
Learning Manifolds with the

Parametrized Self-Organizing Map

and

Unsupervised Kernel Regression

Der Technischen Fakultät der Universität Bielefeld

vorgelegt von

Stefan Klanke

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

März 2007



Gedruckt auf alterungsbeständigem Papier ◦◦ ISO 9706
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Abstract

This thesis presents several new developments in the field of manifold learning and
nonlinear dimensionality reduction. The main text can be divided into three parts,
the first of which presents a smoothness-based regularizer that is specifically tuned to
the Parametrized Self-Organizing Map (PSOM). The regularization approach makes it
possible to deal with noisy or missing data in a principled manner, and it facilitates the
construction of PSOMs from data that are not organized in a grid topology.

In the second part, the manifold learning algorithm Unsupervised Kernel Regression
(UKR) is introduced as a counterpart to the classical Nadaraya-Watson estimator. In a
nutshell, UKR requires very little parameters to be chosen a priori: In its simplest form,
a UKR model is fully specified by the dimensionality of latent space and the choice of
a density kernel, and it can be regularized automatically by using leave-one-out cross-
validation without additional computational cost. The low dimensional coordinates
(latent variables) together with a mapping from latent space to data space are retrieved
by minimizing some error criterion.

The third part presents four possible extensions to UKR, specifically 1) a more general
cross-validation scheme, aimed at avoiding unsmooth manifolds, 2) the inclusion of loss
functions beyond the usual squared error, which can enhance the robustness towards
outliers, and by which UKR can be tuned to specific noise levels, 3) a “landmark” variant
which helps to reduce the computational cost, and 4) Unsupervised Local Polynomial
Regression, where the Nadaraya-Watson estimator is replaced by local linear or local
quadratic regression models, the latter showing less bias in the presence of curvature.
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1. Introduction

1.1. Motivation

The last decades have brought up a massive increase of computing power and data
storage facilities. Nowadays, even standard home computers are able to carry out billions
of elementary operations per second. At the same time, the amount of data that is
collected and processed electronically has also increased, typically with the desire to use
that data for improving businesses or services, and of course also for research purposes
e.g. in bioinformatics. Unfortunately, humans did not scale as well as computers, so
there is a huge need for “intelligent” automated data processing, that is, the data has
to be analyzed and processed with as little human guidance as possible, until it is
structured or simplified to a level that is accessible at least to human experts.

In some fields of application, human intervention is not possible or reasonable at all,
and so the data processing system has to work fully autonomously. As an example one
may think of robots exploring the Mars, or of more earthly situations where robots carry
out work that is too dangerous for humans, for example removing land mines.

To address the aforementioned problems, the field of machine learning is concerned
with providing algorithms that allow computers to “learn” in the sense of generating use-
ful models or representations from a series of observations. Machine learning algorithms
can be broadly differentiated by the nature of the observations they process, where for
this thesis only the two classes of supervised and primarily unsupervised learning are
relevant and will be described later.

In any case, even if a data processing system operates without human intervention,
a human expert will have decided how the system learns by the very choice of its
implementation. As a consequence, for a general applicability of the system, the learning
algorithm should ideally not depend on certain adjustments of parameters that are hard
or even impossible to automatically estimate from the observations. The central topic of
this thesis is Unsupervised Kernel Regression, a recently introduced manifold learning
algorithm that was specifically designed in that way.

1.2. Outline and contributions

The remainder of this chapter provides a brief introduction to supervised and unsuper-
vised learning, primarily manifold learning, as well as an explanation of further concepts
and techniques that will be required later on. An overview of related work on manifold
learning is then given in chapter 2.

Chapter 3 is devoted to the description of the Parametrized Self-Organizing Map and
several extensions to the algorithm contributed by the author of this thesis. Parts of
this chapter have already been published (Klanke and Ritter, 2005).

1



1. Introduction

In chapter 4, the manifold learning algorithm Unsupervised Kernel Regression (UKR)
will be presented. The algorithm in its original form has been conceived mainly by Peter
Meinicke, but first of all large parts of the calculations, the implementation, and the
experimental evaluation have been contributed by the author. Parts of chapter 4 have
already been published (Meinicke, Klanke, Memisevic, and Ritter, 2005).

Chapter 5 contains the description and experimental evaluation of several extensions
to the original UKR algorithm, also contributed by the author. The first two extensions
correspond to already published work (Klanke and Ritter, 2006b, 2007, 2006a). The
thesis will be concluded with a discussion of the contributions in chapter 6.

In the following, for easier readability the pronoun “we” will be utilized throughout
the text, whereas it can stand for a textbook-like inclusion of the reader or indicate
work that was carried out by the author alone or in collaboration with others.

1.3. Supervised learning

Supervised learning is the generic term for modelling the relationship between input data
(also called predictors, or independent variables) and corresponding output data (also
called responses, or dependent variables). Friedman (1994, p. 7) points out “two distinct
practical reasons” for applying supervised learning techniques. The first is prediction,
where one wishes to utilize the learned relationship to properly respond to new input
data. An example of this kind of usage is a spam filter, which automatically decides if
an incoming email should be treated as junk or be actually presented to the recipient.

The other reason is interpretation, where the properties of the relationship itself are
of interest. For example, when the data stems from observing a physical system, the
obtained knowledge about the relationship may help to better understand that system.

Depending on the nature of the output data, one also differentiates between the tasks
of

• regression, where the output data are quantitative (usually real-valued) measure-
ments, and

• classification, where the output data are qualitative or categorical variables, e.g.,
a class label like “apple”,“pie” and “orange”. Quite often either the output data
is already binary (e.g., “valid” vs. “invalid”), or the multi-class problem is tackled
by a combination of binary classifiers (e.g., Allwein, Schapire, and Singer, 2000).

As stated by Hastie, Tibshirani, and Friedman (2001, p. 10), “these two tasks have a lot
in common, and in particular both can be viewed as a task in function approximation.”
Nevertheless, since classification does not play an important role in this thesis, the
remainder of this section focuses on regression and its statistical foundations.

1.3.1. Statistical model

In the literature on regression (e.g., Bates and Watts, 1988), the input and output data
are treated as realizations of random variables, which takes into account that any system
and any kind of measurement is usually subject to small fluctuations or pertubations.

2



1.3. Supervised learning

Let us assume we have two real-valued random variables X (input) and Y (output)
with a given joint distribution p(x, y) = p(X = x, Y = y). We seek a function f(·)
which optimally predicts the output y for a given input x. For this, we first have to
specify a loss function L(y, f(x)) which penalizes errors in our prediction. The most
common choice for this is the squared error loss

L(y, f(x)) = (y − f(x))2 . (1.1)

We can now judge the quality of a mapping f(·) by calculating the expected prediction
error functional

Eexp(f) = 〈L(Y, f(X))〉 =

∫∫

L(y, f(x)) p(x, y) dx dy. (1.2)

If we factor the joint density using the conditional density of Y given X, i.e.

p(x, y) = p(y|x) p(x) = p(Y = y|X = x) p(X = x) (1.3)

and insert the squared error loss, we get

Eexp(f) =

∫ (∫

(y − f(x))2 p(y|x) dy
)

p(x) dx. (1.4)

Minimizing Eexp with respect to f(·) can thus be carried out by pointwise minimization
of the inner integral for every x, which in turn yields that the optimal mapping f∗(·)
equals the conditional expectation

f∗(x) =

∫

y p(y|x) dy = 〈y|x〉. (1.5)

This expression is also called regression function. Its form suggests to view the output
data as a superposition of a systematic part, which depends on the input data, and of
additive noise, which has zero mean and is independent of the input data. This can be
written as the regression model

y = f∗(x) + u , 〈u〉 = 0. (1.6)

All equations can easily be generalized to the case of multivariate input and output
variables x ∈ IRq and y ∈ IRd, where the squared error loss (1.1) becomes the squared
Euclidean distance (please see appendix A for an overview of the notation)

L(y, f(x)) = ‖y − f(x)‖2. (1.7)

1.3.2. Empirical error minimization and regularization

As demonstrated in the last section, the optimal regression function can theoretically
be computed from the joint distribution p(x,y) of the input and output variables. In a
typical learning task, however, this distribution is not known, but rather only a finite
number of independent samples from it, which together make up the set of training data

D = {(xi,yi) | i = 1 . . . N}. (1.8)

3



1. Introduction

Still, the task is to model the relationship between the input and output data, that
is, we seek a function f(·) which maps a given x to the correct y. In order to measure
the success of f(·), we again use a loss function to quantify the prediction error, but this
time we are restricted to the finite set D of examples. Thus, for the case of the squared
error loss, we would calculate

Eemp(f) =
1

N

N∑

i=1

‖yi − f(xi)‖2, (1.9)

which is known as the empirical error or empirical risk. Unfortunately, simply choosing
that function f(·) which minimizes (1.9) without further restrictions is not reasonable.
Since there is an infinite number of continuous functions which can interpolate the
training data with an otherwise arbitrary behavior, the learning problem is ill-posed
(e.g., Cherkassky and Mulier, 1998). Furthermore, looking back at the two practical
reasons for supervised learning (Sec. 1.3), it is clear that f(·) should not only give the
correct mapping for the input data {xi} it is estimated from. Rather, it should have the
ability of generalization, that is, it should properly predict the output for new input data
(drawn from the same distribution) and/or it should contribute to the understanding
of a system under study.

Statistical learning theory, the foundations of which were developed in the 1960s
by Vapnik and Chervonenkis, offers a wealth of concepts and results regarding the
conditions under which empirical risk minimization works. A detailed description of
these concepts is beyond the scope of this section, and therefore is left to the textbooks
of Vapnik (1998, 1995).

Two important concepts shall be mentioned nonetheless. The first concept is con-
sistency, where one analyses the behavior of an empirical risk minimization algorithm
in the limit of an infinite number of training examples. An algorithm is said to be
consistent, if in this limit the empirical error converges uniformly against the expected
error (cf. Fig. 1.1).

The second (related) concept is about controlling the capacity of a learning system or
a function model. Here, one restricts the class F of functions from which f(·) is selected.
As a simple example, consider the class of polynomials up to a specific degree. If the
degree is chosen smaller than the number of training examples, arbitrary interpolation as
mentioned above is not possible anymore. Thus, the learning system is forced to use its
remaining flexibility as well as possible, which hopefully results in a better generalization
performance, that is, a lower expected error as depicted in Fig. 1.2.

Besides directly restricting the function class, one can add a penalty term P (f) to the
empirical risk (1.9), which has small values for smooth functions and larger values for
increasingly complex functions. This results in the regularized risk

Ereg(f , λ) = Eemp(f) + λP (f) (1.10)

and – together with a restricted function class – in the minimization problem

f̂ = arg min
f∈F

Ereg(f , λ) , (1.11)

where the parameter λ balances between the rivalling goals of a smoother function and
a smaller error on the training data.

4



1.3. Supervised learning

empirical error

expected error

increasing size of available dataset >

Figure 1.1: Schematic illustration of the relation between empirical and expected error as a
function of the size of the available dataset.

empirical error

expected error

increasing model complexity  >

Figure 1.2: Schematic illustration of the relation between empirical and expected error as a
function of the model complexity.

1.3.3. Bias variance dilemma

A related important concept in statistical learning is the so-called bias variance dilemma,
which for example Bishop (1995) describes in detail. Briefly summarized, one analyses
how much a function1 f̂ , which is estimated on a finite dataset, typically differs from
the true regression function f∗ (that is, the conditional expectation). In particular, the
expected squared error for predicting f∗(x) can be decomposed and written as

〈

(f̂(x) − f∗(x))2
〉

D
=
(

〈f̂(x)〉
D
− f∗(x)

)2

︸ ︷︷ ︸

(bias)2

+
〈

(f̂(x) − 〈f̂(x)〉
D
)2
〉

D
︸ ︷︷ ︸

variance

, (1.12)

1For simplicity, the description is restricted to the case of univariate output data.
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where 〈·〉D denotes an average across all datasets. The bias describes the deviation
between the “average” estimated f̂(·) and the true regression function. This deviation
does not depend on a particular training set D, but rather a large bias indicates an
overly simplistic function model. The variance, however, measures the spread of the
estimated functions f̂(·), which in turn measures how much the estimation of a single
f̂(·) depends on the data at hand.

The dilemma now lies in the fact that, if the available data is limited, one cannot
reduce the bias (e.g., by allowing complex functions) without increasing the variance,
and vice versa. This is illustrated in Fig. 1.3.

bias

expected error

increasing model complexity  >

variance

Figure 1.3: Schematic illustration of the bias variance dilemma.

1.3.4. Model selection

We now turn our attention from theoretical considerations regarding bias, variance and
the behavior in the limit of infinite data to the practical problem of selecting and fitting
a model in a concrete learning task.

Given a particular dataset D, how can one reach a good trade-off between overfitting,
which denotes the case of estimating a too complex function (corresponding to the small
bias, large variance case), and underfitting, which denotes the opposite? In other words,
how do we select parameters of the function class (e.g., the degree of polynomials) and
regularization parameters, for example λ in (1.10) ?

A simple practical approach is given by the hold-out method. Instead of using the
complete dataset D to train the learning system, that is, to estimate the desired func-
tion f̂(·), a subset Dval is held out and the system is trained with the remaining data
Dtrain = D\Dval. Different regularization settings can then be compared by the sys-
tem’s prediction performance on the validation set Dval, which serves as an estimation
of the expected prediction error (1.2).

The main problem of this approach is that the number of training examples is reduced,
which theoretically worsens the estimate. This is particularly relevant in applications
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1.4. Unsupervised learning

where the available dataset is already small from the start. Furthermore, instead of
overfitting the training set, the learning system might now be tuned too much to the
validation set. Thus, for a final judgement of the trained learning system, the expected
prediction error has to be estimated from a third subset of the data, the “test set”.
Typically, the partitioning of the data is chosen so that the training set contains 50%
percent, the validation set contains 25%, and the test set contains the remaining 25%
of the data (Hastie et al., 2001).

A better, but usually costlier method is given by cross-validation (M. Stone, 1974,
1977), which also works by partitioning the given data D, albeit using a more complex
scheme as compared to the hold-out method. In particular, K-fold cross-validation
consists of splitting the data into K disjoint subsets D1,D2 . . .DK of roughly equal size.
For each adjustment of the regularization parameters, the learning system is trained K
times on the K datasets D\Di, i = 1 . . .K and its prediction performance is evaluated
on the left-out set Di. The best average performance then determines the choice of the
parameters.

Through this, the complete dataset takes part in both training and validation of the
system. Higher values of K usually lead to better estimates, at the price of an increased
computational effort. The limit of K = |D|, that is, N -fold cross-validation for a dataset
consisting of N examples, is also called leave-one-out cross-validation (LOO-CV). While
generally being the most “expensive” variant, in some cases LOO-CV can actually be
applied at the cost of a single learning run. Unsupervised Kernel Regression, as will be
introduced in chapter 4, is among these cases.

As an alternative to cross-validation, model selection can also be achieved by help of
the bootstrap method (Efron, 1979). Bootstrapping works by generating new datasets by
sampling with replacement from the original dataset. Thus, the new datasets might not
include some original elements, while others are included multiple times. In some studies
(Efron, 1983; Lendasse, Wertz, and Verleysen, 2003), bootstrapping is reported to be
superior to cross-validation, other studies (Kohavi, 1995) deny this. A fast bootstrap
method, which requires comparatively few learning runs, has been proposed recently
(Lendasse, Simon, Wertz, and Verleysen, 2005).

Besides these general approaches to model selection, further methods are applicable
when using special learning strategies. In particular, the Akaike information criterion
and Bayesian inference can be utilized in maximum likelihood and Bayesian estimation,
respectively (Hastie et al., 2001; Bishop, 1995). These learning strategies will be briefly
discussed in section 1.5.3.

1.4. Unsupervised learning

The supervised learning problem, as discussed in the last section, can be characterized
as a function approximation task. Through the distinction between input and output
data, both the goal and the success of learning can be stated clearly. The given output
data {yi} can be viewed as a teacher signal that tells the learning system which response
it should give to any presented example of input data {xi}.

As the name implies, in unsupervised learning, there is no teacher signal, and also
the learning goal and its measure of success are far less clear. Hastie et al. (2001, p. 2)
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1. Introduction

state: “In the unsupervised learning problem, we observe only the features and have no
measurements of the outcome. Our task is rather to describe how the data are organized
or clustered.”

Hertz, Krogh, and Palmer (1991) point out that the existence of redundancy in the
data is a necessary condition for the application of unsupervised learning techniques. As
a possible learning goal, they list clustering (see, e.g., Jain and Dubes, 1988 or Hartigan,
1975), where each data sample is assigned a discrete value – similar to a class label –
or a prototype, which refers to a typical representative of such a “class” (see Sec.. 2.1).
Further listed goals are the extraction of principal components from the data (see Sec.
2.2), finding an encoding of the data with fewer bits (e.g., Gersho and Gray, 1992) and
finally the creation of a topographic feature map (see Sec. 2.4).

Ripley (2005, p. 2) describes the task of unsupervised learning as the “discovery of
new groupings” and later gives an overview of unsupervised methods, where he focusses
on the visualization of high-dimensional data.

In fact, the data being high-dimensional is very typical of unsupervised learning tasks,
and all aforementioned learning goals can be subsumed as finding an alternative, more
compact representation of the data. The need for finding such a representation is a direct
consequence of the unfavorable properties of high-dimensional spaces, which Bellman
(1961) called the “curse of dimensionality”. Imagine you wish to scan a d-dimensional
hyper-cube with 10 steps per dimension. For d = 2 (a square), you need 100 samples,
for d = 3 (a normal cube), you already need 1000 samples. With any further dimension,
the required number of samples rises exponentially. The other way around, imagine a
dataset consisting of 10,000 points in 6 dimensions. If you put the 10-step rastered 6-D
hyper-cube around the data, most (≈ 99%) volume elements will be empty.

1.4.1. Dimension reduction and manifold learning

In many applications, the dimensionality of the observed data (the length of the data
vectors) does not reflect their intrinsic dimensionality, but is much higher. A series
of pictures taken of a rotating object, for example, has an intrinsic dimensionality of
dint = 3, because the object has three rotational degrees of freedom. The resulting
images, however, might have a resolution of 640 × 480 pixels, and thus correspond to
640 · 480 = 307, 200-dimensional data vectors, where each entry encodes the intensity of
one pixel. Because of the way they were generated, the data vectors do not populate
the data space evenly, but lie on an embedded manifold, that is, they form a locally
low-dimensional (in this case, 3-dim.) structure.

To illustrate the concept of an embedded manifold, a simple example is depicted in
Fig. 1.4. The left plot shows 100 data points in two dimensions. The points are not
evenly distributed across the whole plane, but rather lie along a curved path. In fact,
the data were generated by sampling, with noise, from the curve which is depicted in
the right plot of Fig. 1.4. This curve can be viewed as an embedded 1-D manifold in
the 2-D space of the observed data.

In this case, the description of the data points by their 2-D coordinates contains
redundancy. If we ignore small deviations of the data points from the underlying curve,
the data is essentially one-dimensional. A more compact and, at the same time, more
revealing representation of the dataset would be given by the positions of the data points
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1.4. Unsupervised learning

Figure 1.4: Example of a dataset in 2-D, which lies roughly on an embedded 1-D manifold.
The data points were generated by sampling from the black curve and adding some noise.

along the curved path, or rather the positions of their projections onto the curve, as
depicted in Fig. 1.5.

Figure 1.5: Projection of a 2-D dataset onto the underlying 1-D manifold.

Of course, normally the form of an underlying manifold is not known, but rather has
to be estimated from the data. This has to be done in conjunction with finding the
“hidden” lower dimensional representations of the data. As Meinicke (2000) points out,
this task can be viewed as a generalized regression problem, where the observed data
vectors represent the output data yi, while their unknown lower dimensional representa-
tions take the role of the input data xi. Similar to the regression model (1.6), one then
views a data vector yi ∈ IRd as being “explained” by a superposition of 1) a systematic
part, that is, a lower dimensional vector xi ∈ IRq and its mapping f(xi) into data space,
and 2) zero-mean noise, which represents fluctuations and inaccuracies:

yi = f(xi) + u , 〈u〉 = 0. (1.13)

If one treats the vectors yi and xi as realizations of random variables, this approach
coincides with latent variable modelling (Everitt, 1984). In the following, the lower
dimensional representations xi will also be called “latent variables”, where the difference
between a random variable and its realizations is ignored.
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A possible criterion for finding the “right” latent variables {xi} and the corresponding
mapping f(·) is given by the empirical reconstruction error

R({xi}, f) =
1

N

N∑

i=1

‖yi − f(xi)‖2. (1.14)

Similarly to the supervised regression case, a direct minimization of this error measure
without restrictions on the function class or the latent variables is not reasonable, and
some means of regularization is needed. Unsupervised Kernel Regression, as will be
demonstrated in chapter 4, features a particularly elegant approach to this problem.

Several manifold learning algorithms only aim at retrieving the lower dimensional
representations xi without supplying an explicit model of the manifold as given by the
mapping f(·). Such algorithms are typically oriented towards geometric properties, and
for example demand that the distances d(yi,yj) between two data vectors yi and yj

should be as close as possible to the distances d(xi,xj) between their corresponding
latent space representations xi and xj .

The most important algorithms for manifold learning and dimension reduction are
reviewed in chapter 2.

1.5. Further concepts

This section introduces some further basics that will be needed in later parts of this
thesis. The concepts herein apply to both supervised and unsupervised learning.

1.5.1. Density estimation

A particularly good description of data is given by their probability distribution p(y),
or joint probability distribution p(x,y) if the data is split into an input and output part.
Density estimation (Scott, 1992; Silverman, 1986) is concerned with extracting a model
of this distribution from a given dataset.

In supervised learning, we are interested in the input-output relation, and we already
saw in section 1.3.1 that the regression function is closely related to the conditional
distribution p(y|x), which in turn can be calculated from the joint distribution p(x,y).
In this way, the task of regression estimation can be viewed as a special case of density
estimation. An algorithm which actually follows a density estimation approach to re-
gression will be discussed in section 4.1. In an unsupervised setting, where the structure
of the data is studied, an estimate of the density would also be valuable. Modes of the
density, for example, could be identified with clusters.

Unfortunately, the amount of data which is required for a reasonable estimate of
the density rises exponentially with its dimensionality (please recall the hyper-cube
properties from Sec. 1.4). Thus, density estimation is considered to be practical only
in low dimensionsal (d≪ 10) spaces.

1.5.2. Parametric vs. non-parametric methods

Besides the distinction between supervised and unsupervised learning, one can also
coarsely divide learning algorithms into the two classes of parametric and non-parametric
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approaches.

In parametric methods, the model which is fitted to the data has a specific and
sometimes complex functional form. The whole flexibility of such a model lies in its
parameters, which are adapted during learning. After the model is learned, it can be
fully described by the function parameters, and also further usage of the model (e.g.,
for predicting the response to new input data) is usually quite efficient. An example
of a parametric approach is the approximation of functions by polynomials up to a
specific degree, where the adaptable parameters are the coefficients of the polynomial.
As another example, in density estimation one might approximate the density function
by a multivariate Gaussian distribution, where the parameters of the model are the
mean vector and the covariance matrix.

In contrast, non-parametric methods rather directly use the training data to “build”
the model. Simple functions and a few parameters may also be included, but the
flexibility of the model lies in the data itself, which thus has to be memorized for further
usage (e.g., prediction). As an example, consider the k-nearest-neighbor fit (e.g., Hastie
et al., 2001, p. 14), which for a new input x first determines the k nearest neighbors
xi, i ∈ Ix from the training set, and then returns the mean of the corresponding outputs
yi, i ∈ Ix. While the choice of k has some influence on the model (a larger k leads to
less wriggly fits), the crucial part is the training data itself. As another example, kernel
density estimation (Scott, 1992) approximates the density function by a superposition
of simple kernel functions, each of which is centered at one data point. A bandwidth
parameter determines the smoothness of the estimate, but the overall shape is given by
the locations of the kernels.

Comparing the two approaches, parametric methods are usually more efficient (espe-
cially after training) and also easier to interpret, because of the pre-specified functional
form. On the other hand, having to specify the functional form a priori can be viewed as
a downside, because it may yield suboptimal results if the form does not match the data.
As a function approximation example, periodic functions (a Fourier series) might yield
better results than polynomials for one particular dataset, and vice versa for another.

Semi-parametric methods combine both approaches by systematically (depending on
the data) superposing parametric models. An example for such a method is density
estimation with mixture models (Bishop, 1995).

In the following, we will denote functions and their parameters as f(x; Θ), where
Θ includes “non-parametric parameters”, e.g., the bandwidth k from the k-nearest-
neighbor fit as described above, but does not include hyper-parameters like the pre-
factor λ of a regularizing penalty or hyper-parameters that describe the function class,
e.g., the maximum allowed degree of polynomials.

1.5.3. Maximum likelihood and Bayesian estimation

Briefly summarized, the maximum likelihood principle (Fisher, 1922) is based on the
assumption that the distribution of observable data {z} can be parameterized and de-
scribed by a density function p(z; Θ). Under this assumption, the parameters Θ are
adjusted such that the observation of a dataset D = {zi | i = 1 . . . N} becomes maxi-
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mally probable. In particular, one maximizes the likelihood

L(Θ) =
N∏

i=1

p(zi; Θ), (1.15)

or equivalently minimizes the negative log-likelihood

− logL(Θ) = −
N∑

i=1

log p(zi; Θ). (1.16)

For a regression problem, the observed data are pairs zi = (yi,xi), which are assumed
to stem from a model

y = f(x; Θ) + u , 〈u〉 = 0 , u ∼ pns(u). (1.17)

where u denotes zero-mean noise with a distribution pns(u). We can factor the joint
distribution as

p(zi; Θ) = p(xi,yi; Θ) = p(yi|xi; Θ)p(xi), (1.18)

where the marginal distribution p(x) does not depend on the model parameters Θ. The
conditional distribution p(yi|xi; Θ), however, does depend on Θ and can be expressed
by

p(yi|xi; Θ) = pns (yi − f(xi; Θ)) . (1.19)

Inserting (1.19) into (1.16) yields

− logL(Θ) = −
N∑

i=1

log pns(yi − f(xi; Θ)) − C, (1.20)

where C =
∑N

i=1 log p(xi) is independent of Θ. If we further assume that the noise dis-
tribution is isotropic Gaussian, i.e. pns(u) ∝ exp[− 1

2σ2 ‖u‖2], the negative log-likelihood
becomes

− logL(Θ) =
1

2σ2

N∑

i=1

‖yi − f(xi; Θ)‖2 − C ′, (1.21)

where C ′ holds terms indepent of Θ. Ignoring the constant C ′, this equation is propor-
tional to (1.9), which means that maximizing the likelihood under the assumption of
isotropic Gaussian noise is equivalent to minimizing the empirical risk as measured by
the squared Euclidean error. By using − log p(xi,yi; Θ) as a loss function L(yi, f(xi; Θ)),
maximum likelihood estimation can be treated as a special case of empirical risk mini-
mization (cf. Sec. 1.3.1 and 1.3.2).

In Bayesian estimation, the maximum likelihood principle is extended by viewing also
the parameters Θ as random variables and by incorporating a prior distribution over
the space of Θ. Using Bayes’s theorem, the posterior distribution of the parameters
given the data can be calculated as

p(Θ;D) =
p(D; Θ)p(Θ)

p(D)
. (1.22)
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The most probable parameters Θ∗ are retrieved by maximizing (1.22), where the prior
distribution p(Θ) can be viewed as a regularization term. The “weight decay” approach
for training neural networks is a well-known example for this relation, where a Gaussian
prior over the space of the network’s weights corresponds to penalizing large weights by
their Euclidean norm (Bishop, 1995, p. 390).

1.5.4. The “kernel trick”

Any algorithm which can be cast in a form that only uses dot products between data
vectors, but not the data vectors itself, can be transformed into a possibly much more
powerful variant by use of the “kernel trick” (Aizerman, Braverman, and Rozonoer,
1964; Schölkopf and Smola, 2002). This transformation consists of the replacement

yi · yj → k(yi,yj), (1.23)

where k(·, ·) is a symmetric positive semidefinite kernel function, that is

k(yi,yj) = k(yj ,yi) and

N∑

i=1

N∑

j=1

k(yi,yj)cicj ≥ 0 (1.24)

for any finite set {yi | i = 1 . . . N} and any real2 numbers ci. Alternatively, one can
state that the kernel matrix or Gram matrix

(K)ij = k(yi,yj) (1.25)

has to be symmetric and positive semidefinite. Fundamental research on such kernel
functions has been carried out by Mercer (1909). Any “Mercer kernel” can be written
in terms of a mapping Φ(·) into a feature space F , such that

k(yi,yj) = 〈Φ(yi),Φ(yj)〉, (1.26)

where 〈·, ·〉 denotes the dot product in that feature space. In effect, applying the kernel
trick thus implicitly replaces the data vectors yi by their feature space images Φ(yi).
Depending on the choice of the kernel k(·, ·), the feature map Φ(·) might involve complex
nonlinearities, and F might be high- or even infinite-dimensional.

As an example, consider the homogenous polynomial kernel of order p

k(y,y′) = (y · y′)p = (yTy′)p. (1.27)

For p = 2 and two-dimensional data vectors y = (y1, y2)
T and y′ = (z1, z2)

T , we can
write

k(y,y′) = (y1, y2)(z1, z2)
T

= (y1z1 + y2z2)
2

= (y2
1z

2
1 + y1z1y2z2 + y2

2z
2
2)

= (y2
1, y1y2, y

2
2)(z

2
1 , z1z2, z

2
2)

T , (1.28)

2For simplicity, this discussion is restricted to real-valued kernels.
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by which the feature map can be identified as

Φ(y) = (y2
1, y1y2, y

2
2)

T . (1.29)

In general, the polynomial kernel (1.27) implies a mapping of a data vector on another
vector which contains all monomials of order p, that is, all possible products of p elements
of the original data vector. Since there are

(
p+ d− 1

p

)

=
(p+ d− 1)!

(d− 1)!p!
(1.30)

different monomials for data vectors of length d, the dimensionality of the feature space
rises very quickly with p (Schölkopf and Smola, 2002). The computational effort, how-
ever, is hardly influenced as long as only the kernel function has to be computed.

All products of order p or lower can be implicitly calculated by the inhomogenous
polynomial kernel

k(y,y′) = (yTy′ + c)p, (1.31)

where the constant c > 0 determines the influence of lower-order products. Another
popular example of a Mercer kernel is the Gaussian kernel

k(y,y′) = exp(− 1

2σ2
‖y − y′‖2), (1.32)

which yields an implicit mapping into an infinite-dimensional feature space (Schölkopf
and Smola, 2002).

The application of Mercer kernels in machine learning algorithms has become very
popular since the introduction of “kernelized” support vector machines for classification
(Boser, Guyon, and Vapnik, 1992) and regression (Drucker, Burges, Kaufman, Smola,
and Vapnik, 1997).
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2.1. Vector quantization and clustering

Although not directly related to manifold learning at first sight, vector quantization and
clustering are important ingredients of some of the algorithms that will be described
later on. This section will introduce the basic ideas and review selected methods.

The goal of vector quantization is to represent a set of patterns or data vectors
{yi ∈ IRd, i = 1 . . . N} by a smaller set of prototypes or code-book vectors C = {cj ∈
IRd, j = 1 . . .K}, K < N . Such a representation can be used for lossy compression:
instead of storing or transmitting all d · N values of the original dataset, one stores
only the code-book C (d ·K values) and further the index of each data vector’s closest
code-book vector (N integer values). Thus, if we restrict ourselves to the Euclidean
distance, a data vector y is represented by the index

j∗ = g(y; C) = arg min
j

‖y − cj‖2, (2.1)

and the mean square quantization error, that is, the average error when reconstructing
the data from their corresponding code-book vectors, is given by

E =
1

N

N∑

i=1

min
j

‖yi − cj‖2. (2.2)

By introducing a discrete latent variable x ∈ {1 . . .K} with realizations xi = g(yi; C)
and a mapping f(x; C) = cx, this error can also be written as

E =
1

N

N∑

i=1

‖yi − f(xi, C)‖2, (2.3)

which very closely resembles (1.14). In this way, vector quantization can be treated as
a generalized regression problem (Meinicke, 2000).

The definition of g(·) in (2.1) suggests to view vector quantization also as a hard clus-
tering algorithm, because g(·) effectively partitions the data space into disjoint patches,
the so-called Voronoi cells (cf. Fig. 2.1)

Vj = {y | g(y; C) = j}
= {y | ∀i6=j‖y − cj‖2 < ‖y − ci‖2} , i, j ∈ {1 . . . n}. (2.4)

The index j can be thought of as a cluster label, and the code-book vector cj can thus
also be called “cluster center”.
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Figure 2.1: Voronoi tessellation induced by 4 code-book vectors (black stars), which were fitted
to 200 data points (grey dots) by the K-Means algorithm.

2.1.1. K-Means clustering

The K-Means algorithm (MacQueen, 1967) is a very simple and popular hard clustering
method. In a vector quantization context, it is also known as the generalized Lloyd
algorithm. The method can be summarized as follows:

1. Choose the desired number K of clusters.

2. Initialize theK code-book vectors cj , j = 1 . . .K randomly, for example by setting
them to randomly selected data vectors.

3. Assign each data vector yi to its closest code-book vector by setting

xi = arg min
j

‖y − cj‖2.

4. Update each code-book vector by setting it to the mean of its associated data
vectors

cj =

∑N
i=1 δjxi

yi
∑N

l=1 δjxl

. (2.5)

5. Iterate steps 3 and 4 until convergence, that is, until the assignments xi do not
change anymore. Alternatively, stop the algorithm if the relative change of the
quantization error is below a certain threshold.

Step 3 minimizes the quantization error (2.2) with respect to the assignments xi, while
step 4 minimizes that error with respect to the code-book vectors. Both steps can only
improve the current solution or leave it unchanged, which is why in many practical
situations the algorithm converges very quickly. Unfortunately, it is well known that
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the K-Means algorithm often gets trapped in bad local minima of the highly non-convex
objective function (2.2). The commonly used strategy to avoid such suboptimal solutions
is to just compare the results of multiple runs with different initializations.

2.1.2. Clustering with mixture models

Bishop (1995) describes a maximum likelihood approach to clustering, where he approx-
imates the distribution of the data yi by a mixture model

p(yi) =
K∑

k=1

p(yi|k)P (k). (2.6)

Here, P (k) is the prior probability that any given data vector stems from the k-th
cluster, and p(yi|k) describes the distribution of the data that belongs to that cluster,
which is assumed to be isotropic Gaussian with mean ck and covariance σ2

kId, that is

p(yi|k) =
1

(2πσ2
k)

d
2

exp

(

− 1

2σ2
k

‖yi − ck‖2

)

. (2.7)

By introducing latent variables xi ∈ {1 . . .K}, which hypothetically indicate to which
cluster a data vector yi belongs, the task of finding the best parameters Θ = {ck, σk | k =
1 . . .K} can be treated as a “maximum likelihood from incomplete data” problem.

A general strategy for solving such problems is given by the expectation-maximization
(EM) algorithm (Dempster, Laird, and Rubin, 1977), which consists of two alternating
steps. In the E-step, given current estimates Θ0 and P 0(k) of the parameters and the
prior probabilities, respectively, one calculates the posterior probabilities or responsibil-
ities

r0ik = P (xi = k|yi; Θ
0) =

p(yi|k; Θ0)P 0(k)

p(yi; Θ0)
. (2.8)

From these probabilities, one can calculate the expected log-likelihood of the complete
data (that is, including the variables xi)

〈
Lcomp(Θ)

〉

x
=

K∑

x1=1

K∑

x2=1

· · ·
K∑

xN=1

N∏

i=1

P (xi|yi; Θ
0)Lcomp(Θ), (2.9)

where Lcomp(Θ) is viewed as a function of new parameters Θ and given by

Lcomp(Θ) = log

N∏

i=1

p(xi,yi; Θ) =

N∑

i=1

log
(

p(yi|xi; Θ)P (xi)
)

. (2.10)

Bishop (1995) shows that (2.9) can more compactly be written as

〈
Lcomp(Θ)

〉

x
=

K∑

k=1

N∑

i=1

r0ik log
(

p(yi|k; Θ)P (k)
)

. (2.11)

In the M-step, the expected log-likelihood (2.9) is maximized with respect to the pa-
rameters Θ and the prior probabilities P (k), which yields a new estimate of the mixture
model.

The EM algorithm typically converges after few iterations, but unfortunately also
suffers from getting stuck in bad local minima.
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2.1.3. K-Harmonic Means

The K-Harmonic Means algorithm (Zhang, Hsu, and Dayal, 1999) has been proposed as
an improvement over K-Means regarding the sensitivity towards bad initializations. Its
main difference from K-Means is a modified objective function. Instead of minimizing
the mean square quantization error (2.2), K-Harmonic Means aims at a minimal har-
monic average of the distances between data vectors and cluster centers. This measure
is given by

Ehar =
1

N

N∑

i=1

K
∑K

j=1
1

‖yi−cj‖2

. (2.12)

For minimizing (2.12), the authors propose the recursive update formula

cj =






N∑
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1

d4
ij

(
∑K

k=1
1

d2
ik

)2yi











N∑

i=1

1

d4
ij
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∑K

k=1
1

d2
ik

)2






−1

, (2.13)

where dij = ‖yi − cj‖ are the distances between the data vectors and the code-book
vectors from the last iteration. To simplify the update formula, one could introduce the
“weights”

wji =
1

d4
ij

(
∑K

k=1
1

d2
ik

)2 =
1

‖yi − cj‖4
(
∑K

k=1
1

‖yi−cj‖2

)2 , (2.14)

which determine how much a data vector yi contributes to the calculation of a code-book
vector cj in the next step. Inserting the weights into (2.13) yields

cj =

∑N
i=1wjiyi
∑N

l=1wjl

(2.15)

and reveals a direct correspondence between wji and the terms δjxi
as used in the

K-Means update equation (2.5).
The K-Harmonic Means algorithm can be generalized by replacing the term ‖yi−cj‖2

in (2.12) by ‖yi − cj‖p with p > 2 (Zhang, 2000). While the algorithm outperforms
the standard K-Means already for p = 2, higher values (e.g. p = 3.5) yield even better
results (with respect to the mean squared quantization error) and more robustness
towards the choice of the initial code-book (Zhang, 2000; Hamerly and Elkan, 2002).

2.1.4. Further algorithms

Linde, Buzo, and Gray (1980) proposed a vector quantization algorithm that updates
code-book vectors similar to K-Means, but includes a dynamic adaption of the parameter
K by splitting up clusters.

Rose, Gurewitz, and Fox (1990) aimed at avoiding bad local minima by utilizing
a deterministic annealing approach to minimize the quantization error. Instead of a
hard assignment of data vectors to clusters, they assigned a vector yi to the cluster j
(represented by cj) with the probability

P (j|yi) =
exp(−β‖yi − cj‖2)

∑K
k=1 exp(−β‖yi − ck‖2

, (2.16)
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which is known as the Gibbs distribution. By varying the parameter β, this assignment
can be made completely fuzzy (β = 0, each data vector belongs equally to all clusters),
hard (β → ∞, each data vector belongs to only one cluster), or anything in between.
The authors then propose an optimization scheme which iteratively determines the best
cluster centers cj for a series of increasing values of β.

A simple neural network model for vector quantization has been introduced by Ko-
honen (e.g., Kohonen, 2001). The algorithm is based on a set of “neurons”, which
are characterized by a weight vector wi, together with a “winner-takes-all” learning
rule: When presenting a data vector y to the network, the neuron with the closest
reference-vector w∗ gets adapted by

wnew
∗ = wold

∗ + γ(y − wold
∗ ), (2.17)

which effectively shifts the weight towards the input vector y. By identifying the weight
vectors as code-book vectors, this VQ learning rule can be viewed as an online variant
of the K-Means algorithm. In order to reach convergence, the learning rate γ has to be
decreased over time.

Martinetz and Schulten (1991) proposed a “Neural-Gas” network for vector quantiza-
tion, where the winner-takes-all rule is replaced by a competitive learning scheme. For
each data vector y presented to the network, the neurons are ranked by their response
to y, i.e., the distance between y and their weights wi. Then, all neurons get adapted
by

wnew
i = wold

i + γf(ri)(y − wold
i ) ∀i. (2.18)

Here, f(ri) denotes a decreasing function of the rank, that is, the adaption is strongest
for the closest neuron. During training, the shape of f(·) is modified such that far away
neurons get adapted less strongly. This is similar in spirit to the annealing scheme
of Rose et al. (1990), but yields superior quantization performance as reported by
Martinetz, Berkovich, and Schulten (1993). The Neural-Gas algorithm also aims at rep-
resenting the topology of the data, which is achieved by creating links between neurons
with similar response.

2.2. Principal Component Analysis

Principal Component Analysis (PCA) is probably the most widely used technique for
dimension reduction. Early work was carried out by Pearson (1901), who fitted lines
and planes to a given set of points, and by Hotelling (1933), who was concerned with
the analysis of multivariate random variables.

The standard textbook variant of PCA (see e.g. Jolliffe, 2002) can be described as
follows: Given a set of data vectors yi, i = 1 . . . N in a d-dimensional space, the goal
of PCA is to find the affine subspace (or linear manifold) of dimension q < d which
captures as much variance of the data as possible. It can be shown that this subspace
passes through the mean

ȳ =
1

N

N∑

i=1

yi (2.19)
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of the data and is spanned by the eigenvectors corresponding to the q largest eigenvalues
of the sample covariance matrix

C =
1

N − 1

N∑

i=1

(yi − ȳ)(yi − ȳ)T . (2.20)

Let λ1 ≥ λ2 ≥ · · · ≥ λd be the eigenvalues of C and v̂1, v̂2, . . . , v̂d the corresponding
(orthonormal) eigenvectors, we can define a d× q-matrix

Vq = (v̂1, v̂2, . . . , v̂q) (2.21)

and an affine mapping

xi = g(yi) = VT
q (yi − ȳ) (2.22)

from the data space into the q-dimensional space of the principal components1 xi, as
well as another mapping

ỹi = f(xi) = Vqxi + ȳ (2.23)

back to the d-dimensional data space, with ỹi being the projections of the data vectors
yi onto the linear manifold. By this construction,

1. the principal components xi have zero mean.

2. the principal components are uncorrelated, that is

N∑

i=1

xjixki = 0 ∀j 6= k. (2.24)

3. the variance of the data along the axis v̂k, k = 1 . . . q is given by

var(v̂T
k y) = var(êT

k x) = λk (2.25)

where êi denotes the k-th standard basis vector in IRq.

An important property of PCA is that one can judge how many principal components
(the value of q) one needs to extract after running the main part of the algorithm.
Since the spectrum of C equals the variance along the different axes (2.25), one can
look for “gaps” in the spectrum, which often indicate a division between meaningful
axes and axes containing mostly noise (cf. the left plot of Fig. 2.2). Alternatively, one
can compare the sum of the largest q eigenvalues to the sum of all eigenvalues and set
q in a way that e.g. 95% of the variance is captured.

In the following, an alternative formulation of PCA is presented, which better matches
our scope of manifold learning: We now wish to reconstruct the data vectors yi from
their low-dimensional representation as indicated in (1.13). If we restrict the function
class to affine mappings

f(x;A,b) = Ax + b (2.26)

1It should be noted that sometimes the eigenvectors v̂k are called “principal components”.
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y
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Figure 2.2: An example of applying PCA to 2-D data. The dataset consists of 100 points (gray
dots), which are distributed along a straight line. The left plot shows the two principal axes
(dashed lines) as well as the eigenvectors of the covariance matrix (black arrows). For visualizing
the importance of the axes, the eigenvectors v̂i have been scaled by 2

√
λi, i = 1, 2. The right

plot shows the projection (black dots) of the dataset onto the first principal axis (dashed line).

with A ∈ IRd×q and b ∈ IRd, the empirical reconstruction error (1.14) can be written
as a function of the latent variables and the parameters A and b, i.e.

R({xi},A,b) =
1

N

N∑

i=1

‖yi − Axi − b‖2. (2.27)

Minimizing (2.27) without further restrictions is an ill-posed problem, because we did
not fixate the function model enough2. If we require the latent variables to have zero
mean and the matrix A to have orthonormal columns, we retrieve (see e.g. C. R. Rao,
1964)

A = Vq , b = ȳ and xi = VT
q (yi − ȳ), (2.28)

that is, the same solution as for the variance-based approach.
The main drawback of PCA is its restriction to linear manifolds. As an example, Fig.

2.3 shows the results of PCA on a 2-D dataset which consists of 100 points distributed
along a half circle. While the data is essentially one-dimensional, a PCA finds consid-
erable variance along both principal axes. Consequently, a projection of the data onto
the first principal axis (the reduction from 2-D to 1-D) yields a much larger error than
a projection onto the underlying half circle, which is depicted in Fig. 2.4.

If the training data is not given as a whole set but rather sequentially, or if a PCA
model should be updated when new training data arrives, replacing the eigendecom-
position by an online learning scheme can be advantageous. For this, E. Oja (1982)
introduced a neural model for extracting the first principal eigenvector, which is based
on the modified Hebbian learning rule

wnew = wold + γh(y − hwold). (2.29)

2We could set any value for b by a corresponding adjustment of the mean of the latent variables.
Similarly, any non-singular transformation A′ = AT can be accounted for by left-multiplying the
latent variables with T−1.
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Figure 2.3: Another example of applying PCA to 2-D data. The dataset consists of 100 points
(gray dots), which are distributed along a half circle. The left plot shows the two principal axes
(dashed lines) as well as the eigenvectors of the covariance matrix (black arrows, scaled as in
Fig. 2.2). The right plot shows the projection (along the black lines) of the dataset onto the
first principal axis.

Figure 2.4: Projection of the half circle dataset (cf. Fig. 2.3) onto the true underlying manifold.

Here, γ is a learning rate parameter, and h = yTwold is the output of a single linear
neuron with weight vector w, which converges to the desired eigenvector. Sanger (1989)
proposed a “Generalized Hebbian Algorithm” for a network model that can extract
multiple principal components. A recent overview of such PCA learning algorithms has
been given by Möller and Könies (2004).

2.2.1. Probabilistic PCA

Tipping and Bishop (1997, 1999b) derived a probabilistic variant of PCA, which also
links PCA to factor analysis (Everitt, 1984; Bartholomew and Knott, 1999). Fac-
tor analysis aims at relating an observable d-dimensional random variable y to a q-
dimensional latent random variable x ∼ N (0, Iq). Its model is given by

y = Wx + m + u, (2.30)

with parameters W ∈ IRd×q and m ∈ IRd, and u ∼ N (0,Ψ) denoting zero-mean
Gaussian noise with a diagonal covariance matrix Ψ. The model of probabilistic PCA
differs only in the restriction Ψ = σ2Id. Then, the marginal distribution of y is also
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Gaussian and given by

y ∼ N (m,WWT + σ2Id). (2.31)

Maximizing the likelihood of observing a dataset {yi | i = 1 . . . N} given this model,
one retrieves

WML = Vq(Λq − σ2
MLIq)

1

2 R, (2.32)

where R is an arbitrary orthogonal q× q matrix, Λq = diag(λ1, λ2, . . . , λq) contains the
q largest eigenvalues of the data’s covariance matrix (2.20), and Vq is given by (2.21),
that is, probabilistic PCA finds the same principal axes as standard PCA. The optimal
noise variance is given by

σ2
ML =

1

d− q

d∑

i=q+1

λi, (2.33)

which is the average variance along the “lost” axes. While similar in result to standard
PCA, the probabilistic approach has some advantages. For example, it can be utilized
to handle the case where not all data vectors yi are complete (Tipping and Bishop,
1999b), and it can be extended to mixtures of PCA models (see the next section) in a
natural way.

2.2.2. Local PCA and mixture models

As introduced by Kambhatla and Leen (1994), a simple and fast approach to overcome
the limitations of global PCA is to first partition the dataset into clusters, e.g. utilizing
the K-Means algorithm. Then, PCA is carried out within each Voronoi cell, yielding
multiple local linear models. Kambhatla and Leen (1994) themselves stated that this
solution is not optimal, because the clustering step ignores how well a local linear model
can reconstruct the data within its Voronoi cell, and conceived the following refinement:
Within the K-Means iterations, the data vectors are not assigned to the nearest code-
book vector cj , but to the PCA model which can reconstruct the data vector best.

Figure 2.5 shows the result of fitting 4 local PCA models to the “half circle” example
dataset. Please note how well each point is reconstructed by its closest PCA model
(indicated by the black projection lines), but also how far away data points get assigned
to the same PCA model.

