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Abstract

Since the computer has conquered our life and became an essential need rather than an
accessory, more-sophisticated human-computer interaction, beyond the traditional key-
board, mouse, and monitor, is aimed to enable the users to interact with computers more
socially. Emotional interaction play a major role in social life, thus the affective human-
robot interaction has evolved significantly throughout the last decades. The aim of this
thesis is to provide the ability of emotion understanding for a robot. Throughout the the-
sis, a discrete theory of emotions is used as a frame of reference. According to it, emotions
can be classified into some basic emotion classes.

The research is orginized around two goals. The first goal is to enable a robot to infer the
emotional state of its interaction partner by analysing the displayed facial expression in
non-constrained conditions. To achieve that, a robust, fully automatic, non-invasive, and
real-time applicable vision-based system is developed with the ability to be implemented
in the robot.

As the aim is to enable the robot to interact with its interactant in real-world scenarios,
sitautions in which the user is engaged in conversational sessions present farther challange
for such systems. The second goal of this work is to combine facial expression and speech
information cues in such a way, as to enable the affective system of the robot to fit such
situations. En route to this goal possible affects of facial configuration related to speech on
inferring emotions from facial expression is investigated. The results suggest a degraded
performance when facial expressions are displyed during speech as displying them delib-
erately. In order to smooth this effect, information of audio signal is taken into account.
The performance of the emotion recognition system is relatively enhanced by fusing facial
expression cues and speech information ones into a bimodal system. The perfomance of
the bimodal system still, however, degraded comparing with the perfomance stand-alone
facial expression analyis system in the case of displayning facial expression deliberately.

Finally, the extent of recognizing each emotion by utilizng each modality is invistagted.
The results indicate a highly varying performance of each modality ith the respective
emotion class, and for the bimodal system, each modality should be weighted according
to its discriminative power for a specific emotion.
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1 Introduction

Human-human communication and interaction have been around since the beginning of
humanity. Social interaction information is exchanged through the medium of verbal signs
as speech signals and language and non-verbal signs such as gesture, speech tones, and
facial expressions. Emotional interaction should play a major role in human-human nat-
ural communication. Since the time of Darwin “Describing laughter: The sound is pro-
duced by a deep inspiration followed by short, interrupted, spasmodic contractions of the
chest, and especially the diaphragm... the mouth is open more or less widely, with the cor-
ners drawn much backwards, as well as a little upwards; and the upper lip is somewhat
raised. ”, a large body of researchers has focused on how people encode their emotion,
how they decode other’s emotions, and which role emotions play in social human-human
interaction [42, 61, 77, 124, 135].

The new scientific understanding of emotions on the one hand, and the rapid evolution
of computing system skills on the other, provided inspiration to numerous researchers to
build machines that will have the ability to recognize, express, model, and communicate
emotions. Rosalind Picard’s book triggered an explosion of interest in the emotional side
of computers. Consequently, a new research area called “affective computing” emerged.
Affective computing advocates the idea that emotions are not only useful, but rather re-
quired when building truly intelligent computing systems is being aimed at. Thus, Picard
suggested that it might be essential for machines to posses either some or all the emotional
intelligence and skills humans do [114].

An increasing number of scientists in the field of computer science, inspired by the
results of the theoretical studies mentioned above, have focused on mirroring human-
human interaction in the field of human-computer interaction (HCI), and more recently
human-robot interaction(HRI). Approaches to fully automatic recognition of emotions
have emerged, as the necessity for dealing with the affective state of a user has become
obvious for efficient and user-friendly human-robot interaction [114]. For example, in
tutoring systems or computer games, knowing about the user’s feeling of boredom, frus-
tration or happiness can increase learning success or fun in the game [73]. Driving as-
sistant systems will benefit from inferring the pilot/driver’s level of confusion in order to
avoid possible accidents [59]. In human-robot interaction, affective reactions of the robot,
following the recognition of the user’s emotional state, can make the interaction more
natural and human-like [60, 151].

Toward realizing such interaction, the initial focus was on automatic facial expression
analysis, and more precisely, on the recognition of the prototypical emotions from posed
static input. Almost all the work from the early 1990s attempted to recognize prototypical
emotions from two static face images: neutral and expressive [129]. In the second half of
the 1990s, automated face expression analysis started focusing on posed video sequences

2



1 Introduction

Figure 1.1: A robot engaged in a multimodal dialogue situation with multiple interaction partners. Both
visual and acoustic information are considered.

and exploiting temporal information in the displayed face expressions [97]. In parallel
to the automatic emotion recognition from visual input, works focusing on audio input,
physiological measurements, and body language emerged [32, 133].

One major limitation of affective computing is that most of the past research focused
on emotion recognition from a single sensorial source, or modality. However, as nat-
ural human-human interaction is multimodal, the single sensory observations are often
ambiguous, uncertain, incomplete, and influenced by other modalities. A simple solution
that overcomes this problem is to utilize a combination of multiple modalities for emotion
recognition. This combination in turn triggered other research areas, such which measure-
ments have to be combined and how to combine them.

Fruitful avenues of combining several measurements can be found in the literature.
Kim [75] suggested a combination of speech information and physiological measure-
ments. Other scientists preferred to combine speech information with textual content [24],
facial expression with physiological measurements [73], while other researchers advo-
cated that a reliable automatic affect recognition system should attempt to combine face
expressions and body gestures [70, 74].

For human beings, however, facial expression and voice reveal a person’s emotion the
most, as will be discussed in Sec. 2.4. Furthermore, a human perceives and understands
another’s emotion in a multimodal, rather than unimodal way. Indeed the combination
of audio and visual information provides more reliable estimates of emotional states.
The complementary relationship of these two modalities makes the inference of emotion
more accurate than only using a single modality. Acting on this fact in designing emotion
analysis systems, a combination of facial expression and speech tone information is the
most suitable way towards natural and non-invasive human-robot interaction. Following
that, most researchers in this field adopted this kind of combination by designing reliable
affective systems [90, 140, 172, 171]. That does not mean, however, that the research in
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1 Introduction

this field has reached its final aim of having emotion analysis systems that perform equally
well as human beings.

Another obstacle challenges both unimodal and multimodal systems when restricting
the focus to joint visual and acoustic modalities, namely dealing with real-life scenarios.
An example of such scenarios is situations in which the robot and the user are engaged
in conversational sessions. The mutual influence between facial configurations that reflect
the internal affective states and those caused by speech production processes (movements
in the upper and lower part of the face) is seldom challenged.

Yet another challenge is the system’s real-time and fully automatic applicability. Indeed
applying such systems in real-world scenarios demands that these systems perform well
in real-time and fully automatic. That if the former is lacking could delay the reaction
of the robot and consequently lead the interaction to be cold, incompetent, and socially
inept, while neglecting the latter causes the interaction to be something far removed from
the natural one intended.

When employing an emotion analysis system in the scenarios of interaction with multi-
person, person-dependent and person-independent systems present another challenge that
should be considered. Most existing literature on automatic emotion recognition has not
dealt this point. Anecdotal evidence suggests that a person-dependent system outperforms
a person-independent one. That is because, considering the human face, the latter de-
scribes the geometrical variations in the shape of the face, rather than describing the con-
figurations within the encountered face; these changes are better described by the former
system.

The main goal of this thesis can be summarized into the following research questions
that will be answered in the remainder of the work.

• When aiming at natural human-robot interaction which cues should be considered
and why?
Facial-expression and speech information are used in human-human interaction and
should be considered due to their naturality, low level of voluntariness, and being
non-invasive in contrast to the internal physiological measurements

• How does the system behave when the robot and its interaction partner are engaged
in a conversational session?
The performance of a facial expression analysis system is expected to be degraded
because of the difficulty of distinguishing between facial configuration related to
emotion and that related to speech production processes

• When multimodal human-robot interaction is considered, how should these modal-
ities be fused, and why?
To smooth the effect of speech-related configurations of the face on inferring emo-
tions from facial expression, speech information can be considered in a comple-
mentary rather than conflicting way. The emotion inferred from facial expressions
and speech information can be fused, so that the overall performance of the system
is enhanced compared to analyzing both stand-alone modalities

4



1 Introduction

• Is there a relation between class-dependent recognition performance and choice
of modality? The results indicate that the performance of each modality is highly
varying with the respective emotion class.

Our work in this thesis aims at contributing to the development toward an ideal emo-
tion analysis system that enables a robot to behave well in emotional real-life human-
robot interaction (HRI). The next chapter starts by discussing several definitions of emo-
tions, three types of theories on emotions, how the emotions can be encoded and decoded,
through which modality emotions are presented best, and the multimodality of emotion
experience and perception.

In chapter 3 the term affective computing will be introduced, and some application
fields will be discussed as well. The chapter will introduce our mobile robot as well as its
behavior in social human-robot interaction situations.

A real-time fully automatic facial-expression-based emotion analysis system will be
introduced in chapter. 4. In contrast to most facial expression analysis systems which are
currently used, the proposed system in this chapter fulfils most of the requirements of an
ideal system; these requirements will be discussed intensively in the same chapter.

In order to enhance the performance of the system in human-robot conversational situ-
ations, facial expressions and vocal information are fused, yielding a fully automatic
real life bimodal emotion analysis system. The proposed bimodal system and the fusion
method used to build it will be discussed in chapter 5.

A comprehensive evaluations of each stand-alone uni-modals as well the bimodal
system on a convenient database are included in Chapter. 6. As the focus of our work is to
give these systems an online ability to be employed in life-like human-robot interaction
an evaluation is also conducted on data captured in real-life conditions, more information
can be found in Chapter. 6 too. A Conclusion and outlook will conclude our thesis.
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2 Emotion Theory

“ An emotion is a conscious mental reaction (such as anger or fear) sub-
jectively experienced as a strong feeling usually directed toward a specific
object and typically accompanied by physiological and behavioral changes
in the body.”

Merriam Webster Online Dictionary1

The concept of what emotions are is very hard to comprehend because emotions are
not clearly defined. A psychologist would definitely give a different definition to that of
a linguist, a computer scientist or an average person. Emotions as a concept have a long
and stressful history. They have been studied since antiquity by philosophers and psy-
chologists. Darwin demonstrated that some emotions, referred to as primary emotions,
represent universal emotional processes useful for survival [35]. This aspect was consid-
ered as the first of the four emotion perspectives demonstrated in [120]. The second is
called the Jamesian perspective, which adopted that the emotional experience is largely
due to the experience of bodily changes. The cognitive perspective underlines that the
cognitive appraisals of the environment are the underlying causal explanations for emo-
tional processes. Finally, the social perspective emphasizes the importance of culture and
context in understanding what occurs in society [120].

Kleinginna and Kleinginna had already recorded around one hundred definitions pre-
sented in scientific literature. Most of them behold emotions from only one aspect or only
one subset of what is generally considered as emotion [77]. The following definitions,
which were adopted by Oatley et.al. [101], have often been quoted and are considered as
being accepted by the researchers of this field.

(i) An emotion is usually caused by a person consciously or unconsciously evaluating
an event as relevant to a concern (a goal) that is important; the emotion is felt as
positive when a concern is advanced and negative when a concern is impeded.

(ii) The core of an emotion is readiness to act and the prompting of plans; an emotion
gives priority to one or a few actions to which it gives a sense of urgency so it can
interrupt, or compete with, alternative mental processes or actions. Different types
of readiness create different outline relationships with others.

(iii) An emotion is usually experienced as a distinctive type of mental state, sometimes
accompanied or followed by bodily changes, expressions and actions.

Mirroring these definitions in the field of human-robot interaction, the event that has to
be evaluated by the robot is some verbal or non-verbal cues from the interactant which are

1http://www.merriam-webster.com/dictionary
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associated the experience of emotion, where the adaption of the robot according to these
changes can be considered as the desired reaction of the robot.

Other emotion-related concepts have sparked the interest of researchers into describing
the psychological and physiological phenomena accompanying them. While it is agreed
that emotions are considered as being short term, consciously perceived, a valanced state;
either positive or negative, like e.g. happy, angry or sad, a mood can last one or several
days, weeks, or even months, such as when one is cheerful or depressed. Being often
elicited by an internal, or external emotion trigger, targeting either cognitive or social be-
havior the emotions differentiate from the mood which lack a specific target as well a spe-
cific trigger. What also has to be recognized is the difference between emotion and feeling
such as (liking or hating), which is referred by Damasio as a private, mental experience
of an emotion. According to him, feelings do not include bodily emotional responses, but
merely mental perceptions of the state of the body [34].

What follows in this chapter will provide summarized answers to some key questions
related to emotion, emotion expression and emotional human-human interaction. These
answers will serve as the background to our work presented in this thesis. Section 2.1 will
provide an overview of the role of emotion in human-human interaction. Several models
of emotion categorization will be discussed in section 2.2. Which cues could be conveyed
when we experience emotion, how and how accurately do humans perceive another’s
emotion will be discussed in sections 2.3 and 2.4 respectively. A small summary will
conclude this chapter.

2.1 Emotion in Human-Human Interaction

In order to sustain a social relationship the most effective human-human interactive
medium namely the intrapsychic states have to be communicated. Emotion theory holds
that there is no efficient communication and no profound social relationship without emo-
tional signals being taken into account [61]. Displaying our emotional state on the outside
as well as recognizing what other people feel, which constitutes the input and output chan-
nels of the affective human-human interaction, might play the main role in an individual’s
acclimatization in its environment.

In terms of human-human interaction Hess addressed two points of view of what emo-
tions could be [61]. The first point, which goes back in history to the famous book of
Darwin [35], states that the displaying of emotions is an innate symptom of the underly-
ing emotional state. This notion is supported by a few recent studies, which presented that
specific facial expressions can be linked to specific affective states [44, 127].

According to the second point of view, the displaying of emotion is thought not to
provide valid information regarding the underlying emotion, yet serves purely commu-
nicative functions. Concerning on the possible difference between the emotions and their
expressions Fernandez-Dols and Ruiz-Belda showed that people who have just won a
medal tend to show facial expressions different to those commonly associated with happi-
ness even though they tend to report having been happy. This finding seems to suggest that
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smiling is not necessarily a sign of a pleasurable experience but rather a social signal [48].
In his above mentioned work, Hess defended that emotion expressions are neither in-

nate symptoms of the underlying emotional states nor serve purely as communicative
functions. He stressed the ability of adopting the organon model, which is equally well
suited for emotion communication as the original goal it was introduced for. the organon
model, which was originally introduced by Karl Bühler for describing the linguistical
human-human communication [19], distinguishes between three functions of a message
during a conversation, namely, the symbolic, the symptomatic, and the appeal function.
The first refers to the sign content of the message and conveys information directed at the
interaction partner. The second, the symptomatic function, corresponds to a readout of the
individual’s state. And the third function concerns the possible action of the interaction
partner. For example, “the expression of sadness signals that the sender experienced an
irreversible loss. It also suggests a specific internal state of the sender, characterized by
a specific subjective feeling state, as well as by a number of physiological and behavioral
concomitants. Finally, it may serve an appeal function by motivating the observer to help
or to comfort.” [61].

Figure 2.1: The
structure of Emo-
tion according
to the organon
model proposed
by Bühler. The
figure is extracted
from the work of
Hess [61].
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2.2 Emotion Categorization

Diversities of definitions of what emotions are and which organismic processes induce
them has led to diversities of models categorizing them. Inspired by Darwinian theory
many researchers have been concerned with the categorization of so-called basic or pri-
mary emotions. Emotions, however, are assumed, from another point of view, not to be
discrete phenomena but rather continuous ones. Psychologists adopting this way of under-
standing the emotions represent the emotional states in an n-dimensional space (generally
two or three). Appraisal theory states that, (I)- emotions are elicited by a cognitive evalu-
ation (appraisal) of an event or situation and (II)- patterning of the possible reactions
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2 Emotion Theory

(emotion is one of them) is determined by the outcome of this evaluation. The following
paragraphs will provide a further detailed overview of these models and how each of them
describes the emotions.

2.2.1 Discrete Emotions

Since the publishing of the famous work by Darwin [35], in which he categorized some
emotions which he called primary and tried to link each of them to its emotional process
useful for survival, many researchers have concerned themselves with the categorization
of these primary, i.e. basic, emotions. Basic emotions theories claim the existence of his-
torically evolved basic emotions which are universal and can therefore be found in all
cultures. Ortony and Turner reviewed 14 different theories of discrete emotion model-
ing [103]. Among these theories the number of basic emotions varies from somewhere
between two basic emotions in which anger and pleasure are considered the two basic
emotions [98], happiness and sadness [163], to 11 basic emotions [2] or even 18 basic
ones [51]. Table 2.1 gives an overview of some studies defending the discrete nature of
emotion expression2.

Proposed By Included Emotions
Arnold [2] anger, aversion, courage, dejection, desire

despair, fear, hate, hope, love, sadness
Ekman et.al. [42] anger, disgust, fear, joy, sadness, surprise
Izard [67] anger, contempt, disgust, distress, fear

guilt, interest, joy, shame, surprise
Mowrer [98] pain, pleasure
Otaley et.al. [100] anger, disgust, anxiety, happiness, sadness
Plutchik [115] acceptance, anger, anticipation, disgust

joy, fear, sadness, surprise
Tomkins [150] anger, interest, contempt, distress, disgust

fear, happiness, shame, surprise
Weiner and Graham [163] happiness, sadness

Table 2.1: List of studies supporting the discrete nature of emotions. Extracted from the work of Ortony
and Turner [103]

Plutcnik preferred to present his model with eight basic emotions by a wheel analogous
to the well-known color wheel, as depicted in Fig. 2.2.(a). In Plutchik’s model the eight
basic emotions are presented in opposite pairs (anger vs. fear, anticipation vs. surprise,
trust vs. disgust, joy vs. sadness) on this wheel. The distance of the position of each
emotion from the center of the wheel models the activation of the corresponding emotion.

2More basic-emotion-based theories are referred in: http://changingminds.org/explanations/emotions/basic
emotions.htm
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These eight emotions are considered by him to be the “primary” ones, from which any
other emotion is derived by specific combination “exp: contempt = disgust and anger,
alarm = fear and surprise, etc ...”. He located them in an arrangement suggesting that
the nearer together categories are the similar they are, and the nearer a category is to the
center of the circle the more intensity it has “e.g., low intensity of fear yields timidity
while high intensity of it yields terror” [115].

The most famous and widely accepted approach on basic emotions was conducted by
Ekman [42], in which he assumed anger, disgust, fear, happiness, sadness and surprise
to be the basic emotions. According to this study each emotion is categorized upon its
association with one of the facial expressions, referred as “prototypes”, Fig. 2.2.(b) shows
examples of these prototypes. These prototypes are assumed to be universally experienced
and recognized (independently from sex, age, and culture).

(a) (b)
Figure 2.2: Two well-known theories of basic emotion family. (a) Color-wheel-like location of the eight
primary emotions proposed by Plutchik [115], and (b) six prototypes presenting the six basic emotions
according to Ekman [42]. From left to right and top to bottom: anger, fear, disgust, surprise, happiness, and
sadness.

2.2.2 Dimensional Models of Emotions

In dimensional theory it is assumed that the basic emotions can be placed in a continuous
multidimensional space, in which each dimension stands for a fundamental property com-
mon to all emotions. The dimensional model of emotions is closely connected to the se-
mantic differential research method. Employing this method, the raters describe different
verbal stimuli on bipolar scales consisting of two opposite adjective pairs, exp., hot-cold,
white-black, fast-slow, etc. A study by Mehrabian and Russel provided a great deal of ev-
idence that peoples’ ratings of differences in affective meaning can be described by only
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three basic dimensions (pleasure, arousal, and dominance) [95]. In this study, they used
18 bipolar adjective pairs, each one rated along a 9-point scale. Applying the statistical
factor analysis method on the ratings values of each object, event, or situation, which is
wanted to be described, generated the desired scores on the above mentioned three di-
mensions. Now, the most often used three-dimensional model of emotion is the one of
Bradley and Lang. In this model they termed the dimensions as: valence, which ranges
from negative to positive emotion, arousal, which ranges from calm to highly aroused, and
dominance, which describes if the person is controlled by or controlling the emotion [15].
Figure 2.3.(b) shows some emotions located on both two and three dimensional spaces
according to the above mentioned models.

Dominance

Low
Arousal

Negative
Valence

Positive
Valence

High
Arousal

Sorrow
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Surprise

Anger
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Calm
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(a) (b)

Figure 2.3: Dimensional models of emotions. (a) two-dimensional valence-arousal judgment space pro-
posed by [124], (b) three-dimensional valence-arousal-dominance judgment space proposed by [15].

The two-dimensional model of emotions, which was pioneered by Russel and termed
the “the circumplex model”, might be the most dominant one that is used in the field of au-
tomatice recognition of emotions. The model proposed that all affective states arise from
two fundamental neurophysiological systems, one related to valence, pleasure-displeasure
continuum, while the other is related to arousal. Joy, for example, is conceptualized as an
emotional state that is the product of strong activation in the neural systems associated
with positive valence or pleasure together with moderate activation in the neural systems
associated with arousal [124]. Fig. 2.3.(a) illustrates the locations of some emotions on a
two-dimensional space.

2.2.3 Other Models of Emotions

According to the appraisal theory, emotions are elicited by evaluative judgments (ap-
praisal) by an individual of some events of the environment and their implication to him
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as well as his own goals and beliefs. Different response components (physiology, emotion
expression, action tendencies) present the outcome of this evaluation process.

To describe the relation between emotions and facial expressions, Scherer introduced
the term “Stimulus Evaluation Checks, SECs”. SECs describe how an organism evaluates
stimuli in a sequence of appraisal checks, and how the outcome of these checks results in a
specific facial expression. He arranged five stimulus evaluation checks in a fixed sequence,
in which the operation of each check depends on the result of the prior one [132].

The first SEC in the sequence is the novelty check which can be broken down into a set
of subchecks. This check evaluates whether there is any change in the pattern of external
or internal stimulation and if such a stimulation requires attention or not. The next step
in the stimulus evaluation sequence is the intrinsic pleasure check. This check evaluates
whether a stimulus event is pleasant or not. A pleasant stimulus will induce approach
tendencies while an unpleasant stimulus will lead to avoidance or withdrawal. The third
check is the goal/need significance check which determines to what extent a stimulus or
situation endangers an organism’s survival and adaptation to a given environment. It also
concerns the satisfaction of an organism’s needs and the attainment of its goals. The fourth
check in the stimulus processing sequence is the coping ability check. This check provides
the ability to successfully cope with a stimulus and free the emotion system from control
by this stimulus. Finally the norm/self compatibility check is the final check. It evaluates
the significance of a particular action in terms of social consequences. Therefore, this
check is only needed by organisms living in social groups.

Ortony et.al. were concerned with the cognitive structure and the implications of emo-
tions. They developed a computational emotion model; its widespread name is abbrevi-
ated from their names “OCC” [102]. The aim of this model is to characterize a range of
psychological possibilities of emotions rather than to describe the emotions themselves or
the emotion related processes. The OCC model was established originally as a standard
model for emotion synthesis by agents or characters.

2.3 Emotion Encoding

Despite the long term debate on the nature of emotion, it is almost agreed that these
underlying states are internal processes which take place inside someone’s body. Izard
suggested that the emotion reactions involve changes in neurophysiological functions of
different brain areas, changes in the neuromuscular activity, changes in behavior, and
subjective emotional experiences [67]. These changes are merely observable by their pro-
jection to the outside in the form of:

(i) Verbal cues as spoken languages

(ii) Non-verbal cues including:

a) Body language as facial expression and gestures

b) Acoustic cues as speech prosody
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c) Cues related to internal physiological changes such as heart rate, blood pres-
sure, skin conductivity and temperature, and brain activity

Some of these cues are easy to perceive, such as facial expression, gestures, and speech
prosody, while the others (blood pressure, heart rate measurement, brain and muscles ac-
tivities, skin conductance and temperature) are, without additional auxiliary instruments,
beyond the direct ability of humans to be perceived.

