
Statistics and Algorithms
for

Peptide Mass Fingerprinting

Dipl.-Math. Hans-Michael Kaltenbach

Thesis submitted to the
Faculty of Technology, Bielefeld University, Germany

for the degree of Dr. rer. nat.

Date of thesis defense: 20. March 2007

Supervisors

Prof. Dr. Sebastian Böcker
Dr. Sven Rahmann

Referees

Prof. Dr. Sebastian Böcker, Jena University
Dr. Sven Rahmann, Bielefeld University



Gedruckt auf alterungsbeständigem Papier nach DIN-ISO 9706
(Printed on non-aging paper according to DIN-ISO 9706)



Abstract

We investigate several mathematical and algorithmical aspects of peptide mass finger-
printing (PMF). In a PMF experiment, a purified protein sample is digested by a protease
using an enzymatic cleavage reaction, the masses of the resulting peptides are measured
by mass spectrometry, yielding the mass fingerprint, and compared to predicted mass
fingerprints of reference protein sequences.

In the first part, we examine several statistics of PMFs. We introduce random weighted
strings over probabilistically weighted alphabets and cleavage schemes as mathematical
models for random protein sequences, their molecular mass, and their mass fingerprints.
We examine weighted hidden Markov models and Markov additive chains as a general
computational framework for the stochastics of protein fragments and their masses. In
parallel, we present recurrence equations for the description of these fragments.

Using these models, the distribution of fragment lengths, the distribution of fragment
masses and the distribution of the number of fragments in a random protein are examined
under a random string model of independent, identically distributed characters. We
derive the occurrence probability of a certain fragment mass in a random protein sequence
of either fixed length or fixed mass.

We present efficient dynamic programming algorithms and their time and space com-
plexity for most of the statistics and compare all statistics with their empirical coun-
terparts estimated from an in-silico tryptic digest of the Swiss-Prot protein sequence
database.

In the second part, we develop a general algorithmic framework for identification of
PMFs with a protein sequence database search. We formalize the identification of a
mass spectrum as an alignment problem and modify well-known methods developed
for sequence analysis to an efficient algorithm for computing an optimal alignment of
a measured spectrum and a predicted spectrum. The alignment is based on scoring
schemes that allow flexible and consistent incorporation of a multitude of experimental
parameters such as accuracy of the measured masses, mass error distribution, sample
contamination, and ionization efficiency into the identification procedure.

Using the fragment statistics of the first part, we estimate the significance of a protein
identification under a well-defined statistical null-model.

Finally, we present a family of scoring schemes and show how additional information
such as intensity values of measured peaks can be incorporated into an alignment scor-
ing. We demonstrate the applicability of the alignment framework on a real proteomics
dataset and compare our results with the standard software MASCOT.

i



ii



Contents

Abstract i

1. Proteomics – Biological Background 1

2. Protein Identification by Mass Spectrometry 7
2.1. Probe Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2. Instrumentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. Protein Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4. Peptide Mass Fingerprinting . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5. Organization of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I. Statistics of Peptide Mass Fingerprinting 19

3. Introduction 21

4. The Random Weighted String Model 23
4.1. Weighted Alphabets and Strings . . . . . . . . . . . . . . . . . . . . . . . 23
4.2. Random Weighted Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5. Fragmentation of Random Weighted Strings 29
5.1. Cleavage Schemes and Fragmentation . . . . . . . . . . . . . . . . . . . . 29
5.2. Terminal-Extended Alphabets and Weighted Hidden Markov Models . . . 33
5.3. Structure of Fragments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6. Distribution of Fragment Length 47
6.1. Computation in wHMM Framework . . . . . . . . . . . . . . . . . . . . . 47
6.2. Recurrence Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.3. Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4. Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.5. Finite Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.6. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.7. Evaluation on Swiss-Prot . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

7. Distribution of Cleavage Points 61
7.1. Distribution of Cleavage Points . . . . . . . . . . . . . . . . . . . . . . . . 61
7.2. Approximation of Cleavage Point Distributions . . . . . . . . . . . . . . . 62

iii



Contents

7.3. Distribution of Fragmentation Size . . . . . . . . . . . . . . . . . . . . . . 62
7.4. Evaluation on Swiss-Prot . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

8. Joint Distribution of Fragment Length and Mass 67
8.1. Computation in wHMM Framework . . . . . . . . . . . . . . . . . . . . . 67
8.2. Recurrence Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
8.3. Finite Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
8.4. Related Distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
8.5. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
8.6. Evaluation on Swiss-Prot . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

9. Mass Occurrence Probabilities 85
9.1. Recurrence Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
9.2. Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
9.3. Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.4. Evaluation on Swiss-Prot . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
9.5. Occurrence Probabilities for given Parent Mass . . . . . . . . . . . . . . . 98

II. Protein Identification with Mass Spectra Alignments 103

10.Introduction 105

11.Aligning Mass Spectra 107
11.1. Peaks and Peak Lists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
11.2. Peak List Matching and Scoring . . . . . . . . . . . . . . . . . . . . . . . 108
11.3. Computing Optimal Matchings . . . . . . . . . . . . . . . . . . . . . . . . 111
11.4. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
11.5. Many-to-One Peak Matching . . . . . . . . . . . . . . . . . . . . . . . . . 113

12.Computing Significance of Alignment Scores 115
12.1. Moments of Alignment Scores . . . . . . . . . . . . . . . . . . . . . . . . . 117
12.2. Computing p-values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
12.3. p-value Scores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
12.4. Numerical Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

13.Evaluation 131
13.1. Scoring Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
13.2. Evaluation on Proteomics Data . . . . . . . . . . . . . . . . . . . . . . . . 133

14.Conclusion 139

iv



1. Proteomics – Biological Background

According to Palagi et al [102], the word “proteome” was introduced in 1994 to denote
the protein complement of the genome. It refers to the complete set of proteins present
in a cell at a certain time. Unlike the genome, a proteome is dynamic: Proteins are
constantly built and degraded and their presence and abundances depend on a multitude
of factors like cell type, growth state, or external stress. One of the major aspects of
proteomics – the study of the proteome – is the identification of all proteins present in
a cell or tissue at a certain time.

Protein structure. Proteins are involved in almost all cellular activities: They are
part of the cell membrane, work as pumps for ion exchange, serve as receptors and
transmitters in signal transduction, and are involved in metabolic networks as enzymes,
catalysts and inhibitors.

Proteins are polypeptides: They are built as a chain consisting of several peptides which
in turn are polymers formed by a chain of amino acid molecules. Thus, proteins are long
polymers of amino acids. The terminology is not very precise: Usually, a polypeptide
that has some biological function is called a protein (cf. [85]).

Although each amino acid has unique chemical and physical properties such as hy-
drophobicity or polarity, all amino acids share the same common structure. A central
carbon atom is surrounded by an amine group (NH2), a carboxyl group (COOH), a
hydrogen atom and a residue (usually denoted R) specific for the amino acid. On the
left side of Figure 1.1, two amino acids with residues R1, R2 are depicted.

The three-letter code and the one-letter code are two equivalent notations for the 20
different amino acids most commonly used in organisms. Table 1.1 lists these 20 amino
acids together with their codes, monoisotopic and average mass (see below), structural
formula and frequency of occurrence in protein sequences contained in the Swiss-Prot
database [10]. Masses are given in Dalton (Da), where one Dalton is approximately the
mass of a single proton.

A polymer of amino acids is formed by building peptide bonds between two amino acids,
involving the separation of a water molecule, see Figure 1.1 for an illustration. Each pep-
tide has an unbounded carboxyl group, called the C-terminus, and an unbounded amine
group, called the N-terminus. The amino acid molecules within a peptide, without the
water molecule lost by forming a peptide bond, are called the amino acid residues of the
peptide. If a peptide bond is broken, a water molecule is attached to the two new termi-
nal residue amino acids, completing the new N-terminus and C-terminus, respectively.

The sequence of amino acids, read from N- to C-terminus, is called the primary struc-
ture of the protein; it uniquely determines the protein. Certain peptides of the protein
fold into characteristic shapes, either into a α-helix, a β-sheet or a random coil. These

1



1. Proteomics – Biological Background

O

N COOHH2N

R1

R2

C C C

H

H H

H2O

H2N

COOH

R1

C H H2N

R2

C H

COOH

+

N-terminus C-terminus

Figure 1.1.: The peptide bond between two amino acids with residues R1, R2.

shapes are called the secondary structure of the protein. However, the function of a
protein is mostly determined by its three-dimensional structure, also called the confor-
mation of a protein or its tertiary structure. Proteins fold into their conformation; it
usually provides the energetic minimum of the molecule. The native conformation is
determined by the primary structure. However, the conformation is changed if certain
chemical groups, such as a phosphor molecule, are attached to the protein.

Protein synthesis. The genome consists of several deoxyribonucleic acid (DNA) molecules,
each a double-stranded polymer build from 4 different nucleic acids: adenine (one-letter
code A), cytosine (C), guanine (G) and thymine (T). The genome is static and the same
for all cells of an organism. The primary structure of a protein is encoded in a gene, a
coding region of the genome. However, some genes also encode special RNA molecules
(see below), so there is no one-to-one correspondence of genes and proteins.

If the synthesis of a new protein is triggered by cellular signals, the gene encoding
this protein is copied from the DNA to a messenger ribonucleic acid (mRNA) molecule.
RNA molecules are almost like DNA molecules, except that they are single-stranded,
use a different ribose in the backbone and use uracil (U) instead of thymine (T).

In eucaryotes, parts of the mRNA sequence, so-called introns, are cleaved out; this
does not happen in procaryotes. This splicing process is not unique, there usually exist
several possibilities which parts are cleaved, leading to alternative splicings, and different
proteins are encoded by the same gene. The mRNA is also altered by appending certain
signaling sequences, such as the poly-A-tail (eucaryotes only), for guiding the transfer of
the molecules to the ribosomes (see below) and for controlling the process of translation
to protein. The whole process of copying genetic information and building the mRNA
molecule including the different alterations is called transcription. Similar to the genome
and the proteome, the transcriptome refers to the set of all mRNA molecules present in
a cell at a certain time. Just like the proteome, the transcriptome is dynamic.

The mRNA molecules are transferred to the ribosomes, large ribonucleoproteins that
are responsible for building the protein’s primary structure from amino acids. The
process of translation of the mRNA sequence to an amino acid sequence is done with
the help of transfer RNA (tRNA) that transfers the amino acids to the amino acid chain.
See Figure 1.2 for a schematic illustration of transcription and translation.

A triplet of nucleic acids encodes one amino acid by the genetic code (cf. Table 1.2);
the triplets are also called codons. Codons are consecutive and non-overlapping, i.e.,
the next three nucleotides after each codon form the next codon. The start and end of

2



· · · UACGCGGUA · · ·

AAAAA · · · AAA

· · · ATGCGCCAT · · ·

· · · TACGCGGTA · · ·

Transcription

Appending poly-A-tail

Transfer to cytosome

DNA

mRNA

Ribosome

Intron
Exon

Splicing

· · · UACGCGGUA · · ·

Protein

· · · YAV · · ·

Translation

Nucleus Cytosome

Figure 1.2.: Schematic process of transcription and translation in eucaryotes.

the mRNA sequence translation process is triggered by special start and stop codons.
The start codon AUG encodes the amino acid methionine. In almost all organisms, the
newly synthesized protein thus starts with a methionine; it is usually cleaved from the
protein right after synthesis and is thus not part of the primary structure. The three
stop codons do not encode any amino acid.

The Central Dogma. The Central Dogma of molecular biology states that the flow
of information in a cell is always from DNA to RNA to protein (cf. Figure 1.3). The
genetic information of a cell is copied by replication of the DNA molecules. It can be
transcribed into RNA molecules, but usually, information encoded in RNA cannot be
transfered into DNA; there is the exception of retro-viruses that actually transfer their
genetic information encoded in RNA into the host cells’ DNA by reverse transcriptase.
Information encoded in RNA can be translated into proteins, but proteins can alter
neither RNA nor DNA. In particular, if the genome of an organism is sequenced, i.e. its
DNA sequence is revealed, and the coding regions and genes are identified within the
sequences, all possible protein sequences that can be translated from the genome are
in principle also known. With a growing number of genomes being sequenced, protein
sequence databases are built by in-silico prediction of genes and their protein product
from the DNA sequences. Recall that unlike the genome, the proteome is not static and
it is thus not sufficient to know all possible protein sequences. However, the hypothetical
protein sequences are a major tool for identification of observed proteins by searching
sequence databases using mass spectrometric data, see Chapter 2.

3



1. Proteomics – Biological Background

DNA ProteinRNA
TranslationTranscription

Replication

Figure 1.3.: The flow of information in a cell according to the Central Dogma.

Post-translational modifications. Besides the question of absence or presence of a
particular protein, there is another problem that aggravates the analysis of the proteome:
Proteins are also altered after translation by post-translational modifications (PTMs).
PTMs are usually attachments of certain chemical groups to one or more of the amino
acids of a protein; they can be specific for certain amino acids. Some of the most common
PTMs are glycosylations and phosphorylations.

Glycosylations play an important role in the immunology of higher organisms. Pro-
teins on the outer cell membrane use the attached sugars to distinguish between body
and non-body cells and to recognize messengers like hormones and neurotransmitters on
receptors. The set of all glycosylations of membrane proteins is called the glycocalix of
the cell; it distinguished blood cells of type A and B, for example.

A typical example for phosphorylation of a protein is the regulation of ion channel
proteins that do an active transport of ions like Ca2+ through the cell membrane. These
proteins are usually “activated” by attaching a phosphor molecule that causes a change
in the protein’s three-dimensional conformation and thus opens or closes an ion channel.
The phosphor typically originates from a transition of ATP (adenosine-tri-phosphate)
to ADP (adenosine-di-phosphate), an energy system common to all cells.

Proteins of the same primary structure but different modifications are called isoforms.
It is assumed that the ∼ 35 000 genes of the human genome encode up to 100 000
functional proteins and there might exist up to 1 000 000 different possible functional
isoforms in the human body [7].

4



am
in

o
ac

id
3-

co
de

1-
co

de
m

on
oi

so
.

m
as

s
(D

a)
av

g
m

as
s

(D
a)

m
ol

.
co

m
po

si
ti

on
fr

eq
.

(%
)

A
la

ni
ne

A
la

A
71

.0
37

11
37

90
71

.0
79

32
30

45
C

3
H

5
N

1
O

1
7.

85
A

rg
in

in
e

A
rg

R
15

6.
10

11
11

04
4

15
6.

18
87

46
82

2
C

6
H

1
2
N

4
O

1
5.

33
A

sp
ar

ag
in

e
A

sn
N

11
4.

04
29

27
45

2
11

4.
10

44
67

71
9

C
4
H

6
N

2
O

2
4.

18
A

sp
ar

ta
ti

c
ac

id
A

sp
D

11
5.

02
69

43
03

0
11

5.
08

90
69

71
1

C
4
H

5
N

1
O

3
5.

31
C

ys
te

in
e

C
ys

C
10

3.
00

91
84

49
0

10
3.

14
37

11
17

6
C

3
H

5
N

1
O

1
S

1
1.

54
G

lu
ta

m
ic

ac
id

G
lu

E
12

9.
04

25
93

09
4

12
9.

11
61

58
89

6
C

5
H

7
N

1
O

3
6.

61
G

lu
ta

m
in

e
G

ln
Q

12
8.

05
85

77
51

6
12

8.
17

15
56

90
5

C
5
H

8
N

2
O

2
3.

94
G

ly
ci

ne
G

ly
G

57
.0

21
46

37
26

57
.0

52
23

38
60

C
2
H

3
N

1
O

1
6.

95
H

is
ti

di
ne

H
is

H
13

7.
05

89
11

87
4

13
7.

14
21

40
20

6
C

6
H

7
N

3
O

1
2.

27
Is

ol
eu

ci
ne

Il
e

I
11

3.
08

40
63

98
2

11
3.

16
05

90
60

3
C

6
H

1
1
N

1
O

1
5.

92
L
eu

ci
ne

L
eu

L
11

3.
08

40
63

98
2

11
3.

16
05

90
60

3
C

6
H

1
1
N

1
O

1
9.

63
L
ys

in
e

L
ys

K
12

8.
09

49
63

02
4

12
8.

17
52

93
32

5
C

6
H

1
2
N

2
O

1
5.

92
M

et
hi

on
in

e
M

et
M

13
1.

04
04

84
61

8
13

1.
19

78
89

54
7

C
5
H

9
N

1
O

1
S

1
2.

38
P

he
ny

la
la

ni
ne

P
he

F
14

7.
06

84
13

91
8

14
7.

17
80

50
37

2
C

9
H

9
N

1
O

1
4.

00
P

ro
lin

e
P

ro
P

97
.0

52
76

38
54

97
.1

17
54

94
70

C
5
H

7
N

1
O

1
4.

83
Se

ri
ne

Se
r

S
87

.0
32

02
84

10
87

.0
78

62
77

59
C

3
H

5
N

1
O

1
6.

85
T

hr
eo

ni
ne

T
hr

T
10

1.
04

76
78

47
4

10
1.

10
57

16
94

4
C

4
H

7
N

1
O

1
5.

45
T
ry

pt
op

ha
n

T
rp

W
18

6.
07

93
12

96
0

18
6.

21
50

27
57

1
C

1
1
H

1
0
N

2
O

1
1.

15
T

yr
os

in
e

T
yr

Y
16

3.
06

33
28

53
8

16
3.

17
73

55
08

5
C

9
H

9
N

1
O

1
3.

06
V

al
in

e
V

al
V

99
.0

68
41

39
18

99
.1

33
50

14
17

C
5
H

9
N

1
O

1
6.

73

T
ab

le
1.

1.
:
A

m
in

o
ac

id
s

w
it

h
th

re
e-

an
d

on
e-

le
tt

er
co

de
s

(3
-c

od
e,

1-
co

de
),

m
on

oi
so

to
pi

c
(m

on
oi

so
)

an
d

av
er

ag
e

(a
vg

)
m

as
se

s,
ch

em
ic

al
su

m
fo

rm
ul

a
an

d
fr

eq
ue

nc
y

(f
re

q)
of

oc
cu

rr
en

ce
in

Sw
is

s-
P

ro
t

pr
ot

ei
n

se
qu

en
ce

s.
T

he
su

m
fo

rm
ul

as
ar

e
gi

ve
n

fo
r

th
e

re
si

du
es

w
it

ho
ut

te
rm

in
al

H
an

d
O

H
gr

ou
ps

.

5



1. Proteomics – Biological Background

T C A G
TTT Phe TCT Ser TAT Tyr TGT Cys

T TTC Phe TCC Ser TAC Tyr TGC Cys
TTA Leu TCA Ser TAA STOP TGA STOP
TTG Leu TCG Ser TAG STOP TGG Trp
CTT Leu CCT Pro CAT His CGT Arg

C CTC Leu CCC Pro CAC His CGC Arg
CTA Leu CCA Pro CAA Gln CGA Arg
CTG Leu CCG Pro CAG Gln CGG Arg
ATT Ile ACT Thr AAT Asn AGT Ser

A ATC Ile ACC Thr AAC Asn AGC Ser
ATA Ile ACA Thr AAA Lys AGA Arg
ATG Met ACG Thr AAA Lys ACG Arg
GTT Val GCT Ala GAT Asp GGT Gly

G GTC Val GCC Ala GAC Asp GGC Gly
GTA Val GCA Ala GAA Glu GGA Gly
GTG Val GCG Ala GAG Glu GGG Gly

Table 1.2.: Genetic code DNA→amino acid. STOP denotes stop codons.

6



2. Protein Identification by Mass
Spectrometry

2.1. Probe Preparation

Mass spectrometry has become the method of choice for identification [2,40] and quan-
tification [101] of proteins in a high-throughput manner.

According to Siuzdak [121], a mass spectrometer is “an analytical device that deter-
mines the molecular weight of chemical compounds by separating molecular ions accord-
ing to their mass-to-charge ratio (m/z)”. Molecular weights are commonly measured in
Dalton (Da) in the biological sciences. One Dalton equals one atomic weight unit (amu)
of 1.66 · 10−24 g, approximately the molecular weight of a single proton.

A typical protein identification procedure using mass spectrometry involves the ex-
traction of the protein mixture from the cell or tissue, the purification of the proteins, the
proteolytic digestion by a protease, the measurement of the resulting fragment peptides’
masses for each protein of interest, and finally the computational identification either
de-novo or by database search. Here, we briefly describe the protein purification and
digestion, before we examine mass spectrometry instrumentation in Section 2.2, tandem
MS and de-novo identification in Section 2.3 and finally peptide mass fingerprinting in
Section 2.4.

Protein purification. Purification of protein mixtures is a two-step process. First,
proteins have to be separated from other cell components such as DNA and metabolites;
this is usually done using precipitation. Then, the individual protein species in the
resulting complex protein mixture have to be separated from each other. We will call
this step protein separation to distinguish it from the first step.

There are currently two major protein separation techniques suitable for subsequent
mass spectrometric analysis: 2D-gel electrophoresis (2D-GE) and liquid chromatography
(LC). We will only explain 2D-GE. For more detailed information on both techniques
see [105].

2D-gel electrophoresis. A gel consists of cross-linked polymers building a matrix of
varying mesh size. In 2D-gel electrophoresis, the separation of proteins is done in two
steps. In the first step, the proteins are separated by their isoelectric points using
isoelectric focusing. They are loaded onto a matrix with an immobilized pH gradient
and a current is applied. The proteins move towards the positive or negative end of the
gel, according to their charge. Since the charge changes with pH, a protein will stop
moving when it reaches a specific pH value within the gradient, neutralizing its charge.

7



2. Protein Identification by Mass Spectrometry

This first step is usually not enough to separate all proteins and a second step follows,
separating the proteins by molecular weight. In this second step, sodium dodecyl sulfate
(SDS) is applied to negatively charge the proteins and linearize them; the protein charge
depends on its size. An anionic detergent is used to denature the proteins, and a current
is applied to the second dimension. Due to the pore size of the polyacrylamide (PA)
gel, smaller proteins migrate faster than larger ones, separating proteins of different
molecular weight. Gel electrophoresis with SDS and PA is commonly called SDS-PAGE.
The proteins are then stained by silver or coomassie blue and made visible in the gel. For
mass spectrometric analysis, the spots of interest are picked from the gel either by hand
or by a picking robot and each protein species is subjected to mass spectrometry. 2D-gel
electrophoresis is a source of artificial mass modifications of proteins. In SDS-PAGE,
cysteines are commonly modified by chemical attachment of carbamidomethyl during
separation; this alters the mass of the cysteine residues and has to be considered in the
following mass spectrometric analysis.

Protein digestion. After separation, the proteins of interest are identified (e.g. by com-
parison to previous experiments) and biochemically dissociated using a protease. Pro-
teases are hydrolases, i.e., enzymes that cleave a peptide bond by the use of one water
molecule (see above). They are usually site-specific, meaning that they cleave peptide
bonds between particular residues. Proteases are involved in a myriad of biochemical
processes like food digestion and blood clotting. In proteomics, the most commonly used
protease is trypsin, which cleaves peptide bonds after each occurrence of an arginine (R)
or lysine (K), unless followed by a proline (P). The molecular masses of the resulting
cleavage fragments are then measured by mass spectrometry. Trypsin is well-suited for
use in mass spectrometry settings since the resulting fragments provide two protonation-
sites (the N-terminus and the basic C-terminus) that allow efficient ionization by mass
spectrometers (cf. [12]).

2.2. Instrumentation

Mass spectrometric measurements are carried out in the gas phase on ionized analytes [2].
Simply put, a mass spectrometer has three important components:

• An ion source for ionizing the analyte,

• a mass analyzer for separating the ions by mass-over-charge ratio m/z, and

• a detector for registering the abundance of ions at each m/z value.

We briefly describe the major ion sources and mass analyzers. An extensive treatment
with detailed information on instrumentation can be found in [58].

Ion sources. Although mass spectrometry was invented in the late 19th century and
used in many chemical and physical applications, the ion sources were not suitable
for ionization of large biological molecules. This changed in the 1980s, when two

8



2.2. Instrumentation

different “soft” ionization methods, namely matrix-assisted laser desorption/ionization
(MALDI) [66,76] and electrospray ionization (ESI) [46,129], were developed that allowed
the ionization of intact large biomolecules such as proteins.

In MALDI, the analytes are mixed with a matrix solution and placed on a metal plate
after drying. The metal plate is then transfered into the vacuum system of the mass
spectrometer and a laser pulse is shot onto the matrix, with wavelength specific to the
matrix. Parts of the matrix evaporate, releasing the enclosed analyte and ionizing it.
Ionization is mostly singly-charged protonation. Since only a fraction of the analyte and
matrix is used with each laser shot, the same probe can be measured multiple times.
MALDI plates can also be stored for longer periods, allowing analysis of the same or
multiple probes with interruptions. MALDI interfaces well with 2D-GE; it also interfaces
with LC if the separated solution is spotted directly onto the MALDI plate.

In ESI, the analyte is dissolved and the solution is pressed through a small, highly
charged needle, whereby the analyte is ionized. The resulting small aerosol droplets are
sprayed into the vacuum system of the mass spectrometer, where the solution evaporates
and the ionized analyte remains. ESI usually produces multiply protonated ions. Unlike
MALDI, ESI relies on a constant supply of dissolved analytes. This makes it particularly
suited for interfacing with liquid chromatography.

Mass analyzers. Mass analyzers separate the ions according to their mass-to-charge
ratio m/z; they are based on the dynamics of ions in an electro-magnetic field. MALDI is
usually coupled to time-of-flight (TOF) analyzers, whereas ESI is coupled to quadrupoles
or ion traps.

A TOF analyzer accelerates the ionized analyte by applying an electric field for a
certain distance. Since the electric field strength, and thus the force applied, are the
same for all ions, the velocity of a particular ion after acceleration depends solely on
its mass and charge. When coupled to MALDI, all ions can be assumed to be singly
charged and thus the velocity directly refers to an ion’s mass. After applying the electric
field, the ions drift towards the detector in a tube of given length. Hence, the velocity
of an ion can be measured by the time it needs to drift from the acceleration area to
the detector. Its mass is then calculated. A scheme of a linear MALDI-TOF instrument
adapted from [58] is given in Figure 2.1.

A quadrupole consists of four metal rods arranged around the drift tube. A high
frequency alternating voltage is applied on the four rods, producing an oscillating electro-
magnetic field inside the tube. The ions are now forced into corkscrew-like trajectories
within the tube. Depending on the strength and frequency of the applied voltage, only
ions within a very narrow mass-to-charge range have a stable trajectory ending in the
detector; all other ions are deflected.

Ion traps have a similar principle as quadrupoles, but the ions are trapped within a
metal cage. They are forced into specific trajectories within the ion trap by applying
an alternating voltage to produce an oscillating electric field inside the trap. Ions of a
particular mass-to-charge ratio are then released by applying a different voltage.

Note that all mass analyzers only allow an indirect measurement of mass-to-charge

9



2. Protein Identification by Mass Spectrometry

acceleration

laser

drift tube

detector

M
A

L
D

I
p
la

te

voltage

m1 > m2 > m3

Figure 2.1.: Scheme of a linear MALDI-TOF mass spectrometer (adapted from [58]).

ratios. In order to get m/z values, it is therefore necessary to transform the measured
data. In particular, mass spectrometers have to be carefully calibrated to ensure correct
transformation.

Ion detectors. The detector is usually built as an electron multiplier, where the ions
cause an electric current when hitting the detector. The ion current is recorded in
equidistant time steps; it is called the intensity of that particular m/z value as its
strength relates to the abundance of ions.

Raw spectra and spectra processing. The measured physical quantity together with
the corresponding ion currents measured by the ion detector form the raw spectrum. In
a first step, it has to be transformed into m/z values taking into account the calibration
parameters. In the following, signal processing algorithms are used for filtering noise,
normalizing the signal level (“baseline correction”), and de-isotoping the spectrum by
computing mono-isotopic peak masses from observed isotopic patterns. As a final step,
peak detection or peak picking algorithms are applied for finding the ion signals in
the processed raw spectrum. The detected m/z values together with their measured
intensities and possibly other parameters are recorded in a so-called peak list. The
peak list is the input data for all further computation and the following identification
algorithms.

Algorithms for spectrum processing and peak picking are described, e.g., in [37,81,94].

Mass accuracy. Due to some imperfections in instrumentation, ions of the same m/z
value never hit the detector at exactly the same time. For example, before ions are
accelerated by an electric field in MALDI-TOF-MS, they already have an initial velocity
due to the energy transfered by the laser pulse. Thus, although ions of the same m/z
value are accelerated in the exact same way, they nevertheless have slightly different
velocities at the end of the acceleration. They hit the detector at slightly different times
and are measured as a peak of a certain width. This has two implications: First, ions

10



2.3. Protein Identification

of similar m/z values may become indistinguishable and second, the actual m/z value
cannot be determined precisely but only within some error range.

Mass accuracy is commonly given in parts-per-million (ppm). With an accuracy of
100 ppm, a molecular mass of 1 000 Da is measured with an error of 0.1 Da. Current
MALDI-TOF mass spectrometers have an accuracy of 50 ppm in standard experiments
and 10 ppm if carefully calibrated using internal standards [12,33]. For ESI-Quadrupole
instruments together with orthogonal acceleration TOF (QqTOF), 5 ppm are reported
and Fourier transform (FT) mass spectrometers are routinely used at 1 ppm mass ac-
curacy (both numbers reported in [12]). Note that these mass accuracies can only be
achieved with carefully calibration; otherwise, systematic mass errors result.

2.3. Protein Identification

Three major approaches exist for identifying a single protein using mass spectrometry:
Peptide mass fingerprinting (PMF), tandem MS (also called peptide fragment finger-
printing, PFF), and de-novo sequencing. While the first two rely on a sequence database
for identification and perform a comparison of the measured peak list to peak lists pre-
dicted from the sequences, the latter is database independent, although it is usually
combined with a database search. Protein identification using very small databases of
manually sequenced proteins has been done since the 1980s [71]. With the advent of
large genome sequence databases from genome sequencing projects starting in the 1990s,
the amount of protein sequences grew dramatically. Together with improved mass spec-
trometers, this allows protein identification in a high-throughput manner.

For a general overview of identification approaches see the review articles [1,2,7,11,40,
90,102]. The books by Palzill [105] and Snyder [122] provide more detailed information
on experimental techniques. A detailed overview of identification algorithms up to 1998
can be found in [134], whereas [102,120] give briefer reviews of more recent developments
up to 2005/6. A comparison of the performance of PMF and PFF identification was
conducted in [83], revealing a comparable identification rate (97% for PMF and 100%
for PFF of 162 gel-separated proteins).

In this thesis, we are exclusively concerned with PMF. Nevertheless, algorithms for
PMF and PFF have some similarities and we will thus take a brief look at PFF and
de-novo identification before describing identification by PMF in some more detail in
Section 2.4.

Peptide fragment fingerprinting by tandem MS. In tandem MS, the m/z values of the
peptides from an enzymatic digest of a protein are measured using MS. Each peptide
m/z of particular interest is afterwards transfered into a collision chamber, where it
collides with a noble gas, and peptide bonds are broken by collision induced dissociation
(CID). The m/z values of the resulting new ions are then again measured by MS; they
correspond to the prefixes and suffixes of the primary structure of the peptide. The
newly measured spectrum is also called the MS/MS spectrum of the peptide. A common
instrumentation for tandem MS is LC/ESI coupled to several quadrupole mass analyzers

11



2. Protein Identification by Mass Spectrometry

for selecting peptides of certain m/z, colliding them with a noble gas and measuring the
resulting MS/MS spectrum.

For identification, the measured MS/MS peak list is compared to computed peak lists
of every peptide in the sequence database and a similarity score is computed for each
comparison. The highest scoring peptide is returned as identification. If several peptides
from one protein have been identified by MS/MS, the corresponding database sequence
is reported as the protein identification. Usually, a significance is computed for each
identification. One of the earliest computer programs to identify a peptide by MS/MS is
SEQPEP [71]. A standard software is SEQUEST [43,135,136], which computes a cross-
correlation of the measured and the predicted MS/MS spectrum, thus implicitly taking
into account spectrum quality and peak intensities. Several enhancements have since
been proposed, particularly indexing of peptides for faster search [41, 87]. The software
SCOPE [8] uses a two-step stochastic process to describe fragmentation of peptides,
taking into account missing and additional peaks, and instrument mass accuracy. The
scoring is done using a dynamic programming algorithm and takes into account the
different ionization probabilities (provided manually). A p-value is provided either from
an assumed Gaussian score distribution or by a stochastic inequality. ProbID [138] uses
a Bayesian scoring scheme to take into account different ion types; it does not provide a
score significance. In [125], a scoring model based on a hidden Markov model (HMM) was
proposed that takes into account different ion types and ranked intensities. Significance
computation is done by estimating the score distribution from 500 sampled peptide
sequences of given mass. Parameters of the HMM were estimated on a real proteomics
dataset. Other methods include VEMS [93] and OLAV [35,36]. The algorithm proposed
in [61] explicitly uses peak intensities and provides a p-value computation.

A comparison of tandem MS identification methods on large-scale proteomics datasets
was published in [42], whereas in [28], the performance on well-defined datasets was
investigated. In [115], the hypergeometric distribution was proposed for computing
statistical significance of identifications.

De-novo sequencing. A database-independent method based on tandem mass spec-
trometry is de-novo sequencing of the peptide using its MS/MS spectrum. In principle,
since the m/z values of each prefix and suffix of the peptide’s primary structure are
measured, the sequence can be discovered by finding peaks of mass differences of exactly
one amino acid. A similar approach was already used in 1984 in [116], where peptide
sequences were found by exhaustive search. A manual approach was proposed in [68],
involving partial Edman degradation and the sequential use of several proteases. Since
then, the problem of peptide sequencing from MS/MS spectra was translated into a so-
called spectral graph. Based on this idea, several algorithms have been proposed [29,124].
Other approaches are based on dynamic programming ( [9] and PEAKS [89]), and prob-
ability networks (PepNovo [49]). The review [88] provides an overview of de-novo algo-
rithms up to 2004.

Usually, de-novo peptide sequencing algorithms are able to sequence only a few amino
acids (8–12). In addition to complete sequencing, the algorithms are also used for se-

12



2.4. Peptide Mass Fingerprinting

quencing a small portion of the peptide, the so-called sequence tag, and then performing
a sequence database search with these tags. This approach was first proposed in [92]
and has since been implemented and enhanced.

Mass spectrometry for DNA/RNA. Mass spectrometry was also successfully used
in the context of DNA/RNA for identification and characterization [59, 98, 99, 108],
identification of single-nucleotide polymorphisms [21, 114], de-novo sequencing of DNA
molecules [20,22], and differentiation of several strains of bacteria [6].

Proteomics systems. There are various attempts to provide standardized ways of stor-
ing, analyzing and exchanging proteomics data sets including raw MS data and identifi-
cations. Such approaches include the systems PROTEIOS [51] and ProDB [131]. Recent
platforms for proteomics including data warehouses, laboratory work-flow systems, and
data standards can be found in [84]. A recent overview of standards and platforms for
bioinformatics data in general, including proteomics data, is also given in [109].

2.4. Peptide Mass Fingerprinting

Instead of performing a collision induced dissociation, another common identification
technique solely uses the masses of the proteolytic peptides resulting from a protein
digest. Whereas the mass of the protein itself is not discriminative enough to identify
the protein in a sequence database, its set of peptide masses commonly is. The set
of peptide masses is called the peptide mass fingerprint (PMF) or peptide mass maps
(PMM) of the protein. It is compared to in-silico computed PMFs of protein sequences
from a database, scored, and the highest scoring protein is returned as identification.

Additional and missing peaks. Due to the imperfection of sample preparation, mass
spectrometry, and data pre-processing, a sample mass spectrum may differ from an ideal
mass spectrum and show additional and missing peaks.

Additional peaks are sometimes random noise that was wrongly identified by the
pre-processing algorithms as an ion peak. These peaks usually have very low intensity.
However, additional peaks also occur by detected ions that do not stem from the protein.
We could call these chemical noise; they can have very high intensities. Predominant
chemical noise sources are: (i) Keratin, a peptide found on human and animal skin,
and introduced into the sample during preparation [77]. (ii) Matrix ions for ionization
using MALDI: Parts of the matrix are destroyed during application of the laser pulse,
ionized, and are consequently measured by the MS machine. Usually, these ions have
small molecular mass, which makes interpretation of MALDI-TOF-MS spectra below
500 Da difficult [7]. More severely, these matrix ions also tend to cluster to larger ions,
although their masses seldomly match the mass of peptide fragments [60]. Studies on
the initial velocity of analyte and non-analyte ions using MALDI also revealed that ions
with masses exceeding 3 000 Da can be suspected to be matrix clusters [75]

13



2. Protein Identification by Mass Spectrometry

(iii) Since proteases are themselves proteins, they tend to also digest each other, re-
sulting in additional peptide fragment ions. Although these ion masses are known in
advance, unexpected peaks may occur if the protease is contaminated and additional
cleavage behavior on some sample peptides is observed. This is a known problem of
trypsin, that often contains chymotrypsin as contaminant [77]. Although pure trypsin
is generally suspected to also perform unexpected cleavage, investigations using high-
accuracy Fourier transform MS did not find significant evidence for this [100]. An exten-
sive list of the 100 predominant contaminants and their molecular masses can be found
in [39].

Missing peaks occur due to insufficient ionization of the analyte, low abundance of
the corresponding peptide or errors in the signal processing/peak detection. In [34],
the influence of the matrix solution is investigated for MALDI, and the use of several
different matrices has been suggested in [55] for membrane proteins. An overview of
tryptic digestion and MALDI is given in [78], where in addition, the exchange of arginine
against lysine C-terminals for increased sensitivity has been investigated.

Another problem for PMF identification algorithms are post-translational modifica-
tions that alter the mass of a peptide. Moreover, when searching the spectrum against a
sequence database, incorrect sequences are a common problem. These might occur due
to false prediction of the reading frame when translating DNA sequence data to protein
sequences or due to incorrect gene annotation.

The prediction of peptide mass fingerprints using the atomic composition of peptides
is investigated in [53] and used in [56]. Prediction of peak intensities using various
statistical learning methods is investigated in [54].

An extensive treatment of the strength and weaknesses of mass spectrometry protocols
can be found in [12], the reliability of MALDI-TOF PMF identification is investigated
in [18]. In [63], a more historic treatment of concepts and methods in PMF can be found.

Identification algorithms. In 1993, five groups published PMF identification algo-
rithms. Three of them [62, 91, 137] use a peak counting score that ranks the sequences
by the number of matching predicted peaks within a certain mass window of a mea-
sured peak. For one algorithm [69], results were published but the algorithm itself is
not explained. Finally, a more advanced scoring scheme called MOWSE (molecular
weight search) was proposed in [103]. Based upon this score, two different identifica-
tion algorithms have been developed, MS-Fit as part of ProteinProspector [33], and
MASCOT [106].

