
Universität Bielefeld

Technische Fakultät
Int. NRW Graduate School in
Bioinformatics and Genome Research

Integrative Simulation Framework for Modeling

Dynamic Cellular Phenomena in 3D over Time

Dissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

(Dr. rer. nat.)

vorgelegt an
der Technischen Fakultät

der Universität Bielefeld

von

Bjoern Edwin Oleson

November 2008

Acknowledgments

“Writing a book is an adventure. To begin with, it is a toy
and an amusement; then it becomes a mistress, and then it
becomes a master, and then a tyrant. The last phase is that
just as you are about to be reconciled to your servitude, you
kill the monster, and fling him out to the public.”

Sir Winston Churchill (1949)

I would like to express my gratitude to all those who gave me the possibility
to complete this thesis. I want to thank the International Graduate School in
Bioinformatics and Genome Research for giving me permission to commence
this thesis, to use the departmental infrastructure, and the generosity in funding
my research scholarship.

I am deeply indebted to my supervisors Prof. Dr. Ralf Hofestädt as well as Dr.
Klaus Prank. Their help, suggestions, and encouragement helped me in all the
time of research for as well as writing of this thesis. My sincere gratitude also
goes to Prof. Dr. Christoph Sensen from the University of Calgary, Canada,
for his guidance and valuable working environment I had the opportunity to
enjoy.

I have spent very special years studying for this degree. There are many friends
whom I would like to thank. Dr. Leila Taher shared with me not only the same
office, but also some scientific ideas and joys of daily life. Dr. Mark Möller is
one of the best colleagues I can think of. He has an answer for almost everything
and can listen to questions considerately! I would like to thank Dr. Dirk Evers,
Doris Hengel, and Volker Tölle for being so patient and helpful all along.

Most of all, I would like to thank my parents, Ursula and Robert E. Oleson, as
well as my wife, Elke, for all their love, encouragement, and support. Not to
forget my cute little daughters, Jennifer and Natalie, who are a bright sunshine
in my life. Without all their help and backing this degree would never have
been possible.

“We shall not grow wiser before we learn that much that we
have done was very foolish.”

Friedrich August von Hayek (1944)

iii

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 3
1.3 Structure . 4

2 Dynamics in Systems Biology 5
2.1 Modeling and Simulation . 6

2.1.1 Biology as a Model Featurer 8
2.1.2 Computation as a Model Solver 10

2.2 Cellular Calcium Models . 12
2.2.1 Calcium Signaling . 13
2.2.2 Two Pool Model . 15

3 Related Approaches and Tools 19
3.1 Database and Information Retrieval 19
3.2 Modeling and Simulation Software 21

3.2.1 Deterministic . 23
3.2.2 Stochastic . 25
3.2.3 Frameworks . 27
3.2.4 Comparison . 28

4 Definitions and Implementation 31
4.1 General Overview . 34

4.1.1 Survey of Integral Parts 34
4.1.2 Function Classes . 36
4.1.3 Use-Case Descriptions 39
4.1.4 Program Dynamics . 41

4.2 Considerations and Definitions 45
4.2.1 Geometry Model . 46
4.2.2 Activity Description . 55
4.2.3 Algorithm Handling . 65
4.2.4 User Interfaces . 73

4.3 Application Details . 74
4.3.1 User Interfaces . 78
4.3.2 Applicability . 80
4.3.3 Complexity Considerations 81
4.3.4 Availability . 82

v

Contents

5 Applications, Results, and Analysis 83
5.1 Application Development . 84

5.1.1 Plug-Ins . 84
5.1.2 Programming Languages 86

5.2 Modeling and Simulation . 86
5.2.1 Simple Diffusion Simulation 87
5.2.2 Applying Diffusion-Reaction Systems 89

5.3 Comparing Tools . 93
5.3.1 Comparison Criteria . 94
5.3.2 Comparing Related Works 94
5.3.3 In Comparison to 4DiCeS 100

5.4 Related Work . 101

6 Conclusions 103
6.1 Design Decisions . 104
6.2 Related Attempts . 105
6.3 Challenges and Accomplishment 108

6.3.1 Model Complexity . 108
6.3.2 Performance Evaluation 110

6.4 Outlook . 110

A Algorithms in Detail 113
A.1 Reaction Algorithms . 113
A.2 Diffusion Algorithm . 118

B Backus–Naur Form 121

C Unified Modeling Language 123
C.1 Use-Case Diagrams . 123
C.2 Class Diagrams . 125
C.3 Sequence Diagrams . 126
C.4 Component Diagrams . 127

List of Abbreviations 129

List of Figures 133

List of Tables 135

Bibliography 137

vi

CHAPTER 1

Introduction

1.1 Motivation

The emerging field of systems biology allows for the application and combi-
nation of experimental, theoretical, and modeling techniques. A key goal of
systems biology is to understand biological processes as whole systems instead
of isolated parts. With such a systems-level analysis, the study of biological
phenomena at the molecular, cellular, or behavioral levels becomes more feasi-
ble (Kitano, 2002b; Kell, 2004). Improvements in the measurement of molecular
interactions and rates have revolutionized our insight into the cell and its dy-
namics. An enormous amount of information has been gained over the past
decades adding to the already-known mechanisms. This leads to a vast set of
parameters making it difficult to evaluate new hypotheses on intuition alone.
Thus, applying modeling techniques and computer simulations help to confirm
such hypotheses (Kitano, 2002a; Shapiro et al., 2002).

In recent years much progress in the development of cell-biological modeling
and simulation tools has been achieved. A multitude of existing programs can
already fulfill the major requirements of execution speed and result accuracy.
However, often such programs are highly specialized in their methodology and
the applications they were designed for. There is no system that allows for the
use of more than one algorithm in a simulation at a time. Furthermore, the
existing tools are still behind on the development of three-dimensional (3D) visu-
alization techniques. In comparison to existing two-dimensional (2D) simulation
applications, the 3D approaches are still at their early stages. The additional
spatial information allows for a more direct referencing of the model to its real
object. Methods applied to 3D share many characteristics with 2D techniques.
Many existing 2D methods therefore can be either adopted or carried forward.

Along with mechanistic models it is often possible for system behavior to be for-
malized into solvable differential equations. On the basis of such equations the
evolution of time is regarded as predictable as well as continuous and is there-
fore a very fast and precise method (Ghosh and Tomlin, 2004). Nevertheless,

1

1 Introduction

deterministic approaches to model and simulate the dynamics of intracellular
regulatory processes have their limitations. For the reason of combinatoric in-
crease in the number of equations and the number of contained players this
process becomes highly impractical. If only small numbers of particles are in-
volved, deterministic modeling approaches and simulation might fail. Stochas-
tic approaches, using closer knowledge of the subcellular architecture, are more
appropriate in these situations (Kiehl et al., 2004).

A significant obstacle with given modeling and simulation tools is that they
seem to be able to handle only a small set of applications. They were developed
for simulating special models and lack the ability to integrate extra techniques
for solving other problems. In fact, often systems focus their attention on
handling a special problem to all its details in minimal computational time
(Pettinen et al., 2005). The currently used programs therefore vary noticeably
in their applicability for specific types of modeling. Moreover the integration of
such programs is highly demanding. They are closed systems and often do not
offer component interfaces. In practice it could be beneficial to allow for such
interfaces to combine various different tools to just one tool only. A compromise
to the absence of direct interfaces is the possibility of exchanging information
via standardized file formats. For this, many tools use the Systems Biology
Markup Language (SBML) as a standard (Hucka et al., 2004). Often, by the
use of such standardized formats, important information to the model cannot
be handled correctly and might get lost. Especially with SBML, the geometrical
information cannot be saved entirely and subsequently has to be reconstructed.

Applications for such a modeling and simulation tool that allows for both 3D
visualization and concurrent algorithms are imperative. The applications lie
in the areas of electrical excitable cells, circadian rhythm, cell cycle, cellular
motility, membrane transporters, metabolic pathways, and signal transduction
networks. In comparison to 2D methods, the use of a 3D geometry provides
considerably more significant data. The possibility of simulating different com-
partments of a cell with diverse algorithms can reduce computational effort
dramatically. Consequently, this allows for both improved modeling and more
information output on the spatio-temporal behavior of a system. Thus it is a
scientific challenge to integrate concurrently running algorithms in combination
with 3D visualization.

2

1.2 Objectives

This work addresses the problem of an in silico biology system-level analysis on
the base of cellular signaling networks. Grounded on biological observations,
computational simulation models for the calcium(II) (Ca2+) signaling pathway
were developed in an attempt to understand the non-linear dynamics of the
system.

To create this kind of an all-encompassing application, several existing sim-
ulation systems were evaluated for their strengths and weaknesses. Current
state-of-the-art cell simulation applications are either limited to a 2D represen-
tation of a cell or do not use any cellular geometry at all. The only exceptions
to this finding are the deterministic simulator “VirtualCell”, the stochastic
simulators “MCell” and “SmartCell”, as well as this approach of a hybrid four-
dimensional (4D) Cell Simulator (4DiCeS). Despite the great variety of software
packages available for modeling, simulation, and analysis of data (Hucka et al.,
2004) as described above, there was no application that features the complete
and variable integration of different simulation methods in a 3D environment.

The key improvement, which 4DiCeS has over the other existing systems, is the
ability not to be fixed on either deterministic or stochastic modeling and sim-
ulation approaches. A system of specialized interfaces therefore was designed
to allow the bonding of interchangeable algorithmic modules of various types.
The internal representation of the model is designed for the easy exchangeabil-
ity of data. Furthermore, the integration of cell model file format standards is
permitted by exchangeable plug-ins. The implemented system includes an Ap-
plication Programming Interface (API) for writing individual plug-ins to utilize
different simulation algorithms. This facilitates the implementation of tailored
programs and specific algorithms that can be developed for data mining as
well as visualization. The resulting 4DiCeS framework presented in this work
describes a concept for the integration of heterogenous data into an easy-to-use
software.

3

1 Introduction

1.3 Structure

This thesis is primarily concerned with the simulation of cellular phenomena.
An application is provided to utilize hybrid mathematical models and to sim-
ulate 4D spatial dynamics within a cell. The work reveals that a 3D cellular
geometry holds extended information of importance, and is closest to reality
in its model and simulation. Also, an application framework will be shown
that allows for the integration of various particle reaction and diffusion algo-
rithms. Such algorithms can then be applied to a model either in sole or even
in concurrency.

The work is divided into three parts. The first part (Chapters 1, 2, and 3)
provides this motivation and an introduction to the topic of cellular dynamics,
and its modeling and simulation. Relevant current modeling and simulation
application will be introduced. The second part consists of Chapter 4 and
focuses on the formal description, design, and the methodology of the 4D cell
simulator. The third part (Chapters 5 and 6) presents a comparison of related
works with the results of the project, discusses this work, and gives a brief
outlook on further improvements to the system.

A condensed summary of all chapters of this work is provided with the following
overview:

Chapter 2 reviews biological concepts of systems biology as well as mathe-
matical aspects of modeling, simulation, and analysis of cellular dynamics.

Chapter 3 describes a number of existing systems that represent state-of-the-
art biochemical modeling and simulation applications.

Chapter 4 focuses on the formal description as a basis for the design of the
4DiCeS framework for systems biology.

Chapter 5 comprises the results that were obtained during development and
testing 4DiCeS.

Chapter 6 evaluates and discusses the 4DiCeS platform including some ideas
that will illustrate further development and directions.

4

CHAPTER 2

Dynamics in Systems Biology

During the past century much progress was achieved in the measurement of
cellular processes, molecular interactions, as well as their kinetics. Thus, a
revolution was initiated in the understanding of the dynamics within biological
cells. The following Figure 2.1 of a pyramid composed of different molecules
wants to give insight into the complexity of cellular organization.

Figure 2.1: Life’s complexity pyramid. The genomic information is both stored
and translated into functional units such as proteins and metabo-
lites. These units form operational molecules, consisting of regula-
tory systems or metabolic pathways. On top of these rather small
units, large scale organizations implement the characteristic features
of an organism. Adapted from Oltvai and Barabási (2002).

The fundamental units are arranged to either metabolic and signaling pathways
or to motifs in genetic-regulatory networks. Motifs and pathways are linked to
operational groups that are responsible for discrete cellular functions (Hartwell
et al., 1999). Such groups are then nested hierarchically and characterize the

5

2 Dynamics in Systems Biology

large-scale organization of a cell (Ravasz et al., 2002).

While creating models of cellular dynamics, one has to understand complex
properties. Such properties include the combination of regulatory mechanisms
and interlocking transport in and among cells. Electrical activity, signal trans-
duction, or other biochemical networks are examples of intricate behaviors tak-
ing place on the cellular level. In general such dynamic phenomena refer to
arbitrary processes occurring and therefore changing over time. This forms the
highly dynamic basis for living cells. To maintain the typical characteristics of
a cell’s life such as growth, movement, responsiveness, cell division, and inter-
cellular communication, cells must continuously obtain energy from their direct
neighborhood. Therefore cells need to act far from static thermal equilibrium
as thermodynamically open systems. Hence, cells require a huge amount of
energy to sustain the gradients of metabolites and ions in order to function
properly (Fall and Keizer, 2002).

The following two Sections 2.1 and 2.2 give an overview on the scope of modeling
and simulation of such dynamic systems within cells. By doing so, the need
for simulation tools, such as the 4DiCeS software presented here, handling such
models becomes apparent.

2.1 Modeling and Simulation

Theoretical methods joined with experimental measuring have offered compre-
hensive perception of dynamics for many years (Ortoleva et al., 2003). Comput-
ers have demonstrated to be a necessity in assisting the dissection of molecular
processes. Yet, the bare amount of quantitative experimental cellular informa-
tion allows for the cooperation of computer science and biology (Chong and
Ray, 2002). The interaction of theory, experiment, and computation succeeds
a conceptual formulation analog to successfully proven physical models (see
Table 2.1).

Here all modeling is an abstraction of reality. The only exact model of any
system is the system itself. So when a model of a system is designed, a choice
must be made regarding the level of detail and feature types to be included
into that model. To a large extent, this is prescribed by the characteristics of
the examined system, the type of experimental data available, and the type of
questions that are addressed to modeling (Bolouri and Davidson, 2002).

6

Step Task Description

I Experimental
Work

Figuring out the most plausible out of all possible
molecular mechanisms as an initial step.

II Schematic
Description

Define a schematic description that characterizes the
entire model from such selected mechanisms.

III Mathematical
Expressions

Translate the elementary steps of the mechanism into
mathematical expressions.

IV Differential
Equations

Combine the changes in time described by such ex-
pressions into differential equations.

V Analysis Reveal the model’s success for the biological system
from the differential equations’ study.

Table 2.1: Conceptual formulation of models. Here, the interdependency of
experiment, theory, and computation describe the production of a
conceptual formulation of models. All given steps depend highly
on a close collaboration with experimentalists working at the same
problem. Adapted from Fall and Keizer (2002).

The problems theorists encounter in biology are therefore very alike to that
in physical sciences. At this level equations are analyzed, if possible simpli-
fied, solved, and, most importantly predictions can be made. These predictions
are checked by further experiments. Moreover, such experiments may disclose
discrepancies that in turn will require changes to the model (Alvarez-Vasquez
et al., 2005). The procedure addressed here is an improving cycle of approxima-
tions where the theoretical model acts as a quantitative hypothesis (see Figure
2.2).

The history of simulation and in silico analysis of biological systems dates back
to the earliest mechanical and analogue computers in 1940 (Chance, 2004). The
recent progress in quantitative simulation and modeling are due to advances
in modern information technology and was enhanced by the recent burst of
molecular data. It becomes obvious that future progress in the understanding
of biological functions will rely on the development and the use of computational
methods (Arkin, 2001). Therefore, the following two Sections 2.1.1 and 2.1.2
give a closer look at both, the roles of biology as well as computation to the
modeling of biological cellular systems.

7

2 Dynamics in Systems Biology

Figure 2.2: Systems biology triad. At the center are the complex biological
phenomena. Interpretation of observations and data is supported
by computational algorithms. The translation of interpretation to
understanding is supported by systems science. In turn, systems
science provides a framework for understanding. It indicates hy-
potheses to be tested and modified in an iterative cycle of experi-
mentation. Adapted from Mesarovic et al. (2004).

2.1.1 Biology as a Model Featurer

Cells show very complex and different behaviors. Single cells are able to con-
tract, excrete, move, reproduce, send signals, or even respond to them. Fur-
thermore, cells accomplish the energy handling required for such activities. In
cooperation cells manage all of the various processes required to perpetuate life
as is (Hofmeyr, 1986). However, everything that cells do can be represented
in the form of basic natural laws. Although the rules of behavior are rather
basic, cells comprise huge and complex networks of interacting substrates. An
enormous amount of work was used disentangling only very few of such reac-
tion schemes, and it is quite obvious that there are many more such interaction
networks yet to be revealed (Keener and Sneyd, 2001). Table 2.2 gives a brief
overview of dynamic behaviors happening on a cellular level. Accordingly, the
need for powerful modeling and simulation tools, as 4DiCeS, arises very quickly
from the study of such phenomena.

In the subsequent sections the dynamical behavior of Ca2+ signaling for its
spatio-temporal patterns (see Figure 2.3) will be discussed in more detail. The
modeling and simulation of such a phenomenon were used as examples for
testing the 4DiCeS software. The role of computational techniques handling
such models is going to be presented in the following subsection.

8

Phenomenon Description

Circadian
Rhythm

Regular changes in cellular processes and behavior that
have a period of about one day.

Cell Cycle The event of cell division where one cell proliferates into
two descendants with full genome.

Cellular
Motility

All cellular movement including the remodeling of cell
membranes, cellular travel, and contraction.

Membrane
Transporters

Transport catalysts at the membrane acting either as car-
riers, pumps, or channels for particles.

Electrical
Excitable Cells

The display, acceptance, or propagation of electrical poten-
tials along or within cells.

Excitable
Oscillation

Coupled mechanism of membrane transporters and electri-
cal activity resulting in oscillations.

Non-Excitable
Oscillation

Self-contained spatio-temporal oscillations of particle con-
centrations within a cell.

Table 2.2: Phenomena of cellular dynamics are here depicted, which have trig-
ger events in common. There exist theoretical models and simula-
tions for each incident. Extracted from Fall et al. (2002).

(a) 0.5 min (b) 1 min

Figure 2.3: A spiral wave of Ca2+ ions detected from a dye with microinjection
of IP3 into an Xenopus laevis oocyte after 30 and 60 seconds. By
courtesy of James D. Lechleiter, University of Texas, USA.

9

2 Dynamics in Systems Biology

2.1.2 Computation as a Model Solver

Techniques applied to research problems in systems biology comprise very much
of applied mathematics and computer science. A majority of features in compu-
tational modeling of cell biology play an important role. One of these features
is the development of algorithms and techniques that give tools for numerical
analysis (Takahashi et al., 2002). The computation of mathematical problems
on computers is basically an estimation process. The efficiency and accuracy of
these methods of estimation are the subjects of intensive study. The work on
constructing models is also basically an approximation process. This is due to
necessary simplifications that must be used to produce a helpful model. These
simplifications must both be valid in terms of the physical process being studied
and from a mathematical point of view (Eungdamrong and Iyengar, 2004).

Computer models allow for testing conditions that may be difficult to obtain or
that have not been examined in the laboratory yet. Therefore, every solution of
a mathematical model may offer a simulation of a potential or real experiment.
Such simulations can help to estimate parameters, i.e. diffusion or kinetic
constants, that are challenging to collect in experiments. Simulations can verify
how pharmacological agents may affect a biological process (Mendes and Kell,
1998). Hypothesis about the role of individual mechanistic components can
be checked by simulations. Accordingly, predictions made by such simulations
then can be tested in the laboratory. It has to be noted that often the most
important result of a simulation is a negative one. Therefore, a well-crafted
model has to be redefined and tested again (Fall and Keizer, 2002).

Improvements in numerical analysis as well as computer hardware have made
the solving of complex deterministic systems accurate and fast. However, mod-
els of biological processes almost always comprise nonlinear components in their
control mechanisms. By using traditional mathematical methods, as coupled
Ordinary Differential Equations (ODEs), often such problems can be solved
exactly. But nonlinearities often create difficulties in getting any exact solu-
tion. Admittedly, good estimates of nonlinearities can be obtained by using
computer implemented numerical methods. Often a major property in cellular
mechanisms is spatial variation. Therefore, the analyzing and the solving of
spatially explicit Partial Differential Equations (PDEs) is very important. Such
PDEs can be more complex and less analytically tractable than ODEs.

Some models need to handle noise and the tracking of single particles instead
of particle concentrations. Here stochastic methods such as Monte Carlo (MC)
simulations (Metropolis and Ulam, 1949) come into play. Such discrete models

10

facilitate the qualitative modeling and are based on various different computa-
tional approaches (Hofestädt and Meineke, 1995). Unlike the different deter-
ministic methods, a stochastic approach does not approximate the model as a
continuous macroscopic system. In contrast, it treats a model as a discrete and
microscopic process. However, this increase in accuracy comes at high costs
as each individual chemical entity has to be modeled as a stochastic process.
Hence, stochastic simulations are computationally more demanding (Pucha lka
and Kierzek, 2004).

Method Description

ODE A relation that contains functions of one independent variable
involving its derivatives.

DAE Coupled ODEs with additional algebraic constrains (no deriva-
tives).

PDE Differential equations with more than one independent variable
involving partial derivatives.

SDE Differential equations including a random term that describes
intrinsic noise.

MC A set of discrete quantities and associated probabilities for in-
teractions.

Boolean
Network

A conversion of a model into a binary representation of only
“true” and “false” states.

CA Collection of different elements (cells) with distinct states on a
grid of specified shape.

Bayesian
Network

Acyclic directed probabilistic graph with random variables
(nodes) and conditional independence assumptions (arcs).

Petri Net Modeling for concurrent systems with a bi-partial directed
graph. Generalization of the automata theory.

Table 2.3: Important modeling and simulation techniques. The given methods
represent the main approaches by which modeling and simulation are
handled in systems biology. Applications vary in their support for
either a pure method’s implementation or hybrid attempts mixing
different techniques. Extracted from Hucka et al. (2004).

11

2 Dynamics in Systems Biology

Various attempts have been made to construct and simulate biochemical be-
haviors. The majority of approaches depend on the use of the before men-
tioned deterministic and stochastic techniques (Hucka et al., 2004). Recently
other well-established techniques have been applied including boolean networks
(Kauffman, 1969), Cellular Automata (CA) (von Neumann, 1966), Bayesian
networks (Pearl, 1988), and petri nets (Petri, 1962), to biological applications.
Hybrid methods that combine the best features of all approaches exist as well
(Lu et al., 2004). Table 2.3 summarizes some highly recognized basic techniques
for modeling and simulation in systems biology.

To solve equations that result from a model is only one part of the work. The
other side needs to comprehend the model’s behavior. Mathematical methods
were developed for the system analysis of models that characterize complex pro-
cesses. Such methods disclose the dynamical behavior, properties, and struc-
ture of the system. This is very much as molecular biological, physiological, and
anatomical techniques uncover the physical basis of the model (Hartwell et al.,
1999). Hence, the analysis exposing complicated behaviors within a model may
result in further study of these biological phenomena. Admittedly, decisive
analysis of complex equations demands skill. This is due to the fact that there
are many intricacies that can only be comprehended through intensive train-
ing (Mishra et al., 2003). The construction and alteration of simple models
is within the reach of cell biologists. Therefore it is necessary for scientists to
seek association with mathematicians and computer scientists for the effectual
simplification of complex models (Sontag, 2004).

The next section will go into the detail of a well-studied Ca2+ model systems.
This model was chosen to test the 4DiCeS software in its functionality and
accuracy. The next chapter on the other hand will give insight into the design
of the 4DiCeS system itself. After reading these sections, it will become obvious
that the application should be capable of applying any of the before mentioned
mathematical techniques. As for now stochastic and deterministic methods are
implemented to be used by 4DiCeS (Oleson et al., 2006).

2.2 Cellular Calcium Models

Cellular Ca2+ has an overall very low concentration. At rest it is approximately
0.1µM, and only about 1–10µM at its peak. On the other hand, potassium (K+)
and sodium (Na+) show millimolar concentrations. Cells require to keep cyto-

12

plasmic Ca2+ concentration ([Ca2+]i) at low levels due to the fact that Ca2+

can modify the enzymatic properties of binding proteins. Hence increases in
the cellular Ca2+ level are locally defined and quick to circumvent the runaway
activation of enzymatic cascades. Two basic mechanisms hold responsibility
for this impoundment and buffering. The buffers are highly specialized Ca2+-
binding proteins that absorb 95–99% of the cytosol’s Ca2+. Ca2+ is impounded
to either the sarcoplasmic reticulum (SR) in muscle cells or the endoplasmic
reticulum (ER) in all other cell types. Proteins hydrolyze adenosine–3’,5’–
triphosphate (ATP) to transport Ca2+ against rampant concentration gradients.
Such proteins are ATP hydrolases (ATPases) that are classified as SR/ER Ca2+-
transport ATPase (SERCA) pumps. On the other side, plasma membrane (PM)
Ca2+-ATPase (PMCA) pumps dispose Ca2+ of the cell. SR and ER membranes
have ion channels, which are different from PMCAs, that transports Ca2+ back
into the cytoplasm. Therefore, every cell has Ca2+ pumps for homeostasis as
well as negative feedback. Some cells have developed ion channels such as the
inositol–1,4,5–trisphosphate (IP3) receptor (IP3R), which is activated and in-
hibited by Ca2+. The IP3R is able to give both positive and negative feedback.
Thus, brief channel openings may enable oscillations of free cytoplasmic Ca2+

that are utilized for signaling. Interestingly, Ca2+ oscillations were discovered
in vitro after they were predicted by a model (Chay and Keizer, 1983).

2.2.1 Calcium Signaling

Ca2+ is the most common cellular signals’ carrier. Due to its special adaptability
as a ligand, it regulates very many important aspects of cellular activity. This
goes from the creation of new life at fertilization to the radical incident of
cellular apoptotic suicide. Signaling by Ca2+ shows a number of properties that
make it unique among all other carriers of signals. An important example is its
ability to function both as a first and as a second messenger (Carafoli, 2005).
Then Ca2+ cannot be metabolized like other second-messenger molecules. Hence
cells tightly regulate intracellular levels through numerous bindings as well as
specialized extrusion proteins (Clapham, 1995).

Almost all eucaryotic cell types use both intracellular as well as extracellu-
lar resources of Ca2+. The responsible regulating mechanisms for the influx of
external Ca2+ are already well known to scientists (Carafoli, 2002). As an exam-
ple, voltage-operated channels in neurons assist action potentials by triggering
the release of neurotransmitters at synaptic junctions. Neurotransmitters can
establish an influx of Ca2+ utilizing receptor-operated channels primarily local-

13

2 Dynamics in Systems Biology

ized postsynaptically. Despite such well-established influx pathways, there is
not much known on the mechanism of the intracellular Ca2+ supply of neurons
although IP3Rs allocated all over the ER are accountable for the dispense of
Ca2+ (Berridge, 2005).

The ER network in cells accounts for the dynamics of Ca2+ signaling by operating
both as a sink as well as a source of Ca2+. Such an internal storage of Ca2+

is possible to have a far reaching impact on Ca2+ signals in cells. Ca2+ can
be localized within compartments in high levels or can spread across cells as
widespread Ca2+ waves (Berridge, 1998).

The IP3 signaling network (see Figure 2.4) is highly sophisticated within cell tis-
sues. A manifold amount of diverse receptors excite the hydrolysis of phosphat-
idylinositol-4,5-bisphosphate (PIP2) into IP3 and sn–1,2–diacylglycerol (DAG).
Both are well known second messengers. IP3 then releases Ca2+ from the ER’s
IP3Rs (Berridge, 1993).

Figure 2.4: The Ca2+ signaling pathway. When a hormone or neurotransmitter
(“first messenger”) interacts with a receptor on the cell membrane,
IP3 is released within the cell, causing a calcium response. The ER
plays a decisive role in calcium regulation next to the extracellular
space as a storage for the cytotoxic Ca2+. Adapted from Alberts
et al. (2003).

By the fact that the intracellular Ca2+ release by IP3Rs is sensitive to a diversity
of different factors makes it very complex. IP3Rs are most effectively activated

14

when Ca2+ and IP3 are both presented at the same time. This dual activation
has noteworthy effects for signal transduction mechanisms. Foremost of these is
that the IP3 receptor may act as a cooccurrence detector due to the requirement
for two separate messengers. Small levels of IP3, unable to excite an immedi-
ate Ca2+ release, may enhance the IP3R’s Ca2+ responsiveness. Thereby they
change the cytoplasm into a medium capable of producing regenerative Ca2+

waves. An increasing Ca2+ gradient within the ER can have a positive feedback
by sensitizing the IP3Rs’ Ca2+ uptake. The increase of [Ca2+]i represses IP3Rs
(Berridge, 2004).

2.2.2 Two Pool Model

The two pool model presented in this section is based on the works of Goldbeter
et al. (1990); Berridge (1991). This model shows an oscillating behavior of
Ca2+ concentrations very similar to phenomena discovered in living cells. If a
diffusion term is applied to the system even 3D wave-fronts can be simulated.

The basis of the two pool model is that oscillations are set up through an
interaction between two releasable pools of Ca2+. Here it is assumed that the
external signal triggers the synthesis of IP3. The effect is simply a discharge
of an intracellular pool of Ca2+ leading to a rise of cytosolic Ca2+. A simple
assumption is made that a constant influx of Ca2+ from the IP3-sensitive pool
occurs as long as the stimulus is present. This affects the probability of the
occurrence of oscillations exclusively by the cycling of Ca2+ between the cytosol
and the IP3-insensitive pool. The IP3-insensitive pool is therefore considered
to remain constant as a result of a fast backfill by the influx of extracellular
Ca2+ (Goldbeter et al., 1990). This autoregulatory mechanism is controlled by
the content of Ca2+ in the IP3-sensitive pool and by the uptake of cytosolic
Ca2+ after a spike. The magnitude of the influx, v1β, from this IP3-sensitive
pool is assumed to be proportional to the saturation function β of the IP3R.
The cooperative nature of this saturation function is expressed implicitly in
β. The level of IP3 is proposed to be caused by stimulation increases with
the magnitude of the external signal. IP3 thus controls the flow of Ca2+ into
the cytosol. This again assists the IP3-insensitive pool for releasing Ca2+ in
oscillatory cycles (Berridge, 1991).

The two variables of this model are the concentration of free Ca2+ in the IP3-
insensitive pool (e.g., the ER or SR) and in the cytosol. These two variables
are denoted by Z and Y , respectively. If assumed that buffering is linear with

15

2 Dynamics in Systems Biology

respect to the Ca2+ concentration, then the time evolution of the system is
driven by the following two kinetic equations (Goldbeter et al., 1990):

dZ

dt
= v0 + v1β − v2 + v3 + kfY − kZ , (2.1)

dY

dt
= v2 − v3 − kfY . (2.2)

In the above equations, all rates and concentrations are defined with respect
to the total cell volume. Here, v0 and kZ relate to the influx and efflux of
Ca2+ into and out of the cell. This occurs even in absence of external stimuli.
These terms are assumed to be constant and linear for simplicity. The rate of
ATP-driven pumping of Ca2+ from the cytosol into the IP3-insensitive store is
denoted with v2. In contrast v3 represents the rate of transport from this pool
into the cytosol. The term kfY refers to a leaky, non-activated transport from
Y into Z. This process was found to stabilize the amplitude of Ca2+ transients
at different levels of stimulation.