Expression of emotions differentiates according to the cues used, when the voluntari-
ness of expressing is considered. Emotional human-human interaction can occur volun-
tarily, such as pronouncing some specific words related to specific emotions (glad, blithe
and bright as indicators of happiness), displaying some deliberate facial expressions, or
changes in speech prosody. However, for natural human-human as well as human-robot
interaction the displaying of emotions by using facial expressions or speech prosody is
assumed to occur involuntary [112]. Fig 2.4 illustrates a model that allocates each one of
the above mentioned emotion-related measurements in a two-dimensional space, i.e., (I)-
It’s significance in affective Human-Human interaction and (II)- It’s voluntariness.

As depicted in this model, the positions of facial expression and speech prosody re-
flect, on the one hand, their relative great impact on human-human interaction and, on the
other, their relatively low voluntary level in contrast to other non-verbal emotion-related
cues. Following this notion, we employed two stand-alone emotion analysis systems to
infer emotions conveyed by facial expression and speech prosody, and a bimodal one that
makes use of fusing them together.

Encoding the emotion by diversity of media will be overviewed in the following sub-
sections. Subsection 2.3.1 and subsection 2.3.2 will focus on projecting the internal emo-
tional state onto the outside through changes of facial configuration and auditive com-
ponents of speech respectively. Inferring the emotional state from measurements of some
internal psychophysiological changes will be reviewed in section 2.3.4.

2.3.1 Facial Expression

The face is the most essential medium in the social interactions in the real world. People
are recognized and characterized by their faces. The face provides rich information on
cognitive states, e.g., interest, puzzlement, frustration, or boredom. The face provides
information about the individual identity, about his/her age, and essentially it provides the
ability of conveying emotions serving the communicative aspects [37].

Emphasizing the role of facial expression in human-human interaction many social
studies argued that humans tend to communicate the most affectively "face-to-face". Due
to their occurrence in the interactive context, facial expressions are generally considered
to be cooperative signaling systems, benefiting both the expression encoder, who would
like to be understood, and the decoder, who strives to understand [50].

Many questions, however, of what could be the association between the emotions
and their expression via facial changes, whether the person’s facial expression reflects
merely the emotional state of this person, whether facial expressions are pure social adap-
tations, whether the emotion expressions are some kind of combination between these
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Figure 2.4: Position of each possible affective measurement according to its significance in affective
human-human interaction and voluntariness. Derived from Partala [112].

two aspects, and many other unanswered questions remain issues of great debate in the
psychology of emotion.

Anatomically facial expressions are the outcome of movements of facial skin and con-
nective tissue, which are caused by the contraction of the facial muscles. One of the most
noticeable ways to observe a person’s emotion is probably through the facial expressions
of that individual. The French neurologist and physiologist Duchenne De Boulogne pub-
lished in 1862 a remarkable treatise on facial expressions. His work was the first to
systematically examine the contributions of small groups of cranial muscles to the exp-
ressions that communicate the rich experience of human emotion. He reasoned that “one
would be able to paint the expressive lines of the emotions of the soul on the face of man”.
To achieve the goal of understanding how the coordinated contractions of groups of mus-
cles express distinct emotional states he pioneered a so-called, transcutaneous electrical
stimulation that used activate single muscles and small groups of muscles in the face,
dorsal surface of the head, and neck.

The most prevalent conceptualization of the relationship between the face and emotions
is the Facial Expression Program introduced by Russell and Dols [127], which has its
roots in Darwin’s writings about the face [35]. The key ideas of this model are, (I)- there
are a number of basic, universal emotions (6 is an often cited number: anger, disgust,
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fear, happiness, sadness and surprise), and (II)- the face reveals the individual’s internal
emotional state, and though these observers of the face are generally able to read the
underlying emotion from the facial expression correctly.

Other researchers adopted that the relationship between experience of emotion and
expression is not necessarily relevant [48], while others suggested that the displaying of
emotions is manifold of being projecting the inside affective sates into outside and serving
as social signals simultaneously [61].

While the above mentioned methods tried to infer what underlines the experienced
emotion, many other sign-based coding systems are proposed to describe the association
between the expressed facial movements and the experienced emotions by describing
the appearance of this emotion rather than its accurate meaning. A diverse mix of such
describing models have recently been introduced, e.g., the "Maximally Descriptive Facial
Movement Coding System",“MAX” that proposed by [68], and the "Facial Affect Scoring
System",“FAST ”, which developed by Ekman et al. [43].

The most widespread standard for describing facial expression may be the Facial Action
Coding System “FACS”, which was developed by Ekman and Friesen. In FACS all pos-
sible facial movements are divided into 44 facial actions “referred as AUs” based on
visually observable changes in individual’s face, eyes, and neck. FACS assigns each mus-
cle group on the face with a code number and so almost every emotional expression may
be precisely described using a small set of numbers [113]. Ekman’s work has been quite
influential in the computer science field, and this conceptualization of the relationship be-
tween emotions and facial expression underlies much research in affective systems as will
be seen in several points in the remainder of this thesis.

2.3.2 Speech

Like the visual expression of emotions (facial expression) the acoustic expression of them
(linguistic, and paralinguistic messages ) has its own long history. Systematic treatises of
the topic of emotion expression during speech communication can be found in ancient
Greek and Roman writings. Darwin, in parallel to his great contribution of studying emo-
tions and their associated facial expression, underlined in his pioneering monograph the
primary significance of the voice as a carrier of affective signals [35].

Recently, numerous researchers have identified the tremendous meaning of speech in
human-human communication. Generally, three major questions have been challenged in
studies on emotion expression in speech, as summarized by Siegwart and Scherer [139]:

(i) How does an emotional state, with all the accompanying physiological effects of
respiration, phonatation, and articulation, manifest itself by systematic changes in
the acoustic parameters of the voice. To deal with this question, either recorded
samples of speech occurring during real emotional conditions or actor portrayals
for different types of emotions are obtained. Systematic analysis of the respective
acoustic features is then conducted to determine the nature of the acoustic effects.
The results of this type of research demonstrate that there are specific patterns of
acoustic cues that characterize particular emotional states [135]
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(ii) The ability of the listener to infer the nature of the underlying emotion correctly,
based only on the acoustic cues of voice. To elucidate this question, emotional voice
samples are presented to listener-judges who are then asked to choose the emotion
expressed from a set of emotion categories [134]

(iii) Which cues can the listener use to infer the nature of the expressed emotion from
the voice? To answer this question, speech researchers have developed elabo-
rate research designs using procedures of partial masking or filtering of specific
cues [135], or the acoustically measured cues have been correlated with listener
judgments that have been obtained for the same voice samples [31]

However, speech conveys affective information through explicit (linguistic) messages,
and implicit (paralinguistic) messages that reflect the way the words are spoken. Consid-
ering the verbal part (linguistic message) only, without regarding the manner in which it
was spoken (paralinguistic message), might lead to missing some important aspects of the
pertinent utterance and even to misunderstanding the spoken message.

Focusing on the paralinguistic messages that convey affective information, a large body
of studies in psychology, psycholinguistics, signal processing, and computer science, pro-
vides results on acoustic and prosodic features which can be used to encode affective
states of a speaker. Measurements related to the pitch, the duration, the intensity, and the
frequency spectrum of an audio signal seem to be the reliable descriptors of the emotions
associated with speech. Nevertheless, which set of vocal cues can describe the emotional
voice the best is still a debate among the researcher in this domain. Section 5.2 will give
a review of the state of art of which cues are employed in automatic emotion analysis
systems.

2.3.3 Facial Expression during Speech

Facial expression during social interaction is possibly an honest signal of affiliation, or
willingness to reciprocate. Among humans, however, social interaction almost invariably
involves speech, and there are unique considerations in the adaptiveness of the relation-
ship between facial expression and speech. Facial expression is coordinated with speech
at several levels: (I)- the use of muscles of facial expression to articulate speech sounds,
(II)- the contribution of facial expressions to the syntactic structure and the meaning of
particular utterances, (III)- graded conversational signals that apply to the overall meaning
of speech [39].

In addition to its functions on the encoder side, visual information from the encoder’s
face can strongly influence speech perception, especially when the auditory information
is degraded. In one study, the recognition of auditory sentences in noisy environments is
improved from 23% to 65% when the perceivers could also see the face of the interaction
partner [145]. The finding of Mehrabian can be considered the best conclusion present-
ing the effectiveness of spoken communications. He indicated that the linguistic part of
a spoken message, that is the actual wording, contributes for only 7% to the effect of the
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message as a whole. While the paralinguistic part, which is how text is vocalized, con-
tributes for 38%, and the speaker’s facial expression contributes for 55% of the effect of
the spoken message [94]. This implies that facial expressions form the major modality in
emotional human-human interaction during speech too, and have to be considered by HRI
systems applicable in conversational sessions.

2.3.4 Internal Physiological Changes

In addition to the affective measures discussed above, there are also quite a few other
means for measuring affect-related information from the emotion encoder. The following
paragraphs will give an overview of measures suggested to be related to emotions.

• Blood Pressure. Blood pressure is a measure of the pressure at which the blood
flows through the body. Happiness, anger, sadness, and anxiety increase blood pres-
sure to differing degrees. Picard suggested that the blood pressure increases with
negative emotions such as fear and anxiety, and decreases with relaxation [114].

• Brain Activity. Using an electroencephalograph "EEG", with electrodes attached
to the scalp the electrical activity of the brain can be measured. It has been found
that EEG asymmetries over the frontal cortex during emotions related to the be-
havioral tendency of approach (joy, interest, and anger) are relatively greater in the
left prefrontal cortex than the right prefrontal cortex. Correspondingly, it has been
suggested that during emotions related to the behavioral tendencies of withdrawal
(sadness, fear and disgust) EEG asymmetries are relatively greater in the right pre-
frontal cortex, even though the effect is somewhat less clear [25].

• Galvanic Skin Response. Skin conductance is one common measure in psychophys-
iology and reflects the ability of the skin to conduct electrical current. Skin conduct-
ance has been shown to correlate with autonomic nervous system arousal so that an
increase in affective arousal causes an increase in skin conductance [26]

• Heart Rate. This is a commonly used psychophysiological measure related to auto-
nomic nervous system activity and it has been used in emotion research for a long
time. Heart rate is generally thought to discriminate between positive and nega-
tive emotional reactions. It has been shown to decelerate in response to visual and
auditory emotional stimulation. The deceleration is stronger when exposed to un-
pleasant stimuli than when exposed to pleasant stimuli [14].

• Muscle activations. It is also possible to use electromyography (EMG) to measure
the emotion-related activations of either facial muscles or even other body muscles.
By using affective picture stimuli many studies suggested that negative experiences
are associated with high activity of “corrugator supercilii”, while low activity of
“corrugator supercilii” is associated with positive experiences [80]. Based on the
activation of non-face muscles Healey distinguished between low and high stress
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levels of a driver by measuring the upper back tension from the trapezium mus-
cle [59].

• Skin temperature. Changes in skin temperature can accompany the occurrence of
emotions. McFarland concluded that the negative emotionally aroused states “e.g.,
anger” perpetuated decreases in skin temperature, while the calmer and more pos-
itive emotional states perpetuated skin temperature increases [93].

• Respiration. Emotional arousal is associated with faster and deeper respiration com-
pared to rest and relaxation, which are associated with slower and shallower respi-
ration. Utilizing a set of derivatives of respiration signals, Healey successfully dis-
tinguished seven self-induced emotions (anger, hate, grief, love, romantic love, joy,
reverence) and no emotion [59].

• Tactile information. There are many interaction techniques, which use the tac-
tile modality in human-computer interaction in both input and output, e.g., touch
screens and force-feedback output devices. The number of tactile techniques
designed especially for affective interaction still, however, small. Qi et al. devel-
oped the so-called Pressure mouse. It looks like a normal computer mouse except
it is equipped with eight tactile sensors, which measure the pressure with which
the user is touching the mouse. Based on pressure information they distinguished
between user frustration and non-frustration during computer usage [116].

2.4 Accuracy of Decoding Other’s Emotion

In order to evaluate an automatic emotion analysis system reliably, the performance of the
human observer should be considered as a reference point. Indeed, many aspects influence
this judging process by humans as well as by automatic systems.

Decoding an emotion depends on the affective states of both the encoder and the de-
coder, the context surrounding the encoding of experienced emotion, and essentially on
medium via which the relevant cues are to be encoded and decoded. Table 2.2 depicts the
decoding accuracy results of some emotion studies, regarding only the cues that used for
decoding and encoding them.

Evidence that is provided in the Table 2.2, suggests that the recognition accuracy for
facial expressions outperforms all those of other modality. On the whole, in reviewing the
evidence from the studies to date, it can be generally concluded that the recognition of
emotion from standardized voice samples attains between 55% and 65% accuracy, about
five to six times higher than what would be expected by chance. While in facial expression
studies it is generally reported that the emotions are recognized with an accuracy on av-
erage of about 75% [133]. Emotion analysis based on some physiological measurements
seems to perform comparable to the analysis based on facial expression and speech infor-
mation cues. Because of their nature of being invasive, which derogates the naturality of
interaction, such measurements should be avoided in applications of natural human-robot
interaction.
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Study Medium Selected Categories Average Chance Comments
Scherer et al. [133] Facial Expression Six Basic 78% 16.7% Western Countries

Facial Expression Six Basic 65% 16.7% Western Countries
Vocal Cues Neutral & Six Basic 62% 14.3% Non-Western Countries

but Surprise
Vocal Cues Neutral & Six Basic 52% 20% Non-Western Countries

but Disgust, Surprise
Banse and Scherer [4] Vocal Cues fourteen classes 55% 7.14% -
Qi et al. [116] Pressure Mouse Frustration & Non-Frustration 88% 50% physical connection
Healey [59] Respiration Anger, Hate, Grief, Love 81% 14.3% physical connection

Romantic Love, Joy, Reverence
Upper Back Tension Low Stress, High Stress 70% 50% physical connection
From the Trapezium Muscle

Tahakashi [146] Electroencephalograms, EEG Joy, Anger, Sadness 43% 20% physical connection
Fear, and Relax

Russel [125] Facial Expression Six Basic 84.4% 16.7% Western Literal
Facial Expression Six Basic 72.3% 16.7% Non-Western Literal

Table 2.2: Accuracy of emotion decoding, according to medium of transmission and the cues used for
decoding

2.5 Summary

In this chapter we attempted to answer some primary questions on emotion theory, which
serve as the theoretical background to our work. Some widespread definitions of what
emotion could be are listed in the first part. Nevertheless, it seems that no clear definition
exist that attains consensus. However, which of the above mentioned definitions has its
own evidence to substantiate against the others is not for us to judge. All we need for our
work is that, firstly the emotional behavior plays a major role in human-human interaction,
and secondly, this behavior is presented and observed merely via some specific internal
or behavioral changes of the individual reflected into the outside.

The second part of this chapter discussed the three basic theories of emotions that domi-
nate in the psychology research area. The pro-basic-emotion theory researchers advocated
the existence of a small number of emotions that universally experienced and perceived.
Any other emotion according to them is a kind of combination of these basic ones. Di-
mensional theory argued that the emotions can be categorized in terms of a small num-
ber of dimensions (two, valence and arousal or three, by adding dominance). Appraisal
theory focuses on the processes that are involved when experiencing an emotion. It pro-
vides through a set of variables a sophisticated elaboration of the causes of emotions, e.g.,
cognitive evaluations of events, criteria, or checks, rather than directly focusing on the
emotions themselves.

When the translation of this knowledge from the psychology research field into
emotions-sensitive automatic systems is intended, each one of the above mentioned
schemes brings along its own cons and pros. The modern appraisal theories in general,
and the cognitive one (OCC model) in particular are suitable for automatic systems that
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have the ability of displaying emotions rather than recognizing them, which is beyond the
scope of our current work in this thesis.

A drawback of the dimensional based theories is that the projection of the affective
state into a rudimentary 2D, or 3D space will lead to some degree of loss in information.
Additionally, dimensional clustering of emotions is not intuitive when compared with the
discrete one, as will be seen shortly later.

The scheme of clustering the emotions into a small number of basic classes has great
benefits over the other schemes because, firstly, using a categorial scheme to judge the
emotion displayed by others matches the experience of the ordinary human being in daily
life; secondly, the limited number of variables to cope with leads to a remarkable simplic-
ity in contrast to other models (appraisal); and thirdly, the fundamental basics of intuition,
universality in displaying, and perception, provides for these systems the possibility to be
employed independent of sex, culture, ethnicity, and age.

Following this evaluative conclusion we decided to employ the discrete model of
emotion in building systems with the ability to recognize the emotions experienced via
multi-sensory media. Explicitly we adopted the well-known and the widespread model of
Ekman [42] with six basic emotions in addition to the neutral one.

In the third part of this chapter, the expression of emotion via several media is dis-
cussed. Results of some studies presented in section 2.3.4 suggest that some physiological
measurements might be used successfully for human-computer interaction, when com-
pared to the usage of the traditional emotional-related cues of human-human interaction
(facial expression and speech information). These measurements, however, lie beyond the
ability of humans to be directly acquired. They need special equipment to be accurately
acquired and processed. This equipment might demand fixed physical connections to the
user, which make them unsuitable for natural and human-human-like human-robot inter-
action.

The last part of this chapter discussed the accuracy of decoding another’s emo-
tions. Normally, humans express their emotions and receive other’s emotions via sev-
eral communication media, facial expression, speech information, internal physiological
changes,...etc. The results, listed in Table 2.2, suggest that the use of facial exp-
ression and speech information is the convenient way toward natural human-human
communication and consequently human-robot interaction. This notation is supported
by a large body of evidence from studies in psychology, linguistic, and computer sci-
ence [4, 114, 125, 134, 171].

In real-life situation, however, neither facial expression nor speech information are used
separately for emotional human-human interaction. Humans encode and decode emo-
tions via several channels simultaneously. The mutual influence between cues of several
channels should be taken into account when aiming at a multimodal emotional human-
human interaction. For instance, the observer have to combine the facial expression and
the speech information cues to be able to judge if the speaker is smiling or just saying
"cheese". Challenging this point, we focus in this work on realizing an emotion analy-
sis system that acts like a human observer by combining both information sources, facial
expression and vocal cues, in order to act like a human in the emotional bimodal human-
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human interaction.
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The technical revolution transformed computers into a daily necessity, not just for the
engineers who designed them, but also for almost everyone. Evolving the computer from
an orientation towards specialists into an instrument for use by ordinary individuals, from
an accessory device to a daily need, from a quite rational computing box to a fully social
and interactive attendant, has been aimed at since the 1980s.

Unlike to the traditional human-computer interaction, each individual term of the re-
cently aimed at human-computer interaction has its own terminology. The user should
not have to be a computer systems expert; he could be a novice user from any age group,
any gender, from one of several cultural backgrounds or diverse levels of education, or
even handicapped. Computer does not mean explicitly a desktop computer with monitor,
mouse, and keyboard. It could range from the well-known desktop computer to a large-
scale computer system, process control system, embedded system, wearable system, or
even a robot. Interaction is not constrained to the traditionally known keyboard, mouse,
and monitor, but rather the recent interaction channels are expanded to serve for more
efficient and affective human-computer interaction (speech, touch, gaze direction, virtual-
reality).

Social human-computer interaction has gained the interest of quite a few researchers
recently. Nass et al. [99] proposed in their work the paradigm of (Computers Are Social
Actors “CASA”. In their paradigm, they presented through five empirical experiments
that the users interact with the computer in a fundamentally social manner. This social
response, according to them, is not caused by the thought of computers being human
or human-like, or by the belief that the users are interacting with the programmers who
designed them, but rather these social interactions are natural responses to social situ-
ations, which are easy to generate, commonplace, and incurable.

Like in human-human interaction, emotions should play an essential role in social
human-robot interaction. Brave and Nass emphasized that any interface that does not
consider the affective state of the user or fails to manifest the appropriate emotion can
dramatically impede the performance, making it untrustworthy and incompetent [17].
Acting on the assumption of emotional influence on human-human communication, the
researchers in human-robot interaction field argued that the affective states should be
incorporated with the aim to achieve systems that interact with humans like in human-
human interaction [114].

Picard defined affective computing as “computing that relates to, arises from and de-
liberately influences emotion” and published the first book in this area [114]. Since then,
interest in exploring the role of emotion across a number of subdisciplines within comp-
uter science has emerged. In her above-mentioned book, Picard summarized the following
possible abilities, which a computing system or a robot can possess:
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• Systems that have the ability of emotion recognition

• Systems with the ability of emotion expression

• Emotional intelligent systems, and

• Systems that behave emotionally

By focusing on what the user needs, affective computing systems or robots should fulfill
some requirements to constitute the desired emotional human-computer interaction, as
depicted in a basic framework of an emotion analysis system illustrated in Fig. 3.1. These
abilities are: (I)- sensing, recognizing and understanding the user’s affective state, and
(III)- adapting to the user affect and reacting appropriately. These two components share
a third one that includes the cognitive architecture of the robot as well as an affective
model (affective profile) of the user(II) [66].

Socially-Intelligent
Robot

Decision System

Learning System

.......

Computer System/Robot

- Knowledge
- Affective States
- Beliefs & Attitudes
- .........

Robot
Cognitive

Architecture

User
Affective
Profile

User Affective
Behavior

Robot 
Behavior

- Emotion Expression
- Personality

User Affect
Modelling

- Emotion Expression
- User Need Adaption
- .....

Interaction Partner

(I)

(II)

(III)

Figure 3.1: Basic architecture of an Affective Computing framework. The figure depicts the three basic
components of such a framework; (I)- Sensing the affective state of the user, (III)- adapting according either
to the need of the user or to the cognitive architecture of the system1 and, (II)- Modeling affective behavior
of both the user (user affective profile) and the system (cognitive architecture). Derived from Hudlicka [66].

1In our case, the system means an affective system that implemented in a robot
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Sensing and recognizing the user’s affective state is, indeed, the core aspect of affect-
ive computing. Diversity of options already exists for emotion recognition, including not
only the traditional cues used in human-human interaction, such as self-reports, facial exp-
ression, voice and body language, but rather cues beyond the ability of human to observe
such as physiological measurements, as seen in Sec. 2.3.4.

Once the user affective state is identified, a decision needs to be made as to how, or
whether, to adapt the system functionality to this state and the art of adapting. For human-
computer interaction expressing the affective state of the system is one type of several
possible system adaptions, and may be the most appropriate one.

However, the focus of our work in the remainder of this thesis will be on sensing and
recognizing the user’s emotions − component (I) in the Fig. 3.1 − suggesting it to serve
as a basis for further work of both modeling the emotional profile of the user and providing
the ability for the robot to react according to the sensed emotion, exp., user imitation in a
social human-robot interaction [60, 151].

Acting on, on one hand, the fact that a human perceives another’s affective states via
multimodality and, on the other, that sensing each modality can influence (increasingly
or decreasingly) the sensing of others, as discussed in Sec. 2.3.3, the need for a multi-
modal affective recognition system is an important issue, when a reliable emotion analysis
system is intended.

While unimodal systems (mainly based on facial expression or speech analysis) are
investigated deeply, studies taking into account the multimodal nature of the affective
communication process are still not comparable. During the last few years, however, nu-
merous researchers have started to examine the scheme of multisensory fusion of two or
more modalities. A few attempts and application domains will be listed for illustrative
purposes rather than an exhaustive list being given, in order to provide an overview of
which effort is achieved and for which field such multimodality affective system can be
employed.

3.1 Affective Computing in Use

Since the computer has conquered almost all fields of life, researchers have become con-
cerned with engaging it in human life more efficiently, effectively, and, recently, more
affectively. The main goal of affective computing is creating systems with one, or maybe
all of the above mentioned affective abilities [114], aiming to employ them in a wide
spectrum of daily human life, ranging from application in health-care services [82, 84],
in industry [69], in mediating human-human interaction [159], in education [73], games
and entertainment [89], and as life companion [18, 144].