The MOWSE scoring scheme takes into account the non-uniform peptide mass dis-
tribution. The frequency of occurrence of a particular fragment mass in a protein of
given parent mass is estimated from the database as follows: The proteins contained in
the database are sorted by their parent mass into bins of 10 kDa mass range. Then,
the fragment masses are divided into bins of 100 Da mass range, and the number of
occurrences of a fragment mass in a protein is counted for each fragment mass bin and
each parent mass bin. For example, one entry of the resulting table is the number of
fragments of mass 1 000 . . . 1 100 Da in proteins of mass 35 . . . 45 kDa. Dividing the

14



2.5. Organization of the Thesis

number of fragments by the number of proteins in each table entry gives the fragment
mass frequency, which is then normalized to the largest value in the table. If a database
peptide matches a measured m/z value, the corresponding fragment mass frequency is
looked up in the computed table. The frequencies of each matched fragment mass are
then multiplied and divided by 50 000 to normalize the score for an average protein of
parent mass 50 kDa.

Since the frequencies are estimated from a sequence database, the computed scores
depend on the composition and size of the database. In particular, if the sequence
database grows, scores computed for a previous version of the database cannot directly
be compared with scores of a current version.

The software MASCOT also uses a significance computation for each score and pro-
vides a p-value computation, from which a significance score is derived by taking the
negative logarithm of a p-value. However, no further details are known about the exten-
sions of the MOWSE scoring.

Another more recent software is ProFound [139]. It is based on Bayesian statistics
and takes into account background information such as previous experiments on the
same protein, the protein’s mass, the available taxonomy, the cleavage enzyme, the mass
accuracy and the protein sequence. It assumes a Gaussian mass deviation, provides a
many-to-one peak matching and incorporates additional and missing peaks with a simple
model. Moreover, ProFound takes into account overlapping and adjacent peptides in
its scoring. The probability that the measured spectrum originates from the database
protein is returned as the score.

MS-Fit, MASCOT and ProFound were compared in [28], where ProFound was found
to be slightly superior to MASCOT and both programs were found to be superior to
MS-Fit. None of these three methods takes into account the measured intensities of
peaks in the mass spectrum.

In [104], a scoring scheme was proposed that explicitly takes into account the chemical
properties of trypsin and various chemical modifications of amino acids. This scoring
scheme does also make use of the measured intensities and provides the concept of
“pseudo-proteins” to deal with contaminants.

Other PMF identification methods include PepFrag [48] and [56].
Complementary to the identification algorithms, several methods have been proposed

to deal with unmatched masses (FindPept [52]), to provide batch filtering and sequential
digestion routines [82], and to allow protein identification in complex mixtures [86].

Since many PMF identification algorithms do not provide any significance of scores,
several methods for significance computation have been proposed [44, 47, 50]. All of
these methods either rely on sampling or on empirical estimation of parameters using
an in-silico digest of the sequence database.

2.5. Organization of the Thesis

The aim of the thesis is two-fold: First, we develop a general stochastic model of random
peptide mass fingerprints, based on a random model for amino acid sequences and their

15



2. Protein Identification by Mass Spectrometry

molecular masses. In contrast to many existing approaches, such a model will then allow
us to compute statistics and estimate significance values under a well-defined random
model and independent of a sequence database. A major focus is also the efficient com-
putation of such statistics and significance values within the model. Second, we translate
the protein identification problem using peptide mass fingerprints as a global alignment
problem. Based on general peak-wise scoring schemes, such alignments provide a general
and flexible framework that allows consistent integration of various mass spectrometric
features (besides molecular masses) and scores. We will then use the statistics computed
from the stochastic model of peptide mass fingerprints to estimate statistical significance
of identifications within the alignment framework. Unlike many other approaches, such
significances can be interpreted within a well-defined null-model.

The thesis is organized as follows: In the first part (Chapters 3–9), we examine statis-
tics of PMF fragments. After a brief introduction and previous work in Chapter 3, we
introduce a mathematical model for random proteins and protein fragments in Chap-
ters 4–5. Our model is based on an extension of weighted alphabets and the combina-
tion of weighted strings with standard random models for ordinary strings. The main
results in these chapters are weighted hidden Markov models and recurrence equations
as computational tools for describing the structure of fragments and deriving fragment
statistics.

We examine the distribution of fragment lengths in Chapter 6 and derive the dis-
tributions of cleavage sites and number of fragments in Chapter 7. In Chapter 8, we
investigate the distribution of fragment masses and related distributions. Finally, we
present occurrence probabilities of a fragment mass in a random protein of given length
or parent mass in Chapter 9.

Together with the mathematical derivation of the statistics, we present dynamic pro-
gramming algorithms for computing the statistics and compare our results to corre-
sponding empirical statistics derived from an in-silico tryptic digest of the Swiss-Prot
database.

In the second part (Chapters 10–13), we present a general framework for identify-
ing proteins from their peptide mass fingerprints. The framework is based on scoring
schemes for peak matching that allow computation of peak list alignments as optimal
matchings of two peak lists. After a short introduction in Chapter 10, the framework is
formally derived in Chapter 11 and first simple examples of scoring schemes are given.
In Chapter 12, we derive the statistical significance of an alignment score by computing
its p-value under a well-defined null-model. We demonstrate that the alignment score
distribution can be well approximated by a Gaussian distribution and compute the mo-
ments of the score distribution. We also give classical inequalities for estimating the
p-value for non-Gaussian distributions. We further introduce p-value scores as a general
tool for transforming scores of arbitrary scoring schemes into comparable scores. We
consider practical aspects of scoring schemes in Chapter 13. We show how mass er-
ror distributions and peak intensities can be consistently used in a scoring scheme, and
demonstrate the applicability of our framework by comparing identification rates to the
standard software MASCOT on real proteomics data.

Finally, we conclude and present some directions of possible future research in Chap-

16



2.5. Organization of the Thesis

ter 14.
Parts of Chapters 3–9 have been published in a technical report [73] and are to appear

in a refereed conference proceeding [72]. Parts of Chapters 10–13 have been published
in a refereed conference proceeding [23] and are to appear in articles in two refereed
journals [24,74].

17



2. Protein Identification by Mass Spectrometry

18



Part I.

Statistics of Peptide Mass
Fingerprinting

19





3. Introduction

In the first part of the thesis, we develop a general framework based on random weighted
strings for computing certain statistics such as fragment length, fragment molecular
mass and occurrence probabilities of masses in a random amino acid string. Using the
occurrence probabilities, a null model for random mass spectra is induced, based on
statistical properties of amino acid molecular masses, the digestion enzyme and the
amino acid composition of fragments. This null model will then allow us to estimate
score distributions and thus compute p-values of protein identifications in the second
part of the thesis.

The first part is organized as follows: In Chapter 4, we introduce a mathematical
model for random proteins and application of cleavage enzymes, namely random weighted
strings and cleavage schemes.

In Chapter 5 we investigate the structure of cleavage fragments and introduce weighted
Hidden Markov Models as a stochastic model of fragments. The statistics of fragmen-
tation is considered in subsequent chapters, where we investigate length distributions of
fragments in Chapter 6, joint length-mass distributions of fragments in Chapter 8 and
the distribution of cleavage sites as well as the number of fragments in Chapter 7. These
statistics are derived using an extension of weighted Hidden Markov Models to Markov
Additive Chains that also capture the mass of a fragment. In addition, several recur-
rence and moment equations as well as approximations using standard distributions are
presented.

In Chapter 9, the mass occurrence probability of occurrence of a certain mass in a
random weighted string is introduced and recurrence equations for its computation are
derived.

The theoretical results are compared to empirical data derived from an in-silico digest
of the Swiss-Prot protein sequence database.

We also give results for the implementation of most statistics that lead to time-efficient
algorithms for their computation and to space-efficient storage. We provide estimates of
the memory requirements for a standard example.

Related work. Our results can be seen as generalizations of three lines of previous
research.

First, our model of probabilistically weighted strings extends the concept of weighted
strings [30], where the weights of characters are fixed and not probabilistic. Weighted
strings have been used in the setting of mass spectrometry for generating peptide
candidates [41, 125], for computing possible decompositions of masses into character
masses [25, 26] and for finding sub-masses [13, 30]. General combinatorics of weighted
strings were investigated in [30].

21



3. Introduction

Second, the waiting times for cleavage points between fragments (i.e., the fragment
lengths) are waiting times for specific, possibly overlapping, patterns in strings. For
strings without weights, the statistics of such patterns [110, 111, 127] and sets of pat-
terns [27, 112, 113] have been intensively studied in bioinformatics and statistics [133],
and our results on random weighted strings naturally contain some of these as special
cases.

Third, the model of random weighted strings together with their string mass is a
discrete-time variant of a Markov additive process (MAP). MAPs have been intensively
studied for continuous-time Markov models and general additive components. Major
lines of investigation were existence and limit theorems [31, 32], large deviations and
connections to Perron-Frobenius theory [96,97]. In contrast to MAPs, where the under-
lying process is an irreducible Markov chain, we will concentrate on i.i.d. sequences as
driving processes for the random string.

Notational conventions. We write L(X) for the distribution of a random variable
(r.v.) X; the generic probability measure is denoted by P. Distributions are sometimes
represented as probability vectors, e.g., we write x(m) := P(X = m) for some finite
range of integers m and the corresponding probability mass function at m. For a discrete
probability distribution L(X), the probability mass function is sometimes denoted by
L(X)(m) := P(X = m).

If two random variables X and Y have the same distribution, this is either denoted
by L(X) = L(Y ) or more briefly by X

d=Y .
We write L(X)⊗L(Y ) for the product measure of L(X) and L(Y ), i.e., the distribution

of the pair (X, Y ) if X and Y are independent. Further, L(X) ? L(Y ) = L(X + Y )
denotes the convolution of the distributions of two independent random variables X and
Y . These notations generalize to more than two random variables. The convolution of
two vectors x(i), y(j) is defined as (x ? y)(k) :=

∑
i x(i) · y(k− i), where the finite value

range of k is derived from the ranges of i and j. The convolution of two vectors of sizes
n1 and n2, respectively, yields a vector of size n1 + n2 − 1.

For a string s we denote the substring from index i to index j (inclusive) by si:j , and
we write s〈`〉 := s1:` for the prefix of length `. To distinguish quantities of the semi-
infinite string s from their counterparts of the corresponding finite string s〈`〉, the latter
quantities will also be denoted by an 〈`〉-superscript. The length of a finite string s is
denoted by |s|. Concatenation of strings s,t is denoted by st.

Further, we write Γ̄ for the complement of a set Γ ⊆ Σ within a superset Σ, i.e.,
Γ̄ := Σ \ Γ. Moreover, Γ ⊆ Σ includes the case that Γ = Σ, whereas Γ ⊂ Σ does not.

Finally, we define the set of natural numbers N to be the set of positive integers, i.e.
it does not include the zero; N := {1, 2, 3, . . . }. The set of natural numbers including
the zero is denoted N0 := {0} ∪ N.

22



4. The Random Weighted String Model

Polymers such as proteins or DNA/RNA molecules can be modeled as strings over a
finite alphabet such as the alphabet of amino acids of size twenty or the alphabet of
nucleotides of size four. In mass spectrometry, we are interested in the molecular mass
of such polymers, that is, the sum of masses of its constituent “characters”. For modeling
this additional quality, we introduce weighted alphabets, where each character also carries
a weight or mass represented by a character mass function. On these weighted alphabets,
we define weighted strings together with their string mass.

To also capture isotopic mass distributions and mass modifications by post-translational
modifications, we extend the concept of weighted alphabets and strings to probabilisti-
cally weighted alphabets and strings, where we allow a mass distribution for each char-
acter.

Both weighted and probabilistically weighted strings are finally combined with stan-
dard random string models to derive random weighted strings.

4.1. Weighted Alphabets and Strings

We always assume Σ to be a finite alphabet. The following two definitions restate the
concept of weighted strings as used in [30].

Definition 4.1 (Weighted alphabet). Let Σ be a finite alphabet and let µ : Σ → N0

be a function assigning each character σ ∈ Σ its mass or weight µ(σ) := µσ. The
pair (Σ, µ) is called a weighted alphabet with character mass function µ. We write
µmax := max{µ(σ) : σ ∈ Σ} and µmin := min{µ(σ) : σ ∈ Σ} for the largest and smallest
mass in (Σ, µ), respectively, and require 0 < µmin ≤ µmax < ∞.

Recall that molecular masses are often given in Dalton (Da).

Example 4.2 (Amino acids). Consider Table 1.1 on page 5. Taking column 3 (‘1-
code’) as the finite alphabet and column 5 (‘avg mass’), rounded to the next integer, as
values for the character mass function gives a weighted alphabet for amino acids with
average isotopic masses.

We use nonnegative integer masses for several reasons: Real numbers of arbitrary pre-
cision cannot be represented in a computer by standard data types anyway, so it makes
sense to restrict masses to numbers in Q with bounded denominator. By multiplying
with an appropriate factor, these can always be represented as integers. For MALDI-
TOF mass spectrometry, the mass accuracy of the machine is about 50 ppm [12], so
±0.1 Da for a mass of 2 000 Da. Multiplying all masses by 10 and rounding to the

23



4. The Random Weighted String Model

nearest integer would then suffice. Even for high-resolution mass spectrometry, such
as Fourier-transform MS, the acquired accuracy is about 4 decimals. In addition, in
practice, “real” mass values are only known up to a certain accuracy. The conversion
factor from integer to “real” masses is called the mass precision.

Definition 4.3 (Mass precision ∆m). The mass precision ∆m is a factor to convert
integer masses into the natural masses given in Dalton. If m∗ denotes the mass of a
polymer in Dalton, the mass of the corresponding weighted character σ is given by

µ(σ) = m = round(m∗/∆m).

The definition carries over to masses derived from character masses.

A mass precision of ∆m = 0.1 thus gives a scaling factor of 10, so natural masses are
represented up to one decimal.

Similarly to alphabets, sequences of elements of a weighted alphabet form so-called
weighted strings.

Definition 4.4 (Weighted string, mass process). A weighted string over a weighted
alphabet (Σ, µ) is an infinite sequence (s, µ) = (si, µ(si))i∈N over (Σ× N0)N.

The sequence (µ(si))i∈N is called the (deterministic) mass process of s. The character
mass function is also written with subscripts, i.e., µsi := µ(si).

In subsequent chapters, we will sometimes call the sequence s = (si)i∈N the weighted
string without mentioning its mass process.

The case of finite (weighted) strings is obtained by considering the length-` prefix of
(s, µ) for some ` ∈ N.

The mass process of s is a sequence over N0; it is not to be confused with the mass of
s, which is the sum of its character masses and thus a single number.

Definition 4.5 (String mass). The character mass function is extended to finite strings
s1s2 · · · s` ∈ Σ` for ` ∈ N by setting

µ(s1s2 . . . s`) :=
∑̀
i=1

µ(si).

This extension is then called the string mass or simply mass of string s.

To model proteins by weighted strings, each amino acid must exactly have one specific
molecular mass. This is only true to some approximation: Like all molecules, amino acids
have an isotopic distribution. Moreover, post-translational modifications may also alter
their mass.

In order to capture isotopic distributions and mass modifications of characters, we
want to allow multiple masses per character in an alphabet, where each mass is taken
with certain probability. As only the mass is probabilistic and no random model for the
character sequences is (yet) assumed, we call such weighted alphabets probabilistically
weighted alphabets.

24



4.1. Weighted Alphabets and Strings

Definition 4.6 (Probabilistically weighted alphabet). Let Σ be a finite alphabet,
let (Ξ, P) be an appropriately constructed probability space, and let µ : Σ × Ξ → N0

be a probabilistic character mass function, assigning to each character σ ∈ Σ a random
variable µ(σ, ·) = µσ(·) : Ξ → N0, so P(µσ = m) denotes the probability that the mass of
character σ takes the value m. The pair (Σ, µ) is then called a probabilistically weighted
alphabet.

Again we denote by µmax, µmin the largest and smallest possible mass in (Σ, µ), with
µmax := max{m ∈ N0 : ∃σ ∈ Σ s.t. P(µσ = m) > 0} and µmin := min{m ∈ N0 : ∃σ ∈
Σ s.t. P(µσ = m) > 0}, and require 0 < µmin ≤ µmax < ∞.

Note that it is sufficient to specify the distribution L(µσ) for each σ ∈ Σ and we
do not have to explicitly specify the probability space Ξ. Also, if L(µσ) is a Dirac
distribution for each σ ∈ Σ (in which case µσ takes on one value with probability 1),
the probabilistically weighted alphabet is the same as a weighted alphabet as we can
identify µσ with the mass mσ for which P(µσ = mσ) = 1.

Example 4.7 (Isotopes of amino acids). Each amino acid occurs in nature with
several masses due to the isotopic masses of the atoms building the amino acid. This fact
can be modeled by a probabilistically weighted alphabet, where µσ takes on the different
isotopic masses of the amino acid σ with probability of occurrence of the corresponding
isotopic composition in nature. These probabilities can be computed from the atoms’
isotopic distributions, which are known with high accuracy.

Example 4.8 (Post-translational modifications). We can also model post-translational
modifications (PTMs) of amino acids with probabilistically weighted alphabets. PTMs
can occur at every amino acid or they can be specific to certain amino acids. Thus, some
amino acids of certain type may be modified, others may not. Probabilistically weighted
alphabets are useful if the frequency of a modification is known or can be estimated for
every amino acid. This model can also be combined with the above model of isotopic
distributions.

Since we would like to consider strings of arbitrary length in what follows, we develop
our models from an infinite string s ∈ ΣN and then use projections to finite length-`
prefixes as needed.

In order to define (probabilistically) weighted strings over a probabilistically weighted
alphabet, we first have a look at the sequence of masses associated to a fixed sequence
of characters; in contrast to weighted strings, this mass process is now a sequence of
random variables, or a stochastic process. We require that the masses of characters at
different positions be conditionally independent, given the characters.

We refer the reader to [19] for the basics on stochastic processes.

Definition 4.9 (Mass process for fixed strings). Let (Σ, µ) be a probabilistically
weighted alphabet and let s ∈ ΣN be a fixed infinite string. Let the masses be cho-
sen independently for each character. Then the mass process (µ(si))i∈N is defined as a
stochastic process having index set N and taking values in N0, where because of inde-
pendence, the finite dimensional distributions of (µ(si))i∈I for finite I ⊂ N are given by

25



4. The Random Weighted String Model

the products
L(µI) :=

⊗
i∈I

L(µ(si)).

The double use of µ for both the probabilistic character mass functions (µσ)σ∈Σ and
the mass process (µi)i∈N of a string should not cause confusion, but rather aid intuition.
This definition especially extends the mass process of Definition 4.4. It also contains the
case of finite strings by restricting I to a subset of {1, . . . , `} for fixed `.

The mass associated to a fixed finite string is now also a random variable, as it is
the sum of the single random masses. Because of independence, its distribution can be
computed as the convolution of the individual distributions.

Lemma 4.10 (String mass distribution). For finite I := {i1, i2, . . . , in} ⊂ N, let
sI := si1si2 . . . sin. The distribution of the string string mass of sI is given by

L (µ(sI)) = L (µ(si1)) ? . . . ? L (µ(sin)) .

This is the only reasonable way to consistently extend Definition 4.5: For a (non-
probabilistically) weighted alphabet, the distribution of the string mass is again a Dirac
distribution, assigning probability 1 to the sum of character masses.

Example 4.11 (String mass). Let Σ = {a, b} and (Σ, µ) be a probabilistically weighted
alphabet with character mass distributions P(µa = 1) = P(µa = 2) = 1

2 and P(µb = 1) =
P(µb = 2) = P(µb = 3) = 1

3 . Let s = ab. Then the distribution of µs is given by

P(µs = m) = (L(µa) ? L(µb)) (m) =
∑

m′∈N0

P(µa = m′, µb = m−m′).

and we obtain:
m 0 1 2 3 4 5 6

P(µs = m) 0 0 1
6

2
6

2
6

1
6 0

.

4.2. Random Weighted Strings

So far, we did not assume a random model for a string over an alphabet. It is thus not
yet possible to capture character frequencies or character dependencies within strings
with these models. We show how standard random models for strings can be used to
derive random weighted strings.

Random string models are well-known in computational biology. We recapitulate the
main definitions and models briefly.

Definition 4.12 (Random string model). A random string over an alphabet Σ is a
stochastic process S with index set N taking values in Σ given by its finite dimensional
distributions

L(SI) = L(Si1 , . . . , Sin)

for all finite I = {i1, . . . , in} ⊂ N. We require P(C = σ) > 0 for each σ ∈ Σ.

26



4.2. Random Weighted Strings

The two major random string models are the independent, identically distributed
(i.i.d.) and Markov models.

Example 4.13 (i.i.d. string model). The most simple model for a random string
is an i.i.d. string, where we assume all characters to be chosen independently from the
same distribution. The finite dimensional distributions L(SI) then reduce to the product
measure L(SI) =

⊗
i∈I L(Si). The probability of a string, given the index set I, is the

product of its characters’ probabilities:

P(SI = sI) =
∏
i∈I

P(Si = si).

Example 4.14 (Markov string model). A more complex model for a random string
is a homogeneous Markov string of order one. For its specification, the initial distribu-
tion L(S1) of the first character and the conditional distribution L(S2|S1) are needed.
Homogeneity then means that this conditional character distribution is the same for all
subsequent characters.

Combining a standard random string model with a (probabilistically) weighted alpha-
bet, we are now able to give a general random string model for weighted strings over both
deterministically and probabilistically weighted alphabets. In all cases, we assume that
the mass of a character in a string is independent of the masses of all other characters.

Definition 4.15 (Random weighted string). A random weighted string is a stochas-
tic process (S, µ) = ((S1, µ1), (S2, µ2), . . . ) with index set N, values in Σ×N0 and finite
dimensional distributions

L((S, µ)I) = L(SI)⊗ L(µI)

where S is a random string and µ is a mass process associated to S.

Henceforth, we exclusively discuss the i.i.d. model, in which we assume the characters
to be independent and identically distributed. Note, however, that all above definitions
also capture arbitrary random string models, the most prominent one being Markov
sequences.

Example 4.16 (Random proteins). As before, we model a peptide or a protein as
a string over the alphabet Σ of amino acids, and every character σ in the string has
a certain mass µσ dependent only on the character itself, but independent of all other
characters within the string. The character ‘L’ ∈ Σ, say, at some given position within
the sequence may therefore have a mass different from that of the same character ‘L’
later in the sequence. A useful random peptide model would take the frequencies of
amino acids from a sequence database such as Swiss-Prot as character probabilities (see
Table 1.1). The isotopic character mass distributions can be computed from the isotopic
distributions of the atoms by convolution.

If the character probabilities P(C = σ) and the distributions L(µC | C = σ) are known
for each character σ, we can use the identity P(C = σ, µC = m) = P(µC = m | C =
σ) · P(C = σ) to obtain the joint character-mass-distributions. From these, the mass
distribution of the whole string can be computed.

27



4. The Random Weighted String Model

28



5. Fragmentation of Random Weighted
Strings

Recall that for identifying a biomolecule such as a protein by mass spectrometry, the
mass of the biomolecule itself is of little value. In most mass spectrometry settings, the
molecule is therefore cleaved into fragments using a biochemical cleavage reaction. In the
case of proteins, these so-called proteases usually cleave the amino acid sequence right
after the occurrence of a specific amino acid. For some proteases, however, this cleavage
reaction is suppressed if another specific amino acid occurs right after the potential
cleavage site. In what follows, we will exclusively consider proteins and peptides and
their fragmentation by proteases. Note, however, that the model is also valid for some
RNAses for cleaving DNA/RNA sequences.

For modeling the action of proteases, we introduce cleavage schemes together with
corresponding semantics. Applying a protease to a randomly chosen protein is modeled
by applying a cleavage scheme on a random weighted string, resulting in fragmentation of
this string. The string masses of the fragments are then a model of the mass fingerprint
of the original string.

Our discussion first focuses on infinite random strings S ∈ ΣN to avoid complications
with boundary effects; the necessary adjustments for finite strings are made subsequently.

5.1. Cleavage Schemes and Fragmentation

To formalize the parameters of the described proteases, we introduce the concept of
a cleavage scheme which is formed by the sets of cleavage characters and prohibition
characters.

It is assumed that cleavage takes place after the cleavage character. Some enzymes,
however, cleave before the cleavage character. If this cleavage reaction is suppressed by
a prohibition character before the cleavage character, all following statistics remain valid
for finite string in the i.i.d. string model, as we can just consider the reversed strings.

Definition 5.1 (Cleavage scheme (Γ,Π); quantity pΘ). A cleavage scheme is a pair
(Γ,Π) of a set of cleavage characters Γ ⊂ Σ, and a set of prohibition characters Π ⊂ Σ.
To exclude the pathological case that no cleavage takes place, we also require Γ 6= ∅.

If the additional constraint Γ ∩ Π = ∅ (i.e., Γ ⊂ Π̄) holds, we speak of a standard
cleavage scheme.

Cleavage schemes with Π = ∅ are called simple; every simple scheme is also a standard
scheme.

29



5. Fragmentation of Random Weighted Strings

Strings P = P1P2 ∈ Γ×Π̄ are called cleavage patterns since the cleavage reaction takes
place within them. For simple cleavage schemes, we can neglect the second character
of the cleavage pattern, since P2 ∈ Π̄ = Σ in this case; the cleavage pattern then has
length 1.

We set pΘ := P(Si ∈ Θ) for any Θ ⊆ Σ. In particular, pΓ := P(Si ∈ Γ), pΠ := P(Si ∈
Π). For further use, we note that for standard schemes, P(Si ∈ Γ ∩ Π̄) = pΓ and that
P(Si ∈ Γ̄ ∩ Π̄) = 1− (pΓ + pΠ).

The stochastics of simple schemes are considerably more straightforward than stochas-
tics for non-simple schemes.

Example 5.2 (Simple schemes: Lys-C and Pepsin). The protease Lys-C cleaves
after lysine (1-letter-code K), the protease Pepsin after phenylalanine (F ) and leucine
(L). Both reactions are not suppressed by any other amino acid; they refer to simple
schemes.

The reason for introducing the special case of standard cleavage schemes is that many
existing enzymes follow this form, and computations are simplified when compared to
general cleavage schemes.

Example 5.3 (Standard scheme: Trypsin). For the frequently used protease Trypsin,
we have a cleavage reaction after K or R, if not followed by P , thus Γ = {K, R} and
Π = {P}; it is a standard cleavage scheme. The possible cleavage patterns are of the
form P1P2 ∈ {K, R} × (Σ\{P}).

There are also proteases whose cleavage reaction cannot be modeled as a standard
scheme.

Example 5.4 (Non-standard scheme: Glu-C (acidic)). The protease Glu-C (acidic)
cleaves after the occurrence of D or E. The cleavage reaction is suppressed by a following
D or E. As the two sets are not disjoint, Glu-C is not a standard scheme.

Further examples of proteases that match our definition of cleavage schemes, and also
an exception, can be found in Table 5.1.

Example 5.5 (Standard example TryptSwissProt). Throughout this thesis, we
use tryptic digestion with Γ = {K, R} and Π = {P} as a standard example. Character
probabilities are estimated as frequencies from all proteins contained in the Swiss-Prot
database, release 48 as of September 2005 [10]. These probabilities are listed in Table 1.1,
last column. In particular, we estimate pΓ = 0.1125 and pΠ = 0.0483. We use a mass
precision of ∆m = 0.1, so masses are scaled and rounded to cover the first decimal.

We refer to this setting as TryptSwissProt.

Applying a cleavage scheme on a string results in a fragmentation of this string in
consecutive, non-overlapping substrings, the fragments. Start and end-indices of these
fragments in the string are given by the occurrences of the cleavage pattern.

Recall that for a given cleavage scheme, cleavage occurs after each occurrence of a
cleavage character. Further recall that for non-simple schemes, cleavage is suppressed
when a prohibition character follows directly after the potential cleavage site.

30



5.1. Cleavage Schemes and Fragmentation

Protease Cleaves after except before standard
scheme

arg-C R P +
asp-N before D +
chymotrypsin E,(L,M),W ,Y P ,after PY - (PY )
cyanogen bromide M +
Glu-C (basic) E P or E - (Γ ∩Π 6= ∅)
Glu-C (acidic) D or E D or E - (Γ ∩Π 6= ∅)
Lys-C K +
pepsin (high activity) F or L +
pepsin (low activity) A,E, F, L,Q,W, Y +
proteinase-K A,C, F, G, M, S,W, Y +
trypsin K or R P +

Table 5.1.: Proteases and their cleavage behavior

Definition 5.6 (Cleavage process; cleavage points). Let S be a (random or fixed)
infinite string over Σ. Each element of the sequence (Ci(S))i∈N0 of cleavage pattern
occurrences in S with C0(S) := 0 and

Ci ≡ Ci(S) := min{k > Ci−1(S) : Sk ∈ Γ, Sk+1 ∈ Π̄}

is called a cleavage point of S. The series (Ci(S))i∈N0 is called the cleavage process of S.
We define Ci(S) := +∞ if the minimum is taken over the empty set. We write Ci short
for Ci(S) if S is given from the context.

Note that for simple schemes, the cleavage points are exactly the occurrences of a
cleavage character in the string, since with Π̄ = Σ, the condition Sk+1 ∈ Π̄ is always
satisfied.

The resulting fragments can be described in terms of the cleavage points: A fragment
is a substring that starts right after and ends at a cleavage point.

Definition 5.7 (Fragments; fragmentation). For each i ≥ 1, the substring Fi :=
SCi−1+1:Ci is called the i-th fragment of S. We denote the length of fragment Fi by
Li := Ci − Ci−1. The family (Fi)i≥1 is called the fragmentation of S.

Of course, real proteins do not have infinite length, so we need to extend our definitions
to the case of finite strings.

Definition 5.8 (Cleavage points for finite strings; fragmentation size). For finite
length prefixes S〈`〉, we define

C
〈`〉
i := min{Ci, `},

so that potentially all cleavage points lie directly behind the end of the prefix. If C
〈`〉
i−1 =

C
〈`〉
i , the i-th fragment and the following fragments are empty.
Analogously, we define F

〈`〉
i , L

〈`〉
i , and the fragmentation in terms of C

〈`〉
i . The – now

finite – size of the fragmentation is denoted N 〈`〉 ≡ N 〈`〉(S).

31



5. Fragmentation of Random Weighted Strings

There is an important difference between the fragmentation of the two strings S1:`

and S
〈`〉
1:` : Let Ck be the last cleavage point smaller or equal ` (so we also have that

Ck = C
〈`〉
k ). Assume first that Ck < `; then the suffix S

〈`〉
Ck+1:` of the finite string is

a fragment, whereas its counterpart SCk+1:` in the infinite string is not. This makes
intuitive sense: The remaining part of a protein after the last cleavage site should be
treated as a fragment, as it is cleaved from the rest of the molecule and appears in the
mass fingerprint. Note that this last fragment is not contained in the fragmentation
of S, so we cannot simply take the latter fragmentation, identify all fragments which
end before ` and take these as fragmentation of S〈`〉. For Ck = `, however, the two
fragmentations are identical up to string position `.

Figure 5.1 provides a visualization of the fragmentation quantities. Fragment F
〈`〉
3

starts with a cleavage character and F
〈`〉
4 contains a cleavage character inside; both are

neutralized by the following prohibition characters. The last fragment F
〈`〉
4 may end

with any character.

Example 5.9 (Fragmentation of a string). Let Σ := {X, C, P }, Γ := {C }, Π :=
{P } and let s = PCCPXXCPXCCC be a fixed finite string of length ` = 12. The
cleavage patterns are CC and CX, and F 〈`〉

S = (PC,CPXXCPXC,C,C ) is the frag-
mentation of s of size N 〈`〉 = 4, cleavage points C

〈`〉
1 = 2, C

〈`〉
2 = 10, C

〈`〉
3 = 11, C

〈`〉
4 = 12,

and fragment lengths L
〈`〉
1 = 2, L

〈`〉
2 = 8, L

〈`〉
3 = 1, L

〈`〉
4 = 1. For i ≥ 5, we have C

〈`〉
i = 12

and L
〈`〉
i = 0.

S
〈`〉

C
〈`〉
1C

〈`〉
0 C

〈`〉
2 C

〈`〉
3 C

〈`〉
4 ≡ `

L
〈`〉
1 L

〈`〉
2 L

〈`〉
3

F
〈`〉
2

L
〈`〉
4

F
〈`〉
1 F

〈`〉
3 F

〈`〉
4

ΓΓΓΓ̄ Γ̄ Γ̄ Γ̄· · · · · · · · · · · · ΣΓ̄Γ ΠΠ̄ · · · · · · · · · · · ·Γ Π Π̄

Figure 5.1.: Fragments F
〈`〉
i , cleavage points C

〈`〉
i and fragment length L

〈`〉
i of a string

S〈`〉

String fragmentation as regenerative process. Cleavage points in a random weighted
string under a cleavage scheme define recurrent events. Fragmentation of random weighted
strings can therefore be seen as a renewal process, see e.g. [45, Chapters XIII and XIV]
for an introduction.

For infinite strings, the cleavage process (Ci)i≥1 defines a renewal sequence with delay
C1 and inter-renewal sequence (Li)i≥2, since Ci = Ci−1+Li for i ≥ 2; see Figure 5.1. The
cleavage characters not followed by a prohibition character therefore form a regenerative
process. Note that the delay corresponds to the length of the first fragment and that all
following fragments have the same length distribution L(L2) in an infinite string S.

32



5.2. Terminal-Extended Alphabets and Weighted Hidden Markov Models

For a simple cleavage scheme (Π = ∅), the renewal sequence can be seen as a non-
delayed sequence starting with index 0. In this case, the length distributions of the first
and second fragment are the same, and the Ci are stochastic stopping times.

For non-simple cleavage schemes, the next character has to be considered to decide
whether the string is cleaved at a specific position. The cleavage points are then no
longer adapted to the string process; they are not stopping times.

For finite strings S〈`〉, we have to deal with a stopped renewal sequence. Here, the
length distribution of fragment i depends on the remaining string length `− Ci−1.

5.2. Terminal-Extended Alphabets and Weighted Hidden
Markov Models

Terminal-extensions. There is still an important aspect of protein cleavage fragments
missing in the model: When a peptide bond is opened by a cleavage enzyme, the new N−
and C− termini are again “completed” by attaching an H and OH group, respectively.
This alters the average mass of the fragment by approximately 18 Da. Additionally,
when measuring such a peptide in a mass spectrometer, the peptide is ionized first.
Common ionization methods like MALDI use protonation, which adds another proton
of mass about 1 Da to the peptide. Thus, in a MALDI-TOF experiment, all protein
fragments will have an average mass of 19 Da above their respective string mass. The
main problem for the model is the fact that these additional masses are neither present
in the original string nor captured by the weighted alphabet. We cope with this by
introducing terminal-extended weighted alphabets and strings.

Definition 5.10 (Terminal-extended weighted alphabet). A terminal-extended
(probabilistically) weighted alphabet is a (probabilistically) weighted alphabet (Σ, µ) to-
gether with two terminal characters εs and εe, each of length 0, with weights µ(εs) and
µ(εe). We explicitly allow one or both of these masses to be zero; both masses are not
considered when computing µmin, µmax of the weighted alphabet.

Let S be a weighted string. Then a terminal-extended weighted string is a string
S′ = εsSεe, of length |S′| := |S| and mass µ(S′) := µ(εs) + µ(S) + µ(εe).

The terminal characters can be included in a random model on S to get a random
model on S′, but we will expect them to have probability one in their respective position.
The terminal-extended weighted string S′ no longer follows an i.i.d. model, whereas S
is unaffected.

Note that this definition also includes mass distributions for the terminal characters
and we can use isotopic distributions for the terminal chemical groups if necessary.

For modeling terminal chemical groups common to all fragments, the first terminal
character εs should be used exclusively to ease projection of a random weighted string
S to a finite prefix-string S〈`〉. We will study this issue further in Section 8.1.

Terminal-extended alphabets and strings are best seen as a purely formal description
and are consequently circumvented in practical computations. As the terminal characters
are fixed and are the same for each fragment, and they do not contribute to the fragment

33



5. Fragmentation of Random Weighted Strings

length, we can simply adjust the fragments by the terminal characters after performing
all necessary computations.

Weighted HMMs. Deterministic and stochastic automata are a common tool to de-
scribe strings that obey certain constraints.

In that context, fragments can also be considered as weighted strings obeying certain
constraints imposed by the cleavage scheme. We introduce the framework of weighted
Hidden Markov Models that describe protein fragment sequences in their state sequences
and the associated mass processes in their output sequences.

Definition 5.11 (Weighted Hidden Markov Model (wHMM)). A weighted Hid-
den Markov Model (wHMM) is a 6-tuple (E,P, p0, T, (Σ, µ), Q) consisting of

• a finite set of states E,

• a (sub)-stochastic state transition matrix P = (Pij)i,j∈E ,

• an initial state distribution p0,

• a set of final states T ⊂ E,

• an (terminal-extended) input weighted alphabet (Σ, µ), and

• a matrix Q = (qi(m))m∈N0
i∈E

of output distributions Qi = (qi(m))m∈N0 of character
masses for each state i,

where the 3-tuple (E,P, p0) is a homogeneous (defective) Markov Chain.

Weighted HMMs can be interpreted as generating a random fragment string together
with its mass process. The semantics are as follows: The state set E is derived by
first introducing one state per character of the (terminal-extended) input alphabet Σ.
After connecting the states by transitions defined via the transition probability matrix
P , the state space may be reduced by joining states with equivalent transitions; these
new states now correspond to sets of characters. Each state in E is associated with such
a subset of the input alphabet Σ; it represents this set. To avoid cumbersome notation,
we enumerate E and identify each state with its ordinal number. This allows us to speak
of state i, for example, without writing down its defining set of characters. We do not
require character sets to be pairwise disjoint: Two states may share a set of characters.
Note that for the assumed i.i.d. random string model, both terminal characters get a
singleton state {εs} and {εe}, the latter necessarily being the only final state. We can
then call {εs} the start state, as the fragment will start here with probability 1. We will
see examples of wHMM construction for given cleavage schemes in Section 5.3.

For the moment, let Wk denote the state of the wHMM at time k. The start state W0

is picked according to the start distribution p0, with p0
i = P(W0 = i). A transition to

a new state, being in state i, is made according to the probability distribution in row i
of P . The entries of the transition matrix are given by Pij = P(Wk+1 = j | Wk = i)

34



5.2. Terminal-Extended Alphabets and Weighted Hidden Markov Models

for all k ≥ 0; these are homogeneous transition probabilities. For states i ∈ T , these
distributions are defective (i.e., they sum to zero and not to one); the wHMM halts in
these states. The transition matrix is computed from the underlying cleavage scheme,
see Section 5.3 for details.

The sequence of states taken by a run of the wHMM thus forms a Markov chain W
with transition matrix P , initial distribution p0 and state space E.

When state i is entered after a transition, a character mass µ is output according to
the character mass distribution Qi of state i. The matrix Q contains the mass emission
probabilities for each state; it has |E| columns. The number of rows is arbitrary to some
extend: We need a minimum of µmax−µmin +1 rows to capture the whole mass range of
the weighted alphabet (Σ, µ). For computational purposes that will become evident in
Section 8.5, we define Q to have µmax +1 rows, ignoring terminal characters, and start
the indexing of masses at minimal mass m = 0.

