupboard2

cupboard3
_
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Figure 4.16: Set of potential planar patches {P p
pot}p=1...7 computed for the tree set T of subject

3(p) using the proposed algorithm are visualized as colored ellipses. In the tree set on the right
the resolving of the ambiguous labels “softtoy” and “games” is highlighted in red.

4.4.3 Adapting the Initial Scene Structures to the Visual Perception

Since the potential planar patches are derived without knowledge about real
planar patches in the scene, the initial scene model may have two main problems
as can be seen in Figure 4.16. First, errors in resolving ambiguous category labels
lead to wrong assignments of objects to parent nodes. For example, “games”
as child of “cupboard3” is resolved to “games1” and “games2” even though
“games1” is in “cupboard2”. This happens because the expansion of the potential
patch is not considered when resolving category labels. In cases where other
supporting structures like the “cupboard2” lie in the same infinite plane and
contain objects of matching category the risk of mis-assigning is quite high
resulting in erroneous potential patches like “cupboard3” has. Second, verbal
descriptions are often underspecified which means that references to supporting
structures are only given implicitly, e. g., through sentence construction, resulting
in parent nodes with empty labels. For example, the table in Figure 4.16 consist
of two potential patches, P table

pot and a virtual patch Ppot, modeling the left and
the right part of the table. This is due to the fact that the verbal description has
not provided relations between objects of the two patches like, e. g., “the koala is
right of the frog” or relations naming the supporting structure like “the koala on
the table”.

Both problems will be addressed by considering real 3D planar surfaces which
are extracted by the region growing algorithm presented in Section 2.4.2. Fig-
ure 4.5(a) shows such extracted patches {P i

real}i=1...m in 3D data sampled from
the playroom scene S1. A real patch P i

real can be mapped to a potential patch
Pp

pot if the angle between the normal of the real patch and the normal of the
potential patch is smaller than an angle threshold. Further, the two patches has
to be close together. This is true if there exists at least one point in the real patch
which distance to the centroid of the potential patch is smaller than a given
distance threshold. Several real patches can be assigned to one potential patch
and one real patch can be assigned to multiple potential patches.
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correcting wrong object assignments. If a real patch P i
real is as-

signed to different potential patches with different labels, e. g., “p1” and “p2”
(not considering the empty label “ ”), this means that some of the objects are
mismatched. The goal is to find an injective mapping from real patches to po-
tential patches. This means that a real patch should only be assigned to one
potential patch or to a set of potential patches where at most one patch has a
label while the remaining ones must have empty labels. If a real patch is mapped
to two potential patches with competing labels this indicates that an object is
falsely assigned. This can be identified by checking for all objects of the potential
patch Pp1

pot and patch Pp2
pot whether they are positioned in/on the real patch P i

real.
P i

real will be put to that potential patch holding the biggest percentage of objects
lying in/on P i

real. All objects of the other patch that also lie in P i
real are moved

to this potential patch, too. The ellipses representing the potential patches are
updated considering the new added or removed objects. Figure 4.17 shows the
correction of the initial model given in Figure 4.16. Initially, “games1” has been
assigned wrongly to “cupboard3”, after applying the described procedure it is
moved to “cupboard2”.

inferring labels for virtual patches. After correcting mismatched
objects and recomputing potential patches the bottom-up extracted planar
patches can be used to infer labels for parent nodes currently assigned an
empty label, here called virtual patches. Such parent nodes arise in cases where
the descriptor has related objects by parallel relations to each other. A label for
the common supporting structure has not be given explicitly or it has not been
possible to conclude the label after processing the whole description. Inferring a
label for a supporting structure can be done for cases where a bottom-up patch
P i

real is assigned to a set of potential patches where exactly one patch in the set
has a label “p” differing from the empty label “ ”. In this case, I propose to
merge all parent nodes to one node labeled with the non-empty label “p”. All
child nodes are assigned to the new parent node using the standard tree fusion
technique shown in Figure 4.11(b). The orthogonal relation between the objects
and the structure “p” is assumed from the fact that all objects lie within the
same real planar patch. Utilizing all objects assigned, the ellipse representing
the new node “p” can be recomputed. Figure 4.18 shows the two fused patches
in our example model. The parent node of “koala” and “car” is merged with
the “table” node which means that “koala” and “car” are located on the table.
“fred”, “raven”, and “pokemon” are assigned in the same way to “cupboard2”.

Finally, Figure 4.19 shows the resulting aligned scene model for the example
description. It encounters the situation model of the communication partner and
the perceptual reality of the scene by computing initial patches from given verbal
descriptions and adapting them to fit the bottom-up extracted planar patches.
The aligned model gives a set of patches which represent meaningful structures
in the scene. Their labels are equal to those used by the interlocutor. Such models
can support a smooth Human-Robot-Communication about the surrounding
environment itself and about task instructions requiring knowledge of given
spatial conditions.
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Figure 4.17: The wrong assigned objects of the initial model are corrected. Here, “games1“ is
moved to “cupboard2”. This is highlighted also in the tree set.
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Figure 4.18: This figure shows the scene model after fusing virtual patches with named potential
patches. Patches are fused if they share the same bottom-up patch. In this example, “koala“ and
“car“ are added as children to the “table” and “fred”, “raven”, “pokemon” to the “cupboard2”.
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Figure 4.19: This figure shows the matching of
an aligned scene model on a set of bottom-up
extracted planar patches {P i

real}i=1...m. The result
is a subset of patches enhanced semantically with
meaningful names.
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4.5 evaluation

This section is going to evaluate the meaningful structures provided by the
aligned scene model approach. First, the model generated for subject 3(p) is
analyzed in more details (→ Section 4.5.1). Further, models generated from
a large amount of descriptions are evaluated quantitatively (→ Section 4.5.2,
→ Section 4.5.3). Overall, 30 descriptions are processed. 20 descriptions deal
with the playroom scene S1 (→ Figure 4.5(a)) – 10 acquired in the pilot study and
10 in the main study – and 10 descriptions deal with the living room scene S2

(→ Figure 4.5(b)) acquired in the main study. In the pilot study, a picture of the
scene has been presented as print-out and the participants have been instructed
to describe what they “see in the picture”. In the main study, the participants
have been shown the scene on a computer screen and have been asked to
describe what they “see in the room”. All original German descriptions and their
translation into English and a machine-readable representation can be looked
up in Appendix B. Last, the influence of object detection errors on the models is
examined (→ Section 4.5.4).

4.5.1 Analysis of an Example Model

In this section, I have chosen the description of subject 3(p) for a qualitative
analysis of the derived aligned scene model. This description has been used
throughout the whole Section 4.4 to visualize results of the intermediate compu-
tation steps. Figure 4.19 shows the meaningful spatial structures generated from
the example description. The highlighted structures meet the expected ground
truth, as meaningful structural elements, which are “cupboard2”, “cupboard3”,
“corner”, “table”, and “chair”, are chosen and the correct labels are provided. In
most cases one potential patch is mapped on one real patch. The “cupboard3”
is an exception because it consists of two bottom-up patches (colored in two
different blues). No bottom-up patch is found for the “chair” because currently
the chair is hidden by the objects on top of it. However, a mapping will be
possible in subsequent data where the objects are removed.

4.5.2 Analysis of Level-1 Structures

Figure 4.21, Figure 4.23, and Figure 4.25 show all generated aligned scene models.
The room structures represented by ellipses are localized on level-1 in the tree
sets T since objects positioned in the leafs of the trees are used to estimate these
structures. The histograms in Figure 4.20 show the distribution of the structure
labels found in the models. A structure appearing in many models is a prominent
element of the scenario. In general, no differences in the descriptions of the pilot
study (subjects 1(p) – 10(p)) and the main study (subjects 1(m) – 10(m)) can
be observed. Each model is aligned to the specific level of detail given in the
description. Most of the descriptions are quite detailed with many relations
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(a) distribution of structure labels derived in
the playroom scene S1
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(b) distribution of structure labels derived in
the living room scene S2

Figure 4.20: This figure shows the distribution of the concluded structure labels in the models
generated by applying our algorithm to all descriptions acquired in our studies (pilot study:
playroom (10 participants); main study: playroom, living room (10 participants)→ 30 descriptions).
The bar shows the number of models in which the corresponding structure label can be found.

between objects and room structures like the model shown in Figure 4.21(c).
There are only few descriptions that are just simple object listings (see 1(p),
2(p), 5(p), and 7(p) in Figure 4.22) so that nearly no spatial structures can be
concluded like show in Figure 4.21(a), 4.21(b), 4.21(e), and 4.21(g). The trivial
case that every object listed has its own small supporting patch is not displayed
because this does not provide any higher-level semantic information of the room.

In the playroom scenario (→ Figure 4.20(a)) the “table” is the most dominant
structure as 8 resp. 9 descriptions provided the table. The second prominent
structure is the “chair” because it is mentioned by 6 resp. 9 subjects. The po-
tential patch for the table is generated in 17 cases with a reliable position and
orientation. Only in the model of subject 1(p) (→ Figure 4.21(a)) no patch has
been computed because it has been mentioned by the descriptor without rela-
tions to informative objects. It is only known that there are soft toys on the table.
As no distinct object is available, the “table” patch cannot be estimated and the
category label “soft toys” cannot be resolved. Subject 8(m) (→ Figure 4.23(h))
has fused the arrangement of table and shelves to one structure, here labeled
as “cupboard/table”. The structure has not been divided into smaller parts by
locating objects explicitly to the subparts. Instead, the subject has simply said:
“the mentioned objects are spread all over table and cupboard”. Except from the
“table” and the “chair”, the shelves at the wall are also interesting structures.
Half of the participants have given enough information to conclude patches for
“cupboard2” (5 resp. 5) and “cupboard3” (5 resp. 5). Only 1 resp. 3 participants
fused the cupboards to one construct named “cupboard”. The reason for this
observation may be the different colors of the shelves which led the describer
to refer to individual shelves. This argument is even supported by the contrary
observation in the models of the living room scene S2. In most cases (8 partici-
pants) all shelves are fused to the structure “cupboard” (→ Figure 4.20(b)). Here,
the shelves have the same color and are therefore harder to perceive as separated
structures. The other meaningful structures in the living room are “table” (10),
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“sofa” (9), and “wall” (7). In general, the system fails to compute a potential patch
for a spatial structures (indicated by “Cannot compute potential patch for ...”,
e. g., in Figure 4.21(d)) when only the category of objects located in resp. on the
structure is known (like “there are soft toys in the cupboard”). Without knowing
at least one specific object this category label cannot be resolved. Further, a
potential patch cannot be computed if the sole specific object is not known to
the robot like the “carpet” in the description of subject 10(m) given as tree set
in Figure 4.26(j). If other objects are available for the supporting structure, this
unknown object will be simply ignored.

Some interesting artifacts can be observed in the models of the living room .
The model of subject 6(m) (→ Figure 4.25(f)) contains for “lamp” and “picture1”
a common structure with an empty label. Considering the gravity of objects
and their fixation in the scene it can be seen that “lamp” and “picture1” do not
share a common supporting structure even though the describer has related
them. A reason could be that he/she has taken into account the objects’ 2D
arrangement in the picture instead of their 3D arrangement in the real scene.
In future work, the robot would indent to get in a subsequent dialog names
for meaningful structures with an empty label “ ”. For example, it could ask
“what is the supporting structure of lamp and picture1”. In cases where objects
have a real common structure the human will be able to give a label. Otherwise,
he/she would maybe say: “the lamp and the picture1 do not share a common
structure; the picture1 is attached to the wall and the lamp stands on the floor”.
From this, the robot should conclude that the parent node in the tree relates both
objects incidentally and has to be removed. Another artifact can be observed in
the description of subject 7(m) (→ Figure 4.25(g)). There, my algorithm ignores
several relations because they have provided competing labels for a parent
structure. The “sofa” is localized in the “room”, with the lamp behind the “sofa”,
and the “lamp” at the “wall”. From the latter, the inference mechanism would
conclude that the sofa is also at the “wall”, hence, the “wall” is the supporting
structure for the “sofa”. But the “sofa” is already assigned to the “room”. The
reason for the competing labels is maybe the fact that the “at”-relation between
“lamp” and “wall” is in this case a parallel and not an orthogonal relation.

In a nutshell, it can be said that all generated aligned scene models are an
appropriate representation of the respective scenario. If tables are part of the
scenario they seem to be quite prominent parts of the scene as they are in most
cases communicated to the robot. The strength of my modeling approach is
that room structures like the table are reliably modeled across the scenes even
though the table of the playroom differs significantly from the table in the living
room. It would be challenging to design a table model in advance that could
detect both the big table in the playroom and the small table in the living room.
As furniture has a large amount of degrees of freedom it is quite complex to
consider all parameters and parameter combinations. Further, parts of the room
frame itself like walls or corners of rooms are important if objects are attached to
them (like, the wall in the living room) but could be ignored if the tutor does not
refer to them. This results in a resources preserving and aligned representation
best suited for modeling spatial awareness.
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Figure 4.21: Aligned scene models of descriptions about the playroom scene given during the pilot
study (→ (p)). The corresponding descriptions transformed to tree sets are given in Figure 4.22. It
can be seen that the subjects 1(p), 2(p), 5(p), and 7(p) just listed objects without relating them to
each other. Therefore, it has not been possible to estimate supporting structures. The trivial case
that every mentioned object has its own small supporting patch is not displayed because this does
not provide any semantic information about the room.
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(a) subject 1(p) (b) subject 2(p) (c) subject 3(p) (d) subject 4(p) (e) subject 5(p)

(f) subject 6(p) (g) subject 7(p) (h) subject 8(p) (i) subject 9(p) (j) subject 10(p)

Figure 4.22: Corresponding tree sets of playroom scene models generated from descriptions
given during the pilot study (→ (p)). The corresponding aligned scene models are displayed in
Figure 4.21.
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Figure 4.23: Aligned scene models of descriptions about the playroom scene given during the
main study (→ (m)). The corresponding tree sets are given in Figure 4.24.
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(a) subject 1(m) (b) subject 2(m) (c) subject 3(m) (d) subject 4(m) (e) subject 5(m)

(f) subject 6(m) (g) subject 7(m) (h) subject 8(m) (i) subject 9(m) (j) subject 10(m)

Figure 4.24: Corresponding tree sets of playroom scene models generated from descriptions
acquired during the main study (→ (m)). The computed aligned scene models are displayed in
Figure 4.23.
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Figure 4.25: Aligned scene models of descriptions about the living room scene given during the
main study (→ (m)). The tree sets can be looked up in Figure 4.26.
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(a) subject 1(m) (b) subject 2(m) (c) subject 3(m) (d) subject 4(m) (e) subject 5(m)

(f) subject 6(m) (g) subject 7(m) (h) subject 8(m) (i) subject 9(m) (j) subject 10(m)

Figure 4.26: Corresponding tree sets of living room scene models generated from descriptions
acquired during the main study (→ (m)). The corresponding aligned scene models are shown in
Figure 4.25.
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4.5.3 Analysis of Level-2 Structures

Besides the combination of small objects along their physically supporting
structures the level-1 structures are also sometimes related to each other through
a common parent node in the tree set. I refer to this kind of structures as level-
2 structures. In the two scenarios the most prominent groupings of furniture
structures are:

• playroom

– “table”–“chair”,

– “cupboard2”–“cupboard3”,

– “table”–“chair”–
“cupboard2”–“cupboard3”,

• living room

– “table”–“sofa’,

– “cupboard”,

– “table”–“sofa”–“cupboard”.

The separated grouping of “table”–“chair” and “cupboard2”–“cupboard3” often
corresponds to grouping of furniture relatively to the observer. E. g., the parent
node of “table” and “chair” is named “front” by subject 9(m): “in the front of
the picture is a table and ahead of the table stands a chair” (→ Figure 4.24(i)).
In absolute numbers, “table” and “chair” are related in 5 out of 20 tree sets.
A comparable relation is given between “cupboard2” and “cupboard3”. The
parent structure for these two pieces of furniture is either “wall” in the sense of
“cupboard2 and cupboard3 stand at the wall” (→ Figure 4.24(g)) or “back” as in
“in the back of the room are cupboard2 and cupboard3” (→ Figure 4.24(f)). In 9
of 20 models “cupboard2” and “cupboard3” have a common parent structure. In
6 models all furniture elements, here “cupboard2”, “cupboard3”, “table”, and
“chair” are related to each other by localizing them in the “room” (see, e. g.,
Figure 4.22(d)). The grouping of cupboards standing at a wall can also be found
in 5 of 10 living room models. Here, the cupboards are perceived and represented
as one level-1 structure, “cupboard”, which itself is localized relatively to the
“back wall (→ Figure 4.26(e)) or to the “corner” (→ Figure 4.26(i)). In the same
models also “table” and “sofa” are combined. Their parent node is in most cases
labeled with “room”. This corresponds with the result that this two pieces of
furniture are the most prominent structures in the living room. In the living
room scenario some participants, e. g., subject 1(m) and subject 8(m), even have
clustered together all pieces of furniture, which are the “cupboard”, the “table”,
and the ”sofa”. But contrary to the playroom scenario, where the walls are only
level-2 structures, the “wall” in the living room scenario is a level-1 structure
as detectable objects (“picture1”, “picture2”, “fan”) are attached to the wall. If
a “wall” is used as level-1 supporting structure a difference in usage is visible
when compared to normal furniture. The available models show that a “wall”
is less often related to other supporting structures than furniture like “tables”,
“sofas”, etc. The reason for that may be the fact that the only common supporting
structure would be the room itself. The information that “a wall is in the room”
is seldom given explicitly since this knowledge can be assumed to be known as
common knowledge about rooms in general.
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4.5.4 Influence of Object Detection Errors on Model Formation

In general, scene descriptions consist of references to objects, categories, and
room structures and relations between them. An analysis of the reference fre-
quency of each object can reveal further insights on the importance of particular
objects. For each description the number of references to an object is counted. The
counts are summed over all descriptions belonging to one experiment and room
type. Figure 4.27 shows the counts for each object. The prominent supporting
structures, “table”, “cupboard2”, “cupboard3”, “chair” and “cupboard”, “sofa”,
“wall”, occur most frequently which supports the importance of these spatial
structures. In the playroom scenario big objects like the “koala” on the table
or the “lion” on the chair are among the most referenced objects. In the living
room scenario objects at the wall (like “picture1”, “fan”, and “picture2”) are
mentioned most often followed by objects on the sofa (“pillow1” and “pillow2”),
in the cupboard (“radio”), and on the table (“orange bowl”). If detection fails on
these objects, problems in estimating the super-ordered structures can arise so
that potential patches cannot be computed. The problems can be compensated
in cases where other correctly detected objects are located on the same structure.

As object detection is the basic input for estimating level-1 structures the influence
of detection errors on the model formation process has to be examined. For this
purpose, errors are introduced into the set of perfect (because hand-labeled)
object detections presented in Figure 4.14. Errors in the recognition of objects
influence the scale and the position of the object bounding boxes. The following
errors are introduced to randomly selected objects of the hand-labeled object set:

• Translation errors influence the position of the object bounding box
⇒ no overlap with ground truth from

– failing completely to detect an object
→ applied to “fred” and “stitch”

– hallucinating objects at an image position where no object is present (this applies
also to false positives)
→ applied to “cube” and “robot” by putting their bounding box at a random

position in the image
– recognition errors resulting in a wrong labeling of detected objects
→ applied to “candle” and “dog” and to “games1” and “bowl” by swapping their

bounding boxes

⇒ overlap with ground truth from
– small inaccuracies in determining the position of the object box
→ applied to “games2” and “frog” by moving their box by a small randomly

chosen displacement in x and y direction

• Scale errors influence the expansion of the object bounding box
– the box size is smaller than the ground truth box
→ applied to “pokemon” and “books” through shrinking their boxes by a random

factor
– the box size is larger than the ground truth box
→ applied to “rose” and “bear” through enlarging their boxes by a random factor
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(a) playroom
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(b) living room

Figure 4.27: The bars plot the reference frequencies of all objects, category labels, and room
elements. The bars are achieved by counting their use. Rooms and experiments are treated
separately. As objects can be referenced several times per description each appearance is counted
as one reference resulting in, e. g., 5 references to the same object in one description.
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deviation corner table chair cupboard2 cupboard3

conormal 6.01◦ 0◦ 0◦ 0.26◦ 14.53◦

coplanar 0mm 12mm 302mm 22mm 10mm

Table 4.3: This table lists the conormal and coplanar deviation of the potential patches in the
aligned scene model shown in Figure 4.29 from the patches in the model shown Figure 4.18. The
model in Figure 4.29 is computed using the erroneous set of objects presented in Figure 4.28 while
the model in Figure 4.18 is based on the set of correctly detected objects show in Figure 4.14.

In the resulting object set 14 of 22 object boxes are erroneous (respectively, 12 of
20 as two object boxes are missing completely). Figure 4.28 shows the modified
set of objects. Figure 4.29 shows the resulting aligned scene model computed for
the description of subject 3(p) using the erroneous object set. As the estimated
potential patches are represented by a normal vector and a barycenter, these
patches can be compared to the ground truth patches shown in Figure 4.18 by
computing between the according patches the conormality (→ Equation 2.15)
and coplanarity (→ Equation 2.17) measurement. The correctness of a patch can
be judged reliably with the coplanarity value as a translation of the patch within
the plane is less penalized than the same translation out of the plane. Table 4.3
lists for the supporting structures their conormal and coplanar deviations.