An increase in IP3 is triggered the reception of an external signal. This in turn
leads to a rise in the saturation function β and to a subsequent increase of
cytosolic Ca2+. The conditions in which this initial rise triggers Ca2+ oscilla-
tion can be determined by resorting to phase plane analysis. This is especially
possible because the system of equations comprises only two variables. Here, it
was indicated that the activation of v3 by Z is most appropriate for inducing
sustained oscillations upon external stimulation. This condition directly corre-
sponds to an activation by cytosolic Ca2+ where Ca2+ is transported from the
intracellular store into the cytosol. The two pool model predicts that at least
in the absence of time delays, such a process does not satisfy the triggering
of a sustained oscillatory response. When taking into account the cooperative
nature of the pumping process, the Ca2+ release from the intracellular store,
and the positive feedback performed by the latter transportation of cytosolic
Ca2+, the rates v2 and v3 in the equations 2.1 and 2.2 take the following form
(Goldbeter et al., 1990):

v2 = VM2
Zn

Kn
2 + Zn

, (2.3)

v3 = VM3
Y m

Km
R + Y m

× Zp

Kp
A + Zp

. (2.4)

16

In these equations, VM2 and VM3 denote respectively the maximum rates of
Ca2+ pumping into and the release from the intracellular store. These processes
are described by Hill functions whose cooperativity coefficients are taken as n
and m. Here, p denotes the degree of cooperativity of the activation process.
K2, KR, as well as KA are threshold constants for activation, pumping, and
releasing.

The equations 2.1, 2.2, 2.3, and 2.4 admit a unique steady-state solution. Linear
stability analysis of these equations indicated that the steady state is not always
stable. In the absence of stimulation, a situation is considered in which the
system is initially in a stable steady state characterized by a low cytosolic
Ca2+ level close to 0.1µM. The system reacts to an increase in β up to 30%,
due to a rise in IP3 triggered externally. Here, an oscillation of cytosolic Ca2+

occurs. Such repeating spikes are accompanied by a sawtooth variation of the
intracellular store’s Ca2+ content. The period of the oscillations is of the order
of 1s, as in some experimental systems. Periods of 1min or more are readily
obtained if the kinetic parameters are divided by a factor of 10–100 (Kraus and
Wolf, 1992). A spatio-temporal extension of the two pool model allows for the
modeling of intercellular Ca2+-waves. To make this happen a diffusion term has
to be added to the system. In the model it is assumed that the IP3-sensitive
Ca2+ pools are only located near the membrane and the IP3-insensitive pools
are spread all over the intracellular space.

The mathematical description of the deterministic methods account the system
with a coupled set of nonlinear ODEs of first order. Kraus et al. (1992); Kraus
and Wolf (1992) derived a stochastic model from this system, which is numer-
ically traceable by means of a stochastic simulation. The stochastic method
models the system through a master equation. With the first method the pools
correspond to particle concentrations and the processes correlate with mathe-
matical functions, which move into the pools via fluxes connected with concen-
trations. With differentiation of the master equation the pools contain a certain
number of particles. Now the process describe transition probabilities between
state transitions, which are connected by fluxes. The states are characterized
by the overall occupation number of the pools. External entities comply in
both cases with externally defined system parameters. While the deterministic
method inspects the temporal trend of concentrations, the stochastic method
describes changes in particle numbers of every particle species in contrast to
that. Each reaction, where the number of particles changes, is simulated di-
rectly. The stochastic method therefore constitutes the microscopic view of
the system, which is in diametric opposition to the deterministic - and thus

17

2 Dynamics in Systems Biology

macroscopic - depiction.

The stochastic model was applied to the simulator described in this work for
final a testing and comparison purpose of state-of-the-art modeling and simu-
lation tools in Section 5.2.2.3. The mathematical formulation of the stochastic
two pool model is displayed in Table 2.4.

Reaction Transition Probability State
Transition

Ca2+
ex

k1−→ X k1Ca2+
ex ≡ v0 X → X + 1

Y = const

X
k−→ Ca2+ex kX X → X − 1

Y = const

Ca2+
ISCS

k2β−→ X k2Ca2+
ISCSβ ≡ v1β X → X + 1

Y = const

Y
kf−→ X kfY X → X + 1

Y → Y − 1

pX + mY
v′
3−→ (m + p)X v3 = VM3

Y m

Km
R +Y m × Zp

Kp
A+Zp X → X + m

Y → Y −m

nX
v′
2−→ nY v2 = VM2

Zn

Kn
2 +Zn X → X − n

Y → Y + n

Table 2.4: Stochastic two pool model. This table specifies the mathematical
process of the stochastic two pool model. X and Y describe the
number of Ca2+ ions in the cytosol or the IP3-insensitive pool. There
is the assumption that the number of Ca2+ ions in the extracellular
space and within the IP3-sensitive pools are kept constant. Adapted
from Kraus et al. (1992).

Chapter 3 now gives a closer look on currently used simulation software tools.
Their architecture and utilized algorithms will be continued and compared in
Chapter 5 with a preceding formal description on 4DiCeS (see Chapter 4).

18

CHAPTER 3

Related Approaches and Tools

The relevance to model as well as to simulate biological systems was discussed
in the previous chapter. The following chapters give an overview of the state-
of-the-art in modeling and simulation in comparison to the new cell biology
framework 4DiCeS. Therefore, some of the inherent problems in characteriz-
ing the different facets of biological function are stated. This includes a brief
overview of how functional information is currently represented in databases.
And also prevailing applications for modeling and simulation of biochemical
networks are introduced.

3.1 Database and Information Retrieval

The tremendous but valuable information gathered together in recent years has
to be organized and pooled in databases. In this respect databases are widely
deployed to store the relationships of biochemical systems. Currently there
exist over 1000 biological databases (Galperin, 2008) and about 45 databases
supplying cellular signaling pathways at different levels of detail and complexity.

Public bio-molecular interaction databases are resources to basic building blocks
of biological signaling pathways. Huge clusters of molecular interactions can
be generated based only on this information. However, a molecular interaction
cluster does not represent a signaling pathway per se. In effect, more infor-
mation about each interaction, such as its outcome (e.g. activation as well as
inhibition), is required for it to become a trustful component of a signaling
pathway (Cary et al., 2005). Both public as well as private database initiatives
have taken up the effort of creating biological pathway databases and pro-
viding computational biology tools for their analysis. Some of the databases
focus on static (manually drawn) representations (Bhalla and Iyengar, 1999;
Sivakumaran et al., 2003; Trost, 2002) whereas other systems support dynamic
visualizations based on graph drawing algorithms (Fukuda and Takagi, 2001;
Fukuda et al., 2004)). There is also a variety of databases specialized in molec-
ular pathways with physical parameters as rate constants and concentrations
(Igarashi and Kaminuma, 1997). In addition to the previously described path-

19

3 Related Approaches and Tools

way databases, there exist databases containing detailed information regarding
characterized enzymatic reactions. Additional links to other databases provide
useful information on involved enzymes and biochemical reactions (Gough and
Ray, 2002; Gough, 2002).

Currently three simulation model repositories serve actively in the internet –
namely the Cell Markup Language (CellML) (Lloyd et al., 2004), the JWS Online
(Olivier and Snoep, 2004), and the BioModels (Novère et al., 2006) repository
(see Table 3.1).

Designation Web Site

BioModels http://www.ebi.ac.uk/biomodels/

Cellerator http://www.cellerator.info/nb.html

CellML Repository http://www.cellml.org/models/

JWS Online http://jjj.biochem.sun.ac.za/

xCellerator http://www.xcellerator.info/examples/index.html

Table 3.1: Model repositories. The simulation model repositories of the two
most prominent modeling languages SBML and CellML contain mod-
els on metabolic networks, cell cycle and cellular signaling. The
(x)Cellerator sites provide example models as Mathematica (*.nb) files.

The SBML (Hucka et al., 2004) repository ceased work at the end of 2005. The
E-Cell project (Takahashi et al., 2003) has plans for its own model repository,
however, there is no concrete data available on the internet at present.

Further information on biological pathway databases can be retrieved from the
Nucleic Acids Research database issues (Baxevanis, 2000, 2001, 2002, 2003;
Galperin, 2004, 2005, 2006, 2007, 2008) and by the Pathway Resource List
(PRL)1 – a database that contains information on over 240 internet path-
way resources. Most of these resources are databases themselves containing
protein–protein interactions, metabolic reactions, or cellular signaling. The
PRL provides resource links and is building up additional information such as
the amount of data and the organism coverage within each pathway resource
(Bader et al., 2006).

1Pathway Resource List: http://www.cbio.mskcc.org/prl/

20

http://www.ebi.ac.uk/biomodels/
http://www.cellerator.info/nb.html
http://www.cellml.org/models/
http://jjj.biochem.sun.ac.za/
http://www.xcellerator.info/examples/index.html
http://www.cbio.mskcc.org/prl/

3.2 Modeling and Simulation Software

The preceding section gave a brief introduction to an overwhelming amount of
data repositories present for use in systems biology. The amount of simulation
tools dealing with biochemical reaction and diffusion systems is not quite as
huge, but is still plentiful. Therefore, this section deals with the description of
only the most important applications of this category (see Table 3.2).

A simulation tool is defined as an application performing time series simulation
of predefined mathematical models. In contrast a design or modeling tool
is applied for building a model graphically. Often simulation tools bring an
attached design tool along. If not then models can either be described by
markup or scripting languages (Pettinen et al., 2005).

The simulation software tools can be categorized into either deterministic,
stochastic, or hybrid (deterministic and stochastic) programs. Other cate-
gories apart from the algorithmic approaches are the modeling of either 2D
or 3D geometry and the separation of programs into either stand-alone tools or
frameworks.

One of the very first programs available for reaction simulations was the GEn-
eral PAthway SImulator (Gepasi) (Mendes, 1993). It translates biochemical
reaction equations into coupled ODEs which in turn are then solved numeri-
cally. Thus the Gepasi system represents a purely deterministic approach such
as BIOCHemical Abstract Machine (BIOCHAM) (Calzone et al., 2006), Celler-
ator (Shapiro et al., 2003), E-Cell, the Python Simulator for Cellular Systems
(PySCeS), and VirtualCell do as well (see Section 3.2.1). The deterministic sim-
ulators Genesis and Neuron were originally designed to model neurons and
neuronal networks but have shown that cell signaling simulations are just as
adequate (Bhalla, 2002). Xyce is actually a deterministic massively parallel
simulator for electronic circuits that was used for solving biochemical problems
(Schiek and May, 2003). Simulators such as the Stochastic Simulator (StochSim),
the MC Simulator of Cellular Microphysiology (MCell) (see Section 3.2.2), and
Mesoscopic Reaction Diffusion (simulator) (MesoRD) (Hattne et al., 2005) im-
plement stochastic algorithms only. Examples for hybrid simulators are the
Bio-chemical Network (stochastic) Simulator (BioNetS) (Adalsteinsson et al.,
2004), the PySCeS (Olivier et al., 2005), WebCell (Lee et al., 2006), and xCellera-
tor.

Very recently, efforts have been made to mix various approaches in order to
obtain either the combination of many tools in one software package (Rost and

21

3 Related Approaches and Tools

Designation Web Site

BIOCHAM* http://contraintes.inria.fr/BIOCHAM/

BioNetS* http://x.amath.unc.edu:16080/BioNetS/

Bio-SPICE* http://biospice.sourceforge.net/

Cellerator http://www.cellerator.info/

Copasi* http://www.copasi.org/

E-Cell* http://www.e-cell.org/

GENESIS http://www.genesis-sim.org/GENESIS/

Gepasi* http://www.gepasi.org/

MCell* http://www.mcell.cnl.salk.edu/

MesoRD http://mesord.sourceforge.net/

NEURON http://www.neuron.yale.edu/neuron/

PySCeS http://pysces.sourceforge.net/

SBW* http://sbw.sourceforge.net/

SmartCell* http://smartcell.embl.de/

StochSim* http://www.ebi.ac.uk/ lenov/stochsim.html

VirtualCell* http://www.nrcam.uchc.edu/

WebCell http://webcell.kaist.ac.kr/

xCellerator* http://www.xcellerator.info/

XmdS http://www.xmds.org/

Xyce http://www.cs.sandia.gov/xyce/

Table 3.2: Simulation and modeling environments. This table presents a subset
of software tools available today for cellular modeling and simulation.
Shown here are 20 out of more than 80 applications. The simulators
BioNetS, Copasi, MCell, SmartCell, and StochSim are stochastic applica-
tions. The SBW and the Bio-SPICE are actually simulation frame-
works rather than programs. The remaining applications within this
table are based on deterministic modeling and simulation. A special
position take XmdS and BioNetS as they are code generators. The
designations superscripted with an asterisk (‘∗’) are going to be dis-
cussed in more detail in the following sections.

22

http://contraintes.inria.fr/BIOCHAM/
http://x.amath.unc.edu:16080/BioNetS/
http://biospice.sourceforge.net/
http://www.cellerator.info/
http://www.copasi.org/
http://www.e-cell.org/
http://www.genesis-sim.org/GENESIS/
http://www.gepasi.org/
http://www.mcell.cnl.salk.edu/
http://mesord.sourceforge.net/
http://www.neuron.yale.edu/neuron/
http://pysces.sourceforge.net/
http://sbw.sourceforge.net/
http://smartcell.embl.de/
http://www.ebi.ac.uk/~lenov/stochsim.html
http://www.nrcam.uchc.edu/
http://webcell.kaist.ac.kr/
http://www.xcellerator.info/
http://www.xmds.org/
http://www.cs.sandia.gov/xyce/

Kummer, 2004), e.g. the Complex Pathway Simulator (Copasi) (see Section
3.2.2) or a tool offering access to many different software packages, e.g. the
Systems Biology Workbench (SBW) (see Section 3.2.3). A very special position
takes the eXtensible multi-dimensional Simulator (XmdS) and BioNetS as they
actually are C++ code generators (Collecutt and Drummond, 2001). If their
code is compiled then the resulting programs are simulation applications by
their own again. Further information on existing modeling and simulation
applications can be retrieved by the SBML Software Guide2 – a matrix that
contains information on software providing support for SBML.

The following three sections give a closer look to ten well reputed applications
and two frameworks. The last Section 3.2.4 then defines comparison criteria
for the comparison of the ten programs. The 4DiCeS approach, which will be
presented in the subsequent Chapter 4, is going to be brought into context with
Section 5.3.

3.2.1 Deterministic

This section presents five well known and used deterministic simulation appli-
cations. Although Gepasi ceased further development, it is still in use to date
and has played a major role in the development of all the other tools discussed
here. There are plans to completely replace Gepasi by the newer Copasi (see
Section 3.2.2.2). Excepting Gepasi all other described simulators are still under
development and have a user community of their own.

3.2.1.1 BIOCHAM

BIOCHAM is a programming environment for modeling biochemical systems,
making simulations, and querying the model in temporal logic. It provides a
rule-based language for modeling biochemical systems, a simulation engine, and
a query language based on temporal logic, Computational Tree Logic (CTL),
or Linear Temporal Logic (LTL). A machine learning system is provided for
correcting and completing models either by changing rules with respect to a CTL
specification or by estimating parameters of an LTL specification. An interface
to the symbolic model checker (NuSMV) is provided also. BIOCHAM was initiated
by the Constraint Programming group of The National Institute for Research
in Computer Science and Control (INRIA) at Rocquencourt, France.

2SBML Software Guide: http://sbml.org/SBML Software Guide/

23

http://sbml.org/SBML_Software_Guide/

3 Related Approaches and Tools

3.2.1.2 E-Cell

The E-Cell project is based on international research aiming to model and re-
construct biological phenomena in silico and to develop necessary theoretical
supports, technologies and software platforms to allow precise whole cell sim-
ulation (Tomita et al., 1997). The E-Cell Model Language (EML), a subset of
the eXtensible Markup Language (XML), is used for describing the models.
The SBML support was also included to enable a wide cross-platform model ex-
change (Tomita et al., 1999). The E-Cell project is managed by the Institute for
Advanced Biosciences, Laboratory for Bioinformatics, Fujisawa and the Mitsui
Knowledge Industry, Bioscience Division, in Tokyo, Japan.

3.2.1.3 General Pathway Simulator (Gepasi)

The GEneral PAthway SImulator is one of the first software packages for mod-
eling biochemical systems. Gepasi simulates the biochemical reaction kinetics,
provides a number of tools to fit models to existing data, optimizes the functions
of the models, and performs a metabolic control analysis and a linear stability
analysis (Mendes, 1993). The application simplifies the task of model-building
by assisting the user in automatically translating given reactions into matrices
and differential equations transparently (Mendes, 1997). This is combined with
a set of numerical algorithms that ensure fast and accurate results (Mendes and
Kell, 1998). It was developed at the Virginia Bioinformatics Institute, USA, as
a pure deterministic modeling and simulation environment.

3.2.1.4 VirtualCell

The National Resource for Cell Analysis and Modeling at the University of Con-
neticut Health Center, in Conneticut, USA, created a remote user simulation
and modeling application. A general purpose differential equation solver is used
to translate the initial biological description into a set of differential equations
(Loew and Schaff, 2001). The generated results are stored on a remote server
and can be reviewed and exported into various formats. The compartments
represent 3D volumetric regions, while the membranes represent 2D surfaces
separating the compartments (Schaff et al., 1997; Schaff and Loew, 1999). The
geometry may be captured by various imaging modalities, such as wide field,
confocal, or electron microscopy (Slepchenko et al., 2002).

24

3.2.1.5 xCellerator

The xCellerator is the successor to the Cellerator package, which was designed as
an interface to Wolfram Mathematica for facilitating biological modeling by auto-
mated equation generation. It provides tools for generating, translating, and
numerically solving a potentially unlimited number of biochemical interactions
(Shapiro et al., 2003). xCellerator solves the complete set of equations predicted
by the law of mass action. The package also contains a number of transcrip-
tional regulation models that are not Michaelis-Menten equations. xCellerator
may write its results in SBML. The Cellerator package was formerly developed at
the National Aeronautics and Space Administration’s (NASA) Jet Propulsion
Laboratory, California, USA, and is now privately continued.

3.2.2 Stochastic

The simulation applications shown in this section are stochastic approaches
(Kibby, 1969). They either implement proprietary algorithms of their own
(MCell and StochSim) or make use of simulation algorithms from literature (BioNetS,
Copasi, and SmartCell). BioNetS and Copasi are also utilizing numerical solvers in
combination to their stochastic algorithms.

3.2.2.1 Biochemical Network Stochastic Simulator (BioNetS)

BioNetS was developed at the University of North Carolina at Chapel Hill, USA.
It was designed to simulate biochemical network models in a hybrid, stochastic
and deterministic manner. The type of used discrete or continuous random
variable for each chemical species in the network can be specified individually.
The package was implemented to efficiently scale with any network size to allow
the study of large systems. BioNetS is available as a stand alone package but
runs also as a Bio–Simulation Program for Intra- and Inter-Cell Evaluation (Bio-
SPICE) (see Section 3.2.3.1) agent. The output of the software is portable
C/C++ code that may be compiled and run on any system with the appropriate
compiler (Adalsteinsson et al., 2004).

25

3 Related Approaches and Tools

3.2.2.2 Complex Pathway Simulator (Copasi)

The Copasi project is based on Gepasi and a program for the automatic pars-
ing and STochastic simulation of ODEs (STODE)3 (van Gend and Kummer,
2001). Copasi incorporates a model generator, user-friendly visualization plat-
forms, optimization routines, methods from non-linear dynamics, and different
simulation techniques. Copasi is supervised by Pedro Mendes (Bioinformatics
Institute, Virginia, USA) along with Ursula Kummer of the European Media
Laboratory, Heidelberg, Germany. This application is planned to enable the
simulation of complex metabolic processes in cells without having to master
complex mathematical or computer skills (Rost and Kummer, 2004).

3.2.2.3 MC Simulator of Cellular Microphysiology (MCell)

MCell is a modeling application for simulations of cellular signaling in complex
3D subcellular micro-environments. Optimized MC algorithms are used to track
the stochastic behavior of discrete molecules in space and time. These particles
diffuse and interact with other heterogeneously distributed molecules within
the 3D geometry (Bartol Jr. et al., 1996). All simulation components are
defined by using a specific programming language called Model Description
Language (MDL) (DeSchutter and Cannon, 2000). The project was initiated by
the Computational Neurobiology Laboratory at the Salk Institute for Biological
Studies, in California, and by the Pittsburgh Supercomputing Center’s working
group for Biomedical Applications, Pennsylvania, USA.

3.2.2.4 SmartCell

SmartCell is a general tool for modeling and simulation of reaction and diffusion
pathways within cells. It supports diffusion and localization by using a meso-
scopic stochastic reaction model. The SmartCell package should handle various
cell geometries, allows the localization of species, supports desoxyribonucleic
acid (DNA) transcription and translation, membrane diffusion and multi-step
reactions, as well as cellular growth. Moreover, different temporal and spatial
constraints can be applied to the model (Ander et al., 2004). It is expected to
provide a suitable model description format (Nasi, 2004). SmartCell is a project
of the European Molecular Biology Laboratory, Heidelberg, Germany.

3STODE: http://atlas.villa-bosch.de/bcb/software/Carel/

26

http://atlas.villa-bosch.de/bcb/software/Carel/

3.2.2.5 Stochastic Simulator (StochSim)

StochSim was written by Carl Firth as part of his PhD work at the University of
Cambridge (Morton-Firth, 1998). It was developed as part of a study of bac-
terial chemotaxis as a more realistic way to represent the stochastic features of
this signaling pathway. It is able to handle large numbers of individual reactions
encountered (Morton-Firth and Bray, 1998; Morton-Firth et al., 1999). The ap-
plication consists of a platform-independent core simulation engine. The pro-
gram encapsulates the algorithm described above as well as a separate graphical
user interface. StochSim represents individual molecules or molecular complexes
as individual software objects (Novère and Shimizu, 2001).

3.2.3 Frameworks

This section introduces frameworks rather than applications in comparison to
the two previous sections. Such frameworks are developed to accomplish very
particular problems. They provide entire workbenches of interfaces that allow
for the integration of many tools and methods to interact with each other.

3.2.3.1 Bio–Simulation Program for Intra- and Inter-Cell Evaluation (Bio-SPICE)

The Bio-SPICE toolkit was developed to model and simulate cellular dynamic
networks. Contributed modules are organized in the Bio-SPICE dashboard,
which is a graphical user environment (Sauro et al., 2003). It permits data
sources, models, simulation engines, and output displays provided by different
investigators, and running on different machines, to work together across a dis-
tributed, heterogeneous network (Garvey et al., 2003). Among several other
features, the environment enables users to create a graphical workflow by con-
figuring and connecting available Bio-SPICE components (Kumar and Feidler,
2003a,b). The project was initiated by the Defense Advanced Research Projects
Agency Information Processing Technology Office, Virginia, USA.

3.2.3.2 System Biology Workbench (SBW)

The SBW enables different tools to interact with each other. The framework
supports tools written in different programming languages, which may run on
different platforms and physical machines (Sauro et al., 2003). The aim is to

27

3 Related Approaches and Tools

facilitate collaboration among developers of systems biology software. Develop-
ers should find it easier to build an SBW interface than to recreate functionality.
They can then concentrate on developing best-of-breed solutions in the areas
where they have special expertise (Hucka et al., 2002). Both SBW and SBML
are being developed in collaboration with several groups developing simulation
packages as described in the last two sections.

3.2.4 Comparison

While the described simulation tools thus have their benefits, none have so far
addressed all the currently emerging research problems. The efforts in the field
of cellular simulation can be roughly categorized as stand-alone modeling and
simulation tools or extendable frameworks. The first can then be divided again
into either more or less strict deterministic or stochastic methods. Even though
the stand-alone tools often provide software interfaces, frameworks broaden this
ability to include new technologies to the system.

Specific interests of research groups often have great influence on the devel-
opment of simulation applications. The usability of a tool is highly affected
by user requirements (Schwehm, 2001). Here the chosen operating system and
the selection of a Graphical User Interface (GUI) versus a scripting or batch
mechanism are key features. Programs currently used vary noticeably in their
applicability for specific types of modeling (Pettinen et al., 2005). The gen-
eral usability indicated by the user’s learning curve and application-provided
model designers have here a great impact. Well featured textual or graphical
utilities often aid the modeling process significantly. The number and quality
of the utilizable algorithms, supported model-exchange formats, and additional
features round up such user requirements dramatically. Next to this, it is of
major importance to have a tool with reliable and precise results at optimal
performance. An extension mechanism for the integration of new features and
functionality is then crucial. The support of spacial modeling information is
necessary for close to reality simulations. And last but not least it is important
to segregate parts of the model and handle such parts differently.

The following Table 3.3 will therefore define 12 comparison criteria extracted
form the preceding paragraphs. These criteria are applied to the previously
introduced related applications in a three-state manner. The three states range
from unsatisfactory to sufficient. This will allow for an easier qualification
of the differences among the tools. Table 3.4 is then going to summarize all

28

comparison findings from that definition.

Criteria Description

Accuracy Simulation results are reliable and precise.

Concurrency Various algorithms can be handled in concurrency.

Designer Modeling is supported by textual or graphical utilities.

Exchange Models are exchangeable among other applications.

Extendability The possibility to add new functionality to the system.

Features Additional components of scientific interest.

GUI The availability of a GUI for modeling and simulation.

Methodology Algorithms are deterministic, stochastic, or hybrid.

Performance The application’s optimization for efficiency.

Scripting The existence of an automating scripting mechanism.

Spaciality The support for any sort of spacial information (2D or 3D).

Usability Users’ scientific needs and smoothness of learning curve.

Table 3.3: Comparison criteria. The defined comparison criteria were extracted
from an objective analysis of state-of-the-art simulation applications
and common software quality assurance considerations. They are
further on used in a three-state manner (unsatisfactory, average, and
sufficient). Table 3.4 will display the three states as circles from
empty to filled.

As can be seen there is not one application making up for all defined comparison
criteria. The concurrency feature is left out, because it is not supported by any
of the comparison candidates. When weighting the three-state [unsatisfactory
(#), average (G# and H#), and sufficient ()] with zero (0), a half (0.5), and one
(1) then the given applications range from four to eight criteria points. A new
application as of 4DiCeS (see Section 5.3.3 for a comparison) should at least have
an equal or even higher level to the best to keep up with or even outperform
the state-of-the-art.

The following Chapter 4 will now formally describe the 4DiCeS approach.

29

3 Related Approaches and Tools

BIOCHAM BioNetS Copasi E-Cell Gepasi

Accuracy G#

Designer # G# G# H# G#

Exchange G# G# G#

Extendability # G# # G# #

Features # G#

GUI

Methodology # # #

Performance G# G#

Scripting # G# #

Spaciality # # G# G# #

Usability G# G#

MCell SmartCell StochSim VirtualCell xCellerator

Accuracy G#

Designer # H# G# G#

Exchange # G# G# G#

Extendability # # # # G#

Features G# # # G#

GUI # G#

Methodology G# G# #

Performance # G# # G# G#

Scripting # # G#

Spaciality G# #

Usability # G# G# G#

Table 3.4: Comparison of simulators. Filled () circles are generally superior
to their half-full (G#) counterparts. Empty (#) circles indicate the
need for improvement or a total absence. In methodology hybrid ap-
proaches are considered most sufficient. Designers are either defined
as textual (G#), graphical (H#), both (), or none (#) at all. Concur-
rency was omitted, due to missing support by any of the comparison
candidates.30

CHAPTER 4

Definitions and Implementation

Based on the criteria described in the previous chapter with respect to already
existing solutions, a general concept has been designed for the implementation
of a 4D Cell Simulator (4DiCeS). The system is developed as a common and
extensible framework flexible enough and well suited to serve as a platform
in systems biology. The four dimensions describe here the utilization of the
three space coordinates and a time axis. Cellular phenomena can therefore be
simulated in a 3D geometric environment over time. The current project logo is
presented in Figure 4.1. It consists of four rolling dice that represent the ability
to model and simulate stochastically in 4D space.

Figure 4.1: The 4DiCeS logo. The four rolling dice stand for modeling and sim-
ulating by the use of 4D stochastic methods. Also, the dice could
be compared to the cubes of the 3D geometry used with 4DiCeS.

The aim of this project is to provide a modeling and simulation application to
the user that is most adaptive in its functionality. The main features can be
roughly summarized as seven main design characteristics (see Table 4.1).

The first four features of Table 4.1 have a great impact on the modeling and sim-
ulation core itself. First of all 4DiCeS provides a 3D simulation geometry that
makes use of either imported or user-defined cellular compartments (Oleson
et al., 2003). Thus modeling and simulation will be based on such a geom-
etry that in turn can then be easily reduced to a 2D or one-dimensional (1D)

31

4 Definitions and Implementation

Feature Description Section

Geometry Enabling the import and the utilization of 3D cellular
boundaries over time as a basis for simulation.

4.2.1

Solvers Facilitate diverse types of algorithms including both
deterministic and stochastic methodologies.

4.2.3

Algorithms Allowing for both reaction and diffusion algorithms
within the same simulation model and geometry.

4.2.3

Concurrency Offer the possibility of running different algorithms
in concurrency in the same simulation environment.

4.2

Import and
Export

Provide a platform of different import as well as ex-
port filters to well-known model storage formats.

4.2.2

User
Interfaces

Permit the variable access to the system through dif-
ferent user interfaces as of GUIs and batch processing.

4.2.4

Extensions Make the entire system easily extendable by other
programming as well as scripting languages.

4.2

Table 4.1: 4DiCeS feature list. These seven features describe the main goal of
the design and implementation of 4DiCeS. An eighth feature is the
definition of a strong and well-defined software interface system (see
Section 4.2). This then should give the application users a modeling
and simulation utility that can be easily adopted or even extended
to their needs.

model if needed (Möller et al., 2002). Possible sources for importing geometrical
data could be either cellular image stacks such as from Confocal Laser Scan-
ning Microcopy (CLSM) and Multi-Photon Fluorescence Microscopy (MPFM),
or topological information such as from Scanning Electron Microscopy (SEM)
and Atomic Force Microscopy (AFM). Such data has to be adapted to allow for
entirely sealed compartments on which algorithms can work on within simula-
tions. This already implies other features as well. Both reaction and diffusion
algorithms should be applicable to the system (Möller et al., 2003). Diffusion
must work for either freely diffusible particles or for membrane-bound parti-
cles. This means that it is either possible to apply a free 3D, or a lateral 2D
membrane diffusion to simulated particles (Oleson et al., 2002). Additionally
definable boundary conditions are essential to reaction and diffusion by other

32

means as well. It must be possible to have different reaction-diffusion sys-
tems in unequal compartments of the same simulation environment. There is
also the need for particles to undergo transmembrane diffusion under definable
conditions. As another feature all reaction and diffusion algorithms can be of
diverse types including either deterministic or stochastic methods. In doing so
it should then be possible to concurrently run different algorithms on varying
compartments. Single compartments can be handled deterministically whilst
others can use stochastic methods in the same simulation environment (Oleson
et al., 2006).

The remaining three requirements of Table 4.1 give more attention to the us-
ability of the application as is. In this case it is important to provide diverse
import and export filters of well-established storage formats such as CellML
and SBML (see Section 4.2.2). This should enable the exchange of existing
models with the 4DiCeS system and then back to model repositories again.
Thus simulations should run on either GUI-based graphical frameworks or as
Command-Line Interface (CLI)-based (i.e. textual) batch jobs. This allows for
both high-throughput simulation applications and experimental model evalua-
tion simulations (Oleson et al., 2004). The whole architecture must also enable
other programming or scripting languages to effortlessly extend the 4DiCeS sys-
tem. All these requirements depend on a well-defined plug-in mechanism that
can be easily maintained and used by the system’s core. This again is benefi-
cial for third party programmers because they may also use the same plug-in
concept to integrate their own ideas readily (Oleson et al., 2006).

It has to be noted that within this work the word ‘interface’ is mainly used for
connection sockets between different parts of the application. In the case of
human-machine interfaces the term ‘user interface’ is going to be applied.