3.1.1 Robots with Social Abilities

A very important aspect in developing affective computing systems, and perhaps the most
fascinating one, is the research on the integration of such systems into agents or robots
with social skills mirroring those of humans. Overall, the use of emotion recognition and
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mimicry of the robot is found to be encouraging for further research in a robotic platform
for multimodal human-robot interaction [60, 151].

Currently, several humanoid robots are being used in the research field of human-robot
interaction, Fig. 3.2 shows some examples of such social robots. Matsusaka et al. devel-
oped a torso robot “ROBITA” which can participate in a group conversation by estimating
who the next speaker will be by speech recognition and face direction recognition [92].
The robot is equipped with video cameras that enable it to detect the gaze and the gesture
of its interaction partner. Its face detector is based on quite simple skin color detection
and for estimation of gaze direction an eigenface-based classifier is exploited.

“Kismet” is an expressive anthropomorphic robot, which was developed by Breazeal.
The robot can engage people in natural and expressive face-to-face interaction. Kismet is
equipped with a total of four CCD cameras to visually perceive the person with whom it
is interacting. Furthermore, Kismet perceives a variety of natural social cues from visual
and auditory channels, and delivers social signals to the human through gaze direction,
facial expression, body posture, and vocal babbles. Upon its own emotion model, which
combines both discrete and dimensional emotions theories, Kismet can display one of
eight affective states (contentment, sadness, anger, fear, acceptance, surprise, sternness,
and disgust) when its emotional state oversteps specific criteria [18].

Figure 3.2: Examples
of robots with
social skills in
research, from
upper left to lower
right: Leonardo,
Kismet, Flobi, and
Barthoc.

Spexard et al. [144] presented an anthropomorphic robot framework “BARTHOC”
bringing together different interaction concepts and perception capabilities with the goal
of creating an interdisciplinary research platform for multimodal human-robot interaction
(HRI). The robot uses two cameras and two microphones for capturing visual and audio
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information from the robot’s surrounding. It has components for face detection, a person
tracking module based on anchoring, and extended interaction capabilities based on both
verbal and nonverbal communication. “BARTHOC” can recognize affect by classifying
the prosody of an utterance to seven emotional states (happiness, anger, fear, sadness,
surprise, disgust, and boredom) independently from the content in the emotional states
of the speaker. The robot is thus able to realize when a communication partner is getting
angry and can react accordingly by displaying a calming facial expression on its face.
The appropriate facial expression can be invoked from different modules of the overall
system, e.g., “BARTHOC” starts smiling when it is greeted by a human and stares at an
object presented to it. Furthermore, “BARTHOC” can mirror the classified prosody of the
utterances during the reading of the story (“Little Red Riding Hood”), through emotion
mimicry of the interactants’ facial expression at the end of each sentence they spoke; the
expressions were grouped into happiness, fear, and neutrality. As the neutral expression
was also the base expression, a short head movement toward the reader was generated as
a feedback for non-emotional classified utterances [60].

An embodied computational platform called “Leonardo” is implemented by Thomaz
et al. Leonardo is an anthropomorphic robot with 65 degrees of freedom that has been
specifically designed for expressive social interaction with humans. The robot is able to
interact and communicate with people through speech, vocal tone, gestures, facial exp-
ressions, and simple object manipulations. The robot has both visual and acoustic in-
puts [147]. While nothing about the performance of the visual-based affective analysis
system is discussed, the acoustic-based system reported as performing well on mapping
the encountered affective states in the poor two-dimensional model of emotion (namely,
valence and arousal).

In our workgroup2 an anthropomorphic robot is developed and called “Flobi”. The
head is suggested to address both sensor head and social interaction requirements. On
the sensor side, “Flobi” is equipped with a wide-angle, high-resolution stereo camera as
visual input channel, and stereo microphones for speaker localization and speech recog-
nition. When it comes to the sociality the exterior of the head is designed in such a way
that it affects the interactant in a positive way. It has eighteen degrees-of-freedom (DoF):
3 in the eyes, 2 in the eyebrows, 4 in the eye-lids, 3 in the neck, and 6 in the mouth, in
addition to two LEDs (one red, one white) that are placed behind each cheek to enable it
to display emotion realted facial expression in a human-like way [86].

3.1.2 BIRON, Social Interactive Robot

In our work in this thesis we focus on embedding a bimodal emotion analysis system
(combination of facial expression and speech information) in a robot called BIRON,
Fig. 3.3 depicts its basic hardware components. The focus of both unimodal systems as
well the bimodal one will be on recognizing six Ekmanian basic emotions in addition to
the neutral one. The proposed systems fulfils most of the requirements of an ideal emo-
tion analysis system of being fully automatic, real-life applicable, and having the ability

2Applied informatics, Bielefeld university, Germany
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to deal with affective interaction situations, in which the interaction partner is engaged
in a conversational session (i.e. displaying facial expression and speaking simultaneously
rather than consequently). Furthermore, the proposed system has the ability to be applied
in scenarios of affective interaction with multiple users.

Figure 3.3: Physical
Characteristics
of the robot,
BIRON..
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BIRON,“BIlefeld RObot companION”, is a mobile robot equipped with a series of
sensors enabling it to perform well in real-world human-robot interaction scenarios [53].
It is comprised mainly of two Duel Core Notebooks running the Linux operating system,
that provide the computational power and to enable the robot to run autonomously in real
human-computer interaction. These two laptops serve for controlling the motors as well
for socially interaction skills. A laser range finder (SICK LMS200) is integrated inside
the front side of the robot base. This laser scanner has the ability to sense objects, for
instance the legs of an interaction partner, up to 50m from the robot. For acquiring images
of the upper body in general, and the face of the interaction partner in particular, a pan-tilt
camera (Sony EVI-D31) is mounted on top of BIRON with approximate height of 142 cm.
The camera has the ability to scan an area of ±100 degree in front of the robot in order to
detect possible objects in its field of view. To localizing the interaction partner according
to the direction of the acquired sound signal the robot is equipped with two interfacial
microphones which are mounted on the upper front side. Two stereo speakers serve as
output medium of the speech dialog, for whose input channel serve the above mentioned
microphones. Furthermore, BIRON possesses some social abilities, such as detecting and
identifying its interaction partner, and adapting to some of his/her verbal cues.
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3.2 Enabling Affective Interaction with BIRON

The focus of this work is to provide the ability for the robot to behave emotionally in real-
life human-robot interaction scenarios. More precisely, we provide the ability of emotion
understanding of the interactant for BIRON, according to which the robot can adapt its
behaviour. As discussed so far, facial expression and speech information are the most hon-
est ways of conveying the internal emotional state on the outside. Following that inferring
the interactants’ emotions will be based on analyzing cues provided by these channels.
Emotion recognition based on facial expression analysis will be discussed in depth in
chapter. 4. A fully automatic, online-applicable system will be proposed that will enable
BIRON to label the facial expression of its interaction partner with one of seven basic
classes of emotions. Adapting to the emotional state of the interactant is an open issue for
future work.

Situations, in which emotions are communicated by displaying facial expressions in
a deliberative way, are seldom encountered in natural human-human as well as human-
robot interaction conditions. Usually the display of facial expressions is associated with
speaking. During such sessions facial configurations related to the process of speech pro-
duction can conflict with those facial configurations associated with the experiencing of
emotions. Speech production can include lip movements, mouth configurations and the
movements of the lower part of the face. Altogether these configurations can lead to a
derogated performance of the facial-expression-based emotion analysis system.

Humans exploit cues of all available modalities associated with the experience of emo-
tions. Thereby, not only consent results of different modalities lead to more confident
decisions, but conflicting results can also be helpful. Multimodal treatment can help in
detecting falsified or masked emotions, or finding out more reliable modalities for cer-
tain emotions. Regarding translating this notion to our robot, taking speech information
into account would smooth the effect of speaking on inferring the emotion displayed by
facial expression during speech. To achieve that, a probabilistic-based fusion model is
proposed in chapter. 5. The model makes use of combining both modalities according to
the respective discrimination power.
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The expression of emotion used to be primarily a research subject of psychologists, neuro,
and social scientists, see chapter. 2. However, the rapid technical and industrial evolution
invalidated this restriction. Since the computer has conquered our lives and became an
essential need rather than an accessory, more-sophisticated human-computer interaction
is being aimed to which will enable users to interact with computers more socially and
effectively.

It is widely accepted that the face plays a major role in human-human communication.
The face is a rich source of information from an individual. The face conveys information
about individual identity, social identity and character, the individual’s internal emotion
states, and gaze [37]. A large evidence gained from the theoretical studies of emotion
suggests that humans communicate more effectively face-to-face, i.e., facial expression
of emotion should play the major role in this interaction [61]. On other side, the rules
of human-human interaction have to be obeyed if the aim is to achieve reliable human-
computer interaction [114, 121]. Hence automatic recognition of facial expressions should
be considered when the development of natural human-robot interfaces is aimed at.

In general the human face conveys information via four kinds of signals. Pantic and
Bartlett [107] categorized them into four basic classes and concluded that only signals
of the last category can be employed for both encoding and decoding an individual’s
emotions.

• Static facial signals: represent the permanent structure of face features, such as
the bony structure, the soft tissue, and the overall proportions of the face. These
signals contribute to an individual’s appearance and are usually exploited for person
identification.

• Slow facial signals: represent changes in the appearance of the face that occur
gradually over time, such as development of permanent wrinkles and changes in
skin texture. These signals can be used for assessing the age of an individual.

• Artificial signals: are exogenous features of the face such as glasses and cosmet-
ics. These signals provide additional information that can be used for gender recog-
nition.

• Rapid facial signals: represent temporal changes in neuromuscular activity that
may lead to visually detectable changes in facial appearance. including blushing
and tears. These atomic facial signals underlie facial expressions.

Indeed, automatic analysis of rapid facial signals seems to play a main role in various
vision systems, including automated tools for tracking gaze and focus of attention, lip
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reading, bimodal speech processing, face-based command issuing, and emotion-related
facial expressions. When natural, social, and emotional interaction between humans and
computers, in general, and especially robots is aimed at, facial expressions provide the
most convenient way to communicate basic information about needs and demands to the
machine. Internal emotional states of the interaction partner such as happiness, indicated
by smiling in Fig. 4.1, can often be read from the displayed facial expression and then
trigger an appropriate dialog and adaptive behavior in the robot.

Figure 4.1: Facial expression
in interaction between hu-
man and robot. Interactant’s
smile can be understood as an
acceptance of what the robot
has done and trigger a suit-
able behavior.

The initial focus of automatic facial expression analysis was on the recognition of the
prototypical emotions from posed static input. Early attempts focused on recognizing
prototypical emotions from two static face images “neutral and expressive” [97, 129].
In the second half of the 1990s, automated face expression analysis started focusing on
posed video sequences and exploiting temporal information in the displayed face exp-
ressions [13, 45].

New findings from neuroscience, psychology, cognitive and computer science, on the
one hand, and the rapid revolution in computer skills, on the other, inspired numerous
researchers to embark on building machines with more-sophisticated skills of facial exp-
ression analysis. Recently, the analyzing of facial expression, which occur in real-life
human-robot interaction, has gained the interest of quite a few researchers.

When human-human-like human-robot interaction (via facial expression) is aimed at,
the human visual system should be set as a reference point about the desired functionality
of the employed systems. To achieve that, the employed facial expression analysis system
should fulfill many requirements:

• The first requirement is that all of the stages of the facial expression analysis,
namely, face detection, facial expression information/features extraction, and facial
expression classification, have to be performed automatically

• The second requirement is that all the above-mentioned processes have to be per-
formed in real-time conditions. Otherwise, delayed reaction of such systems renders
the interaction desynchronized and less efficient, and
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(a) (b)

Figure 4.2: Special constrained conditions of facial expression analysis systems. (a) Two cameras are
mounted to an arrangement that keeps the head fixed in order to enable the system to capture specific views
of the face. (b) The face is labeled with colored markers; they are tracked to infer some emotion-related
displacements.

• The third requirement is that an ideal facial expression analysis system should
like the human visual system by being robust in inferring the affective state of the
interaction partner in most real-life situations

For these situations the exploited system ought to be applicable in everyday-life con-
ditions, able to deal with rigid head motions, changes in lighting conditions, changes in
viewing conditions, and partial occlusion of the face. Additionally, an ideal system should
have the ability of inferring the affective state of the interaction partner regardless of sex,
age, and ethnic group. Furthermore, it has to perform well without assuming the observed
subjects to have any constrained appearance (colored regions on the face, or face mark-
ers [71], without it being set in any constrained environment (human sitting fixed in front
of a camera that is mounted on the subject’s head and placed in front of his/her face [110],
or without being invasive (the user is connected physically to the system) [16, 25, 73].
Fig. 4.2 illustrates some of these restrictions that may derogate naturality of the inter-
action.

In this chapter, a system for visual facial analysis that fulfils almost all of the above-
mentioned requirements will be presented. The proposed system is fully automatic and
exhibits noticeable robustness in every day-life conditions with either a single interaction
partner (person-dependent) or multiple partners (person-independent). The system is also
embedded as part of the interactive robot companion BIRON, which serves for natural
human-robot interaction in real-life scenarios.

The state of the art in the field of automatic facial expression analysis will be
overviewed first. In this overview an analytical discussion about the three basic stages
of an automatic facial expression analysis system-, ( namely face detection, facial fea-
tures extraction, and classification) will be included. The focus of the overview will be on
the sufficiency of these methods to be applied in real-life scenarios.

A novel approach to fully automatic facial expression analysis with the ability to be
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applied in real-life scenario will be discussed in Sec. 4.6. The system performs fully au-
tomatically ranging from the first stage of face acquisition to extracting the proper facial
features to the categorization of these features into a suitable emotion class. An integration
concept of this system in our BIRON as well as a comprehensive evaluation on a suitable
database (DaFEx) will be discussed in Sec. 6.3. The performance of this system in natural
and unconstrained human-robot interaction will be discussed in Sec. 6.6.

4.1 Related Work

In a related work that discusses systems with online ability, Valsatar and Pantic [152]
reported some progress of building a system that enables fully automated fast and robust
facial expression recognition from face video. They analyzed subtle changes in facial
expression by recognizing facial muscle action units (AUs) and analyzing their temporal
behavior. Their work was based upon a set of spatio-temporal features calculated from
tracking data for 20 facial fiducial points. To detect these 20 points of interest in the
first frame of an input face video, they utilized a fully automatic, facial point localiza-
tion method that uses individual feature GentleBoost templates built from Gabor wavelet
features. To track the facial points they employed a particle filtering scheme that uses
factorized likelihoods and a novel observation model that combines a rigid and a mor-
phological model. The AUs displayed in the input video and their temporal segments are
recognized finally by Support Vector Machines trained on a subset of highly informa-
tive spatio-temporal features selected by AdaBoost. However, like all geometric-based
methods, which will be discussed shortly later, their work demands labeling of the first
frame as reference. Furthermore no online ability is discussed. Bartlett et.al. [7] proposed
a system that automatically detects frontal faces in the video stream and classifies them
into seven classes: neutral, anger, disgust, fear, happiness, sadness, and surprise. The face
detector, which is based on Viola & Jones detector, is used to convey an image patch con-
taining the face to a Gabor-wavelet-based facial feature extractor. Gabor representation of
the conveyed patch is formed and processed by a bank of SVM classifiers.

4.2 Structure of Face analysis system

Fig. 4.3 illustrates the basic components of the system of face analysis. The first task in
the face analysis process is to find the faces in the input image/frame, if there are any.
Depending on the application, the faces may be tracked over time or detected from a
single image (or from a video image, but without tracking). To avoid undesired effects
(changes in light conditions, face pose or scale, ....) many preprocessing methods can be
employed (normalization, face patch segmentation, ....). The next stage is to extract some
emotion-related information of the detected/tracked facial image/frame. The final step is
to categorize the image/frame either in one from a set of basic emotion classes or by
labeling them with a single action unit or a combination of several action units according
to the extracted information from the previous stage.
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Recent vision-based affective computing systems can be categorized according to sev-
eral aspects: the information to be processed, how to process them, and what the expected
output of such systems is. Facial information processing may occur holistically (the whole
face) or locally (areas prone to change with facial expressions, such as brows, mouth
and lips). Some methods (motion-based approaches) focus directly on facial changes
associated with emotion-related facial expressions, while others (deformation-based ap-
proaches) rely on natural face images as reference in order to extract facial features rele-
vant to facial expression. The output of such systems can either infer what underlies the
displayed expression (emotion) or solely describe specific movements on the face surface.

Facial Expression 
AnalysisFace Acquisition

Facial Data Extraction 
and Representation

Face
Detection

Head Pose
Estimation

Action
Units

Basic
Emotions

Appearance
Features

Geometric
Features

Figure 4.3: Schematic architecture of the facial-expression-based emotion analysis system. The first stage
serves for capturing input images, and finding or estimating the location of the face in these images. The
middle stage uses the information provided from the first stage to extract some facial features related to the
displaying of emotion. These features are finally labeled with one of a predefined number of basic emotions
or action units in the facial expression analysis stage.

Section 4.3 will give an overview of face detection approaches that have recently been
used for face analysis, and then discuss the ability of each to be applied in real-life scenar-
ios. Quite a few methods are applied in order to extract some specific feature suitable for
the next stage of classification/analysis. The common methods employed by the comp-
uter vision community for this task will be discussed in Sec. 4.4. Classification based
on the extracted features constitutes the last stage of an automatic expression analysis
system. This phase includes categorizing the displayed facial expressions into one of a
predefined number of classes (basic emotion), action units (AUs), or even combinations
of both. Some approaches in the field of pattern recognition and machine learning, which
currently dominate in the field of automatic face analysis, will be overviewed in Sec. 4.5.

4.3 Face Detection

Face detection is the first step in any automatic face analysis system. Its quality deter-
mines the quality of the following stages. Face detection means finding the face in an
input image, if there is any. Face detection is a challenging task since there are many
conditions that may vary. When the applications in real-life conditions are considered,
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the pose and the orientation of the face in relation to the camera can vary temporally; the
target face may be partially occluded by some other objects, or by another face; and the
image including the face may be taken outdoors in daylight, indoors in fluorescent light,
or in other lighting conditions. However, when the analysis of facial expression is aimed
at, the variation in the individual’s face should be taken into account. Each person has a
unique face, which looks different, has its own biometric, and displays facial configura-
tion differently. Furthermore the face of the same individual looks different when the time
of image acquisition is considered (age of the person, eyeglasses, beard, moustache and
make-up make, ...).

4.3.1 Basic Approaches to Face Detection

Yang et al. [166] classified the used approach into four major categories, namely “
knowledge-based approaches, feature-based approaches, template matching approaches,
and appearance-based approaches”, under which further approaches are categorized
according to the method used.

The hierarchical top-down knowledge-based approach assumes a different face
model at different coarse-to-fine scales. For efficiency, the image is searched at the coars-
est scale first. Once a match is found, the image is searched at the next-finer scale un-
til the finest scale is reached [165]. Another aspect of knowledge-based face detection
is employed to detect some facial features: eyes, nose, and mouth. In this approach, the
facial features are located using both horizontal and vertical projection of the image inten-
sity. The local minima of the horizontal profile correspond to the left and right boundary
of the face, while those of the horizontal profile determine the locations of lips, nose tip,
and eyes [78]. However, projection methods suffer from two drawbacks, namely when the
face has to be detected from an image with complex background and the case of multiple
faces.

The bottom-up feature-based approaches search through the image for a set of in-
variant facial features and groups them into face candidates based on their geometric
relationship. Quite a few methods are used to detect faces via detecting some features
such as face contour, eyebrows, eyes, nose, mouth, hair line, or combinations of several
features. Some examples are: Edge map “Canny Detector” to segment the face from a
cluttered background [142], and searching the points and the edges from an image then
attempting to group them together[167].

The neural networks displayed their efficiency in solving several pattern recognition
problems such as autonomous robot driving and object recognition, to which the two
class pattern recognition problem of face detection belongs. In neural-networks-based
face detection techniques, the structure of the network is chosen first. The structure defines
how many layers the network will have, the size of each layer, the number of inputs of
the network and the value of the output for faces and non-faces. Then the network is
trained using samples of faces and non-faces. To test an input image for faces, most of
the approaches apply a window scanning technique to detect faces. The window has a
fixed pre-determined size and moves with certain step until it has scanned all parts of
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the input image. Each time the output is computed if it is above a certain threshold the
window is classified as face. The most common way to give the ability of detecting faces
with different scales is the forming of an image pyramid by successively resizing the
input image. Then each level in the image pyramid is scanned by the moving window.
Incorporating this approach with a multilayer neural network yielded a successful neural-
network-based face detection system, which is proposed by Rowley et al [123].

According to the deformable templates, the facial features are described by a param-
eterized template. Snakes or active contours are commonly used to detect a head bound-
ary. The evolution of a snake is achieved by minimizing an energy function by utilizing
an optimization technique [57]. Images of human faces lie in a subspace, which can be
represented by several statistical analysis methods, an example is the using of component
analysis, “PCA”. Sirovich and Kirby [76] proposed a technique using principal com-
ponent analysis “PCA” to represent human faces. The technique first finds the principal
components of the distribution of faces. Each face in the set can then be approximated by
a linear combination of the largest eigenvectors, more commonly referred to as “eigen-
faces”.

The AdaBoost-based face detector, introduced by Viola and Jones, demonstrated that
faces can be fairly reliably detected in real-time under partial occlusion. The achievements
of theirs can be attributed to the fast-calculated Haar-like features via the integral image
and the cascade structure of classifiers learned by AdaBoost [155]. The motivation behind
the cascade of classifiers was that simple classifiers at an early stage can filter out the most
negative examples efficiently, and stronger classifiers at a later stage are only necessary
for dealing with instances that look like faces.

4.3.2 Selected Face Detection approach

To evaluate the performance of a face detector several metrics can be considered, such
as detection accuracy, detection speed, required training time, the required number of
training samples, the sensitivity of the environment, and the memory requirements dur-
ing training and test. All these biometrics are crucial when it comes to applying facial
expression analysis systems for natural human-computer interaction.

The detection rate and false alarm rate are typically used to determine the detection
accuracy. The detection rate can be defined as the ratio between the number of correctly
detected faces and the number of faces in the image. The false alarm rate on the other
hand determines the number of detected faces that are not actually faces.

The detection speed is usually an important factor, especially when real life applications
are being aimed at. There are huge differences in detection speeds between detection
methods. The methods that work in real-time with a standard PC are the most useful in
typical HRI applications since users usually expect immediate feedback on their actions.
Some examples of such face detection methods are the cascaded face detector by Viola
and Jones [155], the rotation invariant multi-view face detector by Huang et al. [63], and
the Encara face detector proposed by Castrillón et.al. [22].

Another metric to be considered is how precisely the face has to be located so that the
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detection is considered correct. If the application is interested only in the number of faces
in the image or just the rough location is needed, then all the detections for the face can
be considered correct. However, if further classification has to be done for the detected
face (in our case, the extracting of features related to facial expression) then badly located
faces may become a problem even if face alignment is used.

(a) (b)
Figure 4.4: Examples presenting the performance of the exploited face detector in single-user and multiple-
user situations; (a) and (b) respectively.The bounding box of the face and the positions of the eyes, nose, and
mouth are colored with either green or blue. Green indicates that the detected object is a frontal face, while
blue indicates the using of tracking rather than simple detecting. Printed by courtesy of Castrillón [22].

Considering the above mentioned metrics, we employed the face detection approach
proposed by Castrillón. This approach makes use of a combination of the two feature-
and knowledge-based families. Such a combination enables ENCARA to inherit the ro-
bustness of the former family and the detection speed of the latter. In addition to the
position of the face, ENCARA delivers information about the positions of the eyes, nose,
and mouth, which can serve as initialization points for the facial features extractor, see
Sec. 4.6 for more details. ENCARA achieves approximately 99.9% correct detection on
faces and 87,5% on eye pairs in real-time data with multiple faces enabling the applicabil-
ity in the scenarios of emotional interaction with multiple users, as illustrated in Fig. 4.4
with an approximate speed of 20-30 msec on recent PC hardware [22].