The patches for “cupboard2”, “table”, and “corner” show only minor devia-
tions from the original patches. The twisting of “cupboard3”-patch by 14.53◦ is
acceptable since the overall position of the patch is correct. It is still possible
to assign the correct real patch to “cupboard3” because I allow due to noise a
deviation of up to 30◦ between the potential patch normal and the real patch
normal. Only the “chair”-patch is too big and misplaced. If 3D data of the chair
itself could be perceived my algorithm presented in Section 4.4.3 would detect
that the “robot”-object is misplaced with respect to the chair. The algorithm
is designed to handle mismatched objects that occur when category labels are
resolved (see Figure 4.17 for an example). As the computation of the 3D object
hulls incorporates a removing of outlier points it can handle slightly misplaced
object boxes. Further, the orientation of the horizontal patches is only influenced
by the orientation of the camera and the RANSAC based approach for computing
the vertical patches can deal with remaining outliers. Also, missing objects can
be compensated if enough other objects are known for the corresponding parent
node. Only in cases where no further object is known, no potential patch can
be estimated. The difference between swapping bounding boxes and large box
displacements is that for the swapping case the new position of an object is
still in or on a supporting scene structure. While for the large displacement this
cannot be assured as the object box is positioned arbitrary in the scene. In the
best case, a box swapping does not influence the model if it happens between
objects localized in/on the same structure. In the worst case, the box swapping
has to be handled in the same way like the arbitrary displacement which means
that wrong positions has to be detected if bottom-up patches are available. Only
if misplaced objects cannot be detected, the model is corrupted. The corruption
mostly affects the expansion of a potential patch and its position. The orientation
of patches is less influenced because it is computed robustly.
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Figure 4.28: (left) erroneous 2D bounding boxes of objects known to the robot, (right) correspond-
ing 3D object hulls.

corner

chair

table

cupboard2 cupboard3

(a) (b) (c) (d)

Figure 4.29: Using the description of subject 3(p), (a) shows the aligned scene model acquired
using the erroneous object set introduced in this section. For better comparison, (b) shows the tree
set representation of the description, (c) the final tree set of the aligned scene model with perfect
object detection, and (c) with erroneous object detection.
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4.6 conclusion and outlook

In this chapter, I have presented a methodology for estimating a 3D scene
model from a given scene description. It matches at the same time the sensory
perception of the robot and the underlying situation model of the human tutor.
It uses the finding that the way spatial descriptions are constructed reveals
information about the interlocutor’s representation of the observed scene. The
construction of spatial descriptions is driven by gravity, which means that the
descriptions mainly consist of orthogonal relations between objects and their
supporting structures, e. g., “lion on chair”, and parallel relations between objects
located on/in the same structure, e. g., “car in front of koala“. Therefore, the first
step in my computational model is the transformation of relational descriptions
into a set of trees using rules handling orthogonal and parallel relations. Each
parent node in the trees represents the supporting structure for the assigned
child nodes. A first link to the perceptual reality is realized by using results
of object detectors to compute the initial 3D scene model. For each parent
node a potential planar patch can be estimated using the 3D locations of small
detectable objects. These patches initially estimate the supporting structure in a
scene. As, per definition, automatically detectable objects are only located in the
leaves of the trees, the estimated patches represent level-1 structures in the trees.
The patches form the initial model which is further adapted to fit bottom-up
extracted patches in the perceived 3D data. The adaptation process corrects errors
introduced when resolving category labels. Further, it provides missing links
between scene elements which could not be inferred from the description itself
because the information given explicitly is often incomplete and under-specified.
In an exhaustive analysis of 30 descriptions given by 20 different persons for two
scenes, a playroom and a living room scenario, it is shown that my approach can
deal with a wide range of descriptions and description styles producing in all
cases reliable scene structures. The final scene models produce, on the one hand,
semantic structures aligned to the level of details of the respective dialog partner
and provide, on the other hand, hints to the most prominent scene elements.

As outline in Section 4.2 the presented 3D scene model closes a gap in scene
analysis which is the ability of providing models for complex 3D scenes. The
contribution of my approach is a method which provides a link between abstract
models and the perceptual reality allowing to resolve underspecified verbal
descriptions through information gathered in a bottom-up manner from sensor
data. In general, high-level knowledge is seen as a possibility to provide top-
down guidance facilitating and improving low-level processes [Neu08]. The
scene elements of our models are exactly such semantic knowledge which can
be utilized by subsequent tasks with the main advantage that my models are
not predefined but formed automatically and individually for each interaction
partner and situation. My approach contributes to the goal of using learning
techniques to acquire semantic structures of domains [Gal05]. The aligned scene
models do not only offer high-level scene information but give also evidence
for the question on how space is represented [Vas07b]. I can state that the
representation of space is quite likely to be hierarchical as the system has
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transformed successfully a huge amount of descriptions into sets of trees by
just assuming that spatial descriptions mainly consist of explicit and implicit
relations between objects and their supporting structures.

Next steps for improving my computational model will concentrate on develop-
ing methods for handling situations which are currently postponed. For example,
competing parent labels or nameless structures in the final tree set cannot be
handled automatically. Therefore, I recommended a clarification during a subse-
quent dialog. The challenge here is to develop mechanisms allowing the robot to
ask questions to its tutor so that it can gain a maximum of information. Further,
it has to be clarified whether new rules have to be invented handling the answers
given to the questions.

Besides the extension of one specific model, research continuing scene modeling
in general could have three directions: one affecting the shapes estimating the
supporting structures, one emerging common structures within a room type,
and one determining the degrees of freedom in the generated models. So far,
all higher-level scene elements are estimated by planar surfaces. Supporting
structures for objects which can be localized on it are represented appropriately.
Also, structures where objects are attached to it are realizable in this way. But
furniture for which objects have been appointed to be positioned in it are only
partially modeled by planar surfaces. Therefore, it would be interesting to
examine whether box-like shapes for supporting structures containing objects
are better estimates than planar surfaces and whether they extend the scene
model substantially. The second direction of research derives from the evaluation
results providing prominent structures in a room like the sofa in the living room.
The question is whether it is possible to develop mechanisms which extract
from a set of models of a certain room type the most prominent scene structures
within this room type and to detect them in another so far unknown room of the
same room type. Such knowledge transfer is an important step for a robot on the
way from specific models taught to it by a human tutor to abstract scene models
which can be fitted to new scenes providing an initial guess without tutoring.
On the one hand, it is not desirable to describe to a robot everything again and
again. This means that it is mandatory for a robot to have a representation of
structures that are stable over different persons and different rooms of the same
type. On the other hand, the mechanisms allowing a flexible adaptation to the
tutor’s situation model should be kept as this model contains structures that are
important to solve the current task. The last research direction considers the fact
that parts of indoor environments are subject to changes. For example, chairs
can be moved and doors can be opened. Further, the configuration of common
structures in rooms of the same room type can differ. All these examples can
be captured by learning the degrees of freedom in the specific models being an
additional piece of information on the way towards an abstract scene model of a
room type.
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5
L E A R N I N G A RT I C U L AT E D S C E N E M O D E L S
F R O M S PAT I A L C H A N G E S

So far, only static scenes have been considered. For realizing a spatial aware-
ness in realistic environments, a robot must also be able to deal with dynamic
environments where chairs are moved and doors are opened, or more general,
where a human moves around and changes the scene layout. Concretely, this
chapter focuses on situations where the robot observes (in 3D) a scene with
modifications of the scene layout caused by an acting human. The so-called Arti-
culated Scene Model is derived from spatial changes in a scene that are detected
without any specific object knowledge. The range analysis from a certain view
point allows to compute the static background using the farthest static depth
measurements observed during an observation period. Arbitrary movable objects
can be detected model-less from static depth measurements emerging in front of
a known background scene. Moving entities are tracked with a weak cylinder
model. The articulated scene model represents a scene on the intermediate level
of movable resp. articulated scene parts. This representation level equates the
representation level of the aligned scene model (→ Chapter 4). The articulated
model gives movable scene structures which have been moved by the tutor while
the aligned model provides scene structures the tutor has verbally referred to.
This extends the data sources available to a robot for obtaining information about
intermediate scene elements. Besides verbal descriptions, scene changes can now
be utilized for scene analysis.

Section 5.1 presents some studies that examine the human ability to detect scene
changes. Section 5.2 gives related work on background modeling and person
tracking. Algorithms for computing the three components of the articulated
scene model can be found in Section 5.3. Moving entities are tracked with
a particle filter. Static background and movable objects arise simultaneously
from comparing static depth measurements. An evaluation of the output is
done on a set of different sequences. Results can be looked up in Section 5.4.
Section 5.5 outlines some applications of the articulated scene modeling approach.
Section 5.6 summarizes this chapter.
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5.1 motivation

This section is going to motivate why spatial changes in a scene are a reliable
input to guide a scene model formation process. The core idea of the articulated
model is to observe over a short time period changes in the scene like a chair
being moved. From these changes a model should be learned that encodes the
static unchanging parts (e. g., walls), movable objects (e. g., chair), and moving
entities (e. g., a human which could be a possible interaction partners). Instead
of building a complex ontology of indoor rooms that describe which scene parts
are static and which are movable, my methodology propose a light-weighted ap-
proach modeling a dynamic scene in a bottom-up way. The envisioned scenarios
are scenes where a human – an independent entity regarding the underlying
scene – acts in the environment by changing functional parts of the scene. This
functional parts are represented in our model as articulated scene parts which
have the property that their position only changes through manipulation of
an agent. 3D data in general and SwissRanger data in particular enable the
detection of changed scene parts and the adaptation of the known static back-
ground via simple difference computation between the current scene view and
the learned background. The articulated components can be extracted indepen-
dent from their shape or the fact that they stay static after their displacement.
This representation is contrary to standard background and foreground segmen-
tation techniques where a moved scene part will be detected after a sudden
displacement but will be integrated over time into the background if it stays
static.

What role does human activity play in the process of building scene represen-
tations [Vas07b]? In computer vision it is often assumed that observing motion
patterns allows to discover scene structures that are not extractable in static
scenes like, e. g., a dirt road [Dee08]. Unfortunately, less studies have examined
the influence of scene changes on the formation of situation models in humans,
so far. Much more effort has been laid on the contrary effect of change blindness.
Several studies have investigated what causes that changes in the scene reach
awareness or not. For example, Levin [Lev02] and Simons [Sim98] have found
that attention and informativeness seem to play an important role. Nevertheless,
an interesting definition of the concept change versus motion has been developed
which has parallels to the technical-driven design of our articulated scene model.
Rensink proposed to define motion as variation referenced to location and change
as variation referenced to structure [Ren02]. This has consequences on the per-
ceptual processes involved. For motion only local derivatives are needed so that
motion detectors can be located at the initial stages of visual processing where
spatial representations have minimal complexity. In contrast, change is refer-
enced to a particular structure that must maintain spatio-temporal continuity and
need therefore more sophisticated processing. The assumption of a separated
processing of change and motion is realized in our model by two layers, one
responsible for handling the articulated scene parts and one for handling mov-
ing entities. Beauchamp and colleagues [Bea02] even found through their fMRI
studies evidence for two processing streams in human brains, one responsible
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5.1 motivation

for motion of manipulable objects and one for human movements. The lateral
temporal areas which strongly respond to moving stimuli in general are the
Superior Temporal Sulcus (STS) and the Middle Temporal Gyrus (MTG). STS
prefers human stimuli and the according complex articulated motion characteris-
tic of biological motion. MTG is selective for the inarticulate motion characteristic
of tools. Regarding changes, Rensink has further distinguished between dynamic
changes which means perception of the transformation itself and completed changes
where at some point the change of structure is perceived. Phenomenologically,
the detection of completed changes involves a comparison of currently visible
structures with a representation in memory.

Returning back to the examination of change blindness, newer studies seem
to have found that even though a change is not detected with awareness it
is still noticed implicitly as effects of change are visible in behavioral studies.
Thronton and Fernandez-Duque [Thr02] summarize different studies giving
evidence for implicit change detection. Further, they have reported for older
adults a reduced ability to detect changes compared to young subjects. It is
suggested that a narrowing of attentional breadth causes the slowdown. Al-
though psychological experiments still have to give evidence, it seems that the
high ability of children to detect scene changes plays a role in infant learning. It
would be interesting to explore this role in further studies by examining the link
between modification in sensing and learning. The articulated scene model relies
on detection of completed changes and separated encoding of movable objects
and moving humans. The focus on observation of scene changes follows the
perspective of developmental robot learning which premise it is to incorporate
cues that have shown importance in child learning. Detection of general movable
objects is an important attention mechanisms giving a robot the possibility to be
proactive. For example, it can learn automatically kinematic models for observed
changes [Stu09]. Or, it can trigger subsequent tutoring situations where further
information or demonstration is demanded from the interaction partner [Lüt09].
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learning articulated scene models from spatial changes

5.2 related work

Relevant work in the field of dynamic scene analysis focuses on two main topics.
Section 5.2.1 presents work for moving object detection via modeling the static
background. Section 5.2.2 focuses on work for detecting movable objects that can
change their location but are not detectable by standard background modeling
techniques. Section 5.2.3 points out the contribution of my articulated scene
model to the field of dynamic indoor scene modeling and detecting of semantic
because articulated objects.

5.2.1 Detection of Moving Objects and Static Scene Modeling

In the field of video surveillance many work can be found that learn for a
observed scene the static background with the aim to detect persons moving and
cars driving. Diverse methods have been developed to model the background.
Approaches range from classical Gaussian Mixture Models (GMMs) [Sta99] to
codebooks encoding the pixels either separately from each other [Kim05] or
incorporating nearby pixels using subspaces [Mit09]. For many approaches a
static background is mandatory however Sheikh and Shah have introduced an ap-
proach which can cope with uniformly moving backgrounds like a river [She05].
Their approach relies on three innovations which are: the correlation in intensi-
ties of spatially proximal pixels, the temporal persistence, and the competitive
modeling of foreground and background. Knowing the background allows to
extract the moving foreground by subtracting the background from the current
image.

Transferring approaches for moving object detection from surveillance to robotic
scenarios, the problem of moving cameras has to be considered. This can be done
by, e. g., detecting moving objects through inconsistencies in the scene motion
computed using optical flow [Kla09]. Another problem in robotic scenarios is
the short observation time so that which means that the background cannot
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Figure 5.1: This figure is taken from [San02]. It
shows for a pixel its history and a clustering
of this history into temporal coherent clusters,
the so-called temporal signatures.

Figure 5.2: In red an occluding objects is
shown that have been detected by analyzing
the silhouette distortion of the tracked hu-
man [Gua07].
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Figure 5.3: This figure shows the four major steps in interaction signature scene labeling of [Peu04].
Human trajectories are segmented into actions and used for incrementally labeling of the scene
(blue: chairs, red: floor).

...

Figure 5.4: This figure shows a scene segmentation as proposed by Dee et al. [Dee08]. The semantic
regions are an output of a clustering over dominant motion patterns.

be learned in advance. Therefore, Hayman and Eklundh [Hay03] developed a
Bayesian model for incorporating the possibility that the background has not
been uncovered yet. Recently in the field cars driving around in traffic scenes, the
enhancing of tracking moving objects by a background model has been extended
towards using an estimated scene layout. Scene labeling techniques determine
the orientation of 2D areas in 3D which prune false positive detections of, e. g.,
cars and persons [Woj10, Hoi06].

5.2.2 Detection of Movable Objects and Semantic Areas

For dynamic scene analysis not only moving persons but also movable objects are
of interest as they can become obstacles when driving around or can be salient
regions in search tasks. Movable objects are characterized by occasional relocation
and longer static periods. In classical background subtraction approaches such
objects will be integrated into the background model after relocation which
means that they cannot be detected after a while. Sanders et al. [San02] solve this
problem by integrating pixel information over time. As shown in Figure 5.1, the
pixel history is clustered to temporal coherent clusters, the so-called temporal
signatures. This allows to detect quasi-static objects under the condition that
these objects first arrive and then depart from the scene. The authors tested
their approach on compact tangible objects like a can or a bowl. A restriction
of this approach is the “first arrive and the depart”-requirement. Peursum
and colleagues [Peu04] overcome this restriction when detecting chairs that
can be relocated. They track humans and segment the trajectory into actions
using Hidden Markov Models (HMMs)s. An action like “sitting down” can be
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Figure 5.5: The lines and arrows show the
automatically learned spatial layout of a
far-field scene learned from three vehicle
paths [Wan06]. Sources are marked by cyan
crosses and sinks by magenta crosses.

associated with an object like a chair. The position of this object can be inferred
from the location the action took place. As can be seen in Figure 5.3 the shape
of the extracted chairs is quite rough. Figure 5.2 shows that a chair can be
segmented with more details if the silhouette corruption of the tracked human is
considered in the analysis of the scene [Gua07, Bro99]. It is assumed that from at
least one view point the object will occlude the human so that occluding objects
can be detected independent from their shape.

Certain actions or motions cannot only be connected to certain objects but points
also to more general semantic regions. For example, Dee et al. [Dee08] analyze
per scene cell the dominant motion patterns to come up with a scene partitioning
into semantic areas like, e. g., a “chair”-region (→ Figure 5.4). Koile et al. [Koi03]
use a human activity analysis to come up with activity zones like a “lounge”
area. The zones are used to trigger certain actions like “turn on overhead lights”
if an activity in the “doorway” zone is detected. Analyzing person activities
and car trajectories in outdoor environments has been used to provide semantic
scene information like “roads”, “paths”, and “junctions” (→ Figure 5.5) [Wan06,
Mak03] or, more general, “walkable” ground surfaces [Bre08]. A detailed review
of further methods on scene activity understanding is given in [Bux03].

5.2.3 Contribution of the Articulated Scene Model

My articulated scene model aims to combine background modeling with detec-
tion of semantic scene elements. I focus on the modeling of dynamic 3D scenes.
The assumption, that static measurements which are farthest away determine the
scene background, allows an elegant way to model the background especially in
robotic scenarios where observation times are short. Subtracting the background
in 3D reveals directly quasi-static/articulated objects without special require-
ments like, e. g., an object has to arrive and depart before it can be detected or
its color signature must differ from the signature of the background [San02]. It
is independent from the object’s shape and size or the human activity connected
to it [Dee08, Peu04]. Detecting arbitrary articulated scene elements using human
activity would require recognition abilities of many different daily-life activities.
A database of all possible actions would be necessary for training. In contrast to
that, my approach provides for range data a bypass to this exhaustive learning
problem.
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5.3 the analysis of a dynamic scene

This section presents our analysis of a dynamic scene resulting in an Articulated
Model of the scene. Different aspects of this model have been addressed in three
different publications [Beu10, Swa10a, Swa08a]. An important assumption in our
approach is that the robot observes a vista space scene from a certain view point
v for a short time interval ∆tv without moving the camera. The orientation of
the camera is known or can be extracted. Hence, the data can be transformed so
that the ground plane is parallel to the xz-plane of the robot’s global coordinate
system (→ Section 2.2.1).Mv denotes the final model for the view point v. The
sequence of frames

{
Ft = {~f i

t}i∈{ 1, ..., n }

}∆tv

t=1
, (5.1)

where each frame Ft consists of n 3D points ~f i
t , is processed sequentially pro-

ducing for each time step t an articulated modelMt.

Definition. Articulated model.

Mt =
(
Et,St,Ot

)
with

Et, holds moving entities, e. g., walking persons,

St, the static background,

Ot, movable objects like a relocated chair,

and Et ∩Ot = ∅.

The modelMt is forwarded to the next time step t + 1 where it is updated with
a new perception of the scene. Figure 5.6 shows the processing pipeline at time t.
It consists of an entity tracking and a scene modeling component. The tracking
module utilizes knowledge about the foregoing static background St−1 for
thinning out the data to potentially dynamic parts Dpot

t . 3D velocity information,
Vt, and the past positions of moving entities, Et−1, are used to determine their
new positions Et. Details on the algorithm are given in Section 5.3.1. Section 5.3.2
describes the scene modeling responsible for adapting the knowledge about
the static background and for detecting current movable objects. The detected
moving entities are used to determine in the current frame Ft the current
static scene parts Spot

t . They are compared to the old static background St−1 to
determine where the background is confirmed, where a new one is introduced,
and where movable objects are visible. As long as the camera stays static our
system will accumulate more and more data improving the current articulated
model until a camera rotation is detected and the final articulated modelMv for
the current view v is gained. A detection of camera rotation can be done through
a notification from motors driving the camera or through computer vision
techniques detecting ego motion. For the new view point v + 1 a new articulated
modelMv+1 is initialized. Models from different view points are in principle
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independent from each other except for cases where the camera rotation between
two view points is known. Then, scene knowledge in overlapping regions can be
passed from one model to the other. Details can be looked up in Section 5.5.2.

The articulated model is developed to represent dynamic scenes visible in the
vista space of the robot. Our assumptions are valid in the case of static cameras
and camera motions arising from rotations around the camera axes. They allow
a fast and reliable detection of scene changes without the use of strong object
models. Incorporating camera motions arising from locomotion are out of scope
of this thesis as methods handling such data are localized on the large-scale
space level. Intermediate results of the system described in the following are
visualized on the test sequence shown in Figure 5.7. There a person enters the
scene from the right, picks up a chair and moves it to a room corner, opens the
cupboard in the back and takes out a teddy bear, puts it on the table, and leaves
the scene.