The following sections will now subsequently describe the 4DiCeS application in a
top-down manner. In connection with the general overview (see Section 4.1) the
implemented system will be eventually broken down into its functional parts.
These functional units are then discussed at more detail later on. Anyway, each
level of detail is going to comprise an overview, its dynamics, and dependencies
(see Section 4.2); therefore every subsection will define the environment of the
level of detail, its components, the possible states, and the error-case handling,
if applicable. This chapter finally closes with remarks to the deployment, the
applicability, and the availability of the 4DiCeS system to the public. This
includes specific programming design decisions made for applied programming
languages, third party APIs, and further technologies. Noteworthy technicalities

33

4 Definitions and Implementation

to concrete implementations and a general complexity consideration are then
also referenced to Section 4.3.

The formal description of the 4DiCeS application presented in this chapter makes
extensive use of the Unified Modeling Language (UML). The UML diagrams and
types used in this work are therefore described in Appendix C in further detail.

4.1 General Overview

This section will examine the general structure of the 4DiCeS framework. Both
UML use case studies (see Appendix C.1) and UML static program structures
(see Appendix C.2) provide an introduction of the overall architecture and
features of the system. In doing so it is thereafter easier to comprehend with
the system’s dynamics.

4.1.1 Survey of Integral Parts

The primary goal for 4DiCeS is to provide a modeling and simulation envi-
ronment capable of interpreting a given data model and running simulation
iterations therewith. For this purpose the application framework was divided
into functional pieces. Whereas the central part of the program is the 4DiCeS
kernel, which manages incoming as well as outgoing events and monitors the
stability of the system and all its units.

To allow for reusability, portability, and thus effectiveness of the 4DiCeS applica-
tion, a consistent system of kernel interfaces (see Section 4.2) was established.
These kernel interfaces offer a centralized gateway to and from simulation al-
gorithms, model data, and the actual user interface. The general concept is
displayed in Figure 4.2 for clarification, which displays a static UML class dia-
gram (see Appendix C.2).

4.1.1.1 Application Kernel

The 4DiCeS kernel provides functions for creating a simulation model indepen-
dent of a specific application. Through the user interface, either the user or
another program takes access to these functions. Input and output devices
form a module, which is linked by the module interface with the kernel. The

34

Figure 4.2: Established interface system. The kernel, as the central part of the
simulator, is surrounded by interfaces for simulation algorithms,
model data input and the user interface integration. The extending
modules to all interfaces are programming language independent.
First implementations include the use of Java modules as can be
seen from the Java typical names ending in ‘-let’.

kernel maps its functions at the user interface to the various capabilities of the
different modules. Then the realization of the device independent from the re-
quirement of single modules is accomplished by individual module drivers. The
kernel interfaces are defined independent of special programming languages.
The utilization of the underlying kernel therefore requires an adaptor interface
instance for particular programming or scripting languages. This can be easily
illustrated by the separation of the kernel into layers (compare to Figure 4.3).
Application-dependent layers may then build upon any individual programming
language layer.

35

4 Definitions and Implementation

Figure 4.3: Kernel layer model. Very similar to an operating system layered
model, the 4DiCeS kernel is separated into layers of different dispos-
ability. This structure allows for connecting various programming
and scripting languages to the functions and interfaces provided by
the kernel.

4.1.1.2 Data Model

All utilized data structures of 4DiCeS are integrated as the 4DiCeS application
data model. The data model itself is not used for a simulation model represen-
tation directly but to a much bigger extent for testing and simulation purposes.
This scheme follows the overall aim to understand, visualize, and experiment
with the underlying workflow of the application. The data model does not
necessarily include implicit simulation model information. Such can rather be
extracted out of the application’s data model if the components from Table 4.2
are given.

4.1.2 Function Classes

To allow for any state-changing functionality within the kernel functions are
required that address the design elements, attributes, modules, data structures
as well as formats, and the human-machine interaction. All error conditions are
processed by the kernel with its own exception handling and logging mechanism.
The description of kernel functions includes the function identifiers, names,
numbers, data-types, and the meaning of every parameter. Additionally the
functions’ effect(s) and possible error conditions are contained also. An effect
of a specific kernel function could be either to change the underlying model, to
return values to the user, to change the kernel’s state, or a mixture of all three.

The state of the kernel is given by values from a set of state lists that are
associated to the kernel itself, to modules, and to segments. The data structure
of the state lists with its data types, its intent, and the preallocation of its

36

Component Description

Basic Data Basic data structures holding the information about the
model itself, used algorithms, and the model geometry.

Dependencies All fundamental links among issued data structures as well
as data dependencies within closed data structures.

Identifiers Applied names as well as other criteria for the identification
of data structures and their direct dependencies.

Precepts General rule sets for the assembly as well as storage of struc-
tured data, its dependencies, and its identifiers.

Table 4.2: Extraction of simulation model information. Since the application’s
data model does not necessarily include the simulation model itself
there must be a way to extract such information. If the basic data
is given with its dependencies, identifiers, and data extraction rules
the simulation data can be extracted explicitly from the application’s
data model.

contained values are defined by kernel specifications. To avoid the inclusion
of the full set of functions provided by the kernel, all functions are organized
into levels of duty according to their increasing requirements. They are built as
matrices of three levels for the input, the output, as well as the segmentation.

A brief overview of the kernel functions’ classes is presented in the following.
In subsequent sections, significant functions and interfaces will be considered
in greater detail. The realizations of concrete modules will then be described
in Section 4.3.

Design Elements: Design elements are the elementary components from what
a simulation model is constituted of. In 4DiCeS there are particles, reactions,
kinetics, and compartments. Particularly for 3D modeling, the design elements
voxel and grid matrix are of special importance. A voxel is an indivisible and
therefore distinct volume element of the overall grid matrix. The grid matrix
is the simulation space. For addressing platform or language dependent (i.e.
non-standardized) functions, the “general modeling primitive” is defined.

Design Attributes: A design element can be characterized by its geometrical
form but also by its appearance. This is described by a set of design attributes.
For voxels these can be position, size, volume, and their particle incorporation.

37

4 Definitions and Implementation

The grid matrix offers attributes that depict the grid type, number of voxels,
and compartment details. Then the compartments are segmentations of the
grid matrix providing details on the voxels owned and boundary conditions.

Modules: A significant component of the 4DiCeS architecture is the concept
of interface modules. These allow for language-independent programming of
simulation applications and plug-ins. A module is an abstraction of interfaces
to the 4DiCeS kernel implementation. Also modules can be processed in sequence
or in parallel. A design element instance may vary in display and in execution
according to the special abilities of a connected module. The application is able
to request features of a connected module through an underlying event-handling
mechanism.

Model Structure: Interactive applications also require the capability for ma-
nipulating parts of the given model structure. There must exist opportunities
to handle all design elements as separate entities when constructing a model.
Therefore, a model can be composed of sub-models, “segments”. Segments may
be individually manipulated, deleted, and processed. 4DiCeS manages segments
from within its segment repository.

Human-Machine Interaction: An application can request input values from
a user through a module. 4DiCeS is currently aware of five classes that can be
connected dynamically to the system (see Table 4.3).

Interface Description

Geometry Set of models of geometric simulation space segmentations.

Activity Applied particles and their activities with the simulation.

Reaction List of used reaction algorithms during simulation.

Diffusion Used diffusion algorithms within the simulation spaces.

Interaction Interfaces to either users or other connected applications.

Table 4.3: Module classes. The input description for both geometry as well
as activity, the algorithm description for both reactions as well as
diffusion, and the programmatic interaction interfaces provide the
flexible base for designing models in 4DiCeS. They are designed to be
accessed independently of programming language, and to run con-
currently when appropriate.

38

The flexible control of these module classes by the kernel in combination with
the segmentation provide the base of designing models without a loss of pro-
gramming language dependency. The concurrency of algorithms gives then the
basis for the segmentation of models and their simulation in parallel.

Model Format: 4DiCeS contains an interface to the model, which allows for
both the long-term storage as well as the reload of models. The model file
can either be used to persist models, for their transmission, or for a resume of
a previously interrupted simulation session. Models are stored including their
segmentation structure.

Event-Handling: All values in the tables, which describe the system’s state,
can be retrieved by calling functions. There exist both mechanisms for ac-
tively calling for information (synchronous events) and obtaining data from a
model automatically (asynchronous events) when a certain trigger condition is
reached.

Error-Handling: If an error occurs during the execution of a 4DiCeS function,
then the kernel is set to a special error-handling state. Depending on the sever-
ity of the error, an error-handling routine of the used module can be invoked,
or the kernel can try to solve the fault by itself. In either case an error-log file
will be produced for further maintenance purposes.

4.1.3 Use-Case Descriptions

In the following section a use-case scenario is presented for the general use of
the application. The input as well as the output, the simulation handling, and
the algorithm management will be emphasized. All these components will then
be described in more detail later on.

4.1.3.1 User Perspective

A general approach to 4DiCeS is the description of its main features by a use-case
scenario that shows the user’s perspective of the system. Figure 4.4 presents
a general overview UML use-case diagram of the simulator, while Table 4.4
provides further details to the specific use-case.

Here the UML use-case actor is a potential user of the simulation program. This
user has a direct interface to three essential use-cases to the system: the simu-
lation engine, the input data, and the output data. In the center of the diagram

39

4 Definitions and Implementation

Figure 4.4: Use-case: User perspective.

Actors: • User
• User Interfaces

Objects: • Input descriptions (geometry and activity)
• Algorithms (reaction and diffusion)
• Model
• Simulation
• Output

Requires: • Initialization of model by input descriptions
• Initialization of simulation with used algorithms
• Simulation iterations for output

Assumptions: • Input is syntactically and semantically correct.
• Used algorithms terminate.
• Simulation need not terminate.
• Order of requirements is preserved.

Error Cases: • Malformed input description(s).
• Internally processing algorithm(s).
• Order of requirements not meet.

Table 4.4: Use-case: User perspective. Both this table and Figure 4.4 show
the user’s perspective of the 4DiCeS system. The figure displays a
UML diagram, while this table provides further information about
the requirements, assumptions, and possible error-cases on the use-
case.

40

there is the application data model, which is fed with information from both the
descriptions of the geometries as well as the activities that were uploaded by
the actor of the system. A geometry description is a 3D mesh of compartments
subdividing the simulation space into distinct vessels for both reaction and dif-
fusion events. These events in turn are defined by the activity description. The
upper part of the use-case diagram represents the model description and defi-
nition part of the application. The lower part on the contrary shows use-cases
utilizing these model boundaries for further simulation. Both reaction as well
as diffusion algorithms perform using the given rules and produce output data
in turn.

The user is required to feed the simulator with model definitions and algorithms
before a simulation can be started. Then the production of output depends on
at least one successful iteration of the simulation. Another point of possible con-
flict is the dependencies between model description and simulation description.
The definition files must either be general enough to cope with diverse types of
algorithms or preferred algorithms must also be defined. The precise location
of every algorithm used has to be defined before the simulation is attempted,
as is stipulated with the criteria that algorithms may run concurrently.

4.1.4 Program Dynamics

This section provides a more in-depth examination of the overall program’s
dynamics by highlighting the previously introduced user’s perspective through
a UML sequence diagram (see Figure 4.5 and Appendix C.3).

From the user’s perspective, the application data model first must be con-
structed and initialized. The construction (see Figure 4.6) consists of the load-
ing of data files required in the subsequent simulation process. The data that
is added to the model is optional but highly dependant on the simulation’s
purpose. Here it is defined which model segments are used as modules for the
description of the geometry and the activity.

The initialization (see Figure 4.7) of the model then links the previously loaded
data together. This makes sure that every segment of the model knows which
data has to be applied and how it is going to be used. After the linking of data
has terminated, the simulation engine is instantiated and further connected
to the data model. This accounts for possible errors that could occur, if the
data was either incompletely or improperly linked together. Therefore, the
initialization is also a data-verification and data-linkage verification mechanism.

41

4 Definitions and Implementation

Figure 4.5: Sequence diagram: User perspective. The given figure is a UML se-
quence diagram representation of the user’s perspective use-case as
described in the previous Section (4.1.3.1). Here, the function calls
for the creation of data objects and the triggering of a simulation
are outlined. It can be seen that in addition to ordinary function
calls with a synchronous return of approval, there is an additional
incidence of an asynchronous return event: This repetitive event
call states the availability of simulation output data that can be
collected by the user. The model construction (Figure 4.6), initial-
ization (Figure 4.7), and destruction (Figure 4.8) are out-sourced
for better clarity and readability.

Hence a simulation can only occur if the initial data is complete and properly
linked.

If the model was loaded and found acceptable by the initialization routines, the
actual simulation can begin. By doing so the simulation engine is invoked to
iterate over the given data through the use of the given algorithms in defined
time steps (see Figure 4.5). After each iteration output data is produced which
can be further used as a base for the next iteration cycle and is returned to the

42

Figure 4.6: Sequence diagram reference: Model construction. The construc-
tion of the application’s data model consists of the addition of data
segments as of the geometry description, the activity description, re-
action, as well as diffusion algorithms. The adding of such segments
is optional and highly depends on the purpose of the simulation. At
this stage the data is loaded but not further connected to each other.
This connection process will be executed during data initialization
(see Figure 4.7).

user for subsequent analysis. To ensure that the running simulation does not
block any user interactions, it is set up as a separate thread. Hence the user is
informed of newly created output data via asynchronous calls from that thread.
The output data itself is continuously saved to the connected permanent storage
of the systems hardware.

Next either the user is able to stop the simulation manually or simply waits
until the previously defined number of iterations have been processed and the
simulation engine auto-terminates. With either suspension mode, the user is
able to continue simulation since the output data can be reused as new input

43

4 Definitions and Implementation

Figure 4.7: Sequence diagram reference: Model initialization. After the appli-
cation model data was loaded and set to the program’s internal data
sets it has to be connected to each other. This is done iteratively
by searching the geometry descriptions for compartments that give
further clues on what other definitions have to be linked.

Figure 4.8: Sequence diagram reference: Model destruction. If the currently
loaded model is no longer needed, it has to be destroyed before other
(new) models can be loaded. The process of destruction is highly
dependant on the chronology of what object has to be deleted first.
It is of major importance to remove the simulation engine instance
first and then destroy the input description and the algorithms in
this order. Doing so ensures that the data is removed from its link-
age dependencies safely without creating broken connections that
may trigger undesirable memory leaks.

44

data. Here no reinitialization is necessary because all data remains complete
and linked until model destruction.

The destruction of data (see Figure 4.8) has to be then performed to avoid
possible memory leakage or the overcrowding of physical memory. The de-
struction is an ordered process of chronological data model segment instance
removal. First the simulation engine is destroyed since the destruction will fi-
nally invalidate the given data thereby making the simulation engine obsolete.
At this point the data is removed from top to bottom by first deleting the input
descriptions and then also the loaded algorithms from memory. It should be
noted that no data is finally lost at this point due to the automatic saving of
output data by the simulation engine. If the user decides to remove such stored
files as well, then the data is definitely lost and can only be reproduced by a
repeated simulation.

4.2 Considerations and Definitions

As the general concept of the 4DiCeS framework was displayed already, this
section is concerned with the design and definition of the interfaces. Details
regarding how 4DiCeS offers its implemented modularity as combined with cross
platform compatibility will then be further described in Section 4.3.

The design of the framework specifies that a plug-in module must be chosen
and connected to the kernel for the system to run successfully. All interfaces
are defined in a modular way in order to provide greater exchangeability of
algorithms and to facilitate hassle-free software updates.

Currently there are four different interfaces to the 4DiCeS kernel (see Table
4.3). They allow for connections of modules that handle diffusion and reac-
tion algorithms, the parsing of description files, and describe the connection
to user interfaces. The dynamics of the interfaces facilitate the integration
of new methods and algorithms not yet implemented. Additionally it is thus
more easily possible to exchange old modules for new versions. The potential
for extending the interfaces to other programming languages as well as other
applications is significant. The plug-ins could also integrate sockets to allow for
network distributed computing or the remote diagnostics of running processes.

The following subsections characterize the current implementations for model-
ing of 3D geometry (Section 4.2.1), for handling activity descriptions (Section

45

4 Definitions and Implementation

Figure 4.9: 4DiCeS modules. The kernel of 4DiCeS comprises four interfaces to
modules that have to be engaged before a simulation is able to run.
These ports allow for the integration of various reactions as well as
diffusion algorithm modules, model (activity and geometry) parsers,
and for user interactions.

4.2.2), and for utilizing algorithms (Section 4.2.3). Thereafter a subsection de-
scribing the user interfaces will consider the momentary connections between
4DiCeS and the user (see Section 4.2.4). The underlying plug-in design details
are then discussed in Section 4.3.

4.2.1 Geometry Model

Before considering the actual geometry implementation of 4DiCeS the following
section briefly introduces fundamental 3D geometry characterization descrip-
tions. Actually, there exist several techniques to present 3D geometries. But
common representation schemas for modeling of 3D objects can be divided into
three main groups (see Figure 4.10): ‘wire-frame models’, ‘surface models’, and
‘body models’ (Encarnação et al., 1997b).

Wire-Frame Models: Among the 3D model types described above the wire-
frame model requires the least information for representing 3D bodies. At large,
its structure elements are limited to outline elements as of ‘straight edges’, ‘cir-
cular arcs’, or ‘spline curves’. These elements are not related to each other
within this model type. Hence, an assignment of such elements to surfaces
is not defined. Therefore, wire-frame models can be considered simple in that
data on the surface and interiors are lost in the sense that the wire-frame model
no longer describes that information. Hence they do not qualify for a represen-
tation of body models due to their incomplete and ambiguous presentation. In
many cases algorithms on wire-frame models demand for an intensive interac-

46

Figure 4.10: Representation schemas for 3D models. Both the wire-frame and
the surface models allow for only an visually-interactive user in-
terpretation. They are not complete and distinct in their repre-
sentation of 3D objects. On the contrary body models provide a
comprehensive description of a 3D object, and can be interpreted
algorithmically. There are many representations for body models.
The most commonly used models are the cell model, CSG, BRep,
and hybrids between the CSG and BRep representations. Adapted
from Encarnação et al. (1997b).

tion with the user, who then has to specify corresponding surfaces interactively.

Surface Models: Surface models comprise the creation of 3D objects where
the facing and its attributes as for bend, torsion, and smoothness are of major
importance. Therefore the main content of information lies in single face de-
scriptions. Again there is no correspondence between such faces. In particular
relationships to neighbors are not included to its data representation. Such a
surface modeler is not qualified for presenting proper body models. A classifi-
cation of one point in space according to an object cannot be dealt with. That
is why it is hard to decide if a point lies inside or outside of a displayed 3D
object. To come to such a decision, normal vectors have to be applied facing
to, and therefore defining, the outside. Surface models without such orientated
faces are neither distinct nor complete. Likewise surface models are better
than wire-frame because more data is included. This data is however not a
comprehensive representation of the information it is meant to embody.

47

4 Definitions and Implementation

Body Models: The term body models stands for many representation schemas
(see Figure 4.10). Body models form a complete description of 3D objects and
can be interpreted automatically by a program. Due to complete storage of the
body’s 3D representation geometry, the question can be addressed algorithmi-
cally. As another positive feature the consistence of objects can be ensured with
algorithmic manipulation, as the result of an operation (e.g. the combination of
two objects) gives a valid object again. The following geometry considerations
will deal with body models only.

As for the current implementation of 4DiCeS, body models were applied as the
geometrical description of a simulation space. Therefore the following Section
4.2.1.1 will go further into illustrating the general simulation space definition in
4DiCeS. The proximate Section 4.2.1.2 will then provide details on the reference
implementation of this body model, and how it is handled by the 4DiCeS kernel.
The activity description (see Section 4.2.2) then formally describes the inter-
action of both the currently supported geometry data structure and activity
models in detail.

4.2.1.1 Simulation Space

As can be seen from Figure 4.10, there are several different approaches of mod-
eling a 3D geometry. As the most commonly used representatives of such tech-
niques are BRep, the CSG, and the cell model, they are going to be briefly
described. A specialization of the cell model was used for the underlying simu-
lation space geometry of 4DiCeS and is going to be laid open in detail with the
upcoming section.

Boundary Representation: A body model can be described explicitly by its
surface and an associated topological orientation. Because of this topological
orientation, every point is well-defined with regard to whether it lies inside or
outside of a plain. Boundary Representations (BReps) use this fact, and describe
3D objects by their surface. Polygon-oriented data-structures as edge-oriented,
node-oriented, or winged-edge data-structures can be applied for the storage of
BReps.

Constructive Solid Geometry: With Constructive Solid Geometry (CSG),
3D bodies are described by trees of Boolean operators and primitives. These
are also called CSG-trees. Each primitive can then be defined by either BReps or
half-space models. The display of CSG-objects as trees is closely linked to the
construction of the objects. The nodes of the tree represent regulatory Boolean

48

Figure 4.11: Model primitives. As for any body model primitives, the dimension
parameters (here a cube with: xL, yL, and zL) as well as the
position of the point of origin (x, y, and z) define a primitive
unambiguously. Adapted from Encarnação et al. (1997b).

set operations or transformations in space. The leaves refer to the primitives. A
data-structure would make use of the tree-structure and the particular primitive
representation used.

Cell Model: In a cell model, a 3D body is divided into a set of non-overlapping
neighbor cells. Such cells have various forms, sizes, positions, and orientations.
Therefore, the division of cells depends on a distinct number of cell types and
simple operations for their assembly. The single cells can be arbitrary objects
that are topologically equivalent to a sphere in 3D space. A 3D body is therefore
composed of a set of half-disjunct cells. Data-structures highly depend on the
cell type used. Often tree-structures come into use as for quad-trees and octrees.

A base body primitive is well-defined by fixing the dimension parameters of a
3D primitive (see Figure 4.11). In a cell model, the base bodies can have various
shapes: cylinders, cones, spheres, toroids, or cuboids. Dimension parameters
are e.g. three-side lengths for cuboids or one length and a diameter for a
cylinder. Each object has a point of origin to a local coordinate system. This
local coordinate system cannot be altered, since it is à priori fixed for every
base body primitive.

In 4DiCeS special constraints have to be applied to a cell model for it to be suit-
able for representing a simulation space (see Table 4.5). First of all it is of major
importance that the complete geometrical space of simulation is described in
full. This means that there must exist an uninterrupted representation of both
a global reaction and diffusion area. This area may be segmented into closed

49

4 Definitions and Implementation

Requirement Description

Uninterrupted The global geometry definition must enclose the entire sim-
ulation space without any gaps and exceptions.

Nesting The simulation space can be segmented into compartments
that can be partitioned further on again.

No Overlap Compartments must not overlap with themselves or other
compartments within the simulation space.

Data Slots There exist defined slots for the linkage of the activity de-
scription and the used algorithms of the data model.

Table 4.5: Requirements to the simulation space. In addition to the definition
rules of a used body model there exist four further specifications for
a geometry representation in 4DiCeS.

compartments that may be partitioned again. Such a nested structure of 3D re-
gion descriptions ensures that a model can be simulated. Another constraint is
that compartments must not overlap. Furthermore all defined structures must
provide slots to link in other parts of the application data model. A simulation
space is complete if all given constraints are obeyed. During the creation and
the initialization, the application data model relies on this additional informa-
tion.

Actually, all body models could be applied to 4DiCeS if they obey the given
requirements. But as a first reference implementation to such a model, a spe-
cialized form of the cell model was used that is specified in the subsequent
section.

4.2.1.2 Geometrical Data Structure

The cell model described earlier (see Section 4.2.1.1) was used for a reference
implementation of a geometry model in 4DiCeS. A cuboid was used to define
the cell type. Thus the 3D simulation space is divided into a 3D grid of equally-
sized sub-volumes. In the literature such a structure is also referred to as
a grid of voxels, which is an aggregation of the terms “volume” and “pixel”
(Encarnação et al., 1997a). Often voxels are also called Volume Elements (VEs),
in accordance to a grided volume of distinct elements. A generalized scheme

50

Figure 4.12: Simulation voxel space. A biological cell is subdivided into discrete
cubes, called VEs. These VEs can harbor multiple particle species
and may have a membrane as their surface area. To allow for
various geometries, the VEs are designed to be freely scalable in
size.

of such a diced model can be seen in Figure 4.12 that shows a schematized
biological cell following this 3D geometry description.

The VEs used here are able to form all sorts of complex compartments. This
disposition of distinct but regular cubes has enormous benefits to further mod-
eling and simulation. The size of the VEs can be specified during initialization
that helps to keep computational time low. Also such a geometry can be easily
persisted in a simple 2D data-structure.

The VE defines the smallest geometrical structure within the simulation space.
It can also specify boundary conditions that can then be used as membranes
for particle diffusion. Every side of the cuboid voxel can have a membrane
area. Thus a VE can be considered to be an open system if no membranes
are set. Conversely the system is closed and reflecting if a VE is fully covered
by membrane. The total coverage of a VE needs six membrane faces. Hence
two neighboring VEs with adjacent membranes are analogous to a cellular lipid
bi-layered membrane. The membranes function either as barriers for definable
particle species or as binding areas for transmembranous proteins (see Figure
4.13). Opposite marginal VEs on the grid, if not divided by membranes, allow
the movement of particles from one side of the grid to the other (i.e. exiting
the far right and reentering to the left of the grid again).

Every cube is able to hold particle concentrations for each particle species
applied to the model. Unbound particles are allowed to diffuse freely in all

51

4 Definitions and Implementation

Figure 4.13: Boundary conditions. Every VE may be covered by membranes on
every one of its six faces. Two neighboring VEs and membranes
make a lipid bi-layer. Therefore it is possible to have both free and
membrane-bound particles. The permeability of particles through
the membranes may be individually adjusted.

directions. Membrane bound particles can only diffuse laterally within the
membrane (see Figure 4.13). A voxel is composed of six direct faces, 12 edges
and eight corners. While each face has one direct neighbor, the edges have
three and the corners eleven. The diffusion from one VE to another is handled
such that the probability of leaving a VE is higher with the face neighbors than
with edge neighbors. The corners could be neglected since statistically corner
diffusion is constantly small and therefore often dispensable.

The allocation of particles is uniformly distributed within a VE at initialization.
This means that it is not possible to further specify particle positions within a
voxel. However the number of particles per species and the membrane coverage
can be set by the user.

To store and manage the 3D voxel geometry, a common 2D graphics format was
applied. The Tagged Image File Format (TIFF)1 was chosen due to its ability
to handle different color spaces, to utilize powerful as well as lossless data
compression algorithms, and to allow for multi-page-TIFFs. TIFF is designed
to work well in many viewing applications, such as the Internet, so it is fully
streamable with a progressive display option. TIFF is robust providing both full
file integrity checking, as well as simple detection of common transmission errors
(Miano, 1999). TIFF can store gamma and chromaticity data for improved color

1TIFF Specification: http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

52

http://partners.adobe.com/public/developer/en/tiff/TIFF6.pdf

(a) TIFF of Particles (b) TIFF of Membranes

Figure 4.14: Placement of relevant geometrical information. (a) The number
of particles per voxel is represented as a pixel in an image. (b)
Represents the membrane-setting for all cubes of the grid. Here,
membranes are binary-encoded as can be seen at Table 4.6. (a)+
(b) All the x–y slices (the z stack) are spread in the picture’s x
direction. (a) Thereby, every single particle species can be repre-
sented in its 3D geometry in the TIFF’s y direction. Each new step
in time produces a new particle TIFF page.

matching on heterogeneous platforms. Last but not least, TIFF does not require
licensing and can therefore be freely used (Murray and Ryper, 1994).

The challenge of converting the 3D data into a 2D picture format was resolved
by displaying a 3D stack of VEs in two dimensions (see Figures 4.14 and 4.15).
The grid of VEs has its three spatial dimensions (x, y, and z). Every VE can be
directly addressed via these unique space coordinates in 3D. It is adequate to
speak of x–y-layers in the grid’s z axis. These layers are organized sequentially
in one row of a TIFF image. The VE information of the number of particles is
stored as a 64bit integer pixel. Every modeled particle species is given by its
own row of x–y-layers (see Figure 4.14(a)). The result is a static 3D image of the
VEs’ particles of the grid. Every VE-grid-snapshot in time is stored as a separate
TIFF-page (see Figure 4.15). The reusability of the output is enhanced, because
a simulation can always be restarted with any of the previously produced TIFF
as input data again.

Similar as to the particle storage in TIFF images, the structural information of
membranes is also captured in a TIFF. Again, the x–y-layers in the grid’s z axis
are saved. In contrast to the before mentioned, only the six faces are stored as
a sequence of ‘set’ and ‘unset’ bits (see Figure 4.14(b) and Table 4.6).

The TIFF-file can also store additional textual information. This capability
is used to provide auxiliary data on the geometry of the 3D grid representa-

53

4 Definitions and Implementation

left right top down front back

20 21 22 23 24 25

Table 4.6: Membrane binary codes. Stored to a TIFF-page, membranes are
binary-encoded. Each of the six cube faces has a unique identi-
fication bit. Combined together into a pixel value, this encoding
represent the coverage of a VE by membrane. A fully covered voxel
with membrane would therefore have the value 0x3F. A plain voxel
without any membranes is represented by a value of zero (0x00).

Figure 4.15: Transformation of 3D into 2D data. The picture shows the conver-
sion of VEs into two 2D TIFF-pages. Here, the underlying informa-
tion of all particles and the membrane geometry is stored as pixel
values of an image file. The different colors yellow {x0, y0, z0}, red
{x1, y0, z0}, brown {x0, y1, z0}, blue {x1, y1, z0}, cyan {x0, y0, z1},
purple {x1, y0, z1}, orange {x0, y1, z1}, and green {x1, y1, z1} denote
specific VEs at their corresponding positions in X, Y , and Z re-
spectively. Each voxel V includes a constant set of particle species
S. After every iteration cycle t of time T the same structure is
stored as a separate page to the TIFF image.

tion. The underlying activity description, geometrical details, links to applied
algorithms, Globally Unique IDentifiers (GUIDs), and version numbers can be
stored as “tags” to the TIFF image files. The grid representation is stored as
three integer values that mark the length of each grid axis (x, y, and z). The

54

underlying cell model is tagged as the file name of the modeling file relative to
the TIFF directory position.

TIFF files can be loaded with a great variety of existing image processing ap-
plications. Furthermore the implementation of an analysis tool for this kind
of file format is not difficult. Several image processing libraries in various pro-
gramming languages offer accordant TIFF support2. The compression rate of
TIFF images allows for huge amounts of time series pictures to be created with
relatively low storage requirements. As compared with flat text files of the same
information, the TIFF used here achieves a compression rate of approximately
1/200. This partially addresses the commonly encountered problem of storing
large amounts of data.

4.2.2 Activity Description

As seen in the previous section the representation of 4DiCeS geometry was
achieved by analyzing as well as utilizing existing 3D modeling methodolo-
gies. The computational modeling of activity descriptions requires a similar
approach. Again model description files have to be utilized for an adequate
persistence mechanism to the underlying system. To be useful as a formal
characterization of biological systems understanding, mathematical models are
put into a format that may be transferred successfully between different soft-
ware tools (Bower and Bolouri, 2004). Such a format then addresses a number
of problems facing simulation and modeling (three of such major problems are
stated in Table 4.7).

One problem occurs when users have to handle multiple resources from various
software tools during a project. Different tools have different capabilities and
strengths. Working with different tools today mainly requires the re-encoding
of models in each tool that is a very error-prone and time-consuming pro-
cess. Another problem arises with the need for obtaining the model defini-
tions in electronic form. This especially can be found with journal publications
where authors use different modeling environments and model representation
languages. Such definitions are often not straightforward to examine, compare,
test, or reuse. A researcher typically must manually transcribe the model into
his software tool’s appropriate format. Last but not least, a problem exists
if a simulation tool exceeds support. Models developed on such systems may
become obsolete and therefore are often abandoned. The development of new

2Free graphics libraries: http://www.thefreecountry.com/sourcecode/graphics.shtml

55

http://www.thefreecountry.com/sourcecode/graphics.shtml

4 Definitions and Implementation

Requirement Description

Multiple
Resources

Often various resources from different tools or databases
have to be collected and stored away as one model file.