Figure 2.5: A combination of four local PCA models (indicated by dotted lines) can yield a
much smaller projection error than a global PCA model (cf. Fig. 2.3).
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Bregler and Omohundro (1994) applied a similar combination of K-Means clustering
and local PCA in a lipreading application. They blended the local PCA models, denoted
by Pk(y), by help of the formula

P(y) =
K∑

k=1

Gk(y)
∑K

j=1Gj(y)
Pk(y), (2.34)

where Gk(·) denotes a Gaussian distribution which is centered at the code-book vector
ck, with “a variance determined by the local sample density” (Bregler and Omohundro,
1994). Zhang, Fu, and Yan (1998) used the Neural-Gas algorithm in conjunction with
PCA to fit multiple local linear models to a dataset of handwritten digits, whereas
Hinton, Dayan, and Revow (1997) tackled that problem by combining local PCA models
with a soft-clustering approach based on the EM algorithm.

As Tipping and Bishop (1999a) point out, all aforementioned algorithms are based on
a two-stage approach (clustering and PCA), aim at optimizing a global error criterion
(the reconstruction error), and do not yield a model of the data distribution. As an
alternative, the probabilistic PCA formulation can be extended to a mixture model by
setting (Tipping and Bishop, 1999a)

p(y) =

K∑

i=1

πip(y|i), (2.35)

where the πi are mixture coefficients with
∑

i πi = 1, and p(y|i) are Gaussian dis-
tributions as given by (2.31), each with a different set of parameters Wi,mi and σi.
The optimal values of these parameters for a given dataset {yi} can be retrieved by
maximizing the likelihood via the EM algorithm (cf. Sec. 2.1.2).

With the aforementioned density model, it is unlikely that data points get assigned
to a far away (regarding its center) local model, even if they lie along the principal axes
of that model. This feature is shared by a recently introduced algorithmic combination
of Neural-Gas and local PCA (Möller and Hoffmann, 2004), where the Mahalanobis
distance (Mahalanobis, 1957) is used for the (soft) assignment of data vectors to local
models.

While a combination of local PCA models can efficiently yield a data space represen-
tation of an embedded manifold, it does not provide a coherent set of lower dimensional
coordinates xi, as in the case of a global PCA model. Rather the latent variables
are pairs which contain the assignment to the local models, and the low-dimensional
positions within that models.

2.2.3. Kernel PCA

Schölkopf, Smola, and Müller (1998) derived a nonlinear variant of global PCA by
applying the “kernel trick” (cf. Sec. 1.5.4), which requires to first write the algorithm
in dot product form. For simplicity, we assume that our dataset has zero mean, that is
1
N

∑N
i=1 yi = 0. The eigenvalue equation for the sample covariance matrix is then given

by

λv = Cv =
1

N

N∑

i=1

yiy
T
i v. (2.36)
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The eigenvectors can only lie in the span of the data, which has two consequences.
Firstly, we can express any eigenvector as a linear combination v =

∑N
j=1 ajyj , resulting

in

λ
N∑

j=1

ajyj =
1

N

N∑

i,j=1

ajyiy
T
i yj . (2.37)

Secondly, we can retrieve a set of N equations which are equivalent to (2.36) by left-
multiplying (2.37) with yT

l , l = 1 . . . N , which yields

λ
N∑

j=1

aj

(
yT

l yj

)
=

1

N

N∑

i,j=1

aj

(
yT

l yi

) (
yT

i yj

)
, l = 1 . . . N. (2.38)

If we introduce the N×N Gram matrix (K)ij = yT
i yj and the vector notation (a)i = ai,

we can write (2.38) as

λKa =
1

N
KKa, (2.39)

which is solved when (Nλ,a) is an eigenvalue/eigenvector pair of K. In order to nor-
malize the original eigenvector v to unit length, we can calculate

1 = ‖v‖2 = vTv =
N∑

i,j=1

ajy
T
j yiai = aTKa = λNaTa (2.40)

and scale a accordingly. The projection of yi onto e.g. the first principal axis v1 can
be calculated by

x1
i = vT

1 yi =
N∑

j=1

a1
jy

T
j yi = (Ka1)i = λ1Na

1
i , (2.41)

where a1 is the first (properly normalized) eigenvector of K.

In this form, PCA is carried out by decomposing the N ×N Gram matrix, which is
actually favorable in the case d > N . More importantly, the dot product yT

i yj can now
be replaced by a Mercer kernel k(yi,yj), and thus PCA is implicitly carried out in the
corresponding feature space. Centering the data in that space is not as simple as in the
data space, but it can also be expressed in terms of dot products. For the details on
this step, we refer to the work of Schölkopf et al. (1998).

Kernel PCA is essentially a two-stage algorithm which first implicitly maps the data
into a feature space, and which afterwards searches for the axes of maximal variance
within that space, in the hope that the nonlinear mapping has “stretched out” the
data onto a linear manifold. Like standard PCA, kernel PCA does not suffer from the
existence of local minima despite its ability to detect nonlinear features. The difficulty
lies rather in the choice of the Mercer kernel and its parameters.

Figure 2.6 shows the results of using kernel PCA on the half circle dataset, utilizing
both a polynomial and a Gaussian kernel. Please note that in contrast to standard PCA,
kernel PCA can actually extract more features (find more axes) than the dimensionality
of the original data.
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λ1 = 51.563 λ1 = 23.261

λ2 = 20.779 λ2 = 8.609

λ3 = 5.886 λ3 = 1.664

λ4 = 1.440 λ4 = 0.555

λ5 = 0.759 λ5 = 0.500

Figure 2.6: Kernel PCA results for the half circle dataset (white dots). The contour lines
are perpendicular to the feature space eigenvectors. The corresponding eigenvalues are depicted
below the plots. Left: polynomial kernel k(y,y′) = (yT y′ + 0.5)2, right: Gaussian kernel
k(y,y′) = exp(−0.5‖y − y′‖2).
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2.3. Auto-associative neural networks

The multi-layer perceptron (MLP) is a very popular kind of neural network (see e.g.
Hertz et al., 1991; Bishop, 1995). It consists of multiple layers of neurons and processes
the input data in a feed-forward fashion: an input vector x (layer 0) is multiplied by
weight vectors w1

i which yields the synaptic summation of the neurons n1
i in layer 1.

These neurons might be equipped with a nonlinear activation function σ(·), and thus
yield output values σ(w1

i · x − b1i ), where b1i is an optional “bias term”. The outputs
of layer 1 are then treated as inputs for layer 2, and so on. An example of an MLP is
depicted in Fig. 2.7.

input
layer

hidden layer

output
layer

Figure 2.7: Schematic illustration of a simple multi-layer perceptron.

For our purposes, we can simply view an MLP as a function f(x; Θ), where the
parameter Θ contains all weights and bias terms which determine the shape of the
mapping. With an increasing number of layers and neurons, an MLP can approximate
arbitrarily complex functions.

The training of an MLP is carried out by minimizing the mean squared output error
(cf. Eq. 1.9)

E =
1

N

∑

i

‖yi − f(xi; Θ)‖2 (2.42)

with respect to the parameters Θ. The involved gradients can be efficiently calculated
by help of the backpropagation scheme (Rumelhart, Hinton, and Williams, 1986).

In an unsupervised setting, an MLP variant of particular interest is the so-called
auto-associative network, or auto-encoder. Such a network has an equal number of
input and output neurons and is trained with the objective that its output should be
equal to the input. The most important ingredient of an auto-associative MLP is the
bottleneck layer, that is, a hidden layer which has a smaller number of neurons than the
input layer. If the auto-association (or input reconstruction) task has to be carried out
through a bottleneck, the network somehow has to find a more compact representation
of the data.

Auto-associative networks with three layers (input, bottleneck, and output) have been
studied e.g. by Bourlard and Kamp (1988) and Baldi and Hornik (1989), who showed
that a linear auto-encoder has a globally optimal solution which is equivalent to PCA.

Kramer (1991) derived a non-linear generalization of PCA by utilizing auto-associative
MLPs with an input layer, an encoding layer with sigmoid activation, a linear bottleneck
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layer, a decoding layer with sigmoid activation, and a linear output layer. An example of
such a 5-layer network is depicted in Fig. 2.8. Deeper and non-symmetric auto-encoders
are also possible: for example DeMers and Cottrell (1993) utilized a network with one
hidden layer before, and two hidden layers behind the bottleneck layer.

input
layer

encoding layer decoding layer

bottleneck
layer

output
layer

Figure 2.8: Schematic illustration of an auto-associative multi-layer perceptron.

If we denote the observed data vectors with y and the output of the bottleneck layer
with x, we can view the network as a composition of an encoding function x = g(y),
which maps the observable data to its compact representation, and a decoding function
y′ = f(x), which maps back into the data space. The network is trained by minimizing
the reconstruction error

E =
1

N

N∑

i=1

‖yi − (f ◦ g)(yi; Θ)‖2 (2.43)

with respect to the network parameters Θ. Through this, both mappings f(·) and g(·)
are learned at the same time, and they can later be accessed by splitting up the network.

While the size of the bottleneck layer determines the dimensionality of the compact
representations xi, the complexity of the mappings f(·) and g(·) is controlled by the
number of hidden layers before and behind the bottleneck, and by the number of neurons
in those layers. Kramer (1991) utilized the Akaike information criterion to select the
size of the encoding and decoding layers. DeMers and Cottrell (1993) adjusted the size
of the bottleneck by a pruning strategy, which is based on penalizing and measuring the
variance of single bottleneck neurons.

The main drawback of auto-associative MLPs lies in the fact that networks of in-
creasing depth and size (necessary for complex mappings) are increasingly hard to train
and sensitive towards getting stuck in bad local minima of the objective function (2.43).
Recently, however, Hinton and Salakhutdinov (2006) described how even deep auto-
encoders can be created efficiently. They compose the network symmetrically from a
series of restricted Boltzmann machines (Smolensky, 1986), which are pre-trained to
reduce the dimensionality in a step-by-step manner. When endowing the auto-encoder
with the pre-trained weights, the network is already close to a good minimum and can
be fine-tuned by backpropagation.
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2.4. The Self-Organizing Map

The Self-Organizing Map (Kohonen, 2001; Ritter, Martinetz, and Schulten, 1992) is a
very popular unsupervised type of neural network. Since its introduction by Kohonen
(1982), it has inspired a very large body of research, with applications in a broad range
of disciplines. Kaski, Kangas, and Kohonen (1998) and M. Oja, Kaski, and Kohonen
(2003) list 5384 related scientific papers published before the year 2003.

The standard Self-Organizing Map (SOM) consists of a set of K neurons that are
organized on a fixed, usually two-dimensional grid. Each neuron j = 1 . . .K is endowed
with a reference or weight vector wj ∈ IRd, which serves a similar purpose as in the
vector quantization network (cf. Sec. 2.1.4): it acts as an approximation of nearby data
vectors. Also the SOM learning rule is similar to the VQ rule (2.17), but differs in two
important aspects. Firstly, if at any time t a data vector yt is presented to the network,
the neuron c with the closest weight wc is determined, but nonetheless all weight vectors
are updated. Secondly, the strength of the update depends on the location rj of the
neurons within the low-dimensional grid, that is, far away neurons (regarding the grid
topology) get updated less strongly. In particular, the SOM rule is given by (Kohonen,
2001)

c = arg min
j

‖yt − wt
j‖ (2.44)

wt+1
j = wt

j + ht
cj

(
yt − wt

j

)
, j = 1 . . .K (2.45)

ht
cj = α(t) exp

(

− 1

2σ2(t)
‖rc − rj‖2

)

. (2.46)

Here, both the “learning rate” α(t) and the “neighborhood range” σ(t) are monotonously
decreasing functions of time. The exponential in (2.46) is frequently chosen, but can be
replaced by similarly shaped functions.

The desired effect of this learning rule is that nearby neurons (regarding the topology
in the grid) obtain reference vectors that are close in data space. The other way around,
if one introduces a mapping

g(y) = rc with c = arg min
j

‖y − wj‖, (2.47)

which for a data vector y yields a discrete grid location, nearby data vectors should get
mapped to nearby (or equal) grid positions. Thus, the SOM yields a topology preserving
mapping between the data space and the discrete grid.

Figure 2.9 exemplarily shows a 16 × 14 SOM with 3-D reference vectors that was
trained3 to fit 2000 data points sampled from the surface of a hemisphere.

In contrast to PCA and auto-encoder networks, the SOM does not feature a well-
defined objective function, which causes several problems. For example, one cannot
easily compare the results of multiple training runs, or compare SOMs with different
grid specifications. The learning rule is only heuristically defined, and some care has
to be taken for adjusting the functions α(t) and σ(t) during training. Whereas other

3The SOM was trained using the SOM toolbox for Matlab, which is available at
http://www.cis.hut.fi/projects/somtoolbox/
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Figure 2.9: A simple SOM example. The left plot shows 2000 data points in 3-D that were
sampled from the surface of a hemisphere. The middle plot depicts the SOM’s rectangular grid
with 16× 14 nodes. The reference vectors of the SOM, together with their grid connections, are
depicted in the right plot.

algorithms are guaranteed to converge to at least a local minimum of their objective
function, training of the SOM is slowed and stopped by heuristically decreasing the
learning rate. Furthermore, if the neighborhood range σ is too large, the SOM will
be “stiff”, because every update step influences a wide range of neurons in the same
way. If σ is too small, the reference vectors of neighboring neurons may be torn apart,
introducing topological errors. Kohonen (2001) also introduced a batch variant of the
SOM, where the reference vectors are updated in a similar fashion as with the K-
Means algorithm, and which thus does not need a learning rate parameter α(t). The
neighborhood range or stiffness paramter σ(t), however, still has to be adjusted properly.

2.4.1. Variants of the SOM

Koikkalainen and Oja (1990) introduced so-called “Self-Organizing Hierarchical Feature
Maps”, which can be coarsely described as a tree structure of multiple SOMs. The
purpose of that model is to speed up the best-match search (2.44) while keeping the
flexibility of a large number of nodes.

The Parametrized Self-Organizing Map (PSOM) is an extension of the SOM by La-
grangian interpolation of the reference vectors (Ritter, 1993). We will discuss the PSOM
in detail in chapter 3, where also recent modifications to the algorithm will be presented.

Ritter (1999) also introduced a SOM model where the neurons form a lattice in the
hyperbolic space IH2, which shows some favorable properties as compared with lattices
in the normal Euclidean 2-D space, and which can be favorably utilized for visualization
purposes. A hierarchical hyperbolic SOM (H2SOM) has been proposed by (Ontrup and
Ritter, 2005).

A variant of the SOM which can handle structured data (SOM-SD) has been proposed
by Hagenbuchner, Sperduti, and Tsoi (2003).

2.5. Principal curves

Principal curves have been introduced by Hastie (1984) and Hastie and Stuetzle (1989)
as a nonlinear generalization of principal axes (PCA). Whereas a principal axis is a
straight line that passes through the middle of a dataset (or distribution), a principal
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curve is the range of a smooth nonlinear function f : I ⊂ IR → IRd with the same
property. In the following, we assume that the curve is parametrized by its arc-length,
which implies ‖f ′(x)‖ = 1 at any point x in a closed interval I = [xs;xe] ⊂ IR.

An important ingredient of the authors’ definition is self-consistency, which says that
any point f(x) of the principal curve must be the average of the data that are projected
onto it. The projection of a data vector y onto the curve f(·) is defined to yield the
projection index (Hastie and Stuetzle, 1989)

xf (y) = sup
x

{

x : ‖y − f(x)‖ = inf
x′

‖y − f(x′)‖
}

, (2.48)

which takes into account cases where multiple values for x yield the same projection
distance ‖y − f(x)‖. Treating y as a random vector, self-consistency can then be stated
as

f(x) = 〈y | xf (y) = x〉y ∀x. (2.49)

Hastie and Stuetzle (1989) show that under this definition, a principal curve is a critical
point of the expected squared projection distance

D(f) =
〈
inf
x
‖y − f(x)‖2

〉

y
, (2.50)

that is ∂
∂λ
D(f+λ∆f)

∣
∣
λ=0

= 0. This definition generalizes PCA, but has some difficulties.
For example, all principal axes (also those corresponding to smaller PCA eigenvalues)
are principal curves. Furthermore, if the data stems from a model y = f̂(x) + u with
zero-mean noise u, in general the function f̂(·) itself is not a principal curve (Hastie and
Stuetzle, 1989).

In order to fit a principal curve to a finite dataset {yi | i = 1 . . . N}, Hastie and
Stuetzle (1989) simplified the model to a polygon with vertices f(x1), f(x2) . . . f(xN ),
and proposed an iterative scheme based on the following alternating steps:

a) Project the data {yi} onto the (fixed) polygon, determine new projection indices
{xi}, and re-parametrize to arc-length.

b) Adapt the vertices while keeping {xi} fixed, i.e. set f(xi) to a locally weighted
average

∑

j wijyj , where the weights wij are determined by a decreasing function
of |xj − xi|.

Step b) corresponds to estimating the conditional expectation (2.49) from the data,
where calculating a locally weighted average prevents the algorithm from resulting in
the “interpolation solution” f(xi) = yi, and enforces the smoothness of the discretized
curve. Please note, however, that the fitting criterion of this step only regards the
distances between data vectors and vertices, and not those between data vectors and
polygon segments.

The balance between closely fitting the data vectors and smoothness is adjusted by
the span of the local averaging. Hastie and Stuetzle (1989) proposed to decrease the
span in successive iterations and to finally select it by utilizing cross-validation. As an
initial configuration, the vertices f(xi) are set to the projections of the data vectors yi

onto the first principal axis as given by PCA. The algorithm is run until the relative
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change of the mean projection distance is below a certain threshold. Hastie and Stuetzle
(1989) did not provide a prove of convergence.

The discretized principal curve model is quite similar to a 1-D SOM, as has been
investigated by Ritter et al. (1992). In particular, the vertex fitting step (b) resembles
the vector quantization involved in the SOM.

2.5.1. Generative model

As an alternative model, Tibshirani (1992) defined the principal curve of a distribution
py(y) to be a triplet (px(x), pc(y|x), f) with the three properties

py(y) =

∫

pc(y|x)px(x)dx (“consistency”) (2.51)

pc(y|x) =
d∏

i=1

pc(yi|x) (“conditional independence”) (2.52)

f(x) = 〈y|x〉 =

∫

ypc(y|x)ddy. (2.53)

With this model, the data y are viewed to be generated from first drawing a latent
variable x from a distribution px(·), and then drawing y from a conditional distribu-
tion pc(y|x), the mean of which is a point f(x) on the curve. Now, by definition, the
“generator” curve f̂(x) mentioned in the last section is a principal curve.

For finding a principal curve of a particular dataset {yi}, one first has to specify a
parametric model of the conditional density pc(y|x), for example a Gaussian distribution
with mean f(x) and a diagonal4 covariance matrix C(x). Then, fitting of the model can
be achieved by maximizing the log-likelihood

L(Θ) = log
N∏

i=1

p(yi; Θ) =
N∑

i=1

log

∫

pc(yi|x; Θ)px(x)dx. (2.54)

The integral in (2.54) can be replaced by a sum, where the integrand is evaluated at N
sample points aj , j = 1 . . . N (Tibshirani, 1992; Lindsay, 1983). Correspondingly, also
the parameters Θ = (f(x),C(x)) only have to be estimated at these sample points, and
will thus be denoted as Θj = Θ(aj) in the following. The resulting model is a mixture of
Gaussians, with the number of components being equal to the number of data vectors.

Similarly to the case of clustering (Sec. 2.1.2), Tibshirani (1992) extended the dataset
by a set of unobserved variables {xi | i = 1 . . . N}, where xi ∈ {a1, a2, . . . , aN} indicates
by which component yi was generated. He then proposed to maximize the log-likelihood
of the complete data (cf. eq. 2.10)

Lcomp(Θ) = log
N∏

i=1

p(yi,xi; Θi) =
N∑

i=1

log
(

pc(yi|xi; Θi)px(xi)
)

(2.55)

via the EM algorithm (Dempster et al., 1977). In contrast to the clustering algorithm
of section 2.1.2, this model has as many components as data vectors, which can lead to

4A diagonal covariance matrix corresponds to the assumption of conditional indepence.
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severe overfitting. In particular, by setting the mean f(ai) of the i-th mixture component
to yi, the likelihood can be arbitrarily increased by decreasing the variance of the
Gaussians. In the limit, this leads to a principal “curve” which only consists of the data
vectors itself.

Tibshirani (1992) avoided this problem by the inclusion of a penalty term that enforces
the smoothness of the curve. More precisely, he proposed to maximize the penalized
log-likelihood

Lpen(Θ) = L(Θ) − (xe − xs)
d∑

i=1

λi

∫ xe

xs

(
f ′′i (x)

)2
dx, (2.56)

where the factors λi balance between smoothness and closeness of fit. The maxima of
(2.56) are calculated by applying cubic spline smoothing (Green and Silverman, 1994)
to the mixture centers f(ai) as determined without regularization. The locations ai are
optimized by a Newton-Raphson procedure, or rather by single Newton-Raphson steps
within iterations of the EM algorithm (Tibshirani, 1992).

In comparison to the model of Hastie and Stuetzle (1989), the generative model has
theoretical advantages, i.e. it overcomes the conceptual problem with the “generator”
curve, but it has not been reported to perform better in practice (Tibshirani, 1992).

2.5.2. Polygonal lines

Kégl, Krzyzak, Linder, and Zeger (2000) proposed another formulation of principal
curves and a corresponding algorithm. By their definition, a curve f : I → IRd is a
principal curve of length L for a distribution p(y), if it minimizes the expected squared
distance (2.50) over all curves of length less or equal to L (Kégl et al., 2000). The
authors proved that such a curve (which is not necessarily unique) exists for any L > 0,
provided the distribution of y has finite second moments.

In order to derive an algorithm for fitting principal curves to datasets, Kégl et al.
(2000) restricted the model of f to polygonal lines with K segments, where in contrast
to the model of Hastie and Stuetzle (1989), the segments (and not only the vertices)
are involved in the fitting process, and K < N . With such a restricted function class
(denoted by fK), and under the assumption that the data are distributed only within a
bounded convex set B ⊂ IRd, Kégl et al. (2000) were able to prove that the empirical
projection error (or empirical squared projection distance)

EN (fK) =
1

N

N∑

i=1

min
x

‖yi − fK(x)‖2 (2.57)

converges (for N → ∞) against the expected projection error D(f) (2.50) at a rate

O(N− 1

3 ), if K is chosen to be proportional to N
1

3 .
Despite the strong theoretical foundation, Kégl et al. (2000) could not prove the

convergence of the actual algorithm they presented. Briefly summarized, the polygonal
line algorithm starts with an optimal single line segment (K = 1), which coincides with
the first principal axis (PCA). The length of this initial segment is adjusted such that
it can hold the orthogonal projections of all data vectors yi.
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The algorithm then runs in two nested loops. In the outer loop, the current configu-
ration with K segments is optimized, after which K is compared to some heuristically
defined threshold c(N,EN ). If K ≥ c(N,EN ), the algorithm is terminated. Otherwise,
a new vertex is added at the midpoint of the segment with the most data projections,
and the next iteration is executed with an incremented value of K.

The optimization of the configuration for a fixed K takes place in an inner loop,
where only one vertex vj gets updated per iteration. The new location of that vertex
is obtained by minimizing a weighted sum of the projection error and a penalty term,
the latter being based on the length of the curve and the angle between the segments
at vj . As a pre-factor of the penalty term, Kégl et al. (2000) used an experimentally
determined constant.

Because of the reduced number of vertices, the computational complexity of the poly-
gonal line algorithm is slightly lower than that of the original principal curve algorithm
by Hastie and Stuetzle (1989). The practical curve fitting performance was reported to
be “either comparable or better” (Kégl et al., 2000).

2.5.3. K-segments and local PCA

All aforementioned principal curves algorithms share a weakness, namely the depen-
dance of the final curve model on its initialization. If the structure of the data is heavily
twisted, using the principal axis as an initial configuration can lead to being trapped
in a bad local minimum. As an example consider the spiral dataset depicted in Fig.
2.10. Such a dataset has been investigated by Kégl et al. (2000), who noted that the
original principal curve algorithm of Hastie and Stuetzle (1989) always fails to detect
the underlying structure, whereas their polygonal line algorithm succeeds in some cases,
but only if the spiral is not too long (or rather, has too many windings).

Figure 2.10: Illustration of a bad initialization as given by PCA. Left: underlying spiral (black
curve) and sampled data points (gray dots). Right: projections (along gray lines) of the data
onto the first principal axis (black line). In this case, PCA yields very bad projection indices: far
away data points get projected onto the same regions of the principal axis, and thus a following
optimization (e.g. by local smoothing) of the vertices will hardly improve the model.

To overcome this problem, Verbeek, Vlassis, and Kröse (2002, 2001) introduced an
algorithm which can be roughly described as a combination of local PCA and polygonal
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lines. The method works by alternating the steps of a) fitting unconnected segments
(local principal axes), and b) connecting the segments to form a polygonal line. De-
pending on a performance criterion, a new local linear model is added before going back
to step a).

Within step a), Verbeek et al. (2001) use an EM-like algorithm to optimize a mixture
model, where each component is given by a line segment with a certain length 2a.
The posterior distribution p(y|j) of the data y given the j-th mixture component is a
product of two factors. The first factor accounts for the projection distance onto the
line, and is modelled as a 1-D Gaussian with variance σ2. The second factor is a density
function which decays like the same Gaussian if the projection onto the line yields a 1-D
coordinate outside a range [−a+σ; a−σ], but which is constant within that range. The
product density thus has the form of a line segment, which is smeared in all directions
of the data space. The update of the local models is similar to local PCA, where the
new length parameter a is heuristically set to 3

√
λ1, where λ1 is the largest eigenvalue

of the local PCA model. The parameter σ is a global smoothing parameter, which has
to be set by the user.

Within step b), Verbeek et al. (2001) seek a connection of the segments that minimizes
the total length of the polygonal line, plus a term which penalizes sharp angles between
adjacent segments, where again the user has to specify the corresponding pre-factor.
Since there are 2K−1K! possible ways to connect K segments, the authors propose to
start with a greedy search algorithm, the result of which can optionally be refined later.

Figure 2.11 shows some K-segment principal curves that were fitted5 to a spiral
dataset. For moderate noise levels and a suitable maximal number K of segments,
the algorithm is able to detect the underlying structure of the data. Local minima,
however, are still a problem.

Figure 2.11: K-segments principal curves fitted to a spiral dataset (gray dots). The thick
black lines indicate the local PCA models, whereas the thin gray lines depict the connections as
determined by a heuristic search. From left to right: K = 9, K = 12, and K = 20.

5The K-segment curves in Fig. 2.11 were calculated using the MATLAB code written by J. J. Verbeek,
which is available at http://carol.wins.uva.nl/∼jverbeek/ (Mar. 2007).
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2.6. Principal surfaces

While the last section was devoted to algorithms that can find one-dimensional man-
ifolds, the focus of this section is on algorithms for higher-dimensional structures.
Thereby, the cases q = 2 and sometimes q = 3 are of particular practical interest,
because such a model of the data can be favorably used for visualization purposes, for
example in exploratory data analysis (see e.g. Ripley, 2005).

As a first definition of principal surfaces, Hastie (1984) and Hastie and Stuetzle (1989)
generalized their concept of principal curves. In particular, their formulas for projecting
the data, self-consistency and total projection distance (2.48–2.50) carry over to the 2-D
case if the projection index x ∈ IR is replaced by x ∈ IR2.

However, not every idea that works in 1-D can be applied in 2-D, too. For example,
the projection onto line segments of a curve does not have a simple analogue for a
surface, and local smoothing for adapting the vertices is more complex, too (Hastie,
1984).

Furthermore, while the arc-length of a principal curve can be identified with the area
of a principal surface, the latter is much harder to handle (e.g. in a “maximum area”
constraint), and a re-parametrization of x to “unit speed” ‖f ′(x)‖ = 1 is impossible in
general. Thus, principal curve methods which explicitly exploit geometric properties
like the polygonal lines and the K-segments algorithm cannot be generalized easily.

2.6.1. The Generative Topographic Mapping

The Generative Topographic Mapping (GTM) was proposed as a possible SOM replace-
ment by Bishop, Svensén, and Williams (1997, 1998a, 1998b). The central aspect of the
GTM is the assumption that the observed data {yi} are “generated” from a parametric
model

y = f(x;W) + u , u ∼ N (0, β−1Id), (2.58)

where x ∈ IRq is a latent variable, W is a parameter matrix, and u denotes Gaussian
noise with variance β−1. Note that if f(·) is restricted to be linear, and the distribution
of x is Gaussian, then this model is identical to probabilistic PCA (Sec. 2.2.1).

In order to derive an algorithm which is “similar in spirit to the SOM”, Bishop et al.
(1998b) chose a generalized linear regression model

f(x) = Wb(x), (2.59)

where b(·) ∈ IRM is a vector of fixed basis functions, W ∈ IRd×M is a parameter matrix,
and the distribution of the latent variables has the special form

p(x) =
1

K

K∑

k=1

δ(x − rk). (2.60)

Here, the vectors rk denote coordinates of K nodes of a regular grid, directly corre-
sponding to the SOM formulation (cf. Sec. 2.4). For their experiments, Bishop et al.
(1998b) chose the basis functions to be radially symmetric Gaussians with a common
width parameter σ, whose centers where evenly distributed across the grid. Note that
the number M and locations of these centers does not have to be equal to the set {rk}.
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Given this model, the log-likelihood of observing a dataset {yi | i = 1 . . . N} can be
written as

L(W, β) = log
N∏

i=1

p(yi|W, β)

=
N∑

i=1

log

∫

p(yi|x,W, β)p(x)dx

=
N∑

i=1

log




1

K

K∑

j=1

p(yi|rj ,W, β)





=
N∑

i=1

log




1

K

K∑

j=1

(
β

2π

) d
2

exp

(

−β
2
‖yi − Wb(rj)‖2

)


 . (2.61)

The model of the GTM can thus be viewed as a constrained mixture of Gaussians that
are centered at Wb(rj). Similar to the SOM, which can be viewed as a constrained
vector quantizer, the constraint lies in the topological relation of the nodes rj within
the grid. Thus, as a slogan, the GTM is to the SOM what the EM clustering algorithm
is to Kohonen’s VQ rule.

The GTM model is fitted by maximizing the likelihood via the EM algorithm, where
the E-step consists of calculating the posterior probabilities of the j-th mixture compo-
nent having generated the data yi given the current parameters. These “responsibilities”
are given by (Bishop et al., 1998b)

Rold
ji = P (rj |yi,W, β) =

p(yi|rj ,W, β)
∑K

k=1 p(yi|rk,W, β)
. (2.62)

The M-step consists of maximizing the expected log-likelihood of the complete data
(including the “generation” responsibilites)

〈Lcomp(W, β)〉 =
N∑

i=1

K∑

j=1

Rold
ji log p(yi|rj ,W, β) (2.63)

with respect to the parameters, which yields (cf. Bishop et al., 1998b)

BGBTWT
new = BRoldYT (2.64)

1

βnew
=

1

dN

N∑

i=1

K∑

j=1

Rold
ji ‖yi − Wnewb(rj)‖2. (2.65)

Here, Y denotes the d × N data matrix (y1,y2 . . .yN ), the K × N matrix Rold holds
the components Rold

ji , the M ×K matrix of basis functions B has components (B)mk =

bm(rk), and G is a diagonal matrix with K entries gkk =
∑N

i=1R
old
ki .

For initializing the model, Bishop et al. (1998b) adjust the weight matrix W such that
the GTM manifold (the range of f(x;W)) equals the manifold of a PCA solution. The
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inverse noise variance β−1 is initially set to the maximum of λq+1 and (D
2 )2, where λq+1

denotes the largest “uncaptured” PCA eigenvalue, and D denotes the distance between
grid points, or rather their images f(ri;W) within the linear manifold. In contrast to
the SOM, the GTM algorithm is guaranteed to converge to a local minimum, and does
not need a specification of a time-varying neighborhood range. Multiple learning runs
can be compared with respect to their results for the log-likelihood.

When a data vector y is projected onto the manifold, the SOM just returns the
grid coordinate of the discrete best match search (2.44). Within the GTM, the lower
dimensional representation x is governed by the posterior p(x|y). The mode of this
posterior corresponds to the discrete best match, but a more natural representation is
given by the mean, that is, the conditional expectation 〈x | y〉.

Bishop et al. (1998a) describe how an additional prior p(W) = N (0, αI) on the
space of weights can be incorporated, and also how Bayesian inference can be utilized
to select suitable values for the parameters σ (width of the basis functions), α (prior
distribution of weights) and β (inverse noise variance), in case the latter should not be
estimated within the EM iterations (2.65). The authors also compare the GTM to a
similar probabilistic variant of the SOM, which was proposed by Utsugi (1997a, 1997b).

2.6.2. Regularized Principal Manifolds

Smola, Mika, Schölkopf, and Williamson (2001) presented a framework for fitting prin-
cipal curves and surfaces with strong theoretic foundations in statistical learning theory
and functional analysis. In the following, their framework will be briefly summarized.

Similar to Hastie and Stuetzle (1989), the authors state the task of manifold learning
as the minimization of the expected quantization (or reconstruction) error functional

Eexp(f) =
〈

min
x
L(y, f(x))

〉

y
(2.66)

where L(·, ·) is a loss function, e.g. the squared Euclidean error ‖y − f(x)‖2. Like in
supervised learning (Sec. 1.3.2), estimating f(·) from a finite dataset requires restricting
the function class and some means of regularization, because otherwise f(·) might overfit
the training set.

Thus, the authors propose to minimize the regularized quantization functional

Ereg(f) =
1

N

N∑

i=1

min
xi

L(yi, f(xi)) + λQ(f), (2.67)

where the first summand is the empirical quantization error, and Q(f) is a convex non-
negative regularization term. A possible choice for Q(·) is the quadratic functional
Q(f) = 1

2‖Pf‖2
H, where P is a regularization operator which maps f into an Hilbert

space H. As an example, consider P = ∂
∂x

and H to be the space of square-integrable

functions f : I ⊂ IR → IRd, yielding

Q(f) =
1

2
‖Pf‖2 =

∫

I

‖f ′(x)‖2dx, (2.68)

which can be identified with the squared path length of a curve f (Smola et al., 2001). In
this way, the framework subsumes the principal curves of finite length (cf. Sec. 2.5.2).
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Relating to the connection between Mercer kernels (cf. Sec. 1.5.4) and regularization
operators (Smola, Schölkopf, and Müller, 1998a), the authors propose to restrict f(·) to
kernel expansions of the form

f(x) = f0 +
M∑

j=1

ajk(rj ,x) (2.69)

with adaptable parameters f0,aj ∈ IRd and fixed pre-specified nodes rj ∈ IRq. If the
kernel k(·, ·) matches the regularization operator P, then the regularization term can
be expressed as

Q(f) =
1

2

M∑

i=1

M∑

j=1

(aT
i aj)k(ri, rj), (2.70)

where we assume that the constant function f0 is not penalized, that is Q(f0) = 0.
The other way around, a specific kernel k(·, ·) induces a corresponding operator P, for
example the Gaussian kernel (1.32) penalizes all derivatives of the kernel expansion
(2.69). As an important feature, note that the regularization term Q(f) is a quadratic
function of the expansion coefficients aj .

After choosing a Mercer kernel k(·, ·) and a set of nodes {rj}, a straightforward way
to fit a Regularized Principal Manifold (RPM) is given by alternating the steps of

a) projecting the data vectors {yi} onto the manifold, yielding {xi}, and

b) adapting the expansion coefficients {aj} by minimizing (2.67) with fixed {xi}.
In case the squared Euclidean loss is utilized, the optimal coefficients can be
calculated by using linear algebra.

Comparing this algorithm to the GTM, one can identify many parallels despite the quite
different backgrounds. Both algorithms require the choice of basis functions or a kernel
and a set of sample points {rj}, and both algorithms decrease their objective function
by two alternating steps. Here, the E-step of GTM can be viewed as a probabilistic
projection, corresponding to step a), whereas the M-step of GTM matches the adaption
step b).

2.6.3. Further methods

LeBlanc and Tibshirani (1994) proposed a principal surface model based on piecewise
linear basis functions, and products thereof. Fitting of the model starts from a PCA
solution and is then accomplished by alternating projection and adaption steps. If
needed, the model complexity is increased by adding further basis function terms. The
model is assessed by an objective function involving the squared projection error and
the effective number of parameters.

K. Chang and Ghosh (2001) presented a unifying model for probabilistic principal
surfaces, which revealed a connection between their own method (K. Chang and Ghosh,
1999), the GTM, and the manifold-aligned GTM (Bishop et al., 1998a) via a shape
parameter of the noise model in (2.58).
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2.7. Pointwise embedding methods

In the following two sections, we describe a family of algorithms for dimensionality
reduction, which do not feature an explicit functional relationship between the observed
data yi ∈ IRd and their lower-dimensional representations xi ∈ IRq. Whenever the term
“mapping” comes up, it will mean only a pointwise replacement of a data vector yi by
its representation xi.

This section briefly reviews classical and iterative approaches, which can all be viewed
as instances of multi-dimensional scaling (MDS). The goal of MDS is to find a low-
dimensional representation X = (x1,x2, . . . ,xN ) from a given symmetric N ×N matrix
D = (Dij) of distances or dissimilarities, such that the pairwise distances d(xi,xj) are
in good agreement with the given values Dij (see e.g. Härdle and Simar, 2003).

2.7.1. Multi-dimensional scaling

Classical metric multi-dimensional scaling starts from a distance matrix D and seeks an
Euclidean embedding with the property Dij = ‖xi − xj‖. If such an embedding exists,
that is, if D is a matrix of Euclidean distances, then the matrix B with elements

bij = −1

2



D2
ij −

1

N

∑

k

D2
kj −

1

N

∑

k

D2
ik +

1

N2

∑

k,l

D2
kl



 (2.71)

is positive semidefinite and can be expressed by dot products

bij = xi · xj (2.72)

between centered vectors {xi} (Härdle and Simar, 2003). These vectors can then be
retrieved via an eigendecomposition of B, which is equivalent to the dot product variant
of PCA (cf. Sec. 2.2.3).

The number of positive eigenvalues determines the necessary dimensionality of a per-
fect embedding. Including fewer eigenvalues has the same effect as in PCA, that is,
only the projections of the data onto a linear subspace are recovered, and components
orthogonal to this subspace are lost.

If the distances D are non-euclidean, then B will have negative eigenvalues, which in
classical MDS are just clipped to zero. The distances cannot be preserved in this case.

For large datasets, the eigendecomposition of the dot product matrix B can become
impractical. To overcome this problem, de Silva and Tenenbaum (2004) introduced
a variant of MDS where only a smaller set of “landmark” points are embedded via
an eigendecomposition. The remaining data points are then placed by a triangulation
procedure, using the distance information to the landmark points.

A more general form of metric MDS aims at minimizing an error measure (Quist and
Yona, 2004)

E =
N−1∑

i=1

N∑

j=i+1

wij (Dij − d(xi,xj))
2 , (2.73)

where the terms wij can weight the influence of single distortions. Another popular
choice is to use the distances in squared form. By including weights, the approach offers
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more flexibility and can handle nonlinear structures in the data. However, in general the
solution cannot be calculated by an eigendecomposition anymore, but rather iterative
schemes have to be applied.

If the matrix D contains general dissimilarities, perserving only the rank of the pair-
wise dissimilarities might be preferable. This is the strategy of non-metric MDS algo-
rithms, where the dissimilarities and distances can be transformed by any monotonous
functions f(·) and g(·), which may even vary during training. The corresponding error
measure is of the form (Quist and Yona, 2004)

E =
N−1∑

i=1

N∑

j=i+1

wij (f(Dij) − g(d(xi,xj)))
2 . (2.74)

In a manifold learning context, however, we assume that we are given real distances, so
non-metric MDS will not be considered any further. An overview of MDS techniques
including the historical development has been given by Shepard (1980). Recently, Quist
and Yona (2004) have introduced a variant of MDS which mainly aims at preserving the
cluster structure of the data. Their objective function is not based directly on distance
distortions, but rather on the similarity between the distributions of distances.

2.7.2. The Sammon mapping

Sammon (1969) derived a famous non-linear variant of metric MDS, which is based on
the distortion measure

ESam =
1

∑

i<j Dij

∑

i<j

(Dij − ‖xi − xj‖)2
Dij

, (2.75)

where Dij denotes the distance between two data vectors yi and yj , and the summation
∑

i<j is to be understood in the sense of (2.73).

Since all error contributions (Dij −‖xi −xj‖)2 are down-weighted by the correspond-
ing data space distance Dij , the Sammon mapping primarily aims at preserving small
distances. The underlying idea is that even when the global data distribution is highly
nonlinear, small enough patches of it are almost linear, so locally the distances can be
preserved. Figure 2.12 illustrates this reasoning.

Starting from randomly chosen initial coordinates {xi}, Sammon (1969) minimized
(2.75) by gradient-descent or more precisely by a simplified Newton algorithm. The ob-
jective function (2.75) is non-convex, so the Sammon mapping suffers from the problem
of local minima. The dimensionality of x has to be specified in advance.

2.7.3. Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) was introduced by Demartines and Hérault
(1997) as an improvement to the SOM. Indeed both algorithms share some concepts,
but the core of CCA is much closer to metric MDS.

The first step of the CCA algorithm is to run vector quantization on a given dataset.
This does not reduce the dimensionality of the data but the computational complexity
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Figure 2.12: Illustration of the idea behind the Sammon mapping. The data (depicted by
dots) cannot be embedded in 1-D without distorting their pairwise distances. By focussing on
the preservation of small distances, the local structure of the data can be captured.

of further operations, which only process the code-book vectors6. In the following,
N denotes the number of code-book vectors, and Dij denotes the Euclidean distance
between code-book vectors ci and cj .

In the second step, CCA seeks to find low-dimensional coordinates {xi | i = 1 . . . N}
with distances dij = ‖xi − xj‖, such that the following objective function is minimized
(Demartines and Hérault, 1997):

E =
1

2

N∑

i=1

N∑

j=1

j 6=i

(Dij − dij)
2F (dij , λ). (2.76)

This error measure has the form of general metric MDS (2.73). As compared to the
Sammon mapping, the weights wij = F (dij , λ) do not depend on the distances Dij in
the original space, but on dij in the low-dimensional space. F (·) plays a similar role to
the factor ht

ji of the SOM (2.46), and may be any bounded and monotonously decreasing
function. Demartines and Hérault (1997) chose a simple step function

F (dij , λ) =

{
1 dij ≤ λ
0 dij > λ,

(2.77)

by which only the preservation of distances up to a threshold λ is taken into account.
Similar to the neighborhood range of the SOM, the parameter λ is crucial for finding a
good mapping and has to be decreased during training. The schedule for varying λ is
based on heuristics, and Demartines and Hérault (1997) even suggested that λ should
be varied interactively by the user.

In order to minimize (2.76), Demartines and Hérault (1997) proposed an iterative
scheme where in each step one vector xi is randomly picked out, and the remaining
vectors xj , j 6= i are updated by

xnew
j = xold

j − α(t)∇xj

[
(Dij − dij)

2F (dij , λ)
]
, (2.78)

6In fact, such a pre-processing step has also been considered by Sammon (1969), who at that time
noted that already 250 data points lead to a high computational burden.

42



2.7. Pointwise embedding methods

where α(t) denotes a time-varying learning rate. On average, but not necessarily in
every step, this update rule decreases the overall error (2.76). Demartines and Hérault
(1997) argued that the stochastic nature results in finding better local minima, but they
did not provide a proof of convergence.

CCA also provides a mechanism for mapping new data points y into the low-dimen-
sional space. This is achieved by an iterative minimization of an error function similar
to (2.76):

E(x) =
N∑

j=1

(Dj − dj)
2F (dj , λ), (2.79)

where Dj = ‖y − cj‖ and dj = ‖x − xj‖. By swapping the roles of x and y, a
corresponding reverse mapping back into data space can also be performed.

2.7.4. Curvilinear Distance Analysis

Lee, Lendasse, Donckers, and Verleysen (2000) proposed an improved variant of CCA,
which mainly differs in the way of measuring distances in data space, and which thus
was called Curvilinear Distance Analysis (CDA).

As the main improvement, after the vector quantization step, CDA builds a graph
whose vertices are the code-book vectors. To this end, Lee et al. (2000) proposed to
connect any two code-book vectors if they are the closest ones for a given original data
vector – this is similar to the strategy used in the Neural-Gas algorithm. After that, the
“curvilinear” distances D̃ij between code-book vectors ci and cj are calculated along
the graph. In particular, if ci and cj are directly connected, D̃ij is set to ‖ci − cj‖.
Otherwise, D̃ij is the sum of the lengths of all connections in the shortest path between
the vertices i and j. An illustration of the difference between the resulting curvilinear
and the Euclidean distance is provided by Fig. 2.13.

Euclidean distance

= "curvilinear" distance

Figure 2.13: Illustration of the “curvilinear” distance measure of CDA. Code-book vectors are
depicted by black stars, data vectors by black dots. While the Euclidean distance between the
two code-book vectors at the bottom is given by the straight black line, CDA measures that
distance by the total length of the connecting lines (drawn in gray).

In regions where the structure of the data is already linear (with a desired embedding
space of at least 2-D), utilizing curvilinear distances D̃ij will not improve, but actually
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worsen the mapping: in that case, the “right” measure for the distance between two
vertices is given by a straight line, and not by a zigzag connection on the graph. To
cope with this problem, Lee et al. (2000) introduced a dynamically adapted weighting
factor ω(t) for balancing between the two distance measures, and set

Dij = (1 − ω(t)) ‖ci − cj‖ + ω(t)D̃ij . (2.80)

As a further improvement over CCA, Lee et al. (2000) proposed some rules for
automatically choosing the model parameters, such that a given “tolerable loss” is not
exceeded. In particular, they propose an error threshold for the vector quantization step,
the selection of the dimension q by local PCA, and formulas for the three time varying
parameters α (learning rate), λ (neighborhood threshold) and ω (distance balancing).
However, a sound theoretical foundation of these rules is not presented. In a later
publication (Lee, Lendasse, and Verleysen, 2004), the balancing factor ω(t) is not utilized
anymore, and the authors stress the robustness of the method towards the choice of
learning rate and neighborhood threshold.

2.8. Nonlinear spectral embedding methods

This section describes a family of algorithms which can calculate pointwise embeddings
{xi} by an eigendecomposition of an N ×N matrix. The exact definition of that matrix
differs among the algorithms, but in any case, the first step is to build a neighborhood
graph whose vertices are the observed data vectors {yi | i = 1 . . . N}, and whose edges
are chosen such that each data point yi is connected either

• to its K nearest neighbors, or

• to all data vectors that lie within a radius ǫ.

In both cases, the parameter K or ǫ has to be chosen large enough, so that the resulting
neighborhood graph is connected, i.e. any vertex yi must be reachable from any other
vertex yj via a path on the graph.

2.8.1. Isomap

The Isomap algorithm (Tenenbaum, Silva, and Langford, 2000) combines classical MDS
and the measurement of distances along a neighborhood graph. Through this, it can
cope with nonlinearly structured data, and the optimal embedding is given by the
solution of an eigendecomposition.

The algorithm consists of three steps, the first of which is the generation of the
aforementioned neighborhood graph. In the second step, similar to the CDA algorithm
(Sec. 2.7.4), the N × N distance matrix D is computed on the neighborhood graph,
i.e. Dij is set to the length of the shortest path between data vectors yi and yj . If
the graph is not connected (e.g. from a too small choice of K), the distances between
data vectors belonging to different isolated patches are undefined, and Isomap cannot
embed all data points in one go. An efficient algorithm for computing the shortest path
lengths has been introduced by Dijkstra (1959).
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The third step of Isomap is to apply classical MDS on the matrix D, which now con-
tains not Euclidean distances, but rather curvilinear or “geodesic” distances. As in PCA
and classical MDS, the necessary dimensionality of the embedding can be determined
from the eigenvalue spectrum. For large datasets, the landmark trick of classical MDS
can also be applied to Isomap (de Silva and Tenenbaum, 2004).

The mathematical formulation of Isomap is very elegant, and it can be proved that
asymptotically (in the limit of infinite data), Isomap is guaranteed to recover the true
manifold structure if its “intrinsic geometry is that of a convex region of Euclidean
space” (Tenenbaum et al., 2000). The basic idea of that proof is that with increasing
sampling density, the graph distances get closer to the true geodesic distances along the
underlying manifold (cf. Fig. 2.13 and 2.14). If that manifold is not convex, the paths
on the graph detour, so the estimated distances are too large7.

Euclidean distance

true geodesic distance

Figure 2.14: If the manifold is densely sampled (black dots), the length of paths on the graph
yield an increasingly good approximation of the true geodesic distances (gray curve).