4.4 Facial Feature Extraction

After the face location has been detected, the next step of the automatic facial expression
analysis system is the extraction of some facial features relevant to facial expression.
Fruitful avenues of feature extraction methods can be found in the literature [149, 171].
Current used methods can be categorized according to their method of answering three
major questions [107]:

(i) Is temporal information being used?

(ii) Are the features holistic (the whole face) or local (subparts of the face)?
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(iii) Are the features view- or volume-based (2D or 3D)?

Given the goal of face recognition (description of facial behavior looking at an indi-
vidual’s face), most of the proposed approaches are based on two-dimensional facial fea-
tures, either for the whole face or just some facial regions.

The features extracted using the recently proposed 2D-based methods can be catego-
rized into three main classes, namely geometric features, appearance features, and hybrid
features. The features of the first class are obtained using geometrical information (mo-
tion) of either the whole face shape or some facial features (the shape of some facial
components, eyes, mouth, or the location of some fiducial points, corner of the eyes,
mouth, eyelids) [28, 149]. The features of the second class represent the texture of the
facial skin including wrinkles, bulges and furrows in the whole face [83] or around
some facial features [5]. Hybrid features are presented as a combination of the above
two methods [29, 164]. It is suggested and almost agreed that using both geometric and
appearance features may be the best choice for presenting information relevant to facial
expression [107, 149, 171].

4.4.1 Geometric-Based Facial Feature Extraction

Optical flow approaches gained their own place in the field of describing facial features’
motion. That is because the dense flow information is available throughout the entire
facial area, regardless of the existence of facial components, even in the areas of smooth
texture such as the cheeks and the forehead. Many researchers adopted this approach to
capture the information associated with geometric displacements either locally (specific
set of facial regions) [104] or holistically (the whole face) [81].

Lien [81] analyzed holistic face motion with the aid of wavelet-based, multi-resolution
dense optical flow. For a compacter representation of the resulting flow fields they
computed PCA-based eigenflows both in horizontal and vertical directions. Otsuka and
Ohya [104] estimated facial motion in local regions surrounding the eyes and the mouth.
Feature vectors are obtained by taking 2D Fourier transforms of the vertical and horizontal
optical flow fields.

Some researcher have adopted this approach more recently [1, 149]. Some limitations,
however, are inherent in optical flow techniques, such as the accumulation of error and
the sensitivity to noise, occlusion, clutter, and essentially the changes in illumination.

In feature point tracking, the estimates of geometric displacements are obtained only
for a selected set of prominent facial features such as lines and furrows in the regions sur-
rounding the eyes and mouth. In order to reduce the risk of tracking loss, feature points
are placed into areas of high contrast, preferably around intransigent facial features (eyes,
eyebrows, mouth). Hence, the movement and deformation of the latter can be measured
by tracking the displacement of the corresponding feature points. However, as facial mo-
tion is extracted at only selected feature point locations, other facial activities are ignored
altogether. The automatic initialization of feature points is difficult and often done manu-
ally [161].
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It is possible to determine facial deformations with more reliability than with previously
discussed methods, namely by measuring deformation in areas where there is underlying
muscles contraction or retraction. These are mostly skin regions with relatively poor tex-
ture. Highlighting for these methods is required and can be done by either applying color
to salient facial features and skin or by affixing colored plastic dots or colored markers
to predefined locations on the subject’s face [70, 96]. It is to be noted, however, that the
tracking of feature points or markers allows facial-expression-related motion/deformation
information to be extracted from often only specific feature point locations, while the
rest is neglected. Furthermore, labeling the face with colored markers will lead to such
methods not fitting a natural human-human-like human-robot interaction.

Yet another way of extracting the motion is difference images. When it comes to the
analysis of facial expression, difference images are mostly created by subtracting a given
facial image (exp, image with a sad face) from a reference image, containing a neutral face
of the same individual [38]. In comparison to optical flow approaches, no flow direction
has to be extracted, but only differences of image intensities. However, accurate face
normalization procedures are necessary in order to align reference faces to the test faces.

Similar to difference images methods, Valsatar and Pantic proposed an approach based
on temporal templates. Temporal templates are 2D images, constructed from image se-
quences, which show motion history; that is, where and when motion in the image se-
quence has occurred [153]. In addition to the sensitivity to rotation, translation and scale
changes, temporal templates rely on the assumption that either the camera and the back-
ground have to be static or the motion of the object of interest (the face) has to be well
separable from the motion induced by both camera movements and background clutter.

Black and Yacoob introduced local parametric motion models that not allow only non-
rigid facial motions to be accurately modeled, but also provide a concise description of the
motion associated with the edges of the mouth, nose, eyelids and eyebrows in terms of a
small number of parameters. However, the employed motion models are focused on some
specific facial regions involved in facial expressions (eyes, eye-brows and mouth), while
the analysis of other features, occurring in residual facial areas, was not considered [13].

The works of [27, 138] focused on the design of Bayesian network classifiers for
emotion recognition from face videos based on facial features tracked by a method
called “piecewise Bezier volume deformation tracking”. This tracker employs an explicit
3D wireframe model consisting of 16 surface patches embedded in Bezier volumes. The
main shortcoming of these mentioned model-based methods is the demand of manual se-
lection of landmark facial points in the first frame of the input video based on which the
face model will be warped to fit the face [27, 138]. For this reason they are not sufficient
for the goal of natural and human-like human-computer interaction.

In addition to the fact that each one of the above-mentioned methods has its own
drawbacks, all geometric-based methods share the shortcoming of demanding a reference
image to be compared with the test images. This problem is solved either by labeling the
first image of each sequence with the suitable emotion state or by collecting data in which
each sequence has to begin with a specific facial expression, almost neutral. Rather than
most of the existing geometric-based methods are not suitable assuming some conditions
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(outplane head motions, partial face occlusion). These limitations, indeed, reduce the us-
ability of system based on such approaches to perform well in the application of neutral
real-time life-like human computer interaction.

4.4.2 Appearance-Based Facial Feature Extraction

The geometric-based facial feature extractors mentioned above are based on the thought of
motion when the problem of facial expression recognition is considered. It is suggested
by Bassili [10] that humans can recognize facial expresions above chance from motion
using point-light display. In contrast, it is argued that the recognition of facial expression
via texture (appearance-based) outperforms those based on motion (geometric-based) [38,
174].

Appearance-based facial feature extractors methods can be subcategorized into Gabor
filters, integral-image-filters “haar filters” based methods, neural-nets-based methods,
and kernel-based approaches including (principle component analysis, PCA, and in-
dependent comonent analysis, ICA).

Gabor wavelets are 2D sine waves modulated by a Gaussian envelope. They are widely
used to extract the changes in face appearance as a set of multiscale and multiorientation
coefficients. Gabor filters may be applied to the whole face image [8, 83] or to specific
regions of the face [88, 158].

In the work of Vukadinovic and Pantic, the face is detected using the Viola and Jones
detector [155]. The detected face is then divided into 20 relevant regions of interest (ROI),
each of which is examined further to predict the location of a corresponding facial point.
The proposed facial feature point detection method uses individual feature patch tem-
plates, which are built from a combination of gray levels and Gabor wavelet features of
the corresponding ROI, in order to detect points in the relevant region of interest [158].

A number of approaches to face image analysis have employed data-driven kernels,
which are learned from the statistics of the face image ensemble, to represent expressive
facial images. Representations based on principal component analysis, eigenfaces for the
whole face region and eigenvectors for some facial features (mouth and eyes regions), are
applied successfully to recognize facial expressions [105]. PCA has some advantages over
other face recognition schemes in terms of speed and simplicity, and its reduced sensitivity
to noise (exp, noise due to small occlusions; as long as the topological structure does not
change, changes in background). However, PCA-based methods are not robust against
pose changes since global features are highly sensitive to translation and rotation of the
face. Furthermore, when handling video stream (real-life applications) it is considered
that PCA-based methods offer a high extent of sensitivity against rigid movement of the
observed face [175].

4.4.3 Hybrid Methods of Facial Feature Extraction

The importance of appearance-based features for expression recognition is emphasized
by several studies, which suggest that appearance-based features may contain more infor-
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mation about facial expression than displacements of a set of points [38, 174]. Zhang et.al.
compared the two above-mentioned types of facial features extraction method, namely the
geometric positions of 34 fiducial points on a face and 612 Gabor wavelet coefficients ex-
tracted from the face image at these 34 fiducial points. The recognition rates for seven
emotion-specified expressions (the six basic emotions of Ekman plus the neutral one)
were significantly higher for Gabor wavelet coefficients [174]. Similarly, Donato et al.
compared several techniques utilized to extract facial features for recognizing six single
upper-face AUs and six lower-face AUs. These techniques include optical flow, principal
component analysis (PCA), independent component analysis (ICA), local feature analy-
sis (LFA), and Gabor wavelet representation. The best performances were obtained using
a Gabor wavelet representation and independent component analysis [38]. In contrast to
that, Pantic and Patras suggested that the motion/geometric-feature-based methods out-
perform the appearance-based ones [108].

While geometric-feature-based approaches do relay only on the location of a specific
set of facial points (either the whole face or some facial features) and the appearance-
based approaches present solely the changes in the texture of the face (skin changes),
combining these two approaches makes use of elements of both streams with the aim of
harnessing their advantages. This notion is supported by evidence provided from studies
of the human visual system [10]. Indeed, it can be concluded that combining appearance-
based and motion-based representations may be the most powerful method for extracting
facial features sufficient for face analysis in the application field of human-computer inter-
action [6, 108, 171].

Wen and Huang used a motion-based explicit 3D wireframe face model to track geo-
metric facial features defined on the model. A 3D model is fitted to the first frame of
the sequence by manually selecting landmark facial features such as corners of the eyes
and mouth. Gabor wavelets are then used to extract the appearance changes in 11 facial
regions, which are being tracked using the 3D model, as a set of multi-scale and multi-
orientation coefficients [164].

Tian et al. studied geometric features as stand-alone an in combination with Gabor fil-
ters. To detect and track changes in the shape of some facial components; mouth, eyes,
lips, brow, and cheek, they used a multi-state model for each component. To extract
appearance-based feature Gabor wavelet coefficient are then calculated in 20 locations
which are defined based on the geometric features in the upper face [148]. However, while
the region of the face and approximate location of individual face features are detected
automatically in the initial frame, the contours of the face features and components have
to be adjusted manually in the this frame. Zhang and Ji employed the same appearance-
based method, as used by [149], while for some geometric features they used 26 facial
points around the eyes, eyebrows, and mouth instead of multi-state models of Tian [173].

4.4.4 Active Appearance Models, Feature Extractor

Active Appearance Models “AAM”, which were proposed by [29], are a powerful gen-
erative class of methods for modeling and registering deformable objects. AAMs simul-
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(a) (b)

Figure 4.5: Training an AAM. (a)- An image example of annotated set for training an AAM, the blue points
indicate fiducial landmarks. (b)- Triangulation method used to warp each image in the training set to match
the base shape .

taneously model the intrinsic variation in shape and texture of a deformable visual object
as a linear combination of basismodes of variation. As such modes of variation can be
easily calculated by applying PCA to a normalized training set. The result is a compact
model, capable of generating large variations in shape and texture with a relatively small
parameter set.

In order to build an AAM, some set of annotated images is needed. The annotation is
achieved by putting (drawing) some fiducial landmarks on the images of the training set.
The points represent the shape of the observed object; in our case, to annotate a face object
the point can be set on the boundaries of the mouth, nose, eyes, chin, eyebrows, the center
of the mouth, and the irises. This annotation process can be achieved either manually or by
employing a bootstrapping method, in which the model built from the already annotated
images serves as an initialization method for annotating new images. This process is iter-
ated until all images in the training set are annotated. AAMs computed from image-data
annotated using Bootstrapping-based method, however, seem not to extract feature suf-
ficient for facial expression recognition. Researching for suitable alternative set an open
issue for future work. Fig. 4.7(a) shows an image example with suitable annotation.

The shape of an AAM of such an annotated set of images is generated as the following:

s = s̄ + Psbs (4.1)

where s̄ is the mean shape (base shape), Ps is a set of orthogonal modes of variation in
the training set and bs is a set of shape parameters. Both s̄ and Ps are obtained by applying
Procrustes alignment algorithm and principal component analysis on the annotated images
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of the training set.
The texture of an AAM is defined within the so-called “shape free” frame. It consists

of N pixels, usually chosen to lie within the convex hull of the base shape s̄. To achieve
that, each image in the training set should be warped so that its markers match those of
the base shape. For the warping task a triangulation algorithm is used. Fig. 4.7(b) shows
the result of applying a triangulation method on the image displayed in Fig. 4.7(a).

As with the shape model, the texture is also generated using a linear combination of
basis variation vectors:

t = t̄ + Ptbt (4.2)

where t̄ is the vectorized mean image, Pt is the texture basis matrix that is obtained by
applying PCA to a set of images, after being warped according to the shape-free frame
and bt is the set of grey scale parameters.

In order to obtain more compact representation of deformable objects it is crucial to take
the possible correlation between the variations in both shape and grey level in account.
To achieve this, a third PCA is applied on the concatenated bs and bt parameters. After
this process has been achieved, each example from the training set can be represented as
follows:

b = Qc (4.3)

where Q are the eigenvectors and c is the vector of appearance parameters controlling
both the shape and the grey scale of the model.

Given a new unseen image Ii, AAM fitting is the process of finding the model param-
eters which best fit the considered image. In other words, the process is to find the best
parameters that minimize the difference between the new image and the one synthesized
by the model Im, i.e.

δI = Ii − Im (4.4)

This is usually an iterative process which sequentially updates the model parameters p
through an update function:

The power of this generative model stems from (I)- its compact representation of ap-
pearance (comprising shape and texture), (II)- its rapid fitting to unseen images and, (III)-
its robustness in terms of handling variations in image intensity and feature shape. In add-
ition, being PCA-based, AAM is insensitive to partial occlusion and can represent semi-
profile faces rather than frontal view [30]. In contrast to other feature extraction methods,
AAM needs neither Manual labeling of the first frame in each sequence nor labeling of
the emotion class.

AAM, nevertheless, could fail when it comes to the application in real-world scenarios.
That is due to the fact that AAM needs an initial estimate of the position, orientation, or
scale at which this model should be placed in an image. Considerable face zoom variations
or out-plane/rigid movements of the face may cause the fitting algorithm of AAM to fail
when the suitable initialization is neglected. Fig. 4.6 illustrates an example of such a
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(a) (b)

Figure 4.6: AAM fitting algorithm can fail if rigid head movement, exp., from the position in (a) to the
position in (b), is encountered. The images are extracted from the DaFEx database [11].

fitting fail. To overcome this drawback we have proposed a novel initialization method
that causes the fitting algorithm of AAM to be employed faster and in a more robust
manner in our facial-expression–based emotion analysis system for real-life conditions,
see Sec. 4.6 for more details.

4.5 Classification

The last step of an automatic facial expression analysis system is to translate the ex-
tracted information (movement information, parameter vector) into a suitable description
of the displayed configurations. The currently used facial expression analyzers classify
the encountered expression (i.e., the extracted facial changes information) as either a par-
ticular facial action (AUs) [110, 152] or a particular basic emotion [3, 117, 137, 169];
some systems perform both [109, 173]. Basic-emotion-based and facial-action-units-
based models are referred by Fasel and Lüttin as judgment- and sign-based approaches
respectively [47]. While the aim of former is to infer what underlies a displayed facial
expression, such as affect or personality, the latter aims solely to describe the surface of
what is shown, such as facial movement or facial component shape. As an example, upon
seeing a frowning face, an observer with a judgment-based approach would make judg-
ments such as “angry” whereas an observer with a sign-based approach would code the
face as having activation of some specific AUs.

For sign judgment approaches the most widely used method for manual labeling of
facial actions is the Facial Action Coding System. FACS is a human-observer-based
system designed to detect subtle changes in facial features viewing videotaped facial be-
havior in slow motion. Trained human observers can manually code all possible facial
displays, referred to as action units AUs. Action units may occur individually, in dou-
ble or even multiple combinations [113]. Ekman and Friesen proposed that specific of
these combinations represents prototypic expression of emotion. Emotion-specified exp-
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ressions, however, are not included in standard FACS; they can be coded in separate
systems, such as EMFACS or FACSAID 1.

One of the main criticisms of AUs-based works is that the methods are not applica-
ble in real-life situations, where subtle changes in facial expression typify the displayed
facial behavior rather than the exaggerated changes that typify posed expressions [170].
Furthermore, the extraction of AUs from faces is a complex process especially if the data
is collected in natural environments, the background is likely to be complex, the face
may have any size and position or may be partially obscured, and the subject may be
engaged in conversational session, in which it is difficult to distinguish between facial
changes related to emotion displaying, and those related to speech production processes.
All this implies a relatively complex image processing problem that is coupled with the
difficulty of interpreting the AUs and relating them to emotional state, yielding a complex
multi-disciplinary research problem.

When it comes to the basic-emotion-based approaches, it is suggested and widely ac-
cepted that there are some basic emotions, which are universally encoded and decoded,
see Sec. 2.2.1 for more details. The most commonly used facial expression descriptors
in message judgment approaches are the six basic emotions of Ekman, namely; (angry,
disgust, fear, happy, sadness and surprise), and usually accompanied by a neutral one.

This trend can also be found in the field of automatic facial expression analysis. Most
researchers in the field of facial expressions analysis developed so far, have targeted hu-
man facial affect analysis systems, which attempted to recognize all these basic emo-
tions [3, 117] or a small set of them like neutral, positive and negative emotions [137, 169],
or even only distinguishing affective from non-affective faces [168].

Regardless of the categorization scheme used, two basic mechanisms of classification
are applied by the expression analyzers; namely, static approaches and dynamic ap-
proaches.

4.5.1 Static Approaches

They rely solely on the feature (information) extracted from the current frame to infer the
encountered expression. The input image of such classifiers can be a static image or a
frame of a sequence that is treated independently. Variety of methods of this family can
be found in the literature for facial expression recognition such as Neural Nets, which are
either applied directly to the face image [49] or in combination with some facial features
extraction methods, such as PCA, ICA, Gabor wavelet, or AAM [105]. Linear Discrimi-
nant analysis [160], Bayesian network classifier [27, 70], K-nearest neighbor [138], and
Support Vector Macines [96, 117] are further methods, which are used to classify facial
expression statically.

In the following, two approaches of this family will be reviewed and discussed re-
garding their suitability to be applied in an online, real-life-applicable facial expression
analysis system. The nearest neighbor classifier is very fast, even for high-dimensional
feature vectors, and therefore it is especially suitable for real-time processing. However,

1http://www.face-and-emotion.com/dataface/facsaid/description.jsp
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it yields slightly lower classification rates compared with the SVM classifier, as will be
discussed in Sec. 6.3. Hence, SVM will be primarily employed in this thesis.

Nearest Neighbor Classifier

The k-nearest neighbors (kNN) rule is one of the oldest and simplest methods for pat-
tern classification. Nevertheless, it often yields competitive results in certain domains,
when it is cleverly combined with prior knowledge. The kNN rule classifies each unla-
beled example by the majority label among its k-nearest neighbors in the training set.
Its performance thus depends crucially on the distance metric used to identify nearest
neighbors. In the absence of prior knowledge, most kNN classifiers use simple Euclidean
distances to measure the dissimilarities between examples represented as vector inputs.
Euclidean distance metrics, however, do not capitalize on any statistical regularities in the
data that might be estimated from a large training set of labeled examples.

The most common metric often used in face recognition and facial expression analysis
is the Mahalanobis distance, which is computed as follows

D(x, z) = (x− z)T (W )(x− z) (4.5)

where x and z are observation vectors being compared and (W ) is a weighting matrix
(covariance matrix of training data). Nearest neighbor classification relies on the assump-
tion that the class conditional probabilities are locally constant. This assumption becomes,
however, false in the case of high dimensionality with finite samples set leading to an un-
satisfying performance.

Support Vector Machines

Most machine learning algorithms receive input data during a training phase then build
a model of the input and deliver a hypothesis function that can be used to predict fu-
ture data. Among these algorithms, support vector machines (SVMs) pioneered by Vap-
nik [154], have received considerable attention because of their superior performance in
pattern recognition and function regression. In the following, we concisely review the
basic principles of SVMs for pattern recognition. In a simple two-classes case, given a set
of labelled training pairs such as:

S = (xi, yi), i = 1, . . . , l where xi ∈ Rn and y ∈ {1,−1}l (4.6)

The main goal of the SVM approach is to define a hyperplane in a high-dimensional
feature space Z, which divides the set of samples in the feature space such that all the
points with the same label are on the same side of the hyperplane. In general, the mapping
from the input space to the feature space is non-linear and can be expressed as φ : x ∈
Rn 7−→ z ∈ Z Therefore, the training problem of an SVM in this case is to find w and b
so that

fw,b(z) = sgn(wTz + b) (4.7)
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where w is a coefficient vector and b is a bias of the hyperplane; sgn
[
·
]

stands for
the bipolar sign function. Depending on the kernel used, input data is mapped into either
another space with the same number of dimensions, exp., the linear kernel, or usually in a
higher-dimensional feature space through some nonlinear mapping chosen a priori so that
a nonlinear classification boundary in input space can be achieved.

By making use of the nonlinear mapping φ, one can map the set of training samples in
input space as a corresponding training set in the feature space, i.e., φ : xi 7−→ zi, i =

1, ...,N. An optimal separating hyperplane (OSH), which maximizes the margin between
the two closest vectors to the hyperplanes, is constructed in this feature space. The clas-
sifier constructed by the hyperplane in the high-dimensional feature space can be built
as

yi
[
wTzi + b

]
≥ 1, i = 1, ...,N (4.8)

Among the separating hyperplanes, the one with the maximal distance to the closest
point is called the optimal separating hyperplane, which will result in an optimal general-
ization. In view of the fact that the distance to the closest point is 1/‖w‖, two fold of the
distance is called the margin.

The margin, which is presented as the distance between the optimal separating hyper-
plane and the closest point, can be seen as a measure of the generalization ability of this
hyperplane classification. The larger the margin, the better the generalization is expected
to be. Thus, the optimal separating hyperplane is the one which maximizes the margin
and gets the best generalization performance.

For the nonseparable case, on the other hand, slack variables ξi can be introduced such
that the support vector machines require the solution of the following optimization prob-
lem:

min
w,b,ξ

1

2
WTW + C

∑
i=1

ξi (4.9)

subject to yi
(
WTφ(xi)

)
≥ 1− ξi,

ξi ≥ 0

Here training vectors xi are mapped into a higher (maybe infinite) dimensional space
by the function φ; C > 0 is the penalty parameter of the error term. The purpose of these
non-negative variables is to allow misclassified points to exist. When the i th example is
misclassified by the hyperplane, the corresponding ξi > 1. As a consequence,

∑
i ξi, is

a measure of an upper bound on the number of training errors with which minimization
reduces the empirical training error.

As mentioned above, SVMs perform an implicit embedding of data into a high-
dimensional feature space, where linear algebra and geometry may be used to separate
data that is only separable with nonlinear rules in input space. To achieve that, the learning
algorithm is formulated to make use of kernel functions, allowing efficient computation of
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Figure 4.7: An example of mapping into a high-dimensional space. While the random samples in the two-
dimensional space are not linearly separable (a), they can be more easily separated after mapping them in a
three-dimensional space (b).

inner products directly in feature space, without the need for explicit embedding. Fig. 4.7
shows an example of mapping from two-dimensional into three-dimensional space. Given
a nonlinear mapping φ that embeds input vectors into feature space, kernels have the form:

K(xi,xj) ≡ φ(xi)
Tφ(xj) (4.10)

In view of the used kernel, SVM will separate the training data in feature space by a
hyperplane defined according to the type of kernel function used. However, four types of
kernels are generally used with SVM classification applications [23].

• Linear: K(xi,xj) = xTi xj.