We assume that cleavage occurs before entering T , but we do allow masses to be
emitted in these states to model certain chemical groups at the end of a fragment. As
mentioned before, modeling additional masses in a final state may cause problems when
computing statistics on prefixes of such fragments; these additional masses should be
modeled in a start state to ensure they are also accounted for in a stopped wHMM.
To derive the character mass distributions Qi of states from the weighted alphabet and
the cleavage scheme, we extend the alphabet’s character mass function µ to states and
character sets.

Definition 5.12 (Mass function of character sets; quantity Σi). Let
(E,P, p0, T, (Σ, µ), Q) be a wHMM. The distribution L(µ(σ)) of the character mass µ(σ)
can be extended to sets of characters Θ ⊆ Σ as follows:

P(µ(Θ) = m) := P(µ(C) = m | C ∈ Θ) =
∑
c∈Θ

P(C = c)
P(C ∈ Θ)

· P(µ(c) = m),

where C is a random character. If we denote by Σi the set of characters defining state i,
the character mass function is also canonically extended to states of the wHMM and the
output distributions Qi for each i ∈ E are the conditional probabilities

qi(m) := P(µ(Σi) = m).

The distribution Qi of a state mass is a mixture of the involved character mass dis-
tributions with mixture coefficients P(C = c | C ∈ Σi). This is a natural extension
of µ: If state i represents only one character σ, then we get the original definition of µ:
P(µ(Σi) = m) = P(µ(C) = m | C ∈ {σ}) = P(µ(σ) = m).

Let again Wk be the state of the wHMM at time k. We can imagine a two-step process:
First, a character x is chosen from the character set ΣWk

. Then, the character mass µ(x)
is emitted according to the character mass function of character x.

Let us denote by Sk the character chosen at step k. Then the sequence S = (S1, S2, . . . )
is a random string. The associated sequence (µ(S1), µ(S2), . . . ) of emitted masses is the
mass process of S. If L is the random number of steps just before the wHMM arrives in

35



5. Fragmentation of Random Weighted Strings

a final state, the string S1 . . . SL together with its mass process represents a fragment.
The fragment is thus defined by the wHMM which itself is constructed from the weighted
alphabet and the cleavage scheme. Adding up the individual character masses given by
the mass process yields the fragment mass; this will be further investigated in Section 8.1.

Weighted Hidden Markov Models can be interpreted as special cases or extensions of
various existing concepts: In a stochastic context, they are related to general Markov
Additive Processes, with finite discrete state and output spaces. They can also be
interpreted as ordinary Hidden Markov Models, with (E,P, p0) as underlying Markov
Chain, N0 the output alphabet and qi(·) the emission probabilities. As we assume the
character weight distributions L(µ(σ)) to be of finite support for each σ ∈ Σ, the output
alphabet is necessarily finite and can be restricted to the set [µmin, µmax] ⊂ N (ignoring
terminal characters). In this context, the sequence of states visited by the wHMM is the
sequence of chosen characters in each visited state, i.e. the string. The observed sequence
is the mass process of that particular string. We can now apply standard algorithms for
HMMs such as the Viterbi algorithm for computing the most probable output sequence
and the most probable hidden state sequence, given the observed output.

In [73], wHMMs were defined slightly different: The output was defined as a weighted
character (Si, µ(Si)) and not just its mass.

In a computer science context, wHMMs can be interpreted as probabilistic finite au-
tomata for generating certain (weighted) strings; they can also be seen as transducers.

As we will show in the next sections, it is straightforward to construct fragmenta-
tion wHMMs for the i.i.d. string model and general cleavage schemes. However, the
framework of wHMMs is much more general: We can construct wHMM models for
more complicated cleavage rules, or for Markovian string models, still using the same
computational framework.

5.3. Structure of Fragments

Before investigating the statistics of fragmentation, let us first examine the combinatorial
structure of fragments. This structure can be described in two equivalent ways: Either
by using wHMMs, giving us the opportunity to investigate the construction of a wHMM
for a given cleavage scheme, or by using feasible sets of strings, ultimately leading to
efficient dynamic programming algorithms. We will ignore the terminal characters in
the description of feasible sets; they are easily incorporated in the statistics afterwards
and just obscure the exposition.

We proceed in a bottom-up manner, first investigating simple schemes, moving further
to standard schemes, and finally to general cleavage schemes. We denote the correspond-
ing fragments as simple, standard or general fragments. In subsequent chapters, we give
results top-down, stating the general results first and then making specializations.

Preliminaries. To ease later expositions, let us first spend some time on a few prelimi-
nary considerations.

36



5.3. Structure of Fragments

For non-simple cleavage schemes, the first fragment in a fragmentation has a differ-
ent structure than the following ones. Whereas the first fragment may start with any
character, any following fragment must necessarily start with a non-prohibition charac-
ter. In an infinite string, all following fragments are of the same structure. If we only
consider combinatorial or distributional properties of fragments, we may therefore only
distinguish these two different types of fragments and introduce the following simplified
notation: As before, we denote the first fragment by F1. Since all following fragments
have the same distributional properties, in particular Fi

d=Fj and µ(Fi)
d=µ(Fj) for all

i, j ≥ 2, we introduce a new random weighted string F+, with these properties, i.e.
F+

d=F2 and µ(F+) d=µ(F2) in particular. Further, we introduce a new random variable
L+

d=L2 to denote the length of “the” fragment F+. We may imagine that the + symbol
is a wild-card for one of the numbers 2, 3, . . . , N 〈`〉 − 1. As a last new notation, let ◦
denote any of the symbols {1,+}.

The notations carry over to their counterparts F
〈`〉
1 and F

〈`〉
+ in the case of a finite

string. In this case, the following fragments are no longer i.i.d., since their distribution
now depends on the remaining string length. However, their distribution depends solely
on this remaining length: We have that Fi(S〈`〉) d=Fj(S〈`′〉) for i, j ≥ 2, given that the
number of characters after the (i − 1)-th and the (j − 1)-th fragment in S〈`〉 and S〈`′〉,
respectively, is the same. The same observation holds for the masses and lengths of these
fragments. We can thus restrict our investigations on distinguishing between the first
and a following fragment, always for a given remaining string length.

We make the following definitions to formally introduce the sets of feasible strings:

Definition 5.13 (Feasible sets of fragment strings). For any cleavage scheme (Γ,Π),
the sets of feasible first and following fragment strings of length l are defined as

F1(l) :=
{

f ∈ Σl| ∃s ∈ ΣN : F1(s) = f
}

,

F+(l) :=
{

f ∈ Σl| ∃s ∈ ΣN : Fi(s) = f for some i ≥ 2
}

,

respectively.
For the case of finite remaining string length `, let

F 〈`〉
1 (l) :=

{
f ∈ Σl| ∃s ∈ ΣN : F

〈`〉
1 (s) = f

}
,

F 〈`〉
+ (l) :=

{
f ∈ Σl| ∃s ∈ ΣN : F

〈k+`〉
i (s) = f, C

〈k+`〉
i−1 = k, for some i ≥ 2

}
,

for any k ∈ N.

Simple cleavage schemes. Simple fragments are substrings bounded by occurrences
of cleavage characters and the string boundary. One single fragment F◦ of length l in
an infinite string is a sequence of l − 1 non-cleavage characters followed by exactly one
cleavage character and we have F1

d=F+. In a finite string, the last fragment is also a
sequence of l − 1 non-cleavage characters but may end with an arbitrary character.

37



5. Fragmentation of Random Weighted Strings

Fragments of simple schemes in infinite strings can be described using a wHMM as
shown in Figure 5.2. The formal definition of this wHMM is as follows: We take a
terminal-extended weighted alphabet of amino acids with any character weight func-
tion as given e.g. in Table 1.1, and two terminal characters εs, εe. We model all mass
modifications by terminal groups at the N− and C− termini and the protonation of
the fragment in the terminal character εs, whereas εe has mass 0. This way, we avoid
difficulties when stopping the wHMM after a given finite number of steps to generate
fragments in a finite string.

We then generate one state for each character. The state {εs} is the only start state
and {εe} the only final state. For each cleavage character, the only transition is into
the final state. For each non-cleavage character, we may either transit to another non-
cleavage character or transit to a cleavage character. We thus immediately identify
Γ and Γ̄ as the relevant subsets of Σ. The reduced state set E then consists of four
states 0, . . . , 3, where T = {3} = {End} is the only final state and the state 0 (Start)
corresponds to the mass modifications by terminal masses and protonation. Neither
contributes to the length of the fragment. The initial distribution, p0 = (1, 0, 0, 0) is
a Dirac distribution forcing the model to start in the start state 0. Once the model
is in state 2, the fragment ends with a transition to the final state 3. The transition
probabilities are easily derived: Since the random weighted string follows an i.i.d. model,
each transition probability is the probability of the character set it enters. Note that
we did not require a wHMM to have a distinguished start state; such a state is only
necessary if we want to model terminal characters. If no terminal characters are required,
we can either nevertheless introduce a start state that does not emit any mass, or we can
renounce to use a special start state and adapt the initial state distribution to ensure
that the first state corresponds to a character set feasible for the fragment.

Start

Γ

Γ̄

End

1

1− pΓ

Cleavage point

0

1

32

1
−

p Γ

pΓ

pΓ

Figure 5.2.: wHMM for simple schemes. See text for details.

Fragments of simple schemes can also easily be described by feasible sets of strings:
Let F◦(l) ⊆ Σl denote the set of fragment strings of length l in an infinite string. Let
F 〈`〉
◦ (l) denote its counterpart for remaining finite string length `; it is the set of all

fragments whose lengths are bounded by `, no matter the character at this position.

38



5.3. Structure of Fragments

Then, F◦(l) = Γ̄l−1 × Γ, as any fragment of length l consists of (l − 1) non-cleavage
characters followed by a cleavage character. For finite remaining string length `, a
fragment of length l < ` has the same structure as for infinite remaining string length;
there must be at least one fragment following it. Thus, F 〈`〉

◦ (l) = F◦(l) for l < `. If a
fragment hits the end of the string, its last character is arbitrary. To reach the end of
the string, the fragment must be as long as the remaining string, so l = `. It must not
contain a cleavage character inside. Thus, F 〈`〉

◦ (`) = Γ̄`−1 × Σ.

Lemma 5.14 (Feasible sets of simple fragments). The feasible sets of simple frag-
ments in infinite and finite string, respectively, are

F◦(l) =

{
Γ if l = 1,

Γ̄×F◦(l − 1) if l > 1.

F 〈`〉
◦ (l) =


F◦(l) if l < `,

Σ if l = ` = 1,

Γ̄×F 〈`−1〉
◦ (`− 1) if l = ` > 1.

Proof. The recurrence equations are immediately verified using the above considerations.

Standard cleavage schemes. A standard fragment may have cleavage characters in its
inner part, if they are immediately followed by a prohibition character. This is reflected
in the extension of the wHMM by state 4 (Γ̄∩Π = Π) which can be reached from states 1
and 2 (Γ ∩ Π̄ = Γ) (Figure 5.3).

Start

Γ̄ ∩ Π̄

End

pΓ

Cleavage point

0

1

3

4

2

1 − pΓ − pΠ

pΠ

Γ ∩ Π̄

Γ̄ ∩ Π

pΠ

pΠ

pΠ

1
−

p Γ
−

p Π

1 − pΓ − pΠ

pΓ

pΓ

1 − pΠ

Figure 5.3.: Partly reduced weighted HMM for first fragment of standard cleavage
scheme.

Note that for standard schemes, Γ and Π are pairwise disjoint, and thus Π is contained
in Γ̄. This allows us to join state Π with Γ̄∩Π and simplify the model’s transitions as in
Figure 5.4 (top). We nevertheless have to keep a state Π to correctly model the output
of character masses.

39



5. Fragmentation of Random Weighted Strings

The first and following fragments F1 and F+ now have a slightly different structure:
Whereas F1 may start with any character, a following fragment F+ cannot start with
a prohibition character, since then the preceding fragment would not have ended. We
solve this by introducing two different wHMMs for F1 and F+, as in Figure 5.4. For
the F+-wHMM, state 5 together with state 2 ensures that a following fragment does not
start with a prohibition character. Note that we have to split the set Π̄ into the disjoint
sets Π̄ ∩ Γ̄ and Γ since a fragment might immediately start with a cleavage character.

The structure of standard fragments is much more complex than the structure of
simple fragments; we are no longer able to give the feasible sets in explicit form but
have to rely on recurrent descriptions. We also have to give these descriptions for two
different fragment sets for first and following fragments, F1 and F+.

Lemma 5.15 (Feasible sets of standard fragments). For a standard cleavage
scheme (Γ,Π), the sets of feasible fragment strings are given by

F1(l) =

{
Γ if l = 1,(
Γ×Π×F1(l − 2)

)
∪
(
Γ̄×F1(l − 1)

)
if l > 1.

F 〈`〉
1 (1) =


F1(l) if l < `,

Σ if l = ` = 1,(
Γ×Π×F 〈`−2〉

1 (`− 2)
)
∪
(
Γ̄×F 〈`−1〉

1 (`− 1)
)

if l = ` > 1.

F+(l) =

{
Γ ∩ Π̄ if l = 1,(
Γ×Π×F1(l − 2)

)
∪
(
Γ̄ ∩ Π̄×F1(l − 1)

)
if l > 1.

F 〈`〉
+ (1) =


F+(l) if l < `,

Π̄ if l = ` = 1,((
Γ ∩ Π̄

)
×Π×F 〈`−2〉

1 (`− 2)
)
∪
(
Γ̄ ∩ Π̄×F 〈`−1〉

1 (`− 1)
)

if l = ` > 1.

Proof. The lemma is a special case of the corresponding Lemma 5.16 for general cleavage
schemes.

Interestingly, the feasible sets F+ for following fragments can be described in terms
of F1 for both infinite and finite remaining string length.

There is a potential difficulty in the understanding of feasible sets for standard (and,
as we will see, also general) fragments: If a substring of length l of S is a valid fragment,
it is contained in F◦(l). However, the converse is not true: The first character after the
substring must also not be a prohibition character. This fact is included in the wHMM
models by the transition into a final state.

General cleavage schemes. Fragments of general cleavage schemes may also contain
cleavage characters in their inner parts. Moreover, cleavage characters may now also be
prohibition characters, introducing a lot more transitions into the wHMMs. Weighted
HMMs for first and following fragments of general cleavage schemes are shown in Fig-
ure 5.5. The four states 1,2,4,5 form a partition of the weighted alphabet Σ into all
combinations of cleavage/prohibition characters.

40



5.3. Structure of Fragments

For better readability, transition probabilities are not shown. The probability to
transit to some state i from any state j is the probability of the corresponding character
set Σi: Pij = P(C ∈ Σi), except for following fragments, where we already know that the
first character is not a prohibition character. In this case, we have to take conditional
probabilities in the transitions, i.e. P01 = c1 = P(C ∈ Γ̄, C ∈ Π̄ | C ∈ Π̄) = P(C ∈
Γ̄ | C ∈ Π̄) and P02 = c2 = P(C ∈ Γ | C ∈ Π̄). The transition probabilities to a final
state are Pi,End = P(C ∈ Π̄), for i = 2, 5, to model the non-prohibition character that
completes the cleavage pattern. The two wHMMs differ in two points: The transition
probabilities from the start state are different, and we are not allowed to transit from
the start state to a prohibition character state 4,5 in the F+-wHMM.

Before we formally derive the feasible sets of general fragments, let us take a glimpse at
Figure 5.6, where fragments of length l = 1, 2, 3 are given in form of a tree-like description
of the feasible sets. The figure will help us to visualize the following considerations. Note
that the Π̄-sets in the right do not belong to the fragment.

Let us see how we can recursively describe these fragments: Each fragment either
starts with a cleavage character, or it does not. For following fragments, we have the
additional constraint that a fragment must not start with a prohibition character. If a
fragment does not start with a cleavage character, we are in the same situation as before
and may append either a cleavage character or a non-cleavage character, that is, any
character. For L◦ = 3, this situation refers to the subtrees labeled (3) and (4). These two
subtrees, starting in the second character, are exactly the feasible set of a first fragment
of length L1 = 2. What with the case that we start with a cleavage character? In that
case, except for L◦ = 1, the next character must be a prohibition character to thwart
ending of the fragment. For general fragments, we have again to distinguish whether
we append a prohibition character that is also a cleavage character (subtree (1)) or a
prohibition character that is a non-cleavage character (subtree (2)). Since we are dealing
with an underlying i.i.d. string model, we are now again in the same situation as before.
The subtree ((1),(2)) of feasible strings starting with a prohibition character can clearly
not be described by either F1 or F+, as the first starts with any character and the latter
with a non-prohibition character. We therefore introduce a new set of feasible fragment
suffixes (not whole fragments) of length l, denoted G(l). Its structure is similar to the
structure of F1(l) except for the first character, which must be a prohibition character.
For L◦ = 3, the set G(2) describes the subtree ((1),(2)), starting in the second character;
it is the same for both F1 and F+.

The initial conditions are easily derived: A first fragment of length l = 1 may be any
character, a following fragment any non-prohibition character, and the suffix set G(1) is
the set of prohibition characters.

Similarly, we derive a recurrence for the feasible sets of fragments in finite strings with
given remaining string length ` by adjusting the initial conditions in the case l = `.

We thus proved the following lemma which states these considerations in a more formal
way.

41



5. Fragmentation of Random Weighted Strings

Lemma 5.16 (Feasible sets of general fragments). For a general cleavage scheme
(Γ,Π), the feasible sets of first fragments are given by

F1(l) =

{
Γ if l = 1,(
Γ̄×F1(l − 1)

)
∪
(
Γ× G(l − 1)

)
if l > 1.

F 〈`〉
1 (l) =


F1(l) if l < `,

Σ if l = ` = 1,(
Γ̄×F 〈`−1〉

1 (`− 1)
)
∪
(
Γ× G〈`−1〉(`− 1)

)
if l = ` > 1.

For following fragments

F+(l) =

{
Γ ∩ Π̄ if l = 1,(
Γ̄ ∩ Π̄×F1(l − 1)

)
∪
(
Γ ∩ Π̄× G(l − 1)

)
if l > 1.

F 〈`〉
+ (l) =


F+(l) if l < `,

Π̄ if l = ` = 1,(
Γ̄ ∩ Π̄×F 〈`−1〉

1 (`− 1)
)
∪
(
Γ× Π̄× G〈`−1〉(`− 1)

)
if l = ` > 1.

The set G(l) of feasible fragment suffixes of length l starting with a prohibition character
is given by a very similar recurrence, namely

G(l) =

{
Γ ∩Π if l = 1,(
Γ̄ ∩Π×F1(l − 1)

)
∪
(
Γ ∩Π× G(l − 1)

)
if l > 1.

G〈`〉(l) =


G1(l) if l < `,

Π if l = ` = 1,(
Γ̄ ∩Π×F 〈`−1〉

1 (`− 1)
)
∪
(
Γ ∩Π× G〈`−1〉(`− 1)

)
if l = ` > 1.

Proof. We prove the Lemma by induction, where the initial conditions are obvious, the
induction step was already given above.

Note that there is no direct correspondence to the sets G(l) in the wHMMs.
Lemma 5.14 and Lemma 5.15 are special cases of the previous Lemma 5.16, and so

are the corresponding wHMMs and feasible sets. In particular, we have G(l) = ∅ for all
l ∈ N for simple schemes and G(1) = ∅ for l = 1 and G(l) = Π × F1(l − 1) for l > 1 for
standard schemes.

When deriving statistics on these sets in later chapters, we have to be careful to also
consider the additional constraint that the character following a fragment, although not
part of the fragment, must not be a prohibition character in order to complete the
cleavage pattern.

42



5.3. Structure of Fragments

Start

Γ

Γ̄ Π

End

1− pΠ

pΠ

pΓ

1 − pΓ

Cleavage point

1
−

p Γ

0

1

3

4

2

1 − pΓ

pΓ

pΓ

Start

Γ̄ Π

End

Cleavage point

Π̄ ∩ Γ̄

1
−

p Π
−

p Γ

1
−

p Π

p
Γ

1
− p

Π

1 − pΓ

0

5 1

2

4

3

Π̄ ∩ Γ

1 − pΓ

1 − pΓ

pΓ

1 − pΠ

pΓ

pΠ

1
−

p
Π

Figure 5.4.: wHMMs for the first (top) and following (bottom) fragments in a random
i.i.d. string using a standard cleavage scheme (Γ,Π). Note that due to the
different mass output distributions, we cannot join states 1 and 4 in either
model.

43



5. Fragmentation of Random Weighted Strings

Start

0

End

3

Γ̄ ∩ Π̄

Γ ∩ Π̄

Γ̄ ∩ Π

Γ ∩ Π

1 4

2 5

Start

0

End

3

Γ̄ ∩ Π̄

Γ ∩ Π̄

Γ̄ ∩ Π

Γ ∩ Π

1 4

2 5

c1

c2

Figure 5.5.: wHMMs for general fragments, see text for details on transition probabilities.
Top: First fragment. Bottom: Following fragment.

44



5.3. Structure of Fragments

Γ Π̄

Γ

Γ ∩ Π

Γ̄ ∩ Π

Γ ∩ Π

Γ

Π̄

Π̄

Γ̄

Γ̄

Γ Γ ∩ Π

Γ

Π̄

Π̄

Γ̄

Γ Γ ∩ Π

Γ

Π̄

Π̄

L1 = 1 :

L1 = 2 :

L1 = 3 :

(4)

(1)

(3)

(2)

Γ ∩ Π̄ Π̄

Γ ∩ Π

Γ̄ ∩ Π

Γ ∩ Π

Γ

Π̄

Π̄

Γ̄

Γ Γ ∩ Π

Γ

Π̄

Π̄

Γ̄ ∩ Π̄

Γ ∩ Π

Γ

Π̄

Π̄

L+ = 1 :

L+ = 2 :

L+ = 3 :

(4)

(1)

(3)

(2)

Γ ∩ Π̄

Γ̄ ∩ Π̄

Γ ∩ Π̄

Figure 5.6.: Structure of general fragments. Left: First fragment of length l = 1, 2, 3.
Right: Following fragment of length l = 1, 2, 3.

45



5. Fragmentation of Random Weighted Strings

46



6. Distribution of Fragment Length

Let (S, µ) be an infinite i.i.d. random weighted string and let Fi be its i-th fragment of
length Li under a cleavage scheme (Γ,Π). Since the first fragment has a different prefix
than the following ones, but all following ones are i.i.d., we define

u1(l) := P(L1 = l),
u+(l) := P(L+ = l) = P(Li = l) for i ≥ 2.

We adopt the notational conventions of Section 5.3 and write u◦(·) to denote both u1(·)
and u+(·). The case of finite strings is covered later in this section.

6.1. Computation in wHMM Framework

In the wHMM framework, the length of a fragment is the number of steps until the
wHMM arrives in a final state, where the initial step to transit from the start state and
the final step for entering the final state do not contribute to the fragment length. If
again Wk denotes the wHMM’s state after the k-th transition, this means

P(L◦ = l) = P(Wl+1 ∈ T ).

To compute the length distributions for general cleavage schemes, consider the wHMMs
in Figure 5.5. The distributions Qi for the mass emitted in state i are not relevant for
the fragment’s length and we can concentrate solely on the underlying Markov chain
(E,P, p0) together with the set of final states T . For an introduction to Markov chain
theory, in particular the Chapman-Kolmogorov equation, see [45, Chapter XV].

Theorem 6.1 (Distribution of fragment length). Given a wHMM
(E,P, p0, T, (Σ, µ), Q) for either a first or a following fragment, we have

u◦(l) =
∑
i∈T

(p0 · P l+1)i,

the Markov chain parameters depending on the fragment type considered. It is the dis-
tribution of the Markov chain’s arrival time in a final state.

Proof. Let pl be the l-step state distribution, that is, pl
i denotes the probability of being

in state i after l steps. Then the Chapman-Kolmogorov equation from classical Markov
chain theory states that pl = p0 · P l. To achieve fragment length exactly l, we need to
be in a final state i ∈ T after l + 1 steps, which leads to the stated formula.

47



6. Distribution of Fragment Length

Using Markov chain theory, we can obtain closed formulas for the length distributions
of both fragment types for standard cleavage schemes, using the wHMMs in Figure 5.4.
The following Lemma was first given and proved in [73] by Sven Rahmann.

Lemma 6.2 (Closed formula for u◦). Given a wHMM (E,P, p0, T, (Σ, µ), Q) for
either a first or a following fragment under a standard cleavage scheme (Figure 5.4), let

α =
√

(1− pΓ)2 + 4pΓpΠ,

λ1 = (1− pΓ + α)/2, and
λ2 = (1− pΓ − α)/2.

Then the length distributions u◦(·) can be written in closed form as

u1(l) =
pΓ(1− pΠ)

α
(λl

1 − λl
2), and

u+(l) =
pΓ

α
·
(
(1− pΠ − pΓ)(λl−1

1 − λl−1
2 ) + pΓpΠ(λl−2

1 − λl−2
2 )

)
.

Proof. Consider the wHMM in Figure 5.4 (top). From the point of view of outgoing
transitions, states 0, 1 and 4 are equivalent, so we merge them into state 1, thus ob-
taining a Markov chain with the following transition matrix A = (Aij), where Aij is the
conditional probability of moving to state j, being in state i:

A =

1− pΓ pΓ 0
pΠ 0 1− pΠ

0 0 0

 .

Let pl
i denote the probability of being in state i after l steps, and let pl := (pl

i)i=1,2,3. Then
because of the start state now being state 1, p0 = (1, 0, 0), and pl+1 = pl ·A, so pl = p0 ·Al.
Since cleavage occurs before entering state 3, u1(l) = pl+1

3 = (p0 · Al+1)3 = Al+1
1,3 . We

obtain an explicit representation of the powers of A by diagonalization: A = BΛB−1

with an invertible matrix B and a diagonal matrix Λ so Al = (BΛB−1)l = BΛlB−1.
Using the quantities α, λ1, λ2 as stated in the lemma, it is straightforward to verify that

A =

 λ1
pΠ

λ2
pΠ

−(1−pΠ)
pΠ

1 1 (1−pΓ)(1−pΠ)
pΠpΓ

0 0 1

 ·

λ1 0 0
0 λ2 0
0 0 0

 ·


pΠ
α

−λ2
α

(1−pΠ)λ2
2

pΓpΠα
−pΠ

α
λ1
α

−(1−pΠ)λ2
1

pΓpΠα

0 0 1

 .

The interested reader will find the following relationships helpful: λ1 + λ2 = 1 − pΓ,
λ1 − λ2 = α, λ1λ2 = −pΓpΠ, and λ2

i = (1 − pΓ)λi + pΓpΠ for i = 1, 2. From this, we
obtain

Al =
1
α
·

λl+1
1 − λl+1

2 pΓ(λl
1 − λl

2) (1− pΠ)pΓ(λl−1
1 − λl−1

2 )
pΠ(λl

1 − λl
2) pΓpΠ(λl−1

1 − λl−1
2 ) (1− pΠ)pΓpΠ(λl−2

1 − λl−2
2 )

0 0 0

 ,

48



6.2. Recurrence Equations

completing the proof for u1(·).
The proof for u+(·) is similar, considering the wHMM in Figure 5.4 (bottom), merging

states 1, 4 and 5 into state 1, and removing state 0 by noting that p1 = ((1−pΠ−pΓ)/(1−
pΠ), pΓ/(1− pΠ), 0). So

u+(l) = (p1 ·Al)3 = (1− pΠ − pΓ)/(1− pΠ) ·Al−1
1,3 + pΓ/(1− pΠ) ·Al−1

2,3

=
pΓ

α
·
(
(1− pΠ − pΓ)(λl−1

1 − λl−1
2 ) + pΓpΠ(λl−2

1 − λl−2
2 )

)
,

giving the stated result.

The same procedure of diagonalization of the transition matrix might also be possible
for general fragment wHMMs, although a 6 × 6 matrix might not be diagonalizable by
analytical means. We skip this at this point and refer the reader to Section 6.2, where we
derive closed forms for the length distributions by solving the corresponding recurrence
equations.

If pΠ is small in comparison to pΓ, then λ1 becomes dominant with λ1 ≈ 1 − pΓ and
λ2 ≈ 0. For the limiting case of simple cleavage schemes, λ1 = 1− pΓ and λ2 = 0.

Example 6.3 (Parameters for TryptSwissProt). For tryptic digestion and the
Swiss-Prot frequencies, we have

pΓ = 0.1125,

pΠ = 0.0483,

α = 0.8996617,

λ1 = 0.8935809,

λ2 = −0.006080871,

and the powers of λ2 quickly decrease to zero.

6.2. Recurrence Equations

Instead of using the wHMM framework directly, we can make use of the structural
Lemma 5.16 to derive recurrence equations for the length distributions in the case of
general cleavage schemes.

Theorem 6.4 (Recurrence for general schemes). For general cleavage schemes
(Γ,Π), the length distribution u1(·) for the first fragment in an infinite random weighted
string is given by the recurrence

u1(l) =

{
pΓ · pΠ̄, if l = 1,

pΓ̄ · u1(l − 1) + pΓ · v(l − 1), if l > 1,

and the length distribution for following fragments is given by

u+(l) =

{
pΓ∩Π̄, if l = 1,
pΓ∩Π̄
pΠ̄

· v(l − 1) + pΓ̄∩Π̄)
pΠ̄

· u1(l − 1), if l > 1.

49



6. Distribution of Fragment Length

The quantities v(l) are given by the recurrence

v(l) =

{
pΓ∩Π · pΠ̄ if l = 1,

pΓ̄∩Π · u1(l − 1) + pΓ∩Π · v(l − 1) if l > 1.

Proof. We use Lemma 5.16. The length distributions u◦(l) give the probabilities for the
corresponding feasible sets F◦(l), and v(l) describes the probabilities of a string belonging
to the feasible fragment suffix set G(l). Since we only consider i.i.d. string models, the
character sets directly translate into the corresponding character probabilities, i.e. we
write P(C ∈ Θ) whenever a character set Θ occurs in the recurrence for feasible sets.

We have to multiply by pΠ̄ to capture the following non-prohibition character after
the fragment.

The probabilities v(·) form a defected length distribution of all fragment-like random
weighted strings (contained in G(·)) that start with a prohibition character. These
probabilities sum to

∑
l∈N v(l) = pΠ.

The recurrences for the general case are considerably more concise for standard and
simple cleavage schemes. Then, pΓ∩Π = 0, pΓ∩Π̄ = pΓ, pΓ̄∩Π = pΠ and pΓ̄∩Π̄ = 1−pΓ−pΠ,
and v(1) = 0 and v(l) = pΠ · u1(l − 1) for l > 1.

Corollary 6.5 (Recurrence for standard schemes). The length distributions u◦(·)
of the first and following fragments in a random weighted string with a standard cleavage
scheme can be computed recursively by the recurrence equations

u◦(l) = pΓpΠ · u◦(l − 2) + (1− pΓ) · u◦(l − 1),

with boundary conditions u◦(0) = 0, u1(1) = pΓ(1 − pΠ) and u+(1) = pΓ, u+(2) =
(1− pΓ − pΠ)pΓ.

Corollary 6.6 (Recurrence for simple schemes). For simple schemes, the closed
formulas reduce to the same term:

u◦(l) = pΓ · (1− pΓ)l−1,

the probability mass function of a geometric distribution with parameter pΓ defined on
{1, 2, . . . }. It describes the waiting time for the first cleavage character in a random
i.i.d. string.

The recurrence equations of Theorem 6.4 for the first fragment length distribution are a
system of two linear recurrence equations with constant coefficients. Solving this system
gives us the length distributions for general cleavage schemes in explicit, closed form. We
proceed as follows: We first derive the ordinary generating functions (OGFs) U◦(z) :=∑

l≥0 u◦(l) · zl for the length distributions and similar V (z) as generating function for
the sequence v(l). We then derive the coefficients of these OGFs in closed form by
identification with OGFs of known sequences. For a general introduction of how to solve
recurrences using generating functions, see e.g. [119] or [80].

50



6.2. Recurrence Equations

Lemma 6.7 (Generating functions for length distributions). With the notations
of Theorem 6.4, the ordinary generating functions U◦(z) and V (z) for the probability
sequences u◦(·) and v(·), respectively, are

U1(z) =
pΓzV (z) + pΓpΠ̄z

1− pΓ̄z
(6.1)

=
pΓpΠ̄z

1− (pΓ∩Π + pΓ̄)z + (pΓ∩Π − pΓpΠ)z2
(6.2)

U+(z) =
pΓ̄∩Π̄

pΠ̄

· z · U1(z) +
pΓ∩Π̄

pΠ̄

· z · V (z) + pΓ∩Π̄ · z (6.3)

V (z) =
pΓ̄∩ΠzU1(z) + pΓ∩ΠpΠ̄z

1− pΓ∩Πz
(6.4)

=
pΓ∩ΠpΠ̄z + pΠ̄(pΓpΠ − pΓ∩Π)z

1− (pΓ∩Π + pΓ̄)z + (pΓ∩Π − pΓpΠ)z2
(6.5)

Proof. We start by multiplying the recurrence equations for the first fragment (given in
Theorem 6.4) by zl and summing from l = 2 to infinity:∑

l≥2

u1(l)zl = pΓ̄

∑
l≥2

u1(l − 1)zl + pΓ

∑
l≥2

v(l − 1)zl.

We now correct for the term at l = 1 in the left, note that u1(0) = v(0) = 0 and extract
one z in the two sums on the right:∑

l≥0

u1(l)zl − pΓpΠ̄z = pΓ̄z
∑
l≥0

u1(l)zl + pΓz
∑
l≥0

v(l)zl

U1(z)− pΓ̄zU1(z) = pΓzV (z) + pΓpΠ̄z

U1(z) =
pΓzV (z) + pΓpΠ̄z

1− pΓ̄z
.

Similarly, we derive

V (z) =
pΓ̄∩ΠzU1(z) + pΓ∩ΠpΠ̄z

1− pΓ∩Πz

Inserting the two equations into each other and rearranging terms yields the stated
result.

The OGF U+(z) is derived by using the recurrence for u+(·) of Theorem 6.4, adjusting
by z for the left-shift in the right-hand side of the recurrence and taking care of the case
u+(1) = pΓ∩Π̄.

Note that U1(1) = U+(1) = 1, because they are OGFs of probability distributions.
Further, V (1) = pΠ; it is the OGF of a defected probability distribution.

Extracting the l-th coefficient of the corresponding OGF yields a closed form expres-
sion for u◦(l) =

[
zl
]

U◦(z), which also generalizes the previous closed form expression of
Lemma 6.2.

51



6. Distribution of Fragment Length

Lemma 6.8 (Closed formula for u◦). Recall the notations of Theorem 6.4. Further,
let

κ1 :=
pΓ∩Π + pΓ̄

2
+

√(
pΓ∩Π + pΓ̄

2

)2

− pΓ̄pΓ∩Π + pΓpΓ̄∩Π

κ2 :=
pΓ∩Π + pΓ̄

2
−

√(
pΓ∩Π + pΓ̄

2

)2

− pΓ̄pΓ∩Π + pΓpΓ̄∩Π

ζ1 :=
pΓpΠ̄

κ1 − κ2

ζ2 :=
pΓ̄∩Π̄pΓ − pΓ∩Π̄pΓ∩Π

κ1 − κ2

ζ3 :=
pΓ∩Π̄

(
pΓ̄∩ΠpΓ + pΓ∩ΠpΓ̄

)
κ1 − κ2

.

Then, the length distributions for general fragments are given by

u1(l) = ζ1 ·
(
κl

1 − κl
2

)
u+(l) = ζ2 ·

(
κl−1

1 − κl−1
2

)
+ ζ3 ·

(
κl−2

1 − κl−2
2

)
=

ζ2

ζ1
· u1(l − 1) +

ζ3

ζ1
· u1(l − 2)

Proof. Recall the generating function U1(z) of Lemma 6.7. With the abbreviations
a := pΓpΠ̄, b1 := pΓ∩Π + pΓ̄ and b2 := pΓ∩Π − pΓpΠ, the OGF has the form

U1(z) =
az

1− b1z + b2z2
.

This is a rational function in z with a polynomial of second degree in the denominator.
We expand this term into a partial fraction by first bringing the denominator into the
form (1− κ1z)(1− κ2z) and then computing the partial fractions’ coefficients. Finding
the roots of the denominator and comparing coefficients yields

κ1 =
b1

2
+

√(
b1

2

)2

− b2,

κ2 =
b1

2
−

√(
b1

2

)2

− b2.

To compute the partial fractions, consider the equation

az

(1− κ1z)(1− κ2z)
=

A

1− κ1z
+

B

1− κ2z
.

Expanding the two terms on the right side by (1−κ2z) and (1−κ1z), respectively, yields

A + B − (Aκ2 + Bκ1)z = az,

52



6.3. Moments

from which we derive the equation system

A + B = 0
Aκ2 + Bκ1 = −a.

Solving this system for A and B yields

U1(z) =
a

κ1 − κ2
· 1
1− κ1z

− a

κ1 − κ2
· 1
1− κ2z

.

The two fractions containing the variable z are known OGFs for which a closed form is
readily available: For any OGF G(z) :=

∑
l≥0 glz

l with closed form

G(z) =
1

(1− λz)
,

the coefficients are

gl =
[
zl
]( 1

1− λz

)
= λl,

see the previously mentioned literature for a proof. This concludes the derivation of the
coefficients of U1(z).

In the exact same way, we first derive a closed form expression for v(l) =
[
zl
]
V (z),

namely by a partial fraction expansion of

V (z) = z · d1 + d2z

1− b1z + b2z2
,

yielding

v(l) =
d1

κ1 − κ2
·
(
κl

1 − κl
2

)
+

d2

κ1 − κ2
·
(
κl−1

1 − κl−1
2

)
.

Using the closed form expression for u1(·) and v(·) finally yields the stated result for
u+(·).

For standard cleavage schemes, the previous closed form expressions coincide with the
previously derived expression of Lemma 6.2. In this case, we have κi = λi and similarly
for the ζi coefficients. For simple schemes, κ1 = pΓ̄, κ2 = 0 and ζ1 = pΓ/pΓ̄, ζ2 = pΓ and
finally ζ3 = 0.

6.3. Moments

Having derived the generating functions of the length distributions gives us another ad-
vantage: We can now compute moments for these distributions under a general cleavage
scheme and get information about the average length of fragments. These moments will
also be useful for computing the correct parameters for approximating the length distri-
butions by appropriate geometric distributions in Section 6.4 and for approximating the
cleavage point distributions in Section 7.2.

53



6. Distribution of Fragment Length

We use the generating functions U◦(z) together with the identities

E(L◦) =
dU◦(z)

dz

∣∣∣∣
z=1

to derive the expectations from the derivatives of U◦(z) evaluated at z = 1. We restrict
ourselves to the computation of the expected length of fragments for general cleavage
schemes, noting that by more elaborate computations, we are also able to derive the
variance and higher moments from the generating functions.

Lemma 6.9 (Expected length of general fragments). Let L∗ denote the length of
a fragment suffix starting with a prohibition character, so v(l) = P(L∗ = l).