2.8.2. Locally Linear Embedding

Locally Linear Embedding (LLE), which has been introduced by Roweis and Saul (2000),
is directly based on the observation that the structure of any manifold is approximately
linear, provided one only looks at a small enough patch. Within such a patch, any
data vector yi can be reconstructed by a linear combination of its neighbors. A lower
dimensional representation should have the same local structure, and thus a vector xi

should be reconstructible from the same linear combination of the corresponding points
in the low dimensional space.

LLE implements this idea in three stages. After building a neighborhood graph as
described at the beginning of section 2.8, the reconstruction error

E(W) =
N∑

i=1

∥
∥
∥
∥
∥
∥

yi −
N∑

j=1

wijyj

∥
∥
∥
∥
∥
∥

2

(2.81)

7As an illustration, imagine a sheet of paper with a hole in it. When rolled up a bit, the sheet is a 2-D
manifold embedded in the 3-D space. The geodesic distances between two points on opposite sides
of the hole will appear larger than they would be without the hole, since any path between the two
points detours around it.
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is minimized with respect to the weights wij , subject to the constraints that wij = 0
if yj is not a neighbor of yi, and that

∑

j wij = 1 for all i. The resulting weights are
invariant under rotation, scaling and translation of the data vectors, and thus capture
the “intrinsic geometric properties of each neighborhood” (Roweis and Saul, 2000).

In the third stage of the algorithm, a corresponding reconstruction error

E(X) =
N∑

i=1

∥
∥
∥
∥
∥
∥

xi −
N∑

j=1

wijxj

∥
∥
∥
∥
∥
∥

2

=
∥
∥XT − WXT

∥
∥

2

F
= tr

(
XMXT

)
(2.82)

is minimized with respect to the low dimensional coordinates X = (x1,x2, . . . ,xN ),
where M = (IN − W)T (IN − W). To account for the invariance of the weights, we
demand that the low dimensional coordinates are centered, uncorrelated and have unit
variance. Under these constraints, the unique minimum of (2.82) is reached if the rows
of X are the eigenvectors that belong to the eigenvalues λ2, λ3, . . . , λq+1 of the matrix
M. In contrast to earlier algorithms, here the eigenvectors are assumed in increasing
order, that is, λ2 denotes the second smallest eigenvalue. The smallest eigenvalue λ1

belongs to an eigenvector which violates the centering constraint.

In a later publication, Saul and Roweis (2003) point out that the magnitude of the
eigenvalues cannot be utilized to reliably select the dimensionality of the embedding.
Recently, H. Chang and Yeung (2006) introduced a variant of LLE which is robust
against outliers in the data.

Another important difference to earlier algorithms is that the matrix M ∈ IRN×N is
sparse, i.e. most of its elements are zero. This is a direct consequence of the sparseness
of W ∈ IRN×N , which has at most K non-zero elements in every row, provided the
adjacency graph was built from a K nearest neighbors selection. If supported by the
utilized linear algebra routines, sparseness of a matrix can dramatically enhance the
computational and storage efficiency (see e.g. Gilbert, Moler, and Schreiber, 1992).

2.8.3. Maximum Variance Unfolding

In the Semidefinite Embedding (SDE) algorithm (Weinberger, Sha, and Saul, 2004;
Weinberger and Saul, 2006), later called Maximum Variance Unfolding (MVU), the
lower dimensional coordinates are retrieved as the top eigenvectors of a dot product
matrix. In contrast to classical MDS and Isomap, however, the content of that matrix
is subject to a preceding optimization problem, which can be cast as a semidefinite
program.

In particular, the goal of SDE/MVU is to find the embedding {xi} which has maximal
variance (cf. PCA), under the constraints that the embedding is centered, and local
distances and angles are preserved. By introducing elements kij = xi · xj of a dot
product matrix K, the variance of the embedding is proportional to the trace of K, and
the centering constraint is equivalent to demanding

∑

ij kij = 0. If we further introduce
the elements

aij =

{
1 yi and yj are neighbors
0 otherwise

(2.83)

of an adjacency matrix A, the distance and angle preservation constraints can be written

46



2.8. Nonlinear spectral embedding methods

as (Weinberger and Saul, 2004)

kii − 2kij + kjj = ‖yi − yj‖2 , if aij = 1 or (ATA)ij > 0. (2.84)

Here, local angles are preserved by demanding that if yk and yj are neighbors of yi,
then also the distance ‖yk − yj‖ has to be preserved.

Please note that the complete optimization problem can be written in terms of K, and
that the objective function and the constraints are either linear in kij (trace, centering,
preservation), or positive semidefinite (K being a dot product matrix). The optimiza-
tion problem is thus convex, and its unique solution can be retrieved by semidefinite
programming. When the optimal K has been found, matching coordinates {xi} are
retrieved by an eigendecomposition, where the magnitude of the eigenvalues indicate
the necessary dimensionality.

SDE/MVU can also be viewed as a form of Kernel PCA, where the kernel is not
specified in advance, but the kernel matrix is learned. A landmark variant (ℓSDE),
which speeds up the algorithm by factorizing the kernel matrix, has been introduced by
Weinberger, Packer, and Saul (2005).

2.8.4. Further methods and discussion

Laplacian Eigenmaps, as introduced by Belkin and Niyogi (2002, 2003), share similarities
with both Isomap and LLE. The algorithm is based on minimizing an error measure
similar to the general MDS error (2.73), with weights wij given by a “heat kernel” with
a “temperature” paramter t (Belkin and Niyogi, 2002)

wij =

{
exp

(
−1

t
‖yi − yj‖2

)
if yi and yj are neighbors

0 otherwise.
(2.85)

Similar to LLE, the optimal embedding is retrieved by minimizing the trace of XLXT

by eigendecomposition of a sparse matrix L(W), which the authors identify with a
Laplacian operator on the graph.

Another similar algorithm is HLLE, or Hessian Eigenmaps (Donoho and Grimes,
2003), which can be coarsely described as Laplacian Eigenmaps with the Laplacian
operator replaced by the Hessian. HLLE involves an estimation of the tangent space of
the manifold, which yields an accurate description of the local geometric structure, but
which is sensitive to noise. In contrast to LLE, Isomap, and Laplacian Eigenmaps, both
HLLE and MVU can handle manifolds whose intrinsic structure is not convex.

As a brief summary, spectral methods retrieve the optimal embedding by an eigende-
composition of an N×N matrix. In case of LLE, Laplacian Eigenmaps, and HLLE, this
matrix is sparse, and the interesting eigenvalues lie at the bottom of the spectrum. In
contrast, Isomap and MVU seek the largest eigenvalues of a non-sparse matrix, which is
costlier, but in both cases the magnitude of the eigenvalues can be utilized to determine
the right dimensionality of the embedding. In case of MVU, a semidefinite program has
to be solved as an additional step. A detailed discussion of spectral embedding algo-
rithms and their relation to Kernel PCA has been provided by Ham, Lee, Mika, and
Schölkopf (2004), Saul, Weinberger, Ham, Sha, and Lee (2006), and Bengio, Delalleau,
Paiement, Vincent, and Ouimet (2004).
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All aforementioned methods depend on a neighborhood parameter K or ǫ, which can
dramatically influence the shape of the final embedding, as will be demonstrated later
in chapter 4. A major problem for the selection of the neighborhood parameter are
so-called shortcut connections, which are illustrated in Fig. 2.15.

Figure 2.15: Illustration of the neighborhood graph and its dependency on the parameter K.
From left to right: original dataset, neighborhood graph for K = 6, K = 7, and K = 9. While
K = 6 does not yield a connected graph (thus preventing a contiguous embedding), K = 9
shows short-cut connections, which will heavily disturb the embedding process.

Several research papers provide a comparison of nonlinear spectral embedding meth-
ods to the class of iterative algorithms described in the preceding section. For example,
Isomap has been compared to CDA by Lee et al. (2004), and Lee, Archambeau, and
Verleysen (2003) compared LLE with the Isotop algorithm (Lee and Verleysen, 2002).
To summarize their argumentation, the mathematical and theoretical elegance of spec-
tral embedding algorithms can hardly be beaten, but with a careful tuning of their
learning parameters, iterative algorithms show more robustness and are able to cope
with a broader class of problems.

While spectral methods heavily rely on an implicit manifold model, like the methods
of the preceding section, they do not feature a functional relationship y = f(x). Of
course, once the algorithm is run, one could use any supervised regression technique to
create such a mapping, but this would yield two independent steps, where the involved
models cannot benefit from each other. An extension of spectral methods that permits
the embedding of new data points (similar to CCA, Sec. 2.7.3) has been proposed by
Bengio, Paiement, et al. (2004). Note however, that such an embedding is not the same
as a projection of data onto an explicit manifold model, as is possible e.g. with PCA or
GTM. For example, one cannot calculate the distance between a data vector y and the
manifold spanned by f(·).
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and extensions

The Parametrized Self-Organizing Map (PSOM) has been introduced by Ritter (1993)
as a continuous generalization of the standard SOM (cf. Sec. 2.4). It inherits the
SOM’s ability to create topology preserving mappings between data points in a possibly
high-dimensional space IRd and the nodes of a Cartesian grid in a lower dimensional
space IRq, but extends the SOM by explicitly defining a continuous manifold in the data
space through a smooth mapping f : IRq → IRd.

While the PSOM was designed to operate on the weights {wj} of a readily trained
SOM, such pre-processing is not always needed. Often the training data (that is, the
weights) can already be generated by sampling along the degrees of freedom of a system,
for example in learning the forward and inverse kinematics of a robot arm (Ruiz de
Angulo and Torras, 2002; Padoan Jr., Barreto, and Araújo, 2003) or of single fingers
(Nölker and Ritter, 2000; Walter, Nölker, and Ritter, 2000) and in object recognition
and pose estimation (Saalbach, Heidemann, and Ritter, 2002). By including topology
information, the PSOM permits the construction of highly accurate mappings from very
few training examples (Walter, 1998).

However, in its original form the PSOM suffers from two restrictions. Firstly, the
algorithm features no explicit consideration of noise that might be present in the data
(e.g. in physical measurements). Secondly, the original PSOM requires a complete set
of grid-organized data to construct its mapping. This means that (i) training data lying
in between the grid nodes can not be incorporated and (ii) even a single missing weight
(e.g. a sample position not realizable because of physical constraints) makes the PSOM
construction algorithm inapplicable.

This chapter of the thesis describes how these two issues can be addressed by an ele-
gant integration of standard smoothing techniques into the PSOM framework. Specifi-
cally, we present an approach to regularize PSOM mappings in order to deal with noisy
data in a principled manner and we provide a modification of the original algorithm,
allowing to construct PSOMs from data that are not organized in a grid topology. The
latter includes grid-based data with missing elements as a special case.

In accordance with the original publication (Klanke and Ritter, 2005) of these mod-
ifications, we will use the notation PSOM+ when we wish to explicitly indicate the
application of the new regularization approach.

Our method is based on measuring the overall smoothness of the PSOM mapping f(·).
In particular, we integrate the square sum of all second derivatives of f(·), the result of
which can be expressed by a quadratic form. As a consequence, the problem of finding
optimal (here: maximally smooth) PSOM+ mappings can be solved by applying linear
algebra.

In the next section, we briefly recall the original PSOM algorithm and introduce some
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necessary notation. After that, we illustrate how the PSOM can be applied in a kine-
matics learning task, and thereby motivate our extensions to the PSOM framework.
Then, we derive a metric in the space of PSOM weights, which allows us to calculate
the overall smoothness of a PSOM manifold as a function of its weights. We show how
to tackle the problems of noisy data, missing weights and non grid-organized data and
illustrate our method by toy examples. After that, we return to the (simulated) kine-
matics learning task, where we demonstrate the performance of the PSOM+ extensions.
Finally, we indicate how to utilize the PSOM+ in an unsupervised setting without a
preceding SOM training, and we conclude this chapter with a discussion.

3.1. Original formulation

As described in section 2.4, a conventional SOM consists of an array of formal neurons
arranged on the nodes of a q-dimensional grid. Each neuron, which we characterize
by a multi-index g = (g1, g2, . . . , gq)T , has a d-dimensional weight wg attached. The
entirety of the weights, along with their respective neuron topology within the grid,
forms a discrete approximation of a possibly nonlinear manifold embedded in IRd.

The PSOM is built on the same kind of neuron array, but interpolates the weights
by a smooth vector-valued function f(x). The range of that function defines a manifold
parameterized by a continuous q-dimensional quantity, the coordinate x within the grid.
The relation between a SOM and a corresponding PSOM is illustrated in Fig. 3.1.
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Figure 3.1: From SOM to PSOM. The left plot shows a 4x3 SOM with 3D weights, the right
plot depicts the corresponding PSOM.

While the SOM algorithm has been utilized in conjunction with a wide variety of
shapes of the underlying grid (e.g. hexagonal or ring-shaped lattices), in the following,
we only work on Cartesian (but not necessarily regular) grids. In this case, the set of
node coordinates A = {ag} is given by a Cartesian product of 1-D coordinate sets Aµ

along the different dimensions1:

A = A1 ×A2 × · · · ×Aq, Aµ = {aµ
1 , a

µ
2 , . . . , a

µ
nµ}, µ = 1 . . . q. (3.1)

1Throughout the chapter, we denote the grid dimension by an upper Greek index. In contrast to the
SOM formulation in Sec. 2.4, the grid coordinates of the nodes are denoted by a∗.
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Here, nµ denotes the number of nodes along grid dimension µ. The PSOM mapping is
given by multi-dimensional Lagrange interpolation (e.g. de Boor, 1978), that is

f(x) =
∑

g

wgbg(x) =
n1
∑

g1=1

n2
∑

g2=1

· · ·
nq
∑

gq=1

wg

q
∏

µ=1

lµgµ(xµ), (3.2)

where x = (x1, x2, . . . , xq)T and lµi (xµ) are standard one-dimensional Lagrange polyno-
mials

lµgµ(xµ) =
nµ
∏

j=1

j 6=gµ

xµ − aµ
j

aµ
gµ − aµ

j

. (3.3)

It is easy to see that the PSOM mapping f(x) exactly interpolates the SOM weights,
that is, if one evaluates (3.2) at a node position ah, one gets f(ah) = wh. Concerning
this, note that

lµgµ(aµ
hµ) =

nµ
∏

j=1

j 6=gµ

aµ
hµ − aµ

j

aµ
gµ − aµ

j

=

{
1 if hµ = gµ

0 otherwise
(3.4)

and thus

bg(ah) =

q
∏

µ=1

lµgµ(aµ
hµ) =

{
1 if h = g

0 otherwise.
(3.5)

Inserting (3.5) into (3.2) then yields wh.
As a consequence of the continuous definition, the PSOM differs from the SOM also

in the process of projecting a data vector y ∈ IRd onto the manifold. While the standard
SOM responds to a data vector y by the nearest weight wg∗ (“discrete best match”), the
PSOM responds by f(x∗) with x∗ given as the solution of the continuous minimization
problem

x∗ = arg min
x
d(f(x),y), (3.6)

where d(y,y′) may e.g. be chosen as the standard Euclidean distance ‖y − y′‖. By
including only certain components of y and f(x) in the best match search, that is, using
a distance function like

d(y,y′) =
d∑

i=1

pi(yi − y′i)
2, (3.7)

where some pi = 0, the PSOM can be used as a “continuous associative memory” or as
a “multi-map” tool, for example to unite the forward and inverse kinematics of a robot
in one mapping (Ruiz de Angulo and Torras, 2002; Nölker and Ritter, 2000).

3.1.1. Chebyshev PSOMs and local PSOMs

As described above, the function model of the PSOM is a product of 1-D polynomials.
If the PSOM has nµ nodes along grid dimension µ, the corresponding polynomial is of
degree nµ − 1. Thus, if the grid of the PSOM is large, the degree of the polynomials
is large, too. This can raise severe problems near the borders of the grid, since polyno-
mials of high degree are famous for showing oscillatory behavior and bad extrapolation
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performance (de Boor, 1978). If a global polynomial model is used to approximate a
function from samples {(xi, yi)}, the location of the sample points {xi} have a strong
influence on the quality of the approximation. Contrary to intuition, regularly sampling
an interval (equidistant sample points) does not yield optimal results.

A much better strategy is to place the sampling points at the zeros {ai} of the n-th
degree Chebyshev polynomial, given by2

ai = − cos

(

π
i− 1

2

n

)

, i = 1 . . . n. (3.8)

It can be shown that Chebyshev-spaced sample points are the best choice, and that the
resulting polynomial is nearly optimal among all approximations by a polynomial of de-
gree n (de Boor, 1978). As an illustration, Fig. 3.2 depicts the results of approximating
the function g(x) = exp(−8x2) by polynomial interpolation of 7 and 12 sampling points,
with Chebyshev- and regular spacing.
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Figure 3.2: Approximation of a “Gaussian bell” by polynomials. Left column: regular spacing,
right column: Chebyshev spacing. Top row: 7 sample points, bottom row: 12 sample points.
Note the much better behavior at the borders for the Chebyshev-spaced polynomials.

Utilizing a Chebyshev-spacing for the nodes of a PSOM grid was proposed by Walter
and Ritter (1995), who also introduced the concept of a local PSOM. The latter works
by restricting the Lagrangian interpolation to a dynamically selected sub-grid with
for example nl = 3 nodes per dimension. The resulting local PSOM thus features a
simplified function model, built upon 1-D polynomials with degree nl − 1. This both
prevents heavy oscillations and reduces the computational burden as compared to the
global PSOM. As a disadvantage, neighboring local PSOMs with overlapping sub-grids
do not yield the same sub-manifold at the overlap (cf. Fig. 3.3). A related, but more

2Here we assume that the approximation should hold in the interval [−1; 1]. In general the sample
points have to be shifted and scaled accordingly.
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3.2. Application in kinematics learning

complex technique for local interpolation is based on tensor products of splines (Green
and Silverman, 1994).
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Figure 3.3: Approximation of a “Gaussian bell” by polynomials. Left: regularly spaced full
PSOM, 7 nodes (cf. Fig. 3.2). Right: local PSOMs based on 3 nodes each. The local PSOMs on
nodes 1–3, 3–5, and 5–7 are depicted by a solid black curve, the PSOMs on nodes 2–4 and 4–6
are drawn as a dashed curve. Note the deviation between local PSOMs at overlapping regions.

3.2. Application in kinematics learning

As already mentioned above, the PSOM algorithm has often been applied in robotics,
particularly in learning the kinematics of a robot arm. In such a setting, the weight
vectors often do not have to be determined from a preceding SOM training, but can
be generated by sampling. In this section, we utilize the PSOM to learn a part of
the kinematics of the Mitsubishi PA-10 robot arm. The PA-10, depicted in Fig. 3.4,
features 7 joints and thus is a redundant manipulator: a desired end-effector position
and orientation can be specified by 6 physical values (e.g. by 3 Euler angles and the
position in IR3), but the robot has 7 degrees of freedom (DOF), namely the joint angles
Θ = (Θ1,Θ2, . . . ,Θ7).

Figure 3.4: Mitsubishi PA-10. Left: the position of the wrist depends only on the first 4 joint
angles. Right: any position of the wrist can be realized by infinitely many postures of the arm,
where the center of joint 4 moves along the depicted circle.
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3. The Parametrized Self-Organizing Map and extensions

As described for example by Walter (1998), one can build a PSOM model for the
kinematics by specifying a multi-dimensional grid in the space of DOFs, moving the
robot to every node posture Θg, and measuring the resulting position rg and orienta-
tion og. The weight vectors wg at nodes g are then composed of the corresponding
measurements. Unfortunately, a single PSOM for the complete PA-10 kinematics is not
practical, because the number of nodes rises exponentially with the dimensionality of
the grid, and the cost of evaluating the PSOM function f(x) is linear in that number.
Even if we sample at only 5 locations per DOF, the resulting PSOM would consist of
57 = 78, 125 nodes.

To address this problem, one can decompose the kinematics3 of the arm and utilize
independent PSOMs for the sub-models (Ruiz de Angulo and Torras, 2002). In case of
the PA-10, a suitable decomposition4 is given by handling the first 4 and the last 3 joints
separately: Given a desired end-effector position and orientation, the corresponding
position of the wrist is unique and already fixed, and it depends only on the first 4 joint
angles (cf. Fig. 3.4). Note that the problem is still redundant.

In the following, we describe how to build a PSOM for the mapping between the
joint angles Θ = (Θ1,Θ2,Θ3,Θ4)

T and the wrist position r = (rx, ry, rz)
T . At first, we

specify a 4-D grid in the space of joint angles, such that each grid axis covers the range
of one joint. Let nµ denote the number of nodes along dimension µ, and [Θmin

µ ; Θmax
µ ]

the range of the µ-th joint, than the node positions for a regularly spaced PSOM are
given by

aµ
i = Θmin

µ +
i− 1

nµ − 1
(Θmax

µ − Θmin
µ ) , i = 1 . . . nµ, (3.9)

whereas the node coordinates of a Chebyshev PSOM are

aµ
i = Θmin

µ +
1

2

(

1 − cos

(

π
i− 1

2

n

))

(Θmax
µ − Θmin

µ ) , i = 1 . . . nµ. (3.10)

While the PSOM mapping is invariant under scaling and translation of the node co-
ordinates, by this construction the 4-D grid coordinates ag can directly be utilized as
the joint angles Θg corresponding to that node. For every node g, we then move the
robot to the posture given by Θg = ag and measure the position rg (and optionally
also the orientation) of the wrist. If we now simply set wg = rg, the PSOM mapping
f : x ∈ IR4 → y ∈ IR3 approximates the forward kinematics r = f(Θ).

More interesting mappings can be created if also the joint angles are put into the
weight vectors, yielding a 7-D vector w = (rx, ry, rz,Θ1,Θ2,Θ3,Θ4)

T . Now, the PSOM
mapping describes the kinematics as a 4-D manifold embedded in IR7. As described
by Walter (1998) for a 3-DOF robotic finger, we can utilize the PSOM manifold as a
flexible inverse kinematics solver:

• Imagine the current joint angles are Θ0, and the robot should be moved to wrist
position rdest. Then we set y = (rT

dest, 0, 0, 0, 0)T and simply carry out the continu-
ous best-match search (3.6), starting from x = Θ0, where we set p1 = p2 = p3 = 1

3 For a high number of DOFs, or high-dimensional input spaces in general, an alternative learning
algorithm has been proposed by Vijayakumar and Schaal (2000). Instead of learning decomposed
models globally, multiple local models are combined similarly to local PCA.

4On a related note, a similar decomposition strategy has also been succesfully applied to a grid-based
path planning algorithm (Klanke, Lebedev, Haschke, Steil, and Ritter, 2006).
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3.2. Application in kinematics learning

and p4 = p5 = p6 = p7 = 0 in the distance measure (3.7). Because of the re-
dundancy, there are multiple possible solutions for the joint angles, but e.g. a
steepest-descent procedure will yield a minimum which is close to the starting
point Θ0.

• We could additionally demand that e.g. Θ2 has a certain value Θ∗
2, and solve the

inverse kinematics task by setting y = (rT
dest, 0,Θ

∗
2, 0, 0)T and changing p5 to 1. If

no solution with d(y, f(x)) = 0 is found, we can repeat the procedure with smaller
values for p5 to balance between the joint angle constraint and the deviation from
the target position.

• One could also include further measurements into the weight vectors, which for
example describe how “convenient” a robot posture is, and adjust the influence of
such measurements on the best match search through {pi}.

These multi-map properties of the PSOM, however, are not the focus of this thesis, but
rather the accuracy of the PSOM and its requirements on the form of the training data.

In order to demonstrate the approximation accuracy of the PSOM algorithm, we
created 8x8x8x8 PSOMs with both regular and Chebyshev spacing, and compared the
PSOM mappings to the true analytic forward kinematics, which we also used to calculate
the 4096 weight vectors wg = rg(Θg). We evaluated the performance on 1000 randomly
generated postures (joint angle sets). The results for the full PSOM, local PSOMs of
sub-grid size 3 and 5, and also for a cubic spline interpolation5 are depicted in Table
3.1. Note the very small mean positional error for the full PSOM, particularly on the
Chebyshev grid. In relation to the arm length of the PA-10 (≈ 1.30m), the mean error
is well under 0.1%.

Deviation of wrist position in mm
(mean ± standard deviation)

Method Regular spacing Chebyshev spacing

Full PSOM 0.80 ± 0.86 0.54 ± 0.27

Local PSOM (nl = 3) 17.92 ± 9.35 34.95 ± 16.67

Local PSOM (nl = 5) 3.59 ± 2.48 18.01 ± 7.47

Cubic splines 3.59 ± 3.25 2.56 ± 1.47

Table 3.1: Accuracy of approximating the forward kinematics. Joint angles and correspond-
ing wrist positions for the training data were sampled at the nodes of a 8x8x8x8 grid. The
performance was evaluated on 1000 randomly generated postures.

This accuracy, however, comes at a price. The training data has to be highly struc-
tured, i.e. a wrist position must be available at every node of the grid. If the forward
kinematics is not known analytically, we actually have to move the robot to every node
posture, which may not be possible because of workspace constraints. A similar argu-
ment was listed by Ruiz de Angulo and Torras (2002) in support of their kinematics de-
composition scheme, but of course the PSOM’s dependance on a complete grid-ordered
training set is a major obstruction in other applications, as well.

5The cubic spline interpolation was calculated using the MATLAB function interpn.
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3. The Parametrized Self-Organizing Map and extensions

Another major drawback of the PSOM is its sensitivity to noise. If in our example
the measurements rg are not exact, the PSOM will actually interpolate the errors as
well.

3.3. PSOM+ extensions

In this section, we describe our extensions to the PSOM algorithm, which are aimed to
overcome the aforementioned drawbacks. We restrict ourselves to full (i.e. not local)
PSOMs, and we first derive an explicit measure of the overall smoothness of the mapping.

3.3.1. Explicit smoothness measure

A frequently used measure of smoothness, or rather roughness, of a function f : D ⊂
IR → IR is given by the integral over its squared second derivative

R(f) =

∫

D

(
f ′′(x)

)2
dx. (3.11)

The theory of cubic smoothing splines, for example, is based on this measure (Green
and Silverman, 1994, also cf. Sec. 2.5.1).

For multivariate functions like the PSOM mapping, the integration has to take all
second derivatives into account, but the different output components can be treated
separately. Therefore, in the following, we view the PSOM weights as one-dimensional.
The range of integration matches the hyper-rectangle spanned by the grid. For a fixed
grid, the PSOM basis functions bg(x) are also fixed, and thus the roughness of the
PSOM mapping depends exclusively on the weights:

R({w}) =

∫

D

q
∑

µ=1

q
∑

ν=1

(
∂2

∂xµ∂xν
f(x)

)2

dqx (3.12)

=
∑

µ,ν

∫

D

(
∑

g

wg

∂2

∂xµ∂xν
bg(x)

)2

dqx (3.13)

=
∑

g,h

wgwh

∑

µ,ν

∫

D

(
∂2

∂xµ∂xν
bg(x)

)(
∂2

∂xµ∂xν
bh(x)

)

dqx (3.14)

=
∑

g,h

wgwh

∑

µ,ν

Iµν
gh =

∑

g,h

wgwhMgh. (3.15)

Here, we used the definition

Iµν
gh =

∫

D

(
∂2

∂xµ∂xν
bg(x)

)(
∂2

∂xµ∂xν
bh(x)

)

dqx. (3.16)

Since the basis functions bg(x) are just products of one-dimensional polynomials, their
derivatives are quite simple and products of one-dimensional polynomials as well. De-
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noting first and second derivatives by ′ and ′′, we get

∂2

∂xµ∂xν
bg(x) =







∏

α 6=µ

lαg (xα)lµ
′′

g (xµ) µ = ν

∏

α 6=µ,ν

lαg (xα)lµ
′

g (xµ)lν
′

g (xν) µ 6= ν.
(3.17)

To keep the notation compact, we omitted the double index of g, that is, lαg is to be
read as an abbreviation of lαgα . We also omitted brackets around product terms like
∏

α zα. Further simplification of (3.16) requires a case distinction and to separate the
terms depending on their dimension indices. For the first case (µ = ν) one gets

Iµµ
gh =

∫
∏

α 6=µ

lαg (xα)lµ
′′

g (xµ)
∏

β 6=µ

lβh(xβ)lµ
′′

h (xµ)dqx (3.18)

=
∏

α 6=µ

∫

lαg (xα)lαh (xα)dxα

︸ ︷︷ ︸

Aα
gh

∫

lµ
′′

g (xµ)lµ
′′

h (xµ)dxµ

︸ ︷︷ ︸

Bµ
gh

, (3.19)

while the second case (µ 6= ν) yields

Iµν
gh =

∫
∏

α 6=µ

α 6=ν

lαg (xα)lµ
′

g (xµ)lν
′

g (xν)
∏

β 6=µ

β 6=ν

lβh(xβ)lµ
′

h (xµ)lν
′

h (xν)dqx (3.20)

=
∏

α 6=µ

α 6=ν

∫

lαg (xα)lαh (xα)dxα

︸ ︷︷ ︸

Aα
gh

∫

lµ
′

g (xµ)lµ
′

h (xµ)dxµ

︸ ︷︷ ︸

Cµ
gh

∫

lν
′

g (xν)lν
′

h (xν)dxν

︸ ︷︷ ︸

Cν
gh

. (3.21)

So, all we need to calculate are the symmetric matrices A,B and C for each grid di-
mension. A convenient way to calculate the integrals is to first build a coefficient
representation of the polynomials lαg (xα), which makes differentiation and integration
very simple. The remaining work consists of collecting the proper summands for the
matrix elements Mgh =

∑

µ,ν I
µν
gh.

In the following, we drop the multi-index notation in favor of a binary representation
of the indices, and write Mgh and wg in matrix and vector notation M and w, through
which the roughness measure (3.15) can be expressed by

R(w) = wTMw. (3.22)

For a grid with N =
∏q

µ=1 n
µ nodes, M is an N × N matrix, while the weights are

represented by a vector w ∈ IRN for each dimension of the data space. Please note
that the matrices A,B and C are much smaller, i.e. for grid dimension α they have only
nα × nα elements. The matrix M depends only on the placement of the nodes and not
on the weights, and therefore it has to be calculated only once for a given grid layout.
Note that by construction, M defines a symmetric positive semidefinite metric in the
space IRN of weights.

We are now ready to utilize the metric M in order to tackle the problems stated
above. We begin with showing how to make use of our roughness measure R({w}) to
construct PSOM+ mappings from noisy data. For an illustration of the approach, we
apply it to 1-D toy data.
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3. The Parametrized Self-Organizing Map and extensions

3.3.2. Noisy data

Suppose that the training data w̃ = (w̃g) is complete (each node has a weight vector),
but noisy. For the case of Gaussian noise, this can be stated as

w̃g = ŵg + u u ∼ N (0, σ2), (3.23)

where ŵ = (ŵg) denotes the “true” weights. The less we can trust the data, the
smoother the PSOM+ mapping should be, so a good strategy is to use slightly modified
(“de-noised”) weights w that minimize

E(w, λ) = ‖w − w̃‖2 + λR(w) (3.24)

= (w − w̃)T (w − w̃) + λwTMw. (3.25)

Here, λ acts as a regularization parameter that balances between a smaller modification
of the weights and a smoother resulting PSOM+ mapping. The optimal weights wopt

can be found by solving

0
!
=
∂Eλ

∂w
= 2(w − w̃) + 2λMw, (3.26)

which yields

wopt = (I + λM)−1w̃. (3.27)

If an estimate of the noise variance σ2 is available, we can use a simple heuristics and
select the regularization parameter by adjusting λ such that 1

N
‖wopt − w̃‖2 ≈ σ2. In

this way, we seek a modification of w̃ that is roughly as strong as the corruption of ŵ

by noise.

Figure 3.5 illustrates the result of (3.27) on toy data for the case of a one-dimensional
PSOM+ with 8 nodes spaced at ai = i, (i = 1 . . . 8).
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Figure 3.5: PSOM+ from noisy data. Left: resulting mappings for different settings of the

regularization parameter λ. Right: mean square distance 1

N
‖wopt − w̃‖2 between de-noised and

original weights as a function of the smoothing parameter.
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3.3. PSOM+ extensions

3.3.3. Missing data

Now suppose the training data to be free of noise, but instead incomplete. Given a set
of indices to which the weights are known, and a complementary unknown set, what is
now the optimal choice for the unknown weights?

The less you know about a function, the simpler your estimate of it should be, so
again we choose the missing weights in a way that maximizes smoothness (minimizes
roughness). Denoting sub-matrices (sub-vectors) of M and w by indices u (unknown)
and k (known), the roughness measure can be expressed as

R(w) = wT
k Mkkwk + wT

k Mkuwu + wT
u Mukwk + wT

u Muuwu. (3.28)

Its minimum with respect to wu is given by

0
!
=
∂R(w)

∂wu
= 2Mukwk + 2Muuwu (3.29)

wu = − (Muu)−1
Mukwk (3.30)

Figure 3.6 illustrates this method on a 1-D PSOM+ with 8 nodes.
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Figure 3.6: PSOM+ mappings from incomplete grid-organized data.

3.3.4. Per-weight smoothing

If the scalar smoothing parameter λ in (3.27) is replaced by a diagonal matrix Λ =
diag(λ1, λ2, . . . ) of per-weight smoothing parameters, the two problems described in
the last sections can be merged into one. We minimize a term corresponding to (3.24)
divided by λ,

E(w,Λ) =
N∑

i=1

1

λi
(wi − w̃i)

2 +R(w) (3.31)

= (w − w̃)TΛ−1(w − w̃) + wTMw, (3.32)

which yields optimal weights

wopt = (I + ΛM)−1w̃. (3.33)
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3. The Parametrized Self-Organizing Map and extensions

All exactly known weights can be assigned λ = 0, whereas missing weights would be
interpreted as known, but infinitely noisy and therefore be endowed with a high value of
λ. Intermediate values can be used if information about the noise level at a particular
grid position is available, which reveals the close relation of this PSOM variant to general
heteroscedastic regression (see, e.g., Yuan and Wahba, 2004).

Figure 3.7 shows an example using the same toy data as before. The weights 3 and 6
are treated as unknown or noisy and assigned a non-zero λ. All other weights are fixed
(λ = 0). Note the “morphing” between the curves for the totally known and totally
unknown case.
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Figure 3.7: PSOM+ mappings from incomplete or partially noisy grid-organized data.

3.3.5. Non-grid-organized data

In this section, we describe how to build a PSOM mapping if the training data is not
ordered on a grid, but rather is given as a set of M input-output pairs6 (xi, yi). In
order to construct a PSOM+ mapping from such data, we propose the following: at
first, specify a grid that spans a hyper-rectangle just large enough to embed the input
data xi. If you have no idea how complex the mapping is, use as many nodes as is
computationally feasible. The spacing of the nodes along the different axes is arbitrary,
because it will change only the representation of the multi-dimensional polynomial that
is fitted to the data, but not its shape.

Then, construct the smoothest mapping passing through the training data, that is

minimize E(w) subject to yi
!
=w(si) =

∑

g

wgbg(si) i = 1 . . .M. (3.34)

By defining a matrix B with components big = bg(si), the constraints can be written as
y = Bw. The optimization problem (3.34) only features linear equality constraints and
thus can be solved by null-space methods. In particular, we first determine a feasible

6Again, we can treat multiple output data dimensions separately.
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3.3. PSOM+ extensions

solution y = Bw0 and also the matrix Z ∈ IRN×K that spans the null-space of B, that
is, the columns zk of Z are orthogonal and satisfy Bzk = 0. Thus, for any vector
v ∈ IRK , the weight vector w = w0 + Zv also satisfies the constraints. In order to find
the weights of the smoothest mapping, we minimize

R(v) = (w0 + Zv)TM(w0 + Zv) (3.35)

= wT
0 Mw0 + 2vTZTMw0 + vTZTMZv (3.36)

with respect to v, which yields

vopt =
(
ZTMZ

)−1
ZTMw0. (3.37)

If the constraints are infeasible, i.e. there are not enough nodes to interpolate the
data by a multi-dimensional polynomial, one can use the pseudo-inverse of B to get an
approximate solution w0.

In case the output data is noisy, it makes no sense to use the hard constraints of
(3.34). Instead we proceed similar to section 3.3.2 and minimize a weighted sum of the
smoothness measure and the distance between observed and reconstructed data:

wopt = arg min
w

[
‖y − Bw‖2 + λR(w)

]
(3.38)

= arg min
w

[
y − Bw)T (y − Bw) + λwTMw

]
(3.39)

= (BTB + λM)−1BTy. (3.40)

In this case, the PSOM+ algorithm effectively turns into a basis function approach to
penalized least squares regression, and indeed (3.40) has the same form as the general
solution to this problem (cf. e.g. Green and Silverman, 1994, p.46).

As an illustration, Fig. 3.8 shows the resulting mappings of a 1-D PSOM+ with 8
nodes placed at ai = i = 1 . . . 8. The task was to interpolate 6 training data samples
either (i) exactly or (ii) approximately by specification of a smoothing factor.
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Figure 3.8: PSOM+ from non-grid-organized toy data.
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3.4. PSOM+ model of PA-10 kinematics

In this section, we demonstrate our PSOM+ extensions on the kinematics learning task
already described in section 3.2. Again, we simulated learning the 3D wrist position as a
function of the first four joint angles, and based our experiments on an 8x8x8x8 PSOM
with Chebyshev spacing. Each grid axis represents one joint and spans its respective
range, so the manifold parameter x directly corresponds to the four joint angles. As
a starting point, we analytically calculated the “true” weights (wrist positions) for all
nodes (joint angle sets). Furthermore, we generated 1000 random postures (x) on which
we compared the analytic forward kinematics to the result of the PSOM+ mapping.

In our first experiment, we added Gaussian noise of standard deviation σ = 10mm
to all (analytically computed) weights. Then, we de-noised the PSOM+ mapping with
different values for λ (cf. section 3.3.2). Figure 3.9 shows the positional error on the
test set, as well as the mean deviation between the original noisy and the de-noised
weights. Note that a slight denoising (e.g. λ = 0.002) achieves a lower mean positional
error, but that the decrease lies within the standard deviation.
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Figure 3.9: PA10 wrist kinematics from noisy data. The position λ = 0 corresponds to the
PSOM mapping without de-noising. The positional error is depicted by bars indicating the
mean ± one standard deviation.

As a second experiment, we randomly selected Nmiss = 40 (100, 400) nodes and
treated their weights as missing. In addition to calculating optimal weights for these
nodes in the sense of section 3.3.3, we alternatively simply averaged (i) the neighboring
weights and (ii) all “known” weights to fill the gaps. Table 3.2 shows the resulting
mean positional error on the set of 1000 test postures. As can be seen, our proce-
dure outperforms the two “naive” approaches by more than a magnitude regarding the
accuracy.

In our third experiment, we randomly generated M = 2048 (3072, 4096, 6144) joint
postures as well as their corresponding analytically determined wrist positions. Then,
we constructed a PSOM+ mapping only from these (non-grid organized) data samples,
using the method of section 3.3.5. Table 2 depicts the mean positional error on the
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3.5. Unsupervised learning of manifolds with the PSOM+

positional error in mm: mean ± std. dev.

Nmiss optimized local average global average

40 0.64 ± 0.45 7.53 ± 15.38 15.65 ± 30.53

100 1.03 ± 1.18 25.86 ± 40.21 56.29 ± 85.41

400 2.12 ± 2.21 62.90 ± 60.67 140.32 ± 136.02

Table 3.2: PA10 wrist kinematics from missing data. As a comparison, the mean (± std. dev.)
of the positional error for the complete PSOM mapping (cf. Table 3.1) is 0.54 ± 0.27.

test set. Note that for 4096 random training samples, the resulting mean error is much
higher as compared to the PSOM mappings that were built from a grid-ordered training
set of the same size. Even utilizing 6144 randomly sampled training samples did not
yield the same level of accuracy. Still, if grid-ordered training data is not available, the
PSOM+ allows us to learn a mapping of reasonable accuracy.

Size of
training set

positional error in mm
mean (std dev)

2048 7.45 ± 15.44

3072 4.80 ± 13.21

4096 2.85 ± 7.96

6144 1.55 ± 4.75

Table 3.3: PSOM+ model of the PA10 wrist kinematics from non-grid-organized training data.

3.5. Unsupervised learning of manifolds with the PSOM+

Up to now, the PSOM algorithm has only been applied in a basically supervised setting.
Either the PSOM is built upon a readily trained SOM, or it is created from an other-
wise topologically ordered training set. The inclusion of the smoothness measure as a
regularization term and the ability to handle non-grid-organized data, however, allow
us to derive an unsupervised manifold learning algorithm which is similar in spirit to
the Regularized Principal Manifolds algorithm from section 2.6.2. We use an objective
function matching (2.67), that is, a weighted sum of the mean reconstruction error of
M data vectors yi ∈ IRd and the regularization term (3.22):

E(W, λ) =
1

M

M∑

i=1

min
xi

‖yi − f(xi;W))‖2 + λR(W), (3.41)

where we chose the notation f(x;W) to indicate that the weights W = (w1,w2 . . .wd)
alone determine the shape of the mapping. Like Smola et al. (2001) specify their sample
points ri in advance, we do so with the underlying grid.

As the main differences, our function model is a multi-dimensional polynomial instead
of a kernel expansion, and our regularization term is the smoothness measure based on
second derivatives (3.15) instead of a regularizer implied by the kernel.
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3. The Parametrized Self-Organizing Map and extensions

In conformity with the proposition of Smola et al. (2001), we also initialize the
PSOM+ model by PCA, and then fit the model by alternating projection and adaption
steps. If Vq denotes the matrix of eigenvectors corresponding to the q largest eigenvalues
of the sample covariance matrix of the data {yi} (cf. Sec. 2.2), then we set the initial
weights of the PSOM+ to

wg = ȳ + VqSag, (3.42)

where ȳ is the mean of the data and S = diag(s1, . . . , sq) is a diagonal scaling matrix. We
adjust si in a way that all orthogonal projections onto the PCA manifold are covered by
the range of the PSOM mapping, that is, si = maxj |vT

i (yj − ȳ)|, where i = 1 . . . q, j =
1 . . .M and we assume that the domain of the grid coordinates is [−1; 1]q.

In the projection step, we solve the bound-constrained optimization problem

xi = arg min
x∈[−1;1]q

‖yi − f(x;W)‖2 ∀i = 1 . . .M, (3.43)

that is, for every data vector yi we seek the optimal position xi within the domain
of the grid. This can be efficiently achieved by the Levenberg-Marquardt algorithm,
which has also been applied to the PSOM best match search by Walter and Ritter
(1996). The optimization procedure can start from the best matching node, or from
the solution xi of a preceding projection step. In the adaption step, we fix {xi} and
calculate optimal weights as in (3.40). In general, both steps will decrease (or keep
constant) the regularized risk (3.41), which is immediately clear for the adaption step.
During projection, the roughness measure of the manifold does not change, and by
definition the best match search decreases the reconstruction error – it might, however,
get stuck in a bad local minimum.

As an example of this approach, we fitted a 12x12 Chebyshev PSOM+ model to an
artificial “fish bowl” dataset. The “fish bowl” is a 2-D manifold embedded in IR2 and
can be described as the surface of a sphere with a clipped-off south pole7. To generate
the data, we calculated 1000 samples

y = r





√
1 − c2 cos(φ)√
1 − c2 sin(φ)

c



+ u (3.44)

with a radius r = 10, c = cos(θ) uniformly distributed in [−0.7; 1], and φ uniformly
distributed in [0; 2π]. u denotes isotropic Gaussian noise N (0, σ2), where we set σ = 0.1.

We initialized the PSOM+ via PCA as described above, and then carried out 30
projection/adaption steps, where we decreased the regularization parameter λ by the
schedule λk = 10 · 0.8k with k = 1, 2, . . . 30 denoting the iteration counter. The initial
model, some intermediate steps, and the final PSOM+ model are shown in Fig. 3.10.
Please note how decreasing λ results in a slow, controlled adaption of the PSOM+

manifold to the data, comparable to the deterministic annealing scheme that Rose et
al. (1990) utilized for clustering. Indeed, with that scheme a much better solution is
found than for example by carrying out 30 iterations with λ fixed at the final value
λ = 10 ∗ 0.830 ≈ 0.0124, which is illustrated in Fig. 3.11. The annealed PSOM+ model
is smoother and also features a smaller mean reconstruction error (0.0386 vs. 0.0764).

7Thus, actually the “fish bowl” lies on its top.
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Figure 3.10: PSOM+ model of the “fish bowl”. The top left plot and the bottom right plot
depict the PCA initialization and the final model (k = 30), respectively. The remaining plots
show intermediate results for k = 1, 2, 4, 7, 10, 15, and 20.
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Figure 3.11: PSOM+ model of the “fish bowl”. Left: resulting model without annealing.
Middle: the same model viewed from below. Right: The annealed model from Fig. 3.10 viewed
from below.
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3. The Parametrized Self-Organizing Map and extensions

3.6. Discussion

The PSOM algorithm has often been applied in learning tasks in robotics, where highly
accurate approximation models can be built if only the training data has the right struc-
ture. Especially in kinematics learning tasks, the function model of the PSOM seems
very appropriate, because e.g. the end-effector position typically varies nonlinearly but
smoothly as a function of the joint angles. Multiple joints interact strongly, which is
accounted for by the PSOM’s products of 1-D polynomials. A particularly appealing
feature of the PSOM is the ability to represent the forward and inverse kinematics in
one united manifold.

In this chapter of the thesis, we presented an approach to regularize PSOM mappings
based on minimizing their overall roughness. Our method allows us to construct PSOMs
from noisy and not necessarily grid-organized, or incomplete training data. As an ap-
plication, we demonstrated the approach for learning a part of the PA-10 kinematics,
where in particular the “missing data” extension yielded promising results.

We also indicated how the extended PSOM+ model can be utilized as an unsuper-
vised manifold learning method, and presented an algorithm similar to the Regularized
Principal Manifolds (cf. Sec. 2.6.2). In contrast to Smola et al. (2001), we did not
provide an analysis of convergence bounds, but only presented an example experiment
as a proof of concept.

Indeed, we still see the PSOM’s scope of application mainly in robotics: the latent
space of the PSOM+ is still a hyper-rectangle, and the function model is still a global
multi-dimensional polynomial of possibly high degree. Both properties do not necessar-
ily match a general data distribution well. The “fish bowl”, as depicted in Figs. 3.10
and 3.11, demonstrates this drawback by the sharp bends of the PSOM+ manifold’s
borders, which here implies a distortion of the topology.

We did not provide any guidance for the selection of the grid size and the regularization
parameter λ. For the corresponding problem of selecting support points ri in section
2.6.2, Smola et al. (2001, p. 184) propose to take “as many as one may afford in terms
of computational cost.” This strategy can also be applied for the PSOM+, provided the
regularization parameter λ (which Smola et al. chose subjectively in their experiments)
is large enough to prevent heavy oscillations of the polynomials. A principled adjustment
of λ is possible by utilizing hold-out data, cross-validation, or similar techniques.
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4. Unsupervised Kernel Regression

Unsupervised Kernel Regression (UKR) is a non-parametric approach for learning of
principal manifolds. It has been introduced as an unsupervised counterpart of the
Nadaraya-Watson kernel regression estimator by Meinicke et al. (2005). In essence,
UKR uses the Nadaraya-Watson estimator (please see the next section) to find both a
latent space representation of a dataset and a smooth mapping from latent space back
to the space of the original data.

Through this, UKR has two main advantages over other dimension reduction and
manifold learning algorithms: firstly, one can apply leave-one-out cross-validation (LOO-
CV) as an automatic complexity control without additional computational cost. Sec-
ondly, defining a complete UKR model requires the a priori specification of only very few
parameters. In fact, if LOO-CV is used for regularization, the only choices to be made
are the desired dimensionality of latent space and the shape (but not the bandwidth)
of a density kernel.

These properties distinguish UKR from many of the algorithms that were presented
in the preceding chapters. When utilizing auto-associative neural networks (Sec. 2.3),
a certain network structure has to be set up: The bottleneck layer is sized to the
desired dimensionality, while the number of neurons in further hidden layers controls
the complexity or capacity of the mapping. The Self-Organizing Map (Sec. 2.4) requires
the specification of a grid of neurons and two time-varying parameters that control the
weight adaption process. Principal curve algorithms also rely on certain adjustments,
i.e. the pre-factor of a roughness penalty (Sec. 2.5.1), a heuristical threshold to decide
about adding new vertices (Sec. 2.5.2), or a smoothing parameter σ (Sec. 2.5.3).

