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Chapter 1

Preface

One of the most fascinating discoveries in solid state physics in the past 20 years
was that of the giant magneto-resistance (GMR) in 1988 [bai8§], [bin89]. This
finding triggered a tremendous research activity in order to understand the
underlying physics as well as to explore its enormous technological potential.
It took an incredible short period of only a decade between the discovery
of the effect and its commercial availability as magnetic field sensors (1995)
and hard-disk read-heads (1997). This development is the more astounding
as metallic multilayers have been studied since 1935 [dum35|, but it took the
advances in vacuum technology in the 1970’s accompanied by the progress in
thin-film deposition techniques to enable the layer-by-layer growth. Since then
the investigation of nanoscale multilayers and especially of metallic magnetic
multilayers in which ferromagnetic and nonmagnetic layers alternate revealed
new magnetic and transport properties.

The underlying physics of interlayer exchange coupling and GMR is largely
understood nowadays but there are still discrepancies between experimental
findings and theoretical models when it comes to detail. The crucial point
has been identified to be the correct theoretical description of the scattering
at lattice discontinuities and defects. The review papers of Schuller et al.
and especially of Tsymbal and Pettifor try to reduce the findings of the vast
number of publications on GMR to a common denomiator. The authors of
both reviews come to the point that the correspondence between theory and
experiments, but also the agreement between different theories and also be-
tween similar experiments, ends where dicontinuities in growth direction and
at the interfaces come into account. They state “Disorder is a key ingredient
in all these materials” [schul99] and “The principal challenge for first-principle
modeling lies in the realistic description of the defect scattering” [tsy01].

In order to assess these findings from the experimental point of view, it is a
disadvantage in all the studies presented so far that they are valid in their own



laboratory but not necessarily in the laboratory of another research group.
Many aspects of the interplay between microstructure and GMR have been
unraveled in those single-laboratory studies but without finding a common
sense in many aspects.

The aim of this thesis is to overcome the limit of only one preparation envi-
ronment by investigating Co/Cu multilayers prepared in different laboratories
with identical characterization methods and to find insight into the interde-
pendence of microstructure and GMR on a laboratory-embracing scale. This
aim is not a modest one and therefore this study is not restricted to a few
selected samples but is funded on a vast resource of samples that comprises
variations of all thickness parameters of the layer stack.

The second scope of this thesis concerns the thermal stability of Co/Cu multi-
layers which is a cruicial criterion in the application as magnetic field sensors
in the automotive industry. The GMR multilayers presented up to date do
not or only hardly fulfill the need of 200°C' to 360°C' short time temperature
stability in the course of manufacturing as well as long-term stability in the
range of 150°C to 200°C' during up to 40000 hours of operation. In this thesis a
recrystallization mechanism in Co/Cu multilayers is presented that fundamen-
tally changes the microstructure of the multilayer in the course of a short-time
annealing at high temperatures without losing its GMR and which enables
the sample in the further course to withstand 400°C' for many hours. These
temperature stable multilayers are the ideal candidates for the automotive ap-
plication as the short-time annealing can easily be performed in a back-end
process. Furthermore, the mechanism of the layer preserving recrystallization
is investigated in order to clear up the microstructural evolution as well as the
driving force for this process.



Chapter 2

Interlayer Exchange Coupling

The phenomenon of antiferromagnetic coupling between ferromagnetic layers
across a nonmagnetic spacer layer was first discovered by P. Griinberg et al.
in 1986 [gru86]. They investigated the trilayer system Fe/Cr/Fe and used
Brillouin Light Scattering for the detection of the antiferromagnetic coupling.
The next step in the discovery of the phenomenon was made by Parkin, More
and Roche in 1990 [par90] when they found the oscillatory nature of the coup-
ling: dependent on the interlayer thickness the alignment of the ferromagnetic
layers oscillates between antiferromagnetic and ferromagnetic. They had in-
vestigated the multilayer systems Co/Ru, Co/Cr and Fe/Cr and made clear
that the oscillation period depends on the interlayer material.

Yafet made the first attempt to explain the oscillatory coupling behaviour
in layered magnetic structures in 1987 [yaf87a], [yaf87b]. He suggested an
indirect exchange coupling mediated by conduction electrons of RKKY-type,
a coupling mechanism proposed by Rudermann, Kittel, Kasuya and Yosida in
1954/1956. Based on the RKKY interaction Yafet successfully explained the
coupling behaviour. But the oscillation period of A = w/kp with kr being the
wavevector of the spherical Fermi surface of the interlayer material, which is
about one monolayer, did not agree with experimental periods of about 1nm.

This discrepancy was dissolved in 1991 by Bruno and Chappert [bru91] and
Coehoorn [coe91] by taking into account the discrete thickness of the inter-
layer. At the same time an alternative model was proposed by Edwards et
al. [edw9lc], Bruno [bru9s] and Stiles [sti93] which also correctly explains
the experimental oscillation periods. This model is based on the formation
of quantum well states within the nonmagnetic spacer, caused by spindepen-
dent electron reflection at the interfaces. The quantum confinement model
has become the widely accepted one for the explanation of interlayer exchange
coupling [bru99| and its most important aspects are given in the following.



The considerations start with a trilayer ferromagnet/diamagnet /ferromagnet
with a parallel magnetization of the magnetic layers. A coupling between the
magnetic layers is mediated by conduction electrons of the spacer material.

In ferromagnets, the density of states of the majority electrons of the 3d band
is shifted below the Fermi energy Er. As a consequence, there are no free
states left in the majority spin direction but only in the minority spin direc-
tion. The probability for scattering is directly proportional to the density of
states. Due to this, the resistance is much higher for the minority electrons
than for the majority electrons. In the given case of parallel alignment of the
magnetic layers the minority electrons are reflected at both interfaces whereas
the majority electrons can propagate freely through the layer stack. In case of
antiparallel magnetization on the other hand, this quantum confinement does
not take place because the electrons are reflected at only one interface and not
at both [gru99], [bue99].

The reflection of minority spin electrons at both interfaces leads to an interfer-
ence of electron waves. If the electron wave vector normal to the interfaces k|,
is equal to nm/D with the integer n and the spacer thickness D, then standing
electron waves will occur.

The thicker the spacer layer the more energy levels pass the Fermi energy and
become filled. For those values of D having the highest energy level filled up
and lying far below Er a stabilization of the parallel alignment of ferromagnetic
layers is expected because of a minimization of electron energy. On the other
hand there are thickness values D for which the highest energy level is right
below Er and is started to be filled. Such a configuration of electron levels
results in a destabilization of parallel alignment and thus to the antiparallel
magnetization of the ferromagnets.

The oscillation between ferro- and antiferromagnetic magnetization depends
on the thickness difference AD between two discrete energy levels passing Er,

thus
T

| ko |

Ap = AD = (2.1)

where | k| has to be taken at the Fermi level. Three important aspects have
to be mentioned concerning this result:

1. The more the electrons are localized in the spacer the more pronounced are
the changes in density of states and the higher the coupling amplitudes will
become. Therefore, additionally to its oscillating nature, the coupling strength
decreases with increasing interlayer thickness.

2. The oscillation period given above is in the order of nearest neighbour dis-
tances in the crystal and thus smaller than the experimentally observed ones.
This problem is overcome when taking into account the discrete nature of the
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Figure 2.1: Aliasing effect of interlayer exchange coupling: due to the discrete
thickness variation of the spacer the rapidly varying oscillation function is sampled

at dicrete points and thus appears to be a slowly varying function (from [bue99]).

crystalline interlayer: the exchange coupling via spacer layer can be deter-
mined only for discrete values of the spacer thickness D as this is a multiple
of the interatomic distance a, D = na, with the integer n. As a consequence,
the wave number ¢ has to be modified such that it comes to lie in the first
Brillouin zone:

q=|2k ——| (2:2)

with m being an integer. This modification of oscillation period is the so called
aliasing or Vernier effect and is demonstrated in figure 2.1}

3. The relevant wave vectors for exchange coupling are the stationary span-
ning vectors of the Fermi surface which are attributed to large density of states.
Depending on the Fermi surface and the crystalline orientation there can be
several spanning vectors, resulting in a superposition of different oscillation
periods. For the spacer material Copper different cross sections of the Fermi
surface and the corresponding stationary spanning vectors are depicted in fig-
ure It can be seen that for the [111] direction a single (long) period is
predicted, for the [100] orientation there exists both a long and a short period
and for the [110] direction there are even four different periods. Bruno and
Chappert [bru9l] and Stiles [sti93] have calculated the oscillation periods for
Cu as spacer material and a survey of their results for the [100] and the [111]
orientation is given in table [2.1]

4. The curvature and the reduced velocity of the Fermi surface determine the
strength of the antiferromagnetic coupling: the stronger the spin-dependent
reflection at the interface spacer - magnetic layer, the stronger the confinement
and thus the oscillatory coupling (details in [sti93]). The probability for ma-
jority and minority electrons from the spacer layer to reflect from the interface
with the magnetic material is compiled in figure 2.2
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Figure 2.2: Cross sections of the Fermi surface of Cu and their stationary spanning
vectors along the [100], [111] and [110] planes (middle row). Each critical span-
ning vector is labeled by its associated coupling period in monolayers. The left and

right row show the interface reflection probability for majority and minority electrons

99,

Various models and methods for the calculation of the coupling strength have
been used, which are reviewed in [sti99]. Especially for the system Co/Cu
[100] there are several difficulties in the theoretical investigation of the coup-
ling, concerning short and long period oscillation. For the first antiferromag-
netic coupling maximum (AFCM) coupling energy values between 1.2 and 4.6
mJ/m? have been calculated. The experimentally measured coupling energies
on the other hand are generally a factor of three smaller (0.16 to 0.39 m.J/m?,
see table . This discrepancy has not been cleared yet, but thickness fluc-
tuations in the measured samples are proposed to be the reason. Experiments
revealed, that the ratio of the two coupling strengths depends sensitively on
the growth. Stamm et al. succeeded in amplifying the short period oscillations
by growth at low temperature [sta98]. Furthermore, the Co layer thickness and
even Cu capping layers influence the coupling strength as well as its period
and phase, as theory and experiment reveal (details in [sti99]).

There is much more agreement between calculated and measured coupling en-
ergies in the Co/Cu [111] system which has only one spanning vector. Stiles
quotes theoretical values of 0.59 and 0.67 m.J/m? for the first AFCM and ex-
perimental coupling energies between 0.15 and 1.1 mJ/m?. But multilayers



spacer dnrl oscillation period

Cu[111] 2.0869A A =45ML =0.94nm

Ay =26ML =0470nm
Cu [100] ~ 1.8073 A Ay =59ML = 1.066nm

Table 2.1: Theoretical oscillation periods [bru91], [sti93].

of type Co/Cu [111] have been found to be very sensitve to the growth mech-
anism: MBE fabricated samples did not show antiferromagnetic coupling in
some research groups, whereas they did in others. Furthermore, as large GMR
effect values as in sputtered samples have not been detected even in well anti-
ferromagnetically coupled MBE samples. Sputtered samples did show highest
GMR values of 65 % at first AFCM [par91b].

Conclusions

In table [2.2) many experiments on Co/Cu [111] and [100] are drawn together.
It is obvious that the theoretical oscillation periods are very close to the mea-
sured ones. The short oscillation period of Co/Cu [100] cannot be seen in all
samples. The major reason seems to be interface roughness: only samples with
atomically smooth interfaces reveal the short period [sta9g].

The theoretical calculations suggest a stronger coupling of the first AFCM in
[100] than in [111] Co/Cu. The experimental values on the other hand are
in the same range for both orientations. Theoretical uncertainties as well as
growth condition and magnetic layer thickness can be attributed to be the
reason for that.

Samples fabricated by MBE have a tendency to be lacking the GMR effect, in
contrast to sputtered samples. The experiments listed in the table do not give
a close picture, because the MBE samples are sandwich structures in most of
the cases whereas sputtered samples are all multilayers.

Biquadratic Exchange Coupling

Besides the colinear alignment of two magnetic layers with an angle difference
of 180° in case of antiferromagnetic coupling and of 0° in case of ferromagnetic
coupling there has been found a noncolinear alignment of 90° characteristic.
In contrast to the bilinear coupling treated so far, this 90° type of coupling
is called biquadratic. The reason for the existence of biquadratic coupling
has not been identified within a closed model but in contrast, three differ-
ent explanations have been proposed. The first theoretical model to account
for the biquadratic coupling phenomenon was the fluctuation mechanism
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and is based on the assumption on terraced interfaces. These terraces occur
because of thickness variation of the spacer layer in the order of two monolay-
ers, resulting in regimes characterized by ferromagnetic coupling and others
of antiferromagnetic coupling behaviour. Assuming that these different areas
are closely neighboured, a competition between these different coupling types
occurs which is superimposed by the ferromagnetic exchange within the ferro-
magnetic layers. As a consequence, the magnetic moments orient orthogonally
to each other [slo91], [dem9§].

Another theoretical model for the explanation of biquadratic coupling is based
on the magnetic dipole field of the magnetic layers. In case of ideally planar
interfaces the magnetic dipole field decays exponentially with distance from
the layer but in lateral direction the dipole field oscillates periodically with
lattice constant. For ideal interfaces this dipole field is too small to cause any
coupling, but in case of interfaces with roughness, the dipole field acts in a
longer range. The phenomenon of 90° coupling occurs in case of one magnetic
layer having rough and the other having a smooth interface: equivalently to the
competing situation in the fluctuation model, the oscillating dipole field of the
rough layer competes with the internal exchange coupling of the smooth layer,
resulting in orthogonal orientation of the smooth layer to the dipole field and
thus orthogonal to the rough magnetic layer [dem94]. This magnetic dipole
mechanism is also the reason for the so called orange peel effect: in case of
two magnetic layers, both of rough interfaces, the magnetic dipole field causes
a ferromagnetic alignment of the layers [gru99].

The third theoretical attempt for the explanation of biquadratic exchange
coupling is based on magnetic impurities at or near the interface and is called
loose interfacial spin model. If magnetic impurities in form of single atoms
or clusters are present in the nonmagnetic spacer then an indirect exchange
between these paramagnetic clusters and the ferromagnetic layer takes place,
resulting in an additional term of the total free energy and thus in biquadratic
coupling [bue99]. Details on this mechanism can be found in [slo93].

In conclusion it has to be stated, that not only the spacer layer thickness but
also the interface characteristic in terms of roughness and intermixing is an
important parameter for interlayer exchange coupling.

Phenomenological Description of Interlayer Exchange Coupling

Phenomenologically, the interlayer exchange coupling between two ferromag-
netic films separated by a spacer layer can be described in terms of the inter-
layer exchange coupling energy E;:



- 5 S L 2
M, - M. M - M.
Ei - _Jl%_JQ _,1—2_, (2-3)
| My |- | My | | My |- | My |

= —Jycos(Ap) — J (cos(Ag))?

Here, A¢ is the angle between the magnetizations M, and M, of the magnetic
layers. J; and J, are bilinear and biquadratic coupling constant, respectively.
In case of a dominating parameter J; the energetic minimum of equation
determines a ferromagnetic coupling behaviour if J; is positive and an anti-
ferromagnetic coupling in case of negative values of J;. On the other hand, a
dominating parameter Jy characterizes a 90° coupling [gru99|.