With the notations of Theorem 6.4, the expected lengths of general fragments are

E(L1) =
1− pΓ∩Π + pΓpΠ

pΓpΠ̄

E(L+) =
pΓ̄∩Π̄

pΠ̄

· (E(L1) + 1) +
pΓ∩Π̄

pΠ̄

· (E(L∗) + pΠ) + pΓ∩Π̄

E(L∗) =
pΓ̄∩Π·

(
1 + E(L1) + pΓ∩Π · (1− E(L1))

)
+ pΓ∩ΠpΠ̄

(1− pΓ∩Π)2

Proof. To derive the expectation E(L1), we compute the first derivative of U1(z) using
equation (6.2) of Lemma 6.7 and evaluate it at z = 1. We may then compute the
expectation E(L∗) by using equation (6.4) and finally the expectation E(L+) by using
equation (6.3). Note that U1(1) = U+(1) = 1 (they are probability generating functions)
and V (1) = pΠ.

The expected length of the first and following fragments are more concise for standard
and simple schemes.

Corollary 6.10 (Expected length of standard fragments). For standard cleavage
schemes, the expected fragment lengths are

E(L1) =
1

pΓ(1− pΠ)
+

pΠ

1− pΠ
,

E(L+) =
1

pΓ(1− pΠ)
.

The expectations for the two standard fragment types are the same except for an
additional correction term for the first fragment to compensate for the non-prohibition
character after the fragment to complete the cleavage pattern. This correction term is
not present for the following fragments since we condition on the first character not to
be a prohibition character. The function f(pΠ) = pΠ/(1 − pΠ) increases exponentially
for pΠ ∈ (0, 1) ⊂ R:

pΠ 0 0.1 0.2 0.3 0.5 0.8 0.9 0.99 1
f(pΠ) 0 0.111 · · · 0.25 0.4 1 4 9 99 ∞ .

54



6.4. Approximation

We may conclude that the two fragment types for standard cleavage schemes have com-
parable expected length if prohibition characters are not dominantly frequent. Even for
pΠ = 0.9 and pΓ = 0.1, the two expected lengths are E(L1) = 109 and E(L+) = 100,
respectively, so the first fragment is only slightly longer on average.

Corollary 6.11 (Expected length of simple fragments). For simple cleavage schemes,
Corollary 6.10 applies with pΠ = 0 and thus

E(L◦) =
1
pΓ

,

the expectation of a geometric random variable with parameter pΓ.

Example 6.12 (Moments for TryptSwissProt). For Swiss-Prot frequencies and
tryptic digestion, we computed the expectation and standard deviation of the fragment
length and estimated their empirical counterparts from the Swiss-Prot database:

Model Estimate
E(L1) 9.39 10.18
sd(L1) 8.88 10.70
E(L+) 9.34 9.01
sd(L+) 8.88 9.55

indicating that the two distributions are very similar, but nevertheless different. The
standard deviations were computed using the identities sd(L◦) =

√
Var(L◦) and

Var(L◦) =
dU◦(z)

dz

∣∣∣∣
z=1

+
d2U◦(z)

dz2

∣∣∣∣
z=1

−
(

dU◦(z)
dz

∣∣∣∣
z=1

)2

.

6.4. Approximation

Intuitively, the two fragment length distributions should be related to geometric distri-
butions, as they describe the waiting time for the first occurrence of a cleavage pattern.
Ignoring possible self-overlaps, such a pattern has probability pΓ(1 − pΠ), which would
be the parameter of the geometric distribution. Further, if a random variable X has ge-
ometric distribution L(X) = Geom(p), its parameter p can be computed as p = 1/ E(X)
if the expectation is known. For the setting TryptSwissProt, we get

pΓ(1− pΠ) = 0.1070663,

1/ E(L1) = 0.1064876,

1/ E(L+) = 0.1070663,

so the choice does not make much of a difference. Indeed, the expected length of a
following fragment is exactly the expected length of a geometric distribution. For non-
standard cleavage schemes, self-overlaps in the cleavage patterns become more important
and the geometric approximation may not be as good as for standard schemes.

A comparison between the exact length distributions and the approximating
Geom

(
1/ E(L◦)

)
is shown in Figure 6.1. The quantile-quantile plots show a nearly perfect

bisector, indicating a very good approximation quality.

55



6. Distribution of Fragment Length

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●

●●
●●

●●●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●●

●●●
●●

●●
●●●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

Figure 6.1.: Quantile-quantile plot of approximations of u1(·) (left) and u+(·) (right) by
geometric distributions Geom(1/ E(L◦)) using tryptic digestion. Solid lines
are bisectors.

6.5. Finite Strings

For finite strings, several adjustments have to be given to capture the new boundaries
at the end of the strings. We make the following definitions:

u
〈`〉
1 (l) := P(L〈`〉

1 = l),

u
〈`〉
+ (l) := P(L〈`+k〉

i = l | Ci−1 = k) for any i ≥ 2 and any k ∈ N.

The second definition is in fact independent of i and k, and defines the conditional
fragment length distribution given that there are ` characters left in the string. It is not
the length distribution of a following fragment in a finite string of length ` but in a finite
string with remaining suffix of length `. Both distributions also cover the case that the
corresponding fragment is the last in the finite string.

The length distributions on the finite string differ from their counterparts on the
infinite string only in the last possible position l = `, which now takes the remaining
probability mass to give a valid probability distribution.

Lemma 6.13 (Fragment length in finite strings). The fragment length distributions
for finite string length are given by u

〈`〉
◦ (l) = u◦(l) if l < `, and the boundary

u
〈`〉
◦ (`) =

∞∑
l′=`

u◦(l′) = 1−
`−1∑
l′=1

u◦(l′).

Proof. If l < `, the boundary condition is irrelevant and we have u
〈`〉
◦ (l) = u◦(l). For

56



6.6. Implementation

l = `, we have u
〈`〉
1 (`) = P(L〈`〉

1 = `) = P(L1 ≥ `) =
∑∞

l′=` u1(l′) = 1 − P(L1 < `) =
1−

∑`−1
l′=1 u1(l′), and a similar argument holds for u

〈`〉
+ (·).

By algebraic means, we can again derive explicit formulas for the case of finite string
length.

Lemma 6.14 (Exact values for u
〈`〉
1 and u

〈`〉
+ ). Using the same notation as in

Lemma 6.2,

u
〈`〉
1 (`) = ζ1 ·

(
κ`

1

1− κ1
− κ`

2

1− κ2

)
,

u
〈`〉
+ (`) = ζ2 ·

(
κ`−1

1

1− κ1
− κ`−1

2

1− κ2

)
+ ζ3

(
κ`−2

1

1− κ1
− κ`−2

2

1− κ2

)

=
ζ2

ζ1
· u〈`−1〉

1 (`− 1) +
ζ3

ζ1
· u〈`−2〉

1 (`− 2).

Proof. The proof is straightforward by combining Theorem 6.4 with Lemma 6.13, and
computing the geometric series by

`−1∑
l=1

κl
k =

`−1∑
l=0

κl
k − 1 =

1− κ`
k

1− κk
− 1

for k = 1, 2.

6.6. Implementation

Implementation of the length statistics computation is straightforward: We either com-
pute the necessary parameters κi, i = 1, 2 and ζi, i = 1, 2, 3 from the given weighted
alphabet and implement the closed form of the distributions. Assuming O(1) time
complexity for arithmetic operations including powers, each probability is computed in
O(1). We can also compute these distributions using the recurrence equations. Storing
the whole distributions up to some length l̃, this takes O(l̃) time since each recurrence
step takes constant time using standard dynamic programming techniques.

The space complexity is O(l̃) if the distributions are stored in memory. For the closed
form, the space complexity is O(1) if each probability is re-computed each time and O(l̃)
if it is computed once and stored in memory.

Note that l̃ can usually be chosen quite small, as the probabilities decrease quickly to
zero with increasing length, see next Section 6.7, in particular Figure 6.2, left and right.

Storing both distributions u1(·) and u+(·) in memory using double precision with
8 bytes per entry and a maximal length of l̃ = 350, the memory consumption is 2 ·
350 · 8 bytes, about 5.5 kB. Using Swiss-Prot frequencies and tryptic digestion, the
probabilities at this length are u◦(350) ≈ 9.3 · 10−19.

57



6. Distribution of Fragment Length

For computing the finite length distributions, given the length distributions for infinite
strings, we may use the relation

u
〈`〉
◦ (`) = u

〈`−1〉
◦ (`− 1)− u◦(`− 1),

obvious from Lemma 6.13 or the explicit form of Lemma 6.14. Both have complexity
O(l̃) to compute the finite length distributions up to some length l̃.

6.7. Evaluation on Swiss-Prot

Using our standard setting TryptSwissProt, we computed the length distributions L(L1)
of the first fragment and L(L+) of following fragments and compared them to the empir-
ical distributions derived from the Swiss-Prot database and again to the approximating
Geom(1/ E(L◦)). The agreement between model and approximation is excellent. Not
surprisingly, the model does not fit the empirical data as good: Very small fragment
lengths are underestimated, especially for the first fragment. As the agreement between
model and data is much better for following fragments, a possible explanation would be
that the i.i.d. model misses several aspects of the amino acid compositions. It seems
that in nature, tryptic cleavage characters occur more often at the beginning of a pro-
tein than inside and so the composition is not as homogeneous as assumed by the i.i.d.
string model. We confirmed this by comparing the occurrence of the cleavage pattern
at different position within Swiss-Prot sequences.

For first fragments, single-character fragments are heavily overestimated. This is due
to the methionine-prefix common to most of the database sequences: 173 350 out of
192 433 database sequences start with a methionine. See the introduction on page 3 for
a biological explanation of this phenomenon. The problem can be fixed easily: We can
add an additional “methionine” state to the F1-wHMM that captures the first letter.
Another solution would be to simply ignore the first letter, as it will be a methionine
with probability almost one and thus does not contribute to the stochastics of the first
fragment, and treat it as another mass modification like the additional H2O. It should
also be noted that the Swiss-Prot database contains sequences of many different species;
if we set up a model for a certain species, it is known whether the first amino acid is
a methionine or not, and we can adjust the model accordingly. In the context of mass
spectrometry, this problem is even less important as the methionine prefix is removed
by a post-translational modification in most organisms.

58



6.7. Evaluation on Swiss-Prot

+

+

+

+
+

+

+
+

+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Fragment length

P
ro

ba
bi

lit
y

+

+

+

+

+

+
+
+
+
+
+
+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0 20 40 60 80

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Fragment length

P
ro

ba
bi

lit
y

Figure 6.2.: Exact fragment length distributions and their empirical counterparts of the
Swiss-Prot database using tryptic digestion. Left: Length distribution u1(·)
of first fragment. Right: Length distribution u+(·) of following fragments.
Solid lines: Exact distributions according to the model. Dashed lines: Geo-
metric distribution with p = 1/ E(L◦). Points: Empirical distributions.

59



6. Distribution of Fragment Length

60



7. Distribution of Cleavage Points and
Fragmentation Size

Using the length distribution of fragments, we are able to compute the distribution
of cleavage points in random weighted strings. With these distributions, we can also
establish the distribution of the fragmentation size of finite random weighted strings.

7.1. Distribution of Cleavage Points

Since fragments do not overlap, the cleavage points can be expressed as sums of fragment
lengths: The k-th cleavage point Ck is given by

Ck = L1 + L2 + L3 + · · ·+ Lk.

In an infinite string, the lengths of fragments are mutually independent, so the dis-
tribution of cleavage point Ck can be computed by convolution of k fragment length
distributions. The following lemma is a standard result for regenerative processes.

Lemma 7.1 (Distribution of cleavage points). For an infinite random weighted
string and a general cleavage scheme, the distribution of the k-th cleavage point Ck is
given by

L(Ck) = L(L1) ?L(L+)?(k−1) = L(Ck−1) ? L(Lk),

for any k ≥ 1 and L(C1) = L(L1) (k = 1) in particular.
The expectation and variance of the k-th cleavage point Ck are

E(Ck) = E(L1) + (k − 1) · E(L+),
Var(Ck) = Var(L1) + (k − 1) ·Var(L+)

= E(L2
1)− E(L1)2 + (k − 1) ·

(
E(L2

+)− E(L+)2
)
.

Proof. We have Ck =
∑k

i=1 Li = Ck−1 + Lk; this also holds for k = 1, since C0 = 0 by
definition. Using the independence of the Li allows us to compute the distribution of
this sum by convolution.

The moment equations follow directly from the linearity of the expectation, the equal-
ity Var(X) = E(X2) − E(X)2 and the independence of the Li, which gives E(L1L+) =
E(L1) E(L+) and Var(Li + Lj) = Var(Li) + Var(Lj).

61



7. Distribution of Cleavage Points

7.2. Approximation of Cleavage Point Distributions

In Section 6, we successfully established geometric distributions with parameters 1/ E(L1)
and 1/ E(L+), respectively, as approximations for the length distributions in the case of
standard cleavage schemes.

It is sensible to try to approximate the distribution of cleavage point Ck by a negative
binomial distribution: A negative binomial distribution NegBin(i,p) is the distribution
of the waiting time for the i-th success in a Bernoulli trial with success-probability p,
not counting the i− 1 previous successes. As such, it is the distribution of the sum of i
geometric random variables each with identical parameter p, shifted by +i. Here, we
deal with a sum of two different but very similar approximating geometric distributions
for L1 and L+; we may take a weighted average of the two expectations to compute
the parameter p. The distribution of cleavage point Ck can then be approximated by
a negative binomial distribution with size parameter i = k and probability parameter
p = k/ (E(L1) + (k − 1) E(L+)) shifted by +k.

7.3. Distribution of Fragmentation Size

From the cleavage point distributions, we can derive the distribution L(N 〈`〉) of frag-
mentation size. As we have already seen, the cleavage points form a renewal sequence
on the infinite random weighted string S; therefore results from renewal theory apply.
Establishing a connection between L(N 〈`〉), which is a quantity on the finite string, and
the cleavage point distributions L(Ck), quantities on the infinite string, allows us to
use these results to get the exact distribution of the cleavage points and the number of
fragments.

Lemma 7.2 (Relationship of N 〈`〉 and Ck). The fragmentation size N 〈`〉 of a random
weighted string of length ` is related to the location of cleavage points by

P(N 〈`〉 ≤ k) = P(Ck ≥ `).

Proof. If the k-th cleavage point Ck lies at ` or beyond, the number of fragments up to
position ` is at most k, and vice versa.

7.4. Evaluation on Swiss-Prot

Cleavage points. We compared the distributions of cleavage points for tryptic di-
gestion to their empirical counterparts estimated from the empirical length distribu-
tions. Figure 7.1 shows this comparison for C5 and C40. As dashed lines, the ap-
proximating negative binomial distribution is plotted with probability parameter p =
k/(E(L1) + (k − 1) E(L+)) for size parameters k = 5 and k = 40, respectively. The
agreement between model and approximation is again excellent as shown in Figure 7.1,
upper panel and lower left. As for the empirical data, the agreement gets worse with
increasing index. Whereas the model fits the empirical data for C5 quite reasonable, the

62



7.4. Evaluation on Swiss-Prot

agreement between C40 and its empirical counterpart is not as good; in both cases, the
main aspects of the distributions are nevertheless covered. The lower part of Figure 7.1
shows quantile-quantile plots for the exact distribution of C40 versus the approximating
negative binomial and the empirical distribution, respectively. Again, the negative bi-
nomial shows an excellent agreement; all points are on the bisector. For the empirical
distribution, we see a disagreement with the model in the lower tail, where the quantiles
are below the bisector. This disagreement is caused by the model’s underestimation
of small fragment lengths as already discussed in Section 6.7: As real fragments are
shorter, the cleavage points occur earlier in the string than predicted by the model. The
distribution’s disagreement diminishes for higher quantiles.

Number of fragments. As a result of a short evaluation of the sequence lengths con-
tained in the Swiss-Prot database, we found that a length about 200 lead to the maximal
number of corresponding protein sequences in the database (Figure 7.2 (left)). However,
there are only a few hundred protein sequences of length exactly 200 in the database.
To get a more reliable estimate of the fragmentation size distribution, we pooled all
sequences of length 200 up to 215, with a total of 7 050 protein sequences, and compared
these to the length 207 in the model. Figure 7.2 (right) shows this comparison of the
fragmentation size for proteins of length 207 together with a Gaussian approximation.

Our exact distribution underestimates the tail probabilities but nevertheless agrees
better to the empirical data than the normal approximation. This is also reflected in
the comparison of the first two moments: Expected value and standard deviation for
the exact distribution are numerically evaluated to 22.0 ± 6.07, and for the empirical
distribution 25.1± 7.86.

63



7. Distribution of Cleavage Points

++++++++
++
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
++
++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0 20 40 60 80 100

0
.0

0
0

0
.0

0
5

0
.0

1
0

0
.0

1
5

0
.0

2
0

0
.0

2
5

Residue of 5th cleavage point

P
ro

b
a

b
ili

ty

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
+++++++++++
++++++++
++++++
+++++
++++
++++
++++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++++
++++
+++++
+++++++
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

0 100 200 300 400 500 600 700

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Residue of 40th cleavage point

P
ro

b
a

b
ili

ty

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●

●●●●●●●
●●●●●●●

●●●●●●
●●●●●●

●●●●●
●●●●

●●●●●
●●●●●

●●●●●
●●●●●

●●●●
●●●
●●●●

●●●
●●●●

●●●
●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●

●●●
●●●●●

●●●
●●●

●●●●
●●●
●●●

●●●
●●●●

●●●●
●●●
●●●●

●●●●
●●●●

●●●●
●●●●●

●●●●●●
●●●●●●

●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●

0.000 0.002 0.004 0.006

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Negative binomial

4
0

th
 e

xa
ct

 c
le

a
va

g
e

 p
o

in
t 
d

is
tr

ib
u

tio
n

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●●●●●

●●●●●●●●
●●●●●●●

●●●●●●●
●●●●●●

●●●●●●
●●●●●

●●●●
●●●●●

●●●●●
●●●●●

●●●●●
●●●●

●●●
●●●●

●●●
●●●●

●●●
●●●

●●●●
●●●

●●●●
●●●

●●●●
●●●

●●●●
●●●

●●●●
●●●

●●●●
●●●

●●●
●●●
●●●

●●●
●●●
●●●

●●●
●●●
●●●●

●●●
●●●●

●●●●
●●●
●●●

●●●
●●●●

●●●●
●●●
●●●●

●●●●
●●●●
●●●●
●●●●●

●●●●●●
●●●●●●
●●●●●●●●

●●●●●●●●●●●●
●●●●●●●●●

0.000 0.001 0.002 0.003 0.004 0.005 0.006

0
.0

0
0

0
.0

0
2

0
.0

0
4

0
.0

0
6

Empirical 40th cleavage point distribution

4
0

th
 e

xa
ct

 c
le

a
va

g
e

 p
o

in
t 
d

is
tr

ib
u

tio
n

Figure 7.1.: Upper: Cleavage point distributions of C5 (left) and C40 (right). Pluses:
Empirical distribution derived from empirical length distributions using
Swiss-Prot. Solid line: Exact theoretical distribution. Dashed line: Approx-
imation by negative binomial (see text for parameters). Lower: Quantile-
quantile plots of exact C40 distribution vs. negative binomial approximation
(left) and empirical Swiss-Prot data (right), respectively. Solid lines are bi-
sectors.

64



7.4. Evaluation on Swiss-Prot

Protein length

C
o

u
n

ts

0 500 1000 1500

0
1

0
0

0
0

2
0

0
0

0
3

0
0

0
0

4
0

0
0

0

●●●●●
●

●
●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●●

●

●●

●

●
●

●
●

●

●
●●●●●

●●
●●

●
●●●●●●●●●●●●●●●●●●

0 10 20 30 40 50 60 70

0
.0

0
0

.0
2

0
.0

4
0

.0
6

no. of fragments

F
re

q
u

e
n

c
y

● Empirical (SwissProt)
Exact
Normal

Figure 7.2.: Left: Histogram of protein lengths up to 1 500 in Swiss-Prot. Right: Dis-
tribution of fragmentation size N 〈`〉. Points: Empirical distribution derived
from Swiss-Prot for ` = 200 . . . 215. Solid line: Exact theoretical distribution
for ` = 207. Dashed line: Normal approximation for ` = 207

65



7. Distribution of Cleavage Points

66



8. Joint Distribution of Fragment Length
and Mass

As a next step, we investigate the joint distributions of fragment length and mass. These
distributions give the probability that a certain fragment has some length l and mass m.
From them, we also derive related distributions such as the distribution of fragment mass;
they are also of importance for computing mass occurrence probabilities in Chapter 9. As
for the length distributions, we have to distinguish between first and following fragments.
Again, we first examine the joint length-mass distributions in infinite random weighted
strings and make adaptions to finite string length later.

Let us define

f1(l,m) := P(L1 = l, µ(F1) = m),
f+(l,m) := P(L+ = l, µ(F+) = m).

The distributions can be computed efficiently by either using the wHMM framework
(Section 8.1) or combinatorial recurrence equations (Section 8.2). While the wHMM
framework offers a more elegant model, time- and memory-efficient dynamic program-
ming algorithms are more easily derived by extending the recurrence equations for the
length distributions to the joint length-mass distributions.

8.1. Computation in wHMM Framework

So far, we only used the state sequence (Wi)i∈N0 of a wHMM to compute the distributions
of fragment lengths and cleavage points, but did not have to use the wHMM’s emitted
mass process (µ(Wi))i∈N0 . We have already identified the state sequence and the output
sequence of a wHMM with the string and mass process of this string, respectively.

Within the wHMM framework, the mass of a fragment is the accumulated mass process
output by the wHMM: µ(S1:l) =

∑l
i=1 µ(Si) for some l-prefix of the state sequence. The

accumulated mass up to the arrival of the wHMM in a final state can now be identified
with the fragment’s mass µ(F◦).

As a formal model for computation, we introduce Markov Additive Chains (MACs)
on wHMMs. They describe the accumulation of the mass process emitted by a wHMM.

Definition 8.1 (Markov Additive Chain (MAC)). A Markov Additive Chain (MAC)
of a wHMM (E,P, p0, T, (Σ, µ), Q) is a stochastic process M with index set N and taking
values in N0. It is defined by its finite dimensional distributions for I = {i1, . . . , in}

L(MI) = L (µ(Si1)) ? · · · ?L (µ(Sin)) ,

67



8. Joint Distribution of Fragment Length and Mass

where (Si)i∈N is the character sequence and µ(Si) its mass process emitted by the
wHMM. We denote by Mk the accumulated string mass up to time k: Mk := µ(S1 . . . Sk).
Thus,

P(Mk = m) = P

(
k∑

i=1

µ(Si) = m

)
.

Note that Mk is different from M{k}, the process M on the index set I = {k}, which
is the mass of character Sk: P(M{k} = m) = P(µ(ΣWk

) = m) = qk(m). In the following,
we will use the prefix mass Mk exclusively.

For a cleavage fragment F◦ of length L◦ and mass µ(F◦), the MAC gives the joint
length-mass distribution f◦(·, ·) as follows: The length L◦ is the first time the wHMM
enters a final state; recall that we do not count the transitions from a start and to a
final state. The fragment’s mass is then ML◦ .

For computing these quantities, we recursively compute the masses accumulated up
to step k, given the accumulated mass at step k−1. We introduce the probability hl

j(m)
of being in state j after l steps and having accumulated mass m:

hl
j(m) := P(Wl = j, Ml = m),

where (Wk)k∈N0 is again the wHMM’s state sequence.
For time l = 0, before making the first transition, the wHMM potentially emits a

mass in its start state W0 and so h0
j (m) = p0

j · qj(m). For times l ≥ 1, we establish a
recurrence relation.

Lemma 8.2 (Recurrence for hl
j(m)). Given a MAC on a wHMM for a general cleav-

age scheme, and using the previous notation, the probability hl
j(m) = P(Wl = j, Ml = m)

can be computed recursively by

hl
j(m) =

∑
i∈E

((
hl−1

i · Pij

)
? qj

)
(m) =

∑
i∈E

Pij ·
∑

m′∈N0

hl−1
i (m−m′) · qj(m′),

for l ≥ 1 and j ∈ E, where Pij is the (i, j)-th entry in the transition matrix. The
recurrence relation is completed by the initial condition

h0
j (m) = p0

j · qj(m)

for j ∈ E.

Proof. For the initial condition, the probability of having mass m while being in state j
after 0 steps is the emission probability qj(m) of mass m in state j multiplied with the
probability p0

j that the wHMM starts in state j.
For the chain to be in state j after l steps while having accumulated mass m, the chain

has to have accumulated mass m−m′ in the previous step and add mass m′ in state j.
Considering all previous states and their transitions to j gives the stated result.

68



8.1. Computation in wHMM Framework

Note that although we sum over N0, the sum is of course bounded by µmin and µmax,
as the emission probabilities are zero for other masses.

For given l, summing hl
j(m) over all states j ∈ E gives the mass distribution of a

fragment prefix of length l:

P(Ml = m) =
∑
j∈E

hl
j(m).

A fragment F◦ is finished if the wHMM reaches a final state; this gives the joint
length-mass distribution for fragments from the prefix probabilities.

Theorem 8.3 (Computation of f◦). For a given MAC on a wHMM, the joint distri-
bution f◦(·, ·) of length and mass of a fragment F◦ of a general cleavage scheme is

f◦(l,m) =
∑
j∈T

hl+1
j (m).

Proof. hl
j(m) gives the probability that the mass of a length-l fragment prefix is m while

the wHMM is in state j. Once the wHMM reaches a final state j ∈ T , it stops and all
transition probabilities from this state are zero. As the transition to the final state does
not count towards the fragment’s length, we get

P(L◦ = l, µ(F◦) = m) = P(Wl+1 ∈ T, µ(W0 . . .Wl+1) = m)

by using the extension of the character mass function to sets of wHMM states (and their
associated sub-alphabets), as given in Definition 5.10. Summing over all possible j ∈ T
gives the stated result.

Matrix notation. Before taking a look at examples and then move on to finite strings
and combinatorics, let us first introduce a matrix notation for the computation of joint
length-mass distributions. This new notation gives rise to an elegant recurrence update
formula for the wHMM/MAC framework.

In Definition 5.11, we have already written the family of mass emission distributions
Qi = (qi(m))m∈N0 as a matrix Q. With rows starting at mass m = 0, this matrix has
size (µmax +1)×|E|. We have further introduced the transition matrix P of size |E|×|E|
and the column vector of the initial state distribution p0 of size |E| × 1. Let p0 denote
the |E| × |E| matrix where each column is given by p0: p0 :=

(
p0|p0| · · · |p0

)
.

There are two more issues remaining: We have to introduce a matrix that keeps the
prefix mass distributions hl

j(m) and we have to take care of correct matrix dimensions
when performing convolution.

Let H(l) denote the matrix of prefix mass distributions after step l, that is

H(l) =
(
hl

j(m)
)

0≤m≤(l+1) µmax,
j∈E

.

Of course, the mass of a fragment prefix after l steps is at least (l − 1) µmin if µ(εs) =
µ(εe) = 0 and the last step transits into a final state, so this prefix has l− 1 characters.

69



8. Joint Distribution of Fragment Length and Mass

For non-zero terminal masses, the minimal prefix mass is even greater. So, we could
skip the first (l− 1) µmin−1 rows as they are zero, anyway. To see the formal reason to
keep these rows in the definition of the matrix, let us extend the convolution operation
to matrices in a column-wise manner.

Definition 8.4 (Convolution of matrices). Let X = (X1|X2| · · · |Xn) be a real matrix
of size x × n and Y = (Y1|Y2| · · · |Yn) be a real matrix of size y × n. Then, define the
convolution X ? Y column-wise on the column vectors Xi and Yi:

X ? Y := (X1 ? Y1 |X2 ? Y2 | · · · |Xn ? Yn) .

The resulting matrix has size (x + y − 1)× n.

As a major result of these considerations, we can now give the recurrence equation for
the fragment prefix masses in a more elegant matrix form.

Lemma 8.5 (Matrix update equation). Let the matrices Q, P and H(l) be defined
as above. Then the matrix H(l) can be computed recursively by the update equation

H(l) =
(
H(l−1) · P

)
? Q

with initial condition H(0) = Q · p0.

Proof. The initial condition is obvious from previous considerations. To compute hl
j(m),

consider the recurrence equation in Lemma 8.2:

hl
j(m) =

∑
m′∈N0

(∑
i∈E

Pij · hl−1
i (m−m′)

)
· qj(m′),

which we identify as the (m, j)-th entry of H(l).

Ignoring terminal characters, the convolution involves a matrix H(l−1) with l µmax ++1
rows and a matrix Q with µmax +1 rows. The resulting matrix H(l) thus has l µmax +1 +
µmax +1 − 1 = (l + 1) µmax +1 rows, so each step increases the number of rows in the
resulting matrix by µmax.

Examples. Let us have a look at two examples for illustrating the theory: In the first
example, we will use the matrix notation for a simple scheme and a very small alphabet
of size 2. In the second example, we shall investigate the explicit recurrences for standard
cleavage schemes.

Example 8.6 (Computation of f◦ for simple cleavage scheme). Consider a simple
cleavage scheme and the associated wHMM in Figure 5.2. Further consider a terminal-
extended weighted alphabet Σ = {’X’,’C’, εs, εe} with Dirac character masses µ(’X’ ) =
1, µ(’C’ ) = 2, µ(εs) = µ(εe) = 0 and probabilities P(C = ’C’ ) = pΓ and P(C = ’X’ ) =
1− pΓ. This alphabet has no terminal characters.

70



8.1. Computation in wHMM Framework

Let ’C’ be the only cleavage character, so Γ = {’C’}. Recall that rows refer to masses
m = 0, 1, 2, . . . and columns refer to the states Start, Γ̄,Γ,End, respectively, in matrices
Q and H(l). Then, we can derive the 4× 4 transition matrix

P =


0 1− pΓ pΓ 0
0 1− pΓ pΓ 0
0 0 0 1
0 0 0 0

 .

the 3× 4 mass emission probability matrix Q with rows for m = 0, 1, 2

Q =

 1 0 0 1
0 1 0 0
0 0 1 0

 ,

and the 4× 4 start distribution matrix

p0 =


1 1 1 1
0 0 0 0
0 0 0 0
0 0 0 0

 .

Using Lemma 8.5, we compute

H(0) = Q · p0 =

 1 0 0 0
0 0 0 0
0 0 0 0

 ,

giving probability 1 to be in start state 0 with emission of mass m = 0. The next prefix
mass distributions is

H(1) =
(
H(0) · P

)
? Q =


0 0 0 0
0 1− pΓ 0 0
0 0 pΓ 0
0 0 0 0
0 0 0 0

 ,

since from state 0, we can either transit to a cleavage character state or a non-cleavage
character state with emission of mass m = 2 or mass m = 1, respectively. Note that
for both step 0 and step 1, we have probability 0 to be in a final state. From here, we

71



8. Joint Distribution of Fragment Length and Mass

compute the 2-step prefix mass distributions as

H(2) =
(
H(1) · P

)
? Q =


0 0 0 0
0 (1− pΓ)2 (1− pΓ)pΓ 0
0 0 0 pΓ

0 0 0 0
0 0 0 0

 ?

 1 0 0 1
0 1 0 0
0 0 1 0



=



0 0 0 0
0 0 0 0
0 (1− pΓ)2 0 pΓ

0 0 (1− pΓ)pΓ 0
0 0 0 0
0 0 0 0
0 0 0 0


.

After two steps of the wHMM in Figure 5.2, the probability that the accumulated mass
is m = 0 or m = 1 is zero for all states. To have accumulated mass m = 2 (third
row in the matrix), the wHMM can either take the steps (state 0→state 1→state 1)
corresponding to the string set {εs} × Γ̄ × Γ̄ × {εe} with probability (1 − pΓ)2 or the
steps (state 0→state 2→state 3) ({εs} × Γ̄× {εe}) with probability pΓ.

For mass m = 3 the only possibility is the state sequence (0, 1, 2), corresponding to
{εs}× Γ̄×Γ×{εe}. The joint length-mass probability for l = 1 is thus the fourth column
of the matrix, i.e.

f◦(1,m) =
(
H(2)

)
m,3

= (0, 0, pΓ, 0, 0, · · · )t,

corresponding to the fragment F1 = ’C’ of mass µ(F1) = 2.

Example 8.7 (Computation of f◦ for standard cleavage schemes). Consider a
standard cleavage scheme (Γ,Π) and the corresponding wHMM for F1 given in Figure 5.4
with state set E = {0, . . . , 4} of size |E| = 5 and T = {3}. If we denote by Pij the one-
step transition probability from state i to state j, by qj(m) the emission probability of
mass m in state j, and finally by hl

j(m) the accumulated mass probability after l steps
while being in state j, we get explicit equations derived in the following.

The initial distribution is Dirac, with probability one on the start state 0, so p0
0 = 1

and p0
j = 0 for 1 ≤ j ≤ 4. We initially have for l = 0:

h0
0 = q0 and h0

i = 0 for any state i 6= 0.

For larger prefix lengths l ≥ 1, let us have a closer look at the probabilities hl
1: State 1

can be reached from states j ∈ {0, 1, 4} and its state mass function is given by qi with
Σi = Γ̄. The recurrence is then

hl
1 = (P01 · hl−1

0 ? q1) + (P11 · hl−1
1 ? q1) + (P41 · hl−1

4 ? q1),

72



8.2. Recurrence Equations

and noting that all transition probabilities are 1− pΓ, we can simplify this to

hl
1 = (1− pΓ) · (hl−1

0 + hl−1
1 + hl−1

4 ) ? q1.

Similarly, we derive the recurrences for the remaining states:

hl
0 = 0,

hl
1 = (1− pΓ) · (hl−1

0 + hl−1
1 + hl−1

4 ) ? q1,

hl
2 = pΓ · (hl−1

0 + hl−1
1 + hl−1

4 ) ? q2,

hl
3 = (1− pΠ) · hl−1

2 ? q3,

hl
4 = pΠ · hl−1

2 ? q4.

Finally, the joint length-mass distribution of the first fragment is the fourth column
of the matrix H(l+1), thus

f1(l,m) = hl+1
3 (m).

In the same way, we derive the explicit recurrence equations for the following fragments
by using the appropriate quantities of the F+-wHMM (Figure 5.4, bottom). Then, the
initial condition is

h0
0 = q0, and h0

i = 0 for i 6= 0,

and for step l ≥ 1,

hl
0 = 0,

hl
1 = (1− pΓ) · (hl−1

1 + hl−1
4 + hl−1

5 ) ? q1,

hl
2 = pΓ · (1/(1− pΠ) · hl−1

0 + hl−1
1 + hl−1

4 + hl−1
5 ) ? q2,

hl
3 = (1− pΠ) · hl−1

2 ? q3,

hl
4 = pΠ · hl−1

2 ? q4.

hl
5 = (1− pΠ − pΓ)/(1− pΠ) · hl−1

0 ? q5.

Finally,
f+(l,m) = hl+1

3 (m).

Note that we can remove states 0 and 5 from the wHMM (they are used at most once)
by specifying a more complicated initial condition after step 2 in this case. However,
the wHMM construction is general and can be applied to more complicated string and
cleavage models.

8.2. Recurrence Equations

While the wHMM framework is easily generalizable, we can also give a more combina-
torial derivation; the resulting recurrence equations can later be used to derive more
space- and time-efficient algorithms.

73



8. Joint Distribution of Fragment Length and Mass

As for the length distributions, our considerations are based on the structural Lemma 5.16;
the resulting recurrence equations are basically the same as their counterparts for the
length distributions given in Theorem 6.4.

To ease the exposition and avoid explicit writing of the convolution, we introduce the
following notation.

Definition 8.8 (Convolution of length-mass distributions). Let (Σ, µ) be a weighted
alphabet and let Θ ⊆ Σ be a sub-alphabet. Let

r(Θ,m) := P(C ∈ Θ, µ(C) = m) = P(C ∈ Θ) · P(µ(C) = m | C ∈ Θ)

be the probability that a random character chosen from Σ is an element of Θ and has
mass m.

The convolution of r(Θ, ·) with a joint fragment length-mass distribution f(l− 1, ·) is
then defined as

(f◦(l − 1, ·) ? r(Θ, ·)) (m) :=
∑
σ∈Θ

∑
m′∈N0

f◦(l − 1,m−m′) · P(µ(σ) = m′) · P(C = σ).

Note that the explicit summation over the character masses is in fact finite due to the
finite character mass range and is bounded by µmax−µmin +1 summands. A convolution
with a character mass function can thus be performed in time O(µmax−µmin).

Using the structural Lemma 5.16 and Theorem 6.4, the length-mass distributions can
be computed using recurrence equations of the same structure as for the length distri-
butions. Similarly, let us denote by g(·, ·) the (defected) joint length-mass distribution
for weighted strings in G, starting with a prohibition character.

Theorem 8.9 (Recurrence for f◦). Consider f◦(l,m) = P(L◦ = l, µ(F◦) = m), the
joint length-mass distribution of a cleavage fragment F◦, and let g(l, m) be the probability
that a fragment suffix, starting with a prohibition character, has length l and mass m.

The length-mass distribution of the first fragment is given by

f1(l,m) =


(1− pΠ) · r(Γ,m) if l = 1,(
f1(l − 1, ·) ? r(Γ̄, ·)

)
(m)

+ (g(l − 1, ·) ? r(Γ, ·)) (m) if l > 1.

The distribution of following fragments is

f+(l,m) =


r(Γ ∩ Π̄,m) if l = 1,
1
π̄ ·
(
f1(l − 1, ·) ? r(Γ̄ ∩ Π̄, ·)

)
(m)

+ 1
π̄ ·
(
g(l − 1, ·) ? r(Γ ∩ Π̄, ·)

)
(m) if l > 1.

The distribution of fragment suffixes starting with a prohibition character is

g(l, m) =


(1− pΠ) · r(Γ ∩Π,m) if l = 1,(
f1(l − 1, ·) ? r(Γ̄ ∩Π, ·)

)
(m)

+ (g(l − 1, ·) ? r(Γ ∩Π, ·)) (m) if l > 1.

74



8.3. Finite Strings

The previous theorem is only valid for non-terminal alphabets: We completely ignore
the potential presence of terminal characters. As mentioned in Section 5.2, these char-
acters do not contribute to the length of a fragment; they nevertheless contribute to its
mass. Considering this additional mass is straightforward: We convolve the correspond-
ing mass distributions L(µ(εs)) and L(µ(εe)) to f◦(l, ·) for each fragment length l. For
simplifying the exposition, we will ignore terminal characters for the remainder of this
chapter.

8.3. Finite Strings

For the case of finite string length, we follow our previous conventions and use the
following notation (cf. Section 6):

f
〈`〉
1 (l,m) := P

(
L
〈`〉
1 = l, µ

(
F
〈`〉
1

)
= m

)
,

f
〈`〉
+ (l, m) := P

(
L
〈`+k〉
i = l, µ

(
F
〈`+k〉
i

)
= m | Ci−1 = k

)
for any i ≥ 2 and any k ∈ N.

As for the length distributions in finite strings, the second definition is in fact indepen-
dent of i ≥ 2 and k, and defines the conditional joint distribution of (L+, µF+) given
that there are ` characters left in the string.

