Synthetische, strukturelle und photophysikalische Untersuchungen an *π*-konjugierten 1,3,2-Benzodiazaborolsystemen

> Dissertation zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) an der Universität Bielefeld

> > vorgelegt von

Vanessa Werner

aus Enger

Bielefeld 2009

"So eine Arbeit wird eigentlich nie fertig, man muss sie für fertig erklären, wenn man nach Zeit und Umständen das mögliche getan hat."

(Johann Wolfgang von Goethe)

1. Gutachter: Prof. Dr. L. Weber

2. Gutachter: Prof. Dr. T. Glaser

Tag der mündlichen Prüfung: 17.04.2009

Die vorliegende Arbeit wurde in der Zeit von Juni 2005 bis Januar 2009 an der Fakultät für Chemie der Universität Bielefeld in der Arbeitsgruppe Anorganische Chemie II unter Leitung von Herrn Prof. Dr. Lothar Weber erstellt.

Mein besonderer Dank gilt Herrn **Prof. Dr. Lothar Weber** für die Überlassung des interessanten und perspektivenreichen Themas, seine ständige Diskussionsbereitschaft und stetem Interesse am Fortgang dieser Arbeit.

Herrn **Prof. Dr. Thorsten. Glaser** danke ich für die freundliche Übernahme des Zweitgutachtens.

Den aktiven und ehemaligen Mitarbeitern des Arbeitskreises der ACII, P. Bayer, I. Domke, D. Eickhoff, T. Fröbel, J. Förster, J. Halama, K. Hanke, S. Henze, J. Kahlert, J. Krümberg, H. Kuhtz, U. Lassahn, G. Noveski, M. Schimmel, B. Teichmann, möchte ich für die herzliche Aufnahme in den Arbeitskreis, die gute Zusammenarbeit, das gute Arbeitsklima und die konstruktiven Diskussionen danken.

Für die Durchführung der Röntgenstrukturanalysen danke ich Frau B. Neumann und Herrn Dr. H.-G. Stammler, Herrn Dipl. Ing. P. Mester danke ich für die Messung zahlreicher Kernresonanzspektren, Frau B. Michel danke ich für die Durchführung der Elementaranalysen sowie Herrn Dr. M. Letzel und Herrn E. Westermeyer für die Aufnahme der Massenspektren.

Bei Prof. Dr. T. B. Marder und Dr. M. A. Fox der University of Durham (UK) bedanke ich mich herzlich für die nette Kooperation und für die Durchführung der quantenchemischen Berechnungen, die wichtige Erkenntnisse zu den in dieser Arbeit vorgestellten Moleküle geliefert haben.

Bei Dr. A. Brockhinke, Dr. R. Brockhinke, S. Schwedler und D. Cherian aus der physikalischen Chemie (PC I) möchte ich mich ebenfalls für eine nette Kooperation, die Durchführung der photophysikalischen Messungen und die stete Diskussionsbereitschaft bedanken. Dr. P. Stössel und der Merck KGaA möchte ich für die Kooperation und die dadurch erhaltenen, interessanten Ergebnisse danken.

Den Arbeitskreisen von Prof. Dr. Mattay und Prof. Dr. Sauer danke ich für die Möglichkeit zur Aufnahme zahlreicher Spektren.

Bei D. Eickhoff, J. Halama, K. Hanke, N. Hechler, H. Kuhtz und P. Schröder bedanke ich mich für die im Rahmen ihrer Blockpraktika geleistete Mithilfe, bei S. Clasmeier und S. Rasche für die im Rahmen ihrer Ausbildung zur/m Chemielaborantin/en geleisteten Beiträge.

Dem Chemikalienlager, der "Seele der Chemiefakultät", danke ich für die vorbildliche Versorgung mit Chemikalien und den zahlreichen netten Gesprächen.

Der Deutschen Forschungsgemeinschaft danke ich für die finanzielle Unterstützung dieser Arbeit.

Ein großes Dankeschön geht an alle Freunde und Bekannte, die innerhalb und außerhalb der Universität meine Studienzeit begleitet haben.

Mein ganz besonderer Dank gebührt Björn, für den stetigen Rückhalt und die vielen aufmunternden, lieben Worte während des Anfertigens dieser Arbeit.

Zu guter Letzt, danke ich besonders wichtigen Menschen, meiner Familie. Vor allem und von ganzem Herzen danke ich meinen Eltern, Christa und Uwe, für all die Unterstützung im Laufe meines Studiums. Ohne Sie währe diese Arbeit nicht möglich gewesen. DANKE!

Abkürzungsverzeichnis

- Å Angstrøm
- Ar Aryl, Aromat
- ber. Berechnet
- Bu Butyl
- d Dublett (NMR-Spektroskopie)
- δ Chemische Verschiebung (NMR)
- dest. Destilliert
- EI Elektronenstoßionisation
- ε Extinktionskoeffizient
- Et Ethyl
- eV Elektronenvolt
- gef. Gefunden
- h Stunde
- HOMO Höchst besetztes Orbital
- Hz Hertz
- IC Internal Conversion
- **ISC** Inter System Crossing
- J Kopplungskonstante
- λ Wellenlänge
- $\lambda_{max(abs.)}$ Absorptionsmaximum
- $\lambda_{max(em.)}$ Emissionsmaximum
- lat. Lateinisch
- LCD Liquid Crystal Display
- LUMO Tiefstes unbesetztes Orbital
- m Multiplett (NMR)
- μ Micro
- M Molar
- M⁺ Molekülion
- Me Methyl
- MG Molekulargewicht
- mL Milliliter
- MO Molekülorbital
- MS Massenspektrometrie

- m/z Verhältnis von Masse zu Ladung
- nm Nanometer
- NMR Nuclear magnetic resonance

OLED Organic Light Emitting Diode

- Oct. Octyl
- Ph Phenyl
- **ppm** Parts per million (NMR)
- Φ_f Fluoreszenzquantenausbeute
- PPV Poly-p-phenylethinylene
- q Quartett (NMR)
- R Rest
- RT Raumtemperatur
- s Sekunde
- t Triplett (NMR)
- tBu tertButyl
- tert Tertiär
- UV Ultraviolett
- v Geschwindigkeit
- V Volt

<u>Inhalt</u>

A Einleitung und theoretischer Hintergrund	1
1. Einleitung	1
2. Theoretischer Hintergrund	3
2.1 Lumineszenz	3
2.2 Absorption	4
2.3 Fluoreszenz	6
2.4 Prinzipieller Aufbau und Funktionsweise von OLEDs	8
2.4.1 Aufbau einer Einschicht-OLED	8
2.4.2 Injektion von Ladungsträgern	9
2.4.3 Ladungstransport in der OLED	10
2.4.4 Rekombination	11
2.4.5 Steigerung der Effizienz durch Verwendung von Phosphoreszenz-	
farbstoffen	13
2.5 Mehrschicht-OLEDs	16
2.6 Eigenschaften der funktionellen organischen Schichten in OLEDs	17
2.6.1 Allgemeine Eigenschaften der verwendeten Materialien	17
2.6.2 Emittierende Materialien	18
2.6.3 Elektronenleitende Materialien	19
2.6.4 Lochtransportierende Materialien	21
2.6.5 Lochblockierende Materialien	25
2.7 Lumineszente Borverbindungen	26
2.7.1 Allgemeines über die Eigenschaften und den Aufbau lumineszenter	
Borverbindungen	26
2.7.2 Dreifach koordiniertes Bor für neuartige Materialien in OLEDs	31
2.8 Bor-Stickstoff-Heterocyclen	33
2.8.1 Allgemeines zu Bor-Stickstoff-Heterocyclen	33
2.8.2 Borazaaromaten und Azaboracycloalkane	33
2.8.3 2,3-Dihydro-1H-1,3,2-diazaborole	34
2.8.4 Reaktivität der 2,3-Dihydro-1H-1,3,2-diazaborole	36
2.8.5 1,3,2-Benzodiazaborole	37
2.8.6 Benzodiazaborole in organischen Materialien für OLEDs	39

B Aufgabenstellung41
C Ergebnisse und Diskussion (I+II)43 1. Vorwort43
C Ergebnisse und Diskussion (I)44
1. Darstellung eines Diazaborols mit erweitertem aromatischem Rückgrat44
1.1 Darstellung des 2-Brom-1,3-Diethyl-1,3,2-naphthodiazaborols (58)44
1.2 Spektroskopische Daten des 2-Brom-1,3-diethyl-1,3,2-naphthodiaza-
borols (58)
1.3 Umsetzung des 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborols (58) mit
lithijerten aromatischen Systemen
1.3.1 Darstellung des 2-Thienvl-1.3-diethvl-1.3.2-naphthodiazaborols (60) 48
1.3.2 Darstellung des (5´.2´.2´´-Dithienvl)-1.3-diethvl-1.3.2-naphthodiaza-
borols (61)
1.4 Spektroskopische Daten der Naphthodiazaborolverbindungen (60)
und (61)
1.5 Röntgenstrukturdaten des 2-Thienvl-1.3-diethvl-1.3.2-naphthodiaza-
borols (60)
2. Erweiterung des π -Systems durch Vergrößerung des Substituenten auf
Seiten des dreifach koordinierten Bors
2.1 Darstellung von zweifach benzodiazaborolylfunktionalisierten
Verbindungen 57
2 1 1 Darstellung von 1 4-Bis(1´3´-diethyl-1´3´2´-benzodiazaborol-2´-yl)-
benzol (64) 57
212 Darstellung des 25-Bis(1, 3, -diethyl-1, 3, 2, -benzodiazaborolyl)-
thiophens (67)
2 1 3 Alternative Darstellung des 2 5-Bis(1´3´-diethyl-1´3´2´-benzodiaza-
borolyl)thiophons (67)
2 1 4 Deretellung des 5 5' Pis(1'' 2'' distbyl 1'' 2'' benzediaza
2.1.4 Darstellully ues 3.3 -Dis(1, 3 -dielity-1, 3.2 -Delizoulaza- baral $2^{\prime\prime}$, d > 2 ['] -dithionbarg (68)
215 Deretallung das 0.0-Di/n actul) 2.7 his/1/2/ diathul 1/2/2/ hanza
2.1.3 Darstellung des $3,3$ -Di(1-OU(y))- $2,7$ -Dis(1,3-diethyl-1,3,2-Defi20-
0
2.1.0 Spektroskopische Daten der verbindungen (64), (67), (68) und (70)61

2.1.7 Röntgenstrukturanalysen der Verbindungen (64), (67) und (68)66
2.1.8 Darstellung des 2,3,5,6-Tetrafluor-1,4-di(1,3-diethyl-1,3,2-benzo-
diazaborolyl)benzols (79) 71
2.1.9 Spektroskopische Daten der Verbindung (79)72
2.2 Röntgenstrukturanalyse der Verbindung (79)73
2.3 Darstellung von dreifach funktionalisierten Systemen75
2.3.1 Darstellung des 1,3,5-Tris(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-
2´-yl)benzols (82)75
2.3.2 Darstellung des 1,3,5-Tris{4'-(1'',3''-diethyl-1'',3'',2''-benzodiaza-
borol-2´´-yl)phenyl}benzols (84) 76
2.3.3 Darstellung des 1,3,5-tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiaza-
borol-2´´-yl)-2´-thienyl}benzols (88)77
2.4 Spektroskopische Daten der Verbindungen (82), (84) und (88)
2.5 Röntgenstrukturanalysen der Verbindungen (82), (84) und (88)
3. Para-substituierte Phenylethinylbenzodiazaborole
3.1 Darstellung der para-phenylethinylsubstituierten Benzodiazaborole
(97)-(102) 90
3.2 Spektroskopische Daten der para-phenylethinylsubstituierten
Benzodiazaborole (97)-(100)91
3.3 Röntgenstrukturanalysen der Verbindungen (97), (99), (100) und (102)94
3.4 Darstellung des 9,9-Bis(n-octyl)-2,7-di[(benzodiazaborolyl)ethinyl]-
fluorens (104)
3.5 Spektroskopische Daten des 9,9-Bis(n-octyl)-2,7-di[(benzodiaza-
borolyl)ethinyl]fluorens (104)
4. Darstellung von erweiterten Phenylethinylverbindungen103
4.1 Darstellung des 1,3-Diethyl-2-(p-diphenylethinyl)-1,3,2-benzodiaza-
borols (105)
4.2 Darstellung des Bis-4,4(1´´,3´´-diethyl-1´´,3´´,2´´-benzodiazaborol-
2´´-yl)tolans (106) 104
4.3 Spektroskopische Daten der Verbindungen (105) und (106)105
4.4 Röntgenstrukturanalysen der Verbindungen (105) und (106)107
4.5 Darstellung des 5-(1´,3´-Diethylbenzo[1´,3´,2´]diazaborol-2´-yl)-2-(4´´-
methoxyphenylethinyl)benzonitrils (108)110

4.6 Spektroskopische Daten des 5-(1´,3´-Diethylbenzo[1´,3´,2´]diaza-	
borol-2'-yl)-2-(4''-methoxyphenylethinyl)benzonitrils (108)	113
4.7 Röntgenstrukturanalyse des 5-(1´,3´-Diethyl-benzo[1´,3´,2´]diaza-	
borol-2'-yl)-2-(4''-methoxyphenylethinyl)benzonitrils (108)	.114
5. Darstellungsversuche weiterer lumineszenter Benzodiazaborol-	
verbindungen	116
5.1 Darstellungsversuch des 3,6-Di(tert-butyl)-9-[5´-(1´´,3´´-diethyl-1´´,3´´-	
dihydro-2´´H-1´´,3´´,2´´-benzodiazaborol-2-yl)-2´-thienyl]- <i>9H</i> -carbazols	
(110)	.116
5.2 Spektroskopische Daten des des 3,6-Di(tert-butyl)-9-[5´-(1´´,3´´-	
diethyl-1´´,3´´-dihydro-2´´H-1´´,3´´,2´´-benzodiazaborol-2-yl)-2´-	
thienyl]- <i>9H</i> -carbazols (110)	.118
5.3 Röntgenstrukturanalyse des 3,6-Di(tert-butyl)-9-[5´-(1´´,3´´-diethyl-	
1´´,3´´-dihydro-2 <i>´´H</i> -1´´,3´´,2´´-benzodiazaborol-2-yl)-2´-thienyl]- <i>9H</i> -	
carbazols (110)	118
5.4 Darstellungsversuch des N,N,N-Tris[4-(1´,3´-diethyl-1´,3´-dihydro-	
2 H- 1´,3´,2´-benzodiazaborol-2´-yl)phenyl]amins (111)	.120
5.5 Darstellungsversuch des 2,3,5,6-Tetracyano[1,4-bis(1,3-diethyl-	
1,3,2-benzodiazaborol-2-yl)]benzols (114)	.123
5.6 Darstellungsversuch des 9,10-Bis(1,3-diethyl-1,3,2-benzodiazaborol-	
2-yl)anthracens (115)	.124
5.7 Darstellungsversuch des 5,5 Bis(1,3-diethyl-1,3,2-benzodiazaborol-	
2-yl)2,2´: 5´,2´´-terthienyls (116)	.125
C Ergebnisse und Diskussion (II)	.127
1. Allgemeines zu den optischen Eigenschaften von "Small Molecules" auf	
der Basis von dreifach koordiniertem Bor	.127
2. Allgemeine Lumineszenzeigenschaften der Naphthodiazaborole (60)	
und (61)	128
3. Untersuchung von zweifach und dreifach benzodiazaborolyl-	
substituierten Verbindungen hinsichtlich ihrer Lumineszenz-	
eigenschaften	130
3.1 Allgemeine Lumineszenzeigenschaften der zweifach funktionalisierten	
Systeme (64), (67), (68), (70) und (79)	.131

3.2 Allgemeine Lumineszenzeigenschaften der dreifach funktionalisierten	
Systeme (82), (84) und (88)	. 139
3.3 Ergänzende Untersuchungen zu den Lumineszenzeigenschaften der	
zweifach und dreifach funktionalisierten Verbindungen	. 142
3.4 Spezielle Lumineszenzeigenschaften der zweifach und dreifach	
substituierten Verbindungen (DFT- und TD-DFT-Berechnungen)	. 144
3.5 Elektrolumineszenz der Verbindung (68) und der Einbau dieser	
Verbindung als emittierendes Material in einer OLED	. 153
4. Lumineszenzeigenschaften phenylethinylsubstituierter Bor-	
verbindungen	. 158
4.1 Allgemeine Lumineszenzeigenschaften der Benzodiazaborole	
(97)-(100)	. 158
4.2 Spezielle Untersuchungen zu den Lumineszenzeigenschaften der	
phenylethinylsubstituierten Verbindungen (97)-(100)	
(DFT- und TD-DFT-Berechnungen)	. 161
5. Allgemeine Lumineszenzeigenschaften von erweiterten benzodiaza-	
borolylsubstituierten Phenylethinylsystemen	. 167
5.1 Allgemeine Lumineszenzeigenschaften der erweiterten Phenylethinyl-	
systeme (105), (106) und (108)	. 167
5.2 Ergänzende Untersuchungen zu den Lumineszenzeigenschaften der	
Verbindung (108)	. 170
D Experimenteller Teil	.175
1.1 Allgemeine Arbeitsvorschriften	. 175
1.2 Spektroskopische Methoden und Analytik	. 175
1.3 Literaturbekannte Verbindungen	. 177
2. Synthesen der Verbindungen	. 179
2.1 Synthese von N,N'-Diethyl-2,3-diaminonaphthalin (57)	. 179
2.2 Synthese von 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborol (58)	. 179
2.3 Synthese von 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborol (60)	. 180
2.4 Synthese von (5´,2´,2´´-Dithienyl)-1,3-diethyl-1,3,2-naphthodiaza-	
borol (61)	. 181
2.5 Synthese von 1,4-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)-	
benzol (64)	. 182

2.6 Synthese von 2,5-Bis(dibromboryl)thiophen (66)183
2.7 Synthese von 2,5-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborolyl)-
thiophen (67)
2.8 Alternative Synthese von 2,5-Bis(1´,3´-diethyl-1´,3´,2´-benzodiaza-
borolyl)thiophen (67) 185
2.9 Synthese von 5,5'-Bis(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-2''-yl)-
2,2´-dithiophen (68) 186
2.10 Synthese von 9,9-Di(n-octyl)-2,7-bis(1´,3´-diethyl-1´,3´,2´-benzodiaza-
borol-2´-yl)fluoren (70) 187
2.11 Synthese von 2,3,5,6-Tetrafluor-1,4-di(1,3-diethyl-1,3,2-benzodiaza-
borolyl)benzol (79) 189
2.12 Synthese von 1,3,5-Tris(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)-
benzol (82) 190
2.13 Synthese von 1,3,5-Tris{4'-(1'',3''-diethyl-1'',3'',2''-benzodiaza-
borol-2´´-yl)phenyl}benzol (84) 191
2.14 Synthese von 1,3,5-Tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-
2´´-yl)-2´-thienyl}benzol (88) [1. aus 1,3,5-Tris(2´-5´´-chlorthienyl)-
benzol (86)] 193
2.15 Synthese von 1,3,5-Tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-
2´´-yl)-2´-thienyl}benzol (88) [2. aus 1,3,5-Tris(5-bromthienyl)benzol
(85)]193
2.16 Synthese von 1,3,5-Tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-
2´´-yl)-2´-thienyl}benzol 88 [3. aus 1,3,5-Tris(thienyl)benzol (87)]195
2.17 Synthese von 2-(4´-Dimethylaminophenylethinyl)-1,3-diethyl-1,3,2-
benzodiazaborol (97) 195
2.18 Synthese von 2-(4'-Methylthiophenylethinyl)-1,3-diethyl-1,3,2-benzo-
diazaborol (98) 197
2.19 Synthese von 2-(4'-Methoxyphenylethinyl)-1,3-diethyl-1,3,2-benzo-
diazaborol (99) 198
2.20 Synthese von 2-(4'-Methylphenylethinyl)-1,3-diethyl-1,3,2-benzodiaza-
borol (100)
2.21 Syntheseversuch von 2-(4´-Cyanophenylethinyl)-1,3-diethyl-1,3,2-
benzodiazaborol (101) 201

2.22 Synthese von 9,9-Bis(n-octyl)-2,7-di[(benzodiazaborolyl)ethinyl]-	
fluoren (104) 20	02
2.23 Synthese von 1,3-Diethyl-2-(p-diphenylethinyl)-1,3,2-benzodiaza-	
borol (105) 2 (03
2.24 Synthese von Bis-4,4'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-	
2´´-yl)tolan (106) 2 (05
2.25 Synthese von 5-Brom-2-(4-methoxyphenylethinyl)benzonitril (107)20	06
2.26 Synthese von 5-(1´,3´-Diethylbenzo[1´,3´,2´]diazaborol-2´-yl)-2-	
(4´´-methoxyphenylethinyl)benzonitril (108)	07
2.27 Synthese von 3,6-Di(tert-butyl)-9-[5´-(1´´,3´´-diethyl-1´´,3´´-	
dihydro-2 <i>´´H</i> -1´´,3´´,2´´-benzodiazaborol-2´´-yl)-2´-thienyl]- <i>9H</i> -	
carbazol (110) 20	09
2.28 Syntheseversuch von N,N,N-Tris[4-(1´,3´-diethyl-1´,3´-dihydro-	
2 <i>ʿH</i> - 1´,3´,2´-benzodiazaborol-2´-yl)phenyl]amin (111) (1. in THF) 2 ´	10
2.29 Syntheseversuch von N,N,N-Tris[4-(1´,3´-diethyl-1´,3´-dihydro-	
2'H-1',3',2'-benzodiazaborol-2'-yl)phenyl]amin (111)	
(2. in Diethylether)21	11
2.30 Syntheseversuch von 2,3,5,6-Tetracyano[1,4-bis(1,3-diethyl-1,3,2-	
benzodiazaborol-2-yl)]benzol (114) 2 1	12
2.31 Syntheseversuch von 9,10-Bis(1,3-diethyl-1,3,2-benzodiazaborol-2-yl)-	
anthracen (115)21	13
2.32 Syntheseversuch von 5,5 Bis(1,3-diethyl-1,3,2-benzodiazaborol-2-yl)	
2,2´: 5´,2´´terthienyl (116) 2 ´	14
E Zusammenfassung und Ausblick2	17
F Literatur	31
G Anhang23	39
1. Kristallographische Daten23	39
2. Photophysikalische Untersuchungen27	70
3. Quantenchemische Berechnungen27	70
4. Daten zu der Verbindung (68) in einer OLED27	70

A Einleitung und theoretischer Hintergrund

1. Einleitung

Der progressive Markt der Kommunikations- und Informationstechnologie verlangt nach einer adäquaten Visualisierung im Sinne von kleineren, flexibleren und benutzerfreundlicheren Displays. Auch die immer dringlichere Frage nach energiesparenden Verfahren ist in der heutigen Zeit von globalem Interesse. Auf dem momentanen Technologiemarkt sind noch immer Displays auf Basis von LCDs (Liquid Crystal Displays) in Produkten wie Notebooks, Handys und portablen Anwendungen dominierend. LCDs verfügen jedoch über einige offensichtliche Nachteile wie z.B. die Winkelabhängigkeit von Kontrast und Farbe, eine geringe Effizienz, die durch den benötigten Einbau von zahlreichen Filtern und Polarisatoren bedingt ist und nicht zuletzt der daraus resultierende hohe Energieverbrauch. Eine Alternative hierzu bieten die OLEDs (Organic Light Emitting Diodes), da sie selbst aus Licht-emittierenden Pixeln bestehen, keinerlei Hintergrundstrahlung benötigen und Betrachtungswinkel von mehr als 160° (90-140° bei LCDs) ermöglichen. Nachdem erste Untersuchungen zu den Lumineszenzeigenschaften von organischen Materialien (z.B. Anthracenfilme)^[1] wenig erfolgreich waren, da die verwendeten Materialien über zu geringe Lumineszenzleistungen verfügten und eine zu hohe Ansteuerungsspannung benötigten, wurden hierauf mit Arbeiten von Tang und van Slyke die ersten Bausteine zu einer technischen Anwendung gelegt.^[2] Sie verwendeten kleine Moleküle, "Small Molecules", welche sich als dünne Schichten auf Trägermaterial aufdampfen ließen und den Bau einer funktionellen OLED ermöglichten. In den Arbeiten von Burroughes et al., wurden polymere Materialien wie Poly-para-Erfolg getestet.^[3] (PPV) mit großem Durch die phenylvinylen rege Forschungstätigkeit und rasante technologische Entwicklung der letzten Jahre ist es gelungen, die OLED-Technologie soweit voranzutreiben, dass einzelne Firmen sie bereits in marktreifen Produkten anwenden. Erstes Augenmerk wurde bei der Synthese geeigneter Materialien auf elektronenreiche organische Moleküle, mit Stickstoff-, Schwefel- oder Selenatomen gerichtet. Basierend auf der Tatsache, dass dreifach koordinierter Stickstoff isoelektronisch zu einem Carbanion ist, haben derartige Verbindungen relativ schnell Verwendung als n-Typ-Materialien zur Loch-Leitung in OLEDs gefunden. Erst seit neuester Zeit rückt dreifach koordiniertes Bor im Zusammenhang mit OLED-Materialien in den Focus des Interesses.^[4] Dreifach koordiniertes Bor ist isoelektronisch zum Carbokation und kommt somit als Motiv in neutralen p-Typ-Materialien in Betracht. Dort hat man bislang Elektronenmangelsysteme eingesetzt, welche durch oxidatives Dotieren erhalten wurden. Die Zurückhaltung gegenüber den Borverbindungen kann auf die bekannte Empfindlichkeit derartiger Systeme gegenüber Atmosphärilien zurückgeführt werden. Ungeachtet dessen ist dreifach koordiniertes Bor als Bestandteil organischer Materialien für die potentielle Verwendung in OLEDs von begründeter Relevanz. Die Erkenntnis, dass sich Verbindungen mit dreifach koordiniertem Bor, durch Mesitylsubstituenten am Boratom kinetisch stabilisieren lassen, hat die Forschungstätigkeit auf diesem Gebiet vorangetrieben.^[5]

Die Erforschung neuer, funktioneller Materialien ist somit ein essentieller Baustein im Gesamtgefüge der Forschungstätigkeiten, die alle Naturwissenschaften umfasst, um auf die Bedürfnisse der heutigen Zeit nach effizienten, anwenderfreundlichen und dabei energiesparenden Projektionsmöglichkeiten in Kommunikation und Technik zu antworten.

2. Theoretischer Hintergrund

2.1 Lumineszenz

Die in dieser Arbeit vorherrschend behandelte Eigenschaft von Materie ist die Lumineszenz. Deshalb soll zunächst kurz auf einige wichtige Grundbegriffe in diesem Zusammenhang eingegangen werden.

Unter Lumineszenz (Lumina (*lat.*) = Licht, Leuchte) versteht man die Lichtemission eines Systems, die durch den Übergang von einem angeregten- in den Grundzustand entsteht. Die hierbei benötigte Energie zur Anhebung in den angeregten Zustand kann dem System auf verschiedene Weise zugeführt werden. Basierend auf der Art der Anregung unterscheidet man:

- Kathodenlumineszenz (Anregung durch den Beschuss mit Elektronen Bsp. "alter Fernsehbildschirm")
- Chemolumineszenz (Anregung durch eine chemische Reaktion)
- Biolumineszenz (besonderer Fall der Chemolumineszenz, hier geschieht die Anregung durch eine chemische Reaktion in lebenden Organismen Bsp. Luciferin im Leuchtkäfer)
- Elektrolumineszenz (Anregung durch die Zufuhr von Energie mittels eines elektrischen Feldes Bsp. Leuchtdiode)
- Photolumineszenz (Die Anregung erfolgt durch Photonen bestimmten Energiegehalts)

In organischen oder anorganischen Leuchtdioden erfolgt die Anregung durch die Anlegung eines elektrischen Feldes. Der Vergleich der durch ein elektrisch angelegtes Feld oder Photolumineszenz gewonnenen Spektren hinsichtlich Bandenform und Emissionsmaxima lässt erkennen, dass sich die entstehenden Singulett- und Triplett-Zustände nicht voneinander unterscheiden. Deshalb bieten zunächst gemessene Photolumineszenzspektren von organischen Molekülen bereits einen wertvollen Beitrag zur Vorabuntersuchung hinsichtlich der späteren Eigenschaften als Emittermaterial in einer OLED. Eine weitere Einteilungsmöglichkeit bietet sich nach der Dauer der Lumineszenzerscheinung. Ein Leuchten als unmittelbare Folge oder Begleiterscheinung der Anregung bezeichnet man als Fluoreszenz ($\sim 10^{-7}$ s), Phosphoreszenz hingegen zeigt eine länger andauernde Emission ($\sim 10^{-3}$ s). Eine genauere Betrachtung der Fluoreszenz und Phosphoreszenz erfolgt in dem Abschnitt über Fluoreszenz (**2.3**).

2.2 Absorption

Damit ein System zur Lumineszenz befähigt ist, muss es in der Lage sein Energie aufzunehmen. Dieses kann auf unterschiedliche Weise geschehen. Kleine Energiemengen, die bereits bei Raumtemperatur auf das System einwirken, können durch Anregung von Rotationsniveaus absorbiert werden. Bei höheren Temperaturen oder bei Bestrahlung mit Licht aus dem infraroten Bereich werden Bausteine in den Verbindungen zum Schwingen angeregt. Für die in dieser Arbeit behandelten Moleküle ist vor allem die Absorption von Energie im Bereich des sichtbaren Lichts bis in den nahen UV-Bereich von Interesse. Licht in diesem Bereich der elektromagnetischen Strahlung regt elektronische Übergänge an, welche für die Verwendung in organischen Leuchtdioden von essentieller Bedeutung sind. Die entsprechenden Übergänge können in einem ausreichend aufgelösten Spektrum als einzelne Banden erkannt werden. In einem reellen Spektrum, gerade bei einem vielatomigen komplexen Molekül mit nahe beieinander liegenden energieähnlichen Niveaus, wird meist ein breites Bandenspektrum erhalten, welches zusätzlich durch die Lebensdauerverbreiterung und Wechselwirkung mit umgebenden Lösungsmittelmolekülen ausgedehnt wird. Durch die Resonanzbedingung ist vorgegeben, unter welchen energetischen Bedingungen Absorption stattfindet:

$\Delta \mathsf{E} = \mathsf{E}_2 - \mathsf{E}_1 = hv$

E₂, E₁: Energiezustände des angeregten (2) und des Grundzustands (1) *h*: Plancksches Wirkungsquantum *v*: Frequenz des Lichts

Die Anregung eines Elektrons in ein höher gelegenes Orbital verändert seine Position, wodurch eine Veränderung des Dipolmoments des Moleküls erfolgt. Die Anregung erfolgt mit etwa 10⁻¹⁵ s auf einer kürzeren Zeitskala als die

Bewegungen der Kerne, weshalb diese während des Prozesses als ortsfest betrachtet werden können. Es resultiert ein vertikaler Übergang zwischen den Potentialen S₀ und S₁ wobei sich der Molekülabstand r nicht ändert (Franck-Condon-Prinzip).^[6] Dieses kann an einem Energie-Niveau-Schema für ein zweiatomiges Molekül veranschaulicht werden (**Abb. 1**).^[7]

Abb. 1: Energie-Niveau-Schema eines zweiatomigen Moleküls

Die Struktur eines Moleküls sowie sein Übergangsdipolmoment legen die Bedingungen für die Wahrscheinlichkeit des Übergangs fest. Die Beziehung zwischen den Eigenschaften des Materials und der Lichttransmission gibt das empirisch aufgestellte Lambert-Beer-Gesetz wieder, welches für verdünnte Lösungen gilt:^[8]

 $\mathbf{I} = \mathbf{I}_0 \mathbf{e}^{-\epsilon \mathbf{c} \mathbf{d}}$

- I_0 , I = Startintensität (0) und Endintensität
- ϵ = Extinktionskoeffizient
- c = Konzentration
- d = Schichtdicke der Probe

Die Energie der π - π ^{*}-Übergänge der im Rahmen dieser Arbeit synthetisierten konjugierten Systeme liegt ähnlich denen der Photonen des nahen UV- und sichtbaren Spektralbereichs.

2.3 Fluoreszenz

Ausgehend von dem Schwingungs-Grundzustand des elektronischen Singulett-Grundzustands S₀ des Moleküls erfolgt durch die Absorption eines Photons die Anregung von Elektronen in ein Schwingungsniveau eines elektronisch angeregten Zustands S₁ des Moleküls innerhalb von 10^{-15} Sekunden. Hierbei kommt es, wie bereits erwähnt, zunächst zu einem Übergang ohne Anpassung der Kernkoordinaten auf das veränderte Potential des Moleküls (Abb. 1). Das Molekül verfügt über verschiedene Wege, die hierdurch aufgenommene Energie folgenden umzuwandeln. Die photochemischen Prozesse mit den entsprechenden Lebensdauern der Zustände lassen sich gut anhand eines modifizierten Jablonski-Schemas erklären (Abb. 2).^[9]

Abb. 2: Jablonski-Schema

Mit seiner Hilfe lassen sich ebenfalls die Eigenschaften wie Form, Struktur und Lage der in Emissionsspektren erhaltenen Spektrallinien und der Stokes Shift sowie die Intensität und Löschungsprozesse der Fluoreszenz verdeutlichen. Das angeregte Elektron kann mittels eines strahlungslosen Übergangs, durch Internal Conversion (IC), innerhalb ca. 10^{-12} s zum Schwingungsgrundzustand des S₁-Niveaus gelangen. Dadurch bedingt, dass dieser Prozess relativ schnell abläuft, ist die Fluoreszenz unabhängig von der Anregungswellenlänge, da die Rückkehr in den S₀-Zustand des Moleküls durch einen strahlenden Übergang fast ausschließlich aus dem Schwingungsgrundzustand des angeregten Zustands S1 erfolgt. Der Übergang in ein Schwingungsniveau des Grundzustands erfolgt nach etwa 10⁻⁸ s und wird im Falle eines strahlenden Übergangs von der Emission längerwelligen Lichts begleitet (Fluoreszenz). Eine Begleiterscheinung der längerwelligen Verschiebung ist die Überlagerung der Schwingungsfeinstruktur von Absorption und Emission und der entstehende Stokes Shift. Absorptions- und Emissionsspektrum eines Moleküls verhalten sich zueinander laut der Stokes-Regel wie Bild und Spiegelbild. Begründet liegt dieses darin, dass sowohl beim Ubergang $S_0 \rightarrow S_1$ als auch $S_1 \rightarrow S_0$ derjenige am intensivatent erscheint, welcher über den größten Franck-Condon-Faktor verfügt. Wenn also bei der Absorption der Übergang von $0 \rightarrow 2$ am intensivsten erscheint, wird folglich bei der Emission der Übergang $2 \rightarrow 0$ gleichermaßen am intensivsten erscheinen. Das Stokes-Gesetz gilt nicht mehr, wenn sich während der Lebensdauer von S1 der Zustand von S1 verändert, da in diesem Fall die Emission aus einem anderen Zustand heraus geschieht. Die Veränderung des S₁ Zustandes kann durch Konformationsänderungen, TICT (Twisted Intramolecular Charge Transfer), Excimer- oder Komplexbildung^[10] hervorgerufen werden. Jedoch auch Faktoren wie Lösungsmitteleinflüsse,^[11] Exciplex-Bildung^[12] und die Energieunschärfe können ein Verschwinden der Schwingungsfeinstruktur induzieren. Neben der Möglichkeit zur Fluoreszenz bestehen zwei weitere Möglichkeiten zur Energieabgabe und der Rückkehr in den elektronischen Grundzustand S₀. Abgesehen von der Möglichkeit der strahlungslosen Desaktivierung $S_1 \rightarrow S_0$, welche spinerlaubt ist, gibt es die Möglichkeit des spinverbotenen Übergangs durch Intersystem Crossing (ISC) in einen Triplettzustand T. Die Rückkehr in den Grundzustand S₀ aus dem Triplettzustand T bedeutet wiederum einen spinverbotenen Übergang. Ein Resultat ist die Langlebigkeit der Triplettzustände

und im Fall eines strahlenden Übergangs in den Grundzustand, der aus ihr resultierenden Emission von Photonen, der Phosphoreszenz (10⁻⁴-100 s).

2.4 Prinzipieller Aufbau und Funktionsweise von OLEDs

2.4.1 Aufbau einer Einschicht-OLED

Der prinzipielle Aufbau einer OLED soll hier zunächst an einer einfachen Einschicht-OLED erläutert werden. Auf die Vorteile der Verwendung einer Mehrschicht-OLED soll darauf folgend eingegangen werden.

Im einfachsten Fall besteht eine OLED aus einer einzelnen organischen Halbleiterschicht, welche zwischen zwei Elektroden eingebettet ist (**Abb. 3**). Diese Schicht kann sowohl aus kleinen Molekülen (Small Molecules) als auch einer leitenden Polymerschicht bestehen. Als Anode werden häufig ITO (Indium-Zinnoxid) beschichtete Glas- oder Polymersubstrate verwendet, da sie hinreichend leitfähig und im sichtbaren Spektralbereich transparent sind. Als Kathode dienen unedle Metalle wie Aluminium, Calcium oder Magnesium, die eine geringe Austrittsarbeit (Ionisierungsenergie) besitzen.

Abb. 3: Einschicht-OLED

Für die gewünschte Lichtemission einer OLED müssen in ihr drei wichtige Prozesse ablaufen:

- Injektion von positiven und negativen Ladungsträgern in das organische Material
- Der Ladungstransport zur Rekombinationszone

8

 Die Ladungsträger müssen zu Singulett-Excitonen rekombinieren und als solche Licht emittieren

2.4.2 Injektion von Ladungsträgern

Bei dem Anlegen einer ausreichend hohen Spannung in Durchlassrichtung der OLED, werden Elektronen aus der Kathode in das LUMO (Lowest Unoccupied Molecular Orbital) und an der Anode Löcher in das HOMO (Highest Occupied Molecular Orbital) des emittierenden Materials injiziert. Die Injektion von Löchern ist hierbei als Entfernung von Elektronen aus dem Valenzband des organischen Materials zu verstehen. Die erfolgreiche Ladungsinjektion ist hierbei abhängig von der relativen Lage der Energieniveaus der für die Elektroden verwendeten Metalle und des eingebetteten aktiven Materials (**Abb. 4**).

Abb. 4: Energiediagramm einer Einschicht-OLED

 E_f Fermi Energie, IP Ionisierungspotential, EA Elektronenaffinität, ΔE HOMO-LUMO-Abstand, χ_L Energiebarriere der Löcher, χ_E Energiebarriere der Elektronen

Zwischen den beiden Energieniveaus (HOMO, LUMO) des aktiven Materials und denen der Elektroden bestehen Energiebarrieren, welche bei der Injektion überwunden werden müssen. Nur das Vorhandensein von kleinen Energiebarrieren garantiert jedoch die effektive Injektion der Ladungsträger. Hierdurch ergeben sich Bedingungen bei der Wahl der eingesetzten Materialien für die Elektroden. Die als Kathodenmaterialien verwendeten Metalle sollten über ein Ionisierungspotential verfügen, was in etwa der Lage des LUMO des eingesetzten organischen Materials entspricht. Im Gegenzug sollte die Elektronenaffinität des als Anode fungierenden Metalls dem HOMO entsprechen. Folglich ergibt sich daraus die Verwendung von Materialien mit hoher Austrittsarbeit (ITO: 4.7 eV) für die Löcher- und mit geringer Austrittsarbeit für die Elektroneninjektion. Nach erfolgter Injektion wandern Elektron und Loch innerhalb des organischen Materials aufeinander zu. Beim Aufeinandertreffen dieser beiden Ladungsträger innerhalb eines Moleküls kommt es zur Bildung eines so genannten Excitons, welches als Molekül im angeregten Zustand verstanden werden kann. Im Falle, dass die Löcher- und Elektroneninjektion gleich effizient verläuft und die jeweiligen Beweglichkeiten der Ladungsträger gleich groß sind, befindet sich die Rekombinationszone der Excitonen in der Mitte der organischen Schicht.

2.4.3 Ladungstransport in der OLED

Die Übertragung des klassischen Bändermodells, welches zur Erklärung in anorganischen Festkörpern verwendet wird, ist im Falle von organischen Festkörpern eher fraglich. In anorganischen Festkörpern existieren aufgrund der großen Uberlappung der Atomorbitale innerhalb des Kristallgitters starke interatomare Kräfte. In organischen Festkörpern kommt es aufgrund der geringen Überlappung der Orbitale der Einzelmoleküle nur zur Ausbildung von schwachen Wechselwirkungen (z.B. Van der Waals-Kräfte). In anorganischen Festkörpern kommt aufgrund der großen Überlappung Ausbildung es zur von Leitungsbändern, was den Ladungstransport erleichtert. Da diese Voraussetzungen in organischen Festkörpern nicht gegeben sind, zieht man für den Ladungstransport innerhalb organischer Festkörper Modelle heran, welche von so genannten hopping (Hüpf)- und tunneling (Tunnel)-Prozessen ausgehen. Innerhalb des organischen Festkörpers erfolgt hierbei der Transport von Ladungen durch lokalisierte Zustände (Fallen) zwischen Leitungsund Valenzband. Die Verteilung der besetzten Zustände sowie der Fallen können mittels einer Gauß-Funktion beschrieben werden.^[13] Im Vergleich entsprächen die Gauß-Verteilungen den Bandkanten des klassischen Bändermodells, diese sind aber aufgrund der statistischen Verteilung nicht klar abgegrenzt, sondern verbreitert. Ein injizierter Ladungsträger kann nun die Plätze in seiner näheren

Umgebung einnehmen, welche im Vergleich zu seiner vorherigen Position energetisch günstiger liegen.

Abb. 5: Vereinfachte Darstellung des Ladungstransportes im organischen Festkörper

Die aufeinander treffenden Elektron-Lochpaare (Excitonen) können dann unter Abgabe von Photonen, also Lichterscheinung zerfallen. Der Ladungstransport innerhalb des Materials wird durch geordnete Strukturen erleichtert, da sich dadurch die Orbitale der beteiligten Moleküle näher sind. Die Beweglichkeit nimmt in der Reihenfolge Kristall > Flüssigkristall > amorpher Feststoff ab. Die Verwendung von amorph-kristallinen Materialien wird aber dennoch aufgrund der einfacheren Realisierbarkeit bevorzugt.

2.4.4 Rekombination

hopping-Prozesse Der Ladungstransport durch genannte bis SO zur Rekombination kann als fortlaufender Redoxprozess betrachtet werden. Auf der Seite der Kathode werden Elektronen in das LUMO des organischen Materials injiziert, was zu einer Ausbildung von Radikalanionen führt. Das Elektron wird daraufhin unter Rückbildung der Neutralform des Moleküls das an Nachbarmolekül weitergegeben und wandert so in Richtung Anode. In analoger Weise verhält sich der Lochtransport auf der Anodenseite, auf der ein Elektron aus dem Material unter Ausbildung eines Radikalkations entfernt wird. Durch die Wanderung eines Elektrons von einem benachbarten neutralen Molekül in dieses "Loch" kommt es zu der Reduktion dieses Moleküls und der Oxidation des Nachbarmoleküls. Auf diese Art wandern Elektron und Loch aufeinander zu. In der Rekombinationszone treffen schlussendlich Elektronen und Löcher aufeinander. Dieser Prozess kann als bimolekulare Reaktion der Ladungsträger aufgefasst werden, bei der sich ein ungeladenes biradikalisches Exciton bildet.

$M^{+*} + M^{-*} \rightarrow M^{**} + M$

Unter Aussendung eines Lichtquants, dessen Energie die Wellenlänge des ausgesendeten Lichts bestimmt, kann nun das Exciton zerfallen.

$M^{**} \rightarrow M + hv$

Da die Emission aus Triplettzuständen spinverboten ist, geschieht die Emission von Licht dabei theoretisch nur aus dem Singulettzuständ (S). Die Bildung von angeregten Zuständen führt im Falle von Absorption elektromagnetischer Strahlung stets zu Singulettzuständen. Die Bildung von Singulett-Excitonen folgt jedoch bei der Elektrolumineszenz der Spin-Statistik. Unter der Voraussetzung, dass der Elektron-Loch-Einfang spinunabhängig ist, besteht bei dreifacher Entartung des Triplettzustandes (T₁, T₀, T₋₁), eine Wahrscheinlichkeit von 0.25 für die Bildung eines Singulett-Excitons. Somit kann die interne Quantenausbeute (η_{int}), welche das Verhältnis von emittierten Photonen zur Gesamtanzahl an verbrauchten Elektronen angibt, maximal 25 % betragen.

$\eta_{\text{int}} = \chi * \Phi_{\text{Ex}} * \eta_{\text{St}}$ $\chi = Z_{\text{Ex}} / Z_{\text{EI}}$

$$\begin{split} &Z_{\text{Ex}} = \text{Anzahl der gebildeten Excitonen} \\ &Z_{\text{EI}} = \text{Anzahl der verbrauchten Elektronen} \\ &\Phi_{\text{Ex}} = \text{Effizienz des strahlenden Zerfalls der Excitonen} \\ &\eta_{\text{St}} = \text{Quantenausbeute-Anteil der Singulett-Excitonen} \\ &\eta_{\text{int}} = \text{interne Quantenausbeute} \end{split}$$

Dementsprechend ist die Farbe, welche von einer OLED emittiert wird, abhängig von der elektronischen Struktur der verwendeten Materialien. Die Effizienz hingegen ist ein Zusammenspiel der einzelnen physikalischen Prozesse, die in ihr stattfinden.

2.4.5 Steigerung der Effizienz durch Verwendung von Phosphoreszenzfarbstoffen

In den meisten verwendeten Materialien aus leichten Hauptgruppenelementen existiert nur eine geringe Spin-Bahn-Kopplung. Aufgrund dessen zeigen diese Materialien nur geringe Lumineszenz in Form von Phosphoreszenz. Unter Spin-Bahn-Kopplung versteht man die Wechselwirkung zwischen dem Spin-Drehimpuls und dem Bahn-Drehimpuls eines Elektrons. Diese Wechselwirkung nimmt mit der Kernladungszahl Z zu, weshalb in diesem Zusammenhang auch von dem Schweratomeffekt gesprochen wird. Es konnte gezeigt werden, dass das Vorhandensein von metallischen Verunreinigungen oder der Einbau von schweren Hauptgruppenelementen in einer OLED zu einer Erhöhung des Phosphoreszenzanteils bei der Lumineszenz führen kann.^[14,15] Baldo et al. gelangen im Jahr 1998, die Effizienz von organischen LEDs durch die steigern.^[16] Verwendung Phosphoreszenzfarbstoffen zu In von Phosphoreszenzfarbstoffen kommt es aufgrund einer starken Spin-Bahn-Kopplung zu effizientem Intersystem Crossing (ISC), wodurch der spinverbotene Übergang von einem Singulett- in einen Triplettzustand ermöglicht wird. In ihrem Aufbau verwendeten sie den Phosphoreszenzfarbstoff Octaethyl-Porphyrin Platin(II) (PtOEP), welcher in geringer Konzentration in ein Wirtsmaterial aus Small Molecules eingebracht wurde. Dieser Aufbau lieferte eine elektrophosphoreszente Diode, welche rotes Licht mit einer externen Quantenausbeute von 4 % aussendete. In den darauf folgenden Jahren konnten elektrophosphoreszente Dioden basierend auf Small Molecules mit externen Quantenausbeuten von 11.6 % (blau),^[17] 19.2 % (grün)^[18,19] und 10.3 % (rot)^{[20,[21]} realisiert werden. Verschiedenartige Phosphoreszenzfarbstoffe wurden bereits hinsichtlich ihrer Eignung in OLEDs untersucht. In Abb. 6 sind Beispiele derartiger Verbindungen aufgeführt. Der Einfachheit halber werden im Folgenden zumeist die gängigen Abkürzungen der abgebildeten Substanzen verwendet.

Bis(2-(4,6-difluorphenyl)pyridyl-N,C^{2'})Iridiumpicolinat

Abb. 6: Phosphoreszenzemitter

Der erste in einer OLED verwendete Phosphoreszenzfarbstoff war der Terbium-Komplex **Tb(acac)**₃.^[22] Die Verwendung von Seltenerdmetallen wie Terbium und Europium führt zu einer Emission, welche durch eine geringe spektrale Linienbreite gekennzeichnet ist. Dieses liegt begründet in der Art des Übergangs, welcher in diesem Fall ein f-f-Übergang und somit am Zentralatom lokalisiert ist. Deshalb ist es bei diesen Komplexen nicht möglich, großartige Veränderungen der spektralen Lage der Emission zu erreichen, indem man die Substituenten an den Liganden variiert. Baldo und Mitarbeiter waren die ersten, die den roten Phosphoreszenzfarbstoff **PtOEP** in einer OLED einsetzten.^[23,24] Im Fall dieses Komplexes stammt die Emission hauptsächlich von dem Liganden. Mit HOMO- und LUMO-Lagen von 5.3 eV und 2.8 eV scheint dieser Komplex als geeigneter Ladungsfänger für eine Vielzahl an Materialien, jedoch ist in diesem Fall die Langlebigkeit der Phosphoreszenz ein limitierender Faktor für den Einsatz in hocheffizienten OLEDs. Die zu dem heutigen Zeitpunkt meist verwendeten Phosphoreszenzfarbstoffe beinhalten Iridium. Die aufgeführten Komplexe Ir(ppy)₃, btp₂Ir(acac) und FIrpic emittieren im grünen, roten und blauen Spektralbereich des sichtbaren Lichts. Bei diesen Komplexen existiert eine Abhängigkeit des Übergangs von den verwendeten Liganden. Im Fall von Ir(ppy)₃ liegt das ${}^{3}\pi\pi^{*}$ -Level bei einer Energie von 2.7 eV, so dass der ${}^{3}MLCT$ -Zustand der energetisch niedrigste angeregte Zustand ist. Im Gegensatz hierzu liegt der ${}^{3}\pi\pi^{*}$ -Zustand bei der Verwendung von **thp** (Thienylpyridin) als Ligand bei 2.21 eV, was unterhalb des ³MLCT-Zustands liegt. Im Fall des Komplexes **Ir(thp)**₃ ist der energetisch günstigste angeregte Zustand somit vom Liganden dominiert.^[25,26] Um einen effizienten Energietransfer von dem Wirtsmaterial auf den Phosphoreszenzfarbstoff (Gast) zu gewährleisten, muss dieser über Energielevel verfügen, die so niedrig liegen, dass im Wirtsmaterial erzeugte Singulett- und Triplett-Excitonen effektiv adaptiert werden können. Die Übertragung kann auf drei verschiedene Weisen geschehen. Im ersten Fall werden im Wirtsmaterial Singulett- und Triplett-Excitonen gebildet und auf den Gast durch einen Förster-Transfer übertragen. Dieser Prozess basiert auf einer Kopplung des Übergangsdipolmomentes des Wirtsmaterials im angeregten Zustand mit dem Übergangsdipolmoment des Gastes im Grundzustand. Bei der Übertragung der Anregungsenergie handelt es sich um einen nicht strahlenden Prozess, die Geschwindigkeit mit der dieser Prozess vonstatten geht, ist jedoch abhängig von der Überlappung des Emissionsspektrums des Wirtes mit dem Absorptionsspektrum des Gastes. Ebenso können gebildete Singulett- und Triplett-Excitonen durch Dexter-Prozesse übertragen werden. Der Dexter-Energietransfer beruht auf einem Elektronenaustausch zwischen dem Wirt- und dem Gastmaterial. Die Geschwindigkeit des Transfers sinkt exponentiell mit dem Abstand der beteiligten Moleküle und hat daher nur Bedeutung, wenn der Abstand relativ klein ist.^[27] Der dritte Fall ist die direkte Erzeugung von Singulettund Triplett-Excitonen im Gastmaterial, wodurch das Wirtsmaterial im Gegensatz zu den anderen beiden Fällen nur als ladungstransportierende Matrix fungiert.

2.5 Mehrschicht-OLEDs

Die gerade im Fall von Small Molecules gängigen Mehrschicht-OLEDs weisen erhebliche Vorteile gegenüber den Einschicht-OLEDs auf. Durch die Verwendung von mehreren Schichten lässt sich die Effizienz einer OLED gegenüber einer Einschicht-OLED erheblich steigern und Prozesse welche die Effizienz negativ beeinflussen eliminieren.

In der heutigen Praxis wird die Emitterschicht in Loch- und Elektronentransportschichten eingebettet (**Abb. 7**).

Abb. 7: Allgemeiner Aufbau einer Mehrschicht-OLED

Die Löschung von angeregten Zuständen (quenching) an dem Metallkontakt wird zum Beispiel stark dadurch vermindert, dass die Rekombinationszone von der Metallkathode weiter in das Innere der Diode verlagert wird. Es kann so ebenfalls eine Energiebarriere für die Löcher an der Grenze zur Emitterschicht geschaffen werden, die sich dort ansammeln und auf die langsameren Elektronen "warten". Diese "Barriere" führt zu einer effektiven Erhöhung der Quantenausbeute. Die Betriebsspannung kann im Vergleich zu einer Einschicht-OLED nennenswert gesenkt werden, da die Erhöhung der positiven Ladung im Diodeninneren eine Erhöhung des elektrischen Feldes vor der Kathode bewirkt und somit die Injektion von Elektronen begünstigt. Durch Einführung weiterer Schichten lassen sich die
Energieschritte, welche die Ladungsträger überwinden müssen, verringern und dadurch die Energiebarriere von der Injektionsstelle bis zur Rekombinationszone verkleinern. Weiterhin lassen sich die einzelnen verwendeten Schichten separat optimieren und für den jeweiligen Aufbau mit den spezifisch verwendeten Materialien anpassen.

2.6 Eigenschaften der funktionellen organischen Schichten in OLEDs

2.6.1 Allgemeine Eigenschaften der verwendeten Materialien

Die in gängigen OLEDs verwendeten Materialien lassen sich zunächst grob in zwei Untergruppen unterteilen. Zum einen in die so genannten Small Molecules, welche über ein definiertes Molekulargewicht von meist weniger als 1000 g/mol verfügen und in die Polymere. Es gibt einige wichtige Eigenschaften, die jedoch beide Materialgruppen erfüllen müssen. Zu ihnen gehören:

- Eine hohe chemische und photochemische Stabilität
- Eine geringe Neigung zur Kristallisation
- Eine hohe Temperaturbeständigkeit

Die Small Molecules müssen aufgrund ihrer späteren Verarbeitung über eine gute Verdampfbarkeit im Vakuum verfügen, da diese Materialien meist aus der Gasphase (CVD) auf das Trägermaterial aufgebracht werden. Die Polymere werden hingegen oftmals direkt aus der Lösung durch spin-coating aufgebracht. Eine genauere Klassifizierung der in gängigen OLEDs verwendeten Substanzen erfolgt basierend auf dem späteren Verwendungszweck in der OLED, welcher spezifischere Anforderungen an die jeweiligen Materialgruppen stellt. Für die nachfolgenden Klassen sind bereits Materialien aus der Gruppe der Small Molecules als auch der Polymere bekannt und finden sich in kommerziellen Anwendungen.

2.6.2 Emittierende Materialien

Das emittierende Material dient als Rekombinationszone für injizierte Löcher und Elektronen. Es generiert elektronisch angeregte Zustände oder Excitonen, welche unter Lichtemission zerfallen oder die Energie auf ein lichtemittierendes Material übertragen mit welchem es dotiert ist. Aus diesem Grund muss die emittierende Schicht sowohl über elektronendonierende als auch elektronenakzeptierende Eigenschaften verfügen, das heißt, einen bipolaren Charakter besitzen. Mit den in **Abb. 8** aufgeführten Verbindungen und Substanzklassen, die rein aus Kohlenwasserstoffen aufgebaut sind, lassen sich bereits große Bereiche des sichtbaren Lichts abdecken.

R = Alkyl

Abb. 8: Emitter auf reiner Kohlenwasserstoffbasis

Polyfluorenderivate, Spirobifluorenverbindungen, Phenylenvinylenderivate und Perylen emittieren Licht im blauen bis türkisen, Rubren emittiert im orange-roten Bereich. Eine größere Bandbreite des Farbenspektrums lässt sich jedoch durch die Verwendung von heteroaromatischen Systemen und der Einführung von

18

funktionellen Substituenten erzielen. Somit werden Derivate des Coumarins (Benzo[b]-a-pyron) als grün emittierende Substanzen und Dicyanomethylenfarbstoffe zur roten Emission verwendet. Dicyanomethylenfarbstoffe sind ein schönes Beispiel für die Verwendung von Farbstoffen, die aufgrund ihres Substitutionsmusters (Donor-Akzeptor) dazu befähigt sind, Licht eines geringeren emittieren. da durch die Verwendung Energiegehalts zu es dieses Substitutionsmusters zur Annäherung des HOMO und LUMO der Verbindung kommt. Diese Substanzen werden neben dem Einsatz als emittierende Materialien in OLEDs als Laserfarbstoffe verwendet. In Abb. 9 sind Beispiele dieser Substanzklassen aufgeführt. Es existieren noch eine Vielzahl weiterer verwendeter Materialien wie zum Beispiel Chinachrodine und Porphyrine, jedoch überschreitet die Vielfältigkeit der Verbindungen den kurzen Überblick der an dieser Stelle gegeben werden soll, somit wird nur auf einige verbreitete Verbindungsklassen eingegangen.

DCM 4-(Dicyanomethylen)-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran

Coumarin C545T

10-(2-Benzothiazolyl)2,3,6,7-tetrahydro-1,1,7,7,-tetramethyl-1H,5H,11H-(1) benzopyropyrano(6,7-8-I,J)chinolizin-11-on

Abb. 9: Emittierende Materialien

Allgemein gesehen dienen als Emitterfarbstoffe photostabile Substanzen, welche über eine sehr hohe Fluoreszenzquantenausbeute verfügen.

2.6.3 Elektronenleitende Materialien

Das elektronenleitende Material muss die Injektion von Elektronen ermöglichen, diese aufnehmen und zur emittierenden Schicht weiterleiten. Zur gleichen Zeit fungiert diese Schicht als lochblockierende Schicht, welche Löcher daran hindert, frühzeitig die emittierende Schicht ohne vorherige Rekombination zu verlassen. Aufgrund dessen entsprechende muss das Material über eine hohe Elektronenaffinität sein, verfügen und in der reversibel stabile Lage Radikalanionen zu bilden.

Alq₃ Tris-(8-hydroxy-chinolato)-aluminium

1,3-Bis[p-t-butylphenyl)-1,3,4-oxadiazol-2-yl] benzol

TAZ

3-(Biphenyl-4-yl)-4-phenyl-5-(4-t-butylphenyl)-1,2,4-triazol

PyPySPyPy 2,5-Bis[(2,2´-bipyridin-6-yl)]-1,1-dimethyl-3,4-diphenylsilol

TPQ 1,3,5-Tris(3-phenylchinoxalin-2-yl) benzol

TPBI 2,2´,2´´-(1,3,5-Benzotriyl)tris-[1-phenyl-1H-benzimidazol]

Abb. 10: Elektronenleitende Materialien

Ein häufig verwendetes Material ist der ebenfalls als grüner Emitter eingesetzte Metallchelatkomplex **Alq₃**. **Alq₃** hat sich als besonders geeignet erwiesen, da die Lage des HOMO (5.8 eV) und des LUMO (3.1 eV) gut mit den HOMOs und

LUMOs bekannter Lochleitermaterialien vereinbar sind. Aber auch andere elektronenleitende Materialien können als Emitter eingesetzt werden, wenn sie über eine genügend hohe Fluoreszenzquantenausbeute verfügen. Oftmals beinhalten elektronentransportierende Materialien Oxadiazol-, Triazol-, Silol-, Chinoxalin-, oder Benzimidazol-Einheiten. Einige Beispiele sind in **Abb. 10** dargestellt. Allgemein handelt es sich bei den elektronentransportierenden Materialien um elektronenarme π -Systeme. Verglichen mit lochtransportierenden Materialien sind bisher weniger effektive Materialien für die Elektronenleitung bekannt.^[28]

2.6.4 Lochtransportierende Materialien

Lochtransportierende Materialien müssen prinzipiell die Lochinjektion von Seiten der Anode erlauben, Löcher akzeptieren und diese zu der emittierenden Schicht weiterleiten. Gleichzeitig fungiert diese Schicht als elektronenblockierende Schicht, die das Verlassen von Elektronen aus dem Emittermaterial verhindert. Dementsprechend sollten sie über ein niedriges Ionisierungspotential bei niedriger Elektronenaffinität verfügen und in der Lage sein stabile Kationradikale zu bilden. Die Lage des HOMO-Niveaus muss hoch genug liegen um die Löcherinjektion ohne die Überwindung einer großen Energiebarriere aus der Anode zu gewährleisten. Gleichzeitig muss der HOMO-LUMO-Abstand größer gewählt werden als bei dem emittierenden Material, damit es zu keinen Reabsorptionseffekten kommt. Verbindungen, welche sich bereits als Lochtransportierende Materialien bewährt haben, gehören zu den Derivaten von diarylaminofunktionalisierten Triphenylaminen (TPA-Typ), diarylaminofunktionalisierten Diphenylen (TPD-Typ), deren Name sich von der Stammverbindung **TPD** ableitet (**Abb. 15**), oder der Kombination der jeweiligen Klassen. Chemisch gesehen ist das funktionsgebende Strukturelement das Triphenylamin, welches über ein niedriges Ionisationspotential verfügt (Abb. 11). Ein wichtiger Aspekt für die Herstellung einer qualitativ hochwertigen OLED ist die effiziente Injektion von Löchern durch die Anode in das angrenzende Material. Oftmals eignet sich dieses Material nicht gleichzeitig gut um die Löcher an das jeweilige emittierende Material weiterzugeben. Deshalb ist es ratsam diese

beiden Aufgaben auch räumlich voneinander zu trennen und anstatt einer lochtransportierenden Schicht, zwei Schichten einzusetzen.

Die zweite verwendete lochtransportierende Schicht (Hole Transporting Layer, **HTL 2**) sollte über ein höheres Ionisierungspotential verfügen als die erste verwendete Schicht (**HTL 1**), denn dadurch wird die Energiebarriere zwischen der ersten lochtransportierenden Schicht und der emittierenden Schicht verringert. Als ein Beispiel für eine OLED mit zwei lochtransportierenden Schichten sei an dieser Stelle die Dreischicht-OLED bestehend aus 4,4′,4′′-Tris[3-methylphenyl(phenyl)amino]triphenylamin (**m-MTDATA**) (**HTL 1**), **TPD (HTL 2**) und einer emittierenden Schicht **Alq**₃ betrachtet (**Abb. 12**).

Abb. 12: Beispiel einer OLED mit zwei lochtransportierenden Schichten

Durch die Verwendung von zwei lochtransportierenden Schichten findet man für Alq₃ eine wesentlich höhere externe Quantenausbeute und eine erhöhte Stabilität gegenüber einem Aufbau ohne m-MTDATA-Schicht.^[29] m-MTDATA und die

Klasse der 4,4',4''-Tris[1-,2-naphthyl(phenyl)amino]triphenylamine (**1-** und **2-TNATA**) und **TFATA** besitzen als gemeinsames Charakteristikum sehr kleine lonisierungspotentiale im Feststoff und bilden darüber hinaus qualitativ gute amorphe Filme.

Abb. 13: Geeignete lochleitende Materialien zur Verwendung als Lochinjektions-Pufferschicht (HTL 1) Diese Materialien werden erfolgreich als Lochinjektions-Pufferschicht (HTL 1) eingesetzt, welche die Injektion von Löchern aus der ITO-Elektrode ermöglicht (Abb. 13). Ebenfalls bekannt ist die Verwendung von Kupferphtalocyanin (CuPc) als lochtransportierendes Material in dieser Schicht. In OLEDs welche aus polymeren Materialien bestehen, übernimmt diese Funktion meist das elektronisch leitende Polymer Poly(3,3-ethylendioxythiophen), welches mit Poly(styrol)sulfonsäure (PEDOT/PSS) dotiert ist.

4,4´,4´´-Tri(N-carbazolyl)triphenylamin

1,3,5-Tris[4-methylphenylphenylamino)phenyl]benzol

TFIA Tris(9,9-dimethylfluoren-2-yl)amin

Abb. 14: Geeignete Materialien zur Verwendung in der zweiten lochleitenden Schicht (HTL 2)

Als Materialien für die zweite Schicht (**HTL 2**) werden Substanzen mit höherem Ionisierungspotential als in der ersten Schicht verwendet, um die Energiebarriere für die Injektion der Löcher in die emittierende Schicht zu verkleinern (**Abb. 14**). Die beiden zur Gruppe des **TPD-Typs** gehörenden Verbindungen **TPD** und **NPD** wurden bereits erfolgreich als Materialien für die **HTL 2**-Schicht genutzt, jedoch sind beide thermisch nicht besonders stabil (**Abb. 15**).

Abb. 15: Zwei lochleitende Moleküle des TPD-Typs

TPD ist ebenfalls morphologisch instabil und tendiert dazu auszukristallisieren. Mittlerweile gibt es jedoch einige Materialien die diese Defizite nicht mehr aufweisen oder als erfolgreiche Kandidaten für die Verwendung in OLEDs gelten.^[30]

2.6.5 Lochblockierende Materialien

Eine Voraussetzung für die Produktion einer high performance OLED ist die effiziente Rekombination in der emittierenden Schicht. Neben der Ermöglichung von Ladungträgerinjektionen von den Elektroden, müssen die loch- und die elektronentransportierende Schicht gleichzeitig als blockierende Schicht für Elektronen beziehungsweise Löcher dienen. Das als guter Emitter und elektronentransportierende Schicht dienende **Alq**₃ ist in diesem Sinne kein gutes lochblockierendes Material. Eine Trennung der beiden Funktionen, d.h. der Ermöglichung der Ladungsinjektion und der Blockierung von Ladungen aus der emittierenden Schicht, ist ein viel versprechender Weg um die Effizienz zu erhöhen. In diesem Fall wird eine separate lochblockierende Schicht zwischen der emittierenden und der elektronentransportierenden Schicht aufgebracht. Lochblockierende Materialien sollten einige allgemeine Anforderungen erfüllen. Sie sollten über ein weiches Elektronenakzeptorverhalten verfügen und gleichzeitig ein hohes Ionisierungspotential aufweisen. Die Energiedifferenz zwischen den HOMOs des emittierenden und des Iochblockierenden Materials sollte viel größer sein als die Differenz zwischen den entsprechenden LUMOs. Darüber hinaus sollten sie in der Lage sein stabile Radikalanionen zu bilden und keine Exciplexe mit elektronendonierenden Materialien aus der emittierenden Schicht bilden. In **Abb. 16** sind zwei Beispiele von Iochblockierenden Verbindungen aufgeführt.

Abb. 16: Lochblockierende Verbindungen

2.7 Lumineszente Borverbindungen

2.7.1 Allgemeines über die Eigenschaften und den Aufbau lumineszenter Borverbindungen

Erst in den letzten Jahren ist dreifach koordiniertes Bor im Zusammenhang mit optoelektronischen Materialien in den Focus des Interesses gerückt.^[31] Dreifach koordiniertes Bor verfügt über ein vakantes p_z-Orbital und ist somit ein starker Elektronenakzeptor. Im Zusammenhang mit optoelektronischen Materialien erhält man für gewöhnlich Elektronenmangelsysteme durch oxidatives Dotieren. Dreifach koordiniertes Bor ist isoelektronisch zu einem Carbokation und auch gleichartig von seinen Substituenten umgeben. Daher lag die Idee nahe, Kohlenstoffatome in lumineszenten organischen Verbindungen durch Bor zu ersetzen und dadurch zu neutralen p-Typ Materialien zu gelangen. Diese

bedingt jedoch Eigenschaft auch eine gewisse Instabilität derartiger Verbindungen, da das Boratom stets anfällig ist für nucleophile Angriffe. Um die Stabilität dieser Verbindungen zu erhöhen galt es, die kinetische Stabilität des Bors in diesen Verbindungen zu erhöhen und somit die Langzeitstabilität der resultierenden Materialien zu erreichen. Im Jahre 1955 beschrieben Wittig und Herbig bereits die optischen Eigenschaften von Borverbindungen, welche über aromatische Substituenten verfügten. Diese Verbindungen zeigten jedoch noch keine ausreichende Stabilität.^[32] Durch den Ersatz von Phenyl- durch Mesitylsubstituenten in diesen Verbindungen konnte eine genügende sterische Abschirmung des Boratoms erreicht und damit eine erhöhte Stabilität verwirklicht werden (Abb.17).^[33]

Ar = Aromat

Abb. 17: Der Dimesitylborylsubstituent

Daraufhin ist dieses Motiv für eine Vielzahl an Synthesen organischer Verbindungen verwendet worden. Interesse besteht vor allem in der Verwendung Substanzen Materialien die Optik,^[34] dieser in für nichtlineare Zweiphotonenabsorption,^[35] Lumineszenz,^[36] organische elektronische Bauelemente^[37] und Fluoridsensoren.^[38] Die Forschungen auf diesem Gebiet umfassen sowohl die Klasse der oligomeren Small Molecules als auch die der Polymere. Neben der Funktion als π -Elektronenakzeptor kann dreifachkoordiniertes Bor verglichen mit anderen starken π -Akzeptoren wie der Nitrogruppe gleichfalls sehr wohl als σ-Donor fungieren da es nicht generell induktiv elektronenziehend ist. Die Verwendung von Bor in konjugierten Systemen folgt hauptsächlich zwei Strukturprinzipien. Zum einen kann Bor in der Hauptkette eines konjugierten Systems eingebaut werden. Hierbei ist die Verwendung von zwei Borvalenzen zur Ausbildung des Grundgerüstes von Nöten. Im zweiten Fall werden die Bor-Substituenten an einem Ende der Moleküllängsachse oder an beiden Seiten des Moleküls platziert. Einem neuen Prinzip folgend, werden neuerdings auch Moleküle aufgebaut, bei denen die Borylgruppen in seitlicher

Position angebracht werden, was zu vollkommen neuen Eigenschaften dieser Verbindungen führt.^[39]

Abb. 18: Allgemeine Bauprinzipien lumineszenter Borverbindungen

Zu der ersten Gruppe (I) gehören die von Chujo et al. entwickelten π -konjugierten Polymere mit Bor in der Hauptkette (1), die durch Hydroborierung von aromatischen und heteroaromatischen Diinen mit Mesitylboran gewonnen werden können (**Abb. 19**).^[40]

Ar = Phenyldiyl, Furandiyl, Thiophendiyl, Pyridindiyl

Abb. 19: Beispiel für das Bauprinzip I

In ihrer Struktur ähneln die erhaltenen Polymere Poly-p-phenylenvinylen (PPV), besitzen jedoch in der Hauptkette Bor. Die so erhaltenen Polymere zeigen trotz geringer molekularer Masse im Fall der Verwendung von Phenyldiyl eine starke Photolumineszenz im blauen Wellenlängenbereich. Durch die Variation des verwendeten Diins (Furandiyl, Thiophendiyl) kann die Wellenlänge des emittierten Lichts in den grünen oder weißen (Pyridindiyl) Bereich verschoben werden. Viele oligomere und polymere Verbindungen folgen dem Typ **II**. Als ein Beispiel für Oligomere dieser Art, seien an dieser Stelle push-pull Systeme der allgemeinen Form Mes_2B-X-L (X = konjugiertes Aryl- oder Thienylrückgrat, L = 2,2'-Dipyridylamino- oder 7-Azaindolyl-) aufgeführt (**Abb. 20**, **2** und **3**).

Abb. 20: Lumineszente Borverbindungen des Bauprinzips II

Diese Moleküle sind in gängigen organischen Lösungsmitteln und im Festkörper stabil, können mittels Sublimation als Film auf Oberflächen abgeschieden werden und besitzen weit differierende Quantenausbeuten von $\Phi = 0.06-1.00$.^[31b] Ein Beispiel für das Bauprinzip III in dem der Borylsubstituent in der Seitenkette sind Oligo(phenylenethinylene) angesiedelt ist. und Distyrylbenzole mit Dimesitylborylsubstituenten am inneren Ring, oder den inneren Ringen des Molekülgerüsts, wie sie von Yamaguchi et al. synthetisiert wurden (Abb. 21). Die erhaltenen Verbindungen 4 sind in Wasser und an der Luft stabil und zeigen eine thermische Stabilität bis 400 °C bei Quantenausbeuten bis zu Φ = 0.99. Sehr interessant ist, das BMes₂ die Sonogashira-Kupplungen nicht stört und dass eine chromatographische Aufreinigung der Produkte möglich ist.^[41]

Abb. 21: Von Yamaguchi et al. synthetisierte Verbindungen des Bauprinzips III

Jäkle et al. synthetisierten Polythiophenderivate welche BMes₂-Substituenten beinhalten und ebenfalls diesem Strukturprinzip folgen. Im Vergleich zu

Yamaguchi et al. wird jedoch eine andere Synthesestrategie verwendet. Im Gegensatz zu Yamaguchi, der borylsubstituierte Monomere verwendet, wird in diesem Fall zunächst ein trimethylsilyl(TMS)-substituiertes Thiophen-Grundgerüst durch Stille-Kupplung aufgebaut und die TMS-Gruppen mit Hilfe von BBr₃ durch BBr₂-Gruppen ersetzt. Anschließend wird das Bromid in situ durch Mesitylkupfer nucleophil verdrängt, wodurch man das aromatisch substituierte, borylierte Produkt **5** erhält.^[42]

Polymerisation

Funktionalisierung

Abb. 22: Synthese eines Polymers mit Borylsubstituenten in der Seitenkette (Bauprinzip III) nach Jäkle et al.

2.7.2 Dreifach koordiniertes Bor für neuartige Materialien in OLEDs

Dreifach koordiniertes Bor kann in funktionellen Materialien für OLEDs unterschiedliche Aufgaben übernehmen. Hinsichtlich des chronischen Elektronendefizits bietet sich zunächst die Anwendung als elektronenleitendes Material an. Jedoch sind auch Verbindungen bekannt, denen die Aufgabe als lochblockierende oder emittierende Schicht zukommt. Einige Substanzen werden derzeit auf ihre Eignung hin überprüft. Deshalb sei an dieser Stelle eine kleine Auswahl an Materialien mit unterschiedlichen Einsatzmöglichkeiten gezeigt und sich dabei auf die so genannten Small Molecules beschränkt, da diese die Grundlage für die in dieser Arbeit behandelten Verbindungen darstellen. Als elektronentransportierende und zum Teil gleichzeitig als emittierende Materialien wurden erfolgreich Systeme untersucht, welche in ihrem aromatischen Grundgerüst neben Phenyl-, auch Thienyl- und Pyridyleinheiten beinhalten (Abb. 23).

Das von Shirota et al. synthetisierte 5,5´-Bis(BMes₂)-2,2´-dithiophen **6** (BMB-2T) zeigt aufgrund einer tiefen Lage des LUMO und der hohen Elektronenaffinität $(E_{1/2}^{red1} = -1.76 V gegen Ag/AgNO_3)$ gute Erfolge bei der Verwendung als elektronentransportierendes und blau emittierendes Material in OLEDs.^[37a,43] Neuere Arbeiten ersetzen die beiden Thienyl- durch Pyridyleinheiten in dem Grundkörper (**7**), da man sich durch die größere Elektronegativität der Stickstoffatome eine ebenfalls erhöhte Lewis-Acidität der Boratome erhofft und damit bessere elektronenleitende Eigenschaften.^[44] Auch einige Tris(phenyl-ethinylduryl)borane **8** wurden in diesem Zusammenhang erfolgreich getestet.^[45] Als eine neue Klasse von lochblockierenden Materialien sind neben den bisher verwendeten Triarylbenzolverbindungen aufgrund ihrer positiven Eigenschaften die Triarylborane **9-11** in Verwendung (**Abb. 24**). Sie bilden amorphe Gläser und fungieren als weiche Elektronenakzeptoren.^[46]

Abb. 24: Lochblockierende Verbindungen auf Borbasis

2.8 Bor-Stickstoff-Heterocyclen

2.8.1 Allgemeines zu Bor-Stickstoff-Heterocyclen

Bor-Stickstoff-haltige Heterocyclen umfassen ein großes und interessantes Gebiet in der Hauptgruppenchemie. Dennoch setzte erst eine erhöhte Forschungstätigkeit auf diesem Gebiet ein, als im Jahre 1926 Stock und Poland das zum Benzol isoelektronische Borazin in ihren Arbeiten präsentierten.^[47] Formal ersetzen die drei B=N-Einheiten des Borazins **12** die drei C=C-Einheiten des Benzols, wobei jedoch die drei Mehrfachbindungen durch die teilweise Überlappung von besetzten 2p_z-Orbitalen des Stickstoffs mit den leeren 2p_z-Orbitalen des Bors zustande kommt.

Dadurch verhalten sich diese Bindungen wie ein elektrischer Dipol und bedingen trotz der offensichtlichen chemischen Verwandtschaft zum Benzol andere chemische Veraltensweisen und Reaktionsmöglichkeiten.

2.8.2 Borazaaromaten und Azaboracycloalkane

Inzwischen sind eine Vielzahl von Heterocyclen synthetisiert worden, in denen eine B-N-Einheit die isoelektronische C-C-Einheit innerhalb des Cyclus ersetzt. Diese Verbindungen lassen sich grob in zwei Untergruppen unterteilen, die Azaboracycloalkane und die Borazaaromaten. Die Gruppe der Azaboracycloalkane verfügt über ein gesättigtes Ringsystem, die Gruppe der Borazaaromaten besteht aus einem ungesättigten Ringsystem in dem mindestens eine C-C-Einheit des ursprünglichen Aromaten gegen eine B=N substituiert ist. Die von Goubeau und Zappel im Jahre 1955 durch Umsetzung von Ethylendiamin und Trimethylendiamin mit Bortrimethyl gewonnenen Verbindungen **13** und **14** stellen Beispiele für den ersten Verbindungstyp dar. Das dargestellte 1,2-Dihydro2,1-borazanaphthalin **15** sei an dieser Stelle als Beispiel für den Verbindungstyp der Borazaaromaten aufgeführt.

Da für die Lumineszenzeigenschaften eines Moleküls die ausgedehnte Konjugation eines π -Systems von Interesse ist und der Einfluss des Bors in diesem Zusammenhang untersucht werden soll, stehen vor allem die ungesättigten Verbindungen im Vordergrund, zu denen die Klasse der 2,3-Dihydro-*1H*-1,3,2,-diazaborole gehört.

2.8.3 2,3-Dihydro-1H-1,3,2-diazaborole

Durch den formellen Ersatz einer C=C-Einheit des Pyrrols **16** durch eine isoelektronische B=N-Einheit kommt man zu der Klasse der 2,3-Dihydro-*1H*-1,3,2-diazaborole **17**.Im Sinne isoelektronischer Verbindungen ist diese Substanzklasse ebenso vergleichbar mit dem Cyclopentadienid-Anion **18**. Innerhalb dieser Systeme ist das dreifach koordinierte Bor integraler Bestandteil eines pseudo-aromatischen Systems.

Der erste Bericht über Diazaborole erschien im Jahre 1973 von Merriam und Niedenzu.^[48] Innerhalb dieses Berichtes wurde die Darstellung des 2,3-Dihydro-1*H*-1,3,2-diazaborols **20** mittels katalytischer Dehydrierung von 1,3-Dimethyl-2phenyldiazaborolidin **19** mit Palladiumkohle vorgestellt.

Einige Monate später wurde von Weber und Schmid eine alternative Synthesemethode für die Darstellung dieser Heterocyclen vorgestellt, welche unter vergleichbar milden Bedingungen abläuft. Das zunächst erhaltene Diazaboroliumsalz **21** wird mit Hilfe von Natriumamalgam bei Raumtemperatur zum entsprechenden Diazaborol **22** reduziert. Im Rahmen dieser Veröffentlichung wurde ebenfalls eingehend auf die molekulare sowie elektronische Struktur dieser Verbindungen eingegangen.^[49]

Im Jahr 1997 veröffentlichten Weber et al. Darstellungsmethoden zur Synthese von 2-Halogenoderivaten der 2,3-Dihydro-*1H*-1,3,2-diazaborole.^[50] Je nach gewünschtem Halogensubstitutionsmuster stehen zwei unterschiedliche Syntheserouten zur Verfügung. Die erste Syntheseroute geht von den Diazabutadienen **23** aus, welche mit Bortrihalogenid zum Boroliumsalz **24** umgesetzt und anschließend mit Natriumamalgam zu dem entsprechenden 2-Halogenodiazaborol **25** reduziert werden. Diese Methode eignet sich besonders zur Darstellung der 2-Chlor- und 2-Bromderivate. Die zweite Syntheseroute eignet sich zur Darstellung der Fluor- und Iod-Analoga. In diesem Fall wird das Diazabutadien **23** zunächst mit Lithium reduziert (**26**) und anschließend mit dem entsprechenden Bortrihalogenid zum 2-Halogenodiazaborol **25** umgesetzt.

Y = 01, DY = F. I

35

2.8.4 Reaktivität der 2,3-Dihydro-1H-1,3,2-diazaborole

Die 2-Halogeno-1,3,2-diazaborole **25** bieten über die nucleophile vielfältige Möglichkeiten der weiteren Modifikation.

 $\mathsf{X}=\mathsf{CI},\,\mathsf{Br},\,\mathsf{I}$

Die Umsetzung des 2-Halogeno-1,3,2-diazaborols **25** mit Lithiumaluminiumhydrid a) führt zu der 2-Hydroverbindung **27**.^[51] Desgleichen kann das Halogenatom durch stickstoffhaltige Nucleophile wie N-Trimethylsilylketimine b), oder Silylamine d) substituiert werden, wodurch die 2-Ketimino- **28**, bzw. 2-Aminoderivate entstehen **30**.^[52] Die Darstellung eines in 2-Position stannylierten 1,3,2-Diazaborols **29** erfolgt durch die Reaktion mit Lithiumtrimethylstannid c).^[53] Durch die Umsetzung mit Lithiumalkylen kommt man zu den entsprechenden 2-Alkyldiazaborolen **31**.^[51] Neben den hier aufgeführten Reaktionsmöglichkeiten sind eine Vielzahl weiterer, wie z.B. die Synthese von Pseudohalogenderivaten^[53], oder auch chiralen 1,3,2-Diazaborolen bekannt.^[54]

Ein neues Feld eröffnet die Umsetzung von 1,3,2-Diazaborolen mit Elektrophilen. Aufbauend auf den Arbeiten von Weber et al gelang Nozaki et al. die Synthese eines nucleophilen Boryllithium-Anions durch die Reduktion mit Lithium-Naphthalinid (**32**).^[54,55] Hierdurch ist eine Vielzahl neuartiger elektrophiler Reaktionsmöglichkeiten denkbar. Das Boryl-Anion reagiert mit Elektrophilen wie Wasser, Alkylhalogeniden und Benzaldehyd unter Bildung des entsprechenden Hydroborans, Alkylborans oder α -Borylbenzylalkohols (**33**).

2.8.5 1,3,2-Benzodiazaborole

Eine weitere interessante Klasse der 1,3,2-Diazaborole stellen die 1,3,2-Benzodiazaborole **35** dar, welche über ein erweitertes π -System am Rückgrat des Diazaborol-Grundgerüsts verfügen und als isoelektronisch zum Indol **34** sind.

Die Darstellung dieser Verbindungen kann ausgehend von o-Phenylendiamin **36** a) mit PhBCl₂ (**37**),^[56] b) BMe₃ (**38**),^[57] d) B(NMe₂)₃ (**40**)^[58] sowie mit c) MeBBr₂ in Gegenwart von Natriumhydrid (**39**)^[59] und durch Umsetzung e) mit Phenylboronsäure (**41**)^[60] durchgeführt werden.

Der Grundkörper des 1,3,2-Benzodiazaborols **43** wurde erstmals von Goubeau im Jahre 1964 aus o-Phenylendiamin-Hydrochlorid **42** und Natriumboranat, dargestellt.^[61]

Die bisher aufgeführten Benzodiazaborole gleichen sich in einer fundamentalen Hinsicht. Sie verfügen über acide NH-Funktionen und über schlechte Abgangsgruppen am Boratom. Für weitere Funktionalisierungen sind sie daher ungeeignet.

Im Rahmen seiner Dissertation verwendete Wartig das 2-Brom-1,3,2benzodiazaborol **45**, welches aufgrund der Alkylreste an den Stickstoffatomen, sowie Brom als Abgangsgruppe am Boratom, für weitere Funktionalisierungen eher infrage kommt. Das 2-Brom-1,3,2-benzodiazaborol **45** kann durch Reaktion von N,N'-Diethyl-o-phenylendiamin **44** mit Bortribromid in Gegenwart von Calciumhydrid als Base in 77 %iger Ausbeute gewonnen werden.^[62]

2-Brom-1,3,2-benzodiazaborol Durch die Verwendung von 45 als Ausgangssubstanz konnten eine Reihe neuartiger 1,3,2-Benzodiazaborolderivate dargestellt werden. Die Umsetzung des 2-Brom-1,3,2-benzodiazaborols 45 mit Silbercyanid a) ergibt das 2-Cyano-1,3,2-benzodiazaborol **46**. Die Methylierung b) gelingt durch die Reaktion mit einer äguimolaren Menge MeLi in einem 47. n-Pentan/Diethylether-Gemisch Der bei 2-Brom-1,3,2-diazaborolen beobachtete Brom/Chloraustausch mit Trimethylchlorsilan d) kann bei dem 2-Brom-1,3,2-benzodiazaborol nicht beobachtet werden.^[62] Die Reaktion mit Lithiumarylen c) führt zu den für diese Arbeit relevanten, benzodiazaborolfunktionalisierten Aromaten 48.^[63]

2.8.6 Benzodiazaborole in organischen Materialien für OLEDs

Maruyama et al. veröffentlichten 2002 eine Arbeit, in der Benzodiazaboroleinheiten Bestandteil von violett-blau lumineszierenden Verbindungen (**50**) waren.^[60]

R = H, OMe, CN

Im Jahre 2007 publizierten Yamamoto et al. die Synthese eines Seitenkettenfunktionalisierten Polymers mit integrierten Benzodiazaboroleinheiten (52).^[64] Das funktionalisierte Polymer kann aus dem o-diaminofunktionalisierten Polymer und der entsprechenden Boronsäure 51 gewonnen werden. Die in der Veröffentlichung aufgeführten Polymere zeigen intensive blaue Fluoreszenz in Lösung. Der Vergleich mit den entsprechenden Polymeren ohne Benzodiazaborole im Polymergerüst zeigte eine deutliche Zunahme der Lumineszenzeigenschaften durch die Benzodiazaboroleinheiten.

R = H, Bu, OMe

Auch innerhalb des Arbeitskreises Weber konnten bereits blau lumineszente Benzodiazaborole und Diazaborole dargestellt werden. Exemplarisch seien an dieser Stelle die beiden thienylhaltigen Benzodiazaborole **53** und **54**, sowie das Diazaborol **55** aufgeführt.^[36d,63,65]

B Aufgabenstellung

Im Rahmen dieser Doktorarbeit sollen die Lumineszenzeigenschaften diazaborolsubstituierter π -Systeme untersucht werden. Basis bilden das rege Interesse an neuartigen, funktionellen Materialien für elektrooptische und elektronische Anwendungen und die in der Literatur beschriebenen, interessanten Eigenschaften des dreifach koordinierten Bors in diesem Zusammenhang.^[4,5]

Die bekannten Benzodiazaborole **53** und **54** zeigten bereits intensiv-blaue Fluoreszenz unter UV-Bestrahlung.^[36d]

Der allgemein favorisierte Baustein, um dreifach funktionalisiertes Bor in ein π -System einzubringen, ist aufgrund der kinetischen Stabilisierung des dreifach koordinierten Bors, die Dimesitylboryleinheit (**Abb. 17**). Im Gegensatz zu einer kinetischen Stabilisierung besteht innerhalb des Diazaborolsystems eine Stabilisierung durch das pseudoaromatische π -System, in welches das leere p-Orbital des Bors integriert ist.

Der erste Teil der Doktorarbeit umfasst die Aufgabe, neuartige lumineszente Diazaborol-Verbindungen zu synthetisieren. Hierbei soll das π -System erweitert werden, um die Lumineszenzeigenschaften zu verbessern.

Abb. 25: Möglichkeiten zur Vergrößerung des π -Systems

Um das Gesamt- π -System zu vergrößern, bieten sich zunächst zwei Möglichkeiten an. Die Erweiterung des aromatischen Systems auf Seiten des Diazaborolrückgrates und die Vergrößerung auf Seiten des Substituenten am dreifach koordinierten Boratom (Abb. 25). Darüber hinaus sollen unterschiedliche Einflusses auf π -Systeme bezüglich ihres das Lumineszenzverhalten von Benzodiazaborolverbindungen untersucht werden. Hauptaugenmerk soll auf dem Vergleich von thienyl- und phenylhaltigen Verbindungen liegen. Ebenfalls interessant ist der Einfluss eines variierenden Substitutionsmusters am anknüpfenden, aromatischen System.