In case of multilayers, both terms have to be multiplied by a factor 2, because
each magnetic layer is coupled to two neighboured ones.



dlst d?nd Al A2 ‘ Jlst ‘ ‘ JQnd ’ Glst G?nd Reference

nm| | [nm] | ]| ] | (2] | [B2] | (%] | (%)

Co/Cu [111] by MBE

0.85 ~20|11-12 1.1 - - - s [fohozh)
0.7-0.9 1.8 ~ 1.0 - - 26 6 ML [hal93)
10 19 09 > 027 008 - - ML [schrey93|(1)

Co/Cu [111] by sputtering

- 015 - 65 25 ML [par91b|(2)
- 03 005 48 18 ML [mos91](3)

0.93 1.91
0.9 2.0

—_ =
N O

QR

Co/Cu [100] by MBE
1.2 2.2 1.45 0.47 0.4

. - - - S [joh92a] (4)
1.15 2.1 1.0 - 0.16 0.06 - - S [@w97)
0.94 1.86 - - 0.24 0.09 - - S [6I594] (5)

1.1 1.8 1.0 0.43 - - - - S [5£a08](6)
Co/Cu [100] by sputtering
1.05 2.0 ~ 1.0 - 0.15 0.068 48 40 | ML [emo4
- 1.84 - - - < 0.01 - 5.8 ML [gir92]
- 2.1 ~ 1.0 - - 0.016 - 6.7 ML [gir93] (7)

Table 2.2: Comparison of experimental results concerning position of first and second
antiferromagnetic coupling maximum in terms of Cu layer thickness (d'**,d?"?), long and
short period of interlayer exchange coupling (A1, As), coupling energy (J'*t, .J?"?) and GMR
effect amplitude (G'**, G2"?). Values which have not been determined are indicated by a
dash. Sandwich structures are denoted by “S”, multilayers by “ML”. Remarks:

(1) Third AFCM at tc, = 2.8 nm (0.05m.J/m?).

(2) Weak [111] texture according to [ege92].

(3) Third AFCM at tc, = 3.5nm (10 % GMR)

(4) Long and short oscillation period determined via fit. Third AFCM at tc, = 2.6 nm,
fourth AFCM at tg, = 3.1nm.

(5) Long and short period oscillation are clearly visible but have not been quantitatively
determined.

(6) Position of first and second AFCM refer to the long period oscillation. After amplification
of the short period oscillation the first AFCM is found at tc, = 0.63nm and the second
AFCM at to, = 1.45nm.

(7) Further AFCM at te, = 3.0nm (2.5% GMR), 4.0nm (3.5% GMR), 5.0nm (4.5%
GMR).
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Chapter 3

Giant Magneto-Resistance

The discovery of antiferromagnetic exchange coupling raised considerable inter-
est. But from the applicational point of view an even more exciting discovery
was the giant magneto-resistance (GMR) in 1988 by Baibich et al. and Binasch
et al. [bai88|, [bin89]. They investigated layered Fe/Cr systems with antiferro-
magnetically coupled magnetic layers and detected a resistance decrease when
applying an external magnetic field, which causes the magnetic layers to align
themselves parallel. As the change in electrical resistance was much larger
than the anisotropic magneto-resistance (AMR), the new phenomenon was
called “giant”. In general, GMR can be observed when an external magnetic
field causes a switching of magnetic layers from antiparallel to parallel align-
ment. In multilayers consisting of a repetition of identical magnetic layers
and their spacer, the antiparallel state can be achieved only if antiferromag-
netic exchange coupling is present. But generally interlayer coupling is not a
necessary condition. In spin valves different switching fields of hard and soft
magnetic layers enable the state of antiparallel alignment, and also in granular
materials GMR has been observed. The mechanism of GMR is sketched in the
following.

Electrical Resistivity

The main aspects in the understanding of the electric current in transition
metals have been introduced by N.F. Mott in 1964 [mot64]. He stated that
there are two largely independent conducting channels in metals, corresponding
to the spin-up and spin-down electrons, because scattering processes without
conservation of spin, called spin-flip, are small compared to processes where
the direction of spin is conserved. Therefore, the resistivities for spin-up and
spin-down electrons of a metal can be added in parallel:

1 1 1

= 4= (3.1)
P P Pl
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The origin of the resistvity within each spin channel is the scattering of the
electrons at any kind of disorder in the lattice such as lattice imperfections
and impurities but also the scattering at phonons. Furthermore, in magnetic
materials there is a contribution to the resistivity caused by spin-disorder. The
Matthiesen’s rule distinguishes between three kinds of resistivity concerning
their temperature dependence and states that these contributions add up to
the total resistivity pio¢(T):

Piot(T) = po + pp(T) + pim(T) (3.2)

where po is the temperature independent residual resistivity, p,(7") is the
phonon scattering and p,,(T') is the contribution from spin-disorder [ros&7].
The phonon scattering is temperature dependent as the number of phonons
in a material increases with T. For T' > ©p it is found that p, o< T" and for
T < Op the resistivity increases as p, o< T° [kop93]. On the other hand, the
number of lattice imperfections does not depend on the temperature and also
the residual resistance does not. Besides impurity and imperfections, there is
a contribution to the residual resistivity caused by grain boundaries within a
polycrystalline material. In a multilayered material, there is furthermore the
film thickness as well as the interface roughness which have to be considered.
In the following, these aspects are briefly treated.

Taking the model of a free electron gas, P. Drude found an expression for
the electrical conductivity of a metal in terms of the mean free path of the

electrons:
1_ ne’ly _ ne*r(Er) (3.3)
p  m*up m*

with n being the density of the conduction electrons, e the electron charge, [,
the mean free path, m* the effective mass of the electrons and vg the Fermi
velocity. 7(Ep) is the time of relaxation of the electrons, i.e. the time between
two scattering events [kop93].

In thin films scattering at surfaces and interfaces comes into account and be-
comes the dominating scattering mechanism when the film thickness d becomes
much smaller than the mean free path [, of the electrons. The thickness de-
pendent resistance p(d) of a thin film is given in the theory of Fuchs and
Sondheimer as

p;"’:l—ﬁ/loo(l_l)l_eXp<_%> dt (3.4)

p(d) 2 & 1 —exp <—p%>

where p is the specularity parameter which gives the probability that an elec-
tron is reflected specularly at the surface, p = 1 meaning that the electron

12



has been reflected without losing its momentum in field direction [gro00]. For
d > ly the thickness dependence is given by 1/d in accordance to experi-
mental findings. In the case of d < [, and [, — oo the model predicts a
vanishing resistance in spite of the surface scattering. This is a nonphysical
result and shows up the limitations of the model which can only be overcome
when considering quantum mechanical models.

Roughness of surfaces and interfaces enhances the resistance of a thin layer or
a multilayer. Roughness on a microscopic scale is caused e. g. by terraces and
dislocations and is treated as a distortion potential in quantum mechanical
scattering models. Mesoscopic roughness on the other hand occurs in poly-
crystalline materials and is characterized by correlation lengths in the order
of the crystallite size of about 20 to 100nm. This kind of roughness can be
treated as a fluctuation in film thickness and yields a mean film resistance as

' l
Prim _ El/ Plocal (A()) dx (3.5)

here, d is the average film thickness, d(z) is the local film thickness, pjocar is
the local resistivity and p., is the resistivity of the bulk material (for details
see [brue92|).

A polycrystalline material is characterized by the presence of grain boundaries
which enhance the resistivity of the material compared to the Drude formula
The scattering at grain boundaries depends on the average grain size D
and on the transmission 7' of the boundaries but also on the mean free path
. Therefore, a function grain(D,T,l,) has to be considered in the Drude
term [van89):

1 ne?

>~ mor loo - grain(D, T, ) (3.6)

Spin-dependent scattering

In the section above it has been stated that the electrical current is carried
within two largely independent spin channels. In ferromagnetic materials, the
band structure causes different scattering probabilities within these channels:

Due to the low effective mass and high mobility of electrons in the valence sp
bands, they primarily determine the electric conductivity. But the d bands
play an important role in providing final states for scattering: the probability
for a scattering process to occur depends on the number of unoccupied states
in the vicinity of the Fermi energy. The higher the density of states D(EFr) the
more electrons will be scattered and the higher the resistance p of the material
will be:

Ps X D(EF)€ (3'7)
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where the index ¢ denotes the orientation of the two separate spin channels T
and |. In case of ferromagnets the d bands are exchange split with a higher
density of states at Er (see figure on page . Furthermore, the minority
bands represent hybridized spd bands having a high density of states. There-
fore the mean free path of minority electrons associated with these bands is
relatively short and the conductivity is low [tsy01]:

p1 < py (3.8)

Resistor Network Model

The spin-dependent electric current within a ferromagnet has been considered
above. For the understanding of GMR the characteristics of electron scattering
within a combination of different materials has to be understood.

A simple model to explain the basic mechanism of GMR is the resistor model
by Edwards and Mathon [edw91b], [mat91]. The giant magneto-resistance is
generally defined as the relative change of resistance from parallel to antipar-
allel alignment of the magnetic layers:

AR _ Ry — Ry

3.9
=i (3.9)

The electric current of these two orientations is determined by two independent
spin channels T and | which are connected in parallel. The resistance of parallel
Ry and antiparallel alignment ;) is accordingly calculated as

o w) o mw), (), e
— == — an — = = — .
Ry AR /y \R /gy Ry \Bi/y o \R/y

In the further deduction of GMR the most relevant question is how the resis-
tances of the single layers have to be treated. Firstly, the geometry of electric
current and layered structure has to be taken into account. The most com-
mon type of GMR measurement is the “current-in-plane” (CIP) configuration
where the external magnetic field and the current are arranged parallel to the
layer plane. On the other hand, in “current-perpendicular-to-plane” (CPP)
configuration the magnetic field is still parallel to the layer plane but the cur-
rent flows in direction of the plane normal. The latter type of measurement
is of greater experimental effort. The electrical contacts have to be prepared
lithographically or alternatively, a grooved substrate can be used to coerce the
current in perpendicular direction [gij97]. In CIP geometry measurements can
be performed with the four-point-contact method without additional demands
concerning the sample. Therefore this is the most common GMR measurement
geometry and also the method of choice throughout this thesis.
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In CIP geometry, one important aspect is the mean free path of the electrons:
in case of a very short mean free path the resistance of the single layers could be
added in parallel. Consequently, there will be no difference in the resistance
of parallel and antiparallel aligned magnetic layers and thus no GMR. But
typical mean free path lengths are a few hundred A, for example in Cu at
room temperature 430 A, so the electrons can be viewed as propagating freely
through the spacer layer and sensing the magnetizations of the two consecutive
ferromagnetic layers, seeing an average resistance of the layer stack. In my
diploma thesis [hei00], AR/R is deduced step by step in the picture of an
average resistance of one double layer and has been found to be
2
AR -1 (3.11)
Boa(v+d-3) (1+5- %)

Here, N and M are the thickness of nonmagnetic and magnetic layer, respec-
tively, and ~ and 3 are defined as

v=— and [=—71 (3.12)

where pff and p* are the resistance values of the magnetic layer for minority
and majority electrons, respectively, the indices H and L indicating high and

low resistance. The spin-independent resistance of the spacer layer is given as
N

p.
The most important parameter determining GMR is the spin asymmetry ~.
A high value of 7 is necessary to obtain large GMR effect amplitudes.

As a function of the spacer thickness N, the GMR decreases monotonically
which is in agreement with experimental results. But at large spacer thickness
equation predicts the GMR to falls off as 1/N?, whereas measurements
reveal an exponential decrease. This discrepancy is not suprising because the
model is based on a long mean free path compared to the layer thickness. In
case of large spacer thickness, this condition is no longer satisfied.

There are even more restrictions concerning the resistor model:

Firstly, Gurney et al. measured a much smaller mean free path in thin films
than in bulk materials. They determined values of AT = 5.5nm and A\ <
0.6 nm in a few nm thick Co layers [gur93]. But a long mean free path is one
of the prerequisites of the CIP resistor model.

Secondly, the model yields the same result for GMR in CIP as in case of CPP
geometry. In the latter case the resistance of the single layers is connected in
series. But experiments reveal a higher GMR in CPP than in CIP measure-
ments.

15



W
A

Energy (eV)

() o [Comaorin]

jif S

\
AN

Energy (eV)
5 b

™

(c) 2 Co-minority

~ K F |

/ |

L T X W K DOS

[

/ﬂ

|

Energy (eV)

Figure 3.1: Electronic band structures (left panels) and the density of states (right
panels) of Cu (a) and fce Co for the majority-spin (b) and minority-spin (c)-electrons
(from [tsyOT]).

It is clear that the resistor model enables the basic understanding of GMR
but it is far too simple to account for detailed experimental findings. In the
following the most relevant aspects having influence on the GMR are discussed.
Last but not least a short survey of more sophisticated GMR theories is given.

Role of Bandstructure

The band structure of the magnetic and nonmagnetic layers is the most impor-
tant property for GMR. On one hand, the band structure of the ferromagnet
has to affect a large spin asymmetry. This has been deduced above. On the
other hand, in a multilayer the interfaces between magnetic and nonmagnetic
materials act as spin filters: When different band structures are present at the
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interface, then it acts as a potential step for the electrons with the transmission
being smaller than 1. In case of a good band matching the transmission will be
higher than in case of bad matching. In the material combination Co/Cu the
band structure of Cu matches very well with the Co majority electron band
structure, but it does not match with the Co minority electrons. Thus the in-
terface itself acts as a spin filter, enhancing GMR due to the same mechanism
as the magnetic materials themselves.

This mechanism of spin filtering has also to be taken into account when dis-
cussing roughness and intermixing at the interfaces. As both effects result in
a laterally random potential they are expected to enhance the spin-dependent
scattering and thus the GMR.

But the experimental results only partially reflect this property (for a review
see [tsy01]). The controlled variation of interface roughness of different ma-
terial combination yielded contradictory results. Whereas roughness has been
found to increase the GMR in Fe/Cr systems, a reduction in GMR was recog-
nized in the Co/Cu system. But the experiments have to be taken with care
because a strict distinction between topological roughness and interdiffusion is
hard to make. Discussions are made whether especially the results for Co/Cu
are caused by interdiffusion rather than roughness.

All systems with highest GMR are immiscible (Fe/Cr, Co/Cu). This fact is
an indication that intermixing can be a contraproductive parameter to GMR.
There are two theories that claim the magnetic property of the intermixed
interface responsible for this. Firstly, a reduction of magnetic moments in the
intermixed region was suggested, reducing GMR. Secondly, misaligned spins
at the interface have been proposed which are only weakly coupled to the
magnetic layer, a configuration which is known as magnetically “dead” layers
[tsyOT].

In conclusion, roughness and interdiffusion principally have the chance to en-
hance the GMR, but only if the magnetic property of the interface is not
affected in the way reduced magnetic moments and misaligned spins do.

Role of Structural Defects

The presence of structural defects in the nonmagnetic layer will cause spin-
independent scattering, whereas scattering at defects inside the magnetic ma-
terial are supposed to be spin-dependent. But the spin asymmetry in the
scattering potentials depend on structural details. If various types of defects
are present then the scattering potential will be an average that weakly de-
pends on the spin. Therefore, in general an enhancement of spin-independent
scattering processes is expected which reduces the GMR.