Reproducibility There is a great need for allowing other people to view
and reuse models – especially when they were published.

File Format
Support

The stop of support for software tools often also ends the
assistance on non-standardized modeling formats.

Table 4.7: Problems facing simulation and modeling. This table states three
problems facing simulation and modeling.

tools will only intensify these problems unless the issue of standard formats or
clear and automatic translation between them is addressed (Hucka et al., 2004).

The development of standard modeling languages are being conducted in effort
to address such problems. Standardized formats can then be used to communi-
cate and exchange models between different software tools. By supporting such
general formats as input and output formats, different software systems can all
operate on the identical representation of a model. This provides a common
starting point for simulations as well as analysis and eliminates the possibility
of translation errors.

Model-data storage is currently accomplished either with proprietary data for-
mats or by derivatives of markup languages such as XML (see Table 4.8. Re-
cently an attempt was made to use UML as a biological model description
language (Webb and White, 2005). Most of the biological model description
formats are freely available standards. While numerous language definition
draft documents are still copyrighted, a non-commercial use is usually accepted
and even often designated.

The popularity of XML in the area of computational biology has grown in the
past decade. XML provides the capability of representing data in a comprehen-
sive and standardized data structure. The structure of XML documents defined
using a XML Document Type Definition (DTD) however is limited to repre-
senting data in a hierarchical tree fashion. Such an approach imposes severe
limitations on both the structure, as well as the ability to validate a document.
The utilization of the World Wide Web (WWW) Consortium XML “schema”
approach to document definition thus overcomes many of such limitations.

56

Designation Web Site

AnatML http://www.physiome.org.nz/anatml/pages/

BioPAX http://www.biopax.org/

CellML and http://www.CellML.org/
ModelML

DSML http://www.hippron.com/hippron/

EML http://www.e-cell.org/

FieldML http://www.physiome.org.nz/fieldml/pages/

Jarnac http://www.cds.caltech.edu/ hsauro/Jarnac.htm

MDL http://www.mcell.psc.edu/

SBML http://www.sbml.org/

SciLab http://www.scilab.org/

XPP http://www.math.pitt.edu/ bard/xpp/xpp.html

Table 4.8: Input description file standards. The description file formats dis-
played in this table are either cellular modeling languages or their
specific helper-languages. They can be roughly described as propri-
etary and markup languages.

Many data formats have been proposed for representing models in the life-
sciences including the BIOpolymer Markup Language (BIOML)3 (Fenyo, 1999),
the Chemical Markup Language (CML)4, the EML ((Sakurada et al., 2002)),
the MicroArray Gene Expression Markup Language (MAGE-ML)5 (Spellman
et al., 2002), the Proteomics Experiment Markup Language (PEML)6 (Taylor
et al., 2003), the Protein Markup Language (ProML)7 (Hanisch et al., 2002),
and the Proteomics Standards Initiative’s Molecular Interaction (PSI-MI)8 lan-

3BIOML: http://xml.coverpages.org/bioml.html
4CML: http://www.XML-CML.org/
5MAGE-ML: http://www.mged.org/MAGE/
6PEML: http://www.ccbm.jhu.edu/
7ProML: http://www.scai.fraunhofer.de/
8PSI-MI: http://psidev.sourceforge.net/

57

http://www.physiome.org.nz/anatml/pages/
http://www.biopax.org/
http://www.CellML.org/
http://www.hippron.com/hippron/
http://www.e-cell.org/
http://www.physiome.org.nz/fieldml/pages/
http://www.cds.caltech.edu/~hsauro/Jarnac.htm
http://www.mcell.psc.edu/
http://www.sbml.org/
http://www.scilab.org/
http://www.math.pitt.edu/~bard/xpp/xpp.html
http://xml.coverpages.org/bioml.html
http://www.XML-CML.org/
http://www.mged.org/MAGE/
http://www.ccbm.jhu.edu/
http://www.scai.fraunhofer.de/
http://psidev.sourceforge.net/

4 Definitions and Implementation

guage (Hermjakob et al., 2004). There are also a few general-purpose modeling
definition formats that can be found for biological model documentations. Two
very popular examples are the Petri-Net Markup Language (PNML)9 and the
Resource Description Framework (RDF)10.

There are only two XML-based formats that are designed to unambiguously
specify, store, and exchange biological models in a form that is both computer
and human readable – CellML (Crampin et al., 2004), and SBML (Hucka et al.,
2004). The Dynamic Signaling Maps Language (DSML) that could be used in
the same way is not XML-based but a proprietary flat-file language.

Both SBML and CellML support the Mathematical Markup Language (MathML)
(Ausbrooks et al., 2003). MathML is an XML application for describing math-
ematical notation and capturing both its structure and content. The goal of
MathML is to enable mathematics to be served, received, and processed, just
as the HyperText Markup Language (HTML) has enabled this functionality for
text on the WWW.

4DiCeS has currently reference implementations for two model description for-
mats. The first is a proprietary description language designed during the devel-
opment of 4DiCeS and can be considered the systems natively supported activity
description format. This flat-file format called 4DiCeS Model Description (FMD)
is further discussed in Section 4.2.2.1. The second file format supported at
present is SBML (see Section 4.2.2.2). The activity considerations will be closed
by a closer look at the formal integration of these two description file formats
into the 4DiCeS framework (see Section 4.2.2.3).

4.2.2.1 4DiCeS Model Description (FMD) File Format

During early development of the 4DiCeS system, a custom-made modeling file
format was used together with the kernel-parsing interface. This format allows
for the design of models consisting of both data for the reaction as well as
diffusion processes. The format is a flat-file that may integrate TIFF geometry
files as discussed in Section 4.2.1.2. In the following section, the four-tuple
grammar G = (T, N, P, S) of this flat-file modeling language is defined using
the Backus–Naur Form (BNF) (see Appendix B):

9PNML: http://www.informatik.hu-berlin.de/top/pnml/
10RDF: http://www.w3.org/RDF/

58

http://www.informatik.hu-berlin.de/top/pnml/
http://www.w3.org/RDF/

T = { 0, . . . 9, a, . . . z, A, . . . Z, +, >, |, @, ∗,∼ ,−, ., } (4.1)

N = { 〈outerproduct〉, 〈innerproduct〉, 〈educt〉, 〈particle〉,
〈species〉, 〈volumeelement〉, 〈reaction〉, 〈rate〉,
〈product〉, 〈letter〉, 〈digit〉, 〈amount〉, 〈sign〉,
〈name〉, 〈membrane〉 } (4.2)

S = 〈volumeelement〉, (4.3)

where T denotes the set of allowed terminal symbols. N specifies the set of
all possible non-terminal symbols, and S defines the starting symbol as further
defined in 4.10. The production system P is further specified by:

〈letter〉 ::= ′a′..′z′|′A′..′Z ′ (4.4)

〈digit〉 ::= ′0′..′9′ (4.5)

〈percent〉 ::= [′0′]′.′{〈digit〉}|′1′ (4.6)

〈sign〉 ::= ′ ∗′ |′ ∼ ′|′ −′ |′.′ (4.7)

〈name〉 ::= [′ ′]〈letter〉{〈letter〉|′ ′|
〈digit〉|〈sign〉} (4.8)

(4.9)

for base primitives, and:

〈volumeelement〉 ::= 〈reaction〉{′,′ 〈reaction〉} (4.10)

〈reaction〉 ::= 〈rate〉〈educt〉〈product〉 (4.11)

〈rate〉 ::= ′(′〈percent〉′)′ (4.12)

〈educt〉 ::= 〈species〉{′+′〈species〉} (4.13)

〈species〉 ::= 〈amount〉〈particle〉 (4.14)

〈particle〉 ::= 〈name〉[〈membrane〉] (4.15)

〈amount〉 ::= {〈digit〉} (4.16)

〈membrane〉 ::= ′@′〈name〉 (4.17)

59

4 Definitions and Implementation

〈product〉 ::= 〈innerproduct〉[〈outerproduct〉]|
〈outerproduct〉[〈innerproduct〉] (4.18)

〈innerproduct〉 ::= ′ >′ 〈educt〉 (4.19)

〈outerproduct〉 ::= ′|′〈educt〉 (4.20)

where a reaction (4.11) is defined by a set of educts (4.13), products (4.18), and
a reaction rate (4.12). A product can further be divided into outer (4.20) and
inner products (4.19) that define a reaction output to be either in the inside or
the outside of the current reaction compartment. Both educts and products are
specified by particle species (4.14) and their momentary concentration (4.16).
Particle species can be tagged as being membrane-bound by concatenating a
membrane (4.17), by the use of an ‘@’ symbol, to them.

This description specification is of course by far not complete but applicable for
many usage scenarios of 4DiCeS in its present state. FMD was especially useful
for testing as well as verification purposes during implementation and can be
considered to be the native description file format of activities in 4DiCeS.

4.2.2.2 Systems Biology Markup Language (SBML)

The Caltech ERATO Kitano systems biology project has developed the Sys-
tems Biology Markup Language (SBML) for the representation and modeling of
information components in cellular systems. SBML serves as an attempt to spec-
ify a common, model-based description language for systems biology simulation
software (Hucka et al., 2004). At the moment the world-wide SBML commu-
nity counts over 80 software tools supporting this language in one or the other
form (SBML Software Guide11). The SBML representation language is organized
around five categories of information: model, compartment, geometry, species,
and reaction. The intent is rather to cover the range of data structures needed
by the collection of all of the simulators examined so far (Finney and Hucka,
2003). A major drawback is that SBML does not currently have the means to
represent Partial Differential Equation (PDE)-level models or diffusion terms
(Hucka et al., 2003). Cellular geometry was also rather neglected. To surround
such deficiencies, especially the lack of support for geometry definitions, great
efforts have to be made on part of 4DiCeS (see the following section 4.2.2.3).
How other application are dealing with such is further shown in Section 5.4.

11SBML Software Guide: http://sbml.org/SBML Software Guide/

60

http://sbml.org/SBML_Software_Guide/

In the following the import to as well as the export from 4DiCeS of the previously
presented two file formats FMD and SBML is going to be presented in more
detail.

4.2.2.3 Import and Export

As for applying a model to the 4DiCeS suite, there are three specific user scenar-
ios (see Figures 4.16). Depending on what type of data is to be included to the
application data model, there is one use-case for loading an activity description
without any further geometry definitions, then a use-case with rudimentary ge-
ometry to allow for concurrent algorithms, and lastly a use-case describing the
full interaction with both activity and geometry description in 3D.

Plain Activity Model: If a user simply applies a given activity model file
to 4DiCeS, then there is no further need for any geometry information. The
only thing that has to be specified in addition to the activity data is what
kind of reaction algorithm should be applied to the simulation process. Within
such a scenario, there is no algorithmic concurrency allowed, because of missing
segmentations that would be defined by a geometry description. The use-case
can be seen in Figure 4.16(a). Such a simulation can be referred to as a “single
segment simulation”.

Rudimentary Geometry: If compartments with concurrently running algo-
rithms are required, but no further 3D geometry is needed, then a limited form
of the geometry description must be applied in addition to the activity descrip-
tion. Only defined compartments are mapped to segments of the geometry to
allow for setting individual algorithms for each compartment. The use-case is
visually described by Figure 4.16(b). This type of simulation is called here a
“2D multiple segments simulation”.

Full Input Description: When a trackable 3D geometry is required in addi-
tion to the activity and concurrency of algorithms, then the user has to input
two complete description files of both geometry and activity. The use-case for
this type of model can be found in Figure 4.16(c). This model type leads to a
full “3D multiple segments simulation”.

All three use-cases have an activity description and the application data model
in common. While use-case Figure 4.16(a) requires only a separate setting of
the applied reaction algorithm to establish the simulation engine, the other two
use-cases (Figures 4.16(b) and 4.16(c)) require both a geometry description
and a set of diffusion algorithms. With Figure 4.16(b) the application data

61

4 Definitions and Implementation

(a) Single Segment Model

(b) 2D Multiple Segments Model (c) 3D Multiple Segments Model

Figure 4.16: Use-cases: Modeling. Depending on what type of data is applied
to 4DiCeS, there are three different use-case scenarios. Figure (a)
shows the input of an activity description without any further ge-
ometry definitions. Figure (b) displays a use-case with limited ge-
ometry to allow for concurrent algorithms, and Figure (c) describes
the full interaction with both activity and geometry description in
3D.

model will attempt to set the needed connections itself, since no further geom-
etry is needed. With Figure 4.16(c) the user must explicitly set the geometry
description so that a simulation engine can be established.

A UML sequence diagram (see Figure 4.17) displays the behavioral specification
in more detail. The conditions are highlighted that produce an alternate be-
havior of the application data model during initialization. The three conditions
are summarized in Table 4.9. It should be noted that if any of the three alter-
natives fails to connect to the remaining data sets, then the simulation engine

62

Figure 4.17: Sequence diagram: Model alternatives. This figure displays the
conditions that lead to the three alternative model instances. On
initialization, the kernel checks for the existence of a geometry de-
scription. If and only if such a description file exists the application
data model instructs the geometry description to connect to the
remaining data set. Otherwise, the kernel will further check for an
existing set of diffusion algorithms. If and only if that set exists
a simple geometry description is created, which again connects to
the remaining data set. Only if both test are negative the kernel
instructs the activity description to connect to the corresponding
reaction algorithm. In either case, if and only if a final connection
to the remaining data sets is successful, then a simulation engine
is instantiated.

will not be produced and a simulation of the model will not be feasible. The

63

4 Definitions and Implementation

Condition Resulting
Use-Case

Description

Φ 6= ∅ 4.16(c) 3D Multiple Segments Model

Φ = ∅ ∧ Θ 6= ∅ 4.16(b) 2D Multiple Segments Model

Φ = ∅ ∧ Θ = ∅ 4.16(a) Single Segment Model

Table 4.9: Model alternative conditions. This table summarizes the conditions
that results in the three alternative use-case scenarios. Here Φ is a
set of segments and Θ defines a set of diffusion algorithms. These
sets can either be empty or filled with their corresponding elements.
The case Φ 6= ∅ ∧ Θ = ∅ results into an error event, the initialization
process is interrupted, and the application data model remains in its
uninitialized state.

application data model thus stays in its uninitialized state until the missing
data is added and an additional initialization call is invoked.

As already mentioned in the preceding section the SBML is missing an advanced
functionally in supporting geometry. Therefore this model description format
is handled somewhat different. The single segment model as well as the 2D
multiple segments model, there initialization routines, and the actual simulation
work very similar as described before. But in contrast to the 3D-FMD handling
the 3D multiple segments model is currently not facilitated. Also concurrent
algorithms cannot be inserted by SBML into 4DiCeS, since this file-format is
missing such a concept completely. Anyhow, at least with the later on described
GUI implementation for 4DiCeS, the user is able to connect different algorithms
to the system manually. This change of course cannot be exported to SBML
again, which occasionally results in a loss of persistency of the data model.

Noteworthily, the application data model offers the entire bandwidth of “get-
ter” and “setter” functions. This is therefore the place where the loading,
saving, and validation of models occur. Data sets, parameters, boundary in-
formation, and the simulation space can all be manipulated through this one
object instance. The application data model actually offers the most direct
and powerful set of methods to the kernel. With this the security of the 4DiCeS
system becomes a concern, since the system is not always able to safely pro-
cess erroneous model data through the parsing interface. Fall-back mechanisms

64

within the system will therefore run a controlled model rollback if syntactical
errors are detected during parsing or during initialization.

The now following section will deal with the algorithmic back-end of the 4DiCeS
framework. The modeling part of the system’s description will be hence left
and turned towards the depiction of simulation mechanisms.

4.2.3 Algorithm Handling

Both ports to the diffusion and reaction modules are actually designed as in-
terfaces within interfaces. The reason for this architecture is the algorithms’
handles that are needed to perform further tasks. There are algorithms that fo-
cus only on single compartments, whilst others need the entire simulation space
to work on. Thus there is a low-level interface allowing for full access to the
simulation space and its particles. In case of a compartment algorithm, there
is a second high-level interface that handles the traversing of the nested seg-
ments. Therefore, it is possible to integrate various different algorithms to the
4DiCeS kernel without code modification. The high-level interface then allows
for simulating a model with different algorithms in concurrency.

The following Section 4.2.3.1 defines both the high and the low-level interfaces.
Two sections will thereafter focus on the connection of diffusion (Section 4.2.3.2)
and reaction (Section 4.2.3.3) algorithms to the 4DiCeS kernel in greater detail.

4.2.3.1 Algorithm Interface Design

The interface-within-interface design introduced earlier is displayed in Figure
4.18 by using a UML component diagram (see Appendix C.4). It can be seen
here that there is a base interface providing a set of low-level methods to the
application data model. This set of low-level commands actually maps the ap-
plication data model with all its data sets very closely. However the directness
of control is a trade-off against convenience functions that the high-level in-
terface then provides. As can be seen, the high-level interface connects to the
low-level interface using its direct functionality. Even though not all methods
are passed on from the low-level to the high-level command set, the high-level
functions are enriched by methods that allow for the traversal of given model
data geometries.

The interfaces are connected through inheritance, where a general low-level
interface description feeds all other application data model interfaces (see Figure

65

4 Definitions and Implementation

Figure 4.18: Component diagram: Interface within interface. The given figure
shows an UML component diagram on the interface architecture
for the 4DiCeS application data model. While both the geometry
as well as the activity description sets are linked directly to the
low-level interface, the algorithm sets for either reactions or dif-
fusion also have the choice to connect to a high-level command
layer. Here, the high-level interface is linked with the low-level
commands. It provides functions for the automatic traversing of
the input descriptions. Therefore, the higher-level interfaces allow
for the user to work on segments and thus enable the possibility
for algorithms to run concurrently.

4.19). Only the algorithm interfaces present a high-level interface to their low-
level counterparts. As will be later seen, the user interface description will also
be based upon this interface inheritance connection and doing so ensures that
no data redundancies occur.

A realization of either reaction or diffusion algorithm modules can be imple-
mented in a straight forward fashion. First a module must inform the kernel
about its presence and nature. Next the user is able to access global information
regarding the algorithm, particularly the algorithm’s name, a brief description,
a list of references, as well as the names of both the algorithm inventor, and the
author of the concrete implementation. A very important piece of information
that is also directly used by the application is the type of algorithm (i.e. if it
is stochastic or deterministic). Depending on this information the application
data model can ensure that parameters (e.g. rate constants) are automatically
transformed into the underlying type of algorithm. If this first information ini-

66

Figure 4.19: Static diagram: Interface inheritance. As can be seen in this static
UML diagram, the interfaces are linked to each other through a
chain of inheritance. On the low-level side (dash-doted rectangle),
all interfaces (including the interfaces for the input descriptions)
are specializations to a global low-level interface. Only the re-
action and the diffusion algorithm interfaces provide a high-level
interface. These are in turn specializations of their low-level coun-
terparts. The application data model is linked through a composi-
tion to the general low-level interface, but has aggregation linkage
to concrete realizations of algorithms.

tialization has finished, an algorithm iteration cycle can be induced by calling
the methods ‘react()’ or ‘diffuse()’ respectively. As for the current implemen-
tation of 4DiCeS, each iteration cycle will activate both present reaction and
diffusion algorithms for every segment. This may lead to the problem that
alternatively switching between the two algorithm forms is not desirable. In
some cases this will also result in faulty output. A solution to this scenario is
a coupled algorithm allowing for reaction and diffusion of particles at the same
time. This, of course, could easily be done by connecting both interfaces to the
same algorithm that is capable of processing both simultaneously.

The next two sections discuss applicable algorithms to the interfaces. While the
concrete implementations of such algorithms will then be introduced in Section
4.3 and discussed in greater detail within Appendix A.

67

4 Definitions and Implementation

4.2.3.2 Diffusion

The 4DiCeS diffusion interfaces are able to handle various different algorithms.
To achieve such a behavior, the interface depends on the separation into high
and low-level interfaces as described earlier.

Method Type Scale Primitive Time Reference

BD stoch micro particle solution (Elcock, 2003; Ping et al.,
2004)

Gillespie stoch meso full events (Gillespie, 1976)

GFRD stoch micro particle events (van Zon and ten Wolde,
2004)

Lattice
Gas CA

stoch micro segment steps (Berry, 2002)

MD det micro particle solution (Friedel and Shea, 2004;
Baynes and Trout, 2004)

ODE det macro full solution (Broderick et al., 2005)

PDE det macro grid solution (Schaff et al., 1997)

Smoldyn stoch micro particle steps (Andrews and Bray, 2004)

Weimar
CA

stoch meso segment steps (Weimar, 1997)

Spacial
Gillespie

stoch meso segment events (Kang et al., 2002; Stundzia
and Lumsden, 1996)

Table 4.10: Diffusion methods in biology. This table lists methods that are used
for simulating spatial movement. The type column determines if a
simulation is of stochastic or deterministic nature. The scale col-
umn distinguishes microscopic, macroscopic, as well as mesoscopic
schemes. The primitive column differentiates between data prim-
itives that are used in the simulation. The time column depicts
between discrete events, discrete time-steps, and the results of a nu-
meric solution. The non-spatial Gillespie Methods and ODEs were
included for comparison. Adapted from Takahashi et al. (2005).

68

In the case of random-walk simulations, where every particle is treated sepa-
rately, the global grid handle or the global particle handle is sufficient. The
segments’ interface would however not be very useful in such a scenario. Rate-
walk diffusions, where only numbers of particles or concentrations are shifted
from one segment to another, can take advantage of this. Other deterministic
methods could make use of the interface of segments also. With every iteration
calculated results are passed back to the kernel through the interfaces, which
must then take care of the reallocation of particles to their compartments.

The input and the output of the number of particles per species or their re-
spective concentrations then highly depend on the interface used. For a global
handling the number of particles (or concentrations) are returned for every
explicitly-specified segment and particle species. In case of the segments’ inter-
face, the compartments’ data is pushed to the algorithms and will be traversed
by the simulation space itself. With global particle access, all particles of ev-
ery particle species are delivered and retrieved by the interface at once. The
reintegration of particles into the simulation space and its nested segments is
handled internally.

Diffusion is normally referred to as Brownian motion (Brown, 1828) of either
uncharged or charged particles in solution. The first quantitative description of
such a process was Fick’s Law of Diffusion (Fick, 1855). Later, an explanation
for Fick’s law was discovered (Einstein, 1905; von Smoluchowski, 1906). To-
day, there are several methods to model diffusion with computational assistance
(see Table 4.10). Prominent examples are deterministic approaches as for ODE,
PDE, as well as Molecular Dynamics (MD). Next to them a considerable num-
ber of stochastic methods exist such as the Brownian Dynamics (BD), Gillespie
derivatives, some CA variations, and others. A stochastic random-walk simu-
lation was chosen as a reference implementation for the 4DiCeS application. A
brief description of the algorithm can be found within Appendix A.2.

4.2.3.3 Reactions

Similarly to the integration of diffusion algorithms reaction interfaces are able
to handle various different algorithms in 4DiCeS. The interface definition again
depends on the splitting of command sets into high and low-level interfaces
functions. But in contrast to diffusion, the reaction interface must provide
several specific methods that allow for the connection of reaction algorithm
modules. Given reaction equations from an activity description can always be

69

4 Definitions and Implementation

used, independent of the underlying algorithm.

The reaction equations contain information about the reaction educts, the re-
sulting products, and a variable that specify the kinetics of a reaction. The
products occur as a result of a reaction within a segment, or they can be
passed through membranes. Admittedly only elementary chemical reactions
with educts up to and including the second order are allowed with 4DiCeS, be-
cause collisions of three or more molecules at an instant are considered to be
fairly improbable (Gillespie, 1976, 1977). Therefore the system needs to be
modeled by using only three types of elementary reactions: first order, sec-
ond order, and the homodimer formation (Gillespie, 1996). Hence only reac-
tion equations that match the following three patterns will be allowed to pass
through the reaction interface:

A −→ . . . (4.21)

A + B −→ . . . (4.22)

2A −→ . . . (4.23)

The reaction equation (4.21) is of first order, which includes isomeric reactions
(e.g. A −→ B) where a single educt is converted into a single product, and
degradations (e.g. A −→ B + C) where the single educt is split into multiple
products. The second order equation (4.22) is then assigned to reactions in-
volving two different educts (e.g. A + B −→ C, A + B −→ C + 3D, ...). The
homodimer formation reaction (4.23) is finally a special form of the second or-
der equation with two educts of the same type (e.g. 2A −→ B, 2A −→ B +2C,
...). The reason why this last kind of reaction cannot be treated in the same
way as a second order reaction is that there exist different numbers of possible
educt combinations. For a system of NA particles of A and NB particles of B
the number of possible distinct educts within B is NA ×NB whereas the num-
ber of possible distinct encounters among A is NA(NA − 1)/2. In 4DiCeS third
and higher order reactions can be reasonably estimated by the combination of
multiple reactions of the supported three types.

From a mechanistic perspective the actual reactants (reaction partners or educts)
are piped to the interface by three matrices: one matrix for either of the educts
ME, the internal products MPin

, or the external products MPout . The rows of
each matrix specify the reaction equations and the columns define the reaction
particle species. As an example the following five reactions can be considered:

70

(a) Equations

Reactions

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(b) ME

A P X Y Z

1 0 0 1 0

0 0 1 1 0

1 0 1 0 0

0 0 2 0 0

0 0 0 0 1

(c) MPin

A P X Y Z

0 1 1 0 0

0 2 0 0 0

0 0 2 0 2

1 1 0 0 0

0 0 0 1 0

(d) MPout

A P X Y Z

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

Table 4.11: Internal representation of reaction equations. In 4DiCeS, reaction
equations are represented as matrices. There are three matrices
for each element of a reaction equation: one for the educts ME

(b); one for the inner products MPin
(c); and one for the outer

products MPout (d). The rows specify the different equations (a)
and the columns (b)+(c)+(d) indicate the used particle species in
the activity description. The cells of the matrices may have numbers
from zero to two. Each number indicates the corresponding number
of particles reacting in an equation.

A + Y −→ X + P (4.24)

X + Y −→ 2P (4.25)

A + X −→ 2X + 2Z (4.26)

2X −→ A + P (4.27)

Z −→ fY (4.28)

These five reactions (4.24 to 4.28) were devised by (Belousov, 1958) and are
called the Belousov–Zhabotinsky Reaction (BZR) today. They generate sus-
tained temporal oscillations in the concentrations of intermediates X, Y , and
Z. In an alphabetical ordering of reactants, the three matrices would look like
those in Table 4.11. There are no external products in the reaction equations
(4.24) to (4.28). Therefore MPout remains as a zero matrix.

The input and output of the number of particles per species (or their respective
concentrations) in the current compartment work in much of the same way as

71

4 Definitions and Implementation

with the reaction channel matrices. A matrix of amounts or concentrations is
passed to the reaction algorithm were every row represents a particle species.
The result is returned as two matrices – one matrix for the resulting internal
MRin

and another matrix for external changes MRout .

Method Type Scale Primitive Time Reference

Binomial
τ -leap

stoch meso full events (Cao et al., 2004a; Chatter-
jee et al., 2005)

COAST hybrid meso full events (Möller, 2006)

E-Cell
method

hybrid meso full steps (Takahashi et al., 2003)

Gillespie stoch meso full steps (Gillespie, 1976, 1977, 2006;
Gibson and Bruck, 2000)

Maximal
Time-Step

hybrid meso full events (Pucha lka and Kierzek,
2004)

Multi-
Scale

hybrid meso full events (Burrage et al., 2004; Kiehl
et al., 2004)

ODE det macro full solution (Chickarmane et al., 2005)

Partition
System

hybrid meso full events (Haseltine and Rawlings,
2002)

PDE det macro grid solution (Lebiedz and Maurer, 2004;
Mayawala et al., 2006)

τ -leap stoch meso full events (Gillespie, 2001; Rathinam
et al., 2003; Cao et al.,
2004b)

Table 4.12: Reaction methods in biology. The columns represent almost the
same information as those in Table 4.10. With column “Type” there
is a new term “hybrid” introduced, which states algorithms that
use both stochastic and deterministic methodologies. It generally
can be seen that there are in addition to deterministic approaches
various derivatives of the Gillespie and the τ -leaping method.

72

Similar to diffusion there exist various different methods for computational re-
action processing. Table 4.12 provides an overview of important candidates in
this category. Deterministic approaches for ODEs as well as PDEs are again
commonly utilized. Also stochastic methods such as the Gillespie derivatives
and some τ -leaping variations exist. Attempts were made to combine deter-
ministic and stochastic reaction methods to form “hybrid” approaches. There-
fore one deterministic and several stochastic methods were chosen as reference
implementations for the 4DiCeS application. These are Gillespie’s “First Re-
action Method”, Gillespie’s “Direct Method”, as well as Gibson and Bruck’s
“Next Reaction Method” working on particles and the Runge–Kutta 4th order
method using concentrations. A brief description of these two algorithms can
be found in Appendix A.1. In addition to the two reference implementations,
there is an implementation of the hybrid COntrollable Approximative STochas-
tic (reaction-algorithm) (COAST) (Wagner et al., 2006; Möller, 2006) by kind
courtesy of Dr. Mark Möller, Bielefeld University, Germany.

4.2.4 User Interfaces

The previous sections described interfaces that can be used to insert application
data model relevant modules. This section now provides more detail regarding
the human-machine interdependency with the 4DiCeS system. The system re-
quires user interaction since various functional and exchangeable modules for
diffusion reaction and input description parsing have to be defined manually
sometimes. There are two usage scenarios for user interfaces – the Command-
Line Interface (CLI) and a Graphical User Interface (GUI). Both use-case sce-
narios are displayed in Figure 4.20.

The CLI (see Figure 4.20(a)) allows for initiating simulation processes from
a shell-based environment. Alternatively, the application can be opened and
further controlled by a GUI (see Figure 4.20(b)). While a GUI has the advantage
of being fully-manipulatable even during simulation, a CLI allows for the one-
time input of command-line options to run the program. Each simulation has
to be newly initiated by CLI parameters that can only be interrupted but not
manipulated any further by the user. Such CLI simulations can thus be used
for multiple high-throughput simulations if embedded into batch-jobs. This
implies that one or more application data models exist already and that the
user is only interested in the simulation output. With a GUI the user is in a
position to manage both the data and the simulation simultaneously. Figures
4.21 and 4.22 highlight this difference through the use of two UML sequence

73

4 Definitions and Implementation

(a) UML use-case: CLI (b) UML use-case: GUI

Figure 4.20: Use-cases: User interfaces. The two UML use-case diagrams display
the two possible ways the 4DiCeS application can be communicate
with. The shell-based CLI (a) is the simpler one of both scenarios.
Here the user activates a simulation via parameters on the com-
mand line and receives the result at termination. Beyond that the
GUI-based approach (b) can additionally manipulate the data the
simulation is working on.

diagrams for a CLI and a GUI respectively.

Both sequence diagrams have the application data model instantiation and
deletion in common. Their difference lies in the additional interaction points
for the user. For the CLI the only additional manipulation the user is able to
do besides simulation initialization is canceling the simulation manually before
it auto-terminates. The GUI provides the user with much more flexibility as
well as the complete control over the data set and simulation methods.

As can be seen with the now following Section 4.3, there exist reference im-
plementations for both CLI and GUI interactions. A mixture of both scenarios
should be possible as well but was not investigated any further.

4.3 Application Details

Previous sections of this chapter defined the formal structure of the 4DiCeS sys-
tem. This section provides details on how these formal definitions were realized
and what the user can expect from it. More significant than other implementa-
tion decisions, there was the goal of having good performance and extendability

74

Figure 4.21: Sequence diagram: CLI. As the simpler of the two usage scenarios,
this figure presents an UML sequence diagram for a CLI. Here it
can be seen that the lifetime of the CLI spans the complete model
instantiation and simulation process. The user is only able to
initialize or abort a simulation. If simulation output is produced,
the user can collect it by the time the CLI will terminate.

for the 4DiCeS application. Both topics were addressed by choosing a native pro-
gramming language for the kernel implementation. C/C++ came to use as a
programming language supporting object-oriented features (C++) and allowing
for very performing compiles (C). A drawback to this decision is that the kernel
has to be recompiled for every operating system that the program is used on.
This was resolved by using only standard elements of C/C++ and by contin-
uously cross-compiling the source code on at least one Windows and one UNIX
platform during development.