Lemma 8.10 (Computation of f 〈`〉 via wHMMs). For l < `, we have f
〈`〉
◦ (l, m) =

f◦(l, m) for all masses m. For the last fragment and string length `, we get

f
〈`〉
◦ (`,m) =

∑
i6∈T

h`
i(m)

for T and h`
i(m) of the appropriate wHMM for any cleavage scheme.

Proof. For l < `, there is no difference to the semi-infinite string. The fragment ends
after position ` irrespective of the current state; therefore, summing h`

i(m) over all non-
final states i leads to the desired marginal.

Using the structural Lemma 5.16 for sets of feasible fragment strings, we can also
derive recurrence equations for computing the finite length-mass distributions. These
are almost the same as those for the infinite case, except for different initial conditions.

Lemma 8.11 (Computation of f 〈`〉 via recurrences). With the notation of Defini-
tion 8.8, the length-mass distribution of a first fragment for finite string length ` is given
by the recurrence equations

f
〈`〉
1 (l,m) =


f1(l,m) if l < `,

r(Σ,m) if l = ` = 1,(
f
〈`−1〉
1 (`− 1, ·) ? r(Γ̄, ·)

)
(m)

+
(
g〈`−1〉(`− 1, ·) ? r(Γ, ·)

)
(m) if l = ` > 1.

75



8. Joint Distribution of Fragment Length and Mass

The distribution of following fragments is

f
〈`〉
+ (l,m) =


f+(l,m) if l < `,

r(Π̄,m) if l = ` = 1,
1
π̄ ·
(
f
〈`−1〉
1 (`− 1, ·) ? r(Γ̄ ∩ Π̄, ·)

)
(m)

+ 1
π̄ ·
(
g〈`−1〉(`− 1, ·) ? r(Γ ∩ Π̄, ·)

)
(m) if l = ` > 1.

The distribution of fragment suffixes starting with a prohibition character is

g〈`〉(l,m) =


g(l,m) if l < `,

r(Π,m) if l = ` = 1,(
f
〈`−1〉
1 (`− 1, ·) ? r(Γ̄ ∩Π, ·)

)
(m)

+
(
g〈`−1〉(`− 1, ·) ? r(Γ ∩Π, ·)

)
(m) if l = ` > 1.

8.4. Related Distributions

Several probabilities and distributions derived from the length-mass distributions turn
out to be helpful later. In particular, we briefly investigate the two marginal distri-
butions, i.e. the length and the mass distributions of fragments, the mass avoidance
probabilities of a fragment of certain length l not taking mass m, and conditional prob-
abilities that give the distributions of fragment length, given the mass, and vice-versa.

Length distributions as marginals. From the joint distribution of fragment length and
mass, we can derive two other distributions by taking the marginals: By summing over
all masses m, we re-derive the distribution of fragment lengths:

u◦(l) =
∑

m∈N0

f◦(l,m),

and similarly for finite string length. Using the f◦(·, ·)-recurrences of Theorem 8.9, we
also re-derive the corresponding recurrence equations of Theorem 6.4 for u◦(·).

Mass distributions as marginals. In the same manner, we can derive the distribution
of fragment masses regardless of their length by taking the other marginal. Let us denote
these marginal distributions by re-using the symbol f in a straightforward way:

f1(m) := P(µF1 = m),
f+(m) := P(µF+ = m).

Obviously, we can simply sum over all possible fragment lengths at mass m to get the
mass distribution:

76



8.4. Related Distributions

Proposition 8.12. (Fragment mass distribution) The distributions of fragment masses
for first and following fragments under any cleavage scheme are given by

f◦(m) =
∑
l∈N

f◦(l,m).

Using the recurrences for the length-mass distributions, we can also establish similar
recurrences for the mass distributions.

Lemma 8.13 (Recurrence for f◦). Similar to Definition 8.8, define the convolution
of a fragment mass distribution with r(Θ, ·) by

(f◦(·) ? r(Θ, ·)) (m) :=
∑
σ∈Θ

∑
m′∈N0

f◦(m−m′) · P(C = σ) · P(µ(σ) = m′).

The mass distributions f◦(·) for any cleavage scheme can be computed by the recurrence
equation

f1(m) =
∑

m′≤m

(
f1(m−m′) ? r(Γ̄,m′) + g(m−m′) ? r(Γ,m′)

)
f+(m) =

∑
m′≤m

(
f1(m−m′) ? r(Γ̄ ∩ Π̄,m′) + g(m−m′) ? r(Γ ∩ Π̄,m′)

)
g(m) =

∑
m′≤m

(
f1(m−m′) ? r(Γ̄ ∩Π,m′) + g(m−m′) ? r(Γ ∩Π,m′)

)
with f◦(m) = 0 and g(m) = 0 for m < µmin.

Proof. We first observe that all recurrences of length-mass distributions are linear and
have constant coefficients, thus, the structure of these recurrence translates to partial
sums of the involved quantities. Using the recurrences of Theorem 8.9, summing over all
possible fragment lengths l and noting that f◦(l,m) = g(l,m) = 0 if m < 0 immediately
yields the stated results.

This last recurrence equations enables us to compute the mass distribution without
the length-mass distribution.

Mass avoidance probabilities. In subsequent chapters, we will need the probability
that a fragment has length l and not mass m.

Definition 8.14 (Mass avoidance probabilities). The mass avoidance probabilities
of a fragment having length l and not mass m are defined as

f̄1(l,m) := P(L1 = l, µ(F1) 6= m),
f̄+(l,m) := P(L+ = l, µ(F+) 6= m),

and similarly as f̄
〈`〉
◦ for fragments whose length is bounded by `.

77



8. Joint Distribution of Fragment Length and Mass

The avoidance probabilities can be computed from the length and the length-mass
distributions of fragments.

Lemma 8.15 (Mass avoidance probabilities). The mass avoidance probabilities for
any cleavage scheme are given by

f̄◦(l, m) = u◦(l)− f◦(l, m),

and similarly for f̄
〈`〉
◦ .

Proof. We have

f̄◦(l, m) =
∑

m′ 6=m

f◦(l,m′)

=

 ∑
m′∈N0

f◦(l,m′)

− f◦(l,m)

= u◦(l)− f◦(l, m),

and similarly for the finite string case.

This lemma can be informally stated in a combinatorial fashion as: “The fragments of
length l and not mass m are all fragments of length l minus the ones of the same length
having mass m.”

Conditional distributions. As a last result, we investigate the distributions of the
lengths of fragments with known mass and the mass distribution of fragments with
known length. These distributions are easily derived from the joint distributions and
their marginals.

Lemma 8.16 (Conditional distributions). Using the joint length-mass distributions
f◦(·, ·) and their two marginals u◦(·) and f◦(·), the conditional distributions of fragment
length, given the masses, and of mass, given the lengths, are

P (L◦ = l | µ(F◦) = m) =
P (L◦ = l, µ (F◦) = m)

P (µ (F◦) = m)
=

f◦(l, m)
f◦(m)

, and

P (µ(F◦) | L◦ = l) =
P (L◦ = l, µ (F◦) = m)

P (L◦ = l)
=

f◦(l, m)
u◦(l)

.

These equations hold for any cleavage scheme.

Proof. By using the identity P(X ∈ A, Y ∈ B) = P(X ∈ A | Y ∈ B) · P(Y ∈ B) for
random variables X, Y and appropriate sets A,B.

78



8.5. Implementation

Example 8.17 (Conditional probabilities for cleavage characters). Using Swiss-
Prot frequencies and tryptic digestion, we compute the conditional length distribution,
given that the fragment has mass µ(′K ′):

P(L1 = l | m = µ(′K ′)) =

{
1, for l = 1,

0, else.

Further, the probability of fragment mass m, given the fragment has length 1 for the
first fragment is

P(µ(F1) = m | L1 = 1) =


0.526 . . . , for m = µ(′K ′),
0.474 . . . , for m = µ(′R′),
0, else.

Not surprising, a fragment of length 1 can only be a cleavage character.

8.5. Implementation

So far, we were not concerned with the problem of computing the distributions and access
their values on a computer in reasonable time. Unlike the fragment length distributions,
we can neither approximate the length-mass distributions by a known function, nor give
closed formulas for them. In order to access each value of these distributions in constant
time, we thus need to compute all values and store them in an appropriate data structure.
Of course, we are not able to store every combination of values for every possible length
and mass. This is not a problem in practice: The maximal protein length `max gives
an upper bound for the possible fragment length; it also gives an upper bound for the
possible fragment mass.

In the context of mass spectrometry, we know the maximal molecular mass that can
be detected by the MS instrument; it is usually much smaller than the maximal protein
mass. If we denote the maximal detectable mass by mmax, we can easily estimate an
upper bound lmax for the maximal length of fragments detectable by the instrument:

lmax =
⌈

mmax

µmin

⌉
.

Terminal masses µ(εs), µ(εe) may be subtracted from mmax if we use terminal-extended
alphabets. The upper bound is valid for all fragment masses up to mmax and thus gives
an upper bound for the number of summands in the computation of f◦(·, ·). Of course,
we can compute upper bounds for the number of summands for each mass. We will not
investigate this here, because lmax is quite small in practice (10–100, see below) and we
do not get a considerable improvement in computation time or space requirements. Note
that the upper bound is independent of the mass precision ∆m.

79



8. Joint Distribution of Fragment Length and Mass

Time complexity of length-mass probabilities. Each entry of f◦(·, ·) and g(·, ·) is com-
puted in O(µmax−µmin) time using the recurrence equations of Theorem 8.9 and stan-
dard dynamic programming techniques. It involves summation of at most 2(µmax−µmin)
non-zero terms for the convolution of masses. Storing these entries in an lmax × mmax

table, computing an entry at row l and column m involves a look-back of at most one row
and µmax columns.

All tables can thus be computed in time

O(lmax ·mmax · (µmax−µmin)),

for maximal fragment length lmax and maximal mass mmax. Note that the stated time
complexities also depend on the mass precision: Masses are always given as scaled and
rounded integers, so increasing the precision by one decimal, i.e. from ∆m to ∆m/10,
changes both mmax and µmax−µmin by a factor of 10. More precisely, the previous time
complexity thus reads

O
(

lmax ·
m∗

max

∆m
· µmax

∗−µmin
∗

∆m

)
,

if m∗
max and µmax

∗, µmin
∗ refer to the masses in Da, i.e., without scaling. We will stick

to the scaled masses for fixed precision and just keep in mind that changing the mass
precision also changes the time complexity.

Further, we assume the alphabet Σ to be finite and small. As a consequence, we do
not bother about the sizes of the character sets Γ and Π in the time complexity analysis,
although these sizes obviously influence the computation time. More precisely, when
looking at both Theorem 8.9 and Definition 8.8, we see that computing one entry of
f◦(·, ·), given the previous ones, not only takes time O(µmax−µmin) but also involves
summation over the character subsets of Σ, so the number of summands is bounded by
the alphabet size |Σ|. Considering this, the full time complexity for computing the two
length-mass distributions is

O
(

lmax ·
m∗

max

∆m
· µmax

∗−µmin
∗

∆m
· |Σ|

)
.

Since the alphabet is small for all biological applications (20 for proteins, 4 for DNA/RNA),
we will also neglect this term in all further analyses.

Finally, adjustments for finite string lengths can be computed in time O(µmax−µmin)
for each entry, given the f◦(·, ·) tables.

Memory requirements of length-mass probabilities. The length-mass distributions
are used in two different scenarios: Either, we want to access these distributions for
some statistical computations and need access to each entry in constant time; we then
have to keep all entries in memory. In subsequent chapters, however, we only need these
distributions for one certain mass at a time, increasing the mass by one in each step.
Then, we only need to keep those parts of the distributions in memory that give the
entries for this particular mass m and allow computation of the entries of mass (m + 1).

80



8.6. Evaluation on Swiss-Prot

Note again that m is a scaled mass and its actual value depends on the original mass m∗

in Da to be considered and the mass precision ∆m.
For the first scenario, we obviously need O(lmax ·mmax) memory to store each f◦(·, ·)

table. Let us assume Swiss-Prot frequencies and average masses with a precision of
0.1 Da, see Table 1.1 for the values. Let us further assume that the MS instrument has a
maximal detectable mass of 3 500 Da (a usual value for MALDI-TOF-MS). We compute
mmax = 35 000 columns and lmax = d35 000/571e = 62 rows for each distribution. Using
doubles of 8 bytes each, the two tables require 2 · 62 · 35 000 · 8 bytes. This is about
33.1 MB. During computation, we also need the g(·, ·) table of about 17 MB.

For the second scenario, where we only access one column at a time, we need the µmax

previous columns of both f◦(·, ·) and g(·, ·) to compute f◦(·, ·) using the recurrences
of Theorem 8.9. With the assumptions of the previous paragraph and µmax = 1 860
(tryptophan with ∆m = 0.1), this corresponds to 2 · 62 · (2 µmax) · 8 bytes, about 3.5 MB
for both tables.

Mass avoidance probabilities. Given the implementation for the length distributions
of Section 6.6, we can compute the mass avoidance probabilities in the same time- and
space complexity as the length-mass distributions. Note that for l outside the length
range implied by the maximal fragment mass, the avoidance probability is equal to the
length probability:

f̄◦(l, m) = u◦(l) if l > lmax and m ≤ mmax.

Mass distributions. The mass distributions f◦(·) can be computed in time
O(µmax−µmin) for each entry using the recurrence in Lemma 8.13 and dynamic program-
ming, or in time O(lmax) for each entry, summing over the lengths in the length-mass
distributions f◦(·, ·).

We need at most mmax entries of each of these distributions, so the space requirement
is O(mmax). Using the previous assumptions, this means 2 ·35 000 ·8 bytes, about 547 kB
for both f◦(·) tables.

8.6. Evaluation on Swiss-Prot

The probability f◦(l,m) for a given mass m and length l depends on the number of
combinations of l amino acids with masses summing up to exactly m. The problem of
finding the number of decompositions d(m) of mass m has been studied in [25,26].

For given fragment length l, the mass distribution f◦(l, ·) is a convolution of l character
mass distributions. Due to the character composition constraints for fragments, these
individual distributions are not independent. Nevertheless, the dependence is only weak
and we would assume that a weaker version of the Central Limit Theorem applies and
the mass distribution approaches a Gaussian distribution for large l.

Using our standard setting TryptSwissProt– Swiss-Prot database amino acid frequen-
cies, the standard cleavage scheme of Trypsin and a mass precision of ∆m = 0.1, we

81



8. Joint Distribution of Fragment Length and Mass

200 400 600 800 1000

0e
+

00
2e

−
04

4e
−

04

Masses in Da

f[l
,m

] f
or

 l=
5

11500 12000 12500 13000

0.
0e

+
00

1.
0e

−
10

2.
0e

−
10

3.
0e

−
10

Masses in Da

f[l
,m

] f
or

 l=
11

5

Figure 8.1.: f1(l, ·) for l = 5 (left) and l = 115 (right), mass precision ∆m = 0.1.

obtain the first fragment’s joint length-mass distribution f1(l, ·) for length l = 5 (Fig-
ure 8.1, left), length l = 25 (Figure 8.2, left), and length l = 115 (Figure 8.1, right).
As expected, the mass distribution indeed visually approaches a Gaussian for increasing
fragment lengths. Nevertheless, fragments of greater length are extremely rare (compare
the length distributions in Figure 6.2, left and right). For the frequent fragment lengths
below 30, the combinatorics of the mass composition is still predominant and the distri-
butions cannot be approximated by a continuous function (such as a Gaussian density
function).

In [25], it was also observed that the number d(m) of decompositions of mass m is
periodic in m. This behavior is at least partly explained by a further study of the related
money-changing problem, see for example Example 1 on page 99 of [130]. Decomposition
of an integer was also studied in [14, 15]. Not surprising, periodicity is also observed in
the length-mass distributions: For each length l, the function f◦(l,m) is periodic in m
with period 20. This effect is shown in Figure 8.2 (right): The plot shows the function
f1(25,m) for masses having remainder r = 0, 1, 2 when divided by 20, so r = m mod 20.
The period 20 suggests to be related to the size of the amino acid alphabet, which is also
20. However, decreasing the alphabet size to 19, 18, or 17 by removing non-cleavage-
non-prohibition characters σ ∈ Γ̄ ∩ Π̄ from the alphabet did not change the period of
the corresponding function.

For following fragments of length l = 15, we computed expected counts c+(15,m) for
each mass m from the length-mass distribution by multiplying by the number A15 of
fragments of length l = 15 and dividing by the length probability u+(15):

c+(15,m) := f+(15,m) · A15

u+(15)
.

These counts are plotted together with the empirical counts in Figure 8.3 (left). There
are 141 842 fragments of length 15 in the Swiss-Prot database using tryptic digestion;

82



8.6. Evaluation on Swiss-Prot

2000 2500 3000 3500

0e
+

00
1e

−
06

2e
−

06
3e

−
06

4e
−

06

Masses in Da

f[l
,m

] f
or

 l=
25

2000 2500 3000 3500

0e
+

00
1e

−
06

2e
−

06
3e

−
06

4e
−

06

Masses in  Da

f[l
,m

] f
or

 l=
25

Figure 8.2.: Left: f1(l, ·) for l = 25. Right: f1(l, ·) for l = 25 masses taken modulo 20
and three remainders r = m mod 20. Solid: r = 0, dashed: r = 1, dotted:
r = 2. Both mass precisions ∆m = 0.1.

their masses range from 955.6 Da to 2 114.8 Da. The maximal number of fragments of a
certain mass was slightly under 200. This number is too small to cover the combinatorial
effects in the estimation; from this estimation, it is not possible to deduce the quality of
the model’s fit to the data.

The fragment mass distribution f1(m) is given in Figure 8.3 (right) for masses ranging
from 1 000 Da to 1 500 Da, also showing the periodicity of this function. The smaller
figure gives f1(m) in the range from 120 Da to 500 Da. For better readability, only
probabilities larger than 10−4 are plotted. The two points in the upper left corner
correspond to the two tryptic single-character fragments ’K ’ and ’R’.

83



8. Joint Distribution of Fragment Length and Mass

1200 1400 1600 1800 2000

0
50

10
0

15
0

20
0

Masses in Da

F
ra

gm
en

t c
ou

nt
 fo

r 
l=

15

1000 1100 1200 1300 1400 1500

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

Masses in Da

f[m
]

+
+

+++++
+
++
+
++
+
++++
+
+++
+
++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

200 300 400 500

0.
00

0.
02

0.
04

Figure 8.3.: Left: Fragment counts for l = 15 and empirical Swiss-Prot fragment counts
(see text for details). Right: Mass distribution f1(m) in two mass ranges.
Both mass precisions ∆m = 0.1.

84



9. Mass Occurrence Probabilities

One of the main goals of this first part of the thesis is to identify and compute statistics
of mass fingerprints relevant for computing the significance of a protein identification
by peptide mass fingerprinting. As a last important statistic, we investigate the prob-
ability that a certain mass m occurs in the fragmentation of a finite random weighted
string. These probabilities are used in the second part of the thesis to compute the con-
tribution of a single peak to the overall score of a protein identification. The following
considerations are valid for any cleavage scheme.

Let us first translate this mass occurrence problem into a stochastically more suitable
context: Instead of looking at the fragmentation and the fragments’ masses directly, we
introduce the waiting time T (m) ≡ T (S, m) for the first occurrence of a fragment of
mass m in an infinite random weighted string (S, µ): It is the first index in S where a
fragment F◦ of mass µ(F◦) = m ends:

T (m) := min{j ∈ N | ∃k ∈ N : Ck = j, µ(Fk) = m},

where we define T (m) = ∞ if the minimum is taken over the empty set, i.e., if mass m
is not decomposable as a fragment.

The occurrence probability of mass m can then be written in terms of T (m): The
random weighted string (S, µ) contains a fragment of mass m in its prefix up to letter `
if and only if the waiting time for this fragment is less or equal `. Note that the last
fragment starting before ` is not taken into consideration unless it ends exactly in `.

Of course, proteins do not have infinite length and we need to adapt the waiting time
to the case of finite protein length. In this case, we have a last fragment with different
structure in the fragmentation. Let T 〈`〉(m) denote the waiting time adapted to finite
string length `, i.e. the suffix from CN〈`〉−1 + 1 to ` is considered as a fragment:

T 〈`〉(m) := min
{

j ∈ N
∣∣∣ j ≤ ` and ∃k ∈ N : C

〈`〉
k = j, µ

(
F
〈`〉
k

)
= m

}
,

where again T 〈`〉(m) = ∞ if the minimum is taken over the empty set.

Definition 9.1 (Mass occurrence probability). The occurrence probability p〈`〉(m)
of mass m in the fragmentation of a finite random weighted string of length ` under any
cleavage scheme is defined as

p〈`〉(m) := P
(
T 〈`〉(m) ≤ `

)
,

the probability that a fragment of mass m occurs before the string ends.

85



9. Mass Occurrence Probabilities

Remark. Note that p〈`〉(m) is not the cumulative distribution function of the waiting
time T (m) or T 〈`〉(m). Each such occurrence probability is defined on a different proba-
bility space (one for each finite string length `). In particular, the occurrence probability
will not necessarily increase monotonically from 0 to 1. The cumulative distribution
functions are given by the probabilities P(T (m) ≤ l) and P(T 〈`〉(m) ≤ l), respectively.

Note also that the random variable T (m) and its finite counterpart may be defec-
tive, i.e. their distribution functions may not increase to 1 but stay constant. We will
investigate these defective cases in more detail in Section 9.2.

In Section 9.5, we will investigate the case that not the protein length but its mass,
the so-called parent mass, is given.

Let us first investigate the case of occurrence probabilities in a protein of given length.
Here, we need both the length distributions and the length-mass distributions of frag-
ments. They can be computed either within the wHMM framework as described in
Sections 6.1 and 8.1 or by the recurrence equations given in Sections 6.2 and 8.2.

9.1. Recurrence Equations

For computing p〈`〉(m), we make use of the non-occurrence probability p̄〈`〉(m) of the
complementary event that no fragment of mass m occurs in the fragmentation of S〈`〉:

p̄〈`〉(m) := P
(
T 〈`〉(m) > `

)
= P

(
µ
(
F
〈`〉
1

)
6= m, . . . , µ

(
F
〈`〉
N〈`〉

)
6= m

)
,

from which we recover the mass occurrence probability by

p〈`〉(m) = 1− p̄〈`〉(m).

The main idea for computing the non-occurrence probabilities is the following: For
T 〈`〉(m) to be greater than `, the first fragment of (S〈`〉, µ) must not have mass m and
the remaining suffix of length `−L

〈`〉
1 must not contain a fragment of mass m. Given the

first fragment’s length L
〈`〉
1 , its mass becomes independent of all the following fragments’

masses. We have already seen that the various fragment distributions differ for first and
following fragments. The probability for the first fragment to have mass m is usually
different from the corresponding probability of a following fragment to have mass m.
Therefore, to apply the above argument again on the remaining suffix S

〈`〉
L
〈`〉
1 +1:`

of S〈`〉

of length `′ = `−L
〈`〉
1 , let T

〈`′〉
+ (m) denote the waiting time for a fragment of mass m in

this `′-suffix of S〈`〉, and let

p̄
〈`′〉
+ (m) := P

(
T
〈`′〉
+ (m) > `′

)
be the corresponding non-occurrence probability.

For computing p̄
〈`′〉
+ (m), an argument similar to the one given above applies: The

probability not to have a fragment of mass m in this suffix is the probability that the first
fragment in this suffix does not have mass m and the remaining suffix of length `′−L

〈`〉
2

does not contain such a fragment.

86



9.1. Recurrence Equations

Full-history recurrences. Formalizing the stated idea immediately gives a recurrence
equation for the occurrence probabilities for given protein length.

Theorem 9.2 (Mass occurrence probabilities for given protein length). Let
(S〈`〉, µ) be a finite random weighted string of length ` cleaved with any cleavage scheme
(Γ,Π). The probability that S〈`〉 does not have a fragment of mass m is a convolution
over string length:

p̄〈`〉(m) =
∑̀
l=1

p̄
〈`−l〉
+ (m) · f̄ 〈`〉1 (l, m).

Similarly, the non-occurrence probability in an `-suffix can be computed by a convolu-
tion over the suffix-length, using the appropriate length-mass distribution for following
fragments:

p̄
〈`〉
+ (m) =

∑̀
l=1

p̄
〈`−l〉
+ (m) · f̄ 〈`〉+ (l, m).

The initial conditions are p̄〈`〉(m) = 1 for ` = 0 and p̄
〈`〉
+ (m) = 1 for ` = 0.

Finally, taking the probabilities

p〈`〉(m) = 1− p̄〈`〉(m), and

p
〈`〉
+ (m) = 1− p̄

〈`〉
+ (m),

gives the mass occurrence probabilities of mass m in a string of length ` and in an
`-suffix, respectively.

Proof. The main observation for the proof is that although the fragment masses are
not independent, as we deal with finite string length, the mass of a fragment becomes
independent of the remaining fragments’ masses once its length is known.

P
(
T 〈`〉(m) > `

)
= P

(
µ
(
F
〈`〉
1

)
6= m, . . . , µ

(
F
〈`〉
N〈`〉

)
6= m

)
=
∑̀
l=1

P
(
µ
(
F
〈`〉
1

)
6= m, . . . , µ

(
F
〈`〉
N〈`〉

)
6= m,L

〈`〉
1 = l

)
=
∑̀
l=1

P
(
µ
(
F
〈`〉
1

)
6= m, . . . , µ

(
F
〈`〉
N〈`〉

)
6= m | L〈`〉

1 = l
)
· P
(
L
〈`〉
1 = l

)
.

We can now use the conditional independence to get

P
(
T 〈`〉(m) > `

)
=
∑̀
l=1

P
(
µ
(
F
〈`〉
2

)
6= m, . . . , µ

(
F
〈`〉
N〈`〉

)
6= m | L〈`〉

1 = l
)

· P
(
L
〈`〉
1 = l, µ

(
F
〈`〉
1 6= m

))
=
∑̀
l=1

p̄
〈`−l〉
+ (m) · f̄ 〈`〉1 (l, m)

87



9. Mass Occurrence Probabilities

where we identified the first term as the occurrence probability in the (`− l)-suffix and
the second term as the length-mass distribution of the first fragment.

The same arguments also apply to the second recurrence.

Most importantly, each of the recurrences in Theorem 9.2 uses only quantities of one
particular mass m; we can therefore compute the occurrence probabilities independently
for different masses.

The two recurrences in Theorem 9.2 are so-called full-history recurrences, i.e. all pre-
vious values p̄〈`−l〉(m) for 1 ≤ l ≤ ` are needed for computing the value at index `. In
particular, for computing the `-th value, we need to sum over ` terms, i.e. the number
of operations increases with increasing string length `.

Constant-order recurrences. Once more, the simple observation that a fragment can
only have a certain mass m if its length is in a certain range allows us to modify the
recurrences of Theorem 9.2 into recurrences of constant order that immediately lead to
efficient implementations using dynamic programming techniques in Section 9.3.

Let us follow these modifications step-by-step to see what is going on before formally
stating the result:

First, let us split the convolution sum’s range into two parts up to and beginning after
lmax + 1:

p̄〈`〉(m) =
lmax+1∑

l=1

f̄
〈`〉
1 (l, m) · p̄〈`−l〉

+ (m) +
∑̀

l=lmax+2

u
〈`〉
1 (l) · p̄〈`−l〉

+ (m).

The first part 1 ≤ l ≤ lmax + 1 covers the fragment lengths which may give fragments
of mass m ≤ mmax. The second part lmax + 2 ≤ l ≤ ` covers the fragment lengths
for which mass m cannot be composed anymore. Thus, f̄

〈`〉
◦ (l,m) = u

〈`〉
◦ (l) for these

lengths. Of course, we may also compute the maximal fragment length for each mass m
separately, but for clarity of exposition we stick to lmax, an upper bound valid for all
masses m ≤ mmax.

The recurrence equations for fragment length distributions in Theorem 6.4 are only
valid for the case of infinite string length. In order to apply them here, we first have to
get rid of the 〈`〉-superscript. Since the distributions for the finite string length ` agree
with the distributions for an infinite string up to l = `− 1 (cf. Lemma 6.13), we extract
the `-th term from the second sum:

p̄〈`〉(m) =
lmax+1∑

l=1

f̄1(l,m) · p̄〈`−l〉
+ (m) +

`−1∑
l=lmax+2

u1(l) · p̄〈`−l〉
+ (m) + u

〈`〉
1 (`).

For better readability, let us denote the first sum by Υ1(`,m):

Υ1(`,m) :=
lmax+1∑

l=1

f̄1(l,m) · p̄〈`−l〉
+ (m),

88



9.1. Recurrence Equations

and the second sum by Φ1(`,m):

Φ1(`,m) :=
`−1∑

l=lmax+2

u1(l,m) · p̄〈`−l〉
+ (m),

so we get
p̄〈`〉(m) = u

〈`〉
1 (`) + Υ1(`,m) + Φ1(`,m)

The crucial step is to establish a recurrence equation for Φ1(`,m). Not surprisingly,
we can do this by using the recurrence equations for the length distributions of The-
orem 6.4. These recurrence equations are linear and have constant coefficients; they
almost immediately translate to recurrences on partial sums of their terms.

Lemma 9.3 (Recurrence equations for Φ1 and Ψ). Let

Φ1(`,m) :=
`−1∑

l=lmax+2

u1(l,m) · p̄〈`−l〉
+ (m),

Ψ(`,m) :=
`−1∑

l=lmax+2

v(l,m) · p̄〈`−l〉
+ (m).

With the notations of Theorem 6.4, the following recurrence equations hold for ` > lmax:

Φ1(`,m) = pΓ̄ · Φ1(`− 1,m) + pΓ ·Ψ(`− 1,m) + u1(lmax + 2) · p̄〈`−(lmax+2)〉(m),

Ψ(`,m) = pΓ∩Π · Φ1(`− 1,m) + pΓ∩Π ·Ψ(`− 1,m) + v(lmax + 2) · p̄〈`−(lmax+2)〉(m).

Proof. Using Theorem 6.4,

Φ1(`,m) = pΓ̄ ·
`−1∑

l=lmax+2

u1(l − 1) · p̄〈`−l〉
+ (m) + pΓ ·

`−1∑
l=lmax+2

v(l − 1) · p̄〈`−l〉
+ (m).

Performing an index shift in the two sums yields

Φ1(`,m) = pΓ̄ ·
`−2∑

l=lmax+1

u1(l) · p̄〈`−(l+2)〉
+ (m) + pΓ ·

`−2∑
l=lmax+1

v(l) · p̄〈`−(l+2)〉
+ (m),

which, by letting the sums start at l = lmax + 2 is

Φ1(`,m) = pΓ̄ ·
`−2∑

l=lmax+2

u1(l) · p̄〈`−1−l)〉
+ (m)

+ pΓ ·
`−2∑

l=lmax+1

v(l) · p̄〈`−1−l)〉
+ (m)

+ (pΓ̄u1(lmax + 1) ·+pΓv(lmax + 1)) · p̄〈L−1−(lmax+1)〉
+ (m).

89



9. Mass Occurrence Probabilities

We immediately identify the first sum as Φ1(`−1,m) and the second sum as Ψ(`−1,m).
The last term, using Theorem 6.4 once more, yields u1(lmax +2) · p̄〈`−(lmax+2)〉. The proof
of the Ψ-recurrence is almost exactly the same and omitted here.

Both recurrences are recurrences of order 1; to compute the values at index `, we
only need the two values at index (` − 1). The whole recurrence for p̄〈`〉(m) has then
order lmax, since Υ1(`,m) involves the previous lmax values of the recurrence.

What about p̄
〈`〉
+ (m)? This equation reads

p̄
〈`〉
+ (m) =

lmax+1∑
l=1

f̄
〈`〉
+ (l, m) · p̄〈`−l〉

+ (m) +
∑̀

l=lmax+2

u
〈`〉
+ (l) · p̄〈`−l〉

+ (m).

Like above, let us define

Υ+(`,m) :=
lmax+1∑

l=1

f̄
〈`〉
+ (l, m) · p̄〈`−l〉

+ (m),

Φ+(`,m) :=
`−1∑

l=lmax+2

u
〈`〉
+ (l) · p̄〈`−l〉

+ (m).

Next, let us take a very last glimpse at Theorem 6.4 to recall that we can write u+(l) in
terms of u1(l − 1) and v(l − 1). This leads immediately to the equation

Φ+(`,m) =
pΓ̄∩Π̄

pΓ̄

· Φ1(`,m) +
pΓ∩Π̄

pΓ̄

·Ψ(`,m) + u+(lmax + 2) · p̄〈`−(lmax+2)〉
+ (m),

so we can also apply the recurrences of Lemma 9.3 here.
We thus proved the following lemma.

Lemma 9.4 (Constant-order recurrences for p〈`〉 and p̄〈`〉). For a general cleavage
scheme, the mass occurrence probabilities p〈`〉 and p̄

〈`〉
+ (m) can be computed for ` > lmax

by the recurrences

p̄〈`〉(m) = u
〈`〉
1 (`) + Υ1(`,m) + Φ1(`,m),

p̄
〈`〉
+ (m) = u

〈`〉
+ (`) + Υ+(`,m)

+
(

pΓ̄∩Π̄

pΓ̄

· Φ1(`,m) +
pΓ∩Π̄

pΓ̄

·Ψ(`,m) + u+(lmax + 2) · p̄〈`−(lmax+2)〉
+ (m)

)
with initial values for ` ≤ lmax as given by Theorem 9.2. It is understood that quantities
with negative indices are zero.

These two recurrences have order lmax + 1; the orders are constant in `: For ` >
lmax, the terms Υ◦(`,m) are each a summation of lmax terms; the number of terms is
independent of the string length `. Both Φ1(`,m) and Ψ(`,m) are given via a system of
recurrences of order 1.

90



9.2. Approximation

9.2. Approximation

In Section 9.3, we will use Lemma 9.4 to develop efficient exact algorithms for computing
occurrence probabilities in the case of standard cleavage schemes. We will encounter two
major problems: The computation time of the mentioned efficient algorithms and the
more serious problem of memory requirements for keeping all occurrence probabilities
in the main memory.

If we do not insist on computing each value exactly, we can also address both problems
by an approximation of the values. Let us interpret the occurrence probabilities p〈`〉(m)
as values of a bivariate discrete function in ` and m. Since the combinatorial effects
already encountered in the fragment length-mass and fragment mass distributions carry
over to the occurrence probabilities (see Figure 9.3 for an illustration), we concentrate
on finding reasonable approximations of the mmax functions p〈`〉(·) of string length. The
occurrence probabilities for different masses are computed independently: We can thus
give independent approximations for each fragment mass.

We distinguish the following four cases of behavior of p〈`〉(m) taken as a function of
string length ` for some fixed mass m. For illustration, examples are given for tryptic
digestion and the amino acid alphabet without terminal characters.

1. Mass m is only decomposable as the first fragment. Then, p〈`〉(m) decreases
from bm/ µmaxc ≤ ` ≤ dm/ µmine and becomes constant for greater string lengths.
It is zero outside this length-range if the mass m is not decomposable while obeying
the composition rules for fragments.
Example: µ(′PK ′), as all fragments except the first begin with a non-prohibition
character.

2. Mass m is only decomposable as the last fragment. The behavior is the
same as in the previous case, p〈`〉(m) becomes constant.
Example: µ(′L′), as all fragments except the last must contain a cleavage character.
Note that this mass is also a valid first fragment for string length ` = 1.

3. Mass m is decomposable as an inner fragment. With increasing string
length `, chances increase that a fragment of mass m appears in the fragmenta-
tion: p〈`〉(m) increases monotonically from some string length on. Note that every
structure of an inner fragment is also a valid structure for the last fragment; this
last fragment may simply end on a cleavage character by chance. The converse is
not true, as the previous example shows.
Example: µ(′AK ′) is a valid first, inner and last fragment mass.

4. Mass m is not decomposable as a fragment. If mass m cannot be composed
from character weights in such a way that the composition constraints for any
fragment type are fulfilled, p〈`〉(m) ≡ 0 for all string lengths `.
Example: µ(′KK ′) cannot be composed from any other character composition than
two cleavage characters ’KK’. This string is not a valid fragment, however, and
can therefore not appear in a fragmentation.

91



9. Mass Occurrence Probabilities

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

0 5 10 15 20 25 30 35

0e
+0

0
1e

−0
6

2e
−0

6
3e

−0
6

4e
−0

6

Protein length

O
cc

ur
re

nc
e 

pr
ob

ab
ilit

y 
fo

r m
=2

10
0

0 200 400 600 800 1000

0.
00

00
0

0.
00

00
4

0.
00

00
8

0.
00

01
2

Protein length

O
cc

ur
re

nc
e 

pr
ob

ab
ilit

y 
fo

r m
=2

10
0

Figure 9.1.: Occurrence probabilities as function of protein length. Mass m∗ =
2 100.0 Da, 0.1 Da precision, tryptic digestion. Right: Length range
` = 1 . . . 1 000. Left: Length range ` = 1 . . . 35.

The goal of this section is to investigate how the occurrence probabilities p`(m) can
be written in parametric form as a function of `, with parameters solely depending
on m. We will have to take a little extra care for the boundaries: The first and the
last fragment have fewer combinatorial constraints on their amino acid composition
than the inner fragments. If the protein is short and does only have one fragment,
there are even less combinatorial constraints. Let us have a look at Figure 9.1 (left) to
see what consequences these different boundary cases have: The occurrence probability
for m = 21 000 (2 100.0 Da) first increases with string length, gets to a local maximum,
decreases and finally increases monotonically. The mode in the beginning is due to the
weaker constraints for small string length; there are simply more possibilities to build a
string of mass m if the first and last character are arbitrary instead of a non-prohibition
and a cleavage character, respectively. Nevertheless, the lengths of the first and last
fragment can be expected to be fairly small, as the fragment length distribution is almost
geometric for all types of fragments. From a certain string length on, the contribution of
these boundary fragments to the mass occurrence probability can be expected constant;
the increase in the mass occurrence probability is then determined solely by the inner
fragments. Since the mass distributions of inner fragments do not have boundary effects
and the inner fragments are i.i.d., we see a monotonic increase as in Figure 9.1 (right).
For masses not decomposable as an inner fragment, the occurrence probabilities stay
constant.

The main idea to approximate the occurrence probability of fragment mass m as a
function of protein length ` is the following: This occurrence probability is the waiting
time for the first occurrence of a fragment of mass m. From a certain protein length `min

on, the boundary effects stay constant and the increase is monotone. If we neglect the
first and the last fragment, the occurrence probability can now be seen as the waiting
time in a Bernoulli process where each fragment is seen as an element of the process.
Each fragment mass either has or has not mass m. The waiting time for a fragment of

92



9.2. Approximation

mass m can be expected to be geometric-like, i.e. of the form

P(T 〈`〉(m) ≤ `) ≈ 1− cm · q`
m =: p̂〈`〉(m), (9.1)

for ` > `min. The parameters cm and qm are constants depending solely on m.
The parameter qm describes the slope of the function. Given that the boundary effects

can be neglected from `min on, we can use the estimator

q̂m = ∆

√̀
p̄〈`〉(m)

p̄〈`−∆`〉(m)
,

for some protein length difference ∆` and some protein length ` ≥ `min +∆`. Choosing a
greater length difference ∆`, gives a more accurate estimation of qm. For our estimation,
we took `min = 500 and ∆` = 500, estimating at ` = 1000. However, an evaluation
of estimators for m = 2100.0 Da at mass precision ∆m = 0.1 with `min = 100 and
∆` = 1, 2, . . . , 1 000 gave exactly the same estimates for each length difference. The
estimation of qm is therefore very robust even for small length differences and small
starting protein length `min.