The experimental fact that the systems Fe/Cr and Co/Cu with highest GMR
values have the best lattice matching supports this point of view.
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Spacer Thickness Dependence

In GMR multilayers with identical magnetic layers the variation of the spacer
thickness tny changes the interlayer exchange coupling. The oscillation be-
tween ferromagnetic and antiferromagnetic alignment is reflected in the GMR
effect amplitude. But above that the spacer thickness influences the intrinsic
GMR[Y] as studies of Dieny et al. on uncoupled spin valves reveal: with in-
creasing spacer thickness the GMR amplitude decreases monotonically. Two
factors account for this fact. Firstly, the number of scattering events inside the
spacer increases. As a consequence, the number of electrons traversing from
the spacer to a neighboured magnetic layer is reduced and also the GMR. Sec-
ondly, the shunting inside the spacer layer is increased. Both contributions to
GMR can be well represented by the phenomenological expression

AR _ <AR>O {exp(—tNM/ZNM)} (3.13)

R R (14 tnm/to)

where % is an effective thickness representing the shunting of the current in
the absence of the spacer layer, (AR/R), is a normalization coefficient and the
parameter [y is related to the mean free path of the electrons in the spacer
layer. Due to the fact that electrons which mostly contribute to GMR have
out-of-plane velocities, Inyv is expected to be one half of the mean free path
Axm. The exponential factor in equation represents the probability for
an electron not to be scattered within the spacer layer. The shunting effect of
the spacer is accounted for in the denominator.

Consequently, without consideration of the interlayer coupling, the largest
GMR amplitudes are obtained for spacer layers as thin as possible and there-
fore having only a small amount of bulk scattering. However, the reduction of
spacer thickness is limited by the existence of pinholes. Such holes in very thin
spacer layers enable a direct ferromagnetic coupling of the magnetic layers and
thus lead to a destruction of GMR.

In antiferromagnetically coupled multilayers ¢ xy; has to be chosen in the range
of antiferromagntic coupling and thus always is a compromise between inter-
layer coupling and intrinsic GMR [die94], [tsyO1].

Magnetic Layer Thickness Dependence

In contrast to the monotonic decrease in GMR with increasing spacer thickness,
the variation of the thickness of the ferromagnetic layers ¢y results in a broad
maximum of GMR for thicknesses below 10nm. The GMR decrease for large
magnetic layer thicknesses is due to the increased shunting of the current inside

!The term intrinsic means that the GMR amplitude is always measured between perfectly
parallel and antiparallel magnetization.
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the layers. Concerning the decrease in GMR at low magnetic layer thicknesses,
a distinction between spin valves and multilayers has to made. In the former
case, the reduction of the magnetic layers leads to an enhancement of diffuse
scattering at the outer boundaries. The maximum GMR in spin-valves is found
for magnetic layer thicknesses between 6 and 10 nm. In multilayers with many
repetitions of double layers the effect of the outer boundaries is reduced and
cannot be the reason for decreasing GMR.

In contrast to spin-valves, the maximum GMR in multilayers is achieved for
magnetic layer thicknesses between 1 and 3nm. For layer thicknesses below
these values, insufficient scattering of the electrons either within the magnetic
material or at the interfaces between spacer and magnetic material can be
accounted for the decrease in GMR: spin asymmetry in the conductivity in case
of Co/Cu multilayers can be established if the minority electrons are scattered
strongly whereas the majority electrons are only weakly scattered. But in case
of magnetic layers which are smaller than the mean free path of the minority
electrons, the electrons are insufficiently scattered and thus the conduction
spin asymmetry is reduced. This mechanism accounts for bulk scattering. In
case that interface scattering is of more importance, the magnetic layer has to
be at least so thick that the interface properties are established that lead to
different scattering rates of majority and minority electrons. It has been found
that a few monolayers of the magnetic material are sufficient (for references
see [die94]).

Equivalently to the dependence on spacer thickness, the GMR dependence
on the magnetic layer thickness can be represented by the phenomenological

expression
R R/, (14+tg/to) '

where the numerator accounts for the variation of scattering rates with mag-
netic layer thickness tp and the denominator describes the shunting of the
current. (AR/R)y and to have the same meaning as in equation [3.13] The
parameter [p depends on the sample being a sandwich or a multilayer, as
discussed above [tsy01], [die94].

Conlusions

Spin-dependent scattering is the basic mechanism that leads to GMR. But
spin asymmetry of the ferromagnetic material alone is not sufficient to yield
a high effect amplitude. A good band matching of ferromagnet and spacer
layer as well as good lattice matching have been shown to be two important
ingredients for high GMR. There are only a few material combinations which
fulfill both conditions, and these are Co/Cu and Fe/Cr. These two systems
have in fact yielded the highest GMR effect amplitudes measured so far.
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Furthermore, the thickness of magnetic layer and spacer influence the GMR
amplitude. Whereas in exchange coupled multilayers there is only little lati-
tude for the choice of spacer thickness at the maximum of antiferromagnetic
coupling, there is an optimum magnetic layer thickness in the range between
1 and 3nm.

Survey of GMR Theories

The resistor model is oversimplified to account for GMR more than the basic
understanding. A lot of effort was made to develop more reliable electronic
transport theories in magnetic layered structures. A detailed review of GMR
theories can be found in [tsy0I] and a short extract is given here.

First theories such as free-electron models and single-band tight-binding mod-
els were based on simplified band structures. They capture the important
aspects of GMR and have the advantage of being physically transparent. But
they cannot account for a quantitative description of GMR. Therefore it is
necessary to incorporate the correct band structure of the multilayer, which
has been done in so called “multiband models”. But also the electrical trans-
port has to be treated quantum-mechanically in order to predict conductivity
and GMR in real metallic layered structures. The widely used semiclassical
Boltzmann approach for electron transport breaks down in realistic magnetic
multilayers because the subband energy splitting is comparable with the life-
time broadening due to scattering. The first-principle models seem to be the
most reliable multiband model candidates because they can describe the defect
scattering realistically. However, the proper treatment of all existing defects
in a multilayer structure by first-principles is very complicated. Therefore,
reliable simplifications within these models have to be made.

A number of important features of GMR that are observed experimentally can
be explained within the semiclassical free-electron model. This is the variation
of GMR versus spacer layer and magnetic layer thickness, the effect of specular
and diffuse scattering at the outer boundaries and the enhancement of GMR
with increasing number of double layers within a multilayer. On the other
hand, the model is not suited for a quantitative prediction of GMR because it
ignores the realistic band structure. Furthermore, it can not describe quantum
mechanical effects which become important at small film thicknesses.
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Chapter 4

X-Ray Characterization

X-ray diffraction (XRD) and x-ray reflectometry (XRR) are techniques that
provide structural information of materials. The structural properties of a
crystalline material can be classified as follows:

e Crystalline structure
e Defect structure
e Grain structure

e Phase structure

The crystalline structure is characterized by the arrangement of atoms in the
unit cell of the ideal crystal, whereas in a nonideal crystal differences occur
from the perfect atomic arrangement. The kind of those defects and their ar-
rangement is called defect structure. The mulitlayers investigated in this thesis
are polycrystalline, i.e. the material is made up of many small crystallites in-
stead of being one single crystal of unique phase. Firstly, a polycrystalline
sample is characterized by its grain structure which is the size, form, orienta-
tion and arrangement of the crystallites. Secondly, such a sample can contain
more than one crystalline phase and thus has a phase structure, which com-
prises the kind, size, form, orientation and arrangement of the different phases
[MC92l, p. 198ff].

The chemical composition as well as the physical treatment determine the
complete structure of a crystalline material. Besides x-rays, also electrons and
neutrons are used to investigate the sample structure, but x-ray diffraction
and reflectometry provide a number of advantages:

e XRD and XRR are nondestructive and noncontact.

21



Cq q2 /

NUE

Figure 4.1: The Bragg law for parallel planes with spacing d. Dotted lines mark
the wave normals of incident and diffracted waves. The distance (A + B) must be
equal to a whole number of wavelengths for total constructive interference and the
graph visualizes this distance to be (A + B) = 2dsin 6, thus n\ = 2dsin 6.

e There is no or little prepartion effort.

e XRD and XRR are executable in most environments.

Besides the structural properties of a sample also the thickness and roughness
of thin films and multilayers can be determined via XRD and XRR. Because of
this, they have been the essential techniques for microstructural characteriza-
tion used in this work and are explained thoroughly in the following sections.
However, this is not a tutorial about crystallography and general diffraction
physics, concerning these aspects the reader is referred to e.g. [cul78].

4.1 X-Ray Diffraction

When x-rays impinge on a sample, several types of interaction can occur: pho-
toelectric effect, flourescence, production of Auger electrons, Compton scat-
tering and coherent scattering. Only the last one, coherent scattering, leads
to the phenomenon of diffraction. What happens is a perfectly elastic collision
between a photon and an electron which leads to a change of direction of the
photon but preserving its energy and phase [sny99).

4.1.1 Peak Location of Diffracted X-Rays

The easiest way to derive the directions in which the x-ray beam is scattered
is to visualize the x-rays as being reflected from the planes of the crystal.
Then, constructive interference can only occur if all waves scattered at a set
of parallel planes come out in phase. This is the case when their difference in
path length is an integer of the wavelength, n\. Figure visualizes that
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this path difference is equal to (2d sin6), with d being the plane distance and
f the angle of incident and diffracted beam respectively. It follows, that the
condition of diffration is given by

nA = 2dsiné (4.1)

This is the so called Bragg law, derived by W. L. Bragg in 1913 [kri94].

In practice, not the order n of diffraction for a given plane (hkl) is considered
but the first order diffraction for the virtual set of planes (nh nk nl), so equation

(4.1) becomes
A= thkl sin 0 (42)

In a conventional XRD measurement, the angle of incidence relative to the
sample surface is varied and the angle of detection is kept equal to it. Under
this condition and according to Bragg’s law only planes parallel to the sample
surface can be detected. This fact is also called mirror condition [bun00, p.
925] and is of a very strict kind in case of single crystal investigation: if at
all, there is only one family of planes (nhnknl) which can be detected in one
measurement run. So this kind of measurement is useful for a polycrystalline
material where for each family of planes (hkl) there is always a considerable
amount of crystallites satisfying the Bragg condition.

4.1.2 Intensity of Diffracted X-Rays

The peak location of the diffracted x-rays has been identified in the previous
section, the next question is how their intensity can be determined. Here we
have to leave the simplified picture of reflection and go back to x-rays as an
electromagnetic wave which interacts with the electron inside the atom [sny99],
[klu74], [kri94].

The oscillating electromagnetic field of the incoming x-radiation will cause the
electron also to oscillate and reradiate the incident radiation through a solid
angle of 360°. The intensity scattered from an electron has been shown by
J.J. Thompson to be

I, =

Iy { ¢’ r L+ cos®(20) (4.3)

r2 MeC? 2
Iy is the intensity of the incoming beam and r is the distance of the scattering
electron to the detector. The second term is the classical radius of the electron
with its charge e, its mass m. and the speed of light ¢. The third therm is
called polarization factor which takes account of the fact that the scattering

process partially polarizes the beam which was initially unpolarized [jen96].
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If there are a number of electrons in one atom, then the more intensity is
diffracted the more electrons are present. When viewed at an angle of 0° all
scattered waves coming from different electrons are exactly in phase. But with
increasing angle of view these different waves have increasingly different path
lengths and this leads to partial destructive interference and therefore to a
decreased net scattered intensity. For this reason for every type of atom the so
called normal atomic scattering factor f; has to be taken into account. f
is equal to the number of electrons in the atom at 8 = 0° and falls off rapidly
as a function of (sinf)/A [jen96]. The exact values of the function f, have to
be calculated by integrating the scattered waves over the electron distribution
around the atom.

So far the electron has been assumed as being free, but when the electron is
part of an atom, the possibility of excitation into higher states of energy be-
comes possible in case the atom has an absorbtion edge close to the wavelength
of the x-rays. When falling back into the ground state, a photon of correspond-
ing energy is emitted which has a phase lag to the normally scattered photon.
Therefore, the atomic scattering factor fy has to be corrected by introduc-
ing an additional real (Af’) and imaginary (Af”) term, called anomalous
dispersion corrections, to yield an effective scattering f:

f=fo+rAf +iAf" (4.4)

Another fact is missing in this picture: the atom under investigation is vi-
brating about its lattice site and this vibration depends on the temperature
as well as on the atomic mass and the bonding forces of its environment. For
this reason, the so called Debye-Waller temperature factor B is intro-
duced, which is related to the mean square of the vibrational amplitude of the
atom via B = 872U? and acts as a damping term on the slope of the atomic
scattering factor:

B sin? 9>

[ = foexp (- 2 (4.5)

So far, the scattering at one atom has been considered but now we have to take
a look at how the scattered waves from many atoms arranged in a crystal play
together. This means that the scattered waves from the distinct atoms have
to be added up according to their different positions in the unit cell, taking
into account their atomic scattering factor f; and their phase factor ®;. Doing
this leads to the so called structure factor Fj;; for any set of planes hkl:

N N
Fua =Y (f;-®;) =Y fyexp [2mi(ha; + ky; + 12))] (4.6)
j=1 J=1

where NN is the number of atoms in the unit cell.
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In intensity calculations of a powder diffractogram the number of equivalent
planes in a crystal, which are planes having the same plane distance, addition-
ally has to be considered. In powder measurements, all such planes contribute
to the same registered peak and this is expressed by the multiplicity factor
M. For example, in a cubic lattice the planes (100), (010), (001), (100),
(010) and (001) have the same plane distance, so the multiplicity factor for
the (100) plane is My = 6.

In a XRD measurement the incoming x-ray beam is in general not strictly
monochromatic and additionally, it is not exactly parallel but more or less
divergent. When we take a look at how long a given plane is in the position
to reflect, these two aspects lead to differences in this time for different planes
again depending on the angle of diffraction. For powder XRD measurements
this so called Lorentz factor is given by:

1 1
~ 2sin®Acosf  sin(20) sind

(4.7)

The absolute intensity of a diffracted peak is proportional to the number of
contributing unit cells. On one hand, this number depends on the size of
the beam illuminating the sample and on the other hand it depends on the
penetration depth wich is determined by the absorption of the material. In
the Bragg-Brentano geometry with a briquette-shaped homogeneous sample,
the irradiated volume of the sample remains constant for all diffraction angles
in the case that a fixed divergence slit is used. Then the irradiated beam
area is reduced with increasing 26 but the beam penetrates deeper at the
same time. So the irradiated volume remains unchanged and in the intensity
equation a constant factor 1/ug needs to be considered, with ug being the
linear absorption coefficient related to the sample material.ﬂ

Summarized all the aspects mentioned above, the integrated intensity (,uq
per unit length of the diffraction circle for line (hkl) of phase « of an ideally im-

1Besides the effect of absorption, three further effects influencing the relative intensities
of a powder diffraction peaks can occur in case of large crystallites. Firstly, the primary
extinction is the phenomenon of beams being multiply reflected at the lattice planes: each
time a beam is reflected from a plane a phase shift of /2 occurs. Therefore, a beam which
is reflected back into the crystal at the underside of a plane has a phase shift of 180° to
the incident beam and both interfere destructively. The result is a lowered intensity of
strong reflections from very perfect crystals. Another effect which may occur in perfect
crystallites is the diffraction of most of the intensity out of the crystal before the beam can
penetrate significantly deep. This is called secondary extinction and also leads to a lower
relative intensity of very strong peaks in comparison to weaker reflections. The third effect
called microabsorption may occur in a polyphase mixture: if large crystallites of phase « lie
above or below crystallites of phase 3 the beam spends an unproportionate time in the large
crystallites. This leads to falsified relative intensities regarding the phase mixture. All three
effects can not be treated mathematically in a closed form but they become less important
with decreasing crystallite size.
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perfect crystal in a flat briquette-shaped sample, measured by a diffractometer
with fixed receiving slit is calculated as

KK (hi)aVa

” (4.8)

TInikiya =

V4 18 the volume fraction of phase « in the specimen and K, comprises the
constants for the given experimental systemﬂ

X3 [ e \?
K, = 4.9
64mr (mec2 (4.9)
The constant K)o draws together the multiplicity factor My, the structure

factor Fnuya, the Lorentz-polarization correction and the volume of the unit
cell of phase a, V:

thl 1+ COSQ(29>
Kan = T P (S ) 1

The understanding of the diffracted intensity [jen96] enables to calculate the
diffraction pattern when the crystallographic data and the factors mentioned
above are known. Vice versa, it also enables to determine the crystal structure
of unknown materials. Unfortunately, this way is more tricky because only the
amplitude but not the phase of the diffracted x-ray beam is measured: Fjy
is a complex number so only | Fjx | can be measured and the phase angle of
the structure factor exp[—2mi(hk; + ky; +1z;)] is lost during the measurement.
This fact is called phase problem.