Figure 5.6: The processing of a dynamic scene at time t consists of an entity tracking and a scene
modeling part. Both steps incorporate the model Mt−1 of the foregoing processing step. The
person tracking module subtracts (�) the known static background to thin out the current point
cloud Ft. The scene modeling part adapts the static background to St and detects movable objects
Ot by extracting static points located in front of the known background. For the first frame of a
vista space VSv the foregoing static background and moving entities are initialized as empty sets
so that the entity detection has to be done on the complete point set of the first frame.
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... ...

... ...

...

...

Figure 5.7: This figure shows some key frames of the test sequence Q1
1 which is used to visualize

intermediate results of my algorithms. The scenario Q1 is observed from view point 1. In this
scenario a person enters the scene from the right, picks up a chair and moves it to a room corner,
opens the cupboard in the back and takes out a teddy bear, puts it on the table, and leaves the
scene again.

5.3.1 Entity Tracking

Tracking moving entities fulfills in our scene analysis two main functions. On
the one hand, the robot has to know potential interaction partners. On the
other hand, neglecting moving objects rather than moving points is meant to
generate better scene reconstruction results. The reason is that not all parts of a
moving entity are necessarily labeled with large velocity vectors. As developing
techniques for detection and tracking of moving entities is not the focus of this
work, I have utilized the particle based approach developed by my colleague
Joachim Schmidt 29 [Sch07]. My colleague Niklas Beuter 30 and I have improved
the tracker through encountering static background knowledge. The following
paragraphs give a short overview of the implemented algorithm.

determining potential dynamic points . Due to the usage of a Swiss-
Ranger camera the algorithm for detecting and tracking moving objects has to
deal with a dense 3D point cloud. As the original algorithm of Schmidt clusters
sparse 3D data provided from a stereo camera using the complete linkage al-
gorithm [Ber03] we introduce here a subtraction of the currently known static
background St−1 from the current frame Ft. This increases the robustness of the

29 http://aiweb.techfak.uni-bielefeld.de/user/jschmidt
30 http://aiweb.techfak.uni-bielefeld.de/user/nbeuter
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clustering introduced below and lowers the computational costs. The result is a
subset of potential dynamic points

Dpot
t ⊂ Ft (5.2)

which are passed to the subsequent hierarchical clustering. The subtraction
Ft − St−1 can be computed efficiently since each 3D point provided by the
SwissRanger camera has an unique identifier i given through the position of the
corresponding pixel/pixel sensor in the image plane. A point ~f i

t of the current
frame Ft with the identifier i corresponds to the point ~s j

t−1 of the static back-
ground St−1 if j = i. The same value of the identifier denotes a correspondence.
If two corresponding points differ enough, hence, their Euclidean distance is
bigger than a certain threshold θdyn, this point in the current frame is assumed
to be a potential dynamic point. Further, if for a point of the current frame no
static point is known it becomes also a potential dynamic point. Formally, the
set of potential dynamic points Dpot

t is calculated as follows:

Dpot
t = Ft − St−1 (5.3)

=
{
~f i

t

∣∣∣ |~f i
t −~s i

t−1| > θdyn ∨ @~s i
t−1

}
, where

Ft =
{
~f i

t

}
,

St−1 =
{
~s i

t−1

}
, and

i ∈ { 1, . . . , n }.

Due to the noise level of the SwissRanger camera (→ Section 2.3.1) the threshold
θdyn is set to θdyn = 100mm. For frame F22 of the test sequence Q1

1, Figure 5.9(a)
shows in red the extracted potential dynamic points Dpot

22 .

hierarchical 6d clustering. The set of potential dynamic points is
further simplified through clustering. Small contiguous regions are extracted
based on spatial proximity of the 3D points and homogeneity of the velocities.
It can be expected that the incorporation of velocity information improves the
segmentation at this early stage without the need of strong models. For example,
velocities can provide additional information for 3D points which ensures a
separation of persons passing each other close-by. Therefore, we enhance the 3D
points of the current frame Ft with velocity information Vt using optical flow
estimation as presented in Section 2.5.1. The resulting 6D data is hierarchically
clustered using complete linkage [Sch07, Ber03], also called furthest neighbor,
deliberately oversegmenting the scene into small motion-attributed clusters. Each
emerging cluster l is described through the 2D position of the centroid projected
on the ground plane, a weight factor based on the number of assigned points,
and the mean velocity computed from the velocities of the clustered points.
Figure 5.9(b) shows the clusters computed for the example frame F22.
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5.3 the analysis of a dynamic scene

generating and tracking of object hypotheses .

A suitable representation of moving entities could be
a simple cylindric object model with variable radius
grouping clusters with similar velocity. This weak object
model offers an entity hypothesis e(~a) based on a 5-
dimensional parameter vector

~a =



x

y

vθ

vr

r


(5.4)

Figure 5.8: The weak
cylindric entity model.

with x and y being the center position of the cylinder on the ground plane, r the
radius of the cylinder, and vθ the direction and vr the magnitude of the object
velocity. Figure 5.8 shows such a model cylinder.

A set of object hypotheses is generated from partitioning the observed scene
into cylinders and including tracking results of the previous frame. The first one
initializes the tracking and allows an error recovery. The second one predicts a
set of hypotheses into the next frame and tracks them through a kernel based
particle filter [Sch07]. Based on the position, size, and velocity of each entity
et−1

k (~a) in the last frame Ft−1 the parameters are predicted for the current frame
Ft using a first order motion model Φ which creates a new hypothesis et

k(~a
∗):

et
k (~a
∗)

Φ←− et−1
k (~a) , k = 1, . . . , n (5.5)

~a∗ = Φ
(
~a,~̇a
)

.

Each of these n hypotheses can be seen as a specific point in the parameter space,
a so-called particle. Each particle is rated based on its value in the Probability
Density Function (PDF) ρ computed from the relative position, relative velocity,
and the weight of all motion-attributed clusters l within the cylinder ek using
Gaussian kernels:

ρ
(
ek
)

= Kr
(
ek
)

∑
l∈ek

Kd
(
l, ek
)
Kv
(
l, ek
)
, where (5.6)

Kr
(
ek
)

= exp

(
− r(ek)

2

2H2
r,min

)
− exp

(
− r(ek)

2

2H2
r,max

)
(5.7)

Kd
(
l, ek
)

= exp

(
− ||d(l)− d(ek)||2

2H2
d

)
(5.8)

Kv
(
l, ek
)

= exp

(
− ||v(l)− v(ek)||2

2H2
v

)
. (5.9)
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(a) in red: potential dynamic points Dpot
22

(b) motion-attributed clusters

(c) density approximation

(d) in green: resulting entity hypothesis E22 and in blue: trajectory

Figure 5.9: Showing for frame F22 of test sequence Q1
1 (→ Figure 5.7) in (a) the potential dynamic

points Dpot
22 determined by subtracting the background model S21, in (b) the motion-attributed

clusters acquired through clustering of the dynamic points using spatial proximity and velocity
homogeneity, in (c) the density approximation of ρ, and in (d) the resulting entity hypothesis E22
as 3D entity hull and projected 2D hull and the determined trajectory.
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5.3 the analysis of a dynamic scene

(a) Tracking with feedback of the back-
ground model.

(b) Tracking without background feed-
back.

Figure 5.10: This figure shows two trajectories acquired on the test sequence, one with feedback of
the background model [Swa10a] and one without feedback [Swa08a]. It can be seen that knowledge
about the static background reduces errors in determining the correct entity hypotheses.

The kernel Kr keeps the radius in a realistic range masking out all hypotheses
with a too small or too big radius. Kd reduces the importance of clusters further
away from the cylinder center. Kv masks out clusters having differing velocities.
The functions r(.), d(.), and v(.) extract the radius, the 2D position on the ground
plane, and the velocity of a cluster l or a hypothesis ek. The kernel widths H
are determined empirically. Function ρ in Equation 5.6 is also called observation
function of the particle filter. The outcome is a density approximation of the
appendant clusters as shown in Figure 5.9(c). The maxima provide the actual
moving entities. Several mean shift iterations refine the particles to concentrate
at local maxima in the distribution. Individual particles selected from these
best modes of the distribution represent entities found in the current frame. All
dynamic points Dpot

t within the convex hull of each tracked hypothesis form
the set Et representing the found moving entities in frame Ft. The set is passed
for exclusion to the adaptive background modeling process (→ Section 5.3.2).
Figure 5.9(d) shows for frame F22 of the example sequence the resulting entity
hypothesis E22 as 3D and 2D convex hull. By assigning an identifier to the tracked
entities a trajectory can be created to analyze the movement of the entity. In the
first iteration of our system [Swa08a] the moving entities are detect using all
points of Ft neglecting the knowledge about the static background like proposed
later in [Swa10a]. As visualized in Figure 5.10 the knowledge about the static
background reduces errors during determining moving object hypotheses and
leads to a more robust tracking results. This in turn has a positive effect on the
adaptation of the background model as can be seen in Section 5.4.
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(a) example frame of the se-
quence

(b) background reconstruc-
tion via excluding tracked
entities, ē = 22mm

(c) background reconstruc-
tion via excluding moving
pixels, ē = 27mm
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Figure 5.11: (a) shows an example frame with detected moving entities. The frame belongs to a
sequence where two persons are moving around and the static background stays unchanged. (b)
shows the reconstructed static background by accumulating static points which are determined
via excluding points that are part of moving entity hulls. (c) shows the reconstructed static
background by accumulating static points which are determined via excluding points having
velocity vectors larger than a certain threshold (here, |~v i

t| > 3cm). The points are colorized using
their distance to the corresponding ground truth measurement. Blue stands for a small distance
to the ground truth which means a good background reconstruction and red stands for a large
distance to the ground truth denoting a bad reconstruction result. The mean error ē is computed
from the Euclidean distance between each point pair consisting of a reconstructed background
point and the ground truth point (→ Equation 5.10).

5.3.2 Static Background Adaptation and Movable Object Detection

The knowledge about the currently moving entities can be used to reconstruct
the current static scene. In the case of scenes where persons are only going
around and do not change the environment we have shown in earlier work
that simply accumulating and averaging static measurements reveal a reliable
static background of the observed scene view [Swa08a]. A virtual frame with
the same resolution like a SwissRanger frame (176× 144 pixels) stores the static
background. As the camera is not moving during the background reconstruction
the same pixel indices define corresponding points in two different frames. For
a current SwissRanger frame those points are defined as static which are not
part of the detected moving entities Et determined by the algorithm proposed
in Section 5.3.1. These static points are accumulated pixel-wise over the whole
sequence and averaged to one value per pixel. For a sequence containing frames
that are only disturbed by moving persons a reliable background model can be
estimated. Figure 5.11 shows how well the ground truth is met. A blue coloring
of a point means a small distance to the corresponding ground truth point and
a red coloring means a large distance. It also shows that using tracking for
determining whether a point is static or not is more convincing than simply
using the magnitude of the assigned velocity vector. Using a small velocity
vector as indicator for a static background point suffers from noise since points
on the body of a person that, for example, approaches the camera, may have
small velocity vectors. They are misleadingly assigned to the background which
introduces noise to the background reconstruction.
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5.3 the analysis of a dynamic scene

The static scene reconstruction based on the assumption of simply accumulating
measurements of the static scene is not valid any more in scenarios where the
scene is manipulated, for example, by relocating chairs or putting objects on
tables. If a chairs is relocated it has been part of the static scene at its old position
and is again part of the static scene at its new position. In the above approach,
the chair at its old position will be still visible in the background model and will
flatten out slowly if the scene behind the chair is observed over a longer time
period. The chair at its new position will only appear slowly in the background
model as especially in the beginning the measurements of the static scene behind
the chair will still dominate the averaging.

Therefore, I propose an adaptive background modeling based on the basic
physical rule saying that under a fixed camera position the farthest
static depth value ever measured for a certain pixel determines the
static background.

It is assumed that all static measurements which are in front of a known static
background arise from movable objects. Considering changes in the observed
distance measurements allows in the situation of the relocated chair an immediate
adaption of the background model at the old position of the chair to the now
visible static scene behind the chair. Complex adaption techniques known from
2D background modeling are not needed. Further, it prevents the integration
of the chair at its new position into the background model. Therefore, the
knowledge about the static background is more and more refined and movable
objects like chairs can be detected at their new locations. Static measurements
which are significantly nearer than static measurements seen before refer to such
movable objects.

The pseudo code of Algorithm 1 gives details about the adaptation of the static
background and the detection of movable objects. For each time step t the
current frame Ft is processed together with the static background St−1 of the
foregoing time step t− 1 and the current moving entities Et determined through
the tracking described in Section 5.3.1. Each point ~f i

t of the current frame Ft

is tested whether it is part of a moving entity Et (→ line 2). If not, this point
is part of the current static scene and will be compared to the corresponding
background point of the foregoing background model St−1 (→ line 3). The
Euclidean distance between ~f i

t and ~s i
t−1 is computed and tested whether the

distance is smaller than a certain threshold θd. If so, it is assumed that the current
static measurement provides information for an already known background
point so that it is accumulated to this background point increasing its reliability
(→ line 4). Due to the noise level of the camera, the value of the threshold θd
is found empirically to be θd = 100mm. If ~f i

t and background ground point
differ significantly it has to be decided whether a new background point or
a movable object point is on hand. If the current measurement lies further
away from the camera center it defines a new background point that has not
been visible beforehand (→ line 7). Otherwise, it arises from a movable object
located in front of the known background~s i

t =~s i
t−1 (→ line 9). This algorithm

allows background model estimation and movable object detection without
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using specialized object models or classifiers. Figure 5.12 shows three articulated
scene models {Mt}t=50, 70, 122 computed on the test sequence Q1

1. The final static
background S122, here plotted in blue, models reliably all scene parts that have
never moved. It can be pointed out that the moved chair has been removed
successfully from the background representation. Only the closed cupboard
door is still part of the background (compare t = 122 of Figure 5.12) as range
sensing of the cupboard’s interior has not been possible during the observation
phase. In contrast, the detection of the open door as a movable object is done
well (compare t = 70 of Figure 5.12). In the final frame of the test sequence, the
relocated chair and the bear on the table are correctly recognized as movable
objects (→ points colored in orange). Figure 5.16(o) shows a successful detection
of a closed cupboard door. In this situation it has been possible to gather data
from the interior of the cupboard.

Algorithm 1 Adaptive Background Modeling and Movable Object Detection

Input:

– Ft =
{
~f i

t
}

\\ current frame

– St−1 =
{
~s i

t−1
}
\\ background of the foregoing time step t− 1

– Et \\ current moving entities

Output:

– St =
{
~s i

t
}

\\ new background of current time step t

– Ot \\ detected movable objects

i: unique position in the 2D image plane with a pixel resolution of 176× 144.

(→ n = 176 · 144)

1: for i = 1 to n do
2: if ~f i

t /∈ Et then
3: if |~s i

t−1 − ~f i
t | < θd then

4:
wi = wi + 1; \\ number of accumulated values

~s i
t = ~s i

t−1 +
1

wi (
~f i

t −~s i
t−1);

5: else
6: if |~f i

t | > |~s i
t−1| ∨ ~s i

t−1 = ∅ then
7:

~s i
t = ~f i

t ;

wi = 1;

8: else
9:

~s i
t = ~s i

t−1;

Ot = Ot ∪ ~f i
t ;

10: end if
11: end if
12: end if
13: end for
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5.3 the analysis of a dynamic scene

Figure 5.12: Here, three articulated scene modelsMt (with t = 50, 70, 122) of the test sequence of
Figure 5.7 can be seen. It shows in blue the currently acquired static background model St and in
orange the movable objects Ot. S122 and O122 represent the articulated model of the final frame
F122 which forms the articulated modelMv for the current view v on the vista space VSv.

127



learning articulated scene models from spatial changes

5.4 evaluation

The quality of the acquired articulated scene models is judged by computing
the error between the estimated static backgrounds and the ground truth. This
is reasonable as moving entities and movable objects are only snapshots of the
particular frame while the static background fuses the information of all frames
and evolves over time. For each scene used for evaluation a ground truth of
the scene without moving persons and movable objects is acquired from the
same view point. A mean error ē and a standard deviation σ between a model
M = {~pi} and its ground truth MGT = {~p GT

i } is computed by averaging the
Euclidean distances

{
ei
}

between the corresponding point pairs
{
(~p GT

i ,~pi)
}

:

ē =
1
n

n

∑
i=1

ei with ei =
∣∣∣~p GT

i − ~pi

∣∣∣ (5.10)

σ2 =
1

n− 1

n

∑
i=1

(
ei − ē

)2

Using the error computation described above different approach for acquiring
a static background from a sequence of observed frames are compared to each
other:

MADAPT provides a static background using tracking and adaptive background modeling
presented in Section 5.3 and [Swa10a],

MTRACK accumulates all 3D points which are not part of tracked entity hulls [Swa08a],

MMPIX accumulates all 3D points with a velocity vector smaller than a certain threshold
θv = 30mm, and

MMEAN computes a mean frame from all observed frames without excluding points.

Results acquired on a test sequence are discussed qualitatively in Section 5.4.1
while a quantitative analysis of diverse test sequences is given in Section 5.4.2.

Figure 5.13: Here, the ground truth of the static background of the test sequence Q1
1 can be seen:

(left) amplitude image and (right) 3D point cloud.
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5.4 evaluation

(a) static background of modelMADAPT

(b) static background of modelMTRACK

(c) static background of modelMMPIX

(d) static background of modelMMEAN

Figure 5.14: Four static backgrounds acquired from the test sequence Q1
1 using four different

approaches are shown here. The points are colored with respect to their distance to the corre-
sponding ground truth point. Blue denotes a small distance and red a large distance. On the left
side the amplitude images of the backgrounds are shown.
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5.4.1 Qualitative Evaluation of a Test Sequence

The backgrounds of the four modelsMADAPT,MTRACK,MMPIX, andMMEAN

shown in Figure 5.14 are acquired from the test sequence Q1
1 presented in

Figure 5.7 and are compared with the ground truth shown in Figure 5.13. For each
point ~pi of the examined modelM the error ei is computed using Equation 5.10.
In Figure 5.14 the points are colored according to the computed error. Similar to
the depiction in Figure 5.11 the blue means small error and red a big error. The
background modelMADAPT of the articulated scene model (→ Figure 5.14(a)) is
nearly ideal while models acquired by the other methods show reconstruction
errors. The amplitude images of the backgrounds illustrate clearly the benefit of
the adaptive background modeling as, e. g., the chair at its old position does not
appear in the background ofMADAPT. While in the other background models
the chair is still visible. Further, the chair at its new position, the open cupboard
door, and the pausing person for which the entity detection has failed are slightly
apparent. Figure 5.14(d) shows also that averaging techniques from surveillance
scenarios encounter huge problems in background modeling as the observation
time is too short for removing changing objects from the background. If depth
information is available the farthest measurement assumption produces good
background models for scenes that can only be observed for a short time period
and that contain many dynamics and changes.

5.4.2 Quantitative Evaluation of a Set of Test Sequences

A quantitative evaluation is performed on altogether 15 sequences acquired
in 5 scenarios. The goal is to support the qualitatively impressions gained in
Section 5.4.1. The film strips in Figure 5.7 and Figure 5.15 give a glimpse of
what happens in the scenarios. In Q1 a chair is picked up and put down next
to the cupboard, the left cupboard door is opened and a teddy bear is fetched
and laid down on the table. This scenario is observed from two view points.
The two sequences are tagged Q1

1 and Q1
2. In Q2, soft toys are removed from

the table one after the other and positioned on the sideboard at the wall. This
action is performed three times and observed from two view points leading to
six sequences Q2

1, Q2
2, Q2

3, Q2
4, Q2

5, and Q2
6. Scenario Q3 shows a person opening

and closing a door while leaving the room through this door. Repeating this
action twice and observing it from two view points results in four sequences
Q3

1, Q3
2, Q3

3, and Q3
4. In sequence Q4

1, a person takes a box out of the shelf and
puts it on the table. In sequence Q5

1, a person collects soft toys and places them
in the shelf. In sequence Q6

1, a cupboard door is opened and a watering can is
fetched and placed on top of the cupboard. With this sequence it is shown that
cupboard doors can be detected if during observation a look into the cupboard
has been possible. To summarize, we have aimed to record data that covers
different motion behaviors of humans, like going fast or slow or even stopping,
and a variety of interactions with the environment, ranging from free object
rearrangements to predetermined manipulations of, e. g., doors.
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MADAPT MTRACK MMPIX MMEAN

Q1
1 20 ± 96 84 ± 182 71 ± 155 95 ± 187

Q1
2 16 ± 37 85 ± 140 80 ± 118 108 ± 147

Q2
1 18 ± 59 71 ± 166 64 ± 121 103 ± 177

Q2
2 19 ± 47 108 ± 209 74 ± 184 106 ± 204

Q2
3 21 ± 61 75 ± 189 79 ± 185 124 ± 222

Q2
4 24 ± 78 97 ± 212 111 ± 216 157 ± 284

Q2
5 24 ± 68 79 ± 308 99 ± 230 142 ± 278

Q2
6 21 ± 55 98 ± 219 95 ± 193 147 ± 262

Q3
1 14 ± 26 51 ± 165 163 ± 328 219 ± 403

Q3
2 75 ± 319 74 ± 218 299 ± 635 321 ± 639

Q3
3 18 ± 64 356 ± 677 229 ± 588 234 ± 451

Q3
4 98 ± 404 246 ± 601 229 ± 588 246 ± 594

Q4
1 20 ± 58 71 ± 141 63 ± 145 89 ± 105

Q5
1 22 ± 52 134 ± 712 61 ± 125 85 ± 183

Q6
1 55 ± 146 207 ± 317 182 ± 284 182 ± 284

Table 5.1: The mean error and the standard deviation (ē ± σ in mm) is given for each static
background acquired for 15 test sequences using 4 different approach. The mean errors are
computed using Equation 5.10. Green colored cells highlight the best reconstructed backgrounds
and red the worst reconstructed ones.