The approximation is only valid for protein lengths greater than `min and we thus
have to account for the value of the function at ` = `min. This is done by introducing
the parameter cm that allows to set the value for the approximation at ` = `min. We
estimate this parameter by

ĉm =
p̄〈`min〉(m)

q̂m
`min

.

The denominator is used for purely esthetic reasons: It allows us to take the `-th power
of qm in Equation (9.1) to approximate p〈`〉(m) instead of p〈`+`min〉(m).

0 25000 50000 75000 100000

0e
+0

0
2e

−1
2

4e
−1

2
6e

−1
2

8e
−1

2
1e

−1
1

Protein length

Re
la

tiv
e 

ap
pr

ox
im

at
io

n 
er

ro
r

0.95 0.96 0.97 0.98 0.99 1.000.
99

4
0.

99
6

0.
99

8
1.

00
0

qm

c m

Figure 9.2.: Quality of mass occurrence probability approximations, ∆m = 0.1. Left:
Relative error for fragment mass m = 2100.0 Da, protein lengths up to
`max = 100 000. Right: Initial parameter ĉm against slope parameter q̂m for
m = 2100.0 Da.

93



9. Mass Occurrence Probabilities

We test the approximation for tryptic digestion, average amino acid masses and mass
precision ∆m = 0.1 for each mass and length up to `max = 10 000 and found the approx-
imation errors within the computational accuracy of double precision for floating point
arithmetic.

To see whether the estimation of the slope qm is correct even for greater protein
length, we computed the occurrence probability for mass m = 2 100.0 Da with mass
precision ∆m = 0.1, tryptic digestion and average amino acid masses. In Figure 9.2
(left), the relative approximation error

εrel :=

∣∣∣p̄〈`〉(m)− ¯̂p〈`〉(m)
∣∣∣

p̄〈`〉(m)

is given for protein lengths up to `max = 100 000; it stays within neglectable boundaries
even for very large protein length. Note that for ` < `min = 500, we have ¯̂p〈`〉(m) =
p̄〈`〉(m).

In Figure 9.2 (right), the parameter estimate ĉm for the initial approximation at
` = `min is plotted against the slope parameter estimate q̂m, both for fragment masses
57.0 ≤ m ≤ 3 500.0 and ∆m = 0.1. In this figure, we observe some of the previously
mentioned points: In total, there are 34 430 different parameter pairs. For 1 089 of
them, we observe ĉm = q̂m = 1 (they all gather in one point in the right upper corner of
the figure). These masses are not decomposable as any type of fragment, and we have
p〈`〉(m) ≡ 0 for all protein lengths. For another 4 789 pairs, we observe ĉm 6= 1, but
q̂m = 1; these pairs make up the points on a horizontal line in the top of the figure. The
corresponding masses are decomposable as a first or last fragment, i.e. the occurrence
probability at `min is greater than zero. However, they cannot be decomposed as an
inner fragment and thus the occurrence probability stays constant for all subsequent
protein lengths. An example is m = 71.1 Da, the average mass of amino acid ’A’ that
can only occur as the last fragment (for ` > 1). All other parameter pairs have both
ĉm 6= 1 and q̂m 6= 1. Not surprising, these pairs all lie around a straight line, i.e. they are
highly correlated: Fragment masses with a high probability that can occur as both first
and following fragments have a high initial probability and the occurrence probability
also increases at a high rate. Last, the two points in the lower left corner of the figure
correspond to the two cleavage character masses µ(′K ′) = 128.2 Da (left point) and
µ(′R′) = 156.2 Da (right point). They both have a high occurrence probability in the
first part of a protein which also increases very fast to one for greater protein lengths.

9.3. Implementation

For computing the joint length-mass distributions of fragments in Section 8.5, we restrict
the range of computation to those masses m ≤ mmax that are detectable in a particular
experimental setting. The same argument still holds for computing the occurrence prob-
abilities: Since we assume that fragment masses greater than mmax are not detectable,
we will only need the occurrence probabilities for masses up to mmax.

94



9.3. Implementation

In contrast to the length-mass distributions, however, we cannot restrict our compu-
tation to a small length range: We need to compute the occurrence probabilities up
to some maximal protein length `max, usually defined by the longest protein in some
reference database.

Time complexity. An implementation of the general recurrences in Theorem 9.2 using
dynamic programming techniques has a time complexity of O(`) for computing the `-th
entry for any mass m, given the previous entries for this mass. Computing the whole
table of occurrence probabilities up to some maximal fragment mass mmax and some
maximal protein length `max thus takes time O(`2

max ·mmax).
The time complexity can be reduced considerably by implementing the recurrences

given in Lemma 9.4 once the protein length ` exceeds lmax+1. Computing the occurrence
probabilities up to this length takes O(l2max ·mmax) time using the basic recurrences of
Theorem 9.2.

The time complexity for computing the occurrence probability for one particular mass
and protein length ` is O(lmax), given the values for previous lengths. The terms Φ1(`−
1,m) and Ψ(`− 1,m) are already computed and can be accessed in constant time O(1).
From them, Φ1(`,m) is computed in constant time using Lemma 9.3, as is Ψ(`,m).
For computing the terms Υ◦(`,m), we need to perform a convolution of size lmax for
each term, given the joint length-mass distributions f◦(·, ·) for fragments; their time
complexity is thus O(lmax).

Summarizing, the computations for the next protein length take O(lmax) time. The
complexity for computing all necessary occurrence probabilities for fragment masses up
to mmax and protein lengths up to `max is therefore O(lmax ·`max ·mmax). This complexity
is linear in the maximal protein length compared to a quadratic complexity of the general
implementation described above; the maximal fragment length is also usually very small.

Memory requirements. Whereas the maximal fragment length lmax defined by mmax is
about 62 for a MALDI-TOF experiment, the maximal protein length in the Swiss-Prot
sequence database is about 9 000. To guarantee constant and fast access times for the
occurrence probabilities, we need to keep them in the main memory.

As a first demonstration on how much memory we actually need, let us consider a
typical peptide mass fingerprint setting using a protein database. We would like to
compute the occurrence probabilities p〈`〉(·) for tryptic digestion fragments up to, say,
mmax = 3 500 Da with a precision of ∆m = 0.1 Da. For an identification using Swiss-
Prot, we need to handle protein lengths up to `max = 9000. Assuming double precision
for each probability, so 8 bytes per entry, we need 35 000 ·9 000 ·8 bytes, about 2.35 GB of
main memory just for the occurrence probabilities. For their computation, we also need
to keep the length distributions and length-mass distributions, which requires another
35 MB of main memory (see Section 8.5). Moreover, we also need the p̄

〈`〉
+ (·) entries in

memory to compute the occurrence probabilities, which would nearly double the space
requirements. These requirements are currently clearly out of question for contemporary
desktop computers.

95



9. Mass Occurrence Probabilities

To resolve this issue, we first recall that for both p̄〈`〉(m) and p̄
〈`〉
+ (m), computation

for different masses can be performed independently since only previously computed
values for the same mass m are needed in the recurrences. We can compute p̄〈`〉(m) for
some m up to `max and immediately store p〈`〉(m) for ` = 1 . . . `max. The corresponding
values of p̄

〈`〉
+ (·) for mass m can be deleted since they were only needed to compute the

corresponding values of p̄〈`〉(·). Thus, we only need to keep two arrays of size `max in
memory to store p̄〈`〉(m) and p̄

〈`〉
+ (m) in addition to the p〈`〉(m)-values.

For computing the occurrence probabilities of mass m, we need the length-mass dis-
tributions f̄◦(·, ·) only for the same mass m. We can therefore make use of our con-
siderations in Section 8.5 and only keep a small part of these distributions for masses
m − µmax . . .m in memory, computing the next entries from them when needed while
removing other entries. This requires computing the occurrence probabilities in order of
increasing mass, i.e. for m,m + 1,m + 2, . . . .

In summary, we need two extra arrays to keep p̄〈`〉(·) and p̄
〈`〉
+ (·) for the current mass,

each of size `max, 3 µmax entries for the two length-mass distributions and g(·, ·), 2`max

entries for the two length distributions and finally 2 entries for the previous Φ1(·,m) and
Ψ(·,m) values.

The problem of keeping the occurrence probabilities in memory still remains serious.
Clearly, it cannot be solved by smarter computation and we have to look for ways to
reduce the memory requirements:

First, we expect some masses not to be decomposable, i.e. each entry in the corre-
sponding column of p〈`〉(·) is zero. We may not want to store these entries. However, for
the Swiss-Prot database and tryptic digestion with precision 0.1 Da, the number of such
masses is negligible compared to the number of masses we need to store and compute.
We would also need an additional data structure to keep track of mass indexing. Com-
puting the above example, we found about 1 000 masses that were not decomposable
for a mass range up to 35 000 (3 500 Da); these correspond to the masses for which the
approximation parameters are qm = cm = 1, (cf. Section 9.2).

The other obvious possibility is to make use of our considerations for approximation
in Section 9.2: If the occurrence probabilities depend smoothly on the protein length `,
we compute each entry for a particular mass m, but only store every D-th entry. We
also need to store the first E values until p〈`〉(m) becomes a smooth function in `; we
may choose E ≈ `min. Then, only values for protein lengths ` = 1, 2, 3, . . . , E,E+D,E+
2D,E + 3D, . . . are kept in memory for each mass, resulting in a reduction of memory
requirements of about a factor D for E small compared to `max. If an intermediate
value between two nodes is accessed afterwards, it can be computed in constant time by
a linear interpolation of the two nearest entries. Since E and D are known, these two
entries can always be found in constant time.

For our example setting and the computations of occurrence probabilities in all fol-
lowing sections, we started storing interpolation nodes from E = 100 and stored every
D = 25-th entry, reducing the memory requirement to about 100 MB. The interpolation
error was below 10−10 for all entries.

96



9.4. Evaluation on Swiss-Prot

9.4. Evaluation on Swiss-Prot

+ + +++ +

+

+ + + + +

+

+ + ++ + ++

+

+

+

100 120 140 160 180 200

0
.0

0
.2

0
.4

0
.6

0
.8

Fragment mass m in Da

p
[3

0
0

,m
]

+
o

Exact
Empirical (SwissProt)

1000 1100 1200 1300 1400 1500

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

Fragment mass m in Da
p

[3
0

0
,m

]

Figure 9.3.: Occurrence probabilities for fixed protein length ` = 300, mass precision
∆m = 0.1, tryptic digestion. Left: Comparison to empirical Swiss-Prot
data for masses 100 ≤ m ≤ 200 Da, values above 10−4 shown. Right:
Probabilities for masses 1 000 ≤ m ≤ 2 000 Da.

We compare the mass occurrence probabilities predicted by our model with empirical
frequencies of mass occurrences. To get a reasonably stable estimation of these frequen-
cies for one protein length, we need a huge number of proteins of this particular length
in the database so each fragment mass is covered by several fragments. We had to re-
strict our comparison to the comparably small mass range up to 200 Da; other fragment
masses do not occur often enough to estimate their frequencies.

In Figure 9.3 (left), predicted occurrence probabilities in proteins of length ` = 300 are
shown as crosses together with their estimated frequencies as circles. The figure shows
a reasonable agreement between model and data. The two most prominent probabilities
of about ≈ 0.8 are given to the masses of the cleavage characters K and R. High
probabilities (> 0.2) are also given to certain two-character fragments in this mass range.
Note the similarity to the fragment mass distribution in Figure 8.3 in the corresponding
mass range.

In Section 8.6, we observed a periodic behavior of the length-mass and mass distribu-
tions of fragments. A similar behavior is now observed in the occurrence probabilities for
fixed protein length, see Figure 9.3 (right). Note that this figure shows one graph. As
for the fragment length-mass distributions, this graph has period 20; taking the masses
modulo this period “separates” the different “curves” visible in the graph. In Figure 9.4,
the occurrence probabilities for masses r = m mod 20 taken modulo 20 are shown for

97



9. Mass Occurrence Probabilities

1000 1100 1200 1300 1400 1500

0
.0

0
0

5
0

.0
0

1
0

0
.0

0
1

5
0

.0
0

2
0

0
.0

0
2

5
0

.0
0

3
0

Fragment mass m in Da

p
[3

0
0

,m
]

1000 1100 1200 1300 1400 1500

0
.0

0
0

0
0

.0
0

0
5

0
.0

0
1

0
0

.0
0

1
5

0
.0

0
2

0

Fragment mass m in Da

p
[3

0
0

,m
]

Figure 9.4.: Occurrence probabilities for fixed protein length ` = 300, mass precision
∆m = 0.1, tryptic digestion, masses taken modulo 20: r = m mod 20.
Left: Remainder r = 6. Right: Remainder r = 8.

remainders r = 6 (left) and r = 8 (right).

9.5. Occurrence Probabilities for given Parent Mass

Instead of computing the occurrence probability of a certain fragment mass in a protein
of some fixed length `, we may want to compute this probability in a protein of given
parent mass. This implies another statistical model for computing significance values.
Just like in the case of finite fixed protein length, we assume that the parent mass is
fixed and given from a source outside the probability model; we then compute conditional
probabilities, given the fixed finite mass. In particular, this implies that we do not need a
probability distribution for protein lengths or protein parent masses; it also implies that
the sample space of considered strings is finite and each string has positive probability.
The latter is not the case if strings of arbitrary lengths are considered. Then, each
particular string and each finite set of strings would have probability zero. We might
also introduce a probability distribution for protein lengths (e.g., estimated from Swiss-
Prot), or a probability distribution for protein parent masses (e.g., directly estimated
from Swiss-Prot or computed from a protein length distribution). This would allow us
to compute the probability that a protein has a fragment certain mass and the protein
itself has certain length or parent mass. This is a completely different model which we
will not consider further.

Let us denote the occurrence probability of fragment mass m in a protein of parent

98



9.5. Occurrence Probabilities for given Parent Mass

mass M by p〈M〉(m) and the non-occurrence probability by p̄〈M〉(m). In particular,
p〈M〉(m) is the probability that a random weighted string has at least one fragment of
mass m in its fragmentation, conditioned on the event that the string has a given mass.

We can now apply an argument similar to the one used for the case of given protein
length: If a protein of mass M does not have a fragment of mass m, its first fragment
must not have mass m and the remaining suffix after the first fragment must not contain
a fragment of mass m. The mass of this suffix is the parent mass minus the mass of the
first fragment. As before, we have to distinguish whether we take the first fragment of the
whole protein or one of the suffixes remaining after a fragment. Sticking to the notation
of Section 9.1, we denote the occurrence probability of fragment mass m in suffixes of
mass M by p

〈M〉
+ (m); non-occurrence probabilities are defined as p̄〈M〉(m) := 1−p〈M〉(m)

and similar for suffixes.
In Section 8.4, we computed fragment mass distributions f◦(m) = P(µ(F◦) = m)

for first and following fragments in infinite strings. For finite parent mass, the protein
length is of course also finite; the last fragment thus has a mass distribution different
from the ones for a first or following fragment. Let f

〈M〉
◦ (m) denote the probability that

a fragment has mass m if the parent mass of the protein is M . For reasons that will
become clear later, we define

f
〈M〉
◦ (m) :=

{
f◦(m), if m 6= M,∑∞

`=1 f
〈`〉
◦ (`,M) if m = M.

In this definition, fragment mass probabilities for masses greater than the parent mass
are not zero. Note also that the probabilities do not form a probability distribution;
they do not sum to one.

The case m = M involves an infinite summation. This is not a real problem since for
` > dM/µmine, all terms are zero and the number of non-zero summands is finite.

Theorem 9.5 (Mass occurrence probabilities for given parent mass). For gen-
eral cleavage schemes, the non-occurrence probability of fragment mass m in a random
weighted string S of parent mass µ(S) = M is given by

p̄〈M〉(m) =

{
1, if m > M ,∑

m′ 6=m f
〈M〉
1 (m′) · p̄〈M−m′〉

+ (m), if m ≤ M,

where the non-occurrence probability in suffixes of mass M is

p̄
〈M〉
+ (m) =

{
1, if m > M ,∑

m′ 6=m f
〈M〉
+ (m′) · p̄〈M−m′〉

+ (m), if m ≤ M.

Proof. For a protein of parent mass M not to have a fragment of mass m, its first
fragment must not have mass m and the remaining suffix of mass M − µ(F1) must not
contain a fragment of mass m. In order to find the suffix’ mass, we have to sum over
all possible fragment masses for the first fragment. Care has to be taken if the fragment

99



9. Mass Occurrence Probabilities

mass equals the parent mass, as then a fragment of this mass is necessarily the protein’s
last (and only) fragment and we have to take the correct mass distribution f

〈M〉
1 (M).

The same argument also applies to the occurrence probabilities in suffixes starting
after a fragment.

As in the case of given protein length, we can compute the occurrence probabilities
for different fragment masses independently.

In principle, computing the occurrence probabilities using the recurrences of the pre-
vious theorem involves summation over an infinite mass range: It contains all masses
except the fragment mass in question. However, it is possible to circumvent this problem
by using the cumulative distribution function (cdf) of the fragment mass

G◦(m) := P (µ (F◦) ≤ m) =
m∑

m′=1

f◦(m′).

We can re-derive the fragment mass probabilities from the cdf by the obvious relation
f◦(m) = G◦(m)−G◦(m− 1).

Splitting the summation range in the recurrences into masses smaller, equal and
greater than the parent mass yields

p̄〈M〉(m) =
∑

m′ 6=m
m′<M

f1(m′) · p̄〈M−m′〉
+ (m) + f

〈M〉
1 (M) +

∑
m′ 6=m
m′>M

f1(m′)

for m ≤ M . The constraint m′ 6= m in the last sum is then superfluous and can be
removed.

In order to decrease the computational effort for each recurrence step, we write the
last sum in terms of the cdf G1(·) as∑

m′>M

f1(m′) = 1−G1(M),

and we may also write the first sum as∑
m′ 6=m
m′<M

f1(m′) · p̄〈M−m′〉
+ (m) =

∑
m′ 6=m
m′<M

(
G1(m′)−G1(m′ − 1)

)
· p̄〈M−m′〉

+ (m).

A similar argument also applies to the occurrence probabilities for suffixes.
We can compute the cdf’s G◦(·) while computing the fragment mass distributions.

Computing the M -th value for a certain mass, given the values for all previous parent
masses involves a summation of M + 1 terms. Thus, we can compute all occurrence
probabilities up to some maximal parent mass Mmax using standard dynamic program-
ming techniques in time O(M2

max) for each fragment mass. In total, for parent masses
up to Mmax and fragment masses up to mmax, we need time O(M2

max ·mmax) and space
O(Mmax ·mmax) to keep all entries. Both complexities are a serious problem in practice:

100



9.5. Occurrence Probabilities for given Parent Mass

If we want to consider proteins up to length `max, we have an upper bound for the pro-
tein mass of Mmax ≤ `max · µmax, a value much higher than `max, and increasing with
increasing mass precision ∆m.

We also need some additional space to store the relevant probabilities for computing
the mass occurrence probabilities: We need O(mmax) space to keep the cdf for the
fragment masses and O(Mmax) space to keep the fragment mass probabilities for the
boundary fragments.

Moreover, unlike for increasing protein length, we cannot expect the occurrence prob-
abilities to depend smoothly on the parent mass; the probabilities not only depend on
the decomposability of the fragment mass but also on the decomposability of the par-
ent mass. If M is not decomposable, there is no protein of this parent mass and the
occurrence probability is zero for any fragment mass.

101



9. Mass Occurrence Probabilities

102



Part II.

Protein Identification with Mass
Spectra Alignments

103





10. Introduction

In the second part of the thesis, we develop a general computational framework for
protein identification using peptide mass fingerprinting data. The framework is based
on alignments of peak lists for computing similarity scores of a measured and a predicted
spectrum. We use statistics developed in the first part to estimate the score distribution
of peak list alignments and provide a p-value as statistical significance of an identification.
We call this framework SAMPI1: Aligning Mass spectra for Protein Identification.

As we saw in Chapter 2.2, a raw spectrum is pre-processed into a peak list: First,
signal processing algorithms are applied for noise reduction and baseline correction, then
a peak-detection algorithm is applied for identification of the mass-to-charge ratios that
correspond to measured ions, and finally the isotopic pattern and the charge state of these
ions is determined for de-convolution and computing singly-charged peaks. The resulting
peak list of m/z-values together with their intensities and possibly other attributes is
taken as input for identification algorithms. Clearly, a lot of information might get lost
or obscured by the variety of applied preprocessing methods and we have to keep this
in mind when developing the identification framework.

Just to set the stage, let us briefly recall that measured peak lists are never perfect;
they differ from what we expect from a theoretical peak list of a protein sequence: First,
m/z-values are only indirectly measured, leading to potential shifts due to calibration
and transformation errors. Second, peak lists contain additional peaks with arbitrary
intensity, e.g. caused peak-detection errors and chemical noise. Third, some peaks may
be missing due to peak-detection errors, probe preparation or insufficient ionization.
Moreover, some peaks may have m/z-values close to each other and cannot be resolved
by the MS machine, leading to a joint peak with m/z-value and intensity different from
those of both ions.

Solely for readability, we limit our attention to ionization methods that predominantly
produce single charged ions, such as MALDI. This allows us to talk about the mass of
a molecule, instead of its mass-to-charge ratio.

We follow the general procedure common to all protein identification algorithms based
on sequence database comparison: We compute the predicted peak list for each sequence
in the sequence database using the same cleavage rules as the corresponding protease.
This is done in a straightforward way using a mass table such as Table 1.1.

Each predicted peak list is then matched to the measured peak list to identify corre-
sponding peaks. This matching is not unique and we need to select a matching that is
optimal with respect to some criterion, measured by a similarity score. In Chapter 11,
we give a general framework for efficiently computing the optimal matching of the pre-

1An ancient, obsolete greek character, cf. [70]

105



10. Introduction

dicted and the measured peak list and reporting the matching score. The matching score
serves as a numerical measure of how “close” the predicted spectrum is to the measured
one, i.e. how good it explains the measurement. The highest scoring database sequence
is then reported as the identification.

Since we allow quite general scoring schemes, a similarity score itself is only of limited
use. In particular, it does not provide information about the quality of the identification.
In Chapter 12, we therefore use the statistics of the first part of the thesis to compute
a statistical significance of an identification under a well-defined null-model. Under
some independence assumptions, the alignment score is shown to be nearly Gaussian;
we estimate its parameters and compute a p-value for each computed alignment score.

In Chapter 13, we consider several aspects for constructing practical scoring schemes
using mass differences and intensities. We evaluate our method on real-world proteomics
data and compare our results with the standard software MASCOT.

106



11. Aligning Mass Spectra

11.1. Peaks and Peak Lists

Since we restrict ourselves to singly-charged ions, we can also restrict our attention to
the mass of a peak; it is then identical with the mass-over-charge ratio. Modeling peaks
and peak lists is then straightforward.

Definition 11.1 (Peak; peak list). A peak list of length n is an n-tuple S = (p1, . . . , pn)
of peaks pi ∈ M∗ × A. Every such peak has a mass µ∗(pi) ∈ M∗ ⊆ R≥0 and possibly
other additional attributes (a1(pi), . . . , ak(pi)) ∈ A, k ≥ 0. A peak list is ordered with
respect to mass, that is, µ∗(pi) < µ∗(pj) whenever i < j for all 1 ≤ i, j ≤ n.

Note that we allow peaks without any attributes besides their mass. This gives the
simplest representation of a peak. Note also that in contrast to the first part of the thesis,
we are now working with peak masses given in Dalton if not explicitly stated otherwise,
i.e. with real numbers (or, more precisely, floating point numbers in an implementation).
To avoid confusion in later chapters, we denote quantities relating to real masses by a
superscript ∗, whereas quantities without such superscript relate to scaled and rounded
integer masses as introduced in the first part. In particular, µ∗(p) denotes a real non-
negative peak mass, whereas µ(p) denotes a scaled and rounded non-negative integer
mass of a peak p for some mass precision ∆m. In the latter case, the set of peak
masses M is a set of integers M = {m1, . . . ,mu} for some u ∈ N. We always assume
that the set of possible peak masses M∗ and the mass precision ∆m are given beforehand
and are both constant.

Example 11.2 (Mass peak). The simplest representation of a peak is its mass. Then
M∗ = R and A = {∅}.

The most important additional attribute of a peak is its intensity; it usually corre-
sponds to the abundance of the molecule in the sample probe. Since intensity values also
depend on a multitude of other parameters, such as ionization energy, or total amount of
sample probe, it is common practice to use relative intensities, i.e. the highest intensity
is set to one and all other intensity values in the peak list are scaled accordingly to a
value between 0 and 1.

Example 11.3 (Peak with relative intensity). If we want to consider the relative
intensity of a peak, we could set M∗ = R and A = [0, 1] ⊂ R. A peak p is then a pair
(µ∗(p), a1(p)) of mass µ∗(p) and intensity a1(p).

Recall that depending on the experimental settings, there exists a maximal mass
m∗

max ∈ R≥0 such that no masses above m∗
max are present in any mass spectrum. For

107



11. Aligning Mass Spectra

example, m∗
max ≈ 3 500 Da for tryptic digestion experiments on MALDI-TOF spectrome-

ters. Then M∗ := [0,m∗
max] is the peak mass range of interest, and lmax := bm∗

max/µ∗minc
is the maximal length of a fragment that we can detect; it is the same as in the first part
of the thesis. The maximal mass corresponds to the scaled maximal fragment mass of
the first part via the scaling mmax = round(m∗

max/∆m).

11.2. Peak List Matching and Scoring

Let Sp ≡ Sp(s) = (pp
1 , . . . , p

p
np) be the predicted peak list of length np of some protein

sequence s. We will only give the protein sequence of the predicted peak list if this
sequence is of particular importance for the argument. Further, let Sm = (pm

1 , . . . , pm
nm)

be a measured peak list of length nm. We quantify the similarity of these two spectra
by a numerical score in order to decide which predicted spectrum best explains the
measurement.

We explicitly allow different attribute sets for the peaks in Sp and Sm: Measured
peaks usually have an intensity value, whereas peak intensities are not readily available
in predicted peaks. We will come back to this in Chapter 13.

Matching peak lists. To quantify the similarity of two peak lists, we need to assign
each peak in the measured peak list either to a peak in the predicted peak list or declare
it as an additional peak if no such peak can be found. Conversely, we have to assign
each peak in the predicted peak list either to a peak in the measured peak list or declare
it as a missing peak.

Moreover, we want these peak assignments to preserve the relative order of the peak
lists: Let Sm

� ⊆ Sm and Sp
� ⊆ Sp be two subsets of peaks that are matched to peaks in

the respective other peak list, and let

π : Sm
� → Sp

�

denote the assignment of a measured to a predicted peak. That is, π(pm
j ) ∈ Sp denotes

the predicted peak assigned to the j-th measured peak. To preserve the relative order
of the two peak lists in the assignment, the following condition must hold for any two
peaks pm

j , pm
j′ ∈ Sm

� :

µ∗(π(pm
j )) ≤ µ∗(π(pm

j′ )) if and only if µ∗(pm
j ) ≤ µ∗(pm

j′ ).

The same condition also holds for the corresponding two predicted peaks under π−1.
The sets Sm

� and Sp
� uniquely define the order-preserving matching π.

Restriction of the possible peak-matchings to the ones preserving the mass order of
peaks is quite natural; the order of molecular mass of ions is also preserved in the MS
measurement.

For the moment, let us assume that the assignment is one-to-one, i.e., π is a bijection.
We will explain many-to-one assignments in Section 11.5.

108



11.2. Peak List Matching and Scoring

Scoring peaks. We are not interested in all possible order-preserving peak assignments,
but only in those that are optimal with respect to some optimality criterion. This
criterion is defined by a peak scoring function score that gives a real value to each
matched pair of peaks (pp, pm) ∈ Sp

� × Sm
� . All unmatched peaks are assigned to a void

peak.

Definition 11.4 (Peak scoring function). Let εp and εm denote special gap peaks.
A peak scoring function or scoring scheme

score :
(
Sp ∪ {εp}

)
×
(
Sm ∪ {εm}

)
→ R

is then defined by

score (pp, pm) = Ψmatch (pp, pm) ,

score (εp, pm) = Ψadd (pm) ,

score (pp, εm) = Ψmiss (pp) ,

and for completeness

score(εp, εm) = −∞,

with the following partial score functions: The matching score function

Ψmatch : (M∗ ×Ap)× (M∗ ×Am) → R,

the additional score function

Ψadd : M∗ ×Am → R,

and the missing score function

Ψmiss : M∗ ×Ap → R.

Different gap peaks are needed to allow the two spectra to have different additional
peak attributes. We do not specify gap peaks as mathematical objects, but rather define
them implicitly via the partial scoring functions.

For the following considerations, we will refer to the peak scoring function score(·, ·),
whereas the three partial scoring functions of a scoring scheme will be more appropriate
for statistical computations in Chapter 12.

For pp ∈ Sp and pm ∈ Sm, score(pp, pm) is the score of matching peaks pp and pm;
score(pp, εm) is the score of a missing peak pp in Sp not present in Sm (e.g. by insufficient
ionization); and score(ε, pm) is the score of an additional peak pm in Sm not present in
Sp (e.g. chemical noise).

It is clear that such a scoring function score(·, ·) must be based on the attributes of the
peaks, such as mass or intensity: For example, if µ∗(pp) is the mass of peak pp ∈ Sp and
µ∗(pm) the mass of peak pm ∈ Sm, then score(pp, pm) should increase with decreasing

109



11. Aligning Mass Spectra

mass difference |µ∗(pp)−µ∗(pm)|. The presented framework allows us to mimic additive
or multiplicative scoring schemes, such as that used by MASCOT [103] or log likelihood
peak scoring [38]. We will discuss some practical details of useful scoring schemes in
Chapter 13.

We always require that a matching score is only positive for predicted peaks within
a finite mass interval around a measured peak. We call this interval the support of the
measured peak.

Definition 11.5 (Support of measured peak). The support U∗(pm) ⊂ M∗ of a
measured peak is the interval of all peak masses that might give a positive matching
score:

U∗ (pm) := [m∗
l ,m

∗
r ] ⊂ R≥0,

where the left interval border is m∗
l = minm∈M∗{Ψmatch(pp, pm) > 0, µ∗(pp) = m} and

similarly the right interval border is m∗
r = maxm∈M∗{Ψmatch(pp, pm) > 0, µ∗(pp) = m}.

Similarly, we define the discrete support for discrete scaled masses by the correspond-
ing scaled quantities, given a mass precision ∆m.

For discrete peak masses, the support is a set of consecutive integers: U(pm) = {i, i +
1, . . . , i+n−1} ⊂ N0 for some i and n depending on the measured peak and the matching
score function. We also require that supports of measured peaks are disjoint and we can
always achieve this by shrinking support intervals.

Scoring matchings. The score of the bijective order-preserving matching π : Sp
� → Sm

�
is the sum of scores of the peak matchings:

score(π) =
∑

pm∈Sm
�

score
(
π(pm), pm)

)
+

∑
pm∈Sm\Sm

�

score(εp, pm) +
∑

pp∈Sp\Sp
�

score(pp, εm).

(11.1)
A matching is optimal with respect to the peak scoring function, if it has maximal score
among all possible matchings.

An example. Let us take a brief look at a simple example, in order to get a little more
intuition.

Example 11.6 (Peak-counting score). Using only peak masses for scoring, we define
a peak counting score by

score(pp, pm) =
{

1, if
∣∣µ∗(pp)− µ∗(pm)

∣∣ ≤ δ
0, otherwise

for all pp ∈ Sp and pm ∈ Sm and for some fixed mass difference δ ∈ R>0. The peak
scores for unmatched peaks are set to zero: score(pp, εm) = score(εp, pm) = 0. Such a
score counts the number of peaks we can match within a mass difference of at most δ.

110



11.3. Computing Optimal Matchings

11.3. Computing Optimal Matchings

So far, we only explained how a peak assignment of two peak lists is scored using peak
scoring functions and gap peaks. We did not explain how an optimal assignment and
its score are computed. From a bioinformatics perspective, this problem looks quite
familiar: It is basically the same problem as a global sequence alignment with gaps.
Global sequence alignments were introduced in [95] as a tool for the analysis of biological
sequences. They are now a standard method for computing sequence similarities. They
were also successfully applied to a variety of other problems such as time warping [117],
physical map comparison [67], aligning gel electrophoresis patterns [3, 64] or matching
tree ring data [128].

These algorithms allow the simultaneous computation of an optimal alignment to-
gether with its similarity score. If we interpret a peak as a letter in some (possibly
infinite) alphabet, we can use the exact same methods for simultaneously computing
an optimal peak list alignment together with its similarity score. The major differ-
ence between ordinary global sequence alignment and alignment of two peak lists is the
structure of the scoring functions. Unlike sequence alignment, peak list alignment is not
based upon an evolutionary model of substitution and insertion/deletion of characters
(or peaks, in this case). Therefore, the concept of mismatches is completely absent in
peak list scoring and it seems unnecessary to allow affine gap penalties.

We would like to stress that there is no correspondence between peak list alignments
as introduced below and “spectral alignments” introduced in [107].

We formalize the above considerations.

Theorem 11.7 (Computing optimal peak list alignments). Let Sp be a predicted
peak list of size np, and let Sm be a measured peak list of size nm. Moreover, let E be a
(np +1)× (nm +1) dynamic programming matrix for global alignment, and let score(·, ·)
denote a peak-wise scoring function. Then the optimal alignment score of the two peak
lists Sp and Sm can be computed in O(np · nm) time by the recurrence

E(0, 0) = 0
E(i + 1, 0) = E(i, 0) + score(pp

i+1, ε
m)

E(0, j + 1) = E(0, j) + score(εp, pm
j+1)

E(i + 1, j + 1) = max


E(i, j + 1) + score(pp

i+1, ε
m),

E(i + 1, j) + score(εp, pm
j+1),

E(i, j) + score(pp
i+1, p

m
j+1)


for all i with 0 ≤ i ≤ np and all j with 0 ≤ j ≤ nm. The optimal alignment score of Sp

and Sm is then

score(Sp,Sm) := max
π

{score(π)} = E(np, nm),

where the maximum is taken over all possible order-preserving matchings π of the two
peak lists. We can find all such optimal alignments by backtracing through the matrix E.

111



11. Aligning Mass Spectra

Recall that each order-preserving matching is uniquely defined by the two sets Sm
�

and Sp
� of matched peaks, i.e., we also implicitly maximize taking into account all feasible

sets of matched peaks. The sets of matched peaks for the highest scoring peak list
matching are computed simultaneously; they correspond to the peak list alignment.

It should be understood that for reasonable peak scorings, we do not have to compute
the complete matrix E: We can expect that score(pp, pm) decreases as the mass difference
|µ∗(pp)− µ∗(pm)| increases. This behavior is guaranteed by the finite support of each
measured peak. In particular, score(pp, pm) will be very small for high mass differences,
because there is no reason to match two peaks that are, say, 1 000 Da apart. On the other
hand, scores score(pp, εm) and score(εp, pm) are mostly independent of peak masses.
Let θ be a lower bound of score(pp, εm) and score(εp, pm). From the above, we may
assume that there exists some mass difference δ such that score(pp, pm) ≤ 2θ for all
peaks with |µ∗(pp)− µ∗(pm)| ≥ δ. So, it suffices to compute only those parts of the
matrix E where |µ∗(pp)− µ∗(pm)| is not too large. The optimal alignment can then be
computed by “banded” dynamic programming in time O(|C|+ |Sp|+ |Sm|) where C :={

(i, j) :
∣∣∣µ∗(pp

i )− µ∗(pm
j )
∣∣∣ ≤ δ

}
is the set of potential matches: For every peak pp

i there

exist indices l, r such that
∣∣∣µ∗(pp

i )− µ∗(pm
j )
∣∣∣ ≤ δ if and only if j ∈ {l, l + 1, l + 2, . . . , r}.

Going from i to i + 1, we only have to increase the pointers l, r.

11.4. Examples

Example 11.8 (A simple scoring function). Given two spectra Sp := {pp
1 , . . . , p

p
4}

and Sm := {pm
1 , . . . , pm

5 }, let µ∗(pp
i ) = 200, 510, 705, 850, and let

µ∗(pm
j ) = 200, 300, 500, 515, 700. For δ = 10 and the “peak counting score” introduced

in Example 11.6, we easily compute E(4, 5) = 3, so an optimal alignment matches three
peaks. The alignment matrix E then reads:

E(i, j) εm 200 300 500 515 700
εp 0 0 0 0 0 0

200 0 1 1 1 1 1
510 0 1 1 2 2 2
705 0 1 1 2 2 3
850 0 1 1 2 2 3

For readability, we print masses µ∗(pp
i ) and µ∗(pm

j ) instead of indices i and j in these
tables.

Example 11.9 (A more complex scoring function). For the same peak lists as in
Example 11.8 and the slightly more complex peak scoring function

score(pp, pm) = 2− 1
5

∣∣µ∗(pp)− µ∗(pm)
∣∣,

score(pp, εm) = −1, and
score(εp, pm) = −1,

the alignment matrix E is:

112



11.5. Many-to-One Peak Matching

E(i, j) εm 200 300 500 515 700
εp 0 −1 −2 −3 −4 −5

200 −1 2 1 0 −1 −2
510 −2 1 0 1 1 0
705 −3 0 −1 0 0 2
850 −4 −1 −2 −1 −1 1

We have grayed out those entries of E(i, j) that need not to be computed. So, an optimal
alignment has score E(4, 5) = 1; we can achieve this score by matching pp

1(of mass 200)
with pm

1 (200), pp
2(510) with pm

4 (515), and pp
3(705) with pm

5 (700).

11.5. Many-to-One Peak Matching

Often, we want to match a single measured sample peak pm to one or more predicted
reference peaks. The simplest incorporation of such many-to-one peak matchings is as
follows. We add scores of matching a measured peak pm to all predicted peaks pp with
mass µ∗(pp) ∈ U∗(pm), and if there is no such predicted peak, we score peak pm by
Ψadd(pm). Now, for a measured peak list Sm and a predicted peak list Sp, the many-to-
one alignment score is given by

score (Sp,Sm) :=
∑

pm∈Sm

∑
pp∈Sp

µ∗(pp)∈U∗(pm)

Ψmatch (pp, pm)+
∑

pm add.

Ψadd (pm)+
∑

pp miss.

Ψmiss (pp)

(11.2)
where “pm add.” runs over those pm ∈ Sm for which there is no pp ∈ Sp with µ∗(pp) ∈
U∗(pm); “pp miss.” runs over those pp ∈ Sp for which there is no pm ∈ Sm with µ∗(pp) ∈
U∗(pm). We can compute score in time O(|Sp| · |Sm|), or O(|C|+ |Sp|+ |Sm|) where C
is again the set of potential matches.