Some general intensity considerations shall close this section for clarity. In
equation the integrated intensity is proportional to the crystallite volume
v, of phase «, a fact that is not clear at first when starting the intensity study
with an ideal small single crystal. The crystal has to be small in the sense of
no absorption to occur and “ideal” meaning that it has no imperfections. The
direction of the primary beam is given by the unit vector sy and the scattered
intensity in direction of the unit vector § at a distance R from the crystal is
considered. The crystal is assumed to be a parallelopipedon with edges Niaq,
Nsas and Nsag parallel to the crystal axes ay, ds, ds.

Then the intensity /p diffracted from this small crystal is given by

(4.11)

2Some of the constants apply to the case of an ideally imperfect crystal which has not
been derived here. For details see e. g. [war69).
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with I. being the Thompson scattering from a single electron as given in equa-
tion and F according to equation (4.6)) [war69]. A diffracted beam only
exists if the three Laue equations, which are an alternative expression to the
Bragg law, are simultaneously satisfied:

(§—35))-a = WA\
(F—5y)-d = KA
(g— g[)) . 673 == l/)\

In the case of an exact satisfaction of the three Laue equations, the intensity
according to equation (4.11)) would show a maximum intensity of

(IP>maz - ]e | F |2 -]\712]\722-]\732 (412)

but this quantity will never be observed in practice. Firstly, because no ideal
crystal does exist and secondly, because the primary beam is never perfectly
parallel. Therefore, the observable quantity in a diffraction experiment is the
integrated intensity per unit length of the diffraction circle as given in equations
- , depending on the volume v x Ny N3 N3 and not on the square of
the volume.

4.1.3 Shape of Diffraction Peaks

The profile of a given diffraction peak is the result of a number of indepen-
dent contributing shapes, which origins can be divided into two categories:
instrumental contributions and the intrinsic profile which includes sample ef-
fects. The observed diffraction profile P(20) is a convolution of all contributing
profiles:

P(26) = / 1(26)S(20 — 20') d(26)) (4.13)
in the following expressed as
P(20) = 1(20) « S(26) (4.14)

where (20) itself is the convolution of functions due to instrumental effects
and S(260) again the convolution of functions due to sample effects [lan00].

In general, the peak shape is asymmetric and varies over the measured angle
range. The individual contributions are briefly explained in the following.
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Instrumental Profile

While the x-ray source image and focusing optics like incident and diffracted
beam slit as well as receiving slit and monochromator cause symmetric broad-
ening with Gaussian shape, there are in principle three sources of asymmetrical
line broadening. Firstly, this is the flatness of the specimen. The sample should
be curved to lie on the focusing circle, but a flat specimen is out of focus and
produces a small asymmetry in the profile with a cot # dependence. Secondly,
depending on the absorption coefficient of the sample, the x-ray beam is not
reflected at the surface of the sample but penetrates into it. The smaller the
absorption coefficient the deeper the beam penetrates into the material and
the worse the focusing condition of the reflected beam becomes. For those
materials, a substantial asymmetric profile is introduced. The third source
of asymmetry is the axial divergence of the beam which also follows a cot 8
dependence.

Another contribution to the instrumental profile is the spectral distribution of
the x-ray tube in use. The inherent spectral profile from the K transition in
a sealed x-ray tube with a copper anode has been shown to have a width of
1.18-10~* A with Lorentzian profile which is not completely symmetric [sny99].

Intrinsic Profile

The intrinsic profile comprises the Darwin width of a diffracted x-ray beam as
well as broadening effects due to the microstructure of the sample. These are
caused by the crystallite size and strain of a sample.

The Darwin width of a x-ray beam diffracted at a perfect crystal is a conse-
quence of the uncertainty principal (ApAz = h). The absorption coefficient of
the specimen requires that the photon in the crystal is located in a rather small
volume. So on the other hand Ap and, via the deBroglie relation (Ap = h/AM),
A\ have to be finite values. This distribution of wavelengths produces a finite
width of the diffraction peak with Lorentzian profile shape [sny99].

4.2 Special Aspects

4.2.1 Preferred Orientation

In the two sections above the way how to calculate the diffraction pattern of a
known crystal structure has been deduced. It is valid for single crystals and for
polycrystalline powders, although both have to be treated a little differently. In
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an ideal polycrystalline powder sample the crystallites are randomly oriented,
but in polycrystalline bulk materials this is commonly not the case. Here
we find preferred orientation of crystallite directions. As a consequence, the
intensity distribution of the observed peaks differs from the one of an ideal
powder.

For a complete determination of preferred orientation pole figures of the sample
have to be measured, that means that the intensity of a particular Bragg
diffraction line is plotted as a function of the three-dimensional orientation of
the specimen. Then a pole density distribution function can be defined:

AV Vi
ds

P(ihkl)(aﬁ) = (4.15)

where P(ihkl) (af3) is the volume fraction of the crystallites of phase i having their
crystal direction parallel to the sample direction, i. e. parallel to the diffraction
vector. V' is the volume fraction of phase i and df2 describes the divergences
of incident and diffracted beam [bun00].

The pole density relates the integral intensity measured in a textured sample
to the corresponding intensity of a random sample [bun00]:

](ihkl) (y) = Ighkl),mndom : P(ihkl)(y) (4.16)

The intensity of an ideal polycrystalline sample with random orientation of all

grains is documented for many thousand substances in the Powder Diffraction
File (PDF) data base [PDF].

The diffractometer used for the investigations in this thesis does not provide
the possibility to measure pole figures. Nevertheless, an estimation of preferred
orientiation is possible on the basis of the PDF data. The comparison of the
PDF integral intensities of the different diffraction peaks of one phase with the
measured relation of integrated intensities enables to quantify the preferred
orientation in form of deviations from the ideal relation.

4.2.2 Crystallite Size

When diffraction in an ideal infinite crystal occurs, i.e. when the Bragg con-
dition is satisfied with the angle of incidence being 6 = 6, then the path
difference between adjacent planes is exactly equal to n A\. When @ is increased
or decreased, every plane has a counterpart deeper in the crystal which is ex-
actly out of phase, so that the diffracted waves of these two planes cancel each
other. The closer 6 is to 6y the deeper in the crystal lies the plane which is out
of phase. Considered all planes of the unit cell, no net scattering will occur,
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Figure 4.2: Line width as a function of particle size [jen96].

except for the case when the Bragg condition is exactly satisfied. But when
the deeper planes needed to cancel the diffracted waves from the planes nearer
to the surface are not present, there is net scattering also at angles 0 ~ 60,
and so the peak becomes broader. This is the fact for crystallites smaller than
about 1um and the smaller the crystallites the broader the peak will become.
This effect of particle size broadening was first treated by P. Scherrer [scher1§]
who evaluated the interdependence of the mean crystallite dimension 7 and
the line broadening (3, which is known as the Scherrer equation:

K\
= (B,cos6

(4.17)

(. is the full width in radians at half maximum of the observed peak, from
which the instrumental broadening as well as broadening due to sample strain
has to be subtracted. The factor K is the so called shape factor and depends
on the crystal structure. For cubic structure its value is about 0.9. For a given
crystallite dimension 7, the peak width increases as (1/cosf) and so particle
size broadening is most pronounced at large values of #. In figure the
total line width according to this equation as a function of crystallite size is
calculated for a fixed value of 6.

To evaluate the maximum of the peak profile and the peak area in case of
particle size broadening, further considerations have to be made. In equations
(4.8H4.10]) we have seen, that the integrated intensity produced by diffraction of
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a crystal with the total number of unit cells in the crystal being N = Ny Ny N3
is given by

/P(%)d(%) = K KpuN (4.18)

The integrated intensity is equal to the peak area. The crystal considered
here is assumed to be very small, meaning that absorption can be neglected.
The Laue equations can alternatively be expressed as (5§ — 5p)/\ =
hll;l . h252 . hggg, where hq, hs, hs are continuous variables. The maximum of
the peak profile is

K K}, cost
Pmaw<20) = # Z Z N32(n1n2) (419)
3

niy n2

according to equation . Here, N3(niny) represents the number of cells
in the row (niny) and hence the peak maximum depends on the square of
the number of unit cells in z-direction, whereas the peak area depends on
the volume of the crystallite. It is important to note, that equation is
not true for a large crystal due to the arguments given above, but here we
are considering very small crystallites and thus the square dependence on the
number of unit cells is justified.

The integral width of a reflection is defined as the ratio of the peak area to
the peak maximum, so this value is the ratio of the two terms given above:

B(20) = % (4.20)

and can be reduced to the simple form

A
Lcost

B(20) = (4.21)

where L is the effective particle dimension. This value is the volume average of
the crystal dimension in az-direction, or put differently, normal to the reflecting
planes [war69, p. 251ff]. This equation is similar to the Scherrer equation (4.17))
but with the peak width defined differently and so without the necessity of
using the constant K.

So far, one single crystallite has been considered. In a powder or non-epitaxial
thin film sample, there are many crystallites and furthermore many crystal-
lites oriented in the same direction. X-rays which are diffracted at different
crystallites of identical orientation add up incoherently and thus the diffracted
intensity is simply the sum of the single intensities.
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In a sample of limited dimension perpendicular to the diffracting planes, the
number of crystallites reduces with increasing crystallite size in the same di-
rection. If the number of crystallites is given by 2z and the crystallite size
perpendicular to the diffracting planes is proportional to N3 which is the num-
ber of unit cells, then z o« 1/N5. To yield the maximum peak height and the
peak area for the whole sample, equations (4.18) and (4.19)) have to be multi-
plied by z. In the case of constant crystallite size in the diffracting planes this
is equivalent to a division by N3. Thus the maximum peak height becomes
proportional to N3, the peak area becomes independent of N3 and the integral
width remains unchanged.

The Scherrer equation or equivalenty equation can be used to
determine crystallite sizes as low as about 10 A and the determination is the
more exact the better instrumental and strain broadening can be separated
from size broadening.

Finally, a few aspects concerning the distribution of particle sizes shall be con-
sidered. So far, we have spoken in terms of average partice size, but not of the
way how different crystallite sizes may be distributed in a sample. This distri-
bution in a powder and also in a polycrystalline solid depends on the material
and on the preparation of the sample. The most common distribution which
has been reported in the literature is the asymmetric lognormal distribution.
But for thin films with a high degree of preferred orientation very often sym-
metric distributions have been found, which are approximated by the Gaussian
distribution. Some care has to be taken concerning this kind of distribution
as it would imply negative crystallite sizes in case of very small average sizes.
When the distribution function is known, the diffraction peak can be calculated
by summing up the intensities of the single crystallites, weighted by the distri-
bution function. Vice versa, by adjusting the peak profile according to either
of the distribution functions, the distribution can be determined. In calculat-
ing the peak profiles for gaussian and lognormal distributions having different
dispersion o(D)/(D) (where o(D) is the root of the variance and (D) is the
arithmetic mean of the distribution function), Langford et al have shown, that
the FWHM of the diffration peak decreases with increasing dispersion, which
is true for both distribution functions [lan00b].

4.2.3 Residual Stress and Strain

Two principal types of stresses in a material have to be distinguished: ma-
crostress and microstress. If the stress is uniformly compressive or tensile as
depicted in figure b) it is called macrostress and it will either compress or
contract the crystal unit cell. Consequently, the observed diffraction peak is
shifted, according to Bragg’s law.
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Figure 4.3: (a) Lattice planes without strain, (b) uniform strain with expanded
interplane distance and (c¢) nonuniform strain with partly increased and partly de-

creased interplane distance [jen96].

On the other hand, if the stress is not uniform but contains tensile as well as
compressive contributions (figure ¢), then the d values of the unit cell will
be distributed about the normal, unstrained dj;; value. As a consequence, the
observed diffraction peak will be broadened and this kind of stress is called
microstress [sny99).

In a similar manner as for crystallite size broadening in equation (4.17)) the
additional broadening (3, of an observed peak is related to the residual strain
e and the diffraction angle 6 via

B = 4etanf (4.22)

Fortunately, the two broadening effects differ in their #-dependence, a fact
which allows to separate these effects [jen96].

4.2.4 Multilayer Satellites

Multilayers can show additional diffraction peaks around the structural Bragg
peaks of the constituting materials due to their additional artificial periodicity
on an atomic scale. Whether such superlattice peaks will occur, depends on
the growth mode of the multilayer stack: satellite peaks are only observable if
the layers scatter the radiation coherently’| The position and the intensity of
those multilayer satellites is discussed in the following.

We consider a multilayer stack which is made up of alternating layers of the
materials A and B in such a way that the double layer element looks like
depicted in figure . The single layers A and B are textured and the
interplanar distances in growth direction are given by d4 and dg while n4 and
np are the numbers of atomic layers per single layer. Then the products nada

3In section (8.7) coherent and noncoherent growth of a multilayer is described in detail.
For a fast overview see figure (8.26) on page [149}
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Figure 4.4: One dimensional step model of a multilayer stack consisting of alter-

nating blocks of atomic planes of material A and B, respectively [mic95].

and npdp are the single layer thicknesses and their sum (ns4d4 +npdp) is the
double layer thickness, which is abbreviated by A and sometimes also called
multilayer periodicity. For the interplanar spacing of the interface between
layer A and B an average distance of (da + dg)/2 is assumed. This model
is known as one step model and was introduced by Segmiiller and Blakeslee
[seg73]. The way the model is presented here follows [mic95].

For the whole multilayer stack an average lattice spacing dy can be defined as

d d A
d, = ta%a T npls A (4.23)
na+ng n

where the sum of the numbers of atomic layers (n4 +np) has been denoted as
n. Taking the average lattice spacing dy, the scattering vector ¢ can be written

in growth direction as
_ 2rL  4wsind

— 4.24
= A (4.24)

In the last step, use was made of the Bragg equation with the diffraction angle
6 and the x-ray wavelength \. L is a continuously running variable:
2dy sin 6
7 — 2dosin

: (4.25)

If the layers of the multilayer stack are grown in such a way that they scat-
ter coherently, the amplitudes of the diffracted x-rays of layers A and B are
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connected by a well-defined phase factor exp(imLn). Therefore, the diffracted
amplitude of one pair (A, B) is given by

sin <7m2‘ldAL> sin (Wn}fidBL)
A(L) = far —— — 2 (4.26)
sin (—m*“d“‘> sin (—”"BdB )
do do
where f4 and fp are the scattering factors of the materials A and B. For a

multilayer with N double layers of type (A, B) the amplitude given above has
to be multiplied by

+exp(imLln)fp -

sin(rnN L)

An(L) = sin(mnl)

(4.27)

In calculating the diffracted intensity, the square of the amplitudes has to be
taken and the result can be written in terms of four intensity contributions:

I(L) = AX(L) - A(L) - A(L) = In[Ia + Ip + L] (4.28)

14 and I are the intensities produced by the isolated layers of material A and
B with

sin2 <7rn,;1ldAL>
0

sin2 (WnAdA )
do

Sin2 <ﬂnZdBL>
0

and Ip=f3 —~ © /
sin2 (ﬂnde)
0

Iy=fi- (4.29)

The single layer terms [4 and I produce peaks at positions corresponding to
the pure materials having a peak width according to the single layer thickness.
In the top row of figure these terms have been calculated for a Co/Cu
multilayer with N = 20 double layers. The left column shows the calculation
for a multilayer with n¢, = ne, = 10 and the right row for one with ng, = 20
and ng, = 10 for comparison. In the calculation the scattering factors fo, and
fco have been approximated by their atomic numbers 2, = 29 and z¢, = 27.
The sum (/4 + Ip) would be the XRD signal of a pair of single layers (A, B)
if they were not coherent.