Table 5.1 summarizes for the 15 test sequences the mean errors ē of the com-
puted background models. Per sequence four models are computed which are
compared to the ground truth model using Equation 5.10. It can be seen that
my adaptive background modeling (column MADAPT) produces models with
promising small reconstruction errors. The error ē is never above 100mm and
deviates by ±20mm. The best and the worst reconstructed sequences belong
both to scenario Q3 where a person closes and opens a door. The walls of the
room and the wall of the hallway behind the door form the static background.
The door should be detected as movable object. In sequence Q3

1, the wall of the
hallway is well visible through the open door thus it can be reconstruct well. In
sequence Q3

4 the mentioned wall is hardly visible because the person is mostly
covering this wall. Consequently, it is reconstructed quite noisy leading to a bad
segmentation of the door.

The small standard deviations σ for the mean errors of MADAPT demonstrate
that nearly every point of the background model is reconstructed well.MADAPT

outperforms clearly the naive approachesMMEAN andMMPIX. The models of
MADAPT are also significantly better than those produced by the MTRACK ap-
proach. The average improvement is 71%. TheMTRACK approach has problems
in situations where the person which should be tracked is standing. In these cases
the knowledge about the static background can help to detect and track these
entities. Figure 5.16 presents for the 15 test sequences the static backgrounds
and the movable objects of the estimated articulated scene models. They give an
impression of the wide variability of detectable movable objects ranging from
several soft toys to chairs and doors.
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learning articulated scene models from spatial changes

... ...
(a) Scenario Q2 where soft toys are picked up from the table and put on the sideboard at the wall.

Six sequence are acquired: Q2
1, Q2

2, Q2
3, Q2

4, Q2
5, Q2

6.

... ...
(b) Scenario Q3 where a person opens and closes a door while leaving the room. Four sequence

are acquired: Q3
1, Q3

2, Q3
3, Q3

4.

... ...
(c) Scenario Q4 where a person picks up a box in the shelf and puts it on the table. One sequence

is acquired: Q4
1.

... ...
(d) Scenario Q5 where a person collects soft toys spread over the room and places them in the

shelf. One sequence is acquired: Q5
1.

... ...
(e) Scenario Q6 where a person opens a cupboard, takes out a watering can, and closes the

cupboard again. One sequence is recorded: Q6
1.

Figure 5.15: These strips show five of the six test scenarios from which in total 15 sequences have
been acquired for evaluation. The scenario Q1 is already shown in Figure 5.7. The corresponding
articulated scene models can be seen in Figure 5.16.
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(a) Q1
1 (b) Q1

2 (c) Q2
1

(d) Q2
2 (e) Q2

3 (f) Q2
4

(g) Q2
5 (h) Q2

6 (i) Q3
1

(j) Q3
2 (k) Q3

3 (l) Q3
4

(m) Q4
1 (n) Q5

1 (o) Q6
1

Figure 5.16: This figure shows the articulated scene models of the 15 test sequences shown in
Figure 5.15. The blue points mark the estimated static background S f of the scene Q and the
orange points the detected movable objects O f .
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5.5 applications of the articulated scene model

This section is going to outline example applications for the articulated scene
model Mv acquired for the scene view v. Section 5.5.1 presents how points
forming the set of movable objects Ot can be segmented into coherent object
regions. Section 5.5.2 demonstrates how articulated models can be transformed
from one view point to another view point. Last, Section 5.5.3 shows how the
detection of movable objects can be used to learn kinematic models for the
observed manipulation.

5.5.1 Object Segmentation

The articulated scene modelMt of a frame Ft provides with Ot points which
form objects that have been moved at least once during the observation. Ot

holds for the frame Ft all movable points. An additional mechanism is necessary
to segment this set of points into coherent object regions. This segmentation
can be done by incorporating the appearance frequency of an object point.
This frequency can be computed by accumulating over all foregoing frames
{Fi}i=1, ..., t the movable object information {Oi}i=1, ..., t. Assuming that objects
appear one after the other a significant difference in the appearance frequency
can be used to segment movable points into separated objects. Figure 5.17 gives
examples of segmented objects. Due to the general approach, where first movable
object points are detected as points popping out of the static background and
second these points are separated based on their appearance or observation
frequency, a wide range of different objects can be detect without a necessity for
strong object detectors or priors. The object masks in Figure 5.17 can be used
to extract object patches that can be passed to object classifiers [Som10], can
prompt a label from the human tutor [Lüt09], or can be used to extract further
object information like shape or texture.

5.5.2 Model Propagation from View to View

In natural observation scenarios an agent will mostly not stare at one point in
the scene but will let the view wander around. If a robot simulates this behavior
it will observe the environment from a view v for a short time period and will
then pan its camera to a new view v + 1. The panning could be triggered by
following a person leaving the current field of view. As outlined in Section 5.3
two independent articulated models, Mv and Mv+1, will be learned for the
two views, v and v + 1. If the camera is only rotated and the rotation is known,
the model Mv = (Sv,Ov) can be propagated to the new view v + 1. The
assumption that the farthest measurements determine the static background
is still valid. Figure 5.18 shows the projection of the static background Sv on
the new view v + 1. Instead of initializing the tracking in the new view on the
complete set of points a subset of points is already recognized as static and can
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be excluded. The final static backgrounds, Sv and Sv+1 can be registered using,
e. g., a variant of the Iterative Closest Points (ICP) [Bes92] algorithm tuned to
Time-of-Flight (ToF) data [Swa07], and thinned out using, e. g., Virtual Image
Plane Projection (VIPP) [Swa08b]. The resulting point cloud covers a wider
field of view compared to one SwissRanger frame and fuses knowledge about
the static background of two different views. This is one possibility how to
integrate vista space and large-scale space representations which can be used for
navigation or building a full model of the spatial environment.

5.5.3 Object Articulation

In a tutoring situation between a robot and a human one can imagine a situation
where the human tries to teach the function of a cupboard drawer or a cupboard
door to the robot. For example, this can be done by showing the robot a drawer
or a door that is opened or closed. Abstractly spoken, the robot observes a
scene where movable objects are moved along a certain path. A characteristic
of such objects are potential motion paths for which kinematic models can be
learned, for example, using the body model inspired approach of Sturm and
colleagues [Stu09, Stu10]. They observe in their work the motion of objects
through tracking markers attached to the objects. In cases where flat objects like
a drawer are observed an extraction of rectangular patches provides at each time
step a position of the drawer. For each object trajectory an articulation model is
selected which explains the trajectory best. Figure 5.19 shows a kinematic model
fitted to a trajectory of a surface.

My articulated scene model approach can provide position observations for
arbitrary objects. Tracking through markers or an object segmentation specialized
for specific objects is not necessary. If a manipulation of one object is observed the
set of movable object points Ot provides in each time step t the corresponding
object position. An accumulation of this movable point sets over a certain time
period ∆t gives a set of object positions which can be directly passed to Sturm’s
kinematic model computation. Figure 5.20 shows the different positions of two
drawers fused in one image. The positions are provided by the articulated scene
modeling of the observed sequence of frames. Each frame is associated with a
color allowing to see the articulation of the drawers.
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Figure 5.17: Examples of a wide range of segmented objects in different test sequences. The
segmentation is based on detected movable object points of the articulated scene model. These
points are separated using the points’ appearance frequencies. Different colored areas belong to
different movable objects. The object masks are projected on the corresponding amplitude image
showing the scene.

Figure 5.18: The final static background Sv of the articulated scene modelMv acquired for view v
is projected on the 3D points acquired from view v + 1. They initialize the scene modeling for the
new view. Finally, the registered backgrounds, Sv and Sv+1, are shown together with the movable
objects Ov+1 of view v + 1.
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5.5 applications of the articulated scene model

A drawer is opened and closed and observed with a stereo
camera in combination with projected texture.

plane segmentation tting of articulation model

Figure 5.19: This eye catcher is taken
from [Stu10]. It shows a fitting of a kine-
matic model to the trajectory of a planar
patch. This patch is the front of a drawer
which has been observed during opening
and closing.

Figure 5.20: In the observed scenario two drawers are opened and closed. Here, the accumulated
positions of the drawers can be seen. The color indicates the position of a drawer at a certain
point in time. In time step t, Ot provides the drawer in its current position. From left to right: the
amplitude images illustrate the scenario, the front view and the side view of the 3D point cloud
show the drawer articulations. The black points assemble the static scene.
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5.6 conclusion and outlook

This chapter has focused on scene changes observed from a certain view point.
The robot monitors a scenario where, e. g., a human moves around and performs
actions which alter the environment like relocating chairs or opening and closing
doors. Such scenes are divided into a static background which does not change,
entities which are moving actively around, and movable objects that change their
position passively. The articulated scene modeling approach offers a methodology
for extracting these three scene elements from a short sequence of observations
using only few general assumptions. Moving persons can be tracked reliably
using the feedback of the static background and a cylinder as weak entity model.
The static background is estimated by always adapting it to the farthest distance
measurements. Movable objects can be detected if they are placed in front of a
known static background. The distinction between tracking motion and detecting
changes is apparent in the introduction of different processing methods and a
separated encoding in the model. It follows the definition of Rensink [Ren02]
and the insights about brain areas specialized either on motion or on change. My
results show that using the farthest measurements to build the static background
from range sensing reconstructs it reliably. Further, tracking is improved if static
background is incorporated. Last, arbitrary movable objects are detectable if they
have been positioned somewhere in front of the estimated background. So far,
objects cannot be detected if the background behind is not known.

As the articulated model provides for a specific scene information about articu-
lated parts it would be interesting to combine it with an aligned scene model
of this specific scene (acquired from a scene description using the algorithms
described in Chapter 4). Connecting described and articulated structures will
enhance both models. The aligned model can extract from the articulated model
the degree of freedom of some model structures. Knowledge about type and
amount of these articulations can facilitate the fitting of a learned aligned model
to a new situation. The articulated model could benefit from the aligned scene
model by utilizing the possibility of automatic label inference for movable objects.
Another possible extension of the articulated model could be a mechanism for
learning a group of movable objects from a single example. Here, objects of the
same type like chairs around a conference table or doors of a huge cupboard are
of special interest. The goal is to extract all chairs or doors as movable objects
although the human tutor has opened only one door or has moved only one
chair for demonstration. Further, it would be interesting to develop methods for
transferring the articulated model from one scene to another. Section 5.5.2 shows
how this can be done if the same room is observed by rotating the camera. The
question is whether it is possible to match a model to a view of an unknown
room which has the same room type as the initially observed room (estimating
the type of a room from its spatial layout as introduced in Chapter 3).
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wall cupboard

table
sofa

This thesis has dealt with the question, how to provide semantic scene infor-
mation for 3D percepts of indoor scenes. As scene analysis is a wide field,
I have concentrated on developing models for the vista space of a domestic
robot. This means that the models deal with scene percepts taken from one
view point during a “home tour” scenario where a robot is shown around in
an apartment and taught relevant spatial knowledge. Much work can be found
where outdoor scenes are analyzed in 2D, whereas indoor scenes are analyzed
by vision approaches mostly in 2D and by robotic approaches mostly in 3D. So
far, the developed 3D methods have focused on the large-scale space of indoor
scenes where locomotion is required to perceive the complete scene. My work
contributes to the analysis of the less examined indoor percepts from the vista
space. The scenes are apprehend-able from one view point without the necessity
for locomotion. In the context of the “home tour” scenario, such scenes are views
of a single room for which my analysis provides detailed semantic information.
In particular, a holistic, an aligned, and an articulated representation of a room
is learned. The holistic model specifies the type of the room like “living room”
(Chapter 3). The aligned model holds supporting structures that have been
referred to like “a cup on the table” (Chapter 4). And the articulated represent-
ation models movable scene parts like a “cupboard door” by observing scene
changes happening when the door is opened or closed (Chapter 5). This thesis
has proposed new scene modeling approaches that incorporate basic physical
properties of vista scenes and psychological or psycho-linguistic knowledge
about their representation in humans. As one step towards a complete spatial
awareness of a robot, these vista space representations can be combined with
large-scale space representations, like navigation maps, due to their comple-
mentary nature. The following paragraphs summarize the proposed algorithms
providing a holistic, aligned, and articulated modeling of a vista space scene and
discuss future research directions.
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the holistic scene model. The combination of physical characteristics
of space and psychological findings about the perception of space is reflected
in the holistic model by the fact that the recognition of the room type is based
on the room’s spatial layout. Man-made environments are mainly assembled
by sets of planar surfaces and it is assumed that people can categorize a room
quickly, because brain areas are activated that are sensitive to 3D geometry (see
[Hen08]). The holistic scene model consists of Support Vector Machines models
that have been trained on a newly defined 3D spatial feature vector. This feature
vector is generated by computing histograms over values that encode the shape
and the size of perceived patches and the angle and the size ratio between pairs
of patches. It captures globally the spatial layout of a room given as a set of
planar surfaces and encodes it independent from specific furniture or objects and
the knowledge about interdependencies between objects and room types. For
testing the performance of the 3D feature vector, we have compiled the probably
largest 3D indoor database that is currently available. We have recorded with
a SwissRanger camera rooms that are shown in the exhibition of the popular
IKEA furniture stores. With this database I have shown that the 3D feature vector
encodes information of an indoor room that is complementary to the information
encoded by the well-known Gist feature vector introduced by Torralba [Tor03b].
This Gist vector encodes a scene based on edge information present in a 2D
image and has also been developed to capture the global scene impression of
this 2D image. If both global feature vectors, the newly defined 3D vector and
the Gist vector, are fused by a voting scheme following the sum rule, good
categorization results are achieved on percepts of indoor rooms taken from a
robot’s perspective. It is now possible to categorize indoor percepts based on
their spatial layout as it can be observed that room layouts have room type
specific features.

the aligned scene model. The second type of scene representation in-
troduced in this thesis is the aligned scene model. It is inspired by the fact that
language will be successful in conveying space, because language and cognition
schematize space in the same way [Tve98]. This means that a hearer can build
from a description a model which is similar to the model the speaker has built
from visual perception. Furthermore, interlocutors start to align their models
of their visual representations when they talk to each other about the under-
lying scene [Pic04]. The goal is to equip a robot with capabilities enabling it
to extract in a 3D perception of a scene the semantic structures that have been
mentioned of the human partner. This ability is implemented in the aligned
model by utilizing the effect of gravity on the scene layout and the construction
principles of spatial scene descriptions. Basically, this means that every object has
a supporting structure and that in the description objects are only related to their
supporting structure or to other objects located on the same supporting structure.
I have introduced a new terminology for these two relation types. The first one is
named orthogonal relation and the second one parallel relation. The computation
of meaningful spatial structures consists of three steps. First, rules are defined
that transform a sequence of orthogonal and parallel relations into a set of trees
reflecting the hierarchical characteristic of spatial descriptions. Second, poten-
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tial planar patches are estimated as priors for supporting structures of objects
sharing the same parent node. And third, these potential patches are fused with
planar patches extracted in a 3D perception of the scene to resolve ambiguities
in the descriptions. The resulting set of patches and their labels form a model
that is aligned to the description of the scene. Tests on 30 descriptions of two
different rooms have shown that the computed models meet the level of details
in the provided depictions. The combination of model estimation from descrip-
tions with bottom-up visual processing is clearly a new approach for modeling
complex scenes. So far, models have been extracted automatically from visual
percepts without involving the interlocutor or the partner’s model is derived
from expressions without grounding them in the visual world. As hearer it is
now possible to extract the speaker’s scene representation guiding the given
description and to ground this representation in its own perception.

the articulated scene model . Last, the approach for generating an ar-
ticulated scene representation aims on learning semantic scene structures from
observation of spatial changes in a scene. It is inspired by the fact that chil-
dren have a higher sensitivity towards detection of scene changes compared to
adults [Thr02]. It seems that the ability to detect changes in situations is crucial
for learning. In general, the term change is defined as variation of structure while
the term motion refers to variation of location [Ren02]. Change can be either
dynamic if the transformation itself is observed or completed if at some point the
change of structure is perceived. The last one means phenomenologically that
the detection of completed changes involves a comparison between a represent-
ation in memory and a representation of visible structures. The computational
model developed in this thesis aims on detection of completed scene changes.
In 3D perception this can be realized robustly by assuming that from a fixed
perspective the farthest static measurements always determine the static scene
background. The articulated scene model consists of three parts, namely, dy-
namic entities, movable objects, and the static background, that are estimated
over a short sequence of frames. Knowledge from previous frames is used in
the analysis of subsequent frames. Dynamic entities like the moving human
are detected in each frame through a particle filter based on a weak cylinder
model which is augmented by the knowledge about the static background. The
background model is updated instantaneously in each frame to the farthest
static depth measurements. Static depth measurements that appear in front
of the known background define movable resp. articulated scene parts. The
contribution of this approach is a model-less detection of articulated scene
elements through observing scene changes caused by their manipulation and
a background learning under disturbed and short observation conditions.
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future work. Future research directions of the work presented here could
be the refinement and extension of the individual models and the integration
of the models in realistic human-robot interaction scenarios. Since the further
development of each model has already been discussed in the conclusions of
each chapter (see, Chapter 3.5, 4.6, and 5.6), I will focus at this point on the
second direction. An integration of my approaches on a mobile robot faces two
main questions:

How should the observation and the modeling period be structured so that a
natural interaction between robot and human would become possible?

How can a robot that moves around integrate its vista space and large-scale
space representations?

So far, it has been assumed that observation and modeling period can be clearly
separated. But in an interaction scenario this assumption is not valid anymore. A
closer coupling of observation and modeling period is necessary so that feedback
can be generated and incorporated. The design of my models allows in principle
an interleaving of the observation and modeling phase. The algorithms process
one frame or spatial relation and integrate the results in the representations
generated on prior data. Technically spoken, it is straightforward to generate
and incorporate feedback on the basis of these intermediate models. However,
the interesting question is how to design the feedback and how to integrate the
response into the models. For example, while constructing the tree set of the
aligned scene model a feedback can be generated after each processed relation.
Here, the interesting question is what feedback should be generated:

Is a confirmation feedback like “hmmm” or “I understand the cup is
on the table” enough?

Can a feedback be constructed that triggers a response from which
additional meaningful information can be extracted like “what is the
supporting structure for . . .”?

One could imagine that a scene representation can be constructed faster and
more robust if the model formation is designed cooperatively because the robot
asks proactively for information. Otherwise, one has to hope that information
will be given implicitly so that it can be inferred. Models built with feedback will
deviate from models built without feedback, as a robot asking questions may
also influence the recipient’s situation model. On the one hand, this influence
could be positive as the human tutor is triggered to concentrate on relevant
information. On the other hand, it could disturb the task instruction underlying
the spatial description. This could be the case when the robot wants to get
detailed information about a scene structure that is not important for executing
a given task. In such situations, an explicit reparation instructions might be
necessary like “forget about the sofa and concentrate on the table instead”.
Besides the interaction with a partner, the interaction with the environment
is important for a mobile robot. Modeling scenes on the vista scale requires
that the robot stands still during the observation. The question is how such a
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requirement can be integrated into the behavior of a moving robot. As it would
be computational too exhaustive to compute for each point that can be reached
in an apartment a representation of the visible vista space, algorithms have to be
developed that generate appropriate view points in an apartment. Optimization
criteria could be driven by the task itself, e. g. [Zie10], or by the goal to generate
as few or as informative views as possible. The memorization of models from
several view points rises the question on the interplay between representations
for the vista space and for the large-scale space. For example, a registration of
vista space models could be seen as a representation of the covered large-scale
space. The model resulting from this fusion would have the same level of details
like the underlying vista space models. But for navigation purposes, it might
be better to link the vista space models to a SLAM map which is a large-scale
representation optimized for localization and navigation [Bee07]. In this context,
a lot of interesting new research questions can be formulated:

How much details do representations of the large-scale space need?

Is it enough if appropriate vista space models are accessed when
more details are required?

How can information between different models be exchanged?

And does the representation of the large-scale space influence the
formation of models on the vista-scale and vice versa?

Answers to these questions will equip a robot with a spatial awareness that
models the complete space in a flexible way with methods for adapting the
representation to the current task.
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A P P E N D I X – S C E N E C L A S S I F I C AT I O N

a.1 3d indoor scene categorization – a prove of concept

This section shortly summarizes our first approach to the indoor scene catego-
rization using planar surfaces as presented in [Swa08c]. It is a prove of concept
that shows that it is possible to define a proper feature vector on the set of
extracted planar patches.

feature extraction. The following listing describes the first attempt for
defining a feature vector that encodes the spatial layout of a scene given by a set
of planar patches {Pi}.