Der zweite Teil dieser Arbeit soll die Untersuchung der Lumineszenzeigenschaften der synthetisierten Verbindungen umfassen, um Hinweise auf eine potentielle Eignung dieser Materialien für optoelektronische Anwendungen zu erhalten. Um die erhaltenen Ergebnisse im Kontext einer potentiellen Anwendung besser einordnen zu können, sollen - soweit möglich -Vergleiche mit bereits bekannten Systemen, welche Dimesitylboryleinheiten beinhalten gezogen und falls vorhanden, Unterschiede aufgezeigt werden. C Ergebnisse und Diskussion (I+II)

1. Vorwort

Im ersten Teil (Ergebnisse und Diskussion (I)) werden die Synthesen und die spektroskopischen Daten im Rahmen dieser Arbeit hergestellten Verbindungen beschrieben.

Der zweite Teil (Ergebnisse und Diskussion (II)) befasst sich mit den Lumineszenzeigenschaften der neuen Verbindungen. Hierzu gehören unter anderem photophysikalische Untersuchungen, quantenchemische Berechnungen, sowie der Einsatz einer synthetisierten Verbindung als emittierendes Material in einer OLED.

Um eine bessere Vergleichbarkeit der synthetisierten Verbindungen untereinander zu schaffen sind diese zum Teil in thematischen Gruppen zusammengefasst.

C Ergebnisse und Diskussion (I)

1. Darstellung eines Diazaborols mit erweitertem aromatischem Rückgrat

Da sich die Benzodiazaborole gegenüber Diazaborolen, welche über kein erweitertes, konjugiertes π -System am Rückgrat verfügen, durch eine erhöhte Stabilität auszeichnen, stand zunächst die Erweiterung des π -Systems durch die Vergrößerung des Diazaborol-Grundgerüstes im Vordergrund des Interesses.

Um das System gegenüber dem Benzodiazaborol (**A**) zu erweitern, bedarf es u.a. eines weiteren annelierten Ringes, wodurch man zu einem Naphthodiazaborol (**B**) gelangt (**Abb. 26**).

Abb. 26: Benzodiazaborol- (A) und Naphthodiazaborol- (B) system

1.1 Darstellung des 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborols (58)

Anlehnend an den Syntheseweg des bekannten 2-Brom-1,3,2-benzodiazaborols 45 wurde zunächst aus 1,8-Diaminonaphthalin das entsprechende N,N'-Diacetyl-2,3-naphthalindiamid 56 mittels Acetylierung der Aminogruppen mit Essigsäureanhydrid/Ethylacetat dargestellt.^[66] Anschließend wird das erhaltene Diamid 56, analog zur Synthese des N,N'-Diethyl-o-phenylendiamins 44, mit Lithiumaluminiumhydrid in THF bei 0 °C zu dem N,N'-Diethyl-2,3-diaminonaphthalin 57 reduziert. Hierbei verfärbt sich die Reaktionslösung zunächst rötlich, bei der darauf folgenden Hydrolyse kommt es zur Grünfärbung der Reaktionslösung. Nach der Filtration, die auf die Hydrolyse folgt, hat es sich bewährt, zur Trocknung der vereinigten organischen Phasen anstelle von Natriumhydroxid, wie in der Literatur für das N,N'-Diethyl-2,3-phenylendiamin beschrieben, das erhaltene Filtrat mit Magnesiumsulfat zu trocknen. Hierdurch

kann die folgende Destillation im Vakuum ohne die Bildung von Azeotropen, welche bei der Verwendung von Natriumhydroxid entstehen, durchgeführt und die Ausbeute von 66 % bis auf 90 % gesteigert werden. Der durch Destillation gewonnene hellgelbe Feststoff wird durch Lösen in n-Hexan oder THF und anschließendem Entfernen des Lösungsmittels im Vakuum weiter aufgereinigt, da die im Rohprodukt befindlichen gelben Verunreinigungen mit dem Lösungsmittel in die Gasphase übergehen.

Das ¹H-NMR-Spektrum zeigt ein Triplett für die Methylprotonen der Ethylgruppen bei δ = 1.37 ppm (³*J*_{HH} = 7.2 Hz) und ein Quartett für die Methylenprotonen bei δ = 3.25 ppm (³*J*_{HH} = 7.2 Hz). Die aromatischen Protonen des Naphthylgerüstes geben zu einem Singulett bei δ = 6.89 ppm und zwei Multipletts bei δ = 7.20 und 7.59 ppm Anlass. Die beiden NH-Protonen bilden ein breites Signal bei δ = 3.41 ppm. Das angefertigte El-Massenspektrum zeigt den Molekülionenpeak des Produktes **57** bei m/z = 214 [M⁺].

Das für weitere Synthesen interessante 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborol **58** wurde durch die Umsetzung des N,N'-Diethyl-2,3-naphthalindiamins **57** mit Bortribromid in Gegenwart von Calciumhydrid als Base erhalten. Nach der gleichzeitigen Zugabe einer toluolischen Lösung von Bortribromid und einer toluolischen Lösung von N,N'-Diethyl-2,3-naphthalindiamin **57**, zu einer auf 0 °C gekühlten Suspension von Calciumhydrid in Toluol, färbt sich die Reaktionslösung zunächst leicht gelb. Nach anschließendem Rühren über Nacht bei Raumtemperatur erhält man eine intensiver gelb gefärbte Lösung, aus welcher nach Filtration, Entfernen des Lösungsmittels im Vakuum und anschließender Destillation, das Produkt in Form eines farblosen Feststoffs in 76 %iger Ausbeute gewonnen wird. Verglichen mit dem entsprechenden 2-Brom-1,3-diethyl-1,3,2-benzodiazaborol **45** ist diese Verbindung weniger stabil, was sich durch eine violette Verfärbung des weißen Feststoffes nach wenigen Tagen Lagerung unter Schutzgasatmosphäre andeutet. Die Zersetzung wird zudem in den NMR-Spektren durch das Auftreten neuer Signale angezeigt.

Aufgrund dessen sollte die Umsetzung zum 2-Bromnaphthodiazaborol **58** zeitnah zu dem geplanten nächsten Reaktionsschritt erfolgen.

1.2 Spektroskopische Daten des 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborols (58)

Das ¹H-NMR-Spektrum zeigt für die Methylenprotonen der Ethylgruppen an den Stickstoffatomen des Naphthodiazaborols **58** ein Quartett mit einer Verschiebung von δ = 3.9 ppm (³*J*_{HH} = 7.2 Hz). Im Vergleich zu dem Quartett des Eduktes N,N'-Diethyl-2,3-naphthalindiamin **57** (δ = 3.24 ppm) ist eine deutliche Verschiebung zu tiefem Feld zu verzeichnen. Die Cyclisierung zum Naphthodiazaborol hat jedoch keinen Einfluss auf die Lage der Methylprotonen der Ethylgruppen, in beiden Fällen findet sich ihr Signal als gut aufgelöstes Triplett bei δ = 1.37 ppm (³*J*_{HH} = 7.2 Hz). Die Protonen des Naphthalinrückgrates bilden zwei Multipletts bei δ = 7.35 und 7.83 ppm, sowie ein Singulett bei δ = 7.36 ppm. Bei dem N,N'-Diethyl-2,3-naphthalindiamin **57** liegen die entsprechenden Multipletts bei δ = 7.19 und 7.59 ppm, das Singulett bei δ = 6.89 ppm. Die Cyclisierung zum Diazaborol äußert sich demnach in Tieffeldverschiebungen der aromatischen Protonen.

Ein Vergleich der ¹³C{¹H}-NMR-Spektren des 2-Brom-1,3-diethyl-1,3,2-benzodiazaborols 45 und des 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborols 58 zeigt keine signifikante Veränderung der Lage der Kohlenstoffatome der Ethylgruppen, jedoch eine Entschirmung der Kohlenstoffatome des aromatischen Fünfring-Systems. Betrachtet man die Lage des ¹³C{¹H}-NMR-Signals der beiden Kohlenstoffatome des fünfaliedrigen Diazaborolrings und vergleicht das erhaltene Signal bei δ = 137.6 ppm mit denen der literaturbekannten Verbindungen **45** (δ = 136.3 ppm) und **59** (δ = 113.6 ppm),^[54a] stellt man eine geringe Verschiebung zu tiefem Feld gegenüber der Verbindung 45 fest (Tab. 1). Im Fall der Verbindung **59**, welche über kein anneliertes π -System am Rückgrat des Diazaborolrings verfügt, kann eine größere Verschiebung festgestellt werden. Durch die Annelierung eines Ringsystems an das Rückgrat des Diazaborolsystems kommt es zu einer Verschiebung der Elektronendichte in Richtung des Aromaten, was zu einer veränderten Delokalisierung der π -Elektronen innerhalb des fünfgliedrigen Diazaborolringes führt. Dieses äußert sich in einer zunehmenden Entschirmung der Kohlenstoffatome des Diazaborols.

Verbindung	¹¹ B{ ¹ H}-NMR	¹³ C{ ¹ H}-NMR	¹³ C{ ¹ H}-NMR	
	δ (ppm)	Ethyl-C	aromC	
		δ (ppm)	δ (ppm)	
→ N N B-Br	23.5(s)	15.5(s), 37.6(s)	108.8(s), 119.1(s), 136.3(s)	
45 (CDCl ₃)				
N B-Br	25.4(s)	15.1(s), 37.9(s),	104.4(s), 123.2(s), 126.9(s), 127.8(s), 137.6(s)	
58 (CDCl ₃)			107.0(0),	
⊢ N B−Br →	16.2(s)	-	113.6(s)	
59 (CDCl ₃)				

Tab. 1: Ausgewählte NMR-Daten der 2-Bromdiazaborole 58, 45 und 59

Auch die Lage der ¹¹B{¹H}-NMR-Signale belegt die Entschirmung des Fünfrings. Mit wachsender Größe des annelierten Ringsystems kommt es zu einer Entschirmung am Boratom [**59** (δ = 16.2 ppm) < **45** (δ = 23.5 ppm) < **58** (δ = 25.4 ppm)].

1.3 Umsetzung des 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborols (58) mit lithiierten aromatischen Systemen

Um einen direkten Vergleich mit in der Literatur bereits ausführlich beschriebenen Systemen zu haben, wurden als Substituenten am Boratom zunächst Thiophen und Dithiophen gewählt, da die entsprechenden analogen Benzodiazaborole bekannt sind.^[36d,63] Thiophen hat sich bereits als Substituent in anderen Verbindungen, welche als potentielle Kandidaten zur Verwendung in OLEDs gelten, bewährt. Zum Beispiel sind die Emissionsmaxima thienylsubstituierter Verbindungen gegenüber ihrer Phenylanaloga bathochrom in den sichtbaren Bereich verschoben. Zudem besitzen thienylhaltige Verbindungen positive Materialeigenschaften wie z.B. eine geringere Tendenz zur Kristallisation und die Fähigkeit zur Bildung stabiler glasartiger Zustände bei niedrigen Glasbildungstemperaturen.

1.3.1 Darstellung des 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborols (60)

Zur Darstellung des 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborols **60** wird eine Lösung von 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborol **58** in THF mit lithiiertem Thiophen in THF bei -78 °C umgesetzt. Nach dem Aufwärmen auf Raumtemperatur und anschließendem Rühren für 12 h, wird nach anschließender Filtration und Destillation im Vakuum, zunächst ein rötliches Rohprodukt erhalten. Durch Umkristallisation aus n-Hexan bei -20 °C wird das Produkt **60** in Form farbloser Nadeln in 61 %iger Ausbeute erhalten.

1.3.2 Darstellung des (5´,2´,2´´-Dithienyl)-1,3-diethyl-1,3,2-naphthodiazaborols (61)

Das (5',2',2''-Dithienyl)-1,3-diethyl-1,3,2-naphthodiazaborol **61** wird analog dem 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborol **60** durch die Lithiierung von Dithiophen bei -78 °C und anschließender Umsetzung mit dem 2-Bromnaphthodiazaborol **58** gewonnen.

Durch die schlechte Löslichkeit dieser Verbindung in gängigen organischen Lösungsmitteln sind bei der Aufarbeitung der Reaktionslösung, durch Filtration zur Abtrennung der entstandenen Salze, Ausbeuteverluste aufgetreten. Auch die Aufarbeitung mittels Extraktion mit n-Hexan nach Einengen der Reaktionslösung war nicht erfolgreicher. Das aufgenommene ¹H-NMR-Spektrum des erhaltenen Feststoffes, welcher durch die direkte Destillation des eingeengten Rückstandes der Reaktionslösung im Vakuum erhalten wurde, zeigte nur Zersetzungsprodukt. Somit hat sich auch diese Aufarbeitungsmethode für die Verbindung **61** als ungeeignet erwiesen. Die Ausbeute der Reaktion beläuft sich auf < 10 %.

1.4 Spektroskopische Daten der Naphthodiazaborolverbindungen (60) und (61)

Die ¹¹B{¹H}-NMR-Signale des 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborols **60** (δ = 28.1 ppm) und des (5',2',2''-Dithienyl)-1,3-diethyl-1,3,2-naphthodiazaborols **61** (δ = 27.8 ppm) sind gegenüber dem 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborol **58** (δ = 25.4 ppm) deutlich zu tiefem Feld verschoben. Verglichen mit dem 2-Thienyl-1,3-diethyl-1,3,2-benzodiazaborol **53** und dem 2,2'-(Dithienyl)-1,3-diethyl-1,3,2-benzodiazaborol **54** (δ = 26.6 und 26.2 ppm) sind die erhaltenen Singuletts nur wenig entschirmt (**Tab. 2**). Bei den Naphthodiazaborol-verbindungen als auch bei den zu ihnen analogen Benzodiazaborolen kommt es durch den Austausch des Brom- durch einen Thienyl- bzw. Dithienylsubstituenten

zu ähnlichen Tieffeldverschiebungen des Borsignals [$\Delta \delta$ = 2.7, 2.4 (**60**, **61**) und 3.1, 2.7 (**53**, **54**) ppm]. Durch die Einführung einer zweiten Thienyleinheit ist jedoch keine signifikante Signalverschiebung mehr zu beobachten [$\Delta \delta$ = 0.3 (**60** vs. **61**) und 0.4 (**53** vs. **54**) ppm].

Verbindung	¹¹ B{ ¹ H}-	¹ H-NMR	¹ H-NMR	¹³ C{ ¹ H}-NMR	¹³ C{ ¹ H}-NMR
	NMR	Boryl-H	Thienyl-H	Boryl-C	Thienyl-C
	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)
	28.1(s)	1.44(t, ${}^{3}J_{HH}$ = 7.2 Hz), 4.01(q, ${}^{3}J_{HH}$ = 7.1 Hz), 7.34(m), 7.39(s),	7.38(m), 7.54(d, ³ J _{HH} = 3.2 Hz), 7.71(d, ³ J _{HH} =	15.8(s), 38.0(s), 104.2(s), 122.8(s), 126.8(s), 128.9(s),	128.4(s), 130.3(s), 134.2(s)
60 (CDCl ₃)		7.84(m)	5.0 Hz)	138.7(s)	
	26.6(s)	1.40(t, ³ J _{HH} = 7.2 Hz), 3.95(q, ³ J _{HH} = 7.3 Hz), 7.07(m),	7.33(m), 7.49(d, ³ J _{HH} = 3.1 Hz), 7.68(d, ³ J _{HH}	16.2(s), 37.8(s), 108.8(s), 118.8(s), 137.2(s)	128.2(s), 129.8(s), 133.7(s)
53 (CDCl ₃)		7.14(m),	=5.1 Hz)		
	27.8(s)	1.46(t, ${}^{3}J_{HH}$ = 7.0 Hz), 4.04(q, ${}^{3}J_{HH}$ = 7.0 Hz), 7.33(m), 7.40(s),	7.06(dd, ³ J _{HH} = 3.8, 4.4 Hz), 7.25(d, ³ J _{HH} = 4.4	15.9(s), 38.1(s), 104.2(s), 122.8(s), 126.9(s), 128.9(s),	124.2(s), 124.8(s), 125.1(s), 127.9(s), 135.1(s), 137.0(s),
61(CDCl₃)		7.84(m)	Hz), 7.28(d, ${}^{3}J_{HH}$ = 3.8 Hz), 7.36(d, ${}^{3}J_{HH}$ = 3.8 Hz), 7.41(d, ${}^{3}J_{HH}$ = 3.8 Hz)	138.6(s)	142.4(s)
	26.2(s)	1.38(t, ³ J _{HH} = 7.2 Hz), 3.95(q, ³ J _{HH} = 7.2 Hz), 7.05(m),	7.05(m), 7.24(d, ³ J _{HH} = 3.8 Hz), 7.26(d, ³ J _{HH} =	16.3(s), 37.9(s), 108.8(s), 118.9(s), 137.1(s)	124.0(s), 124.6(s), 125.1(s), 127.9(s), 134.6(s), 137.1(s),
54 (CDCl ₃)		7.11(m)	5.0 Hz), 7.34(m)		(quartäres-C nicht detektiert)

Tab. 2: Ausgewählte NMR-Daten der Verbindungen 60, 53, 61 und 54

Die ¹H-NMR-Spektren der beiden Verbindungen **60** und **61** zeigen Quartetts bei $\delta = 1.44$ (**60**) und 1.46 (**61**) ppm für die Methylprotonen und Tripletts bei $\delta = 4.01$ (**60**) bzw. 4.04 (**61**) ppm für die Methylenprotonen der Ethylgruppen. Es ist keine signifikante Änderung gegenüber der Lage der Protonen in den entsprechenden Benzodiazaborolverbindungen zu verzeichnen. Jedoch ist auch hier der gleiche Trend wie bei den entsprechenden thienyl- und dithienylfunktionalisierten Benzodiazaborolen **53**, **54** hinsichtlich der Signale der Protonen der Ethylgruppen verglichen mit der 2-Bromverbindung zu beobachten. Es kommt zu einer

minimalen Verschiebung der Tripletts der Methylprotonen [$\Delta\delta$ = 0.07 (60) und 0.09 (61) ppm] und einer etwas größeren Verschiebung für die Quartetts der Methylenprotonen [$\Delta\delta$ = 0.11 (60) und 0.14 (61) ppm] zu tiefem Feld. Auch im Fall der Naphthodiazaborolderivate verspüren die den Stickstoffatomen näher gelegenen Protonen den Einfluss des veränderten Substitutionsmusters deutlicher. Die aromatischen Protonen des Naphthalingerüstes der thienyl- und dithienylfunktionalisierten Naphthodiazaborole 60 und 61 bilden jeweils zwei Multipletts und ein Singulett ähnlicher Verschiebung. Das bei höherem Feld gelegene Multiplett liegt bei δ = 7.34 (60) bzw. 7.33 (61) ppm und das zu tieferem Feld verschobene Multiplett, welches den außen liegenden Protonen des Naphthalinrückgrates zuzuordnen ist, bei δ = 7.84 ppm. Das Singulett bei δ = 7.39 (60) bzw. 7.40 (61) ppm ist im Vergleich zur entsprechenden Resonanz im 2-Bromnaphthodiazaborol 58 (δ = 7.36 ppm) nur leicht verschoben. Die Veränderung des Substitutionsmusters von einem Brom- zu einem Thienyl- oder Dithienylsubstituenten in 2-Position des Naphthodiazaborols hat somit keinen nennenswerten Einfluss auf die Lage der aromatischen Naphthylprotonen. Die Signale der aromatischen Thienylprotonen der 2-Thienylderivate des Benzodiazaborols 53 und Naphthodiazaborols 60, zeigen in ihrer Lage nur geringfügige Unterschiede [δ = 7.38, 7.54, 7.71 (**60**) ppm vs. 7.33, 7.49 und 7.68 Dithienylderivate (53) ppm]. Die des Benzodiazaborols (54) und Naphthodiazaborols (61) weisen geringe Unterschiede in Lage und Form der aromatischen Protonensignale auf. Im Fall des Benzodiazaborolderivates 54 liefern die Protonen des Dithienylbausteins ein Signal bei δ = 7.05 ppm, welches in das Multiplett der aromatischen Benzodiazaborolylprotonen fällt. Dieses Signal ist ebenso wie die charakteristischen Dubletts bei δ = 7.24 und 7.26 ppm, gut mit den Signalen des Dithienylnaphthodiazaborols **61** (δ = 7.06, 7.25 und 7.28 ppm) vergleichbar. Das Multiplett bei δ = 7.34 ppm im Spektrum des Benzodiazaborolderivates 54, spaltet sich im Fall des Naphthodiazaborols 61 in zwei gut aufgelöste Dubletts bei δ = 7.36 und 7.41 ppm auf.

Der Vergleich der ¹³C{¹H}-NMR-Spektren der thienyl- und dithienylsubstituierten Naphthodiazaborole **60** und **61** zeigt keine nennenswerten Unterschiede in der Lage der Signale der Kohlenstoffatome des Naphthodiazaborolgrundkörpers untereinander. Auch der Vergleich der Signale der Thienyl- und

Dithienylkohlenstoffatome mit den entsprechenden thienyl- und dithienylfunktionalisierten Benzodiazaborolen **53** und **54** zeigt keine signifikanten Abweichungen. Allein die Kohlenstoffatome, welche direkt in den Fünfring des Diazaborols integriert sind, geben im Vergleich zu dem 2-Bromnaphthodiazaborol (δ = 137.6 ppm) und den Benzodiazaborolen **53** und **54** [δ = 137.1 (**53**) und 137.2 (**54**) ppm] mit δ = 138.7 (**60**) und 138.6 (**61**) ppm zu einer erkennbaren Entschirmung Anlass.

Ein Vergleich mit der von S. Maruyama und Y. Kawanishi synthetisierten Verbindung 62 zeigt für die Protonen der Naphthodiazaboroleinheit unter Beachtung der Lösungsmitteleinflüsse und des differierenden Substitutionsmusters eine gute Übereinstimmung mit den hier synthetisierten Verbindungen **60** und **61**.^[60] In den bisher diskutierten Substanzen hat sich gezeigt, dass die Substituenten am Boratom keine großen Auswirkungen auf die Lage der aromatischen Naphthylprotonen haben. Die wenigen literaturbekannten Verbindungen dieser Art besitzen jedoch alle ein gemeinsames Charakteristikum. Sie sind in gängigen organischen Lösungsmitteln sehr schlecht löslich. Aufgrund dessen existieren nur ¹H-NMR-Daten in DMSO und keine ¹³C- oder ¹¹B-NMR-Daten.

Ein Vergleichsspektrum der Verbindungen **60** und **61** in DMSO wurde nicht angefertigt, da es bei Verwendung von DMSO als Lösungsmittel zu Zersetzungserscheinungen kommt, die voraussichtlich auf die oxidierende Wirkung des Lösungsmittels zurückzuführen sind. In einem angefertigten Emissionsspektrum der Verbindung **60** in DMSO konnte die Abnahme der Intensität des charakteristischen Maximums der Verbindung beobachtet werden.
1.5 Röntgenstrukturdaten des 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborols (60)

Durch Umkristallisieren in n-Hexan bei einer Temperatur von -20 °C wurden Einkristalle der Verbindung **60** gezüchtet. Das Molekül besteht aus einer planaren Naphthodiazaboroleinheit, welche in 2-Position durch eine B- C_{sp2} -Einfachbindung von 1.553(9) Å mit einem planaren Thiophenring verbunden ist (**Tab. 3**).

Abb. 27: Molekülstruktur von 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborol 60 im Kristall

Die Atome C(9) und S(1) sind fehlgeordnet und damit zeigt das Molekül eine zweizählige Symmetrieachse, welche durch die Atome C(8), B(1) und die Bindungsmitte C(10)-C(10A) verläuft (**Abb. 27**). Die B-N-Bindungsabstände innerhalb des Diazaborolcyclus liegen mit 1.428(7) Å [B(1)-N(1), B(1)-N(1A)] im oberen Bereich der für Diazaborole üblichen B-N-Abstände [1.395(4)-1.450(2) Å]. Die endocyclischen C-N-Abstände sind mit 1.408(6) Å in einem für 1,3,2-Diazaborole typischen Bereich und weisen Mehrfachbindungscharakter auf. Die Bindungslängen des Naphthylfragments liegen im Erwartungsbereich. Die Valenzwinkel innerhalb des Diazaborolylbausteins weisen ebenfalls keine Besonderheiten auf. Da die Positionen des Kohlenstoff-C(9) sowie des Schwefelatoms S(1) nicht klar definiert sind, entfällt aus diesem Grund die Diskussion der Bindungsverhältnisse innerhalb des Thienylsubstituenten. Bezüglich der Lumineszenzeigenschaften eines Moleküls ist die Fähigkeit zu

einer ausgedehnten Konjugation des π -Systems von Bedeutung. Wichtig hierbei ist der Winkel, in dem die heteroaromatischen Ringe zueinander stehen. Die Ebene des Naphthodiazaborolrings ist gegenüber jener des Thiophenrings um 23.3° gedreht. Es kann somit nicht von einer optimalen, durchgehenden Konjugation innerhalb des Gesamtmoleküls ausgegangen werden. Diese Verhältnisse gelten jedoch nur für den kristallinen Zustand und sind nicht unbedingt übertragbar auf die Situation in Lösung oder im glasartigen Zustand.

Bindungslängen (Å)		Winkel(°)		
B-C	B(1)-C(8) 1.553(11)		Boryl-5-Ring	
B-N	B(1)-N(1) 1.428(7)	Arom.	N(1)-B(1)-N(1A) 107.4(6), B(1)-N(1)-C(1) 108.5(5), N(1)-C(1)-C(1A) 107.8(3), N(1)-	
			B(1)-C(8) 126.3(3),	
S-C	C(8)-S(1) 1.609(5), S(1)-C(10) 1.544(7)	Ethyl	B(1)-N(1)-C(6) 131.7(5), C(1)-N(1)-C(6) 119.9(4), N(1)-C(6)-C(7) 112.0(4)	
C-C	C(8)-C(9) 1.609(5), C(10)-C(10A) 1.349(13)	Naphthyl-Rückgrat		
	Boryl-5-Ring	Arom.	C(2)-C(1)-N(1) 131.0(5), C(2)-C(1)-C(1A) 121.1(3), C(1)-C(2)-C(3) 119.3(5), C(2)-	
N-C(Et),	N(1)-C(6) 1.456(7),		C(3)-C(4) 122.1(5), C(2)-C(3)-C(3A)	
C-C(Et)	C(6)-C(7) 1.513(8)		119.5(3), C(4)-C(3)-C(3A) 118.4(3), C(3)- C(4)-C(5) 120.7(5), C(4)-C(5)-C(5A) 120.9(3),	
N-C(Aryl)	N(1)-C(1) 1.408(6)		Thienyl-Ring	
C-C	C(1)-C(1A) 1.438(11)	Arom.	B(1)-C(8)-S(1) 125.0(3), C(10A)-S(1)-C(8) 100.3(4), S(1)-C(8)-C(9) 110.1(5), C(10A)- C(10)-S(1) 114.6(2)	
	Naphthyl-Rückgrat		Diederwinkel	
		Na	phthodiazaborol/Thiophen (°)	
С-С	C(1)-C(2) 1.356(7), C(2)-C(3) 1.416(7), C(3)-C(3A) 1.446(10), C(3)- C(4) 1.420(7), C(4)-C(5) 1.371(7), C(5)-C(5A) 1.389(12)		23.3	

Tab. 3: Ausgewählte Bindungslängen [Å] und Winkel [°] der Verbindung 60

Da die erhaltenen Moleküle bei einer späteren potentiellen Anwendung durch die Auftragung aus einem Lösungsmittel aufgebracht (spin-coating) oder aufgedampft werden müssen, erscheint das Naphthodiazaborolsystem aufgrund der schlechten Verdampfbarkeit und Löslichkeit der Produkte hierfür ungeeignet. Darüber hinaus wird eine sehr hohe Reinheit der Substanzen verlangt, die nur durch einen enormen Ausbeuteverlust erreicht werden kann. Auch die verringerte Stabilität gegenüber Sauerstoff und Feuchtigkeit verglichen mit den analogen Benzodiazaborolsystemen steht einer potentiellen Anwendung entgegen. An dieser Stelle wurde, basierend auf den erhaltenen Ergebnissen, von der Synthese weiterer Naphthodiazaborole abgesehen.

2. Erweiterung des π -Systems durch Vergrößerung des Substituenten auf Seiten des dreifach koordinierten Bors

Nach der Erweiterung des π -Systems auf Seiten des Diazaborolrückgrates stellte die Vergrößerung des π -Systems auf Seiten des dreifach koordinierten Bors den nächsten Schritt dar. Dabei sollte die Anzahl der Diazaborolsubstituenten am Gesamtsystem stetig erhöht werden. Der erste Schritt in dieser Richtung war die Erweiterung um eine Diazaboroleinheit, wodurch man zu den zweifach diazaborolylfunktionalisierten Systemen Es gelangt. wurden zunächst unterschiedliche, zweifach funktionalisierte Moleküle dargestellt und der Einfluss der verwendeten Spacer zwischen den Diazaboroleinheiten untersucht. Bei der Variation der Spacereinheiten sollte vor allem der Vergleich zwischen Phenyl- und Thienylspacer im Vordergrund stehen. Darauf folgend wurde das System um eine weitere Diazaboroleinheit erweitert, wodurch man zu dreifach funktionalisierten Systemen gelangt. Als Diazaboroleinheit wurde das Benzodiazaborol gewählt, da es gute Lumineszenzeigenschaften und eine erhöhte Stabilität im Vergleich zu anderen Diazaborolen besitzt.

Zur Synthese von mehrfach funktionalisierten Systemen stehen prinzipiell zwei Syntheserouten zur Verfügung (**Abb. 28**, **29**). An dieser Stelle werden diese beiden Wege anhand der doppelten Funktionalisierung vorgestellt, sind jedoch gleichermaßen auf die Darstellung von dreifach funktionalisierten Systemen anwendbar. Die erste Syntheseroute (I) geht von dihalogenierten Aromaten aus, welche doppelt lithiiert und anschließend mit zwei Äquivalenten des 2-Brombenzodiazaborols **45** umgesetzt werden (**Abb. 28**). Je nach verwendetem Aromaten variieren hierbei die optimalen Reaktionsbedingungen (Temperatur, Reaktionszeit, Lösungsmittel).

Abb. 28: Reaktionsweg I

Die Lithiierungen wurden fast ausschließlich in etherischen Lösungsmitteln durchgeführt. Der Grund hierfür liegt nicht nur in der verbesserten Löslichkeit der Edukte in diesen Lösungsmitteln, sondern auch in deren erhöhter Reaktivität. Reaktionen, die zunächst wie üblich in n-Hexan durchgeführt wurden, zeigten neben dem Reaktionsprodukt allesamt, auch bei Veränderung der weiteren Reaktionsbedingungen, Anzeichen einer nicht vollständigen Umsetzung. Neben dem gewünschten Produkt werden ein hoher Anteil an 2-Brombenzodiazaborol **45** und dem nur einfach funktionalisierten Aromaten spektroskopisch detektiert. Die notorische Etherspaltung bei Lithiierungsreaktionen in etherischen Lösungsmitteln konnte aber nicht festgestellt werden.

Abb. 29: Reaktionsweg II

Der zweite Reaktionsweg (II) geht von einem halogenierten Aromaten aus, der durch eine Grignard-Reaktion oder durch Lithiierung und anschließender Umsetzung mit Trimethylchlorsilan silyliert wird (**Abb. 29**). Hierauf folgt ein Silicium-Bor-Austausch durch die Reaktion mit einem Überschuss an Bortribromid. Durch die Umsetzung des zweifach dibromoborylierten Aromaten mit N,N'-Diethyl-o-phenylendiamin **44** in Gegenwart einer Base kommt es zu einer Cyclisierungsreaktion und somit zur Bildung des zweifach mit Benzodiazaborolringen funktionalisierten Moleküls.

2.1 Darstellung von zweifach benzodiazaborolylfunktionalisierten Verbindungen

2.1.1 Darstellung von 1,4-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)benzol (64)

Der einfachste Vertreter der zweifach funktionalisierten Moleküle, das 1,4-Bisbenzodiazaborolylbenzol **64** wurde auf dem Reaktionsweg **II** synthetisiert. 1,4-Bis(dibromboryl)benzol **63** ist nach Literaturvorschrift aus 1,4-Bis(trimethylsilyl)benzol dargestellt worden.^[67,68]

Die Synthese von **64** gelingt durch die Umsetzung von 1,4-Bis(dibromboryl)benzol **63** mit zwei Äquivalenten N,N'-Diethyl-o-phenylendiamin **44** in Gegenwart von Calciumhydrid als Base bei 0 °C.

Nach Filtrieren und Entfernen des Lösungsmittels im Vakuum wird ein gelbes Rohprodukt erhalten, welches durch anschließende Kurzwegdestillation im Vakuum und Umkristallisation aus THF gereinigt wird. Dabei erhält man 71 % des Produktes **64** in Form farbloser Nadeln. Die erhaltenen Kristalle lassen sich unter Argonatmosphäre bei -5 °C für mehrere Wochen ohne Zersetzungserscheinungen lagern.

2.1.2 Darstellung des 2,5-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborolyl)thiophens (67)

Auch das 2,5-Bis(borolyl)thiophen **67** wird auf dem zweiten Syntheseweg (**II**) dargestellt. Das hierzu benötigte 2,5-Bis(dibromboryl)thiophen **66** läßt sich durch die Umsetzung von 2,5-Bis(trimethylsilyl)thiophen **65** mit einem Überschuss an BBr₃ gewinnen. Man erhält das Produkt **66** in Form farbloser Kristalle (87 %).

Die Verbindung **66** wird in Gegenwart von Triethylamin als Base mit dem N,N'-Diethyl-o-phenylendiamin **44** in n-Hexan bei 0 °C in das zweifach funktionalisierte Thiophen **67** übergeführt.

Nach dem Filtrieren und Entfernen der flüchtigen Bestandteile im Vakuum, erhält man zunächst einen rötlichen Feststoff, der durch anschließende Kurzwegdestillation aufgereinigt wird. Hierbei gewinnt man reines **67** in Form farbloser Kristalle in 55 %iger Ausbeute.

2.1.3 Alternative Darstellung des 2,5-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborolyl)thiophens (67)

Das zweifach funktionalisierte Thiophen **67** kann ebenfalls nach dem Syntheseweg (I) synthetisiert werden. Diese Darstellungsmethode zeichnet sich durch eine geringere Anzahl an Reaktionsschritten im Vergleich zum Syntheseweg II aus. Bei dieser Synthese ist auch die erhöhte Reaktivität des dibromierten Thiophens verglichen mit dem dibromierten Benzol von Vorteil. 2,5-Dibromthiophen wird zunächst bei einer Temperatur von -78 °C mit n-Butyllithium doppelt lithiiert, für kurze Zeit auf Raumtemperatur gebracht,

wiederum auf -78 °C heruntergekühlt und daraufhin mit zwei Äquivalenten 2-Brombenzodiazaborol **45** umgesetzt.

Nach der sich anschließenden analogen Aufarbeitungsmethode konnten in diesem Fall 62 % des Produktes **67** in Form farbloser Kristalle gewonnen werden.

2.1.4 Darstellung des 5,5´-Bis(1´´,3´´-diethyl-1´´,3´´,2´´-benzodiazaborol-2´´yl) 2,2´-dithiophens (68)

Zur Erweiterung des π -Systems wird das Molekül 67 um eine weitere Thienyleinheit vergrößert. Auch wenn die Synthese des gewünschten Produktes 68 (mit geringeren Ausbeuten) ebenfalls durch die direkte Lithiierung des Dithiophens durchführbar ist, sprechen zwei Gründe für die Verwendung des 5,5'dibromierten Dithiophens als Edukt. Zum einen beinhaltet das kommerziell erhältliche Dithiophen, auch wenn er nicht durch NMR-Spektren eindeutig detektierbar ist, Spuren des zur Darstellung des Dithiophens benötigten Katalysators. Obgleich die Synthese somit zunächst erfolgreich erscheint, ist in den später aufgenommenen Fluoreszenzspektren des synthetisierten Produkts 68 eine stark störende Verunreinigung zu erkennen, welche Restspuren des Katalysators zuzuschreiben ist. Bei der Verwendung von Dithiophen, das über eine Grignard-Reaktion dargestellt wurde, ^[69] sind diese Verunreinigungen nicht zu beobachten. Somit stellt die Bromierung nebst anschließender Aufarbeitung einen notwendigen Aufreinigungsschritt bei der Verwendung von kommerziell erworbenen Dithiophen dar. Neben der Abwesenheit der fluoreszenten Verunreinigungen liegt der zweite Grund bei der sehr hohen, erzielten Ausbeute von 91 % unter Verwendung des bromierten Edukts.

Nach der Umsetzung des dilithiierten Dithiophens mit zwei Äquivalenten 2-Brombenzodiazaborol **45** wird das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand wird in Dichlormethan aufgenommen und filtriert. Nach der

Entfernung des Lösungsmittels im Vakuum wird das erhaltene Rohprodukt durch Kurzwegdestillation bei 1[.]10⁻³ mbar unter Zuhilfenahme eines Bunsenbrenners aufgereinigt. Der erhaltene, gelbe, glasartige Feststoff wird aus Dichlormethan/THF umkristallisiert, wobei sich schwach gelbe Kristalle der Verbindung **68** in 91 %iger Ausbeute bilden.

Diese Kristalle sind gegenüber Luftsauerstoff und Feuchtigkeit erstaunlich stabil. In zwei Schnappdeckelgläsern wurden jeweils einige Kristalle der Verbindung **68** unter verschiedenen Bedingungen für einen längeren Zeitraum (4 Wochen \rightarrow 5 Monate) gelagert.

- In dem ersten Schnappdeckelglas wurden die Kristalle der Verbindung 68
 ohne Schutzgasatmosphäre, d.h. an Raumluft gelagert.
- In dem zweiten Schnappdeckelglas wurden die Kristalle ohne Schutzgasatmosphäre und unter einer Schicht Wasser gelagert

Im ersten Fall zeigten sich erst nach ca. 4 Wochen Zersetzungserscheinungen und im zweiten Fall blieb die Substanz über ca. 5 Monate unverändert. Die elektronenreichen Thiopheneinheiten vermögen anscheinend das dreifach koordinierte Bor besonders gut zu stabilisieren.

2.1.5 Darstellung des 9,9-Di(n-octyl)-2,7-bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)fluorens (70)

Ebenfalls sinnvoll erscheint der Vergleich des literaturbekannten 4,4'-Bis(1'', 3'', 2'''-diazaborol-2-yl)diphenyls **69** mit einem Fluorenderivat, in dem beide Phenylringe des Spacers verbrückt sind.^[36d]

Zu diesem Zweck wurde das 9,9-Bis(n-octyl)-2,7-dibromfluoren ausgewählt, in dem zwei Phenylringe durch eine C:1-Brücke verbunden sind. Hierbei ist von besonderem Interesse, wie sich die Fixierung beider Phenylgruppen auf die Fluoreszenz der Verbindung auswirkt.

9,9-Bis(n-octyl)-2,7-dibromfluoren wird zunächst mit n-Butyllithium bei -78 °C metalliert und anschließend mit zwei Äquivalenten 2-Brom-1,3-diethyl-1,3,2benzodiazaborol **45** umgesetzt.

R = Octyl

Das nach dem Filtrieren und Entfernen des Lösungsmittels im Vakuum erhaltene Rohprodukt wird mittels einer Kurzwegdestillation aufgereinigt, wodurch man einen glasartigen, farblosen Feststoff erhält. Der so gewonnene Feststoff wird aus n-Pentan bei -20 °C umkristallisiert, wobei man das Produkt **70** in Form farbloser, sehr feiner Nadeln in 81 %iger Ausbeute erhält.

2.1.6 Spektroskopische Daten der Verbindungen (64), (67), (68) und (70)

Die ¹¹B{¹H}-NMR-Spektren der zweifach funktionalisierten Systeme zeigen für die Verbindungen, die am Boratom Phenylsubstituenten tragen, Singuletts bei δ = 28.7 (64) und 29.3 (70) ppm, was in einer guten Übereinstimmung mit dem für Verbindung 69 gefundenen Wert von δ = 28.6 ppm steht (**Tab. 4**). Im Fall der thienylsubstituierten Verbindungen liegen die erhaltenen Singuletts bei δ = 26.0

(68) und 26.6 (67) ppm und sind somit gut mit den für 53 und 54 erhaltenen Werten [δ = 26.2 (53) und 26.6 (54) ppm] vergleichbar. Der Wechsel von Phenylzu Thienylspacer-Einheiten zwischen zwei Benzodiazaborolen unter sonstiger Einhaltung eines gleichen Aufbaus führt zu einer größeren Abschirmung des Boratoms und könnte als Indiz für die vergleichbar höhere Stabilität dieser Verbindungen gegenüber ihrer Phenylanaloga gewertet werden.

	¹¹ B{ ¹ H}-	¹ H-NMR	¹³ C{ ¹ H}-NMR	¹ H-NMR
	NMR	Boryl-H	Boryl-C	(Boryl)-Ar-H-(Boryl)
Ar =	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)
\bigcirc	26.6(s)	1.49(t, ³ J _{HH} = 7.2 Hz),	16.5(s), 38.3(s),	7.77(s)
67 (CDCl₃)		4.08(q, ³ J _{HH} = 7.2 Hz), 7.12(m), 7.22(m)	109.2(s), 119.3(s), 137.6(s)	
\square	26.0(s)	1.40(t, ³ J _{HH} = 6.9 Hz),	16.3(s), 37.9(s),	7.36(d,= 3.4 Hz),
68 (CDCl₃)		3.96(q, ³ J _{HH} = 6.9 Hz), 7.05(m), 7.12(m)	108.8(s), 118.9(s), 137.1(s)	7.43(d, ³ J _{HH} = 3.4 Hz)
\bigcirc	28.7(s)	1.38(t, ³ J _{HH} = 6.9 Hz),	16.3(s), 37.7(s),	7.65(s)
64 (CDCl ₃)		3.85(q, ³ J _{HH} = 6.9 Hz), 7.06(m), 7.13(m)	108.9(s), 118.6(s), 137.2(s)	
$\bigcirc \bigcirc$	29.3(s)	1.40(t, ³ J _{HH} = 6.9 Hz),	16.3(s), 37.7(s),	$7.60(d^3 J_{\rm HH} = 7.2 \rm Hz),$
R R		$3.88(q,^{3}J_{HH} = 6.9 \text{ Hz}),$	108.8(s), 118.6(s),	7.62(s),
70 (CDCl ₃)		7.10(m), 7.18(m)	137.2(s)	7.88(d, ³ J _{HH} = 7.2 Hz)
$\bigcirc - \bigcirc$	28.6(s)	1.11(t, ³ J _{HH} = 6.9 Hz),	16.4(s), 38.0(s),	7.66(d, q, ³ J _{HH} = 8.0 Hz),
69	(C ₆ D ₆)	$3.61(q,^{3}J_{HH} = 6.9 \text{ Hz}),$	109.2(s), 119.0(s),	7.74(d, q, ${}^{3}J_{HH}$ = 8.1 Hz)
		7.04(m), 7.18(m) (CD ₂ Cl ₂)	137.5(s) (CD ₂ Cl ₂)	(CD ₂ Cl ₂)

Tab.	. 4: Ausgewählte NMR-Daten der zweifach funktionalisierte	en Verbindungen
	67, 68, 64, 70 und 69	

Die ¹H-NMR-Spektren der neuen Verbindungen zeigen für die Methylprotonen Tripletts im Bereich δ = 1.38 (64) < 1.40 (68,70) < 1.49 (67) ppm und Quartetts bei δ = 3.85 (64) < 3.88 (70) < 3.96 (68) < 4.08 (67) ppm für die Methylenprotonen der Ethylgruppen an den Benzodiazaborolringen. Im Vergleich hierzu sind die Signale der Verbindung 69 mit δ = 1.11 und 3.61 ppm zu hohem Feld verschoben, was jedoch auch auf Lösungsmitteleinflüsse zurückgeführt werden kann. Die Signale der Protonen der Ethylgruppen der thienylhaltigen Verbindungen sind im Gegensatz zu denen ihrer Phenylanaloga leicht zu tiefem Feld verschoben, was für eine geringfügige Entschirmung dieser Protonen spricht. Die aromatischen Protonen der Benzodiazaborolylsubstituenten bilden zwei Multipletts im Bereich von δ = 7.05(68) < 7.06(64) < 7.10(70) < 7.12(67) ppm und δ = 7.12(68) < 7.13(64) < 7.18(70) < 7.22(67) ppm. Damit liegen die erhaltenen Werte in einem gut vergleichbaren Bereich mit denen von 69 (δ = 7.04 und 7.18 ppm) und denen der thienylhaltigen Verbindungen 53 (δ = 7.07 und 7.14 ppm) und 54 (δ = 7.05 und 7.11 ppm).

Die ¹³C{¹H}-NMR-Spektren der Verbindungen 64, 67, 68 und 70 zeigen für die Ethylgruppen der Benzodiazaborolylsubstituenten Signale bei δ = 16.3-16.5 ppm und δ = 37.7-38.3 ppm. Die aromatischen Kohlenstoffatome der Benzodiazaborolylsubstituenten bilden drei Singuletts bei δ = 108.8-109.2, 118.6-119.3 und 137.2-137.6 (64, 67, 68, 70) ppm und zeigen somit ebenfalls keine signifikante Abweichung zu bekannten Verbindungen, wie dem Molekül 69 (Tab. 4). Dieser Vergleich lässt einen bedeutenden Einfluss des aromatischen Substituenten (Phenyl/Thienyl) die Umgebung auf elektronische der Kohlenstoffatome der Benzodiazaborolylsubstituenten nicht zu.

Neben dem Vergleich der verbrückenden Spacer-Einheiten ist eine Gegenüberstellung mit bekannten Verbindungen von Interesse, welche über die gleiche Spacer-Einheit, jedoch einen anderen Borylsubstituenten verfügen. Die hieraus resultierenden Ergebnisse könnten erste Hinweise auf eine Einordnung des Benzodiazaborolylsubstituenten hinsichtlich des Einflusses auf seine Umgebung, d.h. das anknüpfende aromatische System geben. Ein Indiz für die hypothetisch verbleibende Rest-Lewis-Acidität des dreifach koordinierten Bors in pseudo-aromatischen Benzodiazaborolgefüge wäre dabei ebenfalls dem informativ. Besonderes Augenmerk bei den Vergleichen liegt auf Verbindungen, welche Diarylboryl-, im besonderen Dimesitylborylsubstituenten tragen, welche in lumineszenten Borverbindungen eine prominente Rolle spielen.

Ein Dimesitylborylanalogon zu **64** ist das von Kaim et al. synthetisierte B,B,B´,B´-Tetramesityl-p-phenylendiboran **71**.^[31b] In dem ¹H-NMR-Spektrum dieser Verbindung liegt das Singulett, welches den vier Protonen des zentralen Phenylrings zuzuordnen ist, bei einem Wert von δ = 7.45 ppm und ist somit gegenüber dem Signal der Verbindung **64** um $\Delta\delta$ = 0.2 ppm zu hohem Feld verschoben. Da dieser Wert gering ist und die Messbedingungen nicht bekannt sind, kann ein Vergleich nur mit Einschränkungen gemacht werden.

Vergleicht man die NMR-Daten des Diazaborols **73** und des Diazaborolidins **72** mit Verbindung **64** (δ = 7.65 ppm), so fällt die stärkere Entschirmung der Phenylprotonen in dem Benzodiazaborol auf. Allerdings bliebe dabei der Lösungsmitteleinfluss (CDCl₃ vs C₆D₆) unberücksichtigt. Gleiches gilt für die Thienylprotonen der neuen Thienylverbindung **67** (δ = 7.77 ppm) und dem Diazaborol **75** sowie Diazaborolidin **74**.^[54a]

Für die Verbindung **67** stehen leider keine Vergleichswerte von Dimesitylborylverbindungen aus der Literatur zur Verfügung

Für einen Vergleich mit der Dithienylverbindung **68** [δ = 7.36 (d), 7.43 (d) ppm] bieten sich die Analoga **6**, **76** und **77** an.^[38,70] In diesen Verbindungen erscheinen die Signale der Protonen der Dithienyleinheit als zwei Dubletts, welche mit

zunehmender Elektronendichte der aromatischen Substituenten am Boratom in der der Reihenfolge **77** < **76** < **6** zu hohem Feld verschoben sind.

Am deutlichsten zeigt sich dieses beim Direktvergleich der Verbindungen **6** und **77**. Durch die Veränderung des Substitutionsmusters an den Phenylringen kommt es zu einer Verschiebung der charakteristischen Dubletts von δ = 7.34 (**6**) auf 7.73 (**77**) ppm und von 7.38 (**6**) auf 7.93 (**77**) ppm. In der entsprechenden Veröffentlichung wird dieses auf die zunehmende Lewis-Acidität des Boratoms durch Einführung elektronenarmer Substituenten zurückgeführt. Die chemischen Verschiebungen der Dithienylprotonen in der hier neu synthetisierten Verbindung **68** (δ = 7.36 und 7.43 ppm) sind am besten mit denen der Verbindung **6** vergleichbar. Das betrifft nicht allein die chemische Verschiebung der Signale, sondern spiegelt sich gleichermaßen im Abstand der beiden erhaltenen Dubletts wider [$\Delta \delta$ = 0.07 (**68**) und 0.04 (**6**) ppm vs. 0.13 (**76**) und 0.20 (**77**) ppm]. Der Abstand der beiden Signale wächst mit zunehmender Elektronenarmut der aromatischen Substituenten am Boratom.

Von den Verbindungen **76** und **77** erhielten Jäkle et al. durch die Zugabe von zwei Äquivalenten Pyridin die entsprechenden Pyridinaddukte **76+2Py** und **77+2Py**. Durch deren Bildung kommt es zu der Besetzung der beiden leeren

p-Orbitale am dreifach koordinierten Bor. und sowohl die π -Konjugation über das Boratom als auch die Lewis-Acidität werden aufgehoben.

Verbindung	¹ H-NMR
(Pyridinaddukt)	Dithienyl-H
	δ (ppm)
76+2Py (CDCl ₃)	6.80(d), 7.06(d)
77+2Py (CDCl ₃)	6.79(d), 7.02(d)

Die Dubletts der Protonen des Dithienylgerüstes verschieben sich erheblich von δ = 7.48 (**76**) und 7.73 (**77**) ppm auf δ = 6.80 (**76+2Py**) bzw. 6.79 (**77+2Py**) ppm sowie von δ = 7.61 (**76**) und 7.93 (**77**) ppm auf 7.06 (**76+2Py**) und 7.02 (**77+2Py**) ppm. Bei Versuchen, die Verbindung **68** auf gleiche Weise zu dem entsprechenden Benzodiazaborol-Pyridinaddukt umzusetzen, konnte die Bildung eines derartigen Addukts nicht beobachtet werden.^[71] Durch die freien Elektronenpaare der Stickstoffatome am dreifach koordinierten Boratom innerhalb des fünfgliedrigen Heterocyclus sowie dessen Pseudoaromatizität wird die Lewis-Acidität anscheinend derart herabgesetzt, dass in diesem Fall die Basizität des Pyridins zu einer Addukt-Bildung nicht mehr ausreicht.

2.1.7 Röntgenstrukturanalysen der Verbindungen (64), (67) und (68)

Die Molekülstrukturen der zweifach funktionalisierten Verbindungen 64, 67 und 68 im Kristall konnten durch Röntgenstrukturanalysen aufgeklärt werden (Abb. 30, Tab. 5).

Die Röntgenstrukturanalyse, des aus einer n-Pentan/Dichlormethan-Mischung gewonnenen Einkristalls der Verbindung **64** zeigt ein zentrosymmetrisches Molekül, bei dem der planare Benzolring über BC-Einfachbindungen [1.563(2) Å] mit zwei planaren Benzodiazaboroleinheiten verbunden ist. Für eine elektronische Kommunikation zwischen den beiden heterocyclischen Substituenten über den Benzolring sind die Interplanarwinkel, welche durch die drei Ringe aufgespannt

werden, von Interesse. Die beiden Benzodiazaborole sind gegenüber dem Benzolring mit 49.7° aus der Ebene gedreht und lassen somit keine nennenswerte Kommunikation im kristallinen Zustand vermuten. Die BN-Bindungslängen [1.431(5) und 1.437(1) Å] sind gut mit denen der Verbindung **55** [1.431(5), 1.440(4) Å] vergleichbar und liegen damit im oberen Bereich der für monocyclische Diazaborole bekannten BN-Abstände [1.395(4)-1.450(2) Å]. Alle weiteren Bindungslängen und Winkel innerhalb des Benzodiazaborolfragments sind mit denen der Verbindungen **55** und **78** vergleichbar.^[54a]

Farblose Einkristalle der Verbindung 67 wurden einer aus n-Hexan/Dichlormethan-Lösung bei -4 °C erhalten. Das Molekül besteht aus zwei planaren Benzodiazaboroleinheiten, welche durch B-C-Einfachbindungen [1.552(2) und 1.554(2) Å] an das zentrale Thiophengerüst gebunden sind. Die BN-Bindungslängen liegen mit 1.434(2)-1.439(2) Å in einem erwarteten Bereich und ebenfalls im oberen Rahmen der für monocyclische Diazaborole bekannten Werte. Die Ebenen der Benzodiazaborolringe sind um 42.5° bzw. 33.3° aus der Ebene des zentralen Thiophenrings gedreht. Die Winkel, welche von den planaren Benzodiazaborolen zur Ebene des zentralen aromatischen System eingenommen werden, fallen somit etwas kleiner als in der Verbindung 64 aus, ermöglichen jedoch auch noch keine optimale Überlappung bzw. π -Konjugation des Gesamtsystems.

Aus einer Dichlormethan/THF-Lösung wurden -20 °C farblose Einkristalle der Verbindung **68** gezüchtet. Das Molekül verfügt über ein Inversionszentrum in der Bindungsmitte der Bindung C(14)-C(14A) und somit über eine zentrale planare Dithienyleinheit in anti-Konformation. Diese ist in den 5- und 5'-Positionen an die Boratome von zwei planaren Benzodiazaborolylringen über Einfachbindungen von 1.558(2) Å verknüpft. Die BN-Heterocyclen und Thiophenringe sind zueinander um einen Winkel von 19.6° gedreht. Wiederum sind die Bindungs-

parameter innerhalb des Benzodiazaborolfragments vergleichbar mit zuvor beobachteten.

Verbindung	64	67	68				
Bindungslängen (Å)							
B-C	B(1)-C(11) 1.563(2)	B(1)-C(11) 1.552(2), B(2)- C(14) 1.554(2) B(1)-C(11) 1.55					
B-N B(1)-N(1) 1.434(1), B(1)- N(2) 1.437(1) B(1)-N(1) 1.434(2), B(1)- N(2) 1.439(2), B(2)-N(3) 1.439(2), B(2)-N(4) 1.435(2)		B(1)-N(1) 1.443(2), B(1)- N(2) 1.437(2)					
	Ar	yl-Ringe					
S-C		S(1)-C(11) 1.724(1), S(1)- C(14) 1.727(1)	S(1)-C(11) 1.737(1), S(1)- C(14) 1.732(1)				
с-с	C(11)-C(12) 1.404(2), C(12)-C(13) 1.387(2), C(11)-C(13A) 1.406(2)	C(11)-C(12) 1.381(2), C(12)- C(13) 1.416(2), C(13)-C(14) 1.381(2)	C(11)-C(12) 1.384(2), C(12)-C(13) 1.416(2), C(13)-C(14) 1.375(2)				
Inter C-C			C(14)-C(14A) 1.453(2)				
	Bor	yl-5-Ring					
N-C(Et), C-C(Et)	N(1)-C(7) 1.457(1), N(2)- C(9) 1.460(1), C(7)-C(8) 1.522(2), C(9)-C(10) 1.525(1)	N(1)-C(7) 1.457(2), N(2)- C(9) 1.462(2), N(3)-C(21) 1.463(2), N(4)-C(23) 1.459(2), C(7)-C(8) 1.521(1), C(9)-C(10) 1.524(1), C(21)- C(22) 1.524(2), C(23)-C(24) 1.523(2)	N(1)-C(7) 1.462(2), N(2)- C(9) 1.461(2), C(7)-C(8) 1.522(2), C(9)-C(10) 1.526(2)				
N-C(Aryl)	N(1)-C(1) 1.394(1), N(2)- C(2) 1.397(1)	N(1)-C(1) 1.394(2), N(2)- C(2) 1.393(2), N(3)-C(15) 1.395(1), N(4)-C(16) 1.397(2)	N(1)-C(1) 1.397(1), N(2)- C(2) 1.396(2)				
C-C	C(1)-C(2) 1.411(2)	C(1)-C(2) 1.413(2), C(15)- C(16) 1.411(2)	C(1)-C(2) 1.408(2)				
	Torsio	nswinkel (°)	1				
N-B-C-C	N(1)-B(1)-C(11)-C(12) 49.7	N(1)-B(1)-C(11)-C(12) 42.5, N(4)-B(2)-C(14)-C(13) 33.3	N(2)-B(1)-C(11)-C(12) - 20.8				
C-C-C-C			C(13)-C(14)-C(14A)- C(13A) 0.0				

Tab. 5: Ausgewählte Bindungslängen [Å] und Winkel [°] der Verbindungen 64, 67und 68

Für einen strukturellen Vergleich mit der Verbindung **68** stehen Strukturdaten der literaturbekannten Verbindung **77** zur Verfügung. Diese verfügt ebenso wie das entsprechende Benzodiazaborol über ein Inversionszentrum in der Mitte der Bindung C(1)-C(1A). ^[38]

Verbindung	Bindungslängen (Å)				
	B-C (Thienyl)	C-C (Dithienyl)	C-S (Dithienyl)		
77	B(1)-C(4) 1.507(3)	C(3)-C(4) 1.383(3), C(2)-C(3) 1.390(3), C(1)-C(2) 1.372(3), C(1)-C(1A) 1.445(4)	C(1)-S(1) 1.703(2), C(4)-S(1) 1.732(2)		

Abb. 31: Molekülstruktur und ausgewählte Bindungslängen [Å] der Verbindung77 im Kristall

Der Winkel, um den die beiden Benzodiazaboroleinheiten gegenüber der Ebene des zentralen Dithienylgrundkörpers gedreht sind, ist im Vergleich zu den Winkeln, welche die beiden Verbindungen **64** und **67** gegenüber dem aromatischen zentralen Baustein aufweisen, am geringsten. Die entsprechenden Bindungen zwischen dem Boratom des Borylsubstituenten und dem α -Kohlenstoffatom des Thiphenrings betragen bei **77** 1.507(3) Å und sind damit im Vergleich zu dem Benzodiazaborol **68** [B-C = 1.558(2) Å], leicht verkürzt. Erwähnenswert ist, dass die C-C-Abstände innerhalb der Dithienyleinheit von **77** keine größeren Unterschiede aufweisen [1.372(3)-1.390(3) Å]. Für das bereits erwähnte Addukt **77+2Py** sind innerhalb des Thiophenringes zwei kürzere Bindungen [1.363(3) Å C(1)-C(2) und 1.359(3) Å C(3)-C(4)], sowie eine längere Bindung zwischen C(2) und C(3) mit 1.417(3) Å gemessen worden. Im Fall der Verbindung **68** existieren ebenfalls zwei kürzere [1.384(2) Å C(11)-C(12) bzw.

1.375(2) Å C(13-C(14)] und eine geringfügig längere Bindung zwischen C(12) und C(13) mit 1.416(2) Å. Die verbrückenden C-C-Bindungen der beiden Thienyleinheiten, bzw. die Bindungen auf denen die Inversionszentren der Verbindungen liegen, sind in den beiden Verbindungen **68** und **77** vergleichbar lang [1.445(4) Å C(1)-C(1A) (**77**) und 1.453(2) Å C(14)-C(14A) (**68**)].

2.1.8 Darstellung des 2,3,5,6-Tetrafluor-1,4-di(1,3-diethyl-1,3,2-benzodiazaborolyl)benzols (79)

Die bisher aufgeführten, zweifach funktionalisierten Verbindungen besitzen ein relativ elektronenreiches π -System (Thiophen > Phenyl). Aufgrund dessen war es interessant, im Gegenzug ein Molekül zu synthetisieren, welches über ein elektronenärmeres π -System als Spacer verfügt.

Zu diesem Zweck wurde 1,2,4,5-Tetrafluorbenzol mit zwei Äquivalenten n-Butyllithium bei -78 °C doppelt metalliert und anschließend mit zwei Äquivalenten 2-Brombenzodiazaborol **45** umgesetzt.

Nach 2 Stunden Reaktionszeit bei -78 °C und weiteren 12 Stunden bei Raumtemperatur erfolgt die Aufarbeitung der Reaktionslösung durch Filtration, Entfernen des Lösungsmittels im Vakuum und anschließender Kurzwegdestillation. Als Rohprodukt wird ein farbloser Feststoff erhalten, der aus einem Gemisch von Dichlormethan/Hexan (ca. 30:1) bei 3 °C umkristallisiert wird. Man erhält die Verbindung **79** in 89 %iger Ausbeute als farblose Nadeln.

2.1.9 Spektroskopische Daten der Verbindung (79)

Das ¹¹B{¹H}-NMR-Signal der Verbindung **79** (δ = 25.7 ppm) ist gegenüber dem Signal des Analogons **64** (δ = 28.7 ppm) auffällig zu hohem Feld verschoben.

Das ¹H-NMR-Spektrum der Verbindung **79** zeigt ein Triplett für die Methyl- sowie ein Quartett für die Methylenprotonen der Ethylgruppe der Benzodiazaborolylsubstituenten. Beide Signale (δ = 1.41 ppm und 3.84 ppm), liegen ähnlich denen der Benzolverbindung **64** (δ = 1.38 und 3.85 ppm). Die beiden Multipletts der aromatischen Protonen des Benzodiazaborolrückgrates (δ = 7.15, 7.16 ppm) sind jedoch im Vergleich zu der Verbindung **64** (δ = 7.03, 7.13 ppm) leicht zu tiefem Feld verschoben.

	¹¹ B{ ¹ H}-NMR	¹ H-NMR	¹³ C{ ¹ H}-NMR	¹⁹ F{ ¹ H}-
B-Ar-B	δ (ppm)	Boryl-H	Boryl-C	NMR
Ar =		δ (ppm)	δ (ppm)	δ (ppm)
F F 79 (CDCl₃)	25.7(s)	1.41(t, ³ J _{HH} = 7.0 Hz), 3.84(q, ³ J _{HH} = 7.0 Hz), 7.15(m), 7.16(m)	16.1(s), 38.4(s), 109.6(s), 119.2(s), 137.1(s)	-130(s)

Tab. 6: Ausgewählte NMR-Daten der Verbindung 79

¹³C{¹H}-NMR-Spektrum der Das Verbindung 79 zeigt Signale im Erwartungsbereich. Der Vergleich mit Verbindung 64 zeigt keine große Veränderung in der Lage der Verschiebungen der Kohlenstoffatome der Ethylgruppe [δ = 16.1 und 38.4 (**79**) ppm vs. δ = 16.3 und 37.9 (**64**) ppm]. Das Signal der Methylenprotonen ist mit $\Delta\delta$ = 0.5 ppm nur geringfügig zu tiefem Feld verschoben. Die Signale der aromatischen Kohlenstoffatome des Benzodiazaborolrückgrates [δ = 109.6, 119.2 und 137.1 (**79**) ppm] zeigen im Fall der ersten beiden Signale eine geringfügige Verschiebung zu hohem Feld $[\delta = 108.9, 118.6 (64) \text{ ppm}]$. Das Signal, das im Fall der Verbindung **79** bei δ = 137.1 ppm liegt, zeigt in der Verbindung **64** eine nahezu gleiche Verschiebung $[\delta = 137.2 (64) \text{ ppm}].$

Das ¹⁹F-NMR-Spektrum von **79** ist durch ein Singulett bei δ = -130.0 ppm charkteristisch, welches mit der Lage des Signals in der literaturbekannten Verbindung **80** sehr gut vergleichbar ist.^[72]

Verbindung	¹⁹ F{ ¹ H}-NMR δ (ppm)
80 (CDCl ₃)	-128.2(s, br, CD ₂ Cl ₂) -130.35(s, C ₆ D ₆)

2.2 Röntgenstrukturanalyse der Verbindung (79)

Einkristalle von **79** wurden aus n-Pentan/Dichlormethan bei Raumtemperatur gezüchtet. Das Molekül verfügt wie Verbindung **64** über ein Inversionszentrum, welches im Zentrum des verbindenden Aromaten lokalisiert ist (**Abb. 32**).

Abb. 32: Molekülstruktur der Verbindung 79 im Kristall

Die BCzwei planaren Benzodiazaborolylsubstituenten sind über Einfachbindungen [1.578(2) Å] mit dem zentralen Tetrafluorbenzolring verknüpft (**Tab. 6**). Die BN-Bindungslängen liegen mit B(1)-N(1) 1.427(2) Å und B(1)-N(2) 1.426(2) Å, im mittleren Bereich der für monocyclische Diazaborole bekannten BN-Abstände [1.395(4)-1.450(2) Å]. Alle weiteren Bindungslängen und Winkel der Benzodiazaborolylsubstituenten zeigen ebenfalls innerhalb die für Benzodiazaborole erwarteten Werte. Interessant ist auch hier die Frage nach der

elektronischen Kommunikation über das zentrale aromatische System und der π -Konjugation des Gesamtsystems. Die beiden heterocyclischen Benzodiazaborole weisen gegenüber dem zentralen Tetrafluorbenzolring einen Torsionswinkel von 57.4° auf und sprechen somit für keine gute Überlappung des leeren p-Orbitals am Boratom mit dem angrenzenden π -System.

Verbindung	79				
Bindungslängen (Å)					
B-C	B(1)-C(11) 1.578(2)				
B-N	B(1)-N(1) 1.427(2), B(1)-N(2) 1.426(2)				
	Aryl-Ring				
F-C	C(12)-F(1) 1.354(1), C(13)-F(2) 1.355(1)				
C-C C(11)-C(12) 1.389(2), C(12)-C(13) 1.379(2), C(C(13A) 1.393(2)					
	Boryl-5-Ring				
N-C(Et), C-C(Et)	N(1)-C(7) 1.461(2), N(2)-C(9) 1.461(2), C(7)-C(8) 1.519(2), C(9)-C(10) 1.518(2)				
N-C(Aryl)	N(1)-C(1) 1.402(2), N(2)-C(2) 1.404(2)				
C-C	C(1)-C(2) 1.407(2)				
	Torsionswinkel (°)				
N-B-C-C	N(1)-B(1)-C(11)-C(12) 57.4				

Tab. 6: Ausgewählte Bindungslängen [Å] und Winkel [°] der Verbindung 79

Verglichen mit der Verbindung **64** (49.7°) und den vorgestellten, zweifach funktionalisierten Verbindungen **67** (42.5°, 33.3°) und **68** (20.8°) nimmt diese Verbindung den größten Torsionswinkel gegenüber dem zentralen π -System ein. Wie schon vorher gilt dieser Winkel für den kristallinen Zustand und ist nicht notwendigerweise auf die strukturellen Gegebenheiten in Lösung übertragbar.

2.3 Darstellung von dreifach funktionalisierten Systemen

Der nächste Schritt auf dem Weg zur Vergrößerung des Gesamt- π -Systems beinhaltet die Darstellung von Systemen, die drei Benzodiazaborolylgruppen tragen.

2.3.1 Darstellung des 1,3,5-Tris(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)benzols (82)

Das kleinste dieser Moleküle ist dabei ein 1,3,5-funktionalisiertes Benzol. Zur Darstellung dieser Verbindung wurde zunächst das dreifach borylierte Benzol **81** dargestellt, welches nach Literaturvorschrift durch eine Grignard-Reaktion des 1,3,5-Tribrom- oder Trichlorbenzols mit Trimethylchlorsilan und anschließender Umsetzung des erhaltenen 1,3,5-Tris(trimethylsilyl)benzols mit einem Überschuss an BBr₃ in guten Ausbeuten erhältlich ist.^[68]

Durch die weitere Umsetzung des 1,3,5-Tris(dibromoboryl)benzols **81** mit drei Äquivalenten N,N'-Diethyl-o-phenylendiamin **44** in Toluol und in Gegenwart von CaH₂ als Base, bei einer Temperatur von 0-20 °C, wird nach Filtration und Entfernen des Lösungsmittels im Vakuum zunächst ein farbloser Feststoff als Rohprodukt erhalten. Die Umkristallisation des Rohproduktes aus Methylcyclohexan liefert das Produkt **82** in Form von farblosen Kristallen mit einer Ausbeute von 76 %.

2.3.2 Darstellung des 1,3,5-Tris{4'-(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-2''-yl)phenyl}benzols (84)

Nach der Synthese des dreifach funktionalisierten Moleküls **82** erfolgt die Erweiterung des zentralen π -Systems durch drei zusätzliche Phenyleinheiten. Zu diesem Zweck wurde das 1,3,5-Tris(4-bromophenyl)benzol als Edukt gewählt. Es kann durch eine abgewandelte Literaturvorschrift mittels Cyclotrimerisierung von 4-Brombenzaldehyd in guten Ausbeuten erhalten werden. Entgegen der Literaturvorschrift ist die Reaktionszeit auf 24 Std. heraufgesetzt worden.^[73]

Darüber hinaus wurde das Rohprodukt nicht wie in der Literatur beschrieben mittels Säulenchromatographie, sondern durch mehrfaches Waschen mit kaltem Ethanol aufgereinigt. Die gelben Verunreinigungen lassen sich auf diese Weise vollständig beseitigen und die Ausbeute von 77 % auf 83 % steigern.

Die weitere Funktionalisierung des aromatischen Grundkörpers erfolgt über die dreifache Lithiierung mit n-Butyllithium in Diethylether bei -78 °C und weiterer

Umsetzung mit drei Äquivalenten des 2-Brombenzodiazaborols **45**. Hierbei zeigte sich der Gebrauch von Diethylether anstelle von THF von Vorteil, da hierbei weniger Nebenprodukte entstehen, die leicht durch Filtrieren abzutrennen sind. Nach dem Filtrieren wird der erhaltene Feststoff im Vakuum getrocknet und in Dichlormethan aufgenommen. Die Lösung wird filtriert und im Vakuum bis zur Trockne eingeengt, wodurch man einen hellbraunen Feststoff als Rohprodukt erhält. Dieser kann aus Methylcyclohexan umkristallisiert werden, wobei man **84** als kristallinen Feststoff in 58 %iger Ausbeute gewinnt.

2.3.3 Darstellung des 1,3,5-Tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-2''-yl)-2'-thienyl}benzols (88)

Zum Vergleich von thienyl- und phenylhaltigen Grundgerüsten hinsichtlich ihrer Fluoreszenzeigenschaften, sollte ein entsprechendes thienylhaltiges, dreifach benzodiazaborolylfunktionalisiertes Molekül dargestellt werden.

Als Edukte für die spätere Einführung des Benzodiazaborolylsubstituenten mittels Lithiierung des aromatischen Grundkörpers sind drei Edukte (**85-87**) denkbar, deren Synthese und weitere Umsetzung jeweils unterschiedliche Vor- und Nachteile mit sich bringen.

Zunächst wurde Verbindung **85** als Edukt gewählt, da hier die dreifache Lithiierung mittels n-Butyllithium unter den gängigen Reaktionsbedingungen am ehesten Erfolg versprechend schien. Zur Darstellung von **85** gibt es zwei unterschiedliche Literaturvorschriften.^[74,75] Die Unterschiede liegen hierbei in den Reaktionsbedingungen, wie der Reaktionstemperatur (Zugabe des Tetrachlorsilans bei 0 °C vs. RT), den eingesetzten Moläquivalenten und des Lösungsmittels.

Die zunächst verwendete Literaturvorschrift, welche eine Ausbeute von < 10 % für die Verbindung **85** angibt, geht insgesamt von einem kleineren Reaktionsansatz aus.^[74] Mehrfache Durchführung der Reaktion nach den in der Vorschrift angegebenen Reaktionsbedingungen, inklusive der dort aufgeführten Säulenchromatographie, lieferte das Produkt, welches ohnehin nur in geringer Ausbeute (ca. 8 %) nach einer Reaktionszeit von 80 h anfällt, stets verunreinigt. Bei der Verunreinigung handelt es sich um das in der zweiten Veröffentlichung erwähnte Zwischenprodukt **85X**, welches durch unvollständige Umsetzung des Eduktes entsteht. Dieses Nebenprodukt findet in der ersten Veröffentlichung jedoch keinerlei Erwähnung, so dass das Vorhandensein dieser Spezies wahrscheinlich aufgrund eines NMR-Spektrums mit zu geringer Konzentration oder aufgrund des ohnehin kleinen Reaktionsansatzes, übersehen wurde. Eine Vergrößerung des Reaktionsansatzes war nicht erfolgreich. Insgesamt ging die Ausbeute der Reaktion hierbei weiter zurück.

X = Br (85X), H (87X)

Durch Säulenchromatographie mit n-Pentan als Laufmittel konnte das Nebenprodukt zwar abgetrennt werden, die Ausbeute der Reaktion belief sich hierdurch jedoch nur noch auf ca. 5-6 %. Aufgrund dessen wurde die gleiche Reaktion unter den Reaktionsbedingungen der zweiten Veröffentlichung durchgeführt, wobei das gewünschte Produkt **85** in der beschriebenen Ausbeute von 10 % erhalten werden konnte.^[75] Da die Ausbeute für den Reaktionsaufwand jedoch immer noch sehr gering ausfällt und eine Vergrößerung des Reaktionsansatzes erfolglos war, wurde als nächstes Verbindung **86** als

potentielles Edukt ins Auge gefasst.^[73] Dessen Ausbeute fällt unter den gleichen Bedingungen laut Literatur wesentlich höher aus (60 %). Das hierzu benötigte 2-Acetyl-5-chlorthiophen wird analog dem 2-Acetyl-5-bromthiophen und 2-Acetylthiophen durch Friedel-Crafts-Acetylierung aus den entsprechenden 2-substituierten Thiophenen gewonnen.^[76] Durch Verwendung von n-Pentan bei der säulenchromatographischen Aufreinigung des erhaltenen Rohproduktes werden Nebenprodukte erfolgreich abgetrennt und das gewünschte Produkt 86 in annähernder Literaturausbeute erhalten (57 %). Das 1,3,5-Tris(thienyl)-benzol 87, welches laut Literatur in 70 %iger Ausbeute darstellbar ist, konnte auf dem gleichen Reaktionsweg, durch Abänderung der Reinigungsmethode, in einer Ausbeute von 76 % erhalten werden. Hierzu wurde das erhaltene Rohprodukt zur Abtrennung des Nebenproduktes 87X nicht mittels Säulenchromatographie aufgereinigt, sondern wie im Falle des Cyclotrimerisierungsproduktes 83, mehrfach mit kaltem Ethanol gewaschen.

Die weitere Reaktionsführung wurde mit den Edukten **85**, **86**, und **87** durchgeführt, indem man zunächst mittels n-Butyllithium in THF dreifach lithiiert und das Intermediat anschließend mit drei Äquivalenten 2-Brom-1,3,2-benzodiazaborol **45** umsetzt.

Nach der üblichen Aufarbeitung wurden in allen Fällen Rohprodukte in Form eines gelblichen Feststoffs erhalten. Im Falle der Verwendung von 1,3,5-Tris[2-(5chloro)-thienyl]benzol **86** konnte in den NMR-Spektren des Rohprodukts, auch bei Verlängerung der Reaktionszeiten, hauptsächlich nur Edukt und einfach und zweifach funktionalisierte Spezies nachgewiesen werden. Bei dem Gebrauch der Verbindungen 85 und 87 als Edukte, konnten bereits in den Rohprodukten größere Mengen der gewünschten Verbindung 88 NMR-spektroskopisch detektiert werden. Da sich das erhaltene Produkt weder durch fraktionierte Kristallisation noch durch Destillation im Vakuum rein erhalten ließ, wurde versucht, das Rohprodukt durch Säulenchromatographie (Dichlormethan/n-Hexan) aufzureinigen. Hierbei wurde handelsübliches Kieselgel verwendet und auf die Anwesenheit einer Schutzgasatmosphäre verzichtet. Durch diese Aufarbeitung konnten 42 % bzw. 53 % des Produktes in Form farbloser kristalliner Plättchen erhalten werden. Es ist darauf zu achten, dass das Produkt hierbei nicht zu lange auf dem Säulenmaterial verbleibt, da es mit der Zeit zur Zersetzung kommt, die sich durch die Bildung einer rosa-violetten Verfärbung auf dem Säulenmaterial und dem Erscheinen neuer Substanzen auf der DC zu erkennen gibt. Die entstandenen Kristalle sind jedoch für eine Verbindung, welche dreifach koordiniertes Bor enthält, erstaunlich stabil. Es konnten größere Kristalle der Verbindung durch langsames Verdampfen des Lösungsmittels unter Abwesenheit einer Schutzgasatmosphäre in einem offenen Gefäß erhalten werden, die erst nach tagelanger Lagerung unter Normalbedingungen (Raumluft, Raumtemperatur) Zersetzungserscheinungen aufwiesen. Anscheinend bedingt die Verwendung von Thienyl- im Vergleich zu Phenylsubstituenten am Boratom, eine erhöhte Stabilität der Verbindung, wie es bereits schon im Fall der zweifach funktionalisierten Systeme beobachtet wurde.

2.4 Spektroskopische Daten der Verbindungen (82), (84) und (88)

Die ¹¹B{¹H}-NMR-Spektren zeigen im Fall der dreifach funktionalisierten Systeme **82** und **84** Signale bei δ = 28.9 und 28.6 ppm, welche gut vergleichbar mit den zweifach funktionalisierten Systemen **64** (δ = 28.7 ppm), **70** (δ = 29.3 ppm) und der literaturbekannten Verbindung **69** (δ = 28.6 ppm) sind, die über Arylsubstituenten am Boratom verfügen (**Tab. 7**). Das Signal der Verbindung **88** liegt mit einer Verschiebung von δ = 26.0 ppm in einem für thienylfunktionalisierte Benzodiazaborole erwarteten Bereich [δ = 26.0 (**68**), 26.2 (**53**), 26.6 (**67**, **54**) ppm]. Die ¹H-NMR-Spektren der Verbindungen **82**, **84** und **88** zeigen für die Methylprotonen der Ethylgruppe der Benzodiazaboroleinheiten Tripletts bei $\delta = 1.36$ (**82**), 1.45 (**84**), 1.43 (**88**) ppm und für die Methylenprotonen Quartetts bei $\delta = 3.90$ (**82**), 3.94 (**84**), 4.00 (**88**) ppm. Die aromatischen Protonen der Benzodiazaborolylsubstituenten bilden zwei Multipletts im Bereich von $\delta = 7.02$ (**82**) < 7.08 (**88**) < 7.10 (**84**) ppm und $\delta = 7.13$ (**82**) < 7.21(**84**) < 7.20 (**88**) ppm. Die Protonen des zentralen Benzolringes bedingen Singuletts bei $\delta = 7.91$ (**82**), 7.93 (**88**) und 8.00 (**84**) ppm.

Die ¹³C{¹H}-NMR-Spektren von **82**, **84** und **88** zeigen sehr ähnliche chemische Verschiebungen für die Ethyl-Kohlenstoffatome [δ = 16.3 (**84**),16.4 (**82**, **88**) und 37.7 (**82**, **84**), 38.0 (**88**) ppm] und für die drei Resonanzen der aromatischen Kohlenstoffatome des Benzodiazaborolrückgrates [δ = 108.9 (**83**, **84**, **88**) ppm, 118.7-108.9 (**82**, **84**, **88**) ppm sowie 137.1-137.2 (**82**, **84**, **88**) ppm].

	¹¹ B{ ¹ H}-	¹ H-NMR	¹ H-NMR	¹ H-NMR	¹³ C{ ¹ H}-	¹³ C{ ¹ H}-	¹³ C{ ¹ H}-
	NMR	Boryl-H	Borol-	zentrales	NMR	NMR	NMR
X =	δ (ppm)	δ (ppm)	Aryl-H	Benzol	Boryl-C	Borol-	zentrales
			δ (ppm)	δ (ppm)	δ (ppm)	Aryl-C	Benzol-C
						δ (ppm)	δ (ppm)
	28.9(s)	1.36(t, ³ J _{HH} = 6.9	-	7.91(s)	16.4(s),	-	133.7(s)
β. A A A A A A A A A A A A A A A A A A A		Hz), 3.90(q, ³ J _{HH}			37.7(s),		
		= 6.9 Hz),			108.9(s),		
82		7.02(m),			118.7(s),		
(CDCl ₃)		7.13(m)			137.2(s)		
	28.6(s)	1.45(t, ³ J _{HH} = 6.9	7.75(d, ³ J _{HH} =	8.00(s)	16.3(s),	125.2(s),	134.1(s),
		Hz), 3.94(q, ³ J _{HH}	8.2 Hz),		37.7(s),	126.9(s),	142.3(s)
		= 6.9 Hz),	$7.88(d, J_{HH} =$		108.9(s),	141.2(s)	
84		7.10(m),	8.2 Hz)		118.7(s)		
(CDCl ₃)		7.21(m)			137.1(s)		
\rightarrow	26.0(s)	1.43(t, ³ J _{HH} = 6.9	$7.48(d,^{3}J_{HH} =$	7.93(s)	16.4(s),	123.3(s),	134.9(s),
		Hz), 4.00(q, ³ J _{HH}	3.4 Hz),		38.0(s),	125.4(s),	148.0(s)
		= 6.9 Hz),	$7.63(d,^{3}J_{HH} =$		108.9(s),	135.7(s)	
88		7.08(m),	3.4 Hz)		118.9(s),		
(CDCl ₃)		7.20(m)			137.2(s)		

Diese Werte sind gut vergleichbar mit den zuvor für die zweifach funktionalisierten Systeme erhaltenen Signale (**Tab. 4**). Wie bereits bei den zweifach funktionalisierten Verbindungen erwähnt, scheint der Wechsel von einem Phenylzu einem Thienylsubstituenten in diesen Systemen keinen großen Einfluss auf die Lage der Signale der Kohlenstoffatome des Benzodiazaborolgrundgerüstes zu haben. Die Signale der Kohlenstoffatome 2, 4, 6 des zentralen Benzolrings liegen bei δ = 133.7-134.9 (**82, 84, 88**) ppm, wobei das Signal des thienylsubstituierten Systems am stärksten entschirmt ist. Deutlicher zeigt sich diese Tendenz beim Direktvergleich der Signale der Kohlenstoffatome 1, 3, 5 des zentralen Benzolrings der Verbindungen **84** (δ = 142.3 ppm) und **88** (δ = 148.0 ppm). Für die Verbindung **82** bietet sich ein Vergleich der erhaltenen Werte mit dem literaturbekannten 1,3,5-Tris(dimesitylboryl)benzol **89** an.^[77,78] Die aromatischen Protonen des zentralen Benzolrings von **89** zeigen gegenüber denen der Verbindung **82** eine deutliche Hochfeldverschiebung [δ = 7.50 (**89**) vs. 7.91 (**82**) ppm].

Verbindung	¹ H-NMR	¹³ C{ ¹ H}-NMR
	zentrales	zentrales
	Benzol	Benzol-C
	δ (ppm)	δ (ppm)
89 (CDCl ₃)	7.50(s)	145.1(s)

Das Signal der Kohlenstoffatome 2, 4 und 6 ist im Vergleich zu dem der Verbindung **82** jedoch deutlich zu tiefem Feld verschoben [δ = 133.7 (**82**) vs. 145.1 (**89**) ppm].

Für den Vergleich mit den Molekülen **84** und **88** bieten sich prinzipiell die Verbindungen **90** und **91** an. ^[79,80] Aufgrund der schlechten Löslichkeit sind von diesen Systemen nur ¹H-NMR-Spektren der literaturbekannten Verbindungen in THF oder DMSO verfügbar.

Verbindung	¹ H-NMR	¹ H-NMR	
	H <i>-Aryl</i> -B	zentrales Benzol	
	δ (ppm)	δ (ppm)	
90 (DMSO-d6)	7.90(d), 8.10(d)	8.05(s)	
91 (THF-d8)	7.41(d), 7.77(d)	8.00(s)	

Somit ist ein direkter Vergleich der Lage der Signale nicht möglich, tendenziell zeigen sie jedoch ähnliche Verschiebungen wie die Verbindungen **84** und **88**. Beispielsweise liegen die beobachteten Werte für die aromatischen Protonen des zentralen Benzolrings der Verbindungen **90** und **91** bei Verschiebungen von $\delta = 8.00$ und 8.05 ppm [vs. $\delta = 8.0$ (**84**) und 7.93 (**88**) ppm].

2.5 Röntgenstrukturanalysen der Verbindungen (82), (84) und (88)

Die Molekülstrukturen der Verbindungen 82, 84 und 88 wurden mittels Röntgenbeugung bestimmt (**Tab. 8**, 9, **Abb. 33**, **35**).

Einkristalle der Verbindung **82** wurden aus einer Methylcyclohexanlösung bei Raumtemperatur über Nacht gezüchtet. Das Molekül verfügt über einen zentralen Benzolring, welcher in 1,3,5-Position mit drei planaren Benzodiazaborolringen durch Einfachbindungen verbunden ist [1.561(3) und 1.565(5) Å]. Durch die Atome C(16), C(19) und B(2) verläuft eine zweizählige Symmetrieachse (**Abb. 33**).

Verbindung	82	84	88			
Bindungslängen (Å)						
B-C	B(1)-C(17) 1.561(3), B(2)-C(19) 1.565(5)	B(1)-C(11) 1.562(4), B(2)-C(27) 1.565(4), B(3)-C(43) 1.564(4)	B(1)-C(11) 1.555(4), B(2)-C(25) 1.556(3), B(3)-C(39) 1.544(4)			
B-N	B(1)-N(1) 1.424(4), B(1)-N(2) 1.435(3), B(2)-N(3) 1.443(3)	B(1)-N(1) 1.433(4), B(1)-N(2) 1.434(4), B(2)-N(3) 1.436(4), B(2)-N(4) 1.436(4), B(3)-N(5) 1.435(4), B(3)-N(6) 1.435(4)	B(1)-N(1) 1.429(3), B(1)-N(2) 1.440(3), B(2)-N(3) 1.427(3), B(2)-N(4) 1.435(3), B(3)-N(5) 1.434(4), B(3)-N(6) 1.433(3)			
Aryl-Ringe						
S-C			S(1)-C(11) 1.732(2), S(1)-C(14) 1.735(2), S(2)-C(25) 1.728(2), S(2)- C(28) 1.728(2), S(3)-C(39) 1.731(2), S(3)-C(42) 1.736(2)			
C-C		$\begin{array}{c} C(11)\text{-}C(12) \ 1.403(4), \ C(12)\text{-}C(13) \\ 1.389(4), \ C(13)\text{-}C(14) \ 1.403(4), \ C(14)\text{-} \\ C(15) \ 1.397(4), \ C(15)\text{-}C(16) \ 1.389(4), \\ C(11)\text{-}C(16) \ 1.408(4), \ C(27)\text{-}C(28) \\ 1.405(4), \ C(28)\text{-}C(29) \ 1.391(4), \ C(29)\text{-} \\ C(30) \ 1.399(4), \ C(30)\text{-}C(31) \ 1.400(4), \\ C(31)\text{-}C(32) \ 1.389(4), \ C(27)\text{-}C(32) \\ 1.400(4), \ C(43)\text{-}C(44) \ 1.407(4), \ C(44)\text{-} \\ C(45) \ 1.393(4), \ C(45)\text{-}C(46) \ 1.400(4), \\ C(46)\text{-}C(47) \ 1.401(4), \ C(47)\text{-}C(48) \\ 1.389(4), \ C(43)\text{-}C(48) \ 1.402(4) \end{array}$	C(11)-C(12) 1.371(3), C(12)-C(13) 1.410(3), C(13)-C(14) 1.364(3), C(25)- C(26) 1.374(3), C(26)-C(27) 1.407(3), C(27)-C(28) 1.367(3), C(39)-C(40) 1.374(3), C(40)-C(41) 1.410(3), C(41)- C(42) 1.369(3)			
Inter C-C		C(14)-C(49) 1.492(3), C(30)-C(51) 1.489(3), C(46)-C(53) 1.496(3)	C(14)-C(43) 1.472(3), C(28)-C(45) 1.468(3), C(42)-C(47) 1.463(3)			
Zentraler Ring	C(16)-C(17) 1.395(3), C(17)-C(18) 1.398(3), C(18)-C(19) 1.402(3)	C(49)-C(50) 1.397(4), C(50)-C(51) 1.397(3), C(51)-C(52) 1.396(4), C(52)- C(53) 1.397(3), C(53)-C(54) 1.395(3), C(49)-C(54) 1.394(4)	C(43)-C(48) 1.395(3), C(43)-C(44) 1.398(3), C(44)-C(45) 1.396(3), C(45)- C(46) 1.395(3), C(46)-C(47) 1.395(3), C(47)-C(48) 1.396(3)			
Boryl-5-Ring						
N-C(Et), C-C(Et)	N(1)-C(9) 1.469(3), N(2)-C(7) 1.454(3), N(3)-C(14) 1.454(3)	N(1)-C(7) 1.469(3), N(2)-C(9) 1.465(3), N(3)-C(23) 1.462(4), N(4)-C(25) 1.462(3), N(5)-C(41) 1.460(3), N(6)-C(39) 1.458(3)	N(1)-C(7) 1.461(3), N(2)-C(9) 1.462(3), N(3)-C(21) 1.462(3), N(4)-C(23) 1.465(3), N(5)-C(35) 1.462(3), N(6)- C(37) 1.462(3)			
N-C(Aryl)	N(1)-C(1) 1.397(3), N(2)-C(2) 1.394(3), N(3)-C(11) 1.393(3)	N(1)-C(1) 1.396(3), N(2)-C(6) 1.393(3), N(3)-C(17) 1.395(3), N(4)-C(22) 1.392(3), N(5)-C(33) 1.393(3), N(6)-C(38) 1.397(3)	N(1)-C(1) 1.394(3), N(2)-C(6) 1.405(3), N(3)-C(15) 1.395(3), N(4)-C(20) 1.396(3), N(5)-C(29) 1.401(3), N(6)- C(34) 1.403(3)			
C-C	C(1)-C(2) 1.398(4), C(11)-C(11A) 1.406(4)	C(1)-C(6) 1.403(4), C(17)-C(22) 1.411(4), C(33)-C(38) 1.414(4)	C(1)-C(6) 1.405(3), C(15)-C(20) 1.409(3), C(29)-C(34) 1.402(3)			

Tab. 8: Ausgewählte Bindungslängen [Å] der Verbindungen 82, 84 und 88

Verbindung	82	84	88			
Torsionswinkel (°)						
N-B-C-C	N(1)-B(1)-C(17)-C(16) 49.9, N(3)-B(2)-C(19)-C(18) 33.7	N(1)-B(1)-C(11)-C(16) 49.8, N(3)-B(2)-C(27)-C(32) 42.5, N(5)-B(3)-C(43)-C(48) 44.2	N(1)-B(1)-C(11)-C(12) 38.2, N(3)-B(2)-C(25)-C(26) 35.5, N(6)-B(3)-C(39)-C(40) 35.9			
C-C-C-C	-	C(13)-C(14)-C(49)-C(50) 31.7, C(29)-C(30)-C(51)-C(52) 33.2, C(45)-C(46)-C(53)-C(54) 28.1	C(13)-C(14)-C(43)-C(48) 21.7, C(27)-C(28)-C(45)-C(44) 7.6, , C(41)-C(42)-C(47)-C(48) 24.7			

Tab. 9: Torsionswinkel [°] innerhalb der Moleküle 82, 84 und 88

Die BN-Bindungslängen [1.424(4)-1.443(3) Å] sind vergleichbar mit denen der zweifach funktionalisierten Verbindung **64** [B(1)-N(1) 1.434(1), B(1)-N(2) 1.437(1) Å] und zeigen wie alle weiteren Bindungslängen innerhalb der Benzodiazaboroleinheiten keine Besonderheiten.