The mixed term 45 with

sin (—””3?“) sin (—”"@33 L)
. (4.30)

sin ( Tmada sin ( BB
do dO

is also given in the top row of figure (4.5). It produces a peak at a position
according to the average interplanar spacing dy and does only exist if the

Iap = fa- fp-cos(mLn)
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layers are coherently grown, because otherwise the phase factor exp(imLn) in
the amplitude term does not exist. Each of the three terms 14, Ig, [ap
is accompanied by finite-size oscillations, the so called Laue satellites. These
oscillations can be observed in incoherent multilayers where the grain size
equals the layer thickness [mic95]. The sum (I4+1p+1ap) gives the diffraction
signal of one coherent pair of layers (A, B) and can be found in the middle row

of figure (4.5)).

The multiplicity factor Iy for a layer stack built up of N double layers (A, B),

sin?(wLnN)

I —
N sin? (mLn)

(4.31)

is characterized by strong equidistant peaks for wLn = wh, where h is an
integer, thus if

_ 2dosind L g = p2

L
" A 2dgn

(4.32)

In the case of h = n this is the Bragg equation for the average interplanar spac-
ing dy and the corresponding diffraction angle is denoted as y. The distance of
the peaks is related to 1/n and therefore the larger n the smaller the distance
becomes. Between the peaks there are N — 2 modulation peaks according to
the total thickness of the multilayer stack. The maximum height is N? and
the full width at half maximum of the peaks is proportional to (1/nN) [gla00].
The function I is also given in the middle row of figure but its intensity
has been normalized for better comparison with the sum (I4 + Ip + I4p) in
the same graph.

In multiplying the term Iy with the sum (/4 + Ip + I4p), the middle peak
at 6y corresponding to the Bragg position of the average lattice spacing dy
becomes surrounded by satellites, see bottom row of figure . Compared
to the sum (/4 + Ip + Iap), the middle peak decreases in width according
to the larger crystallite size. To account for the instrumental line broadening,
equation has to be convoluted with a peak profile function having a peak
width according to the limited resolution of the instrument. In the calculations
presented in figure a convolution has been performed with a Gaussian
distribution function of width ¢ = 0.1°. Furthermore, the root square of the
intensity has been taken to pronounciate the satellite peaks.

The general features of a high angle diffraction pattern of a coherent multi-
layer, described by the one step model are familiar now and subsequently, it
is interesting to go the other way round and see how the multilayer properties
can be deduced from the diffraction pattern [glad8].
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Figure 4.5:

the bottom row has been convolved with a Gaussian distribution of width ¢ = 0.1°

to account for instrumental broadening and the square-root intensity scale has been
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The average lattice spacing dy can be determined from the position ¢, of the
main peak via equation (4.23) and the Bragg equation (4.2)) as

d _nAdA+anB_A_ A
0= na+ng  n  2sinf,

(4.33)

The mulitlayer period A can be identified from the angular positions 6,, and
0,, of the satellite peaks of the order m and n, respectively, via:

(m—n)\

A=
2(sin 6, — sin6,,)

(4.34)

If the interplanar spacings d4 and dg are known, the quantities n4 and ng can
be calculated as
A(dy — dp) A

_ d = _ 4.35
A do(da — dp) e e do " ( )

The main difficulty in the determination of ny and np is the fact that in
general the interplanar spacings d4 and dg are not known a priori, even if the
constituting materials of the multilayer are well known. The reason are lattice
distortions due to the mismatch of the materials. A multilayer can become
coherent only if the in-plane lattice spacings of both materials approach to
each other at the interface. But a distortion of the in-plane spacing leads to
a distortion of the spacing perpendicular to it as well, and thus d4 and dp
will differ from the bulk values. Therefore, the values dy and A which can
be gained from the measurement do not determine the values of ny and ng
automatically. In fact, to every pair da, dp they give the corresponding pair
na,np. Therefore, it is interesting to see if there are further aspects of a
satellite diffraction pattern which may allow to identify the paramaters d4, dg
and hence n4, ng uniquely.

This important aspect is the height of the satellite peaks relative to the main
peak. Within the one step model there are two main influences on the relative
height of the satellite peaks. Firstly, the height of satellites of the same order
need not have the same height and in fact asymmetric peak heights are the
usual case. The reason for this is the asymmetric shape of the “sumpeak”
(I4 + Ip + Iap). By multiplication with Iy the equidistant peaks of equal
height are multiplied with different values of the sumpeak. This can be seen
in the middle row of figure . Even when the number of monolayers is the
same for both materials, the sumpeak will not be of symmetric shape in case of
different scattering powers of the materials (left column in figure (4.5)). If the
scattering powers are not taken into account, the satellites are more intense on
that side of the main peak where the one material has its bulk peak which has
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Figure 4.6: Normalized intensity of Cobalt/Copper multilayers with N = 20 double
layers but different number of atomic layers ne, = ne, to visualize the increase of
relative satellite intensity with increasing n.

more atomic layers than the other. This is shown in the right column of figure
(4.5) where the satellite of the order (—1) on the Copper side of the main peak
is the strongest one.

Secondly, the relative height of the satellite peaks increases with n because of
the increasing intensity of the sumpeak, whereas the intensity of the multipli-
cation function [y remains unchanged. Although the width of the sumpeak
decreases, this is of no opposite effect because of the according decrease of the
peak distances of Iy. In summary, not only the main peak increases in height
but also its satellites, and their increase is larger than that of the main peak,
as can be seen in figure .

Due to these arguments it is also clear, that an increasing number of double
layers N does not increase the relative intensity of the satellites.

Up to now the model of a perfect multilayer has been proposed, but a more
realistic model has to consider for a number of imperfections such as interface
roughness, interdiffusion and grain sizes smaller than the complete layer stack.
A lot of models describing imperfect multilayer structures have been proposed
and shall not be given here in detail but only in a few interesting aspects.

M. B. Stearns [ste88] has examined the case of a completely miscible random al-
loy having a linear variation in composition and she proposed a linear variation
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of the lattice constant across the interface, the so called trapezoidal interface
model. Within this model she could explain nonsymmetrical satellite posi-
tions on one hand, and decreasing satellite heights with increasing interface
thickness on the other hand.

Clemens and Gay [cle87] compared two different cases of interface roughness:
Firstly, the case of a continuous fluctuation of the layer thickness given by a
Gaussian distribution, and secondly, the discrete deviation from the average
layer thickness by integers of the interplanar spacing. While the first model
results in the loss of coherency for rather small values of roughness and there-
fore in a loss of satellites and broadening of the main peak, the relative height
of the satellites is preserved in the second model for equal values of roughness.
The first model accounts for multilayers having an amorphous phase which
can be caused by interfacial disorder in systems where the constituents have
a large size mismatch. For multilayers coherently grown, the case of discrete
roughness is a realistic one.

Multilayer Satellite Analysis: SlerfWin

The general features of multilayer satellites have been explained in section
(4.2.4) and it has been outlined there that the main difficulty is the exact
determination of the interatomic distances dy4, dp of the constituting materials
as well as the number of atomic layers n4,ng. From equations to
it is clear, that each pair of d4, dg stricly determines the pair n4,np and that
the relative height of the satellites gives a hint which pair of n4, ng is the true
one.

The identification of these four parameters has been performed with the help
of the program SlerfWin by G. Gladyszewski which is based on a Monte Carlo
method [gla9d1], [g]a98], [gla00]. The nominal values of d4, dp are given by the
user, e. g. the bulk values, and the program calculates the diffraction profiles of
the multilayer while changing the interplanar distances d4,dg. The variation
range of d,dp is also given by the user as well as the number of steps. For
each set of d4, dg the program compares the calculation with the experimental
data in form of a fitting factor R:

Z( Iea:p -V Ical)2
R= V
> Leap
The result of the calculation is given in a contour plot of the fitting factor as a

function of d 4, dg and the diffraction profile can be viewed for every calculated
dataset.

(4.36)

Furthermore, the SlerfWin program accounts for interfacial and structural im-
perfections:
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Firstly, it assumes interfacial roughness in terms of fluctuating numbers of
monolayers in the superlattice unit cell according to a Gaussian distribution
with the standard deviations o4 and opg.

Secondly, the model accounts for interdiffused interfaces and their profile is
represented by an error function. The parameter which is adjusted in the
calculations is the so called half interface thickness o;,;, given in monolayers.

Thirdly, the program assumes the multilayer to be built up of grains with an
average grain thickness (D,) and Gaussian distribution of deviation op,. For
the calculation procedure the number of grains can be varied.

None of the microstructural parameters is determined via a fitting procedure
of the program but are adjusted by the user. For a given set of parameters, the
calculations are performed and the user has to decide which set of parameters
approximates the measurement best. Although there are five parameters to
be adjusted by hand this is possible because each of the parameters has its
particular influence on the diffraction pattern. The parameters 04, op, (D,)
and op, are adjusted before the variation procedure. The half interface thick-
ness 0;,; is determined by comparison of fitting results for different values of
it with the help of the fitting factor R.
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4.3 X-Ray Reflectometry

From the point of view of scan geometry, there is no difference between x-ray
reflectometry (XRR) and x-ray diffraction (XRD) as both are 6 — 26 scans
which act in different angle ranges: XRD covers the large angle regime with
260 > 10° whereas for XRR 0° > 26 > 10°. Nevertheless, both techniques give
information about very different sample characteristics: XRD gives informa-
tion about the crystal structure and texture, whereas XRR probes the layer
thickness and interface roughness of the sample.

Comparison of Methods

As we have seen in section , large angle XRD of multilayers can also give
information about the layer thickness and roughness, but to yield this infor-
mation it is necessary to have a good crystalline quality of the sample, whereas
XRR does not depend on this. Furthermore, XRR analysis can provide more
roughness parameters such as in-plane and vertical correlation lengths. Equi-
valently to reflectometry with x-rays, neutrons may be used. The advantage
of using spin polarized neutrons as well as using synchrotron x-rays is to yield
additional information about the magnetic properties of the sample [schrey94].
In contrast to x-ray diffractometers, neutron sources and synchrotrons are not
acessible on laboratory scale and because of that, neutron diffration is not a
convenient method for investigating extensive sample series.

Another common method for the determination of roughness of a film is the
atomic force microscopy (AFM) which directly measures the film surface and
gives a topographic image, i. e. is no integrative method. In spite of this, AFM
is not suitable for the present investigation because it measures the surface of
the sample but not the interfaces. In case of multilayers, the only way of inves-
tigating the whole stack of interfaces is to grow the multilayer sucessively and
measure each surface separately. But even when accepting the enormous effort
of measuring at least 40 samples in case of one multilayer with 20 double layers,
the results do not necessarily give insight into the interface properties. Firstly,
the surface is modified due to oxidation and contamination and secondly, the
interaction of the surface with the layer that will be grown upon is missing.
Furthermore, this measuring systematic still cannot give information on the
vertical correlation of interface roughness. The same considerations are valid

for scanning tunneling microscopy (STM) and scanning electron microscopy
(SEM), which are not suitable here.

The only method which allows further insight into the interface properties of a
multilayer is the High-Resolution Transmission Electron Microscopy (HRTEM).
Because of the very high preparation expenditure this method is applicable

42



only for selected samples. It has to be kept in mind that this method averages
of the thickness of the sample which has been thinned down to a few atomic
layers. This process of averageing especially hardens the judgement of the
interface properties of a sample.

Historical Review

X-ray reflectometry was measured first by A. H. Compton in 1923 on solid
samples with smooth surfaces, where he discovered the critical angle of total
reflectionff] In 1931, H. Kiessig found oscillations of the reflected x-ray inten-
sity of a thin layer on a substrate [kie31]. The position of these oscillations
is related to the thickness of the thin film and nowadays these oscillations are
called Kiessig-fringes. In 1940, DuMond and Youtz measured XRR of periodic
multilayers and found peaks equivalent to Bragg peaks of crystals[’] In 1954,
Parratt presented a recursion formula for calculating reflectivity slopes, based
on the optical Fresnel coefficients for reflection and transmission [par54]. To
account for roughness, Névot and Croce introduced a kind of Debye-Waller
factor in the Fresnel theory [nev80]. So far, specular reflectivity had been in-
vestigated, but already in 1963, Yoneda found peaks of diffusively scattered
radiation, the so called Yoneda wings [yon63]. These peaks were explained as
being caused by roughness of the layer, and although this was later found to
be a mistake, it was of great interest to get information on in-plane roughness
parameters. However, it was 1988 when the main research activities in diffuse
XRR started: Sinha et al. showed how to gain quantitative lateral roughness
information from non-specular reflectivity measurements. Since then a lot of
effort has been done in analyzing surface and interface roughnesses quantita-
tively with XRR and nowadays the method is widely applied [boe95b)].

4.3.1 Specular X-Ray Reflectometry

In contrast to non-specular x-ray reflectometry, which must be treated with
dynamical or kinematical theory, XRR in specular geometry can also be de-
scribed by an optical theory because the crystallinity of the sample can be
ignored. The reason for this is the structure factor amplitude Fjy; (equation
4.6) which is purely the sum of the electron density in the unit cell for the
(000) reflection [few00]. In other words, the neglection of crystalline struc-
ture is justified as long as the interatomic distances are much smaller than
(A/sin ;) where A is the wavelength of incident radiation and 6; is the angle
of incidence [boe95b].

4PLil. Mag. Vol. 45 (1923) p. 11211,
°J. Appl. Phys. Vol. 11 (1940) p. 3571t
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The refractive index of a material is in the most general case a complex number
which pays attention to the fact that, speaking in terms of waves, the incident
wave may be phase shifted and damped in its amplitude due to absorption

effects:
NareA2p

2 M

N4 is Avogadro’s number, r, is the classical electron radius, p is the density
of the material, M is the atomic mass and the term in brackets is the atomic
scattering factor. When considering compounds, M and the atomic scattering
factor are taken as averaged values using atomic fractions.

n=1-6—if=1- (fo+ Af —iAf") (4.37)

The dispersive correction ¢ is proportional to the real part of the average
atomic scattering factor

NarN2p

5 —
2 M

(fo+Af) (4.38)
where fy = Z for small scattering angles with Z being the number of electrons
of the atom. The absorptive correction 3 can also be expressed in terms of the
linear absorption coefficient p

NATE)\pAf :)\_,u

= 4.39
b= 2nM 4T ( )
Both § and /3 are of the order 1075 to 10~7 for the x-ray wavelength of CuK,
and so the refractive index n is smaller than one.ﬁ Thus for x-rays, any material
is optically less dense (i.e. n < 1) than vacuum, having n = 1. Consequently,
total reflection of x-rays entering the medium from vacuum side will occur for

incident angles smaller than a critical angle 6. [zab94], [pre90].