(i) Number of Points per Patch. First, a feature vector is computed that encodes
the size of patches in a frame, e. g., whether it contains large patches or
many small planar structures. For simplicity the size of a patch is estimated
by the number of points assembling a patch:

∀i : ni =
|Pi|

∑j |Pj|
. (A.1)

The resulting terms have values between zero and one with a concentra-
tion in the region close to zero. As a feature vector (FV1) a histogram is
computed using bins of different size – small close to zero and becoming
large towards one. More precisely, 6 bins are chosen with the boundaries
according the following listing [0, e−4.5, e−3.5, e−2.5, e−1.5, e−0.5, 1].

(ii) Angles between Normals of Patches. Here, the orientation between patches is
considered:

∀i 6= j : αij = arccos(~ni ·~nj) (A.2)

divided by the maximal possible value which is π
2 . The feature vector (FV2)

is created as a histogram with 5 bins uniformly distributed over the values
between zero and one. The experiments have shown that for classification
it is sufficient to compute the median of these angles to encode their
information. Both, histograms over number of points per patch and angles
between pairs of patches do not contain any structural information about
the rooms. This information can be introduced by computing the feature
histogram (FV3) over the angles α′ij between pairs of close patches leading
to better classification results.
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(iii) Ratios between Sizes of Patches. This feature (FV4) encodes whether a frame
contains many patches of similar or different size:

∀i 6= j : rij =
min(|Pi|, |Pj|)
max(|Pi|, |Pj|)

, (A.3)

while the feature vector (FV1) over the number of points per patch refers
to the absolute sizes of the patches. The histogram here also consists of 5
bins between 0 and 1.

The values in the bins of the feature histograms (FV1, FV2, FV3, FV4) are
normalized to the range [0, 1] by dividing the entries by the sum over all values
in the bins per histogram.

evaluation. This feature vector is evaluated on three room categories which
can be found in a university. From two offices, two corridors, and two meet-
ing rooms 300 frames have been recorded by the SwissRanger. The camera is
positioned at the door frame and pans and tilts during recording. Figure A.1
presents the acquired rooms. The classifiers are trained with data from office.1,
seminar.1, and corridor.1. The categorization of unknown rooms is test with
frames from office.2, seminar.2, and corridor.2 while the recognition of
known rooms is tested with frames of the training rooms which have not been
used for training.

office.1 seminar.1 corridor.1

(a) Training rooms.

office.2 seminar.2 corridor.2

(b) Test rooms.

Figure A.1: Photos of the rooms scanned by the SwissRanger camera. (a) Data from these rooms is
used to train classifiers. (b) Data from these rooms is used to test the categorization performance
of the learned models.
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Figure A.2: (a) This plot presents results of the recognition (�) and categorization (♦) using
different combinations of the feature vectors (FV1, FV2, FV3, FV4: FV2a the histogram of angles
between all patches, FV2b the median of these angles). Three classifiers are tested: a Neural
Network (NN), a Support Vector Machines (SVM), and a Gaussian Mixture Model (GMM). (b)
This plot shows the influence of the number of training samples on the categorization result using
[FV1 FV2b FV3 FV4]. The vertical bars encode the standard deviation of the rates over 10 training
runs with identical parameters for NN, SVM or GMM.

Three different classifiers are used to examine the proposed features: a Neural
Network (NN) with one hidden layer based on the Neural Network Toolbox of
MatLab using back-propagation [Rum86], the support vector machine SVMlight

(SVM) [Vap95, Joa02] with a 5th-degree polynomial, and a Gaussian Mixture
Model (GMM) with five mixed distributions implemented in the toolkit ESMER-
ALDA [Fin99]. Screening experiments have provided five mixed distribution
for GMM and a 5th-degree polynomial for SVM as quite suitable to deal with
the proposed feature vectors. The examined feature vectors are the number of
points (FV1), the angles between patches (FV2a) and the median over these
angles (FV2b), the angles between close patches (FV3), and the ratio of number
of points between pairs of patches (FV4). The features are tested separately and
in combination. The training phase is based on 270 frames of each room from the
training set (Figure A.1(a)). The recognition of known rooms is tested with the
remaining 30 frames per room. The categorization of unknown rooms is tested
with the 900 frames assembling the three test rooms of the test set (Figure A.1(b)).
The shown rates are averaged over the three room types and 10 test runs.

147



appendix – scene classification

Figure A.2(a) presents all classification results from different feature vectors
and combinations of them. The first four columns examine the feature vectors
FV1, FV2a, FV3, and FV4 separated from each other. FV1 and FV3 turn out as
features which contribute most to a good feature vector (recognition rate: 0.90,
categorization rate: 0.65). The combination of these two features (FV1 and FV3)
leads to a feature vector which provides promising categorization results of up
to 0.79 and recognition results of up to 0.93. An additional test is executed to
study the influence of FV2a compared to FV2b. FV2b performs similar to FV2a.
Therefore, it is assumed that the median of all angles can replace a histogram
over all angles. The categorization can be improved up to 0.81 if the feature
vector FV4 is added while the recognition rate stays on the level of 0.90. This rate
can be further increased to 0.99 using FV2b. As an assumption it can be stated
that GMMs provide the most stable and proper classifiers using [FV1 FV2b FV3
FV4] as a feature vector. Round about 75% of the false classified vectors are due
to a mix up between meeting room and office. Since both room categories have
analogies like a large table area in the middle of the room, this is an expected
result.

Figure A.2(b) shows the influence of the amount of training data on the classifi-
cation rates. The vertical bars encode the variance of the classification rates over
the 10 test runs. It can be noticed that especially the NN and GMM classifiers
seem to become saturated if more than 150 training samples are used. This leads
to the conclusion that acquiring 300 frames per room provides a data set from
which general room models can be learned.

Eighty percent of successful room categorization indicates that these planar
structures extracted from 3D point clouds provide meaningful information
about categories of rooms whereon feature vectors can be defined suitable for
classification. The categorization only based on the given 3D data provides
promising first results that may be even further improved via applying more
different statistics to the set of planar patches, like, e. g., histograms over shapes
of patches.
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a.2 equivalence of form factors for 2d boxes

For an arbitrary 2D patch a standard factor for encoding the shape is defined by

cU,A =
U2

4π · A (A.4)

where U is the outline of the region and A the covered area. For a box with s
being the short edge and l being the long edge my shape characteristic computes
as follows:

cs,l =
s
l
, with s < l. (A.5)

In the following, I am going to prove the equivalence of these two shape factors

cU,A ∼ cs,l . (A.6)

This will be done by proving the existence of a bijective function that maps cs,l

on cU,A.

Given a 2D box with the following characteristics:

s short edge

l long edge

U = 2s + 2l

A = s · l

x and y are set to

x =
s
l

(A.7)

y =
(2s + 2l)2

4π · sl
(A.8)

and y reformulated in such a way that it becomes a function of x

y = f (x) =
(2s + 2l)2

4π · sl
=

1
4π
· 4s2 + 8sl + 4l2

sl

=
1
π
·
( s2

sl
+

2sl
sl

+
l2

sl
)
=

1
π
·
( s

l
+ 2 +

l
s
)

=
1
π
·
(
x + 2 +

1
x
)
. (A.9)
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Figure A.3: Figure shows plot of
function f (x) = 1

π · (x + 2 + 1
x )

with x ∈]0, 1[.

As x can only take values between 0 and 1, f (x) needs only to be considered in
the range of ]0, 1]. Figure A.3 shows the plot of the function f (x). The derivation
of f (x)

f ′(x) =
1
π
·
(
1− 1

x2

)
(A.10)

gives that f (x) has for the interval of x ∈]0, 1] only values ≤ 0. This means that
f (x) is decreasing strictly monotonic on this segment and is therefore a suitable
function to map cU,A and cs,l onto each other in a bijective way.
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A P P E N D I X – S C E N E D E S C R I P T I O N S

This chapter lists all descriptions acquired in our studies. In two studies – a pilot
study and a main study – 20 persons have provided in total 30 descriptions of
two rooms presented as print-out or on a computer screen. In the following
sections the original descriptions in German and their translation to English and
a machine-readable format are given. The translations have been done manually.
In the machine readable format

− denotes a parallel relation,

| the orthogonal relation “on”, and

o the orthogonal relation “in”.

0 is used if an object is simply listed and no relation to any other object has
been specified.

The descriptions of the playroom, scene S1, acquired during the pilot study are
given in Section B.1 and acquired during the main study in Section B.2. The
descriptions of the living room, scene S2, can be looked up in Section B.3. The
Figures B.1, B.2, and B.3 show per subject the raw tree set computed if the rules
for transforming spatial relations to trees as defined in Section 4.4.1 are applied
on the given scene description.
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b.1 pilot study : playroom

This section lists the transcriptions of the original descriptions given by 10
participants. The playroom has been presented as photo on the monitor. The
participants have benn instructed to describe freely the picture.

Participant 1(p):

ok also ich sehe ein tisch (.) ähm zwei reGAle ein abgeschnittnes reGAL ich sehe
eine LAMpe (.) ne TÜR noch einn stuhl und dann ähm (.) viele viele kuscheltiere
die verteilt sind auf TISCH stuhl ähm (.) reGAle und dann noch bücher und
spiele im regal und eine ROse (.) hm ja

OK, I see a table, two cupboards, a lamp, a door, and a chair. There are soft toys
on the table and on the chair. There are books and games in the cupboard. And
there is a rose.

table 0 0; ↓
cupboard2 0 0;
cupboard3 0 0;
lamp 0 0;

door 0 0;
chair 0 0;
table | softtoy;
chair | softtoy;

cupboard o books;
cupboard o games;
rose 0 0

Participant 2(p):

gut (3) ähm ich sehe in diesem raum ähm (.) ein TISCH ein stuhl (.) eine
lampe im HINtergrund ähm der stuhl steht ähm vor dem TISCH es ist mehr ein
hocker als ein stuhl weil er keine lehne hat (..) ähm im hintergrund stehn äh drei
reGAle (.) ähm das linke und dies ähm drei reGAle stehen direkt nebneinanda?
(.) ähm di: das regal in der mitte ist in einem rot ton gehalten die rechts und
links sind äh be:sch (.) ähm überall in diesem zimma sind stofftiere und anderes
(.) spielzeug verteilt? ich sehe (.) ähm monopoli pusl BÜcher (..) ähm (.) kleine (.)
AUtos (.) und ich sehe eine wase und eine blume in der mitte auf dem tisch (...)
sonst ist das zimma sehr (...) KINDorientiert ausgerichtet würd ich sagn obwohl
vielleicht dann au noch zu sehr AUFgeräumt und mehr seh ich eigntlich nich
auf dem bild

In the room there is a table, a chair, and a lamp in the back. A chair stands in
front of the table. In the back there are three cupboards, they are parallel to each
other: in the middle stands the red one and the light ones on the left and right
of it. Soft toys and toys are all over the room. I see monopoly (games1), books,
and a car, and a rose on the table. Overall it looks like a room of a child though
it is a bit too tidy.

room o table; ↓
room o chair;
room o lamp;
table - chair;
room o cupboard1;

room o cupboard2;
room o cupboard3;
cupboard1 - cupboard2;
cupboard2 - cupboard3;
room o softtoy;

room o toy;
games1 0 0;
books 0 0;
car 0 0;
table | rose
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Participant 3(p):

okej also ich sehe möbelstücke n TISCH n stuhl . drei reGAle eins davon is
ROT zwei sind WEIss (.) der tisch un der stuhl is HOlzfarbn un hintn in ner
ecke is ne LAmpe s sieht n bisschen nach KINderzimmer aus weil auf dem tisch
mehrere PLÜSCHtiere liegn (.), da liegt äh son kleiner GREMlin (.) n koALAbär
n teddibär n kleiner frosch aus plüsch und n känguru (.) n plüsch äh WÜRfel
hintn ne wei ne gelbe rose (.) in einer wase un n kleiner spielzeugauto vor dem
koalabär auf dem stuhl oder auf dem hocker isn plüschLÖwe glaub ich auch
un davor n kleiner ROboter (.) un im regal sind BÜcher spiele ä:hm (...) das
is ein obelix ein fred feuerstein un danebn son RA:be (...) un dadrunter keine
ahnung ich glaub so (... ähm keine ahnung was das für kuscheltiere sind und in
dem weißen regal sind auch spiele un n KERzenständer un darüber n kleiner
PLÜSCHhund ne (..) kleine SCHAle ja (..) das seh ich in dem raum (.) und n
TEPpich boden (.) weiße wände

I see furniture, a table, a chair, and three cupboards, one red and two white.
Table and chair are light and a lamp is back in the corner. It looks a bit like
a playroom because several soft toys lie on the table, more detailed gremlin
(Stitch), a koala bear, a Teddy bear, a small frog, and a kangaroo, a cube with a
rose behind it and a small toy car in front of the koala. On the chair is a lion and
before the lion a small robot. In the cupboard are books, games, Obelix, Fred
Feuerstein, and besides Fred a raven. Below the raven are objects which in don’t
now (Pokemon). In the white cupboard are also games, a candle, and above the
candle a dog and a bowl. Hm, I also see a light carpet and white walls.

corner o lamp; ↓
table | softtoy;
table | rose;
koala - car;

chair | lion;
lion - robot;
cupboard2 o books;
fred - raven;

raven - pokemon;
cupboard3 o games;
cupboard3 o candle;
candle - dog

Participant 4(p):

der raum sieht aus wie ein KINderzimmer ähm im linken hinterGRUND sieht
man reGAle davon sind zwei Weiß und eines rot (...) ähm man kann allerdings
nicht alle reGAle komplett sehn (...) von einem der weißen reGAle geht ein (.)
TISCH aus (..) der rechts äh ins bild ragt (...) auf dem tisch (.) findet man ähm
verschiedene kuscheltiere und spielzeug (...) ganz RECHTS auf dem tisch sieht
man einen koALA (..) BÄR (2) davor ist ein SPIELzeugauto (..) in der mitte auf
dem tisch sieht man einen sehr ja einen sehr kleinen KÄNGuru (..) würd ich
jetz sagn (..) ähm (..) dahinter sieht man eine WAse mit einer gelben ROse drinn
ähm (2) in der hintersten ECKE des TISCHes (..) links (.) findet man ähm (3)
auch ein kuscheltier ich weiß nich was es is (..) was das darstelln soll (..) dann
ähm wiederum auf einer ECke (..) sieht man ein ähm (.) tedDIbärn ziemlich
GROßn im verhältnis zu den anderen (..) und davor wiederum befindet sich ein
FROSCH als kuscheltier (..) ähm (.) vor dem tisch im vordergrund des bildes
sieht man ein hocker aus HOLZ (.) auf dem ist ein LÖwenkuscheltier zu sehn
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und noch ein (..) weiteres (.) spielzeug eine art spielzeugROboter (2) ähm (..)
in RECHten hintergrund (.) HINter dem TISCH so zusagen sieht man eine (.)
STEHlampe (2) und ähm (..) nochweiter rechts davon eine TÜR (2) im regal
finden sich wiederum kuschelTIERE (.) und ähm BÜcher (..) und BRETTspiele
(3) ja (2) ich glaub darauf geh ich dann nich mehr näer ein (4) der boden ist (2)
HELL (2) be:sch (...) und der TISCH ist aus HOLZ (..) ja das wars

The room looks like a playroom. To the left at the back you can see cupboards,
two white and one red. However, not all cupboards are completely visible. In
front of the white cupboard stands a table. It fills the right part of the image.
On the table diverse soft toys and other toys can be found. Right on the table
you can see a koala, in front of the koala a car, and in the middle of the table a
small kangaroo. Behind the kangaroo stands a vase with a yellow rose. Left on
the table you can find Stitch and a big Teddy bear and in front of the bear lies a
frog. In front of the table, in the foreground of the image, stands a chair with a
lion and a robot on it. Behind the table is a lamp and right of the lamp a door. In
the cupboard are soft toys and books and games. The floor is light and the table
is wooden.

room o cupboard1; ↓
room o cupboard2;
room o cupboard3;
cupboard3 - table;
table | softtoy;
table | toy;

table | koala;
koala - car;
table | kangaroo;
kangaroo - rose;
table | stitsch;

table | bear;

bear - frog;
table - chair;
chair | lion;
table - lamp;
lamp - door;
cupboard o softtoy

Participant 5(p):

Alles klar also ich sehe (.) ein raum in dem MÖBEL sind (..) ähm ZWEI
beziehungsweise ein angerissenes all ZWEI regale und ein ANerissenes ein
tisch und ein HOCker (.) und ähm (.) ich würde vermuten kinderspielzeug
verschiedene KUSCHLtiere (..) ähm SPIEle BÜcher (..) n AUto (.) ja kleine gegen-
stände kleine spielsachen (...) oder soll ichs detaHIERter beschreiben (.) gut dann
(...) wer ich damit FERtich

I see a room with furniture – two cupboards, a table, and a chair. Further,
I see toys, several soft toys, games, books, and a car.

room o furniture; ↓
room o table;
room o chair;

toy 0 0;
softtoy 0 0;
games 0 0;

books 0 0;
car 0 0

Participant 6(p):

hm also ich sehe (3) zwei reGAle (2) wandreGAle ähm ein TISCH ein HOcker
(.) eine lampe (.) stehlampe in der ecke ähm (.) dann ähm (..) verschiedene
kuscheltiere he (lacht) (.) ein koALA ein BÄR daneben STITSCH und ähm ein
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löwen auf dem hocker (..) auf dem hocker ist auch ein ähm (..) ro:boter (..) ähm
(.) ja also neben oder vor dem teddibärn sitzt ebenfalls ein FROSCH (.) und
neben dem frosch (.) naja etwas weiter HINtn sitzt ein (1) KÄNGuru (..) BÄR
(lacht) ähm ebenfalls ne BLUMwase auf dem tisch mit ner gelben ROse ähm
(.) und ein WÜRfel (..) ähm (.) in den WANDreGAln (1) ist ein RA:BE also das
eine wandregal ist ROT das andere ist WEIß in dem ROten wandregal sitz ein
RA:be dann äh (2) äh herr (...) heißt der FEUerstein (.) feuerstein und Obelix von
ASterix und obelix (.) also der erste (..) dann (2) auf dem allerersten einlegeboden
dann auf dem zweiten einlegeboden äh (.) ist ähm POkemon mit das andre tier
weiss ich nicht was das ist (.) dritter ähm im DRITten einlegeboden liegn bücher
(.) vierten einlegeboden zwei spiele (.) fünften ist gar nichts (3) ähm (2) das
WEIße WANDregal wiad zur hälfte vom tisch verdeckt aber das was ich sehen
auf dem ersten einlegeboden ähm ist ein HUND da ist ne SCHAle und ähm (..)
ähm (.) paar zeitschriften (..) zweiter einlegeboden ähm (..) ist n KERzenständer
und auch wieder SPIEle (.) und im dritten (.) ja glaub ich ist ne TASse (2) ne
mit wasser drin (.) un in den beiden andern seh ich gar nicht (.) aber ich glaub
da ist GAR nichts drinn (..) oKEJ (3) hm (2) da ist ne TÜR (5) kabel (...) von ner
lampe (..) hm vor dem koala isn rennauto auf dem TISCH (2) und neben den
ROten wandregal also links daneben ist NOch ein weißes also is (...) RECHTS
ein weißes und LINKS ein weißes vom roten wandregal (2) ja (3) das wars

I see two cupboards, a table, a chair, a lamp in the corner, and several soft
toys. A koala lies next to Stitch and a lion lies on the chair. On the chair is also a
robot. A frog sits in front of the bear and next to the frog a kangaroo. Further,
a vase with a yellow rose and a cube stand on the table. In the red cupboard
(cupboard2) is a raven, Fred Feuerstein, and Obelix. On the second shelf sits
Pokemon, on the third shelf lie books, and on the fourth shelf are two books.
In the first shelf of the white cupboard (cupboard3) is a dog, a bowl, and some
papers. On the second shelf is a candle and some games. And on the third shelf
I see a cup with water. There is also a door and a lamp. In front of the koala lies
a car on the table. Left to the red cupboard (cupboard2) stands a white cupboard
(cupboard1).

koala - stitsch; ↓
chair | lion;
chair | robot;
bear - frog;
frog - kangaroo;

cupboard2 o raven;
cupboard2 o pokemon;
cupboard2 o books;
cupboard2 o games1;
cupboard3 o dog;

cupboard3 o cup;
table | koala;
koala - car;
cupboard1 - cupboard2;
cupboard2 - cupboard3

Participant 7(p):

ähm ja ich sehe viele KUSCHeltiere (.) ähm son DECKenfluter (..) n tisch und
n STUHL drei reGAle (.) ähm ja noch weitere SPIELzeuge son kleiner ROboter
(.) n auto ähm (..) mehrere spiele unter naderem moNOpoli un das labüRINT
ähm BÜcher gibt es noch (.) ein KERzenständer mehrere bekannte figuren also
als kuscheltiere wie STITSCH (..) ähm den Obelix und fred FEUerstein (.) ähm
der ra:be das is so ne handpuppe die hab ich nämlich auch die kenn ich he
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(lacht) (.) hier is noch POkemon (.) ähm vieh (.) glaub ich (.) ähm ja da is noch
ne WAse aufm tisch mit ner BLUme .. u:nd ich glaub das is n BAUklötzjen (2) ja
und SPIELzeugauto is noch da (4) joa (2) DIE schale (..) weiß ich nich ob ich die
schon genannt hab seh ich noch (...) und (2) ja also außer diese kuscheltiere (...)
ach das isn frosch son QUELLfrosch der hat ne KUgel im bauch den kenn ich (.)
den hab ich AUch (.) hehe (lacht) ja ansonsten glaub ich hab ich alles genannt
(...) oder soll ich EINzelne sachen noch aufzähln (...) kann ich (.) ja dann (.) sieht
man halt noch den koALAbär (..) daoben das is glaub ich n hund (lacht)(..) n
teddibär und n LÖwn (...) u:nd ähm ja stitsch hab ich schon (...) das WARS