Abb. 33: Molekülstruktur der Verbindung 82 im Kristall

Für eine durchgehende π -Konjugation des Gesamtmoleküls sind die Winkel der heterocyclischen Ringe von Interesse, die sie gegenüber dem zentralen Benzolring einnehmen. Die drei Benzodiazaborolringe der Verbindung **82**, welche die Atome B(1), B(1A) und B(2) beinhalten, sind aus der Ebene des Benzolrings um Winkel von 49.8° und 33.7° herausgedreht und sprechen für keine optimale Konjugation des Gesamtsystems im kristallinen Zustand (**Tab. 9**).

Die literaturbekannten, der Verbindung **82** strukturell ähnlichen Moleküle **89** und **92**, zeigen vergleichbare BC-Bindungslängen [1.56-1.57(1) (**89**) Å und 1.578-1.580 (**92**) Å].^[65,78] Gegenüber dem Molekül **92**, das drei 1,3-tert-Butyl-1,3,2-diazaborolyl-Substituenten trägt, zeigt die Verbindung **82** deutlich kleinere Torsionswinkel zwischen dem zentralen Benzolring und den heterocyclischen Substituenten [85.9-87.1° (**92**) vs. 33.7-49.8° (**82**)].

Verbindung	89	92				
Bindungslängen (Å)						
B-C	B(I)-C(I) 1.56(1), B(2)-C(3) 1.57(1),	B(1)-C(1) 1.578(2), B(2)-C(3) 1.584(2), B(3)-C(5) 1.580(2),				
Torsionswinkel Benzol/Benzodiazaborol (°)						
	-	89.9, 85.9, 87.1				

Abb. 34: Molekülstrukturen und ausgewählte Bindungslängen [°] der Verbindungen 89 und 92 im Kristall

Dieser Effekt ist offensichtlich auf die sterisch anspruchsvolleren tert-Butyl-Gruppen zurückzuführen und spricht im Fall der Verbindung **92** für eine sehr geringe elektronische Kommunikation zwischen den aromatischen Ringsystemen im kristallinen Zustand.

Einkristalle der Verbindung 84 wurden aus einer Dichlormethan/Methylcyclohexan Mischung bei -4 °C innerhalb von 3 Tagen gezüchtet (Abb. 35, Tab. 8, 9). Pro Molekül sind vier Moleküle Dichlormethan in den Kristall mit eingebettet. Die BC-Bindungen [1.562(4)-1.565(4) Å] sind vergleichbar mit denen in den Verbindungen 64 und 82. Gleiches gilt für die weiteren strukturellen Parameter des Diazaborolringes. Neben der Bestätigung der Konstitution und Konfiguration dieses Moleküls wird den Orientierungen der einzelnen Ringfragmente hinsichtlich des zentralen Benzolkerns besondere Aufmerksamkeit gewidmet. Die drei Phenylgruppen, die durch die Atome C(14), C(30) und C(4) an den zentralen Benzolkern gebunden sind, bilden ihm gegenüber eine Art paddelartige Struktur mit Torsionswinkeln von 30.5°, 33.6° und 27.7° aus. In der para-Position sind diese Phenylgruppen mit 1,3,2-Benzodiazaboroleinheiten durch die Atome B(1), B(2) und B(3) verbunden. Die Torsionswinkel zwischen den Phenyl- und anschließenden Benzodiazaborolringen betragen 51.4°, 43.1° und 45.2°, was einer durchgehenden Konjugation des π -Systems entgegensteht.

Für die Röntgenstruktur verwertbare Einkristalle der Verbindung **88** konnten durch die Kristallisation bei Raumtemperatur aus einer Mischung von n-Hexan/ Dichlormethan gewonnen werden. Wiederum steht bei der näheren Betrachtung das erweiterte π -System des Moleküls im Vordergrund. Die Bindungslängen und alle weiteren Parameter bezüglich der Konstitution des Moleküls liegen in erwarteten Bereichen und werden aus diesem Grund nicht weiter diskutiert. Der Torsionswinkel von 7.5° zwischen dem Thienylsubstituenten, welcher S(2) als Heteroatom beinhaltet und dem zentralen Benzolring deutet auf eine nahezu coplanare Anordnung zwischen den beiden Ringen hin. Im Gegensatz hierzu sind die durch C(43) und C(47) an den zentralen Cyclus gebundenen Thienylringe aus der Ebene des Benzolrings mit Winkeln von 21.7° und 24.6° herausgedreht. Der Benzodiazaborolring, welcher über B(1) an das Kohlenstoffatom C(11) des ersten Thienylrings gebunden ist, bildet hinsichtlich der Ebene des Thiophens einen Winkel von 38.2° aus. Der zweite planare Benzodiazaborolring (B(2)) bildet mit dem zweiten Thienylring einen Winkel von 144.2° aus.

Abb. 35: Molekülstrukturen der Verbindungen 84 und 88 im Kristall
Der entsprechende Winkel zwischen dem dritten Thienylring (S(3)) und dem dritten Benzodiazaborolfragment (B(3)) beträgt 36.3°. Auch in diesem Fall nehmen die einzelnen Ringe des Moleküls untereinander keine planare Anordnung ein, was eine Voraussetzung für eine optimale, durchgehende Konjugation des π -Systems ist.

3. Para-substituierte Phenylethinylbenzodiazaborole

Um den Einfluss unterschiedlicher Substituenten an den aromatischen Systemen auf die Lumineszenzeigenschaften der Benzodiazaborolsysteme zu untersuchen, wurde eine Reihe phenylethinylsubstituierter Benzodiazaborole synthetisiert. Neben dem Einfluss der variierenden Substituenten auf das aromatische π -System sind diese Verbindungen auch hinsichtlich anderer potentieller Eigenschaften von Interesse. Einige dimesitylborylsubstituierte Phenylethinylene (**93-96**) zeigten bereits bemerkenswerte nichtlineare optische Eigenschaften.^[34e,81]

X = H (**93**), NMe₂(**94**), SMe (**95**), OMe (**96**)

In diesem Kontext untersuchten Marder, Bunz und andere den Zusammenhang zwischen den Elektronenspektren und den Strukturen von Oligo- und Poly-(paryl)ethinylenen mit Donor- und/oder Akzeptor-Substituenten. Zusätzlich fungieren diese Moleküle auch als blaue Emitter in optoelektronischen Instrumenten.^[82]

3.1 Darstellung der para-phenylethinylsubstituierten Benzodiazaborole (97)-(102)

Die zur Darstellung benötigten para-substituierten Phenylethine können über Sonogashira-Reaktionen aus den entsprechenden para-Brom- oder Iodbenzolderivaten dargestellt werden.

Die Synthese erfolgt hierbei nach leicht modifizierten Literaturvorschriften.^[83] Die Base im zweiten Schritt konnte, unter Verlängerung der Reaktionszeit, mit gutem Erfolg variiert werden. So wurde entgegen der Literaturvorschrift das relativ teure TBAF mit kostengünstigerem K₂CO₃ unter Verlängerung der Reaktionszeit ersetzt.

Die Funktionalisierung mit dem Benzodiazaborolylsubstituenten erfolgt durch die Lithiierung in THF bei einer Temperatur von -78 °C und anschließender Umsetzung mit 2-Brombenzodiazaborol 45. Die Aufarbeitung gelingt durch Entfernen des Lösungsmittels im Vakuum, anschließender Aufnahme in Dichlormethan, Filtration zur Abtrennung der entstandenen Salze und Vakuumdestillation. Durch Umkristallisation der Rohprodukte aus n-Pentan/Dichlormethan erhält man die gewünschten Produkten 97-100 (farblose Feststoffe) in zufriedenstellenden Ausbeuten (42-69 %).

 $X = NMe_2$, SMe, OMe, Me

X = NMe₂(97), SMe (98), OMe (99), Me (100)

Im Falle des Substituenten X = CN wird bei der Lithiierung, als auch der weiteren Umsetzung, eine Temperatur von -100 °C beibehalten, da es sonst zu Reaktionen an der Cyanogruppe kommt und nicht zur Bildung des gewünschten Produktes. Durch die Einhaltung dieser Temperatur und Entfernen des Lösungsmittels direkt während des Erwärmens der Reaktionslösung kann die Bildung von Nebenprodukten zwar vermindert, aber nicht komplett unterdrückt werden.

Auch wenn es möglich war, von dem gebildeten Nebenprodukt **102** Einkristalle für die Röntgenstrukturanalyse zu erhalten, ist es nach zahlreichen Kristallisationsversuchen nicht gelungen, analysenreines **101** zu erhalten. Eine Möglichkeit wäre die Wahl einer Synthesemethode, welche eine Lithiierung umgeht, oder ein Versuch, das entstandene Nebenprodukt **102** mittels Chromatographie unter Schutzgasatmosphäre abzutrennen.

3.2 Spektroskopische Daten der para-phenylethinylsubstituierten Benzodiazaborole (97)-(100)

Die ¹¹B{¹H}-NMR-Signale der Verbindungen **97-100** liegen in einem Bereich von δ = 20.9-21.2 ppm und sind somit gut vergleichbar mit dem für das literaturbekannte 2-Phenylethinyl-1,3-diethyl-1,3,2-benzodiazaborol **103** erhaltene Signal bei δ = 21.2 ppm.^[84]

	¹¹ B{ ¹ H}	¹ H-NMR	¹ H-NMR	¹ H-NMR	¹³ C{ ¹ H}-	¹³ C{ ¹ H}-	¹³ C{ ¹ H}-
	-NMR	Boryl-H	Phenyl-	<i>Х</i> -Н	NMR	NMR	NMR
	δ (ppm)	δ (ppm)	н	δ (ppm)	Boryl-C	Phenyl-C	X-C
X =			δ (ppm)		δ (ppm)	δ (ppm)	δ (ppm)
NMe₂ 97 (CDCl₃)	21.2(s)	1.38(t, ³ J _{HH} = 6.9 Hz), 3.91(q, ³ J _{HH} = 6.9 Hz), 7.01(m), 7.05 (m)	6.65(d, ³ J _{HH} = 9.1 Hz), 7.49(d, ³ J _{HH} = 9.1 Hz)	3.00(s)	16.1(s), 38.1(s), 108.6(s), 118.6(s), 137.0(s)	109.8(s), 111.7(s), 133.3(s), 150.4(s),	40.2(s)
SMe 98 (CDCl ₃)	20.9(s)	1.37(t, ³ J_{HH} = 6.9 Hz), 3.90(q, ³ J_{HH} = 6.9 Hz), 7.02(m), 7.06(m)	7.21(d, ³ J _{HH} = 8.5 Hz), 7.47(d, ³ J _{HH} = 8.5 Hz)	2.50(s)	15.3(s), 37.3(s), 107.9(s), 117.9(s), 136.0(s)	118.4(s), 124.8(s), 131.4(s), 139.2(s),	14.5(s)
OMe 99 (CDCl ₃)	21.1(s)	1.37(t, ³ J _{HH} = 7.2 Hz), 3.90(q, ³ J _{HH} = 7.2 Hz), 7.00(m), 7.06(m)	6.87(d, ³ J _{HH} = 8.8 Hz), 7.51(d, ³ J _{HH} = 8.8 Hz)	2.82(s)	16.1(s), 38.2(s), 108.7(s), 118.8(s) 136.9(s)	114.0(s), 115.2(s), 133.6(s), 160.6(s)	55.3(s)
CH ₃ 100 (CDCl ₃)	21.1(s)	1.39(t, ³ J _{HH} = 7.2 Hz), 3.93(q, ³ J _{HH} = 7.2 Hz), 7.03(m), 7.08 (m)	7.18(d, ³ J _{HH} = 8.2 Hz), 7.49(d, ³ J _{HH} = 8.2 Hz)	2.38(s)	16.2(s), 38.2(s), 108.8(s), 118.8(s), 137.0(s)	106.8(s) (B- C C -Ph), 120.1(s), 129.2(s), 132.0(s), 139.0(s)	21.6(s)
H 103	21.2(s) (C ₆ D ₆)	1.20(t, ³ J_{HH} = 7.2 Hz), 3.76(q, ³ J_{HH} = 7.2 Hz), 6.95(m), 6.97(m) (C ₆ D ₆)	7.12(m) 7.52(m) (C ₆ D ₆)	7.12(m) (C ₆ D ₆)	16.1(s), 38.2(s), 108.8(s), 118.8(s), 136.9(s) (CDCl ₃)	123.1(s), 128.3(s), 128.8(s), 132.0(s) (CDCl ₃)	-

Tab. 9: Ausgewählte NMR-Daten der Verbindungen 97-100 und 103

Die ¹H-NMR-Daten zeigen keine signifikanten Abweichungen in den chemischen Verschiebungen der Benzodiazaborolprotonen [δ = 7.00-7.03 ppm und 7.05-7.08 (**97-100**) ppm], was einen denkbaren Einfluss des p-Phenylsubstituenten ausschließt. Sowohl das Triplett der Methylprotonen [δ = 1.37-1.39 (**97-100**) ppm] als auch das Quartett der Methylenprotonen [δ = 3.90-3.93 (**96-100**) ppm] liegen in einem erwarteten Bereich. Die Protonen des para-substituierten Phenylrings treten jeweils als zwei Dubletts bei δ = 6.65 (NMe₂, **97**)< 6.87 (OMe, **99**) < 7.18

(CH₃, **100**)< 7.21 (SMe, **98**) ppm und 7.47 (SMe, **98**)< 7.49 (CH₃, **100**, NMe₂, **97**)< 7.51(OMe, **99**) ppm auf.

In den ¹³C{¹H}-NMR-Spektren der Verbindungen **97-100** können die Kohlenstoffatome der Ethinyleinheit nicht detektiert werden. Einzig im Fall der Verbindung **100** tritt ein sehr schwaches Signal bei δ = 106.8 ppm auf. Ähnliche Beobachtungen wurden bereits von Brown bei der Verbindung **93** gemacht.^[85] Die Signale der Benzodiazaboroleinheit liegen in einem erwarteten Bereich und zeigen keine signifikanten Unterschiede zur Verbindung **103**. Nur bei der Verbindung **98**, mit X = SMe, sind die erhaltenen Signale allesamt um ca. 1 ppm tieffeldverschoben.

Die NMR-Daten von **97-100** lassen sich mit jenen der anfänglich erwähnten Dimesitylborylverbindungen **93-96** vergleichen (**Tab. 10**).

	¹ H-NMR	¹ H-NMR	¹³ C{ ¹ H}-NMR	¹³ C{ ¹ H}-
	Phenyl-H	Х-Н	Phenyl-C	NMR
	δ (ppm)	δ (ppm)	δ (ppm)	X-C
X=				δ (ppm)
H ^a	-	-	123.4(s), 128.4(s),	-
93 (CDCl ₃)			129.7(s), 132.5(s)	
NMe ₂ ^b	$6.60(d^{3}_{HH} = 8.5 \text{ Hz}),$	2.99(s)	109.8(s), 111.5(s),	40.2(s)
94 (CDCl ₃)	7.39(d, ³ J _{HH} = 8.5 Hz)		144.9(s), 151.3(s)	
SMe ^b	7.17(d, $^{3}J_{\rm HH}$ = 8.4 Hz),	2.47(s)	119.5(s), 125.6(s),	15.4(s)
95 (CDCl ₃)	$7.40(d^{3}_{HH} = 8.4 \text{ Hz})$		132.9(s), 139.5(s)	
OMe ^b	$6.85(d,^{3}J_{HH} = 8.8 \text{ Hz}),$	3.81(s)	114.1(s), 115.5(s),	55.4(s)
96 (CDCl ₃)	7.45(d, ³ J _{HH} = 8.8 Hz)		134.7(s), 161.0(s)	
[85] b[34b]				

Tab. 10: Ausgewählte NMR-Daten der Verbindungen 93-96

Die Dimesitylborylanaloga zeigen für die Dubletts der Phenylprotonen ebenso wie 97-100 eine größere Varianz in der Lage der Dubletts, die bei höherem Feld erscheinen. Der Trend bei den chemischen Verschiebungen der aromatischen Phenylprotonen (NMe₂ < OMe < SMe) in Abhängigkeit vom Substituenten ist ebenso wie der Abstand der beiden Dubletts, vergleichbar mit denen der entsprechenden dimesitylborylsubstituierten Verbindungen [$\Delta\delta$ = 0.23 (SMe. 95) < 0.60 (OMe, **96**) < 0.79 (NMe₂, **94**) ppm vs. $\Delta \delta$ = 0.26 (SMe, **98**) < 0.64 (OMe, **99**) < 0.84 (NMe₂ **97**) ppm]. Damit scheint die Substitution mit einer Benzodiazaborolethinyl-Einheit ähnliche Effekte auf die Phenylprotonen auszuüben, wie die mit einer Dimesitylborylethinyl-Einheit.

3.3 Röntgenstrukturanalysen der Verbindungen (97), (99), (100) und (102)

Von den Verbindungen **97**, **99**, **100** wurden Röntgenstrukturanalysen angefertigt. Auch im Fall der phenylalkinylsubstituierten Verbindungen interessiert in erster Linie das Ausmaß der Konjugation innerhalb des Moleküls. Ein Indiz hierfür bietet der Diederwinkel den das heterocyclische Benzodiazaborol gegenüber der Ebene des substituierten Phenylrings einnimmt.

Abb. 36: Molekülstruktur der Verbindung 97 im Kristall

Verbindung	97 (NMe ₂)	99 (OMe) ^a	100 (CH ₃)				
Bindungslängen (Å)							
B-C	B(1)-C(11) 1.525(2)	B(1)-C(11) 1.525(2)	B(1)-C(11) 1.530(1)				
B-N	B(1)-N(1) 1.431(1),	B(1)-N(1) 1.433(2),	B(1)-N(1) 1.430(1),				
	B(1)-N(2) 1.429(1)	B(1)-N(2) 1.428(2)	B(1)-N(2) 1.431(1)				
	Aryl-S	Substituent					
Phenyl C-C	C(13)-C(18) 1.402(1),	C(13)-C(18) 1.405(2),	C(13)-C(18) 1.399(1),				
	C(18)-C(17) 1.381(1),	C(18)-C(17) 1.376(2),	C(18)-C(17) 1.388(1),				
	C(17)-C(16) 1.412(1),	C(17)-C(16) 1.397(2),	C(17)-C(16) 1.393(1),				
	C(16)-C(15) 1.410(1),	C(16)-C(15) 1.389(2),	C(16)-C(15) 1.394(1),				
	C(15)-C(14) 1.379(1),	C(15)-C(14) 1.393(2),	C(15)-C(14) 1.390(1),				
	C(14)-C(13) 1.400(1)	C(14)-C(13) 1.392(2)	C(14)-C(13) 1.400(1)				
para-C-X	C(16)-N(3) 1.380(1),	C(16)-O(1) 1.361(2),	C(16)-C(19) 1.509(1)				
-	N(3)-C(19) 1.451(1),	O(1)-C(19) 1.434(2)					
	N(3)-C(20) 1.444(1)						
Acetylen	C(11)-C(12) 1.209(1),	C(11)-C(12) 1.207(2),	C(11)-C(12) 1.207(1),				
c-c	C(12)-C(13) 1.435(1)	C(12)-C(13) 1.440(2)	C(12)-C(13) 1.438(1)				
	Bor	yl-5-Ring					
N-C(Et),	N(1)-C(9) 1.461(1),	N(1)-C(7) 1.460(2),	N(1)-C(7) 1.459(1),				
C-C(Et)	N(2)-C(7) 1.459(1),	N(2)-C(9) 1.459(2),	N(2)-C(9) 1.463(1),				
0 0(21)	C(7)-C(8) 1.513(2),	C(7)-C(8) 1.520(2),	C(7)-C(8) 1.517(1),				
	C(9)-C(10) 1.520(2)	C(9)-C(10) 1.521(2)	C(9)-C(10) 1.521(1)				
N-C(Aryl)	N(1)-C(1) 1.395(1),	N(1)-C(1) 1.396(2),	N(1)-C(1) 1.392(1),				
	N(2)-C(2) 1.394(1)	N(2)-C(2) 1.396(2)	N(2)-C(2) 1.398(1)				
C-C	C(1)-C(2) 1.411(1)	C(1)-C(2) 1.413(2)	C(1)-C(2) 1.413(1)				
	Diederwinkel Benz	zodiazaborol-Pheny	/l (°)				
	76.4	79 (13.4)	70.4				

^a exemplarisch sind Bindungslängen von einem der beiden Moleküle aus der Einheitszelle, jedoch beide Diederwinkel angegeben

Tab. 11: Ausgewählte Bindungslängen [Å] und Winkel [°] der Verbindungen 97,99 und 100

Nach zwei Tagen konnten aus einer Dichlormethanlösung bei -20 °C Einkristalle der Verbindung **97** gewonnen werden. Das Molekül zeigt einen planaren Benzodiazaborolring und einen planaren 4-Dimethylaminophenylring. Die beiden Cyclen sind durch eine Acetylenbrücke [C(11)-C(12) 1.209(1) Å] miteinander

verbunden (**Tab. 11**, **Abb. 36**). Die BC(sp)-Bindung zwischen dem Boratom des Benzodiazaborolrings und der anknüpfenden Acetyleneinheit beträgt 1.525(2) Å und liegt damit, wie alle weiteren Bindungsparameter innerhalb des Heterocyclus im Erwartungsbereich. Nennenswert ist der Diederwinkel von 76.4°, den die Ebenen der beiden Ringe gegeneinander einnehmen und eine elektronische Kommunikation zwischen den beiden cyclischen Systemen im Festkörper nahezu ausschließen.

Um einen Vergleich mit Literaturdaten ziehen zu können, bietet sich die Struktur **37**).^[34] 94 an (Abb. Die Verbindung Bindungslängen innerhalb der des 4-Dimethylaminophenylrings zeigen gute Übereinstimmungen mit denen der Verbindung 97. Der CC-Bindungsabstand der Acetyleneinheit in 97 ist nahezu identisch mit dem theoretisch berechneten von 94 und stimmt ebenfalls gut mit dem experimentellen Wert überein [1.209(1) (97) Å VS. 1.226(6) (94 exp.) Å und 1.204 (94 theor.) Å]. Die BC-Bindung in Verbindung 97, welche das Boratom mit der Acetylen-Einheit verbindet, stimmt innerhalb der dreifachen Standardabweichung mit dem für 94 gefundenen Wert überein [1.525(2) (97) Å vs. 1.504(6) (**94**) Å].

Verbindung	Acetylen-	B-C	Phenyl-		Phenyl-	
	C-C			C-C		C-X
94 ^a	1.226(6)	1.504(6)	1.385(6)	1.373(6)	1.385(6)	1.370(5)
(NMe₂)	1.204	1.503	1.404	1.387	1.418	1.404
(2)	(C(7)-C(8))	(B-C(8))	(C(1)-	(C(2)-C(3),	(C(4)-C(3/5))	(C(4)-X)
			C(2/6))	C(5)-C(6)		

^a Berechnete Werte sind kursiv angegeben

Abb. 37: Molekülstruktur und ausgewählte Bindungslängen [Å] von 94

Einkristalle des Methoxyphenylderivates **99** konnten aus einer Dichlormethan/ n-Hexan-Mischung bei -20 °C innerhalb eines Tages gezüchtet werden. In der orthogonalen Einheitszelle befinden sich 16 Moleküle, welche 8 Paare kristallographisch unabhängiger Moleküle bilden. Der hauptsächliche Unterschied liegt dabei in der gegenseitigen Orientierung des Heterocyclus und dem 4-Methoxyphenylring.

Abb. 38: Molekülstrukturen der Verbindungen 99 und 100 im Kristall

In einem Molekül bilden beide Ringsysteme einen Interplanarwinkel von 79° aus. In dem zweiten Molekül nehmen die beiden Cyclen zwischen den zwei Achsen, welche senkrecht auf ihnen stehen, einen Winkel von 13.4° ein. Die Bindungslängen und Winkel in den beiden Molekülen variieren nicht signifikant voneinander. Einen geringen Unterschied bieten die Acetyleneinheiten der beiden Strukturen [C(11)-C(12)-C(13) 176.1(2)°; C(30)-C(31)-C(32) 174.0(2)°]. In **Tabelle 11** sind exemplarisch die Bindungsparameter eines der beiden Moleküle, jedoch beide Diederwinkel angegeben. Die Bindungsparameter innerhalb des Benzodiazaborolgerüsts sind gut vergleichbar mit den Strukturdaten einer Reihe anderer Benzodiazaborole.^[36d,54a] Die Diederwinkel innerhalb des ersten Moleküls sprechen für sehr geringe elektronische Wechselwirkungen zwischen dem Benzodiazaborolring und dem Phenylring über die vermittelnde Acetylen-Brücke. Im zweiten Molekül ist diese Voraussetzung eher gegeben.

Einkristalle des p-Methylphenylderivates **100** wurden durch Kristallisation aus einer n-Pentanlösung bei -20 °C erhalten. Das Molekül ist aus einer planaren Benzodiazaboroleinheit und einem planaren p-Toluolring aufgebaut, welche über eine Acetylenbrücke [C(11)-C(12) 1.207(1) Å] miteinander verbunden sind. Die durch den Heterocyclus und den Arenring aufgespannten Ebenen stehen in einem Interplanarwinkel von 70.4° zueinander, wodurch eine bedeutende elektronische Kommunikation zwischen den π -Systemen über die Spacer-Einheit auszuschließen ist. Die Benzodiazaborolylgruppe ist durch eine Einfachbindung [B(1)-C(11) 1.530(1) Å] an die Acetyleneinheit gebunden. Die Bindungsparameter innerhalb des Benzodiazaborolgerüstes sind wie erwartet und werden aufgrund dessen an dieser Stelle nicht weiter erörtert. Die Winkel am zentralen Acetylenbaustein [B(1)-C(11)-C(12) 174.0° und C(11)-C(12)-C(13) 178.02°] zeigen nur geringfügige Abweichungen von der Linearität.

Kristalle der gewünschten Cyanoverbindung **101** konnten leider nicht erhalten werden. Wie bereits erwähnt, bildet sich bei der Synthese des gewünschten Produktes **101** stets in veränderlichen Anteilen das Nebenprodukt **102**. Durch Kristallisation aus einer n-Pentan/Dichlormethan-Lösung konnten Einkristalle dieser Nebenverbindung gewonnen werden (**Abb. 39**). Es ist die gewünschte Substitution an der Acetyleneinheit mit einem planaren Benzodiazaborolcyclus zu erkennen, der durch eine Einfachbindung [B(1)-C(11) 1.531(1)] an sie geknüpft ist. Durch die erfolgte Nebenreaktion an der Cyanogruppe in para-Position kommt

es zu der Addition einer Butylgruppe an das Kohlenstoffatom des Cyanosubstituenten.

Abb. 39: Molekülstruktur der Verbindung 102 im Kristall

Die für diesen Substituenten erhaltenen Bindungslängen liegen wie alle weiteren strukturellen Parameter im Erwartungsbereich (**Tab. 12**). (Die aufgelisteten Daten sind aus einem vorläufigen Datensatz entnommen. In dem finalen Datensatz kann es unter Umständen zu geringfügigen Abweichungen kommen). Die planare Benzodiazaborolgruppe und der planare, para-substituierte Phenylring schließen einen sehr geringen Diederwinkel von 4.6° im kristallinen Zustand ein, was diese Verbindung für weitere Untersuchungen und eine zukünftige, gezielte Synthese interessant macht. Bei diesem Molekül sind bereits im kristallinen Zustand Vorraussetzungen für eine gute elektronische Kommunikation zwischen den beiden Cyclen über die vermittelnde Dreifachbindung gegeben.

Verbindung	102						
	Bindungslängen (Å)						
B-C	B(1)-C(11) 1.531(1)						
B-N	B(1)-N(1) 1.433(9), B(1)-N(2) 1.420(4)						
	Aryl-Substituent						
Phenyl C-C	C(13)-C(18) 1.403(7), C(18)-C(17) 1.381(9),						
	C(17)-C(16) 1.400(4), C(16)-C(15) 1.398(7),						
	C(15)-C(14) 1.385(9), C(14)-C(13) 1.399(4)						
para-C-X	C(16)-C(19) 1.50(1), C(19)-N(3) 1.232(6),						
	C(19)-C(20) 1.512(4),						
Acetylen C-C	C(11)-C(12) 1.202(8)						
	Boryl-5-Ring						
N-C(Et),C-C(Et)	N(1)-C(7) 1.464(3), N(2)-C(9) 1.463(6), C(7)-						
	C(8) 1.517(6), C(9)-C(10) 1.461(7)						
N-C(Aryl)	N(1)-C(1) 1.399(5), N(2)-C(2) 1.39(1)						
C-C	C(2)-C(1) 1.404(4)						
Diederwinkel Benzodiazaborol-Phenyl (°)							
	4.6						

Tab. 12: Ausgewählte Bindungslängen [Å] und Winkel [°] der Verbindung 102

3.4 Darstellung des 9,9-Bis(n-octyl)-2,7-di[(benzodiazaborolyl)ethinyl]fluorens (104)

Da die Verbindungen **97-100**, sehr hohe Quantenausbeuten in Lösung aufweisen (**Ergebnisse und Diskussion (II)**), stellte sich die Frage, ob es durch die Verwendung von Acetylenbausteinen zwischen der Benzodiazaboroleinheit und dem benachbarten π -System zu einer verbesserten Konjugation des Gesamtsystems kommt. Aufgrund dessen wurde das Molekül **70** um zwei Acetyleneinheiten erweitert. Das hierfür benötigte Edukt kann mittels Sonogashira-Kupplung aus 9,9-Bis(n-octyl)-2,7-dibromfluoren in 72 %iger Ausbeute gewonnen werden.^[86]

Die Verwendung des Octylderivates besitzt neben einer verbesserten Löslichkeit des Produktes in gängigen organischen Lösungsmitteln den Vorteil, dass es bei möglichen Anwendung einer verminderten einer späteren zu Kristallisationsneigung kommt. Die Bildung eines " π - π -Stackings" wird durch die sperrigen Alkylgruppen erschwert.

Die Umsetzung zum Bis(benzodiazaborol)derivat 104 erfolgt durch die zweifache Lithiierung mit n-Butyllithium bei -78 °C und der Umsetzung mit zwei Äquivalenten des 2-Brombenzodiazaborols 45. Nach Entfernung des Lösungsmittels im Vakuum, Aufnahme des erhaltenen Rückstandes in Dichlormethan, Filtration und Einengen des erhaltenen Filtrates im Vakuum, erhält man das Rohprodukt in Form eines farblosen Feststoffes. Durch Umkristallisation aus n-Pentan bei -20 °C bilden sich feine, farblose Nadeln von **104** in 59 % iger Ausbeute.

3.5 Spektroskopische Daten des 9,9-Bis(n-octyl)-2,7-di[(benzodiazaborolyl)ethinyl]fluorens (104)

Das ¹¹B{¹H}-NMR-Signal der Verbindung **104** (δ = 20.5 ppm) ist gut vergleichbar mit denen der Verbindungen **97-100** (δ = 20.9-21.2 ppm), welche als direkten Substituenten an den Boratomen Ethinylgruppen tragen. Gegenüber der Verbindung **70** (δ = 29.3 ppm), in der die Benzodiazaborolylsubstituenten direkt an das Fluorengerüst geknüpft sind, ist eine deutliche Hochfeldverschiebung zu verzeichnen.

	¹¹ B{ ¹ H}-	¹ H-NMR	¹³ C{ ¹ H}-NMR	¹ H-NMR
	NMR	Boryl-H	Boryl-C	arom. Fluoren-H
	δ (ppm)	δ (ppm)	δ (ppm)	δ (ppm)
Ar =				
	20.5(s)	1.42(t, ³ J _{HH} = 6.9 Hz),	16.2(s), 38.3(s),	7.52(s),
		3.96(q, ³ J _{HH} = 6.9 Hz),	108.9(s), 118.9(s),	7.58(d, $^{3}J_{\rm HH}$ = 7.5 Hz),
104 (CDCl ₃)		7.04(m), 7.09(m)	137.0(s)	7.68(d, ³ J _{HH} = 7.5 Hz)

Tab. 14: Ausgewählte NMR-Daten der Verbindung 104

Das ¹H-NMR-Spektrum der Verbindung **104** ist im Bereich der Protonen des Benzodiazaborolfragments mit denen von **70** und den ethinylsubstituierten Verbindungen **97-100** vergleichbar. So wird ein Triplett bei δ = 1.42 ppm für die Methylprotonen beobachtet, was gut mit dem in der Verbindung **70** (δ = 1.40 ppm) und den Verbindungen **97-100** (δ = 1.37-1.39 ppm) korreliert. Quartetts für die Methylenprotonen der Ethylgruppen treten in **104** bei δ = 3.96 ppm, und in den Verbindungen **70**, **97-100** bei δ = 3.88-3.93 ppm auf. Die aromatischen Protonen des Benzodiazaborolrückgrates geben zu zwei Multipletts bei δ = 7.04 und 7.09 ppm Anlass und sind relativ zu denen in Verbindung **70** (δ = 7.10 und 7.18 ppm) leicht zu hohem Feld verschoben. In den Spektren der Moleküle **97-100** geben sich die entsprechenden Protonen in den Bereichen von δ = 7.00-7.03 und 7.05-7.08 ppm zu erkennen.

Das ¹³C{¹H}-NMR-Spektrum von **104** zeigt gute Übereinstimmungen für die Resonanzen der Benzodiazaborol-Kohlenstoffatome mit jenen in **97**, **99** und **100**, als auch mit der Fluorenverbindung **70**. Die Singuletts bei δ = 108.9, 118.9 und

137.0 ppm [δ = 108.6-108.8, 118.6-118.8 und 136.9-137.0 ppm (**97**, **99**, **100**); δ = 108.8, 118.6 und 137.2 ppm (**70**)] werden den aromatischen ¹³C-Kernen des Benzodiazaborols zugeordnet. Die Signale der Kohlenstoffatome der Ethylgruppen sind ebenfalls gut vergleichbar mit denen der Verbindungen **97**, **99** und **100**. Gleiches gilt für die ¹³C-NMR-Resonanzen der C-Atome der Ethinylsubstituenten.

4. Darstellung von erweiterten Phenylethinylverbindungen

Eine weitere Klasse bilden die Benzodiazaborolderivate, die als zentrale Einheit eine Diphenylacetylengruppe besitzen. Yamaguchi berichtete 2006 über interessante Lumineszenzeigenschaften von Polycyano-oligo-phenylenethinylenen (Polycyano OPEs), die bis zu diesem Zeitpunkt durch ihre Eigenschaften als starke Elektronenakzeptoren aufgefallen waren. Ebenfalls Inhalt dieser Veröffentlichung sind tetramere Phenylethinylene (PE), die neben den Cyanogruppen unterschiedliche Substituenten tragen.

X = CN, SMe, OMe

Diese synthetisierten Verbindungen werden mit den unsubstituierten Stammverbindungen verglichen.^[87] Die Verwendung der Cyanosubstituenten, sowie eines elektronendonierenden Substituenten an Polyethinylenverbindungen scheint interessante Auswirkungen auf deren Lumineszenzeigenschaften zu haben. Idee an dieser Stelle war, die Benzodiazaboroleinheit als direkten Substituenten an einem Phenylring des Diphenylacetylens zu nutzen und mit den Eigenschaften von einem Cyanosubstituenten und einem Elektronendonor zu kombinieren.

4.1 Darstellung des 1,3-Diethyl-2-(p-diphenylethinyl)-1,3,2-benzodiazaborols (105)

Der erste Schritt beinhaltet die Schaffung eines Referenzsystems, in diesem Fall eines Diphenylacetylens, welches einzig einen Benzodiazaborol als Substituenten trägt.

Durch Sonogashira-Kupplung kann aus para-Bromiodbenzol und Phenylacetylen das benötigte Edukt nach Literaturvorschrift in 63 %iger Ausbeute erhalten werden.^[87]

Als nächstes werden die Metallierung mit n-Butyllithium und die folgende Umsetzung mit dem 2-Brombenzodiazaborol **45** durchgeführt.

Die Aufarbeitung erfolgt durch Einengen des Lösungsmittels im Vakuum, Wiederaufnahme des erhaltenen Feststoffs in Dichlormethan, Filtration und anschließendem Einengen des erhaltenen Filtrats bis zur Trockne. Der entstandene hellgelbe Feststoff wird mit kaltem n-Pentan gewaschen und aus einer n-Pentan/Dichlormethan-Lösung bei -20 °C umkristallisiert. Man erhält das Produkt **105** in Form farbloser Nadeln in 37 %iger Ausbeute.

4.2 Darstellung des Bis-4,4(1⁷,3⁷-diethyl-1⁷,3⁷,2⁷-benzodiazaborol-2⁷yl)tolans (106)

Zum weiteren Vergleich wurde die zweifach funktionalisierte Verbindung **106** dargestellt. Das benötigte Edukt konnte wiederum durch Sonogashira-Kupplung nach einer Literaturvorschrift erhalten werden.^[88]

Die weitere Umsetzung erfolgt durch Lithiierung mit zwei Äquivalenten n-Butyllithium und der nachfolgenden Behandlung mit zwei Äquivalenten des 2-Brombenzodiazaborols **45**. Nach beendeter Reaktionszeit wird die Reaktionslösung bis zur Trockne eingeengt und der gebildete Feststoff in Dichlormethan aufgeschlämmt.

Nach Filtration der trüben Lösung und anschließendem Entfernen des Lösungsmittels im Vakuum wird der erhaltene Feststoff mittels Kurzweg-Destillation im Vakuum aufgereinigt. Das erhaltene Rohprodukt kann aus Methylcyclohexan/Dichlormethan umkristallisiert werden, wobei man das Produkt **106** in Form kleiner, farbloser Nadeln in 48 %iger Ausbeute erhält.

4.3 Spektroskopische Daten der Verbindungen (105) und (106)

Die ¹¹B{¹H}-NMR-Spektren der Verbindungen **105** und **106** zeigen Signale bei δ = 28.5 (**105**) und 28.6 (**106**) ppm. Diese sind gut vergleichbar mit Werten, die für Benzodiazaborole erhalten wurden, welche einen Phenylring als direkten Substituenten am Boratom tragen[δ = 28.7 (**64**), 28.6 (**69**), 28.9 (**83**) und 28.6 (**84**) ppm].

Die ¹H-NMR-Spektren der Verbindungen **105** und **106** sind ähnlich. Für die Protonen der Ethylgruppen treten Tripletts bei δ = 1.31 (**105**) und 1.32 (**106**) ppm sowie Quartetts bei δ = 3.78 (**105**) bzw. 3.79 (**106**) ppm auf. Im Vergleich zu den Verbindungen **64**, **83** und **84**, in denen Phenylringe die direkten Substituenten am Boratom sind, erscheinen die Signale der Methylprotonen leicht zu hohem

 $[\delta = 1.38 \ (64), 1.36 \ (83), 1.45 \ (84) \ ppm]$ und die der Methylenprotonen zu tiefem Feld $[\delta = 3.85 \ (64), 3.90 \ (83), 3.94 \ (84) \ ppm]$ verschoben.

Verbindung	¹¹ B{ ¹ H}-	¹ H-NMR	¹ H-NMR	¹³ C{ ¹ H}-	¹³ C{ ¹ H}-	¹³ C{ ¹ H}-
	NMR	Boryl-H	Phenyl-H	NMR	NMR	NMR
	δ (ppm)	δ (ppm)	δ (ppm)	Boryl-C	Phenyl-	C≡C
				δ (ppm)	С	δ (ppm)
					δ (ppm)	
	28.6(s)	1.31(t, ³ J _{HH} = 7.2 Hz),	7.35(m),	16.3(s),	123.3(s),	89.5(s),
		$3.78(q,^{3}J_{HH} = 7.2 \text{ Hz}),$	7.55(d, $^{3}J_{HH}$ = 7.6 Hz),	37.6(s),	123.4(s),	90.0(s)
		7.08(m)	$7.61(d^{3}_{HH} = 7.6 \text{ Hz})$	108.9(s),	128.3(s),	
105 (CDCl ₃)				118.7(s),	128.4(s),	
				137.1(s)	131.0(s),	
					131.6(s),	
					133.4(s),	
	28.5(s)	1.32(t, ³ J _{HH} = 7.2 Hz),	$7.57(d,^{3}J_{HH} = 7.5),$	16.3(s),	123.4(s),	90.2(s)
		$3.79(q^{3}J_{HH} = 7.2 \text{ Hz}),$	$7.64(d, J_{HH} = 7.5)$	37.7(s),	131.1(s),	
		7.06(m), 7.13(m)		109.0(s),	133.4(s),	
106 (CDCl ₃)				118.8(s),		
				137.1(s)		

Tab. 15: Ausgewählte NMR-Daten der Verbindungen 105 und 106

Die aromatischen Protonen der Benzodiazaboroleinheit zeigen im Fall der Verbindung **106** zwei klar voneinander getrennte Multipletts bei δ = 7.06 und 7.13 ppm. Bei der Verbindung **105** fallen diese jedoch zu einem Multiplett bei δ = 7.08 ppm zusammen. Die aromatischen Protonen der Diphenylacetyleneinheit der unsymmetrischen Verbindung **105** bilden zwei Dubletts bei δ = 7.55 und 7.61 ppm. Diese sind durch den direkten Vergleich mit den Phenylprotonen der symmetrischen Verbindung **106** den Protonen des Phenylrings zuzuordnen, welcher direkt an das Boratom geknüpft ist. Desweiteren wird ein Multiplett bei δ = 7.35 ppm beobachtet. Die beiden Dubletts der Diphenylacetyleneinheit der symmetrischen Verbindung **106** liegen bei δ = 7.57 und 7.64 ppm.

Die ¹³C{¹H}-NMR-Spektren der Verbindungen **105** und **106** zeigen keine Auffälligkeiten hinsichtlich der Lage der Kohlenstoffatome der Benzodiazaborolylsubstituenten sowie der Kohlenstoffatome der Diphenylacetyleneinheiten. Die Kohlenstoffatome der Benzodiazaborolylsubstituenten liegen mit Signalen von δ = 16.3 (105, 106) ppm und δ = 37.6 (105) ppm bzw. 37.7(106) ppm für die Kohlenstoffatome der Ethylgruppen und δ = 108.9, 118.7, 137.1 (105) ppm sowie δ = 109.0, 118.8, 137.1 (106) ppm für die aromatischen Kohlenstoffatome im erwarteten Bereich und sind gut vergleichbar mit zuvor beobachteten Werten (Tab. 4, 7, 9, 14).

4.4 Röntgenstrukturanalysen der Verbindungen (105) und (106)

Aus einer n-Pentan/Dichlormethan-Lösung wurden bei 5 °C Einkristalle der Verbindung **105** gezüchtet. Das Molekül verfügt über drei aromatische, planare Ringsysteme **A**, **B** und **C**. Innerhalb der Einheitszelle befinden sich zwei voneinander strukturell unabhängige Moleküle, welche sich durch die Orientierung der einzelnen Ringsysteme zueinander unterscheiden (**Abb. 40**). Die Bindungslängen dieser beiden Moleküle unterscheiden sich innerhalb der dreifachen Standardabweichung jedoch nicht voneinander, weshalb an dieser Stelle exemplarisch nur eines der beiden Moleküle betrachtet wird (**Tab. 16**).

Abb. 40: Molekülstrukturen der Verbindung 105 im Kristall

Verbindung	105 ^ª	106					
Bindungslängen (Å)							
B-C	B(1)-C(11) 1.566(2)	B(1)-C(11) 1.564(2)					
B-N	B(1)-N(1) 1.431(2), B(1)-N(2) 1.432(2)	B(1)-N(1) 1.432(2), B(1)-N(2) 1.438(2)					
	Diphenylacetylen-Ei	nheit					
Phenyl C-C (Ring B)	C(11)-C(12) 1.403(2), C(12)-C(13) 1.384(2), C(13)-C(14) 1.400(2), C(14)-C(15) 1.401(2), C(15)-C(16) 1.384(2), C(16)-C(11) 1.404(2)	C(11)-C(12) 1.407(2), C(12)-C(13) 1.386(2), C(13)-C(14) 1.397(2), C(14)-C(15) 1.402(2), C(15)-C(16) 1.390(2), C(16)-C(11) 1.405(2)					
Phenyl C-C (Ring C)	C(19)-C(20) 1.400(2), C(20)-C(21) 1.386(2), C(21)-C(22) 1.387(2), C(22)-C(23) 1.384(2), C(23)-C(24) 1.383(2), C(24)-C(19) 1.397(2)	-					
Acetylen C-C	C(14)-C(17) 1.435(2), C(17)-C(18) 1.202(2), C(18)-C(19) 1.436(2)	C(14)-C(17) 1.437(2), C(17)-C(17A) 1.202(3)					
	Boryl-5-Ring (Ring	A)					
N-C(Et), C-C(Et)	N(1)-C(7) 1.462(1), N(2)-C(9) 1.453(1), C(7)-C(8) 1.519(2), C(9)-C(10) 1.515(2)	N(1)-C(7) 1.461(2), N(2)-C(9) 1.459(2), C(7)- C(8) 1.523(2), C(9)-C(10) 1.520(2)					
N-C(Aryl)	N(1)-C(1) 1.400(2), N(2)-C(2) 1.393(1)	N(1)-C(1) 1.394(2), N(2)-C(2) 1.397(2)					
C-C	C(1)-C(2) 1.411(2)	C(1)-C(2) 1.412(2)					
Diederwinkel (°)							
Ring A /Ring B	56.7 (49.2)	45.9					
Ring B /Ring C	11.1 (78.7)	-					
Ring A /Ring C	45.6 (40.1)	-					

^a exemplarisch sind Bindungslängen von einem der beiden Moleküle aus der Einheitszelle, jedoch beide Diederwinkel angegeben

Tab. 16: Ausgewählte Bindungslängen [Å] und Winkel [°] der Verbindungen 105und 106

Die Benzodiazaboroleinheit (Ring **A**) der Verbindung **105** ist durch eine BC-Einfachbindung [B(1)-C(11) 1.566(2) Å] an den ersten Phenylring (Ring **B**) geknüpft. Die BN-Abstände im Heterocyclus **A** [B(1)-N(1) 1.431(2), B(1)-N(2) 1.432(2) Å] sind vergleichbar mit denen bereits bekannter Verbindungen. Die Bindungslängen innerhalb der Phenylringe **B** und **C** [1.383(2)-1.403(2) Å], wie die des Acetylenbausteins [C(17)-C(18) 1.202(2)], sind ebenfalls unauffällig.

Interessant sind bei diesem Molekül wiederum die Interplanarwinkel, welche die Ringe im kristallinen Zustand zueinander einnehmen. Im ersten Molekül, das sich in der Einheitszelle befindet (1., Abb. 39) nehmen der Benzodiazaborolring A und der anschließende Phenylring B einen Winkel von 56.7° ein. Der Phenylring B weist gegenüber dem Phenylring C mit 11.1° einen sehr geringen Winkel auf und bildet somit eine annähernd planare Anordnung mit dem Ringsystem C. Innerhalb des zweiten Moleküls (2., Abb. 39) zeigt das Benzodiazaborol A gegenüber dem anschließenden Ring B einen Winkel von 49.2°, was einen leichten Unterschied zu der Struktur 1. aufzeigt. Noch deutlicher wird der Unterschied bei dem Vergleich des Winkels der von den beiden Ringsystemen B und C zueinander eingenommen werden. Dieser Winkel beträgt bei dem ersten Molekül nur 11.1°, im Fall des zweiten Moleküls weist er einen Wert von 78.7° und damit eine fast senkrechte Anordnung der beiden Ringe zueinander auf. Eine durchgehende Konjugation über die Ringsysteme A, B und C ist in beiden Fällen im kristallinen Zustand nicht optimal erreicht. Im Fall des Moleküls 105-1. besteht die größere Möglichkeit zu einer ausgedehnten Konjugation zwischen den Ringsystemen B und C, der Benzodiazaborolylsubstituent (Ring A) zeigt hingegen im Fall des Moleküls **105-2.** eine geringere Verdrillung um die B-C Bindung und damit eine bessere Möglichkeit zu einer Teilnahme an einer elektronischen Kommunikation zwischen dem Heterocyclus und dem angrenzenden π -System.

106 Einkristalle der Verbindung wurden aus einer Methylcyclohexan/Dichlormethan-Lösung bei -20 °C gezüchtet. Das Molekül verfügt über ein Inversionszentrum, welches in der Mitte der Verbindungsachse C(17)-C(17A) lokalisiert ist (Abb. 41). Die Benzodiazaboroleinheiten A sind mit den angrenzenden Phenylringen **B** durch Einfachbindungen [B(1)-C(11) 1.564(2) Å] verbunden (**Tab. 16**). Die BN-Bindungslängen liegen mit B(1)-N(1) 1.432(2) und B(1)-N(2) 1.438(2) im Erwartungsbereich. Die CC-Bindungslänge der Acetyleneinheit [C(17)-C(17A) 1.202(3) Å] ist vergleichbar mit der in Verbindung 106 und weist wie die Bindungslängen innerhalb der Phenylringe keinerlei Auffälligkeiten auf. Die Phenylringe (Ringe B) liegen in einer Ebene und ermöglichen somit eine ausgedehnte Konjugation über das Diphenylacetylensystem. Die beiden Benzodiazaboroleinheiten (Ringe A) sind gegenüber den Ebenen der Phenylringe in einem Winkel von 45.9° gedreht.

Abb. 41: Struktur der Verbindung 106 im Kristall

Im Vergleich zur Struktur des Moleküls **105** fällt sowohl der Diederwinkel der beiden Ringen **A** und **B**, als auch der der beiden Phenylringe zueinander in der Verbindung **106** kleiner aus. Aufgrund dessen sind die Vorraussetzungen für eine durchgängige Konjugation in diesem Molekül im kristallinen Zustand zwar besser, aber keinesfalls optimal.

4.5 Darstellung des 5-(1´,3´-Diethylbenzo[1´,3´,2´]diazaborol-2´-yl)-2-(4´´methoxyphenylethinyl)benzonitrils (108)

Im nächsten Schritt wurde ein Molekül dargestellt, das die Eigenschaften eines Benzodiazaborols mit den Eigenschaften der von Yamaguchi synthetisierten Moleküle vereint.^[87] Zu diesem Zweck werden die beiden Edukte 2-Brom-5-iodbenzonitril und 4-Methoxyphenylacetylen^[87] dargestellt, die in einer folgenden Sonogashira-Reaktion miteinander gekuppelt werden.

Im ersten Schritt wird 2-Aminobenzonitril mit N-Bromsuccinimid in Dichlormethan bei 0 °C bromiert, wodurch man das 2-Brom-5-iodbenzonitril erhält.^[89] Die

Substitution der Aminogruppe am 2-Amino-5-brombenzonitril erfolgt via Diazotierung und nachfolgender Iodierung (in situ Sandmeyer-Reaktion).^[90] Nach zweistündiger Reaktionszeit und Aufarbeitung kann das gewünschte Produkt in zufrieden stellender Ausbeute erhalten werden. Bei der Aufarbeitung ist jedoch darauf zu achten, dass genügend oft extrahiert wird. Anschließend wird das Produkt durch kontinuierliches Einengen und Abfiltrieren des hierdurch gebildeten Feststoffs erhalten. Durch komplettes Einengen der Reaktionslösung können zwar größere Produktmengen erhalten werden, doch sind diese stärker verunreinigt.

Yamaguchi beschreibt zwar in seiner Veröffentlichung die Synthese der Edukte, wie z.B. des 5-Brom-2-(4-methoxyphenylethinyl)benzonitrils **107**, die Vorgaben sind jedoch nicht detailliert (z.B. keine Angaben zu der verwendeten Menge des Katalysators). Leider existieren in der Literatur für diese Edukte keinerlei weitere Veröffentlichungen. Die beschriebene Reaktionsführung wurde unter unterschiedlichen Konditionen getestet (Variation der Katalysatormenge und der Reaktionszeit), die Reaktion lief unter diesen Bedingungen jedoch nicht erfolgreich.

Erfolgreich war die Synthese des 5-Brom-2-(4-methoxy-phenylethinyl)benzonitrils **107** durch die so bisher in der Literatur noch nicht beschriebene Palladiumkatalysierte Sonogashira-Kupplung unter Verwendung von Piperidin als Base.

Dazu werden das 4-Methoxyphenylacetylen und das 5-Brom-2-iodbenzonitril in Anwesenheit von Bis(triphenylphosphin)palladium(II)chlorid (ca. 3 mol%) direkt in Piperidin bei Raumtemperatur umgesetzt. Der hierbei entstehende gelbe Feststoff wird filtriert und im Vakuum getrocknet. Die Aufreinigung erfolgt säulenchromatographisch an Kieselgel in CH₂Cl₂/Petrolether (v/v = 1:1). Neben der Hauptfraktion, die einen R_f-Wert von 0.51 besitzt und unter UV-Bestrahlung blau luminesziert, kann eine zweite Fraktion (R_f = 0.33) in geringer Menge isoliert werden, welche etwas weiter im blau-grünen Bereich luminesziert. Die weitere Identifikation dieses Nebenprodukts entfällt jedoch aufgrund der geringen Substanzmenge. Nach der Entfernung des Lösungsmittels erhält man das gewünschte Produkt **107** in Form eines hellgelben Feststoffes in 60 %iger Ausbeute.

Die weitere Umsetzung des erhaltenen 5-Brom-2-(4-methoxy-phenylethinyl)benzonitrils **107** erfolgt mittels Lithiierung durch n-Butyllithium bei einer Temperatur von -100 °C.

Die Reaktionstemperatur muss sowohl für die Lithiierung des Eduktes 107 als auch der anschließenden Umsetzung mit dem 2-Brombenzodiazaborol 45 strikt eingehalten werden, um die Nebenreaktion mit der Cyanogruppe innerhalb des Moleküls zu verhindern. Nach der langsamen Zugabe (lokale Erwärmung) des n-Butyllithiums zu der gekühlten Reaktionslösung und einer darauf folgenden Reaktionszeit von 1 Stunde wird mit der langsamen Zugabe einer Lösung des 2-Brombenzodiazaborols 45 in THF begonnen. Nach beendeter Zugabe wird die Reaktionslösung für weitere 5 Stunden bei -100 °C gerührt. Die Entfernung des Lösungsmittels erfolgt ab einer Temperatur von -100 °C bei langsamer Erwärmung des Reaktionsgemisches um auch an dieser Stelle Nebenreaktionen von eventuell noch in der Lösung vorhandenem n-Butyllithium zu unterdrücken. Der so erhaltene Feststoff wird bei Raumtemperatur in Dichlormethan aufgenommen, filtriert und das bräunliche Filtrat im Vakuum eingeengt. Nach Zugabe von etwa 5 mL n-Pentan und 12 h Lagerung bei -20 °C, bilden sich farblose Kristalle, welche mit kaltem Dichlormethan gewaschen und im Vakuum getrocknet werden. Produkt **108** wird in einer Ausbeute von 38 % erhalten.

4.6 Spektroskopische Daten des 5-(1´,3´-Diethylbenzo[1´,3´,2´]diazaborol-2´yl)-2-(4´´-methoxyphenylethinyl)benzonitrils (108)

¹¹B{¹H}-NMR-Spektrum der Verbindung **108** zeigt ein Signal Das bei δ = 27.7 ppm und ist gegenüber den Vergleichsverbindungen **105**, **106** $(\delta = 28.5-6 \text{ ppm})$ sowie 64, 69, 83 und 84 ($\delta = 28.6-28.9 \text{ ppm}$), welche über einen unsubstituierten Phenylring als direkten Substituenten am Boratom verfügen, um etwa $\Delta \delta$ = 1 ppm zu hohem Feld verschoben. Die Lage des Signals der Verbindung 79, die vier Fluoratome und somit elektronenziehende Substituenten an dem Phenylsubstituenten aufweist, zeigt ein stärker zu hohem Feld verschobenes Signal (δ = 25.7 ppm). Tendenziell ist somit durch die Einführung elektronenziehenden Cyanosubstituenten eines an dem angrenzenden Phenylsubstituenten der gleiche Trend, wenn auch in geringer er Ausprägung, zu beobachten (Tab. 17).

N	¹¹ B{ ¹ H}-	¹ H-NMR	¹ H-NMR	¹³ C{ ¹ H}-	¹³ C{ ¹ H}-NMR	¹³ C{ ¹ H}-
>-<>>-×	NMR	Boryl-H	Methoxybenzol	NMR	Methoxybenzol	NMR
X =	δ (ppm)	δ (ppm)	+	Boryl-C	+	C≡C
			Benzonitril-H	δ (ppm)	Benzonitril-C	δ (ppm)
			δ (ppm)		δ (ppm)	
Br	-	-	6.88(d, ³ J _{HH} = 8.8 Hz),	-	113.7(s), 114.2(s),	83.9(s),
107 (CDCl ₂)			7.43(d, ³ J _{HH} = 8.8 Hz),		116.3(s), 116.5(s),	97.7(s)
			7.53(d, ³ J _{HH} = 8.8 Hz),		121.3(s), 126.6(s),	
			7.65(dd, ³ J _{HH} = 8.8 Hz,		132.9(s), 133.6(s),	
			⁴ J _{HH} = 2.0 Hz),		135.1(s), 135.7(s),	
			7.76 (d, ⁴ J _{HH} = 2.0 Hz)		160.5(s),	
<	27.7(s)	1.31	6.90(d, ³ J _{HH} = 8.8 Hz),	16.3(s),	114.1(s), 114.2(s),	84.9(s),
B		$(t, {}^{3}J_{HH} = 7.2$	7.58(d, ³ J _{HH} = 8.8 Hz),	37.7(s),	114.8(s), 119.2(s),	97.0(s)
ζ. Ť		Hz), 3.75	7.66(d, ³ J _{HH} = 7.5 Hz),	109.2(s),	127.6(s), 131.2(s),	
		$(q, {}^{3}J_{HH} = 7.2$	7.72(dd, ${}^{3}J_{HH}$ = 7.5 Hz,	118.0(s),	133.7(s), 136.8(s),	
		Hz), 7.07(m),	⁴ J _{HH} = 2.0 Hz), 7.83(s)	137.3(s)	137.1(s), 160.5(s),	
		7.14(m)				

Tab. 17: Ausgewählte NMR-Daten der Verbindungen 107 und 108

Das ¹H-NMR-Spektrum der Verbindung **108** zeigt für die Protonen der Ethylgruppe des Benzodiazaborolylsubstituenten im Vergleich zu den Referenzverbindungen **105** und **106** erwartete Signale [δ = 1.31 und

3.75 (**108**) ppm vs. δ = 1.31 (**105**), 1.32 (**106**) und 3.78 (**105**), 3.79 (**106**) ppm]. Die aromatischen Protonen des Benzodiazaborolrückgrates bilden wie in der Verbindung **106** zwei Multipletts bei einer nahezu gleichen Verschiebung [δ = 7.07 und 7.14 (**108**) ppm vs. δ = 7.06 und 7.13 (**106**) ppm]. Das Dublett der aromatischen Protonen der 2-(4⁻⁻Methoxyphenyl-ethinyl)benzonitrileinheit, welches bei δ = 6.90 ppm erscheint, ist in seiner Lage nahezu identisch mit dem Signal der Ausgangsverbindung **107** (δ = 6.88 ppm). Vergleicht man alle weiteren Signale der Verbindung **108** mit denen der Brom-Verbindung **107**, sind diese allesamt gegenüber der Ausgangsverbindung mit $\Delta\delta$ = 0.07-0.15 ppm leicht zu tiefem Feld verschoben.

Das ¹³C{¹H}-NMR-Spektrum der Verbindung **108** zeigt für die Kohlenstoffatome der Benzodiazaborolylsubstituenten Signale in einem erwarteten Bereich. Sowohl die Verschiebungen der Kohlenstoffatome der Ethylgruppen bei δ = 16.3 und δ = 37.6 ppm [vs. δ = 16.3 und 37.6-37.7 (**105**, **106**) ppm], als auch die der aromatischen Kohlenstoffatome bei δ = 109.2, 118.0 und 137.3 ppm zeigen keine signifikante Abweichung zu denen der Referenzverbindungen **105** und **106** [δ = 108.9-109.0, 118.7-118.8 und 137.1 ppm].

4.7 Röntgenstrukturanalyse des 5-(1´,3´-Diethylbenzo[1´,3´,2´]diazaborol-2´yl)-2-(4´´-methoxyphenylethinyl)benzonitrils (108)

Aus einer n-Pentan/Dichlormethan-Lösung konnten bei -10 °C Einkristalle der Verbindung **108** gezüchtet werden. Das Molekül verfügt über drei planare Ringsysteme **A**, **B** und **C** (**Abb. 42**). Der Benzodiazaborolcyclus (Ring **A**) ist mittels einer BC-Einfachbindung von 1.563(1) Å an den Phenylring **B** geknüpft, der über eine Cyanogruppe in meta-Stellung verfügt. Die BN-Bindungslängen B(1)-N(1) 1.432(2) Å und B(1)-N(2) 1.437(1) Å sind, wie alle weiteren Bindungslängen innerhalb des Benzodiazaborolteils, vergleichbar mit denen der Verbindungen **105** und **106** und liegen in einem für Benzodiazaborole typischen Bereich (**Tab.18**). Der Benzodiazaborolteil (Ring **A**) weist gegenüber dem Ringsystem **B** einen Diederwinkel von 41° auf. Bei den Referenzverbindungen **105** und **106** liegt der Winkel, der von Benzodiazaborol- (Ring **A**) und dem unsubstituiertem Phenylring (Ring **B**) eingeschlossen wird, bei 56.7° (49.2°) (**105**)

bzw. 45.9° (**106**) und fällt damit bei diesen Verbindungen im Fall der Strukturen **105-2.** und **106** ähnlich und im Fall der Verbindung **105-1.** größer aus.

Bindungslängen (Å)					
B-C	B(1)-C(11) 1.563(1)				
B-N	B(1)-N(1) 1.432(2), B(1)-N(2) 1.437(1)				
	Diphenylacetylen-Einheit				
Phenyl C-C	C(11)-C(12) 1.403(1), C(12)-C(13) 1.396(1), C(13)-C(14) 1.410(1),				
(Ring B)	C(14)-C(15) 1.405(1), C(15)-C(16) 1.385(1), C(16)-C(11) 1.406(1)				
CN (Ring B)	C(13)-C(17) 1.446(1), C(17)-N(3) 1.147(1)				
Phenyl C-C	C(20)-C(21) 1.405(1), C(21)-C(22) 1.381(1), C(22)-C(23) 1.394(1),				
(Ring C)	C(23)-C(24) 1.394(1), C(24)-C(25) 1.390(1), C(25)-C(20) 1.399(1)				
OMe (Ring C)	C(23)-O(1) 1.366(1), O(1)-C(26) 1.426(1)				
Acetylen C-C	C(14)-C(18) 1.432(1), C(18)-C(19) 1.203(1), C(19)-C(20) 1.435(1)				
	Boryl-5-Ring (Ring A)				
N-C(Et), C-C(Et)	N(1)-C(7) 1.462(1), N(2)-C(2) 1.464(1), C(7)-C(8) 1.527(1), C(9)-C(10) 1.523(1)				
N-C(Aryl)	N(1)-C(1) 1.395(1), N(2)-C(2) 1.396(1)				
C-C	C(1)-C(2) 1.409(1)				
	Diederwinkel (°)				
Ring A /Ring B	41.0				
Ring B /Ring C	25.3				
Ring A /Ring C	64.3				

Tab. 18: Ausgesuchte Bindungslängen [Å] und Winkel [°] der Verbindung 108

Der Winkel zwischen den beiden Phenylringen (Ring **B** und **C**) ist mit 64.3° im Vergleich zu der Struktur der Verbindung **106** (0.0°) und der Struktur **105-1**. (11.1°) deutlich größer. Lediglich in der Struktur **105-2**. ist eine größere Verdrillung um die Phenyl-Phenylbindung zu beobachten (78.7°). Eine optimale Bedingung für eine ausgedehnte Konjugation ist somit weder zwischen dem Benzodiazaborolsystem und dem 2-(4^{''}-Methoxy-phenylethinyl)benzonitril-

baustein (**A**+**B**), noch innerhalb des 2-(4^{''}-Methoxy-phenylethinyl)benzonitrilsystems (**B**+**C**) im kristallinen Zustand gegeben.

Abb. 42: Struktur der Verbindung 108 im Kristall

- 5. Darstellungsversuche weiterer lumineszenter Benzodiazaborolverbindungen
- 5.1 Darstellungsversuch des 3,6-Di(tert-butyl)-9-[5´-(1´´,3´´-diethyl-1´´,3´´dihydro-2*´´H*-1´´,3´´,2´´-benzodiazaborol-2-yl)-2´-thienyl]-*9H*-carbazols (110)

Es bestand im Rahmen der Synthese von so genannten push-pull-Systemen Interesse daran, π -Systeme zu synthetisieren, welche als elektronenakzeptierende Einheit über einen Benzodiazaborolsubstituenten und als elektronenschiebende Einheit über einen stickstoffhaltigen Substituenten verfügen.

In diesem Zusammenhang wurde das Thiophen als verbrückender π -Spacer gewählt, da es sowohl das Emissionsmaximum weiter als phenylhaltige Spacer in den bathochromen Bereich verschiebt, als auch die Stabilität des Produktes erhöht. Als stickstoffhaltige Einheit wurde das Carbazol gewählt, da dieses bereits

in mehreren Fällen als interessanter Precursor für potentielle Materialien im Bezug auf optoelektronische Anwendungen gedient hat.^[91]

Zunächst wird das Carbazol an den Positionen 3 und 6 durch tert-Butylgruppen funktionalisiert, um eine bessere Löslichkeit des Zielproduktes zu gewährleisten. Die Funktionalisierung erfolgt durch Friedel-Crafts-Alkylierung nach einer Literaturvorschrift in 54 %iger Ausbeute.^[92] Die weitere Umsetzung des 3,6-Ditert-butyl-*9H*-carbazols zum *N*-(2-Thienyl)carbazol **109** erfolgt durch Ullmann Kupplung unter Verwendung von 2-lodthiophen und Kupferbronze. Nach der Aufreinigung kann das Produkt in Form eines leicht bräunlichen Feststoffes in 50 %iger Ausbeute erhalten werden.^[91]

Die Funktionalisierung mit einer Benzodiazaboroleinheit gelingt durch Metallierung des *N*-(2-Thienyl)carbazols **109** in THF mit n-Butyllithium bei -78 °C und anschließender Umsetzung mit dem 2-Brombenzodiazaborol **45**. Die Reaktionslösung wird filtriert, das Lösungsmittel im Vakuum entfernt und der erhaltene Feststoff durch Kurzwegdestillation im Vakuum aufgereinigt. Durch Umkristallisation des zunächst erhaltenen, öligen Rohprodukts aus n-Pentan, erhält man das Produkt in Form eines farblosen Feststoffes in 18 %iger Ausbeute.

5.2 Spektroskopische Daten des 3,6-Di(tert-butyl)-9-[5´-(1´´,3´´-diethyl-1´´,3´´-dihydro-2´´*H*-1´´,3´´,2´´-benzodiazaborol-2-yl)-2´-thienyl]-*9H*carbazols (110)

Das ¹¹B{¹H}-NMR-Signal der Verbindung **110** bei δ = 25.3 ppm ist im Vergleich zu den einfach substituierten Benzodiazaborolen **53** und **54**, den zweifach funktionalisierten Verbindungen **67** und **68**, sowie der dreifach funktionalisierten Verbindung **88**, welche als direkten Substituenten am Boratom Thienyl- (**53**, **67**, **68**) oder Dithienylgruppen (**54**, **68**) tragen, leicht zu hohem Feld verschoben [δ = 26.0-26.6 (**53**, **54**, **67**, **68**, **88**) ppm].

Die ¹H-NMR-Daten zeigen eine gute Übereinstimmung bezüglich der Lage der Verschiebungen der Benzodiazaborolylprotonen mit denen der thienylhaltigen Verbindungen **53**, **54**, **68** und **88**. Sowohl die Lage der Protonen der Ethylgruppe [δ = 1.42 ppm und δ = 4.01 ppm], als auch die Multipletts der aromatischen Protonen des Benzodiazaborolrückgrates (δ = 7.06 und 7.14 ppm), liegen in dem für thienylsubstituierte Benzodiazaborole bekannten Bereich [δ = 1.38-1.43 ppm und δ = 3.95-4.00 ppm (Ethyl-H), 7.05-7.08 und 7.11-7.20 ppm (arom.-H) (**53**, **54**, **68**, **88**)].

Trotz der Einführung der tert-Butylgruppen an dem Carbazolgrundgerüst ist das Produkt **109** in gängigen organischen Lösungsmitteln schlecht löslich. Aufgrund dessen konnte kein brauchbares ¹³C-NMR-Spektrum erhalten werden.

5.3 Röntgenstrukturanalyse des 3,6-Di(tert-butyl)-9-[5´-(1´´,3`´-diethyl-1´´,3´´-dihydro-2´´*H*-1´´,3´´,2´´-benzodiazaborol-2-yl)-2´-thienyl]-*9H*carbazols (110)

Einkristalle der Verbindung **110** wurden aus einer Methylcyclohexan/ Dichlormethanlösung gewonnen. Das Molekül besteht aus den drei planaren Cyclen **A**, **B** und **C** (**Abb. 43**). Der Benzodiazaborolcyclus **A** ist durch eine BC-Einfachbindung von 1.557(2) Å [B(1)-C(11)] mit dem angrenzenden Thiophenring **B** verknüpft (**Abb. 43**).

Abb. 43: Struktur der Verbindung 110 im Kristall

Bindungslängen (Å)					
B-C	B(1)-C(11) 1.557(2)				
B-N	B(1)-N(1) 1.437(2), B(1)-N(2) 1.432(2)				
	Thienyl-Fragment				
(Ring B)	C(11)-C(12) 1.373(2), C(12)-C(13) 1.416(2), C(13)-C(14) 1.364(2), C(14)-S(1) 1.735(1), S(1)-C(11) 1.735(1)				
	Carbazol-Fragment				
N-Fünfring	N(3)-C(14) 1.405(2), N(3)-C(15) 1.406(2), C(15)-C(20) 1.405(2), C(20)-C(21)				
(Ring C)	1.448(2), C(21)-C(26) 1.406(2), C(26)-N(3) 1.407(2)				
	Boryl-5-Ring (Ring A)				
N-C(Et), C-C(Et)	N(1)-C(7) 1.462(2), N(2)-C(9) 1.459(2), C(7)-C(8) 1.526(2), C(9)-C(10) 1.519(2)				
N-C(Aryl)	N(1)-C(1) 1.402(2), N(2)-C(2) 1.398(2)				
C-C	C(1)-C(2) 1.406(2)				
	Diederwinkel (°)				
Ring A /Ring B	34.7				
Ring B /Ring C	41.4				
Ring A /Ring C	65.0				

Tab. 19: Ausgewählte Bindungslängen [Å] und Winkel [°] der Verbindung 110

Die BN-Bindungslängen [1.437(2) B(1)-N(1), 1.432(2) B(1)-N(2)] sowie die übrigen Bindungsparameter innerhalb des Benzodiazaborolcyclus zeigen keine signifikanten Abweichungen gegenüber bekannten aromatisch-substituierten Benzodiazaborolen. Die Bindungslängen im Thienylcyclus **B** entsprechen innerhalb der dreifachen Standardabweichung den Werten, die für ein freies Thiophen bestimmt wurden (**Tab. 19**).

Der Diederwinkel, den der Benzodiazaborylring gegenüber dem Thienylcyclus (**A**+**B**) einnimmt beträgt 34.7° und jener zwischen Thienyl- und Carbazolcyclus (**B**+**C**) 41.4°. Somit ist im Kristall keine durchgehende π -Konjugation gewährleistet.

5.4 Darstellungsversuch des N,N,N-Tris[4-(1´,3´-diethyl-1´,3´-dihydro-2*´H*-1´,3´,2´-benzodiazaborol-2´-yl)phenyl]amins (111)

Neben der carbazolhaltigen Verbindung schien es interessant, Moleküle darzustellen, welche ähnlich den Verbindungen **83**, **84** und **88** über drei Benzodiazaboroleinheiten und darüberhinaus über ein zentrales Stickstoffatom als Donator verfügen. Zu diesem Zweck sollte Triphenylamin mit drei Benzodiazaborolgruppen funktionalisiert werden. Das resultierende Molekül würde somit über elektronenziehende (dreifach koordiniertes Bor im Benzodiazaborol) als auch elektronenschiebende (Stickstoff im Triethylamin) Eigenschaften verfügen.

Ausgehend vom Tris(4-bromphenyl)amin erfolgte der erste Syntheseversuch mittels Lithiierung in THF bei -78 °C und anschließender Umsetzung mit 3 Äquivalenten 2-Brombenzodiazaborol **45**. Nach der Aufreinigung durch die Entfernung des Lösungsmittels im Vakuum und der Wiederaufnahme des erhaltenen Rückstandes in Dichlormethan folgt die Filtration. Das erhaltene Filtrat wird im Vakuum bis zur Trockne eingeengt, wobei man einen farblosen, leicht öligen Feststoff erhält.

Das angefertigte ¹H-NMR zeigt die Bildung von mehreren Produkten. Die genaue Zuordnung der Signale ist aufgrund der Vielzahl an erhaltenen Signalen jedoch nicht möglich. Das angefertigte Massenspektrum zeigt die Bildung des Disubstitutionsproduktes **112** (m/z = 669 [M⁺]), was auf eine unvollständige Umsetzung hindeutet.

Aufgrund dessen wurde die Reaktion erneut, diesmal unter Verlängerung der Reaktionzeit durchgeführt. Auch in diesem Fall kann nach der Aufreinigung durch Filtration nicht das gewünschte Produkt in reiner Form erhalten werden.

Der Aufreinigungsversuch des erhaltenen Rückstandes nach der Filtration mittels Kurzwegdestillation im Vakuum führt ebenfalls zur Zersetzung. Unter anderem sind die Signale des literaturbekannten Zersetzungsproduktes 113 zu beobachten. Diese Vermutung wird durch das von den Kristallen angefertigte Massenspektrum bestätigt. Neben dem Molekülpeak für das Zersetzungsprodukt 113 362 [M⁺]) (m/z)= kann jedoch auch der Molekülpeak des Disubstitutionsproduktes **112** ($m/z = 669 [M^+]$) detektiert werden. Da die Aufreinigung mittels Destillation aufgrund der Empfindlichkeit der Substanz nicht möglich war, wurde versucht, das Substanzgemisch durch fraktionierte Kristallisation aufzutrennen, was jedoch nicht erfolgreich war.

An dieser Stelle wurde, da sich in den ¹H-NMR-Spektren stets noch Reste des Lösungsmittels THF befanden und diese auch nicht durch Trocknen im Vakuum entfernt werden konnten, die Reaktion nochmals in Diethylether als Lösungsmittel durchgeführt.

Nach der Aufreinigung durch Filtration und Entfernen des Lösungsmittels im Vakuum wurde von dem Rohprodukt ein ¹H-NMR-Spektrum aufgenommen, welches im Gegensatz zu den vorherigen Reaktionsansätzen ein deutlich vereinfachtes Peakmuster aufweist. Es lassen sich jedoch keine genauen Zuordnungen treffen, da es sich wiederum um ein Produktgemisch handelt. Im Bereich, in dem die Protonen der Ethylgruppen des Produktes **111** im ¹H-NMR-Spektrum erwartet werden, zeigen sich z.B. drei Tripletts für die Methylprotonen und vier Quartetts für die Methylenprotonen. Im Bereich der aromatischen Protonen kommt es zu zahlreichen Überlagerungen. Im ¹¹B{¹H}-NMR-Spektrum werden Signale bei δ = 31.7 und 22.2 ppm beobachtet. Das Signal bei δ = 31.7 ppm, auf die Bildung einer neuen, benzodiazaborolfunktionalisierten Spezies hindeutet. Das Massenspektrum zeigt den Molekülionenpeak der Verbindung **112** (*m*/*z* = 669 [M⁺]) und des Zersetzungsproduktes **113** (*m*/*z* = 362. [M⁺])

Zusammengenommen sprechen die erhaltenen Ergebnisse für eine inkomplette Lithiierung während der Reaktionsführung. Da sich die entstandenen Produkte nur schwer voneinander trennen lassen, sollte der Optimierung der Reaktionsführung Hauptaugenmerk gewidmet werden. Unter Umständen könnte eine Erhöhung der Reaktionstemperatur während der Lithiierung zu einer erfolgreicheren Umsetzung führen.

5.5 Darstellungsversuch des 2,3,5,6-Tetracyano[1,4-bis(1,3-diethyl-1,3,2benzodiazaborol-2-yl)]benzols (114)

Anlehnend an die Synthese der Verbindung **79**, welche über ein elektronenarmes π -System als verbrückende Einheit zwischen zwei Benzodiazaboroleinheiten verfügt, sollte ein weiteres Molekül dargestellt werden, welches einen elektronenarmen Spacer besitzt. Als Edukt wurde das 1,2,4,5-Tetracyanobenzol gewählt.

Zunächst wurde das 1,2,4,5-Tetracyanobenzol durch n-Butyllithium lithiiert und in 2einem weiteren Reaktionsschritt Äquivalenten des mit zwei **Brombenzodiazaborols** 45 umgesetzt. Die Lithiierung, sowie weitere Reaktionsführung erfolgt bei einer Temperatur von -100 °C um Nebenreaktionen an den Cyanosubstituenten zu verhindern. Nach der Aufarbeitung durch Filtration und Entfernen des Lösungsmittels im Vakuum wurden von dem erhaltenen leicht öligen Rückstand NMR-Spektren angefertigt. In den ¹H-NMR und ¹¹B{¹H}-NMR-Spektren finden sich jedoch keinerlei Indizien dafür, dass es zur gewünschten Produktbildung gekommen ist. Es ist vor allem ein großer Anteil des eingesetzten Edukts 2-Brombenzodiazaborol 45 zu erkennen.

2. 2 45 THE. 1. -100°C 2. -100°C

1. 2 n-BuLi

5.6 Darstellungsversuch des 9,10-Bis(1,3-diethyl-1,3,2-benzodiazaborol-2-yl)anthracens (115)

Zum Darstellungsversuch von 9,10-Bis(1,3-diethyl-1,3,2-benzodiazaborol-2-yl)anthracen **115** wurde 9,10-Dibromanthracen in THF gelöst und bei -78 °C mit n-Butyllithium lithiiert. Anschließend erfolgt die Umsetzung mit zwei Äquivalenten des 2-Brombenzodiazaborols **45**. Nach der Aufarbeitung durch Entfernen des Lösungsmittels im Vakuum, Kurzwegdestillation und anschließender Umkristallisation aus n-Pentan konnte ein weißer amorpher Feststoff erhalten werden.

Die NMR-Spektren zeigen im Fall des ¹¹B{¹H}-NMR-Spektrums zwei Signale bei δ = 22.1 ppm und 30.6 ppm. Das Signal bei δ = 30.6 ppm könnte ein Hinweis auf die Bildung des gewünschten Produkts 115 sein. In Kombination mit dem erhaltenen ¹H-NMR-Spektrum deutet das Signal bei δ = 22.1 wiederum auf die Bildung des Zersetzungsproduktes **113** hin. Darüber hinaus werden im ¹H-NMR-Spektrum Signale des Produktes 115 sowie des Edukts und eines weiteren Nebenprodukts beobachtet. bei welchem es sich um das Monosubstitutionsprodukt handeln könnte. Im El-Massenspektrum ist klar das Signal des Moleküls **115** bei m/z = 522 $[M^+]$ zu erkennen. Jedoch ist es bisher nicht gelungen, das gewünschte Produkt mittels gängiger Aufreinigungsverfahren analysenrein zu erhalten.
5.7 Darstellungsversuch des 5,5^{°°}-Bis(1,3-diethyl-1,3,2-benzodiazaborol-2-yl)2,2[°]: 5[°],2^{°°}-terthienyls (116)

Der Syntheseversuch erfolgte ausgehend vom 5,5^{''}-Dibrom-2,2[']:5['],2^{''}-terthienyl welches problemlos durch Bromierung mit NBS aus dem 2,2[']:5['],2^{''}-Terthienyl dargestellt werden kann. Das benötigte 2,2[']:5['],2^{''}-Terthienyl kann Ni/Cu-katalysiert aus den Edukten 2,5-Dibromthiophen und Thienylmagnesiumbromid erhalten.^[69]

Das dibromierte Terthiophen wird durch n-Butyllithium bei -78 °C lithiiert und darauf folgend mit zwei Äquivalenten 2-Brombenzodiazaborol **45** umgesetzt. Das Lösungsmittel wird im Vakuum entfernt und der erhaltene orangegelbe Feststoff unter Erwärmung in Toluol aufgenommen und heiß filtriert. Das erhaltene Filtrat wird für zwei Tage bei -20 °C gelagert, der gebildete gelbe Feststoff abfiltriert und im Vakuum getrocknet.

Das ¹¹B{¹H}-NMR-Spektrum zeigt ein Signal bei δ = 25.8 ppm, was gut mit bisher erhaltenen Ergebnissen übereinstimmt, welche für Benzodiazaborolverbindungen erhalten wurden, die als direkten Substituenten am Boratom eine Thienylgruppe tragen [δ = 26.0-26.6 (**53**, **54**, **67**, **68**, **88**) ppm].

Im ¹H-NMR-Spektrum treten die Signale der Protonen der Ethylgruppen als Triplett bei δ = 1.40 und Quartett bei δ = 3.96 ppm auf. Die aromatischen Protonen des Benzodiazaborolrückgrates zeigen sich als Multipletts bei δ = 7.05 und 7.12 ppm und liegen damit wie die Signale der Ethylprotonen in einem erwarteten Bereich. Die aromatischen Protonen des Terthienylfragments werden als Singulett bei δ = 7.20 und Multiplett bei δ = 7.35 ppm beobachtet. Neben den genannten Signalen lassen sich jedoch weitere Signale in den Spektren erkennen, die sich dem dibromierten 2,2':5',2''-Terthienyl und dem Nebenprodukt 117 zuordnen lassen. Dieses lässt sich durch die gefundenen Signale im El-Massenspektrum bestätigen. Neben dem Molekülionenpeak der Verbindung 116 bei m/z = 592 [M⁺], lassen sich Signale bei m/z = 420 [M⁺] und 326 [M⁺] detektieren, welche den Massen der Verbindung 117 und der Verbindung 113 entsprechen. Durch eine Variation der Reaktionsbedingungen ist es bisher nicht gelungen eine vollständigere Umsetzung und somit Unterdrückung der Nebenprodukte zu erreichen. Mittels gängiger Aufreinigungsmethoden konnten die Nebenprodukte nicht von dem Produkt 116 getrennt und das Produkt analysenrein erhalten werden. Basierend auf den Erfahrungen, die im Laufe der dieser Arbeit mit thienylhaltigen Benzodiazaborolen gemacht wurde, ist im Nachhinein jedoch eine Auftrennung mittels Säulenchromatographie denkbar.

C Ergebnisse und Diskussion (II)

1. Allgemeines zu den optischen Eigenschaften von "Small Molecules" auf der Basis von dreifach koordiniertem Bor

Wie vorstehend aufgeführt bietet das leere p_z -Orbital die Möglichkeit der Konjugation über das Boratom mit organischen π -Systemen als Substituenten. Bedingung für die erfolgreiche Anwendung dieser Verbindungen waren sterisch anspruchsvolle Substituenten am Boratom.^[4] So untersuchten Shirota et al. die Eigenschaften von Oligothiophenen (Mes)₂B(**X**)B(Mes)₂ mit **X** = 2,5-Thiophendiyl und n = 2 (BMB-2T, **6**) ,oder 3 (BMB-3T, **118**) (**Abb. 44**).

n = 2 (**6**), 3 (**118**)

Abb. 44: Borylfunktionalisierte Oligothiophene

Diese Systeme zeigen gute Glasbildungs- und darüber hinaus interessante Elektronentransporteigenschaften.^[37,70,80] Die Moleküle **6** und **118** fanden unter anderem Anwendung bei dem Aufbau einer grünen Multischicht-OLED als elektronentransportierende Schicht neben Alq₃ als emittierender Schicht. BMB-2T (**6**) wurde ebenfalls mit gutem Erfolg in einer blauen OLED als Emittermaterial eingesetzt. Mit einer Treiberspannung von 17 V und einer maximalen Leuchtdichte von 1700 cdm⁻² zeigt die hergestellte Diode sogar bessere Eigenschaften, als bekannte blaue Dioden auf Oxadiazol- und Triazolbasis, die nur eine Leuchtdichte von ca. 1000 cdm⁻² aufweisen.^[93] Weitere Verbindungen, mit Dimesitylborylgruppen haben sich beim Elektronentransport und Blockieren von Löchern als wirksam erwiesen.^[46] Unser Interesse im Rahmen dieser Arbeit galt Benzodiazaborolen anstelle des ubiquitären Dimesitylborylfragments.

2. Allgemeine Lumineszenzeigenschaften der Naphthodiazaborole (60) und (61)

Das π -System von lumineszierenden Farbstoffen auf Borolbasis lässt sich in zweierlei Weise ausdehnen: 1. am Benzodiazaborolrückgrat 2. am organischen Substituenten am Borzentrum. Die Erweiterung des Benzodiazaborolrückgrates führte zu den Naphthodizaborolsystemen **60** und **61**.

Aufgrund der bereits im ersten Teil der Diskussion erwähnten schlechten Löslichkeit der Verbindungen, konnten nur im Fall der Verbindung 60 verlässliche Werte gewonnen werden, die in **Tabelle 20** zusammengefasst sind. Zum Vergleich sind ergänzend die Lumineszenzdaten der Verbindung 53 mit aufgeführt.

Verbindung	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	$arPsi_{ extsf{f}}$	Stokes Shift (nm)
	341	371	0.18	30
60 (THF)				
B-CS	296	382	n.b.	86
53 (THF)				

^a Referenz POPOP ($\Phi_f = 0.93$ in Cyclohexan)

Tab. 20: Lumineszenzdaten der Verbindungen 53 und 60

In den **Diagrammen 1** und **2** sind die normierten Absorptions- und Emissionsspektren der Verbindung **60** zusammen mit denen der Vergleichsverbindung **53** abgebildet.