Fresnel Reflectivity

The reflection and transmission of a plane electromagnetic wave at a single
smooth interface between two materials 1 and 2 with different refractive indices
ny =1 and ny =1 — 9y — 135 is considered ﬁrst.ﬂ

According to figure . the (x,y) plane is denoted as the layer plane and the
z axis is in the direction of the normal vector of the layer. k:,, k and k:t are the
wave vectors of the incoming, reflected and transmitted beam, respectively,
having the components

. cos 0, . cos 6, . cos 0,
ki =Fk; 0 ., k.=k, 0 . k=K 0 (4.40)
—sin 6; sin 6; — sin 6,

6See table l) for the optical constants of the materials used in this thesis.
"The description follows [zab94], [pre96], [boe95b], [schlom95] and [lan9g).
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Figure 4.7: Reflection and transmission of x-rays at a single smooth interface.

with 5
ki =k, = Tﬁ with k= =2 (4.41)

and 6; being the angle of incidence, 6, the angle of exidence and 6, the angle
between the transmitted - and thus refracted - beam and the interface. As
specular scattering geometry is considered here, we have 6; = 6,. The vector
¢ is the scattering vector, defined as k: k‘l.

The corresponding electric fields are:

= Biexpli(k; - 7 — wt)]

= E,expli(k, - 7 — wt)] (4.42)
= Eyexpli(ky - 7 — wt)]

ST

~

In the same manner the magnetic field for incident, reflected and transmitted
beam have to be evaluated. The boundary conditions of Maxwell’s theory of
electromagnetic waves demand that across the interface the tangential compo-
nents of the electric and magnetic field have to be continuous, thus k; , = k; ;.

Taking all the aforementioned aspects into account, the Fresnel formulae for
reflection and transmission are gained [pre906]:

- & _ ki,z — kt,z _ —l{iz S%I’l 02 + k’t S%Il Gt (443)
Ei ki,z + kt,z _kz Sin HZ - ]{Zt S1n Qt
Et 2]{1 P —2]@ sin 91

t= == ’ = 4.44
Ei k@z -+ kt,z _kz sin 91 — kt sin et ( )

The index of refraction is defined as A = ny\', so we have k; = nok;. Taking
also into account the law of refraction

cos B; = ny cos b, (4.45)

45



we obtain: ] )
sin #; cos 8, — sin 0, cos 6,

r =

4.46
sin 6; cos 0, + sin 0, cos 0; ( )

and .
2sin 0;

sin 6; cos 6, + sin 0, cos 6;

t= (4.47)

Using the theorem of addition and the fact that the angles 6; and 6, are very
small in the case of x-ray reflectometry, the Fresnel formulae (4.46)) and (4.47))
can be approximated to be

_Sil’l(‘gi — 91&) — _02 — ‘915
sin(@i + 915) - 9, + Ht

(4.48)

_ 2sin6;cos b, N 20,
© sin(0;+6,) 0, + 06,

(4.49)

The reflectivity R is defined as the ratio between the intensity of the reflected
beam and the intensity of the incoming beam and can be calculated via the
reflection coefficient r as

=|r [*=rr* (4.50)

with r* being the complex conjugate of r. For the transmittivity T with

R+ T =1 we have
ktz Et ? ]{;tz
T= (222 ) |2 = (22) 451

where tt* is called transmission coefficient and the factor k; ./k; ., accounts for
the fact that the transmitted beam is refracted while the reflected beam is

not E|

8The angle 6; is a complex number, so it is convenient to write it as

0,5 =1/ 01‘2 — 252 — 2252 =P1 + ’Lpg with

1 1
pi= 3 [\/(912 — 202)% + 403 + (07 — 252)} ;o= 3 [\/(922 —205)% + 405 — (07 — 262) | -

So rr* and tt* are calculated as:

ei _ 2 2
rrt = —( p1)2 +pg and tt*
(0; +p1)? + p3

_ 467
02 + 2p16; + p? + p3
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Figure 4.8: Calculated reflectivity R (black) and transmission coefficient tt* (grey)
for 63 = gy = 2.4437 - 1075. Bold lines: 3, = 0; thin lines: B = 10 - Bcy =
5.4962 - 1079 The broken grey line corresponds to 6; * (adapted from [zab94]).

R and tt* are plotted in figure to visualize the most important properties
of specularly reflected x-rays at a smooth surface. The transmittivity 7" is not
shown as it is simply 7' = R — 1 and thus does not provide any additional
information. The values of d; and 35 used for the calculation correspond to
those of Copper (see appendix , but (3, was multiplied by 10 to make the
effect of absorption more obvious.

For 6; smaller than the critical angle 6. and in case of no absorption (5, = 0)
the reflectivity is constantly R = 1 which denotes that we are in the region
of total reflection. When absorption cannot be neglected, the reflectivity in
the regime #; < 6. is smaller than one. For 6; > 6. the reflectivity decays as
R o 0;* (broken grey line) and the transmittivity coefficient #t* goes to 1, i.e.
the x-rays penetrate unimpeded into the medium. This case is the kinematical
limit. The transmission coefficient shows a peak at 6; = 6. with an amplitude
of twice the incoming amplitude in case of no absorption. When absorption
cannot be neglected, the peak is rounded and has a lower amplitude. This
maximum of the transmission function is caused by a constructive interference
of the incident wave and an evanescent wave localized near the surface.

For 6; < 0. the penetration depth is typically 50 A which is the reason for the
surface sensitivity of x-rays at glancing angles. The penetration depth increases
rapidly to many microns for §; > 0.. In Grazing Incidence Diffraction (GID)
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the angle of incidence is always kept very close to 6. to make use of this effect
and to be sensitive to thin layers.

The critical angle of total reflection 6. is determined via the law of refraction
(equation [4.45)) with 6, = 0. Then, cosf. = ny ~ 1 — §y for neglection of
absorption. Evaluating the cosine function as cosxz ~ 1 — %x2 yields

@:%ﬁ:VE%;&ﬁ+Aﬂ (4.52)

Due to this, the critical angle of total reflection depends sensitively on the
density p of the material. Put differently, in experimentally determining the
critical angle of total reflection, the density of the material can be calculated.
In the given example of J, = 2.4437-1075 the critical angle is 0. = 6.99 mrad =
0.401°.

Fresnel Reflectivity at Many Interfaces

So far, one single smooth surface has been considered, but in case of a thin
film on a substrate there at least two interfaced’| and in case of multilayers
many more. In 1954, L.G.Parrat developed a recursion formula based on
the Fresnel formulae for reflection and transmission of light at an ideally flat
interface [par54]. The description of it given here follows [zab94] and [pre96].

As sketched in figure , we consider a multilayer stack of N single layers,
including the substrate, which are enumerated beginning with the topmost
layer as 1. The thickness of layer j is denoted as d; and its refractive index
as n;. The amplitudes of the transmitted and reflected electric field in layer j
are Ejt and E7. Then at each interface (j — 1, j) the tangential components of
the electric and magnetic field vectors have to be continuous and the solution
of the corresponding equations can be written as a recursion formula:

RA_1 S X
X, 1=at L1 7 4.53
= (T (4.53)
where or
X; =a?=L (4.54)
J Ejt
with f "
Ry = 2= (4.55)

B k(j—l),z + kj,z

9Tn most cases a thin metallic film on a substrate has a top oxide layer so this system
has in fact three interfaces, including the surface.
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Figure 4.9: Scheme of reflection and transmission of x-rays at a multilayer, which

can be calculated via a recursion formula.

and
CL]' = exp(zq]dJ/Z) (456)

X, can be regarded as the generalized Fresnel reflectivity for the interface
(4,7 + 1) and R;_;; is the Fresnel coefficient for reflection at the smooth
interface between the layers j — 1 and j equivalent to equation . a; is a
phase factor for the electric field always in the middle between two interfaces,
where g; is the scattering vector in layer j. Therefore, the layer thickness d;
comes into account which causes the occurrence of the Kiessig fringes.

The recursion starts at the undermost interface, i.e. the interface between
substrate and the first layer deposited upon it. For the substrate Xy = 0
is assumed which means that due to its very large thickness (dy ~ o0) no
reflection takes place beneath this undermost interface, i. e. at the backside of
the substrate. Then X;_; is calculated from bottom to top for each interface,
ending with X, giving the ratio of reflected intensity /g to incoming intensity
Igi

E?"
Ey

2 I
I

| Xo [*= ‘ (4.57)

Interfaces with Roughness

In the previous section it has been shown that the reflectivity drops off as ;.
This is true for a perfectly flat surface, but in experiments the reflectivity has
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Figure 4.10: Interface of two materials j — 1 and j showing roughness (left) and
interdiffusion (right). The straight lines mark the mean interface position (adapted
from [zabh94]).

been found to decrease much faster. The reason for this can be found in fact
that every real surface and interface is characterized by some kind of roughness
or interdiffusion on an atomic scale. The difference of these two cases becomes
obvious in the local density gradient which is locally sharp in case of roughness
but not in case of interdiffusion, see figure (4.10)).

The idea of considering roughness in calculating XRR scans is to leave the
picture of a steplike density profile and to assume a more continuous one. A
convenient roughness model assumes an error function of the electron den-
sity across the interface (j — 1,7). The first derivative of the density profile
yields the height distribution of the interface, and in case of an error function
the height distribution is of Gaussian shape with width o¢;_1y; (figure .
Therefore, the standard deviation o is a measure for the average vertical rough-
ness and can be attributed to the RMS roughness[?’] According to Névot and
Croce [nev8()], the Fresnel coefficient R;_; ;(0) for reflection at the smooth in-
terface (j — 1, 7) is multiplied with a Debye Waller like factor to account for
the roughness:

Ri1),4(0) = R(j_) ;(0)e 00k oG, (4.58)

This factor acts like a damping term of the specularly reflected x-rays and it
reveals that in fact the reflectivity drops off faster than 6;* in case of roughness
or interdiffusion. As XRR is a technique which averages over a large lateral area
of the sample and in specular diffraction geometry the projection of the electron
density in direction parallel to the surface or interface normal is taken, it cannot
be distinguished within this scattering geometry whether the interface is rough

10The root mean square deviation RMS is defined as o = \/% Zivzl(xl —Z)2 withz;..xn
being the measured values and their average .
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Figure 4.11: Roughness profile of an interface: Error function of electron density
(left) and its derivative, the Gaussian function (right) with width o which corresponds
to RMS roughness.

or interdiffused. But in case of a rough interface, i.e. local sharpness of the
density gradient, the reduced specular intensity is redistributed in the non-
specular scattering regime, whereas in case of interdiffusion this is not the
case. Consequently, the only way of determining these interface properties is
to measure the diffusively scattered intensity [zah94].

The assumption of Gaussian roughness in equation is valid as long as
the roughness is much smaller than the thickness of the corresponding layer. In
case of larger or non-Gaussian roughness this method does not give the correct
results and the electron density profile can be approximated by dividing the
interface in a series of thin layers with varying electron density. The reflectivity
is then calculated according to equation for an ideally flat interface
[pre90].

Discussion of Specular XRR Scans

Figure (4.12)) is a survey of calculated reflectometry scans of Copper single
layers (a-c) and of Cobalt/Copper multilayers (d and e), all on a Silicon
substrate. The grey line in (a) represents a scan of an infinitely thick Cu
layer without roughness. It is equivalent to the calculated reflectivity in figure
(4.8]). The oscillating scan in (a) corresponds to a 30 nm thick Cu layer on Si
without roughness, denoted as Siy—o// Cu,—¢(30nm). It is characterized by
so called Kiessig fringes which are due to interference of waves scattered from
the surface and from the interface to the substrate. The position 6;,, of the
incident angle 6; at which an interference maximum of the order m occurs, is
related to the layer thickness d via

A\
Vsin2 0y, — sin? 6, = Tg—d (4.59)
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Figure 4.12: Calculated reflectivities. (a)-(c): 30nm thick Cu layer on a Si sub-
strate. (a) No surface nor interface roughness, the grey line represents an infinitely
thick and smooth Cu layer. (b) Rough interface but smooth surface. (c) Smooth
interface but rough surface. (d) Co/Cu multilayer with smooth interfaces. (e) Mul-
tilayer with rough interfaces. (All calculations have been performed with WinGiza ,

based on the Parratt formalism [WinGixal.)

which is analogous to the Bragg equation modified by the influence of refrac-
tion. For small angles 6; this equation can be written in the formlﬂ

2 g2 (2 2 (4.60)
m C 2d

This is 0;,, = 0.147° in the given example of d = 30 nm and CukK,, radiation.
For an approximation, the layer thickness can be determined via

A
d~ — 4.61
2AKiessig ( )

by measuring the distance between adjacent interference maxima Afjessig

[Holy99].

1 This equation gives the recipe for determinig the layer thickness from a reflectivity scan
“by hand”: plotting 62 versus m? gives a linear dependence. The slope of the line yields
d and additionally its intersection point with the 62  axis gives the critical angle. In this
work any layer thickness has been determined via fitting the XRR, curve.

52



The amplitude of the Kiessig fringes depends on the density contrast between
the layers and on the roughness of surface and the interfaces. For a rough
surface, the transmittivity is larger than for a smooth surface and thus the
intensity of the interference fringes is enhanced. This is the case for the scan (c)
in figure with Siy—o // Clp—0.50m (30 nm). The contrary case of a smooth
surface but rough interface as in scan (b) with Si;—¢.5um // Cg=o(30 nm) shows
reduced Kiessig fringes because of the high reflectivity of the surface. If both,
surface and interface are rough, the reflected intensity drops off drastically
with the incident angle and the fringes are highly damped.

The scans (d) and (e) in figure (4.12) correspond to the multilayer system
[Cu(2nm) / Co(2nm) |og without roughness (d) and with roughness of o =
0.5 nm for each interface (e). The characteristic of these scans is the occurrence
of peaks related to the double layer thickness D = d¢,, +dc,, generally denoted
as D = dy + dg. The position of the peaks can be calculated equivalent to
equation , i.e. via the modified Bragg law

mA\

VS0 O ragg — sin(00) = o (4.62)
where the critical angle 6. is averaged over the multilayer period (6. = 0.398°

in the present case).

Again, for sufficiently large angles 6; the spacing of the so called Bragg mazima
ABrqagg can be approximated by

A

D=~
2AB7‘agg

(4.63)

For the given example we have Ap, .4, = 1.103°, but in the scan exactly the
doubled value is found. The reason for this is an additional relationship be-
tween the amplitude of the Bragg maxima and the thickness of the single layers
d4 and dg. When these thickness values obey

da

m=p (@ + 1) (4.64)

with the integer p, then the mth Bragg peak vanishes [Holy99], thus every
second Bragg maximum of the multilayer [ Cu(2 nm) / Co(2nm) |9 is cancelled,
see figure (d) and (e)). The number of Kiessig fringes between two Bragg
maxima is in most cases N — 2 with N being the number of double layers.

This relation becomes obvious when comparing equations (4.63) and (4.61))
and writing the total thickness for the multilayer case as d = ND

A A
ABT@QQ ~ ﬁ = Nﬁ ~ NAKiessig (465)
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One last aspect concerning Co/Cu multilayers shall be considered. Due to
their almost identical electron densities, the x-ray contrast of Co and Cu is
principally weak. But what can be taken advantage of is to use a wavelength
which lies between the absorption edges of both materials and this was done
in this study by using CuK, radiation. The effect of anomalous dispersion
enhances the scattering contrast [zab94]. In figure in the appendix the
absorption edges of Co and Cu are sketched.