I see a lot of soft toys, a lamp, a table, a chair, three cupboards, further toys, a
small robot, a car, several games, and books. Further, there are a candle, Stitch,
Obelix, Fred Feuerstein, a raven, and Pokemon. There are a vase with a flower, a
cube, and a car on the table. Further, I see a bowl, soft toys, and a frog with a
bowl in the stomach which I have by myself. I also can a koala, a dog, a bear, a
lion, and Stitch.

softtoy 0 0; ↓
lamp 0 0;
table 0 0;
chair 0 0;
cupboard1 0 0;
cupboard2 0 0;
cupboard3 0 0;
toy 0 0;
robot 0 0;

car 0 0;
games1 0 0;
books 0 0;
candle 0 0;
stitsch 0 0;
obelix 0 0;
fred 0 0;
raven 0 0;
pokemon 0 0;

table | rose;
table | cube;
table | car;
bowl 0 0;
frog 0 0;
koala 0 0;
dog 0 0;
bear 0 0;
lion 0 |0

Participant 8(p):

(7) ja der raum sieht aus (.) wie ein e praxiszimma würd ich sagn (.) kön-
nte auchn SPIELzimma sein (.) in dem raum befindet sich eine LAmpe (1) die
auch wie ich so erkenn kann beLEUchtet also AN ist (.) dann ist (..) in diesem
raum ein WEIßes und ein ROtes regal zu sehn mit mehreren fächern (..) in dem
roten regal (.) stehn zum beisbiel verschiedne PLÜSCHfigurren drinn in den
ersten beiden OBERen fächern (.) in den dritten fach von unten liegen BÜcher in
verschiednen GRÖßen (..) u:nd (.) WEIterhin befinden sich dort (.) auch SBIEle (.)
in dem roten schrank (.) moNOpoli zum beisbiel (..) in dem weißen schrank der
da direkt neben steht befinden sich under anderm AUch sbiele ne PLÜschfigur
KERzenSTÄNder un diwerse andere gegenSTÄNde von dem regal befindet
sich ein TISCH dort steht einmal eine ROse mit (.) einer BLUMwase so wie
ich erkenn kann (.) mehrere fiGURN sind auf dem tisch äh plüschfigur sind
auf dem tisch AUFgebaut das is zum beisbiel ein koALAbär (.) wo vor dem
koalabär ein (.) AUto vorne steh vorWEGsteht im hinteren bereich befindet sich
ein plüschtier was ich nich weiter beschreibn kann sieht BLAU aus sieht LUStig
aus (.) denn liecht da noch eine art (.) weiß nich kleiner gegenstand der ein
bisschen quadratisch is (.) ein kleines KÄNGuru befindet sich da ein größerer
BÄR mit ähm ja einen FROsch im VORdergrund also frosch als PLÜSCHtier
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im vordergrund (.) sitzt auch noch auf dem tisch wobei dieser große bär (.) ein
bein nach unten runter hängn lassn hat ja des weiteren seh ich noch ein HOcker
auf dem (.) ein LÖwe quer ein eine PLÜSCHfigur ein LÖwe quer da liecht und
im voordergrund kann nich genau erkenn was das ist (.) da steht auch noch ne
fiGUR das kann (..) keine ahnung irndwie son track sein oder das könnte auch
irndwien roboter sein (.)

Well, the room looks like a waiting room in a praxis but could also be a playroom.
In the room is a lamp illuminated. In the room is a white (cupboard3) and a red
cupboard (cupboard2) with several shelves. Several soft toys stand in the first
and the second shelf of the red cupboard (cupboard2) and books of different
size lie in the third shelf. Further, there are games like Monopoly (games1) in
the red cupboard (cupboard2). In the white cupboard (cupboard3) next to the
red one are also games, soft toys, a candle, and other objects. In front of this
cupboard stands a table. On the table is a rose in a vase and other soft toys, e. g.,
a koala. In front of the koala stands a car. In the back of the table Stitch, a cube,
a kangaroo, and a big Teddy bear are positioned on it. In the front of the Teddy
bear is a frog and the Teddy bear is on the table. Further, I see a chair with a lion
on it and a robot ahead of the lion.

room o lamp; ↓
room o cupboard2;
room o cupboard3;
cupboard2 o softtoy;
cupboard2 o books;
cupboard2 o games1;
cupboard3 o games2;

cupboard3 o softtoy;
cupboard3 o candle;
cupboard3 - table;
table | rose;
table | softtoy;
table | koala;
koala - car;

table | stitsch;
table | cube;
table | kangaroo;
bear - frog;
table | bear;
chair | lion;
lion - robot

Participant 9(p):

(2) in diesem raum stehn an der wand drei regale (1) ähm RECHts neben
den regaln (.) steht eine STEHlampe? (..) in der mitte befindet sich ein TISCH auf
dem verschiedene STOFFtiere zu finden sind (.) sowie eine ROse? (..) hmmm vor
dem tisch steht ein HOcker auf dem (.) ein STOFFtier liegt und ein (..) ROboter
steht (.) hmmmm in dem regal befindn sich auch noch verschiedene stofftiere
ein paar BÜcher un zwei SPIEle (2) in den RECHten reGAL (..) steht eine schale
(.) ein STOFFtier verschiedene SPIEle und ein ke:rzenstender (2) hmm (2) ja äh
mm am rechten bildrand sieht man noch ne TÜR

In this room three cupboards stand at the wall. On the right side of the cupboards
stands a lamp. In the center of the room is a table with several soft toys and a
rose on it. In front of the table is a chair with a soft toy and a robot lying on it.
In the cupboard (cupboard2) are diverse soft toys, some books, and two games
(games1). In the right cupboard (cupboard3) is a bowl, a soft toy, various games
(games2) and a candle. At the right image border a door can be seen.
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room o cupboard1; ↓
room o cupboard2;
room o cupboard3;
cupboard3 - lamp;
table | softtoy;
table | rose;

table - chair;
chair | softtoy;
chair | robot;
cupboard2 o softtoy;
cupboard2 o books;
cupboard2 o games1;

cupboard3 o bowl;
cupboard3 o softtoy;
cupboard3 o games2;
cupboard3 o candle

Participant 10(p):

(3) aalso zuerst einmal sehe ich äh auf dem rechten teil des bildes eine tür
vermutlich die EINgangstür des (.) raumes vermut ich einfach mal so meistens
gibts nur eine TÜR im raum (..) s is hier auch so (.) dann ham wir einen schönen
viereckigen HOLZtisch (.) also viereckig . steht auf vier beinen drauf sind drei
TEDDis (..) einer in blau der extremst heßlich is (..) blau (.) weiß ich nich was
das sein soll ein normaler be:r den man eh kennt das andere könnte wohl ein
äh (..) koALA bär sein joa (.) ein rennauto dann ham wir noch ein frosch ein
WÜRrfel (...) ein GRÜN würfel (.) ähm (.) ne WAse mit ner gelben ROse (...)
und wenn man in den raum reinkomm will also von mir aus dann RECHts
oben (.) wenn du reinkommst (.) auch rechts is ein DECKenfluter ich glaub ein
DECKenstrahler deckenFLUter (.) eine lampe die den raum erhellt undnnoch
eine lampe die den tisch beleuchten könnte (.) dann ham wir drei schrankteile
(.) wobei das (.) hintere nicht mehr zu erkenn is (.) ein schrankteil is hell dort
befinden sich hm im (..) ein zwei drei vierten regal von unten vier SPIEle (.) man
kann ein typischen spielehersteller erkennen (.) leider kann ichs nich lesn (.) äh
drunter im regal sieht man noch ne tasse danebn (.) neben dem spiel steht ein
kerzenstender ohne kerze (.) darüber ham wir dann ein weiteres großes spiel
was sein KÖNNte danebn is ne schale in dem (.) ROten regal links daNEbn (.)
da ham wir untn auch spiele von einem spielhersteller (..) monopoli pokamon
(.) scheint als wenns (.) ein SPIELzimma wäre (.) hm das is das labyrinth der
(..) ringe (.) kenn ich gar nicht labürinth der ringe GUT dadrunter??? sind noch
einmal bücher dann noch ein (.) pokemonfigur (...) das weiß ich nur weil ich
das gerade gelesn habe (.) un ähm auch das glaub im fernsehn mal gesehn hab
darunter??? ham wir nen ASterix und ähm (2) wie heißt der typ denn noch (.)
fred FEUerstein genau (...) danebn noch ein riesign vogel (.) schwarzen vogel
mit gelben FÜßen und gelbem schnabel s gibt auch eine fernsehsendung in
deutschland wo son ähnlicher RAbe war aber ich weiß nicht mehr ob der wie
der rabe nun hieß ja es gibt jedenfalls sind das kuscheltiere und wahrscheinlich
(.) aber ich hab keine ahnung wie dieser rabe hieß (.) ich glaub der siebnstein
wars SIEBnstein SIEBnstein ja (.) was ham wir noch in diesm zimma zu guter
letzt ham wir noch unter dem tisch oder vor dem tisch so eine art hocka (.)
oder podest auf dem ein kuscheltierlöwe steht und ein mir nicht erkennbares (.)
ROboterähnliches (..) DING keine ahnung was das sein soll (..) ich hab es gesehn
ja (.) im schrank also ansonsten ist das is das ein sehr sehr FARBloser raum find
ich die wand WEIß (.) der boden is be:sch (.) ge:sch gelb braun (.) also ähm (.)
bis auf den roten schrank ist eigntlich alles sehr trist (...) könnte ein spielzimma
oder kinderzimmer sein aufgrund der kuscheltiere vielen kinderspiele (.) ja ich
glaub ich hab alles
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First, I see in the right part of the image a door supposable the entrance. Then,
there is a beautiful wooden squarish table with four legs. On the table are three
teddies – one in blue and extremely ugly (Stitch), one a normal bear, and one
a koala bear –, a car, a frog, a cube, and a yellow rose in a vase. If you enter
the room a lamp stands on the right side. It illuminates the room and the table.
There are three cupboards where the last one (cupboard1) is only visible half.
In the light cupboard (cupboard3) are games (games2) and below them is a
cup and next to the games (games2) a candle and next to it a bowl. In the
red cupboard (cupboard2) are games like Monopoly (games1) and below them
Pokemon figures and next to them Obelix and Fred Feuerstein and next to Fred
a raven. I have seen the raven on TV but I do not know exactly its name it could
be Siebenstein. In front of the table is a chair where a lion and a robot are lying
on it. The floor has a brown color and except from the red cupboard the room is
quite dull. Due to the soft toys it could be playroom.

table 0 0; ↓
table | bear;
table | koala;
table | car;
table | frog;
table | cube;
table | rose;

lamp 0 0;
cupboard3 o games2;
games2 - cup;
games2 - candle;
candle - bowl;
cupboard2 o games1;
games1 - books;

games1 - pokemon;
pokemon - obelix;
pokemon - fred;
fred - raven;
table - chair;
chair | lion;
chair | robot
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(a) subject 1(p) (b) subject 2(p) (c) subject 3(p) (d) subject 4(p) (e) subject 5(p)

(f) subject 6(p) (g) subject 7(p) (h) subject 8(p) (i) subject 9(p) (j) subject 10(p)

Figure B.1: These raw tree sets are generated from the descriptions about the playroom given
during the pilot study.
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b.2 main study : playroom

This section lists the descriptions collected during the main study where the
participants have seen a picture of the playroom presented on a screen. They
have been told to describe freely what they see in the room.

Participant 1(m):

Okay, das sieht aus wie ’n – ich glaub, das ist ’n Wartezimmer irgendwo. Da sind
auf jeden Fall viele Kinderspiele und Kuscheltiere drinne. Und ’n, ach genau,
also zwei Regale links an der Wand. Dann haben wir ’n Tisch ziemlich zentral in
der Mitte, wo auch Kuscheltiere drauf sind, ’ne Blume. Davor steht ’n Hocker, wo
auch ’n Kuscheltier drauf steht und irgendein anderes Ding. Hinten in der Ecke
steht ’ne Lampe. Rechts ist ’ne Tür. Äh. Ja dann sind da eben, ne?, Labyrinth der
ich weiß es nicht, Monopoly seh’ ich im Regal stehen, ’n paar Bücher für Kinder,
Kuscheltiere. Mehr noch? Okay. Links steht auch noch ’n Regal, da kann ich aber
nicht reingucken, da sieht man nur ’n ganz bisschen von. Genau. Das Zimmer
ist sehr hell; auffallend ist das rote Regal. Das passt da gar nicht rein. (Hm. Ja,
ich glaub, ich bin fertig.)

Well, the room looks like a waiting room. In the room are a lot of soft toys.
At the wall is a cupboard and in the center of the room a table with soft toys
and a rose on it. In front of the table is a chair with a soft toy and a robot on it.
In the corner stands a lamp. On the right is a door. In the cupboard are games,
namely Labyrinth and Monopoly, (games1), some books, and soft toys. The room
is pretty bright but the red cupboard seems to be out of place. (I think I am
ready.)

room o softtoy; ↓
wall o cupboard;
room o table;
table | softtoy;

table | rose;
table - chair;
chair | softtoy;
chair | robot;

corner o lamp;
cupboard o games1;
cupboard o books;
cupboard o softtoy

Participant 2(m):

Okay. Da haben wir einen Raum. In dem Raum sind mehrere Regale an der
Wand, eine Lampe, ’n Tisch und ein Hocker. In den Regalen liegen Spiele, Bücher
und Kuscheltiere. Und auf dem Tisch haben wir ein Spielzeugauto, mehrere
Kuscheltiere und eine Vase mit einer Blume. Und auf dem Hocker liegt ein
Kuscheltier und davor ein ähm Spielzeugroboter, würde ich sagen. (Ja. Das war’s
soweit.)

We have a room. In the are several cupboards at the wall, a lamp, a table,
and a chair. Games, books, and soft toys are lying in the cupboards. On the table
are a car, various soft toys, and a vase with a rose. On the chair is a soft toy and
a robot. That’s all.
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room o cupboard; ↓
room o lamp;
room o table;
room o chair;
wall o cupboard;

cupboard o games;
cupboard o books;
cupboard o softtoy;
table | car;
table | softtoy;

table | rose;
chair | softtoy;
softtoy - robot

Participant 3(m):

Ja, sieht aus wie ’n Kinderzimmer. Viele Kuscheltiere. ’n Tisch und ’n Stuhl.
Bücherregale, in denen Spiele liegen. Im Hintergrund ’ne Lampe. Auf’m Tisch
steht ’ne Rose. ’n Kerzenständer im Regal. Das mittlere Regal ist rot. ’ne Tür, die
zugeklebt ist, scheinbar, die Scheibe. (Alles bis ins kleinste Detail?) ’n Würfel
auf’m Tisch und ’n Plüschfrosch und der Teddy, der da drauf sitzt, hat ein Bein
runterhängen. Auf’m Stuhl steht – liegt ’n Löwe und, keine Ahnung, sieht aus
wie ’n Roboter. Im roten Regal steht noch Obelix und Fred Feuerstein, Pikachu
und ’n Rabe. Ähm im weißen Regal daneben steht noch ’ne Schüssel und ’n
Hund oder ’n Hase, Zeitschriften, Spiele, ’n Kerzenständer und zwei kleine
Tassen hinter diesem blauen Viech auf’m Tisch. Ja, kleines Känguru auf’m Tisch
und ’n Koalabär, vor dem ein Auto steht. Ja. In dem weißen Regal da am Rand
steht noch irgendwie, weiß ich nicht, ’ne DVD oder CD. Hmhm. Ja.

It looks like a nursery. A lot of soft toys, a table and a chair, cupboards (
cupboard2 and cupboard3) with games in them. In the back a lamp. On the
table stands a rose. In the right cupboard (cupboard3) is a candle. The middle
cupboard is red. The door is sealed. On the table is a cube, a frog, and a bear.
On the chair lies a lion and a robot. In the red cupboard (cupboard2) sit Obelix,
Fred Feuerstein, Pikachu (Pokemon), and a raven. Aside, in the white cupboard
(cupboard3) are a bowl, a dog, books, games, a candle, and a small cup behind
Stitch. Stitch is on the table. Well, on the table is a small kangaroo and a koala
with a car in front of it. At the border of the image is a kind of white cupboard
(cupboard1) maybe containing DVDs or CDs.

cupboard2 o games; ↓
cupboard3 o games;
back o lamp;
table | rose;
cupboard3 o candle;
table | cube;
table | frog;
table | bear;
chair | lion;

chair | robot;
cupboard2 o obelix;
cupboard2 o fred;
cupboard2 o pokemon;
cupboard2 o raven;
cupboard2 - cupboard3;
cupboard3 o bowl;
cupboard3 o dog;
cupboard3 o books;

cupboard3 o games;
cupboard3 o candle;
cupboard3 o cup;
stitsch - cup;
table | stitsch;
table | kangaroo;
table | koala;
koala - car

Participant 4(m):

In der Mitte steht ein Tisch, auf dem Spielsachen, Plüschtiere sind, ein Auto,
eine Blumenvase mit einer Rose. Vor dem Tisch steht ein Hocker, auf dem auch
ein Löwe liegt und ein Spielzeug, was auch immer das ist. Und hinter dem

162



B.2 main study: playroom

Tisch an der Wand stehn äh Regale, in denen Plüschtiere und Spiele und Bücher
liegen. Und daneben, so schräg irgendwie dahinter ist eine Stehlampe, hinter
der Tür quasi. Ein Kerzenständer-Männchen vielleicht steht noch im Regal. Und
’ne Schale. Und er hat hellen Fußboden. (Fertig.)

In the center stands a table. On the table are toys, soft toys, a car, and a vase with
a rose. In front of the table stands a chair with on lion and a toy on it. Behind
the table at the wall are cupboards with soft toys, games, and books in them.
Next to the cupboards is a lamp. Yet, in the cupboard is a candle and a bowl. It
has a light floor. (Done.)

table | toy; ↓
table | softtoy;
table | car;
table | rose;
table - chair;

chair | lion;
chair | toy;
table - cupboard;
wall o cupboard;
cupboard o softtoy;

cupboard o games;
cupboard o books;
cupboard - lamp;
cupboard o candle;
cupboard o bowl

Participant 5(m):

In dem Raum befinden sich Spielsachen. Da ist ein rotes Regal mit einem
schwarzen Raben und zwei Spiel äh zwei anderen Stoffspielfiguren. Darunter
ein Hase und ein Frosch. Darunter befinden sich Bücher und darunter befinden
sich Stühle ähm Spiele. Daneben ist ein weißes Regal. Ähm dort sitzt ein Hase,
da ist eine Schale. Daneben sind rechts daneben Arbeitsmaterialien. Darunter
befinden sich Spiele. Daneben ein Kerzenständer. Dann ist da ein Tisch in der
Mitte des Raumes. Ähm darauf befinden sich auch Stofftiere, ähm eine Vase mit
einer Blume darin, ein Auto. Davor ist ein Hocker. Darauf befindet sich ein Löwe.
Davor befindet sich irgendein roboterartiges Spielzeug. Ja. Ähm und hinter dem
Tisch befindet ja, steht ’ne Lampe. (Ich glaub das wa’s.)

In the room are toys. There is also a red cupboard (cupboard2) with a black
raven and two soft toys. Below the raven are the Pokemon figures and below
them books and below them games. Next to the red cupboard (cupboard2) is a
white cupboard (cupboard3). In it sits a dog, next to it is a bowl, and right to the
bowl work material. Below the work material are games and next to the games
is a candle. In the room is a table. On the table are soft toys, a vase with a rose,
and a car. In front of the table is a chair. On the chair is a lion and in front of the
lion is a robot. Behind the table stands a lamp. (I am done.)

room o toy; ↓
cupboard2 o raven;
cupboard2 o softtoy;
raven - pokemon;
pokemon - books;
books - games;
cupboard2 - cupboard3;

cupboard3 o dog;
dog - bowl;
bowl - workmaterial;
workmaterial - games;
games - candle;
room o table;
table | softtoy;

table | rose;
table | car;
table - chair;
chair | lion;
lion - robot;
table - lamp
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Participant 6(m):

Ein Raum mit einem großen Holztisch in der Mitte, auf dem viele Plüschtiere
sitzen: ein Teddy und ein Koala, ein Frosch und noch ein Koala und ein Löwe,
der auf einem Holzhocker sitzt. Dann äh im Hintergrund drei Regale, eins
weiß, eins rot, noch eins weiß. In dem sitzen auch Plüschtiere: ein Rabe, Asterix
und Fred Feuerstein, äh zwei Spiele: PokÃ©mon-Monopoly und Labyrinth der
Könige oder so? – der Ringe? Ähm drei Bücher, vier, fünf. Äh in dem weißen
Regal sind auch noch ’n paar Spiele. Auf dem Tisch steht noch eine Vase mit
einer gelben Rose und einem grüner Stoffwürfel und im Hintergrund ist eine
Stehlampe aus gebürstetem Edelstahl. (Das war’s.)