Dynamically extending a program in runtime with new subclasses on different
platforms is one of the main design aspects of 4DiCeS. On UNIX systems this
makes use of the Executable and Linking Format (ELF) and Shared Objects

75

4 Definitions and Implementation

Figure 4.22: Sequence diagram: GUI. This figure shows the GUI usage as an
UML sequence diagram. In contrast to the CLI, the GUI allows the
user to perform alternative interactions with the 4DiCeS kernel.
After an application data model has been set, the user has the
choice between running a simulation on the model, manipulate
it further, or load a completely different data set. Of course a
simulation can also be interrupted by the user. If the user has
completed his task, he can instruct the application to terminate.
Object instantiation and deletion work for both scenarios equally
well.

(SOs). It can also take advantage of Windows regular Dynamic Link Librarys
(DLLs). Having two incompatible strategies on two different architectures leads
to cross-platform-incompatible code.

To better resolve this problem of cross-platform compatibility, Alex Holkner

76

Figure 4.23: Static diagram: DynLoad. The DynLoad is designed as a dynamic
link factory method that lets a class defer its instantiation to sub-
classes. This class checks the current operating system and loads
the required file format accordingly. Hence, self-controlled Dyn-
Load is able to open the necessary file and dynamically link it to
the loading system framework.

(Holkner, 2002) therefore introduced a simple API, called “DynLoad”, which al-
lows developers to write dynamically-linkable code once and for all platforms.
A new compilation of code is however required for each destination platform.
Holkner’s reference code consists of a dynamic link factory method (see Figure
4.23). This method defines an interface for creating an object but allows sub-
classes to decide which class to instantiate. Here it determines the file format by
checking the current operating system. It can hence automatically incorporate
the necessary file and dynamically link it to 4DiCeS.

The interfaces were implemented to allow for an easy connection to other pro-
gramming languages. Special attention was paid to languages that do not need
a recompilation if transferred to another platform. As a first prototype an in-
terface connection to Java is provided. It compiles and runs by a Java Virtual
Machine (JVM) implementation, which is natively ported to most current oper-
ation systems. Python as another programming language can be used through
the Java interface.

This open interface structure should allow for the integration of numerous im-
plementations by other programmers in their favorite programming language.
Updates to the modules can easily be integrated to the system for the same
reason. This modularity also allows for much more since the system can be di-
rectly adjusted to suit the needs of a user. The user interface itself is therefore
designed to allow various administrative and analytical methods on the 4DiCeS
framework.

77

4 Definitions and Implementation

The following Section 4.3.1 is concerned with the current realizations of user
interfaces to the 4DiCeS application. Section (Section 4.3.2) then states what
a user can expect from the current state of the application and Section 4.3.3
thereafter considers the overall computational complexity the 4DiCeS system
might experience in regards to storage and performance. The last section of
this chapter (Section 4.3.4) gives details on where the 4DiCeS program and
accompanying documentation can be obtained from.

4.3.1 User Interfaces

There are two user interface implementations for 4DiCeS at present. Figure
4.24 demonstrates these realizations as well as one CAVE Automatic Virtual
Environment (CAVE) visualization (Figure 4.24(b)) of 4DiCeS output data. Fig-
ure 4.24(a) shows a CLI execution. As can be seen a full run of initialization
and simulation iterations was performed. Figure 4.24(c) then shows a GUI
implemented to allow for convenient state-of-the-art user interaction with the
software.

The CLI can be used as a command-line shell approach to the 4DiCeS project. All
necessary settings can be adjusted by giving it lines of textual commands either
from keyboard input or from a script. The 4DiCeS CLI can perform operations
in a batch processing mode without user interaction. If there is thus the need
to repeat certain simulations more often, a “script” could hold all the necessary
information. The operation can thereafter be conducted without any further
effort in analysis. In contrast GUI users have to restart their exploration every
time manually.

As for the GUI, the user is provided with a tool to view and verify the model
and its geometrical structure. The GUI was designed as a Tabbed Document
Interface (TDI) that allows for multiple documents to be contained within a
single window (see Figure 4.24(c)), using tabs to navigate between them. The
child documents can be freely resized, positioned, and undocked from as well as
docked within the parent window. The single child documents contain different
graphical or textual interfaces for either manipulating the model, triggering the
simulation environment, or the visualization of simulation output.

The GUI described here was developed by making intensive use of the Qt library
by Qt Software (formerly Trolltech)12. It should be easily possible to implement an

12Qt Software: http://www.qtsoftware.com/

78

http://www.qtsoftware.com/

(a) CLI Realization (b) CAVE Visualization

(c) GUI Realization

Figure 4.24: The user interface for 4DiCeS. Controlling a program on the com-
mand line (a) is not very convenient, but has the advantage of be-
ing able to use massive computing. This list is then automatically
processed and runs without additional user input until completion.
A GUI (c) is needed if there is a user who wants to see direct run-
time results and needs to make changes to the system as it runs.
Here the front panel of the current realization of the 4DiCeS-GUI
is shown. The GUI allows 4DiCeS users to choose their desired ap-
plication data model, and manipulate it during program run-time.
Lastly a picture (b) was taken of Julie Stromer (at the University
of Calgary, Canada) handling a 4DiCeS visualization inside of the
4D virtual environment (CAVE). 79

4 Definitions and Implementation

equivalent or even more powerful GUI with another library and the currently
supported set of programming languages. As a feasibility study, the 4DiCeS user
interface mechanism was connected to a 4D virtual environment (see Figure
4.24(b)) (CAVE) (DeFanti et al., 1993). This implementation used Java and its
3D extension library Java3D.

4.3.2 Applicability

Although the 4DiCeS kernel is the central part of this work, the application itself
is mainly accessed through user interfaces. Therefore this section specifies the
human-machine interaction with 4DiCeS, its possibilities, and, of course, its
limitations in greater detail.

As already stated in the previous sections two distinct reference implementa-
tions of user interfaces exist at present. The first, the CLI, serves as an automa-
tion utility for massive throughput simulations. Modeling is not a concern of
this user interface, since no further interaction can be accomplished after the
application was started in this way. On the contrary the GUI reference imple-
mentation mainly concentrates on visualizing the design of a model, geometry
details, and the output of a simulation.

The model design functionality ranges from importing existing models to freely
defining new model scenarios off the scratch. Here various child windows of the
parent TDI window support the user in editing reaction and diffusion parame-
ters as well as simulation space settings. There currently exist textual editors
for setting reactions, compartments, as well as initial parameters. All dialogs
together form a tool to model reaction-diffusion systems and specify further
dependencies as of connected algorithms and the geometry information.

Since both the 4DiCeS kernel and the application data model provide support for
3D simulations, the GUI’s visualization output can also be displayed in 3D. This
task comes with some difficulties and limitations. As everything is simulated at
once, it is difficult for the user to trace all the occurring events in a compact 3D
image on a 2D display. Differentiating also between different particle species is
limited to a small set of different particle species at a time due to the internal
computer coloring scheme.

At present the underlying reference geometry description definition (cell model)
is visualized as a 3D grid of cubes covered by a combination of the three funda-
mental colors obeying the red, green, and blue (RGB) color scheme. Each color

80

represents one particle species, and the shading of this color indicates the parti-
cle concentration in that specific voxel. Since there are 256 different shades for
each color on a computer, this number limits proper differentiation of different
particle concentrations. For the user to be able to get the most out of such a
data display, 4DiCeS provides features to manipulate the proportionality scale
of colors to represent logarithmic changes in concentration. The total change
of concentration is displayed by a 2D plot next to the 3D visualization.

As can be seen from attempts made in the following Chapter 5 in testing the
system itself (see Section 5.2) and the comparison study with related tools (see
Section 5.3) 4DiCeS is a well suited tool for the modeling and simulating of bio-
chemical reaction-diffusion systems. Furthermore it is feasible for the analysis
of highly dynamic models as of the oscillating BZR (see Section 5.2.2.2) and the
two pool calcium oscillation model (see Section 5.2.2.3). The now following sec-
tion will consider the overall computational complexity the 4DiCeS system might
experience with such experiments in regards to storage and performance.

4.3.3 Complexity Considerations

This section is concerned with the prediction of resources that the 4DiCeS ap-
plication requires in total. The influence of the algorithms (see Appendix A) is
actually very minimal, since they all grow asymptotically slower than n2 and
the traversal of VEs in 3D during one simulation iteration already yields an
O(n3) upper bound on the overall worst-case running time.

But the discrete Lévy process should then be considered separately. As already
stated earlier this algorithm does not depend on the grid of VEs in the simulation
space, but only traverses over all particles during one iteration. Anyhow, by the
time the result output has to be stored to the kernel then again all VEs have
to be traversed. Algorithms that have to perform some sort of initialization
routines sum up this overhead during a simulation over more than one VE over
time.

Therefore it can be said that the overall worst-case performance of 4DiCeS con-
verts in O(t× r× p× x× y× z), were t represents time, r denotes the number
of reactions, p is the total number of particle species, and the product of x,
y, as well as z describes the total number of VEs in 3D. The storage worst-
case complexity is growing in a very similar asymptotically expansion, because
the same six-tuple has to be considered when observing the overall memory
consumption.

81

4 Definitions and Implementation

4.3.4 Availability

The 4DiCeS project, along with all its sources and relevant documentation is
hosted by SourceForge13. The project’s domain is http://www.4DiCeS.de/.
The domain address is automatically forwarded to the project’s web-content at
SourceForge (http://four-dices.sourceforge.net/).

For compiling the 4DiCeS sources, additional programs, libraries, as well as
extensions are required as can be seen in Table 4.13. A detailed description
for various C/C++ Integrated Development Environments (IDEs) is included in
the 4DiCeS documentation. The current version of 4DiCeS has been tested and
developed under Linux and Windows. As long as the tools and packages described
above are in place, 4DiCeS should install and run smoothly.

Tool Description Link

Boost C++ extensions library. http://www.boost.org/

CxxTest C++ unit-testing. http://cxxtest.sourceforge.net/

Java Programming language. http://java.sun.com/

libtiff C TIFF library. http://remotesensing.org/libtiff/

Perl Scripting language. http://www.activeperl.org/

Python Scripting language.
• Jython for Java: http://www.jython.org/

Qt C++ GUI library. http://www.qt.no/

Table 4.13: Required third-party tools. Perl and CxxTest are only for compiling
and running 4DiCeS unit tests. Qt is required for compiling and
running the 4DiCeS-GUI. The use of Java depends on the need for
this specific programming language on plug-ins within 4DiCeS.

The source-code as well as the compiled program(s) are licensed under the
GNU Lesser General Public License (LGPL)14 and are therefore free for non-
commercial use. Commercial usage can only be granted after consultation with
the current source-code administrator.

13SourceForge: http://sourceforge.net/
14LGPL: http://www.gnu.org/licenses/lgpl.html

82

http://www.4DiCeS.de/
http://four-dices.sourceforge.net/
http://www.boost.org/
http://cxxtest.sourceforge.net/
http://java.sun.com/
http://remotesensing.org/libtiff/
http://www.activeperl.org/
http://www.jython.org/
http://www.qt.no/
http://sourceforge.net/
http://www.gnu.org/licenses/lgpl.html

CHAPTER 5

Applications, Results, and Analysis

In this work the 4DiCeS framework was developed for modeling and simulation
of cellular dynamic phenomena in 3D. As described in the previous chapter, the
implementation of this project includes a modular design of the 4DiCeS kernel
and four modular interfaces. Various reference implementations of algorithms
add up to these interfaces (see Table 5.1).

Module Implementations

User Command-Line Interface (CLI).
Interface Graphical User Interface (GUI).

Parser 4DiCeS Flat-File.
4DiCeS TIFF Geometry-File.
Systems Biology Markup Language (SBML).

Diffusion Discrete Lévy Process.

Reaction Direct Method.
First Reaction Method.
Next Reaction Method.
Runge–Kutta 4th Order ODE Solver.

Table 5.1: Interface reference implementations. The 4DiCeS framework com-
prises a variety of different reference implementations for the given
four interfaces. Additionally to these modules an implementation
of the COntrollable Approximative STochastic (reaction-algorithm)
(COAST) is also available by kind curtesy of Dr. Mark Möller.

With these first modules it was possible to test and verify the framework in
its behavior and reliability. Of special interest was the impact of diffusion to
well known reaction algorithms. The propagation of wave-like structures of
oscillating model systems was expected but not detected. Although it was
possible to generate massively random 3D grids out of uniformly distributed
particles there were no concrete pattern formations perceived. A discussion of

83

5 Applications, Results, and Analysis

this finding and all other results will be handled in Chapter 6.

The following sections now want to give insight to further outcomes in regards to
application development (Section 5.1), applied models for simulation (Section
5.2), as well as ten reference programs in comparison to 4DiCeS (Section 5.3).
The last Section 5.4 summarizes the findings from the comparison of 4DiCeS
with the other ten tools.

5.1 Application Development

As previously stated the main characteristic of the simulation tool is its central
simulation kernel and the interfaces to the reaction as well as diffusion mod-
ules, the model input parsing environment, and the visualization (see Table
5.2). Front-end user modules support both the CLI processing and a GUI-based
version.

This section examines the resulting plug-in structure of the module interfaces.
The possible connectivity to other programming languages then follows directly
out of this architectural definition.

5.1.1 Plug-Ins

Every interface presented here (see Tables 5.1 and 5.2) has a special module
extending the interface to expand to other programming languages (see Figure
5.1). These modules make use of the underlying 4DiCeS kernel API. The API’s
functionality again is passed on to the respective language module plug-ins.

A plug-in generally consists of a module instantiation function and an object
destruction facility to enable a safe shout-down behavior of the kernel. These
two maintenance methods provide a simple interface to all plug-in interfaces.
The instantiated modules are then specialized forms of either interface class.
These classes bring along the connection to the underlying model description,
kernel functionality, and offer distinct entry points to execute their particular
operation.

In the case of the algorithmic modules the entry points are functions named
diffuse and react. These functions either work with entire segmentations (com-
partments) or on single voxels. The kernel as well as the model binding are
rather limited to methods for retrieving information. The modification of data

84

Interface Description

Reaction This interface handles the reaction equations and kinetics.
After a successful reaction, the resulting particle quantities
or concentrations are passed to the application data model
for further processing.

Diffusion The shared diffusion library holds the complete grid of VEs
with all relevant structural information and content. After
a successful diffusion, the entire simulation space must be
updated for further processing.

Input/Output This set of interfaces is responsible for the simulation model
input and output capabilities. The modules are able to
automatically recognize the data formats and securely in-
tegrate their information into the 4DiCeS data model.

Visualization This interface is designed to cope with all sorts of different
visualization techniques (CLI and GUI). It must ensure that
all possible data is made available through the interface.

Table 5.2: 4DiCeS interface definitions. This table briefly describes the kernel in-
terfaces. The reaction and diffusion processes are all handled within
the simulation space. The simulation interfaces (reaction and diffu-
sion) are computationally more demanding than the input parsing
modules. There are normally only a few loading and saving events
during a simulation. Hence there is no need for highly optimized
computational efforts on this topic. The visualization interface can
be of both types if CLI and GUI applications are compared.

is restricted to the extension that an algorithm must not alter the structure of
a model. It should only modify its values.

In contrast the parsing and visualization interfaces have full control over a
model. The main difference between these two is the connectivity to the kernel.
While a parser plug-in is controlled by the kernel via its entry points, parse and
save, the visualization has full control over the kernel. The kernel actually acts
as a plug-in to the user interface rather than the user interface to the kernel.
This structure allows for the easy integration of simulation results into other
existing tools and frameworks for further analysis.

85

5 Applications, Results, and Analysis

Figure 5.1: Static diagram: A general plug-in interface. The 4DiCeS API pro-
vides users with the choice of which algorithm to use, and program-
mers with the ability to modify given modules or to implement new
ones. The API provides additional programming language plug-ins
for each interface.

5.1.2 Programming Languages

C/C++, Sun Microsystems Java, and Python were selected as the project’s pro-
gramming languages. All are commonly used in computational biology and
have their respective benefits. C/C++ was used for the system’s kernel and
the interface implementation. The other programming languages were chosen
as extensions to guarantee an easy API to the 4DiCeS framework. Thus the
widespread use of either language will allow many researchers to use 4DiCeS as
a workbench for their implementation of algorithms and tools.

All libraries used were carefully chosen to allow for an easy migration of the
4DiCeS framework between operation systems. The current target platforms
are the Microsoft Windows operating systems (95 and upwards) as well as current
POSIX derivatives including Linux. It should be easy to port the program to
other operation systems by a simple recompilation of the given C/C++ sources.

5.2 Modeling and Simulation

As described in Section 4.2.1, the geometrical representation of the 4DiCeS data
model consists of a grid of VEs. As each VE can be covered by membrane, 3D
compartmental substructures can be included to the grid. Hence it is possible
to define particle barriers in the 3D simulation space. This also means that
different kinds of boundary conditions can be modeled in the system. Before
the two models from Section 5.3 were applied a few test simulations examined

86

the overall functionality of the system.

The first subsection illustrates a simple diffusion application in 4DiCeS to test
the system’s 2D and 3D capabilities. Then the second subsection demonstrates
diffusion-reaction systems from simple chemical reactions to finally a non-linear
system such as the BZR. All grids are divided into 9, 261 VEs (21 × 21 × 21-
grid) with an edge length of 100 nm if not stated otherwise. The analyzed
time-points are enclosed with the figures showing the simulation results.

5.2.1 Simple Diffusion Simulation

The testing of the diffusion functionality of 4DiCeS was deemed early on as being
of great value. The geometry of models and the diffusion within the modeled
geometry had to be verified in case studies involving 2D as well as 3D space. It
was therefore necessary to design test models of only the diffusion components
at first. Two of these models will be presented in the following subsections.
The membrane-bound diffusion model in lateral (2D) and the 3D displacement
model are illustrated first. Thereafter a more complex membranous system will
be introduced, that tests if boundary conditions are securely handled by 4DiCeS.

5.2.1.1 Lateral and 3D Diffusion

The simplest diffusion test described here consists of a cubic grid of VEs. A
continuous x–y-layer of membrane is set near to the bottom of the grid defining
two separate compartments within the grid. Four of the six simulation space
boundaries are not limited by membranes. Their boundary conditions at these
four borders allow for the direct migration of particles from one side of the
simulation space to the opposite side. The only exceptions to this are the top
and the floor layer. Membranes have to prevent particles from diffusing out of
the top VEs and into the bottom layer, which defines the other compartment.
Thus the geometrical model is a closed system with a membranous barrier to
the bottom of the grid. Two diffusible particle species are placed in this model.
One is assumed to translocate laterally over the membrane, whereas the other
is permitted to move freely in 3D. The membrane is set to hinder the freely
diffusing particles from switching from one compartment to the other.

As can be seen from Figures 5.2 (a) to (c), this simple application of diffusion
works as expected. Both the lateral and the 3D diffusion mechanisms show
anticipated translocation. The dividing membrane stops the further diffusion

87

5 Applications, Results, and Analysis

(a) t = 3 µs (b) t = 22 µs (c) t = 30 µs

(d) t = 7 µs (e) t = 21 µs (f) t = 36 µs

Figure 5.2: Diffusion application. The Figures (a) to (c) illustrate the simple
diffusion of particle species on a lateral (2D) membrane and in free
3D space. With Figures (d) to (f) the grid is divided into two
compartments again, but with an opened tube in the membrane’s
middle. For both applications, the green particles are bound to
the membrane of the model and can only diffuse along this barrier.
Conversely, the red particle species is allowed to diffuse freely in 3D
space with the only limitation of not being able to cross a membrane.
In the second model the red particles can pass the tube’s top opening
(see arrow in Figure (e))

of the 3D diffusing particle species to the other side of the boundary. Also
the laterally diffusing particles stay to their membrane bound condition as
expected.

88

5.2.1.2 Complex Membrane System

Here the diffusion is tested on a more complex membranous system. The overall
model is still a closed system. Particles are still able to leave four sides of the
grid at one side and reenter it on the opposite side. The top and bottom layer
are blocked for diffusion. Instead of the previous plain membrane layer near
the floor of the grid, a membranous tube is placed on top of the structure. The
tube is uneven and opens to the top of the grid. The simulation of diffusion (see
Figures 5.2 (d) to (f)) begins with freely diffusible particles at the bottom right
corner of the grid. Next to the 3D diffusion, the 2D diffusion is started. The
particles diffuse along the tube to its top opening. At the end of the simulation,
the 3D particles were able to enter the opposite compartment through the tube’s
top opening.

5.2.2 Applying Diffusion-Reaction Systems

Besides diffusion the reaction capability of the 4DiCeS framework was also
tested. Since reaction systems ignoring diffusion would only evaluate the re-
action algorithm by its own and not the 4DiCeS framework completely, two
diffusion-reaction systems were applied for testing. At first a simple chemi-
cal reaction was verified in a membrane-free grid as well as under boundary
conditions. Then a BZR was used to heavily test oscillating chemical systems.

5.2.2.1 Common Saturation Reactions

The test of a simple chemical reaction system of the form

A
B
⇀↽ C (5.1)

was handled using two different geometrical models (see Figure 5.3). The first
model is completely free of any membranous boundaries, whilst the other con-
tains a grid structure equal to that described in Section 5.2.1.1. The reaction
consists of an educt A, a product C, and a catalyzing enzyme B. In the first
simulation experiment (see Figures 5.3 (a) to (c)), all particle species (A, B,
and C) are allowed to diffuse freely in 3D space. In the second case (see Figures
5.3 (d) to (f)), the enzyme species B is limited to the dividing membrane.

89

5 Applications, Results, and Analysis

(a) t = 10 µs (b) t = 30 µs; blue only (c) t = 30 µs

(d) t = 10 µs (e) t = 30 µs (f) t = 30 µs; red hidden

Figure 5.3: A simple chemical reaction. The reaction system of the form A +
B ⇀↽ B + C is tested with the 4DiCeS framework. Figures (a)–(c)
illustrate the reaction without any membranous barriers and (d)–(f)
show the same reaction system with a membrane layer. The colors
green and red stand for the reactants in this system. In (d)–(f) the
green particles (enzymes) are membrane bound and must diffuse
laterally along the membrane. The Figures (c) and (f) show the
reaction product C as a blue particle species. Here, in (c) both
educts A as well as B and in (f) only A were hidden away to have
a better display of the product.

As can be seen, the reactions start with particles of both educts present in
the hosting VEs. The simulation was halted shortly after the first products
appeared. As expected the educts A continuously react in the presence of
enzyme B to the product C. The membrane-divided model needed more time
for first reactions to occur. This was expected since the educts A had to move
the entire distance to the anchored enzymes B.

90

5.2.2.2 Sustained Oscillating Reaction

The BZR (see Equations 4.24 to 4.28 at Section 4.2.3.3) is probably the most
widespread oscillating reaction system both theoretical and experimental. On
the theoretical side, the Field–Körös–Noyes (FKN) model system (Field and
Noyes, 1974a,b) quantitatively mimics the actual BZRs (Field et al., 1972). The
Brusselator (Glansdorff and Prigogine, 1971; Nicolis and Prigogine, 1971) as
well as the Oregonator (Noyes, 1976a,b) are then variations of the FKN model
system (Ipsen et al., 1997).

Boris Belousov stated that in a mix of potassium bromate, cerium sulfate,
propanedioic acid and citric acid in dilute sulfuric acid, the ratio of concentra-
tion of the cerium(IV) (Ce4+) and cerium(III) (Ce3+) ions in combination with
bromate(V) (Br-) oscillated.

Basically the reactions can be divided into two parts. The concentration [Br-]
determines which part is dominant at any time. While there is a high [Br-] the
first part is dominant. During this stage Br- is consumed and the cerium is
mainly in the Ce3+ state. As [Br-] decreases further it passes through a critical
value and then drops quickly to a low level. At this stage the second part
takes over. The Ce3+ changes to Ce4+. Ce4+ reacts to produce Br- again while it
reverts to the Ce3+ state. Now [Br-] increases. By the time [Br-] is sufficiently
high the first part gets dominant again (Murray, 2002a,b). The whole sequence
is continually repeated and hence produces colored oscillations.

The test environment in the 4DiCeS framework considers no internal membrane
barriers. Only the grid side walls are covered with membrane to change the
model to inflexible boundary conditions. The particle species are initially dis-
tributed equally over the grid of VEs. As expected it can be seen (see Figure
5.4) that an oscillation of the reactants’ concentrations takes place with a cy-
cle duration of nearly 30 s in the hosting VEs. The simulation shows a short
latency of about 8 s at the very beginning. The oscillation process was halted
after one full cycle (t = 55 s). There are no distinguishable wavefronts, but
that is due to the rather big VEs compared to the rather small grid.

5.2.2.3 Two Pool Oscillatory Calcium Model

The two pool model (see Section 2.2.2) describing oscillating Ca2+ changes
within a cellular model was also applied to 4DiCeS. Figure 5.5 shows the output
of four simulation iterations with slightly varying parameters. This difference in

91

5 Applications, Results, and Analysis

(a)
≈ 0 s

(b)
≈ 5 s

(c)
≈ 10 s

(d)
≈ 15 s

(e)
≈ 20 s

(f)
≈ 25 s

(g)
≈ 30 s

(h)
≈ 35 s

(i)
≈ 40 s

(j)
≈ 45 s

(k) 6 s (l) 13 s (m) 18 s (n) 24 s (o) 29 s

(p) 33 s (q) 38 s (r) 44 s (s) 49 s (t) 54 s

Figure 5.4: An oscillating reaction. Here, the BZR system was tested with the
4DiCeS framework. The images (a)–(j) illustrate a stirred 60 ml-
beaker with BZ reactants. Adapted from Winfree (1987, 2001). The
images (k)–(t) show the same BZR from a 4DiCeS simulation. The
times-step for the simulation was set to 1 s and the edge length of
the VEs was 5 mm.

output can only be seen, due to the fact that the stochastic model was applied.
The deterministic version of the model does not show this behavior Kraus et al.
(1992). All parameters used for the simulation are stated within the caption of
Figure 5.5. The application of a diffusion term and the simulation of the pool
model in 3D did not show any wave-patterns. Reasons for this behavior could
be the coarse granularity of the simulation space (21×21×21) or a bad selection
of either the time-steps or the edge length of the VE. Although, varying these
geometry parameters did not produce any better results. The overall particle
number dynamics output was very similar to Kraus and Wolf (1992).

92

(a) β = 0.20 (b) β = 0.40

(c) β = 0.80 (d) β = 0.40

Figure 5.5: Stochastic Simulation of Two Pool Model. The two pool model was
stochastically simulated with different strong stimulations of the
receptors expressed through β. The diagrams show the number of
Ca2+ ions in the cytosol (Nx) as a function of time t. The parameters
for (a) to (c) are (see Table 2.4): n = m = 2, p = 4, v0 = 1000s−1,
v1 = 7300s−1, k = 10s−1, kf = 1s−1, K2 = 1000, VM2 = 32500s−1,
kR = 2000, KA = 900, and VM3 = 2.5× 105s−1. The parameters of
(d) are chosen that way that they are by a factor of 1000 greater
than (a) to (c). The specific βs can be found in the corresponding
caption of every sub-figure. The times-step for the simulation was
set to 0.01 s and the edge length of the VEs was 0.095 µm. The
model description and all its reaction parameters were extracted
from Kraus and Wolf (1992).

5.3 Comparing Tools

This section continues the comparison of the ten modeling and simulation tools
from Section 3.2.4. In addition this study brings all presented tools in con-
text with the 4DiCeS application, which was introduced in Chapter 4. The first
Section 5.3.1 will reconsider the criteria important for comparing all the appli-
cations. Then the following Section 5.3.2 will compare the applications to each
other in more detail; while, Section 5.3.3 will deal with 4DiCeS.

93

5 Applications, Results, and Analysis

5.3.1 Comparison Criteria

Next to the 12 comparison criteria defined in Section 3.2.4 it was crucial to see
how the applications handle equal test scenarios. Therefore the final tests for
every tool were two oscillating test models.

As a straight forward model, the previously described BZR (see Section 5.2.2.2)
was applied either in the form of differential equations with concentrations or
by reaction equations with particle numbers. This first test case requires no
compartmentalization of the model in any way. The second test is based on
the two pool model (as described in Section 2.2.2). Here the simulation space
is subdivided into two distinct compartments: the cytoplasm, and the ER.

Both models should show oscillation as a result similar to the one found in
literature. Depending on the ability of the application to provide spatial sim-
ulations, it will further on be attended to apply both test cases to 3D. Again
wave-structures (as found in literature) should be observable.

5.3.2 Comparing Related Works

For this comparison it was important to consider the very different strate-
gies of the applications, rather than bringing almost equal tools into contrast.
The choice of the given applications is therefore a mixture from deterministic,
stochastic, and hybrid approaches.

Some tools are already rather dated, some allow for 3D simulations, and some
have proprietary or standardized file format extensions (see Tables 5.3, 5.4, and
5.5). The ten simulators were tested against the test models as defined in the
last section. Here the implementations of the test cases were not necessarily
straight forward to all compared programs.

A feasible implementation of the model was however possible with almost all ten
applications. The results of these simulations are found to be nearly convergent
for most of the tools. Variations observed may be due to different methods
for solving the equations or application data model incompatibilities. In the
following the results are presented in further detail.

BIOCHAM: Installing BIOCHAM was accomplished with a simple button click.
The only prerequisite is for the computer to have a JVM. The application
tested was version 2.5, which can be used under the terms of the GNU General
Public License (GPL). BIOCHAM allows for simulations with either a boolean

94

CA algorithm, the Runge–Kutta 4th order solver, or the Rosenbrock’s 3rd order
solver. With this pure deterministic simulator, the modeling and the results can
only be displayed in one dimension. Models can either be defined in BIOCHAM’s
own description language (BM) or by SBML files. The simulation results are
displayed in a common 2D plot and can be viewed as a table. Explicit export
functionality for the results is however missing. Both testing models could be
applied to the application by setting up the reaction rules in BM. Importing
a model through valid SBML files did not work well. Both the boolean and
the numeric solvers gave the same predicted results, and it can be said to be
accurate and very fast (< 1sec).

BioNetS: The download of BioNetS is split into several packages. For the appli-
cation to run, all these packages have to be installed. In particular for version
2.0 of BioNetS, a JVM and GNUStep, a cross-platform, object-oriented framework
for desktop application development must be present. Since the application
produces C++ code from given models, there is always a compilation iteration
preceding any simulation attempt. Models can then be simulated with either a
Langevin equation solver or by the use of the Next Reaction Method (Gibson
and Bruck, 2000). The description of models is only possible with BioNetS’s
proprietary XML file format BNET, but a modeling GUI takes away any need
to cope with that directly. The setup of the two testing models was difficult
for another reason. Both solvers can handle only very limited particle amounts
that is why the models’ particle numbers had to be condensed a 1000-fold. Do-
ing so resulted in the predicted results for both solver classes. Simulation times
ranged from below one second for the Langevin solver and several minutes for
the next reaction method. The application can be used under the terms of the
Berkeley Software Distribution (BSD) license.

Copasi: This simulation tool was tested in the beta version 4.0.19 and was easy
to install. The tool’s dependency on the rather expensive GUI library Qt is
only of importance if the user wants to recompile the application from source
code. This is possible since the source code is provided under the Copasi Non-
Commercial License (CN-CL) and is therefore free for academic usage. Import
and export file formats are in CPS, GPS, and SBML. As for simulation meth-
ods, the programm ranges from a pure ODE solver, to stochastic algorithms,
to hybrid forms. The modeling of reactions leaves nothing to be desired. The
tool is able to perform steady-state, time course, as well as parameter estima-
tion simulations. In the case of the two applied test models, Copasi provided
expected results in the time-range of seconds to several minutes depending on
the algorithm used. The results are displayed in plots and tables but cannot
be exported as such directly.