4.3.2 XRR Pattern Analysis

X-ray reflectometry scans in specular geometry have been analyzed by fitting
a model layer system to the measured data. The fit was performed with the
Philips program WinGiza. This program calculates the reflectivity of the given
layer model within the Fresnel theory and uses the Parrat recursion formalism.
The interface roughness is taken into account in the way proposed by Névot
and Croce. WinGiza uses the simplex method as minimalization procedure.
The program can handle single layers as well as multilayers and the parameters
thickness, roughness, density and the absorption coefficient of every given layer
in the model can be determined. The user can freely choose the number of
parameters to be varied within a fitting run and there are no limitations how
to combine the varied parameters.

The performance of a succeeding fit is a challenge: Firstly, the fit model has
to chosen with care. It is a great help to know the sputter sequence of the
layer stack. In the case of a multilayer with n repetitions of a double layer
of type A/B the user has to decide whether to fit the stack [A/B], contain-
ing only the layer parameters for the two layers A and B, or to fit the stack
A1/B1/Ay/By/As/Bs/.... A, | By, comprising the parameters for 2n layers. Fur-
thermore, the oxidation of the surface layer introduces a further layer with
unknown parameters. Secondly, the user has to choose carefully which param-
eters are varied. In general, the layer thickness and roughness are the most
interesting values. But the density and absorption of the layer have to be var-
ied also in case the material is not known well. The third cruicial aspect is the
fitting strategy. It is of no use to vary all parameters for all layers at the same
time because the program will randomly find a paramater which minimizes
the deviations from the measurement. For example, if the layer thickness is
completely wrong, the calculated Kiessig fringes do not coincide with the mea-
sured ones. In such a case, the program tends to increase the roughness to
unreasonable values, which results in a flattening of the fringes.

The aforementioned aspects can be summarized to three “golden rules” for the
performance of successful XRR fits:
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e The number of fit parameters should be as few as possible but nonetheless
as much as necessary.

e The starting values of the parameters have to be very close to the true
values.

e Concerning the choice and combination of varied parameters: Never trust
the fitting program but only yourself! In most cases it is clever to adjust
the thickness first and the roughness afterwards.

To achieve the first two aims it is a good idea to perform studies on single
layers or on combinations of a few materials of the whole multilayer stack,
such as

e thickness calibrations in order to gain precise starting values,
e fit of the pure substrate in order to determine its roughness,

e fit of thick single layers for determination of density and absorption,
being able to keep these parameters held fixed in further fit procedures.

e XRR oxidation studies in order to determine the parameters of the oxi-
dation layer.

Being now able to keep density and absorption fixed during the fit, there
are still two parameters per layer left which have to be determined, that is the
thickness and the roughness. In a multilayer with 20 double layers, a buffer and
an oxidized surface this makes 85 parameters, including one parameter for the
substrate roughness. In the following, a study is presented which explains two
different fitting strategies of a multilayer and compares the results. The mul-
tilayer investigated is: Si / SiOs // PY3.0nm/[C01.6nm | Cu214nml20 /CU2.2nm

e Strategy 1: “A Priori” Fit

The principal idea of the “a priori” fit is to start with a model which
comprises the double layers in one stack in order not to regard every layer
separately. The advantage is to start with small number of parameters.
The number of parameters is enhanced step by step by subsequent divi-
sion of the multilayer stack into new stacks with less double layers. After
each division step the stacks are fitted. This procedure is performed as
long as the stack is completely dissolved into single layers, i.e. until the
maximum number of parameters is considered. For clarity, the steps of
the fitting procedure are denoted more detailed in the following:
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— Fit model (3 stacks): [Py/Co/Cu/Coly//[Cu/Colis//[Cu/CuO]y

with carefully chosen starting parameters
— 1st fitting run: Cu and Co thickness of stack 2
— 2nd fitting run: Cu and Co roughness of stack 2

— Dividing the resulting 2nd stack into two stacks, thus:
[Py/Co/Cu/Coly//[Cu/Cols//[Cu/Coli2/]/[Cu/CuO];

— 1st fitting run: Cu and Co thickness of stack 2

— 1st fitting run: Cu and Co thickness of stack 3

— 1st fitting run: Cu and Co thickness of stack 2+3
— Fit of Cu and Co roughness in the same way

— Dividing the resulting 2nd and 3rd stack into two stacks each, thus:
..//ICu/Col3//[Cu/Cols//|[Cu/Cols//[Cu/Cols//... while the first

and last stack are not changed. Equivalent fitting sequence.

— Division of the resulting 4th and 5th stack with 6 DL into two stacks
each having 3DL: [Py/Co/Cu/Col,//{[Cu/Col3}s//[Cu/CuO];,
equivalent fitting sequence

— Last division step: dissolution of all stacks into single layers, thus

42 layers: [Py/C()l/CUl/OOQ/OUQ/.../COQQ/CUQQ/OUO]l

— thickness and roughness variation of each of the 85 parameters,
including the substrate roughness

The second fitting strategy is not solely based on the multilayer with 20 double
layers alone, but it takes into account the XRR measurements of a multilayer
series with varying number of double layers:

Py3.0nm/[col.6nm / Cu2.14nm]n /CUQ.QTLm with n = 0, ]., 2, 3, 4, 6, ]_0, 14, 20.

e Strategy 2: “Successive” Fit

This fitting strategy accounts for the fact that due to the growth pro-
cess and the evolution of the microstructure the layer characteristics can
change from bottom to top. Therefore, the layers cannot be comprised
in multilayer stacks but have to be fitted separately. In order to reduce
the number of unknown parameters, the fitting starts with a sample that
only consists of buffer and capping layer. The values which are deter-
mined for the layers in this fitting run are taken as starting values for the
next sample, which is built up of one additional bilayer besides buffer
and capping layer. In this manner the samples with an increasing num-
ber of double layers are fitted and each fit is based on the previous one.
For clarity, the steps are explained in detail below:
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—_

. Sample n = 0:
— Fit model (Istack): [Py/Cu/CuO];
— Nominal starting parameters
— Fitting layer thickness (3 parameters)
— Fitting interface and surface roughness (4 parameters)

[\)

. Sample n = 1:
— Fit model (1stack): [Py/Co/Cu/CuO]y
— Starting parameters based on fit result of sample n =0
— 1st fitting run: new layers
— 2nd fitting run: all layers
3. Sample n = 2:
— Fit model (1stack): [Py/Co/Cu/Co/Cu/CuO];
— Starting parameters based on fit result of sample n =1
— Equivalent fitting strategy

W

. Sample n = 3:
— Fit model (Istack): [Py/Co/Cu/Co/Cu/Co/Cu/CuO]y
— Starting parameters based on fit result of sample n = 2
— Equivalent fitting strategy

5. So on until sample with n = 20

Figure compiles the measured XRR scan with the two different fitting
strategies. The upper row shows the whole scan range and it can be stated that
both procedures have yielded very well approximations to the measurement.
The middle angle range is given enlarged in the lower row and reveals the
differences in both strategies: the calculated reflectivity gained in the “a priori”
way is in perfect agreement to the measured scan. The position and slope of the
fringes fit exactly and there are marginal differences concerning the amplitude
of the fringes between second and third Bragg peak. On the other hand, the
fit which has been “successively” performed does not perfectly coincide with
the measurement. The position of the fringes and Bragg peaks widely agree,
but the slope and the amplitude of the fringes show deviations from the XRR
scan.

The thickness values for every layer determined by fitting are compared in
figure for both strategies. Calculating the average thickness of Co and Cu
for the whole stack, both procedures yield the same mean value but different
standard deviations:

“A Priori” “Successive”
deo (1.54 4 0.02) nm (1.54 & 0.09) nm
dew (1.93 & 0.06) nm (1.93+0.11) nm
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Figure 4.13: Comparison of two different fitting strategies called

“a priori” and “successive” of the XRR measurement of the sample
Si // Py3.00m/[Co01.6n0m / Cuz.1anm]20 /Cu2.2nm. The lower row shows enlarged
details. The measured reflectivity is given as a black line whereas the fitting curves

are coloured in grey. The fits are set off for clarity.

The standard deviation is considerably smaller for the “a priori” approach than
for the “successive” approch and this becomes clear in figure 4.14] Especially
the “successive” thickness values for layer numbers higher than 22 do hardly
show a common level. This is in contrast to the “a priori” results which are
characterized by smooth slope for Co as well as for Cu. The average thickness
values given in the table above differ from the nominal values and especially
the thickness of the first Copper layer is much too small. These facts are no
specialities of the fitting strategy and are not discussed here but lateron in

chapter [6.6]

The comparison of interface roughness is given in figure [4.15| For both proce-
dures, the average Co and Cu roughness for the whole stack has been calcu-
lated:

“A Priori” “Successive”
OCo (0.37 £ 0.05) nm (0.44 £ 0.12) nm
OCu (0.34 +0.04) nm (0.33+0.04) nm
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Figure 4.14: Comparison of Co (black) and Cu (grey) single layer thickness deter-
mined via different fitting strategies: “A priori” (lines) and “successive” (dots). The

layer number refers to the fit model.

It is interesting to see that o, is identical for both strategies whereas the
mean value of o¢, as well as its standard deviation clearly differ. Again, it is
instructive to take a look at the single values and their slope. The “a priori”
values of Co and Cu are characterized by a very smooth slope and slightly
increasing behaviour with increasing layer number. Furthermore, the slope of
both materials is approximately parallel. The picture is very different for the
“successive” fitting strategy. On one hand, the Cu roughness varies smoothly
from layer to layer but shows an enhanced plateau for the layer numbers 9 to 25.
On the other hand, there are values of the Co roughness which vary strongly
for the first 5 Co layers but reach a common level for the layer numbers 12 to
24. The roughness for higher layer numbers increases strongly and linearly up
to 0.7 nm.

Finally, it has to be concluded that the “a priori” fitting strategy yields defi-
nitely more reliable results than the “successive” procedure because

1. the calculated reflectivity based on the “a priori” strategy approximates
the measurement almost perfectly;

2. strongly varying thickness values that are not correlated with the rough-
ness are unreasonable (the only explanation could be a nonconstant
power of the sputtering source);
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Figure 4.15: Comparison of Co (black) and Cu (grey) roughness determined via dif-
ferent fitting strategies: “A priori” (lines) and “successive” (dots). The layer number
refers to the fit model.

3. concerning the “successively” determined roughness for the layer num-
bers 2 to 11 and 28 to 41 and taking into account the mechanism of layer
growth, it is not realistic to have subsequent layers of alternating high
and low roughness.

The conclusion that the “a priori” fitting strategy is the more successful one is
quite astounding because it requires the determination of 85 parameters based
on one single measurement. Therefore, one would expect that it is the great
advantage of the “successive” procedure that the number of parameters to be
determined is increased step by step, based on a number of measurements.
How can the disadvantage be explained? The crucial point seems to be that
identically sputtered layer sequences do not necessarily give identical layers
and therefore, it does not help to fix the supposedly known parameters. The
reason for the layer fluctuations may be found in the stability of the sputter
conditions. But in the first line it is the sensitivity of the XRR method which
detects difference of tenth of Angstroms. Due to these nonfixable parameters,
the layer model of the “successive” approach contains more unknown constants
than the “a priori” strategy and therefore violates the rule “as few parameters
as possible”. As a consequence, the fit may end in an impasse. Nonetheless,
it is important to state that the “successively” calculated reflectivity is very
good and the agreement between the mean values of both procedures are small.
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Figure 4.16: Comparison of “a priori” fit as a whole DL stack
and the average values after fitting every single layer; sample
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Even if the “successive” strategy would lead to more realiable results than the
“a priori” approach, it would not be the practicable procedure because it is
extremly time consuming: instead of one sample many samples have to be
prepared, measured and fitted.

Now that the best fitting strategy has been found, it is not clear yet whether
it is necessary to determine the parameters of every single layer in a 20 DL
stack. Putting the question differently, is there a difference between the average
thickness and roughness parameters determined by fitting the whole DL stack
(i.e. the first fit of the “a priori” strategy) and those determined separately
for every layer (i.e. the last step of the “a priori” approach):

whole stack [Py/Co/Cu/Coly /] [Cu/Coln—s /] [Cu/CuO]y
single layers [Py/Co1/Cuy/Cos/Cusy/.../Coy,/Cuy, /CuOly

This comparison is made in figure for different samples having an increas-
ing number of double layers. The values determined for every single layer have
been averaged and in both cases the layers C'oy, C'u; of the buffer as well as
the Cu layer of the cap have not been taken into account. The model stacks
are equal up to n = 3. The graphs reveal that for the samples with n > 6 the
differences in thickness as well as in roughness can be neglected. The samples
with n = 4 and 6 are the exceptions from this finding, differing in the resulting
Cu thickness and also a little in the roughness. This result is quite interesting,
because it justifies the simple fitting model. Nonetheless, this finding need not
necessarily be true for any multilayer sample and in general, care has to be
taken with every sample and the choice of the model layer stack.

61



Chapter 5

Sample Preparation and
Characterization Techniques

5.1 Sample Preparation

All samples investigated in this thesis have been fabricated by magnetron sput-
tering. The idea of sputtering is to bombard the target material with high
energetic ions, accelerated due to the high negative potential of the target of
100 to 1000 Volts and to deposit the atoms which have been knocked out of the
target on a substrate placed on the opposite. For a review on the magnetron
sputtering technology see e. g. [pen95).

In this thesis six different sample series have been investigated. They have been
prepared in three different laboratories on four different sputtering systems:

Series Bielefeld has been prepared in March 2002 in a Leybold Dresden
CLABG600 sputtering system in the Bielefeld University laboratory. It has six
magnetron sources measuring four inch in diameter. Two of the sources are
capable of sputtering magnetic materials, one source is operable in rf mode for
sputtering isolating materials and the other three sources are used for sputter-
ing nonisolating and nonferromagnetic materials. All of the sources are placed
in one vacuum chamber having a base pressure of 1-10~"mbar. Between
sputtering chamber and load lock there is a separate vacuum chamber with an
automatic handling arm which enables to load the substrate into the sputter-
ing chamber without breaking the vacuum. The distance between target and
substrate is (11.5 4+ 0.3) mm, depending on the target thickness. Sputtering
pressure, power of the sources and sputtering rates are given in the table be-
low. The sputtering rates have been determined via thickness determination
with x-ray reflectometry on extra samples: Single layers of the regarding ma-
terial were sputtered in the way like a multilayer with a single layer thickness
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of about two nanometers, so often as to get a final layer of about 30nm, e.g.
[Cugnm]15. For each material, two samples with different single layer thick-
nesses were prepared in order to determine the sputtering offset correctly. The
sputtering offset occurs because of the shutter technique: The sputtering time
per layer is determined by the opening time of the shutter while the substrate
itself does not move. Therefore, the mimimum sputtering time is determined
by the time needed for opening the shutter and closing again, which takes up to
one second alltogether. The sputtering time given by the user is not included
here, this time starts to count in the instant of the shutter being open and this
the reason for the offset. The substrates used in this series were pieces of size
(18 - 18) mm? cut out of a silicon wafer having [100] orientation and a layer of
thermal oxide 850 nm thick, which we kindly received from the Robert Bosch
GmbH, Stuttgart. Directly before loading they have been cleaned in acetone
and ethanol, respectively, and dried in a nitrogen gas stream.