This is a room with a big wooden table where a lot of soft toys sit on it: a
bear, a koala, and a frog. A lion sits on a chair. In the back are three cup-
boards, a white one (cupboard1), a red one (cupboard2), and a further white
one (cupboard3). In the red cupboard (cupboard2) are soft toys: a raven, Obelix,
Fred Feuerstein, games namely Monopoly and Labyrinth (games1), and some
books. In the white cupboard (cupboard3) are further games. On the table is a
vase with a yellow rose and a green cube. In the back is a lamp. (That’s all.)

room o table; ↓
table | softtoy;
table | bear;
table | koala;
table | frog;
chair | lion;

back o cupboard1;
back o cupboard2;
back o cupboard3;
cupboard2 o softtoy;
cupboard2 o raven;
cupboard2 o obelix;

cupboard2 o fred;
cupboard2 o games1;
cupboard3 o games;
table | rose;
table | cube;
back o lamp

Participant 7(m):

Ja dieses Zimmer ähm, ja, wie fange ich da am besten an? Also, in der Mitte des
Raumes steht ein Tisch. Das ist ein Holztisch, der ist quadratisch. Auf diesem
Tisch sitzt rechts an der schmalen Seite ein Koalabär, vor dem steht ein rotes
Auto. Und dann verteilen sich so nach links über den Tisch noch einige andere
Gegenstände. Ähm ja. Links hinten an der langen Tischkante sitzt so ’n ja so
’n blaues Ungeheuer würd’ ich’s nennen, mit großen Ohren. Rechts daneben
steht ähm eine gelbe Rose in einer Vase. Genau. In einigem Abstand davor liegt
ein Würfel, mit der Zahl Drei oben. Wieder weiter nach vorn an der Tischkante
liegt so ’n grünes Tier, ich glaub, das soll ’n Frosch sein. Ist relativ klein, und
direkt links neben dem Frosch sitzt ein Bär. Genau, so. An der Tischkante. Genau,
der sitzt eigentlich mit dem Rücken an an der Wand beziehungsweise an ’n
pa an ’n paar Regalen, die da stehen und lässt das rechte Baum so von der
langen Tischkante nach vorne runterbaumeln. Genau. Und so relativ mittig auf
diesem Tisch steht noch ’ne ganz kleine Figur, ich glaube, das könnt’ ’n Hase
sein oder ’n Känguru, ich kann’s gar nicht genau erkennen. Dann vor dem Tisch
steht noch ein kleiner Hocker, auf dem liegt ein Stofftier, Löwe und, ja, so ’n
Spielzeugroboter, der vor dem Löwen platziert ist. Genau. Links an der Wand,
da, wo sich auch der Bär anlehnt, stehen drei Regale. Genau. Rechts hinter dem
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Bär ist zuerst ein weißes Regal, in dem, ja, da – das hat eins, zwei, drei, vier, fünf,
sechs Regalfächer. Einige sind leer und in anderen sind auch wieder einige, ja,
Spielzeugartikel zu sehen. Dann links neben diesem weißen Regal ist ein rotes
Regal. Das hat, so wie es aussieht, genauso viele Fächer, und da stehen auch
wieder einige Spiele drin. Zum Beispiel ’n Monopoly-Spiel und ’ne Asterix-Figur
ist da. Und ’n, ja, so ’n Rabe und noch einige andere Sachen. Genau. Und links
neben diesem roten Regal ist auch wieder ’n Regal zu sehen. Aber da erkennt
man nur ’n ganz ganz kleinen Teil, dass man da gar nicht mehr zu sagen kann.
Genau. Dann, wenn man sich noch mal das erste Regal ganz rechts anschaut, das
ich eben beschrieben hab’, da steht ’n ganzes Stück weiter nach rechts zur Wand
auch eine ja so ’n Deckenfluter, der auch noch eine Leselampe angeschlossen
hat. Und die Lampe leuchtet in der Ecke. Genau. Und ganz im Bildhintergrund
erkennt man noch eine Tür. (Ja, das war’s.)

In the center of the room stands a table. It is wooden and squarish. On the
table sits a koala with a red car in front of it. Some objects spread over the table.
On the left part of the table sits the blue Stitch. Right to Stitch stands a yellow
rose in a vase. In front of that lies a cube. On the table at its front part lies a green
frog and left to the frog sits a bear. On the table in the center sits a small figure,
a kangaroo. In front of the table is a chair. On the chair is a soft toy, a lion, and a
robot which lies in front of the lion. On the left, at the wall are three cupboards.
Parts of the cupboards are empty. In the white cupboard (cupboard3) are toys.
In the red cupboard (cupboard2) are some games namely Monopoly (games1)
and an Obelix figure. A lamp stands next to the right cupboard (cupboard3) and
illuminates the corner. At the back of the image a door is visible. (Yeah, that’s it.)

room o table; ↓
table | koala;
koala - car;
table | object;
table | stitsch;
stitsch - rose;
rose - cube;
cube - frog;

frog - bear;
table | kangaroo;
chair | lion;
lion - robot;
wall o cupboard1;
wall o cupboard2;
wall o cupboard3;
cupboard3 o toy;

cupboard3 - cupboard2;
cupboard2 o games1;
cupboard2 o obelix;
cupboard2 o raven;
cupboard2 o object;
cupboard2 - cupboard1;
cupboard3 - lamp;
corner o lamp

Participant 8(m):

Okay. Wir sehen ein’n äh Raum mit Regalen an der Wand und einem Tisch davor
und einen kleinen Hocker. In einer Ecke steht ein Deckenfluter. Äh. Es macht
den Eindruck, als wär’s ein Kinderspielzimmer. Es sind sehr viele Stofftiere
vorhanden. Es gibt einen Hund, einen Bären, ein’n Koala, einen blauen Koala –
oder was auch immer. Äh einen Löwen, mehrere Spiele, die sich – diese ganzen
Sachen verteilen sich über Regal und Tisch. Ja.

Okay. We see a room with cupboards at the wall and a table in front of them.
Further, there is a chair in the room. A lamp stands in the corner. It seems to be
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a nursery. A lot of soft toys lie around like a dog, a bear, a koala, Stitch, a lion,
some games. The objects are spread over cupboard and table.

room o cupboards; ↓
wall o cupboards;
cupboards - table;
room o chair;
corner o lamp;
dog 0 0;

bear 0 0;
koala 0 0;
stitsch 0 0;
lion 0 0;
games 0 0;
cupboard&table | dog;

cupboard&table | bear;
cupboard&table | koala;
cupboard&table | stitsch;
cupboard&table | lion;
cupboard&table | games

Participant 9(m):

Ja, ich fange an mit einem allgemeinen Überblick. Wir haben hier anscheinend
eine Mischung aus Kinderzimmer mit Stehlampe, die modernes Design sind. Es
gibt hier sehr viele Plüschtiere zu sehen. N – Vordergrund steht äh ein Tisch,
ein ja Holztisch, äh auf dem äh äh ja eins, zwei, drei, vier, fünf Plüschtiere sind.
Nämlich ein Koala mittlerer Größe, ein kleines Känguru, ein Frosch, mittelgroß,
äh ein großer Teddy und äh Stitch von Lilo und Stitch, äh Copyright is by Disney,
glaub’ ich. Äh außerdem einen Plüschwürfel, Drei Oberseite nach oben; die Eins
zeigt auf uns. Äh und eine gelbe Rose, die nicht ganz ins Bild passt. Aber egal.
Dann haben wir außerdem noch ein Spielzeugauto, was vor dem – hier vor dem
Koala auf der rechten Seite liegt. Ähm vor dem Tisch steht ein Hocker, und auf
diesem Hocker ist ein Roboter äh und ein Plüschlöwe. Im Hintergrund sind
drei Regale zu sehen, wobei das linke Regal sehr versteckt ist, also nur noch äh
ganz ein kleiner Teil zu sehen. Äh links und rechts sind weiß, in der Mitte das
ist rot. Äh ebenfalls gefüllt mit sehr vielen Plüschtieren, unter anderem einer
Bauchsprechpuppe eines hm in Form eines Rabens. Dann, äh ich glaube, Barnie
Geröllheimer, nee, doch nicht (Wie heißt denn der andere noch mal?) – Fred
Feuerstein. Und Obelix. Äh das Fach da drunter ist re ebenfalls re is’ relativ
leer. Es steht nur Pikachu und (Ach verdammt, ich kann die ganzen Pokemon-
Namen nicht mehr’) – ja, noch ein PokÃ©mon. Äh im dem Fach wiederum
darunter, das dritte von unten, äh sind mehrere Bücher auf der Querseite gelegt
– auf die Querseite gelegt, man sieht nur noch die Bücherrücken, zum Beispiel
“Die Welt der Tiere”, um ein kleines Beispiel zu nennen. Da drunter wiederum
befinden sich zwei Spiele, und zwar das Pokemon-Monopoly (was ich unbedingt
mal spielen muss, weil ich es überhaupt noch nie was davon gehört habe) und
das Labyrinth der Ringe? Ja gut. Ich kenn’ nur das verrückte Labyrinth, ein
Abklatsch von dem verrückten Labyrinth. Weiterhin ist das Fach sehr leer. Da
drunter das Fach ist komplett leer, das unterste. Äh das weiße Regal rechts
daneben sch äh ist gefüllt mit im obersten Fach einem Plüschhund. Äh rechts
daneben irgendwelche Heftchen und links daneben eine grüne Schale mit or-
angem abgesteppten Rand. Äh da drunter sind wieder o mehrere Spiele äh oben
rechts angelehnt. Ein äh Kerzenständer steht daneben und der rechts ist – Rest
ist verdeckt von dem Bären, ebenso wie die weiteren Fächer. Man kann noch
in einem Fach äh Schälchen entdecken. Ja. Äh der Boden, auf dem alles steht,
ist ein heller, ich glaube, Holzboden mit feiner Maserung. Und im Hintergrund
sehen wir noch eine Stehlampe mit Deckenfluter äh und zwei Drehreglern, die
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zum Dimmen bestimmt sind. Ganz rechts im Bild ist eine Tür mit Glasscheibe.
(Damit wäre die Beschreibung dieses Bildes beendet.)

I start with an overview. It seems to be a nursery with a lamp. Further, there are a
lot of soft toys. In the front stands a wooden table with five soft toys on it which
are a koala of mid-size, a small kangaroo, a mid-size frog, a big bear, Stitch from
Disney, a cube, a yellow rose, and a car which lies in front of the koala. In front
of the table stands a chair and on this chair is a robot and a lion. In the back are
three cupboards where the left one (cupboard1) is hidden. The left and the right
cupboard (Cupboard3) are white and the middle one (cupboard2) is red. The
red cupboard (cupboard2) is filled with soft toys like a raven, Fred Feuerstein,
and Obelix. Below Obelix are Pokemon figures and below them some books
and below the books two games namely Monopoly and Labyrinth (games1). All
other selves are empty. In the white cupboard (cupboard2) right of the red one
(cupboard32) is a dog. Right of the dog are some booklets (work-material) and
left of the dog a bowl. Below the bowl are some games and next to them a candle.
The floor is bright maybe wooden, in the back stands a lamp, and at the right
side of the image is a door with a glass. (So, the description is finished.)

front o table; ↓
table | koala;
table | kangaroo;
table | frog;
table | bear;
table | stitsch;
table | cube;
table | rose;

koala - car;
table - chair;

chair | robot;
chair | lion;
back o cupboard1;
back o cupboard2;
back o cupboard3;
cupboard2 o softtoy;
cupboard2 o raven;
cupboard2 o fred;
cupboard2 o obelix;
obelix - pokemon;

pokemon - books;
books - games1;
cupboard3 o dog;
dog - workmaterial;
workmaterial - bowl;
bowl - games;
games - candle;
back o lamp

Participant 10(m):

Hm. In diesem Raum ähm gibt’s ’n Holzfußboden, da drauf steht ein Holztisch.
Davor steht ein Hocker, ebenfalls aus Holz. An der Wand links steht ein Holzre-
gal, beziehungsweise mehrere. Das ganz linke, was man nur teilweise sieht, ist
ähm hell, das mittlere ist dunkel, leicht rötlich, und das rechte von den dreien
ist wieder hell, holzfarben, gleiche Farbe wie Tisch, Hocker und Fußboden. Äh
weiter links daneben in der Ecke hinten steht ’ne Metalllampe, Deckenfluter
mit ’ner – mit ’nem extra Arm dran für ’ne Tischbeleuchtung. Hm. Ganz rechts
am Bildrand scheint ’ne Tür zu sein. Mit ’nem Glaseinsatz, der ist zugehängt
mit ’nem Art Rollor oder, ja, irgend so was. Im Raum befinden sich hauptsäch-
lich sowohl auf dem Tisch als auch auf dem Hocker als auch aufm Schrank
irgendwelche Stofftiere. Auf dem Tisch sitzt zum Beispiel ’n Koalabär und ’nen
anderer Teddybär. Auf dem Hocker liegt so was wie ’ne Löwe. Außerdem finden
sich in dem Raum noch weitere Spielzeuge. In dem Schrank zum Beispiel steht
ein Monopoly-Spiel und, na ja, irgend ’n anderes Spiel halt noch. Was sitzt da
noch? Es sitzen noch ’ne ganze Reihe anderer Stofftiere überall rum. Im Schrank
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gibt’s irgendwelche Pokemons, würde ich sagen. Ähm, Obelix sehe ich, Fred
Feuerstein, irgendein Rabe sitzt da noch. Ah, da hinten sind noch ’n paar andere
Brettspiele oder Gesellschaftsspiele. Hm ja. ’n Frosch liegt auf dem Tisch noch,
’n kleiner Würfel, kleineres anderes Stofftier, steht ’ne Vase mit ’ner Rose drin
auch noch auf dem Tisch. (Und, ja, das war’s.)

In this room is a wooden floor where a table stands on the floor. A chair is
standing in front of the table also wooden. On the left side at the wall stand
several wooden cupboards. The left one is bright (cupboard1), the middle on
is dark (cupboard2), and the right one (cupboard3) is light and wooden like
the table, the chair, and the floor. Further, a lamp stands in the corner with an
extra arm to illuminate the table. On the right image border a door with glass
is visible. In the room soft toys are mainly on the table, on the chair, and in the
cupboard. A koala and a bear sit on the table. A lion lies o the chair. Additionally,
further toys are in the room. For example, a Monopoly game (games1) is in the
cupboard. What’s else there? Several soft toys are sitting around. Pokemons
are in the cupboard. I see Obelix, Fred Feuerstein and next to it a raven. Some
further games can be found over there. A frog, a small cube and some other soft
toys are lying on the table. Furthermore, a vase with a rose is standing on the
table. (That’s it.)

room o floor; ↓
floor | table;
table - chair;
wall o cupboard;
cupboard1 - cupboard2;
cupboard2 - cupboard3;
cupboard3 - lamp;
corner o lamp;
room o softtoy;

table | softtoy;
chair | softtoy;
cupboard o softtoy;
table | koala;
table | bear;
chair | lion;
room o toy;
cupboard o games1;
cupboard o pokemon;

cupboard o obelix;
cupboard o fred;
cupboard o raven;
cupboard o games;
table | frog;
table | cube;
table | rose
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(a) subject 1(m) (b) subject 2(m) (c) subject 3(m) (d) subject 4(m) (e) subject 5(m)

(f) subject 6(m) (g) subject 7(m) (h) subject 8(m) (i) subject 9(m) (j) subject
10(m)

Figure B.2: These raw tree sets are generated from the descriptions about the playroom given
during the main study.
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b.3 main study : living room

This section lists the descriptions collected during the main study where the
participants have seen a picture of the living room presented on a screen. They
have been told to describe freely what they see in the room.

Participant 1(m):

Hm. Das sieht aus wie ein Wohnzimmer, würd’ ich mal tippen. (Da sind viel zu
viele Sachen drauf.) Äh, da steht eben auch in der Ecke ’n Eckregal mit ganz viel
Tinneff drinne: mit Büchern, auch Kuscheltieren, ’ner Puppe, ’ner Musikanlage,
teilweise mit so Glasfronten verdeckt, mit schönen Blumen drauf. Unten steht
ganz viel Alkohol im Regal. Dann steht da links ’n großes gemütliches rotes
Sofa neben, wo auch zwei Kissen drauf sind und ’ne Puppe. Davor steht ein
Ikea-Tischlein mit Deko drauf, mit irgendwelchen Zitronen – nee, gar nicht –
Orangenschalen, getrockneten. Im Hintergrund ist äh hängen auch zwei Bilder.
Einmal eins mit irgendwelchen Bären in Kanada oder so. Daneben hängt ’n Bild
mit, ich glaube, Vögeln drauf. Und darunter hängt noch ’n Fächer. Dann steht
da auch, ist da auch so ’ne Stehlampe hinter dem Sofa. Und ich sehe zugezogene
Gardinen. Rechts ist ’n Fenster, links ist wahrscheinlich auch ’n Fenster, wenn da
Gardinen vorhängen. Und rechts ist noch ’ne Heizung, ist ’n Teppich. Sieht aus
wie ’n Wohnzimmer. (Fertig.)

It looks like a living room. (There are too much things in it.) There is a cupboard
in the corner with a lot of objects in it like: books, soft toys, a doll, a radio. Part
of it is covered with flowered glass. The cupboard contains at the bottom a lot of
bottles with alcohol. On the left side you can find a big red sofa with two pillows
and a doll on it. In front of the sofa is table with a bowl on it. Two pictures hang
in the back. One shows bears in Canada (picture1) and the other next to the first
picture (picture1) shows some birds (picture2). A fan hangs below the second
picture (picture2). A lamp stands behind the sofa. On the left and the right side
are windows with closed curtains. Further, there is also a heater and a carpet.

corner o cupboard; ↓
cupboard o object;
cupboard o books;
cupboard o softtoy;
cupboard o doll;
cupboard o radio;

cupboard o alcohol;
cupboard - sofa;
sofa | pillow1;
sofa | pillow2;
sofa | doll;
sofa - table;

table | orangebowl;
back o picture1;
picture1 - picture2;
picture2 - fan;
sofa - lamp

Participant 2(m):

Hier haben wir auch einen Raum. Ähm. In der Ecke des Raumes steht ein
Regal. Das Regal hat ähm mehrere Glastüren. Hinter den Glastüren sind Gläser,
Flaschen, CDs und Tassen. Ähm. Im Regal selbst sind noch Bücher, Bilder, eine
Uhr, ein Radio, äh eine Puppe und mehrere Kuscheltiere. Und rund um das
Regal ist eine Lichterkette. Vor dem Regal liegt ein Teppich mit einem Tisch
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da drauf und auf dem Tisch ist eine Schale mit getrockneten Orangenscheiben.
Ähm links daneben steht ein rotes Sofa mit zwei großen Kissen und einer Puppe.
Und hinter dem Sofa haben wir eine Stehlampe. An der Wand hängen noch zwei
Bilder und ein Fächer. Ja.

Here, we have a room. In the corner of the room is a cupboard. It has seve-
ral doors made of glass. Behind the doors are glassware, bottles, CDs, and cups.
In the cupboard are books, pictures, a clock, a radio, a doll and several soft toys.
Fairy lights are mounted around the cupboard. In front of the cupboard lies a
carpet with a table on it and a bowl is placed on the table. Left of the table is a
red sofa with two large pillows (pillow1 and pillow2) and a doll on it. Behind
the sofa is lamp. Two pictures (picture1 and picture2) and a fan are hanging at
the wall.

corner o cupboard; ↓
cupboard o books;
cupboard o picture;
cupboard o clock;
cupboard o radio;
cupboard o doll;

cupboard o softtoy;
cupboard - carpet;
carpet | table;
table | orangebowl;
table - sofa;
sofa |o pillow1;

sofa |o pillow2;
sofa |o doll;
sofa - lamp;
wall o picture1;
wall o picture2;
wall o fan

Participant 3(m):

Ja, als Erstes sticht einmal das rote Sofa ins Auge, auf dem zwei gestreifte
Kissen liegen und eine Puppe in Blau gekleidet mit Mützchen. Der Raum an
sich ist weiß gestrichen. Es hängen zwei Bilder an der Wand, eins mit Bären
im Fluss, und das andere könnten Vögel im Baum sein. Dann hängt da noch
’n Fächer an der Wand und hinter dem Sofa an derselben Wand steht noch ’ne
Stehlampe. ’ne grau-weiß gestreifte Gardine links und rechts vom Bild. Ähm.
Auf’m Fußboden liegt ’n Teppich, ’n beiger. Mit’m Bei mit’m Tisch drauf, in
dem ’ne Schale mit Orangenschalen drauf steht. Und hinten an der Wand in der
Ecke steht ein großes Regal mit Vitrinentüren. Da hängt ’ne Lichterkette drüber.
Und in dem Regal stehen diverse Deko-Sachen und Kuscheltiere, Bücher, ’ne
Uhr, ’n Radio, Flaschen, so ’ne kleine Minibar, CDs, Geschirr auch, ja, der Kölner
Dom, glaub’ ich. In diesem komischen Bild. Dann ’n Foto in einem Bilderrahmen.
Ganz oben steht noch ’ne Kerze. Ja. Ja.