Diagramm 1: Absorptionsspektren der Verbindungen 53 und 60

Diagramm 2: Emissionsspektren der Verbindungen 53 und 60

Verbindung **60** zeichnet sich durch ein Absorptionsmaximum bei $\lambda_{max} = 341$ nm und ein Emissionsmaximum bei $\lambda_{max} = 371$ nm aus. Verglichen mit dem strukturell ähnlichen Benzodiazaborol **53** zeigt sich eine deutliche bathochrome Verschiebung des Absorptionsmaximums [$\lambda_{max} = 296$ (**53**) nm]. Dieses gilt jedoch nicht für das Maximum der Emission [$\lambda_{max} = 371$ (**60**) nm vs. 382 (**53**) nm], wodurch bei der Verbindung **60** eine sehr geringe Stokes-Verschiebung (30 nm) zu verzeichnen ist. Dieses kann sich negativ auf die Quantenausbeute einer Substanz auswirken, da hierdurch Reabsorptionseffekte begünstigt werden. Die Das Molekül **60** zeigt im Vergleich zu den folgenden Verbindungen mit $\Phi_f = 0.18$ eine geringe Quantenausbeute. Die von Maruyama vorgestellte Verbindung **62** besitzt eine hohe Quantenausbeute, weist jedoch die gleiche schlechte Löslichkeit wie die Verbindungen **60** und **61** auf.^[60] UV- und Lumineszenz-, sowie NMR-Spektren, sind daher nur in DMSO als Lösungsmittel verfügbar.

Verbindung	λ _{max(abs),}	λ _{max(em),}	${\pmb \Phi}_{f}^{{\mathsf a}}$
62 (DMSO)	279, 291, 353, 366	376, 395, 417	0.84
119 (DMSO)	323	392	0.66

^a Referenz p-Terphenyl ($\Phi_f = 0.92$ in Cyclohexan)

Von dem Versuch, von der Verbindung **60** ebenfalls ein Spektrum in DMSO zu messen wurde abgesehen, da sich schon nach kürzester Zeit die Intensität des Emissionsmaximums verringerte. Dieses kann vermutlich auf die bereits erwähnte Empfindlichkeit gegenüber DMSO und seiner oxidierenden Wirkung zurückgeführt werden. Interessant an den Untersuchungen von Maruyama ist die Tatsache, dass die Referenzsubstanz **119**, die über keine Borylsubstituenten verfügt, eine wesentlich geringere Quantenausbeute zeigt [Φ_f = 0.66 (**119**) vs. 0.84 (**62**)]. Daraus lässt sich schlussfolgern, dass die Diazaborole einen bedeutenden Einfluss auf das Emissionsverhalten dieser lumineszierenden Verbindungen hat.

3. Untersuchung von zweifach und dreifach benzodiazaborolylsubstituierten Verbindungen hinsichtlich ihrer Lumineszenzeigenschaften

Aufgrund der gewonnenen Erkenntnisse aus den Lumineszenzuntersuchungen der Naphthodiazaborole, zusammengenommen mit den bereits in **Ergebnisse und Diskussion I** genannten Eigenschaften wie z.B. der geringeren Stabilität gegenüber Umwelteinflüssen und der schlechten Löslichkeit verglichen mit Benzodiazaborolsystemen, scheint es sinnvoll, im Hinblick auf eine spätere potentielle Anwendungsmöglichkeit, an dieser Stelle den Benzodiazaborolsystemen mehr Aufmerksamkeit zu widmen. Die hier synthetisierten, zweifach und dreifach benzodiazaborolylfunktionalisierten Verbindungen verfügen über ein vergrößertes π -Elektronensystem auf Seiten des dreifach koordinierten Bors. Darüber hinaus wurden als Bausteine für das aromatische System Phenyl- und Thienyleinheiten gewählt, um einen Direktvergleich ihrer Eigenschaften in Benzodiazaborolen zu ermöglichen. Neben diesem Vergleich sind der Einfluss von mehr als einer Benzodiazaboroleinheit und eine Gegenüberstellung mit literaturbekannten Verbindungen, welche Dimesitylborylgruppen tragen, von Interesse.

3.1 Allgemeine Lumineszenzeigenschaften der zweifach funktionalisierten Systeme (64), (67), (68), (70) und (79)

Der Vergleich der Lumineszenzeigenschaften der zweifach funktionalisierten Systeme soll den Einfluss unterschiedlicher zentraler π -Systeme auf die Lumineszenz von benzodiazaborolsubstituierten Systemen aufzeigen. In der **Abbildung 45** sind Beispiele zweifach funktionalisierter Verbindungen in Lösung (THF) unter Bestrahlung mit UV-Licht dargestellt.

Abb. 45: Beispiele zweifach funktionalisierter Systeme unter UV-Bestrahlung (ca. 0.1M in THF)

Die Verbindungen **64**, **67**, **68**, **70** und **79** emittieren unter UV-Bestrahlung allesamt Licht im blauen Wellenlängenbereich.

Die für die Verbindungen 64, 67, 68, 70 und 79 erhaltenen Lumineszenzdaten sind zusammen mit denen der literaturbekannten, einfach funktionalisierten Verbindung 54 und der zweifach funktionalisierten 69 in der Tabelle 21 zusammengefasst.

Verbindung	λ _{max(abs),}	λ _{max(em),}	${\pmb \Phi_f}^{a}$	3	Stokes
	(nm)	(nm)		(mol ⁻¹ cm ⁻¹ dm ³)	Shift (nm)
	300	385	0.98	20200	85
64 (THF)					
	316	404	0.59	n.b.	88
67 (THF)					
	304	427	0.52	n.b.	123
69 (THF)					
	351	448	0.52	33000	97
68 (THF)					
	318	399	0.87	32300	81
70 (THF)					
$(\mathbf{x}_{i})_{i} = \mathbf{x}_{i} = \mathbf{x}_{i} = \mathbf{x}_{i}$	292	420	0.43	24901	128
79 (THF)					
$(\mathcal{F}_{N}^{N_{P}} = \mathcal{L}_{S}^{N_{S}} = \mathcal{L}_{S}^{N_{S}}$	326	433	0.29		107
54 (THF)					

^a Referenz POPOP ($\Phi_f = 0.93$ in Cyclohexan)

Tab. 21: Lumineszenzdaten der Verbindungen 64, 67, 68, 69, 70 und 79

Zur besseren Visualisierung sind in den **Diagrammen 3** und **4** die normierten Absorptions- und Emissionsspektren der neu synthetisierten Verbindungen, sowie der Verbindung **79** gezeigt.

Diagramm 3: Absorptionsspektren der Verbindungen 64, 67, 68, 70 und 79

Diagramm 4: Emissionsspektren der Verbindungen 64, 67, 68, 70 und 79

Ein Vergleich der literaturbekannten Verbindung **54** mit der hier synthetisierten Verbindung **67**, in der eine Thienyl- durch eine Benzodiazaborolyleinheit ersetzt ist, zeigt interessante Ergebnisse. Durch den Austausch kommt es zu einem bedeutenden Anstieg der Quantenausbeute von $\Phi_f = 0.29$ (**54**) auf $\Phi_f = 0.59$ (**67**). Die Lage des Emissionsmaximums verschiebt sich hierbei deutlich hypsochrom von $\lambda_{max} = 433$ (**54**) nm zu $\lambda_{max} = 404$ (**67**) nm. Die Absorptionsmaxima der Verbindungen liegen bei $\lambda_{max} = 316$ (**54**) nm und $\lambda_{max} = 326$ (**67**) nm. Die Verschiebung des Absorptionsmaximums durch den Austausch eines Thienyl-

durch einen Benzodiazaborolylbaustein fällt demnach etwas geringer aus als die resultierende Verschiebung des Emissionsmaximums.

Der Vergleich zwischen den beiden Benzodiazaborolen **67** und **68**, welche über eine und zwei Thienyleinheiten als Spacer verfügen und den entsprechenden Phenylverbindungen (**64**, **69**) zeigt eine erwartete bathochrome Verschiebung der Absorptions- [$\lambda_{max} = 316$ (**67**) und 351(**68**) nm vs. $\lambda_{max} = 300$ (**64**) und 304 (**69**) nm] und Emissionsmaxima [$\lambda_{max} = 404$ (**67**) und 448 (**68**) nm vs. $\lambda_{max} = 385$ (**64**) und 427 (**69**) nm]. Die Vergrößerung des verbindenden π -Systems um eine Einheit führt im Fall der Phenylderivate (**64**, **69**) zu einem geringen bathochromen Shift des Absorptionsmaximums von $\Delta\lambda_{max} = 4$ nm, während das Emissionsmaximum um $\Delta\lambda_{max} = 42$ nm rotverschoben wird. Die Vergrößerung der Thienylverbindung **67** um eine Einheit (**68**) führt zu einer bathochromen Verschiebung von $\Delta\lambda_{max} = 35$ nm im Fall des Absorptionsmaximums und $\Delta\lambda_{max} = 44$ nm des Emissionsmaximums.

Die Quantenausbeute der Verbindung **64**, die einen Phenylbaustein beinhaltet, ist wesentlich höher als die des entsprechenden Thienylanalogons **67** (Φ_f = 0.98 vs. 0.59). Eine Erklärung hierfür kann der so genannte Schweratom-Effekt sein, der bei schwefelhaltigen Verbindungen generell zu schlechteren Quantenausbeuten führt. Die Verbindungen **68** und **69**, die um eine aromatische Einheit gegenüber den Verbindungen **64** und **67** vergrößert sind, weisen untereinander keine signifikanten Unterschiede in ihrer Quantenausbeute auf. Diese liegt mit Φ_f = 0.52 in beiden Fällen relativ hoch, fällt jedoch kleiner aus als in den Verbindungen **64** und **67**, die über nur ein Ringsystem als verbrückende Einheit verfügen. Die freie Drehbarkeit um die die Aromat-Aromat-Einfachbindung kann der entscheidende Faktor und eine mögliche Erklärung für die kleineren Quantenausbeuten im Fall der größeren Moleküle **68** und **69** sein.

Um den Einfluss der freien Drehbarkeit innerhalb des π -Systems auf die Lumineszenz zu studieren, wurde ein starres Molekül synthetisiert. Starre Systeme zeichnen sich ganz allgemein durch höhere Quantenausbeuten aus. So wurde ein zweifach funktionalisiertes Molekül synthetisiert, dessen zwei Phenyleinheiten durch eine C1-Brücke verbunden sind. Als Edukt wurde das 9,9-

Bis(n-octyl)fluoren als verbrückender Spacer gewählt (70). Ein Vergleich mit der Verbindung 69, in der die beiden verbindenden Phenylringe frei um die CC-Achse Verschiebung bathochrome drehbar sind, zeiat eine geringfügig des Absorptionsmaximums einer Wellenlänge 318 zu von λ_{max} nm $[\lambda_{max} = 304 (69) \text{ nm}]$ und einen hypsochromen Shift des Emissionsmaximums zu λ_{max} = 399 nm [λ_{max} = 427 (69) nm]. Im Vergleich zu dem bathochromen Shift des Absorptions maximums um $\Delta\lambda_{max}$ = 14 nm gegenüber der Verbindung 69, fällt der hypsochrome Shift des Emissionsmaximums mit $\Delta\lambda_{max}$ = 28 nm stärker aus. Die Quantenausbeute des Fluorens 70 liegt wie erwartet mit Φ_f = 0.87 deutlich über dem erhaltenen Wert für die Verbindung **69** (Φ_f = 0.52).

Die bisher behandelten Verbindungen verfügen über elektronenreiche Aromaten als verbrückende π -Systeme zwischen den Benzodiazaborolylresten. Interessant ist darüber hinaus ein Vergleich mit einem Molekül, welches über ein elektronenärmeres System zwischen den Benzodiazaborolylringen verfügt. Zu diesem Zweck wurde die Verbindung 79, mit einer Tetrafluorphenyleneinheit synthetisiert und untersucht. Das Absorptionsmaximum der Verbindung 79 ist mit λ_{max} = 292 nm gegenüber dem der Verbindung **64**, welche keine Fluoratome an hypsochrom dem zentralen Phenylring trägt, deutlich verschoben $[\lambda_{max} = 300$ (64) nm]. Das Emissionsmaximum ist im Gegensatz hierzu im Vergleich mit der Verbindung 64 (λ_{max} = 385 nm) signifikant in den bathochromen Bereich $[\lambda_{max} = 420 \ (79) \ nm]$ verschoben. Die auf der einen Seite hypsochrome Verschiebung des Absorptions- und auf der anderen Seite bathochrome Verschiebung des Emissionsmaximums resultiert in einem weitaus größeren Stokes Shift dieser Verbindung [192 (79) nm vs. 85 (64) nm]. Die fluorhaltige Verbindung 79 zeigt im Vergleich zu der analogen, unsubstituierten Verbindung **64** eine nur halb so hohe Quantenausbeute [$\Phi_f = 0.43$ (**79**) vs. 0.98 (**64**)].

Interessant ist an dieser Stelle ein Vergleich mit literaturbekannten Verbindungen, welche über Diarylboryl- insbesondere Dimesitylborylsubstituenten verfügen, da diese momentan im Bezug auf Lumineszenzeigenschaften von borhaltigen Verbindungen im Focus des Interesses stehen.

Zum Vergleich mit der phenylhaltigen Verbindung **64** bietet sich das von Maruyama beschriebene diazaborolsubstituierte Moleküls **120** an. Dieses ist in 2-

und 5-Position des zentralen Phenylrings verethert und trägt an den Stickstoffatomen der Benzodiazaborolylringe keine Ethylgruppen.

Verbindung	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	${\pmb \Phi_f}^{a}$
120 (DMSO)	303, 315, 342, 356	370, 389, 405	0.99

^a Referenz p-Terphenyl in Cyclohexan ($\Phi_f = 0.92$)

Die Ethylgruppen spielen für die Art des angeregten Zustands keine signifikante Rolle, da keine große Elektronendichte auf ihnen lokalisiert ist, somit ist ein Vergleich prinzipiell möglich. Doch wie im Fall des vorgestellten Naphthodiazaborols von Maruyama (62) sind die Spektren in DMSO aufgenommen worden. Das Absorptionsmaximum sollte nicht so stark von der Wahl des Lösungsmittels abhängig sein wie das Emissionsmaximum, weshalb es sich in seiner Lage annähernd mit der synthetisierten Verbindung 64 vergleichen lässt. Betrachtet man die angegebenen Werte der Verbindung 120, so ist eine geringe Verschiebung des Absorptionsmaximums in den bathochromen Bereich zu verzeichnen. Dieses kann jedoch auch auf die Einflüsse der Substituenten am zentralen Phenylring zurückgeführt werden. Hervorzuheben ist die sehr hohe, mit **64** vergleichbare Quantenausbeute des Moleküls **120** [Φ_f = 0.99 vs. 0.98 (**64** in THF)].

Daten von dem Dimesitylborylderivat **71** wurden von Kaim und Schulz bereits im Jahr 1989 veröffentlicht.^[31b,c] Ein direkter Vergleich mit den Daten von **64** ist aufgrund anderer Solventien wiederum nicht möglich.

Verbindung	λ _{max(abs),} (nm)	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	
	(CHCl ₃)	(Cyclohexan)	(CHCl₃)	
71	338	340	394	

Das Absorptionsmaximum von **71** liegt in Cyclohexan bei λ_{max} = 338 nm und in Chloroform bei einer ähnlichen Wellenlänge von λ_{max} = 340 nm. Wie bereits

erwähnt, sollte das Absorptionsmaximum nicht so stark von Lösungsmitteleinflüssen abhängig sein, wie das Emissionsmaximum. Beide Absorptionsmaxima liegen jedoch deutlich über dem der Verbindung **64** (λ_{max} = 300 nm). Die Quantenausbeute wurde für **71** nicht angegeben.

Zu dem hier synthetisierten, thienylhaltigen Benzodiazaborol **67** sind keine analogen Moleküle, mit deren Werten man die erhaltenen vergleichen könnte, in der Literatur bekannt.

Für einen Datenvergleich mit dem Dithienylderivat **68** stehen literaturbekannte, vergleichbare Moleküle zur Verfügung. Die von Shirota und Jäkle synthetisierten Verbindungen **6**, **76** und **77** verfügen über verschiedene Borylsubstituenten an der zentralen Dithienyleinheit.^[38,70] Am besten untersucht im Zusammenhang mit einer potentiellen Anwendung in OLEDs ist, wie bereits zuvor erwähnt, das von Shirota synthetisierte Dimesitylborylderivat **6**, welches auch unter dem Namen BMB-2T bekannt ist.^[37a,70,94] Es findet sich aufgrund dessen als Beispielmolekül in einer Vielzahl von Veröffentlichungen zu diesem Thema. Näheres hierzu folgt in dem Teil über die speziellen Lumineszenzeigenschaften (**3.4**).

6

Verbindung	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	${\pmb \Phi}_{\sf f}^{\;{\sf a}}$
6 (THF)	402	440	0.86
76 (CH ₂ Cl ₂)	306, 396, 411 (Schulter)	436, 461	0.79 ^a
77 (CH ₂ Cl ₂)	287, 413, 437 (Schulter)	476, 495	0.03 ^a

^a Referenz Anthracen

Die Lumineszenzdaten der Verbindung 6 sind wie die der Verbindung 68 in THF-Lösungen bestimmt worden. Aufgrund dessen ist ein direkter Vergleich des Datensatzes möglich. Das Absorptionsmaximum der Verbindung 6 ist mit λ_{max} = 402 nm deutlich bathochrom gegenüber dem Maximum von **68** (λ_{max} = 351 nm) verschoben. Das Emissionsmaximum liegt in der Verbindung 6 geringfügig hypsochrom verschoben [λ_{max} = 440 (6) nm vs. 448 (68) nm]. Hieraus resultiert ein größerer Stokes Shift für die Verbindung 68 [97 (68) nm vs. 38 (6) nm]. Die Quantenausbeute Bei den Molekülen mit Dithiophen als zentralem aromatischen Baustein. ist die Quantenausbeute Fall im der Dimesitylborylverbindung höher als in dem vergleichbaren Benzodiazaborol [Φ_f = 0.52 (68) vs. 0.86 (6)].^[34c,38] Die von Jäkle publizierten Verbindungen 76 und 77 sind in Dichlormethan als Lösungsmittel untersucht und mit der von Shirota synthetisierten und in THF vermessenen Verbindung 6 verglichen worden. So zeigt Verbindung 76, welche Ditolylboryl- anstatt Dimesitylborylgruppen besitzt, ein ähnliches Lumineszenzverhalten wie 6. Die ebenfalls in dieser Veröffentlichung vorgestellte Verbindung 77, die über die elektronenarmen Pentafluorphenylsubstituenten an dem Boratom verfügt, zeigt ein abweichendes Verhalten. Das Molekül **76** besitzt sein Absorptionsmaximum bei λ_{max} = 396 nm und Emissionsmaxima bei λ_{max} = 436 und 461 nm. Im Gegensatz hierzu ist das Emissionsmaximum des Pentafluorphenylderivats **77** um 40 nm zu λ_{max} = 476 nm rotverschoben. Darüber hinaus ist die Quantenausbeute durch die Variation des aromatischen Substituenten an dem Boratom von Φ_f = 0.79 (**76**) auf Φ_f = 0.03 (**77**) drastisch gesunken. Die neu synthetisierte Verbindung 68 zeigt eine geringere Quantenausbeute ($\Phi_f = 0.52$) als die vergleichbaren Verbindungen 6 und 76, jedoch eine weitaus höhere als die Verbindung 77 ($\Phi_f = 0.03$).

Ein dem Fluoren **70** analoges Molekül ist die Verbindung **121**, welche anstelle der Benzodiazaborolsubstituenten, Dimesitylborylgruppen trägt.^[35b] In THF-Lösung ist das Absorptionsmaximum von **121** mit $\lambda_{max} = 371$ nm deutlich bathochrom verschoben . [$\lambda_{max} = 318$ (**70**) nm]. Im Vergleich zu **70** ($\lambda_{max} = 399$ nm) ist jedoch das Emissionsmaximum mit $\lambda_{max} = 384$ nm hypsochrom verschoben. Die bekannte Verbindung **121** besitzt eine deutlich geringere Quantenausbeute ($\Phi_f = 0.52$), vergleicht man sie mit Verbindung **70** ($\Phi_f = 0.89$).

Verbindung	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	$arPsi_{ extsf{f}}$
121 (THF)	371	384	0.52

3.2 Allgemeine Lumineszenzeigenschaften der dreifach funktionalisierten Systeme (82), (84) und (88)

Ein weiterer naheliegender Schritt war die Vergrößerung des Gesamt- π -Systems und Erhöhung des Benzodiazaborolanteils. Um dieses zu realisieren, wurden die dreifach benzodiazaborolylfunktionalisierten Moleküle **82**, **84** und **88** synthetisiert. Die drei Verbindungen zeigen, wie die zweifach funktionalisierten Systeme, intensiv-blaue Fluoreszenz unter UV-Bestrahlung (**Abb. 46**).

Abb. 46: Dreifach funktionalisierte Moleküle unter UV-Bestrahlung (ca. 0.1M in THF)

Von Verbindung **82** zu **84** wird das Molekül um jeweils eine Phenyleinheit zwischen dem zentralen Benzolkern und den Benzodiazaborolylsubstituenten

erweitert. Die beiden Verbindungen **84** und **88** bieten einen interessanten Vergleich durch die Substitution der verknüpfenden Phenylringe in 1-, 3- und 5-Position des zentralen Benzolkerns (**84**) durch Thienyleinheiten (**88**). In den **Diagrammen 5** und **6** sind die Absorptions- bzw. Emissionsspektren der Verbindungen **82**, **84** und **88** dargestellt. Die zugehörigen Lumineszenzdaten sind in **Tabelle 22** zusammengefasst.

Verbindung	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	${\pmb \Phi_{f}}^{a}$	ε (mol ⁻¹ cm ⁻¹ dm ³)	Stokes Shift (nm)
、 <u>み</u> みやん 82 (THF)	296	364	0.45	27700	68
、 みのうから 84 (THF)	300	417	0.71	54600	117
子子 分子子子 88 (THF)	330	446	0.33	52900	116

^a Referenz POPOP (Φ_f = 0.93 in Cyclohexan)

Tab. 22: Lumineszenzdaten der Verbindungen 82, 84 und 88

Das Absorptionsmaximum der kleinsten, dieser dreifach funktionalisierten Verbindungen (82) liegt bei einer Wellenlänge von λ_{max} = 296 nm. Das Emissionsmaximum befindet sich bei λ_{max} = 364 nm. Die Verbindung **84**, welche jeweils eine weitere Phenyleinheit zwischen dem zentralen Benzolkern und den Benzodiazaborolylsubstituenten bathochrom besitzt, zeigt sowohl ein verschobenes Absorptions- (λ_{max} = 300 nm) als auch Emissionsmaximum $(\lambda_{max} = 417 \text{ nm})$. Der Unterschied in der bathochromen Verschiebung ist jedoch im Fall des Emissionsmaximums ($\Delta\lambda_{max}$ = 53 nm) deutlicher als bei dem Absorptionsmaximum ($\Delta\lambda_{max} = 4$ nm).

Diagramm 5: Absorptionsspektren der Verbindungen 82, 84 und 88

Diagramm 6: Emissionsspektren der Verbindungen 82, 84 und 88

Das Thienylanalogon zu der Verbindung **84**, welches über drei Thienylbausteine innerhalb des Moleküls verfügt (**88**), hat sein Absorptionsmaximum bei $\lambda_{max} = 330$ nm und emittiert bei $\lambda_{max} = 446$ nm. Im Vergleich zu der Phenylverbindung zeigen sich ähnliche bathochrome Verschiebungen sowohl des Absorptions- ($\Delta\lambda_{max} = 30$ nm) als auch des Emissionsmaximums ($\Delta\lambda_{max} = 29$ nm).

Die Quantenausbeuten sowohl von Verbindung **82** ($\Phi_f = 0.45$), welche über ein kleineres π -Elektronensystem verfügt, als auch von Phenylderivat **84** ($\Phi_f = 0.71$) sind höher als für das thienylhaltige Molekül **88** ($\Phi_f = 0.33$). Die geringere Quantenausbeute des Moleküls **88** kann wiederum unter Umständen auf den Schweratom-Effekt des Schwefels zurückgeführt werden.

Eine interessante Vergleichssubstanz für **88** ist die von Shirota dargestellte Verbindung **91**. Dieses auch unter dem Namen TMB-TB bekannte Molekül wurde bereits als elektronenleitendes Material mit lochblockierenden Eigenschaften getestet. Leider liegen keine Angaben zu der Fluoreszenzquantenausbeute dieser Verbindung vor.

Verbindung	λ _{max(abs),} (nm)	λ _{max(em),} (nm)
91 (THF)	370	402

Im Vergleich zu Verbindung 88 hat dieses Molekül ein bathochrom verschobenes Absorptionsmaximum bei λ_{max} = 370 nm [λ_{max} = 330 (88) nm]. Das Emissionsmaximum ist im Gegensatz hierzu deutlich kurzwellig verschoben bei λ_{max} = 402 nm [λ_{max} = 446 (88) nm]. Das Absorptions- und das Emissionsmaximum sind annähernd gleiche Beträge, um jedoch in unterschiedliche Richtungen verschoben. Das Absorptionsmaximum ist in der Verbindung **91** um $\Delta\lambda_{max}$ = 40 nm bathochrom, das Emissionsmaximum mit $\Delta\lambda_{max}$ = 44 nm hypsochrom verschoben, wodurch für die Verbindung **91** ein wesentlich geringerer Stokes Shift resultiert [32 (91) nm vs. 116 (88) nm].

3.3 Ergänzende Untersuchungen zu den Lumineszenzeigenschaften der zweifach und dreifach funktionalisierten Verbindungen

Da die Quantenausbeute der dreifach funktionalisierten Verbindung **88** deutlich unter dem erhaltenen Wert für das Phenylanalogon **84** liegt und darüber hinaus eine Abweichung des erhaltenen Absorptions- zu dem Anregungsspektrum festgestellt werden konnte, bot sich eine nähere Betrachtung dieser Verbindung an. Die Abweichung der Form des Anregungs- gegenüber dem Absorptionsspektrum kann auf strukturelle Veränderungen wie z.B. eine

Einebnung der beteiligten Ringsysteme während des Anregungsprozesses hindeuten. Darüber hinaus handelt es sich bei 88 wegen der Verwendung der heteroaromatischen Thienyleinheiten um ein polareres Molekül mit einem wahrscheinlich auch polareren angeregten Zustand als 84. Da polare Zustände durch ein polares Lösungsmittel besser stabilisiert werden, sollte sich dieses ebenfalls in den angefertigten Emissionsspektren bemerkbar machen. Da die Spin-Bahn-Kopplung in schwefelhaltigen Molekülen ohnehin ein leichteres Inter System Crossing (ISC) ermöglicht, kann diese Stabilisierung auch zu einer bedeutenden Veränderung der Quantenausbeute in einem polaren Lösungsmittel führen. Wenn man sich den angeregten Zustand S₁ betrachtet, bedeutet das, dass die thienylhaltigen Verbindungen befähigt sind leichter ein Inter System Crossing (ISC) in den Triplettzustand T_1 einzugehen. Aufgrund dessen sind exemplarisch für die thienylhaltigen Benzodiazaborole, Spektren der Verbindung 88 in unterschiedlichen Lösungsmitteln aufgenommen worden. Die Tabelle 23 zeigt die erhaltenen Werte der Messungen. In dem Diagramm 7 sind die erhaltenen Emissionsspektren dargestellt. Wie aus der Tabelle ersichtlich, unterscheiden sich die Absorptionsmaxima nicht signifikant voneinander und sind aufgrund dessen nicht ergänzend als Spektren dargestellt.

Lösungsmittel	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	$arPsi_{ extsf{f}}$
Ethanol	329	446	0.40
THF	330	446	0.33
Dichlormethan	330	453	0.63
n-Hexan	328	408	0.62

Tab. 23: Lumineszenzdaten der Verbindung 88 in unterschiedlichenLösungsmitteln

Die Betrachtung der erhaltenen Emissionsmaxima zeigt einen deutlichen bathohromen Shift von λ_{max} = 408 nm in n-Hexan zu λ_{max} = 453 in Dichlormethan. In THF und Ethanol findet man ähnliche Werte von λ_{max} = 446 nm. Ebenfalls klar ersichtlich aus den Daten ist die Abhängigkeit der Quantenausbeute. Diese steigt signifikant von Φ_f = 0.33-0.40 (THF, Ethanol) auf Φ_f = 0.62-0.63 (Dichlormethan, n-Hexan) durch die Wahl eines anderen Lösungsmittels.

Diagramm 7: Emissionsspektren der Verbindung 88 in unterschiedlichen Lösungsmitteln

3.4 Spezielle Lumineszenzeigenschaften der zweifach und dreifach substituierten Verbindungen (DFT- und TD-DFT-Berechnungen)

Prof. Dr. T.B. Marder und Dr. M.A. Fox von der University of Durham (UK) haben in Kooperation DFT- und TD-DFT-Berechnungen durchgeführt und damit weitere wichtige Informationen zu unseren zweifach und dreifach funktionalisierten Molekülen geliefert.

Nach den erhaltenen Röntgenstrukturdaten und den Absorptionsspektren besteht innerhalb der Dithienvlverbindung 68 die effektivste, am stärksten ausgeweitete π -Konjugation innerhalb des Moleküls verglichen mit den anderen zweifach und dreifach funktionalisierten Molekülen. Basierend auf diesen Ergebnissen wurden erste geometrische Optimierungen an diesem Molekül und einer Modellverbindung durchgeführt, in denen die Ethylgruppen des Benzodiazaborolgerüstes durch Methylgruppen ersetzt sind Die (68'). Berechnungen wurden auf dem B3LYP/6-31G* Niveau durchgeführt. Die berechneten Werte zeigen gute Übereinstimmungen mit den experimentellen Ergebnissen (Tab. 24).

Die TD-DFT-Berechnungen zu der Verbindung **68** und der entsprechenden Modellverbindung **68**' ergaben identische Übergangsenergien von 390 nm für die erlaubten $S_1 \leftarrow S_0$ Absorptionen, die den HOMO-LUMO-Übergängen dieser Verbindungen entsprechen. Die berechneten Werte variieren zwar leicht von den experimentell bestimmten, was jedoch typisch für Berechnungen der Systeme in der Gasphase ist.

Verbindung	68	68	68´				
	(exp.)	(theoret.)					
	Bindung	ıslängen (Å)					
B-C	1.558	1.555	1.555				
B-N	1.440	1.443	1.442				
S-C	1.737, 1.732	1.755, 1.752	1.754, 1.754				
C-C (Thiophen)	1.384, 1.416, 1.375	1.382, 1.418, 1.380	1.381, 1.418, 1.380				
Inter-Ring C-C	1.453	1.448	1.448				
N-C (Ethyl/Methyl)	1.462	1.458	1.451				
N-C(Aryl)	1.397	1.397	1.396				
C-C(Aryl)	1.408, 1.390, 1.392, 1.396	1.416, 1.394, 1.399, 1.399	1.415, 1.393, 1.400, 1.399				
	Torsionswinkel (°)						
N-B-C-C	-20.8	-37.7	-44.5				
С-С-С-С	180.0	173.4	179.9				

Tab. 24: Vergleich der experimentell und theoretisch erhaltenen Ergebnisse für
das Bis(benzodiazaborolyl)dithiophen 68 und der Modellverbindung 68'

In Gasphase die Form, der ist planare mit der besseren π -Konjugation favorisiert, was jedoch nicht den Verhältnissen in Lösung entspricht. In Lösung besteht nur eine geringe Rotationsbarriere, wodurch das Molekül in unterschiedlichen Rotationsisomeren vorliegen kann. Hierdurch eine Blauverschiebung des Absorptionsmaximums kommen und eine Signalverbreiterung des experimentell ermittelten Spektrums zustande. Durch Variation des Torsionswinkels in der Verbindung 68' auf einen Wert von 90° konnte ein Absorptionsmaximum von 315 nm ermittelt werden [λ_{max} = 351 (68) nm (exp.)]. Tabelle 24 zeigt, dass die weiteren Verbindungen gut unter Verwendung von 1,3-Dimethyl-1,3,2-benzodiazaborolylgerüsten anstelle von 1,3-Diethyl-1,3,2benzodiazaborolylgruppen berechnet werden können. Die auf diesem Wege berechneten Bindungslängen (Å) und Torsionswinkel (°) für eine Reihe von lumineszenten zweifach und dreifach funktionalisierten Benzodiazaborolen sind in der Tabelle 25 zusammengefasst.

Verbindung	54	67 (67')	68 (68')	64 (64)	3 2 3 5 5 5 5 5 5 5 5 82	and	88
	(54′) [°]			(04)	(82′)	84	(00/)
						(84′)	(00')
	Bindungslängen (Å)						
B-C	1.550	1.553	1.558	1.563	1.563	1.564	1.552
	(1.555)	(1.556)	(1.555)	(1.565)	(1.565)	(1.564)	(1.555)
		·	Torsionswin	kel (°)		·	
N-B-C-C	38.7	37.9	20.8	49.7	41.9	45.5	36.5
	(43.0)	(43.5)	(44.5)	(50.4)	(51.1)	(50.8)	(43.9)
C-C-C-C	175.4	-	180.0	-	-	31.0	18.0
	(162.4)		(179.9)			(38.0)	(27.0)

^a Die theoretisch erhaltenen Ergebnisse sind in Klammern angegeben

Tab. 25: Vergleich von experimentellen und theoretischen Parametern, die für die π -Konjugation innerhalb des Moleküls von Interesse sind

Verbindung	λ _{max(abs)} (calc)	λ _{max(abs)} (exp.)	λ _{max(abs)} (calc) –	Oszillatorstärke	
	(nm) ^a	(nm)	λ _{max(abs)} (exp.)	f(calc)	
			(nm)		
C}-Q	298	296 ^b	2	0.28	
53					
	360	326 ^b	34	0.52	
54					
	307	300	7	0.58	
64					
	327	316 ^b	11	0.62	
67					
	390	351	39	0.98	
68					
03-0-040	332	304 ^b	28	0.72	
69					
$\frac{1}{2}$	341 [°]	318	23	0.78	
70					
	334	292	42	0.46	
79					
8. 25 ⁶ 76	296	296	0	0.40	
82					
A Arona	327	300	27	0.51	
84					
and and a second	361	330	31	0.70	
88					

^a Bestimmt mit Methyl- anstatt Ethylgruppen an den Stickstoffatomen

^b Berechnet mit Methyl- anstatt Octylresten am Fluorengerüst

Tab. 26: Gemessene und berechnete Absorptionsmaxima

Die durch TD-DFT-Rechnungen erhaltenen Absorptionsmaxima der Modellverbindungen, d.h. der Verbindungen, welche anstelle von Ethylgruppen Methylgruppen besitzen, sind zusammen mit den experimentell erhaltenen Daten in **Tabelle 26** neben denen von **53** und **54** dargestellt.

Die Werte der Moleküle, mit Thiophen-Thiophen-Bindungen beinhalten, zeigen Abweichungen von ca. 36 nm, die mit Thiophen-Phenyl-Verknüpfungen von 31 nm und Moleküle mit Phenyl-Phenyl-Bindungen Abweichungen von 27 nm, verglichen mit den experimentell berechneten Werten. Die größte Abweichung zeigt das Fluorderivat **79** mit 42 nm. Wie bereits erwähnt, sind Berechnungen für das Verhalten in der Gasphase erstellt worden. Unter der Berücksichtigung von Lösungsmitteleinflüssen stimmen die berechneten mit den experimentell bestimmten Daten in der Regel relativ gut überein.

Abb. 47: Berechnete Grenzorbitale der Verbindung 64'

Abb. 48: Berechnete Grenzorbitale der Verbindung 68'

Verbindung	HLG (eV)	Orbital	E (eV)	C ₆ H ₄ (NMe) ₂ (%)	B (%)	(Hetero)Aryl (%)
53′	4.66	LUMO	-0.63	14	11	75
		номо	-5.29	79	9	12
54′	3 82	LUMO	-1.38	5	4	91
	0.02	номо	-5.20	55	5	40
64′	4.56	LUMO	-0.71	18	16	66
		номо	-5.27	83	9	8
67′	4.31	LUMO	-0.91	17	15	68
		номо	-5.22	77	7	16
68′	3 57	LUMO	-1.54	8	6	87
	0.07	номо	-5.11	53	4	44
69′	4 18	LUMO	-1.08	8	8	84
	1.10	номо	-5.26	78	9	13
70′	4.07	LUMO	-1.13	7	7	85
		номо	-5.20	72	8	20
79′	4.24	LUMO	-1.23	14	14	72
		номо	-5.47	85	11	5
82′	4 72	LUMO ^a	-0.61	17	13	70
	7.12	HOMO ^b	-5.33	83	10	7
84′	4.21	LUMO ^a	-1.11	4	4	91
		HOMO ^b	-5.32	80	10	10
88′	3.84	LUMO ^a	-1.44	5	4	92
		НОМО ^ь	-5.28	66	7	27

^a entartet mit LUMO+1, ^b entartet mit HOMO-1 und HOMO-2

Tab. 27: Berechnete Orbitalenergien und Zusammensetzungen der Grenzorbitale

Ausgewählte Ergebnisse der Molekül-Orbital-Berechnungen sind in der **Tabelle 27** zusammengefasst. Die HOMO-LUMO-Abstände (HOMO-LUMO gaps, HLGs) liegen mit den experimentell beobachteten Absorptionsdaten in guter Übereinstimmung. Die HOMO-Energien liegen in einem Bereich von -5.11 bis - 5.47 eV und die LUMO-Energien in einem Bereich von -0.63 bis -1.54 eV. Die LUMOs sind von ihrem Charakter her thienyl/arylbasiert (92 % bis 66 %). Die HOMO-szeigen Borolylcharakter (83 % bis 53 %). **Abbildungen 47** und **48** zeigen

die Grenzorbitale der Verbindungen **64**' und **68**', in denen die größten bzw. niedrigsten Beiträge der Borylgruppen zu den Grenzorbitalen der untersuchten Moleküle zu verzeichnen sind. Die HOMO-LUMO-Übergänge sind hauptsächlich π (Borolyl) $\rightarrow \pi^*$ (Thienyl/Aryl). Der Beitrag des Boratoms zu diesen Grenzorbitalen ist klein (4-16 %). Die Orientierung und Wechselwirkung des vakanten 2p_z-Orbitals am Boratom mit dem Orbital des angrenzenden π -Systems scheint in diesem Fall nicht von signifikanter Bedeutung zu sein.

Literaturbekannte Molekülorbitalberechnungen zu den von Jäkle synthetisierten Verbindungen **76** (p-tBuC₆H₄)₂B) und **77** ((C₆F₅)₂B), die analog zu unserer Dithienylverbindung 68 sind, belegen das die HOMO-LUMO-Übergänge in diesen Verbindungen $\pi \to \pi^*$ Übergänge sind, die auf der Dithiopheneinheit lokalisiert sind und damit einen signifikanten Unterschied zu den Benzodiazaborolen zeigen. Dimesitylborylverbindungen sind schon lange wegen ihren linearen und nichtlinearen Eigenschaften im Arbeitskreis Marder und Fox wichtiger Bestandteil der Forschungstätigkeiten. Daher bestand besonders Interesse daran, unsere neu synthetisierten Verbindungen mit den Dimesitylborylanaloga zu vergleichen. Die Daten in Tabelle 28 zeigen die Orbitalenergien, Zusammensetzungen und Hauptübergänge unterschiedlich borylsubstituierter, dem Molekül 68 analoger Dithienylverbindungen. Die Borylgruppen wurden auf der Basis bekannter oder möglicher Synthesen dieser Verbindungen ausgewählt. Die errechneten Absorptionsmaxima zeigen gute Übereinstimmungen mit bereits experimentell ermittelten Werten. Das HOMO des Dimesitylborylanalogons der Dithiophenverbindung 68, das von Shirota synthetisierte Molekül 6, wurde bereits schon zuvor in der Literatur beschrieben und dort auf dem AM1 Niveau berechnet.

Die bekannten Diazaborolylsubstituenten tert-Butyl-diazaborolyl- $(C_2H_2(tBuN)_2B)$ und tert-Butyl-diazaborolidinyl- $(C_2H_4(^tBuN)_2B)$ tragen in der entsprechenden Dithienylverbindung geringfügig zu den Grenzorbitalen bei. Die berechneten starken, energetisch niedrig liegenden Übergange, sind in diesen Molekülen π (Thienyl) $\rightarrow \pi^*$ (Thienyl)-Übergange.

x_{	HLG (eV)	Orbital	E (eV)	R ₂ (%)	B (%)	Dithienyl (%)	λ _{max,abs} (nm)	Oszillator stärke f	λ _{max,abs} (exp.) (nm)
R B	3.57	LUMO	-1.54	8	6	87	390 ^ª	0.98	351°
C ₆ H₄(MeN)₂B (68′)		номо	-5.11	53	4	44			
	3.50	LUMO	-1.72	11	7	82	390 ^b	1.40	
C ₁₀ H ₆ (MeN)₂B		НОМО	-5.22	100	0	0			
		HOMO-1	-5.22	100	0	0			
		HOMO-2	-5.30	51	3	46			
ј-Ви Г В		LUMO	-1.02	3	2	95	329 ^b	0.80	
	2.00	НОМО	-5.01	80	19	2			
	3.99	HOMO-1	-5.02	76	18	6		S Oszillator stärke f $\lambda_{max,abs}$ (exp.) (nm) 0.98 351° 1.40 - 1.40 - 0.98 351° 0.98 351° 0.98 351° 0.99 - 0.91 - 0.91 - 0.91 - 0.91 - 0.91 - 0.91 - 0.91 - 0.91 - 0.91 - 0.91 - 0.91 - 1.23 - 1.23 - 1.24 - 1.25 413 ^f 1.02 423 ^e 1.02 413 ^f	
		HOMO-2	-5.07	7	2	90			
ç-Xyı Γ_β		LUMO	-1.23	10	7	83	409 ^a	0.91	
C₂H₂(XyN)₂B	3.39	номо	-4.62	47	3	51			
t-Bu		LUMO	-1.03	3	2	95	326ª	0.75	
C₂H₄(^t BuN)₂B	4.08	номо	-5.11	6	1	92			
	2.04	LUMO	-1.64	5	10	85	342ª	0.85	
H ₄ C ₂ O ₂ B	5.04	номо	-5.48	5	3	92			
	0.70	LUMO	-1.54	5	10	85	343ª	0.96	
Me ₄ C ₂ O ₂ B	5.70	номо	-5.40	5	3	92			
C C C B	3.63	LUMO	-2.02	7	12	81	373	1.23	
C ₆ H ₄ O ₂ B	0.00	номо	-5.65	28	1	71		starke (exp.) f (nm) 0.98 351° 1.40	
	0.05	LUMO	-2.33	26	28	46	414 ^a	1.20	396 ^d
⊘ Ph₂B	3.35	номо	-5.68	15	4	81			
$\overline{\mathbf{x}}$		LUMO	-2.32	11	28	61	426 ^ª	1.02	423 ^e
, ≫- Mes₂B (6)	3.31	НОМО	-5.63	23	4	73			
- 		LUMO	-3.37	13	34	53	430 ^ª	1.25	413 ^f
	3.19	НОМО	-6.56	14	8	78			
(C ₆ F₅)₂B ^f (77)									
$r_{i,C}$ $r_{i,C}$ $r_{i,C}$ $r_{i,C}$	3.04	LUMO	-3.27	27	34	38	454 ^a	1.02	
,⊱′ FMes₂B		номо	-6.34	6	9	85			

 $\label{eq:homoscillator} {}^{a}\text{ HOMO} \rightarrow \text{LUMO}; \ {}^{b}\text{ HOMO-2} \rightarrow \text{LUMO}; \ {}^{c}\text{ für } \textbf{68}; \ {}^{d}\text{ für } (p{}^{-t}\text{BuC}_{6}\text{H}_{4})_{2}\text{B- } \textbf{(76)}^{[38]}; \ {}^{e}\ {}^{[94a]}, \ {}^{f}\ {}^{[38]}.$

Tab. 28: Berechnete Grenzorbitale, Zusammensetzungen und UV-Daten

Für die Verbindung, welche tert-Butyl-diazaborolylgruppen (C₂H₂(^tBuN)₂B) besitzt, ist das HOMO-2 an diesem Übergang mit beteiligt, das HOMO und HOMO-1 sind ihrem Charakter her hauptsächlich diazaborolylbasiert. von Das Naphthodiazaborolderivat zeigt ähnliche Eigenschaften wie die Benzodiazaborolverbindung. Das berechnete Absorptionsmaximum resultiert aus Übergang zwischen π (Borolyl) $\rightarrow \pi^*$ (Thienyl). Das НОМО einem und HOMO-1 sind in dem Naphthodiazaborolderivat auf dem Naphthodiazaborolring lokalisiert. Das HOMO-2 ist an der starken Absorptionsbande laut TD-DFT-Berechnungen beteiligt. Diazaborolderivate, welche Arylgruppen an den Stickstoffatomen des Fünfringes (C₂H₂(XyN)₂B) tragen, zeigen einen Wert von 409 nm für den starken, energetisch niedrigen HOMO-LUMO-Übergang. Diese Wellenlänge ist um $\Delta \delta$ = 19 nm größer als für das Benzodiazaborolanalogon. Die Arylgruppen an den Stickstoffatomen erhöhen die HOMO Energie gegenüber den Derivaten, welche andere Borylreste tragen. Berechnungen zeigen für dieses Derivat eine nahezu planare Struktur mit Torsionswinkeln von 8.2° und 170.7° für die N-B-C-C and C-C-C-Winkel und kurze BC-Bindungen von 1.548 Å, welche auf sterische Wechselwirkungen mit den Methylgruppen und/oder die bevorzugten S/C-H... π (Aryl) Wechselwirkungen zurückgeführt werden können. Tabelle 28 dargestellten Nach den in der Ergebnissen tragen die Dioxaborolylgruppen einen geringen Beitrag zu den Grenzorbitalen der Thiophene bei und die berechneten HOMO-LUMO-Übergänge sind vom Charakter her π (Thienyl) $\rightarrow \pi^*$ (Thienyl)-Übergänge. Dieses stimmt mit den Berechnungen überein, die eine offensichtlich planare Struktur dieses Moleküls und kurze BC-Bindungslängen von 1.529 Å ergeben haben. Die in dieser Arbeit verwendete Benzodiazaborolylgruppe beeinflusst den Charakter des HOMOs (28 %) und verringert die LUMO-Energie verglichen mit den nicht aromatischen Dioxaborolylgruppen (5 %). Die Dithienylverbindungen mit Diarylborylsubstituenten besitzen die niedrigsten LUMO-Energien und den kleinsten HOMO-LUMO Abstand. Für diese Art von Verbindungen sind starke Absorptionsmaxima bei ungefähr 425 nm berechnet worden, die von dem HOMO-LUMO-Übergang stammen und von ihrem Charakter her π (Thienyl) $\rightarrow \pi^*$ (Thienyl)-Übergänge sind. Die LUMOs beinhalten in diesem Fall deutliche Beiträge der Boratome (28-34 %). Einfluss Der Fluoratomen den Methylgruppen von an der Dimesitylborylsubstituenten (FMes₂B) macht sich durch eine Verkleinerung der HOMO-LUMO-Lücke und der längsten, vorausgesagten Wellenlänge von 454 nm für den HOMO-LUMO-Übergang innerhalb der **Tabelle 28** bemerkbar. Während die Absorptionsmaxima von π -Systemen, welche Borylgruppen enthalten, mit gewisser Sicherheit durch DFT-Berechnungen vorausgesagt werden können, können bis jetzt die Emissionsmaxima sowie Quantenausbeuten nicht verlässlich aus den Berechnungen bestimmt werden. Die berechneten Absorptionsmaxima und experimentell erhaltenen Stokes Shifts von ca. 68-128 nm (bzw. 7500 cm⁻¹) deuten jedoch auf eine starke blau/violett-grüne Lumineszenz dieser Verbindungen hin, die in einigen Fällen für die Dithienylverbindungen auch bereits experimentell bestätigt werden konnten.

3.5 Elektrolumineszenz der Verbindung (68) und der Einbau dieser Verbindung als emittierendes Material in einer OLED

Durch die Kooperation mit der Merck KGaA am Standort Frankfurt, der sich auf die Entwicklung von neuen potentiellen Materialien für OLEDs spezialisiert hat, ergab sich die Möglichkeit, weitere Informationen zu einer potentiellen Eignung der benzodiazaborolsubstituierten Verbindungen in OLEDs zu gewinnen. Da die Dithienylverbindung **68** bis zu diesem Zeitpunkt die stabilste der synthetisierten, lumineszenten Benzodiazaborole war und mit einer Quantenausbeute von $\Phi_f = 0.52$ in einem guten Bereich lag, wurde sie als Kandidat für eine genauere Untersuchung ausgewählt. Im Folgenden werden einige der erhaltenen Daten/Diagramme dargestellt, der komplette Datensatz befindet sich im Anhang.

Das **Diagramm 8** zeigt das Absorptions- und Photolumineszenzspektrum eines dünnen Films der Verbindung **68**. Die Verbindung wurde hierzu durch Vakuumverdampfung auf dem Trägermaterial aufgebracht. In dem **Diagramm 9** ist das Absorptions- und Emissionsspektrum von **68** in THF dargestellt.

Ein Vergleich der beiden **Diagramme 8** und **9** zeigt gute Übereinstimmungen untereinander, jedoch ist das Emissionssignal des dünnen Films wie erwartet geringfügig blauverschoben und die Banden der Signale im Festkörper (Film) sind deutlicher ausgeprägt. Beides kann auf die fehlende Wechselwirkung mit dem Lösungsmittel zurückgeführt werden.

Diagramm 8: Absorptions- und Emissionsspektrum der Verbindung 68 als Film

Diagramm 9: Absorptions- und Emissionsspektrum der Verbindung 68 in THF

Die Dithienylverbindung **68** wurde nach diesen ersten Charakterisierungen als blauer Emitter in einer OLED verwendet. In der **Abbildung 49** ist der schematische Aufbau dieser OLED aufgezeigt. Das emittierende Material **68** wurde hierbei als 5 %iger Anteil in eine Matrix eingebettet.

Abb. 49: Schematischer Aufbau der OLED

Das **Diagramm 10** zeigt das von der Substanz **68** erhaltene Elektrolumineszenzspektrum. Das erhaltene Spektrum passt gut mit den für die Emission erhaltenen Spektren in Lösung und als dünner Film überein. Wie im theoretischen Teil erwähnt, sind die erhaltenen Maxima nicht abhängig von der verwendeten Anregungsart (Photonen, angelegte Spannung).

Diagramm 10: Elektrolumineszenzspektrum der Verbindung 68

Die aus den Spektren gewonnenen Informationen über die Lage des Emissionsmaximums können für eine bessere Visualisierung des erzeugten Farbtones in ein so genanntes CIE (Comission Internationale d'Éclairage) Diagramm eingetragen werden (**Abb. 50**). Dieses ordnet alle durch additive Farbmischung der Spektralfarben erzeugbaren Farbtöne in einer Ebene mit weiß im Zentrum. Eine durch dieses Zentrum gelegte Gerade verbindet zwei Komplementärfarben miteinander. Die reinen Spektralfarben liegen auf der Außenlinie. Das Diagramm basiert auf dem Farbdreieck, dass die relativen Erregungen der Farbrezeptoren im menschlichen Auge wieder gibt. Licht bestimmter Zusammensetzung reizt die drei vorhandenen Rezeptoren mit den Erregungen R, G und B. Je größer die Summe ist, desto heller erscheint das wahrgenommene Licht. Hierbei kann trotz der unterschiedlichen Helligkeit der Farbton gleich sein. Aufgrund dessen gibt man die relativen Erregungen an (r, g, b). Hierbei ist b = B / (B + G + R) und r + g + b = 1. Somit reicht es aus, die Lage des Farbtones durch zwei Koordinaten, meist r und g anzugeben.^[95] Innerhalb des CIE-Diagramms besitzt die Verbindung **68** die Koordinaten 0.167/0.122 (x/y). x entspricht hierbei r und y entspricht g. Anhand dieser Daten lässt sich erkennen, dass die Lumineszenz der Dithienyl-Verbindung **68** einem klaren Blauton entspricht.

Abb. 50: CIE-Koordinaten der Verbindung 68 eingetragen in ein CIE-Diagramm

Gerade im Bereich der blau emittierenden Substanzen ist man auf der Suche nach neuen effektiven Materialien. Die Benzodiazaborole sind in dieser Hinsicht interessante Kandidaten, da durch die Einführung des Benzodiazaborolylsubstituenten in ein aromatisches π -System, die Lumineszenz in den blauen Wellenlängenbereich verschoben wird. Alle bisher synthetisierten Verbindungen zeigen intensiv-blaue Fluoreszenz. Das heißt an dieser Stelle jedoch nicht, dass die Lumineszenz dieser Verbindungsklasse auf dieses Farbspektrum beschränkt ist. Durch die richtige Wahl geeigneter Substituenten an dem aromatischen π -System oder der generellen Wahl eines anderen π -Grundgerüsts, sollte es möglich sein, die emittierte Farbe zu variieren.

Die angefertigte OLED zeigt nur eine geringe Leuchtkraft und Lebenszeit. Dieses muss jedoch nicht allein an der Beschaffenheit des verwendeten emittierenden Materials liegen. Limitierende stoffeigene Ursachen können in einer spontan einsetzenden Bildung von Kristallkeimen oder einer teilweisen Zersetzung des Materials liegen. Es kann aber ebenso in manchen Fällen zu einer Reaktion mit dem Kathodenmaterial kommen, oder die Lumineszenzfähigkeit kann durch die Bildung von Exciplexen mit dem als Lochleiter verwendeten Material eingeschränkt sein. Das dem Benzodiazaborol 68 analoge Dimesitylborylderivat BMB-2T wurde bereits als elektronentransportierendes und ebenso als emittierendes Material in einer OLED getestet. Bei der Verwendung als emittierendes Material wurde herausgefunden, dass die Verbindung BMB-2T mit lochtransportierenden Materialien wie dem TPD (N,N'-Diphenyl-N,N'-bis-(3methylphenyl)-[1,1'-biphenyl]-4,4'-diamin, Abb.15) Exciplexe bildet.^[94] Diese Exciplex-Bildung konnte jedoch durch den Gebrauch einer dünnen Schicht von **TBB** (1,3,5-Tris[(biphenyl)-4-yl]benzol) unterdrückt werden. Somit ist die Gesamtleistung einer OLED nicht allein abhängig von dem speziell eingesetzten neuen Material, sondern ein Zusammenspiel der einzelnen Komponenten, die richtig aufeinander abgestimmt werden müssen, um die optimale Leistung einer OLED zu gewährleisten. Die Tatsache, dass die getestete Verbindung 68 nicht voll den Ansprüchen gerecht wird, sollte nicht als Rückschritt sondern als Herausforderung gesehen werden, die Gründe hierfür herauszufinden und das Material bzw. die OLED zu optimieren. Da der Einsatz in einer OLED immerhin bedingt erfolgreich war, bestätigt dies jedoch, dass die Substanzklasse der Benzodiazaborole eine potentielle Anwendungsmöglichkeit in OLEDs besitzt. Wie bei der oben genannten, analogen Dimesitylborylverbindung BMB-2T sollte darüber hinaus über eine potentielle Anwendung als elektronentransportierendes oder lochblockierendes Material nachgedacht werden.

4. Lumineszenzeigenschaften phenylethinylsubstituierter Borverbindungen

Materialien mit Phenylethinylgerüsten als elektronenleitende Einheiten sind bereits intensiv im Zusammenhang einer potentiellen Anwendung als Emitter in OLEDs und Sensoren, sowie ihrem Verhalten als Flüssigkristalle untersucht worden. Marder, Bunz und andere haben sich mit den optischen und photophysikalischen Eigenschaften von Oligo- und Polyphenylethinylenen beschäftigt, die z.T. mit Elektronenakzeptoren und Elektronendonoren substituiert waren und welche als Borylsubstituenten die Dimesitylborylgruppe beinhalteten. Für uns war es nun von Interesse, entsprechende Benzodiazaborole zu synthetisieren und diese auf ihre photophysikalischen Eigenschaften hin zu untersuchen.

4.1 Allgemeine Lumineszenzeigenschaften der Benzodiazaborole (97)-(100)

Die **Abbildung 51** zeigt die neu synthetisierten Phenylethinylverbindungen **97-100** im UV-Licht. Die Emissionsmaxima dieser Substanzen liegen wiederum im blauen Bereich. Die Verbindungen verfügen über elektronenenspendende Substituenten unterschiedlicher Stärke (Me < OMe < SMe < NMe₂).

Abb. 51: Verbindungen 97-100 unter Bestrahlung mit UV-Licht

In der **Tabelle 29** sind die optischen Eigenschaften der synthetisierten phenylethinylsubstituierten Benzodiazaborole **97-100** abgebildet. Zum Vergleich sind ebenfalls die Daten der unsubstituierten, literaturbekannten Verbindung **103** mit aufgeführt. In den **Diagrammen 11** und **12** sind die erhaltenen Absorptionsund Emissionsspektren der Verbindungen in THF-Lösung dargestellt.

Verbindung	λ _{max(abs),}	λ _{max(em),}	${\varPhi_f}^{a}$	3	Stokes	σ _p
) ()-x	(nm)	(nm)		(mol⁻¹cm⁻¹dm³)	Shift	
					(nm/ cm ⁻¹)	
x =						
NMe ₂	325	355	0.97	44710	30/ 2600	-1.70
97 (THF)						
SMe	315	410	0.89	31800	95/ 7400	-0.80
98 (THF)						
ОМе	307	374	0.97	26667	67/ 5800	-0.78
99 (THF)						
CH₃	307	388	0.99	22334	81/ 6800	-0.31
100 (THF)						
н	306	393	-	-	87/ 7200	0
103 (THF)						

^a Referenz POPOP (Φ_f = 0.93 in Cyclohexan)

Tab. 29: Lumineszenzdaten der Verbindungen 97-100 und 93

Diagramm 11 : Absorptionsspektren der Verbindungen 97-100

Diagramm 12: Emissionsspektren der Verbindungen 97-100

Die phenvlethinvlsubstituierten Verbindungen 97-100 zeigen Absorptionsmaxima in einem Bereich von λ_{abs} = 307 (**100**, X = Me) < 307 (**99**, X = OMe) < 315 (**98**, $X = SMe_1 < 325$ (97, $X = NMe_2$) nm, wobei die Lage für das dimethylaminosubstituierte Derivat 97 wie erwartet, am meisten bathochrom verschoben erscheint. Die Emissionsmaxima liegen nahe dem UV/sichtbaren Bereich und folgen nicht dem Gang der Donorstärke (Me < OMe < SMe < NMe₂) der verwendeten Substituenten. Sie liegen bei λ_{max} = 355 (97, NMe₂) < 374 (99, OMe) 388 (100, Me) < 410 (**98**, SMe) nm. Somit ist der für die < Dimethylaminoverbindung 97 gefundene Stokes Shift mit 30 nm bzw. 2600 cm⁻¹ auffällig klein gegenüber denen der Verbindungen 98-100 und der literaturbekannten, unsubstituierten Verbindung 103 [67-95 nm bzw. 5800-7400 cm⁻¹ (98, 99, 100,103)]. Er fällt ebenfalls kleiner aus als in den Verbindungen, bei denen die Benzodiazaborole direkt mit einem aromatischen Ring verknüpft sind (Tab. 21, 22). Eine Begründung kann die abweichende Zusammensetzung des und LUMO dieser Verbindung sein, die durch den starken HOMO π -Donorcharakter der Dimethylaminogruppe hervorgerufen wird (siehe **4.2**). Hervorzuheben sind die extrem hohen Quantenausbeuten dieser Verbindungen, die allesamt in einem Bereich von Φ_f = 0.89-0.99 liegen.

Eine Vergleichsverbindung (94) mit Dimesitylborylgruppen existiert nur für das Dimethylaminoderivat 97.^[34e] Eine direkte Gegenüberstellung der Werte ist nicht möglich, da die Verbindung zwar in verschiedenen Lösungsmitteln vermessen wurde, jedoch nicht in THF. Die aufgeführten Daten zeigen jedoch alle
Absorptions- und Emissionsmaxima bei deutlich höheren Wellenlängen im Vergleich zu der Verbindung **97**.

94					
Lösungsmittel	λ _{max(abs),} (nm)	λ _{max(em),} (nm)			
Cyclohexan	392	458			
CHCI ₃	399	456			
DMF	408	525			

Interessant ist dabei auch die starke, bathochrome Verschiebung des Emissionsmaximums um $\Delta\lambda$ = 69 nm bei dem Wechsel von Chloroform zu DMF.

4.2 Spezielle Untersuchungen zu den Lumineszenzeigenschaften der phenylethinylsubstituierten Verbindungen (97)-(100) (DFT- und TD-DFT-Berechnungen)

An der University of Durham (UK), wurden theoretische Berechnungen zu den Verbindungen 97-100 von Prof. Dr. T.B. Marder und Dr. M.A. Fox angefertigt. Die Strukturen der Verbindungen **97-100** mit Methyl- anstelle von Ethyl-Gruppen an den Stickstoffaten der Benzodiazaborolyl-Einheiten sind mit DFT-Rechnungen auf dem B3LYP/6-31G* Niveau optimiert worden.

Die Tabelle 30 zeigt ausgewählte Ergebnisse für die berechneten Bindungslängen und Winkel der unsubstituierten Verbindung 103 und dem Dimethylaminoderivat 97 im Fall einer coplanaren (103a, 97a) und senkrechten Anordnung (103b, 97b) der beteiligten, aromatischen Ringsysteme. Die Berechnungen zeigen energetische Minima im Falle einer coplanaren Anordnung der beteiligten Ringe (103a und 97a). Die für den Fall einer senkrechten Anordnung erhaltenen Daten zeigen, dass an diesen Punkten lokale energetische Minima liegen. Die Energiedifferenz zwischen diesen beiden Anordnungen beträgt etwa 0.6-0.8 kcal mol⁻¹. Der energetisch höchste Wert wird bei einer Anordnung gefunden, bei der die beteiligten Ringsysteme einen Winkel von 85° aufweisen und liegt ca. 0.005 kcal mol⁻¹ höher als der berechnete Wert für eine senkrechte Anordnung.

Verbindung	103a	103b	97a	97b
Bindungslängen (Å)				
B-C	1.516	1.519	1.513	1.517
B-N	1.439	1.438	1.441	1.440
C=C	1.221	1.220	1.222	1.221
C-C(≡C)	1.426	1.428	1.422	1.425
Benzolring				
C-C	1.409	1.409	1.409	1.408
	1.392	1.393	1.386	1.387
	1.397	1.397	1.416	1.416
C-(H/N)	1.087	1.089	1.382	1.386
Winkel (°)				
B-C≡C	180.0	180.0	180.0	180.0
C-C≡C	180.0	180.0	180.0	180.0
Torsionswinkel (°)				
N-B-(С≡С)-С-С	0.0	90.0	0.0	90.0

Tab. 30: Ausgewählte, berechnete Bindungslängen [Å] und Winkel (°) derVerbindungen 97 und 103

Die erhaltenen Werte deuten darauf hin, dass in Lösung und bei Raumtemperatur nahezu alle Rotationskonformere vorliegen werden. Die Summe der Winkel innerhalb des Dimethylaminosubstituenten zeigt experimentell bestimmte und berechnete Winkel von 357.8° (**97**), 359.9° (**97a**) und 357.3° (**97b**), was auf eine nahezu planare Anordnung zu dem angeschlossenen Phenylring und eine optimale Konjugation des freien Elektronenpaares vom Stickstoffatom mit dem aromatischen π -System hindeutet.

Die durch TD-DFT Berechnungen erhaltenen Werte für die Absorptionsmaxima der Verbindungen **97-100** stimmen mit den experimentell bestimmten gut überein, wenn man davon ausgeht, dass alle Rotationskonformere in Lösung vorliegen.

Die berechneten Absorptionsmaxima hängen von den Orientierungen der Substituenten an der zentralen Acetylenbrücke ab. Die coplanare (**a**) und senkrechte (**b**) Anordnung der beiden aromatischen Substituenten stellen hierbei die beiden strukturellen Extrema dar. In **Tabelle 31** sind die berechneten und experimentell ermittelten Werte aufgelistet.

Verbindung	λ _{max,(abs)}	Oszillator	Dipolmoment ^a	Verbindung	λ _{max,(abs)}	3
	(theroet.,nm)	Stärke (<i>f</i>)	(μ,D)		(exp.,nm)	(mol ⁻¹ cm ⁻¹ dm ³)
103a	336	0.65	1.69	103	306	-
103b	272	0.51	1.71			
100a	335	0.73	1.40	100	307	22300
100b	275	0.84	1.40			
99a	328	0.85	3.21	99	307	26700
99b	272	0.64	3.09			
98a	342	0.93	2.42	98	315	31800
98b	278	1.31	2.37			
97a	331	1.19	5.21	97	325	44700
97b	277	1.47	4.87			

^a Der Dipol ist in allen Fällen mit seiner negativen Seite in Richtung des Benzodioazaborolylsubstituenten gerichtet

Tab. 31: Berechnete (TD-DFT) und experimentell erhaltene Absorptionsmaximader Verbindungen 97-100 und 103

Der berechnete Wert der Dimethylaminoverbindung **97** zeigt Abweichungen von dem experimentell bestimmten Wert von $\lambda_{max} = 325$ nm. Dieses kann auf das für die Messungen verwendete Lösungsmittel THF zurückgeführt werden, da sich die berechneten Werte auf das Verhalten in der Gasphase beziehen. THF ist ein recht polares Lösungsmittel und wie die berechneten Dipolmomente der Verbindungen zeigen, handelt es sich bei der Verbindung **97** um den polarsten Vertreter. Unter Umständen kann es hier zu Wechselwirkungen kommen. Die berechneten Oszillatorstärken stimmen für die untersuchten Verbindungen **97**-

Verbindung	HLG ^ª (eV)	Orbital	E (eV)	C ₆ H ₄ (NMe) ₂ (%)	B (%)	C≡C (%)	Aryl (%)	X (%)
X =								
н	4.06	LUMO	-1.16	11	9	25	55	0
103a	4.00	номо	-5.22	75	8	10	8	0
Ме	4.07	LUMO	-1.09	11	10	24	52	2
100a	4.07	номо	-5.16	73	7	11	9	0
ОМе	1 15	LUMO	-0.92	13	11	25	47	3
99a	4.15	номо	-5.07	67	6	12	12	3
SMe	3.00	LUMO	-1.14	11	9	24	53	4
98a	3.88	номо	-5.13	64	6	11	12	7
NMe ₂	4 11	LUMO	-0.70	14	12	25	43	6
97a	4.11	номо	-4.81	44	3	14	24	14
н	4.42	LUMO	-0.87	2	3	23	72	0
103b	4.42	номо	-5.29	82	10	7	1	0
Ме	4 47	LUMO	-0.79	2	3	23	69	3
100b	4.47	номо	-5.26	82	10	8	1	0
ОМе	4.64	LUMO	-0.58	2	3	24	66	4
99b	4.04	номо	-5.22	82	10	8	1	0
SMe	A A 1	LUMO	-0.86	2	3	22	69	5
98b	7.71	НОМО	-5.27	82	10	8	1	0
NMe ₂	4.38	LUMO	-0.70	2	3	24	62	8
97b		номо	-5.08	1	1	17	48	34
		HOMO-1	-5.12	81	10	8	1	0

100 und **103** jedoch allesamt gut mit den gefundenen Absorptionskoeffizienten überein.

^a HLG = HOMO-LUMO Lücke (HOMO-LUMO gap)

Tab. 32: Berechnete Orbitalenergien und Zusammensetzunge von97-100 und103

Die **Tabelle 32** zeigt die berechneten Orbitalenergien und Zusammensetzungen des HOMO und LUMO aller berechneten Strukturen. Die Orbitale der Zusammensetzungen Verbindungen 98-100 zeigen ähnliche wie die unsubstituierte Verbindung 103, während die der Dimethylaminoverbindung 97 hiervon abweicht. Die Abbildungen 52 und 53 zeigen die Grenzorbitale der berechneten Strukturen für 103a und b sowie 97a und b. Während das HOMO in der Verbindung **103** vom Charakter her mehr dem Benzodiazaborol (73-75 %) entspricht, hat das LUMO mehr Arylcharakter (52-55 %). Die HOMO-LUMO-Übergänge sind hauptsächlich π (Borolyl) $\rightarrow \pi^*$ (Aryl) Charge Transfer Übergänge. Hieraus lässt sich ableiten, dass der erste angeregte Singulett-Zustand dieser Verbindungen über ein großes Dipolmoment verfügen muss. Im Gegensatz hierzu hat sowohl das HOMO in der Verbindung 97 hauptsächlich Arylcharakter (38 % in 97a, 82 % in 97b) als auch das LUMO (49 % in 97a und 80 % in 97b). Der HOMO-LUMO-Übergang ist ein $\pi(Aryl) \rightarrow \pi^*(Aryl)$ Übergang und erklärt unter Umständen warum der beobachtete Stokes Shift bei dieser Verbindung im Vergleich zu den anderen experimentell beobachteten so gering ausfällt (Tab. 29). Da sowohl HOMO als auch LUMO auf dem aromatischen Ring lokalisiert sind, wird der angeregte Zustand der Verbindung 97 kein großes Dipolmoment besitzen, wodurch es zu keinem großen Charge Transfer innerhalb des Moleküls kommt. Damit ist der angeregte Zustand in 97 im Gegensatz zu den Verbindungen 98-100 nicht besonders abhängig von Einflüssen die bei der Verwendung eines polaren Lösungsmittels entstehen können.

Abb. 51: Grenzorbitale der Strukturen 103a und 103b

Abb. 52: Grenzorbitale der Strukturen 97a und 97b

Zusammenfassend lässt sich sagen, dass die Verbindungen 97-100 allesamt sehr hohe Quantenausbeuten in einem Bereich von Φ_f = 0.89-0.99 zeigen. Hervorzuheben aus den Ergebnissen der theoretischen Rechnungen ist, dass im Fall der Verbindungen 98-100 die Benzodiazaboroleinheit entgegen der bisherigen Vorstellung nicht über elektronenakzeptierende Eigenschaften, sondern über elektronendonierende Eigenschaften verfügt. Das ist ein ganz klarer Unterschied zu den bisher bekannten Dimesitylborylanaloga in denen der Borylsubstituent den Elektronenakzeptor darstellt. Das abweichende Verhalten der Benzodiazaborole kann durch das Vorhandensein der freien Elektronenpaare der Stickstoffatome in dem 10*π*-Elektronensystem des Benzodiazaborols erklärt werden. Interessant wäre die Untersuchung von Systemen, die anstelle von elektronendonierenden Gruppen elektronenakzeptierende Substituenten besitzen, wie z.B. CN oder eine direkte Gegenüberstellung der Substituenten Benzodiazaborolyl ↔ Dimesitylboryl.

5. Allgemeine Lumineszenzeigenschaften von erweiterten benzodiazaborolylsubstituierten Phenylethinylsystemen

Yamaguchi hebt in seiner Veröffentlichung über Polycyanophenylethinylene die Lumineszenzeigenschaften derartiger Verbindungen hervor. Er beschreibt neben den polymeren Verbindungen Tetramere, welche neben den elektronenziehenden Cyanosubstituenten, unterschiedliche elektronenspendende Substituenten besitzen. Diese zeigen allesamt gute Quantenausbeuten in einem Bereich von $\Phi_f = 0.960-0.999$ und verfügen darüber hinaus über hohe Dipolmomente. Das macht sie neben einer Anwendung als elektronenleitendes Material für eine Anwendung in der nichtlinearen Optik interessant.

X = SMe (122), Me (123), OMe (124), NMe₂ (125)

5.1 Allgemeine Lumineszenzeigenschaften der erweiterten Phenylethinylsysteme (105), (106) und (108)

Bevor das Yamaguchi vorgestellte Substitutionsmuster auf ein von Benzodiazaborolderivat übertragen wurde. galt zunächst es Referenzverbindungen synthetisieren. Somit wurden die zu beiden Phenylethinylene 105 und 106 dargestellt. Basierend auf den von Yamaguchi vorgestellten tetrameren OPEs wurde darauf folgend, das benzodiazaborolylsubstituierte Diphenylacetylen 108 synthetisiert, welches ebenfalls über einen Donor- (OMe) und Akzeptor- (CN) substituenten verfügt.^[87]

In der **Tabelle 33** sind die bisher erhaltenen Lumineszenzdaten der Verbindungen **105**, **106** und **108** aufgeführt. In den **Diagrammen 13** und **14** sind die Absorptions- und Emissionsspektren der beiden Verbindungen **106** und **108** dargestellt.

Verbindung	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	ε (mol ⁻¹ cm ⁻¹ dm³)	${\pmb{\varPhi}}_{{\it f},{\it b}}$	Stokes Shift (nm)
∽~~∽ 105 (THF)	305	437	_a	-	132
∞}-∞-∞-{∞ 106 (THF)	314	431	_a	0.37	117
↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔ ↔	337	465	25904	0.05	128

^a Aufgrund der geringen Löslichkeit in THF konnte an dieser Stelle bisher kein verlässlicher Wert erhalten werden. ^b Referenz POPOP (Φ_f = 0.93 in Cyclohexan)

Tab. 33: Lumineszenzdaten der Verbindungen 105, 106 und 108

Diagramm 13 : Absorptionsspektren der Verbindungen 106 und 108

Die erhaltenen Daten zeigen deutliche bathochrome Verschiebungen des Absorptions- ($\Delta\lambda_{max} = 32$ nm) und Emissionsmaximums ($\Delta\lambda_{max} = 28$ nm) im Vergleich zu **105** durch die Einführung der beiden Substituenten. Im Gegensatz hierzu ist das Absorptionsmaximum in der symmetrischen Verbindung **106**, welches bei $\lambda_{max} = 315$ nm liegt, gegenüber der Verbindung **105** um $\Delta\lambda_{max} = 9$ nm geringfügig bathochrom und das Emissionsmaximum um $\Delta\lambda_{max} = 6$ nm minimal hypsochrom verschoben.

Diagramm 14 : Emissionsspektren der Verbindungen 106 und 108

Die Quantenausbeuten zeigten im Fall der Verbindung **108** einen auffällig niedrigen Wert von Φ_f = 0.05 im Gegensatz zu der Verbindung **106**, die eine relativ gute Quantenausbeute von Φ_f = 0.37 besitzt.

Die Lumineszenzeigenschaften der von Yamaguchi vorgestellten, tetrameren Verbindungen **122-125** sind zum Vergleich in **Tabelle 34** aufgeführt.

Verbindung 	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	${\pmb \Phi_f}^{\sf a}$
SMe 122 (CHCl₃)	375	455	0.972
Ме 123 (СНСІ₃)	360	403	0.960
ОМе 124 (СНСІ ₃)	371	434	0.982
NMe₂ 125 (CHCl₃)	425	555	0.999

^a Referenz Chinin (Φ_f = 0.55 in 0.1 M H₂SO₄)

Tab. 34: Lumineszenzdaten der Verbindungen 122-125

Interessant ist, dass diese Verbindungen allein abhängig von der Wahl des Substituenten in para-Position, in einem Bereich von intensiv-blau bis intensivgelb [$\lambda_{max} = 455$ (**122**), 555 (**125**) nm] emittieren. Das tetramere Methoxyderivat **124** besitzt in THF-Lösung gegenüber der Verbindung **108** ein bathochrom verschobenes Absorptionsmaximum von $\lambda_{abs} = 369$ nm [$\lambda_{max} = 337$ (**108**) nm], jedoch ein minimal hypsochrom verschobenes Emissionsmaximum [$\lambda_{max} = 460$ (**124**) nm vs. 465 (**108**) nm]. Alle von Yamaguchi vorgestellten Verbindungen besitzen eine sehr hohe Quantenausbeute von $\Phi_f = 0.960-0.999$ in Chloroform. In der Veröffentlichung wird jedoch auch darauf hingewiesen, dass für die tetrameren OPEs eine gewisse Abhängigkeit der Emissionsmaxima und Quantenausbeuten von dem verwendeten Lösungsmittel besteht.

5.2 Ergänzende Untersuchungen zu den Lumineszenzeigenschaften der Verbindung (108)

Aufgrund der sehr geringen Quantenausbeute der Verbindung **108** und der von Yamaguchi in seiner Veröffentlichung erwähnten Lösungsmittelabhängigkeit der Lumineszenzdaten der dort vorgestellten Verbindungen, war die Frage nach einem ähnlichen Phänomen bei der neu synthetisierten Verbindung **108** aufgekommen.

Die beiden Extrema der von Yamaguchi vorgestellten Verbindungen hinsichtlich einer Lösungsmittelabhängigkeit bilden die Methoxyverbindung **124** und das Dimethylaminoderivat **125** (**Tab. 35**). Die Absorptionsmaxima zeigen keine signifikante Beeinflussung durch die Wahl des Lösungsmittels. Die Emissionsmaxima variieren bei der Methoxyverbindung von λ_{max} = 420-513 nm, wobei sie mit wachsender Polarität des Lösungsmittels bathochrom verschoben werden. Das Gleiche wird bei dem Dimethylaminoderivat **124** beobachtet. Das Absorptionsmaximum liegt bei λ_{max} = 413-426 nm, das Emissionsmaximum zeigt mit λ_{max} = 519-666 nm eine stärkere Varianz, welche wiederum der Polarität des Lösungsmittels folgt. Im Gegensatz zu **124**, zeigt die Verbindung **125** auch eine starke Abhängigkeit der Quantenausbeute von der Polarität.

Verbindung	Lösungsmittel	λ _{max(abs),}	λ _{max(em),}	$arPsi_{f}$
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		(nm)	(nm)	
X=				
ОМе	Benzol	371	420	0.972
124	CHCI ₃	371	434	0.982
	THF	369	460	0.972
	CH₃CN	364	490	0.973
	DMF	369	513	0.949
NMe ₂	Benzol	426	519	0.999
125	CHCI₃	425	555	0.999
	THF	422	621	0.084
	CH₃CN	413	682	0.002
	DMF	423	699	0.002

^a Referenz Chinin ( $\Phi_f$  = 0.55 in 0.1 M H₂SO₄)

# Tab. 35: Lumineszenzdaten der Verbindungen 124 und 125 in verschiedenenLösungsmitteln

In unpolareren Solventien wie Benzol und Chloroform liegen die Quantenausbeuten bei  $\Phi_f$  = 0.999, in polaren Solventien hingegen, d.h. Acetonitril geht sie zurück auf  $\Phi_f$  = 0.084 und bei THF und DMSO sogar auf einen beachtlich minimalen Wert von  $\Phi_f$  = 0.002.

Aufgrund der extrem geringen Quantenausbeute der Verbindung **108** in THF-Lösung ( $\Phi_f = 0.05$ ) wurden auch Spektren in anderen Lösungsmitteln angefertigt. Die hierbei erhaltenen Werte sind in der **Tabelle 36** zusammengefasst. Die entsprechenden Spektren sind in dem **Diagramm 15** dargestellt. Wie bei der Dimethylaminoverbindung **125** findet man keine signifikante Abhängigkeit der Absorptionsmaxima von dem eingesetzten Lösungsmittel ( $\lambda_{max} = 339-341$  nm). Die Emissionsmaxima zeigen im Gegensatz hierzu eine starke Varianz ihrer Lage.

Verbindung	Lösungsmittel	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	ε (mol ⁻¹ cm ⁻¹ dm ³ )	$arPsi_{ extsf{f}}$
108	n-Hexan	339	399	33048	0.64
	THF	337	465	25904	0.05
	EtOH	340	470	29498	0.01
	DCM	341	478	31089	0.54

Tab. 35: Lumineszenzdaten der Verbindungen 108

In n-Hexan wurde das am meisten hypsochrom verschobene Maximum von  $\lambda_{max}$  = 399 nm und in Dichlormethan das am meisten bathochrom verschobene bei  $\lambda_{max}$ = 478 nm gemessen. Noch viel deutlicher ist die Abhängigkeit der Quantenausbeute von dem eingesetzten Lösungsmittel. In dem polarsten Lösungsmittel Ethanol wird eine noch schlechtere Quantenausbeute ( $\Phi_f = 0.01$ ) als in THF erhalten. In den weniger polaren Lösungsmitteln steigt sie beachtlich. In Dichlormethan auf  $\Phi_f$  = 0.54 und in n-Hexan auf  $\Phi_f$  = 0.64. Auch wenn spezifische Wechselwirkungen mit dem Lösungsmittel in diesem konkreten Fall nicht vollkommen ausgeschlossen werden konnten, ist die starke Lösungsmittelabhängigkeit der Fluoreszenz allgemein ein Indiz für das Vorhandensein einer stark polaren Spezies im angeregten Zustand.





An der Universität von Pau wurden im Rahmen einer Kooperation auf der Basis der experimentell angefertigten Absorptionsspektren und den erhaltenen Kristallstrukturen die Energien und Zusammensetzungen des HOMO und LUMO, sowie die Art der Übergänge berechnet.^[96] Hierbei zeigten erste Ergebnisse, dass die Verbindung 108 ein großes Dipolmoment im Grund- und ein sehr großes im angeregten Zustand besitzt. Aufgrund eines starken Charge Transfers innerhalb des Moleküls, kommt es zu einem sehr hohen Übergangsdipolmoment. Das Dipolmoment im Grundzustand beträgt  $\mu_g$  = 5.12 D und im ersten angeregten Zustand  $\mu_e$  = 23.83 D [ $\mu_g$  = 11.52 (**124**), 12.75 (**125**) D und  $\mu_e$  = 10.74 (**123**), 12.89 (124) D]. Die statische Hyperpolarisierbarkeit beträgt laut DFT-Berechnung  $\beta$  = 23.68 10⁻³⁰ esu [ $\beta$  = 16.35 10⁻³⁰ esu (Nitroanilin)]. Aufgrund dessen können benzodiazaborolsubstituierte Verbindungen, wie das im Rahmen dieser Arbeit synthetisierte Molekül 108, als interessante potentielle Kandidaten für die nichtlineare Optik gewertet Weitere Berechnungen und werden. photophysikalische Untersuchungen zu dieser Substanzklasse sind in Arbeit.^[97]

**D** Experimenteller Teil

## 1. 1 Allgemeine Arbeitsvorschriften

Alle Experimente wurden soweit nicht anders angegeben in Standardschliffapparaturen unter Luft- und Feuchtigkeitsausschluss in einer Argonatmosphäre durchgeführt. Die verwendeten Glasgeräte wurden vor der Benutzung unter Vakuum ausgeheizt. Die Lösungsmittel wurden nach Standardmethoden in Umlaufapparaturen absolutiert und mit Argon gesättigt.

## 1. 2 Spektroskopische Methoden und Analytik

## Kernresonanzspektren:

Alle Messungen wurden bei 295 K (Gerätetemperatur) unter Schutzgas durchgeführt. Die Heterokernspektren sind ¹H-Breitband entkoppelt gemessen worden.

## ¹H-NMR:

Bruker AM Avance DRX 500 (500,1MHZ)

Als interner Standard dient das Signal des partiell deuterierten Lösungsmittels, das auf externes TMS umgerechnet wurde.

# ¹³C{¹H}-NMR:

Bruker AM Avance DRX 500 (125.75 MHz) Als interner Standard dient das Signal des partiell deuterierten Lösungsmittels, das auf externes TMS umgerechnet wurde.

# ¹¹B{¹H}-NMR:

Bruker AM Avance DRX 500 (160.46 MHz) Externer Standard  $BF_3$  Et₂O.

## ¹⁹F{¹H}-NMR:

Bruker AM Avance DRX 500 (470.60 MHz) Externer Standard CFCl₃

### UV-Spektren, Fluoreszenz-Spektren und Quantenausbeuten:

Die Berechnungen der Quantenausbeuten und die Messungen der dazugehörigen Spektren wurden von S. Schwedler aus der Arbeitsgruppe PCI an der Universität Bielefeld durchgeführt. Absorptionsspektren wurden mit einem UV/Vis-Spektrometer aufgenommen (Shimadzu UV-2550). Die Emissionsspektren wurden aus angefertigten AES-Spektren extrahiert.



Abb. 53: Beispiel eines AES-Spektrums

Nähere Informationen zu dem Aufbau und der Aufnahme der Spektren entnehme man dem Anhang. Die Spektren wurden angefertigt von Lösungen der Substanzen in destilliertem, trockenem THF bei einer Konzentration von 1-8  $\mu$ M, je nach optischer Dichte. Die Quantenausbeuten wurden berechnet mit POPOP (p-Bis-5-phenyl-oxazolyl(2)-benzol) ( $\Phi_f = 0.93$ ) als Standard, soweit nicht anders angegeben.

## Massenspektren:

EI: VG Autospec sectorfield mass spectrometer (Micromass) 70 eV. Es werden die charakteristischen Peaks angegeben.

## Röntgenstrukturanalysen:

Die Röntgenstrukturanalysen wurden von Frau B. Neumann und Herrn Dr. H.-G. Stammler an der Universität Bielefeld angefertigt. Siemens-P21-Vierkreisdiffraktometer, Nonius-Kappa CCD, Rechner MicroVax II unter Verwendung der Programmpakete SHELXTL-PLUS bzw. SHELXL-93. Verwendete Röntgenstrahlung: MoK $\alpha$  ( $\lambda$  = 0.71073 Å).

## Elementaranalysen:

Mikroanalytisches Labor der Fakultät für Chemie an der Universität Bielefeld.

### **DFT- und TD-DFT-Berechnungen:**

Angefertigt an der University of Durham durch Prof. T.B. Marder und Dr. M.A. Fox, nähere Angaben zu den verwendeten Methoden befinden sich im Anhang.

### 1.3 Literaturbekannte Verbindungen

#### N,N'-Diacetyl-2,3-diaminonaphthalin

aus 2,3-Diaminonaphthalin durch N-Acetylierung mit Essigsäureanhydrid.^[66]

#### - 2-Bromthiophen

Bromierung von Thiophen durch N-Bromsuccinimid katalysiert durch Perchlorsäure.^[98], Bromierung von Thiophen durch Br₂/HBr (48 %ige wässrige Lösung).^[99]

#### - 2,5-Dibromthiophen, 2-Chlorthiophen

Halogenierung von Thiophen durch N-Halogensuccinimid katalysiert durch Perchlorsäure.^[98]

#### - 2-Brom-1,3-diethyl-1,3,2-benzodiazaborol

Darstellung aus N,N'-Diethylphenylendiamin und BBr₃ in Gegenwart von Calciumhydrid als Base^[100]

#### - N,N⁻-Diethyl-1,2-phenylendiamin

Darstellung aus *o*-Phenylendiamin und Essigsäureanhydrid und anschließender Reduktion mit Lithiumaluminiumhydrid in THF.^[101]

#### - 1,4-Bis(dibromboryl)benzol, 1,3,5-Tris(dibromboryl)benzol

Aus 1,4-Bis(trimethylsilyl)benzol durch Silicium-Boraustausch mit BBr₃ in Toluol^[68]

# - 1,4-Bis(trimethylsilyl)benzol, 2,5-Bis(trimethylsilyl)thiophen, 1,3,5-Tris(trimethyl-silyl)benzol

Aus einer Grignard-Reaktion des halogenierten (Br/CI) Aromaten mit Trimethylsilylchlorid.^[67]

#### - 2,2⁻Dithiophen

Grignard-Reaktion von 2-Bromthiophen unter Verwendung von Kupfer-II-Chlorid.^[69]

- 5,5[°]-Dibrom-2,2[°]-dithiophen, 5, 5[°] Dibrom-2, 2[°]: 5[°], 2[°] -terthiophen Durch Bromierung mit NBS.^[102] - 2-Acetylthiophen, 2-Acetyl-5-bromthiophen, 2-Acetyl-5-chlorthiophen

Friedel-Crafts-Acetylierung mit dem entsprechenden Thiophenderivat.^[76]

#### - 1,3,5-Tris(4⁻bromphenyl)benzols

Cyclotrimerisierungsreaktion von 4-Brombenzaldehyd.^[73]

- 1,3,5-Tris(2´-thienyl)benzol, 1,3,5-Tris(2´-5´´-bromthienyl)benzol, 1,3,5-Tris(2´-5´´chlor-thienyl)benzol

Cyclotrimerisierungsreaktion von 2-Acetylthiophen in Gegenwart von Siliciumtetrachlorid.^[74,75]

#### - Para-substituierte Phenylethinylene

Durch Sonogashira-Kupplung des entsprechenden para-substituierten Halogenbenzols (Brom/Iod) mit Trimethylsilylacetylen und Bis(triphenylphosphin)palladium(II)chlorid als Katalysator.^[83]

- **Bis(triphenylphosphin)palladium(II)chlorid** Aus Palladiumchlorid und Triphenylphosphin.^[83d]

#### 9,9-Bis(n-octyl)-2,7-dibromfluoren

Durch Sonogashira-Kupplung aus 9,9-Bis(n-octyl)-2,7-diethinylenfluoren.^[86]

- 4-Bromdiphenylacetylen

Aus para-Bromiodbenzol und Phenylacetylen durch Sonogashira-Kupplung.^[87]

#### - Bis(4-bromphenyl)acetylen

Aus para-Bromiodbenzol und Trimethylsilylacetylen nach einer Sonogashira-Kupplung.^[88]

#### - 2-Brom-5-iodbenzonitril

Aus 2-Aminobenzonitril durch Bromierung^[89] und folgender Diazotierung mit anschließender in situ-Sandmeyer-Reaktion.^[90]

#### - N-(2-Thienyl)-3,6-bis(t-butyl)carbazol

Friedel-Crafts-Alkylierung von Carbazol^[92] und anschließender N-Funktionalisierung durch Ullmann-Kupplung mit 2-Iodthiophen.^[91]

#### - 2, 2': 5', 2''-Tertthiophen

aus 2,5-Dibromthiophen und Thienylmagnesiumbromid durch Kumada-Kupplung mit  $NiCl_2(dppp)$ .¹⁰³

Alle weiteren Chemikalien sind kommerziell erworben, oder von der Fakultät für Chemie der Universität Bielefeld zur Verfügung gestellt worden.