Series Bielefeld

Type . Si[wo}(SiOz)gg,onm // Pyz/[Coy/Cux]n / Cu

(The variation range of the parameters x,y, z,n is given in chapter H)

Pressures [mbar]: Pbase = 1 - 1077 par=1-1073
Targetmaterial Sputtering Power Sputtering Offset and Rate
Cu 105 W (1.3 W/cm?) 0.4 nm + 0.9 nm/s - t[s]
Co 120 W (1.5 W/cm?) 0.2 nm + 0.3 nm/s - t[s]
Py = NigFeyg 120 W (1.5 W/cm?) 0.2 nm + 0.4 nm/s - t[s]

Series Multi 1, Multi 2 and series Thermo 1 and 2 have also been sput-
tered in the Bielefeld University laboratory, but in a sputtering system type
L560 Leybold Dresden. This system has four dc magnetron sources measuring
four inch in diameter, of which three are capable of sputtering magnetic mate-
rials. The four sources are placed together in a vacuumchamber having a base
pressure of about 8 - 10~7 mbar, which is placed directly beneath the load lock.
The substrate is loaded manually into the sputtering chamber without break-
ing the vacuum. The distance of target to substrate is 11 ¢m minus the target
thickness. Further details of this sputtering machine are given in [hei00]. The
sputtering rates have been determined via thickness determination with x-ray
reflectometry on extra samples in the way explaned above. The reason for the
sputtering offset is the same as in machine CLAB 600.
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Series Multi 1 (May 2002)

Type : Si[lOO](SiO2)1OOnm // PYZ/[COy/Cux]n

(The variation range of the parameters x,y, z,n is given in chapter H)

Pressures [mbar]: Phase = 8 - 1077 par=1-1073

Targetmaterial Sputtering Power Sputtering Offset and Rate
Cu 90 W (1.1 W/cm?) 0.4 nm + 0.5 nm/s - t[s]
Co 93 W (1.2 W/cm?) 0.2 nm + 0.2 nm/s - t[s]

Py = Nig; Feyg 102 W (1.3 W/cm?) 0.3 nm + 0.3 nm/s - t[s]

Series Multi 2 (April 2002)

Type : Glass // Py,/Coy1/[Cuyx/Coysly
(The variation range of the parameters z,yl,y2, z,n is given in chapter H)

Pressures [mbar]:

Pbase = 8- 1077

Par = 1-1073

Targetmaterial

Cu
Co
Py = Nig;Feyg

Sputtering Power

90 W (1.1 W/cm?)
93 W (1.2 W/cm?)
102 W (1.3 W/cm?)

Sputtering Offset and Rate

0.4 nm + 0.5 nm/s - t[s]
0.2 nm + 0.2 nm/s - t[s]
0.2 nm + 0.3 nm/s - t[s]

Series Thermo 1 (January 2003)

Type . Si[lOO](SiOQ)loonm // COZ/CUX/[COY/CUX]40

(The variation range of the parameters x,y, z is given in chapter H)

Pressures [mbar]:

Prbase = 8- 10_7

par=3-107°

Targetmaterial

Cu
Co

Sputtering Power

91 W (1.1 W/cm?)
97 W (1.2 W/cm?)

Sputtering Offset and Rate

0.2 nm + 0.6 nm/s - t[s]
0.1 nm + 0.3 nm/s - t[s]
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Series Thermo 2 (March 2003)

Type . Si[lOO](SiO2)1OO nm // COZ/CUX/[COy/CUX]40

(The variation range of the parameters x,y, z is given in chapter |§l)

Pressures [mbar]: Phase = 8 - 1077 par=1-1073
Targetmaterial Sputtering Power Sputtering Offset and Rate
Cu 90 W (1.1 W/cm?) 0.4 nm + 0.5 nm/s - t[s]
Co 95 W (1.2 W/cm?) 0.1 nm + 0.2 nm/s - t[s]

The samples of series Bosch I and II have been fabricated in July of 2001
in the laboratory of the Robert Bosch GmbH in Stuttgart. This Von Ardenne
sputtering system of type CS 730 S has six dc magnetron sources of 90 mm
in diameter and a base pressure of 2 - 107" mbar. The distance of target to
substrate is 40 to 45 mm, depending on source and thickness of the target. The
sources are equipped with shapers for homogenization of the layers. Sputtering
is performed in the wobble mode without the use of a shutter. The thickness
of the layers is determined by the rotation speed of the substrate holder. The
sputtering rates given in the table below are valid for a rotation speed of one
round per minute of the substrate holder. For deposition of the materials Cu,
CuAgAu and CoFe the substrate was only driven once beneath the source.
The sputtering rates have been determined via spectroscopic ellipsometry on
four samples with different numbers of wobble rotations. The substrates used
in this series were pieces of size (20 - 20) mm? cut out of a silicon wafer having
[100] orientation and a layer of thermal oxide 850 nm thick. Before cutting into
pieces the wafer is covered with an acetone soluble protection layer and before
sputtering, the pieces are cleaned in acetone and isopropanol in ultrasonic bath

[ps]-

Series Jena has been sputtered at the Institut fiur Physikalische Hochtechnolo-
gie (IPHT) in Jena in September 2001. The Unazis sputtering system called
“Cyberite” has nine dc magnetron sources of 300 mm in diameter and a base
pressure of 1- 1078 mbar. The sources are equipped with shapers for homoge-
nization of the layers and so the substrate is rotated while sputtering without
the use of a shutter. The distance of target to substrate is 10 cm for Cu and
Ta, 12.5 ¢cm for CoFe and 15 em for Fe. The substrates used in this series were
pieces of size (20 - 20) mm? cut out of a silicon wafer having [100] orientation
and a layer of thermal oxide 1000 nm thick. There was no cleaning of the sub-
strates before sputtering. Sputtering rates have been determined via surface
profiling on 70 nm thick single layers and are given in the table below with
approximated values [r1m].
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Series Bosch I and 11

I: Si[lOO}(SiOQ)SE)Onm // Fez/[(COQOFelo)y/Cux]n / Ta

IT : Si[100](SiO2)850nm//Fe./[(CogoFero)y / (Cugs AgroAurzs )«]n/Ta

(The variation range of the parameters x,y, z,n is given in chapter H)

Pressures [mbar]:

Pbase = 2- 1077

pAr:5'1

073

Targetmaterial

Cu
CuAgAu
CoFe
Fe

Sputtering Power

96 W (1.5 W /cm?)
96 W (1.5 W /cm?)
50 W (0.8 W /cm?)

( )

150 W (2.4 W/cm?

Sputtering Rate |

9.02
9.60
2.55
4.35

nm

round Q1 rpm

]

Series Jena

Type : Si[loo}(Sioz)looonm // Fez/[(COQOFelo)y/Cux]n / Ta

(The variation range of the parameters x,y, z,n is given in chapter H)

Pressures [mbar]:

Pbase = 1- 1078

par=5-1073

Targetmaterial

Cu
CoFe
Fe
Ta

Sputtering Power

1500 W (2.1 W/cm?)
800 W (1.1 W/cm?
1500 W (2.1 W/cm?
1500 W (2.1 W /em?

<

~
~

~
~

2
2
2
2

Sputtering Rate [nm/s]

5.2 Characterization Techniques

5.2.1 Measurement of the Magnetoresistance

The magnetoresistance of the samples has been measured using the four-point
method: Four electrical contact needles equidistantly arranged in a row are
directly pressed onto the sample. The outer contacts transport the current,
provided by an adjustable constant current source. The two inner contacts
measure the voltage drop on the sample. While determining the resistance of
the sample in this way, an outer magnetic field with direction in plane of the
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layer stack is driven from negative to positive values and the way back. The
maximum field values up to which 0.45 Teslas are achieveable and the steps of
field variation can be chosen by the user.

While driving one magnetic field loop, seven different samples can be measured
at the same time, having separate contacts to the constant current source and
to the voltmeter. Details on this home-built apparatus are given in [mro98].

The technical accuracy of the measurement of the magnetoresistance is of
0.01 %, but in fact the exactness of the magnetoresistance determination is of
the order 0.1 to 1%, depending on the sample. There are two reasons for this
fact, both having their origin in the sputtering process. Firstly, both sputtering
systems of the Bielefeld laboratory do not sputter homogeniously in thickness.
Depending on the position of the substrate above the source, this inhomoge-
niousness is more or less drastic. Because the effect amplitude of a multilayer
system showing GMR depends on the spacer layer thickness, it is clear that
thickness inhomogenity leads to GMR. effect inhomogenityll] Secondly, the
sputtering sources are of magnetron type, which means that they produce a
magnetic field that acts up to the substrate position. Sputtering magnetic
materials thus results in an anisotropy of the sample. Again, this anisotropy
is a function of the position of the sample, resulting in an inhomogenity of the
GMR effect.

Besides the measurement at the Bielefeld University Laboratory, the GMR, of
the samples of series Bosch and Jena has been determined in the laboratory
of the Robert Bosch GmbH. The measurement technique is also based on the
four-point method. The difference of the Agilent Data Aquisition measure-
ment arrangement to that described above, is the automatic choice of current
depending on the resistance of the sample. Furthermore, it has an array of
measuring contacts which can be chosen individually for characterizing every
selected area on a 4”7 wafer.

5.2.2 Measurement of the Magnetic Properties: MOKE

The magnetic properties of a sample as well as its electrical characteristics
determine the magnetoresistance loop. Thus, measuring the magnetization
versus field gives additional information. Series Bielefeld, Multi 1, Multi
2 and Thermo 1 and 2 have been magnetically characterized by MOKE
measurements:

Polarized light changes its polarization when being reflected from a magnetic
surface, this is the essence of the magneto-optic Kerr effect (MOKE).
MOKE measurements were performed in a home-built magnetometer using

!The characterization of a 4” wafer sputtered in the Leybold L560 is given in [hei00].
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linearly polarized light of wavelength A = 675nm. A laser diode (0.5 mW)
is focused, giving a spot of ~ 100 um on the sample surface. Furthermore,
the laser diode is characterized by a stability of 0.08%. For an air gap of
2.5 mm between the ferrite coils, magnetic field loops with H,,., =~ £0.357T are
driven with direction parallel to the sample surface but perpendicular to the
polarization of the light. Proportional to the net magnetization of the material
reflecting the light, the polarization of the light changes from linear to elliptical,
although principally it is not possible to gain quantitative information on the
magnetization. The light reflected from the surface is polarized a second time
by the analyzer and finally, the intensity is detected by a photodiode. For
metals, which are good conductors, the laserlight can penetrate typically only
10 to 20 nm into the sample surface. Therefore, a magnetic material being close
to the surface gives a higher Kerr signal than a material lying deeper inside the
sample, which means that a MOKE measurement automatically gives dephth
information of the sample. Transparent layers, e.g. overlayers, do not affect
the Kerr signal in a significant way, and so even samples sputtered on glass
substrates can be measured from their backside. A more detailed overview
on MOKE can be found in [fow92] and details on the apparatus are given in
[sud00].

5.2.3 Microstructure Investigations: XRD and XRR

X-ray diffraction and reflectometry have been measured on a Philips X Pert
PRO MPD diffractometer of Type PW3050/60, having a vertical 6/60 config-
uration in Bragg-Brentano parafocusing geometry. Therefore, the x-ray tube
together with the incoming beam optics is mounted on a moveable goniometer
arm, the sample stage is fixed and the detector together with the diffracted
beam optics is mounted on the second goniometer arm. The goniometer ra-
dius is 220 mm and the smallest stepsize possible is 0.001° in w and 260. The
schematic drawing of the diffratometer is shown in figure [5.1] and will be ex-
plained in detail in the following. X-rays of type Cu-K, with (A = 1.54 A) have
been applied, where the ratio of K,; to K,s is 2:1.

Incoming Beam Path

The radiation is produced by an ceramic x-ray tube, having a Cu anode and
a long fine focus with focus dimension of 12 -4mm?2. The maximum power
of the tube is 2.2 kW and measurements were usually performed with 50 £V
high tension and 40 mA anode current. The tube is cooled by a closed cooling
water system.

The emerging radiation passes a 0.04rad soller slit in order to control the
axial divergence of the beam. The soller slit consists of parallel plates of an
x-ray absorbing material and so solely rays not crossing a plate can pass. Soller
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Figure 5.1: Schematic beam path of the Philips X Pert Diffractometer.

slits improve the peak shape and the resolution in 260-type scans, especially at
low scattering angles.

Control of the divergence in equatorial direction is done by a programmable
divergence slit (PDS). The width of the PDS is chosen as large as the x-ray
beam is completely accepted by the sample.

A mask at the end of the primary beam path limitizes the beam in axial
direction which again has to be chosen such that the irradiated area is not
larger than the sample.

Between divergence slit and mask a Ni attenuation foil, 0.125 mm tick, can be
switched into the beam path, either depending on the detected intensity, the
diffraction angle or in fixed mode in order to prevent damaging the detector
by too high counting rates. The attenuation factor is 137.

Sample Stage

The sample stage is motorized in z-direction for adjustment of the sample
surface height with respect to the beam path. Variations can be made in steps
of 0.3 um. The samples are laid on the sample stage without the necessity of
fixing.
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Diffracted Beam Path

Radiation being diffracted or reflected from the sample is limited by a pro-
grammable anti-scatter-slit (PASS) in equatorial direction, in the first step.
Afterwards, it passes the programmable receiving slit (PRS), which is the
natural focusing point on the goniometer circle. Accordingly, the aperture of
the receiving slit determines the resolution but also cruically the intensity.

Before entering the detector, the x-rays pass a 0.04 rad soller slit and a curved
pyrolytic graphite monochromator in order to cancel the Cu-Kz and possible
flourescence radiation. Finally, the x-rays are detected by a sealed proportional
detector with a maximum count rate of 750 kcps.

Programmable Divergence and Anti-Scattering Slits

The divergence slit and the anti-scatter slit can be held fixed during the mea-
surement at a given aperture angle. Then the irradiated sample area becomes
smaller with increasing angle of incidence. This has to be accounted for in ana-
lyzing diffracted intensities. Another possibility provided by the diffractometer
is to adjust the slits such that the irradiated sample area is kept constant at a
given value.

Thin film analysis can be performed in the “beam tunnel” configuration, where
the anti-scatter slit and receiving slit are set with equal apertures, which is
achieved by setting the PASS to “0°”.

Thin Film Optics

Besides the diffracted beam path described above, the diffractometer is pro-
vided with a second diffracted beam path: The so called thin film optics.
In case of very asymmetrical measuring arrangements, e.g. grazing incidence
diffraction where the incident angle is held fixed at a small value and high
diffraction angles shall be detected, the standard arrangement is not adequate.
The essential difference of the thin film optics is to use a parallel plate col-
limator instead of the anti-scatter slit. This collimator consists of parallel
plates which define the equatorial acceptance angle as seen by the detector.
The equatorial acceptance of the parallel plate collimator is 0.27°. In the thin
film configuration a flat graphite monochromator is used and the radiation is
detected by a sealed proportional detector.

Both secondary optics are mounted fixed on one goniometer arm.

For general information on x-ray diffractometers and their components refer
to [bis89]. For further details on the Philips goniometer see [XP00].

Sample Adjustment

For a correct measurement with the diffractometer the sample has to be ad-
justed very carefully in its surface height in order to prevent errors in the
diffraction angle.

70



When the sample is displaced in height by the amount of s, then the magnitude
of the so called specimen displacement error is given by

A20 = —2s(cos/ R) (5.1)

where R is the radius of the goniometer [bis89]. Therefore, at moderate to low
angles with cos# close to unity and the given goniometer radius of 220 mm,
the error in 20 is about (0.5 - 1073)° for every 1 um sample displacement.

The sample height adjustment is performed in three steps, including the cor-
rection of sample tilt in the direction of th