113



11. Aligning Mass Spectra

114



12. Computing Significance of Alignment
Scores

Using peak list alignments and their scores as introduced above allows us to select a best-
scoring spectrum from, say, a database of sequences. However, recall that the alignment
score itself is only of limited value: Longer protein sequences usually have a larger
number of predicted peaks and thus a higher chance to give high scores than shorter
sequences with less peaks. Moreover, the alignment score gives no information about
the statistical significance of the alignment. To provide such a statistical significance,
we have to answer the following question:

What is the probability that a certain score is achieved “just by chance”?

This question can be answered if we compute a p-value for each alignment score, which
gives the probability that a score of a certain value or higher is achieved just by chance.
For computing such p-value, we need two things: First, we need a proper null-model
that exactly defines what “by chance” actually means. Second, we need the distribution
of the alignment score under this null-model.

The alignment score depends on several factors: The chosen scoring scheme score(·, ·),
the number of peaks in the measured peak list Sm and the number of peaks in the
predicted peak list Sp. For a particular identification, the scoring scheme is fixed and
the measured peak list is given. A sensible null-model would thus define a probability
distribution on the predicted peak lists, i.e. define random predicted peak lists. Here,
the first part of the thesis enters the stage: Each finite random string S〈`〉 defines a
random peak list Sp(S〈`〉). A random model on S〈`〉 thus defines a random model on
predicted peak lists. Note that the correspondence between peak lists and strings is
not one-to-one: Both strings s = MPM and t = PMM give rise to the same peak list
Sp = {pp

1} with µ(pp
1) = µ(s) = µ(t).

Instead of defining a random model on strings of certain length `, we might also define
such a model on strings with certain parent mass M .

The choice of either string length or parent mass defines two different types of null-
models. If we choose the parent mass as parameter for the null-model, we use one null-
model for all alignments of predicted peak lists to the measured peak list. Thus, p-values
are comparable since they refer to the same alignment score distribution. Moreover, the
parent mass is a parameter gained from the experiment; it might be known from a
previous mass spectrometry run of the intact protein before digesting or it might be
estimated from a 2D-gel. This requires more experimental effort: Additional MS runs
on the intact protein require a larger amount of sample, and 2D-gels provide only a

115



12. Computing Significance of Alignment Scores

rough estimate of the parent mass. In contrast, choosing string length as parameter for
the null-model requires no additional measurement and there are no uncertainties in the
parameter’s value. However, this choice gives rise to several null-models (one model per
sequence length), so p-values of different sequences are computed by different alignment
score distributions.

We restrict our attention to fixed string length, since we developed more efficient
algorithms for computing the mass occurrence probabilities. However, the following
considerations remain exactly the same, regardless of our choice; we can replace each
〈`〉-superscript by a 〈M〉-superscript if we choose to take the parent mass for our null-
model.

Now that we defined a null-model, what is the alignment score distribution under
this null-model? Alignment score distributions of sequence alignments with and without
gaps have been intensively studied and a vast amount of literature exists (see [126,127]
for some introduction). The most challenging problem is the optimality of an alignment
score: We do not simply sum independent random variables (the scores of two aligned
random characters), but we take the maximum of all possible choices, so the score
of the optimal alignment is the maximal score of all possible alignments. This gives
rise to extreme-value distributions, mostly derivates of the Gumbel-distribution with
cumulative distribution function

F (x) = 1− exp(−a · exp(b · x)).

The problem is now to efficiently compute the parameters a and b.
We are facing the same kind of problem here: We need to compute the peak list

alignment score distribution, where this optimal alignment score is again the maximal
score of all possible alignment scores. However, there is a substantial difference between
peak list alignments and sequence alignments: Due to the finite support of measured
peaks, the alignment of peak lists is much more local in the sense that we do not have to
consider the whole row or column in the alignment matrix but rather a small band around
the considered peak. Details were already given in Section 11.3. We can therefore assume
that the alignment score distribution is almost the distribution of a sum of independent
random variables. Then, a weaker version of the Central Limit Theorem applies and the
alignment score distribution is Gaussian.

Independence assumption (I)
Hitherto, we assume that peak masses are mutually independent; the alignment score
is then a sum of independent random variables and its distribution is approximately
Gaussian.

We will provide numerical simulation results in Section 12.4 to validate this assumption
in practical computations. We will also provide numerical simulation data for the scoring
schemes used in an evaluation study in Chapter 13.

A Gaussian distribution is completely defined by its two parameters expectation and
variance. Thus, we only need to estimate these two parameters given a scoring scheme, a
measured spectrum and one of the two null-models. Figure 12.1 gives an informal visual-
ization of the difference in the alignment matrices for sequence and peak list alignment,

116



12.1. Moments of Alignment Scores

where the shaded areas indicate feasible matrix entries for optimal alignments and two
possible alignment paths are given in each matrix.

S
eq

u
en

ce
A

Sequence B

Optimal alignment score of A and B

P
e
a
k
-l
is

t
A

Peak-list B

Optimal alignment score of A and B

Figure 12.1.: Areas of possible optimal alignments paths (shaded) in an alignment ma-
trix. Left: For sequence alignment, the path may be anywhere in the
matrix. Right: For peak list alignment, the path is within a small band.

12.1. Moments of Alignment Scores

The alignment score score(Sp,Sm) of two peak lists Sp and Sm is the sum of the align-
ment scores of matched peaks, additional peaks, and missing peaks. Assuming indepen-
dence of these peaks, the expectation and variance of the alignment score are thus the
sum of the expectations and variances of the matched, additional, and missing peak-
scores in the alignment. We will analyze the many-to-one peak matching scenario, be-
cause it allows us to model alignment scores using only mild independence assumptions.
Let A = score(Sp,Sm) be the score of a given measured peak list aligned to a predicted
peak list randomly chosen according to an appropriate null-model. Then,

E (A) = E

 ∑
pm∈Sm

∑
pp∈Sp

µ∗(pp)∈U∗(pm)

Ψmatch (pp, pm) +
∑

pm add.

Ψadd (pm) +
∑

pp miss.

Ψmiss (pp)

 .

Further, we assume that predicted peaks do not have additional attributes besides
their mass. For more complex peak types, probability distributions of the additional
attributes have to be incorporated into the null-model.

The expected score of a measured peak list and a random predicted peak list is the
sum of three expectations for the score of matched, additional, and missing peaks. Let
us compute these expectations in order, before stating the alignment score expectation
and variance. Recall that quantities involving masses are defined for real masses if they
have a ∗ superscript and are defined for integer masses without it. We always assume
that some mass precision ∆m is chosen beforehand.

117



12. Computing Significance of Alignment Scores

Lemma 12.1 (Moments for matched peaks). Let Sm be a measured peak list, let
score(·, ·) be a scoring scheme with matching score function Ψmatch(·, ·), and let the null-
model be defined for finite string length `.

Let further Amatch denote the partial alignment score of the matched peaks of Sm to a
random peak list Sp, under the null-model, i.e.

Amatch :=
∑

pm∈Sm

∑
pp∈Sp

µ∗(pp)∈U∗(pm)

Ψmatch (pp, pm) .

Then, the k-th moment of the partial score for matched peaks is

E
((

Amatch
)k
)
≈

∑
pm∈Sm

∑
m∈U(pm)

Ψmatch(m ·∆m, pm)k · p〈`〉(m),

where the approximation depends on the chosen mass precision ∆m of the null-model.

Proof. The measured peak list Sm is given and non-random. We can therefore extract
the summation over this peak list from the expectation:

E(Amatch) = E

 ∑
pm∈Sm

∑
pp∈Sp

µ∗(pp)∈U∗(pm)

Ψmatch (pp, pm)


=

∑
pm∈Sm

E

 ∑
pp∈Sp

µ∗(pp)∈U∗(pm)

Ψmatch (pp, pm)

 .

We can re-write the conditions on the second sum by using the indicator function and
switch over to integer masses. Since Sp is random, we assumed peak to be independent,
and peaks within a peak list are unique, we can introduce a peak P p, randomly chosen
from any random predicted peak list:

E(Amatch) ≈
∑

pm∈Sm

E

 ∑
m∈U(pm)

Ψmatch (P p, pm) · 1{µ(Pp)=m}

 ,

where the summation over peak-mass m is non-random and the scoring function uses
mass as only attribute of the predicted peak. Note that the scoring function is only
defined for real masses, so we need to re-scale the integer mass by multiplication with
the mass precision ∆m:

E(Amatch) ≈
∑

pm∈Sm

∑
m∈U(pm)

E
(
Ψmatch (m ·∆m, pm)1{µ(Pp)=m}

)
.

118



12.1. Moments of Alignment Scores

Since the matching score is now non-random, we can extract it to get

E(Amatch) ≈
∑

pm∈Sm

∑
m∈U(pm)

Ψmatch (m ·∆m, pm) · E
(
1{µ(Pp)=m}

)
.

Finally, the expectation of an indicator function is the probability of the corresponding
event. Moreover, in the proposed null-model, the probability P(µ(P p) = m) is the
occurrence probability of mass m in a random weighted string of length `, thus

E(Amatch) ≈
∑

pm∈Sm

∑
m∈U(pm)

Ψmatch (m ·∆m, pm) · p〈`〉(m),

as claimed. Higher moments are derived similarly.

Similarly, we compute the moments of additional peaks. Again, the approximation
quality depends on the chosen mass precision ∆m.

Lemma 12.2 (Moments of additional peaks). Under the conditions of Lemma 12.1,
let Aadd denote the partial score of the additional peaks of Sm under the null-model, i.e.

Aadd :=
∑

pm∈Sm

pm additional

Ψadd (pm) .

Then, the k-th moment of the partial score for additional peaks is

E
((

Aadd
)k
)
≈

∑
pm∈Sm

(
Ψadd(pm)

)k
·
∏

m∈U(pm)

(
1− p〈`〉(m)

)
.

Proof. A measured peak pm is an additional peak if it cannot be matched to any predicted
peak, i.e. there exists no predicted peak with mass inside the support of pm:

E(Aadd) = E

 ∑
pm∈Sm

pm additional

Ψadd(pm)


= E

 ∑
pm∈Sm

Ψadd(pm) · 1{∀ pp∈Sp:µ∗(pp) 6∈U∗(pm)}

 .

Similar to the proof of Lemma 12.1, we can extract the summation and the score function
from the expectation and switch to integer masses:

E(Aadd) ≈
∑

pm∈Sm

Ψadd(pm) E
(
1{∀ pp∈Sp:µ(pp) 6∈U(pm)}

)
.

119



12. Computing Significance of Alignment Scores

The only difficulty is the expectation of the indicator function. Recall that this expec-
tation is the probability of the corresponding event:

E
(
1{∀ pp∈Sp:µ(pp) 6∈U(pm)}

)
= P (∀ pp ∈ Sp : µ(pp) 6∈ U(pm)) .

The probability that a random predicted spectrum – induced by a random weighted
string of length ` – has no peak of a particular mass m can be expressed in terms of the
mass occurrence probabilities:

P (∀ pp ∈ Sp : µ(pp) 6= m) = 1− p〈`〉(m).

More rigorously,

P (∀ pp ∈ Sp : µ(pp) 6= m) = P
(
µ(pp

1) 6= m, . . . , µ(pp

N〈`〉) 6= m
)

,

where N 〈`〉 is the number of peaks in a (randomly chosen) predicted peak list. It is the
number of fragments in a random weighted string of length `. If we additionally assume
independence of mass occurrence probabilities (assumption (I)), this yields

P (∀ pp ∈ Sp : µ(pp) 6∈ U(pm)) =
∏

m∈U(pm)

(
1− p〈`〉(m)

)
,

which gives the stated result for k = 1. Similarly, we derive the higher moments.

We are left with the moments of missing peaks.

Lemma 12.3 (Moments of missing peaks). Under the conditions of Lemma 12.1,
let Amiss denote the partial score of the missing peaks of a random peak list Sp under the
null-model, i.e.

Amiss :=
∑

pp∈Sp

pp missing

Ψmiss (pp) .

Further, let M be the set of masses {1, 2, . . . ,mmax} considered in the experiment, and let
U =

⋃
1≤j≤|Sm| U(pm

j ) be the set of all integer masses within the support of any measured
peak. Then, the k-th moment of the partial score for missing peaks is

E
((

Amiss
)k) ≈

∑
m∈M\U

(
Ψmiss(m ·∆m)

)k · p〈`〉(m)

Proof. Since we assumed that predicted peaks do not have additional attributes, the
missing score function Ψmiss(·) is a function of mass, i.e. Ψmiss(pp) = Ψmiss(µ∗(pp)).

E
(
Amiss

)
= E

 ∑
pp∈Sp

pp missing

Ψmiss (pp)

 ,

120



12.1. Moments of Alignment Scores

and we can write the missing condition of the sum using an indicator function, switch
to integer masses, and introduce a random peak P p:

E
(
Amiss

)
≈ E

 ∑
m∈M\U

Ψmiss(m ·∆m) · 1{µ(Pp)=m}

 .

Again, the masses are non-random, thus

E
(
Amiss

)
≈

∑
m∈M\U

Ψmiss(m ·∆m) · E
(
1{µ(Pp)=m}

)
,

which we identify as the stated result for k = 1. Similarly, we derive the higher moments.

With the results of Lemmas 12.1– 12.3, the variances of the three partial scores Amatch,
Aadd and Amiss are easily derived using the familiar identity Var(X) = E(X2)−(E(X))2.

Lemma 12.4 (Variances of partial alignment scores). Under the conditions of
Lemma 12.1, the variances of the partial alignment scores are

Var
(
Amatch

)
=

∑
pm∈Sm

∑
m∈U(pm)

(
Ψmatch(m ·∆m, pm)

)2
· p〈`〉(m) −

(
E
(
Amatch

))2

Var
(
Aadd

)
=

∑
pm∈Sm

(
Ψadd(pm)

)2
·
∏

m∈U(pm)

(
1− p〈`〉(m)

)
−
(
E
(
Aadd

))2

Var
(
Amiss

)
=

∑
m∈M\U

(
Ψmiss(m ·∆m)

)2 · p〈`〉(m) −
(
E
(
Amiss

))2
.

Further,

Var
(
Amatch + Aadd

)
= Var

(
Amatch

)
+ Var

(
Aadd

)
− 2 · E

(
Amatch

)
· E
(
Aadd

)
.

Proof. The variances are obvious. The variance of the sum of the partial score of match-
ing and additional peaks is computed via the relation

Var(X + Y ) = Var(X) + Var(Y ) + 2 · Cov(X, Y ),

where Cov(Amatch, Aadd) = E(Amatch ·Aadd)− E(Amatch) · E(Aadd), and the expectation
of the product is zero since each measured peak is either a matched or an additional
peak. More precisely:

E(Amatch ·Aadd) =
∑

pm∈Sm

E (X · Y ) ,

121



12. Computing Significance of Alignment Scores

where X and Y refer to the matched and additional score of a certain measured peak
pm:

X :=
∑

m∈U(pm)

∑
pp∈Sp

Ψmatch(m ·∆m, pm) · 1{µ(pp)=m},

Y := Ψadd(pm) · 1{∀pp∈Sp:µ(pp) 6∈U(pm)}.

We see that for all pm ∈ Sm, either X or Y is zero. Hence, the expectation is zero as is
the sum of expectations.

The moments of the alignment score distribution are the sum of the partial moments,
regarding our independence assumption (I).

Theorem 12.5 (Moments of alignment scores). Under the independence assump-
tion (I), the expectation and variance of the optimal alignment score of a measured peak
list Sm under a given scoring scheme score(·, ·) and an appropriate null-model on the
predicted peak lists are

E (score (Sp,Sm)) = E
(
Amatch

)
+ E

(
Aadd

)
+ E

(
Amiss

)
,

Var (score (Sp,Sm)) = Var
(
Amatch + Aadd

)
+ Var

(
Amiss

)
.

The alignment score expectation and variance can be computed in constant space and
O(|M|) time.

Proof. The equations are obvious by combining the previous Lemmas 12.1–12.4. For
computing expectations and variances of partial matching and additional scores, we
need to sum (or multiply) terms for each mass in a support of a measured peak. In
total, these are |U| summations. Each such term can be computed in constant time.
The expectation and variance for the missing peaks score involve summation over each
mass in M\U ; each such term can again be computed in constant time.

Note that we can compute the expected partial score of missing peaks E(X〈`〉) :=∑
m∈M Ψmiss(m · ∆m) · p〈`〉(m) in a pre-processing step. We only need to do this for

each string length ` of a database sequence. Similarly, we can compute Var(X〈`〉) be-
forehand. These parameters correspond to the alignment score of an empty measured
spectrum and a random sequence of length `. Then, the missing score’s moments can
be computed for each measured spectrum and each string length in time O(|U|) by
subtracting the terms of masses contained in a support of a measured peak. Thus, for
identification of a multitude of measured spectra and a comparably small number of
different database sequence lengths, we can compute the alignment score parameters for
k database sequences in time O(k · |U|+ |M|) compared to O(k · |U|+ k · |M|) without
this preprocessing step.

122



12.2. Computing p-values

12.2. Computing p-values

Gaussian score distribution. Under the independence assumption (I), the alignment
score distribution is the sum of independent random variables, and the Central Limit
Theorem applies. To avoid confusion with previous notations, let

µ̃ := E (score (Sp,Sm)) ,

and

σ̃2 := Var (score (Sp,Sm))

denote the parameters as given in Theorem 12.5. Then

score (Sp,Sm) ∼ Norm
(
µ̃, σ̃2

)
.

Suppose we are given a measured peak list Sm and a scoring scheme score(·, ·). Suppose
further that a := score(Sp(s〈`〉),Sm) for a certain peak list predicted from a database
sequence s〈`〉 of length `. Then, a statistical significance of the alignment score can be
computed by the one-sided p-value for the right tail,

P (score(Sp,Sm) ≥ a) ≈ P
(

Z ≥ a− µ̃

σ̃

)
,

where Sp is a random predicted spectrum under an appropriate null-model, Z ∼ Norm(0, 1)
a standard Gaussian random variable, and µ̃, σ̃2 are the computed expectation and com-
puted variance of the peak list alignment score under the appropriate null-model. A
similar approach was also taken in [8].

Non-Gaussian score distribution. If for any reason the alignment score distribution
cannot be approximated adequately by a Gaussian distribution, we may use general
inequalities for sums of independent random variables to give lower bounds for the p-
value of a computed alignment score.

Let us again assume that peak masses occur independently and that we can treat the
alignment score distribution as a sum of independent random variables. Using Lem-
mas 12.1–12.3, we can compute arbitrary moments of the partial alignment score distri-
butions, given these moments exist. The k-th moment of the alignment score distribution
is given by

E
(
Ak
)

= E
(
score (Sp,Sm)k

)
= E

((
Amatch + Aadd + Amiss

)k
)

.

Assuming independence of the three partial scores and given their moments up to
order k, we can therefore compute the k-th moment of the alignment score distribu-
tion by computing the polynomial

(
Amatch + Aadd + Amiss

)k of degree k. Noting that
E(XqY r) = E(Xq) E(Y r) for independent random variables X and Y and any q, r ≥ 1,

123



12. Computing Significance of Alignment Scores

and that E(X + Y ) = E(X) + E(Y ) for any two random variables X and Y , each term
of this polynomial can be computed using the moments of the partial score.

For computing the p-value of a certain alignment score a, we can use classical inequal-
ities to give estimates on the deviation from the mean that are valid for any alignment
score distribution under independence assumptions. Naturally, since these inequalities
hold for any distribution, they usually yield much more conservative p-values.

Lemma 12.6 (Lower bounds for p-values). Let Xi, i = 1 . . . n, be independent real
random variables and let S =

∑n
i=1 Xi be their sum. Let further µk = E(Sk) be the

k-th moment of S, let σ be the standard deviation of S and let αk = µk/σk. Then,
lower bounds for p-values of the centered random variable S − E(S) are provided by the
following three inequalities:

The general Chebychev inequality,

P(S − E(S) ≥ tσ) ≤ 1
1 + t2

.

If additionally each summand Xi is bounded s.t. P(Xi ∈ [ai, bi]) = 1, the Hoeffding
inequality applies:

P(S − E(S) ≥ nt) ≤ exp
(
− 2n2t2∑n

i=1 (bi − ai)2

)
.

For moments up to order 4, we may use the Zelen inequality:

P(S − E(S) ≥ tσ) ≤ 1

1 + t2 + (t2−tα3−1)2

α4−α2
3−1

.

Proof. See [16,17] for proofs.

Chebycheff’s inequality uses the first two moments, it was also used in [8] for p-value
estimation. Hoeffding’s inequality also uses the first two moments, whereas Zelen’s
inequality uses the first four moments and thus also considers the skew and kurtosis of
the distribution.

12.3. p-value Scores

Since the peak list alignment score is an additive score, its value and distribution depends
on the number of peaks in the measured and the predicted spectrum. This makes
it difficult to compare alignment scores for different measured spectra and sequence
lengths.

We may circumvent this problem, if we do not use the alignment score for ranking
candidate sequences, but its p-value score.

124



12.4. Numerical Evaluation

Definition 12.7 (p-value score). Suppose the alignment score of a predicted peak
list Sp and a measured peak list Sm has significance p̃. Then the p-value score of the
alignment is

scorep-val (Sp,Sm) := − log10(p̃).

For each pair of measured and predicted peak lists, the alignment score is computed
as described in Chapter 11, its distribution is estimated using the method described
described above, and finally the p-value p̃ of the alignment score is computed. We then
use the p-value score for ranking the candidate sequences. This method is applicable
for any underlying scoring scheme; a similar method was shown to be effective for PFF
data [125].

p-value scores also provide a possibility to compensate the different null-models, in-
troduced by the different sequence lengths (cf. Chapter 12), at least partially.

12.4. Numerical Evaluation

The above calculations are only valid under the independence assumption (I), although
the random variables are slightly correlated. Moreover, a sufficiently large number of
summands is needed to apply the Central Limit Theorem. To show that our estimations
are reasonable in application settings, we have performed numerical simulations with a
mass precision of ∆m = 0.1 Da.

Estimation of score distribution. We use the following simple scoring scheme: Peaks
are matched with score 1, if their mass difference is lower or equal 1 Da. Additional
and missing peaks are penalized by −0.2. This is almost the peak-counting score of
Example 11.6, except we also penalize additional and missing peaks.

We used a measured peak list from a proteomics experiment on Corynebacterium
glutamicum with 22 peaks in the mass range 500–3 500 Da. The peaks had the following
masses (in Da, truncated at two decimals) and absolute intensities (truncated at two
decimals) as detected by the manufacturer’s processing software:

Peak no. 1 2 3 4 5 6
Mass (Da) 917.53 1 046.50 1 086.54 1 113.65 1 310.25 1 347.69
Abs. int. 644.88 20 052.81 822.64 951.77 1 653.31 7 677.34
Peak no. 7 8 9 10 11 12
Mass (Da) 1 363.69 1 549.76 1 779.90 1 800.89 1 833.90 1 862.89
Abs. int. 4 222.92 1 454.08 1 014.07 5 113.29 2 500.23 9 922.84
Peak no. 13 14 15 16 17 18
Mass (Da) 1 990.69 2 093.04 2 104.51 2 119.07 2 124.08 2 141.06
Abs. int. 423.46 1 306.04 529.33 5 532.20 10 990.90 663.20
Peak no. 19 20 21 22
Mass (Da) 2 370.21 2 469.26 2 678.46 2 778.38
Abs. int. 355.20 8 719.27 620.60 909.80

125



12. Computing Significance of Alignment Scores

We aligned this peak list with 25 000 peak lists predicted from i.i.d. random sequences
of length ` = 500, ` = 1 000, and ` = 4 000, using Swiss-Prot amino acid frequencies for
the sequence sampling. The empirical density of the alignment scores was estimated for
each length and compared with a Gaussian distribution with parameters computed as
described above. The empirical and computed moments agree reasonably well, as the
following table shows for the expectation, variance, and the standard deviation:

` = 500 ` = 1000 ` = 4000
Empirical Computed Empirical Computed Empirical Computed

E -10.06 -10.28 -15.67 -16.07 -49.51 -50.19
Var 1.50 1.97 2.93 3.85 10.60 13.96√

Var 1.22 1.40 1.71 1.96 3.25 3.74

Let again A denote the alignment score of the measured peak list and a random
predicted peak list. Then

Anorm :=
A− E(A)√

Var(A)

is the normalized score of zero mean and unit variance. Under our independence assump-
tion (I), this normalized alignment score thus has a standard Gaussian distribution:

Anorm ∼ Norm(0, 1).

This distribution is the same for all sequence lengths, measured spectra and scoring
schemes.

In Figure 12.2, the empirical distributions of the normalized scores are compared
to standard Gaussian distributions of zero expectation and unit variance. On the left
panel, the density functions are compared. They show a reasonable agreement for all
protein lengths ` = 500 (top), ` = 1 000 (center), and ` = 4 000 (bottom). Note that
both empirical density functions are skewed and are thus not symmetric. In fact, their
right tail seems to be heavier than the left tail. The right panel gives quantile-quantile
plots of the empirical distributions and standard Gaussian distributions together with
the bisectors (lines). Points on the line would indicate a perfect agreement of the two
distributions. This is clearly not the case here. The center and the right tail of the
distributions are in good agreement, whereas the agreement of the left tails is not as
good. However, the agreement gets better for increasing protein length. Moreover, we
compute the probability that the score exceeds some given value, not the probability
that it deviates from a given value. Thus, we are computing one-sided p-values on the
right tails, which are well approximated by the standard Gaussian.

Discrete score distributions. Besides the obvious reason that we do not want to simply
ignore additional and missing peaks, the introduction of penalties in the scoring scheme
also has the desirable side-effect that the alignment score distribution is smoothed even
for moderate numbers of measured peaks. Without this smoothing, a much larger num-
ber of measured peaks is necessary to gain a Gaussian-like score distribution. To demon-
strate this, we use the peak-counting score of Example 11.6 with a threshold of 1 Da

126



12.4. Numerical Evaluation

for the mass difference and score 0 for both additional and missing peaks. We again
draw 25 000 random spectra and align them with the same measured peak list as before.
As we can see in Figure 12.3 (left), the normalized score is no longer unimodal: It can
only take discrete values 0, 1, 2, . . . . The approximation by a standard Gaussian distri-
bution is clearly not valid. Using a different peak-detection algorithm, we generate a
second peak list for the same measured raw spectrum. This detection algorithm uses a
much lower threshold, resulting in 373 peaks in the peak list. Then, although the score
distribution is still discrete and restricted to integers, the estimated density function is
much smoother and the approximation by a standard Gaussian seems more accurate.
The normalized density function and the standard Gaussian density are given in Fig-
ure 12.3 (right). Note, however, that the estimated mean and variance are still within
reasonable error bounds for both alignment score distributions. For the smaller peak
list, we compute an expected alignment score of 0.97±0.96 and an empirical expectation
of 0.88± 0.91. For the larger peak list, the expected alignment score is 16.95± 3.99 and
its empirical counterpart is 15.86 ± 3.93. This allows us to still use the inequalities of
Section 12.2 for estimating the p-value for general score distributions.

Moments as function of sequence length. In Section 9.2, we saw that the fragment
mass occurrence probabilities depend smoothly on the protein length. Since the moments
of the alignment score distribution are computed from these occurrence probabilities, we
can expect that the moments also depend smoothly on the protein length. To validate
this, we use the peak-counting score with penalties −0.2 as described above and compute
the expectation and variance of the alignment score for the smaller peak list given above
for protein lengths from ` = 500 up to ` = 10 000 in steps of 500. Further, we randomly
generate 10 000 predicted spectra for each sequence length and estimate the empirical
parameters of the alignment score. The expected alignment score seems to depend
linearly on the protein length, see Figure 12.4 (left). Moreover, the empirical data is
in good agreement with the model for all lengths. Not surprisingly, the dependence of
the standard deviation on the protein length is non-linear but smooth nonetheless. The
agreement of empirical data and the model is also reasonable, although it deviates with
increasing protein length. Our model seems to overestimate the standard deviation,
which results in an underestimation of the statistical significance. Thus, the estimation
error is towards the safe side: A broader distribution with the same expectation than a
narrower one results in a more conservative p-value.

127



12. Computing Significance of Alignment Scores

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normalized alignment score for protein length 500

S
co

re
 d

en
si

ty

●

●
●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●●

●

●

●●●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●●●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Quantiles of normalized alignment score for protein length 500

Q
ua

nt
ile

 o
f G

au
ss

ia
n

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normalized alignment score for protein length 1000

S
co

re
 d

en
si

ty

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Quantiles of normalized alignment score for protein length 1000

Q
ua

nt
ile

 o
f G

au
ss

ia
n

−2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normalized alignment score for protein length 4000

S
co

re
 d

en
si

ty

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●●
●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●●

●●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

−3 −2 −1 0 1 2 3

−
2

−
1

0
1

2
3

Quantiles of normalized alignment score for protein length 4000

Q
ua

nt
ile

 o
f G

au
ss

ia
n

Figure 12.2.: Estimated normalized alignment score distributions for protein sequences
of length ` = 500 (top), ` = 1 000 (center), and ` = 4 000 (bottom).
Left panels: Density plots. Solid line: Empirical scores of 25 000 simu-
lated sequences. Dashed line: Standard Gaussian density. Right panels:
Quantile-quantile plots vs. standard Gaussian distribution, solid lines de-
note bisectors.

128



12.4. Numerical Evaluation

0 2 4 6

0.
0

0.
5

1.
0

1.
5

Normalized alignment score for protein length 1000

S
co

re
 d

en
si

ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Normalized alignment score for protein length 1000

S
co

re
 d

en
si

ty

Figure 12.3.: Normalized alignment score distribution density for peak-counting score
and 25 000 simulated random spectra. Solid line: Empirical score distribu-
tion. Dashed line: Standard Gaussian density. Left: Measured peak list
with 22 peaks. Right: Measured peak list with 373 peaks generated from
same raw data.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2000 4000 6000 8000 10000

−
10

0
−

80
−

60
−

40
−

20

Protein length

E
xp

ec
te

d 
al

ig
nm

en
t s

co
re

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+

+
+ ●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

2000 4000 6000 8000 10000

2
3

4
5

Protein length

S
ta

nd
ar

d 
de

vi
at

io
n 

of
 a

lig
nm

en
t s

co
re

+

+

+
+

+
+

+
+

+
+

+ +
+ + + +

+ + + +

Figure 12.4.: Expectation and standard deviation of alignment scores for given mea-
sured peak list as function of protein length. Bullets: Computed moments.
Pluses: Empirical moments estimated from 10 000 sequences each. Left:
Expectation. Right: Standard deviation.

129



12. Computing Significance of Alignment Scores

130



13. Evaluation

So far, we were concerned with theoretical aspects of peak list alignments. We only con-
sidered some artificial examples involving derivates of the simple peak-counting score
introduced in Example 11.6. The goal of this chapter is two-fold: To develop practical
peak scoring schemes and to prove the applicability of the approach on real data. We
discuss several aspects of practical scoring schemes including the use of intensity infor-
mation in the peak scoring and provide simulated data to demonstrate accuracy of the
score parameter estimation. In particular, we develop the family of Gaussian scoring
schemes and apply some of its members in an identification experiment using real pro-
teomics data to prove the applicability of our framework on these data. We compare
our results with the standard software MASCOT.

13.1. Scoring Schemes

Although a measured peak is described at least by its mass and intensity, most iden-
tification algorithms only use its mass [54]. This is partly because mass is the most
discriminative parameter measured and partly because the peak’s intensity crucially de-
pends on the actual parameter settings of the machine. The basis for many schemes is
the observation that a measurement error between the “real” mass of a molecule and
the measured mass can be described by a Gaussian distribution with zero mean and a
standard deviation sd dependent e.g. on the machine settings. In practice, the mean
might also deviate from zero if the machine is not calibrated correctly. We will not
consider this problem in our scoring schemes; it should be addressed by a more sufficient
calibration or a re-calibration of the peak lists.

The incorporation of additional attributes like peak intensities may be of particular
importance when scoring missing and additional peaks. For missing peaks, recall that
we have transformed the raw data of the mass spectrum into a peak list discarding
candidates whose intensity falls below a given threshold. Hence, slight changes of this
threshold can dramatically change scores that do not take peak intensities into account.
For additional peaks, similar arguments apply.

As an example for practical scoring schemes, we develop the family of Gaussian scoring
schemes. It uses ideas shown to be useful in other identification algorithms for both PMF
and tandem MS data and allows flexible integration of peak intensity data.

Mass difference. The matching score for two peaks pp and pm should reflect the Gaus-
sian mass error distribution. Thus, it should decrease exponentially with increasing mass
difference. In the Gaussian scoring scheme family, we compute the probability that a

131



13. Evaluation

zero mean Gaussian random variable deviates from zero by at least the difference of the
peak masses. The standard deviation sd of the distribution is taken as a user-defined
parameter; it might be set to model the accuracy of the MS instrument.

This matching score does not provide a finite support for all measured peaks. We
therefore use a threshold of 0.05 and set the score to −∞ if it would drop below this
threshold. This threshold corresponds to a mass difference of about 2 sd. Let Z ∼
Norm(0, sd) be a Gaussian random variable, then the matching score function is

Ψmatch (pp, pm) = P
(
|Z| ≥

∣∣µ∗(pp)− µ∗(pm)
∣∣)

whenever this score is above 0.05.
A similar approach is taken in ProFound [139] and the tandem MS identification

software SCOPE [8], whereas MASCOT uses a constant positive matching score similar
to that of Example 11.6.

Note that this matching score function is just one example. If for any reason we would
like to model another mass error distribution, we just have to define another matching
score function.

Robust incorporation of intensities. In order to incorporate intensities of measured
peaks into the scoring scheme, we rank all peaks in the peak list in ascending order
according to their absolute intensity. Then, the intensity of the first 10% of the ranked
peaks is set to 0, whereas the intensity of the last 10% of the ranked peaks is set to 1.
The intensities of the remaining peaks are scaled linearly between 0 and 1 according to
their respective absolute intensity. Thus, a chemical noise peak with high intensity or
a small number of incorrectly detected peaks with very low intensity cannot spoil the
identification of the whole peak list. We use intensities only for measured peaks. Given
an appropriate prediction model as proposed e.g. in [54, 118], it would also be possible
to incorporate intensities of predicted peaks.

Let 0 ≤ int(pm) ≤ 1 denote a measured, re-scaled intensity value of a peak, computed
by the procedure described above. We compute an intensity scaling factor

f :=
1 + 2 · int(pm)

3

and use it to scale the previously computed matching score for mass differences, resulting
in the modified matching score function

Ψmatch (pp, pm) = f · P
(
|Z| ≥

∣∣µ∗(pp)− µ∗(pm)
∣∣) .

Again, we set the value of this function to −∞ if the mass difference exceeds a certain
threshold. The matching score function for mass differences is thus multiplied by 1 for
the peaks of highest intensity and reduced to 1/3 of its value for low intensity peaks.
The approach is suitable for any other transformation of intensity information, such as
logarithmic transforms proposed e.g. in [132].

132



13.2. Evaluation on Proteomics Data

Scoring gap peaks. For the family of Gaussian scoring schemes, we also want to use
the measured peak’s scaled intensity for scoring additional peaks. In particular, we want
to score peaks of high intensity with a higher penalty than low intensity peaks. Thus, a
simple additional scoring function is

Ψadd (pm) = −cadd · int (pm)

for a user-defined constant cadd ≥ 0. Additional peaks with very low intensity are
then penalized by 0 and thus simply ignored, and additional peaks of high intensity are
highly penalized. It would also be possible to use the fragment mass distributions of
Section 8.4 for adjusting the penalty by the probability that the observed mass is the
mass of a peptide and not a contaminant. We will not explore this further.

Since we do not have intensity information for predicted peaks, missing peaks are
always penalized with a constant penalty cmiss ≥ 0:

Ψmiss (pp) = −cmiss.

Note that, once peak intensities can be predicted from the peak mass, it is easy to
incorporate this knowledge in the missing score function.

13.2. Evaluation on Proteomics Data

To evaluate our method, 325 PMF tryptic mass fingerprints of charge state (M + H)+

from an in-house proteomics experiment on the organism Corynebacterium glutamicum
(Cg) were measured on a Bruker Ultraflex mass spectrometer. The proteins were sep-
arated using SDS-PAGE before mass measurement, so Carbamidomethyl was set as a
fixed mass modification of ≈ +57 Da for Cysteine. Further, two different peak lists of
different sizes were extracted from each measured raw spectrum. The identification was
then run on a Cg protein sequence database and a modified version of the Swiss-Prot
database.

Processing the raw spectra. To assess robustness and flexibility of the method, two
different peak lists were derived for each raw spectrum. The first peak list was taken
from the manufacturer’s peak detection software: This software is conservative in picking
only peaks with high intensity. The resulting peak lists were comparatively small. They
contained up to 90 peaks with an average of 20 peaks. We will refer to these peak lists
as “Bruker” or manufacturer’s peak lists. The second peak list was taken from a peak
detection algorithm developed in our group. This algorithm computed much larger peak
lists of 34 to 729 peaks with an average of 277 peaks. A comparison of the distribution
of the number of peaks in the two peak lists is shown in Figure 13.1. For unknown
reasons, the manufacturer’s software delivered only 316 non-empty peak lists, whereas
in 9 of the raw spectra, no peaks were detected. The other algorithm delivered 325
valid peak lists. For better comparison, we differentiate the peak lists delivered by the
algorithm of our group in the following by “PL” and “PL316”, denoting the whole set of

133



13. Evaluation

325 peak lists and the set of the 316 peak lists with corresponding non-empty peak list
from the manufacturer’s peak detection. Due to the different peak detection, the valid
mass ranges for the measured and predicted peak lists were set to 500–3 000 Da for the
manufacturer’s software, and to 800–3 000 Da for the PL peak lists. All peaks outside
this range were discarded.

0 200 400 600 800

0.
00

0.
01

0.
02

0.
03

0.
04

No. of detected peaks

Fr
eq

ue
nc

y

Figure 13.1.: Density estimates of peak list sizes. Solid line: Peak-list sizes from Bruker
peak detection software. Dashed line: Size of peak lists from an in-house
peak detection software.

Identification procedure. The identification procedure is as follows: In a first step,
both sets of peak lists are identified using an in-house Cg protein sequence database
derived from experimental expressed sequence tags (EST) data. This database contains
3 510 organism-specific sequences. Since the “true” identification of the mass spectra is
unknown, we only record the sequence identifier of the best scoring protein sequence for
each peak list. We repeat this procedure for both MASCOT versions and our framework
with several parameter sets. In a second step, we merge the Cg sequence database with
a modified version of the Swiss-Prot sequence database with 155 824 sequence entries,
resulting in a total of 159 334 sequences. The Swiss-Prot database is modified to avoid
getting protein sequences from other species that are very similar to the “correct” cor-
responding Cg sequence. This is achieved by excluding sequences from the Swiss-Prot
database that are too similar to any Cg sequences. The threshold for exclusion is a
BLASTp [4, 5] e-value of 10−30 or better, leading to an exclusion of 38 493 sequences.
This new database can be interpreted as a very noisy version of the original Cg database.
The paper [65] also describes several other techniques for generating noisy databases.
Similar to the method used in [79], a peak list identification is assumed to be correct
whenever the identified sequence belongs to the Cg database (i.e. had an identifier from
the Cg database) and is the same as in the Cg database run.