• Polynomial: K(xi,xj) = (xTi xj + t)d, with t the intercept, and d the degree of the
polynomial

• Radial Basis Function (RBF): K(xi,xj) = exp(−‖xi−xj‖2
2σ2 ), with σ the variance

of the Gaussian kernel

• Sigmoid: K(xi,xj) = tanh(sxTi xj + b2), with s the scale parameter and b the bias

The SVM approach is highly modular, allowing domainspecific selection of the ker-
nel function used. In contrast to other learning approaches, SVMs allow for some intu-
ition and human understanding. They deal with noisy data and overfitting by allowing for
some misclassifications on the training set. Multi-class classification is accomplished by
a cascade of binary classifiers together with a voting scheme (one-against-all). SVMs are
successfully employed for quite a few classification tasks in general and for face analysis
especially. SVMs currently outperform artificial neural networks in a variety of appli-
cations. Their high classification accuracy for small training sets and their generalization
performance on data that is highly variable and difficult to separate make SVMs particu-
larly suitable to a real-time approach to expression recognition in video [96].
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4.5.2 Dynamic Approaches

They take into account the temporal pattern in displaying facial expression. Hidden
Markov Models, which are commonly used in the field of speech recognition [119], have
proved their usability for facial expression analysis as they allow the dynamics of facial
movements to be modeled. Several HHM-based approaches are applied in this field, es-
pecially in combination with geometric-based extraction methods [5, 27]. In order to de-
scribe a real-world process, such as variations in facial expression with an HMM, an
appropriate selection of HMM parameters is required; this process is known as HMM
training. Generally, an HMM is described with the following set of parameters:
λ = (ABπ), where A = {aij} is the state transition probability matrix, B = bj(Ot), is

observation probability distribution, and π = πj , is the initial state distribution.

aij = P (qt+1 = Sj|qt = Si), 1 ≤ i, j ≤ N

P (Ot|qt = Sj),≤ j ≤ N , and

πj = P (q1 = Sj)

In order to use HMM for facial expression recognition, the probability P (O|λ) has
to be computed, with which HMM will generate an output observable symbol sequence
O = o1, o2, ..., oT given the above-mentioned parameters of HMM, with T as the se-
quence length. Normally, this process is achieved by enumerating each possible state
sequence of the whole length T . In this case, it will be NT possible combinations of state
sequence, with N as the number of states. The critical disadvantage of HMM is the com-
putation complexity. Considering the above-mentioned observation sequence, the overall
time complexity of computing the probability of P (O|λ) is from the order O(NTT ).
Calculating this value is very difficult, even if a small number of states and frames are
considered.

Cohen et al. compared the performance of several avenues of static classifiers based on
Bayesian nets with the performance of a temporal one based on HMM. The conclusion of
them work was: “It seems, both from intuition and from our results, that dynamic classi-
fiers are more suited for systems that are person-dependent due to their higher sensitivity
not only to changes in appearance of expressions among different individuals, but also
to the differences in temporal patterns. Static classifiers are easier to train and imple-
ment, but when used on a continuous video sequence, they can be unreliable especially
for frames that are not at the peak of an expression. Another important aspect is that the
dynamic classifiers are more complex, therefore they require more training samples and
many more parameters to learn compared with the static approach” [27],P.p, 183.
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4.6 Contribution

In the following, we present a novel approach of a fully automatic real-life-applicable
emotion recognition system based on analyzing the displayed facial expression. The pro-
posed system fulfils most requirements desired for an ideal system, which are extensive
discussed at the beginning of this chapter. The general architecture of the facial analysis
system will be presented first. It based on a novel approach of initializing methods of
AAM, which enable the system to be applied in a more robust manner and fully auto-
matic in real-life affective human-robot interactionThe effect and relevance of the several
initialization types on the performance of the AAM fitting algorithm will be discussed. A
comprehensive evaluation on eligible databases that unveils the relevance of the developed
initialization schemes will be discussed in Sec. 6.3.

The goal of this facial analysis system as part of the general architecture is to recognize
facial expressions that are displayed by the interaction partner of the mobile robot BIRON.
Emotion recognition is achieved not only when the user displays one of the six basic
emotion purely and deliberately, but also when he/she displays them during speech, which
is seldom challenged in this field of research.

In our visual-based emotion recognition system, the core technique for extracting some
features related to emotion is AAMs. AAM facial feature extractor is embedded in a
vision system that consists of four basic components as illustrated in Fig. 4.8. Face pose
and basic facial features (BFFs), such as nose, mouth and eyes, are recognized by the
face detection module. The coordinates representing these features are conveyed to the
facial feature extraction module. Here, the BFFs are used to initialize the iterative AAM
fitting algorithm. Several methods are proposed to initialize the AAM on the basis of
detected BFFs. After feature extraction the resulting parameter vector for every image
frame is classified into one of the six basic emotions in addition to the neutral one; two
classification types will be discussed in Sec 6.3, namely nearest neighbor and support
vector machine. Besides the feature vector, AAM fitting also returns a reconstruction
error that is applied as a confidence measure to reason about the quality of the fitting.

To ensure the online ability, the system provides a soft real-time applicability that run-
ning at a rate of approximate 5Hz on recent PC hardware.

For face detection we preferred to employ an approach that makes use of cue combin-
ation, instead of restricting our process to a single image-based technique such as the well
known [155], to get greater robustness and higher processing speed, particularly for our
scenario where live video is processed. The face is initially detected by means of Viola &
Jones- based detectors. This initial detection allows the system to opportunistically trigger
the search of its inner facial details: eyes, nose and mouth (which will be called the basic
facial features BFF as from now). Some detection results are presented in Fig. 4.9. Fur-
ther details about the used face detection approach can be found in [22]. Our assumption
is that their detection would improve the precision of the initialization and therefore the
AAM search process, as will be discussed later. Thus, once the face has been detected, the
facial feature detectors are launched in those areas that are coherent with their expected
location for a frontal face. Those located will characterize the face as follows:
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Figure 4.8: Schematic Architecture of the proposed facial analysis system. Positions of the face and some
facial features are extracted in the first stage, left. Coordinations of these features are then used to align an
AAM, middle. Parameter vectors, which are extracted by AAM, are then classified by a SVM model, right

f = 〈position, size, color, leyepos, leyepattern, reyepos, reyepattern, nosepos,

nosepattern,mouthpos, mouthpattern, facepattern〉

Figure 4.9: Face and facial element detection results for some samples of a sequence extracted from DaFEx
[11].

As discussed in Sec. 4.4.4, an AAM realizes an iterative optimization scheme, which
demands a reliable initialization. Neglecting such a suitable initialization might cause the
AAM fitting process to fail completely. Such initializations are required when a system
that is applicable in real-life situations is aimed at, the system should perform well in
situations in which rigid head movements are encountered; as example. A bad align-
ment of the model derogate the fitting algorithm as well as the whole performance of
the system [65].

To overcome this problem we proposed initialization methods that make AAM faster
and more robust. The proposed initialization methods are based on the detected basic
facial features; BFFs. Basically we use the mean shape m = (mx1···mxn

my1···myn )T of the AAM
as initial shape and place it within the detected face bounding box. The mean shape can
be adopted to improve the fitting of the landmarks to the BFFs f = ( fx1···fx4fy1···fy4 )T (cen-
ters of right and left eye, nose and mouth). For each center of such a feature, there is a
corresponding landmark in the mean shape. We refer to these special landmarks as basic
landmarks p = ( px1···px4py1···py4 )T , whereas all other points of the mean shape are simply called
landmarks. Fig. 4.10 depicts the face bounding box as a white rectangle, the BFFs as
white crosses, the basic landmarks colored green and all remaining landmarks in blue.
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Figure 4.10: Initialization based on face bounding box and BFFs (first from left) and landmark matching
via AAM search (second) for an image from DaFEx [11]. In cases where the initialization is too poor (third),
the AAM search algorithm cannot eventually find a correct matching (fourth).

Since the detection component will not always robustly find all BFFs, the initialization
works flexibly on any partial set given. If, for instance, only the bounding box (no BFFs at
all) of the face is detected only a global scaling and positioning is applied. Given detected
BFFs, the corresponding basic landmarks are adopted according to one of the following
initialization schemes:

• Linear transformation: The size and position of the mean shape is linear trans-
formed such that the distance between each BFF and the corresponding basic land-
mark is minimized:

m′ = m · ( sx 0
0 sy ) + ( dx···dxdy ···dy )T , where:

sk =
∑4

i=1

∑4
j=i+1 fki∑4

i=1

∑4
j=i+1 pki

dk = 1
4

∑4
i=1 fki − sk ·

1
4

∑4
i=1 pki

k ∈ {x, y}

• Linear warping: Each basic landmark is moved to fit the corresponding BFF ex-
actly. The surrounding landmarks are also warped, depending on their distance to
the BFF and the basic landmark. The displacement decreases linearly to the dis-
tance. Formally, for each landmark i, facial feature j and k ∈ {x, y} do:

m′ki = mki + dkij , where:
r = (mxi − pxj)2 + (myi − pyj)2
dkij = (fkj − pkj) · (1−min{

√
r

wk
, 1})

wk is a weight parameter

• Gaussian warping: Likewise to the linear warping, but the decrement of the dis-
placement is Gaussian-based:

dkij = (fkj − pkj) · exp(− r
wk

)

Sec. 6.3 will provide a comprehensive discussion about the relevance and appropriate-
ness of each one of these initialization methods for the AAM fitting algorithm, and con-
sequently for the performance of the whole system when facial-expression-based emotion
analysis is aimed at.
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4.7 Integration Concept in BIRON

The focus of our integration model is to enhance the performance of BIRON by providing
the ability of inferring the facial expression displayed by its interlocutor for it. Toward
this aim we adopt the face memory integration model and suggest concatenating it with
an emotion understanding component. The face memory model was introduced by Han-
heide et al. aiming to enable BIRON to discriminate between several persons living in
a normal household environment, “home-tour scenario” [58]. Fig. 4.11 illustrates five
basic components of the model. The first four components present the basic structure of
the face memory system, while the fifth presents the suggested concatenation.
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Figure 4.11: Integration of facial-expression-based emotion analysis system in BIRON. Components 1-4
present the basic structure of the face memory model [58]. The fifth one presents the desired enhancement
of providing an emotional ability..

Considering the interaction between several components in the above-mentioned sce-
nario, the first steps in our integration model are the same as in the face memory approach.
These steps including the following: (I) a new POI hypothesis is submitted in the episodic
memory as soon as the robot’s sensors have detected the legs of the interactant, (II) the
face detection component updates the POI in the episodic memory with face information
and submits face views in the perceptual memory if the interactant’s face is detected, and
(III) the dialog component updates the POI with the information that the user is talking
and submits information about the selected IP in episodic memory if an initiation phrase
from the interactant is understood.

According to the name information provided by face recognition component, the facial
expression component could update the IP with the emotional information in two separate
ways. If the user is successfully classified the corresponding emotional profile is retrieved
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from the memory to infer the current emotional state of the user (in our system one of
seven predefined classes). Otherwise, if the identification of the user fails, a generic emo-
tional model (including emotional profiles of all possible users) is retrieved to classify
the expressed emotion. The dialog component can then retrieve the emotion-related infor-
mation, which is updated by the facial expression analysis component, from the episodic
memory and adapts the dialog method according to it.

Unlike the face recognition component, the facial expression classification one lacks
online learning ability. Both person-dependent and independent emotional profiles should
exist prior to the classification process. It is, however, feasible to get the facial expression
classification process to carry out the face identification process in interactive learning
of new unlabeled emotion classes, as long as the dialog component can obtain feedback
about the encountered facial expression from the interaction partner himself.

Figure 4.12: Two
work cases of a
facial expression
recognition
system. FE: Facial
Expression, ID
Person Identity.
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Due to the realization that this integration model requires some architectural changes in
BIRON’s software, e.g., the current state of the dialog component lacks the ability to adapt
according to the affective state of the user, we adopted a rather simple model, as depicted
in Fig. 4.12. The model can work either completely independent from other components
or according to the information about the identity of the user provided by the face recog-
nition component. The input images are captured by the robot’s camera and submitted in a
primary face detector "Boost Detector" that outputs the image region (rectangle) in which
the face is detected. Estimated face position is then used by Encara Plugin to detect some
basic facial features, (eyes, nose, and mouth coordinations), which provide initialization
for the facial features extractor. The extracted features are then submitted either into the
facial expression classificator directly, or through the component of face identification.
The components interact between each other through an active memory structure.
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4.8 Summary

Facial expression may be the most convenient channel through which emotions can be
displayed. However, facial expression analysis for inferring emotions is still challenged
by several issues if the aim is to integrate this ability in a robot for social human-robot
interaction in real-world conditions. The first challenge is that in real-world scenarios
the interaction partner moves her/his head almost continuously. The interactant can move
closer to or farther from the robot which affects the zoom and resolution of the detected
face region, and furthermore the face of the user can be partially or even completely oc-
cluded. Another challenge is presented by the requirements that the system has to fulfill.
The system should perform fully automatically from the first stage of detecting the user
in the surrounding, to detecting his/her face, to extracting some facial features related to
emotion displaying to deciding which emotion she/he is experiencing at the moment of
capturing. Another requirement is that the system should be applicable in real-time condi-
tions because any delay in detecting the emotional state of the user an reacting according
to it will cause the system to be desynchronized and less efficient. Yet another challenge
to systems for natural human-robot interaction applications is that they have to avoid any
constrained conditions or any kind of manual preprocessing.

In this chapter we presented an integrated vision system for analyzing emotion con-
veyed through facial configuration. The developed system fulfills almost all the require-
ments of an ideal real-life visual-based emotion analysis system of being real-time ap-
plicable, fully automatic, and robust. For face acquiring, a fast and robust face detection
approach is employed. This face detection scheme provides not only information about
the position of the face in the captured image, but furthermore provides information about
some facial features, eyes, nose and mouth, which can be used to align the facial extraction
model.

A hybrid facial feature extraction approach, namely the Active appearance model
(AAM), is used to extract some coherent features. AAM is concisely reviewed empha-
sizing its advantages by considering the variation in both shape and grey-scale of the face
image in contrast to both geometric- and appearance-based methods, which on only one
kind of variations.

AAM fitting method, however, can fail if rigid movements of the face are encountered.
To overcome this problem an initialization scheme is proposed. Positions of the face and
facial features, which are provided from the face detector, are used to define the initial
location of an AAM. Different initialization methods are discussed in order to enhance
the fitting speed and robustness of the AAM. An integration model of this system in our
mobile robot as well a comprehensive evaluation on a sufficient database will be discussed
in Sec. 4.7 and Sec. 6.3 respectively.
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Multi-modal integration of affective information occurs during multi-sensory encoding
and decoding. Humans articulate their emotions and perceive others’ emotions through
multiple modalities, such as speech tone, face configuration, and body movements. During
multimodal communication these channels operate and interact dynamically all the time.
Judgments for one modality may be influenced by other modalities either positively or
negatively. One modality can provide further information about another or can increase
their ambiguity.

A large body of psychological studies supported that facial expression and speech
information are the most honest way to reflect the internal affective state on the out-
side [4, 125, 134]. A number of studies reported, however, the mutual influence between
facial expressions and emotional tone of voice or emotional prosody [36]. Mehrabian
stated that the semantic contents of a message contributes only 7% of the overall impres-
sion, while the major part of the information is embodied in nonverbal interaction, namely
the vocal part and the facial expression contribute 38% and 55% respectively [94].

Furthermore, facial expressions have four further roles in addition to projecting the
internal emotion. These roles are described by Wehrle and Kaiser [162] as:

• a speech regulation signal (regulator): the response of the listener tells the speaker
that he can resume talking and if his words are understood or not

• a speech-related signal (illustrator): the speaker can raise his eyebrows in order
to lay particular emphasis on his argumentation. The facial signals can also modify
or even contradict the verbal messages, e.g., a smile can indicate that what is being
said is not meant to be taken seriously

• means for signaling relationship: installing, maintaining, or aborting a relation-
ship, e.g., when a couple is discussing a controversial topic, a smile can indicate
that although they disagree on the topic there is no danger to the relationship.

• an indicator for cognitive processes: e.g., frowning often occurs when somebody
does some hard thinking while concentrating on a problem, or when a difficulty is
encountered in the task. And finally

• an indicator for an emotion (affect display): the person smiles because he is
happy. Besides, affect that occurs during an interaction can refer to the interaction
partner (becoming angry with others), but it can also refer to other persons or themes
the interaction partners are talking about (sharing the anger about something)

Neglecting the multimodality aspect of affective communication will undoubtedly be
very fallible so that, on one hand, the different modalities produce a significant amount
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of complementary as well as redundant information that can be used to resolve problems
when one of the modalities is not properly transmitted (e.g., speech in a noisy environ-
ment, or when the face of the interaction partner is occluded). On the other hand, dedicated
emotions might be easier to read from one channel than from the others (e.g., sadness and
fear are better identified through the audio channel, while anger and happiness are better
identified through the visual channel [141].

Another thing is that relaying on only analyzing facial expression for emotion inferring
in conversational sessions will be uncertain. That is because of the difficulty to distin-
guish between facial expressions that display emotions and those related to the speech
processes. These processes can include lip movements, mouth configurations and the
movements of the lower part of the face. Fig. 5.1 depicts the possible confusion in judg-
ing emotions, which are experienced during speech, with those displayed purely (without
speaking). Furthermore, it is seldom that such situations are encountered, within which
the information of both modalities is mutually independent (in conversational sessions, it
is unnatural that the interaction partner speaks and displays emotions stepwise).

As in human-human interaction, multimodal recognition of emotion makes human-
robot interaction more natural and efficient. As discussed in Sec 2.3, facial expression
and speech information should play the major role in emotion expression. Hence, these
two modalities should be considered as equal for multimodal human-robot interaction as
they are for human-human communication.

While most current automatic emotion recognition approaches are uni-modal, in
which the information processed by the computer system is limited to either face
images/videos [85, 107, 117], speech signals [60, 157], or physiological measure-
ments [16, 59], multimodal automatic recognition of emotions occurring in natural and
real-life human-robot communication settings is still a largely unexplored and challenging
problem.

Though, another requirement that has to be fulfilled by an ideal affective analysis
system, in addition to those listed in Chapter 4, is to perform in a multimodal manner.
Multimodality means that the system can handle two or more inputs, exp., facial exp-
ressions and speech tone, facial expressions and body movements, etc, simultaneously.
Especially, joint analysis of facial expression and speech information should be addressed
by designing such multimodal systems because:

(i) The recent findings of theoretical studies on emotion support the importance of the
integration of information from different response components (such as facial and
vocal expression) to yield a coherent judgment of emotions [91, 126]

(ii) To avoid possible realistic limitations of the current techniques of both computer vi-
sion and audio processing. For instance, current face analyzers are sensitive to head
pose, occlusion, out-plan movements, and lighting changes while audio systems are
sensitive to noise and distance between speakers and microphone. Moreover, if one
channel fails for some reason, the other channel can still work. Thus, the final fusion
performance can be more robust
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(a) deliberative angry (b) deliberative disgust (c) deliberative fear

(d) angry during speech (e) disgust during speech (f) fear during speech

(g) deliberative sadness (h) deliberative happiness (i) deliberative surprise

(j) sadness during speech (k) happiness during speech (l) surprise during speech

Figure 5.1: The six basic emotions are conveyed by facial configurations in two conditions; deliberative
(experience an emotion and displaying it without speaking), experience and displaying during speech ses-
sion. The first and the third rows present the deliberative ones displayed by several individuals, while second
and fourth rows present the same emotion of the same individual during speech. The judgment of the dis-
played emotion is confused in rows two and four if only the facial expressions are considered. Images are
extracted from DaFEx database [11].

(iii) Combining facial expression information with acoustic signal cues helps to smooth
the effects of speech-related facial configurations on facial expressions that display
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emotions

The goal of this chapter is to explore new ways of human-robot interaction by enabling
the robot to be more aware of the human user’s emotional expressions. In particular, we
concentrate on the problem of integrating audio-visual inputs for the detection the users’
affective state conveyed by his/her facial expression and speech information at the same
time. The aim of this combination is to smooth somewhat the effect of speech-related
facial configurations on displaying emotions using facial expressions.

Facing the fact that facial configurations are influenced by both internal affective state
and speech content, we apply a method that benefits from combining both complementary
and conflicting information of both modalities. In this chapter we challenge this approach
by analyzing the auditory and visual stimuli with respect to their general discriminative
power in recognizing emotions. In the fusion stage, a probabilistic-based method is ap-
plied to combine audio and visual modalities so that the final affect recognition accuracy
is notably improved.

This chapter first introduces briefly the relevance and related work on audio-visual emo-
tion recognition in Sec. 5.1. Small introduction to emotion recognition from speech and
an illustrative description of a speech-based emotion recognition system, which is used
to infer emotions conveyed by acoustic modality, will be presented in Sec. 5.2. Three
possible fusion methods of multi sensory data, which are dominant in this field, will be
discussed in section 5.3. Afterwards, a probabilistic audio-visual data fusion approach is
proposed in Sec 5.4, which is proceeded by a brief introduction to Bayes nets that consti-
tutes the base of it. Sec. 5.5 will present a simple integration concept of an audio-visual
emotion analysis system in BIRON. A comprehensive study using the DaFEx database,
which evaluates the performance of the proposed multimodal system on recognizing the
six basic Ekmanian emotions (anger, disgust, happiness, fear, sadness, and surprise) plus
a neutral class, will be presented in Sec. 6.5. The ability of employing the bimodal system
in real-life human-robot interaction will be discussed through an evaluation in life-like
conditions, Sec. 6.6.

5.1 Related Work

Emotion analysis, using multimodal information, has been the subject of great deal of
research in recent years. Paleari and Lisetti proposed a general framework for multi-
modal information fusion towards multimodal emotion recognition. They discussed that
the fusion of the information takes place at signal, feature and, decision levels. However,
the work did not report any practical implementation and experimental results [106].
Two integration methods, namely decision-level and feature-level, are discussed in the
work of Busso et al. for fusing together facial expression and audio data [20]. For facial
expression analysis, spatial data from predefined markers in each frame of the video
is considered in order to extract a 4-dimensional feature vector per sentence, which is
then used as input to the classifier. While for audio data, the means, standard devia-
tions, ranges, maximum values, minimum values and medians of the pitch, energy, and
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voiced-speech/unvoiced-speech ratio are computed. De Silva and Chi exploited a rule
based method for decision level fusion of speech and vision based systems. The multi-
modal results showed an improvement over both of the individual systems [140]. Zeng et
al. used a voting method to combine output of audio-based and vision-based recognition
systems for person-dependent emotion recognition [172].

Castellano et al. used face, body and speech features. Speech has the highest rate of
unimodal recognition accuracy. This may be due to the fact that the authors used pseudo-
linguistic fabricated sentences as speech phrases and subjects said the same sentence
with all emotions. The multimodal recognition accuracy is considerably higher than for
any of the unimodal systems [21]. Mansoorizadeh and Charkari compared feature-level
and decision-level fusion of speech and face information. Although both approaches had
higher accuracies compared to the unimodal systems, the decision-level fusion showed to
be more efficient than the feature-level fusion [90].

In a study by Song et al. three signals perceived from the subject, namely speech,
facial expression and visual speech signals, are combined. The Facial Animation Parame-
ters (FAPs) compliant facial feature tracking based on GASM (GPU-based Active Shape
Model) is performed on the video to generate two vector streams which represent the
expression feature and the visual speech feature. To extract effective speech features, they
embedded the high-dimensional acoustic features into low dimensional space, which are
then combined with the visual vectors in terms of a low-dimensional feature vector. A
tripled Hidden Markov Model is then employed to perform the recognition. For facial
feature tracking, however, all images in the used database should be labeled with some
fiducial points [143].