The Generative Topographic Mapping (Sec. 2.6.1), modelled after the SOM, is also
based on a grid in latent space and additionally requires the specification of parameters
for the basis functions. An approach to automatically infer some of these parameters has
been described by Bishop et al. (1998a), but in their experiments the number of basis
functions and the size of the grid was chosen ad hoc. Similarly, Regularized Principal
Manifolds (Sec. 2.6.2) require a pre-specified collection of support points as well as the
choice of a kernel. In their experiments, Smola et al. (2001) did not motivate their
selection of the width of the Gaussian kernel or the choice of the number of support
points, and they adjusted the regularization parameter by hand.

Furthermore, we listed several methods for nonlinear dimension reduction which do
not yield an explicit manifold model (or a discrete approximation in case of the SOM),
but only a lower dimensional representation of the data. Among methods that iteratively
seek an optimum of sometimes highly non-convex objective functions are the Curvilin-
ear Component Analysis (CCA, Sec. 2.7.3), which is implemented using time-varying
neighborhood and learning rate parameters. Curvilinear Distance Analysis (Sec. 2.7.4)
has been proposed as an improved version of CCA featuring some automatic parameter
selection. Nonlinear spectral embedding methods (Sec. 2.8) feature a convex objec-
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4. Unsupervised Kernel Regression

tive function, and the optimum can be found efficiently by solving an eigenproblem.
However, each of these methods need the specification of a (sometimes very critical)
parameter that describes the size of neighborhoods in data space.

This chapter of the thesis is devoted to a thorough description of the UKR algorithm
as originally published by Meinicke et al. (2005). In order to lay the grounds, we will
first study the Nadaraya-Watson estimator.

4.1. The Nadaraya-Watson estimator

For now, we return to the problem of approximating the functional relationship between
two random variables x and y, which for simplicity we assume to be univariate. First,
we recall the definition of the regression function (1.5) and rewrite it in terms of the
joint and marginal distributions p(x, y) and p(x):

f∗(x) = 〈y|x〉 =

∫

y p(y|x) dy =

∫

y
p(x, y)

p(x)
dy. (4.1)

If our goal is to estimate f∗(x) from samples {(xi, yi) | i = 1 . . . N}, we could utilize a
kernel density estimate of the joint distribution, given by

p̂(x, y) =
1

N

N∑

i=1

Khx
(x− xi)Khy

(y − yi), (4.2)

whereKh(·) is a density kernel function with a bandwidth parameter h and the properties
∫

Kh(z)dz = 1 and

∫

zKh(z)dz = 0. (4.3)

Note that the bandwidth parameters hx and hy need not be equal. An example of a
density kernel is the Gaussian kernel

Kh(z) =
1

h
K
( z

h

)

=
1√
2πh

exp

(

−1

2

z2

h2

)

. (4.4)

Please note that while the Gaussian kernel is also a Mercer kernel (cf. Sec. 1.5.4),
in general one has to distinguish between the two classes of kernels. In this thesis, a
density kernel is denoted by an upper-case letter and a single argument K(·), while
Mercer kernels are denoted by lower-case letters and two arguments k(·, ·).

In the limit of infinitely small bandwidths (h → 0), the kernel estimate of the joint
distribution becomes equal to the empirical data distribution

pemp(x, y) =
1

N

N∑

i=1

δ(x− xi)δ(y − yi), (4.5)

while larger bandwidths “smear” that peaky distribution. An estimate p̂(x) of the
marginal density can be retrieved by integration over y:

p̂(x) =

∫

p̂(x, y) dy =

∫
1

N

N∑

i=1

Khx
(x− xi)Khy

(y − yi)dy

=
1

N

N∑

i=1

Khx
(x− xi)

∫

Khy
(y − yi)dy. (4.6)
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4.1. The Nadaraya-Watson estimator

Since according to (4.3) the integral over a density kernel is 1, we retrieve a kernel
density estimate of x alone

p̂(x) =
1

N

N∑

i=1

Khx
(x− xi), (4.7)

which is known as the Rosenblatt-Parzen estimator (Parzen, 1962). Insertion of (4.7)
and (4.2) into (4.1) yields

f̂(x) =

∫

y
1
N

∑

iKhx
(x− xi)Khy

(y − yi)
1
N

∑

j Khx
(x− xj)

dy

=
∑

i

Khx
(x− xi)

∑

j Khx
(x− xj)

∫

yKhy
(y − yi)dy, (4.8)

where the last integral can be solved by substituting y = z + yi and taking note of
the conditions (4.3). Finally, the resulting estimator (Nadaraya, 1964; Watson, 1964) is
given by

f̂(x;hx) =
∑

i

yi
Khx

(x− xi)
∑

j Khx
(x− xj)

. (4.9)

Please note that the bandwidth hy does not play a role anymore. The only parameters of
this estimator are the choice of the density kernel, which is of relatively low importance
(Härdle and Marron, 1985), and the bandwidth h = hx, which is crucial.

The Nadaraya-Watson estimator (4.9) performs a local averaging of the output data,
where the kernel functions Kh(x − xi) determine how strongly yi contributes to the
function value when evaluated at x. The bandwidth controls the span of the local
averaging, and therefore the smoothness of the mapping: In the limit of an infinitely
large bandwidth, the ratio in (4.9) becomes 1

N
at any point x, and thus the estimator

constantly yields the mean of the data. In the opposite limit, when Kh(x − xi) →
δ(x − xi), the estimator yields a pointwise constant mapping with f̂(xi) = yi, that is
the samples are interpolated. An illustration of this dependency on the bandwidth (or
smoothing parameter) h is provided in Fig. 4.1.
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Figure 4.1: Results of using the Nadaraya-Watson estimator with different bandwidth param-
eters. The data are 50 noisy samples from a sine curve. From left to right: h = 0.001, h = 0.01,
h = 0.1, and h = 10.

4.1.1. Choice of smoothing parameter

A particularly simple and appealing choice of the parameter h is given by leave-one-out
cross-validation, which was in this context introduced by Clark (1975). The idea is to
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select the bandwidth hcv that minimizes the quantity

CV (h) =
1

N

N∑

i=1

(

yi − f̂−i(xi;h)
)2
, (4.10)

where f̂−i(·) denotes the Nadaraya-Watson estimator for a dataset with the pair (xi, yi)
left out:

f̂−i(x;h) =
∑

k 6=i

yk
Khx

(x− xk)
∑

j 6=iKhx
(x− xj)

. (4.11)

Härdle and Marron (1985) showed that under mild assumptions this choice is asymptot-
ically optimal, that is, in the limit N → ∞ the bandwidth hcv yields the best estimate
with respect to several criteria like the integrated squared deviation between f̂(·) and
the true regression function1.
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Figure 4.2: Results of using the Nadaraya-Watson estimator with the optimal bandwidth
hcv = 0.0175 as determined by leave-one-out cross-validation. The curve does not match the
underlying sinus function well, but keep in mind that the sample size is only N = 50.

4.1.2. Multivariate generalization and further kernels

The Nadaraya-Watson estimator can easily be generalized to the case of multivariate
input and output data, yielding

f(x;H) =
∑

i

yi
KH(x − xi)

∑

j KH(x − xj)
. (4.12)

Here, the one-dimensional smoothing parameter h is replaced by a diagonal matrix
H = diag(h1, h2, . . . , hq), and for example the multivariate Gaussian kernel is given by

KH(x) =
1

det(H)
K
(
H−1x

)
=

1

(2π)
q

2 det(H)
exp

(

−1

2

∥
∥H−1x

∥
∥

2
)

. (4.13)

1More precisely, Härdle and Marron (1985) included a weighting factor w(xi) within the CV-error
(4.10), which e.g. accounts for restricting the domain where the optimality criteria should hold. We
can think of w(xi) as being constant within a finite region of interest, and zero elsewhere.
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Other popular density kernels include the Epanechnikov kernel (h = 1)

K(x) =
3

4

[
1 − x2

]

+
=

{
3
4

(
1 − x2

)
|x| < 1

0 |x| ≥ 1,
(4.14)

which is continuous, but not differentiable at |x| = 1, and the Quartic kernel (h = 1)

K(x) =
15

16

[
1 − x2

]2

+
=

{
15
16

(
1 − x2

)2 |x| < 1
0 |x| ≥ 1,

(4.15)

which does not share this problem. Both kernels have finite support and therefore
lead to an improved computational efficiency: when evaluating the Nadaraya-Watson
estimator at a point x0, typically only a few terms K(x0 − xi) will be non-zero, and so
the linear combination of output data samples yi will only involve few components.

As a multivariate generalization of these kernels, one can use a product of 1-D kernels

K(x) ∝
q
∏

i=1

K(xi) (4.16)

or a spherically symmetric kernel

K(x) ∝ K(‖x‖). (4.17)

In case of the Gaussian kernel, both variants are the same. Here, we overloaded the
notation K(·) and also left out the normalization pre-factor. Please note that it is not
necessary to include the latter, because any pre-factor cancels out in the ratios of (4.9)
and (4.12), respectively.

4.2. Derivation of UKR

As stated in section 1.4.1, the goal of manifold learning is to find both a faithful lower di-
mensional representation (latent variables) X = (x1,x2, . . . ,xN ) ∈ IRq×N of an observed
dataset Y = (y1,y2, . . . ,yN ) ∈ IRd×N and a corresponding functional relationship. In-
spired by the generalized regression framework of Meinicke (2000), the basic idea of
UKR is to address this problem by using the Nadaraya-Watson estimator as the map-
ping from latent space to data space, whereby the latent variables X take the role of
the input data and are treated as parameters of the regression function.

As a first consequence, the bandwidth parameter H of (4.12) can be dropped, or more
precisely we can use a unit bandwidth, because any bandwidth 6= 1 can be accounted
for by a corresponding re-scaling X → H−1X, and the scaling of the parameters X is
free. Accordingly, we will write the UKR regression function as

f(x;X) =
N∑

i=1

yi
K(x − xi)

∑

j K(x − xj)
=

N∑

i=1

yibi(x;X) = Yb(x;X), (4.18)

where for convenience we introduced a vector b(·) ∈ IRN of basis functions containing
the ratio of the kernels. At first sight, the notation f(x;X) may seem a little awkward,
so for clarification we repeat that x is just the location where we want to evaluate the
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function, while X are the low-dimensional representations of the data Y that the UKR
model is fitted to, and at the same time the parameters of the function model. In
principle, the function value also depends on Y, but we leave it out from the parameter
list, since Y is fixed and not adapted during training of the model.

While the form “matrix × vector of basis functions” of (4.18) is already familiar from
e.g. the GTM (Sec. 2.6.1), the function model of UKR is quite different from the
traditional basis function approach. Whereas the GTM has fixed (pre-specified) basis
functions and an adaptable parameter matrix, in UKR the matrix is fixed, and the flex-
ibility lies in the basis functions, which in turn need no specification beyond the choice
of a density kernel. Just as in supervised kernel regression, the latter is qualitatively
rather unimportant, but it does have an impact on the computational efficiency of the
algorithm. Finite support kernels lead to sparse vectors of basis functions and therefore
allow a quicker evaluation of the regression function.

In order to derive an alternative notation, please note that the denominator in (4.18)
is proportional to the Rosenblatt-Parzen estimator of the latent space density

p(x;X) =
1

N

∑

j=1

K(x − xj). (4.19)

Therefore, we could also express the basis functions by

bi(x;X) =
K(x − xi)

Np(x;X)
. (4.20)

For the sake of convenience, we will sometimes drop the extra argument X in the
following.

4.2.1. UKR manifold and generalization

We define the UKR manifold as the range of f(x;X), where the domain is restricted to
some finite subset X ⊂ IRq, that is

M = {y = f(x;X) | x ∈ X}. (4.21)

At any point x where f(x;X) = Yb(x;X) is evaluated, the elements bi(x;X) sum to 1,
so the function value is a convex combination of data vectors. Nearby latent variables xi

yield larger valuesK(x−xi) and thus larger weights within that combination. Therefore,
if nearby latent variables belong to data vectors that are also nearby, the UKR manifold
should fit the data closely and smoothly. Can we somehow enforce such a reasonable
shape of the manifold?

With f(x;X) being a convex combination, it is clear that the manifold M must
be a subset of the span of the data Y. Unfortunately this does not imply proper
generalization, since even within that span the manifold may exhibit an arbitrarily
wriggly behavior. Analogously to the length constraint of the principal curves of Kégl
et al. (2000), we have to make sure that the spatial extension of the UKR manifold is
bounded.
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For simplicity, we first restrict our analysis to the case q = 1, that is, the UKR
manifold being a curve. The length of that curve is given by

L =

∫

X
‖f ′(x)‖dx =

∫

X
‖Yb′(x)‖dx ≤ ‖Y‖2

∫

X
‖b′(x)‖dx

≤ ‖Y‖2 max
x∈X

‖b′(x)‖
∫

X
dx, (4.22)

where b′(x) denotes the vector of all derivatives at x with components

b′i(x) =
K ′(x− xi)

Np(x)
− K(x− xi)p

′(x)

Np2(x)
. (4.23)

Thus, for a finite domain X and a continuously differentiable kernel K(·), the length
of the curve is upper bounded if the density p(x) is lower bounded by some positive
non-zero constant.

To generalize our argument to the case q > 1, we have to show that the manifold’s area
or volume is bounded. For this end, please recall that an infinitesimal volume element
dx1dx2 . . . dxq at a point x in latent space transforms into a hyper-parallelepiped at
f(x;X) in data space, spanned by the vectors J1dx1,J2dx2 . . .Jqdxq. Here, Ji denotes
the i-th column of the Jacobian of f(x;X). Since the volume of a hyper-parallelepiped is
less or equal to the volume of a hyper-rectangle of corresponding side lengths, and since
the norm of each Ji is less or equal to the largest singular value (and thus, the matrix
norm) of the complete Jacobian Jf , the volume of our infinitesimal hyper-parallelepiped
is bounded by ‖Jf‖q

2dx1dx2 . . . dxq.

We can use this inequality to estimate the complete manifold’s volume V by integra-
tion over the latent domain:

V ≤
∫

X
‖Jf (x;X)‖q

2dx1dx2 . . . dxq

=

∫

X
‖YJb(x;X)‖q

2dx1dx2 . . . dxq

≤ ‖Y‖q
2

∫

X
‖Jb(x;X)‖q

2dx1dx2 . . . dxq. (4.24)

The components of Jb(x;X), the Jacobian of b(x;X), are given by

(Jb)ij =
∇jK(x − xi)

Np(x)
− K(x − xi)∇jp(x)

Np2(x)
(4.25)

and are finite for continuously differentiable kernels and non-vanishing density. Thus,
the matrix norm ‖Jb(·)‖2 ≤ ‖Jb(·)‖F is bounded. For a finite domain X , this implies
that the manifold’s volume (or area for q = 2) is bounded, too.

4.2.2. Objective function

Now that we have defined the function model of UKR, we need to specify a suitable
learning scheme. A favorable choice is the minimization of an appropriate objective
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4. Unsupervised Kernel Regression

function, since the latter for example allows us to compare the results of different train-
ing runs. In correspondence to empirical risk minimization in supervised learning (Sec.
1.3.2), the UKR objective function is defined as the mean error that results from recon-
structing the data vectors from their lower dimensional representations (cf. Eq. 1.14)

R(X) =
1

N

∑

i

‖yi − f(xi;X)‖2 =
1

N
‖Y − YB(X)‖2

F . (4.26)

Here, the matrix B(X) contains the vectors of basis functions as columns, i.e.

B(X) =
(
b(x1,X),b(x2,X), . . . ,b(xN ,X)

)
, (4.27)

so the i, j-th element is given by

(
B(X)

)

ij
= bi(xj ;X) =

K(xj − xi)
∑

k K(xj − xk)
. (4.28)

Please note again that for a given density kernel the reconstruction error (4.26) solely
depends on the latent variables X. Therefore, the latent variables and the shape of
the manifold can be optimized “in one go”. In contrast to many of the aforementioned
algorithms, UKR does not involve alternating projection and adaption steps.

4.3. Regularization approaches

Without any form of regularization or restriction of the domain X , the UKR reconstruc-
tion error (4.26) can be trivially minimized to R(X) = 0. Concerning this, imagine that
the low dimensional representations xi are moved infinitely apart from each other, that
is ∀i6=j‖xi − xj‖ → ∞. The kernel function K(·) is a density function and as such has
to decrease to zero for increasing magnitudes of its argument. Therefore, in the case
described above we get

K(xi − xj) → δijK(0). (4.29)

Consequently, bi(xj ;X) → δij and B(X) becomes the N ×N identity matrix IN . Like-
wise, the reconstruction of the i-th data vector is that data vector itself, i.e. f(xi;X) =
yi, so the reconstruction error (4.26) is zero. This case corresponds to the “interpolation
solution” of the original principal curve (Sec. 2.5) and the exploding likelihood of the
generative model for principal curves (Sec. 2.5.1).

The existence of such an undesirable minimum of the UKR reconstruction error ac-
tually reinforces our point from section 4.2.1, where we demanded that the density in
the domain X is sufficiently high. In the interpolation case, the latent space density is
only p(x;X) = 1

N
K(0) at the locations xi and even lower inbetween.

Naturally, in practice we would like to not only prevent the worst case, but to control
the balance between a low reconstruction error and a smooth manifold in a reasonable
manner. The remainder of this section describes possible regularization approaches.

4.3.1. Extension of latent space

A straight-forward way to prevent the aforementioned trivial interpolation solution and
to control the complexity of a UKR model is to specify a certain allowed (finite) domain
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4.3. Regularization approaches

X , e.g. a sphere of radius r. With a unit bandwidth, forcing the kernel centers xi closer
together implies a stronger overlapping of the kernel functions, which in turn yields a
smoother regression function (cf. the supervised case in Sec. 4.1). Training of the UKR
model then means solving the optimization problem

minimize R(X) =
1

N
‖Y − YB(X)‖2

F subject to ∀i ‖xi‖ ≤ r. (4.30)

A closely related, but softer and numerically easier method is to add a penalty term to
the reconstruction error (4.26) and to minimize the regularized risk

Re(X, λ) = R(X) + λ
∑

i

‖xi‖2. (4.31)

One may choose other forms of penalty terms, for example the general Lp-norm with
p 6= 2. With the help of this formalism, the model complexity can be directly controlled
by the pre-factor λ or the parameterization of X , e.g. the radius r of an origin-centered
sphere. However, normally one has no information about how to choose these param-
eters. Bigger values of λ lead to stronger overlapping of the density kernels and thus
to smoother manifolds, but it is not clear how to select λ to achieve a certain degree of
smoothness.

4.3.2. Density in latent space

As we have already seen, the UKR regression function involves an estimate of the
density in latent space as a by-product. Moreover, a lower bound of that density is a
sufficient condition for a finite extension of the manifold, which in turn is necessary for
generalization.

Stronger overlapping of the kernel functions coincides with higher densities in latent
space, which gives rise to another method for complexity control. As in the last section,
the density p(x) can be used both in a constrained optimization problem

minimize R(X) subject to ∀i p(xi) ≥ ηK(0) (4.32)

and in form of a penalty function with some pre-factor λ. To penalize low densities, a
suitable regularized risk can be expressed by

Rp(X, λ) =
1

N
‖Y − YB(X)‖2

F − λ

N

∑

i

log p(xi). (4.33)

In case of the hard constraint (4.32), the parameter η has to be larger than 1
N

, so that
the interpolation solution is prevented. The largest choice η = 1, however, forces all
kernel centers xi together, in which case the UKR manifold collapses to the mean of the
data vectors: if all xi are equal, then bi(xj) = 1

N
∀i, j and therefore f(xi) = 1

N

∑

j yj .
Apart from these two extremes, suitable values for η (and also λ) are hard to specify.

Compared to a regularization based on the extension of latent space, the density
based regularization tends to work more locally and does not induce a certain shape of
the distribution of the latent variables. On the other hand, its implementation is more
complex and more prone to numerical difficulties.
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4. Unsupervised Kernel Regression

4.3.3. Leave-one-out cross-validation

Perhaps the strongest feature of UKR is the ability to include leave-one-out cross-
validation (LOO-CV) without additional computational cost. Instead of minimizing
the reconstruction error of a UKR model including the complete dataset, in LOO-CV
each data vector yi has to be reconstructed without using yi itself. The corresponding
UKR CV-error is given by

Rcv(X) =
1

N

∑

i

‖yi − f−i(xi;X)‖2 =
1

N
‖Y − YBcv(X)‖2

F , (4.34)

where, exactly as in the supervised case,

f−i(x) =
∑

l 6=i

yl
K(x − xl)

∑

j 6=iK(x − xj)
. (4.35)

For the computation of the matrix of basis functions Bcv, applying LOO-CV just means
zero-ing the diagonal elements before normalizing the column sums to 1. In that way,
LOO-CV practically induces no computational overhead.

Minimizing Rcv(X) in order to find the optimal latent variables X is a direct analogue
to bandwidth selection using a leave-one-out criterion in classical kernel regression (cf.
Sec. 4.1.1), and as such provides a favorable approach to the problem of model selection.
As long as the dataset does not include repeated observations2, LOO-CV can be used
as a built-in automatic complexity control.

In order to gain more insight into the regularizing effect of LOO-CV, we introduce the
short-hand notation Kij = K(xi−xj) and rewrite the i-th contribution to the CV-error
by

yi − f−i(xi;X) = yi −
∑

j 6=i

yj
Kij

∑

k 6=iKik

= yi −
∑

j 6=i

yj
Kij

∑

k 6=iKik
− yi

Kii
∑

k 6=iKik
+ yi

Kii
∑

k 6=iKik

= yi −
∑

j

yj
Kij

∑

k 6=iKik
+ yi

Kii
∑

k 6=iKik

= yi

(

1 +
Kii

∑

k 6=iKik

)

−
∑

j

yj
Kij

∑

k 6=iKik
. (4.36)

By inserting “factors” which are equal to 1, we can further rewrite the expression

yi − f−i(xi;X) = yi

(∑

k 6=iKik
∑

k 6=iKik
+

Kii
∑

k 6=iKik

)

−
∑

j

yj
Kij

∑

k Kik

∑

k Kik
∑

k 6=iKik

=

∑

k Kik
∑

k 6=iKik

(
yi − f(xi;X)

)
. (4.37)

2If there are repeated observations, i.e. yi = yi′ , corresponding latent points xi = xi′ could be moved
to an arbitrary, but isolated location without any contribution to the CV-error. Such observations
yi′ should therefore be taken out as a pre-processing step. Optionally, the error in reconstructing yi

could then be up-weighted correspondingly.
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Therefore, we can express the CV-error (4.34) in terms of the normal reconstruction
error (4.26) and a multiplicative penalty

Rcv(X) =
1

N

∑

i

S2
i (X)‖yi − f(xi;X)‖2, (4.38)

where the penalty Si(X) is given by

Si(X) =

∑

k Kik
∑

k 6=iKik
=

p(xi;X)

p(xi;X) − 1
N
K(0)

= 1 +
1
N
K(0)

p(xi;X) − 1
N
K(0)

. (4.39)

This formulation again illustrates the importance of a sufficient overlap of the density
kernels: the i-th LOO-CV error contribution equals the normal error contribution scaled
up by the ratio between the density p(xi) and a leave-one-out density p(xi) − 1

N
K(0).

4.4. Optimizing a UKR model

As already stated, finding optimal latent variables X of a UKR model involves min-
imization of the empirical reconstruction error (4.26), or rather a cross-validated or
penalized variant of it. If the density kernel is differentiable (e.g. Gaussian or Quartic),
then the minimization can be achieved by gradient descent or more elaborate gradient-
based optimization algorithms. Since the reconstruction error is a sum of squares, in
principle a good alternative would be utilizing nonlinear-least-squares methods like the
Levenberg-Marquardt algorithm. Unfortunately, for Y ∈ IRd×N and X ∈ IRq×N the
corresponding Jacobian matrix would have dN × qN elements, which quickly becomes
impractical. A similar argument applies to Newton-type algorithms where a qN × qN
Hessian matrix (or an approximation) would be needed. The computational complexity
of conjugated gradients methods is linear in the number of parameters (qN), but as a
downside they require a costly line search.

In our experiments, we have observed good results when using the RPROP algorithm
(Riedmiller and Braun, 1993; Igel and Hüsken, 2000), which is traditionally applied in
the world of MLP neural networks. The RPROP algorithm features an individual step
size for each parameter and a simple scheme for adapting these step sizes: If an element
of the gradient changes its sign between successive evaluations, the corresponding step
size is reduced, otherwise, it is slightly increased. In this way, the RPROP algorithm
collects second order information while still having linear complexity.

Since the objective function (4.26) is highly non-convex, it is advisable to look for
some means against getting stuck in poor local minima. Fortunately, one can easily
incorporate nonlinear spectral embedding methods (cf. Sec. 2.8) to find good initial
sets of the latent variables. As an alternative, UKR models may be trained using a
homotopy-based optimization scheme. Before describing the two approaches, we will
first present the gradient of the UKR reconstruction error together with some remarks
on computational complexity.

4.4.1. Gradient of the reconstruction error

In this thesis, we restrict the class of density kernels utilized in UKR to the form

K(xi − xj) = F (‖xi − xj‖2), (4.40)
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where F (·) is at least once differentiable. For what follows, we introduce the notation

xmn = (X)mn = (xn)m, (4.41)

that is, xmn denotes the m-th component (m = 1 . . . q) of the n-th latent variable xn.
Using this notation, we can express the derivatives of the kernel functions by

∂Kij

∂xmn
=
∂K(xi − xj)

∂xmn
= 2F ′(‖xi − xj‖2)(xmi − xmj)(δin − δjn). (4.42)

As a companion to the matrix of basis functions B(X) with elements

bij = bi(xj ;X) =
K(xi − xj)

∑

k K(xk − xj)
=

Kij
∑

k Kkj
, (4.43)

we now define a matrix P(X) with elements

pij =
−2F ′(‖xi − xj‖2)
∑

k K(xk − xj)
. (4.44)

As an example, assume K(·) to be the Gaussian kernel. In this case, we have

F (‖xi − xj‖2) = F (s) = C exp

(

−1

2
s

)

and F ′(s) = −1

2
F (s) (4.45)

with a normalization factor C and s denoting the squared distance between two latent
space vectors, so here the matrix P(X) is identical to B(X). Similarly, in case of the
Quartic kernel (cf. Eq. 4.15 and 4.17), we have

KQ(xi−xj) = F (‖xi−xj‖2) = F (s) = C̃ [1 − s]2+ and F ′(s) = −2C̃ [1 − s]+ , (4.46)

so the elements of P(X) are given by

pij = 4

[
1 − ‖xi − xj‖2

]

+
∑

k [1 − ‖xk − xj‖2]2+
. (4.47)

Utilizing this notation, the gradient of the reconstruction error can be expressed in
matrix form by

∂R(X)

∂X
=

2

N
X
{
Q + QT − diag(1T [Q + QT ])

}
, (4.48)

where we used further N ×N matrices

Q = P ∗
{
M − 11T [M ∗ B]

}
(4.49)

and
M = YT (YB − Y). (4.50)

Here, ∗ denotes the (element-wise) Schur product between matrices, and 1 is the vector
of N ones. For a detailed computation please see appendix B.

Regarding the computational complexity, the most expensive parts of a gradient eval-
uation are the two matrix-matrix multiplications involved in calculating M, which are
O(dN2) operations. However, when using a finite support kernel function (e.g. Quartic),
the matrices B and P become sparse, which can yield drastic speed-ups when utilizing
a sparse linear algebra package for calculating YB. Furthermore, the matrix M is only
used within Schur products with B and P, so many of its elements are irrelevant and
thus do not have to be computed.

78



4.4. Optimizing a UKR model

4.4.2. Spectral initialization

As was discussed in section 2.8, nonlinear spectral methods (e.g. LLE, Isomap) can
efficiently yield low dimensional embeddings of a possibly high dimensional dataset Y.
Moreover, with the “right” setting of a neighborhood parameter, these methods can
cope with very complicated structures. Since a UKR model has no parameters besides
the latent variables X (and the fixed kernel), it is very simple to utilize the embedding of
a spectral method for the purpose of initialization. Denoting the output of the spectral
method by X̂, we just have to adapt the scaling of X̂ to UKR’s (regularized) objective
function – this is again analogous to selecting a suitable bandwidth3 in supervised kernel
regression. If we wish to regularize the model by LOO-CV, this means setting

Xinit = diag(sopt)X̂ with sopt = arg min
s
Rcv(diag(s)X̂). (4.51)

As we optimize the CV-error only with respect to the q-dimensional scale factor s, we
can utilize simple minimization techniques and for example start with a coarse grid
search. The gradient with respect to the scale is given by

∇sRcv(diag(s)X̂) = − 2

N
s ∗
[

(X̂ ∗ X̂)
(
Q + diag(1TQ)

)
1 − 2

(

X̂ ∗ (X̂Q)
)

1
]

. (4.52)

Here, we again made use of the matrix Q from (4.49). Please note, however, that the
underlying matrices B and P have to be calculated from the scaled latent variables
X = diag(s)X̂ instead of using the unscaled embedding X̂.

Spectral methods depend (sometimes critically) on the choice of a neighborhood pa-
rameter (typically a discrete value K), so it is advisable to repeat this procedure for
different values of that parameter, yielding multiple candidates X1

init,X
1
init, . . .X

n
init.

Then, one selects the candidate corresponding to the lowest CV-error Rcv(X
i
init). Thus,

in effect, the UKR objective function is utilized to automatically select the neighborhood
parameter of the spectral method.

In addition, it can be valuable to include a PCA solution in the candidate set, since
for example in case of very noisy data the nonlinear spectral method might fail. If
this is the case, detected by a lower CV-error of the PCA solution as compared to the
nonlinear candidates, we propose to not simply fine-tune the UKR model starting from
the scale-optimized PCA solution, but to apply a homotopy method as described in the
following.

4.4.3. Homotopy-based optimization

As will be demonstrated experimentally later, spectral methods do not always yield an
initial set of latent variables which is already close to a sufficiently deep local minimum.
To reach such a minimum regardless of the starting point, one has to apply methods
for global optimization. A popular example of such a method is simulated annealing
(see e.g. Otten and van Ginneken, 1992), where a probabilistic scheme governs the
acceptance of random steps (parameter changes). With a probability depending on
a decreasing “temperature” parameter, also steps corresponding to an increase of the

3Please recall that we fixed h = 1 for UKR.
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objective function are accepted, and so shallow local minima can be left again. In
the UKR setting with qN parameters, however, simulated annealing quickly becomes
impractical – the parameter space is just too large for random steps to arrive at a deep
minimum in reasonable time.

Fortunately, there are deterministic alternatives, like the deterministic annealing ap-
proach to clustering of Rose et al. (1990) (cf. Sec. 2.1.4), or more generally the class of
homotopy or continuation methods (Forster, 1995; Allgower and Georg, 2003). The un-
derlying principle of these methods is a transformation of the original objective function
into a series of smoother functions with fewer local minima, up to a limit of a function
which has only one easily accessible minimum4. As an example, consider the convolu-
tion of a function with a Gaussian of varying width (Moré and Wu, 1997). In the limit
of an infinitely small width, the Gaussian becomes the Dirac distribution, and so the
convolution leaves the original function unchanged. Larger widths, however, will smooth
out local minima of the original function, until eventually a simple function with only
one minimum remains. In order to find the global (or at least a deep local) minimum
of the original function, one traces the curve of minimizers of the transformed func-
tions starting from the smoothest one. In practice, this can be achieved by sequentially
minimizing the transformed functions.

The suitability of utilizing homotopy methods in unsupervised regression problems
has been pointed out by Meinicke (2000), who also provided a general approach to
specifying a suitable transformation of the objective function. In particular, he chose
to parametrize the class of possible regression functions such that the complexity could
be controlled by a single parameter. In the limit of the lowest possible complexity, the
regression manifold contracts to a single point (usually the mean of the data), and the
solution can be computed trivially.

For UKR models, this scheme can easily be applied by utilizing the regularization
parameters of sections 4.3.1 and 4.3.2: a density constraint ∀i p(xi) ≥ K(0) forces all
latent variables onto the same location, as does an extension constraint of the form
∀i ‖xi‖ ≤ r = 0. Similarly, also a penalty term based on extension (4.31) or density
(4.30) enforces the contraction of the manifold to a single point, if only the pre-factor
λ is large enough.

In the original publication of UKR (Meinicke et al., 2005), the homotopy-based op-
timization approach was described as the sequential optimization of UKR models with
decreasing thresholds η for the density constraint in (4.32). In particular, if one wishes
to fit a UKR model with automatic LOO-CV regularization, one sequentially solves

Xm = arg min
X

Rcv(X) , ∀i p(xi) ≥ ηmK(0) (4.53)

for m = 1 . . .M and a decreasing series of thresholds η1 > η2 > · · · > ηM−1 > ηM =
0. The result of the m-th optimization procedure is used as the starting point for
the subsequent problem, and the last “dummy” threshold ηM = 0 makes sure that

4 In the clustering context, this limit is given by a completely fuzzy assignment, that is, all data points
belong to all clusters equally. Then, all cluster centers have to move to the same position, which for
a minimal quantization error has to be the mean of the data. Please note that a similar scheme was
also applied for learning the “fish bowl” with the PSOM+ (Sec. 3.5). There, the easily accessible
minimum of the most smooth function was the PCA solution.
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actually only LOO-CV determines the complexity of the manifold. In this way, the
model selection of UKR is still automatic even if intermediate thresholds ηi have to be
specified – the latter may influence which minimum of the objective function is found,
but they do not have a conceptual influence on the complexity of the model.

From the above considerations, it is clear that also extension constraints (e.g. with
an increasing radius r) and penalty terms (with decreasing pre-factors) can be utilized
for the homotopy-based optimization. Actually, if for some reason the final model
should not be regularized by LOO-CV, but for example by a penalty term based on the
extension of latent space, it is only natural to choose the homotopy method accordingly,
i.e. to use the same penalty with higher pre-factors in the homotopy steps.

Please note that the UKR homotopy procedure can not start exactly from a maximally
contracted manifold, where all latent variables are equal. In this case, the gradient is
zero5, and so a gradient-based approach would be immediately stuck.

4.4.4. Projection of new data

In contrast to PCA (Sec. 2.2) or auto-encoder MLPs (Sec. 2.3), UKR does not feature
an explicit functional model for mapping a new data vector y into the lower dimensional
latent space. Rather, this mapping x = g(y) is implicitly defined by the projection of
y onto the UKR manifold M, that is, one has to solve the optimization problem

x∗ = arg min
x

‖y − f(x;X)‖2 subject to x ∈ X . (4.54)

Here, x∗ denotes the optimal latent space coordinate, so the projection (the element of
M closest to y) is given by f(x∗;X), and the projection error is E = ‖y − f(x∗;X)‖2.

For this, however, we need a suitably defined domain X . If X was already specified as
part of the regularization (e.g. by an extension or a density constraint), it is of course
natural to keep that specification. Otherwise, in case of regularization by LOO-CV or
penalty terms, one should in hindsight set a threshold parameter η for the density in
latent space, yielding the domain

X = {x | p(x) ≥ ηK(0)}, (4.55)

where a possible threshold is given by

η =
1

K(0)
min

i
p(xi). (4.56)

This makes sure that all latent variables xi of the training data lie within X , and that
the regression function is only evaluated at positions x that are actually supported by
the data. In case of a one-dimensional latent space, an alternative simple choice of a
domain is the interval spanned by the smallest and largest latent variable.

Please note that in contrast to minimizing the full UKR objective function (4.26) or
its LOO-CV variant (4.34), the optimization problem (4.54) can favorably be handled
by a constrained nonlinear least squares algorithm. Here, the involved Jacobian matrix
has only d× q elements and the gradient of the density constraint has only q elements.

5This is most easily understood from looking at (4.42).
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4.4.5. Summary of the procedure

In the following we summarize the overall optimization scheme for learning of the UKR
model. We hereby restrict ourselves to the default case of automatic regularization via
LOO-CV.

1. Initial candidates: Provide a set of (n+1) candidate solutions X̂i
init, i = 1 . . . n+1,

including n embeddings of a nonlinear spectral method for different neighborhood
parameters and a PCA solution.

2. Scale optimization: Find optimal scale factors si
opt according to

si
opt = arg min

s
Rcv(diag(s)X̂i

init),

and set Xi
init = diag(si

opt)X̂
i
init (cf. eq. 4.51).

3. Candidate selection: Pick the best candidate Xinit = Xk
init according to

k = arg min
i
Rcv(X

i
init).

Please note that in this step actually no computations are necessary, if the CV-
errors resulting from the scale optimization have been stored for all candidates.

4. Homotopy method: If Xinit corresponds to the scaled PCA solution, then apply
the homotopy method as described in section 4.4.3. In particular, for a sequence
of M decreasing density thresholds η1 > η2 > · · · > ηM = 0 solve

Xm = arg min
X

Rcv(X) , ∀i p(xi) ≥ ηmK(0) , m = 1 . . .M.

Set the final set of latent variables to the last result XM .

5. CV-error minimization: If in step 3) a particular nonlinear manifold model pro-
vides the best candidate solution, assume that this solution is close enough to the
optimal manifold. Therefore, starting with the scaled coordinates Xinit, directly
minimize the CV-error

Xfinal = arg min
X

Rcv(X).

6. Density threshold: Select final density threshold according to

η =
1

K(0)
min

i
p(xi;X).

Please note that this step is only necessary if new data should be projected onto
the manifold, or if samples should be taken from the manifold (by generating
random latent position x ∈ X and evaluating f(x;X)).
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4.5. Feature space variant

As we have seen in section 1.5.4, the “kernel trick” is a convenient tool to derive possibly
powerful variants of any algorithm which can be expressed in terms of inner products
between the data vectors. In order to derive a feature space variant of UKR, we have
to rewrite the reconstruction error (4.26) as

R(X) =
1

N
‖Y − YB(X)‖2

F =
1

N
‖YB̄‖2

F =
1

N
tr(B̄TYTYB̄) =

1

N
tr(B̄TGB̄), (4.57)

where we used the abbreviation B̄ = B(X) − I, and G ≡ YTY is the Gram matrix of
the data with entries gij = yi · yj .

Naturally, also the partial derivatives can solely be computed in terms of inner prod-
ucts, which can be seen by differentiating (4.57)

∂R(X)

∂xij
=

1

N

∂

∂xij
tr(B̄TGB̄) =

2

N
tr

(

B̄TG
∂B

∂xij

)

, (4.58)

or alternatively by looking at the definition (4.50) of the helper matrix

M = YT (YB − Y) = (YTY)(B − I) = GB̄, (4.59)

which is used within the gradient calculation.
In this form, the computational effort of evaluating the objective function and its

gradient is dominated by the matrix-matrix multiplication GB̄, which is an O(N3)
operation, in contrast to 2 matrix-matrix multiplications with effort O(dN2). Therefore,
in case of very high-dimensional data spaces IRd and relatively small training sets N <
2d, using this formulation actually reduces the computational cost.

Replacing the dot product with a Mercer kernel k(yi,yj) yields an implicit mapping
Φ(·) from data space into some feature space F , where dot products between feature
space images can be expressed in terms of the Mercer kernel. The Gram matrix G is
hereby replaced by a kernel matrix K(Y) with elements

kij = k(yi,yj) = 〈Φ(yi),Φ(yj)〉. (4.60)

With the replacement G → K(Y) alone, the resulting feature space UKR algorithm
can be utilized to fit an abstract manifold to the feature space images Φ(yi). All
aforementioned methods for complexity control, most notably LOO-CV, can be applied
to the feature space variant without any changes.

A drawback of the feature space variant remains: Because the UKR function in a
kernel feature space takes the form

f(x;X) =
∑

i

Φ(yi)bi(x;X), (4.61)

in general the points of the UKR manifold in feature space cannot be given explicitly.
Although several methods that can map feature space vectors back to data space have
been proposed (see e.g. Bakir, Weston, and Schölkopf, 2003 and Kwok and Tsang,
2002), in the general case where an exact pre-image does not exist these methods can
only yield an approximation.
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Fortunately, in applications where only dot products between (4.61) and other feature
space elements are needed, an explicit computation of the mapping is not necessary.
Here one may compute a linear combination of dot products, instead of a dot product
with a linear combination:

〈Φ(y), f(x;X)〉 =

〈

Φ(y),
∑

i

Φ(yi)bi(x;X)

〉

=
∑

i

〈Φ(y),Φ(yi)〉 bi(x;X)

=
∑

i

k(y,yi)bi(x;X). (4.62)

Please note that with the help of this trick also distances in feature space can be calcu-
lated, e.g. the distance between a feature space image Φ(y) and a point f(x;X) on the
UKR manifold:

‖Φ(y) − f(x;X)‖2 = 〈Φ(y) − f(x;X),Φ(y) − f(x;X)〉

=

〈

Φ(y) −
∑

i

Φ(yi)bi(x),Φ(y) −
∑

j

Φ(yj)bj(x)

〉

= 〈Φ(y),Φ(y)〉 − 2
∑

i

〈Φ(y),Φ(yi)〉 bi(x)

+
∑

i,j

〈Φ(yi),Φ(yj)〉 bi(x)bj(x). (4.63)

If we now replace the feature space dot products by kernel functions, we get

‖Φ(y) − f(x;X)‖2 = k(y,y) − 2
∑

i

k(y,yi)bi(x) +
∑

i,j

k(yi,yj)bi(x)bj(x)

= k(y,y) − 2
∑

i

k(y,yi)bi(x) + bT (x)K(Y)b(x). (4.64)

Feature space UKR can for instance be utilized to visualize the classification boundary
of a kernel-based support vector machine (SVM), where additional kernel parameters
have already be chosen within the training procedure of the SVM. As another example,
with the help of string or tree kernels (Vishwanathan and Smola, 2003) UKR could be
utilized to fit manifolds to structured data, again with the possibility to embed the data
in a 2-D latent space for visualization purposes.

Moreover, feature space UKR can also be applied if special metrics beyond the usual
L2 distance are desired for measuring the distance (the loss) between the data vectors
and their reconstructions on the manifold. In a supervised setting, the definition of
Mercer kernels on the basis of loss functions has been proposed by Weston, Chapelle,
Elisseeff, Schölkopf, and Vapnik (2003). In the following, we derive a kernel that im-
plicitly measures distances by the L1-norm.

4.5.1. The L1-norm kernel

If the Euclidean norm does not provide an adequate distance metrics for the data at
hand, often because of a too large influence of outliers, it can be beneficial to measure
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4.5. Feature space variant

L1-distances instead. UKR is explicitly based on the Euclidean norm, but by means
of the kernel trick one can nonetheless effectively work with distances based on the
L1-norm. Defining a kernel function

k(y,y′) =
1

2

(
‖y‖1 + ‖y′‖1 − ‖y − y′‖1

)
(4.65)

yields a positive definite kernel matrix K(Y) = (k(yi,yj)) and thus implies existence
of a mapping Φ(y) into some feature space F . With this kernel, the usual L2-norm of
a feature space element is given by the L1-norm of the pre-image:

‖Φ(y)‖2
2 = 〈Φ(y),Φ(y)〉 = k(y,y)

=
1

2
(‖y‖1 + ‖y‖1 − ‖0‖1) = ‖y‖1. (4.66)

Accordingly, the L2 distance between two feature space images can be expressed by

‖Φ(y) − Φ(y′)‖2
2 =

〈
Φ(y) − Φ(y′),Φ(y) − Φ(y′)

〉

= k(y,y) − 2k(y,y′) + k(y′,y′)

= ‖y‖1 −
(
‖y‖1 + ‖y′‖1 − ‖y − y′‖1

)
+ ‖y′‖1

= ‖y − y′‖1. (4.67)

To show that our proposed kernel is indeed positive definite (pd), and thus a mapping
Φ(·) exists, we rely on theorems stated by Schölkopf and Smola (2002, Sec. 2.4).

1. It is known that k2(y,y
′) = −‖y−y′‖β

2 is conditionally positive definite (cpd) for
all values 0 ≤ β ≤ 2.

2. If we consider the special case of 1-D data and β = 1, then we get the cpd kernel

k1(y, y
′) = −|y − y′|. (4.68)

3. A sum of cpd kernels is again cpd, so we can construct a cpd kernel

k1(y,y
′) = −‖y − y′‖1 =

d∑

i=1

−|yi − y′i|. (4.69)

4. One can always construct a pd kernel k(·, ·) from a cpd kernel k̃(·, ·) in the following
way:

k(y,y′) =
1

2

(

k̃(y,y′) − k̃(y,y0) − k̃(y0,y
′) + k̃(y0,y0)

)

.

Setting the constant y0 = 0 and k̃ = k1 immediately yields the pd kernel

k(y,y′) =
1

2
(‖y‖1 + ‖y′‖1 − ‖y − y′‖1). (4.70)

In this proof, we made use of conditionally positive definite kernels (Schölkopf and
Smola, 2002), which are used to represent dissimilarities between data samples. This
class of kernels includes the commonly used positive definite Mercer kernels, and can
be utilized in kernel methods that are invariant under translation, e.g. Kernel PCA
(Sec. 2.2.3). The reconstruction error of feature space UKR is solely based on distances
between feature space elements and is therefore translation invariant, too.
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4.6. Experiments

In order to illustrate the proposed learning scheme of section 4.4 on practical examples,
we applied UKR on synthetic and real-world datasets. All experiments described here
were carried out on a Pentium IV with 1.8 GHz running Linux. We utilized our own
UKR toolbox for MATLAB6, which is publicly available at http://www.sklanke.de. The
toolbox includes C library functions for computation intensive parts.

The UKR optimization scheme proposed in 4.4 can easily incorporate spectral em-
bedding methods for initialization of the UKR parameters. For the exemplary results
presented here, we utilized the LLE algorithm (Sec. 2.8.2).

4.6.1. “Noisy spiral” data

To demonstrate the complete UKR learning scheme on a non-trivial toy example, we
fitted a UKR curve (q = 1) to a sample (N = 300) of the “noisy spiral” distribution
depicted in Fig. 4.3. The data was created by adding Gaussian noise of standard
deviation σ = 0.05 in both dimensions to a sample of a spiral with two windings, its
radius ranging from 0.2 to 1.2. As the latent density function of the UKR model, we
chose the Gaussian kernel, and as the regularization approach, we chose LOO-CV.

For initialization (cf. step 1 in section 4.4.5) we applied the LLE algorithm based on
K nearest neighbors. The smallest neighborhood parameter that leads to a connected
graph is K = 5. Starting from this setting, we varied K up to 14 neighbors, giving rise
to 9 different candidate sets of latent coordinates. As a tenth candidate, we used a PCA
solution. For each candidate, we determined the optimal scaling by a coarse grid search
followed by a direct search algorithm7, according to step 2 of our optimization scheme.
Figure 4.3 shows the resulting initializations and their corresponding CV-errors (4.34).
For each of the ten cases we have visualized the initial UKR-manifold by evaluating
the UKR function (4.18) on 500 regularly spaced points between the smallest and the
largest latent coordinate.

As described in step 3 of the UKR optimization scheme (Sec. 4.4.5), we selected
the candidate model with the lowest CV-error, which in this case was the scaled LLE
solution of neighborhood size K = 10. For the fine tuning (step 5) of the UKR model,
we further minimized the CV-error (4.34), this time varying not only the scale, but
the whole set of latent parameters X. For this task, we used the RPROP algorithm
(Riedmiller and Braun, 1993). Figure 4.4 shows how the UKR model is affected by
the final gradient-based optimization. Note that the CV-error as well as the visualized
manifold practically remains almost unchanged between 200 and 1000 RPROP steps.

The resulting curves in Fig. 4.4 might look undesirably unsmooth, but please keep
in mind that the whole optimization and model selection procedure ran completely
automatic. We did not provide the algorithm with any information about the level of
noise that is present in the data, and we did not adjust any parameter by hand.

Apart from judging only by the visual impression, we investigated numerically if the

6MATLAB is both a programming language and an integrated environment for numerical computa-
tions, please see http://www.mathworks.com.