Both sets of peak lists are identified using the framework of Chapters 11 and 12 with

134



13.2. Evaluation on Proteomics Data

the p-value score of Section 12.3, based on a Gaussian scoring scheme as described in
Section 13.1. Intensities are scaled as described in Section 13.1, where the 10% highest
and lowest values were set to 1 and 0, respectively.

For later use, we introduce the following two parameter sets, each with a particular
standard deviation, penalties for additional and missing scores and use of intensities as
described above. We denote them by (A) and (B):

std. dev. add. penalty miss. penalty intensity
Parameter sd cadd cmiss used

A 0.8 -0.1 -0.1 No
B 0.8 -0.3 -0.4 Yes

To validate the use of a Gaussian distribution for approximating the alignment score
distribution and thus also to validate the derived p-value score, we performed numerical
simulations by aligning 25 000 random sequences of length 2 000 to the same measured
peak list of 373 peaks as in Section 12.4. We again observe a good agreement between
the empirical score distribution and the estimated Gaussian, see Figure 13.2 for quantile-
quantile plots of normalized alignment scores using the Gaussian scoring scheme with
both parameter sets (A) and (B).

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●●●
●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Quantiles of normalized alignment score

Q
ua

nt
ile

s 
of

 G
au

ss
ia

n

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●
●

●

●●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●●
●

●

●
●

●
●

●

●

●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2

Quantiles of normalized alignment score

Q
ua

nt
ile

s 
of

 G
au

ss
ia

n

Figure 13.2.: Quantile-quantile plots for normalized alignment scores of 25 000 simulated
protein sequences of length 2 000 and a measured peak list for the Gaussian
scoring scheme. Left: Parameter set (A). Right: Parameter set (B).

We compare the identification results of our framework to those of both MASCOT
versions v1.9 and v2.1. A maximal mass difference of 1 Da is used for MASCOT.

Results. Not surprisingly, different parameter sets lead to different numbers of correct
identifications (cf. Table 13.1). Nevertheless, these numbers do not change rapidly
with changing parameters, indicating a robust behavior of the alignment identification
procedure. Using the manufacturer’s peak lists, a small penalty of additional and missing

135



13. Evaluation

w/out intensity w/ intensity
Method Bruk. PL PL316 Bruk. PL PL316

MASCOT v1.9 123 58 53 - - -
MASCOT v2.1 119 59 53 - - -

SAMPI
cadd cmiss

-0.1 -0.1 112 56 51 72 106 87
-0.2 -0.2 111 56 51 78 96 92
-0.3 -0.3 96 54 48 65 103 98
-0.3 -0.4 89 53 48 52 110 105
-0.4 -0.4 91 54 49 54 108 103
-0.5 -0.4 94 53 48 57 109 104

Table 13.1.: Number of correctly identified spectra. Method: MASCOT or SAMPI.
Different parameter sets for the latter. All parameter sets tested with and
without use of peak intensities. There are 316 peak lists in the Bruker
(Bruk.) and PL316 peak list sets and 325 peak lists in the PL peak list set.

peaks yields a comparable number of correct identifications as MASCOT. Using peak
intensities in the scoring scheme, this number drops considerably. An explanation for this
phenomenon is that these peak lists already consist of the highest abundant peaks, which
are now scaled from 1/3 to 1, distorting the relevance of peaks. Using the larger, noisier
peak lists results in the completely opposite behavior: Now, without using intensities to
discriminate important and non-important peaks, the identification rate drops to about
1/2 for both the Gaussian-p-value schemes and MASCOT. Using peak intensities in
addition leads to a good identification rate again. Note that now higher penalties for
additional and missing peaks are also helpful.

In all cases, we found the score separation of correct and incorrect identifications to
be comparable to MASCOT. In Figure 13.3, we give receiver operating characteristics
(ROC) plots for MASCOT and the Gaussian-p-value scores with parameter sets (A) and
(B). ROC plots are a visual tool that give the false positive rate compared to the true
positive rate. A perfect identification algorithm would have zero false positives for any
number of true positives, i.e., it would always identify correctly. This would result in a
horizontal line at ordinate 1. A bisector would correspond to an identification algorithm
that uniformly selects a true or false answer at random. ROC plots are a standard
tool for comparing sequence analysis algorithms [57]; they are also used for comparing
protein identification algorithms [123].

For the Bruker peak lists, the plots indicate a score separation inferior to that of MAS-
COT for both parameter sets (A) and (B). However, the number of correctly identified
proteins is only slightly smaller for parameter set (A) (cf. Table 13.1). For the PL316

peak lists, MASCOT shows a considerably worse score separation. This is mostly due to
the fact that MASCOT does not use peak intensity information. Both Gaussian scoring
schemes show a comparable behavior. They both separate true and false positives bet-

136



13.2. Evaluation on Proteomics Data

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

False positive rate

T
ru

e 
po

si
tiv

e 
ra

te

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 13.3.: Receiver operating characteristics (ROC) curves for identification. Solid
line: MASCOT v2.1. Dashed line: Gaussian-p-value score with parameter
set (A). Dotted line: Same with parameter set (B). Left: Bruker peak lists.
Right: PL316 peak lists.

ter than MASCOT, but only parameter set (B) uses intensity information to distinguish
between important and non-important peaks. This is reflected in the almost two-fold
number of correct identifications compared to parameter set (A) and MASCOT. Note
that additionally using intensities in parameter set (A) also increases the number of
correct identifications to a similar level.

In general, the identification rate of our method is about 90% of MASCOT’s identi-
fication rate on Bruker peak lists. Using the trimmed relative intensities in the scoring
distorts the importance of peaks in small peak lists containing only peaks of high inten-
sities. This problem might be circumvented when using rank statistics on the intensities
instead. For noisy peak lists, incorporating intensity information into the scoring is cru-
cial to distinguish important and non-important peaks. The separation of true and false
positive scores of our method indicates some problems with the p-value score. Since we
compute and compare p-values under different null-models for different sequence lengths,
the p-values might still depend on the sequence lengths, causing the weak score sepa-
ration. This problem may be solved by normalizing the score for measured peak list
size and sequence length. However, there seems to be no obvious normalizing score
transformation.

137



13. Evaluation

138



14. Conclusion

Several aspects of mathematical problems arising in the identification of peptide mass
fingerprints using sequence databases have been discussed.

We have presented a model of random weighted strings together with cleavage schemes
as a model for cleavage fragments of random protein sequences.

For computing statistics of cleavage fragments, we have introduced the general frame-
work of weighted hidden Markov models and Markov additive chains. In particular, we
have investigated the distribution of length, mass and number of fragments as well as
fragment mass occurrence probabilities in finite random protein sequences. We have also
developed recurrence equations for these statistics as an additional computational tool,
and provided efficient dynamic programming algorithms. In contrast to many exist-
ing approaches, our method relies on a sequence database only for estimating character
frequencies; fragment statistics are independent of database size and composition.

We have presented SAMPI: A general protein identification framework based on peak
list alignments and peak-wise scoring schemes. SAMPI allows consistent handling of
mass accuracies, additional peak attributes such as peak intensities, as well as additional
and missing peaks. We have provided a family of scoring schemes that uses several
previously published ideas.

Based on fragment statistics of the first part, we have given a general method for
estimating the p-value of an alignment score. The estimation procedure is deterministic
and independent of the size of the sequence database; it does not use time-consuming
sampling. We have introduced p-value scores to reduce the influence of peak list size and
sequence length on the score and allow direct comparison of peak list alignment scores
for different measured and predicted peak list sizes.

Finally, we have demonstrated the applicability of our alignment and significance
computation frameworks on real proteomics data, and have compared our results to the
results of the standard software MASCOT.

Open Problems

Several problems in both fragment statistics and peak list alignment remain unsolved or
have been opened by the thesis.

We have only considered the i.i.d. random sequence model for developing and comput-
ing fragment statistics. It would be interesting to also take into account dependencies
among amino acids in the protein sequence by extending the statistics to Markov ran-
dom sequence models. One evident advantage of the most simple Markov model of order
one would be the possibility to explicitly model the methionine prefix found in the first

139



14. Conclusion

fragment. Note that our random weighted string model, the weighted HMMs, and the
additive Markov chains are defined for any random sequence model. Nevertheless, most
recurrence equations and the efficient algorithms are only valid for the i.i.d. case.

The mass distributions of fragments are periodic in the sense that the single “curves”
were separated with period 20. We have given some hints from the theory of linear
Diophantine equations, but have not studied these hints further. This might be an
interesting issue for further investigation.

We already gave one example of a protease that is not covered by our cleavage scheme
model. One open problem is the extension of the weighted HMM model to more complex
cleavage patterns involving more than two characters. This would also allow the investi-
gation of DNA fragmentation by RNAses. Further, it might be necessary to allow pairs
of cleavage/prohibition characters in a cleavage scheme such that not every prohibition
character suppresses every cleavage character.

As for the peak list alignment framework for protein identification, we did not discuss
the problem of incomplete cleavage, where a potential cleavage is not performed in all
copies of the protein, leading to more fragment peaks in the spectrum. These can easily
be taken care of when computing the predicted spectrum from a database sequence, but
the fragment statistics do not capture these fragment masses. Including missed cleavage
sites in the fragment statistics is straightforward, but fragment masses may now become
depended; for a mass of a fragment including one missed cleavage site, there should be
two fragment masses in the peak list that sum up to this mass.

The ROC curves show a weak separation of scores of true and false positives. This
might indicate a problem with the comparability of scores. It is an open problem whether
the alignment or p-value scores can be normalized by peak list size and sequence length
for improving the score separation.

As a more theoretical aspect, we did not provide any constraints on the scoring schemes
that guarantee a Gaussian alignment score distribution important for the significance
computation. It would be interesting to see if such constraints can be found, and if
classes of practical scoring schemes can be described that fulfill these constraints.

Further, tandem mass spectrometry has gained a lot attention in the last years. Pro-
tein identification by sequence database searching and tandem mass spectra has a lot
of problems common to protein identification by peptide mass fingerprinting. However,
the observed fragment masses are highly dependent in tandem mass spectrometry. It is
an open question whether corresponding fragment statistics based on random weighted
strings can be developed for tandem mass spectrometry. On the algorithmic side, peak
list alignments can be used for any type of mass spectrometry, given adapted scoring
schemes. Many scoring methods can be found in the literature and it would be interesting
to see whether some of them can be re-implemented as alignment scoring schemes.

140



Bibliography

[1] R. Aebersold. A mass spectrometric journey into protein and proteome research.
J. Am. Soc. Mass Spectrom., 14:685–695, 2003.

[2] R. Aebersold and M. Mann. Mass spectrometry-based proteomics. Nature,
422:198–207, 2003.

[3] T. Aittokallio, P. Ojala, T. J. Nevalainen, and O. Nevalainen. Automated detection
of differently expressed fragments in mRNA differential display. Electrophoresis,
22(10):1935–1945, 2001.

[4] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. Basic local
alignment search tool. J. Mol. Biol., 215:403–410, 1990.

[5] S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller,
and D. J. Lipman. Gapped BLAST and PSI-BLAST: a new generation of protein
database search programs. Nucleic Acids Res., 25:3389–3402, 1997.

[6] R. J. Arnold and J. P. Reilly. Fingerprint matching of E. coli strains with matrix-
assisted laser desorption/ionization time-of-flight mass spectrometry of whole cells
using a modified correlation approach. Rapid Commun. Mass Spectrom., 12:630–
636, 1998.

[7] A. E. Ashcroft. Protein and peptide identification: the role of mass spectrometry
in proteomics. Nat. Prod. Rep., 20:202–215, 2003.

[8] V. Bafna and N. Edwards. SCOPE : A probabilistic model for scoring tandem
mass spectra against a peptide database. Bioinf., 17:S13–S21, 2001.

[9] V. Bafna and N. Edwards. On de novo interpretation of tandem mass spectra
for peptide identification. In Proc. of the 7th Annual International Conference on
Research in Computational Molecular Biology (RECOMB), pages 8–19, 2003.

[10] A. Bairoch and B. Boeckmann. The SWISS-PROT protein sequence data bank.
Nucleic Acids Res., 20:2019–2022, 1992.

[11] R. Bakhtiar and R. W. Nelson. Mass spectrometry of the proteome. Mol. Phar-
macol., 60:405–415, 2001.

[12] M. A. Baldwin. Protein identification by mass spectrometry: issues to be consid-
ered. Mol. Cell. Proteomics, 3(1):1–9, 2004.

141



Bibliography

[13] N. Bansal, M. Cieliebak, and Zs. Lipták. Efficient algorithms for finding sub-
masses in weighted strings. In Proc. of the Fifteenth Annual Combinatorial Pat-
tern Matching Symposium (CPM 2004), volume 3109 of Lect. Notes Comp. Sci.,
pages 194–204. Springer, 2004.

[14] M. Beck, R. Diaz, and S. Robins. The Frobenius problem, rational polytopes, and
Fourier-Dedekind sums. J. Number Theory, 96:1–21, 2002.

[15] M. Beck and I. M. Gessel. The polynomial part of a restricted partition function
related to the Frobenius problem. Electron. J. Comb., 8:E1–E5, 2001.

[16] G. Bennett. Probability inequalities for the sum of independent random variables.
J. Amer. Statist. Assoc., 57:33–45, 1962.

[17] G. Bennett. Upper bounds on the moments and probability inequalities for the
sum of independent, bounded random variables. Biometrika, 52:559–569, 1965.

[18] P. Berndt, U. Hobohm, and H. Langen. Reliable automatic protein identifica-
tion from matrix-assisted laser desorption/ionization mass spectrometric peptide
fingerprints. Electrophoresis, 20(18):3521–3526, Dec 1999.

[19] P. Billingsley. Probability and Measure. Wiley Interscience, New York, 3rd edition,
1995.

[20] S. Böcker. Sequencing from compomers: Using mass spectrometry for DNA de-
novo sequencing of 200+ nt. In Proc. of the 3rd International Workshop on Algo-
rithms in Bioinformatics (WABI), pages 476–497, 2003.

[21] S. Böcker. SNP and mutation discovery using base-specific cleavage and MALDI-
TOF mass spectrometry. Bioinformatics, Supplement 1 (ISMB), pages i44–i53,
2003.

[22] S. Böcker. Sequencing from compomers: Using mass spectrometry for DNA de-
novo sequencing of 200+ nt. J. Comp. Biol., 11(6):1110–1134, 2004.

[23] S. Böcker and H.-M. Kaltenbach. Mass spectra alignments and their significance.
In A. Apostolico, M. Crochemore, and K. Park, editors, Combinatorial Pattern
Matching, volume 3537 of Lect. Notes Comp. Sci., pages 429–441. Springer, 2005.

[24] S. Böcker and H.-M. Kaltenbach. Mass spectra alignments and their significance.
accepted for publication in J. Discr. Algorithms, 2006.

[25] S. Böcker and Zs. Lipták. The money changing problem revisited: Computing the
Frobenius number in time O(ka1). Technical Report 2004-02, Technische Fakultät
der Universität Bielefeld, Abteilung Informationstechnik, 2004.

[26] S. Böcker and Zs. Lipták. Efficient mass decomposition. In Proc. of ACM Sym-
posium on Applied Computing (ACM SAC 2005), pages 151–157, Santa Fe, USA,
2005.

142



Bibliography

[27] S. Breen, M. S. Waterman, and N. Zhang. Renewal theory for several patterns. J.
Appl. Probab., 22:228–234, 1985.

[28] D. C. Chamrad, G. Körting, K. Stühler, H. E. Meyer, J. Klose, and M. Blüggel.
Evaluation of algorithms for protein identification from sequence databases using
mass spectrometry data. Proteomics, 4:619–628, 2004.

[29] T. Chen, M.-Y. Kao, M. Tepel, J. Rush, and G. M. Church. A dynamic program-
ming approach to de novo peptide sequencing via tandem mass spectrometry. J.
Comp. Biol., 8(3):325–337, 2001.

[30] M. Cieliebak, T. Erlebach, Zs. Lipták, J. Stoye, and E. Welzl. Algorithmic com-
plexity of protein identification: Combinatorics of weighted strings. Discr. Appl.
Mathem., 137(1):27–46, 2004.

[31] E. Cinlar. Markov additive processes I. Z. Wahrscheinl. verw. Geb., 24:85–93,
1972.

[32] E. Cinlar. Markov additive processes II. Z. Wahrscheinl. verw. Geb., 24:95–121,
1972.

[33] K. R. Clauser, P. Baker, and A. L. Burlingame. Role of accurate mass measure-
ment (±10 ppm) in protein identification strategies employing MS or MS/MS and
database searching. Anal. Chem., 71:2871–2882, 1999.

[34] S. L. Cohen and B. T. Chait. Influence of matrix solution conditions on the maldi-
ms analysis of peptides and proteins. Anal. Chem., 68:31–37, 1996.

[35] J. Colinge, A. Masselot, M. Giron, T. Dessingy, and J. Magnin. OLAV: To-
wards high-throughput tandem mass spectrometry data identification. Proteomics,
3:1454–1463, 2003.

[36] J. Colinge, A. Masselot, and J. Magnin. A systematic statistical analysis of ion trap
tandem mass spectra in view of peptide scoring. In Proc. of the 3rd International
Workshop on Algorithms in Bioinformatics (WABI), volume 2812 of Lect. Notes
Comp. Sci., pages 25–38. Springer, 2003.

[37] K. R. Coombes, S. Tsavachidis, J. S. Morris, K. A. Baggerly, M.-C. Hung, and
H. M. Kuerer. Improved peak detection and quantification of mass spectrometry
data acquired from surface-enhanced laser desorption and ionization by denoising
spectra with the undecimated discrete wavelet transform. Proteomics, 5(16):4107–
4117, Nov 2005.

[38] V. Danč́ık, T. A. Addona, K. R. Clauser, J. E. Vath, and P. A. Pevzner. De-novo
peptide sequencing via tandem mass spectrometry. J. Comp. Biol., 6(3/4):327–
342, 1999.

143



Bibliography

[39] Q. Ding, L. Xiao, S. Xiong, Y. Jia, H. Que, Y. Guo, and S. Liu. Unmatched
masses in peptide mass fingerprints caused by cross-contamination: An updated
statistical result. Proteomics, 3:1313–1317, 2003.

[40] B. Domon and R. Aebersold. Mass spectrometry and protein analysis. Science,
312:212–217, 2006.

[41] N. Edwards and R. Lippert. Generating peptide candidates from amino-acid se-
quence databases for protein identification via mass spectrometry. In Proc. of
the 2nd International Workshop on Algorithms in Bioinformatics (WABI), pages
68–81, 2002.

[42] J. E. Elias, W. Haas, B. K. Fahery, and S. P. Gygi. Comparative evaluation of
mass spectrometry platforms used in large-scale proteomics investigations. Nat.
Meth., 2(9):667–675, August 2005.

[43] J. K. Eng, A. L. McCormack, and J. R. Yates III. An approach to correlate tandem
mass spectral data of peptides with amino acid sequences in a protein database.
J. Am. Soc. Mass Spectrom., 5:976–989, 1994.

[44] J. Eriksson and D. Fenyö. A model of random mass-matching and its use for au-
tomated significance testing in mass spectrometric proteome analysis. Proteomics,
2:262–270, 2002.

[45] W. Feller. An Introduction to Probability Theory and its Applications, volume I.
John Wiley & sons, 3rd edition, 1968.

[46] J. B. Fenn, M. Mann, C. K. Meng, S. F. Wong, and C. M. Whitehouse. Electrospray
ionization for mass spectrometry of large biomolecules. Science, 246:64–71, 1989.

[47] D. Fenyö and R. C. Beavis. A method for assessing the statistical significance
of mass spectrometry-based protein identifications using general scoring schemes.
Anal. Chem., 75(4):768–774, 2003.

[48] D. Fenyö, J. Qin, and B. T. Chait. Protein identification using mass spectrometric
information. Electrophoresis, 19:998–1005, 1998.

[49] A. Frank and P. Pevzner. PepNovo: de novo peptide sequencing via probabilistic
network modeling. Anal. Chem., 15:964–973, 2005.

[50] A. Ganapathy, X.-F. Wan, J. Wan, J. Thelen, D. W. Emerich, G. Stacey, and
D. Xu. Statistical assessement for mass-spec protein identification using peptide
fingerprinting approach. In Proc. of the 26th Ann. Int. Conf. of the IEEE EMBS,
pages 3051–3054. IEEE, 2004.

[51] P. Gärdn, R. Alm, and J. Häkkinen. PROTEIOS: an open source proteomics
initiativee. Bioinf., 21:2085–2087, 2005.

144



Bibliography

[52] A. Gattiker, W. V. Bienvenut, A. Bairoch, and E. Gasteiger. FindPept, a tool to
identify unmatched masses in peptide mass fingerprinting protein identification.
Proteomics, 2:1435–1444, 2002.

[53] S. Gay, P.-A. Binz, D. F. Hochstrasser, and R. D. Appel. Modeling peptide mass
fingerprinting data using the atomic composition of peptides. Electrophoresis,
20:3527–3534, 1999.

[54] S. Gay, P.-A. Binz, D. F. Hochstrasser, and R. D. Appel. Peptide mass finger-
printing peak intensity prediction: Extracting knowledge from spectra. Proteomics,
2:1374–1391, 2002.

[55] F. Gonnet, G. Lemaitre, G. Waksman, and J. Tortajada. MALDI/MS peptide
mass fingerprinting for proteome analysis: identification of hydrophobic proteins
attached to eucaryote keratinocyte cytoplasmic membrane using different matrices
in concert. Proteome Sci., 1:E1–E7, 2003.

[56] R. Gras, M. Müller, E. Gasteiger, S. Gay, P.-A. Binz, W. Bienvenut, C. Hoogland,
J.-C. Sanchez, A. Bairoch, D. F. Hochstrasser, and R. D. Appel. Improving protein
identification from peptide mass fingerprinting through a parametrized multi-level
scoring algorithm and an optimized peak detection. Electrophoresis, 20:3535–3550,
1999.

[57] M. Gribskov and N. L. Robinson. Use of the receiver operating characteristic
(ROC) analysis to evaluate sequence matching. Computers Chem., 20(1):25–33,
1996.

[58] J. H. Gross. Mass Spectrometry. Springer-Verlag Berlin Heidelberg, 2004.

[59] S. Hahner, H.-C. Lüdemann, F. Kirpekar, E. Nordhoff, P. Roepstorff, H.-J. Galla,
and F. Hillenkamp. Matrix-assisted laser desorption/ionization mass spectrometry
(MALDI) of endonuclease digests of RNA. Nucleic Acids Res., 25:1957–1964, 1997.

[60] W. A. Harris, D. J. Janecki, and J. P. Reilly. Use of matrix clusters and trypsin au-
tolysis fragments as mass calibrants in matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom., 16:1714–1722,
2002.

[61] M. Havilio, Y. Haddad, and Z. Smilansky. Intensity-based statistical scorer for
tandem mass spectrometry. Anal. Chem., 75:435–444, 2003.

[62] W. J. Henzel, T. M. Billeci, J. T. Stults, S. C. Wong, C. Grimley, and C. Watanabe.
Identifying proteins from two-dimensional gels by molecular mass searching of
peptide fragments in protein sequence databases. Proc. Natl. Acad. Sci. USA,
90(11):5011–5015, 1993.

[63] W. J. Henzel, C. Watanabe, and J. T. Stults. Protein identification: The origins
of peptide mass fingerprints. J. Am. Soc. Mass Spectrom., 14:931–942, 2003.

145



Bibliography

[64] H. Hermjakob, R. Giegerich, and W. Arnold. RIFLE: Rapid identification of mi-
croorganisms by fragment length evaluation. In Proceedings of the 5th International
Conference on Intelligent Systems for Molecular Biology (ISMB), pages 131–139,
Halkidiki, Greece, June 1997.

[65] R. Higdon, J. M. Hogan, G. V. Belle, and E. Kolker. Randomized sequence
databases for tandem mass spectrometry peptide and protein identification.
OMICS, 9:364–379, 2005.

[66] F. Hillenkamp, M. Karas, R. C. Beavis, and B. T. Chait. Matrix-assisted laser des-
orption/ionization mass spectrometry of biopolymers. Anal. Chem., 63(24):1193A–
1203A, 1991.

[67] X. Huang and M. S. Waterman. Dynamic programming algorithms for restriction
map comparison. Comput. Appl. Biosci., 8(5):511–520, 1992.

[68] D. F. Hunt, J. R. Y. III, J. Shabanowitz, S. Winston, and C. R. Hauer. Protein
sequencing by tandem mass spectrometry. Proc. Natl. Acad. Sci. USA, 83:6233–
6237, 1986.

[69] P. James, M. Quadroni, E. Carafoli, and G. Gonnet. Protein identification by mass
profile fingerprinting. Biochem. Biophys. Res. Commun., 195(1):58–64, Aug 1993.

[70] L. H. Jeffery. The Local Scripts of Archaic Greece. Oxford University Press, 1961.

[71] R. S. Johnson and K. Biemann. Computer program (SEQPEP) to aid in the
interpretation of high-energy collision tandem mass spectra of peptides. Biomedical
& Environmental mass spectrometry, 18:945–957, 1989.

[72] H.-M. Kaltenbach, S. Böcker, and S. Rahmann. Markov additive chains and ap-
plications to fragment statistics for peptide mass fingerprinting. Accepted for pub-
lication at RECOMB Satellite Workshop Systems Biology and Proteomics, 2006.

[73] H.-M. Kaltenbach, H. Sudek, S. Böcker, and S. Rahmann. Statistics of cleav-
age fragments in random weighted strings. Technical Report 2005-06, Technische
Fakultät der Universität Bielefeld, Abteilung Informationstechnik, 2005.

[74] H.-M. Kaltenbach, A. Wilke, and S. Böcker. SAMPI: Protein identification with
mass spectra alignments. Accepted for publication in BMC Bioinformatics, 2007.

[75] M. Karas, U. Bahr, I. Fournier, M. Glückmann, and A. Pfenninger. The initial-ion
velocity as a marker for different desorption-ionization mechanisms in MALDI.
Int. J. Mass Spec., 226:239–248, 2003.

[76] M. Karas and F. Hillenkamp. Laser desorption ionization of proteins with molec-
ular masses exceeding 10,000 Daltons. Anal. Chem., 60:2299–2301, 1988.

146



Bibliography

[77] J. A. Karty, M. M. Ireland, Y. V. Brun, and J. P. Reilly. Artifacts and unassigned
masses encountered in peptide mass mapping. J. Chromatogr. B, 782:363–383,
2002.

[78] J. A. Karty, M. M. E. Ireland, Y. V. Brun, and J. P. Reilly. Defining absolute confi-
dence limits in the identification of caulobacter proteins by peptide mass mapping.
J. Proteome Res., 1:325–335, 2002.

[79] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical statistical
model to estimate the accuracy of peptide identifications made by MS/MS and
database search. Anal. Chem., 74(20):5383–5392, 2002.

[80] D. E. Knuth. The Art of Computer Programming: Seminumerical Algorithms,
volume 2. Addison-Wesley, Reading, Massachusetts, third edition, 1997.

[81] E. Lange, C. Gröpl, K. Reinert, O. Kohlbacher, and A. Hildebrandt. High-accuracy
peak picking of proteomics data using wavelet techniques. Pac Symp Biocomput,
2006.

[82] F. Levander, T. Rögnvaldsson, J. Samuelsson, and P. James. Automated methods
for improved protein identification by peptide mass fingerprinting. Proteomics,
4:2594–2601, 2004.

[83] H. Lim, J. K. Eng, J. R. Yates III, S. L. Tollaksen, C. S. Giometti, J. F. Holden,
M. W. W. Adams, C. I. Reich, G. J. Olsen, and L. G. Hays. Identification of 2D-
gel proteins: a comparison of MALDI/TOF peptide mass mapping to mu LC-ESI
tandem mass spectrometry. J. Am. Soc. Mass. Spectrom., 14(9):957–970, 2003.

[84] F. Lisacek, S. Cohen-Boulakia, and R. D. Appel. Proteome informatics II: Bioin-
formatics for comparative proteomics. Proteomics, 6(20):5445–5466, 2006.

[85] H. Lodish, A. Berk, S. L. Zipursky, P. Matsudaira, D. Baltimore, and J. E. Darnell.
Molecular Cell Biology. WH Freeman and Company: New York, NY, 5th ed.
edition, 2004.

[86] P. G. Lokhov, O. V. Tikhonova, S. A. Moshkovskii, E. I. Goufman, M. V. Serebri-
akova, B. I. Maksimov, I. Y. Toropyguine, V. G. Zgoda, V. M. Govorun, and A. I.
Archakov. Database search post-processing by neural network: Advanced facili-
ties for identification of components in protein mixtures using mass spectrometric
peptide mapping. Proteomics, 4:633–642, 2004.

[87] B. Lu and T. Chen. A suffix tree approach to the interpretation of tandem mass
spectra: Applications to peptides of non-specific digestion and post-translational
modifications. Bioinformatics, Supplement 2 (ECCB), 19:ii113–ii121, 2003.

[88] B. Lu and T. Chen. Algorithms for de novo peptide sequencing using tandem mass
spectrometry. Drug Discov. Today, 2:85–90, 2004.

147



Bibliography

[89] B. Ma, K. Zhang, C. Hendrie, C. Liang, M. Li, A. Doherty-Kirby, and G. Lajoie.
PEAKS: Powerful software for peptide de novo sequencing by MS/MS. Rapid
Commun. Mass Spectrom., 17(20):2337–2342, 2003.

[90] M. Mann, R. C. Hendrickson, and A. Pandey. Analysis of proteins and proteomes
by mass spectrometry. Annu. Rev. Biochem., 70:437–473, 2001.

[91] M. Mann, P. Højrup, and P. Roepstorff. Use of mass spectrometric molecular
weight information to identify proteins in sequence databases. Biol. Mass Spec-
trom., 22(6):338–345, 1993.

[92] M. Mann and M. Wilm. Error-tolerant identification of peptides in sequence
databases by peptide sequence tags. Anal. Chem., 66(24):4390–4399, 1994.

[93] R. Matthiesen, M. Lundsgaard, K. Welinder, and G. Bauw. Interpreting peptide
mass spectra by VEMS. Bioinf., 19(6):792–793, 2003.

[94] J. S. Morris, K. R. Coombes, J. Koomen, K. A. Baggerly, and R. Kobayashi. Fea-
ture extraction and quantification for mass spectrometry in biomedical applications
using the mean spectrum. Bioinf., 21(9):1764–1775, 2005.

[95] S. B. Needleman and C. D. Wunsch. A general method applicable to the search for
similarities in the amino acid sequence of two proteins. J. Mol. Biol., 48:443–453,
1970.

[96] P. Ney and E. Nummelin. Markov additive processes I. Eigenvalue properties and
limit theorems. Ann. Probab., 15(2):561–592, 1987.

[97] P. Ney and E. Nummelin. Markov additive processes II. Large deviations. Ann.
Probab., 15(2):593–609, 1987.

[98] E. Nordhoff, A. Ingendoh, R. Cramer, A. Overberg, B. Stahl, M. Karas, F. Hil-
lenkamp, and P. Crain. Matrix-assisted laser desorption/ionization mass spec-
trometry of nucleic acids with wavelengths in the ultraviolet and infrared. Rapid
Commun. Mass Spectrom., 6(23):771–776, 1992.

[99] E. Nordhoff, C. Luebbert, G. Thiele, V. Heiser, and H. Lehrach. Rapid determi-
nation of short DNA sequences by the use of MALDI-TOF. Nucleic Acids Res.,
28(20):7039–7044, 2000.

[100] J. V. Olsen, S.-E. Ong, and M. Mann. Trypsin cleaves exclusively c-terminal to
arginine and lysine residues. Mol. Cell. Proteomics, 3.6:608–614, 2004.

[101] S.-E. Ong and M. Mann. Mass-spectrometry based proteomics turns quantitive.
Nat. chem. biol., 1:252–262, 2005.

[102] P. M. Palagi, P. Hernandez, D. Walther, and R. D. Appel. Proteome informatics
I: Bioinformatics tools for processing experimental data. Proteomics, 6(20):5435–
5444, 2006.

148



Bibliography

[103] D. J. C. Pappin, P. Hojrup, and A. J. Bleasby. Rapid identification of proteins by
peptide-mass fingerprints. Curr. Biol., 3(6):327–332, 1993.

[104] K. A. Parker. Scoring methods in MALDI peptide mass fingerprinting: ChemScore,
and the ChemApplex program. J. Am. Soc. Mass Spectrom., 13:22–39, 2002.

[105] T. Patzkill. Proteomics. Kluwer Academic Publishers, 2002.

[106] D. Perkins, D. J. C. Pappin, D. Creasy, and J. Cottrell. Probability-based pro-
tein identification by searching sequence databases using mass spectrometry data.
Electrophoresis, 20:3551–3567, 1999.

[107] P. A. Pevzner, V. Danč́ık, and C. L. Tang. Mutation-tolerant protein identification
by mass spectrometry. J. Comp. Biol., 7(6):777–787, 2000.

[108] S. C. Pomerantz, J. A. Kowalak, and J. A. McCloskey. Determination of oligonu-
cleotide composition from mass spectromectrically measured molecular weight. J.
Am. Soc. Mass Spectrom., 4:204–209, 1993.

[109] J. Quackenbush. Standardizing the standards. Mol. Syst. Biol., 2:E1–E3, 2006.

[110] M. Régnier. A unified approach to word occurrence probabilities. Discr. Appl.
Mathem., 104:259–280, 2000.

[111] G. Reinert, S. Schbath, and M. S. Waterman. Probabilistic and statistical prop-
erties of words: An overview. J. Comp. Biol., 7:1–46, 2000.

[112] S. Robin and J.-J. Daudin. Exact distribution of word occurrences in a random
sequence of letters. J. Appl. Probab., 36:179–193, 1999.

[113] S. Robin and J.-J. Daudin. Exact distribution of the distances between any occur-
rences of a set of words. Ann. Inst. Statist. Math., 4:895–905, 2001.

[114] C. P. Rodi, B. Darnhofer-Patel, P. Stanssens, M. Zabeau, and D. van den Boom. A
strategy for the rapid discovery of disease markers using the MassARRAY system.
BioTech., Suppl:62–69, Jun 2002.

[115] R. G. Sadygov and I. John R. Yates. A hypergeometric probability model for
protein identification and validation using tandem mass spectral data and protein
sequence databases. Anal. Chem., 73:3792–3798, 2003.

[116] T. Sakurai, T. Matsuo, H. Matsuda, and I. Katakuse. PAAS 3: A computer
program to determine probable sequence of peptides from mass spectrometric data.
Biomed. Mass Spec., 11:396–399, 1984.

[117] D. Sankoff and J. B. Kruskal. Time Wraps, String Edits, and Macromolecules: The
Theory and Practice of Sequence Comparison. Addison-Wesley, Reading, Mass.,
1983.

149



Bibliography

[118] F. Schütz, E. A. Kapp, R. J. Simpson, and T. P. Speed. Deriving statistical models
for predicting peptide tandem MS product ion intensities. Biochem. Soc. Trans.,
31(Pt 6):1479–1483, Dec 2003.

[119] R. Sedgewick and P. Flajolet. An Introduction to the Analysis of Algorithms.
Addison-Wesley, 2nd edition, 2001.

[120] I. Shadforth, D. Crowther, and C. Bessant. Protein and peptide identification
algorithms using MS for use in high-throughput, automated pipelines. Proteomics,
5:4082–4095, 2005.

[121] G. Siuzdak. Mass spectrometry for biotechnology. Academic Press, San Diego,
1996.

[122] A. P. Snyder. Interpreting Protein Mass Spectra. Oxford University Press, 2000.

[123] C. Tang, W. Zhang, D. Fenyö, and B. T. Chait. Assessing the performance of
different protein identification algorithms. In Proc. of the Am. Soc. Mass Spetrom.
Conference, 2000.

[124] J. A. Taylor and R. S. Johnson. Implementation and uses of automated de novo
peptide sequencing by tandem mass spectrometry. Anal. Chem., 73:2594–2604,
2001.

[125] Y. Wan, A. Yang, and T. Chen. PepHMM: A Hidden Markov Model based scoring
function for mass spectrometry database search. Anal. Chem., 78:432–437, 2006.

[126] M. S. Waterman. Estimating statistical significance of sequence alignments. Phil.
Trans. R. Soc. Lond. B, 344:383–390, 1994.

[127] M. S. Waterman. Introduction to Computational Biology. CRC Press, Boca Raton,
first edition, 1996.

[128] C. Wenk. Applying an edit distance to the matching of tree ring sequences in
dendrochronology. In M. Crochemore and M. Paterson, editors, Proceedings of
Combinatorial Pattern Matching (CPM99), volume 1645 of Lect. Notes Comp.
Sci., pages 223–242, 1999.

[129] C. M. Whitehouse, R. N. Dreyer, M. Yamashita, and J. B. Fenn. Electrospray inter-
face for liquid chromatographs and mass spectrometers. Anal. Chem., 57(3):675–
679, Mar 1985.

[130] H. Wilf. generatingfunctionology. Academic Press, 1990.

[131] A. Wilke, C. Rückert, D. Bartels, M. Dondrup, A. Goesmann, A. T. Hüser, S. Ke-
spohl, B. Linke, M. Mahne, A. C. McHardy, A. Pühler, and F. Meyer. Bioinfor-
matics support for high-throughput proteomics. J. Biotechnol., 106(2–3):147–56,
2003.

150



Bibliography

[132] W. E. Wolski, M. Lalowski, P. Martus, R. Herwig, P. Giavalisco, J. Gobom, A. Sick-
mann, H. Lehrach, and K. Reinert. Transformation and other factors of the peptide
mass spectrometry pairwise peak-list comparison process. BMC Bioinformatics,
6:E1–E21, 2005.

[133] A. J. Wyner. More on recurrence and waiting times. Ann. Appl. Probab., 9:780–
796, 1999.

[134] J. R. Yates III. Database searching using mass spectrometry data. Electrophoresis,
19(6):893–900, 1998.

[135] J. R. Yates III, J. K. Eng, and A. L. McCormack. Mining genomes: Correlat-
ing tandem mass-spectra of modified and unmodified peptides to sequences in
nucleotide databases. Anal. Chem., 67(18):3202–3210, 1995.

[136] J. R. Yates III, J. K. Eng, A. L. McCormack, and D. Schieltz. Method to correlate
tandem mass spectra of modified peptides to amino acid sequences in the protein
database. Anal. Chem., 67:1426–1436, 1995.

[137] J. R. Yates III, S. Speicher, P. R. Griffin, and T. Hunkapillar. Peptide mass
maps: A highly informative approach to protein identification. Anal. Biochem.,
214:397–408, 1993.

[138] N. Zhang, R. Aebersold, and B. Schwikowski. ProbID: A probabilistic algorithm to
identify peptides through sequence database searching using tandem mass spectral
data. Proteomics, 2:1406–1412, 2002.

[139] W. Zhang and B. T. Chait. ProFound: an expert system for protein identification
using mass spectrometric peptide mapping information. Anal. Chem., 72(11):2482–
2489, 2000.

151