5.2 Emotion Recognition from Speech

Since antiquity, people have realized the importance of vocal cues in the expression
of emotion, as well the powerful effects of vocal emotion expression on interpersonal
interaction and social influence. Speech is one of the indispensable means for shar-
ing ideas, observations, and feelings. Automatic recognition of emotion based on a
speech signal is an intensively studied research topic in the domains of affective com-
puting [64, 122, 156, 157]. Recognition of emotional state is an increasingly important
area in automated speech analysis due to several potential benefits that result from correct
identification of subject’s emotional state. As our focus in this work is natural human-
robot interaction, correct assessment of interactant’s emotion will improve the efficiency
and the friendliness of human-robot interface.

Emotions, however, can be conveyed by speech information either explicitly through
linguistic messages, (emotion-related words, happy or angry) or implicitly through (para-
linguistic) messages that reflect the way the words are spoken. Some information about
the speaker’s affective state can be inferred directly from the surface features of words,
which are summarized in some affective word dictionaries and lexical affinity (e.g.,
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Whissell dictionary of affective language)1, while The rest of the affective information
lies below the text surface and can only be detected when the semantic context (e.g.,
discourse information) is taken into account.

Attending to only the verbal part (linguistic message), without regarding the manner in
which it was spoken (paralinguistic message), will lead to some extent of loss of impor-
tant aspects of the pertinent utterance and even to misunderstanding the spoken message.
Furthermore, anticipating a person’s word choice and the associated intent is very diffi-
cult, even in highly constrained situations as different people choose different words to
express exactly the same thing.

When it comes to implicit, paralinguistic messages that convey affective information,
the research in psychology and psycholinguistics provides a large body of results
on acoustic and prosodic features which can be used to encode affective states of a
speaker [32, 133]. However, researchers have not yet identified an optimal set of voice
cues that reliably discriminate among emotions.

The general process of emotion recognition from speech signals can be sketched as
following: (I)- speech signal capturing and preprocessing, (II)- extracting some emotion-
related acoustic features, (III)- reducing feature dimensionality to an appropriate range
suitable for classificator2 and, (IV)- recognizing emotions with a suitable classifier.
Speech signal preprocessing can include end-point detecting, separating voiced from un-
voiced units, dividing signal into frames with predefined length, etc.

For an automatic recognition task, the signal to be recognized should be first charac-
terized by measurable parameters, normally called feature extraction. The aim of feature
extraction is to select some emotion-related features, which can set the base of a good
classification. In the field of emotion recognition from speech, a variety of acoustic fea-
tures are explored. For example, Banse et al. examined acoustic profiles or vocal cues for
emotion expression using actors’ voices for fourteen emotion categories. The exploited
acoustic parameters were related to fundamental frequency/pitch (F0), energy, speech
rate, and spectral information in voiced and unvoiced portions [4].

However, the features extracted from an audio signal can be categorized into two basic
families: (I) basic features, which can be directly extracted from the signal itself, and (II)
indirect features which can be extracted after applying some mathematical transforma-
tions on the original audio signal [122].

The family of basic features, in turn, can be divided into three further classes: fea-
tures related to pitch, energy, and temporal behavior. The features of the first subclass
can be presented by some values of audio signal pitch, such as the values of mean value,
maximum, minimum, median, standard deviation, range (difference between maximum
and minimum), variance value and change rate. Signal-energy-related features are usually
used to present the power of the audio signal. These features can include values of mean,
minimum, maximum, median, variance, range, and standard deviation. The third sub-
class of includes features that capture the temporal characteristics of the considered audio

1http://ketch.usc.edu/ abe/emotion_in_text_cgi/DAL_app/
2reduction of feature dimensionality is sometimes required when the computational complexity is consid-

ered
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signal, such as cross zero rate features, segment length, and speaking rate [122, 157].
A spectral representation of a speech signal; Mel-scale Frequency Cepstral Coeffi-

cients, (MFCC), is suggested as a crucial feature for emotion recognition in real-life
conditions [156]. MFCC is a parametric representation of an audio signal that is com-
monly used in the applications of automatic recognition of emotions. In order to calculate
MFCCs a discrete Fourier transform is applied on each windowed segment of the signal,
the power of the spectrum obtained from the previous step is mapped onto the so-called
Mel-scale using N triangular-shaped filters. The powers of each Mel frequency are then
logarithmised. A discrete cosine transform is then applied on the logarithmised Mel pow-
ers as if they were signals. Finally MFCCs are presented by the amplitudes of the resulting
spectrum of the last step. Fig. 5.2 depicts some examples on the variation of audio signals
and the extracted MFCCs when several emotions are uttered.

In addition to the requirement of being able to select and extract some features that
present the encountered emotion the best, a reliable acoustic-based emotion analysis
system should perform fully automatically. The segmentation of the incoming acoustic
signal into meaningful units should be taken in account when such a reliable system is
aimed for. As on one hand, emotion changes can occur very quickly, but the segment
length sets the temporal resolution of recognizable changes, and, on the other hand, reli-
able statistical features can often only be computed over longer segments, the used system
should find a reliable trade-off between these two issues [156]. Nevertheless in the evalu-
ation study discussed in Sec.6.4 the whole utterance is considered as a unit to be classified.

To build our bimodal emotion analysis system, we exploited a framework called
“Emovoice” and depicted in Fig. 5.3. The framework is introduced by Vogt et.al, to analy-
sis emotions expressed through the acoustic channel. To segment the speech signal in life-
like scenarios Emovoice exploited an algorithm called “voice activity detection”, which
segments the signal into signal chunks of voice activity by considering pauses no shorter
than 200 ms, shorter pauses will be omitted. This method is very fast and comes close to
a segmentation into phrases though it does not use any linguistic knowledge [157].

Basic measurements extracted by EmoVoice are logarithmised pitch, signal energy,
Mel-frequency cepstral coefficients (MFCCs, 12 coefficients), the short-term frequency
spectrum, and the harmonics-to-noise ratio (HNR). The resulting series of values are
transformed to different views, and for each of the resulting series mean, maximum, min-
imum, range, variance, median, first quartile, third quartile and interquartile range are
derived [157].

The transformations into different views comprise the following:

• logarithmised pitch: the series of the local maxima, local minima, the difference,
slope, distance between local extrema, the first and second derivation, and of course
the basic series.

• energy: the basic series and the series of the local maxima, local minima, the differ-
ence, slope, distance between local extrema, first and second derivation as well as
the series of their local maxima and local minima.
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Figure 5.2: Emotion related variations in both original audio signals (left column), and the corresponding
12 MFCCs (right column). The original signals are presented in the time domain; x-axis presents duration
in msec, and y-axis presents the amplitude. Variations related to anger, happiness, neutral, and sadness are
presented here from top to bottom. The sentence pronounced in each utterance was in Italian “In quella
piccola stanza vuota c’era però soltanto una sveglia”; in that little empty room there was only an alarm
clock. Dafex database [11]
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• MFCCs: the basic, local maxima, local minima for basic, first and second deriva-
tion for each of 12 coefficients alone

• frequency spectrum: the series of the center of gravity, the distance between the
10% and 90% frequency quantile, the slope between the strongest and the weakest
frequency, the linear regression.

• Harmonics-to-noise ratio, HNR: only the basic series.

Figure 5.3: Schematic Architecture of Acoustic-based Emotion Analysis System. First stage, left, separates
voiced units from unvoiced ones (pauses). The middle stage extracts some emotion related features from
voiced units. Features are assigned with an emotional label in the third stage, furthest right. Printed by
courtesy of Vogt [157]

To the features extracted above, segments length in seconds, proportion of pause to seg-
ment length, the number of the voiceless frames, and the speaking rate (distance between
the global maximum and minimum of the segment) are added from the duration-related
features. Additionally, pitch related features, such as positions of the global maximum
and minimum in the segment and the number of local maxima and minima are considered
too. From energy-related features, position of global maximum and the number of local
maxima are inserted. Furthermore, jitter, shimmer and the number of glottal pulses of the
analyzed speech features are taken in account as voice quality features.

From two classification methods that have already been implemented in Emovoice,
namely a naive Bayes classifier (NB) and a support vector machine classifier (SVM), we
have selected the latter for our bimodal system, which showed to perform equally well as
the former when real-time applicability is considered, but outperform it when it comes to
the accuracy of classification [157].

5.3 Fusion of Multisensory Data for Emotion Recognition

Multimodal information fusion is the task of combining some interrelated information
from multiple modalities. In an emotion analysis system, while a unimodal system in-
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corporates features of a single modality (visual, audio, tactile, or body information) the
multimodal systems use information from multiple different modalities simultaneously.

However, theories of modality fusion in human perception do not agree on how infor-
mation from different modalities should be integrated. For example, the Fuzzy Logical
Model of Perception (FLMP) [91] stated that stimuli from different modalities should be
treated as independent sources of information and be combined regardless of the kind of
information they contain. This view is not undisputed (i.e. [36]) and it has been argued
that the FLMP does not work well when confronted with conflicting information from
different modalities [136]. Perceptual results suggest that, at least for the case of emo-
tion recognition, the modalities should be weighted according to which information they
convey best [46]: the visual modality primarily transmits valence (positive or negative
value), whereas the auditory channel mainly contains information about activation.

In current fusion research, three types of multi-modal fusion strategies are usually ap-
plied, namely data-/signal-level fusion, feature-level fusion, and decision-level fusion.
Fig 5.4 depicts the three possible levels of multimodal information fusion. Signal-level
fusion is applicable solely to sources of the same nature and tightly synchronous. Gener-
ally it is achieved by mixing two or more physical signals of the same nature (two auditive
signals, two visual signals of two cams, etc). This type of mixing is not feasible for multi-
modal fusion due to the fact that different modalities always have different captors and
different signal characteristics (auditive and visual).

Feature-level fusion means concatenation of the features outputted from different signal
processors together to construct a joint feature vector, which is then conveyed to the affect
analyzer. It is used when there is evidence of class-dependent correlation between the fea-
tures of multiple sources. For example, features can be extracted from a video processor
(facial expression) and speech signal (emotion-related prosodic features). Feature-level
fusion benefits of interdependence and correlation of the affective features in both modal-
ities but is criticized for ignoring the differences in temporal structure, scale and metrics.
Although, feature-level fusion demands synchronization of some extent between modal-
ities. Another drawback of such a fusion strategy is that it is more difficult and com-
putationally more intense than combining at the decision level. This is because of the
increasing feature vector dimension, which consequently influences the performance of
the whole system negatively [106, 171].

The third fusion strategy combines the semantic information captured from the indi-
vidual unimodal systems, rather than mixing together features or signals. Due to the ad-
vantages of (I) being free of synchronization issues between modalities, (II) using relative
simple fusion algorithms, and (III) their low computational requirement in contrast to the
feature-based methods, decision-level fusion methods are adopted from the vast major-
ity of researchers in the field of multimodality emotion recognition [90, 140]. Following
this conclusion we decided a probablistic-based decision-level fusion method, which will
be introduced bit later, to join the facial expression-based, and the acoustic information-
based emotion recognizers into bimodal one [118].
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Figure 5.4: Three basic fusion methods used in the current multimodal emotion recognition systems.
⊕

is
not a symbol of just simple adding. In (a) it means mixing two or more physical signals of the same nature.
It presents basically the concatenating of features extracted from two or more sub-systems based on signals
of different nature (b). And in (c) it can be any voting, weighting, or rule-based method.

5.4 Contribution

As seen above, the multisensory information can be fused in three different levels, namely
at input, feature, and decision level. Due to the inherently different nature of our visual
and acoustic cues, we decided on a decision-level fusion scheme. But instead of appl-
ying majority voting [172] or other simple fusion techniques, such as rule-based fusion
by [140], we explicitly take the performance of each individual classifier into account and
weight it according to its respective discrimination power. In the following, we introduce
our fusion scheme preceded by a brief introduction to Baysian networks.

A Bayesian network is a graphical representation of the probabilistic relationships be-
tween a set of variables. Given a finite set X = X1, . . . ,Xn of random variables, from
which each variable Xi may take a value xi from a specified domain, the corresponding
Bayes nets consist of two basic components, namely the net structure and the local prob-
ability distributions associated with each variable. The network structure S is a directed
acyclic graph (DAG) whose nodes correspond one-to-one to the random variables of X .
The second component describes the joint probability distribution of each variable in S,
given its parents.

In order for a Bayesian network to model a probability distribution, each variable
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should be conditionally independent of all its non-descendants in the graph given the
value of all its parents. That implies that the joint distribution of any variable in S can be
decomposed into the following product form, by applying the chain rule of probabilities
and properties of conditional independencies.

P(X1, . . . ,Xn) =
n∏
i=1

P
(
Xi|PaSi (Xi)

)
, (5.1)

where PaSi is the set of parents of Xi in S.
As mentioned above, it is necessary to specify the parameters of the model, in addition

to the graph structure. To achieve that, the conditional probability distribution (CPD) at
each node of the directed net (DAG) should be specified. In the case of discrete variables,
CPDs can be represented as conditional probability tables (CPTs), which list the prob-
ability that the child node takes on each of its different values for each combination of
values of its parents. Consider the following example depicted in Fig. 5.5, in which all
nodes are binary, i.e., have two possible values, denoted by T (true) and F (false):

Figure 5.5: An
example of simple
Bayes net with
four random
variables. The
arcs encode the
conditional depen-
dencies between
the variables. The
example is derived
from [128], P.p,
627.

Cloudy

Wet Grass

RainSprinkler

C    P(R=F)   P(R=T)
F    0.8          0.2
T    0.2          0.8

P(C=F)  P(C=T)
  0.5         0.5

S R P(W=F)P(W=T)
F F  1.00       0.00
T F  0.10       0.90
F T  0.10       0.90
T T  0.01      0.99

S    P(R=F)   P(R=T)
F    0.5          0.5
T    0.9          0.1

T: True
F: False

When the status of "grass" is observed, the event "grass is wet" (W=true) is caused
by either the water sprinkler is on (S=true) or it is raining (R=true). The strength of
this relationship is shown in the tables. For example, we see that P (W = true|S =

true,R = false) = 0.9 (second row of the CPT of the node "Wet Grass"), and hence,
P (W = false|S = true,R = false) = 1 − 0.9 = 0.1, because each row must sum
to one. Since the C node has no parents, its CPT specifies the prior probability that it
is cloudy or not (in this case, 0.5). The joint probability of all the nodes in the graph in
Fig. 5.5 can be calculated by the chain rule of probability as following:

P(C, S,R,W ) = P(C) ·P(S|C) ·P(R|C, S) ·P(W |C, S,R) (5.2)

And by using the conditional independence relationships, it can be rewritten as:

P(C, S,R,W ) = P(C) ·P(S|C) ·P(R|C) ·P(W |S,R) (5.3)

66



5 Audio-Visual Emotion Recognition

This simplifying is allowed because R is independent of S given its parent C, and W
is independent of C given its direct parents S and R.

The most common task that is solved by using Bayesian networks is the probabilistic
inference. Suppose, for example, the fact that the grass is wet. This is caused by either it
having rained, or the sprinkler having been on. Bayes’ rule can be employed to compute
the posterior probability of each explanation as the following (where 0 ≡ false and 1 ≡
true):

P(S = 1|W = 1) = P(S=1,W=1)
P(W=1)

=
∑

c,r P(C=c,S=1,R=r,W=1)

P(W=1)
= 0.2781

0.6471
= 0.4297

P(R = 1|W = 1) = P(R=1,W=1)
P(W=1)

=
∑

c,r P(C=c,S=s,R=1,W=1)

P(W=1)
= 0.4581

0.6471
= 0.7079

The term P(W = 1) =
∑

c,r,sP(C = c, S = s, R = r,W = 1) is a normalizing
constant that presents the probability (likelihood) of the data.

To fuse both individual modalities in a bimodal one we proposed a probablistic ap-
proach based on a top-down-reasoning Bayesian network with a rather simple structure
depicted in Fig. 5.6. Based on the classification results of the individual visual and acous-
tic classifiers, we feed these into the Baysian network as evidence of the observable nodes
(Acoustic and Visual, respectively). By Bayesian inference the posteriori probabilities of
the unobservable affective fusion (Fusion) node are computed as:
P(Fusion = ef |Visual = ev,Acoustic = ea),where, ef , ev, ea can belong to any one of

seven emotion classes mentioned above, and taken as a final result.
Figure 5.6: The
structure of the
Baysian network
used to fuse
cues of both uni-
modals. Evidence
of observable
nodes − acoustic
and visual −
is fed as input
into the corres-
ponding node.
The posteriori
probabilities of the
unobservable node
are computed,
with gives fusion
as the final result.

Fusion

AcousticVisual

P(F=f | V=v,A=a)
ang   val1

dis    val2

fea    val3

hap   val4

neu   val5

sad    val6

sur    val7

A    ang  dis  fea  hap  neu  sad  sur 
ang val11 ............................      val17

dis  ............................................
fea  ...........................................
hap ...........................................
neu ...........................................
sad ............................................
sur  val71 ..............................    val77

ang:  angry
dis:   disgust
fea:   fear
hap:  happiness
neu:  neutral
sad:  sadness
sur:  surprise
val:   value

V     ang  dis  fea  hap  neu  sad  sur 
ang  val11  .............................    val17

dis   ...........................................
fea   ...........................................
hap  ...........................................
neu  ...........................................
sad  ............................................
sur   val71  ............................    val77

The required probability tables of the Bayesian network are obtained from a perform-
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ance evaluation of each individual classifiers in an offline training phase based on ground-
truth-annotated databases [12]. Therefore, confusion matrices of each classifier are turned
into conditional probability tables modeling the dependent observation probabilities of the
model according to the arrows in Fig. 5.6. In the notion of Zeng et al. [171], our fusion
scheme is referred to as model-level instead of decision-level fusion, as it takes the re-
spective classification performance models into account.

5.5 Integration Concept in BIRON

Challenging situations, in which the robots’ interactant is engaged in a conversational
course, we extended the model discussed in Sec. 4.7 in such a way that it combine the in-
formation provided by facial expression and that related to speech prosody. This combin-
ation is realized in order to smooth the negative effect of facial configuration related to the
speech process on inferring emotions from facial expression. Fig. 5.7 illustrates a simple
integration concept of audio-visual emotion analysis system in BIRON.

Figure 5.7: Integration con-
cept of both unimodals as a
bimodal one in BIRON. Each
system provides its own de-
cision, which then fused to-
gether in the final decision .

Active Memory

Emotion
Recognition

Visual

Emotion
Recognition

Acoustic

Bimodal
Emotion

Recognition

The speech-based system provides an utterance-based decision and inserts it in the
memory. Accordingly, the facial-expression-based system is tuned to insert a majority
voting decision for all video frames up to the last decision of the speech-based system
into the memory. Using a decision-level fusion model, which is supposed to be already
existing in the memory, both decisions can be fused yielding the final bimodal decision.
More details about the fusion method can be found in Sec. 5.4.
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5.6 Summary

In real-life conditions, situations are seldom encountered in which speaking and dis-
playing facial expressions occur incrementally, i.e. the human speaks and experiences
an emotion simultaneously rather than temporally separated. Challenging this point, the
focus of this chapter was on how to draw benefits of several cues submitted by the speaker
in such situations. More explicitly, how to combine facial-expression and speech-signal
information in such way that provides the ability for the robot to recognize the interaction
partner’s emotion better.

As will be seen in Sec. 6.3, a degraded performance of a facial-expression-based analy-
sis system is obtained, when an interaction partner is engaged in a conversational session.
That is because of the ambiguity of distinguishing facial expressions and visual speech
signals. In order to compensate this degradation, we fuse the prosody information ex-
tracted from speech with that extracted from facial configurations.

Three basic fusion methods are systematically analyzed: data-, feature-, and decision-
level fusion. In data-level, the signals, which have to be mixed, should be of the same
nature, either visual, or acoustic, and completely synchronized. The large size of the fea-
ture vectors in feature-level fusion demands relatively complex computation processes
that consequently derogate the whole performance of the system, when the applications
in real-life scenarios are aimed at.

As in our system facial-expression and speech-signal information are of an inherently
different nature, a decision-level probablistic based fusion approach is proposed. In con-
trast to most current fusion methods of the decision level, our method explicitly take the
performance of each individual modality into account and weights it according to its re-
spective discrimination power.

The basic structure of the proposed methods is discussed in the last part of this chapter.
The suitability of this method for combining facial expressions and speech signal cues
in a bimodal emotion analysis system will be proven by a comprehensive evaluation in
Sec. 6.5.
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This chapter provides a comprehensive evaluation of the performance of both the visual-
and acoustic-based system as well as the bimodal one. As the focus of this work is to allow
the robot to infer interactant’s emotion in real-world conditions, i.e., the used technology
is fully capable of online recognition of emotion either unimodal (facial-expression- or
speech-information-based) or bimodal (audio-visual) system, an evaluation with real-life
data is necessary. Obtaining such data, which is captured by the robot directly, is challeng-
ing due to several obstacles. On the one hand, facial expression analysis of any individual
needs at least some facial images labeled with some fiducial points of this individual to
have been included in a person-independent or in a person-dependent AAM. For unseen
individuals, this inclusion process demands a tedious and time-consuming manual label-
ing of these images. Automatic alternatives present an open issue for future work. On the
other hand, emotion recognition systems lack the ability of online learning, which is also
considered as an area for further work. No online-learning ability means, that the emo-
tional models (SVMs for visual- and acoustic-based systems, in addition to a validation
matrix for the bimodal one) need to be already available in order for them to work in a
reliable manner. In the case of employing our system in real-life application, without the
above requirements being fulfilled, a degraded performance of the system is expected.

Thus, we present in this chapter an offline analysis of an actors database as previous
work. A suitable dataset, that fulfils the requirements of being as natural as a real-life one
and having a reliable ground truth, is used for this aim. The next two sections will provide
an analytical discussion about current emotion databases, and their reliability and suit-
ability to be used for evaluation. The performance of stand-alone facial-expression- and
speech-information-based systems will be evaluated in Sec. 6.3 and Sec. 6.4 respectively,
while the performance of the bimodal system will be evaluated in Sec. 6.5. As the focus
of this work is to give the robot the ability of bimodal emotion recognition in life-like
scenarios, the performance of all systems in real life conditions is evaluated in Sec. 6.6.
A general discussion will conclude this chapter.

6.1 Emotional Databases

Designing reliable automatic affect recognizers requires adequate collection of labeled
data of emotion expression for evaluation. Having such a sufficient database is challenged
by two primary obstacles, namely data collection and labeling the collected data.

From the collection point of view, a large body of methods and strategies have been
introduced for building such a database, according to the aim of the proposed system,
the emotion relevant cues (facial expression, speech, body gestures, and physiological
measurements), and many further structural aspects (technical equipments, environment
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conditions, etc...). Some of the current databases, which are used to evaluate either stand-
alone systems (vision-based and audio-visual) or bimodal ones (audio-visual), are listed
in table 6.1.

Accurate description of what a person expresses and which feeling or affective state
underlies this expression is considered to be the greatest obstacle to collecting such data.
In general, three major approaches are used to judge the emotional states expressed via
several cues (facial expression, acoustic signals): self-reporting, judging by external ob-
server, labeling according to some specific changes in the face. While for describing the
emotions displayed via facial expression all three approaches can be or even are already
applied, see Table 6.1, only the first two approaches are valid for judging the acoustic-
signals-related affective states.

6.1.1 Self-Report Approach

In self-report approach, the subjects are asked to report their feelings (usually retrospec-
tively) and see whether their facial expressions or some emotion-related speech features
differ when reporting changes in emotions. The emotions, however, are easy to experi-
ence but hard to explain “Its meaning we know so long no one asks us to define it, Joseph
LeDoux”. Another drawback of such labeling approaches is of being error-prone, since
subjects may fail to remember or distinguish among the emotions experienced, particu-
larly if several minutes elapse before the report is made. “A subject who successively felt
anger, disgust, and contempt while watching a film might not recall all three reactions,
their exact sequence, or their time of occurrence” [44].

A few simplifications possibilities, however, have been proposed by researchers to
avoid this problem. One of these simplifications is limiting self-report to the grosser dis-
tinction between pleasant (positive as happy) vs. unpleasant (negative as angry or sad)
feelings or between deceptive and non-deceptive speech [62], but we then cannot deter-
mine whether facial expressions convey accurate information about particular unpleasant
or pleasant feelings.