## 2. Synthesen der Verbindungen

## 2.1 Synthese von N,N'-Diethyl-2,3-diaminonaphthalin (57)



3 g (12.4 mmol) N,N'-Diacetyl-2,3-diaminonaphthalin werden bei 0 °C unter Rühren langsam mittels einer Spritze zu einer Suspension von 0.94 g (24.7 mmol) Lithiumaluminiumhydrid in 120 mL THF gegeben. Anschließend wird auf Raumtemperatur erwärmt und für weitere 12 h gerührt. Daraufhin wird die Reaktionslösung erneut auf 0 °C gekühlt und vorsichtig mit Eis hydrolysiert. Der entstandene Feststoff wird abfiltriert und der Filterkuchen zweifach mit THF (20 mL) gewaschen. Die vereinigten organischen Phasen werden über Magnesiumsulfat getrocknet, filtriert und das Lösungsmittel im Vakuum entfernt. Der Rückstand wird mittels Kurzwegdestillation im Vakuum aufgereinigt, wobei das Produkt als farbloser, amorpher Feststoff erhalten wird (2.4 g, 90 %).

¹**H-NMR (CDCI₃):**  $\delta$  = 1.37 (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₃CH₂), 3.25 (q, 4H, ³*J*_{HH} = 7.2 Hz, CH₃CH₂), 3.41 (s, br, 2H, NH), 6.89 (s, 2H, NH–C=CH), 7.20 (m, 2H, Aryl-H), 7.59 (m, 2H, Aryl-H) ppm.

**MS/EI:** *m*/*z* = 214 [M⁺].

## 2.2 Synthese von 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborol (58)



Zu einer Suspension von 0.7 g (16.0 mmol) Calciumhydrid in 50 mL Toluol werden unter Rühren bei 0 °C gleichzeitig Lösungen von 2.40 g (11.2 mmol) N,N'-Diethyl-2,3-diaminonaphthalin **57** und 3 g (12 mmol) Bortribromid jeweils in 30 mL Toluol getropft. Nach beendeter Zugabe wird auf Raumtemperatur erwärmt und für weitere 12 h gerührt. Die Reaktionslösung wird filtriert, der Rückstand zweimal mit jeweils 10 mL Toluol gewaschen, die vereinigten organischen Phasen im Vakuum bis zur Trockne eingeengt und der erhaltene Rückstand bei 1[.]10⁻³ mbar (ca. 400 °C) destilliert. Man erhält hierbei 2.58 g (76 %) des 2-Brom-1,3-diethyl-1,3,2-naphthodiazaborols **58** als farblosen Feststoff.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.38 (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 3.90 (q, 4H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 7.35 (m, 2H, H-Boryl), 7.36 (s, 2H, H-Boryl) 7.83 (m, 2H, H-Boryl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 15.1 (s, CH₂CH₃), 37.9 (s, CH₂CH₃), 104.4 (s, C-Boryl), 123.2 (s, C-Boryl), 126.9 (s, C-Boryl), 127.8 (s, C-Boryl), 137.6 (s, Cboryl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 25.4$  (s) ppm.

**MS/EI:** *m*/*z* = 303 [M⁺].

Elementaranalyse: C₁₄H₁₆BBrN₂[303.01] Ber.: C: 55.49 % H: 5.32 % N: 9.24 % Gef.: C: 54.53 % H: 5.54 % N: 9.17 %

2.3 Synthese von 2-Thienyl-1,3-diethyl-1,3,2-naphthodiazaborol (60)



Zu einer Lösung von 0.58 g (6.9 mmol) Thiophen in 30 mL THF werden unter Rühren bei -78 °C 2.9 mL (7.25 mmol) n-Butyllithium (2.5 M in n-Hexan) tropfenweise mittels einer Spritze hinzu gegeben. Nach dem Aufwärmen auf Raumtemperatur wird für eine weitere halbe Stunde gerührt und dann die Lösung erneut auf -78 °C gekühlt. Es werden 2.11 g (6.9 mmol) 2-Brom-1,3-diethyl-1,3,2naphthodiazaborol **58**, gelöst in 20 mL THF mittels einer Spritze langsam zugegeben, wobei sich die Reaktionslösung rot verfärbt. Nach dem Erwärmen auf Raumtemperatur wird für weitere 12 h bei dieser Temperatur gerührt, bevor anschließend die entstandenen Salze abfiltriert und das Lösungsmittel im Vakuum entfernt wird. Der erhaltene Rückstand wird bei 10⁻³ mbar und ca. 360 °C destilliert. Man erhält 1.29 g (4.2 mmol, 61 %) des Produktes in Form farbloser Nadeln.

¹**H-NMR (CDCI₃):**  $\delta = 1.44$  (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 4.01 (q, 4H, ³*J*_{HH} = 7.1 Hz, CH₂CH₃), 7.34 (m, 2H, H-Boryl), 7.38 (m, 1H, 4-H-Thienyl), 7.39 (s, 2H, H-Boryl), 7.54 (d, 1H, ³*J*_{HH} = 3.2 Hz, 3-H-Thienyl), 7.71 (d, 1H, ³*J*_{HH} = 5.0 Hz, 5-H-Thienyl), 7.84 (m, 2H, H-Boryl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 15.8 (s, CH₂CH₃), 38.0 (s, CH₂CH₃), 104.2 (s, C-Boryl), 122.8 (s, C-Boryl), 126.8 (s, C-Boryl), 128.4 (s, 3-C-Thienyl), 128.9 (s, C-Boryl), 130.3 (s, 2-C-Thienyl), 134.2 (s, 5-C-Thienyl), 138.7 (s, C-Boryl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 28.1$  (s) ppm.

**MS/EI:** *m*/*z* = 306.2 [M⁺].

**UV-Vis:**  $\lambda_{max} = 341$  nm (THF), **Emission:**  $\lambda_{max} = 371$  nm (THF), **Quantenausbeute:**  $\Phi_f = 0.18$  % (THF, Referenz Coumarin 120,  $\Phi_f = 0.50$  in Ethanol).

Röntgenstrukturanalyse: vawe04 (Anhang)

2.4 Synthese von (5´,2´,2´´-Dithienyl)-1,3-diethyl-1,3,2-naphthodiazaborol (61)



0.40 g (2.4 mmol) Dithiophen werden unter Rühren in 30 mL THF gelöst und auf -78 °C gekühlt. Es werden 1.0 mL (2.5 mmol) n-Butyllithium (2.5 M in n-Hexan) tropfenweise mittels einer Spritze hinzu gegeben. Nach dem Aufwärmen auf Raumtemperatur wird für eine weitere halbe Stunde gerührt und anschließend

wiederum auf -78 °C gekühlt. Daraufhin werden 0.76 g (2.5 mmol) 2-Brom-1,3diethyl-1,3,2-naphthodiazaborol **58** gelöst in 20 mL THF mittels einer Spritze zugegeben, wobei sich die Reaktionslösung orange verfärbt. Nach dem Erwärmen auf Raumtemperatur wird die Lösung über Nacht bei Raumtemperatur gerührt, die entstandenen Salze abfiltriert und das Filtrat im Vakuum bis zur Trockne eingeengt. Der erhaltene Rückstand wird aus Acetonitril umkristallisiert, wobei das 2-(5',2',2''-Dithienyl)-1,3-diethyl-1,3,2-naphthodiazaborol **61** in Form farbloser Kristalle (< 10 %) anfällt.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.46 (t, 6H, ³*J*_{HH} = 7.0 Hz, CH₂CH₃), 4.04 (q, 4H, ³*J*_{HH} = 7.0 Hz, CH₂CH₃), 7.06 (dd, 1H, ³*J*_{HH} = 3.8, 4.4 Hz, H-4"-Dithiophen), 7.25 (d, 1H, ³*J*_{HH} = 4.4 Hz, H-3"-Dithiophen), 7.28 (d, 1H, ³*J*_{HH} = 3.8 Hz, H-5"-Dithiophen), 7.33 (m, 2H, H-Boryl), 7.36 (d, 1H, ³*J*_{HH} = 3.8 Hz, H-3'-Dithiophen), 7.40 (s, 2H, H-Boryl), 7.42 (d, 1H, ³*J*_{HH} = 3.8 Hz, H-4'-Dithiophen), 7.84 (m, 2H, H-Boryl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 15.9 (s, CH₂CH₃), 38.1 (s, CH₂CH₃), 104.2 (s, C-Boryl), 122.8 (s, C-Boryl), 124.2 (s, C-4'-Dithienyl), 124.8 (s, 3'-C-Dithienyl), 125.1 (s, 3''-C-Dithienyl), 126.9 (s, C-Boryl), 127.9 (s, 5''-C-Dithienyl), 128.9 (s, C-Boryl), 135.1 (s, C-4''-Dithienyl), 137.0 (s, C-5'-Dithienyl), 138.6 (s, C-Boryl), 142.4 (s, C-2''-Dithienyl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 27.8$  (s) ppm.

## 2.5 Synthese von 1,4-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)benzol (64)



0.9 g CaH₂ (21.44 mmol) werden in 100 mL Toluol suspendiert und mittels eines Eisbades auf 0 °C gekühlt. Hierzu werden 1.59 g (9.7 mmol) N,N´-Diethyl-ophenylendiamin **44**, gelöst in 50 mL Toluol und 2.0 g (4.8 mmol) 1,4-Bis(dibromboryl)benzol **63**, gelöst in 50 mL Toluol, gleichzeitig unter stetigem Rühren zugetropft. Es wird 1 h bei 0 °C und für weitere 12 h bei Raumtemperatur gerührt. Anschließend wird die Reaktionslösung abfiltriert und das erhaltene Filtrat bis zur Trockne im Vakuum eingeengt. Der erhaltene gelbe, feste Rückstand wird im Vakuum destilliert (ca. 280 °C, 1⁻ 10⁻³ mbar). Nach Umkristallisation aus THF erhält man 1.43 g (3.41 mmol, 71 %) des Produktes in Form farbloser Nadeln.

¹**H-NMR (CDCI₃):**  $\delta = 1.38$  (t, 12H, ³ $J_{HH} = 6.9$  Hz, CH₂CH₃), 3.85 (q, 8H, ³ $J_{HH} = 6.9$  Hz, CH₂CH₃), 7.06 (m, 4H, H-Boryl), 7.13 (m, 4H, H-Boryl), 7.65 (s, 4H, H-2,3,5,6-Benzol) ppm.

¹³C{¹H}-NMR (CDCl₃):  $\delta$  = 16.3 (s, CH₂CH₃), 37.7 (s, CH₂CH₃), 108.9, (s, C-Boryl), 118.6 (s, C-Boryl), 133 (s, C-2,3,5,6-Benzol), 137.2 (s, C-Boryl) ppm.

¹¹B{¹H}-NMR (CDCl₃): δ = 28.7 (s) ppm.

**MS/EI:** *m*/*z* = 422.2 [M⁺].

Elementaranalyse: C₂₆H₃₂N₄B₂ [422.19] Ber.: C: 73.89 % H: 7.64 % N: 13.26 % Gef.: C: 72.67 % H: 7.63 % N: 12.89 %

**UV-Vis:**  $\lambda_{max} = 300$  nm (THF); **Emission:**  $\lambda_{max} = 385$  nm (THF); **Quantenausbeute:**  $\Phi_f = 0.98$  (THF); **Extinktionskoeffizient:**  $\varepsilon = 20154$  (THF) (L/mol*cm).

Röntgenstrukturanalyse: vawe19 (Anhang)

#### 2.6 Synthese von 2,5-Bis(dibromboryl)thiophen (66)



19.41 g (78.0 mmol) Bortribromid werden langsam mittels einer Spritze zu einer Lösung von 7.08 g (31 mmol) 2,5-Bis(trimethylsilyl)thiophen **65** in 70 mL Toluol gegeben. Die Reaktionslösung wird für 3 h unter Rückfluss erwärmt, auf

Raumtemperatur abgekühlt und im Vakuum bis zur beginnenden Kristallisation eingeengt. Nach der Lagerung für 12 h bei 4 °C wird die Lösung filtriert und die erhaltenen Kristalle mit kaltem n-Hexan (2 x 10 mL) gewaschen. Man erhält 11.42 g (87 %) des Produktes **66** in Form farbloser Kristalle.

¹**H-NMR (C₆D₆):**  $\delta$  = 7.49 (s, 2H, **H**-3,4-Thienyl) ppm.

¹³C{¹H}-NMR (C₆D₆):  $\delta$  = 143.4 (s, C-3,4-Thienyl) ppm.

¹¹B{¹H}-NMR (C₆D₆):  $\delta$  = 49.7 (s) ppm.

**MS/EI:** *m*/*z* = 423 [M⁺].

Elementaranalyse: C₄H₂B₂Br₄S [423.36]

Ber.: C: 11.35 % H: 0.48 % Gef.: C: 11.35 % H: 0.58 %

# 2.7 Synthese von 2,5-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborolyl)thiophen (67)

Eine Suspension von 2,5-Bis(dibromboryl)thiophen **66** (2.30 g, 5.40 mmol) in 50 mL n-Hexan wird gleichzeitig mit einer Lösung von N,N'-Diethyl-ophenylendiamin **44** (1.78 g, 10.9 mmol) in n-Hexan (50 mL) langsam unter Rühren zu einer gekühlten Lösung (0 °C) von NEt₃ (2.20 g, 21.7 mmol) in 50 mL n-Hexan gegeben. Die Lösung wird für 30 Minuten bei Raumtemperatur gerührt, anschließend für 3 h unter Rückfluss erhitzt und nach Abkühlen auf Raumtemperatur für weitere 12 h bei dieser Temperatur gerührt. Nach der Filtration der Reaktionslösung wird der Filterkuchen mit n-Hexan gewaschen (2 x 20 mL) und die erhaltenen Filtrate vereinigt. Die vereinigten organischen Phasen werden im Vakuum bis zur Trockne eingeengt und der so erhaltene Rückstand mittels Destillation im Vakuum (ca. 300 °C, 1  $\cdot 10^{-3}$  mbar) aufgereinigt. Das erhaltene Rohprodukt wird in der Wärme in n-Hexan gelöst und für 3 Tage bei -30 °C gelagert. Nach Filtration werden 1.27 g (55 %) des Produktes **67** in Form farbloser Kristalle erhalten.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.49 (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 4.08 (q, 4H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 7.12 (m, 4H, H-Boryl), 7.22 (m, 4H, H-Boryl), 7.77 (s, 2H, H-3,4-Thienyl) ppm.

¹³C{¹H}-NMR (CDCI₃): δ = 16.5 (s, CH₂CH₃), 38.3 (s, CH₂CH₃), 109.2 (s, C-Boryl), 119.3 (s, C-Boryl), 135.5 (s, C-Thienyl), 137.6 (s, C-Boryl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 26.6$  (s).

**MS/EI:** *m*/*z* = 428 [M⁺].

Elementaranalyse: C₂₄H₃₀B₂N₄S [428.2]

Ber.: C: 67.32 % H: 7.06 % N: 13.08 % Gef.: C: 67.33 % H: 7.15 % N: 13.16 %

**UV-VIS:**  $\lambda_{max} = 316$  nm (THF); **Emission:**  $\lambda_{max} = 404$  nm (THF); **Quantenausbeute:**  $\Phi_f = 0.59$  (THF)(Referenz Coumarin 120,  $\Phi_f = 0.50$  in Ethanol); **CV:**  $E_{ox} = 598$  mV.

Röntgenstrukturanalyse: vawe06 (Anhang)

2.8 Alternative Synthese von 2,5-Bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborolyl)thiophen (67)



1 g (4.13 mmol) 2,5-Dibromthiophen wird in 100 mL THF gelöst und auf eine Temperatur von -78 °C gekühlt. Es werden 5.18 mL (8.29 mmol) n-Butyllithium (1.6 M in n-Hexan) hinzu gegeben und die Reaktionslösung für 2 h gerührt. Anschließend wird die Lösung für eine halbe Stunde auf Raumtemperatur gebracht, erneut auf -78 °C heruntergekühlt und darauf folgend mit 2.09 g (8.27 mmol) 2-Brombenzodiazaborol **45** umgesetzt. Es wird für 3 h bei -78 °C und nachfolgend für 12 h bei Raumtemperatur gerührt. Nach Filtration der Reaktionslösung und Entfernen der flüchtigen Bestandteile im Vakuum wird der erhaltene Rückstand destilliert (ca. 300 °C, 1⁻10⁻³ mbar). Aus dem so gewonnen Rohprodukt können nach Umkristallisation aus n-Hexan 1.10 g (62 %) der Verbindung **67** in Form farbloser Kristalle gewonnen werden.

#### Analytik: entspricht 2.7

2.9 Synthese von 5,5´-Bis(1´´,3´´-diethyl-1´´,3´´,2´´-benzodiazaborol-2´´-yl)-2,2´-dithiophen (68)



1 g (3.1 mmol) des 5,5'-Dibrom-2,2'-dithiophens, gelöst in 50 mL THF, werden auf -78 °C gekühlt und mit 4 mL (6.4 mmol) n-Butyllithium (1.6 M in n-Hexan) mittels einer Spritze versetzt. Die Reaktionslösung wird 1 h bei -78 °C und danach für 1 h bei 20 °C gerührt. Daraufhin wird die Reaktionslösung wieder auf -78 °C gekühlt und 1.57 g (6.2 mmol) des 2-Brombenzodiazaborols 45 mittels einer Spritze hinzu gegeben. Die Reaktionslösung wird 1 h bei -78 °C und über Nacht bei Raumtemperatur gerührt. Nach dem Entfernen des Lösungsmittels im Vakuum wird der Rückstand in Dichlormethan aufgenommen und filtriert. Das Filtrat wird bis zur Trockne eingeengt und der erhaltene Rückstand im Vakuum (1.10⁻³ mbar) unter Zuhilfenahme eines Bunsenbrenners destilliert. Die Umkristallisation aus Dichlormethan/THF ergibt nach Filtrieren der Reaktionslösung 1.44 g Produkt 68 (91%) als gelben Feststoff.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.40 (t, 12H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 3.96 (q, 8H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 7.05 (m, 4H, H-Boryl), 7.12 (m, 4H, H-Boryl), 7.36 (d, 2H, ³*J*_{HH} = 3.4 Hz, **H**-Dithienyl), 7.43 (d, 2H, ³*J*_{HH} = 3.4 Hz, **H**-Dithienyl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 16.3 (s, CH₂CH₃), 37.9 (s, CH₂CH₃), 108.8 (s, C-Boryl), 118.9 (s, C-Boryl), 125.4 (s, C-Dithienyl), 134.7 (s, C-Dithienyl), 137.1 (s, C-Boryl), 141.6 (s, C-Dithienyl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 26.0$  (s) ppm.

```
MS/EI: m/z = 510.2 [M<sup>+</sup>].
```

```
Elementaranalyse: C_{28}H_{32}N_4B_2S_2[510.34]
```

Ber.: C: 65.90 % H: 6.32 % N: 10.98 %

```
Gef.: C: 60.45 % H: 6.26 % N: 9.75 %
```

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 351$  nm (THF); **Emission:**  $\lambda_{max} = 448$  nm (THF); **Quantenausbeute:**  $\Phi_f = 0.52$  (THF); **Extinktionskoeffizient:**  $\epsilon = 33000$  (THF) (L/mol*cm).

Röntgenstrukturanalyse: vawe07 (Anhang)

2.10 Synthese von 9,9-Di(n-octyl)-2,7-bis(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)fluoren (70)



R = Octyl

Es werden 1.00 g (1.80 mmol) 9,9-Bis(n-octyl)-2,7-dibromfluoren in 50 mL Tetrahydrofuran gelöst und die Lösung auf -78 °C gekühlt. Bei dieser Temperatur werden 2.50 mL (4.01 mmol) einer 1.6 M n-Butyllithium-Lösung in n-Hexan hinzugetropft und die Reaktionslösung für 30 Minuten gerührt. Hierauf bringt man die Lösung auf Raumtemperatur und lässt diese für eine weitere Stunde rühren. Daraufhin wird erneut auf -78 °C heruntergekühlt und es werden langsam 0.91 g (3.60 mmol) 2-Brom-1,3,2-benzodiazaborol **45** mittels einer Spritze hinzu gegeben. Die Reaktionsmischung wird für 1 h bei dieser Temperatur gerührt, langsam auf Raumtemperatur gebracht und für weitere 12 h gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand in 30 mL Dichlormethan aufgenommen. Die getrübte Lösung wird filtriert und das Filtrat im Vakuum vollständig eingeengt. Der feste Rückstand wird unter Zuhilfenahme eines Bunsenbrenners (1^{-10⁻³} mbar) destilliert. Das leicht ölige Rohprodukt wird aus n-Pentan umkristallisiert, wobei das gewünschte Produkt **70** bei -20 °C nach 3 Stunden in sehr feinen, farblosen Nadeln auskristallisiert (1.07 g, 81 %).

¹**H-NMR (CDCl₃):**  $\delta$  = 0.83-1.24 (m, 30H, **H**-Octyl), 1.40 (t, 12H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 2.05 (m, 4H, **H**-Octyl) 3.88 (q, 8H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 7.10 (m, 4H, **H**-Boryl), 7.18 (m, 4H, **H**-Boryl), 7.60 (d, 2H, ³*J*_{HH} = 7.2 Hz, **H**-Fluoren), 7.62 (s, 2H, **H**-Fluoren), 7.88 (d, 2H, ³*J*_{HH} = 7.2 Hz, **H**-Fluoren) ppm.

¹³C{¹H}-NMR (CDCl₃):  $\delta$  = 14.1 (s, CH₃-Octyl), 16.3 (s, CH₂CH₃), 22.6, 24.1, 29.2, 29.3, 30.1, 31.8 (6s, CH₂-Octyl), 37.7 (s, CH₂CH₃), 40.4 (s, C-CH₂C₇H₁₅), 55.0 (C-9-Fluoren), 108.8 (s, C-Boryl), 118.6 (s, C-Boryl), 119.5, 128.1, 131.9 (3s, C-Fluoren), 137.2 (s, C-Boryl), 141.5, 150.2 (2s, C-Fluoren) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 29.3$  (s) ppm.

**MS/EI:** *m*/*z* = 734.5 [M⁺].

**Elementaranalyse:**  $C_{49}H_{68}B_2N_4$  [734.74]

Ber.: C: 80.10 % H: 9.33 % N: 7.63 %

Gef.: C: 73.84 % H: 9.41 % N: 6.34 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 318 \text{ nm}$  (THF); **Emission:**  $\lambda_{max} = 399 \text{ nm}$  (THF);

**Quantenausbeute:**  $\Phi_f = 0.87$ ; **Extinktionskoeffizient**:  $\epsilon = 32317$  (THF) (L/mol*cm).

2.11 Synthese von 2,3,5,6-Tetrafluor-1,4-di(1,3-diethyl-1,3,2-benzodiazaborolyl)benzol (79)



340 mg (2.26 mmol) 1,2,4,5-Tetrafluorbenzol werden in 30 mL THF gelöst und auf -78 °C gekühlt. Der Lösung werden 2.85 mL (4.64 mmol) n-Butyllithium (1.6 M in n-Hexan) hinzugefügt. Diese Lösung wird 1 h bei -78 °C gerührt, bevor unter Rühren 1.19 g (4.65 mmol) 2-Brom-1,3-diethyl-1,3,2-benzodiazaborol **45** hinzugetropft wird. Die Lösung wird 1 h bei -78 °C gerührt, langsam auf Raumtemperatur gebracht und über Nacht gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand per Destillation (ca. 350 °C, 1.10⁻³ mbar) aufgereinigt. Der glasartige Feststoff wird aus einem Dichlormethan/n-Hexan-Lösungsmittelgemisch umkristallisiert. Nach der Filtration werden 0.99 g (89 %) des Produktes **79** in Form kleiner, farbloser Nadeln isoliert.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.41 (t, 12H, ³*J*_{HH} = 7.0 Hz, CH₂CH₃), 3.84 (q, 8H, ³*J*_{HH} = 7.0 Hz, CH₂CH₃), 7.15 (m, 4H, H-Boryl), 7.16 (m, 4H, H-Boryl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 16.1 (s, CH₂CH₃), 38.4 (s, CH₂CH₃), 109.6, (s, C-Boryl), 119.2 (s, C-Boryl), 137.1 (s, C-Boryl) 146.2 (m, C-F-Aryl), 148.1 (m, C-F-Aryl) ppm.

¹¹B{¹H}-NMR (CDCl₃): δ = 25.74 (s) ppm.

¹⁹F{¹H}-NMR (CDCI₃):  $\delta = -130$  (s) ppm.

**MS/EI:** *m*/*z* = 494 [M⁺].

Elementaranalyse: C₂₆H₂₈N₄B₂F₄[494.2] Ber.: C: 63.20 % H: 5.71 % N: 11.34 % Gef.: C: 63.01 % H: 5.72 % N: 11.45 % **UV-Vis:**  $\lambda_{max} = 292$  nm (THF); **Emission :**  $\lambda_{max} = 420$  nm (THF); **Quantenausbeute:**  $\Phi_f = 0.43$  (THF); **Extinktionskoeffizient:**  $\epsilon = 24901$  (L/mol*cm).

Röntgenstrukturanalyse: vawe16 (Anhang)

2.12 Synthese von 1,3,5-Tris(1´,3´-diethyl-1´,3´,2´-benzodiazaborol-2´-yl)benzol (82)



3.00 g (71.46 mmol) CaH₂ werden in 100 mL Toluol suspendiert und mittels eines Eisbades auf 0 °C gekühlt. Hierzu werden 2.01 g (3.38 mmol) 1,3,5-Tris(dibromboryl)benzol **81** gelöst in 50 mL Toluol und 1.7 g (10.36 mmol) N,N'-Diethyl-o-phenylendiamin **44** gelöst in 50 mL Toluol gleichzeitig unter stetigem Rühren zugetropft. Es wird 1h bei 0 °C und für weitere 12 h bei Raumtemperatur gerührt. Anschließend wird die Reaktionslösung abfiltriert und das erhaltene Filtrat bis zur Trockne im Vakuum eingeengt. Nach Umkristallisation aus Methylcyclohexan erhält man 1.52 g (76 %) des Produktes **82** in Form farbloser Kristalle.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.36 (t, 18H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 3.90 (q, 12H, ³*J*_{HH} = 6.91 Hz, CH₂CH₃), 7.02 (m, 6H, H-Boryl), 7.13 (m, 6H, H-Boryl), 7.91 (s, 3H, H-Benzol) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 16.4 (s, CH₂CH₃), 37.7 (s, CH₂CH₃), 108.9 (s, C-Boryl), 118.7 (s, C-Boryl), 133.7 (s, C-Benzol), 137.2 (s, C-Boryl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 28.9$  (s) ppm.

**MS/EI:** *m*/*z* = 594.4 [M⁺].

**Elementaranalyse:**  $C_{36}H_{45}N_6B_3$  [594.23]

Ber.: C: 72.77 % H: 7.63% N: 14.14 % Gef.: C: 64.23 % H: 7.62% N: 10.48 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 299$  nm (THF); **Emission:**  $\lambda_{max} = 364$  nm (THF); **Quantenausbeute:**  $\Phi_f = 0.42$ ; **Extinktionskoeffizient:**  $\epsilon = 27664$  (THF) (L/mol*cm).

Röntgenstrukturanalyse: vawe05 (Anhang)

2.13 Synthese von 1,3,5-Tris{4´-(1´´,3´´-diethyl-1´´,3´´,2`´-benzodiazaborol-2´´-yl)phenyl}benzol (84)



2 g (3.7 mmol) des 1,3,5-Tris(4-bromphenyl)benzols **83** gelöst in 50 mL Diethylether werden auf -78 °C gekühlt und mit 7.47 mL (11.2 mmol) n-Butyllithium (1.6 M in n-Hexan) mittels einer Spritze versetzt. Es wird 1.5 h bei -78 °C und danach 0.5 h bei Raumtemperatur gerührt. Daraufhin wird die Reaktionslösung wieder auf -78 °C gebracht und 2.82 g (11.2 mmol) des 2-Brombenzodiazaborols **45** werden hinzugefügt. Die Reaktionslösung wird 2 h bei -78 °C und über Nacht bei Raumtemperatur gerührt. Anschließend wird die Lösung etwa zur Hälfte eingeengt, filtriert und der erhaltene Feststoff im Vakuum getrocknet. Der Feststoff wird in Dichlormethan aufgenommen, erwärmt und nochmals filtriert. Das Filtrat wird im Vakuum bis zur Trockne eingeengt, wodurch man ein hellbraunes Rohprodukt erhält. Dieses ergibt nach der Umkristallisation aus Methylcyclohexan das reine Produkt **84** (1.74 g, 58 %) in Form eines farblosen Feststoffes.

¹**H-NMR (CDCl₃):**  $\delta = 1.45$  (t, 18H, ³ $J_{HH} = 6.9$  Hz, CH₂CH₃), 3.94 (q, 12H, ³ $J_{HH} = 6.9$  Hz, CH₂CH₃), 7.10 (m, 6H, H-Boryl), 7.21 (m, 6H, H-Boryl), 7.75 (d, 6H, ³ $J_{HH} = 8.2$  Hz, H-Benzol), 7.88 (d, 6H, ³ $J_{HH} = 8.2$  Hz, H-Benzol), 8.00 (s, 3H, H-2,4,6-(zentrales)Benzol) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 16.3 (s, CH₂CH₃), 37.7 (s, CH₂CH₃), 108.9, (s, C-Boryl), 118.7 (s, C-Boryl), 125.2 (s, C-Aryl), 126.9 (s, C-Aryl), 134.1 (s, C-Aryl), 137.1 (s, C-Boryl), 141.2 (s, C-Aryl), 142.3 (s, C-Aryl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta$  = 28.6 (s) ppm.

**MS/EI:** *m*/*z* = 822.5 [M⁺].

Elementaranalyse: C₅₄H₅₇B₃N₆ [822.53] Ber.: C: 78.85 % H: 6.99 % N: 10.22 %

Gef.: C: 68.26 % H: 6.96 % N: 8.63 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 300$  nm (THF); **Emission:**  $\lambda_{max} = 417$  nm (THF); **Quantenausbeute:**  $\Phi_f = 0.71$  (THF), **Extinktionskoeffizient:**  $\varepsilon = 54642$  (THF) (L/mol*cm).

Röntgenstrukturanalyse: vawe10 (Anhang)

2.14 Synthese von 1,3,5-Tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-

2^{''}-yl)-2[']-thienyl}benzol (88) [1. aus 1,3,5-Tris(2[']-5^{''}-chlorthienyl)benzol (86)]



Zu 0.4 g (0.93 mmol) des 1,3,5-Tris(4-chlorthienyl)benzols **86**, gelöst in 50 mL THF, werden bei -78 °C, 1.78 mL (2.85 mmol) n-Butyllithium (1.6 M in n-Hexan) langsam zugegeben. Es wird 1.5 h bei -78 °C und danach für 0.5 h bei 20 °C gerührt. Daraufhin wird die Reaktionslösung wieder auf -78 °C gebracht und 0.72 g (2.84 mmol) des 2-Brombenzodiazaborols **45** mittels einer Spritze hinzugetropft. Die Reaktionslösung wird 2 h bei -78 °C und über Nacht bei Raumtemperatur gerührt. Die Lösung wird abfiltriert, im Vakuum von flüchtigen Bestandteilen befreit, in Dichlormethan aufgenommen, erwärmt und nochmals filtriert. Das aus Dichlormethan gewonnene Filtrat wird im Vakuum bis zur Trockne eingeengt. Von dem erhaltenenen, öligen Rohprodukt werden NMR-Spektren angefertigt.

**Analytik:** Die erhaltenen NMR-Spektren Spektren zeigen hauptsächlich Signale, die dem Edukt und Zersetzungsprodukten zuzuordnen sind.

# 2.15 Synthese von 1,3,5-Tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-2''-yl)-2'-thienyl}benzol (88) [2. aus 1,3,5-Tris(5-bromthienyl)benzol (85)]

In 50 mL THF werden 0.3 g (0.54 mmol) des 1,3,5-Tris(4-bromthienyl)benzols **85** gelöst und auf eine Temperatur von -78 °C gekühlt. Zu der gekühlten Lösung werden unter Rühren 1.03 mL (1.65 mmol) n-Butyllithium (1.6 M in n-Hexan) gegeben. Bei dieser Temperatur wird die Lösung für 2 h gerührt und danach für

eine weitere Stunde bei 20 °C. Anschließend wird wieder auf -78 °C gekühlt und 0.41 g (1.62 mmol) des 2-Brombenzodiazaborols **45** langsam hinzugefügt. Es wird für 2 h bei -78 °C und danach über Nacht bei Raumtemperatur gerührt. Nach dem Filtrieren der Reaktionslösung wird das Filtrat bis zur Trockne eingeengt, in heißem Dichlormethan aufgenommen und nochmals filtriert. Das Filtrat wird im Vakuum vom Lösungsmittel befreit und der so erhaltene Feststoff mittels Säulenchromatographie (Kieselgel 60, Hexan/Dichlormethan, 1:1) aufgereinigt. Man erhält 0.19 g (42 %) des Produktes **88** als farblose Plättchen.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.43 (t, 18H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 4.00 (q, 12 H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 7.08 (m, 6H, H-Boryl), 7.20 (m, 6H, H-Boryl), 7.48 (d, 3H, ³*J*_{HH} = 3.4 Hz, **H**-Thienyl), 7.63 (d, 3H, ³*J*_{HH} = 3.4 Hz, **H**-Thienyl), 7.93 (s, 3H, **H**-2,4,6-(zentrales)Benzol) ppm.

¹³C{¹H}-NMR (CDCl₃):  $\delta = 16.4$  (s, CH₂CH₃), 38.0 (s, CH₂CH₃), 108.9, (s, C-Boryl), 111.4 (s, C-Aryl), 118.9 (s, C-Boryl), 123.3 (s, C-Aryl), 125.4 (s, C-Aryl), 134.9 (s, C-Aryl), 135.7 (s, C-Aryl), 137.2 (s, C-Boryl), 148.0 (s, C-Aryl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 26.0$  (s) ppm.

**MS/EI:**  $m/z = 840 [M^+]$ .

Elementaranalyse: C₄₈H₅₁N₆B₃S₃[840.6] Ber.: C: 68.59 % H: 6.12 % N: 10.00 % Gef.: C: 67.76 % H: 4.86 % N: 6.12 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch

nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 330$  (THF), 329 (Ethanol), 330 (Dichlormethan), 328 (n-Hexan) nm; **Emission:**  $\lambda_{max} = 446$  (THF), 446 (Ethanol), 453 (Dichlormethan), 408 (n-Hexan) nm; **Quantenausbeute:**  $\Phi_f = 0.32$  (THF), 0.40 (Ethanol), 0.63 (Dichlormethan), 0.62 (n-Hexan); **Extinktionskoeffizient:**  $\varepsilon = 52941$  (THF) (L/mol*cm).

194 -

## Röntgenstrukturanalyse: vawe15 (Anhang)

# 2.16 Synthese von 1,3,5-Tris{5'(1'',3''-diethyl-1'',3'',2''-benzodiazaborol-2''-yl)-2'-thienyl}benzol 88 [3. aus 1,3,5-Tris(thienyl)benzol (87)]

0.5 g (1.54 mmol) des 1,3,5-Tris(4-thienyl)benzols werden in 50 mL THF gelöst, auf -78 °C gekühlt und langsam mit 2.9 mL (4.64 mmol) n-Butyllithium (1.6 M in n-Hexan) versetzt. Für 1.5 h wird bei -78 °C und danach 1 h bei 0 °C gerührt. Hierauf wird die Reaktionslösung auf -78 °C gekühlt und 1.17 g (4.63 mmol) des 2-Brombenzodiazaborols **45** hinzu gegeben. Die Reaktionslösung wird für 3 h bei -78 °C und über Nacht bei Raumtemperatur gerührt. Die Lösung wird filtriert, im Vakuum bis zur Trockne eingeengt, der erhaltene Feststoff in heißem Dichlormethan gelöst und ein zweites Mal filtriert. Das Lösungsmittel wird im Vakuum entfernt und das feste Rohprodukt mittels Säulenchromatographie (Kieselgel 60, Hexan/Dichlormethan, 1:1) aufgereinigt. Man erhält 0.69 g (53 %) der Verbindung **88** in Form eines farblosen Feststoffs.

Analytik: entspricht 2.15

2.17 Synthese von 2-(4⁻Dimethylaminophenylethinyl)-1,3-diethyl-1,3,2benzodiazaborol (97)



2.0 g (13.8 mmol) des 4-N,N'-Dimethylaminophenylacetylens werden in 50 mL THF gelöst und auf -78 °C gekühlt. Hierzu werden unter Rühren 8.7 mL (13.92 mmol) n-Butyllithium (1.6 M in n-Hexan) gegeben, 1 h bei -78 °C und für weitere 0.5 h bei Raumtemperatur gerührt. Die Lösung wird erneut auf -78 °C gekühlt und 3.49 g (13.8 mmol) des Benzodiazaborols **45** werden langsam mittels einer Spritze zugegeben. Die Reaktionslösung wird 1 h bei -78 °C gerührt, langsam auf Raumtemperatur gebracht und für weitere 12 h bei dieser Temperatur gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt, der erhaltene Rückstand in Dichlormethan aufgenommen und filtriert. Die Lösung

wird bis zur beginnenden Kristallisation eingeengt und für 2 Tage bei -20 °C gelagert. Nach dem Abdekantieren der überstehenden Lösung und Entfernung des restlichen Lösungsmittels im Vakuum erhält man 2.37 g (54 %) des Produktes **97** in Form farbloser Kristalle.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.38 (t, 6H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 3.0 (s, 6H, N-CH₃), 3.91 (q, 4H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 6.65 (d, 2H, ³*J*_{HH} = 9.1 Hz, **H**-Phenyl), 7.01 (m, 2H, **H**-Boryl), 7.05 (m, 2H, **H**-Boryl), 7.49 (d, 2H, ³*J*_{HH} = 9.1 Hz, **H**-Phenyl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 16.1 (s, CH₂CH₃), 38.1 (s, CH₂CH₃), 40.2 (s, N-(CH₃)₂), 108.6 (s, C-Boryl), 109.8 (s, C-Phenyl), 111.7 (s, C-Phenyl), 118.6 (s, C-Boryl), 133.3 (s, C-Phenyl), 137.0 (s, C-Boryl), 150.4 (s, C-N(CH₃)₂) ppm. *Die beiden Kohlenstoffatome der Acetyleneinheit können nicht detektiert werden. Ähnliche Beobachtungen machte Brown im Fall der Verbindung* **93**.^[85]

¹¹B{¹H}-NMR (CDCI₃):  $\delta = 21.2$  (s) ppm.

**MS/EI:** *m*/*z* = 317.2 [M⁺], 302.2 [M⁺-CH₃].

Elementaranalyse: C₂₀H₂₄N₃B [317.25] Ber.: C: 75.72 % H: 7.63 % N: 13.25 % Gef.: C: 75.05 % H: 7.58 % N: 13.02 %

UV-Vis:  $\lambda_{max}$  = 325 nm (THF); Emission :  $\lambda_{max}$  = 355 nm (THF); Quantenausbeute:  $\Phi_f$  = 0.97 (THF); Extinktionskoeffizient:  $\epsilon$  = 44710 (THF) (L/mol*cm).

Röntgenstrukturanalyse: vawe09 (Anhang)




In 30 mL THF werden 0.2 g (1.35 mmol) des 4-Methylthiophenylacetylens gelöst und auf eine Temperatur von -78 °C gebracht. Unter Rühren werden hierzu 0.87 mL (1.39 mmol) n-Butyllithium (1.6 M in n-Hexan) gegeben und 3 h bei dieser Temperatur und für eine weitere halbe Stunde bei Raumtemperatur gerührt. Danach wird die Lösung abermals auf -78 °C gekühlt und 0.35 g (1.37 mmol) des 2-Brombenzodiazaborols **45**, gelöst in 5 mL THF, langsam mit einer Spritze zugegeben. Die Reaktionslösung wird 2 h bei -78 °C gerührt, langsam auf Raumtemperatur erwärmt und für weitere 12 h bei Raumtemperatur gerührt. Anschließend wird die Reaktionslösung im Vakuum bis zur Trockne eingeengt, der erhaltene Rückstand in Dichlormethan aufgenommen und filtriert. Die flüchtigen Bestandteile des Filtrats werden im Vakuum entfernt und das so erhaltene Rohprodukt mittels Kurzwegdestillation aufgereinigt. Der erhaltene Feststoff wird in n-Pentan/Dichlormethan (ca. 20:1) aufgenommen und bei -20 °C gelagert. Nach 1 Tag erhält man nach Filtration 0.18 g (42 %) des Produktes **98** in Form eines farblosen Feststoffs.

¹**H-NMR (CDCl₃):**  $\delta$  = 1.37 (t, 6H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 2.50 (s, 3H, S-CH₃), 3.90 (q, 4H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃), 7.02 (m, 2H, H-Boryl), 7.06 (m, 2H, H-Boryl), 7.21 (d, 2H, ³*J*_{HH} = 8.5 Hz, **H**-Phenyl), 7.47 (d, 2H, ³*J*_{HH} = 8.5 Hz, **H**-Phenyl) ppm.

¹³C{¹H}-NMR (CDCl₃): δ = 14.5 (s, S-CH₃), 15.3 (s, CH₂CH₃), 37.3 (s, CH₂CH₃), 107.9 (s, C-Boryl), 117.9 (s, C-Boryl), 118.4 (s, C-Phenyl), 124.8 (s, C-Phenyl), 131.4 (s, C-Phenyl), 136.0 (s, C-Boryl), 139.2 (s, C-SCH₃) ppm. Die beiden Kohlenstoffatome der Acetyleneinheit können nicht detektiert werden. Ähnliche Beobachtungen machte Brown im Fall der Verbindung **93**.^[85]

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 20.9$  (s) ppm.

**MS/EI:** *m*/*z* = 320.1 [M⁺].

#### Elementaranalyse: C₁₉H₂₁N₂BS [320.27]

Ber.: C: 71.26 % H: 6.61 % N: 8.75 %

Gef.: C: 70.27 % H: 6.60 % N: 8.69 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 315 \text{ nm}$  (THF), **Emission:**  $\lambda_{max} = 410 \text{ nm}$  (THF);

**Quantenausbeute:**  $\Phi_f = 0.89$  (THF); **Extinktionskoeffizient:**  $\epsilon = 31800$  (THF)(L/mol*cm).

## 2.19 Synthese von 2-(4´-Methoxyphenylethinyl)-1,3-diethyl-1,3,2-benzodiazaborol (99)



Man löst 2 g (15.13 mmol) des 4-Methoxyphenylacetylens in 50 mL THF und kühlt die Lösung auf -78 °C. Hierzu werden unter Rühren 9.5 mL (15.2 mmol) n-Butyllithium (1.6 M in n-Hexan) gegeben und 1 h bei 78 °C und für 0.5 h bei Raumtemperatur gerührt. Die Lösung wird erneut auf -78 °C gekühlt und 3.82 g (15.13 mmol) des 2-Brombenzodiazaborols **45** werden langsam mittels einer Spritze zugegeben. Die Reaktionslösung wird 1 h bei -78 °C gerührt, langsam auf Raumtemperatur gebracht und für weitere 12 h bei dieser Temperatur gerührt. Anschließend wird das Lösungsmittel im Vakuum entfernt, der erhaltene Rückstand in Dichlormethan aufgenommen und filtriert. Das Lösungsmittel wird im Vakuum entfernt und das Rohprodukt mittels Kurzwegdestillation (ca. 350 °C,  $1 \cdot 10^{-3}$  mbar) aufgereinigt. Die anschließende Umkristallisation aus n-Hexan/Dichlormethan ergibt 3.20 g (69 %) des Produktes **99** in Form farbloser Kristalle.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.37 (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 2.82 (s, 3H, O-CH₃), 3.90 (q, 4H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 6.87 (d, 2H, ³*J*_{HH} = 8.8 Hz, **H**-Phenyl), 7.00 (m, 2H, **H**-Boryl), 7.05 (m, 2H, **H**-Boryl), 7.51 (d, 2H, ³*J*_{HH} = 8.8 Hz, **H**-Phenyl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 16.1 (s, CH₂CH₃), 38.2 (s, CH₂CH₃), 55.3 (O-CH₃), 108.7 (s, C-Boryl), 114.0 (s, C-Phenyl), 115.2 (s, C-Phenyl), 118.8 (s, C-Phenyl), 133.6 (s, C-Phenyl), 136.9 (s, C-Boryl), 160.6 (s, C-OCH₃) ppm. Die beiden Kohlenstoffatome der Acetyleneinheit können nicht detektiert werden.

Ähnliche Beobachtungen machte Brown im Fall der Verbindung **93**.^[85]

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 21.1$  (s) ppm.

**MS/EI:** *m*/*z* = 304 [M⁺], 289 [M⁺-CH₃].

**Elementaranalyse:**  $C_{19}H_{21}ON_2B$  [304.19]

Ber.: C: 75.02 % H: 6.96 % N: 9.21 %

Gef.: C: 74.04 % H: 7.15 % N: 8.91 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 307$  nm (THF); **Emission:**  $\lambda_{max} = 374$  nm (THF); **Quantenausbeute:**  $\Phi_f = 0.97$  (THF); **Extinktionskoeffizient:**  $\epsilon = 26667$  (THF)(L/mol*cm).

Röntgenstrukturanalyse: vawe13 (Anhang)

## 2.20 Synthese von 2-(4´-Methylphenylethinyl)-1,3-diethyl-1,3,2-benzodiazaborol (100)



4-Methylphenylacetylen (0.43 g, 1.7 mmol) wird in 30 mL THF gelöst und auf -78 °C gekühlt. Unter Rühren werden hierzu 1.14 mL (1.71 mmol) n-Butyllithium (1.5 M in n-Hexan) gegeben, 3 h bei einer Temperatur von -78 °C und für eine weitere halbe Stunde bei 20 °C gerührt. Danach wird die Lösung erneut auf -78 °C gebracht und 0.2 g (1.7 mmol) des 2-Brombenzodiazaborols **45**, gelöst in 5 mL THF, langsam hinzugetropft. Die Reaktionslösung wird 2.5 h bei -78 °C gerührt, langsam auf Raumtemperatur gebracht und für weitere 12 h bei dieser Temperatur gerührt. Anschließend wird die Reaktionslösung von flüchtigen Bestandteilen im Vakuum befreit, der erhaltene Feststoff in Dichlormethan gelöst und filtriert. Das Lösungsmittel wird im Vakuum entfernt und das Rohprodukt mittels Kurzwegdestillation aufgereinigt (ca. 350 °C, 1·10⁻³ mbar). Der Feststoff wird in heißem n-Pentan gelöst und für 3 Tage bei -20 °C gelagert. Hierdurch bilden sich farblose Kristalle der Verbindung **100**, die nach dem Filtrieren 0.32 g (65 %) ergeben.

¹**H-NMR (CDCl₃):**  $\delta$  = 1.39 (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 2.38 (s, 3H, Phenyl-CH₃), 3.93 (q, 4H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 7.03 (m, 2H, **H**-Boryl ), 7.08 (m, 2H, **H**-Boryl), 7.18 (d, 2H, ³*J*_{HH} = 8.2 Hz, **H**-Phenyl), 7.49 (d, 2H, ³*J*_{HH} = 8.2 Hz, **H**-Phenyl) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta = 16.2$  (s, CH₂CH₃), 21.6 (s, Phenyl-CH₃), 38.2 (s, CH₂CH₃), 106.8 (s, B-C=C-Ph), 108.8 (s, C-Boryl), 118.8 (s, C-Boryl), 120.1 (s, C-Phenyl), 129.2 (s, C-Phenyl), 132.0 (s, C-Phenyl), 137.0 (s, C-Boryl), 139.0 (s, C-CH₃) ppm.

¹¹B{¹H}-NMR (CDCI₃):  $\delta = 21.1$  (s) ppm.

**MS/EI:** *m*/*z* = 288.2 [M⁺], 273.2 [M⁺-CH₃].

Elementaranalyse: C₁₉H₂₁N₂B [288.2]

Ber.: C: 79.18 % H: 7.34 % N: 9.72 % Gef.: C: 78.98 % H: 7.22 % N: 9.65 %

**UV-Vis:**  $\lambda_{max} = 307 \text{ nm} \text{ (THF)}$ ; **Emission:**  $\lambda_{max} = 388 \text{ nm} \text{ (THF)}$ ; **Quantenausbeute:**  $\Phi_f = 0.99 \text{ (THF)}$ ; **Extinktionskoeffizient:**  $\epsilon = 22334 \text{ (THF)}(\text{L/mol*cm})$ .

#### Röntgenstrukturanalyse: vawe17 (Anhang)

## 2.21 Syntheseversuch von 2-(4⁻-Cyanophenylethinyl)-1,3-diethyl-1,3,2benzodiazaborol (101)



0.3 g (2.4 mmol) des 4-Cyanophenylacetylens werden in 20 mL THF gelöst und auf -100 °C gekühlt. Hierzu werden unter Rühren 1.5 mL (2.4 mmol) n-Butyllithium (1.6 M Lösung in n-Hexan) gegeben und 2 h bei -100 °C gerührt. Anschließend werden 0.6 g (2.4 mmol) des 2-Brombenzodiazaborols 45 langsam mittels einer Spritze zugegeben. Die Reaktionslösung wird für weitere 3 h bei -100 °C anschließend während gerührt und des Erwärmens auf Raumtemperatur, das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand wird in Dichlormethan aufgenommen und filtriert. Das Lösungsmittel wird im Vakuum entfernt und das so erhaltene Rohprodukt mittels Kurzwegdestillation aufgereinigt. Die Umkristallisation aus n-Pentan/Chloroform liefert einen farblosen, kristallinen Feststoff, von dem NMR-Spektren und eine Röntgenstrukturanalyse angefertigt werden.

#### Analytik:

Die ¹H- und ¹³C{1H}-NMR-Spektren zeigen eine Vielzahl von Signalen, die nicht eindeutig zugeordnet werden können. Im ¹¹B{¹H}-NMR-Spektrum können zwei Signale, bei  $\delta$  = 30.7 und 22.2 ppm (CDCl₃) detektiert werden, was für die

Anwesenheit zweier borhaltiger Verbindungen spricht. Die angefertigte **Röntgenstrukturanalyse (vawe18)** zeigt die Bildung der Verbindung **102**.



# 2.22 Synthese von 9,9-Bis(n-octyl)-2,7-di[(benzodiazaborolyl)ethinyl]fluoren (104)



Man löst 0.2 g (0.46 mmol) 9,9-Bis(n-octyl)-2,7-diethinylenfluoren in 20 mL Tetrahydrofuran und kühlt die Lösung auf -78 °C. Bei dieser Temperatur werden 0.58 mL (0.93 mmol) einer 1.6 molaren n-Butyllithiumlösung in n-Hexan hinzugetropft und für weitere 2 Stunden bei dieser Temperatur gerührt. Anschließend bringt man die Reaktionslösung auf Raumtemperatur und rührt für weitere 0.5 h. Es wird erneut auf -78 °C gekühlt und man tropft langsam 0.24 g (0.95 mmol) 2-Brombenzodiazaborol **45** hinzu. Die Reaktionsmischung wird für 2 Stunden bei dieser Temperatur und anschließend 16 h bei Raumtemperatur gerührt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand in 30 mL Dichlormethan aufgenommen. Die getrübte Lösung wird filtriert und im Vakuum vollständig eingeengt. Der erhaltene Feststoff wird aus n-Pentan bei -20 °C umkristallisiert, wobei das gewünschte Produkt **104** als farbloser Feststoff anfällt (0.21 g, 59 %).

¹**H-NMR (CDCl₃):**  $\delta$  = 0.63-1.24 (m, 24H, Octyl-CH₂) 0.80 (t, 6H, ³*J*_{HH} = 6.9 Hz, Octyl-CH₃), 1.42 (t, 12H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃ (Boryl)), 2.00 (m, 4H, Octyl-CH₂), 3.96 (q, 8H, ³*J*_{HH} = 6.9 Hz, CH₂CH₃ (Boryl)), 7.04 (m, 4H, **H**-Boryl), 7.09 (m, 4H, **H**-Boryl), 7.52 (s, 2H, 4,8-CH-Fluoren), 7.58 (d, 2H, ³*J*_{HH} = 7.5 Hz, CH-Fluoren), 7.68 (d, 2H, ³*J*_{HH} = 7.5 Hz, CH-Fluoren) ppm.

¹³C{¹H}-NMR (CDCl₃):  $\delta$  = 14.1 (s, CH₃-Octyl), 16.2 (s, CH₂CH₃ (Boryl)), 22.6, 23.7, 24.1, 29.2, 30.0, 31.8, (6s, CH₂-Octyl), 38.3 (s, CH₂CH₃ (Boryl)), 40.4 (s, C-CH₂C₇H₁₅), 55.4 (s, C-Fluoren(C1)), 107.51 (s, C-Fluoren), 108.9 (s, C-Boryl), 118.9 (s, C-Boryl), 120.06, 121.9, 126.3, 131.5 (4s, C-Fluoren), 137.0 (s, C-Boryl), 141.06, 151.20 (2s, C-Fluoren) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 20.5$  (s) ppm.

**MS/EI:** *m*/*z* = 782.6 [M⁺].

**UV-Vis:**  $\lambda_{max} = 355 \text{ nm} \text{ (THF)}$ ; **Emission:**  $\lambda_{max} = 437 \text{ nm} \text{ (THF)}$ ; **Quantenausbeute:**  $\Phi_f = 0.45 \text{ (THF)}$ ; **Extinktionskoeffizient:**  $\epsilon = 66016 \text{ (THF)}$ (L/mol*cm).

# 2.23 Synthese von 1,3-Diethyl-2-(p-diphenylethinyl)-1,3,2-benzodiazaborol (105)



Zu einer Lösung von 0.55 g (2.14 mmol) 4-Bromdiphenylacetylen in 50 mL Tetrahydrofuran werden unter Rühren bei -78 °C 1.41 mL (2.26 mmol) n-Butyllithium (1.6 M Lösung in n-Hexan) getropft. Es wird eine halbe Stunde bei -78 °C und weitere 30 Minuten bei Raumtemperatur gerührt. Dann wird die Reaktionsmischung wieder auf -78 °C gekühlt, 0.54 g (2.14 mmol) 2-Brombenzodiazaborol **45** zugetropft, eine Stunde bei dieser Temperatur und anschließend bei Raumtemperatur über Nacht gerührt. Nun wird die Lösung bis zur Trockne eingeengt, der Rückstand in Dichlormethan aufgenommen und über eine Glasfritte filtriert. Im Vakuum werden das Lösungsmittel und die flüchtigen Bestandteile entfernt, das erhaltene, hellbraune Rohprodukt mit kaltem n-Pentan (2 x 5 mL) gewaschen und aus n-Hexan/Dichlormethan umkristallisiert. Hierdurch erhält man 0.29 g (39 %) des Produktes **106** in Form farbloser Kristalle. ¹**H-NMR (CDCI₃):**  $\delta$  = 1.31 (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 3.78 (q, 4H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 7.08 (m, 5H, H-Phenyl, H-Boryl), 7.35 (m, 4H, H- H-Phenyl, H-Boryl), 7.55 (d, 2H, ³*J*_{HH} = 7.6 Hz, H-Phenyl), 7.61 (d, 2H, ³*J*_{HH} = 7.6 Hz, H-Phenyl) ppm.

¹³C{¹H}-NMR (CDCl₃):  $\delta = 16.3$  (s, CH₂CH₃), 37.6 (s, CH₂CH₃), 89.5, 90.0 (2s, C=C), 108.9 (s, C-Boryl), 118.7 (s, C-Boryl), 123.3 (s, C-Phenyl), 123.4 (s, C-Phenyl), 128.3 (s, C-Phenyl), 128.4 (s, C-Phenyl), 131.0 (s, C-Phenyl), 131.6 (s, C-Phenyl), 133.4 (s, C-Phenyl), 137.1 (s, C-Boryl) ppm.

¹¹B{¹H}-NMR (CDCl₃):  $\delta = 28.6$  (s) ppm.

**MS/EI:** *m*/*z* = 350.2 [M⁺].

Elementaranalyse: C₂₄H₂₃N₂B [350.28]

Ber.: C: 82.30 % H: 6.62 % N: 8.00 %

Gef.: C: 80.27 % H: 6.85 % N: 8.46 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 305 \text{ nm}$  (THF); **Emission:**  $\lambda_{max} = 437 \text{ nm}$  (THF).

Röntgenstrukturanalyse: vawe11 (Anhang)

### 2.24 Synthese von Bis-4,4 (11,31-diethyl-11,31,21-benzodiazaborol-



Eine Lösung von 0.51 g (1.53 mmol) Bis(4-bromphenyl)acetylen in 40 mL Tetrahydrofuran wird auf -78 °C gekühlt und bei dieser Temperatur tropfenweise mit 2.15 mL (3.44 mmol) einer 1.6 molaren n-Butyllithiumlösung in n-Hexan versetzt. Man rührt die Lösung für 30 Minuten bei -78 °C und bringt sie anschließend auf Raumtemperatur, bei der sie für weitere 30 Minuten gerührt wird. Man kühlt hiernach erneut auf -78 °C herunter und tropft langsam 0.80 g (3.17 mmol) 2-Brombenzodiazaborol 45 hinzu. Die Reaktionsmischung wird für 1 h bei dieser Temperatur gerührt und anschließend innerhalb von 12 h auf Raumtemperatur gebracht. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand in 30 mL Dichlormethan aufgenommen. Man filtriert die getrübte Lösung ab und engt sie vollständig ein. Der erhaltene Rückstand wird im Hochvakuum unter Zuhilfenahme eines Bunsenbrenners (1.10⁻³ mbar) destilliert. Man erhält einen leicht gelblichen Feststoff, der aus einer Mischung von Methylcyclohexan/Dichlormethan umkristallisiert wird. Das gewünschte Produkt 106 kristallisiert hierbei in kleinen, farblosen Stäbchen, die nach Filtration 0.38 g (48 %) ergeben.

¹**H-NMR (CDCI₃):**  $\delta$  = 1.32 (t, 12H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 3.79 (q, 8H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 7.06 (m, 4H, H-Boryl), 7.13 (m, 4H, H-Boryl), 7.57 (d, 4H, ³*J*_{HH} = 7.5 Hz, **H**-Phenyl), 7.64 (d, 4H, ³*J*_{HH} = 7.5 Hz, **H**-Phenyl) ppm.

¹³C{¹H}-NMR (CDCl₃):  $\delta$  = 16.3 (s, CH₂CH₃), 37.7 (s, CH₂CH₃), 90.2 (s, C=C), 109.0 (s, C-Boryl), 118.8 (s, C-Boryl), 123.4 (s, C-Phenyl), 131.1 (s, C-Phenyl), 133.4 (s, C-Phenyl), 137.1 (s, C-Boryl) ppm.

¹¹B{¹H}-NMR (CDCI₃):  $\delta = 28.5$  (s) ppm.

**MS/EI:** *m*/*z* = 522.3 [M⁺].

**UV-Vis:**  $\lambda_{max} = 314 \text{ nm}$  (THF); **Emission:**  $\lambda_{max} = 431 \text{ nm}$  (THF); **Quantenausbeute:**  $\Phi_f = 0.36$  (THF); *der* **Extinktionskoeffizient** konnte aufgrund einer zu geringen Löslichkeit der Substanz **106** in THF nicht bestimmt werden.

Röntgenstrukturanalyse: vawe14 (Anhang)

#### 2.25 Synthese von 5-Brom-2-(4-methoxyphenylethinyl)benzonitril (107)



In einem Kolben werden 3.30 g (25 mmol) des 4-Methoxyphenylacetylens und 7.70 g (25 mmol) des 5-Brom-2-iodbenzonitrils in 60 mL Piperidin gelöst. Unter Rühren werden 0.52 g (0.274 mmol) Kupfer-(I)-iodid sowie 0.53 g (0.078 mmol) Bis(triphenylphosphin)palladium(II)chlorid zugegeben. Die Reaktionslösung wird über Nacht bei Raumtemperatur weiter gerührt. Der entstandene, gelbe Feststoff wird abfiltriert, zweifach mit n-Pentan gewaschen und im Vakuum getrocknet. Die weitere Aufreinigung erfolgt säulenchromatographisch an Kieselgel 60 mit Dichlormethan/Petrolether (1:1) als Laufmittel. Man erhält zwei Fraktionen, wobei die erste mit einem  $R_f$ -Wert von 0.51 dem Produkt **107** entspricht. Nach dem Entfernen des Lösungsmittels im Vakuum erhält man 4.68 g (60 %) des Produktes **107**.

#### 1. Fraktion (107):

**DC:**  $R_f = 0.51$  (DCM/Petrolether (v/v = 1:1))

¹**H-NMR (CDCI₃):**  $\delta$  = 3.82 (s, 3H, O-CH₃), 6.88 (d, 2H, ³J_{HH} = 8.8 Hz, **H**-o-Methoxybenzol), 7.43 (d, 1H, ³J_{HH} = 8.8 Hz, **H**-5-Benzonitril), 7.53 (d, 2H, ³J_{HH} = 8.8 Hz, **H**-m-Methoxybenzol), 7.65 (dd, 1H, ³J_{HH} = 8.8 Hz, ⁴J_{HH} = 2.0 Hz, **H**-4-Benzonitril), 7.76 (d, 1H, ⁴J_{HH} = 2.0 Hz, **H**-2-Benzonitril) ppm.

¹³C{¹H}-NMR (CDCl₃):  $\delta$  = 55.4 (s, O-CH₃), 83.9, 97.7 (2s, C=C), 113.7, 114.2, 116.3, 116.5 (4s, C-Aryl), 121.3, 126.6, 132.9, 133.6, 135.1, 135.7, 160.5 (7s, C-Aryl oder C-CN) ppm.

**MS/EI:** *m*/*z* = 311 [M⁺], 296 [M⁺-CH₃].

#### 2. Fraktion (Nebenprodukt):

**DC:**  $R_f = 0.33$  (DCM/Petrolether (v/v = 1:1)).

2.26 Synthese von 5-(1´,3´-Diethylbenzo[1´,3´,2´]diazaborol-2´-yl)-2-(4´´methoxyphenylethinyl)benzonitril (108)



2 g (6.4 mmol) des 5-Brom-2-(4-methoxyphenylethinyl)benzonitrils **107** werden in 50 mL THF gelöst und auf -100 °C gekühlt, bevor 4.2 mL (6.7 mmol) n-Butyllithium (1.6 M Lösung in n-Hexan) unter Rühren langsam hinzugetropft werden. Nach beendeter Zugabe wird für eine weitere Stunde bei -100 °C gerührt. Danach werden 1.87 g (6.4 mmol) des 2-Brombenzodiazaborols **45** in 5 mL Tetrahydrofuran langsam zugetropft. Die Reaktionslösung wird für weitere 5 h bei -100 °C gerührt. Anschließend wird während des Erwärmens der Reaktionslösung auf Raumtemperatur simultan das Lösungsmittel im Vakuum entfernt. Der hierbei erhaltene grün-braune Rückstand wird in 40 mL Dichlormethan aufgenommen und filtriert. Zur Kristallisation wird die Lösung für 12 h bei -20 °C gelagert. Die überstehende Lösung wird abdekantiert und die entstandenen Kristalle mit kaltem Dichlormethan gewaschen. Nach erneuter Umkristallisation aus n-Hexan/Dichlormethan erhält man 0.89 g (38%) des Produktes **108** in Form farbloser Kristalle.

¹**H-NMR (CDCI₃):**  $\delta = 1.31$  (t, 6H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 3.75 (q, 4H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 3.84 (s, 3H, O-CH₃), 6.90 (d, 2H, ³*J*_{HH} = 8.8 Hz, H-o-Methoxybenzol), 7.07 (m, 2H, H-Boryl), 7.14 (m, 2H, H-Boryl), 7.58 (d, 2H, ³*J*_{HH} = 8.8 Hz, H-m-Methoxybenzol), 7.66 (d, 1H, ³*J*_{HH} = 7.5 Hz, H-5-Benzonitril), 7.72

(dd, 1H,  ${}^{3}J_{HH} = 7.5$  Hz,  ${}^{4}J_{HH} = 2.0$  Hz, **H**-4-Benzonitril), 7.83 (s, 1H, **H**-2-Benzonitril) ppm.

¹³C{¹H}-NMR (CDCI₃):  $\delta$  = 16.3 (s, CH₂CH₃), 37.7 (s, CH₂CH₃), 55.4 (O-CH₃), 84.9, 97.0 (2s, C=C), 109.2 (s, C-Boryl), 114.1 (s, C-Aryl), 114.2 (s, C-Aryl), 114.8 (s, C-Aryl), 118.0 (s, C-Boryl), 119.2, 127.6, 131.2, 133.7, 136.8 (5s, C-Aryl oder C-CN), 137.1, 137.3 (2s, C-Aryl oder C-Boryl), 160.5 (s, C-Aryl oder C-CN) ppm.

¹¹B{¹H}-NMR (CDCl₃): δ = 27.7 (s) ppm.

**MS/EI:** *m*/*z* = 405.2 [M⁺].

**Elementaranalyse:**  $C_{26}H_{24}ON_3B$  [405.3]

Ber.: C: 77.05 % H: 5.97 % N: 10.37 % Gef.: C: 72.23 % H: 5.80 % N: 10.10 %

Bei einigen Verbindungen kam es zu der Bildung von Borcarbiden und -nitriden. Wie dieses mit der Struktur der untersuchten Moleküle korreliert, ist bisher noch nicht geklärt.

**UV-Vis:**  $\lambda_{max} = 340$  (THF), 340 (Ethanol), 341 (Dichlormethan), 339 (n-Hexan) nm; **Emission:**  $\lambda_{max} = 465$  nm (THF), 470 (Ethanol), 478 (Dichlormethan), 399 (n-Hexan); **Quantenausbeute:**  $\Phi_f = 0.05$  (THF), 0.01 (Ethanol), 0.54 (Dichlormethan), 0.64 (n-Hexan); **Extinktionskoeffizient:**  $\varepsilon = 25904$  (THF), 29498 (Ethanol), 31089 (Dichlormethan), 33048 (n-Hexan) (L/mol*cm).

Röntgenstrukturanalyse: vawe12 (Anhang)





Zu einer Lösung aus 0.76 g (2.1 mmol) N-(2-Thienyl)-3,6-bis(tert-butyl)carbazol **109** in 20 mL THF werden bei -78 °C langsam 1.5 mL n-Butyllithium (1.6 M Lösung in n-Hexan) zugegeben. Die Reaktionslösung wird 30 Minuten bei -78 °C und darauf folgend für 2 h bei Raumtemperatur gerührt. Dann wird Lösung erneut auf -78 °C gekühlt, mit 0.59 g (2.3 mmol) 2-Brombenzodiazaborol **45** versetzt, für 1 h bei -78 °C und anschließend 2 h bei Raumtemperatur gerührt. Die Reaktionslösung wird filtriert, das Lösungsmittel im Vakuum entfernt und das Rohprodukt durch Destillation im Vakuum (ca. 400 °C, 1·10⁻³ mbar) aufgereinigt. Das ölige Destillat wird mit n-Pentan versetzt, worauf das Produkt **109** (0.180 g, 0.33 mmol, 16 %) in Form eines weißen Feststoffs anfällt.

¹**H-NMR (CDCI₃):**  $\delta = 1.41$  (t, 6 H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 1.46 (s, 18 H, C(CH₃)₃), 4.00 (q, 4 H, ³*J*_{HH} = 7.2 Hz, CH₂CH₃), 7.06 (m, 2 H, H-Boryl), 7.14 (m, 2 H, H-Boryl), 7.33 (d, 1 H, ³*J*_{HH} = 3.14, H-Thienyl), 7.48 (d, 1 H, ³*J*_{HH} = 3.77, H-Thienyl), 7.51 (m, 4 H, H-Carbazol), 8.11 (s, 2 H, H-Carbazol).

Ein verlässliches ¹³C{¹H}-NMR konnte aufgrund der schlechten Löslichkeit der Verbindung **110** nicht erhalten werden.

¹¹B{¹H}-NMR (CDCI₃):  $\delta = 26.3$  (s).

Röntgenstrukturanalyse: vawe03 (Anhang)





0.25 g (0.73 mmol) Tris(4-bromphenyl)amin werden in 10 mL THF gelöst und auf -78 °C gekühlt. Bei dieser Temperatur werden 1.43 mL (2.3 mmol) n-Butyllithium (1.6 M in n-Hexan) hinzugetropft und die Lösung 1 h bei -78 °C und für 30 Minuten bei 0 °C gerührt. Bei der Zugabe des n-Butyllithiums kann die Bildung eines Feststoffes beobachtet werden, der sich jedoch bei der Erwärmung auf 0 °C wieder löst. Nach dem erneuten Kühlen der Reaktionslösung auf -78 °C werden ihr 0.593 g (2.3 mmol) 2-Brombenzodiazaborol **45**, gelöst in 5 mL THF, hinzugefügt. Nach 1 h wird die Lösung langsam im Kältebad auf Raumtemperatur erwärmt. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand in Dichlormethan aufgenommen. Nach der Filtration und dem Entfernen der flüchtigen Bestandteile im Vakuum sind Spektren des erhaltenen Feststoffes angefertigt worden.

#### Analytik:

Nachdem die NMR-Spektren das Vorhandensein mehrerer Reaktionsprodukte anzeigte, wurde der erhaltene weiße Feststoff mehrfach umkristallisiert (n-Hexan/Dichlormethan, variierende Volumenanteile). Eine Auftrennung der Einzelkomponenten konnte jedoch nicht vollständig erreicht werden. Die angefertigten NMR-Spektren zeigen eine Vielzahl an Signalen, unter anderem Signale des verwendeten Lösungsmittels THF. welches auch nach mehrstündigen Trocknen im Vakuum (1 10³ mbar) nicht gänzlich entfernt werden konnte. Das Massenspektrum [MS/EI] zeigt die Molekülionenpeaks des Disubstitutionsproduktes **112** bei  $m/z = 669 [M^+]$  und der Verbindung **113** bei  $m/z = 362 [M^+]$ . Ein Versuch den Feststoff mittels Destillation aufzureinigen wurde ebenfalls unternommen, in den **NMR-Spektren** zeigten sich jedoch nur Signale, die auf eine Zersetzung hindeuten.



Durch das Vorhandensein des Disubstitutionsproduktes **112**, welches noch über ein Bromatom verfügt, kann man von einer unvollständigen Umsetzung während der Lithiierungsreaktion ausgehen.

## 2.29 Syntheseversuch von N,N,N-Tris[4-(1´,3´-diethyl-1´,3´-dihydro-2*´H*-1´,3´,2´-benzodiazaborol-2´-yl)phenyl]amin (111) (2. in Diethylether)

0.62 g (1.29 mmol) Tris(4-bromphenyl)amin werden in 20 mL Diethylether gelöst und auf -78 °C gekühlt. Es werden 2.48 mL (3.97 mmol) n-Butyllithium (1.6 M Lösung in n-Hexan) hinzugegeben und die Lösung 1 h bei -78 °C gerührt. Die Reaktionslösung wird auf 0 °C erwärmt, nach einer halben Stunde wieder auf -78 °C abgekühlt und ihr langsam 1.02 g (3.97 mmol) 2-Brombenzodiazaborol **45** hinzugefügt. Es wird nach 1 h langsam auf Raumtemperatur erwärmt und bei dieser Temperatur für eine weitere Stunde gerührt, wobei sich ein farbloser Niederschlag bildet. Das Lösungsmittel wird im Vakuum entfernt und der Rückstand in n-Pentan aufgenommen. Das Lösungsmittel wird von dem gebildeten farblosen Feststoff abdekantiert und die flüchtigen Bestandteile im Vakuum entfernt. Bei der Lagerung des abdekantierten Lösungsmittels im Kühlschrank fällt erneut ein farbloser voluminöser Feststoff aus. Von beiden erhaltenen Feststoffen wurde Analytik angefertigt.

#### Analytik:

In den ¹¹B{¹H}-NMR-Spektren kann ein Signal bei  $\delta$  = 31.7 (s) ppm detektiert werden, dass auf die Bildung einer neuen benzodiazaborolfunktionalisierten

Spezies hindeutet. Weiteren findet Des sich das Signal des Zersetzungsproduktes **113** bei  $\delta$  = 22.2 (s) ppm. In den angefertigten ¹H-NMR-Spektren sind Signale erkennen, die auf mindestens zu zwei benzodiazaborolfunktionalisierte Spezies hindeutet. So finden sich im Bereich, in die Methylund Methylenprotonen dem der Ethylgruppen von Benzodiazaborolverbindungen erscheinen, drei Tripletts, bzw. Quartetts. Jeweils ein Signal kann hierbei der Verbindung 113 zugeordnet werden. In dem Bereich, in dem die aromatischen Protonen erscheinen, kommt es zu einer Überlagerung der Signale, so dass eine genaue Zuordnung nicht getroffen werden kann. In den angefertigten Massenspektren (MS/EI) kann der Molkülionenpeak des Disubstitutionsproduktes **112** bei  $m/z = 669 [M^+]$  und der Verbindung **113** m/z =362 [*M*⁺] gefunden werden.

## 2.30 Syntheseversuch von 2,3,5,6-Tetracyano[1,4-bis(1,3-diethyl-1,3,2benzodiazaborol-2-yl)]benzol (114)



In 30 mL THF werden 0.35 g (1.96 mmol) 1,2,4,5-Tetracyanobenzol gelöst und auf ca. -100 °C abgekühlt. Zu der Lösung werden 2.5 mL (3.96 mmol) n-Butyllithium (1.6 M in n-Hexan) getropft. Es wird für 1.5 h bei -100 °C gerührt und dann 1 g (3.96 mmol) 2-Brombenzodiazaborol **45** mittels einer Spritze innerhalb von 20 Minuten zugegeben. Die Lösung wird noch für 1 Stunde bei dieser Temperatur gerührt und anschließend, simultan zur langsamen Erwärmung der Reaktionslösung auf Raumtemperatur, das Lösungsmittel im Vakuum entfernt. Der erhaltene Rückstand wird durch Destillation (ca. 300 °C, 1·10⁻³ mbar) weiter aufgereinigt. Der so erhaltene Feststoff wird in n-Pentan/Dichlormethan gelöst und bei -10 °C für 3 Tage gelagert. Der gebildete Feststoff wird abfiltriert und analysiert.

### Analytik:

In den NMR-Spektren lassen sich hauptsächlich Signale des Eduktes detektieren.

# 2.31 Syntheseversuch von 9,10-Bis(1,3-diethyl-1,3,2-benzodiazaborol-2-yl)anthracen (115)



Es werden 0.656 g (1.96 mmol) 1,6-Dibromanthracen in 50 mL THF unter Rühren gelöst und die resultierende Lösung auf eine Temperatur von -78 °C gebracht. Bei der Herabsetzung der Temperatur kommt es zur Bildung eines Niederschlages, bei dem es sich um fein verteilten Feststoff handelt. Zu dieser Suspension werden 2.5 mL (3.96 mmol) n-Butyllithium (1.6 M in n-Hexan) gegeben. Die Reaktionslösung wird für 1 h bei einer Temperatur von -78 °C gehalten, bevor sie langsam auf 0 °C erwärmt wird. Nach 40 Minuten wird die Lösung erneut auf -78 °C abgekühlt und 1.01 g (3.96 mmol) des 2-Brombenzodiazaborols **45** innerhalb von 15 Minuten zugetropft. Die Lösung wird für eine weitere Stunde bei -78 °C gerührt, bevor sie langsam auf Nakuum vollständig eingeengt und der Rückstand durch Destillation im Vakuum aufgereinigt. Das erhaltene gelbliche Öl wird mit n-Pentan versetzt und bei -10 °C für 12 Stunden gelagert. Es bildet sich ein amorpher Feststoff, der abfiltriert und im Vakuum getrocknet wird.

## Analytik:

¹**H-NMR (CDCI₃):**  $\delta = 1.12$  (t, 12 H, ³ $J_{HH} = 7.0$  Hz, CH₂CH₃), 3.59 (q, 8 H, ³ $J_{HH} = 7.0$  Hz, CH₂CH₃), 7.19 (m, 4 H, H-Boryl), 7.30 (m, 4 H, H-Boryl), 7.65 (m, 4 H, H-Anthracen), 8.66 (d, 4 H, ³ $J_{HH} = 8.9$  Hz, **H**-Anthracen) ppm.

Neben den hier aufgeführten, ausgewählten Signalen sind weitere Signale detektierbar, die jedoch nicht eindeutig zugeordnet werden können.

¹¹B{¹H}-NMR (CDCl₃): δ = 30.6 ppm.

**MS/EI:**  $m/z = 522 [M^+]$ .

# 2.32 Syntheseversuch von 5,5⁻⁻Bis[(1,3-diethyl-1,3,2-benzodiazaborol-2-yl) 2,2⁻: 5⁻,2⁻⁻]terthienyl (116)



0.8 g (1.97 mmol) des 5,5 'Dibrom-2,2 '.5', 2' -terthiophens werden in 50 mL THF gelöst, auf -78 °C gekühlt und mit 2.6 mL (4.16 mmol) n-Butyllithium (1.6 M in n-Hexan) mittels einer Spritze versetzt. Es wird 1 Stunde bei -78 °C und anschließend 1 h bei Raumtemperatur aerührt. Daraufhin wird die Reaktionslösung wieder auf -78 °C gekühlt und 1 g (3.97 mmol) des 2-Brombenzodiazaborols **45** mittels einer Spritze hinzu gegeben. Die Reaktionslösung wird 1 h bei -78 °C und über Nacht bei Raumtemperatur gerührt. Darauf folgend wird die Lösung eingeengt, der Rückstand in Dichlormethan aufgenommen und filtriert. Das Filtrat wird im Vakuum vom Lösungsmittel befreit und der erhaltene Rückstand im Vakuum (ca. 400 °C, 1.10-3 mbar) destilliert. Nach Umkristallisation aus Toluol erhält man als Produkt einen gelben Feststoff.

#### Analytik:

¹**H-NMR (CDCI₃):**  $\delta$  = 1.40 (t, 12H, ³*J*_{HH} = 7 Hz, CH₂CH₃), 3.96 (q, 8H, ³*J*_{HH} = 7.2 Hz CH₂CH₃), 7.05 (m, 4H, H-Boryl), 7.12 (m, 4H, H-Boryl), 7.20 (s, 2H, (Thienyl)-H-Thienyl-(Thienyl)), 7.36 (m, 4H, H-Thienyl-(Thienyl)-H-Thienyl) ppm.

Neben den aufgeführten Signalen sind weitere Signale detektierbar, die der Verbindung **113** und dem einfach substituierten Produkt **117** zugeordnet werden können.



¹¹B{¹H}-NMR (CDCl₃):  $\delta$  = 25.8 [s, (116)], 22.2 [s, (113)] ppm.

**MS/EI:**  $m/z = 592.2 [M^+ (116)], 420 [M^+ (117)], 326 [M^+ (113)].$ 

#### E Zusammenfassung und Ausblick

Die Aufgabe dieser Doktorarbeit bestand darin, neuartige, lumineszente Diazaborolverbindungen zu synthetisieren und auf ihre Lumineszenzeigenschaften hin zu untersuchen. Es war möglich, von einer Vielzahl der erhaltenen Moleküle für die Röntgenstrukturanalyse verwertbare Einkristalle zu züchten. Basierend auf den erhaltenen Absorptionsspektren und Röntgenstrukturanalysen wurden theoretische Berechnungen durchgeführt, die einen detaillierten Einblick in die beteiligten Orbitale und Prozesse während der Anregung erlauben. Darüber hinaus war es möglich, eine Verbindung als emittierendes Material in einer OLED zu testen.

Zuerst galt es, das  $\pi$ -System zu erweitern. Da Benzodiazaborole stabiler sind als ihre Diazaborolanaloga, die über kein aromatisches Rückgrat am Fünfringheterocyclus verfügen, sollte dieser aromatische Baustein weiter vergrößert werden. Hierzu wurde zunächst das 2-Bromnaphthodiazaborol **58** synthetisiert, um es analog dem 2-Brombenzodiazaborol als Edukt für die Funktionalisierung von aromatischen Systemen zu nutzen.



Als  $\pi$ -Systeme wurden Thiophen und Dithiophen gewählt, da die entsprechenden Benzodiazaborolanaloga bekannt sind und somit einen Vergleich der beiden unterschiedlichen Diazaborolsysteme zulassen.



Die Naphthodiazaborole **60** und **61** sind jedoch in gängigen organischen Lösungsmitteln nur wenig löslich. Darüber hinaus sind die optischen Eigenschaften dieser Verbindungen im Vergleich zu den besser löslichen Benzodiazaborolanaloga schlechter. So konnte im Fall der Verbindung **60** lediglich eine Quantenausbeute von  $\Phi_f = 0.18$  beobachtet werden. Außerdem sind sie gegenüber Umwelteinflüssen, wie ihre Oxidation durch Luftsauerstoff zeigt, deutlich empfindlicher.

Im Hinblick auf eine spätere potentielle Anwendung wurde somit das Hauptaugenmerk auf die stabileren Benzodiazaborolverbindungen gerichtet. Nächstes Ziel war somit die Erweiterung des  $\pi$ -Systems auf Seiten des Substituenten dreifach koordinierten Boratom am und der Vergleich unterschiedlicher  $\pi$ -Systeme untereinander. Um den Anteil des dreifach koordinierten Bors zu erhöhen, wurden zunächst zweifach funktionalisierte Systeme synthetisiert, die als Spacer-Einheit unterschiedliche  $\pi$ -Systeme besitzen. Bei der Synthese der benzodiazaborolfunktionalisierten Moleküle wurden hauptsächlich zwei Synthesewege gewählt (Abb. 54, 55). Der erste Syntheseweg (I) geht von einem halogenierten Aromaten aus, der durch eine Grignard-Reaktion oder durch Lithiierung und Umsetzung mit Trimethylchlorsilan silyliert wird. Anschließend erfolgt ein Silicium-Boraustausch, und man erhält den bisbromborylierten Aromaten. Dieser kann in einer anschließenden Cyclisierungsreaktion mit N,N'-Diethyl-o-phenylendiamin 44 in Gegenwart von Calciumhydrid als Base zu dem zweifach funktionalisierten Benzodiazaborol umgesetzt werden.



Abb. 54: Syntheseweg I

Bei dem zweiten Reaktionsweg (II) wird der Aromat zunächst lithiiert und anschließend unter variierenden Reaktionsbedingungen (Temperatur, Lösungsmittel, Zeit) mit dem 2-Brombenzodiazaborol **45** umgesetzt.



Abb. 55: Syntheseweg II

Bei der Synthese ist darauf zu achten, das Benzodiazaborolfragment möglichst spät in das gewünschte Molekül einzubringen, um Nebenprodukte, die durch eine potentielle Oxidation entstehen können, zu minimieren. Zudem sollten die entstehenden Nebenprodukte unter den gegebenen Bedingungen gut abtrennbar sein, da die Aufreinigungsmethoden unter Schutzgasatmosphäre eingeschränkt sind und die potentielle Verwendung dieser Materialien spätere in elektrooptischen Anwendungen nur bei sehr hoher Reinheit erfolgen kann. Die vorgestellten Syntheserouten hier Beispiel zweifach wurden am der

funktionalisierten Moleküle vorgestellt, sind aber gleichermaßen übertragbar auf die Synthese der weiteren, folgenden Molekülgruppen.

Die synthetisierten, zweifach funktionalisierten Verbindungen zeigen allesamt intensiv-blaue Fluoreszenz unter Bestrahlung mit UV-Licht. In der untenstehenden Abbildung sind Beispiele für die Substanzen in THF-Lösung gezeigt.



Abb. 56: Beispiele zweifach funktionalisierter Systeme unter UV-Bestrahlung (64, 69, 67, 68, 70 ca. 0.1M in THF)

Unter den synthetisierten Verbindungen befinden sich Moleküle, die den Vergleich zwischen Thienyl- und Phenylsystemen, sowie mit einem elektronenarmen System (**79**) zulassen (**Abb. 57**).

Ar =	S	⟨ _S ⟩⟨ _S ⟩		RR	F F F	
Verbindung	67	68	64	70	79	69 ^a

a [36d]

### Abb. 57: Zweifach funktionalisierte Moleküle

Darüber hinaus gibt die Fluorenverbindung **70** einen ersten Hinweis auf den Einfluss der freien Drehbarkeit der aromatischen Systeme um die Aryl-Aryl-Achse auf das Lumineszenzverhalten.

Zur Vergrößerung des Systems wurden im nächsten Schritt die dreifach funktionalisierten Systeme 82, 84 und 88 synthetisiert. Die Verbindung 82 wurde hierbei auf dem Syntheseweg I und die beiden Moleküle 84 und 88 auf dem Syntheseweg II dargestellt.



Die zweifach und dreifach funktionalisierten Verbindungen verfügen bei der Lumineszenz über Quantenausbeuten von  $\Phi_f$  = 0.33-0.98. Die Emissionsmaxima thienvlhaltigen Verbindungen zeigen eine erwartete bathochrome der Verschiebung im Vergleich zu den Phenylanaloga, aber im Gegensatz zu ihnen geringere Quantenausbeuten, was auf den Schweratomeffekt des Schwefels in den Thienyleinheiten zurückgeführt werden kann. Das Fluoren 70 liefert, verglichen mit der literaturbekannten Verbindung 69, in der eine freie Drehbarkeit um die Phenyl-Phenyl-Achse möglich ist, eine deutlich höhere Quantenausbeute, wie man es im Allgemeinen für starre Systeme auch erwartet [ $\Phi_f = 0.87$  (70) vs 0.52 (69)]. Eine Versuchsreihe mit unterschiedlich polaren Lösungsmitteln und der Verbindung 80 zeigte, dass im Fall der Verwendung eines weniger polaren Lösungsmittels die Quantenausbeute von  $\Phi_f$  = 0.33 (THF) auf  $\Phi_f$  = 0.62-0.63 (n-Hexan, Dichlormethan) gesteigert werden kann (Abb. 58). Die thienylhaltigen Moleküle verfügen über einen polareren, angeregten Zustand, der durch die Verwendung von polaren Lösungsmitteln wie THF besser stabilisiert wird. Neben Stokes Shift hierdurch einem größeren kann auch eine geringere Quantenausbeute resultieren, da in schwefelhaltigen Molekülen das Inter System Crossing (ISC) begünstigt ist und dieses durch eine zusätzliche Stabilisierung des angeregten Zustands eine höhere Gewichtung bekommt.

Verbindung 88					
Lösungsmittel	λ _{max,abs} (nm)	λ _{max,em} (nm)	$arPsi_{ m f}$		
Ethanol	329	446	0.40		
THF	330	446	0.33		
Dichlormethan	330	453	0.63		
n-Hexan	328	408	0.62		

# Abb. 58: Lumineszenzdaten der Verbindung 88 in unterschiedlichen Lösungsmitteln

Die neuen Verbindungen zeigen im Vergleich zu literaturbekannten Dimesitylborylanaloga gute Ergebnisse hinsichtlich ihrer Quantenausbeuten (**Abb. 59**).

Verbindung	6 (THF)	⁵ 77 (CH ₂ Cl ₂ )	68 (THF)	) 5-5-5 121 (THF)	(THF)
λ _{max(abs),} (nm)	402	287, 413, 437 (Schulter)	351	371	318
λ _{max(em),} (nm)	440	476, 495	448	384	399
$\pmb{\Phi}_{f}$	0.86	0.03	0.52	0.52	0.87

# Abb. 59: Beispiele aus der Literatur (6, 77, 121) und neu synthetisierte (68, 70), benzodiazaborolsubstituierte Verbindungen

Ergänzend sei an dieser Stelle bemerkt, dass die Benzodiazaborolderivate allesamt thermisch sehr stabil sind und eine für Diazaborole unbekannte, hohe Resistenz gegenüber Atmosphärilien zeigen. Während in Dimesitylborylverbindungen eine kinetische Stabilisierung vorliegt, wird in unseren Molekülen eine Stabilisierung des dreifach koordinierten Boratoms durch das pseudoaromatische Ringsystem erreicht. Vor allem jene Verbindungen, welche elektronenreiche, aromatische Systeme als Substituenten an dem dreifach koordinierten Bor tragen, sind hier besonders hervorzuheben. Monatelange Lagerung der Verbindung **68** an Raumluft, oder unter Wasser, führte zu keinen Zersetzungserscheinungen des verwendeten Feststoffes. Die dreifach funktionalisierte Verbindung **88** lässt sich an Raumluft und handelsüblichem Kiesegel chromatographisch aufreinigen.

Dadurch, dass von einer Vielzahl der Verbindungen Röntgenstrukturanalysen vorliegen, konnten diese als Grundlage für DFT- und TD-DFT-Berechnungen dienen, um Informationen über die bei der Anregung beteiligten Orbitale und Übergänge zu gewinnen. Die Berechnungen wurden an der University of Durham von Prof. T. B. Marder und Dr. M. A. Fox im Rahmen einer Kooperation durchgeführt. Die Abbildung 60 zeigt die beteiligten Grenzorbitale der Modellverbindungen 64' und 68', die den Verbindungen 64 und 68 entsprechen, bei denen iedoch die Ethylgruppen an den Stickstoffatomen der Benzodiazaboroleinheiten durch Methylgruppen ausgetauscht wurden.