7We made use of the MATLAB function fminsearch, which implements the Nelder-Mead simplex algo-
rithm.
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K=5, Rcv=0.2189 K=6, Rcv=0.6240 K=7, Rcv=0.0086 K=8, Rcv=0.0044 K=9, Rcv=0.0865

K=10, Rcv=0.0043 K=11, Rcv=0.0230 K=12, Rcv=0.0850 K=13, Rcv=0.0910 PCA, Rcv=0.2606

Figure 4.3: Fitting UKR curves to a “noisy spiral” sample. Below each plot, the size of the
LLE neighborhood (K) is given, as well as the CV-error after the scale optimization. The plot
in the lower right corner shows the manifold retrieved by a PCA initialization. The black curve
depicts the UKR manifold whereas the sample data is shown as dark gray dots. The initial
solution (as given by LLE or PCA) is plotted in light gray. Here we just connected the data
points in the order LLE/PCA places them in latent space, which corresponds to an infinite
scale of the latent variable. Note that the visually best solutions (K = 8, 10) correspond to the
smallest CV-errors.

method already tends to over-fitting in this example. In particular, we estimated the
expected reconstruction error for the UKR model in the different stages of the optimiza-
tion. To this end, we projected 3000 test data points sampled from the same “noisy
spiral” distribution onto the UKR manifold in the four stages. For these projections we
initialized the minimization problem

x̂ = arg min
x

‖y − f(x;X)‖ s.t. p(x) ≥ ηK(0) (4.71)

with the “nearest reconstruction” among the training data. That is, we chose that xi

among the 300 latent locations as an initial value which yields the nearest point f(xi;X)
on the manifold with respect to the given test point. The density threshold η used to
restrict the latent domain was selected by the heuristics described by step 6 in section
4.4.5. Table 4.1 shows the resulting errors for the different stages and illustrates that
both training error (CV) and test error are decreasing when fine-tuning the model.

No. of steps initialization 200 500 1000

CV-error 0.00430 0.00192 0.00185 0.00181

Proj. error 0.00289 0.00288 0.00258 0.00247

Table 4.1: Mean error for projecting 3000 test points onto the “noisy spiral” UKR manifold

In addition to fitting a UKR model to the “noisy spiral” dataset, we also utilized
the K-segments algorithm from Sec. 2.5.3 for this task. That algorithm requires to
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Initialization:
Rcv = 0.00430

after 200 steps:
Rcv = 0.00192

after 500 steps:
Rcv = 0.00185

after 1000 steps:
Rcv = 0.00181

Figure 4.4: Gradient-based optimization of the UKR curve on the “noisy spiral” example.
The shape of the UKR manifold and the corresponding CV-error is depicted after initialization
based on the best scaled LLE solution (K=10) as well as after fine-tuning by 200, 500 and 1000
RPROP steps.

set three parameters (maximum number of segments and two penalty factors), but it
provides only little guidance how to select these. We tried some parameter settings by
hand, and plotted the resulting8 curves in Fig. 4.5. As can be seen, selecting successful
parameters for this problem is quite hard, which is why we would like to stress again
the huge advantage of the automatic model selection in UKR. In this “noisy spiral”
experiment, certainly most of the credit for unwinding the underlying structure has to
be assigned to the LLE algorithm. However, looking back at Fig. 4.3, it is clear that an
ad-hoc choice of the neighborhood parameter would have probably failed. With UKR,
we have an automatic detection of the neighborhood parameter via LOO-CV. Moreover,
further fine-tuning of the model can help to correct small errors (local misplacements
of the latent variables) that may be present in the spectral embedding.

Kmax = 15, λ = 0.1 Kmax = 15, λ = 1 Kmax = 10, λ = 10 Kmax = 10, λ = 40 Kmax = 11, λ = 40

Figure 4.5: Some results of running the K-segments algorithm (Sec. 2.5.3) on our “noisy
spiral” example. Two of the parameters of the algorithm are depicted below the plots, namely
the maximal number of segments and a factor for penalizing sharp angles. The smoothing
parameter σ seemed to have no effect, and was kept fixed at 0.1.

4.6.2. Homotopy and penalty terms: S-shaped triangle data

In this experiment, we would like to shed light on the homotopy method for training
UKR models. At the same time, we aim at illustrating the difference between the regu-

8Again, we made use of the MATLAB code written by J. J. Verbeek, which is available at
http://carol.wins.uva.nl/∼jverbeek/ (Mar. 2007).
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larization approaches based on latent space extension and density (Sec. 4.3.1 and 4.3.2).
We already stated that the density-based approach does not induce a certain shape of
the distribution of latent variables, so for this experiment we chose a synthetic dataset
with a characteristic shape, and investigated if this shape is recovered, or deformed.

In particular, we generated 1000 samples of a triangle in 2-D, which we then trans-
formed onto an S-shape in 3-D space. In addition, we added Gaussian noise with
standard deviation σ = 0.1. The MATLAB code for generating our data is given in
Table 4.2, while the resulting dataset used in this experiment is depicted in Fig. 4.6.

function [Y,tt]=triangleS(N,sigma)
% Generate N samples of S-shaped triangle data with Gaussian noise (sigma)
t1 = sqrt(rand(1,N)); % aim at an even distribution within the triangle
t2 = t1.*(2*rand(1,N)-1);
x=1*sin(-1.5*pi*(2*t1-1));
y=2*t2;
z=2*sin(2.3*(2*t1-1));
Y=[x ; y; z]+sigma*randn(3,N); % combine coordinates and add noise
tt = [t1;t2];

Table 4.2: MATLAB code for generating our S-shaped triangle dataset.
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Figure 4.6: The S-shaped triangle dataset used in this experiment. Left: 1000 samples from
the underlying 2-D structure. Middle and right: two alternative views on the transformed data
with noise in 3-D. The gray level of the points corresponds to the generation parameter t1 (cf.
Table 4.2).

.

For simplicity, we again chose the Gaussian kernel, and calculated a PCA solution
as a starting point for the homotopy-based optimization. We then carried out a series
of homotopy steps with up to 500 RPROP steps each, where we minimized the sum of
the reconstruction error and a penalty term based either on density (4.33) or extension
(4.31). For the extension penalty, we chose the pre-factor in the k-th homotopy step as
λk = 0.7k, while for the density penalty we chose λk = 0.02 · 0.7k. The additional factor
0.02 was applied so that both penalties roughly have the same strength of effect (which
we determined experimentally). Figure 4.7 shows the resulting reconstruction errors at
the end of each homotopy step. We stopped the procedure as soon as the reconstruction
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4. Unsupervised Kernel Regression

error dropped below 0.03 at the end of a homotopy step, where the threshold was chosen
as dσ2 = 3 · 0.12. In this way, we explicitly made use of our knowledge about the noise
level. The error threshold was reached after step 12 for the density-based approach and
after step 16 for the extension-based approach.
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Figure 4.7: S-shaped triangle data: reconstruction errors of the UKR models at the end of
each homotopy step.

Some of the intermediate UKR models based on the density penalty are depicted
in Fig. 4.8, where the original data {yi} and its UKR reconstructions {f(xi;X)}, as
well as the corresponding latent variables are plotted. Note how the manifold slowly
unwinds in the first steps, and how well the triangle shape of the underlying distribution
is recovered. In contrast to this, Fig. 4.9 illustrates the results of using the extension
penalty term (4.31), which favors a “rounded” shape of the distribution of the latent
variables and here leads to a strong bending of one of the corners of the underlying
triangle. Fortunately, the UKR reconstructions {f(xi;X)} are not affected too strongly
by this misbehavior, but the effect is visible in the 3-D plots, too. For this problem, the
density based penalty clearly is the better choice.

It should be noted that our stopping rule is quite coarse, and that it cannot be
applied in the general case where the noise level is unknown. Then, one should rather
regularize the model automatically by utilizing LOO-CV, which can be combined with
the two penalty terms for homotopy steps as well. We actually did this, too, and noted
the same effect of a “bended corner” for the extension-based penalty, which was to be
expected since in early steps with high pre-factors the penalty terms have much more
influence than a LOO-CV regularization. On account of the focus of this experiment,
however, details on the results of utilizing LOO-CV on this dataset are omitted.
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Figure 4.8: Intermediate and final solutions for the density-penalized UKR models of the
S-shaped triangle dataset. In the 3-D plots, the original data {yi} are depicted by light gray
dots, while the UKR reconstructions {f(xi;X)} are drawn in black. Below each 3-D plot, a 2-D
plot depicts the corresponding latent variables {xi}, where the color encodes one of the original
generation parameters (cf. the left plot of Fig. 4.6). Please also note the varying scale of the
latent variables (see the axes of the 2-D plots). From upper left to lower right, the homotopy
steps k = 1, 2, 3, 4, 6, 8, 10 and finally 12 are shown.
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Figure 4.9: Intermediate and final solutions for the extension-penalized UKR models of the
S-shaped triangle dataset. The plots are drawn in the same way as in Fig. 4.8. However, here
we depicted the homotopy steps k = 1, 2, 3, 4, 6, 9, 12 and finally 16.
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4.6.3. USPS handwritten digits

In this experiment, we applied UKR to the problem of learning suitable manifold rep-
resentations for handwritten digit data. In particular we used the USPS digits dataset
(see e.g. Schölkopf and Smola, 2002), which contains a total of 7291 gray-scale images
of size 16x16 divided into 10 classes. Firstly, for visualization purposes, we fitted a
2-D manifold to the USPS subset representing the digit “2”, which left us at 731 data
vectors with 256 dimensions.

To demonstrate UKR’s flexibility with respect to the choice of the latent kernel func-
tions and to show how a finite support kernel can improve computational efficiency, we
performed this part of the experiment with both the Gaussian kernel and the Quartic
kernel (cf. Eq. 4.15 and 4.46). The resulting sparse structure of B(X) can lead to
a significant performance gain with respect to evaluation of the error function and its
gradient and is therefore particularly useful in combination with large datasets.

For fitting the model, we followed the parameter optimization scheme described in
section 4.4.5. That is, we first calculated the PCA solution and several LLE solutions
for a broad range of neighborhood sizes (K = 2, 3, . . . , 21). Next, as in our “noisy spiral”
experiment, we optimized the scale of these initialization candidates with respect to the
CV-error (4.34), again utilizing a direct search method.

As before, in order to select the best candidate among our set of scaled LLE and
PCA solutions, we compared the CV-errors of the different candidates. Fig. 4.10 shows
these errors for both the Quartic and the Gaussian kernel. Note that both error curves
are close and that the corresponding UKR models share the LLE solution with K = 12
nearest neighbors as the best initialization candidate (of course, each uses its own scale).
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Figure 4.10: CV-errors for the different LLE and PCA solutions

As a last training step, we performed 500 RPROP steps for minimizing the CV-error
with respect to the latent variables itself. At this stage, the error dropped from 83.53 to
50.90 for the Gaussian-based UKR model and from 83.62 to 51.52 for the model using
the Quartic kernel in latent space.

Figure 4.11(a,b) shows the resulting latent coordinates and the corresponding density.
In order to create Fig. 4.11(c,d), we sampled the latent space on a regular grid and
evaluated the UKR regression function (4.18) as well as the latent density on every
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4. Unsupervised Kernel Regression

node. We displayed the gray-scale images corresponding to the UKR function value and
additionally scaled their intensity by the latent density at the specific grid coordinates.

a) Latent coord. and density (Gaussian kernel) b) Latent coord. and density (Quartic kernel)

c) Sampled manifold (Gaussian kernel) d) Sampled manifold (Quartic kernel)

Figure 4.11: Latent coordinates, densities and sampled manifolds of both the Gaussian and
Quartic kernel based UKR model

Note that it is possible to assign meaning to the axes in the sampled manifold plots:
from left to right, the digits loose their lower left bow and look more and more like a
“Z”. From top to bottom, the digits get thinner and flatter.

While fitting UKR models with both the Gaussian and the Quartic kernel led to
similar results with respect to CV-errors and visualization, the difference in terms of
CPU time is remarkable. We measured the time needed to perform 500 RPROP steps
on a Linux PC with a Pentium IV processor running at 1.8 GHz and 1 GB RAM. Since
the number of dimensions (256) is nearly half as big as the number of data (731), we
performed this test using both normal data space UKR and feature space UKR (Sec.
4.5) with the trivial dot product kernel, that is, with a pre-calculated Gram matrix
G = YTY. The resulting CPU times (averaged across two very close test runs) can be
found in Table 4.3.
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4.6. Experiments

Method \ Kernel Gaussian Quartic

Data Space UKR 753 s 30 s

Feature Space UKR 1085 s 25 s

Table 4.3: CPU time for 500 RPROP steps on the digit “2” dataset

UKR digit classifier

In a second experiment on the USPS data, we fitted UKR models for higher dimension-
alities of the latent space (q = 5 . . . 12) to each of the 10 digit subsets. For efficiency
reasons, here we only used the Quartic kernel. Differently from the case q = 2, we noted
that for higher dimensions LLE does not provide initial solutions that yield a lower CV-
error than a coarse PCA initialization. Therefore, according to the scheme from Sec.
4.4.5, we applied the homotopy method, which we here based on density constraints.
In order to account for differently sized digit subsets, we used the following 7 threshold
values

η =
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where N denotes the size of the respective subset, e.g. 731 for the “2”. We initialized the
UKR models with a PCA solution scaled down to a variance of 0.01, and for each of the
seven homotopy steps we carried out 100 RPROP steps in combination with a barrier
function to realize the density constraint. Finally, we minimized the pure CV-error with
further 300 RPROP steps. For any given value of q, fitting 10 UKR manifolds to the
10 subsets – one manifold per digit class – roughly took an hour of computation time.
Here, the increased computational effort is due to a lesser sparseness of the matrix B

of basis functions in the earlier homotopy stages.

We then determined suitable “hindsight” thresholds η with the heuristics from (4.56),
and projected the test set of the USPS data, containing 2007 samples in total, onto the 10
different manifolds. For each element from the test set, we determined the manifold with
the smallest projection error, assigned it the corresponding class label, and compared
that label with the original label from the dataset. In order to demonstrate the feature
space variant of UKR with a non-trivial kernel, we repeated this experiment using the
polynomial kernel of degree 3, that is

k(y,y′) = (y · y′)3, (4.72)

as a replacement of the standard dot product. The distances between the feature space
images of the test data and the UKR manifold were calculated as described in Sec. 4.5.

Table 4.4 reports the resulting error rates. Note that the best results were yielded
for q = 10 and q = 9 for the standard UKR models, and those based on the polyno-
mial kernel, respectively. Interestingly, for smaller values of q, the feature space model
outperformed the standard UKR model, and vice versa. The best error rate (3.94%)
is comparable to the results of other classification methods as reported by Schölkopf
and Smola (2002), e.g. Kernel Fisher Discriminants (3.7%), Support Vector machines
(4.0%) and Kernel PCA (4.0%). A simple nearest neighbor classifier reaches an error
rate of 5.6%.
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Method q = 5 q = 6 q = 7 q = 8 q = 9 q = 10 q = 11 q = 12

Data Space UKR 4.78 4.78 4.53 4.53 4.19 3.94 3.99 4.19

Polynomial Kernel 4.43 4.58 4.19 4.24 4.14 4.29 4.24 4.33

Table 4.4: Error rates (in percent) for the UKR digit classifier for different dimensions of the
latent space.

4.6.4. ”Oil flow” data

For a forth and last experiment in this section, we used the “oil flow” data set, to which
also the Generative Topographic Mapping (GTM, Sec. 2.6.1) and the Regularized Prin-
cipal Manifolds (RPM, Sec. 2.6.2) have been applied. The corresponding results have
been published by Bishop et al. (1998b) and Smola et al. (2001). The dataset consists
of 12-dimensional (labeled) observations, each taking on one of three possible labels that
indicate different geometric configurations inside an oil pipeline. It is subdivided into a
training set, a validation set and a test set containing 1000 examples each. The intrinsic
dimensionality of this dataset is known to be q = 2 (Bishop et al., 1998b).

Since the dataset is fairly clustered (cf. Fig. 4.12), here LLE performs poorly. As we
have described in Sec. 2.8, for a spectral method to return reasonable results, one has
to make sure that the neighborhood graph associated with respect to a neighborhood
parameter K is connected. For the “oil flow” dataset this is the case for K ≥ 46. Now,
within neighborhoods of that size the real local properties of the data are mostly hidden,
so one would hardly expect to retrieve a good mapping. As a result, all LLE solutions
that we tested (we used K = 46, 51, 56 . . . 101) led to substantially larger CV-errors
(4.34) than a simple PCA solution. According to our optimization scheme from Sec.
4.4.5, we therefore chose the PCA solution as an initialization and used a homotopy
based approach for optimization in order to avoid poor local minima.

A very similar experiment on this data can be found in the original publication of
UKR (Meinicke et al., 2005), but here we applied a slightly different homotopy scheme
and also used a different density kernel. In particular, we chose the Quartic kernel for
computational efficiency, and we based the homotopy approach on a series of box con-
straints. Through this, we effectively force the latent variables to lie within a rectangular
region. This does not necessarily match the underlying structure of the data, but for
visualization purposes, a rectangularly shaped projection space favorably matches the
typical output device (i.e. computer screen). Moreover, the latent space of the GTM,
the RPM and also the PSOM+ is rectangular, too, so with our choice the reader can
more easily compare the 2-D projections.

As already stated, within the homotopy steps we used a series of box constraints for
the domain of the latent variables: starting from a box X = [−0.5; 0.5]2, we slowly
increased the side length of the square by 2 in each homotopy step, that is, e.g. the
second steps features a bound constraint with the box [−1.5; 1.5]2. Within the steps, we
minimized the CV-error (4.34) by up to 1000 steps of the RPROP algorithm, which we
modified to take the box constraints into account9. We stopped the homotopy procedure

9Of all constrained optimization problems, box constraints are among the most easily implemented.
One can easily clip the coordinates, determine which constraints are binding, and modify the search
space accordingly.
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as soon as the number of binding constraints dropped to zero, that is, in the last
homotopy step we effectively minimized the unconstrained CV-error. For initialization,
we scaled the PCA solution such that it fit within the initial box [−0.5; 0.5]2.

To demonstrate UKR’s ability to work with a different metrics, we fitted two manifolds
to the training set of the “oil flow” dataset. One model was based on standard (data
space) UKR, while the other model utilized feature space UKR with the L1-kernel
(4.65) proposed in section 4.5.1. For the latter case, we replaced PCA by Kernel PCA
for initialization.

Figure 4.12 shows the results of PCA and Kernel PCA with the L1-kernel, respec-
tively. The data points are depicted by different symbols corresponding to their class
membership. Please note that both PCA and Kernel PCA fail to separate the three
classes within a 2-D projection. The results of applying UKR are shown in Fig. 4.13,
which depicts an intermediate step (latent variables constrained to the box [−4.5; 4.5]2)
as well as the final UKR models with no binding constraints (automatically regular-
ized by LOO-CV). Note that the separation is much improved, and that the different
metrics have an effect on which classes are contiguous. Also a comparison with the
2-D projections reported by Bishop et al. (1998b) and Smola et al. (2001), regarding
the separation and overlap of the different classes, seems slightly in favor of the UKR
models.

a) PCA b) Kernel PCA (L1)

Figure 4.12: Latent coordinates (2-D projections) of the “oil flow” dataset retrieved by PCA
(L2) and Kernel PCA utilizing the L1-norm kernel.

As another comparison, we applied the PSOM+ manifold learning scheme described in
3.5 to the training subset of the “oil flow” data. In particular, we utilized a Chebyshev-
spaced 12x12 grid and initialized the PSOM+ weights so that the initial manifold cor-
responds to the PCA solution. Then, we trained the PSOM+ model with alternating
steps of projection and weight adaption, where we again slowly relaxed the pre-factor of
the roughness penalty, thus effectively using a homotopy-based optimization approach.
For each homotopy step, we carried out 5 projection/adaption steps. The schedule for
decreasing the pre-factor λ was chosen as λk = 10 · 0.8k, where k denotes the homotopy
step counter.
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c) Final UKR model (L2) d) Final feature space UKR model (L1)

Figure 4.13: Latent coordinates of “oil flow” dataset retrieved by UKR. Plots a) and c)
correspond to standard data space UKR, whereas plots b) and d) belong to feature space UKR
with the L1-kernel.

For selecting the number of steps, or alternatively the final λ, we projected the test
subset of the “oil flow” data onto the PSOM+ manifold after each homotopy step, and
quit the optimization procedure as soon as the test projection error increased. This
was the case in the 42th step. Correspondingly, we chose k = 41 as the final PSOM+

model, which is depicted in Fig. 4.14, as well as an intermediate solution (k = 20). The
projections yielded by the PSOM+ show quite large margins between some clusters of
data points, but on the other hand some clusters overlap unfavorably (see the upper
left corner of the plots in Fig. 4.14).
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a) Intermediate PSOM model (k = 20) b) Final PSOM model (k = 41)

Figure 4.14: Latent coordinates (2-D projections) of the “oil flow” dataset retrieved by the
PSOM+ algorithm.

Regarding the computational effort, the advantage is clearly on the side of the PSOM+:
whereas training the UKR manifolds took 530 and 1720 seconds for the standard
and feature space models, respectively, the PSOM+ was trained (roughly 200 projec-
tion/adaption cycles) in only 128 seconds. However, please note that our choice of the
12x12 grid was ad-hoc, and that in general various different settings should be com-
pared. Then, the total effort of finding a PSOM+ model quickly becomes higher than
training one automatically selected UKR model.

4.7. Discussion

In this chapter, we presented the UKR algorithm as an alternative approach to learning
of principal manifolds. As compared with other approaches to principal curves and
surfaces, UKR offers a practical way to cope with the model selection problem, since
it allows us to include leave-one-out cross-validation (LOO-CV) without any additional
computational cost.

Furthermore, with its non-parametric heritage from classical kernel regression, UKR
obviates the need for specifying the function model beyond simply choosing a density
kernel. In contrast to this, with other approaches (e.g. GTM, Sec. 2.6.1 and RPM,
Sec. 2.6.2) one has to select a set of basis functions that cover the latent space in a
suitable way (e.g. one basis function per node of a grid). Therefore, with UKR also
higher-dimensional latent spaces can be realized with ease (cf. the USPS digit classifier,
Sec. 4.6.3).

Speaking of the dimensionality q of latent space, UKR by itself provides no guidance
for selecting that quantity. If no prior knowledge is available, and the application
does not dictate a certain dimensionality (e.g. q = 2 for visualization purposes), one
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should therefore first utilize other methods for estimating q. A comparison of relevant
algorithms and a new approach has recently been published by Hein and Audibert
(2005).

As another point in favor of UKR, no particular shape of the distribution in latent
space has to be assumed, which yields great flexibility with respect to the approximation
of a general data space distribution. In contrast, again, specifying a grid topology as in
case of the SOM, the PSOM, or the GTM, does not necessarily match the shape of the
underlying manifold well. Still, in applications where a rectangularly shaped latent space
is advantageous, the UKR objective function can be combined with suitable penalty
terms or extension constraints, and thus the training of the model can be influenced in
that direction.

The computational effort of UKR is quite high: for standard UKR it is quadratic
in the number of training samples, and it is even cubic in case of feature space UKR.
Furthermore, the reconstruction error (4.26) and the CV-error (4.34) are highly non-
convex, complicating optimization issues even more. Fortunately, it is very easy to
initialize UKR models by means of nonlinear spectral embedding methods (cf. Sec.
4.4.2), because the latent variables {xi} themselves are the only parameters of the UKR
model. As demonstrated experimentally, UKR can even be used to automatically select
the best setting of the neighborhood parameter on which any spectral method crucially
depends.

Finally, by means of the kernel trick UKR can be utilized to fit principal manifolds
in abstract feature spaces, possibly allowing us to work with data that have no natural
representation within a usual vector space IRd. Alternatively, feature space UKR may
be useful if higher-order features of the data are of interest, as was demonstrated by the
USPS digit classification experiment.
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Regression

In this chapter, we present several extensions to the original formulation of UKR. Along
with the derivation of each extension, we will demonstrate its benefits experimentally.
We begin with the inclusion of general loss functions into the UKR framework, re-
placing the squared Euclidean distance between training data and its reconstruction as
an error measure. Then, we will generalize the leave-one-out method to leave-K-out
cross-validation, which helps to reduce the variance of the UKR models, and leads to
smoother manifolds as compared to LOO-CV. After that, we show how to reduce the
computational effort of UKR by presenting a “landmark variant” similar in spirit to the
landmark variants of some spectral methods (Sec. 2.8.1 and 2.8.3) and also to CCA and
CDA (Sec. 2.7.3 and 2.7.4). Additionally, we carry the explicit smoothness measure
from the PSOM+ (Sec. 3.3.1) over to UKR. Finally, we present Unsupervised Local
Polynomial Regression, which generalizes UKR by replacing the underlying Nadaraya-
Watson estimator with a local polynomial regression estimator.

5.1. UKR with general loss functions

In this section, we extend UKR by introducing general cost functions1, which allows us
to make the algorithm more robust towards outliers in the data or to tune the method
to specific noise models. As an example, consider a robotic hand grasping an object in
different orientations, while one measures the output of a possibly large number of tactile
sensors. The resulting dataset should then have an intrinsic structure and lie on or near
a manifold embedded in a high dimensional space. To retrieve this manifold, it should
be beneficial to ignore small errors in the dataset, namely the (known) inaccuracy of
the tactile sensors. We can do exactly this by using Vapnik’s ǫ-insensitive loss function
with a tuned error threshold to penalize the distance between an observed data point
and its reconstruction on the UKR manifold.

In the domain of supervised learning (mainly in function approximation or regression),
the use of other cost functions besides the squared Euclidean error is common practice.
Support Vector Machines for classification have originally been formulated with the ǫ-
insensitive loss (Vapnik, 1998), and also in Support Vector Regression it is common
practice to replace the L2 error by a more general cost function (Smola, Schölkopf, and
Müller, 1998b), either because it complies with a certain noise model (e.g. L1 loss for
Laplacian noise) or because of application specific needs (e.g. ǫ-insensitive loss to match
tolerance levels, but also to admit sparse solutions). Also classical kernel regression has
been used in conjunction with general cost functions, for example with Huber’s robust

1We use the terms “cost functions” and “loss functions” interchangeably.
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loss function (Huber, 1981; Härdle, 1990), or with the L1 loss (Wang and Scott, 1994).
Utilizing robust loss functions for nonparametric regression in conjunction with cross-
validation has been investigated by Leung (2005).

In unsupervised learning, the application of cost functions other than the standard
Euclidean error is rather rare. The formulation of the Regularized Principal Manifolds
includes a general loss function, but the experiments of Smola et al. (2001) are based
only on the squared Euclidean loss. The ǫ-insensitive loss has been successfully used
with Hebbian and anti-Hebbian learning rules by Fyfe and MacDonald (2002). Recently,
Alzate and Suykens (2005) investigated the combination of general loss functions with
Kernel PCA.

This section is organized as follows: At first we present the loss functions that will be
utilized later on, and then we show how to include these within the UKR framework.
After that, we introduce a specialized optimization scheme for ǫ-insensitive UKR models.
As the main part of this section, we then demonstrate the use of Huber’s loss function
and the ǫ-insensitive loss in a series of experiments. Finally, we briefly discuss the
relation to feature space UKR, and we conclude the section with a summary on how
our extension compares to the standard UKR algorithm.

Please note that the ideas and results presented in this section have already been
published (Klanke and Ritter, 2006b, 2007).

5.1.1. Loss functions used in this work

The standard squared loss

The standard squared loss L2(r) = r2 or L2(r) = ‖r‖2 has already been used throughout
this thesis. It is popular mainly because of its analytic simplicity and its correspondence
to a Gaussian distribution of the errors, but it has the drawback that in a sum of loss
contributions

∑

i L2(ri) a single large error or residual r can easily dominate the whole
term. Therefore, utilizing the squared loss can yield suboptimal results if outliers are
present in the data.

Huber’s robust loss function

To make a regression model more robust against outliers, it is often beneficial to penalize
residual errors r with the L1 loss function, that is L1(r) = |r|. Since this function is not
differentiable at r = 0, it can not be utilized within gradient-based learning algorithms
(e.g. training of a UKR model). However, a differentiable loss function with the same
asymptotic characteristics has been introduced by Huber (1981):

LH(r) =

{
1
2δ
r2 |r| < δ

|r| − 1
2δ |r| ≥ δ

(5.1)

The tradeoff point δ between the L1 and L2 characteristics can be adjusted for a spe-
cific application. As a multivariate generalization, one may use LH(r) =

∑

i LH(ri),
optionally with different thresholds δ per dimension. Please see the middle plot of Fig.
5.1 for a visualization of Huber’s loss function for δ = 1. For the experiments in this
section, we always used δ = 0.01, which yields a nearly pure L1 characteristics.
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The ǫ-insensitive loss function

In Support Vector Regression a popular choice is the ǫ-insensitive loss function

lǫ(r) =

{
0 |r| < ǫ
|r| − ǫ |r| ≥ ǫ

(5.2)

which is not differentiable at |r| = ǫ. By squaring it (cf. the right plot of Fig. 5.1), we get
a once-differentiable variant which asymptotically behaves like the squared Euclidean
loss, but which does not penalize small residual errors. As a multi-variate generalization,
one can use either

Lǫ(r) =
∑

i

l2ǫ (ri), (5.3)

where the region of “cost-free” residuals has the form of a hyper-cube, or

Lǫ(r) = l2ǫ (‖r‖), (5.4)

where that cost-free region is a hyper-sphere with radius ǫ.

Utilizing one of these loss functions is a particularly good choice if one has information
about the range of noise which is present in the data, because then one can tune the
ǫ-threshold to that range.
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Figure 5.1: Comparison of loss functions used in this work. Left: standard L2 loss. Middle:
Huber’s loss for δ = 1 (black curve) and its “building blocks” (drawn gray). Right: ǫ-insensitive
loss (ǫ = 1) in its normal (gray) and squared form (black).

5.1.2. Including general loss functions with UKR

In order to apply the formalism of general cost functions for training UKR models, one
simply replaces the squared Euclidean norm in (4.26) by the general cost function L(·),
which yields

RL(X) =
1

N

∑

i

L (yi − f(xi;X)) =
1

N

∑

i

L(ri). (5.5)

Since UKR training involves gradient-based minimization, the function L(·) has to be
at least once differentiable (L ∈ C1). Please see appendix B for the calculation of the
gradient of (5.5) together with some remarks regarding the computational complexity.
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Depending on the choice of the loss function, one can still automatically regularize
the manifold with LOO-CV, that is, train the UKR model by minimizing the CV-error
measured with a general cost function:

RL,cv(X) =
1

N

∑

i

L(yi − f−i(xi;X)). (5.6)

However, as will be discussed in the following section, the ǫ-insensitive loss should not
be applied together with LOO-CV, but rather it requires a modified learning scheme.

5.1.3. Optimization scheme for the ǫ-insensitive loss

If the squared ǫ-insensitive loss is utilized within the objective function (5.5), the UKR
model is not attributed a cost as long as the reconstructions f(xi;X) lie within a cer-
tain volume element around the corresponding original data vectors yi. These volume
elements have either the form of a hyper-cube or a hyper-sphere, depending on which
multi-dimensional variant (5.3) or (5.4) is chosen.

Naturally, we would like to exploit this error tolerance in a way that the resulting
UKR manifold is smoother than a corresponding manifold without tolerance. As an un-
fortunate consequence, it is therefore not sensible to combine the squared ǫ-insensitive
loss with an automatic regularization via LOO-CV, since a wriggly and a smooth man-
ifold that both pass through the aforementioned volume elements do not differ in terms
of the UKR loss.

Thus, we are left with the regularization approaches from either section 4.3.1 or 4.3.2,
of which for simplicity only the first (based on the extension of latent space) will be
considered here. In principle we could add a regularization term penalizing the extension
of latent space (4.31), or we can try to solve the corresponding constrained optimization
problem (4.30), but either option requires the specification of a regularization parameter
in addition to specifying a suitable ǫ.

A better variant is revealed if we once again look to the field of Support Vector
Regression, where SVMs in their basic form are trained by solving the optimization
problem

minimize ‖w‖2 subject to |f(xi,w) − yi| < ǫ ∀i. (5.7)

A corresponding UKR optimization problem can be stated as

minimize
∑

i

‖xi‖2 subject to Lǫ(f(xi;X) − yi) = 0 ∀i, (5.8)

or, in a more compact notation and using Lǫ as the loss function in (5.5),

minimize ‖X‖2
F subject to RLǫ(X) = 0. (5.9)

In other words, we search the “smoothest” manifold (that of least possible latent ex-
tension) which passes through the ǫ-volume elements around each data vector. Thus,
we can regularize the UKR model by specifying a value for ǫ, which is geometrically
intuitive (as a criterion in the observed data space) and may even be pre-defined by the
application (e.g. as prior knowledge about the range of noise).
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We still have a problem to solve, since (5.9) might not have a solution for a given ǫ.
In Support Vector Regression, this is handled by the introduction of slack variables ξi,
which leads to the optimization problem2

minimize ‖w‖2 + C
∑

i

ξi subject to |f(xi,w) − yi| < ǫ+ ξi ∀i, (5.10)

where C balances between the rivaling goals of a maximally smooth function (smaller
w) and minimal (additional) errors ξi. We could introduce slack variables for UKR,
too, but then we would again have to specify an additional parameter (C).

In the UKR setting, a more practical solution is to assign different error thresholds
ǫi to each data vector (or even to each component of each data vector). For this, one
first fits a possibly unsmooth manifold to the data, which is automatically regularized
by LOO-CV. Then, one can measure the residual errors for each data vector, and use
these residuals ri by setting ǫi = max(|ri|, ǫ). This is a convenient tool for reducing the
influence of outliers and guarantees a valid starting point (namely the CV-regularized
UKR model) of the optimization problem (5.9).

The constrained optimization itself can for example be realized by using RLǫ(X) as
an external penalty function for solving a series of unconstrained optimization problems

minimize ‖X‖2
F + λRLǫ(X) (5.11)

with monotonously increasing values for λ (see e.g. S. S. Rao, 1978). Please note that
this does not introduce a new regularization parameter, since λ goes to infinity and as
such has no conceptual influence on the final model. However, a too fast schedule for
increasing λ can yield suboptimal solutions because of the complex nonlinear form of
the constraints.

In principle, we could also replace the extension criterion ‖X‖2
F by a term that favors

high densities in latent space, that is we could aim at maximizing the density subject
to the constraint RLǫ(X) = 0, e.g. by solving the problem (cf. Sec. 4.3.2)

minimize

(

−
∑

i

log p(xi)

)

+ λRLǫ(X). (5.12)

However, while we have seen in Sec. 4.6.2 that a density-based regularization is indif-
ferent towards the shape of the latent distribution, we do not advise to actually use a
density criterion here: with the constraints having a complex nonlinear form, utilizing
a non-convex objective function would only complicate numerical matters further.

5.1.4. Experiments

In this section, we demonstrate the UKR algorithm in conjunction with the loss functions
we described above. All experiments were carried out on a 1.8 GHz Pentium IV running
Linux, where we again used our own UKR toolbox for Matlab.

2In fact, to get linear constraints, one introduces two slack variables ξi and ξ∗i per data point.
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Noisy half circle

In our first experiment, we investigated the effect of employing Huber’s loss function
instead of the standard L2 loss. As the basis for this experiment, we chose a simple
“noisy half circle” toy dataset. While certainly not an impressive benchmark for curve
fitting, this dataset allowed us to vary the shape and level of added noise without having
to worry about bad local minima and complex initialization routines.

Firstly, we generated 100 datasets with 100 samples each, containing 1) Laplacian
(biexponential) noise, the distribution of which is given by

p(u) =
1

2σ
exp

(

−|u|
σ

)

(5.13)

and 2) Gaussian noise, for the 4 different noise levels σ = 0.25, 0.5, 0.75, 1. The
underlying half circle has a radius of r = 10. Figure 5.2 shows some examples of these
datasets.
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Figure 5.2: Examples of “noisy half circle” datasets, containing Laplacian noise (top row) and
Gaussian noise (bottom row). From left to right: σ = 0.25, σ = 0.5, σ = 0.75, σ = 1.

We then fitted UKR models based on the Quartic kernel to each dataset. In particular,
we used both the L2 loss and Huber’s loss, yielding in total 1600 models (100 datasets ×
4 noise levels × 2 noise shapes × 2 loss functions). As the tradeoff point within Huber’s
loss function (5.1), we chose δ = 0.01, resulting in an almost pure L1 characteristics.

For initialization of the UKR models, we calculated PCA solutions which we scaled
down to a variance of 1. Starting from this, we fitted the models by carrying out up
to 2000 RPROP steps (Riedmiller and Braun, 1993), minimizing the LOO-CV error
(5.6). These optimizations took 1.9 seconds per model on average (standard deviation
0.5 seconds).

In order to compare the UKR models resulting from the different loss functions, we
measured the mean distance between the UKR reconstructions and their projections
onto the underlying half circle, which in this case is simply given by

D̄ =
1

N

N∑

i=1

|̺i − 10| with ̺i = ‖f(xi;X)‖. (5.14)

Table 5.1 summarizes the results of this experiment. Note that the UKR models trained
with Huber’s loss function show worse results for small noise levels, but much better
results for higher noise levels as compared with the UKR models based on the L2 loss.
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5.1. UKR with general loss functions

The difference between the two loss functions is even more striking if one looks not
only at the data reconstructions, but on the complete UKR manifold (curve) and its
distance to the underlying half circle. For this, we sampled the regression function on
500 points evenly spaced between the smallest and largest latent variable. The results
are displayed in Table 5.2.

Gaussian noise org. data standard L2 loss Huber’s loss (≈ L1)

σ = 0.25 0.201 ± 0.016 0.081 ± 0.015 0.192 ± 0.027
σ = 0.50 0.401 ± 0.027 0.171 ± 0.036 0.222 ± 0.047
σ = 0.75 0.592 ± 0.047 0.314 ± 0.067 0.256 ± 0.065
σ = 1.00 0.803 ± 0.070 0.520 ± 0.095 0.294 ± 0.077

Laplacian noise org. data standard L2 loss Huber’s loss (≈ L1)

σ = 0.25 0.184 ± 0.019 0.079 ± 0.018 0.187 ± 0.034
σ = 0.50 0.370 ± 0.036 0.159 ± 0.031 0.211 ± 0.046
σ = 0.75 0.547 ± 0.054 0.288 ± 0.061 0.251 ± 0.063
σ = 1.00 0.734 ± 0.059 0.459 ± 0.089 0.289 ± 0.076

Table 5.1: Mean distance between underlying half circle and the data points or their UKR
reconstructions, averaged across 100 datasets (mean ± std).

Gaussian noise standard L2 loss Huber’s loss (≈ L1)

σ = 0.25 0.088 ± 0.018 0.194 ± 0.029
σ = 0.50 0.202 ± 0.050 0.220 ± 0.045
σ = 0.75 0.386 ± 0.077 0.263 ± 0.065
σ = 1.00 0.618 ± 0.092 0.319 ± 0.081

Laplacian noise standard L2 loss Huber’s loss (≈ L1)

σ = 0.25 0.085 ± 0.021 0.190 ± 0.035
σ = 0.50 0.197 ± 0.045 0.209 ± 0.043
σ = 0.75 0.378 ± 0.080 0.254 ± 0.058
σ = 1.00 0.587 ± 0.109 0.304 ± 0.077

Table 5.2: Mean distance between underlying half circle and the sampled UKR manifold,
averaged across 100 datasets (mean ± std).

As a similar experiment, we created another 100 datasets, each containing 100 samples
from the half circle again. This time, however, we randomly picked 10 samples and
multiplied the corresponding 2-D vectors by a random factor uniformly distributed
between 0.5 and 1.5, aimed at generating outliers. In addition, we added Gaussian
noise with standard deviation σ = 0.25 to the complete dataset. See Fig. 5.3 for an
example.

Again, we fitted UKR models based on the L2 loss and Huber’s loss to the datasets by
starting from a PCA solution and minimizing the LOO-CV error by 2000 RPROP steps.
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5. Extensions to Unsupervised Kernel Regression

Figure 5.3 shows one example of the resulting UKR manifolds. Interestingly enough,
even when using the L2 loss, UKR’s automatic LOO-CV regularization is sufficient to
deal with single outliers, but fails if two or more outliers are close (see the left part of
the half circle).

Figure 5.4 shows all datasets and all resulting manifolds on top of each other. Note
the much better fit of the UKR models based on Huber’s loss function (right plot). In
this experiment, the mean distance between the UKR manifolds and the underlying half
circle is 0.445 ± 0.132 for the standard L2 loss, but only 0.251 ± 0.074 for Huber’s loss
function.
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Figure 5.3: Left: UKR model based on the L2 loss. Right: UKR model based on Huber’s loss.
The grey dots are the original points, the black line shows f(x;X) sampled in latent space.
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Figure 5.4: Left: UKR models based on the L2 loss. Right: UKR models based on Huber’s
loss. The plots show 100 datasets and corresponding manifolds on top of each other.

Noisy spiral

As a second example, we fitted one-dimensional UKR models to a set of 100 “noisy spi-
ral” 2-D toy datasets, which each contain 300 samples with noise distributed uniformly
in the interval [−0.1; 0.1]. Please see the left plot of Fig. 5.5 for an example.

For initialization, we calculated Isomap (Tenenbaum et al., 2000) solutions for the
6 different neighborhood sizes K = Kmin,Kmin + 1, . . . ,Kmin + 5, where Kmin is the
smallest neighborhood size yielding a connected graph3, which we determined for each

3Please recall that for non-connected neighborhood graphs, Isomap can only yield embeddings of each
component, which is not desirable here.
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Figure 5.5: Left: underlying model of the spiral and 300 samples with uniform noise (grey
dots). Middle and right: CV-regularized UKR manifold fitted to this dataset using the L2 loss
and Huber’s loss. The black line shows f(x;X) sampled in latent space.

dataset. According to the optimization scheme of Sec. 4.4.5, we then compared the
Isomap solutions with respect to their CV-error after a coarse optimization of their
overall scale. Please note again that while this procedure may seem rather computa-
tionally expensive, it greatly enhances the robustness, because Isomap and other non-
linear spectral embedding methods (e.g. LLE) can depend critically on the choice of
K. Figure 5.6 shows an example of Isomap and LLE solutions used as initializations of
an UKR model. In this experiment we chose Isomap as a provider of initial candidates
because we noted that in the presence of noise, it is more robust as compared to the
LLE algorithm.

Rcv = 0.0044 Rcv = 0.0045 Rcv = 0.0043 Rcv = 0.0042 Rcv = 0.2864 Rcv = 0.2946

Rcv = 0.2809 Rcv = 0.3743 Rcv = 0.3125 Rcv = 0.0472 Rcv = 0.2647 Rcv = 0.3240

Figure 5.6: Isomap (top row) and LLE (bottom row) solutions for neighborhood sizes K =
6 . . . 11 (from left to right). The data points are connected by gray lines in the order Isomap or
LLE places them in the one-dimensional latent space. The black curve depicts the corresponding
UKR manifold after optimization of the scale. Note that visually good solutions feature small
CV-errors, as depicted below the plots.

Starting from the best candidate initialization, we first fitted CV-regularized UKR
models based on the standard L2 loss and Huber’s loss by minimization of (5.6), for
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5. Extensions to Unsupervised Kernel Regression

Kernel function L2 loss Huber’s loss

Gaussian Kernel 0.0292 ± 0.0045 0.0301 ± 0.0080
Quartic Kernel 0.0285 ± 0.0050 0.0295 ± 0.0077

Table 5.3: Mean distance between UKR reconstructions and the underlying spiral, averaged
across 100 datasets (mean ± std).

which we carried out 1000 RPROP steps4. See the middle and right plot of Fig. 5.5 for
an example. We repeated this part of the experiment for both the Gaussian kernel and
the Quartic kernel in latent space. For comparing the models, we again measured the
mean distance between the UKR reconstructions f(xi;X) and their projection onto the
underlying spiral s(t), that is

D̄ =
N∑

i=1

min
t

‖f(xi;X) − s(t)‖ where s(t) = (t+ 0.2)

(
sin(4πt)
cos(4πt)

)

. (5.15)

Table 5.3 shows the results. Note that there is nearly no difference between all four
kinds of models: neither does one density kernel yield better results than the other, nor
do the models of the two loss functions differ much.

However, there is a huge difference with regard to the computation time: on average,
the fine-tuning (≈ 1000 gradient evaluations) took 55 ± 11 seconds for the Gaussian
kernel, but only 2.1 ± 0.3 seconds for the Quartic kernel.

For the rest of this experiment, we utilized the ǫ-insensitive loss function and our
proposed optimization scheme from Section 5.1.1 with the aim to recover the underlying
smooth spiral as close as possible. As a starting point, we used the readily trained CV-
regularized UKR models based on the Quartic kernel and the L2 loss. However, a visual
inspection of these 100 models showed that five of them did not capture the spiral
structure correctly. On the corresponding five datasets, Isomap failed for all 6 values of
K, which is still a good result given the complexity of the problem. Since we wanted to
focus on smoothing, the following experiments were carried out only for the remaining
95 “good” models.

For each CV-regularized manifold, we measured the errors made in the reconstruction
of each data vector, which served as a starting point for our per-data-vector ǫ-values.
We then consecutively smoothed the manifold by setting the lower bound of these values
to ǫ = 0.01, ǫ = 0.02, . . . ǫ = 0.10. Please note that in this way, we made use of our
knowledge about the noise which is present in the data: given a uniform distribution in
[−0.1; 0.1], allowing a larger error tolerance (a higher value of ǫ) would not make sense.

Figure 5.7 shows some of the UKR manifolds resulting from applying the constrained
optimization (5.9) for one example out of the 95 datasets. Note the increasing smooth-
ness of the curve for larger values of ǫ.

We realized the constrained optimization by using RLǫ(X) as a penalty term in con-
junction with the RPROP algorithm. In particular, we set the pre-factor λ in (5.11) to
λ = 102, λ = 104, . . .λ = 1016 and carried out 100 unconstrained RPROP steps each.

4Since the scale-optimized Isomap solutions are very good initializations, we actually carry out fewer
RPROP steps than for the simpler “half circle” experiment.
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5.1. UKR with general loss functions

Figure 5.7: Minimal extension UKR model of a noisy spiral using the ǫ-insensitive loss function.
From left to right: ǫ = 0.02, ǫ = 0.04, ǫ = 0.06, ǫ = 0.08, ǫ = 0.10. The black line shows f(x;X)
sampled in latent space, the grey dots depict the original data vectors.

Finally, we statistically evaluated the resulting models for the 95 datasets. In particu-
lar, we sampled the manifolds on 1000 points x evenly spaced between the smallest and
largest latent variable. We then evaluated the mean distance to the underlying spiral
as in (5.15), which is depicted in the left plot of Fig. 5.8.
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Figure 5.8: Left: mean distance between UKR manifold and underlying true spiral. Right:
extension of latent space as given by ‖X‖F . The horizontal axis corresponds to the error
tolerance ǫ, whereas ǫ = 0 refers to the CV-regularized models. Results are averaged across
95 datasets, with the bars depicting one standard deviation.

In addition, we also took into account whether a sampled point z = f(x;X) lied more
towards the inner or towards the outer of the spiral. To this effect, we calculated the
signed distance

∆ =

{
+‖z − s(t∗)‖ if ‖z‖ < ‖s(t∗)‖
−‖z − s(t∗)‖ otherwise

, t∗ = arg min ‖z − s(t)‖. (5.16)

The mean ∆̄ of the distances for one sampled manifold yields a measure of the bias
of the UKR model, whereas the standard deviation can be viewed as a measure of its
smoothness (or rather roughness). Figure 5.9 reveals an increasing bias and a decreasing
roughness (increasing smoothness) for bigger values of the ǫ-threshold. A good com-
promise between these two properties is yielded at around ǫ = 0.07, where also the
mean (unsigned) projection distance is significantly lower than for the CV-regularized
manifolds (cf. Fig. 5.8).
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Figure 5.9: Left: mean signed distance ∆̄, with higher values indicating a bias towards the
inner of the spiral. Right: standard deviation of signed distances as a roughness measure of the
UKR manifold. The horizontal axis corresponds to the error tolerance ǫ, whereat ǫ = 0 refers
to the CV-regularized models.

Note that the existence of a bias towards the inner of the spiral is a direct consequence
of the form of the UKR regression function (4.18), which calculates locally weighted
convex combinations of the original data vectors. If the extension ‖X‖F in latent space
gets smaller, there is more overlap of the kernel centers and thus the local convex
combinations contain more data vectors. For the case of our spiral example (but also
for e.g. the half circle) this pulls the manifold inwards. Such a bias is present (albeit
negligible) already for the models regularized by LOO-CV. For ǫ-insensitive models,
a larger error tolerance allows a smaller extension ‖X‖F and thus a larger bias. As
stated above, a good compromise between smoothness and bias is yielded by setting the
error tolerance ǫ to a value which is slightly smaller than the range of noise (here 0.07
compared to 0.1).

Swiss Roll

In our third experiment, we fitted two-dimensional UKR models to artifical “Swiss Roll”
datasets, with the aim to investigate the effect of using Huber’s loss function in a more
complex learning task. We generated 100 datasets containing 1000 samples each, to
which we added Gaussian noise and Laplacian noise with standard deviation σ = 0.5.
Figure 5.10 shows an example of such a dataset. We then trained CV-regularized UKR
models employing the standard L2 loss and Huber’s loss (with the tradeoff point set to
δ = 0.01), yielding in total 400 models. Because of its computational efficiency, we once
more selected the Quartic kernel as the basis of the UKR models.