6.1.2 Judgment Approach

Judgment-based approaches are centered on the message conveyed by the considered cues
(facial expressions, speech information). In order to categorizing affective state associated
to one of these cues into a predefined number of emotion or mental activity classes, an
agreement of a group of decoders is taken as ground truth. Each one of the two well-
known emotion theories namely, basic emotion, dimensional emotion, has its own judg-
ment approaches.

Most basic-emotion-based automatic emotion analysis systems attempt to cope with
a database of facial images or sequences, audio recordings, or both which are directly
labeled with one of a specific number of emotion classes [11, 87].

“Feeltrace”; a dimensional-emotion-theory-specific labeling tool, is a computer pro-
gram implemented to let users describe perceived emotional content in terms of the two
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well-known dimensions of "valence and arousal" [33]. The space is represented by a circle
on a computer screen, alongside a window where a clip was presented. The vertical axis
represented activation “arousal”; the horizontal axis evaluation “valence”. Raters used
a mouse to move a cursor inside the circle, adjusting its position continuously to reflect
the impression of emotion that they derived from the clip. The SAL database, listed in
Table. 6.1 presents an example of a database that labeled using this tool.

6.1.3 Facial Configuration-based Approach

While the two above-mentioned labeling approaches aim to infer what underlies the dis-
played behavior, such as facial expression or speech signal, the sign-based judgment ap-
proach aims to describe the appearance, rather than the meaning, of the displayed behav-
ior. There have been few attempts to establish objective coding systems which measure the
positions of facial components involved in emotional expression and relate combinations
of these measurements to the internal emotional states.

The most comprehensive and dominant sign-based encoding system in use is the
“Facial Action Coding System, FACS”. FACS breaks each facial movement down into
44 action units “AUs” and attempts to describe the facial actions regarding to their lo-
cation as well as their intensity [40]. Quite a few researchers have adopted this coding
system to collect and label either image-based or video-based material to be employed for
evaluating several facial expression analysis systems [9, 72, 111, 131].

6.1.4 Reliability of Labeling method

Indeed, the labeling of employed databases determines not only wether a given com-
puting system attempts to analyze or interpret the emotion associated with specific
signals recorded in the database, but may also influence the achievable recognition accu-
racy [149]. As seen above, an individual’s emotional state can be judged either indirectly,
by the observers’ judgments (of the emotion experienced, the eliciting conditions, etc), or
directly considering either the self-report or the measurement of facial activity (using any
of the techniques described in the previous section).

However, when it comes to the real-time application, both self-report and facial-
measurements labeling are not sufficient. This is because the former suffers under the
timing issue and the latter from describing the shown facial changes while neglecting what
underlies them, being relatively time consuming, and demanding professional-trained ob-
servers for labeling FACS-based data.

The most convenient method for labeling such reliable data is the judgment approaches.
Indeed, that is not surprising because

(i) inferring basic emotions is an intuitive process and matches the experience of the
ordinary human in daily life,

(ii) the simplicity of coping with a limited number of variables in contrast to other
emotion models (e.g., 44 FACS),
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(iii) their nature of being displayed and recognized universally, as proven in diversity of
theoretical studies

(iv) avoiding the possible loss of information caused by labeling data into 2D or 3D
space, and

(v) raters can be just ordinary individuals rather than the professional trained observers
demanded for judging FACS.

6.2 Databases with Emotional Contents

According to the elicitation method of emotions, databases can be categorized into three
major classes: induced, acted, and naturalistic. Naturalistic data seems the ideal way to
collect data reliable for evaluating life-like affective systems, but the reality is not that
straightforward. Having such data is challenging due to several aspects, such as problems
of copyright and privacy, need of high developed tools to deal with it, and unreliable
ground truth, are some obstacles challenging the employing of such a data to evaluate
real-life emotion analysis systems.

Between the naturalistic facial expression, mentioned above, and the acted one, which
will be discussed shortly later, lie various emotion induction techniques. There are various
established methods such as listening to emotive music, looking at emotive pictures or
films, and playing specially designed games. Such data, however, lack the certainty, as a
specific induction methods “emotive image” could elicit disgust by some subjects, while
it could trigger fear by others.

Most technological research on emotion continues to be based on recordings of ac-
tors, skilled [11] or not skilled [87, 131]. That is because of the difficulties of having
naturalistic databases, on the one hand, and the unusability of induced facial expression
databases to be employed for evaluating emotion analysis systems in life-like conditions,
on the other. Therefore, we employed a dataset collected from skilled actors to evaluate the
performance of our systems; there is a detailed description of the used data in Sec 6.2.2.

6.2.1 Emotional Databases in Use

In general, there is no comprehensive reference set of face images that could provide a
basis for all of the different efforts in the research on automatic analysis of facial exp-
ressions. Only isolated pieces of such a facial database exist. Table 6.1 lists some already
existing databases, which are used for evaluating the state-of-the-art visual- and audio-
visual-based emotion analysis systems.

Quite a few of these databases contain solely static images. An example of such a
database is the JAFFE database compiled by Lyons and Akamatsu. JAFFE contains in
total 219 static images of 10 Japanese females displaying posed expressions of six basic
emotions and is used for training and testing various existing methods for recognition of
prototypic facial expressions of emotions [87].
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Database Name Type Data Size Emotion Description Labeling Human Evaluation
DaFEx [11] AV 8 Subjects 6 Basic Emotions 80 Observers’

336 Videos no Utterance & Neural Judgment 76.8%
672 Videos with Utterance 3 Intensity Levels 75%

Cohn-Kanade [72] V 210 subjects X 3races 6 Basic Emotions FACS -
480 videos & AUs Observers’ Judgment

AT&T [130] V 40 Subjects Smiling - -
10 Images per Subject Not Smiling

MMI [111] V 61 Subjects 6 Basic Emotions FACS -
1250 Videos Single AUs Observers’
600 Images Combined AUs Judgment

BU-3DFE 1 V 100 Subjects 6 Basic Emotions - -
4 Intensity Levels

Yale [54] V 15 Subjects Sad, Sleepy - -
11 images per subject and Surprise

Sebe et al. [138] V 28 Subjects Neutral, Happy Self Report -
Surprise, Disgust

Fabo [56] V 23 Subjects 6 Basic Emotion - -
210 Videos & neutral Uncertainty

Anxiety and Boredom
JAFFE [87] V 10 Japanese Models 6 Basic Emotions 60 Observers’ -

213 images & Neural Judgment
AR 2 V 26 images Smile, Anger - -

per subject Scream and Neutral
CMU PIE 3 V 68 Subjects Neutral, Smile - -

13 Poses Blinking and Talking
43 Illumination conditions

CVL 4 V 114 Subjects Neutral and Smile - -
7 Pictures per Subject

Bosphorus [131] V 150 Subjects AUs FACS -
4666 Images Basic Emotions Observers’ Judgment

RU-FACS [9] AV 100 Subjects AUs FACS -
100 Videos Two Coders

SAL 4 AV 20 Subjects, one session Dimensional Feel-trace -
4 Subjects, two session Labeling

CSC Curpos [62] A 32 Subjects Deceptive & Self Report -
3882 Speaking turns Non-Deceptive Speech

1 http://www.lrv.fri.uni-lj.si/facedb.html
2 http://cobweb.ecn.purdue.edu/ãleix/aleix_face_DB.html
3 http://www.ri.cmu.edu/research_project_detail.html?project_id=418&menu_id=261
4 http://www.lrv.fri.uni-lj.si/facedb.html
5 http://emotion-research.net/toolbox/toolboxdatabase.2006-09-26.5667892524

Table 6.1: Overview of visual- and audio-visual-based databases of human affective behavior, V: only facial
expressions are considered, AV: speech information and facial expression are taken into account, - means
missing entry.

Image-based affective databases are important for obtaining information on the config-
uration of facial expression (which is essential in terms of emotions for inferring the re-
lated meaning). However, such databases are not sufficient for evaluating the performance
of systems to be applied in real-world scenarios. Such systems demand motion records
(video-based databases), which are necessary for studying temporal dynamics of facial
expressions.

The MMI facial expression database was compiled by Pantic et al. [111]. It consists of
two parts, namely part with deliberately displayed facial expressions and part with spon-
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taneous facial displays. The first part contains over 4000 videos as well as over 600 static
images depicting facial expressions of single AU activation, multiple AU activations, and
six basic emotions. It has profile as well as frontal views, and is FACS coded by two cer-
tified coders. The second part of the MMI facial expression database currently contains
65 videos of spontaneous facial displays, that were coded in terms of displayed AUs and
emotions by two certified coders.

The Cohn-Kanade facial expression database [72] may be the most widely used FACS-
based database in research on automatic facial expression analysis [79, 85, 149, 152]. It
is completely FACS orientated since not only the labeling is done according to the FACS
system but also the subjects are instructed by the experimenter to perform specific single
AUs or combinations of these. All desired displays of AUs are described and modeled
prior to recording by the research scientist. The database consists of sequences of 9 to
60 frames, where each frame is stored as a single image. Sequences start at neutral and
change gradually until they reach the maximum intensity of the performed AU; from this
point, they change gradually back until the neutral state is reached once again.

6.2.2 DaFEx Database

We used the Dafex database that was compiled using eight trained Italian actors [11] to
train and test both stand-alone facial-expression- and speech-information-based systems
as well as the audio-visual system. The DaFEx database consists of 1008 short video clips
of eight Italian actors (4 male and 4 female). Each clip comprises a presentation of one
of Ekman’s six basic emotions plus the neutral one and lasts between 4 and 27 Sec. The
DaFEx database is divided into six blocks, in two of which, namely block 3 and block 6
the actors present facial expression without speaking; in the remaining blocks the actors
speak and display emotional behavior simultaneously. Each actor in each of these blocks
performs the seven emotions three times with different intensities (high, medium, and
low). Fig. 6.2.2 shows some facial expressions presented by several objects.

Considering the influence of speaking on the displayed facial expression (i.e the influ-
ence of speech processes on facial expression), as discussed in section 2.3.3, is an essential
issue in collecting databases sufficient for training and testing affective systems that are
employed in real-life human-computer interaction. DaFEx is one of few databases to have
taken this point into account [9, 11].

In addition to that, DaFEx has already been evaluated by 80 human observers. That
draws huge benefits compared to other databases as the performance of the human ob-
server can be set as reference to be compared against the performance of our systems. To
the best of our knowledge, DaFEx is the sole audio-visual-based message-based dataset
that offers this ability, as depicted in Table 6.1.
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Figure 6.1: Six basic emotions presented by six different individuals; extracted from the DaFEx
database [11]. The displayed emotions are, from left to right and top to bottom: angry, disgust, fear, happi-
ness, sadness, and surprise

6.3 Evaluation of Facial-Expression-Based Emotion Analysis
System

In order to evaluate the facial expression recognition system, the DaFEx database is used
for training and testing. The third block of non-talking video data of each actor from
DaFEx is selected to train and test the visual-based emotion analysis system in the case
of solely displaying facial expressions. Some images of this block, with contains an av-
erage of 374.8 images from each actor (of each possible emotion class and each possible
emotion intensity) are extracted and manually annotated. These images are then used to
build a corresponding person-dependent active appearance model (AAM). The images
from all actors are also used to build a generic,i.e., person-independent AAM. The pa-
rameter vectors of training data of each actor are then extracted twice firstly by using the
corresponding AAM for each actor (person-dependent), and secondly by using the AAM
that was built using data from all actors (person-independent). The extracted parameter
vectors are subsequently conveyed to train a person-dependent and -independent support
vector machine classifier respectively. SVM classifiers then categorize any unseen facial
images into one of seven emotion classes (six Ekmanian plus the neutral one); the average
amount of test data from each actor was 223.6 images.1.

In both person-dependent and -independent cases a one-against-all SVM classifier with
RBF kernel is trained. The following results highlight the robustness of our system as

1Prior evaluation of the facial-expression-based system can be seen in Sec. 8.1
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Ang Dis Fea Hap Neu Sad Sur Total Error
Ct 11.43 17.86 20.99 66.67 14.81 12.53 35.66 25.70 0.2124
BB 40.20 69.09 74.41 89.33 88.43 77.25 64.55 71.90 0.0489
LT 59.99 87.94 84.22 94.67 93.17 90.39 79.62 84.29 0.0540
LW 72.87 91.87 83.50 92.36 86.29 91.26 82.93 85.87 0.0485
GW 75.49 90.20 90.96 94.20 92.25 93.97 83.83 88.70 0.0472

Table 6.2: Recognizing rates obtained from the proposed facial-expression-based systems exploiting the
person-dependent Active Appearance model. The system is evaluated on the DaFEx database. Emotions
are; Ang:Angry, Dis:Disgust, Fea, Fear, Hap:Happiness, Neu:Neutral, Sad:Sadness, and Sur:Suprise. Ini-
tialization methods; Ct:Centering, BB:Bounding Box, LT:Linear Transformation, LW:Linear Warping, and
GW:Gaussian Warping.

well as the impact of the initialization methods on the efficiency of the facial expression
recognition subsystem; for more details about the proposed initialization methods recall
Sec. 4.6.

As depicted in Table 6.2 the classification rates using the individual models, AAMs
and SVMs, are higher than those when a generic one is used Table 6.3. That suggests
putting forward the integration model in BIRON, which will be discussed in Sec 4.7. In
this model, the facial expression component will benefit from the identity information
provided from the face identification component. If the interaction partner is successfully
identified, the corresponding emotional model, (SVM), can be used to recognize her/his
emotions. Otherwise a generic emotional model can be utilized for unknown interaction
partners.

The performance of the system, in the case of utilizing individual AAMs outperforms
the performance with a generic one, because the variation of the facial features relevant to
the expression of one individual is smaller than those of multi-person and the classes of
individual models are clustered more compactly than the generic one. The column Error
in both Table. 6.2 and Table. 6.3 indicates that the reconstruction errors of the former
are larger than those resulting from the latter. That is, however, much expected because
the larger the train data used for constructing an AAM, the smaller the reconstruction
error [55].

When it comes to discussing the impact of the used initialization method on the
performance of the system, the largest reconstruction errors and lowest recognition rates
occurred when the model was aligned on about the image center (Centering). Coarsely
initializing by using the bounding box already provided considerable enhancement of
the performance. Minimizing the distance between the facial features and the feature
points by using linear transformation initialization offered more adequate AAM fitting
and therefore yielded better classification results. Moving the basic land-marks and their
surroundings to fit the basic facial features, eyes, nose and mouth, according to either
linear warping or Gaussian warping led to the best performance of the system [117].
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The last rows of Table 6.2 and Table 6.3 depict the performance of the system in
recognizing each individual emotion, given that a Gaussian-warping-based initialization
method is used. From these rows, it can be seen that happiness achieved the highest recog-
nition accuracy irrespective of being the used model, person-dependent or independent.
That is however not surprising, when the judging rate of human observers is set as ref-
erence point [125]. Neutral achieved a relatively higher scores of 92.25% and 82.84%
for the person-dependent and -independent model, respectively. Although neutral is not
included as an emotional state in theoretical studies, deciding if the interaction partner is
currently in an emotional state or not will definitely be beneficial for human-robot inter-
action. It could be a sign of the user engagement degree in the interaction course.

Ang Dis Fea Hap Neu Sad Sur Total Error
Ct 22.70 10.95 06.55 99.50 05.56 07.34 24.09 25.31 0.1467
BB 38.63 39.95 68.46 99.33 84.37 71.43 67.44 67.09 0.0345
LT 81.23 70.55 71.74 98.61 78.91 78.41 73.79 79.04 0.0320
LW 77.38 63.76 76.61 99.33 83.60 82.76 84.73 81.17 0.0186
GW 75.88 70.09 74.62 98.61 82.84 84.24 79.32 80.80 0.0180

Table 6.3: Recognizing rates obtained from the proposed vision-based systems exploiting the person-
independent Active Appearance model. The system is evaluated on the DaFEx database. Emotions are;
Ang:Angry, Dis:Disgust, Fea, Fear, Hap:Happiness, Neu:Neutral, Sad:Sadness, and Sur:Suprise. Initial-
ization methods; Ct:Centering, BB:Bounding Box, LT:Linear Transformation, LW:Linear Warping, and
GW:Gaussian Warping.

To investigate the possible influence of facial configurations related to speech pro-
cesses on the emotion-related facial expressions, we evaluated our visual-based system on
the part of the DaFEx database that contains subjects speaking and displaying emotions
simultaneously. Some annotated images of each actor displaying each possible facial exp-
ression with each possible emotion intensity from the first block of the DaFEx database;
videos in utterance case, is selected to build a person-independent generic active appear-
ance model (AAM) covering a total of 99% of the training set variance. The average was
244.66 images for each actor containing the expression of seven emotions in three differ-
ent intensity levels. The parameter vectors for SVM training and testing are extracted
from all four DaFEx blocks with utterance using this AAM. According to the outlined
leave-one-out cross-validation scheme, training of one-against-all support vector machine
classifiers with RBF kernel is conducted for person-independent classification of the vi-
sual appearance of the facial expressions into the six basic emotion classes in addition to
the neutral one.

That the acoustic-based system in this evaluation was tuned to classify complete ut-
terances, as will be seen in Sec. 6.4, a majority voting for each video sequence (mean
sequence length: 80.47 frames) is applied. However, it shall be noted that for a real-
time integration the problem of different segment sizes of the two cues needs to be ad-
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dressed. While the facial-expression-based approach produces hypotheses for each frame,
the speech-based approach needs a prior segmentation in order to determine a hypothesis.

Anger Disgust Fear Happiness Neutral Sadness Surprise
Angry 94.44 02.78 00.00 00.00 01.39 01.39 00.00
Disgust 25.00 73.61 00.00 00.00 00.00 01.39 00.00
Fear 19.45 01.39 58.33 02.78 01.39 09.72 06.94
Happiness 15.28 00.00 00.00 80.55 00.00 01.39 02.78
Neutral 06.95 00.00 05.56 00.00 79.16 06.95 01.39
Sadness 11.11 00.00 06.94 01.39 05.56 72.22 02.78
Surprise 20.18 00.00 07.11 07.02 01.39 01.39 62.91
Total 74.46

Table 6.4: Confusion matrix obtained from visual-based analysis of the DaFEx database in the case of
talking subjects; rows represent the ground truth.

Table 6.4 depicts the confusion matrix of the classification results of the facial-
expression-based system when the observed person speaks and displays facial expressions
at the same time. The reason of unexpected confusion of disgust and surprise with angry
might be that angry is not well presented by the actors and therefore the feature space of
the angry utterances is spread widely. As in the case of displaying facial expression delib-
erately, neutral is recognized with a relatively high accuracy, which provides a significant
enhancement towards our goal of better affective human-robot interaction. Speech mainly
affects the mouth vertically more than horizontally; hence the horizontal deformation of
the mouth can be related to the expression of emotions. For instance, happiness is par-
tially expressed by horizontal extension of the mouth [41], and therefore it is still well
recognized even when it is expressed during speech. During speech, most of the facial
activities in the lower part of the face are related to lip movements, which considerably
degrade the recognition rates of mouth-dependent classes, such as surprise. Surprise is
associated with a wide open mouth [41], which makes it difficult to be distinguished
from vertical mouth deformations that are associated with speech production processes.
As downward motion of inner eyebrows and vertical wrinkles between them discriminate
anger from other facial expressions [41], the high recognition accuracy of anger is highly
expected. The reason of relatively high confusion of fear with surprise is that both emo-
tion classes are characterized by the strong upward movement of the brows [41, 10]. A
previous study suggested that fear and sadness are expressed in a similar movement in
the forehead area [10], which could be the reason of the relatively high confusion betwen
them; 9.72 point.

In order to compare the performance of the facial-expression-based system on talking
and non-talking subjects, the same data of block one “talking subjects” as above is used
to build a person-independent AAM. This AAM is then used to extract features of image
data of block three and block six; block six contains video data with non-talking subjects
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Anger Disgust Fear Happiness Neutral Sadness Surprise Average
No Talking 97.22 69.44 86.11 97.22 80.56 69.44 94.44 84.93
Talking 94.44 73.61 58.33 80.55 79.16 72.22 62.91 74.46

Table 6.5: The results provided by the facial-expression-based analysis system in cases of the talking and
not talking subjects. Majority voting scheme is used to calculate the classification rate for the whole utter-
ance. As depicted the system has a better overall performance in the latter case than in the former.

too. The extracted features of each each block are then used to train the corresponding
SVM model, which is then tested on the other block.

The classification results in cases of talking and no-talking subjects presented in Ta-
ble. 6.5, indicate a degraded performance of the system when the observed person speaks
and displays facial expressions simultaneously rather than displaying facial expression
deliberately. The highest results were 84.93% for posed facial expression and 74.46% for
facial expression and speech when the initialization method based on Gaussian warping
is selected. The speech production process could be the major reason that leads to this
degraded performance of the system. These process includes not only movements in the
lower part of the face, such as lip movements and mouth configurations, but also some
configurations of the upper part of the face, such eyelids and eyebrow movements.

6.4 Evaluation of Speech-Information-Based Emotion
Analysis System

In order to smooth the effect of speaking on displaying facial expression, audio signals
that are produced by speech processes are taken into account. To evaluate the speech-
based recognition system, whole utterances from the same part of DaFEx are used as
basic units of analysis, each utterance obtaining one emotion label. A leave-one-out cross-
validation scheme is also utilized to train and test the speech-based system. The evaluation
results indicate that the performance of the stand-alone speech system is significantly
outperformed by the visual-based unimodal; 61.90% for the former and 74.46% for the
latter [118]. This may be due to the DaFEx database being primarily designed for visual
analysis and the speech recordings containing background noises, but it also emphasizes
the need for a joint analysis.

The confusion matrix, depicted in Table. 6.6, shows an expected confusion of anger,
happiness and fear, as all three are associated with high activation. However, it is notice-
able that disgust, fear and surprise have a relatively high confusion rate with neutral. A
previous study suggested that when neutral is excluded, anger and sadness are recognized
by speech the best [133]. The results provided by our acoustic-based system verify this
argument. This study suggests also that negative activation emotions, such as sadness, and
the ones with positive activation, such as anger, happiness and fear, can be discriminated
according to some values derived from the mean frequency,“F0”. The former set seems
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Anger Disgust Fear Happiness Neutral Sadness Surprise
Angry 68.05 05.56 16.67 02.78 05.56 00.00 01.39
Disgust 05.56 51.38 06.95 15.28 06.94 12.50 01.39
Fear 15.20 08.33 48.61 12.50 00.00 09.72 05.56
Happiness 06.94 15.28 15.28 50.00 06.95 00.00 05.56
Neutral 00.00 06.95 01.39 01.39 87.49 02.78 00.00
Sadness 00.00 08.34 13.89 05.56 01.39 69.44 01.39
Surprise 04.17 06.94 13.89 11.11 02.78 02.78 58.33
Total 61.90

Table 6.6: Confusion matrix obtained from speech-based unimodal analysis of the DaFEx database; rows
represent the ground truth.

to be associated with decreased mean and range of mean frequency, while the latter is
accompanied by increased mean and range of F0 [133].

6.5 Evaluation of Audio-Visual System

The individual results, illustrated in Table 6.4 and Table 6.6, indicate that the visual recog-
nition system overall yields better results than the acoustic system. The total recognition
rate of the former is 61.90% while of the latter it is 74.46%. This notion is verified by
concordant evidence of several theoretical studies [133, 134]

However, when comparing the performance of each modality for each emotion, it can
be seen that there are differences depending on the emotion as depicted by the ratios
(Vis/Aco) between visual and acoustic performance in Table 6.7. In order to normalize
against the overall performance difference, which we assume is due to artifacts of the data
and probably also due to intrinsic properties of the modalities, we normalized these ratios
by the overall Vis/Aco factor of 1.23, obtaining relative Vis/Aco ratios. Emotions with a
relative ratio below 1 this indicates that the speech-information-based channel provides a
relatively better performance, while those with a relative ratio above 1 indicate a higher
performance of the visual channel.