Abb. 60: Grenzorbitale der Strukturen 64' und 68'

Diese beiden Verbindungen zeigen jeweils den niedrigsten und höchsten Beiträg der Borylgruppen zu den Grenzorbitalen der untersuchten zweifach und dreifach funktionalisierten Moleküle. Die HOMO-LUMO-Übergänge sind von ihrem Charakter her  $\pi$ (BorolyI)  $\rightarrow \pi^*$ (ThienyI/AryI)-Übergänge. Da für die Verbindung **68** einige Vergleichsverbindungen in der Literatur vorhanden sind, wurde diese Verbindung genauer untersucht. Hierbei stellte sich ein deutlicher Unterschied zu den Dimesitylborylanaloga hinsichtlich der an dem Übergang beteiligten Orbitale heraus. Bei dem Dimesitylboryl- und einigen Diarylborylanaloga des Dithiophenderivates **68** handelt es sich um  $\pi$ (Thienyl)  $\rightarrow \pi^*$ (Thienyl)-Übergänge, welche auf dem Dithienyl-Spacer lokalisiert sind. Im Fall der Verbindung **68** handelt es sich jedoch um einen  $\pi$ (Borolyl)  $\rightarrow \pi^*$ (Thienyl)-Übergang.

Durch eine Kooperation mit der Merck KGaA am Standort Frankfurt, war es möglich, nähere Informationen zu einer potentiellen Eignung der benzodiazaborolsubstituierten Verbindungen für OLEDs zu erhalten. Da das Dithienylderivat **68** das bis zu diesem Zeitpunkt stabilste Benzodiazaborol darstellte, wurde es ausgewählt, um es als emittierendes Material in einer OLED zu testen. Die **Abbildung 61** zeigt den schematischen Aufbau der untersuchten OLED.



Abb. 61: Schematischer Aufbau der OLED

Leider zeigte diese eine geringe Lebensdauer und etwas geringe Effizienz. Dieses muss jedoch nicht unbedingt an den substanzspezifischen Eigenschaften der verwendeten Verbindung liegen.

Um den Einfluss eines variierenden Substitutionsmusters am aromatischen  $\pi$ -System zu studieren wurden unterschiedlich para-substituierte Phenylethinylene synthetisiert. Von entsprechenden Dimesitylborylanaloga sind zum Teil Lumineszenzdaten bekannt.^[43e,81] Quantenchemische Rechnungen sagen für die Dimesitylborylverbindungen starke Dipolmomente voraus und heben sie damit als interessante Kandidaten für die nichtlineare Optik hervor.



Die in diesem Rahmen synthetisierten Verbindungen 97-100 verfügen allesamt über einen elektronenspendenden Substituenten in para-Stellung zu der Benzodiazaborol-Ethinyl-Einheit. Der Gedanke war, dem Benzodiazaborolsubstituenten mit seiner verbliebenen Rest-Lewis-Acidität einen Elektronendonor entgegenzustellen und somit eine Art push-pull-System zu erzeugen. Unsere Verbindungen zeigen extrem hohe Quantenausbeuten von  $\Phi_f$  = 0.89-0.99. Überraschende und neue Aspekte bringen die theoretischen Rechnungen, die mit Hilfe der Absorptionsspektren und Röntgenstrukturanalysen durchgeführt wurden. Die untenstehenden Abbildungen 62 und 63 zeigen die beteiligten Grenzorbitale bei einer coplanaren (a) und senkrechten (b) Anordnung der beteiligten Ringsysteme im Fall der unsubstituierten Verbindung 103 und dem para-HOMO-LUMO-Übergänge der Dimethylaminoderivat 97. Die berechneten Phenylethinylverbindungen 98-100 103 und sind hauptsächlich  $\pi$ (Borolyl)  $\rightarrow \pi^*$ (Aryl) Charge-Transfer Übergänge.



Abb. 62: Grenzorbitale der Strukturen 103a und 103b



Abb. 63: Grenzorbitale der Strukturen 97a und 97b

Dies bedeutet, dass der erste angeregte Singulett-Zustand dieser Verbindungen über ein großes Dipolmoment verfügen muss. Das Dimethylaminoderivat **97** verhält sich gegensätzlich. Sowohl das HOMO (38 % in **97a**, 82 % in **97b**) als auch das LUMO (49 % in **97a** und 80 % in **97b**) besitzen hauptsächlich Aromatencharakter.

Somit ist der HOMO-LUMO-Übergang vom Charakter her ein  $\pi$ (Aryl)  $\rightarrow \pi^*$ (Aryl)-Übergang und erklärt damit, warum der beobachtete Stokes Shift bei dieser Verbindung im Vergleich zu den anderen experimentell beobachteten Werten so gering ausfällt (**Tab. 29**). Da sowohl HOMO als auch LUMO auf dem aromatischen Ring lokalisiert sind, wird der angeregte Zustand der Verbindung **97** kein großes Dipolmoment besitzen, wodurch es zu keinem großen Charge Transfer innerhalb des Moleküls kommt. Ein bemerkenswertes Ergebnis der quantenchemischen Berechnungen ist der vollkommen neue Aspekt, dass der Benzodiazaborolsubstituent in den Verbindungen **98-100** entgegen der bisherigen Vorstellung nicht als  $\pi$ -Akzeptor, sondern als  $\pi$ -Donor fungiert. Dies ist ein ganz klarer Unterschied zu den dimesitylborylsubstituierten Verbindungen, in denen der Borylsubstituent stets den  $\pi$ -Akzeptor darstellt. Das abweichende Verhalten der Benzodiazaborolverbindungen kann durch das Vorhandensein der freien Elektronenpaare der Stickstoffatome in dem  $10\pi$ -Elektronensystem des Benzodiazaborols erklärt werden. Yamaguchi hat in einer seiner Arbeiten über die Lumineszenzeigenschaften von poly- und tetrameren Cyanophenylethinylenen (**122-125**) berichtet.^[87]



X = SMe (122), Me (123), OMe (124), NMe₂ (125)

Diese besitzen neben den elektronenziehenden auch eine Auswahl an elektronenschiebenden Substituenten. Die Moleküle zeigen gute Quantenausbeuten ( $\Phi_f$  = 0.960-0.999) und hohe Dipolmomente, die sie darüber hinaus für Anwendungen in der nichtlinearen Optik interessant machen.

Als erstes sollten Referenzverbindungen synthetisiert werden, bevor das von Yamaguchi vorgestellte Substitutionsmuster auf ein Benzodiazaborol übertragen wurde. Als Referenzsubstanzen wurden die beiden Phenylethinylenderivate **105** und **106** dargestellt. Anlehnend an die von Yamaguchi vorgestellten tetrameren OPEs wurde anschließend das benzodiazaborolylsubstituierte Diphenylacetylen **108** synthetisiert, das über einen Donor- (OMe) und Akzeptor- (CN)substituenten verfügt.



Im Gegensatz zu den von Yamaguchi vorgestellten Verbindungen und der Referenzverbindung **106** ( $\Phi_f = 0.37$ ) zeigte das Molekül **108** eine sehr geringe Quantenausbeute von nur  $\Phi_f = 0.05$  in THF-Lösung. In seiner Arbeit deutet Yamaguchi jedoch auf die zum Teil stark lösungsmittelabhängige

Quantenausbeute einiger Verbindungen hin. Aufgrund dessen wurde das Molekül **108** ergänzend in unterschiedlich polaren Lösungsmitteln vermessen (**Abb. 64**).

Verbindung	Lösungsmittel	λ _{max(abs),} (nm)	λ _{max(em),} (nm)	ε (mol ⁻¹ cm ⁻¹ dm³)	$arPsi_{ extsf{f}}$
108	n-Hexan	339	399	33048	0.64
	DCM	341	478	31089	0.54
	THF	340	465	29621	0.04
	EtOH	340	470	29498	0.01

# Abb. 64: Lumineszenzdaten der Verbindung 108 unter Verwendung unterschiedlicher Lösungsmittel

Hierbei zeigte sich ein drastischer Anstieg der Quantenausbeute bei der Verwendung eines weniger polaren Lösungsmittels auf  $\Phi_f = 0.64$  (n-Hexan). Die Lage des Absorptionsmaximums ist nicht sichtlich abhängig von der Wahl des Lösungsmittels. Die Lage des Emissionsmaximums und die Quantenausbeute zeigen jedoch eine starke Abhängigkeit. Dieses deutet auf einen stark polaren Übergangszustand hin, der durch ein polares Lösungsmittel stabilisiert werden kann.

Aufgrund dieser Ergebnisse wurden in einer Zusammenarbeit mit der Universität in Pau Berechnungen zu derartigen Verbindungen angefertigt.^[96] Erste Vorabergebnisse zeigen für das synthetisierte Molekül 108 ein hohes Dipolmoment im Grund- und ein extrem hohes im angeregten Zustand. Der dominante Übergang ist ein Charge-Transfer-Übergang, durch den ein hohes Übergangsdipolmoment resultiert. Das Dipolmoment im Grundzustand beträgt  $\mu_{g}$  = 5.12 D und im ersten angeregten Zustand  $\mu_{e}$  = 23.83 D [ $\mu_{g}$  = 11.52 (**124**), 12.75 (125) D und  $\mu_e = 10.74$  (123), 12.89 (124) D]. Die statische Hyperpolarisierbarkeit beträgt laut DFT-Berechnung  $\beta$  = 23.68 10⁻³⁰ esu  $[\beta = 16.35^{\circ} 10^{-30}$  esu (Nitroanilin)]. Weitere Berechnungen sind bereits in Arbeit. Zusammenfassend lässt sich sagen, dass die Substanzklasse der Benzodiazaborole interessante Kandidaten für eine potentielle Anwendung in der

linearen und nichtlinearen Optik bietet. Aufbauend auf den in dieser Arbeit erhaltenen Ergebnissen sind noch eine Vielzahl an Variationsmöglichkeiten des strukturellen Aufbaus und der daraus resultierenden Lumineszenz und der photophysikalischen Eigenschaften denkbar. Theoretischen Rechnungen zufolge wäre die Wahl von aromatischen Substituenten an den Stickstoffatomen eine interessante Option, da diese die Lage des HOMO beeinflussen und erhöhen. Ebenso wäre eine Untersuchung der elektronenleitenden Eigenschaften von Interesse. Das ebenfalls als Emitter eingesetzte Dimesitylborylanalogon der zeigte Dithiophenverbindung 68 bereits sehr gute Eigenschaften als elektronenleitendes Material in einer OLED. Auch der Eigenschaft als Ionenspezifischer Sensor. sollte Aufmerksamkeit gewidmet werden. Erste Untersuchungen, die auf eine stufenweise Schaltbarkeit der Lumineszenz mit Tetrabutylammoniumfluorid von mehrfach benzodiazaborolsubstituierten Verbindungen hindeuten, sind momentan in Arbeit. Interessant ist auch eine Kombination der in der Literatur bereits gut beschriebenen Dimesitylboryleinheit mit den in dieser Arbeit vorgestellten Eigenschaften der Diazaborole. Eine interessante Option ist die direkte Gegenüberstellung der Substituenten Benzodiazaborolyl ↔ Dimesitylboryl innerhalb eines Moleküls und die Untersuchung zur Schaltbarkeit der Fluoreszenz aufgrund ihrer unterschiedlichen Komplexbildungskonstanten mit Fluorid.

**F** Literatur

- [1] M. V. Vityak, V. V. Miklo, Soc. Phys. **1973**, *6*, 1479.
- [2] C. W. Tang, S. A. van Slyke, Appl. Phys. Lett. 1987, 14, 229-231.
- J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mac Kay,
   R. H. Friend, P. L. Burn, A. B. Holmes, *Nature* **1990**, *347*, 539-542.
- [4] C. D. Entwistle, T. B. Marder, *Angew. Chem.* **2002**, *16*, 3051-3056.
- [5] M. Elbing, G. C. Bazan, Angew. Chem. 2008, 120, 846-850.
- [6] H. Vogel, *Gerthsen Physik*, 20. Auflage, Springer Verlag **1999**, 632.
- [7] P. W. Atkins, *Physikalische Chemie*, VCH, Weinheim, **1990**.
- [8] M. Hesse, H. Meier, B. Zeeh, Spektroskopische Methoden in der organischen Chemie, Georg Thieme Verlag Stuttgart, 1995.
- [9] H. Zollinger, *Color Chemistry*, 2nd Edition, VCH, Weinheim **1991**.
- [10] B. M. Krasovitskii, B. M. Bolotin, *Organic Luminescent Materials*, VCH, Weinheim, **1988**.
- [11] H. A. Staab, *Einführung in die theoretische organische Chemie*, VCH, Weinheim, **1964**.
- [12] T. Förster, *Fluoreszenz organischer Verbindungen*, Vandenhoek und Ruprecht, Göttingen, **1982**.
- [13] H. Bässler, *Phys. Stat. Sol. (b)* **1981**, *107*, 9.
- [14] J. M. Lupton, A. Pogantsch, T. Piok, E. J. W. List, S. Patil, U. Scherf, *Phys. Rev. Lett.* 2002, *89*, art. No. -167401
- [15] A. Köhler, J. S. Wilson, R. H. Friend, M. K. Al-Suti, M. S. Kahn, A. Gerhard,
   H. Bassler, *J. Chem. Phys.* 2002, *116*, 9457-9463.
- [16] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, *Nature* **1998**, *395*, 151-154.
- [17] R. J. Holmes, B. W. D´Andrade, S. R. Forrest, X. Ren, J. Li, M. E. Thompson, *Appl. Phys. Lett.* **2003**, *83*, 3818-3820.
- [18] M. Ikai, S. Tokito, Y. Sakamoto, T. Suzuki, Y. Taga, *Appl. Phys. Lett.* 2001, 79, 156-158.
- [19] C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, *J. Appl. Phys.* **2001**, *90*, 5048-5051.

- [20] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem. Soc. 2003, 125, 12971-12979.
- [21] C.-H. Yang, C. C.Tai, I.-W. Sun, J. Mater. Chem. 2004, 14, 947-950.
- [22] J. Kido, K. Nagai, Y. Ohashi, *Chem. Lett.* **1990**, 657-660.
- [23] R. C. Kwong, S. Sibley, T. Dubovoy, M. Baldo, S. R. Forrest, M. E. Thompson, *Chem. Mater.* **1999**, *11*, 3709-3713.
- [24] M. A. Baldo, D. F. O'Brien, M. E. Thompson, S. R. Forrest, *Phys. Rev. B* 1999, *60*, 14422-14428.
- S. Lamansky, P. Djurovich, D. Murphy, F. Abdel-Razzaq, H. E. Lee, C. Adachi, P. E. Burrows, S. R. Forrest, M. E. Thompson, *J. Am. Chem. Soc.* 2001, *123*, 4304-4312.
- [26] W. P. Finkenzeller, P. Stößel, H. Yersin, *Chem. Phys. Lett.* **2004**, 397, 289-295.
- [27] D. L. Dexter, J. Chem. Phys. 1953, 21, 836.
- [28] K. Müllen, U. Scherf, Organic Light-Emitting Devices 2006, Wiley VCH, 254-57.
- [29] Y. Shirota, Y. Kuwabara, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto,S. Kawami, K. Imai, *Appl. Phys. Lett.* **1994**, *65*, 807-809.
- [30] K. Müllen, U. Scherf, Organic Light-Emitting Devices 2006, Wiley VCH, 251-254.
- [31] a) W. Kaim, A. Schulz, Angew. Chem. 1984, 96, 611-612. b) A. Schulz, W. Kaim, Chem. Ber. 1989, 122, 1863. c) C. D. Entwistle, T. B. Marder, Chem. Mater. 2004, 16, 4574. d) F. Jäkle, Coord. Chem. Rev. 2006, 250, 1107.
- [32] G. Wittig, W. Herbig, *Chem. Ber.* **1955**, *88*, 962.
- [33] a) P. J. Grisdale, J. L. R. Williams, M. E. Glogowski, B. E. Babb, *J. Org. Chem.* 1971, *36*, 544. b) J. C. Doty, B. Babb, P. J. Grisdale, M. Glogowski, J. L. R. Williams, *J. Organomet Chem.* 1972, *38*, 229.
- [34] a) Z. Yuan, N. J. Taylor, T. B. Marder, I. D. Williams, S. K. Kurtz, L.-T. Cheng, J. Chem. Soc. Chem. Commun. 1990, 1489-1492. b) M. Lequan, R. M. Lequan, K. C. Ching, J. Mater. Chem. 1991, 1, 997-999. c) C. Branger, M. Lequan, R. M. Lequan, M. Barzoukas, A. Fort, J. Mater. Chem. 1996, 6, 555-558. d) Z. Yuan, N. J. Taylor, R. Ramachandran, T. B. Marder, Appl. Organomet. Chem. 1996, 10, 305-316. e) Z. Yuan, C. D.
Entwistle, J. C. Collings, D. Albesa-Jovo, A. S. Batsanov, J. A. K. Howard, N. J. Taylor, H. M. Kaiser, D. E. Kaufmann, S.-Y. Poon, W.-Y. Wong, C. Jardin, S. Fathallah, A. Boucekkine, J.-F. Halet, T. B. Marder, *Chem. Eur. J.* **2006**, *12*, 2758-2771.

- [35] a) Z.-Q. Liu, Q. Fang, D.-X. Cao, D. Wang, G.-B. Xu, Org. Lett. 2004, 6, 2933-2936. b) M. Charlot, L. Porres, C. D. Entwistle, A. Beeby, T. B. Marder, M. Blanchard-Desce, Phys. Chem. Chem. Phys. 2005, 7, 600-606.
- [36] a) B. Y. Lee, G. C. Bazan, J. Am. Chem. Soc. 2000, 122, 8577-8578. b) B.
  Y. Lee, S. Wang, M. Putzer, G. P. Bartholomew, X. Bu, G. C. Bazan, J. Am. Chem. Soc. 2000, 122, 3969-3970. c) R. Stahl, C. Lambert, C. Kaiser, R. Wortmann, R. Jakober, Chem. Eur. J. 2006, 12, 2358-2370. d) L.
  Weber, V. Werner, I. Domke, H.-G. Stammler, B. Neumann, Dalton Trans. 2006, 3777-3784. [37] a) T. Noda, Y. Shirota, J. Am. Chem. Soc. 1998, 120, 9714-9715. b) H. Doi, M. Kinoshita, K. Okumoto, Y. Shirota, Chem. Mater. 2003, 15, 1080-1089. c) W. L. Jia, X. D. Feng, D. R. Bai, Z. H. Lu, S. Wang, G. Vamvounis, Chem. Mater. 2005, 17, 164-170. d) W. L. Jia, M. J. Moran, Y.-Y. Yuan, Z. H. Lu, S. Wang, J. Mater. Chem. 2005, 15, 3326-3333. e) M. Mazzeo, V. Vitale, F. D. Sala, M. Anni, G. Barbarella, L. Favaretto, G. Sotgiu, R. Cingolani, G. Gigli, Adv. Mater. 2005, 17, 34-39.
- [38] A. Sundararaman, K. Venkatasubbaiah, M. Victor, L. N. Zakharov, A. L. Rheingold, F. Jäkle, J. Am. Chem. Soc. 2006, 128, 16554-16565.
- [39] M. Elbing, G. C. Bazan, Angew. Chem. Int. Ed. Engl. 2008, 47, 834.
- [40] N. Matsumi, Y. Chujo, Contemporary Boron Chemistry, Spec. Publ.No. 253 (Hrsg.: M. G. Davidson, A. K. Hughes, T. B. Marder, K. Wade), The Royal Society of Chemistry, Cambridge 2000, 51-58.
- [41] C.-H. Zhao, A. Wakamiya, Y. Inukai, S. Yamaguchi, *J. Am. Chem. Soc.* **2006**, *128*, 15934 15935
- [42] a) Y. Qin, G. Cheng, A. Sundararaman, F. Jäkle, *J. Am. Chem. Soc.* 2002, 124, 12672 -12673. b) Y. Qin, G. Cheng, O. Achara, K. Parab, F. Jäkle, *Macromolecules* 2004, 37, 7123-7131.
- [43] a) Y. Shirota, *J. Mater. Chem.* 2005, *15*, 75. b) W. L. Jia, D. R Bai, T. McCormick, Q. D. Liu, M. Motala, R. Wang, C. Seward, Y. Tao, S. Wang, *Chem. Eur. J.* 2004, *10*, 994.

- [44] Y. Sun, N. Ross, S.-B. Zhao, K. Huszarik, W.-L. Jia, R.-Y. Wang, D. Macartney, S. Wang, *J. Am. Chem. Soc.* 2007, 129, 7510-7511.
- [45] S. Yamaguchi, T. Shirasaka, K. Tamao, Org. Lett. 2000, 2, 4129-4132.
- [46] M. Kinoshita, H. Kita, Y. Shirota, *Appl. Phys. Lett.* **2001**, *79*, 1231-1233.
- [47] A. Stock, E. Poland, Ber. Dtsch. Chem. Ges. 1926, 59, 2215.
- [48] J. S. Merriam, K. Niedenzu, J. Organomet. Chem. 1973, 51, C1
- [49] L. Weber, G. Schmid, Angew. Chem. 1974, 86, 519.
- [50] a) E. Dobbert, L. Weber, H.-G. Stammler, B. Neumann, R. Boese, D. Bläser, *Chem. Ber.* 1997, *130*, 705. b) H. Gilman, A. H. Haubein, *J. Am. Chem. Soc.* 1944, *66*, 1515. c) J. S. Merriam, K. Niedenzu, *Z. Anorg. Chem.* 1974, *406*, 251.
- [51] L. Weber, E. Dobbert, H.-G. Stammler, B. Neumann, R. Boese, D. Bläser, *Eur. J. Inorg. Chem.* **1998**, 1145.
- [52] L. Weber, E. Dobbert, A. Rausch, H.-G. Stammler, B. Neumann, Z. Naturforsch. (Teil B) 1999, 54, 363
- [53] E. Dobbert, *Dissertation*, Universität Bielefeld, **1999**.
- [54] a) L. Weber, Coord. Chem. Rev. 2008, 252, 1. b) M. Schimmel, unveröffentlichte Ergebnisse, Universität Bielefeld, 1999. c) A. Rausch, Diplomarbeit, Universität Bielefeld, 2001.
- [55] Y. Segawa, M. Yamashita, K. Nozaki, *Science* **2006**, *314*, 113-115.
- [56] a) L. J. Schupp, C. A. Brown, Abstracts of Papers, 128th National Meeting of the American Chemical Society, Minneapolis, Minn. 1955, p. 48-R. B) M. J. S. Dewar, V. P. Kubba, R. Pettit, J. Chem. Soc. 1958, 3076.
- [57] D. Ulmschneider, J. Goubeau, Chem. Ber. 1957, 90, 2733
- [58] H. Beyer, K. Niedenzu, J. W. Dawson, J. Org. Chem. 1962, 27, 4701.
- [59] J. Schulze, *Dissertation*, Universität Essen, **1980**.
- [60] S. Maruyama, Y. Kawanishi, J. Mater. Chem. 2002, 12, 2245.
- [61] J. Goubeau, H. Schneider, *Liebigs Ann. Chem.* **1964**, 675, 1.
- [62] H. B. Wartig, *Dissertation*, Universität Bielefeld, **2001**.
- [63] V. Werner, *Diplomarbeit*, Universität Bielefeld **2005**.
- [64] I. Yamaguchi, B.-J. Choi, T.-A. Koizumi, K. Kubota, T. Yamamoto, *Macromolecules* **2007**, *40*, 438-443.
- [65] L. Weber, I. Domke, C. Schmidt, T. Braun, H.-G. Stammler, B. Neumann, Dalton Trans. 2006, 2127–2132

- [66] E. N. Kuznetsova, G. V. Shishkin, *Khim Geterotsiklicheskikh Soedinenii* 1991, 97-100; *Chem. Abstr.* 1991, *115*, 71537.
- [67] Silylierung der Aromaten angepasst an: P. Boudjouk, C.A. Kapfer, *J. Organomet. Chem.* **1985**, 296, 339-349.
- [68] M. C. Haberecht, J. B. Heilmann, A. Haghiri, M. Bolte, J. W. Bats, H.-W. Lerner, M. C. Holthausen, M. Wagner, *Z. Anorg. Allg. Chem.*, 2004, 630, 904.
- [69] W. Steinkopf, J. Roch, Justus Liebigs Ann. Chem. 1930, 482, 251-264.
- [70] T. Noda H. Ogawa, Y. Shirota, *Adv. Mater.***1999**, *11*, 4, 283-85.
- [71] D. Cherian, *bisher unveröffentlichte Ergebnisse Diplomarbeit*, Universität Bielefeld.
- [72] H. Li, L. Li, D. J. Schwartz, M. V. Metz, T. J. Marks, L. Liable-Sands, A. L. Rheingold, *J. AM. CHEM. SOC.* 2005, *127*, 14756-14768.
- [73] S. Kotha, D. Kashinath, K. Lahiri, R. B. Suno, *Eur. J. Org. Chem.* 2004, 4003-4013.
- [74] X. Yu Cao, X. Hui Liu, X. Hua Zhou, Y. Zhang, Y. Jiang, Y. Cao, Y. Xin Cui, J. Pei, *J. Org. Chem.* 2004, *69*, 18, 6050-6058.
- [75] F. Cherioux, L. Guyard, Adv. Funct. Mater. 2001, 11, 4, 305-309.
- [76] a) L. Gattermann, M. Römer, *Ber. d. D. chem. Ges.* 1886, 19, 1, 688-695 b)
  K. T. Potts, M. J. Cipullo, P. Ralli, G. Theodoridis, *J. Org. Chem.* 47, 16, 3027-3038.
- [77] Y. Gu, H. Pritzkow, W. Siebert Eur. J. Inorg. Chem. 2001, 373-379.
- [78] K. Okada, T. Sugawa, M. Oda, J. Chem. Soc. Chem. Comm. 1992, 74-75.
- [79] H. Noguchi, T. Shioda, C.-M. Chou, M. Suginome, Org. Lett. 2008, 10, 3, 377-380.
- [80] M. Kinoshita, Y. Shirota, *Chem. Lett.* **2001**, 614-15.
- [81] a) P. Nguyen, Z. Yuan, L. Agoes, G. Lesley, T. B. Marder, *Inorg. Chim. Acta.* **1994**, *220*, 289. b) P. Nguyen, G. Lesley, T. B. Marder, I. Ledoux, J. Zyss, *Chem. Mater.* **1997**, *9*, 406. c) M. Biswas, P. Nguyen, T. B. Marder, L. R. Khundkar, *J. Phys. Chem. Acta* **1997**, *101*, 1689. d) U. H. W. Bunz, *Chem. Rev.* **2000**, *100*, 1605. e) J. B. Wilson, P. M. Windscheif, U. Evans, M. L. Myrick, U. H. F. Bunz, *Macromolecules* **2002**, *35*, 8681. e) J. M. Tour, *An. Chem. Rev.* **2000**, *33*, 791. f) J.-S. Yang, T. M. Swager, *J. Am. Chem.*

Soc. **1998**, *120*, 5321. g) K. Koichi, T. Ikeda, K. Kondo, T. Sakaguchi, K. Kamada, K. Tawa, K. Ohta, *Macromol. Chem. Phys.* **2000**, *201*, 525.

- [82] Y. Yamaguchi, T. Tanaka, S. Kobayashi, T. Wakamiya, Y. Matsubara, Z.-I.Yoshida, *J. Am. Chem. Soc.* 2005, 127, 9332.
- [83] a) C. Dai, Z. Yuan, J. C. Collings, T. M. Fasina, R. L. Thomas, K. P. Roscoe, L. M. Stimson, D. S. Yufit, A. S. Batsanov, J. A. K. Howard, T. B. Marder, *Cryst. Eng. Comm.* 2004, *6*, 32, 184–188 (SMe). b) B. K. Blackburn, A. Lee, M. Baier, B. Kohl, A. G. Olivere, R. Matamaros, K. D. Robarge, R. S. McDowell, *J. Med. Chem.* 1997, *40*, 717-729 (CN). c) A. Elangovan, Y.-H. Wang, T.-I. Ho, *Org. Lett* .2003, *5*, 11, 1841-1844 (OMe, NMe). d) A. M. McDonagh, C. E. Powell, J. P. Morrall, M. P. Cifuentes, M. G. Humphrey, *Organometallics* 2003, *22*, 1402-1413. (NMe).
- [84] A. Penner, *Diplomarbeit*, Universität Bielefeld **2006**.
- [85] N. M. D. Brown, F. Davidson, J. W. Wilson, J. Organomet. Chem. 1981, 209, 1-11.
- [86] M. S. Khan, M. R. A. Al-Mandhary, M. K. Al-Suti, B. Ahrens, M. F. Mahon,L. Male, P. R. Raithby, C. E. Boothby, A. Köhler, *Dalton Trans* 2003, 74-84.
- [87] Y. Yamaguchi, T. Ochi, T. Wakamiya, Y. Matsubara, Z.-I. Yoshida, Org. Lett. 2006, 8, 4, 717-720.
- [88] M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth, P. A. Grieco, *Org. Lett.* **2002**, *4*, 19, 3199-3202.
- [89] M. Hird, G. W. Gray, K. J. Toyne, *Mol. Cryst. Liq. Cryst.* **1991**, 206, 205-221.
- [90] F. Ek, L. G. Wistrand, T. Frejd, J. Org. Chem. 2003, 68, 5, 1911-1918.
- [91] A. Hameurlaine, W. Dehaen, *Tetrahedron Letters* **2003**, *44*, 957-959.
- [92] T. Xu, R. Lu, X. Liu, X. Zheng, X. Qiu, Y. Zhao, Org. Lett. 2007, 9, 5, 797-800.
- [93] a) Y. Hamada, C. Adachi, T. Tsutsui, S. Saito, *Jpn. J. Appl. Phys.* 1992, 31, 1812. b) J. Kido, M. Kimura, K. Nagai, *Chem. Lett.* 1996, 47.
- [94] a) Y. Shirota, J. Mater. Chem. 2000, 10, 1-25. b) T. Noda, Y. Shirota, J. Lumin. 2000, 87, 1168-1170.
- [95] H. Vogel, Gerthsen Physik, 20. Auflage, Springer Verlag 1999, 577.

- [96] A. Chrostowska, M. Maciejczyka, A. Dargelos, Unveröffentlichte Ergebnisse, Equipe Chimie Physique, Université de Pau et des Pays de l'Adour.
- [97] Arbeitskreis Anorganische Chemie II, Universität Bielefeld, PCII Arbeitskreis Physikalische Chemie I, Universität Bielefeld, Equipe Chimie Physique, Université de Pau et des Pays de l'Adour.
- [98] Y. Goldberg, H. Alper, J. Org. Chem. **1993**, *58*, 3072-3075
- [99] M. A. Keegstra, L. Brandsma, *Synthesis* **1988**, *11*, 890.
- [100] L. Weber, H. B. Wartig, H.-G. Stammler and B. Neumann, Z. Anorg. Allg. Chem. 2001, 627, 2663
- [101] a) U. T. Mueller-Westerhoff, B. Vance, D. I. Yoon *Tetrahedron* 1991, 47, 909. b) C. H. Raeder, A. R. Day, *J. Org. Chem.* 1941, 6, 25.
- [102] K. Yui, Y. Aso, T. Otsubo, F. Ogura, Bull. Chem. Soc. Jpn. 1989, 62, 1539.
- [103] D. D. Cunningham, L. Laguren-Davidson, H. B. Mark, C. Van Pham, H. Zimmer, J. Chem. Soc. Chem. Comm. 1987, 1021-1023.
- [104] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, GAUSSIAN 03 (Revision C.02), Gaussian, Inc., Wallingford, CT, 2004.
- [105] A. D. Becke, J. Chem. Phys., 1993, 98, 5648; C. Lee, W. Yang and R. G.
   Parr, Phys. Rev. B, 1988, 37, 785

- [106] G. A. Petersson, M. A. Al-Laham, J. Chem. Phys., 1991, 94, 6081; G.A.
   Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, J.
   Mantzaris, J. Chem. Phys., 1988, 89, 2193
- [107] A. R. Allouche, *Gabedit 2.1.0*, CNRS et Université Claude Bernard Lyon1, 2007. Available at http://gabedit.sourceforge.net.
- [108] N. M. O'Boyle, J. G. Vos, *GaussSum 1.0*, Dublin City University, 2005. Available at http://gausssum.sourceforge.net.

## **G** Anhang

## 1. Kristallographische Daten

vawe 03 (Verbindungsnummer **110**) vawe 04 (Verbindungsnummer **60**) vawe 05 (Verbindungsnummer **82**) vawe 06 (Verbindungsnummer **67**) vawe 07 (Verbindungsnummer **68**) vawe 09 (Verbindungsnummer **97**) vawe 10 (Verbindungsnummer **84**) vawe 11 (Verbindungsnummer **105**) vawe 12 (Verbindungsnummer **108**) vawe 13 (Verbindungsnummer **106**) vawe 14 (Verbindungsnummer **106**) vawe 15 (Verbindungsnummer **79**) vawe 16 (Verbindungsnummer **79**) vawe 19 (Verbindungsnummer **100**)

Table 1. Crystal data and structure refinement for vawe03.

```
Identification code
                                                                        vawe03
                                                                        Nonius KappaCCD
C34 H40 B N3 S
Measurement device
Empirical formula
 Formula weight
                                                                        533.56
100(2) K
 Temperature
 Wavelength
                                                                        0.71073 A
Monoclinic P 21/c
Crystal system, space group
Unit cell dimensions
                                                                        \begin{array}{l} \text{Monoclimic } p = 21/0 \\ \text{a} = 21.0380(5) \\ \text{A} \\ \text{b} = 13.0890(3) \\ \text{A} \\ \text{c} = 10.9190(3) \\ \text{A} \end{array}
                                                                                                               alpha = 90 deg.
                                                                                                               beta = 94.7240(12) deg.
gamma = 90 deg.
Volume
                                                                        2996.51(13) A^3
                                                                        4, 1.183 Mg/m<sup>3</sup>
0.135 mm<sup>-1</sup>
 Z, Calculated density
 Absorption coefficient
 F(000)
                                                                       1144
0.26 x 0.22 x 0.12 mm^3, Colourless plate
2.91 to 30.00 deg.
-29<=h<=29, -18<=k<=0, 0<=l<=15
57361 / 8648 [R(int) = 0.063]
99.1%
                                                                        1144
 Crystal size, colour and habit
Theta range for data collection
 Index ranges
Reflections collected / unique
Completeness to theta = 30.00
Absorption correction
Max. and min. transmission
                                                                        multi-scan
                                                                        0.9839 and 0.9657
                                                                        Full-matrix least-squares on F<sup>2</sup>
8648 / 0 / 360
1.030
Kerinement method
Data / restraints / parameters
Goodness-of-fit on F<sup>2</sup>
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole
remarks
Refinement method
                                                                        R1 = 0.0494, wR2 = 0.1122 [6276]
R1 = 0.0797, wR2 = 0.1237
0.407 and -0.272 e.A^-3
remarks
```

Table 2. Atomic coordinates (  $x\;10^{4})$  and equivalent isotropic displacement parameters (A^2  $x\;10^{3}$ ) for vawe03. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
S(1)	872(1)	4408(1)	2304(1)	20(1)
N(1)	-757(1)	4494(1)	2148(1)	20(1)
N(2)	-756(1)	3307(1)	3703(1)	19(1)
N(3)	2155(1)	4514(1)	2910(1)	20(1)
B(1)	-362(1)	4024(1)	3126(2)	19(1)
C(1)	-1365(1)	4051(1)	2130(1)	19(1)
C(2)	-1364(1)	3330(1)	3084(1)	19(1)
C(3)	-1896(1)	2725(1)	3227(1)	23(1)
C(4)	-2426(1)	2849(1)	2384(1)	25(1)
C(5)	-2425(1)	3563(1)	1442(2)	26(1)
C(6)	-1898(1)	4184(1)	1304(2)	24(1)
C(7)	-641(1)	5355(1)	1342(1)	25(1)
C(8)	-884(1)	6362(1)	1833(2)	29(1)
C(9)	-598(1)	2627(1)	4742(1)	21(1)
C(10)	-775(1)	3096(1)	5941(1)	26(1)
C(11)	367(1)	4178(1)	3451(1)	19(1)
C(12)	725(1)	4078(1)	4554(1)	21(1)
C(13)	1392(1)	4159(1)	4487(1)	21(1)
C(14)	1549(1)	4334(1)	3318(1)	19(1)
C(15)	2368(1)	4196(1)	1784(1)	19(1)
C(16)	2097(1)	3517(1)	904(1)	20(1)
C(17)	2434(1)	3311(1)	-102(1)	21(1)
C(18)	3029(1)	3762(1)	-285(1)	20(1)
C(19)	3294(1)	4418(1)	620(1)	19(1)
C(20)	2971(1)	4628(1)	1657(1)	18(1)
C(21)	3140(1)	5216(1)	2759(1)	18(1)
- ( /	======(==)		= = = = = = = = = = = = = = = = = = = =	(-)

C(22)	3688(1)	5763(1)	3171(1)	19(1)	
C(23)	3724(1)	6246(1)	4305(1)	20(1)	
C(24)	3193(1)	6177(1)	5011(1)	22(1)	
C(25)	2645(1)	5635(1)	4633(1)	21(1)	
C(26)	2628(1)	5141(1)	3505(1)	19(1)	
C(27)	3360(1)	3495(1)	-1441(1)	25(1)	
C(28)	3525(1)	2353(1)	-1417(2)	32(1)	
C(20)	2015(1)	2726(1)	2507(2)	25(1)	
C(29)	2913(1)	3720(1)	-2597(2)	33(1) 40(1)	
C(30)	3979(1)	4104(2)	-1520(2)	40(1)	
C(31)	4316(1)	6836(I)	4830(1)	21(1)	
C(32)	4840(1)	6859(1)	3936(1)	26(1)	
C(33)	4133(1)	7946(1)	5102(2)	30(1)	
C(34)	4587(1)	6320(1)	6027(2)	29(1)	
Table 3.	Bond lengths	[A] and angle	s [deq] for v	awe03.	
S(1) = C(	14)	1 734	5(14)	S(1) = C(11)	1 7348(14)
N(1) C(	1)	1 402	2(12) 2(10)	N(1) - C(11)	1 427/2)
N(1)-C(	1)	1.402	2(18)	N(1)-B(1)	1.437(2)
N(1) - C(	7)	1.462	2(19)	N(2) = C(2)	1.39//(18)
N(2)-B(	1)	1.432	(2)	N(2)-C(9)	1.4592(18)
N(3)-C(	14)	1.404	5(18)	N(3)-C(15)	1.4059(18)
N(3)-C(	26)	1.407	2(18)	B(1)-C(11)	1.557(2)
C(1)-C(	6)	1.391	(2)	C(1)-C(2)	1.406(2)
C(2) - C(	3)	1.390	(2)	C(3) - C(4)	1,396(2)
C(4) - C(	5)	1 390	(2)	C(5) - C(6)	1 393(2)
C(7)-C(	8)	1 526	(2)	C(9) - C(10)	1 519(2)
C(7)-C(	07	1.320	(2)		1.010(2)
0(11)-0	(12)	1.3/3	(2)	C(12) - C(13)	1.416(2)
C(13)-C	2(14)	1.364	(2)	C(15)-C(16)	1.396(2)
C(15)-C	2(20)	1.405	(2)	C(16)-C(17)	1.383(2)
C(17)-C	2(18)	1.412	(2)	C(18)-C(19)	1.391(2)
C(18)-C	2(27)	1.531	(2)	C(19)-C(20)	1.395(2)
C(20)-C	(21)	1.448	2(19)	C(21)-C(22)	1.3996(19)
C(21)-C	(26)	1.406	(2)	C(22)-C(23)	1.388(2)
C(23)-C	(24)	1 411	(2)	C(23) - C(31)	1 536(2)
C(24)-C	(25)	1 297	(2)	C(25) - C(26)	1 299(2)
C(24)-C	(20)	1.507	(2)	C(23) - C(20)	1.505(2)
C(27)-C	(28)	1.534	(2)	C(27) - C(30)	1.536(2)
C(27)-C	29)	1.539	(2)	C(31)-C(32)	1.530(2)
C(31)-C	2(33)	1.539	(2)	C(31)-C(34)	1.539(2)
C(14)-S	S(1)-C(11)	92.82(	7)	C(1)-N(1)-B(1)	107.72(12)
C(1)-N(	1)-C(7)	120.50(	12)	B(1)-N(1)-C(7)	131.46(13)
C(2)-N(	2)-B(1)	108.29(	12)	C(2)-N(2)-C(9)	121.94(12)
B(1)-N(	2)-C(9)	129.76(	12)	C(14)-N(3)-C(15)	126.24(12)
C(14)-N	I(3) - C(26)	125.24(	12)	C(15) - N(3) - C(26)	108.19(11)
N(2)-B(	(2) = N(1)	106 67(	13)	N(2) = B(1) = C(11)	125 36(13)
N(1)_P(	1) - C(11)	127 80/	12)	C(5) - C(1) - N(1)	130 01(14)
	1) 0(2)	121.00(	12)	N(1) = O(1) = O(2)	100.01(11)
C(0)-C(	1) = C(2)	121.03(	12)	N(1) = C(1) = C(2)	100.01(12)
C(3)-C(	Z) $-N(Z)$	130.34(	13)	C(3) - C(2) - C(1)	120.94(13)
N(2)-C(	2) - C(1)	108.51(	12)	C(2) - C(3) - C(4)	117.82(14)
C(5)-C(	4)-C(3)	121.09(	14)	C(4)-C(5)-C(6)	121.42(14)
C(1)-C(	6)-C(5)	117.68(	14)	N(1)-C(7)-C(8)	112.12(13)
N(2)-C(	9)-C(10)	111.58(	12)	C(12)-C(11)-B(1)	130.30(13)
C(12)-C	(11)-S(1)	108.96(	11)	B(1)-C(11)-S(1)	120.49(10)
C(11)-C	(12) - C(13)	115.04(	13)	C(14) - C(13) - C(12)	112,21(13)
C(13)-C	(14) = N(3)	128 40(	13)	C(13) - C(14) - S(1)	110 94(11)
N(2) C(	14) 0(1)	120.10(	11)		120.57(12)
N(3)=C(	14)-3(1)	120.52(	12)	C(10) - C(15) - C(20)	120.07(13)
C(16)-C	(15)-N(3)	130.39(	13)	C(20) - C(15) - N(3)	108.80(12)
C(17)-C	2(16)-C(15)	117.55(	13)	C(16)-C(17)-C(18)	123.38(13)
C(19)-C	2(18)-C(17)	117.73(	13)	C(19)-C(18)-C(27)	122.85(13)
C(17)-C	2(18)-C(27)	119.40(	13)	C(18)-C(19)-C(20)	120.29(13)
C(19)-C	(20)-C(15)	120.30(	13)	C(19)-C(20)-C(21)	132.52(13)
C(15)-C	(20)-C(21)	107.13(	12)	C(22)-C(21)-C(26)	119.97(13)
C(22)-C	(21)-C(20)	132.77(	13)	C(26)-C(21)-C(20)	107.22(12)
C(23)-C	(22) - C(21)	120 15/	13)	C(22) - C(23) - C(24)	118 16(13)
C(23)=C	(22) = C(21)	120.13(		C(24) = C(23) = C(24)	110 00/10
	(24) (C))	102 051	12)		110.07(12)
C(25)-C	(24)-C(23)	123.06(	13)	C(24) - C(25) - C(26)	117.53(13)
C(25)-C	(26)-C(21)	121.08(	13)	C(25) - C(26) - N(3)	130.28(13)
C(21)-C	2(26)-N(3)	108.64(	12)	C(18)-C(27)-C(28)	108.98(13)
C(18)-C	2(27)-C(30)	111.98(	12)	C(28)-C(27)-C(30)	108.35(14)
C(18)-C	2(27)-C(29)	110.09(	13)	C(28)-C(27)-C(29)	109.05(13)
C(30)-C	!(27)-C(29)	108.33(	15)	C(32)-C(31)-C(23)	112.11(12)
C(32)-C	(31)-C(33)	108.09(	13)	C(23)-C(31)-C(33)	109.72(12)
C(32)-C	(31) - C(34)	108 34/	12)	C(23) - C(31) - C(34)	109 16(12)
C(32)-C	(21)_0(24)	100.31(	12)	2(25) 2(51) 2(51)	109.10(12)
U(33)-C	.(JI)=((34)	109.3/(	/		

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawe03. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ull + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
g(1)	19(1)	24(1)	19(1)	1/1)	2(1)	-1(1)
N(1)	21(1)	18(1)	21(1)	3(1)	4(1)	-1(1)
N(2)	21(1)	17(1)	19(1)	0(1)	4(1)	-1(1)
N(3)	19(1)	21(1)	19(1)	-3(1)	4(1)	-2(1)
B(1)	23(1)	16(1)	18(1)	-1(1)	4(1)	0(1)
C(1)	20(1)	18(1)	21(1)	-3(1)	5(1)	1(1)
C(2)	20(1)	17(1)	22(1)	-4(1)	5(1)	1(1)
C(3)	24(1)	20(1)	25(1)	-3(1)	7(1)	-2(1)
C(4)	20(1)	22(1)	32(1)	-8(1)	7(1)	-4(1)
C(5)	21(1)	26(1)	30(1)	-5(1)	0(1)	1(1)
C(6)	24(1)	22(1)	26(1)	0(1)	1(1)	3(1)
C(7)	24(1)	26(1)	25(1)	7(1)	2(1)	-3(1)
C(8)	34(1)	22(1)	32(1)	6(1)	0(1)	-4(1)
C(9)	24(1)	16(1)	24(1)	3(1)	3(1)	-1(1)
C(10)	32(1)	24(1)	23(1)	4(1)	6(1)	-1(1)
C(11)	21(1)	17(1)	19(1)	1(1)	5(1)	-1(1)

C(12)	25(1)	18(1)	19(1)	1(1)	5(1)	-1(1)
C(13)	23(1)	20(1)	19(1)	1(1)	1(1)	0(1)
C(14)	19(1)	18(1)	20(1)	-2(1)	1(1)	0(1)
C(15)	21(1)	18(1)	18(1)	1(1)	2(1)	2(1)
0(10)	20(1)	10(1)	22(1)	1(1)	2(1)	2(1)
C(10)	20(1)	18(1)	22(I)	1(1)	1(1)	-1(1)
C(17)	24(1)	18(1)	21(1)	-2(1)	0(1)	1(1)
C(18)	24(1)	17(1)	20(1)	-1(1)	4(1)	2(1)
C(19)	20(1)	17(1)	21(1)	0(1)	3(1)	1(1)
C(20)	20(1)	16(1)	19(1)	1(1)	1(1)	1(1)
C(21)	21(1)	15(1)	19(1)	0(1)	2(1)	2(1)
C(22)	20(1)	16(1)	21(1)	1(1)	3(1)	1(1)
C(23)	21(1)	17(1)	21(1)	0(1)	1(1)	0(1)
C(24)	24(1)	21(1)	19(1)	-2(1)	3(1)	0(1)
C(25)	22(1)	22(1)	21(1)	-1(1)	5(1)	1(1)
C(26)	19(1)	17(1)	22(1)	1(1)	2(1)	0(1)
C(20)	1)(1)	17(1)	22(1)	1(1)	2(1)	0(1)
C(27)	27(1)	25(1)	23(I)	-7(I)	7(1)	-2(I)
C(28)	27(1)	30(1)	39(1)	-13(1)	3(1)	4(1)
C(29)	45(1)	37(1)	23(1)	-3(1)	8(1)	5(1)
C(30)	42(1)	42(1)	39(1)	-18(1)	23(1)	-14(1)
C(31)	20(1)	21(1)	23(1)	-2(1)	1(1)	-1(1)
C(32)	21(1)	28(1)	28(1)	-2(1)	2(1)	-5(1)
C(33)	26(1)	22(1)	40(1)	-7(1)	2(1)	-3(1)
C(34)	28(1)	33(1)	25(1)	0(1)	-2(1)	-2(1)

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawe03.

	x	У	Z	U(eq)
	1000	0040	2055	0.7
H(3)	-1899	2243	3877	27
H(4)	-2/94	2438	2455	29
H(5)	-2/92	3630	880	31
H(6)	-1902	4680	668	29
H(7A)	-856	5224	516	30
H(7B)	-178	5411	1256	30
H(8A)	-1327	6281	2026	44
H(8B)	-859	6896	1210	44
H(8C)	-620	6556	2579	44
H(9A)	-135	2479	4803	25
H(9B)	-829	1973	4602	25
H(10A)	-585	3778	6036	39
H(10B)	-613	2662	6629	39
H(10C)	-1240	3149	5930	39
H(12)	539	3962	5305	25
H(13)	1696	4099	5178	25
H(16)	1694	3208	994	24
H(17)	2257	2842	-700	25
H(19)	3697	4725	531	23
H(22)	4037	5803	2673	23
H(24)	3212	6518	5781	26
H(25)	2295	5602	5127	26
H(28A)	3810	2202	-684	48
H(28B)	3737	2177	-2154	48
H(28C)	3133	1952	-1396	48
H(29A)	3131	3554	-3331	52
H(29B)	2804	4453	-2613	52
H(29C)	2525	3316	-2583	52
H(30A)	4272	3959	-795	60
H(30B)	3882	4836	-1551	60
H(30C)	4179	3906	-2264	60
H(32A)	4981	6160	3785	39
H(32B)	5201	7262	4292	39
H(32C)	4672	7168	3159	39
H(33A)	3975	8284	4335	44
H(33B)	4508	8312	5468	44
H(33C)	3798	7950	5676	44
H(34A)	4263	6323	6623	44
H(34B)	4965	6695	6367	44
H(34C)	4706	5614	5855	44

Table 1. Crystal data and structure refinement for vawe04.

Identification code vawe04 Measurement device Empirical formula Nonius KappaCCD C18 H19 B N2 S Formula weight Temperature 306.22 100(2) К Wavelength Crystal system, space group Unit cell dimensions 0.71073 A 0.71073 A Orthorhombic P 21 21 2 a = 4.3630(3) A alpha = 90 deg. b = 10.2550(7) A beta = 90 deg. c = 17.3780(12) A gamma = 90 deg. 777.54(9) A^3 2, 1.308 Mg/m^3 0.205 mm^-1 Volume Z, Calculated density Absorption coefficient F(000) 324 F(000) Crystal size, colour and habit Theta range for data collection Index ranges Reflections collected / unique Completeness to theta = 24.99 324 0.26 x 0.22 x 0.18 mm^3, Colourless plate 3.07 to 24.99 deg. -5<=h<=5, -11<=k<=12, -20<=1<=20 9369 / 1336 [R(int) = 0.056] 97.9% multi-scan Completeness to theta = 24.99 Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F⁺2 Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter 0.9640 and 0.9486 Full-matrix least-squares on F^{*}2 1336 / 0 / 103 1.132 R1 = 0.0818, wR2 = 0.1700 [1244] R1 = 0.0876, wR2 = 0.1731 Absolute structure parameter Extinction coefficient Largest diff. peak and hole 0.3(5)0.031(4) 0.297 and -0.388 e.A^-3

## remarks

Disorder on a twofold axes S(1)/C(9).

Table 2. Atomic coordinates (  $x\;10^{\circ}4)$  and equivalent isotropic displacement parameters (A^2  $x\;10^{\circ}3)$  for vawe04. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
S(1)	-777(6)	11242(2)	9485(1)	43(1)
N(1)	1632(9)	9119(4)	7574(2)	26(1)
B(1)	0	10000	8061(5)	24(2)
C(1)	995(12)	9441(6)	6803(3)	25(1)
C(2)	1981(12)	8901(6)	6136(3)	26(1)
C(3)	983(11)	9432(5)	5427(3)	25(1)
C(4)	1954(11)	8919(6)	4708(3)	28(1)
C(5)	992(13)	9471(5)	4031(3)	28(1)
C(6)	3712(12)	8049(5)	7749(3)	28(1)
C(7)	2101(13)	6742(5)	7734(3)	33(1)
C(8)	0	10000	8955(5)	28(2)
C(9)	-777(6)	11242(2)	9485(1)	43(1)
C(10)	-362(16)	10639(6)	10293(3)	47(2)

Table 3. Bond lengths [A] and angles [deg] for vawe04.

S(1)-C(10)	1.544(7)	S(1)-C(8)	1.609(5)
N(1)-C(1)	1.408(6)	N(1)-B(1)	1.428(7)
N(1)-C(6)	1.456(7)	B(1)-N(1)#1	1.428(7)
B(1)-C(8)	1.553(11)	C(1)-C(2)	1.356(7)
C(1)-C(1)#1	1.438(11)	C(2)-C(3)	1.416(7)
C(3) - C(4)	1.420(7)	C(3)-C(3)#1	1.446(10)
C(4) - C(5)	1.371(7)	C(5)-C(5)#1	1.389(12)
C(6) - C(7)	1.513(8)	C(8)-C(9)#1	1,609(5)
C(8)-S(1)#1	1.609(5)	C(10)-C(10)#1	1.349(13)
C(10) - S(1) - C(8)	100 3(4)	C(1) - N(1) - B(1)	108 5(5)
C(1) - N(1) - C(6)	119.9(4)	B(1)-N(1)-C(6)	131.7(5)
N(1)-B(1)-N(1)#1	107.4(6)	N(1)-B(1)-C(8)	126.3(3)
N(1)#1-B(1)-C(8)	126.3(3)	C(2) - C(1) - N(1)	131.0(5)
C(2)-C(1)-C(1)#1	121.1(3)	N(1)-C(1)-C(1)#1	107.8(3)
C(1) - C(2) - C(3)	119.3(5)	C(2) - C(3) - C(4)	122.1(5)
C(2)-C(3)-C(3)#1	119.5(3)	C(4)-C(3)-C(3)#1	118.4(3)
C(5)-C(4)-C(3)	120.7(5)	C(4)-C(5)-C(5)#1	120.9(3)
N(1)-C(6)-C(7)	112.0(4)	B(1)-C(8)-S(1)	125.0(3)
B(1)-C(8)-C(9)#1	125.0(3)	S(1)-C(8)-C(9)#1	110.1(5)
B(1)-C(8)-S(1)#1	125.0(3)	S(1)-C(8)-S(1)#1	110.1(5)
C(9)#1-C(8)-S(1)#1	0.0(2)	C(10)#1-C(10)-S(1)	114.6(2)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y+2,z

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawe04. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a^*^2 Ull + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
S(1)	57(2)	44(2)	28(1)	-11(1)	0(1)	2(1)
N(1)	19(2)	35(3)	25(2)	-2(2)	1(2)	2(2)
B(1)	18(4)	27(5)	28(4)	0	0	-4(4)
C(1)	16(2)	34(3)	25(2)	2(2)	-3(2)	-2(2)
C(2)	21(3)	29(3)	27(3)	-2(2)	1(2)	1(3)
C(3)	20(2)	27(3)	29(3)	0(2)	-1(2)	-5(2)
C(4)	24(3)	33(3)	26(3)	-4(2)	0(2)	-3(3)
C(5)	32(3)	28(3)	25(3)	-5(2)	4(2)	-4(3)
C(6)	27(3)	38(3)	20(2)	-3(2)	-1(2)	2(3)
C(7)	33(3)	34(3)	33(3)	-6(2)	5(2)	8(3)
C(8)	24(4)	24(4)	36(4)	0	0	-1(3)
C(9)	57(2)	44(2)	28(1)	-11(1)	0(1)	2(1)
C(10)	56(4)	50(4)	35(3)	-20(3)	0(3)	-9(4)

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawe04.

	x	У	z	U(eq)
	2200	0152	61.42	21
H(∠)	3329	81/3	6143	31
H(4)	3284	8186	4696	33
H(5)	1692	9124	3555	34
H(6A)	4622	8188	8264	34
H(6B)	5400	8044	7368	34
H(7A)	1212	6597	7223	50
H(7B)	468	6735	8121	50
H(7C)	3579	6049	7848	50
H(9)	-1334	12105	9342	51
H(10)	-599	11130	10753	56

Table 1. Crystal data and structure refinement for vawe05.

Identification code vawe05 Nonius KappaCCD C36 H45 B3 N6 + C7 H14 692.39 100(2) K 0.71073 A Monoclinic C 2/c a = 27.1960(11) A alpha = 90 deg. b = 16.9590(8) A beta = 92.737(3) deg. c = 8.7780(4) A gamma = 90 deg. 4043.9(3) A^3 4, 1.137 Mg/m^3 0.066 mm^-1 1496 Measurement device Nonius KappaCCD Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions Volume Z, Calculated density Absorption coefficient F(000) Crystal size, colour and habit Theta range for data collection 1496 0.25 x 0.24 x 0.22 mm^3, Colourless fragment 3.00 to 29.99 deg. 0<=h<=38, 0<=k<=23, -12<=12=12 60259 / 5877 [R(int) = 0.081] 99.4% 1496 Index ranges Reflections collected / unique Completeness to theta = 29.99 Absorption correction multi-scan 0.9856 and 0.9837 Max. and min. transmission Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [l>2sigma(I)] R indices (all data) Largest diff. peak and hole remarks Full-matrix least-squares on F² 5877 / 22 / 247 1.025 1.025 R1 = 0.0806, wR2 = 0.2074 [2851] R1 = 0.1736, wR2 = 0.2532 0.628 and -0.332 e.A^-3 Disorder of C(8) on two positions (64:36). Disorder of C(20) to C(26) on an inversion center, bonds were restrained to become equal. remarks

Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for vawe05. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
		0004/4	0000/01	50/43
N(1)	1122(1)	3894(1)	3202(3)	52(1)
N(2)	1304(1)	3131(1)	1158(2)	46(1)
N(3)	322(1)	105(1)	1698(2)	37(1)
B(1)	941(1)	3263(2)	2262(3)	44(1)
B(2)	0	619(2)	2500	38(1)
C(1)	1583(1)	4120(2)	2715(3)	54(1)
C(2)	1694(1)	3650(2)	1470(3)	52(1)
C(3)	2139(1)	3740(2)	791(4)	70(1)
C(4)	2464(1)	4311(2)	1408(5)	83(1)
C(5)	2350(1)	4767(2)	2628(4)	75(1)
C(6)	1911(1)	4682(2)	3292(4)	67(1)
C(7)	1285(1)	2617(2)	-170(3)	60(1)
C(8A)	1612(2)	1968(3)	-46(6)	65(2)
C(8B)	1237(3)	2947(5)	-1724(10)	66(3)
C(9)	914(1)	4251(2)	4553(3)	64(1)
C(10)	706(1)	5067(2)	4254(4)	80(1)
C(11)	196(1)	-673(1)	2006(2)	42(1)
C(12)	390(1)	-1379(2)	1485(3)	52(1)
C(13)	187(1)	-2076(2)	1992(3)	65(1)
C(14)	721(1)	273(1)	701(3)	43(1)
C(15)	1229(1)	145(2)	1489(3)	56(1)
C(16)	0	3194(2)	2500	40(1)
C(17)	448(1)	2802(1)	2394(3)	40(1)
C(18)	436(1)	1978(1)	2410(2)	38(1)
C(19)	0	1542(2)	2500	36(1)
C(20)	2198(3)	2821(5)	-3766(9)	85(2)
C(21)	1733(3)	2408(4)	-4309(9)	86(2)
C(22)	1802(4)	1732(6)	-5152(13)	115(4)
C(23)	2169(3)	1706(5)	-6315(10)	95(2)
C(24)	2620(3)	2121(4)	-5906(9)	76(2)
C(25)	2573(3)	2894(5)	-4977(10)	100(2)
C(26)	3044(4)	3277(6)	-4476(14)	110(3)

Table 3. Bond lengths [A] and angles [deg] for vawe05.

N(1)-C(1)	1.397(3)	N(1)-B(1)	1.424(4)
N(1)-C(9)	1.469(3)	N(2)-C(2)	1.394(3)
N(2)-B(1)	1.435(3)	N(2)-C(7)	1.454(3)
N(3)-C(11)	1.393(3)	N(3)-B(2)	1.443(3)
N(3)-C(14)	1.454(3)	B(1)-C(17)	1.561(3)
B(2)-N(3)#1	1.443(3)	B(2)-C(19)	1.565(5)
C(1)-C(6)	1.385(4)	C(1)-C(2)	1.398(4)
C(2)-C(3)	1.385(4)	C(3)-C(4)	1.402(5)
C(4)-C(5)	1.368(5)	C(5)-C(6)	1.362(4)
C(7)-C(8A)	1.414(5)	C(7)-C(8B)	1.474(9)
C(9)-C(10)	1.512(5)	C(11)-C(12)	1.394(3)
C(11)-C(11)#1	1.406(4)	C(12)-C(13)	1.387(4)
C(13)-C(13)#1	1.382(6)	C(14)-C(15)	1.531(3)
C(16)-C(17)#1	1.395(3)	C(16)-C(17)	1.395(3)
C(17)-C(18)	1.398(3)	C(18)-C(19)	1.402(3)
C(19)-C(18)#1	1.402(3)	C(20)-C(21)	1.502(9)
C(20)-C(25)	1.513(9)	C(21)-C(22)	1.382(9)
C(22)-C(23)	1.463(10)	C(23)-C(24)	1.442(9)
C(24)-C(25)	1.553(9)	C(25)-C(26)	1.484(10)
C(1)-N(1)-B(1)	108.6(2)	C(1) - N(1) - C(9)	121.2(2)
B(1)-N(1)-C(9)	130.0(2)	C(2) - N(2) - B(1)	108.1(2)
C(2)-N(2)-C(7)	122.3(2)	B(1)-N(2)-C(7)	129.4(2)
C(11)-N(3)-B(2)	108.52(19)	C(11)-N(3)-C(14)	119.99(18)
B(2)-N(3)-C(14)	131.5(2)	N(1)-B(1)-N(2)	106.2(2)
N(1)-B(1)-C(17)	127.4(2)	N(2)-B(1)-C(17)	126.4(2)
N(3)#1-B(2)-N(3)	105.6(3)	N(3)#1-B(2)-C(19)	127.20(14)

N(3) - B(2) - C(19)	127 20(14)	C(6) - C(1) - N(1)	130 5(3)
C(6) - C(1) - C(2)	121 3(3)	N(1) - C(1) - C(2)	108 2(2)
C(3) - C(2) - N(2)	131 1(3)	C(3) - C(2) - C(1)	120 0(3)
N(2) - C(2) - C(1)	108 9(2)	C(2) - C(2) - C(4)	117 2(2)
N(2) - C(2) - C(1)	100.9(2)	C(2) - C(3) - C(4)	120 0(2)
C(5) - C(4) - C(3)	122.1(3)	C(6) - C(5) - C(4)	120.8(3)
C(5)-C(6)-C(1)	118.6(3)	C(8A)-C(7)-N(2)	114.0(3)
C(8A)-C(7)-C(8B)	113.2(4)	N(2)-C(7)-C(8B)	120.8(4)
N(1)-C(9)-C(10)	113.1(3)	N(3)-C(11)-C(12)	130.5(2)
N(3)-C(11)-C(11)#1	108.68(11)	C(12)-C(11)-C(11)#1	120.80(15)
C(13)-C(12)-C(11)	117.6(2)	C(13)#1-C(13)-C(12)	121.55(15)
N(3)-C(14)-C(15)	112.5(2)	C(17)#1-C(16)-C(17)	123.1(3)
C(16)-C(17)-C(18)	117.0(2)	C(16)-C(17)-B(1)	121.5(2)
C(18)-C(17)-B(1)	121.46(19)	C(17)-C(18)-C(19)	123.2(2)
C(18)-C(19)-C(18)#1	116.4(3)	C(18)-C(19)-B(2)	121.78(14)
C(18)#1-C(19)-B(2)	121.78(14)	C(21)-C(20)-C(25)	113.6(6)
C(22)-C(21)-C(20)	115.1(8)	C(21)-C(22)-C(23)	120.8(8)
C(24)-C(23)-C(22)	114.3(8)	C(23)-C(24)-C(25)	116.9(7)
C(26)-C(25)-C(20)	115.5(7)	C(26)-C(25)-C(24)	115.7(7)
C(20)-C(25)-C(24)	111.9(7)		

Symmetry transformations used to generate equivalent atoms: #1 -x,y,-z+1/2

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawe05. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
N(1)	34(1)	46(1)	76(1)	-5(1)	-7(1)	-4(1)
N(2)	34(1)	50(1)	54(1)	6(1)	2(1)	-5(1)
N(3)	34(1)	43(1)	36(1)	-1(1)	1(1)	0(1)
B(1)	33(1)	44(1)	56(2)	5(1)	-4(1)	2(1)
B(2)	28(2)	52(2)	33(2)	0	-3(1)	0
C(1)	36(1)	47(1)	78(2)	8(1)	-11(1)	-3(1)
C(2)	34(1)	53(1)	67(2)	17(1)	-5(1)	-7(1)
C(3)	50(2)	87(2)	73(2)	20(2)	6(1)	-19(1)
C(4)	42(2)	108(3)	97(3)	37(2)	-3(2)	-32(2)
C(5)	53(2)	74(2)	96(3)	17(2)	-16(2)	-23(2)
C(6)	45(2)	55(2)	99(2)	6(2)	-19(2)	-10(1)
C(7)	51(2)	70(2)	60(2)	2(1)	13(1)	-12(1)
C(8A)	57(3)	56(3)	85(3)	-8(2)	21(2)	7(2)
C(8B)	55(5)	70(5)	73(6)	0(4)	15(4)	-16(4)
C(9)	50(1)	68(2)	74(2)	-23(2)	-4(1)	-5(1)
C(10)	60(2)	72(2)	107(3)	-38(2)	-2(2)	0(2)
C(11)	43(1)	48(1)	34(1)	0(1)	-4(1)	2(1)
C(12)	58(2)	51(1)	48(1)	-6(1)	0(1)	5(1)
C(13)	86(2)	46(2)	64(2)	-5(1)	1(1)	6(1)
C(14)	35(1)	52(1)	43(1)	-7(1)	6(1)	2(1)
C(15)	31(1)	71(2)	67(2)	-14(1)	1(1)	6(1)
C(16)	30(1)	40(2)	49(2)	0	0(1)	0
C(17)	32(1)	44(1)	43(1)	0(1)	1(1)	-3(1)
C(18)	29(1)	46(1)	39(1)	-1(1)	1(1)	2(1)
C(19)	31(1)	44(2)	33(2)	0	-1(1)	0

Table 5.	Hydrogen	coord	inate	s	( x	10	^4)	and	isotropic
displacem	ent parame	eters	(A^2	х	10^3	3)	for	vawe	≥05.

	x	У	Z	U(eq)
н(3)	2222	3427	-58	84
H(4)	2772	4385	965	99
H(5)	2580	5146	3017	90
H(6)	1831	5003	4133	81
H(7A)	945	2415	-334	72
H(7B)	1363	2931	-1078	72
H(7C)	1005	2251	-58	72
H(7D)	1588	2293	-113	72
H(8A)	1572	1641	-963	98
H(8B)	1538	1654	852	98
H(8C)	1951	2161	58	98
H(8D)	1502	3328	-1865	98
H(8E)	918	3211	-1869	98
H(8F)	1259	2520	-2471	98
H(9A)	1174	4284	5379	77
H(9B)	649	3906	4911	77
H(10A)	963	5407	3863	120
H(10B)	591	5288	5205	120
H(10C)	430	5033	3499	120
H(12)	652	-1383	808	63
H(13)	307	-2564	1633	78
H(14A)	694	827	350	52
H(14B)	687	-71	-209	52
H(15A)	1279	528	2318	85
H(15B)	1483	216	747	85
H(15C)	1249	-391	1906	85
H(16)	0	3754	2500	48
H(18)	738	1699	2359	46
H(20A)	2348	2528	-2886	102
H(20B)	2113	3355	-3407	102
H(21A)	1545	2269	-3409	103
H(21B)	1530	2781	-4937	103
H(22A)	1481	1598	-5664	138
H(22B)	1882	1302	-4419	138
H(23A)	2249	1148	-6522	114
H(23B)	2024	1935	-7270	114
H(24A)	2785	2248	-6856	91
H(24B)	2839	1757	-5308	91
H(25)	2419	3275	-5728	120

H(26A)	3258	3313	-5341	165	
H(26B)	3207	2964	-3662	165	
H(26C)	2978	3808	-4095	165	
					_
Table 1. Crys	stal data and str	ucture re	finement for	vawe06.	
Identification	1 code	vawe0	D		
Measurement de	evice	Noniu	s KappaCCD		
Empirical for	nula	C24 H	30 B2 N4 S		
Formula weight	5	428.2	)		
Temperature		100(2	) К		
Wavelength		0.710	73 A		
Crystal system	n, space group	Tricl	inic P -1		
Unit cell dime	ensions	a = 1	).05400(10) A	. alpha = 73.	5560(7) deg.
		b = 1	1.4630(2) A	beta = 68.39	920(7) deg.
		c = 1	1.9850(2) A	gamma = 66.53	810(7) deg.
Volume		1162.	79(3) A^3		
Z, Calculated	density	2, 1	.223 Mg/m^3		
Absorption coe	efficient	0.158	mm^-1		
F(000)		456			
Crystal size,	colour and habit	0.30	к 0.27 х 0.20	mm^3, Colourl	ess fragment.
Theta range fo	or data collectio	n 3.35	to 30.00 deg.		
Index ranges		-14<=]	n<=14, −16<=k	<=16, -16<=1<=	-16
Reflections co	ollected / unique	54448	/ 6766 [R(in	it) = 0.039]	
Completeness t	to theta = 30.00	99.7%			
Absorption com	rrection	multi	-scan		
Max. and min.	transmission	0.969	l and 0.9541		
Refinement met	chod	Full-	matrix least-	squares on F^2	2
Data / restra	ints / parameters	6766	/ 0 / 284		
Goodness-of-f:	it on F^2	1.035			
Final R indice	es [I>2sigma(I)]	R1 =	).0355, wR2 =	0.0909 [5874]	
R indices (all	L data)	R1 =	).0423, wR2 =	0.0948	
Largest diff.	peak and hole	0.347	and -0.263 e	.A^-3	
remarks					

Table 2. Atomic coordinates (  $x \ 10^{4}$ ) and equivalent isotropic displacement parameters (A²  $x \ 10^{3}$ ) for vawe06. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	z	U(eq)	
2(1)	0010/1)	5105(1)	0446(1)	00/1)	
S(1) N(1)	8919(1) 7142(1)	5195(1)	2446(1)	20(1)	
N(2)	7780(1)	3212(1)	1581(1)	19(1)	
N(3)	9886(1)	7673(1)	2628(1)	21(1)	
N(4)	12236(1)	6243(1)	2723(1)	20(1)	
B(1)	8037(1)	3036(1)	2731(1)	19(1)	
B(2)	10718(1)	6325(1)	2877(1)	20(1)	
C(1)	6340(1)	2042(1)	2986(1)	18(1)	
C(2)	6744(1)	2608(1)	1753(1)	19(1)	
C(3)	6106(1)	2527(1)	936(1)	23(1)	
C(4)	5018(1)	1918(1)	1382(1)	25(1)	
C(5)	45/8(1) E246(1)	1399(1)	2609(1)	25(1)	
C(0)	7046(1)	1762(1)	4861(1)	22(1)	
C(8)	7972(1)	339(1)	5055(1)	25(1)	
C(9)	8415(1)	3885(1)	390(1)	22(1)	
C(10)	7331(1)	5216(1)	62(1)	27(1)	
C(11)	9006(1)	3616(1)	3021(1)	19(1)	
C(12)	9955(1)	3091(1)	3755(1)	23(1)	
C(13)	10608(1)	3952(1)	3817(1)	23(1)	
C(14)	10159(1)	5162(1)	3150(1)	20(1)	
C(15)	10876(1)	8365(1)	2315(1)	23(1)	
C(16)	12314(1)	7490(1)	2384(1)	21(1)	
C(17)	13535(1)	7916(1)	2092(1)	26(1)	
C(18)	13293(2)	9238(1)	1723(1)	31(1)	
C(19)	10645(1)	10100(1)	1063(1)	32(1)	
C(20)	8300(1)	8318(1)	2640(1)	27(1)	
C(22)	8089(2)	8682(1)	1376(1)	35(1)	
C(23)	13537(1)	5118(1)	2901(1)	22(1)	
C(24)	13732(1)	4911(1)	4152(1)	30(1)	
Table 3	Bond lengths	[A] and angle	s [deg] for y	rawe0.6	
S(1)-C	(11)	1.723	5(10)	S(1)-C(14)	
N(1)-C	(1)	1.394	4(12)	N(1)-B(1)	
N(1)-C	(7)	1.457	2(12)	N(2)-C(2)	
N(2)-B	(1) (1)	1.438	8(13) 0(14)	N(2)-C(9)	
N(3)-C	(15)	1.394	9(14) 5/12)	N(3) - B(2) N(4) - C(16)	
N(4)-B	(2)	1 434	7(14)	N(4) - C(10) N(4) - C(23)	
B(1)-C	(11)	1.551	5(15)	B(2) - C(14)	
C(1)-C	(6)	1.388	2(14)	C(1)-C(2)	
C(2)-C	(3)	1.392	8(14)	C(3)-C(4)	
C(4)-C	(5)	1.395	0(16)	C(5)-C(6)	
C(7)-C	(8)	1.521	4(14)	C(9)-C(10)	
C(11)-	C(12)	1.381	0(13)	C(12)-C(13)	
C(13)-	C(14)	1.381	1(14)	C(15)-C(20)	
C(15)-	C(16)	1.410	8(15)	C(16)-C(17)	
C(17)-	C(18)	1.399	∠(10) 4(10)	C(18)-C(19)	
C(19)- C(23)-	C(20)	1.523	4(18) 2(15)	C(21) - C(22)	
- · ·		04 55 5	-	0/1) X/1) D/1)	
C(11)-	S(1) - C(14)	94.61(	5) 0)	C(1) = N(1) = B(1) D(1) = N(1) = C(7)	
C(1)-N	$(\pm) = C(7)$ (2) = B(1)	108 14/	8)	C(2) = N(2) = C(2)	
B(1)-N	(2)-C(9)	130.230	9)	C(15) - N(3) - B(2)	
C(15)-	N(3)-C(21)	121.50(	9)	B(2)-N(3)-C(21)	

- 245

 $\begin{array}{c} 1,7274(10)\\ 1,4340(14)\\ 1,3934(13)\\ 1,4624(12)\\ 1,4391(13)\\ 1,3969(13)\\ 1,4587(12)\\ 1,5539(15)\\ 1,4132(13)\\ 1,3914(15)\\ 1,3934(15)\\ 1,5239(14)\\ 1,5239(14)\\ 1,3938(15)\\ 1,390(15)\\ 1,3871(19)\\ 1,5237(16)\\ \end{array}$ 

108.50(8) 129.16(9) 121.63(8) 108.25(8) 130.23(9)

C(16)-N(4)-B(2)	108.29(8)	C(16)-N(4)-C(23)	121.94(9)
B(2)-N(4)-C(23)	129.74(9)	N(1)-B(1)-N(2)	106.29(9)
N(1)-B(1)-C(11)	126.29(9)	N(2)-B(1)-C(11)	127.32(9)
N(4)-B(2)-N(3)	106.31(9)	N(4)-B(2)-C(14)	125.64(9)
N(3)-B(2)-C(14)	127.86(9)	C(6)-C(1)-N(1)	130.82(9)
C(6) - C(1) - C(2)	120.78(9)	N(1) - C(1) - C(2)	108.29(8)
C(3) - C(2) - N(2)	130.48(9)	C(3) - C(2) - C(1)	120.77(9)
N(2) - C(2) - C(1)	108.74(8)	C(4) - C(3) - C(2)	118.01(9)
C(3)-C(4)-C(5)	121.24(10)	C(4)-C(5)-C(6)	121.03(10)
C(1)-C(6)-C(5)	118.10(9)	N(1) - C(7) - C(8)	112.33(8)
N(2)-C(9)-C(10)	113.07(8)	C(12)-C(11)-B(1)	130.76(9)
C(12)-C(11)-S(1)	108.89(7)	B(1)-C(11)-S(1)	120.27(7)
C(11)-C(12)-C(13)	113.80(9)	C(14)-C(13)-C(12)	114.07(9)
C(13)-C(14)-B(2)	130.22(9)	C(13)-C(14)-S(1)	108.62(8)
B(2)-C(14)-S(1)	120.81(7)	C(20)-C(15)-N(3)	130.87(10)
C(20)-C(15)-C(16)	120.56(10)	N(3)-C(15)-C(16)	108.57(9)
C(17)-C(16)-N(4)	130.44(10)	C(17)-C(16)-C(15)	120.94(10)
N(4)-C(16)-C(15)	108.57(9)	C(16)-C(17)-C(18)	117.92(11)
C(19)-C(18)-C(17)	121.13(11)	C(18)-C(19)-C(20)	121.31(11)
C(19)-C(20)-C(15)	118.13(11)	N(3)-C(21)-C(22)	113.00(9)
N(4)-C(23)-C(24)	112.04(8)		

Symmetry transformations used to generate equivalent atoms: Table 4. Anisotropic displacement parameters ( $A^2 \times 10^3$ ) for vawe06. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ull + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
S(1)	20(1)	20(1)	19(1)	0(1)	-8(1)	-7(1)
N(1)	20(1)	18(1)	16(1)	-2(1)	-7(1)	-6(1)
N(2)	19(1)	21(1)	16(1)	-2(1)	-5(1)	-6(1)
N(3)	23(1)	19(1)	21(1)	-3(1)	-8(1)	-4(1)
N(4)	21(1)	19(1)	20(1)	-5(1)	-7(1)	-5(1)
B(1)	18(1)	18(1)	18(1)	-2(1)	-6(1)	-4(1)
B(2)	20(1)	20(1)	17(1)	-4(1)	-6(1)	-5(1)
C(1)	19(1)	16(1)	19(1)	-3(1)	-7(1)	-3(1)
C(2)	18(1)	17(1)	19(1)	-4(1)	-6(1)	-3(1)
C(3)	25(1)	22(1)	20(1)	-5(1)	-9(1)	-4(1)
C(4)	27(1)	24(1)	28(1)	-7(1)	-13(1)	-6(1)
C(5)	25(1)	23(1)	31(1)	-6(1)	-10(1)	-9(1)
C(6)	23(1)	19(1)	23(1)	-2(1)	-7(1)	-7(1)
C(7)	25(1)	22(1)	16(1)	-2(1)	-7(1)	-7(1)
C(8)	30(1)	23(1)	20(1)	0(1)	-10(1)	-6(1)
C(9)	21(1)	24(1)	16(1)	-1(1)	-4(1)	-6(1)
C(10)	26(1)	26(1)	21(1)	2(1)	-6(1)	-5(1)
C(11)	19(1)	19(1)	20(1)	-2(1)	-6(1)	-6(1)
C(12)	24(1)	18(1)	26(1)	-1(1)	-12(1)	-5(1)
C(13)	22(1)	22(1)	25(1)	-2(1)	-12(1)	-5(1)
C(14)	18(1)	21(1)	19(1)	-4(1)	-6(1)	-5(1)
C(15)	29(1)	22(1)	17(1)	-4(1)	-7(1)	-8(1)
C(16)	28(1)	22(1)	16(1)	-5(1)	-6(1)	-10(1)
C(17)	31(1)	31(1)	21(1)	-8(1)	-5(1)	-14(1)
C(18)	45(1)	36(1)	23(1)	-6(1)	-6(1)	-24(1)
C(19)	54(1)	25(1)	23(1)	-2(1)	-12(1)	-20(1)
C(20)	42(1)	21(1)	22(1)	-3(1)	-12(1)	-9(1)
C(21)	25(1)	23(1)	29(1)	-7(1)	-11(1)	1(1)
C(22)	38(1)	30(1)	36(1)	-6(1)	-23(1)	1(1)
C(23)	18(1)	22(1)	26(1)	-9(1)	-6(1)	-3(1)
C(24)	28(1)	27(1)	34(1)	-12(1)	-17(1)	3(1)

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawe06.

	x	У	z	U(eq)
H(3)	6405	2877	100	27
H(4)	4565	1855	842	30
H(5)	3813	1009	2893	30
H(6)	4960	1075	4257	26
H(7A)	5973	1880	5333	26
H(7B)	7414	2252	5174	26
H(8A)	7508	-166	4874	38
H(8B)	7995	66	5901	38
H(8C)	9008	201	4513	38
H(9A)	8685	3358	-237	26
H(9B)	9358	3975	383	26
H(10A)	6399	5135	58	41
H(10B)	7810	5616	-746	41
H(10C)	7086	5754	663	41
H(12)	10151	2232	4179	27
H(13)	11295	3718	4278	27
H(17)	14503	7328	2141	31
H(18)	14115	9550	1506	38
H(19)	11740	10994	1425	39
H(20)	9676	10277	1925	34
H(21A)	7890	9108	3009	32
H(21B)	7711	7743	3156	32
H(22A)	8689	9235	854	52
H(22B)	7016	9145	1434	52
H(22C)	8427	7899	1027	52
H(23A)	14465	5228	2269	27
H(23B)	13406	4344	2804	27
H(24A)	13908	5659	4238	45
H(24B)	14599	4136	4243	45
H(24C)	12812	4806	4781	45

Table 1. Crystal data and structure refinement for vawe07.

Identification code	vawe07
Measurement device	Nonius KappaCCD
Empirical formula	C28 H32 B2 N4 S2
Formula weight	510.32
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic P 21/c
Unit cell dimensions	a = 8.9220(2) A alpha = 90 deg.
	b = 8.29800(10) A beta = 103.1130(11) deg.
	c = 18.0240(4) A gamma = 90 deg.
Volume	1299.61(4) A^3
Z, Calculated density	2, 1.304 Mg/m^3
Absorption coefficient	0.230 mm^-1
F(000)	540
Crystal size, colour and habit	0.30 x 0.26 x 0.24 mm^3, Colourless fragment
Theta range for data collection	3.41 to 27.49 deg.
Index ranges	-11<=h<=11, -10<=k<=10, -23<=1<=23
Reflections collected / unique	18514 / 2966 [R(int) = 0.030]
Completeness to theta = 27.49	99.6%
Absorption correction	multi-scan
Max. and min. transmission	0.9468 and 0.9341
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2966 / 0 / 165
Goodness-of-fit on F^2	1.036
Final R indices [I>2sigma(I)]	R1 = 0.0319, wR2 = 0.0791 [2695]
R indices (all data)	R1 = 0.0358, wR2 = 0.0818
Largest diff. peak and hole	0.300 and -0.233 e.A^-3
remarks	

Table 2. Atomic coordinates (  $x\;10^{\,4})$  and equivalent isotropic displacement parameters (A^2  $x\;10^{\,3})$  for vawe07. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
S(1)	1726(1)	631(1)	4354(1)	18(1)
N(1)	3277(1)	1833(1)	2897(1)	17(1)
N(2)	1593(1)	328(1)	2007(1)	17(1)
B(1)	1906(2)	857(2)	2786(1)	17(1)
C(1)	3767(1)	1866(1)	2214(1)	17(1)
C(2)	2723(1)	964(1)	1668(1)	18(1)
C(3)	2903(1)	825(2)	926(1)	20(1)
C(4)	4168(1)	1579(2)	740(1)	22(1)
C(5)	5211(1)	2461(2)	1280(1)	22(1)
C(6)	5024(1)	2623(2)	2026(1)	20(1)
C(7)	4110(1)	2752(2)	3554(1)	18(1)
C(8)	5546(1)	1894(2)	3994(1)	24(1)
C(9)	278(2)	-542(2)	1551(1)	23(1)
C(10)	-954(2)	614(2)	1129(1)	31(1)
C(11)	947(1)	441(1)	3383(1)	17(1)
C(12)	-561(1)	-76(2)	3277(1)	19(1)
C(13)	-1068(1)	-311(2)	3960(1)	19(1)
C(14)	44(1)	39(1)	4603(1)	17(1)

Table 3. Bond lengths [A] and angles [deg] for vawe07.

S(1)-C(14)	1.7318(12)	S(1)-C(11)	1.7369(12
N(1)-C(1)	1.3967(14)	N(1)-B(1)	1.4425(16
N(1)-C(7)	1.4617(15)	N(2)-C(2)	1.3963(15
N(2)-B(1)	1.4373(16)	N(2)-C(9)	1.4611(15
B(1)-C(11)	1.5578(17)	C(1)-C(6)	1.3928(17
C(1)-C(2)	1.4075(17)	C(2)-C(3)	1.3871(17
C(3)-C(4)	1.3962(18)	C(4)-C(5)	1.3920(19
C(5)-C(6)	1.3977(17)	C(7)-C(8)	1.5223(17
C(9)-C(10)	1.526(2)	C(11)-C(12)	1.3838(17
C(12)-C(13)	1.4162(16)	C(13)-C(14)	1.3749(17
C(14)-C(14)#1	1.453(2)		
C(14)-S(1)-C(11)	93.61(6)	C(1) - N(1) - B(1)	108.34(10)
C(1)-N(1)-C(7)	120.02(10)	B(1)-N(1)-C(7)	131.60(10)
C(2)-N(2)-B(1)	108.23(10)	C(2) - N(2) - C(9)	120.50(10)
B(1)-N(2)-C(9)	130.87(10)	N(2) - B(1) - N(1)	106.09(10)
N(2)-B(1)-C(11)	126.28(11)	N(1)-B(1)-C(11)	127.63(11)
C(6)-C(1)-N(1)	130.80(11)	C(6)-C(1)-C(2)	120.77(11)
N(1)-C(1)-C(2)	108.42(10)	C(3)-C(2)-N(2)	130.07(11)
C(3)-C(2)-C(1)	121.03(11)	N(2) - C(2) - C(1)	108.90(10)
C(2)-C(3)-C(4)	118.07(12)	C(5) - C(4) - C(3)	121.07(11)
C(4) - C(5) - C(6)	121.13(11)	C(1)-C(6)-C(5)	117.92(12)
N(1)-C(7)-C(8)	113.04(10)	N(2)-C(9)-C(10)	111.45(11)
C(12)-C(11)-B(1)	129.99(11)	C(12)-C(11)-S(1)	108.74(9)
B(1)-C(11)-S(1)	121.25(9)	C(11)-C(12)-C(13)	114.50(11)
C(14)-C(13)-C(12)	113.06(11)	C(13)-C(14)-C(14)#1	129.15(14)
C(13)-C(14)-S(1)	110.08(9)	C(14)#1-C(14)-S(1)	120.78(12)

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z+1

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawe07. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
S(1) N(1) N(2)	16(1) 18(1) 18(1)	24(1) 19(1) 18(1)	16(1) 16(1) 17(1)	0(1) 0(1) 0(1)	5(1) 5(1) 5(1)	-1(1) 0(1) -2(1)

)

B(1)	17(1)	16(1)	19(1)	0(1)	4(1)	2(1)
C(1)	20(1)	17(1)	17(1)	2(1)	6(1)	4(1)
C(2)	18(1)	16(1)	20(1)	3(1)	6(1)	2(1)
C(3)	23(1)	21(1)	18(1)	1(1)	5(1)	2(1)
C(4)	26(1)	23(1)	19(1)	5(1)	10(1)	6(1)
C(5)	22(1)	21(1)	26(1)	7(1)	11(1)	2(1)
C(6)	19(1)	19(1)	23(1)	2(1)	6(1)	0(1)
C(7)	18(1)	18(1)	19(1)	-3(1)	5(1)	-2(1)
C(8)	21(1)	26(1)	24(1)	0(1)	2(1)	0(1)
C(9)	25(1)	24(1)	19(1)	-5(1)	6(1)	-8(1)
C(10)	24(1)	40(1)	26(1)	1(1)	-2(1)	-9(1)
C(11)	19(1)	17(1)	17(1)	-1(1)	5(1)	1(1)
C(12)	19(1)	21(1)	18(1)	-1(1)	5(1)	-1(1)
C(13)	16(1)	19(1)	22(1)	-1(1)	7(1)	-1(1)
C(14)	18(1)	15(1)	21(1)	1(1)	8(1)	2(1)

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawe07.

	x	v	z	U(eq)
		-		1,
H(3)	2187	233	555	24
H(4)	4319	1490	237	27
H(5)	6064	2960	1140	26
Н(б)	5733	3232	2393	24
H(7A)	3415	2957	3900	22
H(7B)	4410	3808	3376	22
H(8A)	5256	857	4181	37
H(8B)	6055	2562	4426	37
H(8C)	6252	1711	3658	37
H(9A)	-170	-1246	1887	27
H(9B)	631	-1235	1177	27
H(10A)	-1321	1287	1498	47
H(10B)	-1816	-4	827	47
H(10C)	-516	1302	789	47
H(12)	-1204	-259	2787	23
H(13)	-2072	-673	3971	22

Table 1. Crystal data and structure refinement for vawe09.