For initialization of our UKR models, we again used Isomap with 6 different neigh-
borhood parameters K, starting from Kmin (cf. the previous experiment). As before,
we selected the best candidate by comparing the CV-errors (5.6) after a coarse scale
optimization and then fine-tuned the UKR model by further 1000 RPROP steps. Inter-
estingly enough, the UKR models based on the different loss functions selected different
initialization candidates for 41 of the 100 datasets containing Gaussian noise and for
44 datasets containing Laplacian noise. Figure 5.11 shows an example of the resulting
embeddings or latent variables. Note the more evenly spaced points in the 2-D latent
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Figure 5.10: Left: one example of a “Swiss Roll” dataset containing Gaussian noise. Right:
original 2-D embedding.

Noise model org. data L2 loss Huber’s loss

Gaussian 0.401 ± 0.012 0.281 ± 0.020 0.236 ± 0.020
Laplacian 0.366 ± 0.011 0.266 ± 0.022 0.225 ± 0.018

Table 5.4: Mean distance between the underlying smooth “Swiss Roll” and the original data
or their UKR reconstructions, respectively. Results are averaged across 100 datasets.

space as resulting from fine-tuning the UKR models (bottom row).

Regarding the average computation time, calculating an Isomap solution took 4.35
seconds per candidate, the scale optimization (a coarse grid search and a few gradient
steps) took 0.47 seconds per candidate and the fine-tuning (≈1000 gradient evaluations)
took 17.24 seconds. Taking 6 candidates into account, this sums up to roughly 46 seconds
per model.

In order to compare the UKR models based on the two loss functions, we again
measured the mean distance between the UKR reconstructions and their projection
onto the underlying smooth “Swiss Roll”. The results are displayed in Table 5.4. Note
the significantly better results for the UKR models based on Huber’s loss.

In addition, we sampled the UKR manifolds by generating 10,000 random positions
inside a rectangle just large enough to contain all latent variables. To cope with em-
beddings that do not have the “correct” rectangular form like those in Fig. 5.11, we
rejected a sample position s if the density p(s;X) < 1

2000K(0), that is, if s lied in a
region not populated by latent variables (or vectors) xi. Otherwise, we again measured
the distance between f(s;X) and the underlying “Swiss Roll”. Note that this is very
similar to the definition of the UKR domain in Sec. 4.4.4, but here we used one global η
for all 100 models. Table 5.5 shows the resulting mean distances, which are quite close
to the results for the reconstructed data points, but with the advantage of Huber’s loss
function slightly diminished.

The percentage of valid sample positions is displayed in Table 5.6. Note the higher
numbers for the case of Gaussian noise: this corresponds to more rectangular and thus
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Figure 5.11: Top: selected initial set of latent variables as given by Isomap after the scale
optimization. Bottom: latent variables after fine-tuning of the UKR model. The left column
shows results for the UKR model based on the L2 loss, which selected the Isomap solution with
K = 8. The right column depicts the model based on Huber’s loss, which selected a slightly
different initialization candidate (belonging to K = 7).

more truthful embeddings, whose overall shape has to be attributed to the Isomap
algorithm. Furthermore, the models utilizing Huber’s loss show slightly (albeit not
significantly) smaller numbers (≈ less rectangular embeddings) than the L2 models.
This indicates that utilizing Huber’s loss function might not be the best choice for
picking initialization candidates as provided by Isomap. As a whole, this experiment
demonstrates again that utilizing Huber’s loss function instead of the standard L2 loss
yields favorable results.

USPS digit “2”.

As a final example, we fitted a 2-D UKR manifold to the subset of the USPS hand-
written digits dataset corresponding to the digit “2”, which consists of 731 data vectors
in 256 dimensions (16x16 pixel gray-scale images). Again, for initialization we com-
pared several Isomap solutions with regard to their CV-error (4.34) after a coarse scale
optimization. From a range of neighborhood parameters [Kmin = 2, 3, . . . 16], K = 2
turned out to be optimal. We then fitted the CV-regularized UKR manifold by mini-
mizing (4.34), carrying out 1000 RPROP steps in about 185 seconds. Then, we aimed
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Noise model L2 loss Huber’s loss

Gaussian 0.276 ± 0.014 0.245 ± 0.019
Laplacian 0.271 ± 0.023 0.242 ± 0.024

Table 5.5: Mean distance between UKR manifold (sampled on up to 10,000 points in the 2-D
latent space) and true underlying “Swiss Roll”, averaged across 100 datasets.

Noise model L2 loss Huber’s loss

Gaussian 82.9 ± 6.7 79.2 ± 14.5
Laplacian 73.3 ± 16.7 67.7 ± 21.2

Table 5.6: Percentage of valid positions from random sampling within spanned rectangle.

at creating smooth UKR manifolds with minimal extension in latent space by solving
the constrained problem (5.9).

In this dataset, most pixel values are ±1. Since for smoothing the manifold we wanted
to ignore small errors in the 16x16 image as a whole and not on a pixel-by-pixel basis,
we used the ǫ-insensitive loss in the sphere-shape form (5.4), that is lǫ(‖y − f(x)‖).
Through this, the errors of all 256 data vector entries (pixels) are summed up, then
the square root is taken and at last the resulting error measure is compared with the
ǫ-threshold. The other way around, we can adjust the threshold to a certain number n
of (completely) wrong pixels by setting ǫ =

√
4n.

For fitting the ǫ-insensitive UKR manifolds, we calculated the per-data-vector ǫ-
values as in the “noisy spiral” experiment, with the lower bound being set to ǫ =√

12,
√

24, . . .
√

120, corresponding to 3,6,. . . 30 wrong pixels. The constrained opti-
mization was realized just like with the “noisy spiral”.

Fig. 5.12 shows the CV-regularized manifold and the manifold corresponding to 21
wrong pixels (ǫ =

√
84). To create the plots, we sampled f(x;X) on a grid in latent

space and depicted the function value as an 16x16 image. Note the smaller extension
of latent space and the blurrier images from the ǫ-optimized manifold (right plot).

Since the “correct” manifold for this dataset is unknown, quantifying the gain of
using a special loss function is not as simple as in the other experiments. Here, we chose
to investigate the results of projecting data from the USPS test subsets corresponding
to the digits “1” (264 samples) and “2” (198 samples) onto the UKR manifold. In
particular, for each of our 11 UKR models (one CV-regularized manifold and 10 different
ǫ-thresholds), we measured the mean projection error Ē (cf. Sec. 4.4.4) of the test subset
“2”. After that, we counted how many of the examples from the “1” test subset could
be projected with an error smaller than Ē, which we thus viewed as false positives.

Figure 5.13 shows the results. Note the drastically reduced percentage of false posi-
tives for error tolerances of around 21 pixels. Thus, a smoother (ǫ-insensitive) manifold
– provided the bias does not get too high – yields images f(x;X) which are more pro-
totypical of the dataset and hide some of the variation (or noise). This interpretation
is also supported from the visual impression provided by Fig. 5.12.
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Figure 5.12: UKR model of the USPS digit “2”, shown by evaluating f(x;X) on a 20x20
grid enclosing the latent variables. Grid positions of low density p(x) are left blank. Left: CV
regularized model. Right: ǫ-insensitive model (threshold corresponding to 21 wrong pixels).
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Figure 5.13: Result of projecting images of “1”s onto UKR models fitted to the “2” subset
using different ǫ-thresholds. The graph shows the percentage of false positives (“1”s with a
projection error smaller than Ē) as a function of the error threshold used to train the models
(here given in units of pixels). The CV-regularized manifold is depicted at x-coordinate 0.

5.1.5. Relation to feature space UKR

As another way of incorporating general and even non-differentiable loss functions, one
might consider using feature space UKR (Sec. 4.5), where the basic idea is to construct
a Mercer kernel that implicitly maps the data to some feature space so that the standard
Euclidean norm in that space coincides with the demanded loss function in data space.
As an example we presented the L1-norm kernel in section 4.5.1.

However, we have also already discussed the main problem with feature space UKR:
the corresponding regression function f(x;X) =

∑

i Φ(yi)bi(x;X) now linearly com-
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bines feature space images Φ(yi) and cannot be calculated explicitly for general Mercer
kernels. Furthermore, there is no guaranteed existence of a data space pre-image

y
?
=Φ−1 (f(x;X)) = Φ−1

(
∑

i

Φ(yi)bi(x;X)

)

(5.17)

of such linear combinations, so the demanded loss function (e.g. ‖y − y′‖1 in case
of the L1-norm kernel) may have no well-defined operand. These difficulties limit the
application scope of feature space UKR, and make general loss functions in the way of
(5.5) the favorable choice in practice.

Moreover, with the above considerations on the pre-image problem, we must conclude
that using the L1 loss function (putting aside the problem of non-continuous derivates)
is not equivalent to utilizing the L1-norm kernel. Indeed, a 2-D embedding of the “oil
flow” dataset (cf. Sec. 4.6.4) resulting from a UKR model with Huber’s loss function5

differs quite much from the L1 feature space UKR model, despite having used the same
initialization and optimization scheme. Please see Fig. 5.14(a,b) for the UKR model
using Huber’s loss, and Fig. 4.13(b,d) on page 98 for the UKR model based on the
L1-kernel.
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a) Intermediate UKR model (Huber loss) b) Final UKR model (Huber loss)

Figure 5.14: Latent coordinates of the “oil flow” dataset retrieved by UKR using Huber’s
loss function with δ = 0.01. Plot a) corresponds to the 5th intermediate homotopy step with
a box constraint X = [−4.5; 4.5]2, whereas plot b) depicts the final model regularized solely by
LOO-CV.

5.1.6. Discussion

In this section, we extended the UKR algorithm by the incorporation of general cost
functions. While being conceptually straightforward, this extension is quite fruitful as

5Here, we again used the tradeoff point δ = 0.01, yielding a nearly pure L1 characteristics.
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it allows us to tune the method to specific noise models or to enhance its robustness
towards outliers. We focused on Huber’s loss, which can be utilized in conjunction with
LOO-CV, and the ǫ-insensitive loss, for which we introduced an associated practical
optimization approach. The latter allows regularizing the UKR manifold by the specifi-
cation of an error tolerance, which is an eminently suitable way to incorporate additional
knowledge about a dataset, in particular the range of noise. If no such knowledge or
at least intuition is available, the introduction of an error tolerance (as a new parame-
ter) is not an advantange, and one should rather stick to the automatic parameter-free
LOO-CV regularization utilizing either Huber’s loss or the standard L2 loss.

We demonstrated our method on both toy and real data, thoroughly evaluating UKR
models based on the standard L2 loss, Huber’s loss, and the ǫ-insensitive loss. LOO-CV
regularized UKR models based on Huber’s loss yielded significantly better results than
those based on the L2 loss for the case of moderate and high noise levels (Gaussian and
Laplacian noise), as shown in the “noisy half circle” experiment and for the “Swiss Roll”,
as well as for datasets with outliers (“noisy half circle”, again). The ǫ-insensitive loss
function was applied in our “noisy spiral” experiment, and also in an experiment dealing
with subsets from the USPS handwritten digit dataset, where it yielded favorable results
as compared to LOO-CV regularized models based on the standard L2 loss.

Future work may address the utilization of further loss functions. Apart from that,
also modelled after Support Vector Machines, one could aim at creating sparse ǫ-insen-
sitive UKR models besides using a finite support density kernel.

5.2. UKR with leave-K-out cross-validation

In this section, we show how to extend the leave-one-out cross-validation method for
the regularization of UKR models to a more general leave-K-out cross-validation ap-
proach. While LOO-CV has the undisputed advantage of being parameter-free, in some
cases it leads to undesirably unsmooth manifolds (see for example the “noisy spiral”
experiments in Sec. 4.6.1 and 5.1.4). Of course, UKR already features alternative reg-
ularization approaches, for example the usage of penalty terms based on extension or
density (4.31,4.33), but the corresponding regularization parameters (e.g. pre-factors)
are not very intuitive to select. Therefore, the aim of this UKR extension is to provide
an easy-to-handle tool for fitting smooth UKR manifolds. Please note that the concepts
and some of the results presented in this section have already been published (Klanke
and Ritter, 2006a).

As we have described in section 1.3.4, LOO-CV is a special case of M -fold cross-
validation, where generally M subsets of the data are formed, each of which is used to
assess the performance of a submodel trained on the union of the remaining subsets.
Selecting a larger M induces a higher computational effort, so LOO-CV with M = N
usually (but not with UKR) is the most expensive variant of cross-validation. In super-
vised learning tasks, LOO-CV is known to produce an almost unbiased estimate of the
prediction error, but it can exhibit high variance. In contrast, 5-fold or 10-fold cross-
validation have lower variance, but may overestimate the prediction error, especially
if the sample size is rather small (Hastie et al., 2001). In an extensive simulation of
regression learning tasks, Breiman and Spector (1992) found that 5-fold cross-validation
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actually yielded better results than LOO-CV, despite having a much lower computa-
tional effort. For the unsupervised task of learning principal curves, Hastie and Stuetzle
(1989) observed that a repeated application of LOO-CV for selecting the span of local
smoothing (cf. Sec. 2.5) leads to unsmooth curves that almost interpolate the data
points6.

Since in M -fold cross-validation K ≈ N/M samples are left out from the complete
dataset in order to form the different training subsets, it is also called leave-K-out cross-
validation, where again the special case K = 1 is identical to LOO-CV. Since UKR
comes with LOO-CV “for free”, it is interesting to investigate if the concept is appli-
cable for K > 1. Jonathan, Krzanowski, and McCarthy (2000) pointed out that there
are N !/(M !(K!)M ) different ways of dividing the training set into M groups where
each K elements are left out, and that “different partitionings may yield very different
performance assessments.” Therefore, in the following we will first specify a determin-
istic scheme for selecting a partitioning. After that, we introduce an accompanying
regularizer that helps to reduce border effects, and then we demonstrate the resulting
UKR leave-K-out cross-validation (LKO-CV) approach in a number of experiments. We
conclude this section with a short discussion of the gain of the new approach.

5.2.1. A leave-K-out partitioning scheme

What is a suitable deterministic scheme for applying LKO-CV to UKR, if we wish
to achieve smoother models? With the aim to both maximize and equally distribute
the effect of omitting each K data vectors on how UKR fits the manifold, we opt to
reconstruct each data vector without itself and its K−1 nearest neighbors. Concerning
this, please recall that the UKR function (4.18) computes a locally weighted average
of the dataset. Therefore, normally, each data vector is mainly reconstructed from its
neighbors. By omitting the immediate neighbors we shift the weight to data vectors
farther away, which forces the kernel centers xi to huddle closer together and thus leads
to a smoother manifold.

Please note that in contrast to standard LKO-CV, this procedure yields N different
subsets of size N −K, each being responsible for the reconstruction of one data vector.
A corresponding objective function, which automatically combines the subset models,
can be stated as

Rlko(X) =
1

N

∑

i

‖yi − fi(xi;X)‖2 =
1

N
‖Y − YBlko(X)‖2

F (5.18)

fi(x) =
∑

m6∈Ni

ym
K(x − xm)

∑

j 6∈Ni
K(x − xj)

, (5.19)

where Ni describes the index set of neighbors excluded for reconstructing yi.
In principle, we may consider neighborhoods both in latent space and data space,

since a good mapping will preserve the topology anyway. However, it is much simpler
to regard only the original neighborhood relationships in data space, because these are

6Now, the reader might argue that in UKR LOO-CV is repeatedly applied all the time, and that
therefore unsmooth curves should have been expected. However, for example in our “noisy spiral”
experiments, the UKR curves are quite unsmooth directly after the scale-optimization, that is, after
a single application of LOO-CV.
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fixed. The latent space neighborhoods may change with every training step, and thus
have to be recomputed. Furthermore, convergence is not guaranteed anymore, because
the latent variables X might jump between two “optimal” states belonging to different
neighborhood structures.

As with LOO-CV, data space neighborhood LKO-CV can be implemented in UKR
with nearly no additional cost. All one has to do is zero-ing certain components of
the matrix Blko before normalizing its column sums to 1. In particular, set bij = 0, if
i ∈ Nj , with fixed and precomputed index sets Nj .

At first sight, one might argue that the whole idea seems somehow strange, especially
if the UKR model is initialized by a spectral embedding method (e.g. LLE) which takes
into account some K ′ nearest neighbors for constructing the lower dimensional repre-
sentation. Thus, in a way, UKR with LKO-CV works against its initialization method.
On the other hand, this scheme can be viewed as being complementary. Furthermore,
our experiments (Sec. 5.2.3) not only show that the idea is sound, but even indicate
that selecting K = K ′ is not a bad choice at all.

5.2.2. How to get smooth borders

As we will show in the next section, a regularization by LKO-CV does work well at the
interior of a manifold, but not at its borders. This results naturally from the topology:
at the borders of a 1-D manifold (that is, at the ends of a curve) for example, all
K neighbors lie in the same direction. Thus, the nearest data points taking part in
reconstructing the end points are exceptionally far away. The other way around, the
end points do not have to play a crucial role in the reconstruction of other points, and
thus the locations of the corresponding latent points are not fixated enough and can
move outwards, generating a region of low density inbetween. Therefore, if after training
the curve is sampled by evaluating the normal UKR function (4.18), the ends get very
wriggly, especially for larger values of K.

To overcome this problem, we propose to employ an additional regularizer that
smoothes at the borders without disturbing LKO-CV in regions that are already han-
dled well. Penalizing the extension of latent space (e.g. by using a penalty term of the
form S(X) = ‖X‖2

F ) is a bad choice, since this would affect the manifold as a whole and
not only the borders. The same argument applies to a density-based penalty term of
the form S(X) = −∑i log p(xi), which favors high densities and thus again smoothes
the complete manifold. A possible choice, however, is to penalize the variance of the
density in latent space. For this, we apply the following penalty term:

S(X) =
1

N

∑

i

(p(xi) − p̄(X))2 , p̄(X) =
1

N

∑

j

p(xj). (5.20)

The UKR model is thus regularized by two factors: 1) the LKO parameter K determines
the overall smoothness and 2) the penalty term S(X), scaled by an appropiate pre-factor
λ, ensures that the smoothness is evenly distributed.

Because these regularizers have more or less independent goals, we may hope that the
results show considerable robustness towards the choice of λ. Indeed, for a UKR model
of a noisy spiral (Fig. 5.16), there was no visual difference between results for λ = 0.001
and λ = 0.0001. Only a much smaller value (λ = 10−6), led to wriggly ends, again.
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5.2.3. Experiments

Noisy spiral

As a first example, we fitted a UKR model to the 2-D “noisy spiral” toy dataset, which
again contains 300 samples with noise distributed uniformly in the interval [−0.1; 0.1].
In order to generate candidate initializations, we utilized the LLE algorithm with neigh-
borhood sizes K ′ = 4 . . . 12. According to Sec. 4.4.2, we here optimized the scale of
these candidates with respect to the LKO-CV error (5.18), where we varied the LKO-
parameter from K = 1 (LOO-CV) up to K = 24. Independently of the choice of K, the
LLE neighborhood parameter K ′ = 7 always turned out to yield the best initialization.
For fine-tuning the UKR models, we carried out 500 RPROP steps, now minimizing the
LKO-CV error (5.18) with respect to the latent variables X.

Fig. 5.15 shows the results for some values of the LKO-CV parameter K as indicated
in the plots. Note how the manifold gets smoother for larger K, without suffering from
too much bias towards the inner of the spiral. A bit problematic are the manifolds
ends, which get quite wriggly for larger K. Note that K = K ′ = 7 yields a visually
satisfactory level of smoothness.

K=1 K=2 K=3 K=4 K=7

K=10 K=13 K=16 K=20 K=24

Figure 5.15: UKR model of a noisy spiral using LKO-CV. The data points are depicted as
grey dots, and the black curve shows the manifold which results from sampling f(x;X).

To show the effect of the density variance penalty term (5.20), we repeated the ex-
periment adding the penalty with pre-factors λ = 10−3, 10−4 and 10−6. Fig. 5.16 shows
the results for λ = 10−4, which are visually identical to those for λ = 10−3. However,
a pre-factor of only 10−6 turned out to be too small, resulting in wriggly ended curves
similar to those in Fig. 5.15.

Some insight on the influence of the density variance penalty is provided by Fig. 5.17:
Most of the latent variables stay in the same region, but the outliers (the little bumps
to the far left and right) are drawn towards the center, compacting the occupied latent
space. Figure 5.18 shows a magnified comparison of the UKR models (K = 24) with
and without the penalty term. In addition to the original data points and the resulting
curve, it also depicts the data as it is reconstructed during training, that is, using the
leave-K-out function (5.19). Note that these LKO reconstructions show a strong bias

121



5. Extensions to Unsupervised Kernel Regression

K=1 K=2 K=3 K=4 K=7

K=10 K=13 K=16 K=20 K=24

Figure 5.16: UKR model of a noisy spiral using both LKO-CV and the density variance penalty
term (5.20) scaled by a pre-factor λ = 10−4.

towards the inner of the spiral, which in this strength is not present in the final mapping
(4.18) based on the complete data set.
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Figure 5.17: Comparison of latent densities for UKR models of a noisy spiral using a) only
LKO-CV (K = 24, depicted in black) and b) LKO-CV together with the densisty variance
penalty (K = 24, λ = 10−4, depicted in gray). The curves result from sampling p(x), the dots
indicate the latent variable positions.

For a more thorough evaluation of the influence of LKO-CV, we repeated the experi-
ment for 50 “noisy spiral” datasets all drawn from the same distribution. Actually these
datasets were picked from the set of 100 spirals that we already investigated with the
ǫ-insensitive loss extension (Sec. 5.1.4), where we made sure that at least one of the
LLE candidates yielded a correct unwinding of the spiral. Similar to our reasoning in
the experiment with the ǫ-insensitive loss, we carried out the selection because we solely
wanted to focus on the smoothing effect of LKO-CV.

For each of the 50 datasets, we trained 20 UKR models utilizing LKO-CV with a
LKO parameter K = 1 . . . 20 and a fixed pre-factor λ = 10−4 for the density variance
penalty. Similarly to Sec. 5.1.4, we then measured the mean distance between the UKR
reconstructions f(xi;X) and the “true” spiral. Figure 5.19 shows the results averaged
across all 50 datasets. Please note the significantly reduced distance resulting for a wide

122



5.2. UKR with leave-K-out cross-validation

K=24 K=24

Figure 5.18: Comparison of UKR models of a noisy spiral. Left: pure LKO-CV (K = 24).
Right: with additional density variance penalty (λ = 10−4). The dots depict the observed data
points, the black curve depicts the manifold, and the gray pluses depict the LKO reconstructions
(5.19).

range of LKO parameters (K = 5 . . . 12) as compared to the LOO-CV models (K = 1).
Next, we investigated a possible relation between the LKO parameter K and the LLE

paramterK ′. Concerning this, please recall that LLE reconstructs each data vector from
a linear combination of its K ′ nearest neighbors in order to determine corresponding
weights for the latent space coordinates (Sec. 2.8.2). Since a linear reconstruction is
also involved in the UKR algorithm, albeit with a different meaning of the weights, an
empirical investigation of that relation is interesting. To this end, for each of the 50
datasets, we determined the LKO parameter Kopt yielding the minimal mean distance
to the true spiral, and compared that value to the automatically selected neighborhood
size Klle of LLE. A histogram of the difference between these parameters is depicted
in Fig. 5.20. While the spread of the differences Kopt − Klle is quite wide, in most
of the 50 cases the two parameters were close. As a possible explanation, one could
argue that if a particular neighborhood size Klle was selected, then that parameter is
somehow characteristic for the distribution of the data, and as such might be a good
choice for the leave-K-out method, also. As an argument against using a corresponding
heuristics K = K ′, different spectral methods do not necessarily work best for the same
neighborhood setting7, so the degree of smoothing would depend on the choice of the
spectral method, and not on the data alone. Fortunately, as can be seen from Fig. 5.19,
a wide range of leave-K-out parameters K yields comparably good results, so even a
coarse heuristics for choosing the parameter is useful.

As a last part of our experiments with the “noisy spiral” dataset, we compared the
LKO-CV regularization method directly to our proposition of smoothing UKR manifolds
via the ǫ-insensitive loss (Sec. 5.1.4). In particular, we utilized the same 95 “noisy spiral”
datasets on which we collected the statistics of the ǫ-insensitive UKR curves, together
with the same initialization candidates as provided by Isomap. We then carried out up
to 1000 RPROP steps minimizing the sum of the LKO-CV error (5.18) and the density

7We noted that Isomap typically requires a smaller neighborhood parameter than LLE.
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Figure 5.19: Mean distance between UKR reconstructions of the “noisy spiral” data and the
underlying smooth manifold as a function of the leave-K-out parameter K. The results are
averaged across 50 datasets,with the bars indicating one standard deviation.
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Figure 5.20: Histogram of the quantity Kopt − Klle, where Kopt denotes the LKO parame-
ter yielding the smallest distance to the underlying spiral, and Klle denotes the neighborhood
parameter of LLE that led to the best candidate initialization.

variance penalty (5.20), again scaled by a pre-factor λ = 10−4.

Just as in the corresponding experiment with the ǫ-insensitive loss, we evaluated the
mean distance of the sampled UKR manifold to the underlying spiral, as well as the
extension of latent space, the mean signed distances (5.16), and the standard deviation
of these distances as a measure of roughness. The results are depicted in Fig. 5.21.
Overall, the performance of the UKR models based on LKO-CV and the ǫ-insensitive
loss (Fig. 5.8 and 5.9) is very similar, with a slight advantage of the LKO-CV models
in terms of the mean distance (Fig. 5.21a and 5.8).

Regarding conceptual differences, the optimization scheme of UKR models utilizing
LKO-CV is simpler, but the ǫ-insensitive UKR models have the advantage that the
regularization parameter ǫ might already be pre-defined by the application.
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and underlying true spiral.

b) extension of latent space as given by ‖X‖F .
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Figure 5.21: LKO-CV regularized UKR models of “noisy spiral” datasets. The above plots
show the same statistics as Fig. 5.8 and 5.9, but here the horizontal axis corresponds to the LKO
parameter K. Results are averaged across 95 datasets, with the bars depicting one standard
deviation.

USPS digits

To show that UKR with LKO-CV can also be applied to higher dimensional data, our
last experiment of this section deals with the USPS handwritten digits. In particular,
for visualization purposes we first worked with the subset corresponding to the digit “2”
(731 data vectors in 256 dimensions). We initialized our UKR models with LLE (cf.
Sec. 4.6.3), and compared the results of LOO-CV and LKO-CV with K = K ′ = 12,
that is, we chose the LKO parameter to be identical to the automatically selected LLE
neighborhood size. Both models use the density variance penalty with a pre-factor8

λ = 0.01. Figure 5.22 visualizes the resulting manifolds (we chose a 2-D embedding) by
sampling f(x;X) in latent space and depicting the function value as the corresponding
image. Note the smaller extension in latent space and the blurrier images of the model
belonging to K = 12 (right plot).

In a follow-up experiment, we again built a digit classifier in the way of section
4.6.3, using the same homotopy-based optimization approach and the same choices of
latent space dimensionality and Mercer kernel. In contrast to Sec. 4.6.3, however, we

8Here, we used a larger λ because the data’s variance is larger, too.
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Figure 5.22: UKR model of the USPS digit “2”, shown by evaluating f(x;X) on a 20x20 grid
enclosing the latent variables. Grid positions of low density p(x) are left blank. Left: K = 1
(LOO-CV). Right: K = 12.

here regularized the model with LKO-CV, using small or moderate parameter values
K = 2 . . . 5, and we also included the density variance penalty with a pre-factor λ =
0.01. Table 5.7 summarizes the resulting error rates. While in some cases (e.g. data
space UKR, q = 9) utilizing LKO-CV increased the error rate, especially for the lower
dimensional models the classification performance was improved.

Method q = 5 q = 6 q = 7 q = 8 q = 9 q = 10 q = 11 q = 12

Data Space UKR, LOO-CV 4.78 4.78 4.53 4.53 4.19 3.94 3.99 4.19

LKO-CV, K=2 4.04 4.14 3.99 4.63 4.83 4.33 4.33 3.94

LKO-CV, K=3 4.14 4.24 4.19 4.24 4.68 4.43 4.24 4.33

LKO-CV, K=4 3.99 3.94 4.24 4.43 4.88 4.19 4.04 4.14

LKO-CV, K=5 4.04 3.94 3.99 4.43 4.73 3.99 4.09 4.24

Polynomial Kernel, LOO-CV 4.43 4.58 4.19 4.24 4.14 4.29 4.24 4.33

LKO-CV, K=2 4.33 4.19 4.19 4.68 4.68 4.19 4.24 4.24

LKO-CV, K=3 4.38 4.24 4.24 4.53 5.08 4.38 4.29 4.19

LKO-CV, K=4 4.38 4.04 4.24 4.24 4.48 4.24 4.04 4.33

LKO-CV, K=5 4.19 4.33 4.19 4.43 4.29 4.19 4.14 4.29

Table 5.7: Error rates (in percent) of the UKR digit classifier for different dimensions of the
latent space and different choices of the leave-K-out parameter. The lowest error rates for data
space UKR models and models based on the polynomial kernel are printed in bold face.

5.2.4. Discussion

In this section, we described how leave-K-out cross-validation (LKO-CV) can be em-
ployed in the manifold learning method UKR, generalizing the already present LOO-CV
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regularization. We demonstrated our approach on both synthetic and real data. When
used with pre-calculated data space neighborhoods, LKO-CV involves nearly no addi-
tional computational cost, but can yield favorable results. This was revealed especially
in the “noisy data” experiment, where LKO-CV significantly reduced the projection
error, i.e. the mean distance between the reconstructed (de-noised) dataset and the
“true” underlying manifold.

While we gave no final answer to the question how to choose the new regularization
parameter K, our experiments indicate that simply setting K = K ′ (the neighborhood
size of the best LLE solution, which UKR can automatically detect) yields satisfactory
results. If other methods for initialization and optimization are applied, one has little
guidance for the selection of K, but even in that case LKO-CV with a “small” ad-hoc
choice for K is worth considering (cf. the digit classification performance). A costlier,
but theoretically more satisfying approach for selecting K would be to compare the
results of different choices with regard to the projection error of hold-out data (cf. Sec.
1.3.4).

In this section, we also showed how a complementary regularizer, which is based on
penalizing a high variance of the latent density, can further enhance the UKR models
trained with LKO-CV. By promoting an even distribution of smoothness, this regularizer
diminishes the problem of rather wriggly manifold borders, which otherwise may result
from a pure LKO-CV regularization. When used as a penalty term, the complementary
regularizer is quite robust towards the choice of an appropiate pre-factor.

Further work may address other possibilities to deal with the border problem, e.g. by
a smart local adaption of the neighborhood parameter K. We also succesfully experi-
mented with leave-R-out CV, a scheme where not a fixed number of neighbors are left
out, but all neighbors within a sphere of fixed size.

5.3. Landmark UKR

In this section, we will present a variant of UKR which is mainly aimed at reducing the
computational effort. The concepts presented here have not yet been published, and
they have also not been investigated and evaluated as thoroughly as the two preceding
UKR extensions. Therefore, the nature of this section is rather prospective, although
experiments conducted as a proof of concept have shown promising results.

As has been discussed in section 4.4.1, the complexity of a single evaluation of the
UKR reconstruction error or its gradient is in the class O(dN2), that is, it is quadratic in
the number of training samples. In case of feature space UKR (Sec. 4.5) the complexity
is even O(N3), which quickly becomes impractical for larger training sets. In chapter
2, we have seen several methods that suffer from the same problem, most notably
nonlinear spectral embedding methods (Sec. 2.8) with an eigendecomposition of an
N ×N matrix, and also iterative MDS algorithms like Curvilinear Component Analysis
(CCA, Sec. 2.7.3) and Curvilinear Distance Analysis (CDA, Sec. 2.7.4). In order to
address that problem, “landmark” variants of spectral methods have been designed by
de Silva and Tenenbaum (2004) and Weinberger et al. (2005). Moreover, both CCA
and CDA effectively only operate on a “reduced” dataset as produced by a preceding
vector quantization step. These ideas can be carried over to UKR, as we will do here.
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The remainder of this section is organized as follows: firstly, we will present the
concept of “landmark UKR” together with a corresponding modification of the UKR
objective function. Then, we will motivate a further post-processing training step, for
which we carry the explicit roughness measure of the PSOM+ (Sec. 3.3.1) over to UKR.
After that, we will demonstrate the new variant experimentally. The section will be
concluded by a discussion of the gains as well as of open problems and future research
directions.

5.3.1. Reconstruction from landmark points

The prime motivation for the UKR variant described here is to reduce the computa-
tional effort that is involved in both training the model and using it afterwards, i.e. for
projecting new data and sampling from the manifold. While already the application of
finite support density kernels (e.g. Quartic) can lead to a much reduced computational
burden, the improvement in efficiency still leaves much to be desired, first of all in situ-
ations where the homotopy-based optimization scheme has to be applied. Furthermore,
also when a UKR manifold is smoothed, for example by using the ǫ-insensitive loss
function (Sec. 5.1) or by training with leave-K-out cross-validation (Sec. 5.2), the effi-
ciency gains of finite support kernels are diminished due to the stronger overlapping of
the basis functions. This connection is not without irony, because smoother manifolds
usually coincide with simpler functions, and therefore should be cheaper to compute.

An early attempt to create efficient UKR models similar in spirit to support vector
machines has not been successful. By adding extra weights to the UKR function model,
for example in the way of

f(x;X;w) =
∑

i

yi
wik(x − xi)

∑

j wjk(x − xj)
with ∀i wi ≥ 0, (5.21)

one can enforce sparseness by penalizing non-zero weights when minimizing the recon-
struction error. However, in practice, it turned out to be hard to find a good optimiza-
tion scheme for adapting both the latent variables and the weights. Furthermore, the
computational effort is not reduced right from the start of the training process, but in
fact increased by adding extra parameters.

Please note that the aforementioned sparsification attempt basically implies a parti-
tioning of the training data Y into a set of vectors supporting the model (vectors yi

corresponding to non-zero weights wi) and another “validation” set of vectors whose
weights are zero. This creates some asymmetry, as parts of the data are handled in
a different manner. If one takes a supporting vector y∗ and projects it onto the final
UKR model, the resulting position in latent space will likely be not identical to x∗ as
determined from the training: during projection, a data vector y seeks the position x

that is most fit only for itself, while during training a supporting data vector is also
responsible for reconstructing others.

Therefore, we follow an alternative approach and first extend the training data Y

by adding n ≪ N support vectors or landmark points Ŷ = (ŷ1, ŷ2 . . . ŷn), which are
retrieved by some clustering or vector quantization algorithm. In our experiments, we
chose the K-Harmonic Means algorithm (Sec. 2.1.3), since it is parameter-free (apart
from the number of cluster centers) and has been shown to be virtually insensitive
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towards bad initializations9. Then, we reconstruct Y from a UKR model utilizing only
Ŷ in the modified regression function

f(x; X̂) = Ŷb(x; X̂), (5.22)

where X̂ = (x̂1, x̂2 . . . x̂n) denotes the latent space representations of the landmark
points. As our new training goal, we minimize the reconstruction error

R(X, X̂) =
1

N

∑

i

‖yi − Ŷb(xi; X̂)‖2 =
1

N
‖Y − ŶB(X, X̂)‖2

F , (5.23)

where the matrix of basis functions B(X, X̂) is given by

(B(X, X̂))ij =
K(x̂i − xj)

∑

k K(x̂k − xj)
. (5.24)

Please note that we minimize (5.23) with respect to both X and X̂, that is, we seek
optimal latent coordinates for both the original data points and for the generated land-
mark points. As with standard UKR, these latent coordinates are the only parameters
of the model, besides the choice of the density kernel K(·) and – added in this variant
of UKR – the number n of landmark points, which has to be selected in advance.

Please also note that if we fix X̂, we can treat (Ŷ, X̂) as data vectors and latent
variables of a readily trained standard UKR model. Therefore, the reconstruction error
(5.23) just represents the mean projection error for new data Y, and the aforementioned
asymmetry is removed. The gradients ∂R

∂X
and ∂R

∂X̂
have a remarkable symmetry and can

be expressed as

∂R

∂X
=

2

N

[

X̂Q − X · diag
(
1T

nQ
)]

(5.25)

∂R

∂X̂
=

2

N

[

XQT − X̂ · diag
(
1T

NQT
)]

(5.26)

Q = P ∗
[
M − 1n1

T
N (B ∗ M)

]
(5.27)

M = ŶT (ŶB − Y) (5.28)

Here, the matrix P is defined analogous to the formula (4.44) of standard UKR. For
this variant, however, Q,P,B, and M are n×N matrices, in contrast to N ×N as in
a non-landmark UKR model. Consequently, the computational effort of an evaluation
of (5.23) and its gradients is reduced to O(dnN), where still the most time is spent for
calculating the matrix M. Please refer to appendix C.3 for a detailed derivation.

Feature space variant

The matrix M can be expressed by dot products between data vectors, and therefore
the “kernel trick” (Sec. 1.5.4) can be applied to landmark UKR, too:

M = ŶT ŶB − ŶTY = ΨB − Φ. (5.29)

9 In a similar manner, the K-Harmonic Means algorithm has also been combined with the Generative
Topographic Mapping (Sec. 2.6.1) by Peña and Fyfe (2006).
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Here, Ψ (“kernel matrix of landmark points”) is an n×n matrix given by ψij = k(ŷi, ŷj)
and Φ (“mixed kernel matrix”) is an n × N matrix defined by φij = k(ŷi,yj). If
the training set is not given in a traditional vector space form, but only as a Mercer
kernel matrix (e.g. for structured data), one can utilize a kernelized K-Means algorithm
(Schölkopf et al., 1998) for generating feature space landmark points.

Note that the computational effort is now O(n2N), instead of O(N3) for the feature
space variant of standard UKR.

Initialization

In order to initialize a landmark UKR model, nonlinear spectral embedding methods
can be utilized just as with standard UKR. Note, however, that now N + n vectors
(original data and landmark points) have to be embedded, yielding a slight increase of
the computational effort. A natural and efficient way to provide initial low dimensional
coordinates (X, X̂) of the combined set (Y, Ŷ) is to also apply a landmark variant of
the spectral method, e.g. landmark Isomap (Sec. 2.8.1) or ℓSDE (Sec. 2.8.3).

Regularization

If N data vectors are reconstructed from a convex combination of n ≪ N landmark
points, in general the data vectors cannot be trivially interpolated. Nonetheless, one
should include a regularization term, e.g. a density or extension-based penalty, in order
to prevent a too wide distribution of the latent variables X and X̂. Otherwise, if the
kernel functions centered at the locations x̂i have only little or no overlap, the UKR
manifold will interpolate the landmark points with sharp transitions inbetween. Up to
now, we have no good heuristic or even an automated choice of the penalty term and
its pre-factor.

5.3.2. Landmark adaption and smoothness control

We have already discussed in Sec. 5.1.4 that the UKR function (4.18) is inherently
biased in the presence of curvature, since it is a convex combination of data vectors.
We have also seen that this bias (e.g. towards the inner of a spiral) gets stronger for
smoother manifolds. The same reasoning applies to the landmark variant of the UKR
function (5.22).

In effect, the new parameter n of landmark UKR is not only responsible for controlling
the computational complexity, but also the shape complexity of the manifold. If the
landmark points are generated by a vector quantization (VQ) pre-processing step, they
already are the product of local averaging, and therefore the landmark UKR function
can be viewed as a double local average. A smaller number n of landmark points implies
a wider span of the averaging within the VQ step, and thus we should not be surprised
to observe an increasing bias.

To overcome this problem, we propose to view also the landmark points Ŷ as param-
eters of the UKR model, which therefore can be modified as part of the training. Since
the model is linear in Ŷ, optimizing these parameters will be much more efficient than
optimizing the latent coordinates: for fixed latent variables (X, X̂), a minimization of
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5.3. Landmark UKR

the reconstruction error (5.23) with respect to Ŷ requires finding a least squares solution
of the overdetermined system Y = ŶB(X, X̂).

However, care must be taken that the extra flexibility does not lead to overfitting,
which may result when utilizing and adapting a rather large number of landmark points.
Therefore, one should include a regularization term in the landmark adaption step.

In the remainder of this section, we introduce a smoothness metric in the space of the
new UKR parameters (or “weights”) Ŷ. We use the same formalism as for the PSOM+

(Sec. 3.3.1), that is, we integrate the square-sum of all second derivatives, treating each
data space dimension separately. This yields the following measure of roughness10 of
the landmark UKR manifold:

R̃(X̂, Ŷ) =

d∑

m=1

∫

X

q
∑

µ=1

q
∑

ν=1

(
∂

∂xµ

∂

∂xν
fm(x; X̂)

)2

dqx

=

d∑

m=1

∫

X

q
∑

µ,ν=1

(

∂

∂xµ

∂

∂xν

(
n∑

i=1

ŷmibi(x; X̂)

))2

dqx

=
d∑

m=1

n∑

i,j=1

q
∑

µ,ν=1

ŷmiŷmj

∫

X

(

∂2bi(x; X̂)

∂xµ∂xν

)(

∂2bj(x; X̂)

∂xµ∂xν

)

dqx

︸ ︷︷ ︸

Iµν
ij (X̂)

=
d∑

m=1

q
∑

µ,ν=1

n∑

i,j=1

ŷmiŷmjIµν
ij (X̂)

= tr
(

ŶM̃ŶT
)

(5.30)

where (M̃)ij =
∑

µ,ν I
µν
ij . With a fixed choice of the density kernel, the integrals Iµν

ij

solely depend on X̂ – similar to the PSOM+, where the integrals solely depend on the
spacing of the nodes. For the PSOM+ algorithm, the integrals Iµν

ij could be solved

analytically, but here, given the more complex basis functions b(x, X̂), this is in general
not possible. Moreover, the region X we integrate over is not a simple hyper-rectangle
anymore, complicating the integration even further.

A practical solution to this problem is to approximate the integral by a discrete
sum and thus to sample the “roughness” in latent space, for example at all locations
xj , j = 1 . . . N , that is, at the locations where the training data is projected to. The
computational effort to calculate the metric M̃ ∈ IRn×n is proportional to the number
of sampling positions, but goes quadratically with the number of landmark points. If M̃

is only used to optimize the weights Ŷ after optimizing the X̂, it has to be calculated
only once, so this is not a problem.

Since the roughness measure (5.30) involves second derivatives of the basis functions,
the Quartic kernel can not be utilized here. As a possible replacement, the Triweight
density kernel

K(x − x′) ∝
[
1 − ‖x − x′‖2

]3

+
(5.31)

10To avoid a clash of notation, we here indicate all quantities related to roughness by a tilde, e.g. R̃.
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also has finite support, but continuous second derivatives. In the following we present
the necessary expressions for calculating the roughness measure. To this end, we intro-
duce two abbreviations bµi (x) and bµν

i (x) that represent a normalized first and second
derivative of the i-th basis function. All summations are to be understood to range from
1 to n.

∂

∂xµ
bi(x) =

∂

∂xµ

K(x − x̂i)
∑

j K(x − x̂j)

=
∂

∂xµK(x − x̂i)
∑

j K(x − x̂j)
︸ ︷︷ ︸

b
µ
i (x)

− K(x − x̂i)

(
∑

lK(x − x̂l))
2

∑

j

∂

∂xµ
K(x − x̂j)

= bµi (x) − bi(x)
∑

j

bµj (x) (5.32)

∂

∂xν
bµi (x) =

∂
∂xν

∂
∂xµK(x − x̂i)

∑

j K(x − x̂j)
︸ ︷︷ ︸

b
µν
i (x)

−
∂

∂xµK(x − x̂i)

(
∑

lK(x − x̂l))
2

∑

j

∂

∂xν
K(x − x̂j)

= bµν
i (x) − bµi (x)

∑

j

bνj (x) (5.33)

∂

∂xν

∂

∂xµ
bi(x) = bµν

i (x) − bµi (x)
∑

j

bνj (x)

−
(

bνi (x) − bi(x)
∑

m

bνm(x)

)
∑

j

bµj (x)

−bi(x)
∑

j

(

bµν
j (x) − bµj (x)

∑

m

bνm(x)

)

= bµν
i (x) − bi(x)

∑

j

bµν
j (x)

−bµi (x)
∑

j

bνj (x) − bνi (x)
∑

j

bµj (x)

+2bi(x)
∑

j

bµj (x)
∑

m

bνm(x) (5.34)

Again, we restrict ourselves to the case of spherically symmetric kernels, that is

K(x − x̂) = F (‖x − x̂‖2) (5.35)

∂

∂xµ
K(x − x̂) = 2F ′(‖x − x̂‖2)(xµ − x̂µ) (5.36)

∂

∂xµ

∂

∂xν
K(x − x̂) = 4F ′′(‖x − x̂‖2)(xµ − x̂µ)(xν − x̂ν)

+2δµνF
′(‖x − x̂‖2). (5.37)

Given the metric M̃, we can smoothly adapt a readily trained landmark UKR manifold
just as with the PSOM+: We minimize the reconstruction error with respect to the
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“weights” Ŷ, but add the roughness term (5.30) as a penalty. This yields a term which
is quadratic in Ŷ, so the minimum can be retrieved by setting the gradient to zero.

Rγ(Ŷ) = ‖Y − ŶB(X, X̂)‖2
F + γ · tr

(

ŶM̃ŶT
)

(5.38)

0
!
=

∂Rγ

∂Ŷ
= 2(Y − ŶB)(−BT ) + 2γŶM̃ (5.39)

⇒ Ŷopt = YBT (γM̃ + BBT )−1 (5.40)

Just as with the PSOM+, the parameter γ balances between a smoother manifold and
a closer fit of the data vectors. Please note that these formulas also work in the case
of non-landmark UKR models, in which case one sets X = X̂ and also “duplicates” the
data matrix Y to get a weight matrix Ŷ.

5.3.3. Experiments

Noisy Spiral

As a first experiment, we fitted landmark UKR models to a “noisy spiral” dataset
containing 500 samples and Gaussian noise with standard deviation σ = 0.05. For
simplicity, we chose the Gaussian density kernel. We generated n = 30, n = 50 and
n = 100 landmark points Ŷ by applying the K-Harmonic Means algorithm (Sec. 2.1.3)
and calculated initial embeddings of the resulting extended datasets (Y, Ŷ) with 530,
550, and 600 samples by use of the Isomap algorithm. As already described earlier, we
compared the results of several settings of the Isomap neighborhood parameter with
respect to the reconstruction error (5.23).

Starting from the best scale-optimized candidate, we minimized the reconstruction
error plus an extension penalty term (cf. Eq. 4.31)

Rλ(X, X̂) =
1

N
‖Y − ŶB(X, X̂)‖2

F + λ
(

‖X‖2
F + ‖X̂‖2

F

)

(5.41)

with a pre-factor 0.001 by carrying out 1000 RPROP steps. The pre-factor was chosen
experimentally, where the goal was only to reach a sufficient overlapping of the density
kernels. The resulting coarse UKR models are depicted in the top row of Fig. 5.23.
Note that the manifolds are smooth, but show a considerable bias towards the inner of
the spiral.

Next, we fixed the latent variables (X, X̂), calculated the roughness metric M̃ by
sampling at the locations X, and adapted the landmark points Ŷ as described by (5.40),
using three different settings for the pre-factor: γ = 1, γ = 0.1 and γ = 0. Please note
that the last case corresponds to an unconstrained minimization of the reconstruction
error (5.23) with respect to the landmark points. The resulting manifolds are shown in
rows 2 – 4 of Fig. 5.23. For γ = 1, all three models (differing in the number of landmark
points) already are improved, but still exhibit a curvature bias. For γ = 0.1, the curves
are still smooth, but the bias is removed (judged visually), while for γ = 0 the models
with a larger number of landmark points show a wriggly behavior.