95

5 Applications, Results, and Analysis

Designation Methods Version License Dependencies

BIOCHAM CA, RB3, & RK4 2.5 GPL Java

BioNetS LE & NR 2.0 BSD Java & GNUStep†

Copasi NR, LS(h), & RK4
h 4.0.19b CN-CL Qt*

E-Cell DA & NR 3.1.105 GPL Python* & GTK*

Gepasi LS 3.30 Freeware -

MCell MC 2.50 NRBSC-SL Cygwin† (DReAMM)

SmartCell NR 2.5 ASL Java& Java3D

StochSim SA 1.6 LGPL Perl & Tcl/Tk

VirtualCell AM5, FE, LS, &
RK2,4,5

4.3b Freeware Java

xCellerator Mathematica & NR 0.27 LGPL Mathematica

Table 5.3: Tested simulation tools. The table lists all simulation tools tested
in this chapter. Here the specific features for simulation are ap-
plied methods and algorithms (Column 2), the version number of
the tested software (Column 3), the license agreement depending on
the version number (Column 4), and further software dependencies
to the application are included. The methods of Column 2 are further
described in Table 5.4 with the exception of the xCellerator software,
which utilizes the equation solvers provided by Mathematica. A su-
perscripted uncapitalized ‘h’ determines an hybridized form of the
given method. If there are both variants (hybridized and plain), then
the uncapitalized ‘h’ is parenthesized. A subscripted number gives
further information about the order of consistence an ODE solver is
working on. A superscripted ‘b’ with version numbers in column 3
denotes a beta-version. The dependencies in column 5 contain spe-
cial footnote-marks that indicate that the additional package is either
provided as a separate download (†), or is already included (∗) in the
installation routine of the software package. All other dependencies
are prerequisites to either installation or running of the program and
must be obtained and installed separately. Further information and
links are provided by Section 3.2.

96

Mnemonic Designation

AM Adams-Moulton ODE Solver

CA Boolean CA

DA DAE Solver

FE Forward Euler Method

LE Langevin Equation Solver

LS LSODA Solver for Stiff and Non-Stiff Systems

MC MC Algorithm

NR Next Reaction Method

RB Rosenbrock ODE Solver

RK Runge–Kutta ODE Solver

SA StochSim Algorithm

τL τ -Leap Method

Table 5.4: Contained algorithms. This table provides mnemonics for the meth-
ods and algorithms applied to the different software packages de-
scribed in Table 5.3. Further information on such algorithms can be
obtained from Section 4.2.3.3.

E-Cell: The E-Cell programm comes in version 3.1.105 under the terms of
the GPL and can be easily installed. The prerequisite packages of the Python
scripting language and the GTK-GUI library are automatically installed if not
present. The modeling is aided graphically. Model description languages are the
E-Cell’s own EM/EML formats and SBML. For simulation the user can choose
between Differential-Algebraic Equation (DAE) solvers and an implementation
of the next reaction method. The applied test models had to be remodeled with
the help of E-Cell’s model editor but ran as expected afterwards. Simulation
time ranged from a few seconds to several minutes depending on the used
simulation method. The output can be visualized both by plots as well as
tables. The export of the data is thus not explicitly possible. It should be noted
that the application could not be restarted after the computer was turned off
and on again after the first installation.

Gepasi: As the oldest of all the tested applications, Gepasi is also the smallest
in size and the fastest when it comes to comparison of ODE solvers. As of the

97

5 Applications, Results, and Analysis

Designation File Formats

BIOCHAM BC* & SBML

BioNetS BNET* & SBML

Copasi CPS*, GPS & SBML

E-Cell EM/EML* & SBML

Gepasi GPS* & SBML

MCell MDL*

SmartCell XML* + SBML

StochSim SBML

VirtualCell SBML (CellML, Matlab, and VCML)

xCellerator NB* & SBML

Table 5.5: Supported file extensions. All tested applications have their own
proprietary file formats (denoted by an ‘∗’). Most of the packages
support the import and export of SBML files. In the case of Copasi,
the precursor file format from Gepasi is still supported. Further on,
the VitualCell allows for model exports to the CellML, Mathlab, and the
value chain markup language (VCML). This last file format is primar-
ily used as a business collaboration standard and not for modeling
in particular.

last released version 3.30, which is provided as freeware, the installation was
easy. The only simulation methodology provided by Gepasi is the LSODA solver
for stiff and non-stiff systems. A straight forward GUI and the import as well
as export formats for its own model description file GPS and the support for
earlier versions of SBML round out its appearance. The tested models both
gave good results, which could be displayed in a 2D plot. The plot is produced
by the required GNUPlot package, which comes with Gepasi already. As stated
before the simulations were very fast and ranged for both test cases within a
second of total execution time.

MCell: As a purely stochastic application with its own reaction and diffusion
algorithm implementation, MCell stands apart from all other simulation pro-
grams considered here. It is a command-based tool in version 2.50. Running
under the terms of the National Resource for Biomedical SuperComputing Soft-

98

ware License (NRBSC-SL), MCell is free for academic usage and can be run in
combination with a visualization utility named DReAMM. The dependencies to
other software packages are limited to Cygwin for MCell alone and OpenDX as
well as for UNIX X-Server in the case of DReAMM. The download page pro-
vides a single Cygwin-DLL that makes installation very simple. Since MCell only
supports its own proprietary file format MDL and gives no further GUI tool at
hand, the modeling of the test cases was very complex. Obtaining each of the
simulation results took almost a day of computational time and results were
far from what was expected. Both test cases showed no oscillations even after
several modifications of the model.

SmartCell: Next to MCell SmartCell was not able to provide results on the simu-
lation test cases as expected. The reaction equations, which can only be set up
by SmartCell’s graphical model editor, seem to always lose connection between
reactants and their multipliers. Also SmartCell only supports SBML as a helper
description that requires a SmartCell’s XML reaction placement description in
addition. Without this file SmartCell will neither let the user load nor run a sin-
gle SBML model. SmartCell has many current versions ranging between version
2.5 and version 3.0. The current beta version of SmartCell 3.0 was tested and
did not produce any output for the applied models. Consequently the promis-
ing 3D features, which make use of the required Java3D, could not be tested to
their full extent. SmartCell is available under the terms of the Academic Soft-
ware License (ASL) and utilizes the stochastic next reaction method for both
reaction and diffusion process with version 2.5.

StochSim: Next to Gepasi StochSim is the oldest stochastic simulation tool of
these considered here. It comes with its own algorithm for simulating every two
possible reaction partners in discrete time steps. The installation of StochSim is
similar to BioNetS with regards to unpacking and putting together of different
files. If this is done and the required scripting language Perl and the GUI library
Tcl/Tk are installed beforehand, the application is ready to run. In version 1.6
StochSim runs under the terms of the LGPL and can therefore be used freely. As
for a model description format, it supports SBML. The test case models applied
to the system showed the expected behavior although under high computational
costs. The overall simulation time for both models reached nearly an hour for
every simulation turn. This is even more surprising, since StochSim gives no
support for 3D modeling. The results can be either directly viewed on the GUI
or further analyzed by third-party table-calculation utilities.

VirtualCell: As the most powerful application of all discussed with respect to
modeling editors and 3D geometry, the VirtualCell is also very different to the

99

5 Applications, Results, and Analysis

others. A server-based approach was chosen that handles the model storage
and provides the necessary computational power. Then the Java-based client
helps with the design and the setup of the model. The tested beta version 4.3
of the client can be used freely, but a user has to log on to the server every
time he wants to use the application. This presupposes an internet connection
for program use. VirtualCell provides various ODE solvers, a very sophisticated
model editing environment, and 3D functionality. The test case could be easily
applied via the SBML import and gave good results in 1D. Although the models
both oscillated in 3D, the particles did not diffuse in space as predicted. This of
course can only be a fault in the model design. Another feature of the VirtualCell
is its ability to export models and output results directly to predefined formats
including CellML, Mathlab, and the value chain markup language (VCML). This
last file format can be used for the output data.

xCellerator: The xCellerator is very special because it is an ‘add-on’ to the
Wolfram Mathematica package. Here the great benefit is the fact that all solvers
and further features of input/output or visualization provided by Mathematica
can directly be utilized. A major drawback is the fact that Mathematica is only
available commercially. The description of models is done by Mathematica files
that obey the additional palette rules of xCellerator. All resulting output for both
simulations was as expected, and the simulation time sets standards. Both test
case models needed less than a second to be solved. The tested program was
of version 0.27 and can be used under the terms of the LGPL (provided that a
valid license for Mathematica is obtained).

5.3.3 In Comparison to 4DiCeS

As with all the other ten simulation applications, 4DiCeS was critically checked
for all the given test criteria (see Section 3.2.4). It has to be said that 4DiCeS
is not able to compete with other applications in single disciplines. Other
simulation applications were implemented under the precondition to solve one
or a few very specific model scenarios.

In contrast to this, 4DiCeS was implemented as an open tool to solve multi-
ple scenarios correctly but not fully optimized. Therefore 4DiCeS is a trade-off
between features as well as functionality on the one hand, and on the other
hand optimized computational demands. The feature list is not fully compara-
ble. 4DiCeS provides some functionality that none of the other applications can
compete with. Such features are the simulation with algorithmic concurrency

100

and the open interface design. Contrarily 4DiCeS is missing certain functionality
other tools have such as a graphical model editor and a data output interface.

Compared by the test criteria and the test models specified in Section 5.3.1,
4DiCeS has initial implementations for both a GUI and CLI. It was shown that
the user interface is capable of applying other user interaction scenarios com-
bined with other programming languages through the implementation of a CAVE
front-end.

Then the question of the ease of use is a hard task for the programmer of
exactly this application. Of course the intention was to have a clearly arranged
user interface with as much assistance to the user as possible. In fact first user
reactions to the system will show if further any improvement is necessary. For
now it is reasonable to say that 4DiCeS clearly ranges among the tools that were
indicated to be for experienced users. Admittedly MCell is the only tool that
was defined to be hard to handle since it lacks a GUI.

4DiCeS was able to simulate both test cases correctly, even in 3D. However
first user reactions are needed in order to make further statements. This holds
true for two important reasons. Firstly the test models were chosen by the
comparator. This is the complete opposite of a “double-blind study” known
from pharmaceutical research. Secondly, many mistakes happen unobserved by
application architects. Here only bug testing by people, other than the actual
programmer, can unearth possible inconsistencies and problems. Nonetheless
4DiCeS ranged in times for both test cases of a 1D simulation within two seconds
to five minutes and within a complete day for the 3D counterparts.

5.4 Related Work

Based on the comparison (see Section 5.3), the following findings can be summa-
rized for the ten compared programs. The usability of an application is some-
what critical from the user’s perspective. For example Gepasi and BIOCHAM are
easy to use, whereas a program such as xCellerator requires further programming
experience with Mathematica.

Additionally the lack of standards and interfaces between tools becomes ap-
parent. For example the support for external file formats, such as SBML, will
become more important in the future as the amount of available data increases
- “tower of Babel” problem. An example is SmartCell, which uses SBML in com-
bination with its own XML file format in such a way that an import of plain
SBML files to the application is no longer possible. Also it was often not feasible

101

5 Applications, Results, and Analysis

to save a model by one application as an SBML file and reload it with another.
This was the case for BIOCHAM and Copasi in both directions.

Then a sufficient documentation and transparency of implementation details
are fundamental principles of scientific practice. Here e.g. SmartCell is lacking
further information regarding the algorithms it applies. Simulation tools also
differ in their ability to utilize external triggers.

Another challenging area is the computational parameter estimation for models.
Presently, à priori information of the parameters may be unavailable and the
parameter values are adjusted either with some semi-automatic methods or by
manually varying them. The two tools Gepasi and Copasi, provide methods for
computational parameter estimation already.

102

CHAPTER 6

Conclusions

A well structured and extensible platform for systems biology was developed by
combining a set of functional components. The already implemented modules
for the 4DiCeS application allow for simulation of preliminary applications of
biochemical models.

Figure 6.1: Lego drawing of a generalized nucleus. An illustration of the mod-
eling of the nucleus by Lego blocks. The blocks can be compared to
the 4DiCeS VEs that form a complex structure of cellular compart-
ments. In contrast to Lego-blocks however, the VE can be adjusted
in size. Thus, the granularity of the system can be adapted to the
scientific requirements at hand.

Systems biology poses new challenges for visualization as the data types often
contain 4D information. The representation of such data is currently unresolved.
This work provides an approach to easily handle multi-dimensional data. The
presented format could become a standard for 3D modeling environments. In
respect thereof this approach works similar to the construction of an object
from a box of Lego1 blocks, in which Lego blocks are exchanged against VEs (see
Figure 6.1). Also the general system’s design can be seen such that each part
of the 4DiCeS application is exchangeable but will not work alone.

1The Lego Group: http://www.lego.com/

103

http://www.lego.com/

6 Conclusions

6.1 Design Decisions

With 4DiCeS a modular approach was chosen to allow for the integration of
diverse algorithms and file formats. With 4DiCeS models can be composed on
different scales and complexity. It allows for the integration of numerous differ-
ent algorithms to perform on either single particles, particle concentrations, or
distinct VEs. More importantly it is also possible to mix different algorithmic
approaches within one simulation space.

In this work the 4DiCeS framework was developed for modeling and simulation of
signal transduction networks in 3D. The implementation of this project includes
a modular design of the 4DiCeS kernel and various interfaces as described below:

• 4DiCeS-Kernel:
The kernel of the 4DiCeS framework is the core of the project. It is re-
sponsible for securely interfacing with other modules. Furthermore it
provides a platform for whole cell modeling as a result of its underlying
data structure. Here 3D geometry, reactions, and diffusion are supported.

• User Interface:
The user interface facilitates the adaption of tailored user-interaction so-
lutions to the 4DiCeS system. Both GUI as well as CLI approaches are
supported.

• Model Parsing Interface:
The input parsing interfaces provide the capability to extend the 4DiCeS
framework to several modeling input description languages. Thus there
is the potential to include models from various data repositories.

• Reaction Interface:
The reaction interface allows for the integration of reaction algorithms.
These plug-ins provide the actual modular simulation functionality to the
4DiCeS system beside the diffusion interface.

• Diffusion Interface:
The diffusion interface assists the combination of both known and new
diffusion techniques. It is essential for simulations in 3D to have the ability
of translocating particles.

Each interface has its own API, including other programming language exten-
sions facilitating the implementation and integration of native code as well as

104

other language plug-ins. The complete APIs offer a purpose-specific control over
the 4DiCeS platform.

4DiCeS aims to serve as a universal simulation framework, which can integrate
any set of different simulation algorithms, including differential-equation-based
models, diffusion-reaction, stochastic algorithms (Gillespie, 1976, 1977, 2001;
Gibson and Bruck, 2000) as well as many from CA (Wurthner et al., 2000) to
GMA/S-Systems (Hernández-Bermejo et al., 2000).

The tool is designed to conduct efficient cellular signaling simulations on a cell
model consisting of segments with their specialization on different simulation
tasks.

Successful attempts were also made to introduce the visualization environment
to a CAVE (see Section 4.2.4) for virtual reality. The user interface from the
4DiCeS package was used for displaying the simulation results onto the four
stereo-enabled screens of a CAVE.

Finally the usefulness and utility of this framework was shown for two sample
diffusion and reaction applications in comparison to other related tools.

6.2 Related Attempts

In comparison to other existing systems, the 4DiCeS workbench has its benefits
in its modularity and extendability. Other simulation tools are either limited by
mathematical constraints or do not support 3D structures (see Section 5.3.2).
The 4DiCeS framework has no limits in this respect. It furthermore provides
the potential to include any type of diffusion and/or reaction algorithm. The
integration of existing simulation tools is also possible via the API definitions
as well.

Only a few of the existing cell simulators conceptualize the division of a cell
into its representative compartments, organelles. Most of the simulation tools
allowing for such an approach do not offer a “real” 3D analogous representation
of exactly such segments. They do however make use of encircling parts of
the model to define confined compartments. The only cell simulation tools
that currently support 3D geometry (see Figure 6.2), besides the one developed
here, are MCell (see Section 3.2.2.3), SmartCell (see Section 3.2.2.4), and the
VirtualCell (see Section 3.2.1.4).

105

6 Conclusions

(a) MCell (b) SmartCell (c) VirtualCell

Figure 6.2: 3D visualizations of cell simulators. (a) shows the communication
between neurons in the brain occurs at synapses with MCell (Cog-
gan et al., 2005), (b) displays a very simple model of a cell with
its nucleus created by SmartCell, and (c) presents the 3D surface vi-
sualization viewer of the VirtualCell project showing a neuronal cell
filled with calcium indicator collected by confocal microscopy at
University of Connecticut Health Center Farmington, USA, by Ion
Moraru.

Here VirtualCell uses a purely deterministic approach for 2D as well as 3D mod-
eling and simulation. Within MCell every compartment is modeled using 3D
vector schemes (Casanova et al., 2004). This modeling approach comes with
3D representations that approximate reality but at the costs of being computa-
tionally high demanding. Visualizing every particle and its trajectory over time
increases complexity and resource requirements dramatically. Lastly SmartCell
utilizes a very similar approach as 4DiCeS does. The reaction space is a grid of
VEs that can define separate compartments.

With this approach the computational time does not necessarily depend on the
number of particles and their trajectories but on the number of defined VEs.
If either the VEs are scaled to the size of particles or the internal computation
of VEs is handled by calculating trajectories, then the simulation might run as
slow as MCell.

The grid layout offers another benefit. It is possible to run different reaction
and diffusion algorithms on the model. MCell is limited to the calculation of tra-
jectories of single particles and VirtualCell can only handle differential equations.
With SmartCell and 4DiCeS, arbitrary algorithms can be chosen and executed on
the same model all the time. This holds true for SmartCell in theory only since

106

it is lacking a well-defined programming interface for plugable algorithms. In
contrast 4DiCeS offers these advantageous interfaces and even goes a step fur-
ther in providing a framework where not only algorithms can be plugged to
the system, but the modeling, visualization, and analysis engines may be also
exchanged. Although 4DiCeS is delivered with a preliminary set of algorithms
and tools, the programming languages’ APIs feature a good extendability to
future needs. Copasi (see Section 3.2.2.2) as the only competitor offers a similar
extendability, but then lacks the 3D support.

A
cc

ur
ac

y

C
on

cu
rr

en
cy

D
es

ig
ne

r

E
xc

ha
ng

e

E
xt

en
da

bi
lit

y

Fe
at

ur
es

G
U

I

M
et

ho
do

lo
gy

P
er

fo
rm

an
ce

Sc
ri

pt
in

g

Sp
ac

ia
lit

y

U
sa

bi
lit

y

Sc
or

e

4DiCeS G# G# G# G# G# 9.5

Copasi # G# # G# G# G# 8.0

E-Cell # H# G# # G# G# 8.0

BioNetS # G# G# G# G# # # 7.0

VirtualCell # # # G# # G# 7.0

Gepasi # G# G# # # # # 6.0

SmartCell G# # H# G# # # G# # 6.0

xCellerator # G# G# G# G# G# G# G# # G# 6.0

StochSim # G# G# # # G# # G# G# 5.5

BIOCHAM G# # # G# # # # G# # G# 4.0

MCell # # # # G# # G# # # 4.0

Table 6.1: 4DiCeS comparison. Equal to Table 3.4 filled () circles are gener-
ally superior to their half-full (G#) counterparts. Empty (#) circles
indicate the need for improvement or a total absence. In method-
ology hybrid approaches are considered most sufficient. Designers
are either defined as textual (G#), graphical (H#), both (), or none
(#) at all. Additionally, the score was calculated and printed to this
table also. Each score is the sum of circle weights of the respective
application. The weights are defined with empty = 0, half = 0.5, and
full = 1 circles. All comparison criteria were assessed equally. The
applications are then sorted by their individual score in a top-down
order. If two or more application have an equal score then they are
sorted in alphabetical order.

107

6 Conclusions

Table 6.1 provides an overview of how 4DiCeS is rated against the 12 comparison
criteria from Section 3.4. If the same weighting scheme with zero (0), a half
(0.5), and one (1) is applied then 4DiCeS exceeds all other related application
with a comparison value of 9.5. The two best tools (Copasi and E-Cell) only
reached a value of eight.

In summary it can be said that 4DiCeS might not outperform single other sim-
ulation applications in their specialized disciplines but rather provides a tool
that incudes the ability of allowing all the different models run on one single
simulation framework only. The modular design and the well-defined interfaces
make it easy for software developers to extend 4DiCeS to their needs. The use of
cross-platform libraries makes the application executable on almost all recent
operation systems. Also the 4DiCeS system is not limited to client applications
alone but may be used as a server-based system as well.

6.3 Challenges and Accomplishment

In recent years whole cell simulation has been declared as a new scientific goal
(Tomita, 2001). The E-Cell project (see Section 3.2.1.2) with its deterministic
approach is only one such example. Although still not within reach, many
approaches exist that use deterministic as well as stochastic modeling methods
for simulating at least biochemical processes within a cell.

Stochastic simulators consume more computational power than deterministic
simulators and are thus generally used for smaller models. Endy et al. (2000)
simulated a bacteriophage by stochastic models. The stochastic simulation
algorithms by Gillespie (1976, 1977) were further optimized (Gibson, 2000)
such that “whole cell simulation” goal comes within reach. To allow for an
appreciation of how long it might take for current programs and computers
to simulate such a challenge, the following sections consider the complexity of
whole cell models and their calculation time.

6.3.1 Model Complexity

For the simulation of whole cell models, the complexity of such an approach
should be first estimated. For example the base limit for the particle numbers
involved can be obtained from the genome of an arbitrary organism. As for

108

Escherichia coli (an intestinal bacteria) the total number is currently counted
near 4, 500 genes (Karp et al., 2000, 2002). The cytoplasm of E. coli includes
according to an estimation (Goodsell, 1997) around 22, 500 proteins, 15, 000
ribosomes, over 170, 000 ribonucleic acid (RNA) molecules, 15, 000, 000 small
organic molecules as nucleotides, amino acids, sugar, and others, as well as
25, 000, 000 ions. Then, about 70% of the bacteria’s cell volume consist of
water.

During one full cell cycle of E. coli (∼ 50 sec), the number of biochemical
reactions executed was estimated (Endy and Brent, 2001) to be somewhere
between 1014 and 1016. The complexity of other cell types is about a factor
thousand smaller for the smallest known cell types (mycoplasms) and about a
factor of thousand larger for typical plant and animal cells (Schwehm, 2001).
Also the relation of compartments to the cellular volume has to be taken into
account if one considers higher organized cells (see Table 6.2).

Designation Volume [%] Number

Cytosol 54 1

Mitochondria 22 1, 700

Endoplasmic
Reticulum

12 1

Nucleus 6 1

Golgi Apparatus 3 1

Peroxisomes 1 400

Lysosomes 1 300

Endosomes 1 200

Table 6.2: Membranous compartments. The table shows the relative volumes
occupied by the major membranous compartments (organelles) in a
liver cell (Hepatocyte). An organelle is a specialized subunit within
a cell that has a specific function, and is separately enclosed within
its own lipid membrane. The first column holds the names of the in-
tracellular compartments. The second and third columns display the
percentage of due to the total cell volume and the approximate num-
ber of compartments per cell. Adapted from Alberts et al. (2003).

109

6 Conclusions

6.3.2 Performance Evaluation

Analyzing the given numbers, the question arises how far scientific research is
away from realizing whole cell simulation. A very optimistic estimation implies
an appropriate whole cell model with 1014 biochemical reactions for a single cell
cycle of E. coli (Endy and Brent, 2001). With a mean of 250, 000 processed
reactions per second, (Schwehm, 2001) a stochastic whole cell simulation of
only one E. coli cell cycle would take 4±108 sec or nearly 13 years for a single
computer processing unit.

Thus taking into account a factor of thousand for typical eukaryotic cells the
simulation of whole cells is even more complex. Here either the modulariza-
tion of the problem domain or much faster algorithms as well as heuristics are
required. Combined heterogenous simulation methods, as done with 4DiCeS, is
going to complement such approaches. Unfortunately future enhancements in
computer power or the utilization of highly distributed computing will again
feature a linear speedup. However considering that it once will be possible to
simulate such a process within a few hours, the discrepancy to the actual 50 sec
of a cell cycle is still far to great.

6.4 Outlook

Further extension as well as further development of this software could be di-
rected towards incorporating additional specialized interfaces for (partly) auto-
mated pathway construction, a geometrical input tool for real cellular geome-
tries from microscopy, model and simulation analysis, verification tools, and an
own repository of models in addition to the collected kinetic data on molecules,
reaction, diffusion, and pathways.

These interfaces should be implemented in a dynamically-linked manner as used
throughout the existing components of the 4DiCeS framework. Module updates
or supplements can be easily incorporated. The following paragraphs briefly
illustrate some possible future extensions.

Distributed Computing: The simulation kernel could distribute its work
onto heterogenous computer-networks. On a very low level, it is already possi-
ble to distribute the simulation process by using a screensaver-based approach
of distributed computing – called Models@Home2 (Krieger and Vriend, 2002).

2Models@Home: http://www.cmbi.kun.nl/models/

110

http://www.cmbi.kun.nl/models/

Models@Home is building a network of idle computers while allowing each of
them to work on small pieces of a scientifically demanding project. The world’s
largest distributed computing project, which is the Search for ExtraTerrestrial
Intelligence (SETI)3, works on a very similar but much larger scale.

Model Construction Interface: A model construction interface could fa-
cilitate the construction of new or the extension of existing models for 4DiCeS
users. Plug-ins could connect the simulation environment with common path-
way and molecular databases (see Section 3.1) to automatically retrieve infor-
mation needed for the current model being developed. The construction kernel
allows for the manual design of such models as well.

Geometry Input Interfaces: To allow for close-to-reality 3D cell structures,
files from different microscopy techniques such as CLSM imaging are planned
to be importable. Additionally it would be possible to take time-dependant
pictures of living cells in 4D. This can then be used for verification in modeling
and simulation. As a preliminary approach, it could be designed to have a
few different input modules for various CLSM picture stack formats from lead-
ing microscopy companies such as Leica4, Nikon5, Olympus6, TILL Photonics7, and
Zeiss8.

Analysis Interface: Analysis is normally done through third party products
such as spreadsheet analysis programs and graph drawing utilities. A future
implementation for an analysis interface would not provide a full replacement
package for these powerful programs with a possibility to analyze the current
output of a given simulation in real time. Further massive analysis of the data
has to be done externally but could then use such an interface for automated
data transportation.

Programming Language Bindings: Further programming language bind-
ings could enlarge the usability and acceptance of 4DiCeS. Microsoft’s .NET frame-
work for example could easily open this tool to all .NET languages as for C],
VisualBasic, and Managed C++. The framework is also ported by the third-party
Mono project9 and can therefore be used on various other operation systems as
well.

3Seti@Home: http://setiathome.berkeley.edu/
4Leica Microsystems: http://www.leica-microsystems.com/
5Nikon: http://www.nikon.com/
6Olympus: http://www.olympus.com/
7TILL Photonics: http://www.till-photonics.com/ (now part of Agilent Technologies)
8Carl Zeiss: http://www.zeiss.de/
9Mono Project: http://www.mono-project.com/

111

http://setiathome.berkeley.edu/
http://www.leica-microsystems.com/
http://www.nikon.com/
http://www.olympus.com/
http://www.till-photonics.com/
http://www.zeiss.de/
http://www.mono-project.com/

6 Conclusions

4DiCeS Repository: The database storage could provide future 4DiCeS users
with data from past simulations and models. This is meant to keep the model
construction time small and the reusability high. The simulation process de-
livers different kinds of data, and the simulator can always reuse a previous
output as a new input.

112

APPENDIX A

Algorithms in Detail

This chapter gives a brief overview of the algorithms that were applied as first
module implementations to 4DiCeS. The next two sections explain stochastic
approaches regarding reaction and diffusion processes and an ODE-solver used
for reaction equations.

A.1 Reaction Algorithms

Continuous biochemical rate equations do not accurately predict cellular reac-
tions since they rely on bulk reactions that require the interactions of millions
of particles. They are typically modeled as a set of coupled ordinary differ-
ential equations. In contrast dynamic MC algorithms allow for a discrete and
stochastic simulation of a system with few reactants, because each reaction is
explicitly simulated.

It has to be noted that the reaction constants for dynamic MC algorithms are
not the traditional macroscopic or deterministic rate constants. Rather they
are mesoscopic rate constants, which are only related to the macroscopic rate
constants. Macroscopic rate constants depend on concentrations of particles,
while mesoscopic reaction constants are based on numbers of particles.

For 4DiCeS a numeric ODE-solver based on the Runge–Kutta 4th order algorithm
and three dynamic MC methods were implemented.

A.1.1 Runge–Kutta Method

This explicit method numerically integrates ODEs by using trial steps at the
midpoint of an interval to cancel out lower-order error terms. Let an initial
value problem be specified as follows

dyi

dt
= fi(t, y1, .., yn) (A.1)

113

A Algorithms in Detail

with t ∈ [a, b] and the initial values yi(a) = yai
, 1 ≤ i ≤ n. Then, the fourth-

order formula for this problem is given by

yn+1 = yn + h×K (A.2)

where

K =
k1 + 2k2 + 2k3 + k4

6
(A.3)

with

k1 = f(tn, yn) , (A.4)

k2 = f(tn +
1

2
h, yn +

1

2
k1) , (A.5)

k3 = f(tn +
1

2
h, yn +

1

2
k2) , and (A.6)

k4 = f(tn + h, yn + k3) (A.7)

(Runge, 1895; Kutta, 1901). The next value yn+1 is determined by the present
yn, an estimated slope K, and the product of the size of the interval h. K is
a weighted average of slopes. Here k1 is the slope at the start of h. k2 is the
slope at the midpoint of the interval, using slope k1 to define the value of y at
the point tn + h

2
using Euler’s method. Again k3 is the slope at the midpoint

however using the slope k2 to determine the y-value. k4 is the slope at the end
of h, with its y-value provided using k3. A greater weight is given to the two
slopes at the midpoint.

The total accumulated error is on the order of h4, while the error per step has
order h5. The Runge–Kutta Method is reasonably robust as well as simple and
can be generally used for numerical solution of differential equations if combined
with a flexible step-size method. For a given set of N differential equations and
M intermediate steps this algorithm takes time proportional to N ×M to solve
the equations for tn+1(Press et al., 1992).

A.1.2 Dynamic MC Algorithms

Dynamic MC algorithms can be used for modeling the dynamic behaviors of
particles by comparing the rates of individual steps by random numbers. Such

114

algorithms generate statistically correct trajectories of stochastic equations.
The ‘Direct Method’ and the ‘First-Reaction Method’, both developed and
published by Gillespie (1976, 1977), are algorithms to simulate chemical or
biochemical reaction systems accurately as well as efficiently. These two al-
gorithms are computationally demanding. Therefore many adaptations and
modifications exist. These include the ‘Next-Reaction Method’ (Gibson and
Bruck, 2000), τ -leaping, as well as hybrid techniques where abundant reactants
are modeled with deterministic behavior.

Both Gillespie algorithms as well as the Next-Reaction Method by Gibson and
Bruck were implemented in 4DiCeS. In the following a well-stirred system of
N chemical species S1, .., SN is undergoing M chemical reactions R1, .., RM .
The current state of the system is specified by the vector µ = (µ1, .., µN),
where µi is the current number of Si molecules in the system. Each reaction
channel Rj is characterized by its propensity function aj(µ) and its state-change
vector υj = (υ1j, .., υNj). Here aj(µ)dτ gives the probability that the system
will experience an Rj reaction in the next infinitesimal time dτ , and υij is the
change in the number of Si molecules caused by one Rj reaction.