First, you see a red sofa with two stripped pillows (pillow1 and pillow2) and
a blue doll lying on it (doll1). The room is painted in white. Two pictures are
hanging on the wall one shows bears in a river (picture1) and the other birds in
a tree (picture2). A fan is also hanging at the wall and a lamp stands behind the
sofa. At the left and right side of the picture stripped curtains frame it. On the
floor lies a beige carpet. A table with a bowl on it stands on the carpet. Back at
the wall stands a big cupboard with cabinet doors in the corner. The cupboard is
framed with fairy lights. Several decorative objects and soft toys, books, a clock,
a radio, bottles, CDs, dishes, and a box can be found in the cupboard. Further, a
funny picture (picture3) and a candle are in the cupboard.
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sofa | pillow1; ↓
sofa | pillow2;
sofa | doll1;
wall o picture1;
wall o picture2;
wall o fan;
sofa - lamp;

wall o lamp;
floor | carpet;
carpet | table;
table | orangebowl;
wall o cupboard;
corner o cupboard;
cupboard o decoration;

cupboard o softtoy;
cupboard o books;
cupboard o clock;
cupboard o radio;
cupboard o picture3;
cupboard o candle

Participant 4(m):

Das sieht aus wie ’n Wohnzimmer mit einer knallroten Couch, auf der ’ne
Puppe sitzt. Hinter der Couch ist ’ne kleine Stehlampe. An der Wand hängen
Bilder und ein Fächer. Und in der Zimmerecke steht ein Regal mit allerhand
Kram drin. Und vor dem Sofa steht ein Tisch mit ’ner Schale drauf. Und auf’m
Boden liegt ein heller Teppich. Und an den Fenstern sind Vorhänge, grau gestreift.
(Fertig.)

It looks like a living room with a red sofa which has a doll on it. Behind
the sofa is a small lamp. At the wall are pictures and a fan. In the corner stands
a cupboard with a lot of objects in it. A table with a bowl on it stands in front of
the sofa. A light-colored carpet is lying on the floor. Gray-stripped curtains are
hanging in front of the windows.

livingroom |o sofa; ↓
sofa | doll;
sofa - lamp;
wall o picture;

wall o fan;
corner o cupboard;
cupboard o object;
sofa - table;

table | bowl;
floor | carpet

Participant 5(m):

Okay, wo soll ich anfangen? Also, das ist äh ein Raum. An der Wand hängt
ein Bild, auf dem sind Bären zu sehen. Daneben ist ein weißes oder ’n ein
Bild mit weißem Rahmen und zwei Vögeln, glaube ich, ich kann’s nicht genau
erkennen. Ähm davor befindet sich eine Lampe. An der Wand unter dem Bild
hängt noch ein Fächer. Ähm an der hinteren Wand ist ein großer Schrank äh
mit drei Fächern und – (Soll ich dir das alles sagen, was da drin steht?) Hm
in dem ersten Teil ist Gesch – äh oder sind Gläser, Geschirr, vermute ich mal.
Daneben sind Fotoalben, eine Kerze. Darunter sind auch Bücher oder Fotoalben.
Daneben ist noch ein Stofftier, ein Elch. Darunter befindet sich ein Bild, darunter
ein Weihnachts-Teddybär. Ähm darunter noch mal irgendwie Fotoalben oder
Bücher und eine Kiste. Darunter – kann man nicht genau erkennen, ich glaub,
eine Trommel. Dann ähm der rechte Teil des Schrankes: Oben ist ein Bild, äh
ein Buch. Darunter befinden sich weitere Bücher, ein Wecker und eine Puppe.
Darunter ein Radio – Kassettendeck, wie auch immer. Daneben ein Stofftier, ein
Koalabär. Ist ’n, nee, ist ’n Koalabär? Pandabär. Dann unten ist ja noch mal so ’n
so ’n Vitrinenteil mit ähm Geschirr, verschiedenem. Darunter ähm, kann nich’
erkennen, ich vermute irgendwie Video-, DVD-, Kassettenhüllen, keine Ahnung.
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Und unten im letzten Regal ähm befinden sich Flaschen. Dann ähm in der Mitte
links des Raumes befindet sich ein rotes Sofa mit zwei Kissen. Darauf eine
Puppe. Hm. Rechts daneben ein Tisch, darauf steht eine Schale mit Orangen, ja,
so Orangen Orangen. Ähm. Am Boden befindet sich ein Teppich. Dann äh rechts
im Raum sieht man noch ein Fenster beziehungsweise die Vorhänge. Darunter
die – eine Heizung. Und links befinden sich auch noch mal diese Vorhänge. (Ja,
ich glaub, das war’s.)

Okay, where should I start? Well, it is a room. A picture showing bears (picture1)
hangs at the wall. Next to it is a picture showing birds (picture2). Next to this
picture is a lamp and below it at the wall a fan. At the backwall stands a big
cupboard with three shelves – (Should I describe the content?). Well, in the first
part (part1) are glasses. Next to them are albums and a candle. Below them are
books and further albums and aside of the albums is an elk. Below the elk you
can find a picture, below the picture a Christmas bear, and below the bear further
books and a box. In the right part of the cupboard (part2) a book is placed on
the top. Below this book are further books, a clock, and a doll. Below the doll is
a radio and next to the radio a soft toy panda bear. The bottom of the cupboard
contains dishes, CDs, and bottles. In the center of the room you can find a red
sofa with two pillows (pillow1 and pillow2) and a doll on it. Well, on the right
side of the sofa is a table with an orange bowl on it. A carpet is located on the
floor. On the right side of the room is a window with a curtain and a heater
below the curtain. On the left side of the room you can find the same curtain.
(Well, that’s it.)

wall o picture1; ↓
picture1 - picture2;
picture2 - lamp;
wall o fan;
picture2 - fan;
backwall o cupboard;
part1 o glasses;
glasses - albums;
glasses - candle;

candle - albums;
albums - elk;
elk - picture;
picture - bear;
bear - books;
part2 o books;
books - books;
books - clock;
books - doll;

doll - radio;
radio - panda;
room o sofa;
sofa |o pillow1;
sofa |o pillow2;
sofa | doll;
sofa - table;
table | orangebowl;
floor o carpet

Participant 6(m):

Also, ich sehe eine Puppe auf einem roten Sofa mit zwei großen rot-orange-
gelb-grauen Sofakissen, ein äh Bild mit drei Braunbären drauf, einen Fächer,
der an der Wand hängt. Über dem Fächer hängt ein Bild, ich nehme an, es
sind zwei Vögel in einem Baum, auf jeden Fall mit grün und braun. Ähm unter
den Braunbären ist eine Stehlampe mit weißem Schirm, klein. Dann gibt’s da
eine Schrankwand ähm mit einem Elchplüschtier drinne und einer Puppe und
einer Uhr, ein’n Pandabär und diversen anderem Kram. Ähm. Ein Ikea-Tisch äh
mit – (Wie heißt das noch gleich drauf?), ähm, Potpourri – Orangen-Potpourri.
Vorhänge an den Fenstern und äh ein Heizkörper. Um den Schrank geht eine
Lichterkette. Steht noch ein Bilderrahmen drin, ein Plüschteddy. Ähm, drei
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Bücher, vier, fünf. (Ist das ausführlich genug oder noch ein bisschen mehr? Ja,
ich würde sagen, im Großen und Ganzen wär’s das.)

I see a doll on the red sofa with two big red-orange-yellow-gray pillows (pillow1
and pillow2). I see a picture showing bears (picture1) and a fan hanging at the
wall. A picture showing birds (picture2) is hanging above the fan. Below picture1
is a lamp. Further, there is a cupboard with an elk soft toy, a doll, a clock, a
panda bear, and diverse other objects in it. Further, there is an IKEA table with on
orange bowl on it. You can see curtains at the window and a heater. Fairy lights
are framing the cupboard. Moreover, the cupboard contains a picture frame, a
teddy bear, and books. (Is it detailed enough? Well, then, that’s it).

sofa | doll; ↓
sofa | pillow1;
sofa | pillow2;
picture1 0 0;
wall o fan;
fan o picture2;

picture1 - lamp;
cupboard o elk;
cupboard o doll;
cupboard o clock;
cupboard o panda;
cupboard o object;

table |o orangebowl;
cupboard o picture3;
cupboard o bear;
cupboard o books

Participant 7(m):

Also, in dem Raum steht vorne links im Bild ein rotes Sofa, auf dem liegen
zwei gestreifte Kissen. Ja, die sind so rot-orange-weiß gestreift. Zwischen diesen
Kissen sitzt eine Puppe mit langen blonden Haaren. Die hat einen blauen Pullover
an und eine blaue Hose mit einem weißen Aufdruck und weiße Schuhe und
auf dem Kopf trägt sie eine, ja, eine Mütze mit einem weißen Bommel. Genau.
Hinter dieser Couch ähm steht links an der Wand eine Leselampe mit einem
kleinen Lampenschirm. Der ist weiß. Genau. Hinten an der Wand hinter dem
Sofa rechts von dieser Lampe ähm steht auch noch, ich glaub, das ist so was wie
’n Hula-Hoop-Reifen oder so. Man kann nur die obere Ecke erkennen, deswegen
weiß ich’s nicht ganz genau. Links von der Lampe sieht man noch ’n Stück
Gardine. Die ist auch so grau-weiß gestreift. Rechts von der Gardine und über
der Lampe ist ein Bild, auf dem sind ein paar Bären zu sehen und rechts von
diesem Bärenbild ist noch ’n anderes Bild an der Wand, das ist in der Mitte
grün. Ich denke auch, dass da Tiere drauf sind, das kann man aber nicht ganz
genau erkennen. Und unter diesem Bild, das ich gerade beschrieben hab’, hängt
ein Fächer an der Wand. Genau. Rechts von dem Bild und dem Fächer in der
Zimmerecke steht ’ne Vitrine. Ja, oder ’n Regal, ich weiß gar nicht, wie ich’s
benennen soll. Es hat zum einen ein paar Glastüren, zum anderen sind’s offene
Regalfächer, die da sind und n in diesem Regal steh’n halt ganz verschiedene
Dinge: so Stofftiere und Bücher, noch ’n Radio, ’n Bilderrahmen, und auch ’n
paar Alkoholflaschen und ’n bisschen Geschirr. Das ist ganz ganz gemixt, was da
drin steht. Über diesem Regal hängt eine Lichterkette, sind, glaub’ ich, ein paar
Sterne dran befestigt, die leuchten könnten. Genau. Rechts von dieser Vitrine
genau auf – an der Wand, auf die man so relativ frontal drauf guckt, ist rechts,
wahrscheinlich vor einem Fenster, auch eine gestreifte Gardine. Genau. Die ist
etwas kürzer als die Gardine am linken Bildrand, die geht nur bis über eine

174



B.3 main study: living room

Heizung und endet halt etwas höher. Und, wie gesagt, unter der Gardine ist eine
Heizung. Genau. Auf dem Fußboden ist zum einen, ja, ich würd’ sagen, das ist
ein Holzfuß – Fußboden oder Laminat und vor dem vor beziehungsweise auch
’n Stück unter dem Sofa liegt ein, ja, zum größten Teil beiger Teppich. Dem sind
so einige Ornamente, ’n paar ja rote Streifen, ’n paar orange Streifen und ’n paar
blaue Kringel zu sehen. Genau. Und auf diesem Teppich steht ein viereckiger
Holztisch, auf dem eine Glasschale steht und da sind ja so Deko-Orangen zu
sehen. Ja. (Und mehr fällt mir zu dem Zimmer grad nicht ein.)

Well, in the room stands a red sofa where two striped pillows (pillow1 and
pillow2) lie on it. They are red-orange-white striped. A doll with blond hairs
(doll1) sits between the pillows. She wears a blue pullover, blue trousers, white
shoes, and a bonnet. Behind the sofa left at the wall stands a lamp. Back at the
wall, behind the sofa, and right of the lamp stands a hulahoop from which you
can see only the upper part. Left of the lamp you can see a part of a curtain. It is
gray-white striped. Right of the curtain and above the lamp is a picture showing
bears (picture1) and right of picture1 is another picture which is green and shows
animals (picture2). Below this picture (picture2) a fan is hanging at the wall. At
the right of the fan and the picture in the corner of the room stands a cupboard.
The cupboard has doors and is partially open. It contains diverse objects: soft
toys, books, a radio, a picture frame (picture3), alcohol bottles, and glasses. The
cupboard is framed with fairy lights. At the right side of the cupboard probably
in front of the window a striped curtain is hanging and you can see a heater. On
the floor lies a carpet and on the carpet stands a table with an orange bowl on it.
(Can’t think of more details for the room.)

room o sofa; ↓
sofa | pillow1;
sofa | pillow2;
pillow1 - doll1;
doll1 - pillow2;
sofa - lamp;
wall o lamp;
wall o hulahoop;
sofa - hulahoop;
lamp - hulahoop;
lamp - curtain;

curtain - picture1;
lamp - picture1;
picture1 - picture2;
wall o picture2;
picture2 - fan;
wall o fan;
fan - cupboard;
corner o cupboard;
cupboard o object;
cupboard o softtoy;
cupboard o books;

cupboard o radio;
cupboard o picture3;
cupboard o alcohol;
cupboard o glasses;
cupboard - curtain;
floor o carpet;
carpet | sofa;
carpet | table;
table | orangebowl

Participant 8(m):

Man sieht ein Wohnzimmer mit natürlich einem kaum auf-fallenden roten
Sofa, äh einem Eckschrank mit Glasfront, äh einen kleinen Tisch, einen Läufer,
äh ein paar Vorhängen und Bildern an der Wand. (Weitere Details, oder? Ah ja.)
Auf dem roten Sofa sitzt eine blaue Puppe äh vor zwei Kissen. Dahinter steht
eine kleine Leselampe. Das Regal ist gefüllt mit Stofftieren und Puppen, ein
Radio, etwas Geschirr. Und auf dem kleinen Beistelltisch steht noch eine Schale
mit Deko-Orangen, getrocknet. Nanu-Nana, drei-achtzig.
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You can see a living room with a flashy red sofa, a cupboard, a small table,
a carpet, curtains, and pictures at the wall. (Further details?) On the red sofa sits
a blue doll (doll1) in front of two pillows (pillow1 and pillow2). Behind the sofa
stands a lamp. The cupboard is filled with soft toys, dolls, a radio, and glasses.
On the small table stands an orange bowl (from Nanu-Nana, three-eighty).

livingroom o sofa; ↓
livingroom o cupboard;
livingroom o table;
livingroom o carpet;
livingroom o curtain;

wall o picture;
sofa | doll1;
pillow1 - doll1;
pillow2 - doll1;
sofa - lamp;

cupboard o softtoy;
cupboard o doll;
cupboard o radio;
cupboard o glasses;
table | orangebowl

Participant 9(m):

Okay, wir haben hier einen Raum, in dem – nein, wir haben eigentlich eine
Ecke von einem Raum, in dem eine rote Couch steht. Äh wir haben ein Regal,
gefüllt mit Plüschtieren und Puppen, ähm ’n Stereorecorder. Äh außerdem gibt’s
dort Bilder zu sehen. Wir haben eine Wand außerdem, auch noch äh zwei einger-
ahmte posterähnliche Bilder. Ham einen Bär, drei Bären äh und äh einmal, was
weiß ich denn, was, vielleicht so ’n paar Vögel, die, glaube ich, runter gucken.
Kamera-Bild wurde nach oben aufgenommen in den Baum. So, auf der Couch
sitzt äh ’ne Puppe und sind zwei Kissen zu sehen. Hinter der Couch äh ist eine
Lampe, eine Leselampe, aber eine Stehlampe. Äh, dahinter an der Wand ist
noch ’n Fächer. Ja. Vor der Couch steht ein kleiner Couchtisch mit getrockneten
Orangenschalen. Es scheint Weihnachten zu sein. Äh wir haben außerdem noch
äh is’ noch die Heizung halb im Bild und ein zugezogenes Fenster mit einem
lustigen Vorhang. Äh gut, ich könnt’ jetzt noch weiter –. Ein Teppich liegt auf
dem Boden. Könnt noch weiter auf das Regal, was in der Ecke steht, eingehen.
Da ist eine L äh Leucht äh – (Wie heißen die noch mal?) hier, so ’ne äh so ’ne äh
Leuchtschnur. So ’ne Lampendings (hm ja, weißt schon). Äh und äh die linke
Seite ist zugezogen und eine Glasscheibe, die milchig ist. Äh mittig finden sich
von oben nach unten äh Ordner oder Fotoalben mit dem Rücken äh zum zum äh
Fotoaufnehmer, äh ein lustiger Geburtstagshut, ein Elch, Plüschelch mit weiteren
Alben. Dann da drunter ein Foto von einer Person am Strand mit rotem Pulli,
mehr kann man leider nicht erkennen, weil’s zu klein ist. Äh dann kommt ein
lustiger weißer Weihnachts-Teddy, äh gefolgt von äh einem Bild vom Kölner
Dom wahrscheinlich, äh in Silber gehalten, und weiteren Buchrücken. Äh dann
kommen wir zum rechten Teil des äh Regals. Dort ist die – das obere Fach
fast leer, außer von einem – mit einem Buch, wo “Addams” drauf steht auf’m
Rücken. Dann kommt eine Puppe ähm und äh eine Uhr sowie weitere Bücher
mit Buchrücken äh zu sehen. Äh dann ein Pandabär mit und schon vorher
erwähnte Stereoanlage, Ghettoblaster unten schön versteckt ist das TV äh unter –
hinter ja ein weiterer Glasscheibe, die auch milchig ist, aber diesmal kann man ’n
bisschen mehr durchgucken. Dort steht das Kaffee-Service von Oma. Dann CDs,
ganz viele. Und Spirituosen. Ja. Ich glaube prinzipiell, bis auf den japanischen
Fächer, der noch an der Wand steht, habe ich diesen Raum beschrieben.
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Okay, I see a room. In the corner of the room stands a red sofa. I can see a
cupboard filled with soft toys and dolls, a radio, and pictures. You can see a
wall with two pictures at it, one showing bears (picture1) and one showing birds
(picture2). On the sofa sits a doll and there are two pillows (pillow1 and pillow2).
Behind the sofa stands a lamp and behind the lamp at the wall hangs a fan.
In front of the sofa stands a small table with an orange bowl on it. It seems to
be Christmas. Furthermore, a part of a heater is visible on the photo and the
windows are covered with funny curtains. Well, a carpet lies on the floor and I
can describe the cupboard in the corner in more details. It is framed with fairy
lights and on the left side it is covered with a door. It contains albums, a candle,
and an elk. Below the elk is a picture showing persons (picture3) and next to
the picture a white Christmas bear with a box beside it. In the cupboard are
books with a doll and a clock next to them followed by a panda bear and a radio.
Behind the door dishes, CDs, and alcohol are visible. So except from the fan at
the wall I have described the room exhaustively.

room o sofa; ↓
cupboard o softtoy;
cupboard o doll;
cupboard o radio;
cupboard o picture;
wall o picture1;
wall o picture2;
sofa | doll;
sofa | pillow1;
sofa | pillow2;

sofa - lamp;
lamp - fan;
wall o fan;
sofa - table;
table | orangebowl;
floor o carpet;
corner o cupboard;
cupboard1 o albums;
cupboard1 o candle;
cupboard1 o elk;

elk - picture3;
picture3 - bear;
bear - box;
cupboard2 o books;
books - doll;
books - clock;
doll - panda;
doll - radio

Participant 10(m):

Also. In dem Raum steht ein rotes Sofa. Auf dem Sofa liegen zwei Kissen. Davor
sitzt eine Puppe. Hinter dem Sofa ist ’ne Lampe. An der Wand links hängt ein
Foto von mehreren Bären, daneben hängt ein kleineres Bild mit irgendwelchen
anderen Tieren. In der hinteren Ecke des Bildes steht ein Schrankwand, Regal,
teilweise verglast. Da drin stehen ein paar Bücher, paar Stofftiere, einige Flaschen
unten, ja. Vor dem Sofa steht ’n kleiner quadratischer Holztisch, da drauf steht
’ne Schale mit so trockenen Orangen. Man sieht, dass auf der rechten Seite ein
Fenster sein muss, da is’n Vorhang und da drunter ist ’ne Heizung. Ja. Fußboden
ist mit Teppichboden belegt, da drauf liegt noch ein beiger Teppich. An der
Wand hängt noch ’n Fächer. Auch auf der linken Seite ist – scheint ’n Fenster zu
sein, auch da gibt’s einen Vorhang. (Ja. Das war’s.)

Well, a red sofa stands in the room. On the sofa are two pillows (pillow1 and
pillow2). In front of the pillows sits a doll. A lamp stands behind the sofa. A
picture showing several bears (picture1) is hanging left at the wall. Next to this
picture is a smaller picture showing other animals (picture2). You can find a
cupboard in the corner. In the cupboard are some books, some soft toys, and
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some bottles. In front of the sofa stands a small table with an orange bowl on
it. You can see that there must be a window on the right side as you can see a
curtain and below it a heater. The floor is covered with a carpet. A fan hangs at
the wall. There seems to be a window on the left side of the room as there exists
also a curtain. (That’s it.)

room o sofa; ↓
sofa | pillow1;
sofa | pillow2;
pillow2 - doll;
pillow2 - doll;

sofa - lamp;
wall o picture1;
picture1 - picture2;
corner o cupboard;
cupboard o books;

cupboard o softtoy;
sofa - table;
table | orangebowl;
floor o carpet;
wall o fan
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B.3 main study: living room

(a) subject 1(m) (b) subject 2(m) (c) subject 3(m) (d) subject 4(m) (e) subject 5(m)

(f) subject 6(m) (g) subject 7(m) (h) subject 8(m) (i) subject 9(m) (j) subject
10(m)

Figure B.3: These raw tree sets are generated from the descriptions about the living room given
during the main study.
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