Regarding the computational effort, 100 gradient evaluations of our UKR model with
50 landmark points and 500 data points took only 2 seconds, whereas for 100 gradient
evaluations of a corresponding standard UKR model 20 seconds were required.
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Figure 5.23: Landmark UKR models of a “noisy spiral” dataset. From left to right: n = 30,
n = 50, and n = 100. Top row: manifolds after minimizing the reconstruction error w.r.t.
the latent variables. The black stars depict the landmark points as generated by K-Harmonic
Means. Remaining rows from top to bottom: manifolds after optimizing the landmark points
Ŷ with pre-factors γ = 1, γ = 0.1, and γ = 0 of the roughness penalty.
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5.3. Landmark UKR

Fish bowl

In a second experiment, we investigated our proposed landmark UKR variant on a prob-
lem involving homotopy-based optimization. As a benchmark dataset, we chose the “fish
bowl” that we already dealt with in Sec. 3.5. For the experiments here, we generated
datasets with 2000 samples each, where we added Gaussian noise with standard devia-
tion σ = 0.5. In order to fit a landmark UKR model to the data, we first generated n
landmark points by use of the K-Harmonic Means algorithm and calculated an initial
coarse 2-D projection of the data and landmark points via PCA. Then, we executed 10
homotopy steps where we minimized the penalized reconstruction error (5.41) with a
pre-factor λk = 0.7k in the k-th homotopy step. Within each step, we carried out up to
1000 RPROP steps. We repeated the experiment 10 times each for 7 different settings of
the number of landmark points, where we chose n = 100, 150, 200, 250, 300, 350, and 400,
and for 2 different density kernels, namely the Gaussian kernel and the finite-support
Triweight kernel (5.31). Figure 5.24 depicts one of the generated datasets, as well as
corresponding embeddings of a UKR model based on 250 landmark points after the 5th
and 10th homotopy step, respectively.
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Figure 5.24: An example of a “fish bowl” dataset containing 2000 samples (left plot) and
corresponding 2-D embeddings yielded by a UKR model based on the Gaussian kernel and 250
landmark points. The middle plot depicts the model after the 5th homotopy step, while the right
plot shows the model after the 10th (and last) homotopy step, thus showing a larger extension
of latent space.

We evaluated the resulting 140 models (10 trials × 7 numbers of landmarks × 2
kernels) by calculating 1) the mean distance between an original data point yi and its
reconstruction f(xi; X̂), 2) the mean of the norms ̺i = ‖f(xi; X̂)‖ of the reconstructions,
and 3) the standard deviation of that norms. Concerning this, please recall that the
underlying “fish bowl” manifold is the clipped surface of an origin-centered sphere with a
radius of ̺ = 10. Therefore, |̺i − 10| determines the distance between a reconstruction
and the true manifold, and the mean of {̺i} can serve as a measure of the bias of
the model. Similarly, the standard deviation of {̺i} can be regarded as a measure of
roughness. As a further training step, we adapted the landmark points according to
(5.40) with a pre-factor γ = 0.1, after which we collected the same statistics again.

Table 5.8 summarizes the results for the different models after the 5th and the 10th
homotopy step, averaged across 10 trials each. Please note how the landmark adaption
improves all aspects of especially the Gaussian-based UKR models: both the recon-
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struction error and the roughness is decreased, and the reconstructions lie closer to the
surface of the sphere. Most notably, if the homotopy training is stopped after the 5th
step, a subsequent landmark adaption produces models with very similar properties to
those with the “full” training (10 homotopy steps and landmark adaption).

landmark points 100 150 200 250 300 350 400

mean rec. distance 0.97 0.94 0.92 0.91 0.90 0.89 0.89

k = 5 mean norm of rec. 9.15 9.16 9.17 9.19 9.19 9.20 9.19

std. dev. of norms 0.28 0.28 0.28 0.27 0.27 0.27 0.27

mean rec. distance 0.64 0.61 0.58 0.58 0.57 0.56 0.55

k = 10 mean norm of rec. 9.51 9.53 9.55 9.57 9.58 9.59 9.59

std. dev. of norms 0.16 0.17 0.18 0.18 0.18 0.19 0.19

a) Gaussian kernel, before adaption of landmark points

mean rec. distance 0.41 0.40 0.38 0.39 0.38 0.39 0.39

k = 5 mean norm of rec. 10.02 10.02 10.02 10.03 10.02 10.02 10.01

std. dev. of norms 0.11 0.12 0.12 0.12 0.12 0.12 0.12

mean rec. distance 0.41 0.39 0.38 0.38 0.38 0.38 0.37

k = 10 mean norm of rec. 10.03 10.02 10.02 10.03 10.02 10.02 10.02

std. dev. of norms 0.12 0.13 0.14 0.14 0.15 0.15 0.15

b) Gaussian kernel, after adaption of landmark points

mean rec. distance 0.60 0.55 0.53 0.51 0.49 0.48 0.47

k = 5 mean norm of rec. 9.58 9.61 9.64 9.68 9.71 9.75 9.76

std. dev. of norms 0.17 0.19 0.20 0.24 0.25 0.27 0.27

mean rec. distance 0.55 0.51 0.47 0.46 0.44 0.43 0.41

k = 10 mean norm of rec. 9.66 9.70 9.73 9.77 9.80 9.83 9.87

std. dev. of norms 0.16 0.18 0.19 0.23 0.24 0.25 0.25

c) Triweight kernel, before adaption of landmark points

mean rec. distance 0.48 0.49 0.49 0.51 0.51 0.53 0.55

k = 5 mean norm of rec. 9.99 9.98 9.97 9.96 9.96 9.95 9.95

std. dev. of norms 0.14 0.17 0.18 0.24 0.25 0.30 0.31

mean rec. distance 0.50 0.49 0.50 0.50 0.50 0.50 0.51

k = 10 mean norm of rec. 9.99 9.99 9.98 9.97 9.97 9.97 9.98

std. dev. of norms 0.16 0.19 0.22 0.25 0.28 0.32 0.33

d) Triweight kernel, after adaption of landmark points

Table 5.8: Properties of different landmark UKR models fitted to the “fish bowl” data. The first
column indicates the number of homotopy steps the model was trained with. The abbreviations
in the second column stand for the three properties 1) mean distance between reconstruction and
original data point, 2) mean norm of reconstruction as a measure of the bias, and 3) standard
deviation of that norm as a roughness measure. The results are averaged across 10 trials.

As a downside, for the Triweight-based models with a larger number of landmark
points the adaption of Ŷ yields reconstructions that are closer to the underlying sphere,
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but the roughness and the reconstruction error of the models is slightly increased. Please
note, however, that the pre-factors γ and λ were chosen in an ad-hoc manner since we
just aimed at a proof of concept, and that it is highly unlikely that we hit the mark for
all the different models.

Figure 5.25 depicts the reconstructions f(xi; X̂) of a UKR model with 250 landmark
points exemplarily, where again the results after 5 and 10 homotopy steps, as well as
before and after the landmark adaption are compared. Please note that the bias towards
the inner of the sphere is much larger for the model after the 5th step (upper left plot),
but that still the models are comparable after the landmark adaption (right column).
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Figure 5.25: Landmark UKR models (n = 250) of a “fish bowl” dataset. The models are
shown after the 5th (top row) and 10th (bottom row) homotopy step, as well as before (left
column) and after (right column) the adaption of landmark points. The reconstructions are
depicted by gray dots, with black lines indicating the deviation from the original data points.

Finally, the mean computation time for executing 10 homotopy steps in dependence
on the density kernel and the number of landmark points is reported in Table 5.9. Please
note that the measured time roughly scales linearly with the number of landmark points,
as was expected from the considerations regarding the complexity.
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landmark points 100 150 200 250 300 350 400

Gaussian kernel 627 851 1051 1246 1588 1968 2119

Triweight kernel 137 179 227 269 313 356 402

Table 5.9: Computation time in seconds for executing 10 homotopy steps with up to 1000
RPROP steps each. The results are averaged across 10 trials.

5.3.4. Discussion

In this section, we outlined a variant of UKR that first of all aims at reducing the
computational complexity. By the concept of reconstructing the data only from a set
of previously generated landmark points, training a UKR model can take into account
all samples of a possibly large dataset without suffering from a too high computational
effort, which normally rises quadratically with the number of training data.

The savings in terms of computation time, however, come at the cost of a less clearly
defined learning scheme. Firstly, we have to select a suitable number n of landmark
points and an algorithm to generate those points. In a pure vector quantization task,
the results of multiple runs with different choices of n can be compared with respect to
the quantization error. In our setting, though, the quantization error can only roughly
guide the selection of n, since the UKR function (5.22) linearly combines the codebook
vectors or landmark points for reconstructing the data. Therefore, assuming suitable
latent coordinates X̂ and X for the landmark and data points, the reconstruction error
(5.23) will usually be much smaller than the quantization error, and landmark points
that can be convexly combined from other landmark points may be redundant.

Secondly, we have to somehow make sure that the overlap of the density kernels
is large enough, since otherwise the UKR mapping (5.22) will show sharp transitions
between the landmark points. With this UKR variant, the automatic LOO-CV method
cannot be applied anymore, so we have to specify suitable constraints or penalties based
on the extension or density in latent space.

Fortunately, our experiments indicate that by an additional adaption of the landmark
points Ŷ a similarly shaped manifold can be created from quite different starting con-
ditions, here in the sense of number of landmark points and overlap regularization. In
order to achieve this, especially in case of a rather large number of landmark points, we
need an additional (third) regularization parameter γ that balances between smoothness
and closeness of fit. Since optimizations with respect to Ŷ can be accomplished using
linear algebra, different values of γ can quickly be tried out. Then, as a possible way
to infer a suitable γ, the resulting UKR manifolds can be compared with regard to the
projection error of hold-out data11.

There are further issues to resolve, for example the choice of sampling points for
calculating the roughness metric. Moreover, after an adaption of Ŷ, one should de-
termine new projection coordinates X for the training data Y, and repeat these two
steps until convergence. With the same argument as for the Regularized Principal Man-
ifolds (2.6.2) and the PSOM+ (3.5), convergence must occur since a new projection by
definition can only decrease the reconstruction error and leave the roughness term un-

11Landmark UKR will only be applied in case the training data is plenty, so holding out even larger
parts of it should not be a problem.
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changed12, whereas the adaption step minimizes the weighted sum (5.38) of both terms.
If we take a further adaption of the kernel centers X̂ into account, however, this does
not apply anymore, since the roughness metric depends on these points in a complicated
way.

Despite the aforementioned problems, landmark UKR has the undisputed advantage
of a much reduced computational cost. Furthermore, the additional adaption of the
landmark points Ŷ can yield manifolds which are very smooth and at the same time
do not show curvature bias, even if a preceding optimization with respect to the pair
(X, X̂) led to a heavily biased manifold (cf. Fig. 5.23). Therefore, we see landmark
UKR as a promising variant and as an interesting direction of future research.

5.4. Unsupervised Local Polynomial Regression

As described in the previous chapter, the UKR algorithm has been derived as an un-
supervised counterpart of the Nadaraya-Watson kernel regression estimator. To recall
the basic properties, the latter creates a smooth mapping from given sets of input and
output data, denoted by X = [x1,x2 . . .xN ] ∈ IRq×N and Y = [y1,y2 . . .yN ] ∈ IRd×N ,
respectively. In particular, the Nadaraya-Watson estimator forms a locally weighted
convex combination

y = f(x) =
∑

i

yi
Kh(x − xi)

∑

j Kh(x − xj)
(5.42)

of the output data. In the UKR setting, X are treated as parameters, and the optimal
set of these is determined by minimizing the reconstruction error (4.26) or rather a
penalized (4.31,4.33) or cross-validated version (4.34) of it.

In section 4.1 we showed how to derive the Nadaraya-Watson estimator from a kernel
density estimate of the conditional expectation, but one can also view the estimator from
a different perspective. As will be demonstrated later, the Nadaraya-Watson estimator
is the simplest example from the class of local polynomial regression estimators, which
aim at fitting a polynomial fx(·) at each point x to the data. Early work on local
polynomial regression has been carried out by C. J. Stone (1977) and Cleveland (1979).
A more recent review of the technique including a historical overview has been given by
Cleveland and Loader (1996).

This section of the thesis is aimed at the investigation how also more complex members
of that class can be transformed into unsupervised manifold learning methods, resulting
in the new family of Unsupervised Local Polynomial Regression (ULPR) algorithms.
As with Landmark UKR, the ideas and results presented here have only recently been
developed and not been published, yet.

In the remainder of this section, we first give a brief introduction to classical (super-
vised) local polynomial regression. Then, we will derive unsupervised variants in direct
analogy to the way we transformed the Nadaraya-Watson estimator into UKR. As with
previous variants of UKR, we will demonstrate the properties of the new algorithms in
a series of experiments, and we will conclude this section with a discussion of the results
of the experiments.

12To this effect, we must not change the sampling points, which would change the roughness metric.
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5.4.1. Local polynomial regression

A simple global approach to learning a relationship between input and output data is
to optimize a set of parameters Θ of a function f(·;Θ), so that the empirical error

E(Θ) =
N∑

i=1

‖yi − f(xi;Θ)‖2, (5.43)

or a regularized variant of it, becomes as small as possible. Here Θ might be the
coefficients of a high-dimensional polynomial or a Fourier series, or the weights of a
multi-layer perceptron. Either way, one fits one global, possibly very complex function
to the complete dataset.

In contrast to this, local regression aims at fitting multiple simple functions to the
data, that all are suitable only in a small region. For this, kernel functions Kh(·) are
used to weight the influence of the data points to the regression error of a local estimator
fx(·) centered at x:

E(fx) =
N∑

i=1

Kh(x − xi)‖yi − fx(xi)‖2. (5.44)

Here, a bandwidth parameter h (cf. Sec. 4.1) determines the size of the region where
the local approximation should hold. In the limit of an infinite bandwidth, the local
regression estimate has to take all data samples into account, so it effectively becomes a
global regression model. For smaller bandwidths, and especially for a kernel Kh(·) with
finite support, the local model has to fit only a few data points well, which thus can be
done more closely.

Since any smooth function can locally be approximated by its Taylor expansion,
polynomials make up a suitable function class for the local estimators fx(·). In this
work, we restrict ourselves to the three simplest cases, that is, we consider local constant
regression (polynomials of degree zero)

fx(xi) = mx, (5.45)

where the function value mx ∈ IRd is independent of the argument xi, local linear
regression (degree one)

fx(xi) = mx + Gx(xi − x) = mx +

q
∑

µ=1

gµ
x(xi − x)µ, (5.46)

where Gx = (gx
1,gx

2 . . .gx
q) ∈ IRd×q, and local quadratic regression (degree two)

fx(xi) = mx + Gx(xi − x) +

q
∑

µ=1

q
∑

ν=1
ν≤µ

hµν
x (xi − x)µ(xi − x)ν . (5.47)

At first, we take a closer look at the local constant case, and we calculate the optimal
function value mx for the local estimator at x. To this end, we insert (5.45) into (5.44)
and minimize the resulting expression

E(mx) =
N∑

i=1

Kh(x − xi)‖yi − mx‖2 (5.48)
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with respect to mx, yielding

0
!
=∇E(mx) = −2

N∑

i=1

Kh(x − xi)(yi − mx) (5.49)

⇒
N∑

i=1

K(x − xi)mx =

N∑

i=1

K(x − xi)yi (5.50)

⇒ mx =
N∑

i=1

yi
K(x − xi)

∑N
j=1K(x − xj)

. (5.51)

As a result, we see that the optimal local constant fit equals the Nadaraya-Watson
estimator. To obtain the optimal local linear fit, we first define the “design matrix”

X̄ = (x̄1, x̄2 . . . x̄N ) =

(
1 1 . . . 1

x1 − x x2 − x . . . xN − x

)

∈ IR(q+1)×N (5.52)

as well as a diagonal matrix W ∈ IRN with entries

wii = Kh(xi − x). (5.53)

If we further define Mx = (mx,Gx) = (mx,g
1
x . . .g

q
x), we can reformulate (5.44) as

E(Mx) =
N∑

i=1

wii‖yi − Mxx̄i‖2. (5.54)

As with the local constant case, the minimum of (5.54) is given by the zero of its
derivative with respect to Mx, which yields

0
!
=
∂E(Mx)

∂Mx

= −2
N∑

i=1

wii(yi − Mxx̄i)x̄
T
i = −2(Y − MxX̄)WX̄

T
(5.55)

⇒ Mx = YWX̄
T
(

X̄WX̄
T
)−1

. (5.56)

In principle, the same calculation also works for local quadratic regression, but since
the number of variables rises quadratically with the dimensionality of the input space,
the notation gets a bit messy. For the case of one-dimensional inputs xi, for example,
we can define

X̄ = (x̄1, x̄2 . . . x̄N ) =





1 1 . . . 1
x1 − x x2 − x . . . xN − x

(x1 − x)2 (x2 − x)2 . . . (xN − x)2



 ∈ IR3×N (5.57)

and Mx = (mx,gx,hx), by which (5.56) holds again.
Please note that if we fit a local model at each point x of interest (e.g., for predic-

tion), we actually only need to calculate mx even if we wish to use linear or quadratic
regression, since for example in the linear case we have

fx(x) = mx + Gx(x − x) = mx. (5.58)
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The smoothness and complexity of the complete (global) regression function f(x) = fx(x)
depends on 1) the degree of the local polynomials and 2) the bandwidth h used to fit
the local estimators. A larger bandwidth gives larger weight to a wider span of data
samples, so estimators at nearby points x and x′ differ less, which yields a smoother
global estimator. A higher degree of the polynomials implies a higher variability of the
local estimators and therefore also of the global function.

As an example, Fig. 5.26 shows the results of local constant, linear and quadratic
regression for two different bandwidths and a Gaussian kernel, where the task is to learn
a simple function from 100 noisy samples of a sinus graph (q = d = 1). Note the much
better fit of the linear and quadratic estimators for the larger bandwidth (left column)
and especially the better behavior at the borders. Even for the smaller bandwidth, the
local constant (Nadaraya-Watson) fit shows an undesirable bias at the ends of the curve.
Please note also that at the peaks of the sinus function, where the curvature is high,
the local quadratic estimator produces a more accurate fit than the linear estimator.
These properties strongly motivate to generalize the UKR idea to an underlying local
polynomial regression estimate.

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

0 1 2 3 4 5 6

−1

−0.5

0

0.5

1

Figure 5.26: Using Local Polynomial Regression to learn a function from noisy data. From
top to bottom: local constant fit (Nadaraya-Watson), local linear fit, local quadratic fit. Left:
bandwidth h = 1. Right: bandwidth h = 0.3. The black curves depict 10 local estimators each.
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Computational effort

Before formulating an unsupervised version of local polynomial regression, we turn our
attention to the computational effort that is involved in one evaluation of the regression
function

f(x) = mx = Mxe0 = YWX̄
T
(

X̄WX̄
T
)−1

e0 = YWX̄
T
C−1e0, (5.59)

where C = X̄WX̄
T

and e0 = (1, 0, . . . , 0)T is the first standard basis vector. The length
n of the vector e0 depends on the dimensionality q of the input data and on the choice
of the algorithm. The same applies to the n × n matrix C and the design matrix
X̄ ∈ IRn×N . This n is given by

n = 1 local constant regression (Nadaraya-Watson),
n = q + 1 local linear regression, and

n = 1
2(q + 1)(q + 2) local quadratic regression.

(5.60)

For one evaluation of (5.59), we need

• O(N) operations to calculate the diagonal elements of W from the distances di =
‖x − xi‖2 and O(qN) operations to calculate these distances,

• O(n2N) operations to calculate C = X̄WX̄
T

(recall that W is diagonal),

• O(n3) operations to invert C, or less if we use the fact to we only need the first
column,

• O(nN) operations to calculate a = X̄T (C−1e0),

• O(N) operations to calculate b = Wa = WX̄TC−1e0 and finally

• O(dN) operations to calculate mx = Yb.

If d≫ q (the case we are interested in for dimensionality reduction), the most expensive
operation is the O(dN) multiplication Yb, which is independent of the degree of the
local polynomials. If d is not much bigger than q, however, the O(n2N) operations
can get quite a burden for the case of local quadratic regression, where O(n2N) means
O(q4N).

Please note that also the general local polynomial regression function can be written
in the form “data matrix × vector of basis functions”, where now the basis functions
are given by

b(x;X) = WX̄TC−1e0. (5.61)

5.4.2. Derivation of ULPR

The transformation of local linear and quadratic regression into unsupervised manifold
learning algorithms works in the same way as for the Nadaraya-Watson estimator. We
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just treat the input data X as latent variables, which we optimize by minimizing the
reconstruction error

R(X) =
1

N

∑

i

‖yi − f(xi;X)‖2 =
1

N

∑

i

‖yi − Yb(xi;X)‖2. (5.62)

Again, the bandwidth parameter can be canceled out since the scaling of X is free. We
can use the already known regularization approaches from standard UKR, most notably
LOO-CV and also LKO-CV (Sec. 5.2) without additional computational cost. Please
note, however, that e.g., for LOO-CV the relevant diagonal elements Kii = K(xi − xi)
have to be set to zero already for calculating the matrices W and C.

Because of the matrix inversion involved in the local linear and quadratic regression
functions, the analytic calculation of the gradient of R(X) is more complicated than
for UKR. Please see appendix C for a detailed derivation, and also for the particular
form of the gradients for the different degrees of the local polynomials. For simplicity,
we analyzed the “full” local quadratic estimate only for the case q = 2, where the j-th
column of the design matrix involved in calculating b(xi;X) is given by

x̄i
j =











1
x1j − x1i

x2j − x2i

(x1j − x1i)
2

(x2j − x2i)
2

(x1j − x1i)(x2j − x2i)











∈ IR6. (5.63)

For the local quadratic case and a general latent dimensionality q, we left out cross-terms
in the design matrix, that is, terms like (x1j − x1i)(x2j − x2i). The same simplification
has been applied by Yang and Tschernig (1999), who investigated using local quadratic
regression in the problem of bandwidth selection for kernel density estimation. Please
note that the number n of rows of the design matrix equals n = 2q+1 if no cross-terms
are included, and that there are no cross-terms in the case q = 1.

Please also note that it is possible to modify (5.62) by the inclusion of a general loss
function in the way of Sec. 5.1. The local estimators are explicitly based on the squared
loss, but still a different global loss function will influence the way the ULPR manifold
is fitted, as we have already seen in the local constant case (UKR) in Sec. 5.1.4.

5.4.3. Experiments

Half circle

In a first experiment, we fitted ULPR models of varying polynomial degree to the
synthetic “half circle” dataset already known from section 5.1.4. Here, we only took
into account the 4 × 100 datasets containing Gaussian noise, examples of which can be
found in the bottom row of Fig. 5.2, and we only utilized the standard squared loss.

Just like in Sec. 5.1.4, we initialized the models with a PCA solution (scaled down to
a variance of 1) and then carried out up to 2000 RPROP steps minimizing the CV-error.
In addition to a pure LOO-CV regularization, here we also added the extension penalty
term scaled by pre-factors λ = 0.01, λ = 0.1 and λ = 1. In total, we thus fitted 4800
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models, corresponding to 100 trials with 4 different noise levels, 3 polynomial degrees
(constant, linear, and quadratic), and 4 different regularization strategies (pure LOO-
CV, 3× LOO-CV with additional extension penalty). As the basis for all models, we
used the Gaussian density kernel.

Figure 5.27: ULPR models of noisy half circle datasets. From top to bottom: locally constant
(UKR), linear, and quadratic. From left to right: σ = 0.25, σ = 0.5, σ = 0.75, σ = 1. All models
are based on the Gaussian kernel and are regularized solely by LOO-CV. The plots each depict
100 models drawn atop each other. The dotted gray line indicates the underlying half circle.

Figure 5.28: ULPR models of noisy half circle datasets, regularized by LOO-CV with an
additional extension penalty (λ = 0.01). From top to bottom: locally constant (UKR), linear,
and quadratic. From left to right: σ = 0.25, σ = 0.5, σ = 0.75, σ = 1.
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Figure 5.29: ULPR models of noisy half circle datasets, regularized by LOO-CV with an
additional extension penalty (λ = 0.1). From top to bottom: locally constant (UKR), linear,
and quadratic. From left to right: σ = 0.25, σ = 0.5, σ = 0.75, σ = 1.

Figure 5.30: ULPR models of noisy half circle datasets, regularized by LOO-CV with an
additional extension penalty (λ = 1). From top to bottom: locally constant (UKR), linear, and
quadratic. From left to right: σ = 0.25, σ = 0.5, σ = 0.75, σ = 1.

The results of this experiment are illustrated by Fig. 5.27 – 5.30, from which we can
see several things:

• Both the local constant (UKR) and local linear models show an increasing cur-
vature bias if they are regularized more strongly (Fig. 5.29 and Fig. 5.30). The
local quadratic models (depicted in the bottom row of all figures) do not share this
drawback – the corresponding (black) curves are centered at the “true” underlying
half circle (gray dots). Only the ends of the curves are turned slightly outwards,
which is best seen in Fig. 5.30 (λ = 1).

• The local linear models seem to be particularly bad. They show as much (or even
more) bias as the local constant models, and in addition they yield very wriggly
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curves if the noise level is high and only a mild regularization is applied (Fig. 5.27
and 5.28).

• Even for high noise levels and a pure LOO-CV regularization, the local quadratic
models produce smooth curves, as is depicted by the bottom right plot in Fig. 5.27.
On one hand, this is understandable because the built-in quadratic fit matches the
half circle problem well. On the other hand, a local quadratic model has much
more variability than a local constant model, and should therefore lead to less
smooth curves which tend to interpolate the data. As a possible explanation, the
local quadratic models may all have gotten stuck in a benign local minimum early
in the optimization process, where the latent variables were still close and thus
the manifold still smooth. If in such an early stadium the data can already be
fitted well, the corresponding minima are deeper and therefore harder to avoid
than in the local constant (standard UKR) case. While this viewpoint is a bit
unsatisfying, please keep in mind that the aforementioned plot depicts the results
of 100 trials, nearly all of them leading to a reasonable curve.

Noisy spiral

In a second experiment, we recycled the 100 “noisy spiral” datasets with uniform noise
and also the corresponding Isomap initializations from section 5.1.4. We then fitted
36 different ULPR models to each of the 100 datasets, where we compared the three
different density kernels Gaussian, Quartic, and Triweight, the three different polynomial
degrees constant, linear, and quadratic, two loss functions (Huber and L2), and two
regularization approaches (LOO-CV and LKO-CV withK = 5). Unlike our experiments
in Sec. 5.2, we did not include a density variance penalty term to cope with wriggly
curve ends.

To run this experiment, we again utilized our own UKR toolbox for MATLAB, which
allows the user to adjust the desired model properties by simply specifying certain
elements of a data structure used to encapsulate a UKR/ULPR model. Then, for
evaluating gradients and the regression function, for example, one can call the same
toolbox functions regardless of the particular type of model.

As already described in previous experiments, for fitting each of the 3600 models we
scale-optimized and compared the Isomap solutions with respect to the LOO-CV or
LKO-CV error, selected the best candidate, and carried out up to 1000 RPROP steps
for fine-tuning the models. We compared the final models with regard to the mean
distance between the UKR/ULPR reconstructions f(xi;X) and the underlying spiral.
The results, averaged across all 100 datasets, are summarized in Table 5.10.

Please note that regardless of the density kernel, the local quadratic models with the
L2 loss function and LKO-CV regularization (K = 5) provided the best results. The
models based on locally linear estimates are worse than the standard UKR (local con-
stant) models in most cases, which again can be explained by the fact that a local linear
approximation does not improve the fit in the presence of curvature. A visualization of
one of the 100 datasets and all corresponding 36 models is given by Fig. 5.31, 5.32, and
5.33.
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Huber‘s loss
LOO-CV

L2 loss
LOO-CV

Huber‘s loss
LKO-CV (5)

L2 loss
LKO-CV (5)

Local constant fit,
Gaussian kernel

0.0299
0.0060

-0.0007

0.0291
0.0029

-0.0015

0.0204
0.0135

-0.0119

0.0196
0.0115

-0.0101

Local linear fit,
Gaussian kernel

0.0261
0.0054

-0.0026

0.0304
0.0067

-0.0021

0.0217
0.0130

-0.0132

0.0213
0.0093

-0.0112

Local quadratic fit,
Gaussian kernel

0.0217
0.0072

0.0012

0.0206
0.0072

0.0010

0.0161
0.0116

-0.0036

0.0151

0.0094

-0.0015

Local constant fit,
Quartic kernel

0.0293
0.0067

-0.0008

0.0281
0.0043

-0.0018

0.0196
0.0115

-0.0112

0.0181
0.0065

-0.0097

Local linear fit,
Quartic kernel

0.0242
0.0057

-0.0018

0.0279
0.0062

-0.0017

0.0217
0.0103

-0.0144

0.0211
0.0121

-0.0123

Local quadratic fit,
Quartic kernel

0.0213
0.0065

0.0015

0.0201
0.0083

0.0016

0.0167
0.0141

-0.0040

0.0151

0.0097

-0.0013

Local constant fit,
Triweight kernel

0.0307
0.0050

-0.0003

0.0302
0.0048

-0.0013

0.0198
0.0110

-0.0107

0.0188
0.0072

-0.0088

Local linear fit,
Triweight kernel

0.0239
0.0064

-0.0026

0.0275
0.0068

-0.0024

0.0219
0.0115

-0.0144

0.0210
0.0110

-0.0124

Local quadratic fit,
Triweight kernel

0.0214
0.0071

0.0013

0.0199
0.0070

0.0015

0.0167
0.0142

-0.0041

0.0152

0.0100

-0.0015

Table 5.10: ULPR models of “noisy spiral” datasets, compared by the mean distance between
data reconstructions and the underlying spiral model. The results are averaged across 100
datasets, where the first two numbers in each cell denote the mean and the standard deviation.
The 3rd entry stands for the mean signed distance, or bias of the reconstructions, with negative
values denoting a bias towards the inner of the spiral. Within each block corresponding to a par-
ticular density kernel, bold numbers indicate the most favorable combination of reconstruction
error and bias.

148



5.4. Unsupervised Local Polynomial Regression

In this experiment, where Isomap provides very good initializations in most cases,
one can hardly argue that the smooth curves of the local quadratic models are just
the product of getting stuck in an early local minimum. We can rather conclude that
indeed the better fitting properties of local quadratic regression are responsible for the
more truthful models of the complete dataset. In particular, please note how the local
quadratic models show practically no bias, as printed in the 3rd row of each cell in Table
5.10, even if LKO-CV with K = 5 is utilized for generating smoother manifolds. The
bias of both the local constant and the local linear models is substantially higher in that
case.

Figure 5.31: Gaussian kernel ULPR models of a “noisy spiral” dataset, with the plots cor-
responding to the layout of Table 5.10, that is, from top to bottom: local constant, linear,
and quadratic model. From left to right: LOO-CV with Huber’s loss, LOO-CV with L2 loss,
LKO-CV (K=5) with Huber’s loss, LKO-CV (K=5) with L2 loss.
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Figure 5.32: Quartic kernel ULPR models of the same datasets as in Fig. 5.31.

Figure 5.33: Triweight kernel ULPR models of the same datasets as in Fig. 5.31.
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Swiss Roll

In a third and last experiment, we fitted local linear and quadratic ULPR models based
on the Quartic kernel to samples of the “Swiss Roll”. We utilized the same 2×100
datasets containing Gaussian and Laplacian noise that we already handled in Sec. 5.1.4,
and we also “recycled” the initial solutions provided by Isomap. We fitted 6 models to
each of the 200 datasets, combining 1) the local linear estimators, 2) the local quadratic
estimators without the cross-term, and 3) the full quadratic estimators with a) Huber’s
loss and b) the standard L2 loss. As described before, we first optimized the scales of the
Isomap solutions with respect to the LOO-CV error (measured with the respective loss
function), and then further fine-tuned the model by minimizing that error as a function
of the latent variables in up to 1000 RPROP steps.

In accordance to the “Swiss Roll” experiment in Sec. 5.1.4, we evaluated the final
models by measuring the mean (absolute) distance between the reconstructions f(xi;X)
and the underlying smooth manifold. Additionally, we took into account whether the
reconstructions lied more towards the inner or the outer of the underlying true manifold,
for which we evaluated signed distances similar to the “noisy spiral” experiment.

The results are given in Table 5.11, where we also included the relevant measurements
for the local constant (standard UKR) models that we already fitted in the corresponding
experiment of Sec. 5.1.4.

type degree L2 loss Huber’s loss

local constant (UKR) 0.281 ± 0.020 0.236 ± 0.020

absolute distance local linear 0.238 ± 0.029 0.233 ± 0.049

Gaussian noise quad. w/o cross-terms 0.231 ± 0.027 0.190 ± 0.024

local quadratic 0.214 ± 0.028 0.176 ± 0.022

local constant (UKR) -0.026 ± 0.018 -0.027 ± 0.019

signed distance local linear -0.089 ± 0.036 -0.146 ± 0.066

Gaussian noise quad. w/o cross-terms 0.005 ± 0.016 0.005 ± 0.017

local quadratic 0.002 ± 0.017 0.002 ± 0.017

local constant (UKR) 0.266 ± 0.022 0.225 ± 0.018

absolute distance local linear 0.231 ± 0.034 0.220 ± 0.054

Laplacian noise quad. w/o cross-terms 0.216 ± 0.029 0.179 ± 0.025

local quadratic 0.200 ± 0.028 0.168 ± 0.022

local constant (UKR) -0.020 ± 0.020 -0.021 ± 0.019

signed distance local linear -0.083 ± 0.039 -0.130 ± 0.074

Laplacian noise quad. w/o cross-terms 0.004 ± 0.021 0.003 ± 0.020

local quadratic 0.001 ± 0.022 0.002 ± 0.022

Table 5.11: Mean distance between the underlying smooth “Swiss Roll” and the UKR or ULPR
reconstructions of the training data. Results are averaged across 100 datasets, and printed in
the form mean ± standard deviation. All models were regularized by LOO-CV. Please note
again that the signed distance serves as a measure of the bias, with negative values indicating a
bias towards the inner of the “Swiss Roll”.

Please note that for this problem, where curvature is present only along one of the two
intrinsic dimensions (cf. Fig. 5.10 on page 113), already the local linear models yield
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a reduced absolute distance to the true manifold on average. If Huber’s loss function
is utilized, however, this reduction is smaller than the (increased) standard deviation
and therefore not significant. The local quadratic models, both with and without the
cross-term, yield a significantly reduced absolute distance to the true manifold for both
loss functions. In direct comparison, the quadratic model with the cross-term yields
slightly (albeit not significantly) better results than the model without the cross-term.

If we look at the signed distances as a measure of the bias, we see that the local linear
models exhibit a large bias towards the inner of the “Swiss Roll”, while both kinds of
quadratic models practically show no bias on average.

As a follow-up, we repeated the experiment under the replacement of the LOO-CV
regularization by LKO-CV (Sec. 5.2) with an ad-hoc choice of K = 3. We did not
include a density variance penalty. In this case, contrary to our previous observations,
utilizing LKO-CV actually worsens the results (see Table 5.12) as compared to the mod-
els regularized by LOO-CV (Table 5.11). Still, within the set of models regularized by
LKO-CV, utilizing local quadratic regression yields a smaller distance to the underly-
ing smooth manifold than local constant (standard UKR) models. Interestingly, the
advantage of the local quadratic models is bigger if Huber’s loss function is utilized,
where both the absolute and the signed mean distance are significantly smaller than the
corresponding quantities of the local constant models.

In this part of the experiment, the local linear models produce the worst manifolds
with respect to the mean absolute distance to the underlying smooth “Swiss Roll.”
Furthermore, they also exhibit by far the largest bias (mean signed distance), which is
in accordance with our observations from the preceding experiments of this section.

type degree L2 loss Huber’s loss

local constant (UKR) 0.333 ± 0.022 0.253 ± 0.027

absolute distance local linear 0.462 ± 0.049 0.285 ± 0.048

Gaussian noise quad. w/o cross-terms 0.304 ± 0.034 0.212 ± 0.031

local quadratic 0.279 ± 0.035 0.192 ± 0.027

local constant (UKR) -0.018 ± 0.019 -0.033 ± 0.023

signed distance local linear -0.220 ± 0.036 -0.177 ± 0.060

Gaussian noise quad. w/o cross-terms -0.028 ± 0.018 -0.004 ± 0.017

local quadratic -0.027 ± 0.019 -0.004 ± 0.018

local constant (UKR) 0.309 ± 0.023 0.241 ± 0.030

absolute distance local linear 0.424 ± 0.054 0.265 ± 0.057

Laplacian noise quad. w/o cross-terms 0.277 ± 0.040 0.197 ± 0.032

local quadratic 0.252 ± 0.037 0.184 ± 0.028

local constant (UKR) -0.017 ± 0.025 -0.039 ± 0.045

signed distance local linear -0.203 ± 0.043 -0.159 ± 0.073

Laplacian noise quad. w/o cross-terms -0.029 ± 0.021 -0.004 ± 0.020

local quadratic -0.024 ± 0.022 -0.005 ± 0.022

Table 5.12: Mean distance between the underlying smooth “Swiss Roll” and the UKR or
ULPR reconstructions. All models were regularized by LKO-CV, K = 3.
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5.4. Unsupervised Local Polynomial Regression

Regarding the computational effort, we measured the time required for fine-tuning
the models, that is, carrying out up to 1000 RPROP steps and gradient evaluations.
The results, averaged across 200 trials13, can be found in Table 5.13. Please note that
we utilized the finite support Quartic kernel, and therefore the required computation
time does not only depend on the particular degree of the underlying local models, but
also on the sparseness of the matrix of basis functions.

The slightly higher computational effort of the quadratic models without the cross-
term as compared to the full quadratic models can be explained from implementation
details. In our MATLAB toolbox, or rather in the underlying subroutines written in C,
the full quadratic model is hard coded for the case q = 2, while the code for the models
without cross-terms can handle any value of q.

degree time (seconds)

local constant (UKR) 30.4 ± 0.7

local linear 36.4 ± 2.2

quad. w/o cross-terms 48.3 ± 5.5

local quadratic 46.9 ± 5.0

Table 5.13: Required time for fine-tuning a UKR/ULPR model of a “Swiss Roll” dataset by
up to 1000 RPROP steps. The results are averaged across 200 trials.

5.4.4. Discussion

In this section, we described how to generalize UKR to the family of Unsupervised Local
Polynomial Regression algorithms, the members of which differ only in the choice of the
polynomial degree of the local estimator. As was already known from the literature
on classical (supervised) local polynomial regression, the Nadaraya-Watson estimator
corresponds to a local constant fit and therefore exhibits an unfavorable behavior at the
borders and – where curvature is present – also in the interior of the manifold. While
local linear regression can remove the bias at the borders, only higher degrees (e.g., local
quadratic regression) are useful to cancel out the curvature bias (cf. Hastie et al., 2001,
Sec. 6.1).

In accordance to the way UKR was introduced as a counterpart of the Nadaraya-
Watson estimator, we derived unsupervised variants of local linear and local quadratic
regression, and we showed how especially an underlying local quadratic model can lead
to improved manifolds. Most importantly, the smoothness vs. bias dilemma of stan-
dard UKR is not severe anymore, since the local quadratic models do not form simple
convex combinations of the observed data vectors. This favorable property has been
demonstrated clearly in the “noisy spiral” experiment, where the combination of local
quadratic models and regularization by LKO-CV (K = 5) yielded manifolds that were
very close to the true underlying spiral.

As a downside, the computational effort naturally increases with the degree of the
local polynomials. For larger dimensionalities d of the data space, however, the effort

13The reported times correspond to the part of the experiment where we utilized LKO-CV and dealt
with the datasets containing Laplacian noise.
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5. Extensions to Unsupervised Kernel Regression

is still dominated by the multiplication of the matrices Y and B, which has complexity
O(dN2) independently of the degree of the model. A more severe problem is a decreased

numerical stability, resulting from the inversion of the matrix C = X̄WX̄
T

that is
required in every evaluation of the regression function. This issue becomes most visible
when a readily trained ULPR manifold is sampled, as for example in Fig. 5.27. At
locations x where only few latent variables xi contribute to the matrix C via the kernel
K(x − xi), C may be ill-conditioned and not invertible without significant round-off
errors, which then can cause strong deflections in the manifold.

Interestingly, the local linear models seem to suffer most from these numerical prob-
lems, which can be explained by the fact that a linear model can not handle curvature
and therefore must sacrifice its smoothness (that is, a sufficient overlap of the kernels) for
decreasing the reconstruction error. Indeed, our experiments suggest that unsupervised
local linear regression is probably not worth considering further.

As we have stated in the beginning of Sec. 5.4, the variant of UKR we proposed here
represents very recent work, and the examination and evaluation of its properties should
certainly be carried further. In particular, we did not investigate models featuring a
higher dimensional latent space, and we only presented experiments with synthetic data.

Nonetheless, the extension of UKR to an underlying local quadratic model is very
appealing both from theoretical considerations and as demonstrated in the experiments
we conducted. Besides the improvement of the numerical robustness, further interesting
directions of future research on this extension are the combination of local quadratic
models with landmark UKR (the gradient can already be found in appendix C.3), or
a mixing strategy for homotopy-based optimization, where in early (coarse) homotopy
steps a local constant model is fitted, and only in the final steps the more costly local
quadratic regression is applied.
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6. Conclusion

In this thesis, several new developments in the field of manifold learning have been
described. Since each chapter or section containing research contributions has already
been concluded with a corresponding discussion, we will only briefly repeat the most
important points here.

As a first contribution, we presented an extension to the PSOM algorithm in chapter
3. In particular, we provided the PSOM with an explicit and elegant measure of the
roughness of its regression manifold, and we showed how to make use of that roughness
measure in order to learn PSOM mappings from noisy and incomplete training data.
Our extension has important applications in robotics, where the PSOM has often been
used in kinematic learning tasks. Consequently, we demonstrated the advantages of our
method in the simulation of such a task.

In contrast to the original formulation, our extension also allows us to create PSOM
mappings from data that is not organized on the nodes of a grid. Exploiting that
property, we further proposed a PSOM variant for learning manifolds by alternating
steps of data projection and parameter adaption, where the roughness measure can be
utilized for controlling the model complexity.

As the central parts and contributions of this thesis, we presented the UKR algo-
rithm and several fruitful extensions in chapters 4 and 5, respectively. Compared to
other manifold learning algorithms, UKR first of all features an appealing approach to
the model selection problem. Whereas other methods require the a priori specification
of basis functions, grid layouts, or sample points, the structure of a UKR model is com-
pletely determined by the choice of a density kernel. Moreover, as we have seen in a
number of experiments, that choice is of only little importance regarding the qualitative
properties1 of the model. Training a UKR model consists of minimizing a clearly defined
objective function, which involves the error induced by reconstructing the observed data
vectors from the model, with respect to the latent variables. In order to prevent an ar-
bitrary interpolation solution, we have proposed several regularization variants. One of
them – probably the strongest point of UKR – is to apply leave-one-out cross-validation
(LOO-CV) without additional computational cost. Optionally, UKR manifolds can be
fitted in an abstract feature space as implicitly defined by a Mercer kernel.

While the UKR objective function is highly non-convex, resulting in severe problems
when using standard algorithms for local optimization, nonlinear spectral embedding
methods can easily be utilized to generate initial sets of latent variables that are already
close to a good solution. Moreover, multiple runs with different parameter adjustments
of the spectral method can be compared with regard to the LOO-CV error of UKR,
which greatly enhances the robustness of the combined algorithms and effectively cancels
out the parameter specification for the spectral method. As an alternative, UKR models

1This is in stark contrast to e.g. Kernel PCA, where the choice of the Mercer kernel and its parameters
heavily influence the results.
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6. Conclusion

may be trained using a homotopy-based scheme, where the complexity is gradually
increased in order to avoid shallow local minima.

In chapter 5, we presented several extensions to UKR, where sometimes we necessarily
sheered away from the mission of posing as few parameters as possible, but we did so
for a good reason. In particular, we demonstrated how to incorporate general loss
functions within the UKR framework in Sec. 5.1. We concentrated on Huber’s loss,
which enhances the robustness of the UKR algorithm towards high noise levels and
outliers in the data, and on the ǫ-insensitive loss, which can favorably be utilized to fit
manifolds to data with a known inaccuracy. Concerning the latter, we proposed to first
fit a possibly unsmooth manifold that is automatically regularized via LOO-CV – where
information about the noise range cannot be exploited – and to afterwards smooth that
manifold by using an ǫ-insensitive reconstruction error as a penalty function.

As a second extension, aimed at providing an intuitive regularization approach that
produces smoother manifolds than LOO-CV, we introduced a leave-K-out cross-vali-
dation scheme that can be applied to UKR without increasing the computational cost.
Generalizing the idea of LOO-CV, we proposed to reconstruct each data vector yi

without itself and its K − 1 nearest neighbors, where we used fixed and pre-determined
neighborhoods in the observed data space. We suggested a simple heuristics for the
selection of the new parameter K, and we proposed an optional regularizer for tackling
the problem of wriggly manifold borders, which may otherwise arise for rather large
values of the leave-K-out parameter.

In section 5.3, we proposed a landmark variant of UKR that is primarily aimed at
reducing the computational effort when fitting UKR models to large datasets. In par-
ticular, we suggested to generate a set of landmark points by application of a vector
quantization or clustering algorithm, and to reconstruct the training data only from the
landmark points. With the number n of those points, we introduced a new parameter
that explicitly controls the computational effort, but also the shape complexity of the
model. After having observed and discussed a rather large bias that results from choos-
ing only a small number of landmark points, we proposed a further adaption step of
the latter, for which we derived an explicit roughness measure of the UKR manifold in
a similar way to our PSOM extensions in chapter 3. Since LOO-CV cannot be utilized
to automatically regularize a landmark UKR model, the latter requires the selection of
three parameters, which is rather unsatisfactory as compared to the original formula-
tion. Still, experiments we conducted as a proof of concept recommend the landmark
variant as a promising field of future research.

As the last contribution of this thesis, we described how to generalize UKR to Unsu-
pervised Local Polynomial Regression (ULPR) in section 5.4. Inspired by the favorable
properties of local linear and quadratic regression in the supervised case, we derived
unsupervised variants of those algorithms in complete analogy to the way UKR was de-
rived from the Nadaraya-Watson estimator, the latter corresponding to local constant
regression. Consequently, the same regularization strategies (most notably LOO-CV)
can be applied also for ULPR. We compared local constant (standard UKR), local lin-
ear, and local quadratic models in a number of experiments, where we observed that
local linear models actually lead to worse results than standard UKR models, but that
local quadratic models are highly advantageous. In contrast to standard UKR, local
quadratic models can yield manifolds that are both smooth and show little or no bias,
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which comes at the price of an (albeit only slightly) increased computational cost.
Most of the aforementioned extensions can be combined, and we actually investigated

some possible combinations experimentally. In particular, in section 5.4.3 we fitted UKR
and ULPR models to “noisy spiral” and “Swiss Roll” datasets, applying Huber’s loss
function and LKO-CV for regularization. With the UKR toolbox we developed for
MATLAB, such combinations can be applied very easily.

In this thesis, most of the experimental evaluation has been carried out on synthetic
“toy” datasets, and with the exception of the USPS digit classifier from Sec. 4.6.3 and
5.2.3, we did not present any real application of UKR and our extensions. By following
the tradition of utilizing toy data, however, we were able to examine the properties of
our methods in greater detail, for example by calculating the distance between a UKR
model and the true underlying manifold from which the training data was sampled. In
general, the underlying manifold is not known, and therefore it is much harder to judge
the gain of new variants or algorithms. Nonetheless, for a broad acceptance of the UKR
algorithm and its extensions, it will be necessary to demonstrate its usefulness in real
applications. Indeed, first steps of utilizing UKR to improve grasping postures of a
robotic hand have already been undertaken in collaboration with colleagues.

As another direction of future research, one could try to derive convergence bounds
and learning rates similar to the works of Kégl et al. (2000) and Smola et al. (2001),
which can provide further insight into the algorithm. On the other hand, it is always
doubtful whether such an asymptotic theory is really relevant for the practical usage
of an algorithm. The SOM, as an extreme example, is immensely popular despite its
theoretical shortcomings, and gaining only a fraction of that popularity would be a huge
success for UKR.
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A. Mathematical notation

IR field of real numbers

IRq space of q-dimensional real vectors

x real number, element of IR

f(·) real-valued function

x =








x1

x2

. . .

xq








(column) vector with elements xi

f(·) vector-valued function

A =









a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

am1 am2 . . . amn









matrix with m× n elements (A)ij = aij

diag(a) diagonal matrix with elements given by ai

AT transpose of the matrix A, where
(
AT
)

ij
= aji

a · b = aTb dot product
∑

i aibi of a and b

〈a,b〉 dot product between abstract vectors

AB matrix product, (AB)ij =
∑

k aikbkj

A ∗ B element-wise (Schur) product, (A ∗ B)ij = aijbij

{xi} set of vectors with index i

δij Kronecker symbol, δij =

{

1 i = j

0 i 6= j

In identity matrix of size n× n

I identity matrix, if size is clear from the context

1n vector with n elements equal to 1

1 same as above, if size is clear from the context

det(A) determinant of A, product of eigenvalues

tr(A) trace of A, sum
∑

i aii of diagonal elements

δ(x) Dirac distribution, defined by
∫
f(x)δ(x)dx = f(0)

p(x) probability distribution of a random variable x

〈x〉 expectation of a random variable x

p(y|x) conditional distribution of y given x

〈y|x〉 conditional expectation of y given x
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A. Mathematical notation

Vector and matrix norms. The Euclidean norm of a vector x ∈ IRq is given by

‖x‖ = ‖x‖2 =

√
√
√
√

q
∑

i=1

x2
i ,

while the L1 norm of that vector is defined as

‖x‖1 =
∑

i

|xi|.