Identification code vawe09 Nonius KappaCCD Measurement device Empirical formula C20 H24 B N3 317.23 Formula weight 100(2) K Temperature Wavelength 100(2) K 0.71073 A Monoclinic P 21/n a = 11.0573(2) A b = 11.5078(2) A c = 14.1544(3) A 1795.98(6) A^3 4 1 173 Mg/m^3 Crystal system, space group Unit cell dimensions alpha = 90 deg. beta = 94.3123(13) deg. gamma = 90 deg. Volume Z, Calculated density Absorption coefficient 4, 1.173 Mg/m^3 0.069 mm^-1 680 0.30 x 0.30 x 0.25 mm^3, Colourless fragment 3.01 to 27.48 deg. -14<=h<=14, -14<=k<=14, -18<=1<=18 27595 / 4108 [R(int) = 0.032] 99.6% Semi-empirical from equivalents 0.9829 and 0.9796 Full-matrix least-squares on F^2 4108 / 0 / 221 1.042 F(000) 680 Crystal size, colour and habit Theta range for data collection Index ranges Reflections collected / unique Completeness to theta = 27.48Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters R1 = 0.0385, wR2 = 0.0973 [3437] R1 = 0.0473, wR2 = 0.1033 0.216 and -0.221 e.A^-3 Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole remarks

Table 2. Atomic coordinates ( x  $10^{4}$ ) and equivalent isotropic displacement parameters (A² x  $10^{3}$ ) for vawe09. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
N(1) N(2) N(3) B(1) C(1) C(2) C(3) C(4) C(5) C(4) C(5) C(7) C(7) C(8) C(7) C(10) C(11)	x 4670(1) 4626(1) -3161(1) 3926(1) 5777(1) 5752(1) 6736(1) 7744(1) 7770(1) 6789(1) 4273(1) 4273(1) 4335(1) 3778(1) 2637(1)	y 3266(1) 1343(1) 3407(1) 2388(1) 2762(1) 1581(1) 857(1) 1337(1) 2501(1) 3233(1) 183(1) -101(1) 4444(1) 4475(1) 2530(1)	z 2911(1) 2483(1) 53(1) 2448(1) 3222(1) 2952(1) 3692(1) 3956(1) 3724(1) 2149(1) 1190(1) 3174(1) 4124(1) 1999(1)	U(eq) 20(1) 19(1) 29(1) 20(1) 20(1) 19(1) 23(1) 26(1) 27(1) 24(1) 35(1) 25(1) 29(1) 22(1)
C(12) C(13)	1617(1) 404(1)	2634(1) 2791(1)	1638(1) 1221(1)	21(1) 20(1)
C(14) C(15) C(16) C(17) C(18)	187(1) -977(1) -1995(1) -1775(1) -605(1)	3376(1) 3579(1) 3208(1) 2619(1) 2422(1)	357(1) -27(1) 436(1) 1307(1) 1684(1)	21(1) 21(1) 21(1) 21(1) 21(1) 21(1)

C(19)	-3356(1)	4111(1)	-795(1)	30(1)	
C(20)	-4174(1)	3199(1)	618(1)	30(1)	
Table 3.	Bond lengths	[A] and angles	[deg] for v	awe09.	
$\begin{split} &N(1)-C(\\ &N(1)-C(\\ &N(2)-B(\\ &N(3)-C(\\ &C(1)-C(\\ &C$	1) 9) 1) 16) 19) 6) 3) 5) 8) (12) (14) (15) (17) 1)- $B(1)$ 1)- $C(9)$ 2)- $C(7)$ (3)- $C(20)$ (3)- $C(20)$ (3)- $C(20)$ (3)- $C(11)$ 1)- $C(11)$ 1)- $C(1)$ 3)- $C(4)$ 5)- $C(6)$ 7)- $C(6)$ (13)- $C(12)$ (13)- $C(12)$	1.3952 1.4600 1.4293 1.3795 1.4512 1.3900 1.3896 1.3900 1.5127 1.2086 1.4002 1.3787 1.4121 108.12(6 128.62(6 122.84(6 129.74(5) 118.47(5) 126.28(2) 126.28(5) 127.64(1) 121.25(1) 113.05(5) 177.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5) 127.63(5)	2(12) 5(13) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(14) 5(	$\begin{split} & N(1) - B(1) \\ & N(2) - C(2) \\ & N(2) - C(7) \\ & N(3) - C(20) \\ & B(1) - C(11) \\ & C(1) - C(12) \\ & C(3) - C(4) \\ & C(5) - C(6) \\ & C(9) - C(10) \\ & C(12) - C(13) \\ & C(13) - C(13) \\ & C(13) - C(16) \\ & C(17) - C(18) \\ \hline & C(1) - N(1) - C(9) \\ & C(2) - N(2) - B(1) \\ & B(1) - N(2) - C(7) \\ & C(2) - N(2) - B(1) \\ & B(1) - N(2) - C(7) \\ & C(1) - C(18) \\ \hline & C(1) - C(16) \\ & C(1) - C(16) \\ & C(1) - C(16) \\ & C(1) - C(12) \\ & C(10) - C(12) \\ & C(10) - C(12) \\ & C(10) - C(12) - C(10) \\ & C(11) - C(12) - C(13) \\ & C(14) - C(13) - C(12) \\ \hline & C(14) - C(13) \\ \hline & C(14) - C(14) \\ \hline & C(1$	$\begin{array}{c} 1.4311(14)\\ 1.3943(12)\\ 1.4588(13)\\ 1.4441(14)\\ 1.5250(15)\\ 1.4109(14)\\ 1.3948(15)\\ 1.3939(15)\\ 1.5197(15)\\ 1.4354(13)\\ 1.403(14)\\ 1.403(14)\\ 1.3809(14)\\ \end{array}$
C(14)-C	(15)-C(16)	121.30(9	9)	N(3)-C(16)-C(15)	121.50(9)
N(3)-C(	16)-C(17)	121.12(9	9)	C(15)-C(16)-C(17)	117.38(9)
C(18)-C	(17)-C(16)	120.78(9	9)	C(17)-C(18)-C(13)	121.61(9)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawe09. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
N(1)	18(1)	22(1)	21(1)	1(1)	1(1)	2(1)
N(2)	18(1)	21(1)	19(1)	1(1)	2(1)	0(1)
N(3)	18(1)	45(1)	25(1)	9(1)	0(1)	2(1)
B(1)	19(1)	24(1)	17(1)	2(1)	4(1)	0(1)
C(1)	18(1)	23(1)	19(1)	3(1)	3(1)	1(1)
C(2)	18(1)	24(1)	16(1)	3(1)	3(1)	-1(1)
C(3)	22(1)	24(1)	22(1)	4(1)	5(1)	2(1)
C(4)	19(1)	35(1)	26(1)	7(1)	2(1)	5(1)
C(5)	19(1)	36(1)	27(1)	4(1)	-2(1)	-4(1)
C(6)	23(1)	26(1)	24(1)	1(1)	1(1)	-3(1)
C(7)	25(1)	21(1)	26(1)	0(1)	2(1)	-4(1)
C(8)	36(1)	32(1)	38(1)	-13(1)	7(1)	-2(1)
C(9)	25(1)	20(1)	28(1)	1(1)	-1(1)	2(1)
C(10)	36(1)	25(1)	27(1)	-2(1)	-1(1)	8(1)
C(11)	22(1)	24(1)	21(1)	0(1)	2(1)	0(1)
C(12)	21(1)	21(1)	20(1)	-2(1)	3(1)	0(1)
C(13)	19(1)	19(1)	20(1)	-3(1)	0(1)	1(1)
C(14)	20(1)	22(1)	20(1)	-2(1)	4(1)	-1(1)
C(15)	22(1)	25(1)	16(1)	1(1)	1(1)	0(1)
C(16)	18(1)	23(1)	21(1)	-2(1)	0(1)	0(1)
C(17)	19(1)	23(1)	23(1)	1(1)	4(1)	-2(1)
C(18)	22(1)	21(1)	20(1)	1(1)	1(1)	1(1)
C(19)	23(1)	43(1)	23(1)	5(1)	-1(1)	6(1)
C(20)	18(1)	39(1)	32(1)	7(1)	1(1)	-1(1)

Table	5.	Hyd	rogen	coord	linate	s	(	x	10	^4)	and	isotropi	С
displa	ceme	ent	parame	ters	(A^2	х	10	^3	)	for	vawe	209.	

	x	У	z	U(eq)
	6700	60		
H(3)	6723	63	2998	27
H(4)	8426	859	3861	32
H(5)	8471	2802	4302	33
H(6)	6810	4029	3904	29
H(7A)	3378	122	2111	29
H(7B)	4604	-398	2615	29
H(8A)	4356	446	717	53
H(8B)	4474	-895	1011	53
H(8C)	5600	-36	1220	53
H(9A)	3747	4763	2679	30
H(9B)	5066	4944	3207	30
H(10A)	3036	4006	4087	44
H(10B)	3582	5280	4280	44
H(10C)	4357	4160	4616	44
H(14)	854	3637	29	25
H(15)	-1096	3976	-615	25
H(17)	-2439	2355	1637	26
H(18)	-480	2026	2273	25
H(19A)	-3043	4896	-667	45
H(19B)	-4227	4151	-983	45
H(19C)	-2932	3761	-1308	45

H(20A)	-4203	2373	782	45	
H(20B)	-4929	3420	256	45	
H(20C)	-4076	3663	1199	45	
Table 1. Cryst	al data and stru	cture refi	nement for va	awel0.	
Identification	code	vawe10			
Measurement dev	rice	Nonius	KappaCCD		
Empirical formu	ıla	C58 H65	B3 C18 N6		
Formula weight		1162.19			
Temperature		100(2)	ĸ		
Wavelength		0.71073	A		
Crystal system,	space group	Triclin	ic P -1		
Unit cell dimer	nsions	a = 12.	3528(12) A	alpha = 114.039(7) deg	j.
		b = 14.	9195(14) A	beta = 96.110(9) deg	
		c = 18.	265(2)A ga	amma = 101.902(9) deg.	
Volume		2939.1(	5) A^3		
Z, Calculated d	lensity	2, 1.3	13 Mg/m^3		
Absorption coef	ficient	0.427 m	m^-1		
F(000)		1212			
Crystal size, c	olour and habit	0.27 x	0.17 x 0.10 m	nm^3, Colourless fragme	ent
Theta range for	data collection	3.01 to	27.50 deg.		
Index ranges		-16<=h<	=16, -19<=k<=	19, -23<=1<=23	
Reflections col	lected / unique	60087 /	13396 [R(int	:) = 0.0495]	
Completeness to	theta = 27.50	99.3%			
Absorption corr	rection	multi-s	can		
Max. and min. t	ransmission	0.9586	and 0.8935		
Refinement meth	ıod	Full-ma	trix least-so	quares on F^2	
Data / restrair	its / parameters	13396 /	1 / 699		
Goodness-of-fit	on F^2	1.036			
Final R indices	[I>2sigma(I)]	R1 = 0.	0624, wR2 = 0	0.1484 [9667]	
R indices (all	data)	R1 = 0.	0942, wR2 = 0	0.1706	
Largest diff. p	eak and hole	0.893 a	nd -1.030 e.A	<b>1^−3</b>	
remarks		Disorde	r of two CH2C	Cl2. Cl5, Cl6 and C57	
		on thre	e positions (	34:29:37), Cl8 on	
		two pos	itions (71:29	). C15A to C57C and C	L8B
		were re	fined isotrop	pically.	

Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic displacement parameters (A^2 x 10^3) for vawe10. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
N(1)	8547(2)	9973(2)	14697(1)	20(1)
N(2)	8728(2)	10908(2)	13965(1)	21(1)
N(3)	7728(2)	4808(2)	5877(1)	24(1)
N(4)	6594(2)	3186(2)	5459(1)	22(1)
N(5)	3126(2)	-461(2)	10277(1)	22(1)
N(6)	2713(2)	604(2)	11467(1)	22(1)
B(1)	8356(2)	9888(2)	13881(2)	21(1)
B(2)	/16/(3)	4121(2)	61/3(2)	22(1)
B(3)	3243(3)	593(2)	10803(2)	21(1)
C(1)	9027(2)	11466(2)	16095(2)	22(1)
C(2)	9872(3)	12520(2)	16486(2)	36(1)
C(4)	9958(3)	13088(2)	16041(2)	39(1)
C(5)	9591(3)	12631(2)	15192(2)	30(1)
C(6)	9132(2)	11571(2)	14795(2)	23(1)
C(7)	8349(2)	9170(2)	14977(2)	22(1)
C(8)	7294(3)	9115(2)	15333(2)	31(1)
C(9)	8755(2)	11259(2)	13324(2)	25(1)
C(10)	9931(3)	11455(2)	13134(2)	33(1)
C(11)	7878(2)	8876(2)	13073(2)	20(1)
C(12)	8446(2)	8623(2)	12422(2)	23(1)
C(13)	8088(2)	7682(2)	11736(2)	23(1)
C(14)	7112(2)	6949(2)	11660(2)	20(1)
C(15)	6506(2)	7205(2)	12284(2)	21(1)
C(16)	6885(2)	8139(2)	12977(2)	21(1)
C(17)	7515(2)	4300(2)	5023(2)	25(1)
C(18)	7843(3)	4632(3)	4447(2)	32(1)
C(19)	7447(3)	3943(3)	3616(2)	39(1)
C(20)	6757(3)	2975(3)	3373(2)	38(1)
C(21)	6429(3)	2637(2)	3940(2)	32(1)
C(22)	6816(2)	3304(2)	4/6/(2)	25(1) 27(1)
C(23)	0707(2)	5836(2)	6202(2)	27(1)
C(25)	5817(2)	2252(2)	5380(2)	26(1)
C(25)	6359(3)	1376(2)	5201(2)	31(1)
C(27)	7100(2)	4338(2)	7079(2)	21(1)
C(28)	7151(2)	3593(2)	7356(2)	22(1)
C(29)	7013(2)	3746(2)	8140(2)	23(1)
C(30)	6815(2)	4648(2)	8684(2)	20(1)
C(31)	6768(2)	5397(2)	8415(2)	22(1)
C(32)	6908(2)	5239(2)	7631(2)	22(1)
C(33)	2578(2)	-1052(2)	10624(2)	24(1)
C(34)	2274(3)	-2107(2)	10356(2)	28(1)
C(35)	1709(3)	-2496(2)	10829(2)	31(1)
C(36)	1454(3)	-1855(2)	11551(2)	32(1)
C(37)	1758(2)	-796(2)	11827(2)	28(1)
C(38)	2322(2)	-400(2)	11358(2)	23(1)
C(39)	2493(2)	1453(2)	12137(2)	26(1)
C(40)	3246(3)	1/64(2)	12961(2)	37(1)
C(41)	34/0(2)	- 733(2)	9499(2)	∠0(⊥) 22(1)
C(42)	∠4/8(3) 200⊑/2)	-1520(2)	0/04(2)	33(1) 20(1)
C(43)	3003(2)	1000(2)	11261(2)	∠∪(⊥) 21(1)
C(44)	5309(2)	23/2(2)	11269(2)	2⊥(⊥) 20(1)
C(46)	5191(2)	3212(2)	10504(2)	19(1)
C(47)	4408(2)	2386(2)	9842(2)	21(1)
C(48)	3779(2)	1569(2)	9937(2)	21(1)
C(49)	6752(2)	5915(2)	10949(2)	21(1)
		. ,		. ,

C(50) C(51) C(52) C(53) C(54) Cl(1) Cl(2) C(55) Cl(3) Cl(5A) Cl(5A) Cl(5A) Cl(5B) Cl(5B) Cl(5B) Cl(5C) Cl(6C) Cl(6C) Cl(6C) Cl(6C) Cl(8A) Cl(8B) Cl(58) Cl(58)	6965(2) 6629(2) 6080(2) 5844(2) 6189(2) 4435(1) 5486(1) 4707(3) 3816(1) 44707(3) 3816(1) 4490(3) 8864(5) 9318(4) 9956(11) 8548(3) 9926(10) 9369(4) 9600(4) 10152(13) 9323(1) 8812(1) 9318(9) 9838(4) Bond lengths	5768(2) 4799(2) 3969(2) 4097(2) 5074(2) -618(1) -986(2) 4075(1) 3798(1) 4633(3) 4204(3) 5357(4) 4647(10) 4433(3) 5283(7) 4869(10) 478(2) 5514(3) 4695(12) 9561(1) 7607(1) 7826(7) 8606(3)	10178(2) 9513(2) 9635(2) 10396(2) 11048(2) 13206(1) 12206(1) 12214(2) 6510(1) 12214(2) 6510(1) 1824(2) 953(3) 1385(10) 1864(2) 934(5) 1701(9) 1812(2) 1051(2) 1206(10) -696(1) -958(5) 77(3)	20(1) 20(1) 19(1) 20(1) 47(1) 44(1) 31(1) 59(1) 39(1) 37(1) 41(1) 49(1) 33(3) 37(1) 104(2) 32(3) 57(1) 34(1) 61(4) 64(1) 54(1) 127(3) 63(1) vawel0.	
$\begin{array}{c} N(1) - C(\\ N(1) - C(\\ N(2) - B(\\ N(3) - C(\\ N(3) - C(\\ N(3) - C(\\ N(4) - B(\\ N(5) - C(\\ N(5) - C(\\ C(1) - C(\\ C(3) - C(\\ C(3)$	1)         7)         1)         17)         23)         21)         33)         41)         3)         11)         43)         66)         10)         (16)         (14)         (49)         (18)         (19)         (21)         (24)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (32)         (31)         (32)         (33)         (44)         (46)         (51)         (55)         (57A)         (19)         (257C)         (258)	$\begin{array}{c} 1. \ 396(\\ 1. \ 469(\\ 1. \ 434(\\ 1. \ 395(\\ 1. \ 462(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 435(\\ 1. \ 462(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1. \ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\ 436(\ 1.\$	3) 3) 4) 3) 4) 3) 4) 3) 4) 4) 4) 4) 4) 4) 4) 4) 4) 4	$ \begin{array}{c} N(1) - B(1) \\ N(2) - C(6) \\ N(2) - C(6) \\ N(2) - C(9) \\ N(3) - B(2) \\ N(4) - C(22) \\ N(4) - C(22) \\ N(4) - C(25) \\ N(5) - B(3) \\ N(6) - C(38) \\ N(6) - C(39) \\ B(2) - C(27) \\ C(1) - C(2) \\ C(2) - C(3) \\ C(1) - C(2) \\ C(2) - C(3) \\ C(1) - C(2) \\ C(2) - C(3) \\ C(1) - C(12) \\ C(1) - C(22) \\ C(1) - C(22) \\ C(2) - C(20) \\ C(13) - C(16) \\ C(17) - C(22) \\ C(2) - C(26) \\ C(27) - C(28) \\ C(29) - C(30) \\ C(30) - C(51) \\ C(33) - C(34) \\ C(34) - C(35) \\ C(36) - C(37) \\ C(39) - C(40) \\ C(43) - C(45) \\ C(44) - C(45) \\ C(44) - C(45) \\ C(44) - C(45) \\ C(49) - C(50) \\ C(51) - C(57) \\ C(16) - C(57A) \\ C(16) - C(57A) \\ C(16) - C(57A) \\ C(6) - C(57C) \\ C(1(8A) - C(58) \\ \end{array}$	$\begin{array}{c} 1.433(4)\\ 1.393(3)\\ 1.436(4)\\ 1.392(3)\\ 1.436(4)\\ 1.392(3)\\ 1.462(3)\\ 1.435(4)\\ 1.397(3)\\ 1.458(3)\\ 1.565(4)\\ 1.393(4)\\ 1.393(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.397(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.397(4)\\ 1.389(4)\\ 1.397(4)\\ 1.397(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\ 1.395(4)\\$
$\begin{array}{c} C(1) - N(:\\ B(1) - N(:\\ C(5) - N(:\\ C(17) - N\\ B(2) - N(:\\ C(22) - N(:\\ C(23) - N\\ C(33) - N\\ C(33) - N(:\\ C(38) - N(:\\ N(2) - B(:\\ N(3) - B(:\\ N(5) - B(:\\ N(5) - B(:\\ N(5) - B(:\\ C(2) - C(:\\ C(1) - C(:\\ C(2) - C(:\\ C(12) - C(:\\ C(12) - C(:\\ C(12) - C(:\\ C(15) - C\\ C(13) - C\\ C(15) - C\\ C(15) - C\\ C(13) - C\\ C(15) - C\\ C(13) - C\\ C(12) - C\\ C(13) - C\\ C(13) - C\\ C(12) - C\\ C(13) - C\\ C(13) - C\\ C(12) - C\\ C($	$\begin{array}{l} 1) - B(1) \\ 1) - C(7) \\ 2) - C(9) \\ (3) - B(2) \\ 3) - C(23) \\ (4) - C(25) \\ (5) - B(3) \\ 5) - C(41) \\ (6) - C(39) \\ 1) - N(2) \\ 1) - C(11) \\ 2) - C(27) \\ 3) - N(6) \\ 3) - C(43) \\ 1) - C(6) \\ 2) - C(3) \\ 4) - C(5) \\ 6) - C(1) \\ 9) - C(10) \\ (11) - B(1) \\ (12) - C(11) \\ (11) - B(1) \\ (12) - C(11) \\ (11) - B(1) \\ (12) - C(11) \\ (11) - B(1) \\ (12) - C(12) \\ (12) - C(12) \\ (22) - N(4) \\ 22) - C(17) \\ 25) - C(26) \\ (27) - B(2) \end{array}$	$\begin{array}{c} 108.5(2)\\ 129.6(2)\\ 122.4(2)\\ 108.5(2)\\ 130.2(2)\\ 130.2(2)\\ 130.6(2)\\ 121.4(2)\\ 106.0(2)\\ 121.4(2)\\ 106.0(2)\\ 127.8(2)\\ 128.3(2)\\ 106.2(2)\\ 127.1(2)\\ 128.3(2)\\ 106.2(2)\\ 127.1(2)\\ 121.1(2)\\ 121.1(2)\\ 121.1(2)\\ 121.1(2)\\ 121.1(2)\\ 122.4(2)\\ 121.4(2)\\ 121.4(3)\\ 106.5(3)\\ 117.5(3)\\ 121.4(3)\\ 130.4(3)\\ 108.6(2)\\ 113.1(2)\\ 122.4(2)\\ 122.4(2)\\ 121.4(2)\\ 121.4(3)\\ 108.6(2)\\ 113.1(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\$		$\begin{array}{c} C(1) - N(1) - C(7) \\ C(6) - N(2) - B(1) \\ B(1) - N(2) - C(9) \\ C(17) - N(3) - C(23) \\ C(22) - N(4) - C(25) \\ C(33) - N(5) - C(41) \\ C(38) - N(6) - C(39) \\ N(1) - B(1) - C(11) \\ N(3) - B(2) - N(4) \\ N(4) - B(2) - C(27) \\ N(5) - B(3) - C(43) \\ C(2) - C(1) - N(1) \\ N(1) - C(1) - C(6) \\ C(4) - C(3) - C(2) \\ C(4) - C(3) - C(1) \\ N(1) - C(1) - C(6) \\ N(2) - C(6) - C(1) \\ N(1) - C(1) - C(6) \\ C(12) - C(11) - B(1) \\ C(12) - C(13) - C(14) \\ C(16) - C(11) - B(1) \\ C(15) - C(13) - C(14) \\ C(16) - C(15) - C(14) \\ C(16) - C(17) - N(3) \\ N(3) - C(17) - C(22) \\ C(20) - C(19) - C(18) \\ C(20) - C(21) - C(22) \\ C(21) - C(22) - C(17) \\ N(3) - C(23) - C(27) \\ N(3) - C(27) - C(28) \\ C(28) - C(28) \\ C(28) - C(27) - C(28) \\ C(28) - C(28) \\ C(28) - C(27) - C(28) \\ C(28) - C$	121.8(2) $108.4(2)$ $129.1(2)$ $121.0(2)$ $100.4(2)$ $130.5(2)$ $121.0(2)$ $126.1(2)$ $126.1(2)$ $126.1(2)$ $125.4(2)$ $126.7(2)$ $130.5(3)$ $108.4(2)$ $120.8(3)$ $117.7(3)$ $108.6(2)$ $112.3(2)$ $125.5(2)$ $121.1(2)$ $125.(2)$ $121.1(2)$ $121.1(3)$ $108.4(2)$ $121.5(3)$ $118.1(3)$ $112.2(2)$ $116.7(2)$ $122.0(2)$ $122.0(2)$ $122.0(3)$ $112.2(2)$ $120.7(2)$ $120.7(2)$

C(29)-C(28)-C(27)	121.5(2)	C(28)-C(29)-C(30)	121.2(2)
C(29)-C(30)-C(31)	117.8(2)	C(29)-C(30)-C(51)	121.2(2)
C(31)-C(30)-C(51)	120.9(2)	C(32)-C(31)-C(30)	120.6(2)
C(31)-C(32)-C(27)	122.2(2)	N(5)-C(33)-C(34)	130.7(3)
N(5)-C(33)-C(38)	108.7(2)	C(34)-C(33)-C(38)	120.7(3)
C(35)-C(34)-C(33)	118.2(3)	C(34)-C(35)-C(36)	121.3(3)
C(35)-C(36)-C(37)	121.1(3)	C(38)-C(37)-C(36)	118.1(3)
C(37)-C(38)-N(6)	131.2(3)	C(37)-C(38)-C(33)	120.7(2)
N(6)-C(38)-C(33)	108.1(2)	N(6)-C(39)-C(40)	113.3(2)
N(5)-C(41)-C(42)	112.1(2)	C(48)-C(43)-C(44)	116.5(2)
C(48)-C(43)-B(3)	122.4(2)	C(44)-C(43)-B(3)	120.9(2)
C(45)-C(44)-C(43)	122.0(2)	C(44)-C(45)-C(46)	120.7(2)
C(45)-C(46)-C(47)	117.8(2)	C(45)-C(46)-C(53)	121.7(2)
C(47)-C(46)-C(53)	120.5(2)	C(48)-C(47)-C(46)	121.2(2)
C(47)-C(48)-C(43)	121.8(2)	C(54)-C(49)-C(50)	118.9(2)
C(54)-C(49)-C(14)	119.8(2)	C(50)-C(49)-C(14)	121.3(2)
C(49)-C(50)-C(51)	121.2(2)	C(52)-C(51)-C(50)	118.6(2)
C(52)-C(51)-C(30)	120.2(2)	C(50)-C(51)-C(30)	121.2(2)
C(51)-C(52)-C(53)	121.4(2)	C(54)-C(53)-C(52)	118.7(2)
C(54)-C(53)-C(46)	120.5(2)	C(52)-C(53)-C(46)	120.8(2)
C(49)-C(54)-C(53)	121.3(2)	Cl(1)-C(55)-Cl(2)	112.12(16)
Cl(3)-C(56)-Cl(4)	110.76(19)	Cl(5A)-C(57A)-Cl(6A)	102.3(7)
Cl(6B)-C(57B)-Cl(5B)	111.6(7)	Cl(6C)-C(57C)-Cl(5C)	114.1(9)
Cl(8A)-C(58)-Cl(8B)	30.7(4)	Cl(8A)-C(58)-Cl(7)	114.4(3)
Cl(8B)-C(58)-Cl(7)	128.9(4)		

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawel0. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
N(1)	23(1)	17(1)	19(1)	6(1)	6(1)	4(1)
N(2) N(3)	23(1) 26(1)	20(1) 24(1)	21(1) 20(1)	9(1) 10(1)	7(1) 7(1)	5(1) 5(1)
N(4)	22(1)	23(1)	18(1)	6(1)	7(1)	5(1)
N(5) N(6)	27(1)	19(1)	18(1)	8(1)	7(1)	6(1) 5(1)
B(1)	20(1)	19(1)	21(1)	8(1)	6(1)	4(1)
B(2)	23(2)	23(1)	18(1)	7(1)	5(1)	7(1)
B(3) C(1)	23(1)	19(1)	23(1)	6(1)	7(1)	4(1) 7(1)
C(2)	32(2)	28(1)	22(1)	9(1)	6(1)	9(1)
C(3) C(4)	45(2) 50(2)	27(2) 16(1)	23(1) 35(2)	0(1) 1(1)	$\frac{1}{4}(1)$	9(1) 5(1)
C(5)	36(2)	19(1)	32(2)	10(1)	8(1)	7(1)
C(6)	23(1) 29(1)	19(1)	24(1)	7(1)	6(1) 7(1)	6(1) 6(1)
C(8)	34(2)	31(2)	31(2)	18(1)	14(1)	6(1)
C(9)	31(2)	23(1)	26(1)	13(1)	9(1)	7(1)
C(10) C(11)	25(1)	18(1)	20(1)	9(1)	5(1)	6(1)
C(12)	25(1)	19(1)	21(1)	8(1)	6(1)	0(1)
C(13) C(14)	27(1) 27(1)	22(1) 17(1)	19(1) 16(1)	9(1) 8(1)	9(1) 3(1)	5(1) 5(1)
C(15)	24(1)	19(1)	20(1)	10(1)	5(1)	3(1)
C(16) C(17)	25(1) 24(1)	21(1) 34(2)	17(1)	8(1) 12(1)	7(1)	6(1) 12(1)
C(18)	32(2)	45(2)	30(2)	23(1)	15(1)	16(1)
C(19)	41(2)	69(2) 56(2)	27(2)	29(2)	20(1)	32(2)
C(20)	28(2)	41(2)	19(1)	5(1)	5(1)	15(1)
C(22)	24(1)	34(2)	19(1)	10(1)	7(1)	15(1)
C(23) C(24)	29(1) 31(2)	23(1) 28(2)	30(2) 49(2)	20(1)	8(1) 7(1)	4(1) 6(1)
C(25)	23(1)	23(1)	26(1)	5(1)	6(1)	3(1)
C(26) C(27)	30(2) 21(1)	24(1) 21(1)	31(2) 16(1)	6(1) 7(1)	6(1) 5(1)	5(1) 2(1)
C(28)	28(1)	19(1)	19(1)	6(1)	8(1)	7(1)
C(29)	30(1) 22(1)	18(1)	22(1) 16(1)	11(1)	7(1)	5(1) 3(1)
C(31)	27(1)	18(1)	18(1)	7(1)	6(1)	6(1)
C(32)	26(1) 26(1)	19(1) 22(1)	20(1)	10(1)	5(1) 5(1)	4(1) 5(1)
C(34)	34(2)	21(1)	26(1)	9(1)	5(1)	7(1)
C(35)	36(2)	23(1)	36(2)	16(1)	2(1)	3(1)
C(36) C(37)	34(2) 33(2)	32(2)	35(2) 25(1)	23(1) 14(1)	8(1) 9(1)	2(1) 6(1)
C(38)	24(1)	22(1)	23(1)	11(1)	6(1)	5(1)
C(39) C(40)	31(2) 50(2)	24(1) 34(2)	26(1) 22(1)	10(1) 8(1)	15(1) 12(1)	9(1) 8(1)
C(41)	33(2)	22(1)	26(1)	8(1)	14(1)	10(1)
C(42)	43(2) 23(1)	31(2)	19(1) 21(1)	6(1)	11(1)	8(1)
C(44)	28(1)	20(1)	18(1)	11(1)	9(1)	8(1)
C(45)	26(1)	16(1)	17(1)	5(1)	5(1)	6(1)
C(40) C(47)	27(1)	21(1)	16(1)	8(1)	6(1)	7(1)
C(48)	25(1)	19(1)	18(1)	7(1)	4(1)	4(1)
C(49) C(50)	24(1) 24(1)	20(1) 17(1)	19(1)	8(1) 8(1)	5(1) 6(1)	ь(1) 5(1)
C(51)	24(1)	20(1)	16(1)	8(1)	6(1)	7(1)
C(52) C(53)	26(1) 23(1)	17(1) 18(1)	17(1) 18(1)	6(1) 9(1)	5(1) 5(1)	6(1) 6(1)
C(54)	26(1)	17(1)	15(1)	6(1)	6(1)	5(1)
Cl(1) Cl(2)	57(1) 51(1)	59(1) 36(1)	31(1) 40(1)	21(1) 13(1)	19(1) 15(1)	23(1) 3(1)
C(55)	38(2)	29(2)	22(1)	7(1)	6(1)	9(1)
Cl(3)	89(1)	58(1)	42(1)	31(1)	17(1)	24(1)

Cl(4)	48(1)	36(1)	29(1)	8(1)	5(1)	16(1)
C(56)	44(2)	40(2)	26(2)	10(1)	5(1)	16(2)
Cl(7)	52(1)	60(1)	79(1)	27(1)	17(1)	22(1)
Cl(8A)	42(1)	48(1)	53(1)	11(1)	-12(1)	10(1)
C(58)	73(3)	54(2)	59(3)	22(2)	6(2)	24(2)

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawel0.

	х	У	Z	U(eq)
н(2)	9321	11078	16399	34
H(3)	10143	12855	17064	43
H(4)	10276	13806	16324	46
H(5)	9650	13025	14893	35
H(7A)	9014	9304	15398	27
H(7B)	8270	8503	14508	27
H(8A)	7388	9759	15818	46
H(8B)	7178	8552	15490	46
H(8C)	6636 9517	8997	14922	46
H(9A) H(9B)	8208	10738	12817	30
H(10A)	10471	11987	13628	49
H(10B)	9909	11678	12698	49
H(10C)	10169	10825	12953	49
H(12)	9099	9112	12452	28
H(13)	8508	7535	11315	27
H(15)	5822	6733	12234	25
H(16)	6464	8285	13397	25
H(18) U(10)	8316	5299	4613 2211	38
H(20)	6499	2529	2804	45
H(21)	5954	1968	3767	38
H(23A)	8433	6117	6908	33
H(23B)	8290	6280	6093	33
H(24A)	9940	5386	6516	53
H(24B)	10219	6532	6617	53
H(24C)	9811	5592	5721	53
H(25A)	5154	2038	4931	32
H(25B) H(26A)	5541	1240	2895	32
H(26B)	5790	763	5125	46
H(26C)	6980	1561	5663	46
H(28)	7282	2972	7000	27
H(29)	7054	3228	8309	27
H(31)	6638	6019	8772	26
H(32)	6872	5760	7464	26
H(34)	2448	-2548	9865	34
н(36)	1067	-2141	11861	38
H(37)	1585	-360	12320	34
H(39A)	1692	1259	12174	32
H(39B)	2607	2047	12011	32
H(40A)	3191	1165	13068	56
H(40B)	3002	2281	13394	56
H(40C)	4033	2047	12954	50
H(41R)	4063	-416	9448	32
H(42A)	1882	-1877	8819	49
H(42B)	2738	-1709	8258	49
H(42C)	2177	-826	8745	49
H(44)	4745	2392	11888	25
H(45)	5836	3741	11729	24
H(47)	4307	2384	9319	25
H(48) U(50)	3202	1010	9473	20
H(52)	5864	3305	9191	25
H(54)	6036	5168	11570	24
H(55A)	3979	-1306	11807	38
H(55B)	5136	-1502	12105	38
H(56A)	5321	4797	6118	45
H(56B)	4292	5278	6043	45
H(57A)	10143	4070	955	39
H(57C)	10399	5090	2219	20
H(57D)	10293	4306	1543	39
H(57E)	10948	5041	1508	73
H(57F)	10160	4150	669	73
H(58A)	10385	8914	-171	75
H(58B)	10253	8337	397	75
H(58C)	10248	8350	388	75
H(58D)	10581	8946	65	75

Table 1. Crystal data and structure refinement for vawell.

 Identification code
 vawel1

 Measurement device
 Nonius KappaCCD

 Empirical formula
 C24 H23 B N2

 Formula weight
 350.25

 Temperature
 100(2) K

 Wavelength
 0.71073 A

 Crystal system, space group
 Triclinic P -1

 Unit cell dimensions
 a = 8.22890(10) A alpha = 90.2759(9) deg.

 b = 9.35640(10) A
 beta = 94.1820(9) deg.

 c = 26.2207(3) A
 gamma = 102.1840(7) deg.

 Volume
 1967.66(4) A^3

 Z, Calculated density
 4, 1.182 Mg/m^3

 Absorption coefficient
 0.068 mm^-1

 F(000)
 744

 Crystal size, colour and habit
 0.30 x 0.25 x 0.20 mm^3, Colourless fragment

Theta range for data collection Index ranges Reflections collected / unique Completeness to theta = 27.48 Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole remarks

3.00 to 27.48 deg. -10<=h<=10, -12<=k<=12, -34<=1<=33 39445 / 9002 [R(int) = 0.033] 99.7% multi-scan 0.9865 and 0.9798 Full-matrix least-squares on F^2 9002 / 0 / 491 1.046 R1 = 0.0394, wR2 = 0.0937 [7048] R1 = 0.0554, wR2 = 0.1016 0.243 and -0.215 e.A^-3

Table 2. Atomic coordinates (  $x\;10^{\,4})$  and equivalent isotropic displacement parameters (A^2  $x\;10^{\,3})$  for vawell. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
N(1)	9287(1)	7213(1)	3912(1)	17(1)
N(2)	11423(1)	7797(1)	3386(1)	18(1)
N(3)	498(1)	102(1)	1478(1)	18(1)
N(4)	-125(1)	2153(1)	1832(1)	19(1)
B(1)	9649(2)	7347(1)	3387(1)	18(1)
B(2)	1037(2)	1203(1)	1876(1)	18(1)
C(1)	10793(1)	7557(1)	4216(1)	17(1)
C(2)	12103(1)	/919(1)	3890(1) 4000(1)	18(1)
C(3)	13/40(1)	0339(1) 0202(1)	4089(1)	20(1)
C(4) C(5)	12770(2)	8021(1)	4019(1)	23(1)
C(5)	11115(1)	7604(1)	4744(1)	20(1)
C(7)	7675(1)	6869(1)	4134(1)	22(1)
C(8)	7251(2)	5330(1)	4339(1)	28(1)
C(9)	12482(1)	7915(1)	2957(1)	23(1)
C(10)	13263(2)	6599(2)	2903(1)	34(1)
C(11)	8400(1)	6982(1)	2901(1)	18(1)
C(12)	7368(1)	5586(1)	2830(1)	20(1)
C(13)	6365(1)	5182(1)	2384(1)	20(1)
C(14)	6351(1)	6174(1)	1986(1)	20(1)
C(15)	7327(1)	7591(1)	2057(1)	23(1)
C(16)	8328(1)	7974(1)	2504(1)	22(1)
C(17)	5338(1)	5728(1)	1520(1)	22(1)
C(18)	4472(2)	5299(1)	1138(1)	23(1)
C(19)	3390(1)	4789(1)	690(1)	21(1)
C(20)	2227(2)	3462(1)	696(1)	27(1)
C(21)	1146(2)	2987(1)	270(1)	30(1)
C(22)	1224(2)	3824(1)	-167(1)	26(1)
C(23)	2387(2)	5127(1)	-178(1)	26(1)
C(24)	3461(2)	5615(1)	247(1)	24(1)
C(25)	-919(1)	394(1)	1207(1)	18(1)
C(26)	-1299(1)	1652(1)	1424(1)	19(1)
C(27)	-26/3(1)	2180(1)	1231(1)	22(1)
C(28)	-3055(2)	192(1)	620(1) 609(1)	26(1)
C(29)	-1921(1)	-359(1)	801(1)	23(1)
C(31)	1122(1)	=1202(1)	1358(1)	22(1)
C(32)	2086(2)	-1050(1)	881(1)	29(1)
C(33)	-165(2)	3507(1)	2111(1)	23(1)
C(34)	402(2)	4880(1)	1808(1)	27(1)
C(35)	2609(1)	1331(1)	2260(1)	19(1)
C(36)	4098(1)	1034(1)	2097(1)	19(1)
C(37)	5520(1)	1151(1)	2425(1)	20(1)
C(38)	5517(1)	1601(1)	2936(1)	21(1)
C(39)	4046(2)	1891(1)	3108(1)	23(1)
C(40)	2628(2)	1747(1)	2777(1)	22(1)
C(41)	7023(1)	1806(1)	3268(1)	22(1)
C(42)	8315(2)	2041(1)	3530(1)	22(1)
C(43)	9866(1)	2344(1)	3841(1)	19(1)
C(44)	10498(1)	1202(1)	4068(1)	21(1)
C(45)	11995(1)	1501(1)	4366(1)	22(1)
C(46)	12882(1)	2929(1)	4440(1)	21(1)
C(47)	12265(2)	4072(1)	4217(1)	24(1)
C(48)	T0././T(T)	3782(1)	3917(1)	23(1)

Table 3. Bond lengths [A] and angles [deg] for vawell.

N(1)-C(1)	1.3995(13)	N(1)-B(1)	1.4309(15)
N(1)-C(7)	1.4620(14)	N(2)-C(2)	1.3928(13)
N(2)-B(1)	1.4317(15)	N(2)-C(9)	1.4626(14)
N(3)-C(25)	1.3978(14)	N(3)-B(2)	1.4413(15)
N(3)-C(31)	1.4614(14)	N(4)-C(26)	1.3979(14)
N(4)-B(2)	1.4359(15)	N(4)-C(33)	1.4673(14)
B(1)-C(11)	1.5658(16)	B(2)-C(35)	1.5634(16)
C(1)-C(6)	1.3888(15)	C(1)-C(2)	1.4107(15)
C(2)-C(3)	1.3876(15)	C(3)-C(4)	1.3947(16)
C(4)-C(5)	1.3943(17)	C(5)-C(6)	1.3953(16)
C(7)-C(8)	1.5189(16)	C(9)-C(10)	1.5152(16)
C(11)-C(12)	1.4026(15)	C(11)-C(16)	1.4044(15)
C(12)-C(13)	1.3838(15)	C(13)-C(14)	1.4004(15)
C(14)-C(15)	1.4012(16)	C(14)-C(17)	1.4351(15)
C(15)-C(16)	1.3836(16)	C(17)-C(18)	1.2015(16)
C(18)-C(19)	1.4357(15)	C(19)-C(24)	1.3970(15)
C(19)-C(20)	1.3995(16)	C(20)-C(21)	1.3858(16)
C(21)-C(22)	1.3865(17)	C(22)-C(23)	1.3841(17)
C(23)-C(24)	1.3827(16)	C(25)-C(30)	1.3888(15)
C(25)-C(26)	1.4077(15)	C(26)-C(27)	1.3897(15)
C(27)-C(28)	1.3900(16)	C(28)-C(29)	1.3910(17)
C(29)-C(30)	1.3914(16)	C(31)-C(32)	1.5211(16)
C(33)-C(34)	1.5198(16)	C(35)-C(36)	1.4070(15)

C(35)-C(40)	1.4072(15)	C(36)-C(37)	1.3852(15)
C(37)-C(38)	1.4035(15)	C(38)-C(39)	1.3992(16)
C(38)-C(41)	1.4382(15)	C(39)-C(40)	1.3852(16)
C(41)-C(42)	1.2020(16)	C(42)-C(43)	1.4380(15)
C(43)-C(48)	1.3994(15)	C(43)-C(44)	1.4008(15)
C(44)-C(45)	1.3846(16)	C(45)-C(46)	1.3865(16)
C(46)-C(47)	1.3913(16)	C(47)-C(48)	1.3851(16)
C(1) N(1) D(1)	109 20(0)	C(1) N(1) C(7)	121 06(0)
P(1) - N(1) - P(1)	129 56(9)	C(2) = N(2) = P(1)	109 49(9)
C(2) = N(2) = C(9)	121 27(9)	P(1) - N(2) - C(9)	129 50(9)
C(25) = N(2) = C(3)	109 37(9)	C(25) = N(2) = C(21)	120.73(9)
P(2) = N(2) = O(21)	130 76(9)	C(25) - N(3) - C(31)	109 52(9)
G(26) M(4) G(22)	120.28(0)	D(2) N(4) D(2)	121 05(0)
C(20) = N(4) = C(33) N(1) = D(1) = N(2)	106 25(0)	B(2) = N(4) = C(33) N(1) = D(1) = C(11)	107 00(10)
N(1) - B(1) - N(2) N(2) - B(1) - O(11)	100.35(9)	N(1) - B(1) - C(11) N(4) - D(2) - N(2)	105 00(10)
N(2) - B(1) - C(11) N(4) - B(2) - C(2E)	129.14(10)	N(4) = B(2) = N(3) N(2) = D(2) = O(2E)	105.96(10)
N(4) - B(2) - C(35)	128.14(10)	N(3) - B(2) - C(35)	125.85(10)
C(6) - C(1) - N(1)	100.03(10)	C(6) - C(1) - C(2)	120.83(10)
N(1) - C(1) - C(2)	108.23(9)	C(3) - C(2) - N(2)	130.59(10)
C(3) - C(2) - C(1)	120.86(10)	N(2) = C(2) = C(1)	108.54(9)
C(2) - C(3) - C(4)	118.12(10)	C(3) - C(4) - C(3)	121.05(11)
C(4) - C(5) - C(6)	121.09(10)	C(1) - C(6) - C(5)	118.05(10)
N(1) - C(7) - C(8)	113.46(9)	N(2) = C(9) = C(10)	112.49(9)
C(12) - C(11) - C(16)	116.81(10)	C(12) - C(11) - B(1)	120.40(9)
C(16) - C(11) - B(1)	122.66(10)	C(13) - C(12) - C(11)	121.93(10)
C(12) - C(13) - C(14)	120.35(10)	C(13) - C(14) - C(15)	118.62(10)
C(13) - C(14) - C(17)	119.76(10)	C(15) - C(14) - C(17)	121.62(10)
C(16) - C(15) - C(14)	120.24(10)	C(15) - C(16) - C(11)	121.99(10)
C(18) - C(17) - C(14)	177.33(12)	C(17) - C(18) - C(19)	178.09(12)
C(24)-C(19)-C(20)	119.00(10)	C(24)-C(19)-C(18)	120.81(10)
C(20)-C(19)-C(18)	120.19(10)	C(21)-C(20)-C(19)	120.40(11)
C(20)-C(21)-C(22)	119.93(11)	C(23)-C(22)-C(21)	120.08(11)
C(24)-C(23)-C(22)	120.37(11)	C(23)-C(24)-C(19)	120.22(11)
C(30) - C(25) - N(3)	130.65(10)	C(30)-C(25)-C(26)	120.77(10)
N(3)-C(25)-C(26)	108.55(9)	C(27)-C(26)-N(4)	130.73(10)
C(27)-C(26)-C(25)	120.68(10)	N(4)-C(26)-C(25)	108.57(9)
C(26)-C(27)-C(28)	118.16(11)	C(27)-C(28)-C(29)	121.19(11)
C(28)-C(29)-C(30)	121.00(11)	C(25)-C(30)-C(29)	118.19(11)
N(3)-C(31)-C(32)	113.11(9)	N(4)-C(33)-C(34)	113.48(9)
C(36)-C(35)-C(40)	116.54(10)	C(36)-C(35)-B(2)	120.55(10)
C(40)-C(35)-B(2)	122.90(10)	C(37)-C(36)-C(35)	122.19(10)
C(36)-C(37)-C(38)	120.11(10)	C(39)-C(38)-C(37)	118.73(10)
C(39)-C(38)-C(41)	121.24(10)	C(37)-C(38)-C(41)	120.00(10)
C(40)-C(39)-C(38)	120.40(10)	C(39)-C(40)-C(35)	122.00(11)
C(42)-C(41)-C(38)	176.55(12)	C(41)-C(42)-C(43)	179.17(12)
C(48)-C(43)-C(44)	119.09(10)	C(48)-C(43)-C(42)	120.42(10)
C(44)-C(43)-C(42)	120.48(10)	C(45)-C(44)-C(43)	120.19(10)
C(44)-C(45)-C(46)	120.33(10)	C(45)-C(46)-C(47)	119.98(11)
C(48)-C(47)-C(46)	120.04(11)	C(47)-C(48)-C(43)	120.37(10)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawell. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
N(1)	15(1)	18(1)	18(1)	0(1)	0(1)	3(1)
N(2)	18(1)	18(1)	17(1)	0(1)	1(1)	4(1)
N(3)	18(1)	18(1)	18(1)	0(1)	1(1)	4(1)
N(4)	20(1)	18(1)	18(1)	-2(1)	1(1)	4(1)
B(1)	20(1)	14(1)	19(1)	0(1)	1(1)	5(1)
B(2)	19(1)	18(1)	17(1)	2(1)	4(1)	2(1)
C(1)	17(1)	13(1)	20(1)	-1(1)	-2(1)	4(1)
C(2)	20(1)	13(1)	20(1)	0(1)	0(1)	5(1)
C(3)	18(1)	16(1)	26(1)	-1(1)	0(1)	4(1)
C(4)	21(1)	18(1)	28(1) 20(1)	-2(1)	-6(1)	5(1) 7(1)
C(5)	20(1)	21(1)	20(1)	-1(1)	-5(1) 1(1)	7(1) E(1)
C(0)	23(1)	27(1)	20(1)	1(1)	2(1)	5(1) 4(1)
C(7)	26(1)	27(1)	22(1)	-1(1)	5(1)	-4(1)
C(0)	20(1)	27(1)	21(1)	-1(1)	5(1)	-1(1)
C(10)	32(1)	43(1)	30(1)	-6(1)	5(1)	17(1)
C(10)	17(1)	20(1)	18(1)	-1(1)	2(1)	5(1)
C(12)	21(1)	19(1)	20(1)	2(1)	2(1)	7(1)
C(13)	19(1)	18(1)	23(1)	-2(1)	0(1)	4(1)
C(14)	17(1)	26(1)	18(1)	-1(1)	3(1)	7(1)
C(15)	22(1)	25(1)	20(1)	5(1)	2(1)	4(1)
C(16)	22(1)	19(1)	23(1)	2(1)	2(1)	1(1)
C(17)	22(1)	25(1)	21(1)	0(1)	3(1)	6(1)
C(18)	23(1)	26(1)	20(1)	0(1)	2(1)	6(1)
C(19)	20(1)	25(1)	17(1)	-3(1)	0(1)	7(1)
C(20)	33(1)	26(1)	19(1)	2(1)	2(1)	2(1)
C(21)	33(1)	26(1)	26(1)	-2(1)	1(1)	-2(1)
C(22)	29(1)	28(1)	20(1)	-5(1)	-4(1)	5(1)
C(23)	32(1)	26(1)	20(1)	3(1)	-1(1)	6(1)
C(24)	25(1)	22(1)	23(1)	0(1)	1(1)	2(1)
C(25)	17(1)	19(1)	19(1)	4(1)	3(1)	2(1)
C(26)	17(1)	21(1)	19(1)	3(1)	3(1)	2(1)
C(27)	20(1)	22(1)	26(1)	5(1)	4(1)	4(1)
C(28)	18(1)	29(1)	29(1)	8(1)	-2(1)	4(1)
C(29)	23(1)	29(1)	23(1)	3(1)	-4(1)	-1(1)
C(30)	23(1)	22(1)	21(1)	0(1)	0(1)	1(1)
C(31)	22(1)	18(1)	25(1)	-3(1)	0(1)	4(1)
C(32)	25(1)	30(1)	32(1)	-10(1)	4(1)	4(1)
C(33)	25(1)	21(1)	23(1)	-3(1)	3(1)	8(1)
C(34)	3U(1)	22(1)	31(1) 10(1)	-2(1)	3(1)	5(1)
C(35)	∠⊥(⊥) 21(1)	15(1)	19(1) 17(1)	1(1) 1(1)	∠(⊥) 1(1)	3(1) 2(1)
C(36) C(27)	∠⊥(⊥) 10(1)	19(1)	1/(1) 22/1)	- 1 ( 1 )	1(1) 2(1)	3(1) 2(1)
C(37)	19(1) 22(1)	17(1)	∠∠(⊥) 21(1)	1(1)	∠(⊥) -2(1)	3(1) 2(1)
0(30)	23(1)	±/(±/	41(1)	+(+)	-2(1)	2(1)

C(39)	28(1)	24(1)	17(1)	-2(1)	0(1)	5(1)
C(40)	22(1)	24(1)	20(1)	0(1)	3(1)	7(1)
C(41)	25(1)	19(1)	21(1)	1(1)	-1(1)	4(1)
C(42)	26(1)	19(1)	21(1)	1(1)	0(1)	6(1)
C(43)	20(1)	21(1)	17(1)	-1(1)	0(1)	5(1)
C(44)	25(1)	16(1)	22(1)	-1(1)	0(1)	4(1)
C(45)	25(1)	20(1)	21(1)	1(1)	0(1)	9(1)
C(46)	18(1)	24(1)	21(1)	-1(1)	0(1)	5(1)
C(47)	24(1)	18(1)	29(1)	0(1)	-1(1)	2(1)
C(48)	25(1)	19(1)	26(1)	4(1)	-2(1)	7(1)

Table 5.	Hydrogen	coordi	inate	s	( )	x 1	0^4)	and	isotropic
displaceme	ent parame	eters (	(A^2	х	10	^3)	for	vawe	211.

	x	У	Z	U(eq)
	14600	8500	2070	24
H(3)	16101	8590	3870	24
H(4)	12010	0002	£705 E201	27
H(5)	10224	7360	1961	27
11(0) 11(7)	6793	6990	2971	24
H(7B)	7682	7578	4417	20
H(8A)	7132	4619	4056	43
H(8B)	6201	5193	4505	43
H(8C)	8145	5184	4588	43
H(9A)	13377	8806	3006	27
H(9B)	11805	8021	2636	27
H(10A)	13976	6516	3213	51
H(10B)	13935	6717	2607	51
H(10C)	12383	5712	2855	51
H(12)	7357	4899	3095	23
н(13)	5683	4227	2347	24
H(15)	7302	8290	1796	27
H(16)	8986	8938	2544	26
H(20)	2178	2884	993	32
H(21)	351	2090	276	35
H(22)	478	3502	-458	32
H(23)	2447	5689	-479	31
H(24)	4250	6515	237	28
H(27)	-2934	3028	1377	27
H(28)	-4594	1781	681	31
H(29)	-3980	-309	327	32
H(30)	-1681	-1220	659	27
H(31A)	168	-2047	1310	26
H(31B)	1858	-1408	1652	26
H(32A)	1363	-855	587	44
H(32B)	2457	-1959	817	44
H(32C)	3058	-239	931	44
H(33A)	561	3564	2432	27
H(33B)	-1316	3470	2205	27
H(34A)	1583	4986	1748	41
H(34B)	250	5734	2002	41
H(34C)	-262	4804	1480	41
H(36)	4129	744	1751	23
H(37)	6498	925	2304	24
H(39)	4020	2187	3454	28
H(4U)	1038	TA32	2903	26 25
H(44)	9899	220	4018	25
r1(45)	12011	21.20	4541	20
п(40) п(47)	12969	5120	4044	20
11(4/) 11(4)	10259	4564	2762	29
11(10)	T0330	-204	5705	20

Table 1. Crystal data and structure refinement for vawe12.

Identification code vawe12 Measurement device Empirical formula Nonius KappaCCD C26 H24 B N3 O 405.29 Formula weight 405.29 100(2) K 0.71073 A Triclinic P -1 a = 7.6596(2) A alpha = 100.4493(11) deg. b = 8.23120(10) A beta = 90.0371(11) deg. c = 18.3644(3) A gamma = 108.9834(10) deg. 1074.49(4) A^3 2, 1.253 Mg/m^3 0.077 mm^-1 428 Temperature Wavelength Crystal system, space group Unit cell dimensions Volume Z, Calculated density Absorption coefficient Absorption coefficient F(000) Crystal size, colour and habit Theta range for data collection Index ranges Reflections collected / unique Completeness to theta = 27.48 Absorption correction Max and min transmission 428 428 0.30 x 0.28 x 0.24 mm^3, Colourless fragment 2.97 to 27.48 deg. -9<=h<=9, -9<=k<=10, -23<=l<=23 24875 / 4894 [R(int) = 0.028] 00 c* 99.6% multi-scan Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F^2 Final R indices [I>2sigma(I)] R indices (all data) Largest diff. peak and hole remarks 0.9818 and 0.9774 Full-matrix least-squares on F^2 4894 / 0 / 283 Hose (10, 200 1.058 R1 = 0.0379, wR2 = 0.0976 [4247] R1 = 0.0444, wR2 = 0.1018 0.271 and -0.267 e.A^-3

Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic

displacement parameters				(A^2 )	c 10	)^3)	for va	awei	2.		
U(eq)	is	defined	as	one	third	of	the	trace	of	the	orthogonalized
Uij te	enso	or.									

	х	У	Z	U(eq)
0(1)	3301(1)	945(1)	565(1)	28(1)
N(1)	9722(1)	4256(1)	7792(1)	16(1)
N(2)	11157(1)	2311(1)	7264(1)	16(1)
N(3)	7571(1)	7057(1)	4999(1)	27(1)
B(1)	9925(2)	3211(1)	7100(1)	16(1)
C(1)	10794(1)	3997(1)	8346(1)	17(1)
C(2)	11671(1)	2804(1)	8022(1)	17(1)
C(3)	12843(1)	2313(1)	8450(1)	20(1)
C(4)	13126(2)	3037(1)	9207(1)	23(1)
C(1)	12255(2)	4212(1)	9525(1)	22(1)
	11072(1)	4705(1)	9323(1) 0101(1)	20(1)
C(0)	110/2(1)	4703(1)	9101(1) 7047(1)	20(1)
C(7)	8/25(1)	5511(1)	/94/(1)	20(1)
C(8)	9996(2)	7397(1)	7997(1)	26(1)
C(9)	12079(1)	1299(1)	6764(1)	19(1)
C(10)	14033(1)	2405(1)	6632(1)	20(1)
C(11)	8952(1)	3024(1)	6327(1)	16(1)
C(12)	8750(1)	4464(1)	6072(1)	17(1)
C(13)	7887(1)	4277(1)	5377(1)	16(1)
C(14)	7208(1)	2627(1)	4901(1)	17(1)
C(15)	7383(1)	1178(1)	5158(1)	17(1)
C(16)	8222(1)	1383(1)	5853/11	16(1)
C(17)	7700/1)	1000(1) 5011/1)	5152(1)	10(1)
C(1/)	( / UU( 1 )	2412(1)	0103(1) 4171(1)	10(1)
C(10)	04U3(1)	2413(1) 2152(1)	41/1(1)	10(1)
C(19)	5768(1)	2153(1)	3545(1)	18(1)
C(20)	5062(1)	1815(1)	2789(1)	17(1)
C(21)	5536(1)	3151(1)	2372(1)	18(1)
C(22)	4926(1)	2812(1)	1635(1)	19(1)
C(23)	3831(1)	1130(1)	1294(1)	19(1)
C(24)	3328(1)	-214(1)	1697(1)	19(1)
C(25)	3944(1)	139(1)	2440(1)	19(1)
C(26)	2207(2)	-756(2)	184(1)	39(1)
= - /	/	. = 0 ( 2 /	(_)	\ - /
Table 3.	Bond lengths	[A] and angles	[deg] for v	vawe12.
O(1)-C(	23)	1.365	(12)	O(1)-C(26)
N(1) - C(1)	1)	1.3954	(12)	N(1)-B(1)
N(1)-C(	7)	1 462	3(12)	N(2) - C(2)
N(2)-P/	1)	1 427/	(13)	N(2)-C(9)
M(2) C(	-/ 17)	1 1 4 6	1/1/1	D(1) 0(11)
A(1) C(	± / )	1.140	(12) (12)	
C(1)-C()	0)	1.390	(13)	C(1)-C(2)
C(2)-C(	5)	1.3916	0(14)	C(3) - C(4)
C(4)-C(	5)	1.3919	(16)	C(5)-C(6)
C(7)-C(	8)	1.5269	9(15)	C(9)-C(10)
C(11)-C	(12)	1.4029	9(13)	C(11)-C(16)
C(12)-C	(13)	1.3960	)(13)	C(13)-C(14)
C(13)-C	(17)	1.445	(13)	C(14)-C(15)
C(14)-C	(18)	1.431	(13)	C(15)-C(16)
C(18)-C	(19)	1.203	8(14)	C(19)-C(20)
C(20)-C	(25)	1 2090	3(14)	C(20) - C(21)
C(20)-C	(22)	1 200/	(12)	C(20)=C(21)
C(21)-C	(24)	1.3806	(1) (1)	C(22) = C(23)
C(23)-C	(∠4)	1.3936	o(14)	C(24)-C(25)
a	(1) 0(05)			0/1) x/1) -//:
C(23)-O	(⊥)-C(26)	117.60(8	5)	C(1) - N(1) - B(1)
C(1)-N(	1)-C(7)	121.53(8	3)	B(1)-N(1)-C(7)
C(2)-N(	2)-B(1)	108.13(8	3)	C(2)-N(2)-C(9)
B(1)-N(	2)-C(9)	130.10(8	3)	N(2) - B(1) - N(1)
N(2)-B(	1) - C(11)	126.34(9	))	N(1) - B(1) - C(11)
C(6)-C(	1) - N(1)	130 69(9	,	C(6) - C(1) - C(2)
N(1)-C(	1) - C(2)	108 48 (8	2)	C(3) - C(2) - N(2)
N(1)-C(	1) = C(2)	100.40(0	) ) )	C(3) = C(2) = N(2)
C(3)-C(	2) - C(1)	120.81(	,)	N(2)-C(2)-C(1)
C(2)-C(	3)-C(4)	118.12(.	.0)	C(5) - C(4) - C(3)
C(4)-C(	5)-C(6)	121.31(9	9)	C(1)-C(6)-C(5)
N(1)-C(	7)-C(8)	112.31(8	3)	N(2)-C(9)-C(10)
C(12)-C	!(11)-C(16)	116.76(9	))	C(12)-C(11)-B(1)
C(16)-C	(11)-B(1)	120.99(8	3)	C(13)-C(12)-C(11
C(12)-C	(13)-C(14)	120.90(9	))	C(12)-C(13)-C(17
C(14)-C	(13)-C(17)	120.41(	))	C(15)-C(14)-C(1
C(15)-C	(14) - C(18)	120 18/0	, ,	C(13)-C(14)-C(1)
C(16)-C	(15) = C(14)	120.10(2	.,	C(15) = C(16) = C(1)
	17) 0(12)	177 00/	1)	C(10) = C(10) = C(1)
N(3)-C(	1)-C(13)	T.1.1.80(]	.⊥/ 	C(19)-C(18)-C(1
C(18)-C	(19)-C(20)	177.85(1	. ⊥ )	C(25)-C(20)-C(2
				C(21) = C(20) = C(1)
C(25)-C	(20)-C(19)	121.09(9	,)	C(21) C(20) C(1.
C(25)-C C(22)-C	2(20)-C(19) 2(21)-C(20)	121.09(9	·)	C(21)-C(22)-C(22)
C(25)-C C(22)-C O(1)-C(	2(20)-C(19) 2(21)-C(20) 23)-C(24)	121.09(9 120.75(9 124.60(9	) ))	C(21)-C(22)-C(2 O(1)-C(23)-C(22)
C(25)-C C(22)-C O(1)-C(1) C(24)-C	2(20)-C(19) 2(21)-C(20) 23)-C(24) 2(23)-C(22)	121.09(9 120.75(9 124.60(9 120.18(9	,, ,, ,, ,,	C(21) - C(22) - C(2) O(1) - C(23) - C(22) C(25) - C(24) - C(2)
C(25)-C C(22)-C O(1)-C(1) C(24)-C	2(20)-C(19) 2(21)-C(20) 23)-C(24) 2(23)-C(22) 2(25)-C(20)	121.09(9 120.75(9 124.60(9 120.18(9	>) >) >)	C(21)-C(22)-C( O(1)-C(22)-C( O(1)-C(23)-C(2 C(25)-C(24)-C(

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawel2. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
0(1)	36(1)	24(1)	16(1)	5(1)	-8(1)	0(1)
N(1)	17(1)	17(1)	15(1)	2(1)	0(1)	6(1)
N(2)	18(1)	16(1)	15(1)	1(1)	0(1)	5(1)
N(3)	35(1)	24(1)	25(1)	6(1)	2(1)	13(1)
B(1)	14(1)	14(1)	17(1)	3(1)	1(1)	2(1)
C(1)	16(1)	17(1)	15(1)	4(1)	0(1)	2(1)

18(1)	16(1)	15(1)	4(1)	1(1)	2(1)
20(1)	20(1)	21(1)	7(1)	1(1)	6(1)
21(1)	27(1)	20(1)	10(1)	-2(1)	5(1)
23(1)	29(1)	14(1)	5(1)	0(1)	2(1)
20(1)	22(1)	16(1)	2(1)	3(1)	4(1)
19(1)	22(1)	19(1)	1(1)	2(1)	10(1)
26(1)	20(1)	31(1)	-1(1)	0(1)	10(1)
20(1)	18(1)	19(1)	-1(1)	0(1)	8(1)
20(1)	22(1)	18(1)	2(1)	2(1)	8(1)
14(1)	18(1)	16(1)	3(1)	2(1)	5(1)
16(1)	16(1)	16(1)	1(1)	1(1)	4(1)
16(1)	17(1)	17(1)	4(1)	2(1)	6(1)
15(1)	19(1)	15(1)	3(1)	2(1)	6(1)
16(1)	16(1)	17(1)	1(1)	1(1)	4(1)
16(1)	17(1)	17(1)	4(1)	1(1)	6(1)
21(1)	20(1)	16(1)	2(1)	1(1)	7(1)
19(1)	17(1)	18(1)	3(1)	1(1)	6(1)
18(1)	18(1)	18(1)	3(1)	1(1)	6(1)
16(1)	19(1)	15(1)	3(1)	1(1)	7(1)
18(1)	16(1)	19(1)	1(1)	0(1)	5(1)
20(1)	18(1)	18(1)	7(1)	1(1)	5(1)
19(1)	22(1)	15(1)	3(1)	-1(1)	6(1)
19(1)	17(1)	20(1)	3(1)	-2(1)	3(1)
20(1)	18(1)	19(1)	6(1)	1(1)	5(1)
54(1)	27(1)	23(1)	2(1)	-16(1)	-3(1)
	$\begin{array}{c} 18(1)\\ 20(1)\\ 21(1)\\ 21(1)\\ 23(1)\\ 20(1)\\ 19(1)\\ 20(1)\\ 20(1)\\ 20(1)\\ 20(1)\\ 20(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 16(1)\\ 19(1)\\ 20(1)\\ 19(1)\\ 20(1)\\ 54(1)\\ \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawe12.

	х	У	Z	U(eq)
H(3)	13434	1508	8233	24
H(4)	13924	2723	9509	28
H(5)	12472	4688	10041	28
Н(б)	10474	5501	9322	24
H(7A)	8125	5397	8421	24
H(7B)	7741	5231	7549	24
H(8A)	10951	7693	8400	39
H(8B)	9270	8188	8096	39
H(8C)	10584	7520	7527	39
H(9A)	11345	825	6283	23
H(9B)	12135	296	6979	23
H(10A)	13976	3341	6380	30
H(10B)	14631	1666	6322	30
H(10C)	14747	2920	7109	30
H(12)	9212	5593	6379	20
H(15)	6922	46	4853	20
H(16)	8308	377	6015	20
H(21)	6286	4300	2600	22
H(22)	5254	3728	1359	22
H(24)	2573	-1360	1467	23
H(25)	3598	-776	2716	22
H(26A)	2895	-1572	190	59
H(26B)	1920	-710	-330	59
H(26C)	1054	-1157	432	59

Table 1. Crystal data and structure refinement for vawe13.

Identification code Measurement device Empirical formula Formula weight Temperature Wavelength Crystal system, space group Unit cell dimensions	vawe13 Nonius KappaCCD C19 H21 B N2 O 304.19 100(2) K 0.71073 A Orthorhombic P b c a a = 8.3709(3) A alpha = 90 deg.
	D = 16.8468(5) A Deta = 90 deg.
TT 1	c = 48.0255(16) A gamma = 90 deg.
Volume	6//2./(4) A ⁻³
2, Calculated density	16, 1.193 Mg/m ⁻³
R(000)	2502
F(000)	2592 0.20 0.20 0.10 0.2 f
Crystal Size, Colour and Mabit	0.30 X 0.30 X 0.18 mm 3, Colourless iragment
Ineta range for data correction	2.95 LO 27.47 deg.
Index ranges	-10<=11<=10, -21<=K<=21, -62<=1<=62
Reflections collected / unique	28284 / /5/6 [R(INL) = 0.055]
Compileteness to theta = 27.47	97.76
Absorption correction	mulli-Scan
Max. and min. transmission	U.9869 and U.9784
Relinement method	Full-matrix least-squares on F 2
Data / restraints / parameters	/5/6 / U / 421
Goodness-of-fit on F'2	
Final R indices [1>2sigma(1)]	RI = 0.0449, $WR2 = 0.0949 [4774]$
K INGICES (AII GATA)	RT = 0.0890, WR2 = 0.1087
Largest diff. peak and hole	0.181 and -0.280 e.A -3
remarks	

Table 2. Atomic coordinates (  $x\;10^{4})$  and equivalent isotropic displacement parameters (A^2  $x\;10^{3}$ ) for vawel3. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
0(1)	9634(1)	1635(1)	1426(1)	28(1)
N(1)	6007(1)	-1848(1)	36(1)	20(1)
N(2)	7332(1)	-845(1)	-191(1)	20(1)
B(1)	6914(2)	-1136(1)	78(1)	21(1)
C(1)	5890(2)	-1978(1)	-250(1)	19(1)

C(2) C(3) C(4) C(5) C(6) C(7) C(8) C(9) C(10) C(11) C(12)	6704(2) 6794(2) 6046(2) 5149(2) 5241(2) 6045(2) 8176(2) 7058(2) 7391(2) 7391(2)	-1361(1) -1348(1) -1955(1) -2558(1) -2558(1) -2366(1) -3170(1) -117(1) 533(1) -748(1) -383(1)	$\begin{array}{c} -390(1) \\ -678(1) \\ -827(1) \\ -688(1) \\ -400(1) \\ 240(1) \\ 269(1) \\ -265(1) \\ -366(1) \\ 353(1) \\ 555(1) \end{array}$	20(1) 25(1) 28(1) 27(1) 23(1) 26(1) 33(1) 24(1) 35(1) 23(1) 24(1)	
C(13) C(14) C(15) C(16) C(17) C(18) C(19) O(2) N(3)	8320(2) 9653(2) 10141(2) 9282(2) 7944(2) 7468(2) 11071(2) 1492(1) -962(1)	101(1) -75(1) 417(1) 1291(1) 798(1) 3238(1) 8143(1)	787(1) 949(1) 1166(1) 1221(1) 1060(1) 847(1) 1583(1) 1285(1) 1902(1)	21(1) 23(1) 23(1) 22(1) 23(1) 23(1) 29(1) 31(1) 21(1)	
N(4) B(2) C(20) C(21) C(22) C(23) C(24) C(25) C(26) C(26) C(27) C(28) C(28) C(29) C(20)	603(1) -61(2) -823(2) 125(2) 455(2) -1123(2) -123(2) -1455(2) -1880(2) -986(2) 1487(2) 451(2) 176(2)	7976(1) 7573(1) 8875(1) 8772(1) 9408(1) 10143(1) 10245(1) 9613(1) 8042(1) 8341(1) 7653(1) 7529(1) 6710(1)	2290(1) 2055(1) 2276(1) 2451(1) 2451(1) 1971(1) 1647(1) 1392(1) 2526(1) 2783(1)	21(1) 22(1) 21(1) 21(1) 27(1) 30(1) 26(1) 24(1) 33(1) 26(1) 30(1) 24(1)	
C(31) C(32) C(33) C(34) C(35) C(36) C(36) C(37) C(38)	395(2) 645(2) -64(2) 180(2) 1159(2) 1880(2) 1627(2) 680(2)	6055(1) 5317(1) 5207(1) 4526(1) 3934(1) 4030(1) 4711(1) 3101(1)	1873(1) 1730(1) 1471(1) 1317(1) 1421(1) 1681(1) 1833(1) 1027(1)	24(1) 23(1) 28(1) 28(1) 24(1) 27(1) 26(1) 32(1)	
Table 3.	. Bond lengths	[A] and angle	s [deg] for	vawel3.	
0(1) - C( N(1) - C( N(1) - C( N(2) - B( B(1) - C( C(1) - C( C(3) - C( C(3) - C( C(1) - C( C(2) - C( N(3) - B( N(4) - C( C(2) - C( C(2	11         11         11         11         111         121         111         122         44         66         101         1213         218         218         221         221         222         211         28         202         221         222         221         222         221         222         221         222         221         222         221         222         221         222         221         222         221         222         223         224         233         234         234         234	1.361 1.396 1.459 1.524 1.524 1.397 1.386 1.520 1.440 1.404 1.388 1.376 1.431 1.426 1.402 1.459 1.386 1.387 1.390 1.520 1.520 1.520 1.389 1.382 1.399 1.382 1.389	1(16) 3(18) 7(17) (2) (2) 2(19) (2) 8(19) (2) 6(19) 7(19) (2) 8(17) (2) 8(17) (2) 2(17) 0(18) 6(19) 4(19) (2) (2) (2) (2) (2) (2) (2) (2	$\begin{array}{c} 0(1) - C(19) \\ N(1) - B(1) \\ N(2) - C(2) \\ N(2) - C(2) \\ C(1) - C(6) \\ C(2) - C(3) \\ C(4) - C(5) \\ C(7) - C(8) \\ C(11) - C(12) \\ C(13) - C(14) \\ C(14) - C(15) \\ C(16) - C(17) \\ O(2) - C(35) \\ N(3) - C(20) \\ N(3) - C(20) \\ N(4) - B(2) \\ B(2) - C(30) \\ C(20) - C(21) \\ C(22) - C(23) \\ C(22) - C(23) \\ C(24) - C(25) \\ C(28) - C(29) \\ C(31) - C(35) \\ C(34) - C(35) \\ C(36) - C(37) \\ \end{array}$	$\begin{array}{c} 1.4344(17)\\ 1.4333(19)\\ 1.3956(17)\\ 1.4586(16)\\ 1.3878(19)\\ 1.382(2)\\ 1.519(2)\\ 1.519(2)\\ 1.207(2)\\ 1.392(2)\\ 1.393(2)\\ 1.397(2)\\ 1.3706(17)\\ 1.3974(17)\\ 1.4556(18)\\ 1.428(2)\\ 1.523(2)\\ 1.409(2)\\ 1.389(2)\\ 1.521(2)\\ 1.389(2)\\ 1.521(2)\\ 1.435(2)\\ 1.402(2)\\ 1.385(2)\\ 1.379(2)\\ 1.379(2)\\ 1.379(2)\\ 1.379(2)\\ 1.379(2)\\ 1.379(2)\\ 1.379(2)\\ 1.379(2)\\ 1.397(2)\\ 1.397(2)\\ 1.379(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.397(2)\\ 1.3$
$\begin{array}{c} C(16) - C\\ C(1) - N(\\ C(2) - N(\\ B(1) - N(\\ N(2) - B(\\ C(6) - C(\\ C(3) - C(\\ C(3) - C(\\ C(2) - C(\\ C(2) - C(\\ C(12) - C(\\ C(14) - C(\\ C(14) - C(\\ C(14) - C(\\ C(14) - C(\\ C(16) - C(\\ C(16) - C(\\ C(2) - C$	$\begin{array}{c} 0(1) - c(19) \\ (1) - c(7) \\ (2) - B(1) \\ (2) - C(9) \\ (1) - c(11) \\ (1) - N(1) \\ (1) - N(1) \\ (1) - C(2) \\ (2) - c(1) \\ (3) - c(4) \\ (5) - c(4) \\ (7) - c(8) \\ (7) - c(8) \\ (213) - c(12) \\ (213) - c(21) \\ (213) - c(26) \\ (4) - B(2) \\ (4) - B(2) \\ (4) - B(2) \\ (4) - B(2) \\ (20) - N(3) \\ (20) - N(3) \\ (20) - N(3) \\ (20) - C(21) \\ (22) - c(20) \\ (22) - c(21) \\ (22) - c(22) \\ (22) - c(21) \\ (24) - c(23) \\ (26) - c(27) \\ \end{array}$	117.58( $122.41($ $108.34($ $128.98($ $124.80($ $130.99($ $108.62($ $120.83($ $118.41($ $121.47($ $113.60($ $173.77($ $118.09($ $119.23($ $119.19($ $115.28($ $120.58($ $116.97($ $122.49($ $127.49($ $129.29($ $124.95($ $120.73($ $120.73($ $118.22($ $121.12($ $121.22($ $121.22($	11) 12) 11) 12) 13) 14) 12) 13) 14) 12) 13) 14) 14) 12) 15) 14) 12) 12) 12) 12) 12) 12) 12) 12	$\begin{array}{c} C(1)-N(1)-B(1)\\ B(1)-N(1)-C(7)\\ C(2)-N(2)-C(9)\\ N(2)-B(1)-N(1)\\ N(1)-B(1)-C(11)\\ C(6)-C(1)-C(2)\\ C(3)-C(2)-N(2)\\ N(2)-C(2)-C(1)\\ C(5)-C(4)-C(3)\\ C(5)-C(4)-C(3)\\ C(5)-C(6)-C(1)\\ N(2)-C(9)-C(10)\\ C(11)-C(12)-C(13)\\ C(14)-C(13)-C(12)\\ C(13)-C(14)-C(15)\\ O(1)-C(16)-C(15)\\ C(15)-C(16)-C(15)\\ C(15)-C(16)-C(17)\\ C(17)-C(18)-C(13)\\ C(20)-N(3)-B(2)\\ B(2)-N(3)-B(2)\\ N(3)-B(2)-N(4)\\ N(4)-B(2)-C(3)\\ C(22)-C(23)-C(24)\\ C(22)-C(23)-C(24)\\ C(20)-C(25)-C(24)\\ C(29)-C(29)\\ C(29)-C(29)\\ C(29)-C(24)\\ C(29)-C(29)\\ C(29)-C(29)\\ C(21)-N(4)-C(22)\\ C(22)-C(23)-C(24)\\ C(20)-C(25)-C(24)\\ C(20)-C(25)-C(24)\\ C(29)-C(29)\\ \end{array}$	$107.95(12) \\ 129.60(13) \\ 122.59(12) \\ 106.80(13) \\ 128.40(14) \\ 120.39(14) \\ 130.87(13) \\ 108.29(13) \\ 10.54(15) \\ 118.36(14) \\ 112.62(12) \\ 176.08(16) \\ 122.62(13) \\ 121.73(13) \\ 124.95(13) \\ 124.95(13) \\ 129.35(12) \\ 122.57(12) \\ 107.04(13) \\ 127.96(14) \\ 120.66(14) \\ 130.79(14) \\ 108.48(12) \\ 121.12(15) \\ 118.15(15) \\ 113.04(12) \\ 120.12(12) \\ 121.20(12) \\ 121.12(15) \\ 113.04(12) \\ 121.12(15) \\ 113.04(12) \\ 120.120(13) \\ 121.12(15) \\ 113.04(12) \\ 120.120(13) \\ 121.12(15) \\ 113.04(12) \\ 120.120(13) \\ 121.12(15) \\ 113.04(12) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13) \\ 120.120(13)$
C(31)-C C(31)-C C(33)-C C(33)-C C(33)-C C(33)-C	C(30)-B(2) C(32)-C(37) C(32)-C(31) C(32)-C(35) C(35)-C(36)	112.22( 172.81( 118.03( 123.16( 119.27( 115.87(	12) 17) 14) 14) 15) 13)	$\begin{array}{c} N(4) - C(20) - C(32) \\ C(30) - C(31) - C(32) \\ C(33) - C(32) - C(31) \\ C(34) - C(33) - C(32) \\ O(2) - C(35) - C(34) \\ C(34) - C(35) - C(36) \end{array}$	113.04(12) 174.02(17) 118.76(14) 121.94(14) 124.25(15) 119.88(14)

## C(37)-C(36)-C(35)

120.36(14) C(36)-C(37)-C(32)

120.52(15)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawel3. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
0(1)	29(1)	28(1)	26(1)	-7(1)	-5(1)	2(1)
N(1)	22(1)	18(1)	19(1)	1(1)	2(1)	-2(1)
N(2)	20(1)	17(1)	23(1)	0(1)	-1(1)	-2(1)
B(1)	18(1)	19(1)	26(1)	-1(1)	1(1)	3(1)
C(1)	18(1)	20(1)	21(1)	-2(1)	-1(1)	3(1)
C(2)	18(1)	19(1)	24(1)	1(1)	0(1)	2(1)
C(3)	23(1)	24(1)	27(1)	3(1)	1(1)	0(1)
C(4)	29(1)	33(1)	22(1)	-3(1)	-2(1)	5(1)
C(5)	27(1)	24(1)	30(1)	-8(1)	-4(1)	3(1)
C(6)	21(1)	19(1)	28(1)	-2(1)	-1(1)	1(1)
C(7)	28(1)	25(1)	24(1)	3(1)	2(1)	-5(1)
C(8)	32(1)	28(1)	40(1)	12(1)	-7(1)	-7(1)
C(9)	22(1)	19(1)	30(1)	3(1)	1(1)	-2(1)
C(10)	32(1)	21(1)	51(1)	5(1)	-6(1)	-2(1)
C(11)	22(1)	19(1)	28(1)	2(1)	1(1)	-1(1)
C(12)	23(1)	21(1)	27(1)	4(1)	4(1)	-2(1)
C(13)	24(1)	21(1)	19(1)	1(1)	4(1)	-4(1)
C(14)	28(1)	18(1)	23(1)	1(1)	5(1)	1(1)
C(15)	24(1)	24(1)	21(1)	3(1)	0(1)	0(1)
C(16)	25(1)	21(1)	20(1)	-3(1)	3(1)	-2(1)
C(17)	24(1)	20(1)	24(1)	-2(1)	2(1)	3(1)
C(18)	24(1)	24(1)	22(1)	4(1)	1(1)	-1(1)
C(19)	29(1)	35(1)	24(1)	-3(1)	-6(1)	1(1)
0(2)	36(1)	24(1)	32(1)	-6(1)	-5(1)	4(1)
N(3)	25(1)	22(1)	16(1)	-2(1)	0(1)	-4(1)
N(4)	22(1)	22(1)	19(1)	1(1)	0(1)	-1(1)
B(2)	21(1)	24(1)	19(1)	1(1)	4(1)	-2(1)
C(20)	23(1)	21(1)	18(1)	-1(1)	2(1)	-3(1)
C(21)	21(1)	22(1)	20(1)	-1(1)	4(1)	-4(1)
C(22)	30(1)	30(1)	20(1)	-2(1)	2(1)	-7(1)
C(23)	41(1)	23(1)	29(1)	-7(1)	6(1)	-5(1)
C(24)	41(1)	20(1)	29(1)	1(1)	7(1)	1(1)
C(25)	29(1)	26(1)	23(1)	3(1)	2(1)	0(1)
C(26)	28(1)	27(1)	18(1)	0(1)	-2(1)	-3(1)
C(20)	43(1)	38(1)	18(1)	1(1)	0(1)	-10(1)
C(28)	23(1)	30(1)	24(1)	0(1)	-5(1)	0(1)
C(20)	31(1)	35(1)	24(1)	3(1)	-4(1)	-1(1)
C(30)	26(1)	28(1)	20(1)	2(1)	1(1)	-1(1)
C(31)	25(1)	25(1)	20(1)	2(1)	1(1)	-1(1)
C(32)	25(1)	21(1)	22(1)	0(1)	2(1)	-2(1)
C(32)	21(1)	22(1)	21(1)	2(1)	-5(1)	-2(1)
C(34)	32(1)	25(1)	25(1)	2(1)	-5(1)	2(1)
C(35)	25(1)	10(1)	27(1)	-2(1)	-0(1)	2(1) -1(1)
C(35)	29(1)	24(1)	29(1)	-2(1)	±(1) =4(1)	-1(1)
C(30)	20(1)	24(1) 26(1)	22(⊥) 25(1)	>(⊥) 1(1)	-4(1)	⊃(⊥) _1(1)
C(3/)	20(1)	20(1)	20(1)	±(±) 7(1)	- 3 ( 1 )	-1(1)
C(38)	39(1)	29(1)	20(1)	-/(1)	-2(1)	1(1)

Table 5.	Hydrogen	coordina	ates	( x	10^4)	and isotropic
displaceme	ent parame	eters (A	`2 x	10^3	) for	vawe13.

	x	У	z	U(eq)
н(3)	7352	-936	-772	30
H(4)	6091	-1956	-1024	33
H(5)	4733	-2965	-793	32
H(6)	4595	-2994	-307	27
H(7A)	4113	-2448	185	31
H(7B)	5244	-2098	423	31
H(8A)	5983	-3455	91	50
H(8B)	5504	-3479	414	50
H(8C)	7168	-3095	320	50
H(9A)	8963	-237	-413	28
H(9B)	8772	77	-101	28
H(10A)	6421	334	-523	52
H(10B)	7686	992	-427	52
H(10C)	6346	692	-214	52
H(14)	10246	-543	911	28
H(15)	11049	284	1275	28
H(17)	7358	1762	1098	27
H(18)	6553	931	739	28
H(19A)	10985	1010	1687	44
H(19B)	11228	1950	1713	44
H(19C)	11983	1479	1455	44
H(22)	1097	9340	2612	32
H(23)	38	10586	2500	37
H(24)	-1548	10754	2107	36
H(25)	-2098	9684	1810	31
H(26A)	-2903	8332	1664	29
H(26B)	-2130	7472	1622	29
H(27A)	-719	8903	1418	50
H(27B)	-1662	8281	1227	50
H(27C)	-3	8034	1368	50
H(28A)	2371	8019	2573	31
H(28B)	1964	7138	2471	31
H(29A)	-16	8038	2839	45
H(29B)	1108	7319	2935	45
H(29C)	-405	7152	2739	45
H(33)	-735	5611	1399	34
H(34)	-319	4464	1140	33

H(36)	2550	3623	1752	32
H(37)	2122	4770	2010	31
H(38A)	-475	3142	1057	48
H(38B)	942	2569	959	48
H(38C)	1019	3499	891	48

Table 1. Crystal data and structure refinement for vawe14.

Identification code	vawe14
Measurement device	Nonius KappaCCD
Empirical formula	C34 H36 B2 N4
Formula weight	522.29
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic P 21/n
Unit cell dimensions	a = 9.8599(3) A alpha = 90 deg.
	b = 11.9000(4) A beta = 103.8752(17) deg.
	c = 12.5138(3) A gamma = 90 deg.
Volume	1425.44(7) A^3
Z, Calculated density	2, 1.217 Mg/m^3
Absorption coefficient	0.071 mm^-1
F(000)	556
Crystal size, colour and habit	0.22 x 0.14 x 0.06 mm^3, Colourless fragment
Theta range for data collection	2.93 to 27.47 deg.
Index ranges	-12<=h<=12, -15<=k<=15, -16<=1<=16
Reflections collected / unique	19844 / 3195 [R(int) = 0.042]
Completeness to theta = 27.47	97.9%
Absorption correction	multi-scan
Max. and min. transmission	0.9958 and 0.9846
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	3195 / 0 / 183
Goodness-of-fit on F^2	1.046
Final R indices [I>2sigma(I)]	R1 = 0.0428, wR2 = 0.1035 [2625]
R indices (all data)	R1 = 0.0541, wR2 = 0.1116
Largest diff. peak and hole	0.249 and -0.249 e.A^-3
remarks	

Table 2. Atomic coordinates (  $x\;10^{\circ}4)$  and equivalent isotropic displacement parameters (A^2  $x\;10^{\circ}3)$  for vawel4. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	х	У	Z	U(eq)
N(1)	2323(1)	5820(1)	-1028(1)	23(1)
N(2)	2240(1)	5599(1)	778(1)	22(1)
B(1)	2555(1)	5024(1)	-144(1)	22(1)
C(1)	1871(1)	6825(1)	-659(1)	24(1)
C(2)	1823(1)	6694(1)	453(1)	23(1)
C(3)	1452(1)	7587(1)	1042(1)	26(1)
C(4)	1119(1)	8607(1)	496(1)	30(1)
C(5)	1142(1)	8728(1)	-606(1)	32(1)
C(6)	1512(1)	7836(1)	-1202(1)	28(1)
C(7)	2466(1)	5707(1)	-2159(1)	26(1)
C(8)	3743(1)	6316(1)	-2357(1)	31(1)
C(9)	2394(1)	5225(1)	1912(1)	24(1)
C(10)	1009(1)	4957(1)	2187(1)	30(1)
C(11)	3086(1)	3787(1)	-154(1)	22(1)
C(12)	4231(1)	3523(1)	-596(1)	24(1)
C(13)	4775(1)	2446(1)	-547(1)	23(1)
C(14)	4180(1)	1577(1)	-62(1)	23(1)
C(15)	3013(1)	1811(1)	358(1)	24(1)
C(16)	2486(1)	2898(1)	313(1)	24(1)
C(17)	4751(1)	462(1)	-11(1)	24(1)

Table 3. Bond lengths [A] and angles [deg] for vawe14.