A.1.2.1 Direct Method

Gillespie’s Direct Method calculates explicitly which reaction occurs next and
when it appears. This is achieved by specifying the probability density P (µ, τ)
that the next reaction is µ that occurs at time τ . The algorithm is direct in
the sense that it generates µ and τ instantaneously. It can be shown that

P (µ, τ) dτ = aµ e

(
−τ

∑
j

aj

)
dτ (A.8)

Integrating P (µ, τ), for all τ , 0 ≤ τ ≤ ∞ results in

Pr(µ) =
∫

P (µ, τ)dt =
aµ∑
j aj

. (A.9)

Then, summing P (µ, τ) over all µ gives

P (µ, τ) dτ =

∑
j

aj

 e

(
−τ

∑
j

aj

)
dτ. (A.10)

These two distributions lead to Gillespie’s direct algorithm:

115

A Algorithms in Detail

1. Initialization: Set initial numbers of particles and t0 = 0.

2. Calculate the propensity functions ai for all i.

3. Choose µ according to the distribution in Eq.A.9.

4. Choose τ by an exponential with parameter
∑

j aj as in Eq.A.10.

5. Change the number of particles according to µ. Set tn+1 = tn + τ .

6. Go to Step 2 unless the simulation time exceeded or a reactant’s number is zero.

This algorithm uses two random numbers per iteration, takes time proportional
to M to update the ais, and takes time proportional to M to calculate

∑
j aj as

well as to generate a random number according to the distribution in Eq.A.9
(Gillespie, 1976).

A.1.2.2 First-Reaction Method

Gillespie’s First-Reaction Method generates for each reaction a putative time
τµ at which the reaction µ occurs. Thereafter, the reaction µ∗ with the smallest
τµ

∗ is chosen and executed. Formally, the algorithm is as follows:

1. Initialization: Set initial numbers of particles and t0 = 0.

2. Calculate the propensity functions ai for all i.

3. For each i, generate a putative time τ by an exponential distribution with parameter
ai.

4. Let µ be the reaction whose putative time τµ is least.

5. Let τ be τµ.

6. Change the number of particles according to µ. Set tn+1 = tn + τ .

7. Go to Step 2 unless the simulation time exceeded or a reactant’s number is zero.

For a given set of M reactions this algorithm uses I random numbers per itera-
tion, takes time proportional to I to update the ais, and takes time proportional
to I to identify the smallest τµ (Gillespie, 1977).

A.1.2.3 Next-Reaction Method

As a modification of Gillespie’s two methods the Next-Reaction Method is based
on:

116

• Store τi, not just ai.

• Recalculate ai only if it changes.

• Re-use τis where appropriate.

• Switch from relative time between reactions to absolute time.

• Store ais and τis so that updating will be very efficient.

Here a dependency graph is introduced to update the minimum number of ais
and an indexed priority queue stores all ais and τi. These modifications lead to
the algorithm:

1. Initialization:

a Set initial numbers of particles and set t0 = 0. Generate a dependency graph G.

b Calculate the propensity functions ai for all i.

c For each i, generate a putative time τ according to an exponential distribution with
parameter ai.

d Store the τi values in an indexed priority queue P .

2. Let µ be the reaction whose putative time τµ stored in P is least.

3. Let τ be τµ.

4. Change the number of particles according to µ. Set tn+1 = tn + τ .

5. For each edge (µ, α) in the dependency graph G,

a Update aα.

b If α 6= µ, set τα = (aα, old/aα, new)(τα − t) + t.

c If α = µ, generate a random number ρ according to an exponential distribution
with parameter aµ. Set τα = ρ + t.

d Replace the old τα value in P with the new value.

6. Go to Step 2 unless the simulation time exceeded or a reactant’s number is zero.

The total number of operations per iteration is at most c2,3,4,5a,6 + c5b(k− 1) +
c5c + c5d(k)(2 log M), where each c is a machine specific constant, k is the times
of executing c5a, and M is the number of reactions. This results in O(log M)
(Gibson and Bruck, 2000).

117

A Algorithms in Detail

A.2 Diffusion Algorithm

The mathematics of Brownian motion, as diffusion processes are also called,
is often studied using simple models. The simplest is a random-walk where
equal sized steps can be taken in any direction. For purposeful movement the
start-to-end displacement increases at a rate proportional to time t leading to
a Gaussian distribution of particles. A Gaussian random-walk is self-similar
and such processes were originally discussed by the mathematician Paul Lévy
(1948). Random-walks with self-similar dynamics and power-law scaling are
therefore called discrete Lévy processes.

The approach used here for simulating the diffusion of particles either bound
to membranes or freely distributing is a straight forward random-walk imple-
mentation.

A.2.1 Discrete Lévy Process

Let (Xn), n ∈ N0 be a stochastic process. Applies |Xn1+h−Xn1| ∼ |Xn2+h−Xn2|
for all n1, n2, and h ∈ N0 then X is a process of stationary increase with the
given representation

Xn+1 = Xn +
t∑

i=1

Yi. (A.11)

With a mean quadratic shift of Ω using the diffusion coefficient D = KBT
f

with
the Bolzmann constant KB, a coefficient of friction f and temperature T , it
is possible to change the position Xn = (xn1, xn2, xn3) of a particle over two
random angles α and β in 3D. For a lateral diffusion in 2D with Xn = (xn1, xn2)
only one angle α is required. For an ideally sphere shaped particle f = 6πηRS

(Einstein-Stokes Equation) (Einstein, 1956), where η is the viscosity of water
and RS is the Stokes-radius, a 2D diffusion is described by

Xn+1 = Xn + Ω
(

cos(α)
sin(α)

)
(A.12)

where Ω =
√

4Dn and −π ≤ α ≤ π. The 3D diffusion is then described by

118

Xn+1 = Xn + Ω

 cos(α) cos(β)
sin(α) cos(β)

sin(β)

 (A.13)

where Ω =
√

6Dn, −π
2
≤ α ≤ π

2
, and −π ≤ β ≤ π. The total number

of operations n per iteration i is proportional to the numbers of particles p
existing in the system.

119

APPENDIX B

Backus–Naur Form

The Backus–Naur Form (BNF) is a meta-syntax used to express context-free
grammars in a formal way. It was named after two pioneers in computer sci-
ence, John Warner Backus and Peter Naur (Knuth, 1964, 2004). BNF is widely
used as a notation for the grammars of communication protocols, computer
programming languages, and instruction sets. A BNF specification is a set of
derivation rules written as

〈S〉 ::= 〈E〉 (B.1)

where 〈S〉 is a non-terminal symbol, and the 〈E〉 is an expression consisting of
sequences of other symbols and/or a set of symbols. Sets are separated by a
vertical bar (‘|’), indicating a choice. Symbols that never appear on a left side
are called terminals (Backus, 1959; Nauer, 1960). There are many extensions
and variants of the BNF, where the Extended BNF (EBNF) is a very common
derivative. Often such specifications include some of the additional syntax rules
stated in Table B.1.

Rule Description

Alternative Choices in a production are concatenated by a |’.
Grouping Simple parenthesis enclose groups of symbols.

Option Options are enclosed in squared brackets.

Repetition Repeats are characterized by a following ‘∗’.
0+ Repeat Zero or more time repeats are enclosed in curly brackets.

1+ Repeat One or more time repeats are followed by a ‘+’.

Typeface Terminals appear in bold and non-terminals in plain text.

Table B.1: BNF extensions. Today there exist many BNF grammar variants.
This table describes the most commonly found extensions used by
such extended derivatives (Wirth, 1977).

121

APPENDIX C

Unified Modeling Language

The Unified Modeling Language (UML) is a general-purpose modeling and spec-
ification language for object-oriented software engineering. It was designed to
specify, construct, visualize and document software-intensive systems and in-
cludes a standardized graphical notation for the creation of common concepts
like use-cases, components, classes, generalization, aggregation, and behaviors.
UML is officially defined at the Object Management Group1 by the UML meta-
model.

It is noteworthy to differentiate between the UML model and the set of UML
diagrams of a system. A diagram is only a partial graphical visualization of the
model. Next to such diagrams the model may also contain textual documenta-
tion. In UML 2.0 there exist 13 types of diagrams (see Table C.1), which can be
grouped into the three categories of behavior, interaction, and structure. UML
does not restrict its element types to a certain diagram type. Actually every
UML element may appear on almost all types of diagrams (Scott, 2004).

The following sections give details on the used UML diagram types in this work.

C.1 Use-Case Diagrams

An important part of the UML is the possibility of drawing use-case diagrams.
Normally use-cases are utilized during the analysis phase of a project to identify
the functional parts of a system. However use-cases can be used to demonstrate
the actual systems functionality. Since a graphical UML use-case has only a very
low information content it is often accompanied by its textual representation.

Generally UML use-case diagrams separate a system into the respective use-
cases and actors. Actors represent the roles of users (i.e. human beings, other
hardware, or software) of the system. The actors are external to the system
described by the use-cases. They trigger the system and may receive output
from it. To emphasize the externality of actors use-cases are framed into a box.

1Object Management Group: http://www.omg.org/

123

http://www.omg.org/

C Unified Modeling Language

Category Diagram Description

Behavior Activity Depicts the operational work-flows of a sys-
tem and their interaction with each other.

Use-Case∗ Gives a graphical notation to represent vari-
ous use-cases of a system’s behavior.

State Machine Describes a system as a finite state machine
graph.

Interaction Communication Models interactions between objects (verti-
cally) by sequenced messages (horizontally).

Overview Combines other interaction or behavioral di-
agrams to a global overview.

Sequence∗ Displays different but simultaneous processes
and their exchanged messages.

Timing Shows a coordinate system with time on the
abscissa and object states on the ordinate.

Structure Class∗ Displays a static view of classes of a system
and their relationships with each other.

Component∗ Shows physical components (i.e. files) of a
system and dependencies to each other.

Composite Presents the internal structure of one class
and its collaboration dependencies.

Deployment Serves to model the utilized hardware by the
system and its associations to the software.

Object Gives a temporal snapshot of a complete or
partial view of the system’s object structure.

Package Represents how a system is grouped into log-
ical units and dependencies to each other.

Table C.1: UML diagram types. This table describes the 13 types of diagrams
currently defined by the UML in brief. For a better structuring the
diagrams are often categorized into the three types of behavioral,
statical, and interaction deportment (Larman, 2001; Scott, 2004).
The four diagram types used in this work are marked with an aster-
isk (‘*’).

124

In UML use-cases are represented by ovals and the actors are drawn as simple
stick figures. The actors are connected with the use-cases by plain lines. Then
the use-cases may have dashed relationship arrows of two kind. The first is a
uses assignment, which can be compared to a function call or subroutine in
programming languages. The other link-up is the extends assignment, which
manipulates the original use-case to fit other purposes. Both relationships are
placed on top of their arrows surrounded by doubled angle brackets (i.e. �uses�
and �extends�) (Larman, 2001; Scott, 2004).

C.2 Class Diagrams

UML class diagrams have the purpose to depict the classes within a model. In
an object-oriented application classes have attributes, methods, and relation-
ships to other classes. The fundamental element of a class diagram is an icon
that depicts two of these components into compartments of one class-rectangle.
The topmost compartment contains the class name, the middle comprises all
attributes and the bottom includes a list of methods. Often the bottom two
compartments are omitted or do only present attributes and methods that are
meaningful for the current diagram. If a class is abstract its name will be
indicated in an italic typeface.

The relationship to other classes is represented by different kinds of lines. UML
distinguishes aggregations, associations, compositions, dependencies, inheri-
tance, and interfaces. The inheritance relationship in UML is depicted by a
peculiar triangular arrowhead with a plain line. The arrowhead points to its
base class connecting it to its derived class(es). The composition relationship
depicts a strong form of an aggregation and is also called a by-value-relation.
It is represented by a black diamond at the class that composes another class.
The other class is pointed to by an ordinary arrowhead, if the relationship is
only navigable in one direction. The weak form of an aggregation is denoted by
an open diamond. An other form of a containment shows no diamond at all.
This plain arrow is called an association. Both the aggregation and the asso-
ciation are often referred to by-reference-relations. Sometimes the relationship
between two classes is very weak. In this case they are only implemented as
method arguments. Such relationships are represented by dashed arrows and
are called dependencies. An UML way to display interfaces (abstract classes
with no attributes at all) is the so-called “lollypop” notation. The interface has

125

C Unified Modeling Language

a line with an empty circle at its end. This circle is the point to which other
classes draw their dependency arrows to (Larman, 2001; Scott, 2004).

C.3 Sequence Diagrams

A UML sequence diagram emphasizes the sequence of messages between ob-
jects. Rectangles represent objects. The names of the objects are underlined to
distinguish them from classes. Additionally the object name is separated from
the class name by a colon. If objects do not have a particular object name then
the colon precedes the class name without an object name in front of it.

Below of each object is a dashed line known as the “lifeline”. Such lines define
time axes of the diagram. By convention time proceeds in a downward direction.
A variation could though be to tip a sequence diagram on its side so that time
proceeds to the right. The lifelines depict how long the objects that they are
connected to are in existence. If lifelines extend from the very top of the diagram
to the very bottom then this implies that the objects portrayed in the diagram
are in existence before the start of time of the diagram and remain in existence
beyond the end of the diagram.

The arrows between lifelines represent messages being sent between objects.
Sequence numbers are permitted but not necessary. White arrow rectangles
indicate that the arrow terminates on a called activation. They show the du-
ration of the execution of a method in response to a message. The methods
implicitly return to their caller at the end of the activation. Such returns can
be displayed by an unlabeled arrow that extends from the bottom of the ac-
tivation back to the lifeline of the calling object. In the case of asynchronous
messages the end of an activation does not imply a return.

Narrow rectangles on top of lifelines that enclose groups of messages define an
iteration. The looping condition for such an iteration is then shown at the
bottom of the rectangle.

The creation of objects is denoted by a message arrow that terminates on
an object’s rectangle. Deletion is likewise denoted by a message arrow that
terminates on a capital ‘X’ at the end of the object’s lifeline.

Incomplete (half) arrowheads denote asynchronous messages. An asynchronous
message is a message that the receiving object executed the method in a sep-
arated thread. That threat could be in existence prior to the sending of the

126

asynchronous message and just waiting for something to do. This gives sequence
diagrams the power to display concurrent multi-threaded interactions. Wher-
ever concurrency is present, race conditions are possible. Race conditions occur
when a single thread or object receives messages from two competing sources.
If not handled properly, the participating objects can get quite confused.

C.4 Component Diagrams

Components are qualified in UML as reusable program code that implements
well-defined duties. Therefore components are very similar to UML packages.
They combine thematically related elements to a set. As a general rule, this
topical relationship is also reflected in similar characteristics of elements, as for
their attributes, interfaces, and methods. Whereas packages represent a view of
the contents, components highlight the software-technical aspects of elements’
commonality. Particularly the structure of the program is of major importance.

Components establish a unity with one or more interfaces to the outside. Com-
ponent diagrams visualize this graphically. They describe dependencies be-
tween software components and their interfaces. Here a component is displayed
as a box. Additionally, the box can be marked with the phrase ‘component’
surrounded by doubled angle brackets (i.e. �component�) or by a component
symbol. Then interfaces are connected through the “lollypop” notation. Com-
ponent diagrams are also used to describe static dependencies between pro-
grams, as for example compiler-dependencies. Such dependencies between pro-
grams are illustrated by dashed arrows. The dependent components points at
the independent component.

Components can contain additional elements, as for objects, other components,
or nodes. For comprehension as regards content, components are often sub-
stantiated by other diagrams, as for class diagrams and use-case diagrams. For
technical aspects of the implementation, deployment diagrams are utilized.

127

List of Abbreviations

1D one-dimensional
2D two-dimensional
3D three-dimensional
4D four-dimensional
4DiCeS 4D Cell Simulator
AFM Atomic Force Microscopy
AnatML Anatomical Markup Language
API Application Programming Interface
ASL Academic Software License
ATP adenosine–3’,5’–triphosphate
ATPase ATP hydrolase
BD Brownian Dynamics
BIOCHAM BIOCHemical Abstract Machine
BIOML BIOpolymer Markup Language
BioNetS Bio-chemical Network (stochastic) Simulator
BioPAX Biological PAthways eXchange
Bio-SPICE Bio–Simulation Program for Intra- and Inter-Cell Evaluation
BNF Backus–Naur Form
BRep Boundary Representation
Br- bromate(V) ion
BSD Berkeley Software Distribution
BZR Belousov–Zhabotinsky Reaction
CA Cellular Automata
Ca2+ calcium(II) ion
[Ca2+]i cytoplasmic Ca2+ concentration
CAVE recursive acronym for CAVE Automatic Virtual Environment
Ce3+ cerium(III) ion
Ce4+ cerium(IV) ion
CellML Cell Markup Language
CLI Command-Line Interface
CLSM Confocal Laser Scanning Microcopy
CML Chemical Markup Language
CN-CL Copasi Non-Commercial License
COAST COntrollable Approximative STochastic (reaction-algorithm)
Copasi Complex Pathway Simulator
CSG Constructive Solid Geometry

129

List of Abbreviations

CTL Computational Tree Logic
DAE Differential-Algebraic Equation
DAG sn–1,2–diacylglycerol
DLL Dynamic Link Library
DNA desoxyribonucleic acid
DSM Dynamic Signaling Maps
DSML Dynamic Signaling Maps Language
DTD Document Type Definition
DynLoad DYNamic link cross-platform LOADer
EBNF Extended BNF
ELF Executable and Linking Format (UNIX)
EML E-Cell Model (description) Language
ER endoplasmic reticulum
FieldML Field Markup Language
FKN Field–Körös–Noyes model system
FMD 4DiCeS Model Description
GENESIS GEneral NEural SImulation System
Gepasi GEneral PAthway SImulator
GFRD Green’s Function Reaction Dynamics
GPL GNU General Public License
GUI Graphical User Interface
GUID Globally Unique IDentifier
HTML HyperText Markup Language
IDE Integrated Development Environment
IP3 inositol–1,4,5–trisphosphate
IP3R IP3 receptor
JVM Java Virtual Machine
K+ potassium
LGPL GNU Lesser General Public License
LTL Linear Temporal Logic
MAGE-ML MicroArray Gene Expression Markup Language
MathML Mathematical Markup Language
MC Monte Carlo (method)
MCell MC Simulator of Cellular Microphysiology
MD Molecular Dynamics
MDL MCell’s Model Description Language
MesoRD Mesoscopic Reaction Diffusion (simulator)
ModelML Modeling Markup Language
MPFM Multi-Photon Fluorescence Microscopy

130

List of Abbreviations

Na+ sodium
NRBSC-SL National Resource for Biomedical SuperComputing Software

License
ODE Ordinary Differential Equation
PDE Partial Differential Equation
PEML Proteomics Experiment Markup Language
PIP2 phosphatidylinositol-4,5-bisphosphate
PM plasma membrane
PMCA PM Ca2+-ATPase
PNML Petri-Net Markup Language
PRL Pathway Resource List
ProML Protein Markup Language
PSI-MI Proteomics Standards Initiative’s Molecular Interaction
PySCeS Python Simulator for Cellular Systems
RDF Resource Description Framework
RGB red, green, and blue color scheme
RNA ribonucleic acid
SBML Systems Biology Markup Language
SBW Systems Biology Workbench
SDE Stochastic Differential Equation
SEM Scanning Electron Microscopy
SERCA SR/ER Ca2+-transport ATPase
SETI Search for ExtraTerrestrial Intelligence
SO Shared Object (UNIX)
SR sarcoplasmic reticulum
STODE STochastic simulation of ODEs
StochSim Stochastic Simulator
TDI Tabbed Document Interface
TIFF Tagged Image File Format
UML Unified Modeling Language
VE Volume Element
WWW World Wide Web
XmdS eXtensible multi-dimensional Simulator
XML eXtensible Markup Language
XPP X-windows Phase-Plane

131

List of Figures

2.1 Life’s Complexity Pyramid . 5
2.2 Systems Biology Triad . 8
2.3 A Spiral Wave of Ca2+ Ions . 9
2.4 The Ca2+ Signaling Pathway . 14

4.1 The 4DiCeS Logo . 31
4.2 Established Interface System . 35
4.3 Kernel Layer Model . 36
4.4 Use-Case: User Perspective . 40
4.5 Sequence Diagram: User Perspective 42
4.6 Sequence Diagram Reference: Model Construction 43
4.7 Sequence Diagram Reference: Model Initialization 44
4.8 Sequence Diagram Reference: Model Destruction 44
4.9 4DiCeS Modules . 46
4.10 Representation Schemas for 3D Models 47
4.11 Model Primitives . 49
4.12 Simulation Voxel Space . 51
4.13 Boundary Conditions . 52
4.14 Placement of Relevant Geometrical Information 53
4.15 Transformation of 3D into 2D Data 54
4.16 Use-Cases: Modeling . 62
4.17 Sequence Diagram: Model Alternatives 63
4.18 Component Diagram: Interface within Interface 66
4.19 Static Diagram: Interface Inheritance 67
4.20 Use-Cases: User Interfaces . 74
4.21 Sequence Diagram: CLI . 75
4.22 Sequence Diagram: GUI . 76
4.23 Static Diagram: DynLoad . 77
4.24 The User Interface for 4DiCeS 79

5.1 Static Diagram: A General Plug-in Interface 86
5.2 Diffusion Applications. 88
5.3 A Simple Chemical Reaction. 90
5.4 An Oscillating Reaction. 92
5.5 Stochastic Simulation of Two Pool Model 93

6.1 Lego Drawing of a Generalized Nucleus 103
6.2 3D Visualizations of Cell Simulators 106

133

List of Tables

2.1 Conceptual Formulation of Models 7
2.2 Phenomena of Cellular Dynamics 9
2.3 Important Modeling and Simulation Techniques 11
2.4 Stochastic Two Pool Model . 18

3.1 Model Repositories . 20
3.2 Simulation and Modeling Environments 22
3.3 Comparison Criteria . 29
3.4 Comparison of Simulators . 30

4.1 4DiCeS Feature List . 32
4.2 Extraction of Simulation Model Information 37
4.3 Module Classes . 38
4.4 Use-Case: User Perspective . 40
4.5 Requirements to the Simulation Space 50
4.6 Membrane Binary Codes . 54
4.7 Problems Facing Simulation and Modeling 56
4.8 Input Description File Standards 57
4.9 Model Alternative Conditions 64
4.10 Diffusion Methods in Biology 68
4.11 Internal Representation of Reaction Equations 71
4.12 Reaction Methods in Biology . 72
4.13 Required Third-Party Tools . 82

5.1 Interface Reference Implementations 83
5.2 4DiCeS Interface Definitions . 85
5.3 Tested Simulation Tools . 96
5.4 Contained Algorithms . 97
5.5 Supported File Extensions . 98

6.1 4DiCeS Comparison . 107
6.2 Membranous Compartments . 109

B.1 BNF Extensions . 121

C.1 UML Diagram Types . 124

135

Bibliography

Adalsteinsson, D., McMillen, D., and Elston, T. C. (2004). Biochemical network
stochastic simulator (BioNetS): Software for stochastic modeling of biochem-
ical networks. BMC Bioinformatics, 5(1):24.

Alberts, B., Bray, D., Johnson, A., Lewis, J., Raff, M., Roberts, K., and Walter,
P. (2003). Essential cell biology: An introduction to the molecular biology of
the cell. Garland Publishing, 2nd edition.

Alvarez-Vasquez, F., Sims, K. J., Cowart, L. A., Okamoto, Y., Voit, E. O., and
Hannun, Y. A. (2005). Simulation and validation of modelled sphingolipid
metabolism in Saccharomyces cerevisiae. Nature, 433:425–430.

Ander, M., Beltrao, P., Ventura, B. D., Ferkinghoff-Borg, J., Foglierini, M., Ka-
plan, A., Lemerle, C., Tomás-Oliveira, I., and Serrano, L. (2004). SmartCell,
a framework to simulate cellular processes that combines stochastic approx-
imation with diffusion and localisation: Analysis of simple networks. Syst.
Biol., 1(1):129–138.

Andrews, S. S. and Bray, D. (2004). Stochastic simulation of chemical reactions
with spatial resolution and single molecule detail. Phys. Biol., 1(3–4):137–
151.

Arkin, A. P. (2001). Synthetic cell biology. Curr. Opin. Biotechnol., 12(6):638–
644.

Ausbrooks, R., Buswell, S., Carlisle, D., Dalmas, S., Devitt, S., Diaz, A.,
Froumentin, M., Hunter, R., Ion, P., Kohlhase, M., Miner, R., Poppelier,
N., Smith, B., Soiffer, N., Sutor, R., and Watt, S. (2003). Mathematical
markup language (mathml) version 2.0 (second edition). Recommendation
http://www.w3.org/TR/MathML2/, W3C.

Backus, J. W. (1959). The syntax and semantics of the proposed international
algebraic language of the Zürich ACM-GAMM conference. In Proc. Int. Conf.
Inform. Proc. (ICIP), pages 125–132, Paris.

Bader, G. D., Cary, M. P., and Sander, C. (2006). Pathguide: a pathway
resource list. Nucl. Acids Res., 34(Database issue):D504–D506.

137

Bibliography

Bartol Jr., T. M., Stiles., J. R., Salpeter, M. M., Salpeter, E. E., and Sejnowski,
T. J. (1996). MCELL: Generalized Monte Carlo computer simulation of
synaptic transmission and chemical signaling. In Soc. Neuro. Abs., volume 22,
page 1742.

Baxevanis, A. D. (2000). The molecular biology database collection: An online
compilation of relevant database resources. Nucl. Acids Res., 28(1):1–7.

Baxevanis, A. D. (2001). The molecular biology database collection: An up-
dated compilation of biological database resources. Nucl. Acids Res., 29(1):1–
10.

Baxevanis, A. D. (2002). The molecular biology database collection: 2002
update. Nucl. Acids Res., 30(1):1–12.

Baxevanis, A. D. (2003). The molecular biology database collection: 2003
update. Nucl. Acids Res., 31(1):1–12.

Baynes, B. M. and Trout, B. L. (2004). Rational design of solution additives
for the prevention of protein aggregation. Biophys J, 87:1631–1639.

Belousov, B. P. (1958). A periodic reaction and its mechanism (org. Russian).
Sborn. Referat. Radiat. Med. (Moskow), page 145.

Berridge, M. (2004). Conformational coupling: A physiological calcium entry
mechanism. Sci. STKE, 2004(243):PE33.

Berridge, M. J. (1991). Cytoplasmic calcium oscillations: A two pool model.
Cell Calcium, 12(2–3):63–72.

Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature,
361(6410):315–325.

Berridge, M. J. (1998). Neuronal calcium signaling. Neuron, 21(1):13–26.

Berridge, M. J. (2005). Unlocking the secrets of cell signaling. Annu. Rev.
Physiol., 67:1–21.

Berry, H. (2002). Monte Carlo simulations of enzyme reactions in two dimen-
sions: Fractal kinetics and spatial segregation. Biophys. J., 83(4):1891–1901.

Bhalla, U. S. (2002). Use of Kinetikit and GENESIS for modeling signaling
pathways. Methods Enzymol., 345:3–23.

138

Bibliography

Bhalla, U. S. and Iyengar, R. (1999). Emergent properties of networks of
biological signaling pathways. Science, 283(5400):381–387.

Bolouri, H. and Davidson, E. H. (2002). Modeling transcriptional regulatory
networks. Bioessays, 24(12):1118–1129.

Bower, J. M. and Bolouri, H. (2004). Computational Modeling of Genetic and
Biochemical Networks. Computational Molecular Biology Series. Bradford
Book, 1st (paper back) edition.

Broderick, G., Ru’aini, M., Chan, E., and Ellison, M. J. (2005). A life-like
virtual cell membrane using discrete automata. In Silico Biol., 5(2):163–178.

Brown, R. (1828). A brief account of microscopical observations made in the
months on june, july, and august, 1827, on the particles contained in the
pollen of plants; and on the general existence of active molecules in organic
and inorganic bodies. Phil. Mag., 4:161–173.

Burrage, K., Tian, T., and Burrage, P. (2004). A multi-scaled approach for sim-
ulating chemical reaction systems. Prog. Biophys. Mol. Biol., 85(2–3):217–
234.

Calzone, L., Fages, F., and Soliman, S. (2006). BIOCHAM: an environment for
modeling biological systems and formalizing experimental knowledge. Bioin-
formatics, 22(14):1805–1807.

Cao, Y., Li, H., and Petzold, L. (2004a). Efficient formulation of the stochas-
tic simulation algorithm for chemically reacting systems. J. Chem. Phys.,
121(9):4059–4067.

Cao, Y., Petzold, L., Rathinam, M., and Gillespie, D. (2004b). The numerical
stability of leaping methods for stochastic simulation of chemically reacting
systems. J. Chem. Phys., 121(24):12169–12178.

Carafoli, E. (2002). Calcium signaling: A tale for all seasons. Proc. Natl. Acad.
Sci. USA, 99(3):1115–1122.

Carafoli, E. (2005). Calcium – a universal carrier of biological signals. FEBS
J., 272(5):1073–1089.

Cary, M. P., Bader, G. D., and Sander, C. (2005). Pathway information for
systems biology. FEBS Lett., 579(8):1815–1820.

139

Bibliography

Casanova, H., Berman, F., Bartol, T., Gokcay, E., Sejnowski, T., Birnbaum, A.,
Dongarra, J., Miller, M., Ellisman, M., Faerman, M., Obertelli, G., Wolski,
R., Pomerantz, S., and Stiles, J. (2004). The virtual instrument: Support for
grid-enabled MCell simulations. Intl. J. of High Perf. Comp. App., 18:3–17.

Chance, B. (2004). The stopped-flow method and chemical intermediates in
enzyme reactions - A personal essay. Photosynth. Res., 80(1–3):387–400.

Chatterjee, A., Mayawala, K., Edwards, J. S., and Vlachos, D. G. (2005). Time
accelerated monte carlo simulations of biological networks using the binomial
τ -leap method. Bioinformatics, 21(9):2136–2137.

Chay, T. R. and Keizer, J. (1983). Minimal model for membrane oscillations
in the pancreatic beta-cell. Biophys J., 42(2):181–190.

Chickarmane, V., Paladugu, S. R., Bergmann, F., and Sauro, H. M. (2005).
Bifurcation discovery tool. Bioinformatics, 21(18):3688–3690.

Chong, L. and Ray, L. B. (2002). Whole-istic biology. Science, 295(5560):1661.

Churchill, W. (1949). Speaking at Britain’s National Book Exhibition about
his World War II memoirs.

Clapham, D. E. (1995). Calcium signaling. Cell, 80(2):259–268.

Coggan, J. S., Bartol, T. M., Esquenazi, E., Stiles, J. R., Lamont, S., Martone,
M. E., Berg, D. K., Ellisman, M. H., and Sejnowski, T. J. (2005). Evidence
for ectopic neurotransmission at a neuronal synapse. Science, 309(5733):446–
451.

Collecutt, G. and Drummond, P. D. (2001). Xmds: eXtensible multi-
dimensional Simulator. Comp. Phys. Comm., 142(1–3):219–223.

Crampin, E. J., Halstead, M., Hunter, P. J., Nielsen, P., Noble, D., Smith, N.,
and Tawhai, M. (2004). Computational physiology and the physiome project.
Exp. Physiol., 89(1):1–26.

DeFanti, T. A., Sandin, D. J., and Cruz-Neira, C. (1993). A ‘room’ with a
‘view’. IEEE Spectrum, 30(10):30–33.

DeSchutter, E. and Cannon, R. C. (2000). Computational Neuroscience: Real-
istic Modeling for Experimentalists, volume 5 of Frontiers in Neuroscience.
CRC Press.

140

Bibliography

Einstein, A. (1905). Über die von der molekularkinetischen Theorie der Wärme
geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen.
Ann. d. Phys., 17(4):549–560.