The Frobenius norm of a matrix A ∈ IRm×n is given by

‖A‖F =

√
√
√
√

m∑

i=1

n∑

j=1

a2
ij =

√

tr(ATA) =
√

tr(AAT ).

The matrix norm ‖A‖ equals the largest singular value of A, with valid inequalities

‖AB‖ ≤ ‖A‖‖B‖ and ‖A‖ ≤ ‖A‖F .
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B. UKR gradient and computational
complexity

We write the UKR reconstruction error utilizing a general differentiable loss function
L(·) (cf. Sec. 5.1.2) in the form

RL(X) =
1

N

∑

j

L
(

f(xj ;X) − yj

)

=
1

N

∑

j

L(rj), (B.1)

where the residuals rj are given by

rj = Yb(xj ;X) − yj =
N∑

i=1

yibi(xj ;X) − yj . (B.2)

The derivatives of the j-th residual rj with respect to the latent variables can thus be
expressed by

∂rj

∂xmn
=

N∑

k=1

yk
∂bk(xj ;X)

∂xmn
, (B.3)

where we used the notation xmn = (X)mn = (xn)m. Then, introducing a d×N matrix
D with the j-th column given by dj = ∇rj

L(rj), the gradient of (B.1) can be expressed
by

∂RL(X)

∂xmn
=

1

N

∑

j

∇rj
L(rj) ·

∂rj

∂xmn

=
1

N

∑

i,j

dj · yi
∂bi(xj ;X)

∂xmn

=
1

N

∑

i,j

(YTD)ij
∂bi(xj ;X)

∂xmn
. (B.4)

For further computations, we restrict the choice of the density kernel to functions of the
form

K(xi − xj) = F (‖xi − xj‖2), (B.5)

with derivatives given by

∂K(xi − xj)

∂xmn
= 2F ′(‖xi − xj‖2)(xmi − xmj)(δin − δjn). (B.6)

As a companion to the matrix of basis functions B(X) with elements

bij = bi(xj ;X) =
K(xi − xj)

∑

k K(xk − xj)
, (B.7)
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B. UKR gradient and computational complexity

we now define a matrix P(X) with elements

pij =
−2F ′(‖xi − xj‖2)
∑

k K(xk − xj)
. (B.8)

Now, the partial derivatives of the basis functions can be expressed by

∂bij
∂xmn

=
∂

∂xmn
K(xi − xj)

∑

k K(xk − xj)
− K(xi − xj)

(
∑

lK(xl − xj))
2

∑

k

∂

∂xmn
K(xk − xj)

= pij [δinxmj − δinxmi − δjnxmj + δjnxmi]

−bij
[

δjn
∑

k

pkj(xmk − xmj) − pnj(xmn − xmj)

]

. (B.9)

Inserting (B.9) into (B.4), eliminating the Kronecker symbols, and factoring out terms
xm∗ yields

∂RL(X)

∂xmn
=

1

N

∑

i

(xmi − xmn)(qni + qin), (B.10)

where we used the elements

qni = pni(Y
TD)ni − pni

∑

j

(YTD)jibji (B.11)

of an N × N -matrix Q. By introducing 1 as the vector of N ones, we can therefore
write the complete gradient in matrix form:

∂RL(X)

∂X
=

1

N
X
{
Q + QT − diag(1T [Q + QT ])

}
, (B.12)

with the matrix
Q = P ∗

{
YTD − 11T [(YTD) ∗ B]

}
(B.13)

expressed by the help of the (element-wise) Schur product. The special case of L(·)
being the squared L2-norm yields L(rj) = rT

j rj and thus dj = 2rj or equivalently
D = 2(YB − Y), by which the gradient coincides with the original version published
by Meinicke et al. (2005). Note that in this case YTD = 2YTY(B− I) = 2M (cf. Eq.
4.50). For Huber’s loss function (5.1), and with rij denoting the i-th component of the
residual rj , the elements of the matrix D are given by

Dij = (dj)i = (∇L(rj))i =







1 rij > δ

−1 rij < −δ
1
δ
rij otherwise,

(B.14)

whereas for the squared ǫ-insensitive loss (5.2) in the form L(r) =
∑

i l
2
ǫ (ri) these ele-

ments are given by

Dij =







2(rij − ǫ) rij > ǫ

2(ǫ− rij) rij < −ǫ
0 otherwise.

(B.15)
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For calculating the gradient of the cross-validated reconstruction error (4.34) or (5.6),
one has to replace all occurences of the form K(xi − xi) and f ′(‖xi − xi‖) with 0,
effectively zero-ing the diagonals of B and P.

Regarding the computational complexity, the most expensive parts of a gradient eval-
uation are the matrix-matrix multiplications YTD and YB (used for calculating the
residuals), which are O(dN2) operations. However, when using a finite support kernel
function (e.g. Quartic), the matrices B and P become sparse, which can yield drastic
speed-ups when utilizing a sparse linear algebra package for calculating YB. Further-
more, the product YTD is only used within Schur products with B and P, so many
of its elements are irrelevant and thus do not have to be computed. Another possible
speed-up arises from utilizing the ǫ-insensitive loss function, through which also the
matrix D becomes sparse.
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C. Derivative calculations for Unsupervised
Local Polynomial Regression

C.1. Gradient of the reconstruction error

At first we write the ULPR regression function in a way similar to the standard UKR
function, that is, we “hide” everything but the data matrix Y inside a vector b of basis
functions:

f(x;X) = mx = YWX̄
T
C−1e0 = Yb(x;X). (C.1)

This allows us to write the reconstruction error in the familiar form

R(X) =
1

N

N∑

j=1

‖yj − f(xj ;X)‖2 =
1

N
‖Y − YB(X)‖2

F . (C.2)

Now we need expressions for the columns b(xj ;X) of B(X) and its derivatives, for which
we introduce some shortcut notation:

b(xj ;X) = WjX̄jT

Cj−1
e0 = VjCj−1

e0. (C.3)

Here and in the following, an upper index j denotes the dependence of a matrix or
vector on the position xj where we evaluate the regression function. Wj is a diagonal
matrix with the entries

(Wj)il = δilK(xi − xj) = δilK
j
i . (C.4)

For the entries of the design matrix X̄j , we introduce the notation (X̄j)µi = ξj
µi. In the

local linear case, we have

ξj
µi =

(

1

xi − xj

)

µ

and µ ranges from 0 to q, whereas in the quadratic case (q = 1), we have

ξj
µi =






1

xi − xj

(xi − xj)
2






µ

and µ ranges from 0 to 2. For the local constant case (Nadaraya-Watson), we simply
have ξj

i = 1, which should yield the same gradient as already known from standard
UKR. We can now express the elements of the matrices Vj and Cj by

V j
iν = (Vj)iν = (WjX̄jT

)iν =
N∑

l=1

(Wj)il(X̄
jT

)lν =
N∑

l=1

δilK
j
i ξ

j
νl = Kj

i ξ
j
νi (C.5)
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and

Cj
µν = (Cj)µν = (X̄jWjX̄jT

)µν = (X̄jVj)µν =

N∑

i=1

ξj
µiK

j
i ξ

j
νi. (C.6)

Later we will use the notation Γj
µν for the elements of the inverse matrix Cj−1

. We now
start with the actual calculation of the gradient, where we stay with the general case as
long as possible. Summations over latin indices are understood to range from 1 to N .

∂R(X)

∂xmn
=

2

N

∑

i,j

(
YT (Y − YB(X)

)

ij

∂bij(X)

∂xmn
=

2

N

∑

i,j

Mij
∂bij
∂xmn

(C.7)

bij = bij(X) = (b(xj ;X))i =
(

VjCj−1
e0

)

i
(C.8)

∂bij
∂xmn

=
∂

∂xmn

(

VjCj−1
e0

)

i

=

([

∂Vj

∂xmn
Cj−1

+ Vj ∂C
j−1

∂xmn

]

e0

)

i

=

([
∂Vj

∂xmn
Cj−1 − VjCj−1 ∂Cj

∂xmn
Cj−1

]

e0

)

i

=

([
∂Vj

∂xmn
− VjCj−1 ∂Cj

∂xmn

]

Cj−1
e0

)

i

=
∑

ν

[
∂Vj

∂xmn
− VjCj−1 ∂Cj

∂xmn

]

iν

Γj
ν0

=
∑

ν

[

∂V j
iν

∂xmn
−
∑

α,µ

V j
iαΓj

αµ

∂Cj
µν

∂xmn

]

Γj
ν0 (C.9)

∂Kj
i

∂xmn
= 2K ′(‖xi − xj‖2)

︸ ︷︷ ︸

−P
j
i

(xmi − xmj)(δin − δjn) (C.10)

A general form of the derivatives of the variables ξj
νi can be given as

∂ξj
νi

∂xmn
= χij

mν(δin − δjn) with χij
m0 = 0. (C.11)

∂V j
iν

∂xmn
=

∂Kj
i

∂xmn
ξj
νi +Kj

i

∂ξj
νi

∂xmn

=
[

−P j
i (xmi − xmj)ξ

j
νi +Kj

i χ
ij
mν

]

(δin − δjn) (C.12)

∂Cj
µν

∂xmn
=

∑

i

[

∂ξj
µi

∂xmn
Kj

i ξ
j
νi + ξj

µi

∂Kj
i

∂xmn
ξj
νi + ξj

µiK
j
i

∂ξj
νi

∂xmn

]

=
∑

i

[

χij
mµK

j
i ξ

j
νi − ξj

µiP
j
i (xmi − xmj)ξ

j
νi + ξj

µiK
j
i χ

ij
mν

]

(δin − δjn).(C.13)
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C.1. Gradient of the reconstruction error

We now use an additional definition (which is symmetric in µ and ν)

Λij
mµν = χij

mµK
j
i ξ

j
νi + ξj

µiK
j
i χ

ij
mν = Kj

i (χ
ij
mµξ

j
νi + χij

mνξ
j
µi), (C.14)

through which we can write

∂Cj
µν

∂xmn
=

∑

i

[

Λij
mµν − ξj

µiP
j
i (xmi − xmj)ξ

j
νi

]

(δin − δjn)

= Λnj
mµν − ξj

µnP
j
n(xmn − xmj)ξ

j
νn

−δjn
∑

k

[

Λkj
mµν − ξj

µkP
j
k (xmk − xmj)ξ

j
νk

]

. (C.15)

From now on, we use Einstein’s summation convention, that is, we automatically sum
over double indices, but only if they are greek letters. Therefore, we can express (C.9)
more compactly as

∂bij
∂xmn

=
∂V j

iν

∂xmn
Γj

ν0 − V j
iαΓj

αµ

∂Cj
µν

∂xmn
Γj

ν0 (C.16)

with an automatic summation over µ, ν and α. Inserting (C.12) and (C.15) yields

∂bij
∂xmn

=
[

−P j
i (xmi − xmj)ξ

j
νiΓ

j
ν0 +Kj

i χ
ij
mνΓ

j
ν0

]

(δin − δjn)

−V j
iαΓj

αµΛnj
mµνΓ

j
ν0 + V j

iαΓj
αµξ

j
µnP

j
n(xmn − xmj)ξ

j
νnΓj

ν0

+δjn
∑

k

[

V j
iαΓj

αµΛkj
mµνΓ

j
ν0 − V j

iαΓj
αµξ

j
µkP

j
k (xmk − xmj)ξ

j
νkΓ

j
ν0

]

.(C.17)

This term is now inserted into (C.7):

N

2

∂R(X)

∂xmn
=

∑

i,j

Mij
∂bij
∂xmn

=
∑

i,j

Mij

[

−P j
i (xmi − xmj)ξ

j
νiΓ

j
ν0 +Kj

i χ
ij
mνΓ

j
ν0

]

δin

+
∑

i,j

Mij

[

P j
i (xmi − xmj)ξ

j
νiΓ

j
ν0 −Kj

i χ
ij
mνΓ

j
ν0

]

δjn

−
∑

i,j

MijV
j
iαΓj

αµΛnj
mµνΓ

j
ν0

+
∑

i,j

MijV
j
iαΓj

αµξ
j
µnP

j
n(xmn − xmj)ξ

j
νnΓj

ν0

+
∑

i,j

Mijδjn
∑

k

V j
iαΓj

αµΛkj
mµνΓ

j
ν0

−
∑

i,j,k

MijδjnV
j
iαΓj

αµξ
j
µkP

j
k (xmk − xmj)ξ

j
νkΓ

j
ν0. (C.18)
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A summation over the Kronecker symbols yields

N

2

∂R(X)

∂xmn
=

∑

j

Mnj

[

P j
n(xmj − xmn)ξj

νnΓj
ν0 +Kj

nχ
nj
mνΓ

j
ν0

]

+
∑

i

Min

[
Pn

i (xmi − xmn)ξn
νiΓ

n
ν0 −Kn

i χ
in
mνΓ

n
ν0

]

−
∑

i,j

MijV
j
iαΓj

αµΛnj
mµνΓ

j
ν0

+
∑

i,j

MijV
j
iαΓj

αµξ
j
µnP

j
n(xmn − xmj)ξ

j
νnΓj

ν0

+
∑

i,k

MinV
n
iαΓn

αµΛkn
mµνΓ

n
ν0

−
∑

i,k

MinV
n
iαΓn

αµξ
n
µkP

n
k (xmk − xmn)ξn

νkΓ
n
ν0. (C.19)

Now we introduce the shortcut notation Ψn
α =

∑

iMinV
n
iα and change all remaining

summation indices to k:

N

2

∂R(X)

∂xmn
=

∑

k

Mnk

[

P k
n (xmk − xmn)ξk

νnΓk
ν0 +Kk

nχ
nk
mνΓ

k
ν0

]

+
∑

k

Mkn

[

Pn
k (xmk − xmn)ξn

νkΓ
n
ν0 −Kn

kχ
kn
mνΓ

n
ν0

]

−
∑

k

Ψk
αΓk

αµΛnk
mµνΓ

k
ν0

+
∑

k

Ψk
αΓk

αµξ
k
µnP

k
n (xmn − xmk)ξ

k
νnΓk

ν0

+
∑

k

Ψn
αΓn

αµΛkn
mµνΓ

n
ν0

−
∑

k

Ψn
αΓn

αµξ
n
µkP

n
k (xmk − xmn)ξn

νkΓ
n
ν0 (C.20)

In the next step, we factor out (xmk − xmn) and sort the remaining terms according to
the occurence of χ and Λ.

N

2

∂R(X)

∂xmn
=

∑

k

(xmk − xmn)
[

MnkP
k
n ξ

k
νnΓk

ν0 +MknP
n
k ξ

n
νkΓ

n
ν0

− Ψk
αΓk

αµξ
k
µnP

k
n ξ

k
νnΓk

ν0 − Ψn
αΓn

αµξ
n
µkP

n
k ξ

n
νkΓ

n
ν0

]

+
∑

k

MnkK
k
nχ

nk
mνΓ

k
ν0 −

∑

k

MknK
n
kχ

kn
mνΓ

n
ν0

−
∑

k

Ψk
αΓk

αµΛnk
mµνΓ

k
ν0 +

∑

k

Ψn
αΓn

αµΛkn
mµνΓ

n
ν0. (C.21)

We note that the term inside the square bracket is symmetric in k ↔ n, while the
rest of the expression is anti-symmetric. Thus, we can write the gradient of general
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Unsupervised Local Polynomial Regression as

∂R(X)

∂xmn
=

2

N

∑

k

[

(xmk − xmn)(Qn
k +Qk

n) + T k
mn − Tn

mk

]

, (C.22)

where we used the definitions

Qn
k = MknP

n
k ξ

n
νkΓ

n
ν0 − Ψn

αΓn
αµξ

n
µkP

n
k ξ

n
νkΓ

n
ν0 (C.23)

and

Tn
mk = MknK

n
kχ

kn
mνΓ

n
ν0 − Ψn

αΓn
αµΛkn

mµνΓ
n
ν0. (C.24)

C.1.1. Local Constant Estimate

Please note that in this case, the resulting gradient must be identical to the one we know
from standard UKR, and we present the calculation as a verification of our general form.
The index m = 1, whereas the greek indexes are 0. We have

ξj
i = 1 and χij = Λij = 0 (C.25)

as well as

Ψj
α =

∑

i

MijV
j
iα =

∑

i

MijK
j
i ξ

j
αi =

∑

i

MijK
j
i . (C.26)

The matrix Cj and its inverse are just scalars, given by

Cj =
∑

l

Kj
l =: Sj and Γj =

1

Sj
.

Inserting these values into (C.23) and (C.24) yields

Qn
k = MknP

n
k

1

Sn
−
∑

i

MinK
n
i

1

Sn
Pn

k

1

Sn
(C.27)

and

Tn
mk = 0. (C.28)

If we now identify

Kj
i

Sj
=

Kj
i

∑

lK
j
i

= bij and
P j

i
∑

j K
j
l

= pij , (C.29)

we get the form (cf. Eq. B.11)

Qn
k = pkn

[

Mkn −
∑

i

Minbin

]

= qkn (C.30)

which we already know from standard UKR. Please note that a general loss function
can be utilized just as with standard UKR, if only the matrix elements Mij are changed
as demonstrated in appendix B.
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C.1.2. Local Linear Estimate

In this case, the entries of the design matrix are given by

ξj
µi =

(

1

xi − xj

)

µ

(C.31)

and the greek indexes range from 0 to q. Since we defined χ by

∂ξj
µi

∂xmn
= χij

mµ(δin − δjn), (C.32)

we have
χij

mµ = δmµ (C.33)

and thus
Λij

mµν = Kj
i (δmµξ

j
νi + δmνξ

j
µi). (C.34)

Insertion into (C.24) yields

Tn
mk = MknK

n
kχ

kn
mνΓ

n
ν0 − Ψn

αΓn
αµΛkn

mµνΓ
n
ν0

= MknK
n
k δmνΓ

n
ν0 − Ψn

αΓn
αµK

n
k (δmµξ

n
νk + δmνξ

n
µk)Γ

n
ν0

= MknK
n
k Γn

m0 − Ψn
αΓn

αmK
n
k ξ

n
νkΓ

n
ν0 − Ψn

αΓn
αµK

n
k ξ

n
µkΓ

n
m0. (C.35)

We now define the abbreviation

Un
νk = Γn

µνξ
n
µk = Γn

νµξ
n
µk, (C.36)

by which we can write

Tn
mk = MknK

n
k Γn

m0 − Ψn
αΓn

αmK
n
kU

n
0k − Ψn

αU
n
αkK

n
k Γn

m0. (C.37)

Using the definition of U in (C.23) yields

Qn
k = MknP

n
k U

n
0k − Ψn

αU
n
αkP

n
k U

n
0k = (Mkn − Ψn

αU
n
αk)P

n
k U

n
0k. (C.38)

C.1.3. Local Quadratic Estimate (w/o cross-terms)

In this section, we use a local quadratic estimate without cross-terms, that is we set

ξj
µi =







1 µ = 0

xµi − xµj µ = 1, 2 . . . q

(x(µ−q)i − x(µ−q)j)
2 µ = q + 1, q + 2 . . . 2q.

(C.39)

The greek indexes range from 0 to 2q. Since we defined χ by

∂ξj
µi

∂xmn
= χij

mµ(δin − δjn), (C.40)

we have
χij

mµ = δmµ + 2(xmi − xmj)δm(µ−q) = δmµ + 2ξj
miδm(µ−q) (C.41)
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and thus

Λij
mµν = Kj

i

[(

δmµ + 2ξj
miδm(µ−q)

)

ξj
νi +

(

δmν + 2ξj
miδm(ν−q)

)

ξj
µi

]

. (C.42)

Insertion into (C.24) yields

Tn
mk = MknK

n
kχ

kn
mνΓ

n
ν0 − Ψn

αΓn
αµΛkn

mµνΓ
n
ν0

= MknK
n
k

(
δmν + 2ξn

mkδm(ν−q)

)
Γn

ν0

−Ψn
αΓn

αµK
n
k

(
δmµ + 2ξn

mkδm(µ−q)

)
ξn
νkΓ

n
ν0

−Ψn
αΓn

αµK
n
k

(
δmν + 2ξn

mkδm(ν−q)

)
ξn
µkΓ

n
ν0

= MknK
n
k

(

Γn
m0 + 2ξn

mkΓ
n
(m+q)0

)

−Ψn
α

(

Γn
αm + 2ξn

mkΓ
n
α(m+q)

)

Kn
k ξ

n
νkΓ

n
ν0

−Ψn
αΓn

αµξ
n
µkK

n
k

(

Γn
m0 + 2ξn

mkΓ
n
(m+q)0

)

= MknK
n
k

(

Γn
m0 + 2ξn

mkΓ
n
(m+q)0

)

−
(

Ψn
αΓn

αm + 2ξn
mkΨ

n
αΓn

α(m+q)

)

Kn
kU

n
0k

−Ψn
αU

n
αkK

n
k

(

Γn
m0 + 2ξn

mkΓ
n
(m+q)0

)

=
(

Γn
m0 + 2ξn

mkΓ
n
(m+q)0

)

(MknK
n
k − Ψn

αU
n
αkK

n
k )

−
(

Ψn
αΓn

αm + 2ξn
mkΨ

n
αΓn

α(m+q)

)

Kn
kU

n
0k, (C.43)

where we used our previous definition Un
νk = Γn

µνξ
n
µk. The elements Qn

k have the same
form as in the local linear case.

C.1.4. Local Quadratic Estimate (q = 2)

Here, we use a local quadratic estimate with cross-terms1, but restrict ourselves to the
(important) case q = 2. The elements of the design matrix are given by

ξj
µi =













1

x1i − x1j

x2i − x2j

(x1i − x1j)
2

(x2i − x2j)
2

(x1i − x1j)(x2i − x2j)













µ

(C.44)

with greek indexes ranging from 0 to 5. Here we have

χij
1µ = δ1µ + 2ξj

1iδ3µ + 2ξj
2iδ5µ (C.45)

χij
2µ = δ2µ + 2ξj

2iδ4µ + 2ξj
1iδ5µ (C.46)

1Please note that for q = 1 there are no cross-terms, so the results from the preceding sections already
describes the complete model.
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and thus

Λij
1µν = Kj

i

[(

δ1µ + 2ξj
1iδ3µ + ξj

2iδ5µ

)

ξj
νi +

(

δ1ν + 2ξj
1iδ3ν + ξj

2iδ5ν

)

ξj
µi

]

. (C.47)

Insertion into (C.24) yields

Tn
1k = MknK

n
kχ

kn
1ν Γn

ν0 − Ψn
αΓn

αµΛkn
1µνΓ

n
ν0

= MknK
n
k (δ1ν + 2ξn

1kδ3ν + ξn
2kδ5ν) Γn

ν0

−Ψn
αΓn

αµK
n
k (δ1µ + 2ξn

1kδ3µ + ξn
2kδ5µ) ξn

νkΓ
n
ν0

−Ψn
αΓn

αµK
n
k (δ1ν + 2ξn

1kδ3ν + ξn
2kδ5ν) ξ

n
µkΓ

n
ν0

= MknK
n
k (Γn

10 + 2ξn
1kΓ

n
30 + ξn

2kΓ
n
50)

−Ψn
α (Γn

α1 + 2ξn
1kΓ

n
α3 + ξn

2kΓ
n
α5)K

n
k ξ

n
νkΓ

n
ν0

−Ψn
αΓn

αµξ
n
µkK

n
k (Γn

10 + 2ξn
1kΓ

n
30 + ξn

2kΓ
n
50)

= (Γn
10 + 2ξn

1kΓ
n
30 + ξn

2kΓ
n
50) (MknK

n
k − Ψn

αU
n
αkK

n
k )

− (Ψn
αΓn

α1 + 2ξn
1kΨ

n
αΓn

α3 + ξn
2kΨ

n
αΓn

α5)K
n
kU

n
0k (C.48)

Tn
2k = (Γn

20 + 2ξn
2kΓ

n
40 + ξn

1kΓ
n
50) (MknK

n
k − Ψn

αU
n
αkK

n
k )

− (Ψn
αΓn

α2 + 2ξn
2kΨ

n
αΓn

α4 + ξn
1kΨ

n
αΓn

α5)K
n
kU

n
0k, (C.49)

where again we used our previous definition Un
νk = Γn

µνξ
n
µk and the elements Qn

k have
the same form as in the local linear case.

C.2. Gradient with respect to the scale

In this section, we calculate the gradient of the reconstruction error with respect to
the scale of the latent variables, that is, we calculate ∇sR(diag(s)X). We define the
elements ξ of the scaled design matrix as (e.g. quadratic case)

ξj
µi =







1 µ = 0

sµ(xµi − xµj) µ = 1, 2 . . . q

s2(µ−q)(x(µ−q)i − x(µ−q)j)
2 µ = q + 1, q + 2 . . . 2q.

(C.50)

Moreover, we again use the elements P j
i and further define elements ∆j

mi as in

∂Kj
i

∂sm
= 2K ′

(
q
∑

l=1

s2l (xli − xlj)
2

)

︸ ︷︷ ︸

−P
j
i

sm(xmi − xmj)
2

︸ ︷︷ ︸

∆j
mi

= −P j
i ∆j

mi. (C.51)

Since we already know that the gradients with respect to X share many common terms
across the special cases, this time we take an alternative route for the calculations: we
first determine the gradient in the local constant case and then only add the respective
contributions for the higher degrees.
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Local constant case, independent part

The result we get here will also be part of the gradient for the higher degree cases.
Therefore, we will carry the elements ξj

νi with us, but for now we drop all derivatives of

these elements, since in the local constant case ν = 0 and ξj
νi = 1.

∂b
(0)
ij

∂sm
=

∂Kj
i

∂sm
ξj
νiΓ

j
ν0 − V j

iαΓj
αµ

∑

k

ξj
µk

∂Kj
k

∂sm
ξj
νkΓ

j
ν0

= −P j
i ∆j

miU
j
0i + V j

iα

∑

k

U j
αkP

j
k∆j

mkU
j
0k (C.52)

N

2

∂R(0)

∂sm
=

∑

i,j

Mij

∂b
(0)
ij

∂sm

= −
∑

i,j

∆j
miMijP

j
i U

j
0i +

∑

j,k

∆j
mkΨ

j
αU

j
αkP

j
kU

j
0k

= −
∑

i,j

∆j
mi(Mij − Ψj

αU
j
αi)P

j
i U

j
0i

= −
∑

i,j

∆j
miQ

j
i (C.53)

In order to write this gradient using vectors and matrices, we identify Qj
i = qij in

accordance to Sec. C.1.1 and insert the definition of ∆j
mi into (C.53):

∂R(0)

∂sm
= − 2

N

∑

i,j

sm(xmi − xmj)
2qij (C.54)

= − 2

N

∑

i,j

sm(x2
mi − 2xmixmj + x2

mj)qij

= − 2

N
sm

∑

j

[

((X ∗ X)Q)mj − 2 ((XQ) ∗ X)mj + (X ∗ X)mj(1
TQ)j

]

.

If we now replace the summation over j by a multiplication with the vector 1 of N ones,
we get the form stated in Sec. 4.4.2:

∇sR
(0) = − 2

N
s ∗
[
(X ∗ X)

(
Q + diag(1TQ)

)
1 − 2 ((XQ) ∗ X)1

]
. (C.55)

Contribution of the linear case

Here, we only calculate the term we have to add to the gradient (C.53) from the last
section, which we indicate by an upper index (1−0). In particular, we drop the derivatives
of K(·) and concentrate on the dependence on ξ. We have

ξj
µi =

{

1 µ = 0

sµ(xµi − xµj) µ = 1, 2 . . . q
and

∂ξj
µi

∂sm
= δmµ(xmi − xmj). (C.56)
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∂b
(1−0)
ij

∂sm
= Kj

i

∂ξj
νi

∂sm
Γj

ν0 − V j
iαΓj

αµ

∑

k

(

∂ξj
µk

∂sm
Kj

kξ
j
νk + ξj

µkK
j
k

∂ξj
νk

∂sm

)

Γj
ν0

= Kj
i (xmi − xmj)Γ

j
m0

−
∑

k

V j
iα(xmk − xmj)

(

Γj
αmK

j
kU

j
0k + U j

αkK
j
kΓ

j
m0

)

(C.57)

N

2

∂R(1−0)

∂sm
=

∑

i,j

Mij

∂b
(1−0)
ij

∂sm

=
∑

i,j

MijK
j
i (xmi − xmj)Γ

j
m0

−
∑

j,k

Ψj
α(xmk − xmj)

(

Γj
αmK

j
kU

j
0k + U j

αkK
j
kΓ

j
m0

)

=
∑

i,j

(xmi − xmj)
(

(Mij − Ψj
αU

j
αi)K

j
i Γ

j
m0 − Ψj

αΓj
αmK

j
i U

j
0i

)

(C.58)

Please note that the term in the last brackets equals the definition (C.37) of T j
mi from

section C.1.2. Moreover, note that ∆j
mi = sm(xmi − xmj)

2 = ξj
mi(xmi − xmj), which

allows us to express the complete gradient as

∂R(1)

∂sm
=

∂R(1−0)

∂sm
+
∂R(0)

∂sm

=
2

N

∑

i,j

(

−∆j
miQ

j
i + (xmi − xmj)T

j(1)
mi

)

=
2

N

∑

i,j

(xmi − xmj)
(

−ξj
miQ

j
i + T

j(1)
mi

)

. (C.59)

Contribution of quadratic case without cross-terms

Please recall the definition (C.50) of the scaled design matrix, from which we have

∂ξj
νi

∂sm
= δmν(xmi − xmj) + 2δ(m+q)νsm(xmi − xmj)

2 (C.60)

We already handled the first summand in the local linear case, and therefore only take
the second contribution 2δ(m+q)νsm(xmi − xmj)

2 = 2δ(m+q)ν∆
j
mi into account.

∂b
(2−1)
ij

∂sm
= Kj

i 2δ(m+q)ν∆
j
miΓ

j
ν0

−V j
iαΓj

αµ

∑

k

2∆j
mk

(

δ(m+q)µK
j
kξ

j
νk + ξj

µkK
j
kδ(m+q)ν

)

Γj
ν0

= 2Kj
i ∆

j
miΓ

j

(m+q)0

−2V j
iα

∑

k

∆j
mk

(

Γj

α(m+q)K
j
kU

j
0k + U j

αkK
j
kΓ

j

(m+q)0

)

(C.61)

174
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N

2

∂R(2−1)

∂sm
=

∑

i,j

2∆j
mi

(

(Mij − Ψj
αU

j
αi)K

j
i Γ

j

(m+q)0 − Ψj
αΓj

α(m+q)K
j
i U

j
0i

)

=
∑

i,j

(xmi − xmj)
(

(Mij − Ψj
αU

j
αi)K

j
i 2ξ

j
miΓ

j

(m+q)0

−Ψj
α2ξj

miΓ
j

α(m+q)K
j
i U

j
0i

)

(C.62)

=
∑

i,j

(xmi − xmj)(T
j(2)
mi − T

j(1)
mi ). (C.63)

Here, T
j(2)
mi stands for (C.43) from Sec. C.1.3, and T

j(1)
mi is (C.37) from the local linear

case (Sec. C.1.2). In analogy to the preceding section, the complete gradient can be
expressed as

∂R(2)

∂sm
=

∂R(2−1)

∂sm
+
∂R(1−0)

∂sm
+
∂R(0)

∂sm

=
2

N

∑

i,j

(

−∆j
miQ

j
i + (xmi − xmj)T

j(2)
mi

)

=
2

N

∑

i,j

(xmi − xmj)
(

−ξj
miQ

j
i + T

j(2)
mi

)

. (C.64)

Contribution of the full quadratic case (q=2)

Since the calculation is very similar to the case without the cross-term, we only present
the resulting gradient:

∂R(22)

∂sm
=

2

N

∑

i,j

(xmi − xmj)
(

−ξj
miQ

j
i + T

j(22)
mi

)

, (C.65)

where T
j(22)
mi is given by (C.48) and (C.49), depending on m = 1, 2.

C.3. Gradient calculation for the landmark variant

Even while no corresponding experiments have been presented in this thesis, this section
contains the calculation of the gradient for landmark ULPR, that is, a landmark variant
of UKR with a general polynomial degree. The gradient of landmark UKR as presented
in Sec. 5.3.1 is the special case of local constant regression.

Again, we write the regression function in a way similar to the standard UKR function:

f(x; X̂) = mx = ŶWX̄
T
C−1e0 = Ŷb(x; X̂), (C.66)

which allows us to write the reconstruction error in the form

R(X) =
1

N

N∑

j=1

‖yj − f(xj ; X̂)‖2 =
1

N
‖Y − ŶB(X, X̂)‖2

F . (C.67)
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C. Derivative calculations for Unsupervised Local Polynomial Regression

Now we need expressions for the columns b(xj ; X̂) of B(X, X̂) and its derivatives, for
which we introduce the same shortcut notation as in Sec. C.1:

b(xj ; X̂) = WjX̄jT

Cj−1
e0 = VjCj−1

e0. (C.68)

An upper index j denotes the dependence of a matrix or vector on the position xj where
we evaluate the regression function. Wj is a diagonal matrix with the entries

(Wj)il = δilK(x̂i − xj) = δilK
j
i . (C.69)

For the entries of the matrix X̄j , we introduce the notation (X̄j)µi = ξj
µi. In the local

linear case, we have

ξj
µi =

(

1

x̂i − xj

)

µ

and µ ranges from 0 to q, whereas in the quadratic case (q = 1), we have

ξj
µi =






1

x̂i − xj

(x̂i − xj)
2






µ

and µ ranges from 0 to 2. For the local constant case (Nadaraya-Watson), we simply have
ξj
i = 1. In the following, the number of data vectors and landmark points are denoted

by N and N̂ , respectively. If not noted otherwise, summations over latin indices are
understood to range from 1 to N̂ . We again use the convention to automatically sum
over double greek indices.

∂R(X)

∂xmn
=

2

N

N̂∑

i=1

N∑

j=1

(

ŶT (Y − ŶB(X, X̂)
)

ij

∂bij(X, X̂)

∂xmn

=
2

N

∑

i

N∑

j=1

Mij
∂bij
∂xmn

(C.70)

∂R(X)

∂x̂mn
=

2

N

∑

i

N∑

j=1

Mij
∂bij
∂x̂mn

(C.71)

∂bij
∂xmn

=

[

∂V j
iν

∂xmn
− V j

iαΓj
αµ

∂Cj
µν

∂xmn

]

Γj
ν0 (C.72)

∂bij
∂x̂mn

=

[

∂V j
iν

∂x̂mn
− V j

iαΓj
αµ

∂Cj
µν

∂x̂mn

]

Γj
ν0 (C.73)

∂Kj
i

∂xmn
= 2K ′(‖x̂i − xj‖2)(x̂mi − xmj)(−δjn)

= −P j
i (x̂mi − xmj)(−δjn) (C.74)

∂Kj
i

∂x̂mn
= 2K ′(‖x̂i − xj‖2)(x̂mi − xmj)δin

= −P j
i (x̂mi − xmj)δin (C.75)
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C.3. Gradient calculation for the landmark variant

A general form of the derivatives of the variables ξj
νi can be given as

∂ξj
νi

∂xmn
= χij

mν(−δjn) and
∂ξj

νi

∂x̂mn
= χij

mνδin. (C.76)

∂V j
iν

∂xmn
=

∂(Kj
i ξ

j
νi)

∂xmn
=

∂Kj
i

∂xmn
ξj
νi +Kj

i

∂ξj
νi

∂xmn

=
[

−P j
i (x̂mi − xmj)ξ

j
νi +Kj

i χ
ij
mν

]

(−δjn) (C.77)

∂V j
iν

∂x̂mn
=

[

−P j
i (x̂mi − xmj)ξ

j
νi +Kj

i χ
ij
mν

]

δin (C.78)

∂Cj
µν

∂xmn
=

∑

i

[

∂ξj
µi

∂xmn
Kj

i ξ
j
νi + ξj

µi

∂Kj
i

∂xmn
ξj
νi + ξj

µiK
j
i

∂ξj
νi

∂xmn

]

=
∑

i

[

χij
mµK

j
i ξ

j
νi − ξj

µiP
j
i (x̂mi − xmj)ξ

j
νi + ξj

µiK
j
i χ

ij
mν

]

(−δjn)

= −δjn
∑

k

[

Λkj
mµν − ξj

µkP
j
k (x̂mk − xmj)ξ

j
νk

]

(C.79)

∂Cj
µν

∂x̂mn
=

∑

i

[

χij
mµK

j
i ξ

j
νi − ξj

µiP
j
i (x̂mi − xmj)ξ

j
νi + ξj

µiK
j
i χ

ij
mν

]

δin

= Λnj
mµν − ξj

µnP
j
n(x̂mn − xmj)ξ

j
νn (C.80)

Here, we again used the definition

Λij
mµν = χij

mµK
j
i ξ

j
νi + ξj

µiK
j
i χ

ij
mν = Kj

i (χ
ij
mµξ

j
νi + χij

mνξ
j
µi). (C.81)

Inserting the derivatives of C and V into (C.72) and (C.73) yields

∂bij
∂xmn

=
[

−P j
i (x̂mi − xmj)ξ

j
νiΓ

j
ν0 +Kj

i χ
ij
mνΓ

j
ν0

]

(−δjn)

+δjn
∑

k

[

V j
iαΓj

αµΛkj
mµνΓ

j
ν0 − V j

iαΓj
αµξ

j
µkP

j
k (x̂mk − xmj)ξ

j
νkΓ

j
ν0

]

(C.82)

and

∂bij
∂x̂mn

=
[

−P j
i (x̂mi − xmj)ξ

j
νiΓ

j
ν0 +Kj

i χ
ij
mνΓ

j
ν0

]

δin

−V j
iαΓj

αµΛnj
mµνΓ

j
ν0 + V j

iαΓj
αµξ

j
µnP

j
n(x̂mn − xmj)ξ

j
νnΓj

ν0, (C.83)

which together nicely sum up to the derivatives (C.17) of bij in the non-landmark case.
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C. Derivative calculations for Unsupervised Local Polynomial Regression

We now insert (C.82) into (C.70):

N

2

∂R(X)

∂xmn
=

∑

i

N∑

j=1

Mij

[

−P j
i (x̂mi − xmj)ξ

j
νiΓ

j
ν0 +Kj

i χ
ij
mνΓ

j
ν0

]

(−δjn)

+
∑

i

N∑

j=1

Mijδjn
∑

k

V j
iαΓj

αµΛkj
mµνΓ

j
ν0

−
∑

i

N∑
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Mijδjn
∑

k

V j
iαΓj

αµξ
j
µkP

j
k (x̂mk − xmj)ξ

j
νkΓ

j
ν0

=
∑

i

Min
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Pn

i (x̂mi − xmn)ξn
νiΓ

n
ν0 −Kn

i χ
in
mνΓ

n
ν0

]

+
∑

i,k

MinV
n
iαΓn

αµΛkn
mµνΓ

n
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∑

i,k

MinV
n
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αµξ
n
µkP

n
k (x̂mk − xmn)ξn

νkΓ
n
ν0

=
∑

k

Mkn

[

Pn
k (x̂mk − xmn)ξn

νkΓ
n
ν0 −Kn

kχ
kn
mνΓ

n
ν0

]

+
∑

k

Ψn
αΓn

αµΛkn
mµνΓ

n
ν0 −

∑

k

Ψn
αΓn

αµξ
n
µkP

n
k (x̂mk − xmn)ξn

νkΓ
n
ν0

=
∑

k

(x̂mk − xmn)
[
MknP

n
k ξ

n
νkΓ

n
ν0 − Ψn

αΓn
αµξ

n
µkP

n
k ξ

n
νkΓ

n
ν0

]

−
∑

k

MknK
n
kχ
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mνΓ

n
ν0 +

∑

k

Ψn
αΓn

αµΛkn
mµνΓ

n
ν0

=
∑

k

(x̂mk − xmn)Qn
k −

∑

k

Tn
mk. (C.84)

A very similar expression results from inserting (C.83) into (C.71):

N

2

∂R(X̂)

∂x̂mn
=

N̂∑

i=1

N∑

j=1

Mij

{[

−P j
i (x̂mi − xmj)ξ

j
νiΓ

j
ν0 +Kj

i χ
ij
mνΓ

j
ν0

]

δin

−V j
iαΓj

αµΛnj
mµνΓ

j
ν0 + V j

iαΓj
αµξ

j
µnP

j
n(x̂mn − xmj)ξ

j
νnΓj

ν0

}

=
∑

j

Mnj

[

−P j
n(x̂mn − xmj)ξ

j
νnΓj

ν0 +Kj
nχ

nj
mνΓ

j
ν0

]

−
∑

j

Ψj
αΓj

αµΛnj
mµνΓ

j
ν0 +

∑

j

Ψj
αΓj

αµξ
j
µnP

j
n(x̂mn − xmj)ξ

j
νnΓj

ν0

=
∑

j

(x̂mn − xmj)
[

−MnjP
j
nξ

j
νnΓj

ν0 + Ψj
αΓj

αµξ
j
µnP

j
nξ

j
νnΓj

ν0

]

+
∑

j

MnjK
j
nχ

nj
mνΓ

j
ν0 −

∑

j

Ψj
αΓj

αµΛnj
mµνΓ

j
ν0 (C.85)

=
∑

j

(x̂mn − xmj)(−Qj
n) +

∑

j

T j
mn. (C.86)

In both expression, we used the same abbreviations Qj
n and T j

mn as already defined in
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C.4. Jacobi matrix for projecting new data

the non-landmark variant (Sec. C.1). The special cases of local constant, linear, and
quadratic regression can be calculated in perfect analogy.

In particular, in the local constant case we have T j
mn = 0 and Qj

n = qnj are the
elements of the matrix (cf. Sec. 5.3.1)

Q = P ∗
[
M − 1n1

T
N (B ∗ M)

]
. (C.87)

We therefore can write

∂R(X, X̂)

∂xmn
=

2

N

N̂∑

k=1

(x̂mk − xmn)qkn =
2

N

(

X̂Q − X · diag(1T
nQ)

)

mn
(C.88)

∂R(X, X̂)

∂x̂mn
=

2

N

N∑

j=1

(x̂mn − xmj)(−qjn) =
2

N

(

XQ − X̂ · diag(1T
NQT )

)

mn
(C.89)

in accordance to the matrix expressions given in Sec. 5.3.1.

C.4. Jacobi matrix for projecting new data

For projecting new data onto an UKR or ULPR manifold, it is advantageous to apply
a least-squares method like the Levenberg-Marquardt algorithm. To this aim, we need
expressions for the Jacobian ∇xf(x;X) = Y∇xb(x;X), but luckily we can “recycle”
our calculations for the landmark variant in the way of

Jim =
∂bi(x, X̂)

∂xm
=
∂bi(X, X̂)

∂xm1
. (C.90)

We therefore take the results from (C.72) where we just set n = 1 and drop the corre-
sponding upper index.

Jim = Pi(x̂mi − xm)ξνiΓν0 −Kiχ
i1
mνΓν0

+
∑

k

[

ViαΓαµΛk1
mµνΓν0 − ViαΓαµξµkPk(x̂mk − xm)ξνkΓν0

]

(C.91)

= Pi(x̂mi − xm)ξνiΓν0 −Kiχ
i1
mνΓν0

+
∑

k

[

KiξαiΓαµΛk1
mµνΓν0 −KiξαiΓαµξµkPk(x̂mk − xm)ξνkΓν0

]

(C.92)

= Pi(x̂mi − xm)U0i −Kiχ
i1
mνΓν0

+
∑

k

[

KiUµiΛ
k1
mµνΓν0 −KiUµiξµkPk(x̂mk − xm)U0k

]

(C.93)

= Gim −Kiχ
i1
mνΓν0 +

∑

k

HiµΛk1
mµνΓν0 −

∑

k

HiµξµkGkm (C.94)

Here we used the abbreviations

Gim = Pi(x̂mi − xm)U0i and Hiµ = KiUµi = KiξνiΓνµ. (C.95)
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C.4.1. Local constant estimate

ξ = 1 , Λ = χ = 0 , U0∗ = Γ00 =
1

∑

iKi
(C.96)

Jim =
Pi

∑

j Kj
(x̂mi − xm) − Ki

∑

j Kj

∑

k

Pk
∑

j Kj
(x̂mk − xm) (C.97)

C.4.2. Local linear estimate

χij
mµ = δmµ and Λij

mµν = Kj
i (δmµξ

j
νi + δmνξ

j
µi). (C.98)

Jim = Gim −KiδmνΓν0

+
∑

k

HiµKk(δmµξνk + δmνξµk)Γν0 −
∑

k

HiµξµkGkm

= Gim −KiΓm0

+
∑

k

HimKkξνkΓν0 +
∑

k

HiµKkξµkΓm0 −
∑

k

HiµξµkGkm

= Gim −KiΓm0 +Him

∑

k

Hk0 +Hiµ

∑

k

ξµk (KkΓm0 −Gkm) (C.99)

C.4.3. Local quadratic estimate w/o cross-terms

We have
χi

mµ = δmµ + 2ξmiδm(µ−q) (C.100)

and thus

Λk
mµν = Kk

[(
δmµ + 2ξmkδm(µ−q)

)
ξνk +

(
δmν + 2ξmkδm(ν−q)

)
ξµk

]
. (C.101)

Jim = Gim −Ki(δmν + 2ξmiδm(ν−q))Γν0

+
∑

k

HiµKk

(
δmµ + 2ξmkδm(µ−q)

)
ξνkΓν0

+
∑

k

HiµKk

(
δmν + 2ξmkδm(ν−q)

)
ξµkΓν0 −

∑

k

HiµξµkGkm

= Gim −KiΓm0 − 2KiξmiΓ(m+q)0

+Him

∑

k

KkU0k + 2Hi(m+q)

∑

k

KkξmkU0k

︸ ︷︷ ︸

=CmνΓν0=m0=0

+Hiµ

∑

k

ξµkKk

(
Γm0 + 2ξmkΓ(m+q)0

)
−
∑

k

HiµξµkGkm

= Gim −KiΓm0 − 2KiξmiΓ(m+q)0 +Him

∑

k

Hk0

+Hiµ

∑

k

ξµk

(
KkΓm0 + 2KkξmkΓ(m+q)0 −Gkm

)
(C.102)
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C.4.4. Local quadratic estimate with cross-term, q=2

Here we have

χi
1µ = δ1µ + 2ξ1iδ3µ + 2ξ2iδ5µ (C.103)

χi
2µ = δ2µ + 2ξ2iδ4µ + 2ξ1iδ5µ (C.104)

and thus

Λk
1µν = Kk [(δ1µ + 2ξ1kδ3µ + ξ2kδ5µ) ξνk + (δ1ν + 2ξ1kδ3ν + ξ2kδ5ν) ξµk] . (C.105)

Ji1 = Gi1 −Kiχ
i1
1νΓν0 +

∑

k

HiµΛk1
1µνΓν0 −

∑

k

HiµξµkGk1 (C.106)

= Gi1 −Ki(Γ10 + 2ξ1iΓ30 + 2ξ2iΓ50)

+Hi1

∑

k

KkξνkΓν0

︸ ︷︷ ︸

=Hk0

+2Hi3

∑

k

Kkξ1kξνkΓν0

︸ ︷︷ ︸

=C1νΓν0=0

+2Hi5

∑

k

Kkξ2kξνkΓν0

︸ ︷︷ ︸

=C2νΓν0=0

+Hiµ

∑

k

ξµkKk(Γ10 + 2ξ1kΓ30 + 2ξ2kΓ50)

−
∑

k

HiµξµkGk1 (C.107)

= Gi1 −Ki(Γ10 + 2ξ1iΓ30 + 2ξ2iΓ50) +Hi1

∑

k

Hk0

+Hiµ

∑

k

ξµk [Kk(Γ10 + 2ξ1kΓ30 + 2ξ2kΓ50) −Gk1] (C.108)

Ji2 = Gi2 −Ki(Γ20 + 2ξ2iΓ40 + 2ξ1iΓ50) +Hi2

∑

k

Hk0

+Hiµ

∑

k

ξµk [Kk(Γ20 + 2ξ2kΓ40 + 2ξ1kΓ50) −Gk2] (C.109)
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Härdle, W., and Marron, J. S. (1985). Optimal Bandwidth Selection in Nonparametric
Regression Function Estimation. The Annals of Statistics, 13 (4), 1465–1481.
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