N(1)-C(1)	1.3939(15)	N(1)-B(1)	1.4315(17)
N(1)-C(7)	1.4613(15)	N(2)-C(2)	1.3973(16)
N(2)-B(1)	1.4383(17)	N(2)-C(9)	1.4593(15)
B(1)-C(11)	1.5635(18)	C(1)-C(6)	1.3856(18)
C(1)-C(2)	1.4116(17)	C(2)-C(3)	1.3913(17)
C(3)-C(4)	1.3929(19)	C(4)-C(5)	1.392(2)
C(5)-C(6)	1.3942(19)	C(7)-C(8)	1.5233(18)
C(9)-C(10)	1.5204(17)	C(11)-C(16)	1.4054(17)
C(11)-C(12)	1.4069(17)	C(12)-C(13)	1.3859(17)
C(13)-C(14)	1.3973(17)	C(14)-C(15)	1.4023(17)
C(14)-C(17)	1.4373(17)	C(15)-C(16)	1.3895(17)
C(17)-C(17)#1	1.202(3)		
C(1)-N(1)-B(1)	108.42(10)	C(1) - N(1) - C(7)	120.83(10)
B(1)-N(1)-C(7)	130.74(11)	C(2)-N(2)-B(1)	108.32(10)
C(2)-N(2)-C(9)	121.47(10)	B(1)-N(2)-C(9)	130.04(10)
N(1)-B(1)-N(2)	106.29(11)	N(1)-B(1)-C(11)	127.50(11)
N(2)-B(1)-C(11)	126.19(11)	C(6)-C(1)-N(1)	130.34(11)
C(6)-C(1)-C(2)	120.97(11)	N(1) - C(1) - C(2)	108.70(10)
C(3)-C(2)-N(2)	130.90(11)	C(3)-C(2)-C(1)	120.80(11)
N(2)-C(2)-C(1)	108.26(10)	C(2)-C(3)-C(4)	117.85(12)
C(5)-C(4)-C(3)	121.20(12)	C(4)-C(5)-C(6)	121.26(12)
C(1)-C(6)-C(5)	117.89(12)	N(1)-C(7)-C(8)	112.92(10)
N(2)-C(9)-C(10)	113.21(10)	C(16)-C(11)-C(12)	116.90(11)
C(16)-C(11)-B(1)	122.09(11)	C(12)-C(11)-B(1)	120.96(11)
C(13)-C(12)-C(11)	121.86(11)	C(12)-C(13)-C(14)	120.32(11)
C(13)-C(14)-C(15)	118.94(11)	C(13)-C(14)-C(17)	120.09(11)
C(15)-C(14)-C(17)	120.96(11)	C(16)-C(15)-C(14)	120.11(11)
C(15)-C(16)-C(11)	121.83(11)	C(17)#1-C(17)-C(14)	178.15(18)

Symmetry transformations used to generate equivalent atoms:  $\#1\ -x+1, -y, -z$ 

	U11	U22	U33	U23	U13	U12
N(1)	24(1)	23(1)	20(1)	-1(1)	5(1)	2(1)
N(2)	23(1)	23(1)	20(1)	0(1)	5(1)	2(1)
B(1)	20(1)	25(1)	20(1)	-1(1)	3(1)	0(1)
C(1)	22(1)	23(1)	25(1)	-2(1)	4(1)	1(1)
C(2)	20(1)	23(1)	25(1)	-1(1)	5(1)	-1(1)
C(3)	26(1)	27(1)	27(1)	-3(1)	9(1)	-2(1)
C(4)	32(1)	24(1)	38(1)	-6(1)	13(1)	2(1)
C(5)	35(1)	22(1)	39(1)	3(1)	11(1)	4(1)
C(6)	30(1)	27(1)	27(1)	2(1)	7(1)	3(1)
C(7)	30(1)	29(1)	19(1)	0(1)	5(1)	3(1)
C(8)	34(1)	38(1)	23(1)	2(1)	9(1)	2(1)
C(9)	26(1)	29(1)	19(1)	0(1)	5(1)	0(1)
C(10)	30(1)	33(1)	29(1)	-1(1)	12(1)	-3(1)
C(11)	23(1)	24(1)	17(1)	-1(1)	1(1)	2(1)
C(12)	26(1)	24(1)	20(1)	-1(1)	5(1)	0(1)
C(13)	21(1)	27(1)	20(1)	-4(1)	4(1)	2(1)
C(14)	25(1)	23(1)	17(1)	-2(1)	1(1)	4(1)
C(15)	27(1)	24(1)	21(1)	1(1)	7(1)	1(1)
C(16)	24(1)	27(1)	23(1)	0(1)	7(1)	4(1)
C(17)	26(1)	27(1)	19(1)	0(1)	5(1)	3(1)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawel4. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawel4.

	x	У	Z	U(eq)
H(3)	1427	7504	1792	31
H(4)	872	9231	882	36
H(5)	902	9432	-960	38
H(6)	1517	7919	-1956	34
H(7A)	1618	6011	-2667	31
H(7B)	2533	4900	-2330	31
H(8A)	3704	7110	-2158	47
H(8B)	3754	6255	-3135	47
H(8C)	4592	5974	-1903	47
H(9A)	2875	5819	2416	29
H(9B)	2992	4546	2039	29
H(10A)	429	5635	2098	45
H(10B)	1180	4694	2950	45
H(10C)	525	4369	1690	45
H(12)	4642	4100	-939	28
H(13)	5557	2296	-846	28
H(15)	2582	1226	674	29
H(16)	1699	3044	605	29

Table 1. Crystal data and structure refinement for vawe15.

Identification code	vawe15
Measurement device	Nonius KappaCCD
Empirical formula	C48 H51 B3 N6 S3
Formula weight	840.56
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Triclinic P -1
Unit cell dimensions	a = 9.5930(4) A alpha = 117.317(2) deg.
	b = 15.6949(6) A beta = 96.944(3) deq.
	c = 16.9783(8) A gamma = 91.638(3) deg.
Volume	2244.27(17) A^3
Z, Calculated density	2, 1.244 Mg/m^3
Absorption coefficient	0.207 mm^-1
F(000)	888
Crystal size, colour and habit	0.30 x 0.30 x 0.02 mm^3, Colourless plate
Theta range for data collection	3.56 to 25.00 deg.
Index ranges	-11<=h<=11, -18<=k<=18, -20<=1<=19
Reflections collected / unique	30208 / 7847 [R(int) = 0.0423]
Completeness to theta = 25.00	99.2%
Absorption correction	multi-scan
Max. and min. transmission	0.9959 and 0.9406
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7847 / 0 / 547
Goodness-of-fit on F^2	1.019
Final R indices [I>2sigma(I)]	R1 = 0.0428, wR2 = 0.0922 [5814]
R indices (all data)	R1 = 0.0685, wR2 = 0.1057
Largest diff. peak and hole	0.487 and -0.302 e.A^-3
remarks	

Table 2. Atomic coordinates (  $x\;10^{\,4})$  and equivalent isotropic displacement parameters (A^2  $x\;10^{\,3})$  for vawe15. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	z	U(eq)
S(1)	-2455(1)	1877(1)	1652(1)	28(1)
S(2)	3999(1)	4685(1)	2609(1)	26(1)
S(3)	3265(1)	2966(1)	-794(1)	30(1)
N(1)	-6612(2)	875(1)	1425(1)	27(1)
N(2)	-4751(2)	318(1)	1982(1)	28(1)
N(3)	6011(2)	6638(1)	5165(1)	24(1)
N(4)	7142(2)	5547(1)	4060(1)	26(1)
N(5)	5563(2)	3273(1)	-2062(1)	31(1)

N(6)	4324(2)	2015(1)	-3324(1)	32(1)	
B(1)	-5114(3)	859(2)	1505(2)	28(1)	
B(2) B(3)	4247(3)	2681(2)	-2409(2)	31(1)	
C(1)	-7143(2)	348(2)	1815(2)	28(1)	
C(2)	-8522(3)	144(2)	1893(2)	33(1)	
C(4)	-7625(3)	-728(2)	2679(2)	37(1)	
C(5)	-6238(3)	-528(2)	2600(2)	34(1)	
C(6)	-6008(2)	14(2)	2165(2)	28(1)	
C(7) C(8)	-8213(3)	579(2)	49(2)	32(1)	
C(9)	-3389(2)	42(2)	2229(2)	31(1)	
C(10)	-2798(3)	645(2)	3215(2)	34(1)	
C(11) C(12)	-4128(2)	1323(2)	316(2)	26(1)	
C(13)	-3245(2)	1792(2)	130(2)	28(1)	
C(14)	-2112(2)	2129(2)	796(2)	26(1)	
C(15) C(16)	7463(2) 8223(2)	6836(2) 7548(2)	5452(2) 6244(2)	25(1)	
C(17)	9683(3)	7579(2)	6349(2)	33(1)	
C(18)	10374(3)	6913(2)	5685(2)	35(1)	
C(19)	9619(2)	6211(2)	4885(2)	31(1)	
C(21)	5007(2)	7228(2)	5718(2)	26(1)	
C(22)	4757(3)	6978(2)	6458(2)	30(1)	
C(23)	7542(2)	4803(2)	3229(2)	29(1)	
C(24) C(25)	4313(2)	5285(2)	3768(1)	25(1)	
C(26)	3140(2)	5118(2)	4088(2)	27(1)	
C(27)	2029(2)	4520(2)	3418(2)	27(1)	
C(28) C(29)	6410(3)	2961(2)	-2742(2)	32(1)	
C(30)	7756(3)	3296(2)	-2745(2)	37(1)	
C(31)	8340(3)	2840(2)	-3531(2)	40(1)	
C(32) C(33)	6240(3)	1741(2)	-4285(2)	37(1)	
C(34)	5650(3)	2197(2)	-3514(2)	32(1)	
C(35)	6033(3)	4103(2)	-1186(2)	35(1)	
C(36) C(37)	3300(3)	1237(2)	-3995(2)	38(1)	
C(38)	2508(3)	1490(2)	-4665(2)	48(1)	
C(39)	2993(3)	2715(2)	-1908(2)	30(1)	
C(40) C(41)	1568(3) 716(3)	2544(2) 2615(2)	-2212(2)	34(1) 32(1)	
C(42)	1476(2)	2841(2)	-749(2)	28(1)	
C(43)	-755(2)	2624(2)	842(2)	25(1)	
C(44) C(45)	109(2)	3182(2) 3637(2)	1662(2)	26(1) 24(1)	
C(46)	1828(2)	3522(2)	906(2)	25(1)	
		2066(2)	78(2)	26(1)	
C(47) C(48)  Table :	988(2) -308(2) 3. Bond lengths	2520(2) 2520(2)	54(2) s [deg] for v	26(1) awe15.	
C(47) C(48) Table : S(1)-(	988(2) -308(2) 3. Bond lengths C(11)	2520(2) 2520(2) s [A] and angle 1.732	54(2) s [deg] for v	26(1) awel5. S(1)-C(14)	1.735(2)
C(47) C(48) Table : S(1)-C S(2)-C S(3)-C	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39)	2520(2) 2520(2) s [A] and angle 1.732 1.728 1.728	54(2) ss [deg] for v	26(1) awe15. S(1)-C(14) S(2)-C(28) S(3)-C(42)	1.735(2) 1.728(2) 1.736(2)
C(47) C(48) Table : S(1)-c S(2)-c S(3)-c N(1)-c	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1)	2520(2) 2520(2) s [A] and angle 1.732 1.732 1.731 1.394	54(2) ss [deg] for v (2) (2) (2) (3)	26(1) awe15. S(1)-C(14) S(2)-C(28) S(3)-C(42) N(1)-B(1)	1.735(2) 1.728(2) 1.736(2) 1.429(3)
C(47) C(48) Table : S(1)-( S(2)-( S(3)-( N(1)-( N(1)-( N(1)-(	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(1)	2500(2) 2520(2) 5 [A] and angle 1.732 1.732 1.734 1.394 1.461	54(2) (2) (2) (2) (3) (3)	26(1) awe15. S(1)-C(14) S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6)	1.735(2) 1.728(2) 1.736(2) 1.429(3) 1.429(3)
C(47) C(48) Table : S(1)-( S(2)-( S(3)-( N(1)-( N(1)-( N(2)-1) N(3)-(	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(15)	2500(2) 2520(2) s [A] and angle 1.732 1.728 1.731 1.394 1.461 1.440 1.495	54(2) (2) (2) (2) (2) (3) (3) (3) (3)	26(1) awe15. S(1)-C(14) S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2)	1.735(2) 1.728(2) 1.736(2) 1.429(3) 1.405(3) 1.462(3) 1.462(3)
C(47) C(48) Table : S(1)-( S(2)-( S(3)-( N(1)-( N(1)-( N(2)-1 N(3)-( N(3)-(	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) B(1) C(15) C(21)	2500(2) 2520(2) a [A] and angle 1.732 1.728 1.731 1.394 1.461 1.440 1.395 1.462	54(2) (2) (2) (2) (2) (3) (3) (3) (3)	26(1) awe15. S(1)-C(14) S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20)	1.735(2) 1.728(2) 1.736(2) 1.429(3) 1.405(3) 1.405(3) 1.462(3) 1.427(3) 1.396(3)
C(47) C(48) Table : S(1)-( S(2)-( S(3)-( N(1)-( N(2)-1 N(2)-1 N(3)-( N(3)-( N(4)-1) N(4)-1	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) B(1) C(15) C(21) B(2) C(21) B(2) C(20)	2500(2) 2520(2) a [A] and angle 1.732 1.728 1.731 1.394 1.461 1.440 1.395 1.462 1.435	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. S(1)-C(14) S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20) N(4)-C(23) N(5)-C(2)	1.735(2) 1.728(2) 1.736(2) 1.429(3) 1.405(3) 1.462(3) 1.462(3) 1.396(3) 1.396(3) 1.465(3)
C(47) C(48) Table : S(1)-( S(2)-( S(3)-( N(1)-( N(2)-1 N(2)-1 N(3)-( N(3)-( N(4)-1 N(5)-( N(5)-(	988(2) -308(2) -308(2) 	2500(2) 2520(2) a [A] and angle 1.732 1.728 1.731 1.394 1.461 1.440 1.395 1.462 1.435 1.401 1.452	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. S(1)-C(14) S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20) N(4)-C(23) N(5)-B(3) N(5)-C(34)	1.735(2) 1.728(2) 1.736(2) 1.405(3) 1.405(3) 1.462(3) 1.396(3) 1.396(3) 1.465(3) 1.434(4) 1.403(3)
C(47) C(48) Table : S(1)( S(2)( S(3)( N(1)( N(2)1 N(3)-( N(3)-( N(4)-1 N(5)( N(5)( N(5)( N(6)-1)	988(2) -308(2) -308(2) -3. Bond lengths C(11) C(25) C(39) C(1) C(25) C(39) C(1) C(15) C(21) B(2) C(21) B(2) C(21) B(2) C(25) S(3)	2500(2) 2520(2) a [A] and angle 1.732 1.732 1.734 1.394 1.461 1.440 1.395 1.462 1.445 1.445 1.443 1.451 1.425 1.401 1.452 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.425 1.	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(37)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.462(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.465(3)\\ 1.465(3)\\ \end{array}$
C(47) C(48) Table 3 S(1)-( S(2)-( S(3)-( N(1)-( N(1)-( N(2)-1 N(3)-( N(3)-( N(4)-1 N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-())))))))))))))))))))))))))))))))))	988(2) -308(2) -308(2) 3. Bond lengths 2(25) 2(39) 2(1) 2(1) 2(25) 2(39) 2(1) 2(1) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(1) 2(1) 2(2) 2(1) 2(2) 2(1) 2(2) 2(1) 2(2) 2(3) 2(1) 2(1) 2(2) 2(3) 2(1) 2(1) 2(2) 2(3) 2(1) 2(1) 2(2) 2(3) 2(1) 2(1) 2(2) 2(3) 2(1) 2(1) 2(2) 2(3) 2(1) 2(1) 2(2) 2(1) 2(1) 2(2) 2(2) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(1) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(2) 2(3) 2(2) 2(2) 2(3) 2(2) 2(3) 2(2) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2(3) 2	2500(2) 2520(2) 5 [A] and angle 1.732 1.732 1.734 1.401 1.440 1.395 1.462 1.435 1.401 1.422 1.433 1.455	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(20)$	1.735(2) 1.728(2) 1.736(2) 1.429(3) 1.405(3) 1.462(3) 1.427(3) 1.396(3) 1.465(3) 1.434(4) 1.434(4) 1.403(3) 1.462(3) 1.556(3) 1.256(2)
C(47) C(48) Table : S(1)-c S(2)-c S(3)-c N(1)-c N(1)-c N(3)-c N(5)-c N(6)-1 B(1)-c B(1)-c B(1)-c	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(15) C(21) S(2) C(21) S(2) C(25) C(21) S(2) C(25) C(21) S(2) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2	2500(2) 2520(2) 5 [A] and angle 1.732 1.732 1.734 1.435 1.462 1.435 1.462 1.435 1.401 1.455 1.555 1.554 1.401	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20) N(4)-C(20) N(4)-C(23) N(5)-B(3) N(6)-C(37) B(2)-C(25) C(1)-C(2) C(2)-C(3)	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.45(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.462(3)\\ 1.556(3)\\ 1.389(3)\\ 1.395(3)\\ \end{array}$
C(47) C(48) Table : S(1)-( S(2)-( S(2)-( N(1)-( N(1)-( N(1)-( N(1)-( N(3)-( N(5)-( N(5)-( N(5)-( N(5)-( N(5)-( C(1)-( C(1)-( C(3)-(	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(15) C(21) B(2) C(29) C(29) C(29) C(29) C(29) C(29) C(29) C(29) C(29) C(29) C(21) B(2) C(29) C(29) C(29) C(21) B(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) s [A] and angle 1.732 1.732 1.732 1.731 1.394 1.461 1.440 1.395 1.462 1.435 1.401 1.462 1.433 1.555 1.544 4.433 1.555 1.544 1.433	54(2) s [deg] for v (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20) N(4)-C(23) N(5)-B(3) N(6)-C(34) N(6)-C(37) B(2)-C(25) C(1)-C(2) C(2)-C(3) C(4)-C(5)	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.427(3)\\ 1.396(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.462(3)\\ 1.556(3)\\ 1.389(3)\\ 1.395(4)\\ \end{array}$
C(47) C(48) Table : S(1)( S(2)( S(3)( N(1)( N(1)( N(1)( N(3)( N(3)-( N(3)-( N(5)( N(5)-( N(5)-( C(1)-( C(3)-( C(5)-( C(5)-(	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(1) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) (A) and angle 1.732 1.732 1.732 1.734 1.394 1.461 1.440 1.395 1.462 1.455 1.462 1.455 1.461 1.440 1.455 1.461 1.455 1.461 1.455 1.461 1.455 1.465 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.455 1.555 1.544 1.455 1.555 1.544 1.555 1.544 1.555 1.544 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.555 1.555 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.545 1.555 1.555 1.545 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.555 1.55	54(2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20) N(4)-C(20) N(4)-C(23) N(5)-B(3) N(6)-C(34) N(6)-C(37) B(2)-C(25) C(1)-C(2) C(2)-C(3) C(4)-C(5) C(7)-C(8) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(12) C(	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.455(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.455(3)\\ 1.389(3)\\ 1.395(3)\\ 1.395(4)\\ 1.520(3)\\ 1.271(2)\\ \end{array}$
C(47) C(48) Table : S(1)( S(2)( S(3)( N(1)( N(1)( N(1)( N(3)( N(3)( N(5)( N(5)( C(1)( C(5)( C(5)( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12))-( C(12)	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(1) C(25) C(2) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) (A) and angle 1.732 1.732 1.734 1.394 1.461 1.440 1.395 1.462 1.455 1.462 1.455 1.462 1.455 1.554 1.555 1.544 1.388 1.519 1.384 1.389 1.410	54(2) (2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.462(3)\\ 1.497(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.462(3)\\ 1.556(3)\\ 1.389(3)\\ 1.395(4)\\ 1.520(3)\\ 1.371(3)\\ 1.364(3)\\ 1.364(3)\\ \end{array}$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(	2500(2) 2520(2) (A) and angle 1.732 1.732 1.732 1.734 1.394 1.461 1.440 1.395 1.462 1.435 1.462 1.435 1.462 1.435 1.462 1.435 1.462 1.435 1.462 1.438 1.555 1.544 1.384 1.388 1.519 1.410 1.472	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(14)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.395(4)\\ 1.520(3)\\ 1.371(3)\\ 1.364(3)\\ 1.384(3)\\ 1.384(3)\\ \end{array}$
C(47) C(48) Table : S(1)(S(2)(S(3))-(S(2))-(S(3))-(S(2))-(S(3))-(S(2))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3))-(S(3	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(21) C(2	2300(2) 2520(2) (A) and angle 1.732 1.732 1.732 1.732 1.734 1.334 1.461 1.440 1.395 1.462 1.435 1.462 1.435 1.462 1.435 1.462 1.435 1.462 1.435 1.462 1.438 1.555 1.544 1.384 1.388 1.519 1.410 1.384 1.388 1.519 1.410 1.384 1.388 1.519 1.410 1.384 1.388 1.519 1.410 1.384 1.388 1.519 1.400 1.384 1.388 1.519 1.400 1.384 1.388 1.519 1.400 1.384 1.388 1.519 1.400 1.384 1.388 1.519 1.400 1.384 1.388 1.519 1.400 1.384 1.388 1.519 1.400 1.384 1.388 1.519 1.400 1.384 1.388 1.384 1.388 1.388 1.388 1.388 1.388 1.388 1.388 1.388 1.388 1.388 1.388 1.388 1.384 1.388 1.384 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.384 1.400 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.385 1.400 1.400 1.384 1.400 1.386 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.400 1.384 1.384 1.384 1.384 1.400 1.384 1.384 1.384 1.384 1.384 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.384 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.4000 1.400 1.4000 1.4000 1.4000 1.40000000000	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(17)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.462(3)\\ 1.555(3)\\ 1.395(4)\\ 1.395(4)\\ 1.520(3)\\ 1.395(3)\\ 1.395(4)\\ 1.520(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\$
C(47) C(48) Table : S(1)-( S(2)-( S(3)-( N(1)-( N(2)-1 N(3)-( N(3)-( N(4)-1 N(5)-( N(6)-1 B(1)-( C(1)-( C(1)-( C(1)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-(	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(25) C(2) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C	2500(2) 2520(2) 1.732 1.732 1.732 1.734 1.451 1.440 1.495 1.462 1.433 1.455 1.455 1.454 1.401 1.462 1.433 1.555 1.544 1.438 1.549 1.388 1.519 1.410 1.499 1.389 1.430	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(21)-C(22)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.388(3)\\ 1.387(3)\\ 1.387(3)\\ 1.388(3)\\ 1.519(3)\\ 1.519(3)\\ \end{array}$
C(47) C(48) Table : S(1)-( S(2)-( S(3)-( N(1)-( N(2)-1 N(3)-( N(3)-( N(4)-1 N(5)-( N(6)-1 B(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(	2500(2) 2520(2) 	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(21)-C(22)$ $C(22)-C(25)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.465(3)\\ 1.465(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.403(3)\\ 1.465(3)\\ 1.556(3)\\ 1.395(4)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.519(3)\\ 1.374(3)\\ \end{array}$
C(47) C(48) Table : S(1)-( S(2)-( S(2)-( N(1)-( N(1)-( N(1)-( N(3)-( N(3)-( N(3)-( N(5)-( N(5)-( N(5)-( N(5)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-())-( C(1)-( C(1)-(	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(	2300(2) 2520(2) (A) and angle 1.732 1.732 1.732 1.731 1.334 1.461 1.440 1.395 1.462 1.433 1.455 1.462 1.433 1.455 1.544 4.433 1.555 1.544 4.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384 1.384	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(2)-C(28)$ $C(27)-C(28)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.465(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(3)\\ 1.395(4)\\ 1.550(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.395(4)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.519(3)\\ 1.374(3)\\ 1.374(3)\\ 1.367(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\ 1.267(4)\\$
C(47) C(48) Table : S(1)( S(2)( S(2)( N(1)( N(1)( N(1)-( N(3)-( N(3)-( N(5)-( N(5)-( N(5)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(25) C(2) C(2) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2300(2) 2520(2) a [A] and angle 1.732 1.732 1.732 1.734 1.461 1.440 1.395 1.462 1.435 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.401 1.422 1.433 1.555 1.544 1.401 1.422 1.433 1.555 1.544 1.401 1.422 1.402 1.402 1.400 1.425 1.520 1.394 1.394 1.394 1.401 1.425 1.545 1.544 1.401 1.425 1.545 1.546 1.400 1.425 1.546 1.400 1.425 1.546 1.400 1.425 1.546 1.400 1.400 1.555 1.544 1.400 1.400 1.394 1.555 1.544 1.400 1.400 1.394 1.555 1.544 1.400 1.400 1.400 1.394 1.555 1.546 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.555 1.544 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.520 1.520 1.540 1.520 1.540 1.400 1.520 1.520 1.540 1.400 1.520 1.520 1.400 1.520 1.400 1.520 1.400 1.520 1.400 1.520 1.400 1.520 1.400 1.520 1.400 1.520 1.400 1.520 1.400 1.520 1.400 1.400 1.520 1.400 1.520 1.400 1.400 1.520 1.400 1.400 1.400 1.520 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(3)$ $C(1)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(15)-C(22)$ $C(22)-C(22)$ $C(22)-C(22)$ $C(23)-C(23)$ $C(23)-C(23)$ $C(23)-C(23)$ $C(23)-C(23)$ $C(23)-C(23)$ $C(23)-C(23)$ $C(23)-C(23)$ $C(23)-C(3)$ $C(3)-C(3)$ $C(3)-C(3)-C(3)$ $C(3)-C(3)-C(3)-C(3)$ $C(3)-C(3)-C(3)-C(3)-C(3)$ $C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-C(3)-$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.427(3)\\ 1.396(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.371(3)\\ 1.364(3)\\ 1.388(3)\\ 1.388(3)\\ 1.519(3)\\ 1.374(3)\\ 1.374(3)\\ 1.374(3)\\ 1.382(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\ 1.391(4)\\$
C(47) C(48) Table : S(1)( S(2)( S(3)( N(1)( N(1)( N(3)( N(3)-( N(3)-( N(3)-( N(5)-( N(5)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) 3(1) C(15) C(21) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) a [A] and angle 1.732 1.732 1.732 1.734 1.461 1.440 1.395 1.462 1.455 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.401 1.405 1.384 1.388 1.519 1.410 1.472 1.409 1.393 1.387 1.520 1.407 1.402 1.393 1.387 1.520 1.407 1.402 1.393 1.387 1.520 1.407 1.402 1.380 1.407 1.405 1.402 1.395 1.402 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.405 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.545 1.555 1.545 1.545 1.555 1.555 1.555 1.555 1.555 1.555	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (4) (4) (4) (4) (4) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20) N(4)-C(20) N(4)-C(23) N(5)-B(3) N(6)-C(37) B(2)-C(25) C(1)-C(2) C(2)-C(3) C(4)-C(5) C(7)-C(8) C(1)-C(12) C(13)-C(14) C(15)-C(16) C(11)-C(12) C(13)-C(14) C(15)-C(16) C(11)-C(12) C(13)-C(14) C(15)-C(16) C(21)-C(22) C(23)-C(28) C(29)-C(30) C(30)-C(31) C(22)-C(33)	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.396(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.374(3)\\ 1.382(4)\\ 1.392(4)\\ 1.392(4)\\ \end{array}$
C(47) C(48) Table : S(1)( S(2)( S(3)( N(1)( N(1)( N(3)( N(3)( N(5)( N(5)( N(5)( N(5)( C(1)-( C(1)-( B(3)-( C(1)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-( C(12)-	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) 3(1) C(15) C(21) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2300(2) 2520(2) a [A] and angle 1.732 1.732 1.732 1.734 1.334 1.461 1.440 1.395 1.462 1.455 1.462 1.455 1.462 1.433 1.555 1.544 1.388 1.519 1.384 1.388 1.519 1.420 1.420 1.430 1.420 1.430 1.420 1.430 1.420 1.430 1.455 1.544 1.386 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.388 1.555 1.544 1.400 1.475 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.388 1.555 1.544 1.555 1.544 1.400 1.400 1.400 1.400 1.303 1.380 1.555 1.540 1.555 1.540 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (4) (4) (4) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ S(2)-C(28) S(3)-C(42) N(1)-B(1) N(2)-C(6) N(2)-C(9) N(3)-B(2) N(4)-C(20) N(4)-C(23) N(5)-B(3) N(6)-C(34) N(6)-C(37) B(2)-C(25) C(1)-C(2) C(2)-C(25) C(1)-C(2) C(2)-C(3) C(4)-C(5) C(7)-C(8) C(11)-C(12) C(13)-C(14) C(15)-C(16) C(16)-C(17) C(18)-C(19) C(21)-C(22) C(25)-C(26) C(27)-C(28) C(29)-C(30) C(30)-C(31) C(32)-C(33) C(35)-C(36) C(40)-C(40) C(40)	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.403(3)\\ 1.455(3)\\ 1.556(3)\\ 1.389(3)\\ 1.395(4)\\ 1.550(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(4)\\ 1.391(4)\\ 1.392(4)\\ 1.392(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.322(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\ 1.516(4)\\$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(3)(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))-	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(1) C(25) C(2) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) (A) and angle 1.732 1.732 1.734 1.394 1.440 1.395 1.461 1.440 1.455 1.462 1.435 1.461 1.462 1.433 1.555 1.544 1.388 1.519 1.410 1.472 1.400 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.384 1.515 1.524 1.385 1.524 1.395 1.400 1.400 1.400 1.400 1.385 1.525 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.524 1.387 1.525 1.525 1.544 1.386 1.515 1.544 1.386 1.515 1.525 1.544 1.386 1.515 1.525 1.544 1.386 1.515 1.525 1.544 1.386 1.515 1.525 1.544 1.386 1.515 1.544 1.386 1.515 1.525 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.386 1.515 1.544 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.386 1.544 1.400 1.400 1.400 1.400 1.400 1.400 1.380 1.540 1.400 1.400 1.400 1.380 1.540 1.400 1.400 1.400 1.380 1.540 1.400 1.400 1.400 1.380 1.540 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(15)-C(17)$ $C(18)-C(17)$ $C(18)-C(19)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(27)-C(26)$ $C(37)-C(26)$ $C(37)-C(26)$ $C(37)-C(30)$ $C(33)-C(31)$ $C(32)-C(31)$ $C(32)-C(30)$ $C(31)-C(42)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.382(4)\\ 1.392(4)\\ 1.392(4)\\ 1.516(4)\\ 1.374(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.516(4)\\ 1.374(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\ 1.369(3)\\$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(1) C(25) C(29) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) (A) and angle 1.732 1.732 1.732 1.734 1.394 1.461 1.440 1.462 1.435 1.462 1.435 1.462 1.435 1.462 1.433 1.555 1.544 1.400 1.462 1.433 1.555 1.544 1.400 1.462 1.433 1.555 1.544 1.400 1.462 1.388 1.519 1.410 1.472 1.400 1.389 1.410 1.420 1.399 1.410 1.420 1.399 1.400 1.420 1.380 1.555 1.544 1.400 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.544 1.400 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.440 1.420 1.380 1.595 1.544 1.400 1.420 1.380 1.595 1.544 1.400 1.380 1.595 1.595 1.544 1.400 1.395 1.440 1.380 1.595 1.544 1.395 1.440 1.400 1.395 1.440 1.400 1.395 1.440 1.400 1.395 1.595 1.544 1.400 1.395 1.595 1.544 1.400 1.393 1.387 1.520 1.400 1.400 1.393 1.387 1.520 1.400 1.400 1.400 1.400 1.400 1.400 1.380 1.400 1.400 1.400 1.400 1.400 1.400 1.380 1.595 1.544 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.40	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(2)-C(28)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(40)$ $C(41)-C(42)$ $C(43)-C(48)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.395(4)\\ 1.520(3)\\ 1.395(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.382(4)\\ 1.391(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.374(3)\\ 1.369(3)\\ 1.369(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\$
C(47) C(48) Table : S(1)(S(2)(S(3))(S(2))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3)	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(2) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(	2500(2) 2520(2) 1.732 1.732 1.732 1.734 1.401 1.440 1.495 1.455 1.455 1.544 1.433 1.555 1.544 1.433 1.555 1.544 1.388 1.519 1.410 1.472 1.387 1.520 1.387 1.520 1.400 1.388 1.519 1.410 1.420 1.387 1.520 1.400 1.387 1.520 1.400 1.388 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.400 1.387 1.520 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.387 1.520 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.387 1.520 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.387 1.520 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.387 1.520 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.388 1.500 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400 1.400	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(17)$ $C(18)-C(17)$ $C(18)-C(19)$ $C(22)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(23)-C(31)$ $C(30)-C(31)$ $C(33)-C(34)$ $C(33)-C(34)$ $C(33)-C(34)$ $C(33)-C(34)$ $C(33)-C(34)$ $C(33)-C(34)$ $C(33)-C(40)$ $C(41)-C(42)$ $C(44)-C(45)$ $C(44)-C(45)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.382(4)\\ 1.391(4)\\ 1.392(4)\\ 1.391(4)\\ 1.516(4)\\ 1.374(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\$
C(47) C(48) Table : S(1)(S(2)(S(3))(S(2))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3))(S(3)	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(35) C(2) C(2) C(35) C(2) C(2) C(35) C(2) C(35) C(2) C(35) C(2) C(35) C(3) C(4) C(4) C(6) C(1) C(1) C(2) C(4) C(6) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(	2500(2) 2520(2) 1.732 1.732 1.732 1.734 1.401 1.440 1.455 1.455 1.455 1.544 1.433 1.555 1.544 1.433 1.555 1.544 1.388 1.519 1.410 1.472 1.388 1.519 1.410 1.425 1.384 1.388 1.519 1.420 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.400 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.387 1.520 1.396 1.395 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(17)$ $C(18)-C(19)$ $C(22)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(29)-C(26)$ $C(29)-C(20)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(33)-C(140)$ $C(33)-C(140)$ $C(33)-C(31)$ $C(33)-C(36)$ $C(33)-C(36)$ $C(33)-C(48)$ $C(44)-C(45)$ $C(46)-C(47)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.387(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.382(4)\\ 1.391(4)\\ 1.392(4)\\ 1.391(4)\\ 1.392(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(25) C(29) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) 1.732 1.732 1.732 1.734 1.455 1.462 1.433 1.455 1.462 1.433 1.455 1.440 1.463 1.455 1.544 1.401 1.462 1.388 1.519 1.410 1.472 1.388 1.519 1.410 1.388 1.519 1.410 1.387 1.520 1.407 1.387 1.520 1.407 1.387 1.520 1.407 1.387 1.520 1.407 1.388 1.395 1.387 1.520 1.407 1.388 1.395 1.386 1.388 1.395 1.396 1.398 1.395 1.396 1.398 1.395 1.396	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(25)-C(26)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(30)-C(31)$ $C(30)-C(40)$ $C(41)-C(42)$ $C(44)-C(45)$ $C(46)-C(47)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.462(3)\\ 1.550(3)\\ 1.395(4)\\ 1.395(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.382(4)\\ 1.391(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(25) C(29) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2500(2) 2520(2) 1.732 1.732 1.732 1.734 1.455 1.462 1.433 1.455 1.462 1.433 1.455 1.444 1.433 1.555 1.544 1.433 1.555 1.544 1.433 1.555 1.544 1.400 1.468 1.599 1.410 1.472 1.388 1.519 1.410 1.468 1.520 1.407 1.388 1.520 1.407 1.388 1.520 1.407 1.388 1.520 1.407 1.388 1.395 1.396 1.395 1.396 1.395 1.396	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(30)-C(31)$ $C(33)-C(140)$ $C(33)-C(48)$ $C(44)-C(45)$ $C(44)-C(45)$ $C(46)-C(47)$ $C(25)-S(2)-C(28)$ $C(1)-N(1)-B(1)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.465(3)\\ 1.462(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.395(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\$
C(47) C(48) Table : S(1)-( S(2)-( S(2)-( S(3)-( N(1)-( N(1)-( N(3)-( N(3)-( N(5)-( N(6)-1 B(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2)	2300(2) 2520(2) 1.732 1.732 1.732 1.734 1.455 1.455 1.455 1.544 1.433 1.555 1.544 1.433 1.555 1.544 1.433 1.555 1.544 1.433 1.555 1.544 1.433 1.455 1.388 1.519 1.410 1.425 1.388 1.519 1.410 1.425 1.388 1.520 1.400 1.433 1.388 1.519 1.420 1.388 1.520 1.400 1.388 1.520 1.400 1.425 1.388 1.520 1.400 1.425 1.388 1.520 1.400 1.425 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.400 1.388 1.520 1.400 1.385 1.540 1.398 1.395 1.395 1.395 1.395 1.395 1.325 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220 1.220	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(21)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(23)-C(31)$ $C(33)-C(14)$ $C(35)-C(36)$ $C(39)-C(40)$ $C(41)-C(42)$ $C(44)-C(45)$ $C(46)-C(47)$ $C(25)-S(2)-C(28)$ $C(11)-R(1)$ $B(1)-N(1)-C(7)$ $C(5)-S(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(2)-C(28)$ $C(3)-C(40)$ $C(41)-C(42)$ $C(41)-C(42)$ $C(41)-C(42)$ $C(45)-C(47)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.465(3)\\ 1.462(3)\\ 1.396(3)\\ 1.396(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.382(4)\\ 1.391(4)\\ 1.391(4)\\ 1.392(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\$
C(47) C(48) Table : S(1)-c S(2)-c S(2)-c N(1)-c N(1)-c N(1)-c N(3)-c N(5)-c N(5)-c N(5)-c N(5)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1)-c C(1	988(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(2) C(2) C(2) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(2) C(2) C(2) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(2) C(2) C(2) C(2) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4) C(4)	2500(2) 2520(2) 1.732 1.732 1.732 1.734 1.401 1.440 1.455 1.462 1.433 1.555 1.544 1.401 1.455 1.544 1.388 1.388 1.519 1.410 1.472 1.409 1.393 1.387 1.555 1.544 1.388 1.388 1.519 1.410 1.472 1.409 1.393 1.387 1.520 1.384 1.388 1.520 1.384 1.388 1.395 1.396 1.395 1.396 1.395 1.396 1.398 1.395 1.396 1.398 1.395 1.396 1.398 1.395 1.396 1.398 1.395 1.396 1.398 1.395 1.396 1.398 1.395 1.396 1.398 1.395 1.396 1.398 1.396 1.398 1.395 1.396 1.398 1.396 1.398 1.395 1.396 1.398 1.395 1.396 1.398 1.396 1.398 1.395 1.396 1.398 1.396 1.398 1.395 1.396 1.398 1.396 1.398 1.396 1.398 1.395 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.398 1.396 1.396 1.398 1.396 1.398 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(21)-C(22)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(40)$ $C(41)-C(42)$ $C(43)-C(45)$ $C(46)-C(47)$ $C(25)-S(2)-C(28)$ $C(1)-N(1)-B(1)$ $B(1)-N(1)-C(7)$ $C(6)-N(2)-C(9)$ $C(15)-N(3)-R(2)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.382(4)\\ 1.391(4)\\ 1.392(4)\\ 1.391(4)\\ 1.392(4)\\ 1.391(4)\\ 1.392(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.38(2)\\ 1.395(3)\\ 1.38(2)\\ 1.395(3)\\ 1.38(2)\\ 1.395(3)\\ 1.38(2)\\ 1.395(3)\\ 1.38(1)\\ 1.38(1)\\ 1.395(3)\\ 1.395(3)\\ 1.38(1)\\ 1.38(1)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(2)(S(3)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2)(S(2	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) 8(1) C(25) C(2) C(1) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C	2500(2) 2520(2) 1.732 1.732 1.732 1.734 1.450 1.450 1.452 1.452 1.453 1.460 1.455 1.544 1.400 1.455 1.544 1.400 1.455 1.544 1.400 1.455 1.544 1.400 1.455 1.544 1.400 1.420 1.384 1.384 1.384 1.388 1.355 1.544 1.400 1.420 1.399 1.307 1.400 1.420 1.399 1.397 1.360 1.399 1.397 1.360 1.399 1.397 1.399 1.397 1.399 1.397 1.399 1.397 1.399 1.397 1.399 1.397 1.399 1.397 1.399 1.399 1.395 1.396 1.399 1.396 1.399 1.396 1.395 1.396 1.396 1.398 1.396 1.398 1.396 1.396 1.398 1.395 1.396 1.396 1.396 1.398 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.3	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(6)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(21)-C(22)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(30)-C(31)$ $C(32)-C(33)$ $C(4)-C(5)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(30)-C(31)$ $C(32)-C(33)$ $C(44)-C(45)$ $C(44)-C(45)$ $C(46)-C(47)$ $C(25)-S(2)-C(28)$ $C(1)-N(1)-B(1)$ $B(1)-N(1)-C(7)$ $C(6)-N(2)-C(9)$ $C(15)-N(3)-B(2)$ $B(2)-N(3)-C(21)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.465(3)\\ 1.465(3)\\ 1.456(3)\\ 1.456(3)\\ 1.434(4)\\ 1.434(4)\\ 1.403(3)\\ 1.462(3)\\ 1.556(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.388(3)\\ 1.388(3)\\ 1.395(4)\\ 1.520(3)\\ 1.371(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.382(4)\\ 1.392(4)\\ 1.395(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\$
C(47) C(48) Table : S(1)( S(2)( S(2)( N(1)( N(1)( N(1)-( N(3)( N(3)-( N(3)-( N(5)-( N(5)-( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)( C(1)()-()()-()-()-()-()-()-()-()-()-()-	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) 3(1) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(4) C(4) C(4) C(4) C(4) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C	2500(2) 2520(2)	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(20)$ $N(4)-C(20)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(19)$ $C(2)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(23)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(31)$ $C(32)-C(30)$ $C(30)-C(31)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(30)-C(31)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(30)-C(31)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(25)-S(2)-C(28)$ $C(27)-C(28)$ $C(25)-S(2)-C(28)$ $C(25)-S(2)-C(28)$ $C(11)-N(1)-C(7)$ $C(5)-N(3)-B(2)$ $B(2)-N(3)-C(21)$ $C(20)-N(4)-C(23)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.462(3)\\ 1.556(3)\\ 1.389(3)\\ 1.395(4)\\ 1.556(3)\\ 1.389(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.388(3)\\ 1.395(4)\\ 1.519(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(3)\\ 1.382(4)\\ 1.391(4)\\ 1.391(4)\\ 1.392(4)\\ 1.392(4)\\ 1.516(4)\\ 1.374(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.38(1)\\ 1.38(1)\\ 1.38(1)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.$
C(47) C(48) Table : S(1)( S(2)( S(2)( S(3)( N(1)( N(1)( N(3)( N(3)( N(3)-( N(3)-( N(5)-( N(5)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-( C(1)-(	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(1) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C	2500(2) 2520(2)	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(5)-E(3)$ $N(5)-C(34)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(16)-C(17)$ $C(18)-C(14)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(30)-C(31)$ $C(22)-C(33)$ $C(32)-C(33)$ $C(35)-C(36)$ $C(39)-C(40)$ $C(41)-C(42)$ $C(43)-C(48)$ $C(41)-C(45)$ $C(46)-C(47)$ $C(25)-S(2)-C(28)$ $C(25)-S(2)-C(28)$ $C(25)-C(26)$ $C(30)-C(31)$ $C(32)-C(33)$ $C(35)-C(36)$ $C(39)-C(40)$ $C(41)-C(42)$ $C(43)-C(48)$ $C(44)-C(45)$ $C(46)-C(47)$ $C(25)-S(2)-C(28)$ $C(1)-N(1)-B(1)$ $B(1)-N(1)-B(1)$ $B(1)-N(1)-C(7)$ $C(6)-N(2)-C(9)$ $C(21)-N(3)-B(2)$ $B(2)-N(3)-C(21)$ $C(20)-N(4)-C(23)$ $C(29)-N(5)-C(35)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.405(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.465(3)\\ 1.405(3)\\ 1.465(3)\\ 1.405(3)\\ 1.405(3)\\ 1.395(4)\\ 1.556(3)\\ 1.395(4)\\ 1.556(3)\\ 1.395(4)\\ 1.556(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.388(3)\\ 1.387(3)\\ 1.382(4)\\ 1.391(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.29(19)\\ 108.06(18)\\ 130.40(19)\\ 121.29(19)\\ 108.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130.2(2)\\ 130$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(2)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) 3(1) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C	2500(2) 2520(2) a [A] and angle 1.732 1.732 1.732 1.734 1.461 1.440 1.395 1.462 1.455 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.400 1.384 1.384 1.555 1.544 1.400 1.384 1.388 1.519 1.400 1.402 1.333 1.387 1.520 1.400 1.400 1.333 1.387 1.520 1.520 1.540 1.400 1.380 1.520 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396 1.396	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(1)-C(2)$ $C(1)-C(2)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(1)-C(12)$ $C(1)-C(12)$ $C(1)-C(12)$ $C(1)-C(12)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(30)-C(31)$ $C(32)-C(33)$ $C(32)-C(33)$ $C(32)-C(33)$ $C(32)-C(33)$ $C(32)-C(33)$ $C(4)-C(5)$ $C(1)-C(2)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(31)-C(22)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(29)-C(30)$ $C(31)-C(42)$ $C(43)-C(48)$ $C(44)-C(45)$ $C(44)-C(45)$ $C(44)-C(45)$ $C(44)-C(45)$ $C(44)-C(45)$ $C(1)-N(1)-B(1)$ $B(1)-N(1)-B(1)$ $B(1)-N(1)-C(7)$ $C(20)-N(4)-C(23)$ $C(20)-N(5)-B(3)$ $B(3)-N(5)-C(35)$ $C(34)-N(6)-C(37)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.462(3)\\ 1.465(3)\\ 1.434(4)\\ 1.403(3)\\ 1.465(3)\\ 1.556(3)\\ 1.395(4)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.382(4)\\ 1.391(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.21.38(19)\\ 108.06(18)\\ 100.40(19)\\ 121.29(19)\\ 108.2(2)\\ 130.2(2)\\ 121.6(2)\\ \end{array}$
C(47) C(48) Table : S(1)(S(2)(S(3)(S(2)(S(3)(S(2)(S(3)(S(2)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3)(S(3	988(2) -308(2) -308(2) 3. Bond lengths C(11) C(25) C(39) C(1) C(7) 3(1) C(25) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C(2) C	2500(2) 2520(2) a [A] and angle 1.732 1.732 1.732 1.731 1.334 1.461 1.440 1.455 1.462 1.433 1.455 1.544 1.440 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.401 1.462 1.433 1.555 1.544 1.400 1.462 1.433 1.555 1.544 1.400 1.462 1.384 1.519 1.400 1.402 1.384 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520 1.520	54(2) (2) (2) (2) (3) (3) (3) (3) (3) (3) (3) (3	26(1) awe15. $S(1)-C(14)$ $S(2)-C(28)$ $S(3)-C(42)$ $N(1)-B(1)$ $N(2)-C(6)$ $N(2)-C(9)$ $N(3)-B(2)$ $N(4)-C(23)$ $N(5)-B(3)$ $N(6)-C(34)$ $N(6)-C(37)$ $B(2)-C(25)$ $C(1)-C(2)$ $C(2)-C(3)$ $C(4)-C(5)$ $C(7)-C(8)$ $C(11)-C(12)$ $C(13)-C(14)$ $C(15)-C(16)$ $C(15)-C(16)$ $C(15)-C(17)$ $C(18)-C(19)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(25)-C(26)$ $C(27)-C(28)$ $C(24)-C(45)$ $C(44)-C(45)$ $C(44)-C(45)$ $C(46)-C(47)$ $C(25)-S(2)-C(28)$ $C(1)-N(1)-B(1)$ $B(1)-N(1)-C(7)$ $C(20)-N(4)-C(23)$ $C(29)-N(5)-C(35)$ $C(34)-N(6)-C(37)$ $N(1)-B(1)-N(2)$ $N(2)-R(1)-N(2)$	$\begin{array}{c} 1.735(2)\\ 1.728(2)\\ 1.736(2)\\ 1.429(3)\\ 1.405(3)\\ 1.465(3)\\ 1.462(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.465(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.395(4)\\ 1.520(3)\\ 1.387(3)\\ 1.387(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.388(3)\\ 1.387(3)\\ 1.382(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.392(4)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.395(3)\\ 1.212138(19)\\ 108.06(18)\\ 130.40(19)\\ 121.29(19)\\ 108.2(2)\\ 120.2(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\ 120.6(2)\\$

N(3)-B(2)-N(4)	106.8(2)	N(3)-B(2)-C(25)	125.5(2)
N(4)-B(2)-C(25)	127.5(2)	N(6)-B(3)-N(5)	106.5(2)
N(6)-B(3)-C(39)	125.7(2)	N(5)-B(3)-C(39)	127.9(2)
C(2) - C(1) - N(1)	130.4(2)	C(2)-C(1)-C(6)	121.0(2)
N(1)-C(1)-C(6)	108.6(2)	C(1)-C(2)-C(3)	117.9(2)
C(4)-C(3)-C(2)	121.1(2)	C(3)-C(4)-C(5)	121.3(2)
C(6)-C(5)-C(4)	117.9(2)	C(5)-C(6)-N(2)	130.6(2)
C(5)-C(6)-C(1)	120.8(2)	N(2)-C(6)-C(1)	108.6(2)
N(1)-C(7)-C(8)	112.28(19)	N(2)-C(9)-C(10)	112.82(19)
C(12)-C(11)-B(1)	128.1(2)	C(12)-C(11)-S(1)	108.62(17)
B(1)-C(11)-S(1)	123.25(18)	C(11)-C(12)-C(13)	114.9(2)
C(14)-C(13)-C(12)	113.2(2)	C(13)-C(14)-C(43)	128.8(2)
C(13)-C(14)-S(1)	109.74(17)	C(43)-C(14)-S(1)	121.42(17)
C(16)-C(15)-N(3)	130.4(2)	C(16)-C(15)-C(20)	120.8(2)
N(3)-C(15)-C(20)	108.78(19)	C(17)-C(16)-C(15)	118.0(2)
C(16)-C(17)-C(18)	121.3(2)	C(19)-C(18)-C(17)	120.8(2)
C(20)-C(19)-C(18)	118.3(2)	C(19)-C(20)-N(4)	131.0(2)
C(19)-C(20)-C(15)	120.7(2)	N(4)-C(20)-C(15)	108.37(19)
N(3)-C(21)-C(22)	112.50(19)	N(4)-C(23)-C(24)	112.74(19)
C(26)-C(25)-B(2)	128.9(2)	C(26)-C(25)-S(2)	108.77(17)
B(2)-C(25)-S(2)	122.01(16)	C(25)-C(26)-C(27)	114.5(2)
C(28)-C(27)-C(26)	113.4(2)	C(27)-C(28)-C(45)	129.3(2)
C(27)-C(28)-S(2)	109.67(17)	C(45)-C(28)-S(2)	121.05(17)
C(30)-C(29)-N(5)	130.7(2)	C(30)-C(29)-C(34)	120.8(2)
N(5)-C(29)-C(34)	108.5(2)	C(29)-C(30)-C(31)	118.0(3)
C(32)-C(31)-C(30)	121.2(3)	C(31)-C(32)-C(33)	121.2(2)
C(34)-C(33)-C(32)	117.9(2)	C(33)-C(34)-C(29)	121.0(2)
C(33)-C(34)-N(6)	130.3(2)	C(29)-C(34)-N(6)	108.7(2)
N(5)-C(35)-C(36)	114.2(2)	N(6)-C(37)-C(38)	113.4(2)
C(40)-C(39)-B(3)	130.2(2)	C(40)-C(39)-S(3)	108.75(17)
B(3)-C(39)-S(3)	121.04(19)	C(39)-C(40)-C(41)	114.8(2)
C(42)-C(41)-C(40)	113.2(2)	C(41)-C(42)-C(47)	129.7(2)
C(41)-C(42)-S(3)	109.65(17)	C(47)-C(42)-S(3)	120.60(17)
C(48)-C(43)-C(44)	119.3(2)	C(48)-C(43)-C(14)	119.6(2)
C(44)-C(43)-C(14)	121.1(2)	C(45)-C(44)-C(43)	121.2(2)
C(46)-C(45)-C(44)	118.3(2)	C(46)-C(45)-C(28)	120.5(2)
C(44)-C(45)-C(28)	121.3(2)	C(47)-C(46)-C(45)	121.7(2)
C(46)-C(47)-C(48)	118.9(2)	C(46)-C(47)-C(42)	120.3(2)
C(48)-C(47)-C(42)	120.8(2)	C(43)-C(48)-C(47)	120.7(2)

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawel5. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
S(1)	25(1)	34(1)	22(1)	10(1)	2(1)	-2(1)
S(2)	24(1)	30(1)	21(1)	9(1)	2(1)	-2(1)
S(3)	30(1)	35(1)	23(1)	12(1)	4(1)	-1(1)
N(1)	28(1)	25(1)	24(1)	9(1)	3(1)	2(1)
N(2)	26(1)	30(1)	23(1)	10(1)	0(1)	0(1)
N(3)	22(1)	26(1)	22(1)	9(1)	4(1)	2(1)
N(4)	25(1)	27(1)	23(1)	8(1)	6(1)	2(1)
N(5)	36(1)	31(1)	25(1)	12(1)	7(1)	3(1)
N(6)	36(1)	33(1)	28(1)	15(1)	7(1)	1(1)
B(1)	30(1)	23(1)	22(1)	4(1)	2(1)	0(1)
B(2)	28(1)	28(1)	22(1)	12(1)	3(1)	2(1)
B(3)	38(2)	32(2)	28(2)	17(1)	6(1)	6(1)
C(1)	30(1)	23(1)	23(1)	5(1)	5(1)	-1(1)
C(2)	31(1)	27(1)	29(1)	6(1)	2(1)	0(1)
C(3)	32(1)	31(1)	34(1)	10(1)	5(1)	-7(1)
C(4)	42(2)	33(1)	35(2)	17(1)	5(1)	-5(1)
C(5)	36(1)	34(1)	29(1)	14(1)	1(1)	-1(1)
C(6)	30(1)	26(1)	23(1)	7(1)	4(1)	-1(1)
C(7)	30(1)	29(1)	37(2)	15(1)	6(1)	6(1)
C(8)	28(1)	38(1)	38(2)	18(1)	0(1)	4(1)
C(9)	29(1)	35(1)	30(1)	17(1)	4(1)	3(1)
C(10)	32(1)	39(1)	31(1)	19(1)	0(1)	0(1)
C(11)	25(1)	25(1)	25(1)	8(1)	2(1)	2(1)
C(12)	26(1)	26(1)	28(1)	10(1)	0(1)	-1(1)
C(13)	30(1)	28(1)	24(1)	10(1)	3(1)	0(1)
C(14)	28(1)	24(1)	21(1)	7(1)	5(1)	2(1)
C(15)	25(1)	26(1)	25(1)	12(1)	3(1)	0(1)
C(16)	31(1)	29(1)	24(1)	9(1)	3(1)	1(1)
C(17)	29(1)	34(1)	30(1)	11(1)	-3(1)	-5(1)
C(18)	24(1)	39(1)	39(2)	16(1)	1(1)	-2(1)
C(19)	27(1)	31(1)	31(1)	10(1)	7(1)	2(1)
C(20)	25(1)	27(1)	23(1)	10(1)	3(1)	0(1)
C(21)	26(1)	25(1)	22(1)	7(1)	5(1)	4(1)
C(22)	31(1)	31(1)	26(1)	10(1)	8(1)	5(1)
C(23)	27(1)	28(1)	25(1)	6(1)	6(1)	3(1)
C(24)	42(2)	41(2)	31(1)	14(1)	14(1)	5(1)
C(25)	27(1)	26(1)	20(1)	9(1)	5(1)	5(1)
C(26)	27(1)	26(1)	23(1)	7(1)	5(1)	4(1)
C(27)	23(1) 24(1)	28(1) 22(1)	26(1)	8(1)	4(1) E(1)	U(1)
C(28)	24(1)	23(1) 21(1)	20(1)	10(1)	5(1) 0(1)	3(1) C(1)
C(29)	30(1) 25(2)	31(1)	32(1)	18(1)	8(1) 2(1)	0(1) 4(1)
C(30)	33(2)	44(Z) 56(2)	37(2)	∠∠(⊥) 21(1)	3(1) 9(1)	4(1) 6(1)
C(31)	32(1) 42(2)	50(2)	43(2)	31(1) 24(1)	12(1)	12(1)
C(32)	43(2)	33(2)	33(2)	24(1)	12(1) 6(1)	13(1) 7(1)
C(34)	37(1)	±(4) 35(1)	29(1)	18(1)	0(±) 7(1)	·(±) 9(1)
C(35)	41(2)	31(1)	22(1)	12(1)	·(±) 6(1)	-1(1)
C(36)	42(2)	51(2)	39(2)	21(1)	2(1)	- 1 ( 1 )
C(37)	44(2)	31(1)	32(1)	12(1)	2(1)	-2(1)
C(38)	57(2)	51(2)	36(2)	22(1)	2(1)	-6(1)
C(39)	37(1)	28(1)	23(1)	11(1)	5(1)	1(1)
C(40)	40(2)	37(1)	25(1)	15(1)	3(1)	-2(1)
C(41)	32(1)	34(1)	28(1)	14(1)	5(1)	-2(1)
C(42)	29(1)	29(1)	25(1)	11(1)	3(1)	-2(1)
- \ /	、- /	\ - /	( - )		- ( - )	/

27(1)	20(1)	24(1)	7(1)	4(1)	4(1)
27(1)	26(1)	22(1)	9(1)	5(1)	5(1)
25(1)	20(1)	22(1)	6(1)	1(1)	2(1)
24(1)	25(1)	26(1)	11(1)	4(1)	1(1)
30(1)	24(1)	23(1)	10(1)	4(1)	3(1)
27(1)	25(1)	23(1)	8(1)	2(1)	2(1)
	27(1) 27(1) 25(1) 24(1) 30(1) 27(1)	$\begin{array}{ccc} 27(1) & 20(1) \\ 27(1) & 26(1) \\ 25(1) & 20(1) \\ 24(1) & 25(1) \\ 30(1) & 24(1) \\ 27(1) & 25(1) \end{array}$	$\begin{array}{ccccc} 27(1) & 20(1) & 24(1) \\ 27(1) & 26(1) & 22(1) \\ 25(1) & 20(1) & 22(1) \\ 24(1) & 25(1) & 26(1) \\ 30(1) & 24(1) & 23(1) \\ 27(1) & 25(1) & 23(1) \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawel5.

	x	У	z	U(eq)
H(2)	-9291	365	1653	39
H(3)	-9676	-538	2406	42
H(4)	-7807	-1100	2973	44
H(5)	-5474	-757	2836	41
H(7A)	-7012	1838	969	39
H(7B)	-8309	1581	1358	39
H(8A)	-7471	338	-327	52
H(8B)	-8870	889	-203	52
H(8C)	-8724	40	66	52
H(9A)	-2708	110	1863	37
H(9B)	-3499	-645	2088	37
H(10A)	-2660	1323	3355	51
H(10B)	-1892	427	3345	51
H(10C)	-3461	573	3582	51
H(12)	-5236	1093	-83	34
H(13)	-3272	1849	-405	34
H(16)	7757	8002	6701	35
H(17)	10223	8063	6885	40
H(18)	11374	6941	5781	42
H(19)	10092	5767	4426	38
H(21A)	4098	7137	5332	31
H(21B)	5369	7916	5991	31
H(22A)	4371	6303	6191	45
H(22B)	4087	7395	6812	45
H(22C)	5652	7074	6847	45
H(23A)	6762	4282	2923	35
H(23B)	7051	4521	3379	30
H(24A)	011C	1661	2441	57
H(24C)	8677	5684	2011	57
H(26)	3085	5384	4710	32
H(27)	1166	4336	3545	33
H(30)	8267	3822	-2227	45
H(31)	9263	3061	-3549	48
H(32)	8037	1767	-4809	48
H(33)	5732	1216	-4812	44
H(35A)	5193	4369	-905	42
H(35B)	6525	4608	-1276	42
H(36A)	6501	3432	-403	66
H(36B)	7338	4476	3	66
H(36C)	7822	3584	-833	66
H(37A)	2616	1067	-3685	45
H(37B)	3800	661	-4318	45
H(38A)	1981	2045	-4353	72
H(38B)	1850	939	-5098	72
H(38C)	3176	1652	-4980	72
H(40)	1186	2390	-2809	41
H(41)	-285	2516	-1688	38
H(44)	-194	3253	2200	31
H(46)	2709	3829	926	30
н(48)	-890	2141	-506	3 L

Table 1. Crystal data and structure refinement for vawel6.

Identification code	vawe16
Measurement device	Nonius KappaCCD
Empirical formula	C26 H28 B2 F4 N4
Formula weight	494.14
Temperature	100(2) K
Wavelength	0.71073 A
Crystal system, space group	Monoclinic P 21/c
Unit cell dimensions	a = 8.2916(3) A alpha = 90 deg.
	b = 8.7033(3) A beta = 90.398(2) deg.
	c = 16.7829(5) A gamma = 90 deg.
Volume	1211.10(7) A^3
Z, Calculated density	2, 1.355 Mg/m^3
Absorption coefficient	0.101 mm^-1
F(000)	516
Crystal size, colour and habit	0.24 x 0.18 x 0.10 mm^3, Colourless fragment
Theta range for data collection	3.37 to 27.47 deg.
Index ranges	-10<=h<=10, -10<=k<=11, -21<=1<=21
Reflections collected / unique	17470 / 2765 [R(int) = 0.042]
Completeness to theta = 27.47	99.6%
Absorption correction	multi-scan
Max. and min. transmission	0.9899 and 0.9761
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	2765 / 0 / 165
Goodness-of-fit on F^2	1.032
Final R indices [I>2sigma(I)]	R1 = 0.0382, wR2 = 0.0943 [2193]
R indices (all data)	R1 = 0.0527, wR2 = 0.1025
Largest diff. peak and hole	0.200 and -0.269 e.A^-3
remarks	

	x	У	Z	U(eq)
- / # >	0.050/11		<b>TOC</b> (4)	
F.(T)	3969(I)	7599(1)	726(1)	24(1)
F(2)	5731(1)	7822(1)	-578(1)	22(1)
N(1)	3663(1)	5323(1)	2279(1)	18(1)
N(2)	1701(1)	3857(1)	1668(1)	19(1)
B(1)	3133(2)	4721(2)	1531(1)	19(1)
C(1)	2600(2)	4786(1)	2862(1)	18(1)
C(2)	1393(2)	3899(1)	2489(1)	19(1)
C(3)	187(2)	3200(2)	2932(1)	23(1)
C(4)	213(2)	3410(2)	3756(1)	26(1)
C(5)	1410(2)	4280(2)	4124(1)	26(1)
C(6)	2626(2)	4978(2)	3685(1)	21(1)
C(7)	5122(2)	6185(2)	2480(1)	20(1)
C(8)	6451(2)	5179(2)	2825(1)	24(1)
C(9)	640(2)	3066(2)	1104(1)	24(1)
C(10)	-902(2)	3945(2)	926(1)	30(1)
C(11)	4062(2)	4882(1)	718(1)	18(1)
C(12)	4487(2)	6282(1)	383(1)	18(1)
C(13)	5394(2)	6398(1)	-300(1)	19(1)

displacement parameters (A^2 x 10^3) for vawel6. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

Table 3. Bond lengths [A] and angles [deg] for vawe16.

F(1)-C(12)	1.3540(14)	F(2)-C(13)	1.3549(14)
N(1)-C(1)	1.4021(15)	N(1)-B(1)	1.4271(18)
N(1)-C(7)	1.4610(16)	N(2)-C(2)	1.4036(15)
N(2)-B(1)	1.4258(18)	N(2)-C(9)	1.4607(17)
B(1)-C(11)	1.5777(18)	C(1)-C(6)	1.3904(18)
C(1)-C(2)	1.4072(19)	C(2)-C(3)	1.3900(18)
C(3)-C(4)	1.3938(19)	C(4)-C(5)	1.390(2)
C(5)-C(6)	1.3928(18)	C(7)-C(8)	1.5190(19)
C(9)-C(10)	1.5179(19)	C(11)-C(12)	1.3885(17)
C(11)-C(13)#1	1.3927(17)	C(12)-C(13)	1.3789(17)
C(13)-C(11)#1	1.3927(17)		
C(1)-N(1)-B(1)	107.51(10)	C(1)-N(1)-C(7)	122.23(10)
B(1)-N(1)-C(7)	129.88(10)	C(2)-N(2)-B(1)	107.62(11)
C(2)-N(2)-C(9)	122.42(11)	B(1)-N(2)-C(9)	129.95(11)
N(2) - B(1) - N(1)	107.62(11)	N(2)-B(1)-C(11)	126.80(12)
N(1)-B(1)-C(11)	125.40(11)	C(6)-C(1)-N(1)	130.34(12)
C(6)-C(1)-C(2)	120.91(12)	N(1)-C(1)-C(2)	108.72(11)
C(3)-C(2)-N(2)	130.55(12)	C(3)-C(2)-C(1)	120.93(12)
N(2)-C(2)-C(1)	108.49(11)	C(2)-C(3)-C(4)	117.81(13)
C(5)-C(4)-C(3)	121.24(12)	C(4)-C(5)-C(6)	121.27(12)
C(1)-C(6)-C(5)	117.83(13)	N(1)-C(7)-C(8)	112.93(10)
N(2)-C(9)-C(10)	113.14(11)	C(12)-C(11)-C(13)#1	114.46(11)
C(12)-C(11)-B(1)	123.68(11)	C(13)#1-C(11)-B(1)	121.76(11)
F(1)-C(12)-C(13)	117.93(11)	F(1)-C(12)-C(11)	119.26(11)
C(13)-C(12)-C(11)	122.79(11)	F(2)-C(13)-C(12)	117.93(11)
F(2)-C(13)-C(11)#1	119.31(11)	C(12)-C(13)-C(11)#1	122.74(11)

Symmetry transformations used to generate equivalent atoms:  $\pm 1$  -x+1,-y+1,-z

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawel6. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
- (1)	00(1)	01 ( 1 )	00/1)	4 ( 1 )	4(1)	4(1)
F(I)	28(1)	21(1)	22(1)	-4(1)	4(1)	4(1)
F(2)	26(I)	19(1)	22(1)	3(1)	2(1)	0(1)
N(1)	18(1)	20(1)	16(1)	0(1)	1(1)	-2(1)
N(2)	17(1)	22(1)	18(1)	-1(1)	-1(1)	0(1)
B(1)	18(1)	20(1)	19(1)	0(1)	1(1)	2(1)
C(1)	18(1)	18(1)	20(1)	1(1)	2(1)	2(1)
C(2)	17(1)	20(1)	21(1)	1(1)	1(1)	4(1)
C(3)	18(1)	22(1)	28(1)	4(1)	1(1)	1(1)
C(4)	22(1)	28(1)	28(1)	8(1)	8(1)	2(1)
C(5)	28(1)	29(1)	20(1)	4(1)	5(1)	7(1)
C(6)	22(1)	22(1)	20(1)	0(1)	1(1)	3(1)
C(7)	22(1)	20(1)	18(1)	1(1)	0(1)	-4(1)
C(8)	19(1)	22(1)	29(1)	-1(1)	-1(1)	-2(1)
C(9)	21(1)	26(1)	24(1)	-3(1)	-4(1)	-3(1)
C(10)	22(1)	41(1)	27(1)	1(1)	-5(1)	1(1)
C(11)	15(1)	22(1)	16(1)	-1(1)	-2(1)	1(1)
C(12)	18(1)	19(1)	18(1)	-4(1)	-1(1)	4(1)
C(13)	18(1)	19(1)	19(1)	2(1)	-2(1)	-1(1)

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (  $\lambda^2$  x 10^3) for vawel6.

	x	У	Z	U(eq)
H(3)	-628	2599	2682	27
H(4)	-602	2950	4071	31
H(5)	1398	4401	4687	31
Н(б)	3446	5567	3939	25
H(7A)	4849	6993	2871	24
H(7B)	5525	6698	1994	24
H(8A)	6103	4755	3337	35

H(8B)	7427	5796	2906	35		
H(8C)	6681	4337	2455	35		
H(9A)	358	2045	1323	28		
H(9B)	1228	2900	600	28		
H(10A)	-1503	4097	1421	45		
H(10B)	-1565	3360	547	45		
H(10C)	-635	4947	695	45		
Table 1. Crys	tal data and str	ucture ref	inement for v	vawe17.		
Identificatio	n code	vawe1	7			
Measurement d	evice	Noniu	s KappaCCD			
Empirical for	mula	C19 H	21 B N2			
Formula weigh	t	288.1	9			
Temperature		100(2	) K			
Wavelength		0.710	73 A			
Crystal syste	m, space group	Monoc.	linic P 21/n			
Unit cell dim	ensions	a = 1	4.2697(3) A	alpha = 90 deg.		
		8 = d	.3197(2) A	beta = 107.3250	b(II) deg.	
** 1		c = 1	4.6128(2) A	gamma = 90 deg.	•	
Volume	1	1050.	11(6) A  3			
Z, Calculated	density	4, 1	.156 Mg/m  3			
ADSOTPLION CO	erricient	616	mm - 1			
Crystal size	colour and habi	+ 0.26 -	~ 0 26 ~ 0 2/	1 mm^3 Colourles	a fragment	
Theta range f	or data gollegti	c 0.20	Lo 20 00 deg	f mm 5, corouries	55 IIagilienc	
Index ranges	or uata correctr	011 2.92	-20 0 $-2$	1 _20/-1/-10		
Reflections c	ollected / uniqu	a 35652	/ 4828 [P(in	(200-10)		
Completeness	to theta = 29 99	99 98	/ 1020 [R(11			
Absorption co	rrection	multi	-scan			
Max. and min.	transmission	0.984	1 and 0.9828			
Refinement me	thod	Full-1	Full-matrix least-squares on F^2			
Data / restra	ints / parameter	s 4828	/ 0 / 203	-1		
Goodness-of-f	it on F^2	1.061				
Final R indic	es [T>2sigma(T)]	R1 =	0.0424. wR2 =	= 0.1081 [3873]		
R indices (al	l data)	R1 =	0.0562, wR2 =	= 0.1162		
Extinction co	efficient	0.017	(2)			
Largest diff.	peak and hole	0.268	and -0.198 e	e.A^-3		
remarks	-					

Table 2. Atomic coordinates (  $x\ 10^{4})$  and equivalent isotropic displacement parameters (A^2  $x\ 10^{*}3)$  for vawe17. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	У	Z	U(eq)
N(1)	6346(1)	2663(1)	373(1)	19(1)
N(2)	6869(1)	4111(1)	1775(1)	19(1)
B(1)	6067(1)	3193(1)	1186(1)	19(1)
C(1)	7288(1)	3233(1)	470(1)	19(1)
C(2)	7611(1)	4125(1)	1330(1)	19(1)
C(3)	8534(1)	4842(1)	1602(1)	23(1)
C(4)	9122(1)	4649(1)	1001(1)	29(1)
C(5)	8807(1)	3756(2)	158(1)	29(1)
C(6)	7885(1)	3032(1)	-120(1)	24(1)
C(7)	5782(1)	1740(1)	-457(1)	22(1)
C(8)	5383(1)	2765(1)	-1346(1)	31(1)
C(9)	6967(1)	4908(1)	2692(1)	23(1)
C(10)	7632(1)	4011(1)	3547(1)	31(1)
C(11)	5087(1)	2791(1)	1357(1)	21(1)
C(12)	4291(1)	2401(1)	1412(1)	21(1)
C(13)	3335(1)	1912(1)	1446(1)	19(1)
C(14)	2488(1)	2554(1)	797(1)	21(1)
C(15)	1568(1)	2023(1)	806(1)	22(1)
C(16)	1459(1)	852(1)	1449(1)	22(1)
C(17)	2305(1)	243(1)	2104(1)	26(1)
C(18)	3230(1)	761(1)	2106(1)	25(1)
C(19)	458(1)	231(2)	1420(1)	30(1)

Table 3. Bond lengths [A] and angles [deg] for vawe17.

N(1)-C(1)	1.3918(12)	N(1)-B(1)	1.4299(13)
N(1)-C(7)	1.4587(12)	N(2)-C(2)	1.3984(12)
N(2)-B(1)	1.4305(13)	N(2)-C(9)	1.4628(12)
B(1)-C(11)	1.5298(14)	C(1)-C(6)	1.3909(13)
C(1)-C(2)	1.4134(13)	C(2)-C(3)	1.3913(13)
C(3)-C(4)	1.3937(15)	C(4)-C(5)	1.3931(17)
C(5)-C(6)	1.3933(15)	C(7)-C(8)	1.5169(14)
C(9)-C(10)	1.5208(14)	C(11)-C(12)	1.2067(14)
C(12)-C(13)	1.4384(13)	C(13)-C(18)	1.3990(14)
C(13)-C(14)	1.4002(13)	C(14)-C(15)	1.3892(13)
C(15)-C(16)	1.3942(14)	C(16)-C(17)	1.3925(14)
C(16)-C(19)	1.5085(14)	C(17)-C(18)	1.3884(14)
C(1)-N(1)-B(1)	108.04(8)	C(1) - N(1) - C(7)	122.71(8)
B(1)-N(1)-C(7)	129.22(8)	C(2)-N(2)-B(1)	107.74(8)
C(2)-N(2)-C(9)	122.88(8)	B(1)-N(2)-C(9)	129.37(8)
N(1)-B(1)-N(2)	107.12(8)	N(1)-B(1)-C(11)	124.21(9)
N(2)-B(1)-C(11)	128.67(9)	C(6)-C(1)-N(1)	130.33(9)
C(6)-C(1)-C(2)	121.09(9)	N(1) - C(1) - C(2)	108.58(8)
C(3)-C(2)-N(2)	130.84(9)	C(3) - C(2) - C(1)	120.64(9)
N(2) - C(2) - C(1)	108.52(8)	C(2)-C(3)-C(4)	117.84(10)
C(5)-C(4)-C(3)	121.47(10)	C(4)-C(5)-C(6)	121.12(10)
C(1)-C(6)-C(5)	117.83(10)	N(1)-C(7)-C(8)	112.92(8)
N(2)-C(9)-C(10)	113.32(8)	C(12)-C(11)-B(1)	174.03(10)
C(11)-C(12)-C(13)	178.03(10)	C(18)-C(13)-C(14)	118.71(9)
C(18)-C(13)-C(12)	120.94(9)	C(14)-C(13)-C(12)	120.33(9)
C(15)-C(14)-C(13)	120.02(9)	C(14)-C(15)-C(16)	121.54(9)
C(17)-C(16)-C(15)	118.05(9)	C(17)-C(16)-C(19)	120.96(9)

C(15)	-C(16)	-C(	19
C(17)	-C(18)	-C(	13

-C(19) 120.97(9) -C(13) 120.48(9) C(18)-C(17)-C(16)

121.18(9)

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawel7. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
N(1)	19(1)	17(1)	20(1)	-1(1)	5(1)	-1(1)
N(2)	19(1)	18(1)	19(1)	-1(1)	6(1)	-1(1)
B(1)	19(1)	16(1)	20(1)	1(1)	5(1)	1(1)
C(1)	19(1)	18(1)	20(1)	3(1)	6(1)	2(1)
C(2)	18(1)	17(1)	21(1)	4(1)	5(1)	1(1)
C(3)	20(1)	24(1)	24(1)	5(1)	2(1)	-2(1)
C(4)	17(1)	36(1)	31(1)	11(1)	5(1)	-1(1)
C(5)	22(1)	38(1)	30(1)	10(1)	12(1)	6(1)
C(6)	25(1)	27(1)	23(1)	3(1)	10(1)	5(1)
C(7)	27(1)	18(1)	20(1)	-2(1)	5(1)	-2(1)
C(8)	34(1)	30(1)	24(1)	2(1)	-2(1)	-4(1)
C(9)	25(1)	22(1)	21(1)	-5(1)	7(1)	-2(1)
C(10)	44(1)	25(1)	20(1)	-1(1)	4(1)	-6(1)
C(11)	22(1)	20(1)	22(1)	-1(1)	6(1)	-1(1)
C(12)	22(1)	19(1)	22(1)	-2(1)	7(1)	0(1)
C(13)	19(1)	20(1)	20(1)	-4(1)	8(1)	-1(1)
C(14)	23(1)	21(1)	20(1)	1(1)	7(1)	-2(1)
C(15)	19(1)	25(1)	21(1)	2(1)	5(1)	0(1)
C(16)	22(1)	26(1)	20(1)	-2(1)	8(1)	-4(1)
C(17)	25(1)	31(1)	23(1)	7(1)	7(1)	-3(1)
C(18)	22(1)	29(1)	23(1)	5(1)	4(1)	1(1)
C(19)	24(1)	39(1)	27(1)	2(1)	9(1)	-7(1)

Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawe17.

	x	У	z	U(eq)
H(3)	8755	5443	2179	28
H(4)	9752	5137	1170	34
H(5)	9228	3639	-233	35
H(6)	7671	2421	-694	29
H(7A)	5228	1208	-302	27
H(7B)	6207	889	-594	27
H(8A)	4933	3573	-1228	47
H(8B)	5031	2081	-1885	47
H(8C)	5928	3304	-1501	47
H(9A)	6308	5018	2779	27
H(9B)	7232	6003	2672	27
H(10A)	7373	2927	3573	46
H(10B)	7657	4590	4138	46
H(10C)	8294	3940	3481	46
H(14)	2543	3352	351	25
H(15)	999	2469	363	27
H(17)	2247	-541	2556	31
H(18)	3797	330	2560	30
H(19A)	230	-532	889	44
H(19B)	-4	1132	1325	44
H(19C)	496	-310	2026	44

Table 1. Crystal data and structure refinement for vawe19.

Identification code vawe19 Nonius KappaCCD Measurement device C26 H32 B2 N4 422.18 Empirical formula Formula weight 100(2) K Temperature Wavelength 0.71073 A Monoclinic P 21/n Crystal system, space group a = 9.894(2) A alpha = 90 deg. b = 7.2114(2) A beta = 105.6255(13) deg. c = 16.7304(3) A gamma = 90 deg. 1149.64(4) A^3 Unit cell dimensions Volume Z. Calculated density 2, 1.220 Mg/m³ 0.071 mm⁻¹ Absorption coefficient F(000) 452 F(UUU) Crystal size, colour and habit Theta range for data collection 452 0.30 x 0.28 x 0.14 mm^3, Colourless fragment 3.09 to 30.00 deg. -13<=h<=13, -10<=k<=10, -23<=1<=23 26453 / 3345 [R(int) = 0.041] 99.9% Index range for data collection Index ranges Reflections collected / unique Completeness to theta = 30.00 Absorption correction multi-scan 0.9901 and 0.9789 Max. and min. transmission Full-matrix least-squares on F² 3345 / 0 / 147 Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] 1.038 R1 = 0.0423, wR2 = 0.1064 [2731] R1 = 0.0545, wR2 = 0.1138 0.335 and -0.208 e.A^-3 Largest diff. peak and hole remarks

Table 2. Atomic coordinates ( x 10^4) and equivalent isotropic
displacement parameters				(A^2 x 10^3) for			for va	Eor vawe19.			
U(eq)	is	defined	as	one	third	of	the	trace	of	the	orthogonalized
Uij te	nsc	or.									

x	У	z	U(eq)
4946(1)	2050/1)	2761(1)	16(1)
4846(1)	2858(1)	2/01(1)	16(1)
5976(1)	/06(1)	3/25(1)	16(1)
5317(1)	2498(2)	3635(1)	17(1)
5229(1)	1360(1)	2342(1)	16(1)
5923(1)	37(1)	2933(1)	16(1)
6437(1)	-1595(2)	2684(1)	20(1)
6252(1)	-1873(2)	1836(1)	23(1)
5564(1)	-572(2)	1253(1)	22(1)
5041(1)	1062(2)	1498(1)	19(1)
4132(1)	4475(1)	2319(1)	21(1)
2574(1)	4150(2)	1927(1)	27(1)
6521(1)	-417(2)	4468(1)	20(1)
8119(1)	-518(2)	4748(1)	25(1)
5143(1)	3807(1)	4345(1)	17(1)
3848(1)	4607(1)	4342(1)	19(1)
3710(1)	5762(2)	4978(1)	19(1)
	x 4846(1) 5976(1) 5317(1) 5229(1) 5923(1) 6437(1) 6252(1) 5564(1) 4132(1) 2574(1) 6521(1) 8119(1) 5143(1) 3848(1) 3710(1)	x         y           4846(1)         2858(1)           5976(1)         706(1)           5317(1)         2498(2)           5229(1)         1360(1)           5923(1)         37(1)           6437(1)         -1595(2)           6252(1)         -1873(2)           5564(1)         -572(2)           5041(1)         1062(2)           4132(1)         4475(1)           2574(1)         4150(2)           6521(1)         -417(2)           8119(1)         -518(2)           5143(1)         3807(1)           3848(1)         4607(1)           3710(1)         5762(2)	x         y         z $4846(1)$ $2858(1)$ $2761(1)$ $5976(1)$ $706(1)$ $3725(1)$ $5317(1)$ $2498(2)$ $3635(1)$ $5229(1)$ $1360(1)$ $2342(1)$ $5923(1)$ $37(1)$ $2933(1)$ $6437(1)$ $-1595(2)$ $2684(1)$ $6252(1)$ $-1873(2)$ $1836(1)$ $5564(1)$ $-572(2)$ $1253(1)$ $5041(1)$ $1062(2)$ $1498(1)$ $512(1)$ $-417(2)$ $1428(1)$ $521(1)$ $-417(2)$ $1428(1)$ $5143(1)$ $3807(1)$ $4345(1)$ $3848(1)$ $4607(1)$ $4342(1)$

Table 3. Bond lengths [A] and angles [deg] for vawe19.

N(1)-C(1)	1.3943(13)	N(1)-B(1)	1.4342(13
N(1)-C(7)	1.4572(13)	N(2)-C(2)	1.3970(12
N(2)-B(1)	1.4370(14)	N(2)-C(9)	1.4604(12
B(1)-C(11)	1.5627(15)	C(1)-C(6)	1.3902(13
C(1)-C(2)	1.4114(14)	C(2) - C(3)	1.3900(14
C(3)-C(4)	1.3962(14)	C(4)-C(5)	1.3907(16
C(5)-C(6)	1.3927(15)	C(7)-C(8)	1.5220(15
C(9)-C(10)	1.5246(14)	C(11)-C(12)	1.4038(14
C(11)-C(13)#1	1.4056(13)	C(12)-C(13)	1.3872(14
C(13)-C(11)#1	1.4056(13)		
C(1)-N(1)-B(1)	108.29(8)	C(1) - N(1) - C(7)	121.70(8)
B(1) - N(1) - C(7)	129,97(9)	C(2) - N(2) - B(1)	108.14(8)
C(2) - N(2) - C(9)	121.81(8)	B(1)-N(2)-C(9)	129.84(8)
N(1) - B(1) - N(2)	106.45(9)	N(1)-B(1)-C(11)	126.40(9)
N(2)-B(1)-C(11)	127.15(9)	C(6)-C(1)-N(1)	130.49(9)
C(6)-C(1)-C(2)	120.91(9)	N(1) - C(1) - C(2)	108.60(8)
C(3)-C(2)-N(2)	130.75(9)	C(3) - C(2) - C(1)	120.73(9)
N(2) - C(2) - C(1)	108.51(8)	C(2) - C(3) - C(4)	117.86(10)
C(5)-C(4)-C(3)	121.41(10)	C(4)-C(5)-C(6)	121.00(9)
C(1)-C(6)-C(5)	118.09(9)	N(1)-C(7)-C(8)	113.02(9)
N(2)-C(9)-C(10)	113.70(8)	C(12)-C(11)-C(13)#1	116.77(9)
C(12)-C(11)-B(1)	122.17(9)	C(13)#1-C(11)-B(1)	121.06(9)
C(13)-C(12)-C(11)	121.49(9)	C(12)-C(13)-C(11)#1	121.74(9)

Symmetry transformations used to generate equivalent atoms:  $\pm 1$  -x+1,-y+1,-z+1

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for vawe19. The anisotropic displacement factor exponent takes the form: -2 pi^2 [ h^2 a*^2 Ul1 + ... + 2 h k a* b* Ul2 ]

	U11	U22	U33	U23	U13	U12
NT ( 1 )	16(1)	16(1)	16(1)	0(1)	2(1)	1(1)
IN(I)	10(1)	10(1)	10(1)	0(1)	5(1)	1(1)
N(2)	15(1)	19(1)	14(1)	$\perp (\perp)$	3(1)	$\bot(\bot)$
B(1)	14(1)	19(1)	16(1)	0(1)	3(1)	-1(1)
C(1)	13(1)	18(1)	17(1)	-2(1)	3(1)	-1(1)
C(2)	13(1)	19(1)	16(1)	-1(1)	3(1)	-1(1)
C(3)	18(1)	20(1)	21(1)	-1(1)	4(1)	2(1)
C(4)	21(1)	24(1)	24(1)	-7(1)	6(1)	2(1)
C(5)	21(1)	28(1)	18(1)	-5(1)	5(1)	0(1)
C(6)	17(1)	24(1)	16(1)	0(1)	3(1)	0(1)
C(7)	23(1)	18(1)	20(1)	2(1)	3(1)	2(1)
C(8)	23(1)	29(1)	24(1)	-2(1)	0(1)	7(1)
C(9)	20(1)	21(1)	18(1)	4(1)	5(1)	2(1)
C(10)	21(1)	30(1)	21(1)	2(1)	2(1)	6(1)
C(11)	19(1)	16(1)	16(1)	1(1)	4(1)	1(1)
C(12)	17(1)	21(1)	16(1)	-1(1)	2(1)	1(1)
C(13)	16(1)	21(1)	19(1)	0(1)	4(1)	3(1)

# Table 5. Hydrogen coordinates ( x 10^4) and isotropic displacement parameters (A^2 x 10^3) for vawel9.

H(3) 6900 -2493		
H(3) 0900 -2493	2070	24
TT(A) CC02 2072	3079	24
H(4) 6603 -2973	1052	27
H(5) 5449 -803	680	27
H(6) 4570 1949	1100	23
H(7A) 4583 4820	1879	25
H(7B) 4247 5529	2711	25
H(8A) 2452 3099	1543	40
H(8B) 2157 5263	1624	40
H(8C) 2111 3877	2363	40
H(9A) 6142 -1691	4359	24
H(9B) 6180 105	4925	24
H(10A) 8465 -1081	4308	37
H(10B) 8413 -1273	5252	37
H(10C) 8505 735	4863	37

H(12)	3048	4350	3894	22
H(13)	2816	6276	4955	22

## 2. Photophysikalische Untersuchungen

Absorption is measured with a UV/VIS double-beam spectrometer (Shimadzu UV-2550), using the solvent as a reference. The setup used to acquire excitation-emission spectra (EES) was similar to that employed in commercial static fluorimeters: the output of a continuous Xe-lamp (75 W, LOT Oriel) was wavelength-separated by a first monochromator (Spectra Pro ARC-175, 1800 I/mm grating, Blaze 250 nm) and then used to irradiate a sample. The fluorescence was collected by mirror optics at right angles and imaged on the entrance slit of a second spectrometer while compensating astigmatism at the same time. The signal was detected by a back-thinned CCD camera (RoperScientific, 1024 × 256 pixels) in the exit plane of the spectrometer. The resulting images were spatially and spectrally resolved. As the next step, one averaged fluorescence spectrum was calculated from the raw images and stored in the computer. This process was repeated for different excitation wavelengths. The result is a two-dimensional fluorescence pattern with the y-axis corresponding to the excitation, and the x-axis to the emission wavelength. Abb. 53 shows sample spectra obtained with this technique. Here, the wavelength range is  $\lambda_{ex}$  = 230–450 nm (in 1 nm increments) for the UV light and  $\lambda_{em}$  = 100–700 nm for the detector. The time to acquire a complete EES is typically less than 15 min. Post-processing of the EES includes subtraction of the dark current background, conversion of pixel to wavelength scales, and multiplication with a reference file to take the varying lamp intensity as well as grating and detection efficiency into account. For all measurements, samples were contained in quartz cuvettes of 10 x 10 mm² (Hellma type 111-QS, suprasil, optical precision). They were prepared with distilled and dried THF, with concentrations varying from 1 to 8 HM according to their optical density. The quantum yields were determined against POPOP (p-bis-5-phenyl-oxazolyl(2)-benzene) ( $\Phi_f = 0.93$ ) as the standard.

#### 3. Quantenchemische Berechnungen

All *ab initio* computations were carried out with the Gaussian 03 package.^[104] The model and full geometries discussed here were optimised using the B3LYP/6–31G* level of theory^[105,106] with no symmetry constraints. Frequency calculations carried out on these optimised geometries showed no imaginary frequencies. The electronic structure and TD-DFT computations were also carried out at the same level of theory. The MO diagrams and orbital contributions were generated with the aid of Gabedit^[107] and GaussSum^[108] packages respectively.

## 4. Verwendung der Verbindung (68) in einer OLED

Erhaltene Daten:

Device	CIE x/y	Efficiency	Efficiency	Voltage [V]	EQE [%] @	Est. LT50	Est. ΔV [V]
Structure		[cd/A] @	[lm/W] @	@ 1000	1000 cd/m ²	[h] @ 1000	/ 1000 h @
		1000 cd/m ²	1000 cd/m²	cd/m²		cd/m²	1000 cd/m ²
Azaborol	0.167/0.122	2.0	0.9	6.8	1.9	67	7.17
(68)							

Device Structu re	Voltage [V]	Lum. [cd/m²]	Eff. [cd/A]	Eff. [Im/W]	EQE [%]	Voltage [V]	Lum. [cd/m²]	Eff. [cd/A]	Eff. [Im/W]	EQE [%]
@ 10 mA/cm ²						@ 100 mA/cm ²				
Azabor ol (68)	5.6	195	1.9	1.1	1.9					

### Quelle: Merck KGaA