The overall results provided by unimodal systems suggest that for accurate and reliable
recognition of emotion classes the modalities should be combined in some manner that
benefits the interrelationships between the individual classes and the underlying modal-
ities. For a fusion scheme, it means that it would indeed be beneficial to integrate hy-
potheses from both modalities based on the a-priori confidence of a modality for a certain
emotion and weight by the own confidence of the classifier in the current classification
as proposed by the “Fuzzy Logical Model of Perception, FLMP” [91]. To do that, we put
forward our fusion model, as proposed in Sec. 5.4

In order to evaluate our bimodal system, the same subset of DaFEx that contains only
videos with speaking actors, namely (block 1, 2, 4, and 5), is chosen. Due to the small
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Vis Aco Vis/Aco Relative Vis/Aco
Ang 94.44 68.05 1.35 1.10
Dis 73.61 51.38 1.43 1.16
Fea 58.33 48.61 1.20 0.98
Hap 80.55 50.00 1.61 1.31
Neu 79.16 87.49 0.90 0.73
Sad 72.22 69.44 1.04 0.85
Sur 62.91 58.33 1.08 0.88
Total 74.46 61.90 1.23 1.00

Table 6.7: Classification rates of the visual vs acoustic systems and their ratios.

sample size, the same actors are used for training and testing. It shall be noted, however,
that both speech-based and facial-expression-based recognizers apply person-independent
models. The same leave-one-out cross-validation is used for the different modalities. For
each unimodal, training is done on three blocks and evaluation of the performance is
performed on the one remaining test block. The probability tables for the Bayesian fusion
model are obtained from validation of the performance on the three training blocks. The
fusion performance is tested again on the test block. In cross-validation, all permutation
of blocks are applied to training and testing respectively.

Visual Acoustic Audio-Visual
Anger 94.44 68.05 81.94
Disgust 73.61 51.38 87.50
Fear 58.33 48.61 52.78
Happiness 80.55 50.00 86.11
Neutral 79.16 87.49 86.11
Sadness 72.22 69.44 74.99
Surprise 62.91 58.33 77.77
Total 74.46 61.90 78.17

Table 6.8: Classification rates of the visual, audio, and audio-visual systems

Table. 6.8 depicts the significant overall improvement achieved by the proposed fusion
scheme of applying our simple Bayesian networks model, which has the advantage over
the facial-expressions- and speech-information-based unimodal systems of about 4% and
16% points, respectively. The 2nd and the 7th rows (Disgust and Surprise, respectively)
reveal a high accuracy of the fusion model for recognizing disgust and surprise, respect-
ively in contrast to the stand-alone unimodals, indicating that both cues obviously com-
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prise complementary information that facilitate eased discrimination in the joint analysis.
On the other side, it is noticeable that both unimodal cues comprise only redundant infor-
mation so that the fusion yields no improvement with regard to discrimination ability for
the recognition of fear. Overall our system achieves good results on the DaFEx database,
which are comparable with those reported for human observers [12], which indicates that
the interpretation of facial expressions is a difficult task for humans, too.

Ang Dis Fea Hap Neu Sad Sur
Ang 81.94 08.33 01.39 02.78 04.17 00.00 01.39
Dis 04.17 87.50 01.39 02.78 00.00 04.17 00.00
Fea 15.28 02.78 52.78 05.56 00.00 12.50 11.11
Hap 05.56 01.39 00.00 86.11 00.00 01.39 05.56
Neu 04.17 00.00 01.39 00.00 86.11 06.94 01.39
Sad 01.39 08.33 06.94 01.39 02.78 74.99 04.17
Sur 01.39 01.39 05.56 11.11 01.39 01.39 77.77
Tot 78.17

Table 6.9: Confusion matrix obtained by using audio-visual system based on a probabilistic decision level
fusion method; rows represent the ground truth.

The confusion matrix provided by the audio-visual system, as depicted in Table. 6.9,
shows a high confusion of fear with anger and surprise, 15.28% and 11.11% respectively.
Excluding the confusion values of fear, all other values do not exceed 10, which again
emphasize the overall improvement of the audio-visual system compared with both stand-
alone unimodals.

6.6 Evaluation in Real-Life Conditions

As we are striving in this work to give the robot a bimodal emotion recognition ability
that is based on analyzing facial expressions and speech information, the same procedure
of evaluation using the DaFEx database is repeated with subjects in a real-life conditions.
Four subjects have participated in this test (one female and three males), some examples
are presented in Fig. 6.2.

The whole procedure is divided into training and test phases. For one subject both
phases were conducted in the same day; for two others the test was is conducted in the
following day, while for the fourth subject the time interval was two days. In the training
phase the subjects are asked to display facial expressions of five emotion classes: anger,
happiness, neutral, sadness, and surprise. The average amount of data captured from each
subject for each facial expression class was 246 images. To create conditions of real-life
human-robot interaction as much as possible, the subjects are allowed to move arbitrarily
in front of the camera. During this phase a person-independent AAM, which is built from
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Figure 6.2: Examples of image data captured by robot’s camera directly, anger and happiness are displayed
in left and right image respectively

a subset of the DaFEx database of talking and non-talking subjects, is used to extract
the emotion-related facial features. These features are then conveyed to train a person-
dependent SVM. The test phase, in turn, is divided into two sessions. In the first one the
subjects are asked to show the five facial expression classes as mentioned above, while in
the second sessions they are asked to display facial expressions and utter a few sentences
(in general five) expressing as much an emotions as possible 2. In both sessions of the
test phase, the above-mentioned AAM is used to extract facial features, which are labeled
with the proper emotional class by the above-trained SVM. In the session of speaking
and displaying facial expression a person-independent speech-based emotion recognizer
is utilized to categorize each utterance into the proper emotional class. An average of
145.25 and 163.5 images from each subject for each emotion are used as test data in the
sessions of talking and non-talking subjects, respectively. The validation matrix for the
fusion scheme of each subject was an averaged confusion matrix (CPT), which is obtained
from the performance of both individual systems on the three remaining subjects.

Table 6.10 illustrates the result obtained by using only the facial-expression-based emo-
tion analysis system to recognize emotions that are deliberatively displayed by the sub-
jects. As depicted in the table, the most negative emotion − sadness − and the most pos-
itive emotion − happiness − are recognized the best. Neutral also has a relatively high
recognition rate, which can serve to distinguish between emotional and non-emotional
states of the interactant. The mutual confusion between sadness and neutral indicates the
similarity between them when the distinguishing is based only on analyzing the associ-
ated facial expressions. The fact that surprise is a transient state, difficult to hold, which
changes rapidly into another one (in our test it changed generally into the neutral state),
could be the reason for the relatively high confusion of surprise with neutral.

The results obtained by analyzing facial expressions during speech are illustrated in the
table 6.11. The results present the recognition rates after applying majority voting for each

2The sentences were emotional words free
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Anger Happiness Neutral Sadness Surprise
Anger 57.72 00.60 12.19 28.54 00.95
Happiness 02.96 67.46 21.00 07.15 01.42
Neutral 05.21 00.00 64.36 30.42 00.00
Sadness 02.98 00.00 17.32 79.18 00.53
Surprise 05.57 00.88 31.35 10.55 51.64
Total 64.07

Table 6.10: Confusion matrix obtained by using the facial-expression-based system in the test session of
displaying emotions deliberatively; rows represent the ground truth.

Anger Happiness Neutral Sadness Surprise
Anger 75.00 00.00 06.25 18.75 00.00
Happiness 25.00 43.75 25.00 06.25 00.00
Neutral 20.00 00.00 50.00 30.00 00.00
Sadness 22.36 11.11 06.25 60.28 00.00
Surprise 16.67 00.00 12.50 22.92 47.92
Total 55.39

Table 6.11: Confusion matrix obtained by using the facial-expression-based system in the test session of
expressing emotions via facial expressions and speech tone simultaneously; rows represent the ground truth.

utterance that doesn’t include a pause longer than 200 ms. As in the evaluation with the
database (offline evaluation), facial-expression-based analysis of emotion delivered lower
recognition rates when the subjects were engaged in conversational sessions; 64.07% for
recognizing facial expressions displayed deliberatively and 55.39% for recognizing facial
expressions during speech. The higher recognition rate of anger during speech compared
to anger displayed deliberatively could be because majority voting over the time of each
sentence is applied in the former, while the recognition rate of the latter is computed for
the entire video sequence.

Table 6.12 illustrates the results obtained from both the stand-alone and bimodal
systems. The low rates delivered by the speech-based emotion analysis system - the sec-
ond column - could be because a person-independent classifier is used, which is trained
on a speech-based emotion database that does not include the subjects participating in the
evaluation procedure. Nevertheless, it can be seen that the whole performance of the bi-
modal system has an advantage over both facial-expression- and the speech-information-
based systems, which satisfy the goal of the fusion scheme proposed previously. How-
ever, when the performance of each channel on each emotion is considered it is notable
that the recognition rate of happiness and neutral is enhanced when the bimodal system
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Aco Vis Vis/Aco Relative Vis/Aco Audio-Visual
Anger 33.04 75.00 2.27 0.805 75.00
Happiness 15.42 43.75 2.84 1.007 50.00
Neutral 36.25 50.00 1.38 0.489 68.75
Sadness 23.06 60.28 2.61 0.925 49.03
Surprise 10.42 47.92 4.60 1.631 47.92
Total 23.63 55.39 2.82 1.00 58.14

Table 6.12: The performance of each stand-alone unimodal systems, their relative performance on each
emotion class, and the performance of the bimodal system. All results are obtained from a test in a real-life
condition.

is employed, which indicates that the cues of both modalities comprise complementary
information for these two emotions. In contrast, from the first and fifth rows, it is no-
ticeable that both unimodal cues comprise only redundant information so that combining
both modalities yields no improvement with regard to discrimination ability for the recog-
nition of anger and surprise. Furthermore, the fourth row indicates that both modalities
deliver conflicting information, which causes sadness to be recognized even less than the
stand-alone facial-expression-based modality.

The comparison between the performance of all of the systems in the cases of offline
(DaFEx database) and online (data captured in real-life conditions) evaluation shows bet-
ter performance of the systems in the former case, especially of the speech-information-
based system. These performance differences were greatly expected because (I) the
speech-information-based system in the former was trained using data from the same sub-
jects who had participated in the evaluation test, (II) the facial-expression-based system
of the former case was trained and tested on a relatively constrained set of data (the ac-
tors displayed almost a frontal-view facial expression with constrained head movements
while they were sitting in front of the camera), and (III) the degraded performance of both
unimodal systems will consequentially lead to a degraded performance of the bimodal
system.

6.7 General Discussion

Sofar, we have presented an audio-visual emotion recognition system to be integrated into
a robot. But does this system relate to the developments in the field of social human-robot
interaction? More precisely, how can understanding of interactant’s emotion help for more
social human-robot interaction.

Sec. 2.1 stated that emotions play a major role in human-human interaction. They seem
to be centrally involved in determining most human’s behavioral reactions to external and
internal events of major significance for needs and goals of humans. For instance, Frijda
suggests that positive emotions, exp., happiness, are elicited by events that satisfy some
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motive, enhance one’s power of survival, or demonstrate the successful exercise of one’s
capabilities. Positive emotions often signal that activity toward the goal can terminate,
or that resources can be freed for other exploits. In contrast, many negative emotions,
exp., anger and sadness, result from painful sensations or threatening situations. Nega-
tive emotions motivate actions to set things right or to prevent unpleasant things from
occurring [52].

By mirroring this fact in human-robot interaction scenarios, BIRON can adopt
according to the emotional state of its interaction partner, which might be previously
elicited by a previous behavior of BIRON itself. As example, in “object-teaching sce-
nario”3, BIRON can detect a smile of its interactant as an acceptance sign, after it has
recognized successfully a previously learned object, “That is a book”, and precedes cap-
turing further features of the object, which can help BIRON in similar scenarios in future.
In the so-called “home-tour scenario”4, BIRON can infer that its interactant is getting an-
noyed in cases when it has not located itself correctly “BIRON still insists it is standing in
the kitchen, when in fact it is actually in the dining room”, by detecting some features re-
lated to the anger emotional state from the interactant’s facial expressions (frowning face),
voice, or both. Accordingly, BIRON can try to fix such a situation by asking additional
questions in order to ascertain whether it was right or, if not, what was wrong and how the
problem can be solved. Detecting a surprise in the interaction partner could indicate that
BIRON has performed an unexpected behavior, “BIRON pronounces a phrase that is far
removed from the current context of interaction, exp., you have a very nice living room,
when an interaction partner is in fact displaying a bottle in an object-teaching scenario”,
which can be followed by a question from BIRON to determine the reason behind the
interactant looking surprised, and to work out how this can be avoided in future. Getting
a neutral state of the interaction partner for a specific time period could indicate an inter-
action with a low level of engagement, BIRON could suggest having a cup of coffee or
playing a game.

As discussed in the previous section, the proposed audio-visual emotion analysis
system provides the ability for BIRON to infer all emotional states with a relatively high
accuracy. That allows BIRON to perform in interaction scenarios similar to those dis-
cussed shortly before.

3more details can be found in Sec. 8.3
4more details can be found in Sec. 8.2
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Modern robots are developed in such a way that they won’t just function inside factories
but can also take part in our daily life. They could work in normal everyday life environ-
ments and interact with even non-expert users. To maintain a natural human-robot inter-
action, the robot needs to understand the human via different observational modalities. In
this dissertation we focus on the audio-visual recognition of human emotions. Emotions
are associated with several internal changes inside the human. Projecting these changes
onto the outside via various media, such as for instance facial expression and speech
prosody, as well as sensing emotion-related cues submitted by others are often consid-
ered as the main part of social interaction. Acting according to this fact, it is suggested
that sensing the emotions of the interaction partner is essential for social human-robot
interaction, and that inferring the emotions by the robot is obvious for efficient and user-
friendly human-computer interaction. This inference ability is especially needed when
more sophisticated emotional behavior of a robot towards its interactant is intended, e.g.,
behavior adaption of the robot according to the emotional state of its interaction partner.

However, most current techniques for the recognition of emotions cannot be transferred
because they rely on only one modality to infer the encountered emotion neglecting that
humans encode their own and perceive others’ emotion multimodally. Furthermore, quite
a few of these approaches lack the abilities to be applied fully automatic in natural and
human-human-like social human-robot interaction.

The presented work overcomes several of these deficiencies. In order to infer six basic
emotions of the interactant plus the neutral one, we presented an integrated vision system
based on analyzing the associated facial expression. For realizing this system a hybrid
facial features extraction method is employed. To provide the ability for the robot to
recognize the emotion fully automatically in a natural and unconstrained environment,
a novel initialization method is proposed.

This initialization method aimed at benefitting from basic facial features supplied by
the face detector to initialize the location of the feature extraction model. Because of the
lack of a real-life data with reliable ground truth that captured by the robot directly, the
system is trained and tested on a sufficient, and ground-truth annotated database. The re-
sults presented that the information related to these basic features as well as the way in
which it is used have a great impact on the performance of the feature extractor and con-
sequently on the performance of the whole system. The results evidenced, furthermore,
that facial expressions are better classified, when a person-dependent model is utilized
than when using a person-independent one. In order to make use of this point, the system
has been developed in such a way that facial expression benefits from the prior step of
user identification.

In natural human-robot interaction, however, reliance is not only placed on visual ob-

88



7 Conclusion and Future Work

servations for sensing and recognizing the emotional state of the user, but rather it occurs
multimodally in the most natural way via facial expressions and speech cues. Most cur-
rent emotion sensitive systems employ either the former or the latter. The few approaches
that focus on multimodal emotion recognition employ several cues in rather simple ways
neglecting the mutual influence between them. Facing this challenge, we presented an
audio-visual-based emotion-aware system that focuses on the emotion analysis of talking
interlocutors, which is different to most approaches which focus on non-talking faces-
Like the stand-alone visual-based system, the bimodal system fulfils the requirement of
being fully automatic and having real-life applicability. A probabilistic-based decision-
level fusion approach is introduced to combine the cues of both unimodals. Being based
on Bayes nets, the used fusion method draws benefits by taking the performance of each
individual classifier into account and weighting them according to their respective dis-
crimination power.

Both unimodals as well as the bimodal one are trained and tested using the part of the
DaFEx database which contains objects that are speaking and displaying facial expression
simultaneously. Considering the performances of the unimodal systems, the results indi-
cated that the one based on facial expression appears to be more successful compared to
the one based on speech, while the bimodal one outperforms both. This notation is sup-
ported by a large body of evidence provided by theoretical studies on perception emotions
by human encoders.

Further work needs to concentrate on several issues regarding both the facial-
expression-based system and the bimodal one. Building an AAMs for new unseen per-
sons demands proper annotation of some images of the considered subject. Up to now to
the best of our knowledge all systems that utilize AAMs as feature extractor rely on the
somewhat tedious manual annotation. The first simple solution to this problem might be a
bootstrapping method that makes use of a combination of tracking of some fiducial facial
points (e.g., irises and mouth center), knowledge-based methods, and the reconstruction
error fed back from an already existing AAM.

Experiments carried out to evaluate the performance of the bimodal system indicate that
firstly the bimodal system outperforms both unimodals; in other words, the cues of both
modalities should be considered when aiming at an emotion analysis system that performs
well in natural and social human-robot interaction. Furthermore, the results verified the
suitability of our fusion scheme, in which the decision of each modality is fed after be
weighted according to its discrimination power. Putting this fusion forward is proved by
discussing the performance of each modality on each emotion.

An open issue regarding the used probabilistic fusion method is that the extension of
the Bayesian network so that it includes a further variable that indicates if the interactant
is speaking or not, i.e., indicates if the user is only displaying facial expression or she/he is
speaking and displaying facial expression at the same time. This variable can be directly
extracted from the speech-based analysis system. Regarding to this variable, new weights
can be recomputed.

Both unimodal systems as well as the bimodal one performed well on the DaFEx
database, while they delivered obviously lower recognition rates when they are employed
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in real-life condition, event hough the number of emotion classes was bigger in the for-
mer case than the latter. It might be beneficial to have a more comprehensive real-life data
captured by the robot directly for it to evaluate at will. Nevertheless, labeling such data
presents another open challenge.

The robot’s adaption to the needs of its interaction partner is not just simple mimicry.
A future work towards complete human-human-like human-robot interaction is to build
emotional profiles for both the robot and the interactant. An emotional profile of an inter-
action partner does not mean just recognizing the current emotional state of the inter-
actant, but rather it could include his/her emotional behavior across multiple contexts,
during several time periods, as well as her/his mood. Such a profile could provide a good
basis for the robot to react the best according to these variables. The robot’s emotional
profile, in turn, could comprise an emotional-cognitive model, which would allow the
robot to produce appraisals according to internal and external contexts. The latter can be
presented as the information provided from the interactant’s emotional profile, while the
former could contain a combination of current stimuli with some existing schemas in its
memory, representing a variety of information, past experiences, current goals and needs,
and knowledge of the surrounding.

As a whole, the results suggest that facial expression and speech prosody provide in-
formation about the affective state of the interactant for the robot, and they are the most
important input signals for natural human robot interaction. In addition, the results suggest
that the recognition of each individual emotion is highly dependent on the used modality.
Hence, both modalities should be considered in a joint manner, when a reliable emo-
tion analysis system for natural, unconstrained, and real-life human-robot interaction is
intended.
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8 Appendix

8.1 Evaluation of Visual-Based System Using NN

A previous study is carried out by utilizing the facial-expression-based system proposed
in Sec. 4.6. Instead of using SVM a rather simple nearest neighbor classifier is used. To
classify a new face represented by the parameter vector ci, assuming that the expression
classes have a common covariance matrix, we measure the squared Mahalanobis distance
dM from ci to each of the j estimated mean vector c̄j , j ∈ (anger, disgust, fear, happiness,
neutral, sadness, and surprise). the vector ci is then assigned to the class of the nearest
mean. mathematically we have computed dmathbfM(ci, c̄j) = (ci − c̄j)

tS−1(ci − c̄j) for
each new ci and assigned it according to the class to which the vector has the lowest
distance dM, where S is the Covariance matrix computed from some labeled data.

Ang Dis Fea Hap Neu Sad Sur Total
Ct 20.93 00.00 36.14 04.90 26.62 19.92 30.34 19.84
BB 54.24 52.52 55.73 59.95 88.49 63.27 55.89 61.44
LT 67.80 62.10 63.38 65.96 95.25 73.51 59.00 69.57
LW 83.04 71.34 63.77 65.68 91.38 75.93 54.76 72.27
GW 82.36 68.01 64.14 69.23 94.21 77.80 53.89 72.80

Table 8.1: Recognizing rates obtained from the facial-expression-based system exploiting person-
dependent AAM. The system is evaluated on DaFEx database with a nearest neighbor classifier. Emotions
are; Ang:Angry, Dis:Disgust, Fea, Fear, Hap:Happiness, Neu:Neutral, Sad:Sadness, and Sur:Suprise. Ini-
tialization methods; Ct:Centering, BB:Bounding Box, LT:Linear Transformation, LW:Linear Warping, and
GW:Gaussian Warping.

As expected, Table. 8.1 shows that using person-dependent AMMs revealed better
recognition rates as using person-independent AMMs, the reasons behind that are dis-
cussed in Sec. 6.3. However, comparing the performance of the system based on nearest
neighbor classifier and that based on SVM indicates the advantage of the latter on the
former. That is because the sensitivity of nearest neighbor classifier to the local structure
of the data. This yields the classifier not to be able to form reliable neighborhoods and in
consequence causes the classifier to fail on datasets with high level of sparsity, which is
the case of our data.
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Ang Dis Fea Hap Neu Sad Sur Total
Ct 31.09 9.76 12.85 56.22 00.00 10.03 14.89 19.84
BB 29.44 08.94 04.89 34.35 63.43 00.90 03.09 20.72
LT 33.08 12.20 01.15 39.95 53.98 03.60 10.83 22.11
LW 30.13 14.48 01.85 40.60 59.86 00.00 08.57 22.21
GW 30.16 12.60 00.62 41.16 56.86 00.00 10.83 21.76

Table 8.2: Recognizing rates obtained from the vision-based systems utilizing person-dependent Active
Appearance model. The system is evaluated on DaFEx database with a nearest neighbor classifier. Emo-
tions are; Ang:Angry, Dis:Disgust, Fea, Fear, Hap:Happiness, Neu:Neutral, Sad:Sadness, and Sur:Suprise.
Initialization methods; Ct:Centering, BB:Bounding Box, LT:Linear Transformation, LW:Linear Warping,
and GW:Gaussian Warping.

8.2 Home-Tour Scenario

In this scenario the robot is introduced to its new environment; “a flat” by a person with-
out any knowledge of robotics. The interactant shows and names locations and objects
which she believes are necessary for the robot to remember. In order for the robot to be
able to allocate itself correctly the next time, it should have a robust mapping and local-
ization methods in addition to reliable human-robot interaction abilities, to which belongs
the understanding of interactant’s emotions.

8.3 Object-Teaching Scenario

Like home-tour scenario, object-teaching scenario is also a learning task of BIRON, which
is based on the perception abilities of BIRON and a reliable user-robot interaction. In this
scenario an interactant shows a set of household subjects, such as bottle, cup, book, etc...,
to BIRON and decides in a validation stage if BIRON has correctly learned the objects
showed previously or not.
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8.4 Notations

HCI: Human Computer Interaction

HRI: Human Robot Interaction

HHMs: Hidden Markov Models

NN: Nearest Neighbor Classifier

NNs: Neural Networks

SVMs: Support Vector Models

AAMs: Active Appearance Models

PCI: Principal Component Analysis

ICA: Independent Component Analysis

LDA: Linear Discriminant Analysis

EEG: Electroencephalograph

EMG: Electromyography

CPDs: Conditional Probability Distributions

CPTs: Conditional Probability Tables

BFFs: Basic Facial Features

KNN: K-Nearest Neighbor Classifier
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