Einstein, A. (1956). Investigations on the Theory of the Brownian Movement.
Dover Publications, Inc., 1st edition.

Elcock, A. H. (2003). Atomic-level observation of macromolecular crowding
effects: Escape of a protein from the GroEL case. Proc. Natl. Acad. Sci.
USA, 100:2340–2344.

Encarnação, J. L., Straßer, W., and Klein, R. (1997a). Graphische Daten-
verarbeitung 1: Gerätetechnik, Programmierung und Anwendung graphischer
Systeme. Oldenbourg, 4th edition.

Encarnação, J. L., Straßer, W., and Klein, R. (1997b). Graphische Datenverar-
beitung 2: Modellierung komplexer Objekte und photorealistischer Bilderzeu-
gung. Oldenbourg, 4th edition.

Endy, D. and Brent, R. (2001). Modelling cellular behaviour. Nature,
409(6818):391–395.

Endy, D., You, L., Yin, J., and Molineux, I. J. (2000). Computation, prediction,
and experimental tests of fitness for bacteriophage T7 mutants with permuted
genomes. Proc. Natl. Acad. Sci. USA, 97(10):5375–5380.

Eungdamrong, N. J. and Iyengar, R. (2004). Modeling cell signaling networks.
Biol. Cell., 96(5):355–362.

Fall, C. P. and Keizer, J. E. (2002). Computational Cell Biology, chapter Dy-
namic Phenomena in Cells, pages 3–20. In Fall et al. (2002), 1st edition.

Fall, C. P., Marland, E. S., Wagner, J. M., and Tyson, J. J. (2002). Computa-
tional Cell Biology. Springer-Verlag New York Inc., 1st edition.

Fenyo, D. (1999). The biopolymer markup language. Bioinformatics, 15(4):339–
340.

Fick, A. (1855). Über Diffusion. Poggendorf ’s Ann. d. Phys., 94:59–86.

Field, R. J., Körös, E., and Noyes, R. M. (1972). Oscillations in chemical sys-
tems. II. Thourough analysis of temporal oscillations in the bromate-cerium-
malonic acid system. J. Am. Chem. Soc., 94(25):8649–8664.

141

Bibliography

Field, R. J. and Noyes, R. M. (1974a). Oscillations in chemical systems. IV.
Limit cycle behavior in a model of a real chemical reaction. J. Chem. Phys.,
60(5):1877–1884.

Field, R. J. and Noyes, R. M. (1974b). Oscillations in chemical systems. V.
Quantitative explanation of band migration in the belousov-zhabotinskii re-
action. J. Am. Chem. Soc., 96(7):2001–2006.

Finney, A. and Hucka, M. (2003). Systems biology markup language: Level 2
and beyond. Biochem. Soc. Trans., 31(Pt 6):1472–1473.

Friedel, M. and Shea, J.-E. (2004). Self-assembly of peptides into a β-barrel
motif. J. Chem. Phys., 120(12):5809–5823.

Fukuda, K. and Takagi, T. (2001). Knowledge representation of signal trans-
duction pathways. Bioinformatics, 17(9):829–837.

Fukuda, K., Yamagata, Y., and Takagi, T. (2004). FREX: A query interface
for biological processes with a hierarchical and recursive structures. In Silico
Biol., 4(1):63–79.

Galperin, M. Y. (2004). The molecular biology database collection: 2004 up-
date. Nucl. Acids Res., 32(Database issue):D3–D22.

Galperin, M. Y. (2005). The molecular biology database collection: 2005 up-
date. Nucl. Acids Res., 33(Database issue):D5–D24.

Galperin, M. Y. (2006). The molecular biology database collection: 2006 up-
date. Nucl. Acids Res., 34(Database issue):D3–D5.

Galperin, M. Y. (2007). The molecular biology database collection: 2007 up-
date. Nucl. Acids Res., 35(Database issue):D3–D4.

Galperin, M. Y. (2008). The molecular biology database collection: 2008 up-
date. Nucl. Acids Res., 36(Database issue):D2–D4.

Garvey, T. D., Lincoln, P., Pedersen, C. J., Martin, D., and Johnson, M. (2003).
BioSPICE: Access to the most current computational tools for biologists.
OMICS, 7(4):411–420.

Ghosh, R. and Tomlin, C. (2004). Symbolic reachable set computation of
piecewise affine hybrid automata and its application to biological modelling:
Delta-Notch protein signalling. Syst. Biol., 1(1):170–183.

142

Bibliography

Gibson, M. A. (2000). Computational Methods for Stochastic Biological Sys-
tems. PhD thesis, California Inst. Technology, Pasadena, California.

Gibson, M. A. and Bruck, J. (2000). Efficient exact stochastic simulation of
chemical systems with many species and many channels. J. Phy. Chem. A,
104(9):1876–1889.

Gillespie, D. T. (1976). A general method for numerically simulating the
stochastic time evolution of coupled chemical reactions. J. Comp. Phys.,
22:403–434.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical reac-
tions. J. Comp. Phys., 81(25):2340–2361.

Gillespie, D. T. (1996). Exact numerical simulation of the Ornstein-Uhlenbeck
process and its integral. Phys. Rev. E, 54(2):2084–2091.

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chem-
ically reacting systems. J. Chem. Phys., 115(4):1716–1733.

Gillespie, D. T. (2006). Stochastic simulation of chemical kinetics. Annu. Rev.
Phys. Chem., page [Epub ahead of print].

Glansdorff, P. and Prigogine, I. (1971). Thermodynamic Theory of Structure,
Stability and Fluctuations. Wiley, 1st edition.

Goldbeter, A., Dupont, G., and Berridge, M. J. (1990). Minimal model for
signal induced ca2+ oscillations and for their frequency encoding through
protein phosphorylation. Proc. Natl. Acad. Sci. USA, 87(4):1461–1465.

Goodsell, D. S. (1997). The Machinery of Life. Copernicus, reprint edition.

Gough, N. R. (2002). Science’s signal transduction knowledge environment:
The connections maps database. Ann. N. Y. Acad. Sci., 971:585–587.

Gough, N. R. and Ray, L. B. (2002). Mapping cellular signaling. Sci. STKE,
2002(135):EG8.

Hanisch, D., Zimmer, R., and Lengauer, T. (2002). ProML–The protein markup
language for specification of protein sequences, structures and families. In
Silico Biol., 2(3):313–324.

143

Bibliography

Hartwell, L. H., Hopfield, J. J., Leibler, S., and Murray, A. W. (1999). From
molecular to modular cell biology. Nature, 402(6761 Suppl):C47–C52.

Haseltine, E. L. and Rawlings, J. B. (2002). Approximate simulation of coupled
fast and slow reactions for stochastic chemical kinetics. J. Chem. Phys.,
117(15):6959–6969.

Hattne, J., Fange, D., and Elf, J. (2005). Stochastic reaction-diffusion simula-
tion with MesoRD. Bioinformatics, 21(12):2923–2924.

Hermjakob, H., Montecchi-Palazzi, L., Bader, G., Wojcik, J., Salwinski, L.,
Ceol, A., Moore, S., Orchard, S., Sarkans, U., von Mering, C., Roechert, B.,
Poux, S., Jung, E., Mersch, H., Kersey, P., Lappe, M., Li, Y., Zeng, R., Rana,
D., Nikolski, M., Husi, H., Brun, C., Shanker, K., Grant, S. G. N., Sander, C.,
Bork, P., Zhu, W., Pandey, A., Brazma, A., Jacq, B., Vidal, M., Sherman, D.,
Legrain, P., Cesareni, G., Xenarios, I., Eisenberg, D., Steipe, B., Hogue, C.,
and Apweiler, R. (2004). The HUPO PSI’s molecular interaction format–A
community standard for the representation of protein interaction data. Nat.
Biotechnol., 22(2):177–183.

Hernández-Bermejo, B., Fairén, V., and Sorribas, A. (2000). Power-law mod-
eling based on least-squares criteria: Consequences for system analysis and
simulation. Math. Biosci., 167(2):87–107.

Hofestädt, R. and Meineke, F. (1995). Interactive modelling and simulation of
biochemical networks. Comput. Biol. Med., 25(3):321–334.

Hofmeyr, J. H. (1986). Steady-state modelling of metabolic pathways: A guide
for the prospective simulator. Comput. Appl. Biosci., 2(1):5–11.

Holkner, A. (2002). Dynamically loaded C++ plugins for all platforms. Inter-
net. http://yallara.cs.rmit.edu.au/ aholkner/dynload/index.html.

Hucka, M., Finney, A., Bornstein, B. J., Keating, S. M., Shapiro, B. E.,
Matthews, J., Kovitz, B. L., Schilstra, M. J., Funahashi, A., Doyle, J. C., and
Kitano, H. (2004). Evolving a lingua franca and associated software infras-
tructure for computational systems biology: The Systems Biology Markup
Language (SBML) project. Syst. Biol., 1(1):41–53.

Hucka, M., Finney, A., Sauro, H., and Bolouri, H. (2002). The ERATO sys-
tems biology workbench: Enabling interaction and exchange between soft-
ware tools for computational biology. In et al., R. A., editor, Proc. Pac.
Biocomp. Symp., volume PBS 2002.

144

Bibliography

Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H.,
Arkin, A. P., Bornstein, B. J., Bray, D., Cornish-Bowden, A., Cuellar, A. A.,
Dronov, S., Gilles, E. D., Ginkel, M., Gor, V., Goryanin, I. I., Hedley, W. J.,
Hodgman, T. C., Hofmeyr, J.-H., Hunter, P. J., Juty, N. S., Kasberger, J. L.,
Kremling, A., Kummer, U., Novére, N. L., Loew, L. M., Lucio, D., Mendes,
P., Minch, E., Mjolsness, E. D., Nakayama, Y., Nelson, M. R., Nielsen, P. F.,
Sakurada, T., Schaff, J. C., Shapiro, B. E., Shimizu, T. S., Spence, H. D.,
Stelling, J., Takahashi, K., Tomita, M., Wagner, J., and Wang, J. (2003). The
systems biology markup language (SBML): A medium for representation and
exchange of biochemical network models. Bioinformatics, 19(4):524–531.

Igarashi, T. and Kaminuma, T. (1997). Development of a cell signaling networks
database. In Pac. Symp. Biocomput., volume PSB 1997, pages 187–197.

Ipsen, M., Hynne, F., and Sørensen, P. G. (1997). Amplitude equations and
chemical reaction-diffusion systems. Int. J. Bifurcat. Chaos, 7(7):1539–1554.

Kang, Q., Zhang, D., Chen, S., and He, X. (2002). Lattice boltzmann simulation
of chemical dissolution in porous media. Phys. Rev. E Stat. Nonlin. Soft.
Matter Phys., 65(3 Pt 2B):036318.

Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Collado-Vides, J., Paley,
S. M., Pellegrini-Toole, A., Bonavides, C., and Gama-Castro, S. (2002). The
EcoCyc database. Nucl. Acids Res., 30(1):56–58.

Karp, P. D., Riley, M., Saier, M., Paulsen, I. T., Paley, S. M., and Pellegrini-
Toole, A. (2000). The EcoCyc and MetaCyc databases. Nucl. Acids Res.,
28(1):56–59.

Kauffman, S. A. (1969). Metabolic stability and epigenesis in randomly con-
structed genetic nets. J. Theor. Biol., 22(3):437–367.

Keener, J. and Sneyd, J. (2001). Mathematical Physiology. Springer.

Kell, D. B. (2004). Metabolomics and systems biology: making sense of the
soup. Curr. Opin. Microbiol., 7(3):296–307.

Kibby, M. R. (1969). Stochastic method for the simulation of biochemical
systems on a digital computer. Nature, 222(190):298–299.

Kiehl, T. R., Mattheyses, R. M., and Simmons, M. K. (2004). Hybrid simulation
of cellular behavior. Bioinformatics, 20(3):316–322.

145

Bibliography

Kitano, H. (2002a). Computational systems biology. Nature, 420(6912):206–
210.

Kitano, H. (2002b). Systems biology: A brief overview. Science,
295(5560):1662–1664.

Knuth, D. E. (1964). Backus Normal Form versus Backus Naur Form. Com-
mun. ACM, 7(12):735–736.

Knuth, D. E. (2004). Selected Papers on Computer Science. Cambridge Uni-
versity Press.

Kraus, M., Lais, P., and Wolf, B. (1992). Structured biological modelling:
A method for the analysis and simulation of biological systems applied to
oscillatory intracellular calcium waves. Biosystems, 27(3):145–169.

Kraus, M. and Wolf, B. (1992). Modellbildung in der Biologie: Strukturierte
analyse intrazellulrer Calcium-Oszillationen in elektrisch nicht erregbaren
Zellen. Naturwissenschaften, 79(7):289–299.

Krieger, E. and Vriend, G. (2002). Models@Home: Distributed comput-
ing in bioinformatics using a screensaver based approach. Bioinformatics,
18(2):315–318.

Kumar, S. P. and Feidler, J. C. (2003a). BioSPICE, 2. OMICS, 7(4):335.

Kumar, S. P. and Feidler, J. C. (2003b). BioSPICE: A computational infras-
tructure for integrative biology. OMICS, 7(3):225.

Kutta, W. M. (1901). Beitrag zur näherungsweisen integration totaler differ-
entialgleichungen. Z. Math. Phys., 46:435–453.

Larman, C. (2001). Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and the Unified Process. Prentice Hall, 2nd
edition.

Lebiedz, D. and Maurer, H. (2004). External optimal control of self-organisation
dynamics in a chemotaxis reaction diffusion system. Syst. Biol., 1(2):222–229.

Lee, D.-Y., Yun, C., Cho, A., Hou, B. K., Park, S., and Lee, S. Y. (2006). Web-
Cell: a web-based environment for kinetic modeling and dynamic simulation
of cellular networks. Bioinformatics, 22(9):1150–1151.

146

Bibliography

Lévy, P. P. (1948). Processus stochastiques et mouvement brownien. Gauthier-
Villars, Paris.

Lloyd, C., Halstead, M., and Nielsen, P. (2004). CellML: Its future, present
and past. Prog. Biophys. Mol. Biol., 85(2–3):433–450.

Loew, L. M. and Schaff, J. C. (2001). The Virtual Cell: A software environment
for computational cell biology. Trends Biotechnol., 19(10):401–406.

Lu, T., Volfson, D., Tsimring, L., and Hasty, J. (2004). Cellular growth and
division in the Gillespie algorithm. Syst. Biol., 1(1):121–128.

Mayawala, K., Vlachos, D. G., and Edwards, J. S. (2006). Spatial modeling of
dimerization reaction dynamics in the plasma membrane: Monte Carlo vs.
continuum differential equations. Biophys. Chem., 121(3):194–208.

Mendes, P. (1993). Gepasi: a software package for modelling the dynamics,
steady states and control of biochemical and other systems. Comput. Appl.
Biosci., 9(5):563–571.

Mendes, P. (1997). Biochemistry by numbers: Simulation of biochemical path-
ways with Gepasi 3. Trends Biochem. Sci., 21(9):361–363.

Mendes, P. and Kell, D. B. (1998). Non-linear optimization of biochemical
pathways: Applications to metabolic engineering and parameter estimation.
Bioinformatics, 14(10):869–883.

Mesarovic, M., Sreenath, S., and Keene, J. (2004). Search for organising prin-
ciples: Understanding in systems biology. Syst. Biol., 1(1):19–27.

Metropolis, N. and Ulam, S. (1949). The Monte Carlo method. J. Am. Stat.
Assoc., 44(247):335–341.

Miano, J. (1999). Compressed Image File Formats. Addison-Wesley Profes-
sional, 1st edition.

Mishra, B., Daruwala, R.-S., Zhou, Y., Ugel, N., Policriti, A., Antoniotti, M.,
Paxia, S., Rejali, M., Rudra, A., Cherepinsky, V., Silver, N., Casey, W., Pi-
azza, C., Simeoni, M., Barbano, P., Spivak, M., Feng, J., Gill, O., Venkatesh,
M., Cheng, F., Sun, B., Ioniata, I., Anantharaman, T., Hubbard, E. J. A.,
Pnueli, A., Harel, D., Chandru, V., Hariharan, R., Wigler, M., Park, F., Lin,
S.-C., Lazebnik, Y., Winkler, F., Cantor, C. R., Carbone, A., and Gromov,

147

Bibliography

M. (2003). A sense of life: Computational and experimental investigations
with models of biochemical and evolutionary processes. OMICS, 7(3):253–
268.

Möller, M. (2006). A Hybrid Algorithm for the Simulation of Biochemical Re-
actions and Diffusion. PhD thesis, Bielefeld University.

Möller, M., Oleson, B. E., and Prank, K. (2002). 4DiCeS: A workbench for the
simulation of intracellular signalling. In Europ. Conf. Comp. Biol., volume
ECCB 2002, page 109.

Möller, M., Oleson, B. E., and Prank, K. (2003). 4DiCeS: From random walk to
rate walk: Statistic modeling and simulation. In Europ. Conf. Comp. Biol.,
volume ECCB 2003, page MSB13.

Morton-Firth, C. J. (1998). Stochastic Simualtion of Cell Signalling Pathways.
PhD thesis, University of Cambridge.

Morton-Firth, C. J. and Bray, D. (1998). Predicting temporal fluctuations in
an intracellular signalling pathway. J. Theor. Biol., 192(1):117–128.

Morton-Firth, C. J., Shimizu, T. S., and Bray, D. (1999). A free-energy-based
stochastic simulation of the Tar receptor complex. J. Mol. Biol., 286(4):1059–
1074.

Murray, J. D. (2002a). Mathematical Biology I: An Introduction. Springer-
Verlag New York Inc., 3rd edition.

Murray, J. D. (2002b). Mathematical Biology II: Spatial Models and Biomedical
Applications. Springer-Verlag New York Inc., 3rd edition.

Murray, J. D. and Ryper, W. V. (1994). Encyclopedia of Graphics File Formats.
O’reilly & Associates Inc., 1st edition.

Nasi, S. (2004). From databases to modelling of functional pathways. Comp.
Funct. Genom., 5(2):179–183.

Nauer, P. (1960). Revised report on the algorithmic language ALGOL 60.
Commun. ACM, 3(5):299–314.

Nicolis, G. and Prigogine, I. (1971). Fluctuations in nonequilibrium systems.
Proc. Natl. Acad. Sci. USA, 68(9):2102–2107.

148

Bibliography

Novère, N. L., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri,
H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J. L., and Hucka,
M. (2006). BioModels database: A free, centralized database of curated,
published, quantitative kinetic models of biochemical and cellular systems.
Nucleic Acids Res., 34(Database Issue):D689–D691.

Novère, N. L. and Shimizu, T. S. (2001). StochSim: Modelling of stochastic
biomolecular processes. Bioinformatics, 17(6):575–576.

Noyes, R. M. (1976a). Oscillations in chemical systems. XII. Applicability to
closed systems of models with two and three variables. J. Chem. Phys.,
64(4):1266–1269.

Noyes, R. M. (1976b). Oscillations in chemical systems. XIV. Corrected stoi-
chiometry of the Oregonator. J. Chem. Phys., 65(2):848–849.

Oleson, B. E., Moeller, M., Evers, D., and Prank, K. (2006). 4DiCeS: Four-
dimensional cell simulator. In Int. Conf. Mol. Sys. Biol., number T25, pages
44–46.

Oleson, B. E., Möller, M., and Prank, K. (2002). 4DiCeS: Simulating diffusion
of signalling molecules within a cell. In Europ. Conf. Comp. Biol., volume
ECCB 2002, page 116.

Oleson, B. E., Möller, M., and Prank, K. (2003). 4DiCeS: Four-dimensional cell
simulation and visualization. In Europ. Conf. Comp. Biol., volume ECCB
2003, page MSB14.

Oleson, B. E., Möller, M., and Prank, K. (2004). 4DiCeS: Simulation, paralleli-
sation and model construction. In Europ. Conf. Comp. Biol., volume ECCB
2004, page L27.

Olivier, B. G., Rohwer, J. M., and Hofmeyr, J.-H. S. (2005). Modelling cellular
systems with PySCeS. Bioinformatics, 21(4):560–561.

Olivier, B. G. and Snoep, J. L. (2004). Web-based kinetic modelling using JWS
online. Bioinformatics, 20(13):2143–2144.

Oltvai, Z. N. and Barabási, A.-L. (2002). Systems biology. Life’s complexity
pyramid. Science, 298(5594):763–764.

149

Bibliography

Ortoleva, P., Berry, E., Brun, Y., Fan, J., Fontus, M., Hubbard, K., Jaqa-
man, K., Jarymowycz, L., Navid, A., Sayyed-Ahmad, A., Shreif, Z., Stanley,
F., Tuncay, K., Weitzke, E., and Wu, L.-C. (2003). The Karyote physico-
chemical genomic, proteomic, metabolic cell modeling system. OMICS,
7(3):269–283.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers.

Petri, C. A. (1962). Kommunikation mit Automaten. PhD thesis, Technische
Hochschule Darmstadt.

Pettinen, A., Aho, T., Smolander, O.-P., Manninen, T., Saarinen, A., Taattola,
K.-L., Yli-Harja, O., and Linne, M.-L. (2005). Simulation tools for bio-
chemical networks: evaluation of performance and usability. Bioinformatics,
21(3):357–363.

Ping, G., Yuan, J.-M., Sun, Z., and Wei, Y. (2004). Studies of effects of
macromolecular crowding and confinement on protein folding and protein
stability. J. Mol. Recog., 17(5):433–440.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (1992).
Numerical recipies in C: The art of scientific computing, chapter Random
Numbers, pages 274–328. Cambridge University Press, 2nd edition.

Pucha lka, J. and Kierzek, A. M. (2004). Bridging the gap between stochas-
tic and deterministic regimes in the kinetic simulations of the biochemical
reaction networks. Biophys. J., 86(3):1357–1372.

Rathinam, M., Petzold, L. R., Cao, Y., and Gillespie, D. T. (2003). Stiffness
in stochastic chemically reacting systems: The implicit tau-leaping method.
J. Chem. Phys., 119(24):12784–12794.

Ravasz, E., Somera, A. L., Mongru, D. A., Oltvai, Z. N., and Barabási, A. L.
(2002). Hierarchical organization of modularity in metabolic networks. Sci-
ence, 297(5586):1551–1555.

Rost, U. and Kummer, U. (2004). Visualization of biochemical network simu-
lations with SimWiz. Syst. Biol., 1(1):184–189.

Runge, C. D. T. (1895). Über die numerische Auflösung von Differentialgle-
ichungen. Math. Ann., 46:167–178.

150

Bibliography

Sakurada, T., Takahashi, K., and Tomita, M. (2002). E-CELL3 modeling en-
vironment. In Int. Conf. Syst. Biol., volume ICSB 2002.

Sauro, H. M., Hucka, M., Finney, A., Wellock, C., Bolouri, H., Doyle, J., and
Kitano, H. (2003). Next generation simulation tools: The systems biology
workbench and BioSPICE integration. OMICS, 7(4):355–372.

Schaff, J., Fink, C. C., Slepchenko, B., Carson, J. H., and Loew, L. M. (1997).
A general computational framework for modeling cellular structure and func-
tion. Biophys. J., 73(3):1135–1146.

Schaff, J. and Loew, L. M. (1999). The virtual cell. Pac. Symp. Biocomput.,
pages 228–239.

Schiek, R. L. and May, E. E. (2003). Development of a massively-parallel,
biological circuit simulator. IEEE Comp. Soc. Bioinf. Conf., 2003:620–622.

Schwehm, M. (2001). Fast stochastic simulation of metabolic networks. In
Wingender, E., Hofestädt, R., and Liebich, I., editors, Proc. German Conf.
Bioinformatics (GCB 2001), pages 223–226.

Scott, K. (2004). Fast Track UML 2.0. Apress, 1st edition.

Shapiro, B. E., Levchenko, A., Meyerowitz, E. M., Wold, B. J., and Mjol-
sness, E. D. (2003). Cellerator: Extending a computer algebra system to
include biochemical arrows for signal transduction simulations. Bioinformat-
ics, 19(5):677–678.

Shapiro, B. E., Levchenko, A., and Mjolsness, E. (2002). Automated models
generation for signal transduction with applications to MAP-Kinase path-
ways. In Kitano, H., editor, Found. Syst. Biol., volume FSB 2002, pages
145–162. MIT Press. (first published at ICSB’00).

Sivakumaran, S., Hariharaputran, S., Mishra, J., and Bhalla, U. S. (2003).
The database of quantitative cellular signaling: management and analysis of
chemical kinetic models of signaling networks. Bioinformatics, 19(3):408–415.

Slepchenko, B. M., Schaff, J. C., Carson, J. H., and Loew, L. M. (2002). Com-
putational cell biology: Spatiotemporal simulation of cellular events. Annu.
Rev. Biophys. Biomol. Struct., 31:423–441.

Sontag, E. D. (2004). Some new directions in control theory inspired by systems
biology. Syst. Biol., 1(1):9–18.

151

Bibliography

Spellman, P. T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz,
S., Bernhart, D., Sherlock, G., Ball, C., Lepage, M., Swiatek, M., Marks,
W. L., Goncalves, J., Markel, S., Iordan, D., Shojatalab, M., Pizarro, A.,
White, J., Hubley, R., Deutsch, E., Senger, M., Aronow, B. J., Robinson, A.,
Bassett, D., Jr., C. J. S., and Brazma, A. (2002). Design and implementation
of microarray gene expression markup language (mage-ml). Genome Biol.,
3(9):0046.0041–0046.0049.

Stundzia, A. and Lumsden, C. (1996). Stochastic simulation of coupled
reaction-diffusion processes. J. Comp. Phys., 127(1):196–207.

Takahashi, K., Arjunan, S. N. V., and Tomita, M. (2005). Space in systems
biology of signaling pathways - towards intracellular molecular crowding in
silico. FEBS Letters, 579:1783–1788.

Takahashi, K., Ishikawa, N., Sadamoto, Y., Sasamoto, H., Ohta, S., Shiozawa,
A., Miyoshi, F., Naito, Y., Nakayama, Y., and Tomita, M. (2003). E-Cell 2:
Multi-platform E-Cell simulation system. Bioinformatics, 19(13):1727–1729.

Takahashi, K., Yugi, K., Hashimoto, K., Yamada, Y., Pickett, C. J., and
Tomita, M. (2002). Computational challenges in cell simulation: A software
engineering approach. IEEE Intell. Syst., 17(5):64–71.

Taylor, C. F., Paton, N. W., Garwood, K. L., Kirby, P. D., Stead, D. A., Yin,
Z., Deutsch, E. W., Selway, L., Walker, J., Riba-Garcia, I., Mohammed, S.,
Deery, M. J., Howard, J. A., Dunkley, T., Aebersold, R., Kell, D. B., Lilley,
K. S., Roepstorff, P., III., J. R. Y., Brass, A., Brown, A. J., Cash, P., Gaskell,
S. J., Hubbard, S. J., and Oliver, S. G. (2003). A systematic approach to
modeling, capturing, and disseminating proteomics experimental data. Nat.
Biotechnol., 21(3):247–254.

Tomita, M. (2001). Whole-cell simulation: A grand challenge of the 21st cen-
tury. Trends Biotechnol., 19(6):205–210.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T. S., Matsuzaki, Y.,
Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J. C., and Hutchison III,
C. A. (1997). E-CELL: Software environment for whole cell simulation. In
Genome Inform. Ser. Workshop Genome Inform., volume 8, pages 147–155.

Tomita, M., Hashimoto, K., Takahashi, K., Shimizu, T. S., Matsuzaki, Y.,
Miyoshi, F., Saito, K., Tanida, S., Yugi, K., Venter, J. C., and Hutchi-

152

Bibliography

son III, C. A. (1999). E-CELL: Software environment for whole-cell simula-
tion. Bioinformatics, 15(1):72–84.

Trost, E. (2002). Development of a pathway–editor and a web-application for
lipid–associated disorders. Master’s thesis, Technische Universität Graz.

van Gend, C. and Kummer, U. (2001). STODE-automatic stochastic simulation
of systems described by differential equations. In Int. Conf. Syst. Biol.,
volume ICSB 2001, pages 326–332.

van Zon, J. S. and ten Wolde, P. R. (2004). Green’s-function reaction dynamics:
A particle-based approach for simulating biochemical networks in time and
space. J. Chem. Phys., 123(23):234910–234926.

von Hayek, F. A. (1944). The Road to Serfdom. B&T.

von Neumann, J. (1966). Theory of Self–reproducing Automata. University of
Illinois Press.

von Smoluchowski, M. (1906). Zur kinetischen Theorie der Brownschen Moleku-
larbewegung und der Suspensionen. Ann. d. Phys., 21(4):756–780.

Wagner, H., Moeller, M., and Prank, K. (2006). Coast: Controllable approxima-
tive stochastic reaction-algorithm. J. Chem. Phys., 125(17):174104–174114.

Webb, K. and White, T. (2005). UML as a cell and biochemistry modeling
language. Biosystems, 80(3):282–302.

Weimar, J. R. (1997). Cellular automata for reaction-diffusion systems. Parall.
Comp., 23(11):1699–1715.

Winfree, A. T. (1987). The timing of biological clocks. Number 19. Scientific
American Library, 1st edition.

Winfree, A. T. (2001). The Geometry of Biological Time. Springer, 2nd edition.

Wirth, N. (1977). What can we do about the unnecessary diversity of notation
for syntactic definitions? Commun. ACM, 20(11):822–823.

Wurthner, J. U., Mukhopadhyay, A. K., and Peimann, C.-J. (2000). A cellu-
lar automaton model of cellular signal transduction. Comput. Biol. Med.,
30(1):1–21.

153

	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure

	2 Dynamics in Systems Biology
	2.1 Modeling and Simulation
	2.1.1 Biology as a Model Featurer
	2.1.2 Computation as a Model Solver

	2.2 Cellular Calcium Models
	2.2.1 Calcium Signaling
	2.2.2 Two Pool Model

	3 Related Approaches and Tools
	3.1 Database and Information Retrieval
	3.2 Modeling and Simulation Software
	3.2.1 Deterministic
	3.2.2 Stochastic
	3.2.3 Frameworks
	3.2.4 Comparison

	4 Definitions and Implementation
	4.1 General Overview
	4.1.1 Survey of Integral Parts
	4.1.2 Function Classes
	4.1.3 Use-Case Descriptions
	4.1.4 Program Dynamics

	4.2 Considerations and Definitions
	4.2.1 Geometry Model
	4.2.2 Activity Description
	4.2.3 Algorithm Handling
	4.2.4 User Interfaces

	4.3 Application Details
	4.3.1 User Interfaces
	4.3.2 Applicability
	4.3.3 Complexity Considerations
	4.3.4 Availability

	5 Applications, Results, and Analysis
	5.1 Application Development
	5.1.1 Plug-Ins
	5.1.2 Programming Languages

	5.2 Modeling and Simulation
	5.2.1 Simple Diffusion Simulation
	5.2.2 Applying Diffusion-Reaction Systems

	5.3 Comparing Tools
	5.3.1 Comparison Criteria
	5.3.2 Comparing Related Works
	5.3.3 In Comparison to 4DiCeS

	5.4 Related Work

	6 Conclusions
	6.1 Design Decisions
	6.2 Related Attempts
	6.3 Challenges and Accomplishment
	6.3.1 Model Complexity
	6.3.2 Performance Evaluation

	6.4 Outlook

	A Algorithms in Detail
	A.1 Reaction Algorithms
	A.1.1 Runge-Kutta Method
	A.1.2 Dynamic MC Algorithms

	A.2 Diffusion Algorithm
	A.2.1 Discrete Lévy Process

	B Backus-Naur Form
	C Unified Modeling Language
	C.1 Use-Case Diagrams
	C.2 Class Diagrams
	C.3 Sequence Diagrams
	C.4 Component Diagrams

	List of Abbreviations
	List of Figures
	List of Tables
	Bibliography

