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Introduction

In [2] (Section 2) Ahlswede introduced “a general communication model for one
sender”. Suppose we have a message set M = {1, ..., M} whose elements are
encoded in such a way that information about them can be transmitted over
a channel. If this channel is noiseless, i.e. there occur no errors during the
transmission, we speak of (noiseless) source coding. In this case it is common
to omit the presence of a channel and speak simply of source coding.

What do we mean by information? In Shannon’s classical information trans-
mission problem ([15]) the decoder is interested in the message which has been
encoded by the encoder. However, the decoder may have different goals. In [2]
Ahlswede writes:

“A nice class of such situations can, abstractly, be described by a family Π(M)
of partitions of M. Decoder π ∈ Π(M) wants to know only which member of
the partition π = (A1, ..., Ar) contains m, the true message, which is known to
the encoder.”

In the above citation every partition π ∈ Π(M) is identified with a different
decoder. Moreover, the author describes some “seemingly natural families of
partitions”. We focus on the first three models which highlight the differences
between classical information transmission and identification. These are

Model 1: ΠS = {πsh}, πsh = {{m} : m ∈ M}.

Model 2: ΠI = {πm : m ∈ M}, πm = {{m},M\{m}}.

Model 3: ΠK = {πS : |S| = K, S ⊂ M}, πS = {S,M\S}.

The first model describes Shannon’s classical transmission problem. Here the
decoder wants to know which message has been encoded by the encoder. Let us
assume we are given a probability distribution P on the message set. In source
coding we consider a source code C : M → Q∗. Here Q is the q-ary alphabet
{0, 1, ..., q − 1} and Q∗ =

⋃∞
d=0 Q

d. C(m) is called the codeword of the message
m. We further assume that C is a prefix code. That is, no codeword is the prefix
of another codeword. The goal of source coding is to construct prefix codes
which have a small average codeword length. In other words, the mean of the
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codeword lengths should be as small as possible. It is well-known that this value
is lower bounded by Shannon’s classical entropy

Hq(P ) = −
M∑

m=1

pm logq pm.

There exist codes, e.g. Huffman codes ([12]) and Shannon-Fano codes ([10]),
which yield an average codeword length of at most Hq(P ) + 1. The uniform
distribution maximizes Hq(P ) and it holds that Hq(1/M, ..., 1/M) = logq M .

In the second model the decoder πm wants to know whether m occurred or
not. This is the identification problem introduced for noisy channel coding in
[6] and analyzed inter alia in [7], [11] and [13]. Identification source coding was
introduced in [2], continued in [4] and led to the identification entropy ([3])

HI,q(P ) =
q

q − 1

(

1 −
M∑

m=1

p2
m

)

.

This entropy function again is maximized by the uniform distribution. Unlike
Shannon’s entropy it does not grow logarithmically in M but tends to q/(q− 1)
as M goes to infinity.

A generalization of the identification problem is model 3, which is called K-
identification. This case arises in several situations. Ahlswede writes: “For
instance every person πS may have a set S of K closest friends and the sender
knows that one person m ∈ M is sick. All persons πS want to know whether
one of their friends is sick.”

Another natural problem is somewhat like the opposite of K-identification.
For example, the encoder knows L persons m1, ..., mL ∈ M, who have won a
lottery. Every participant, a member of M, wants to know whether or not he
or she is among the winners. However, the information in which a participant
is interested can no longer be represented by a partition of M. We have to
partition

(
M
L

)
and get

ΠL,set = {πm : m ∈ M}, (0.1)

where πm = {Sm,
(
M
L

)
\Sm} and Sm = {S ∈

(
M
L

)
: m ∈ S}. We call this model

L-identification for sets.

One could also think of situations where the L objects, which are known to
the encoder, need not be pairwise different. We call this L-identification for
vectors. The model for this is

ΠL = {πm : m ∈ M}, (0.2)
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where πm = {Am,ML\Am} and

Am = {A ∈ ML : A has at least one component equal to m}.

This can also be applied to K-identification so that we obtain

Model 3’: ΠK,vec = {πA : A = (a1, ..., aK) ∈ MK}, with

πA =

{
K⋃

i=1

ai,M\
K⋃

i=1

{ai}

}

.

This is called K-identification for vectors and model 3 K-identification (for
sets).

The goal of this thesis is the analysis of L-identification in the case of noise-
less coding. We call it L-identification for sources. However, the concept of
L-identification may also be considered in the case of noisy coding. Moreover,
we mainly focus on L-identification for vectors. Thus, if we speak in the re-
mainder of L-identification, we shall always mean L-identification for vectors.

The first section provides basic definitions and notation. In Subsection 1.1
we give a short introduction into source coding. A discrete source is a pair
(U , P ), where the output space U is a finite set of cardinality N and P is a
probability distribution on U . Further, a discrete memoryless source is a pair
(Un, P n), where Un is the cartesian product of a finite set U . P n is a probability
distribution on Un, where the probability of an element un ∈ Un is product
of the probabilities of its individual components. We further explain what we
mean by the code tree TC, which corresponds to a given source code C, and
provide some notation.

In Subsection 1.2 we formally define L-identification for sources. Let L ∈ N

and (UL, P L) be a discrete memoryless source. Due to external constraints (e.g.
hardware limitations) all possible outputs uL = (u1, ..., uL) ∈ UL have to be
encoded. This is done by a q-ary source code C on U . That is, every component
ui of uL is encoded separately.

Following the model in Equation (0.2) the goal of L-identification is that ev-
ery user v ∈ U shall be able to distinguish whether or not he or she occurs at
least once as a component of the output vector uL. Therefore, we encode all
users with the same source code C and compare sequentially the q-bits of the
codeword cv of the user v with the individual q-bits of the codewords cu1 , ..., cuL

of the components of uL. After every comparison we delete all output compo-
nents, whose codewords did not coincide during this step with the codeword
cv, from the set of possible candidates. If after some steps all codewords have
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been eliminated, the L-identification process terminates with a negative answer.
Otherwise we go on until the last q-bit of cv. The L-identification process termi-
nates with a positive answer if after this last comparison there still are possible
candidates left.

The running time of q-ary L-identification for given output vector uL and user
v with respect to some code C is defined as the number of steps until the L-
identification process terminates. Since we are given a probability distribution
P L on UL, we can calculate the mean of the L-identification running time. We
call it the average running time.

We are interested in several behaviors of the average running time. The first is
the worst-case (average) running time where we maximize the average running
time over all users v ∈ U . Suppose we have given another probability distribu-
tion Q on the set of users U . In this case we calculate the mean of the average
running time. This is called the expected (average) running time. A special case
of this is when Q = P . Then we speak of the symmetric (average) running time.

We note that the above approach to analyze L-identification can also be used
for noiseless K-identification. The only difference between the two models is on
which side the L (resp. K) objects are. For L-identification they are on the
side of the encoder and for K-identification they are on the side of the decoder.
Thus, an immediate conclusion is that the symmetric running time of L- and
K-identification is the same if L = K. In case of the expected running time
we also would have to exchange the probability distributions P and Q. For the
worst-case running time such a direct connection has still to be proven.

We begin our analysis of L-identification in Section 2 with two new results
for the case L = 1. This corresponds to identification for sources, which was
introduced before. During this thesis we refer to (1-)identification for sources if
we speak of identification for sources in order to indicate that identification is
a special case of L-identification.

The first result in Subsection 2.1 concerns the case when the q-ary source code
C is a saturated block code. This means that all codewords have the same length n
and the number of elements equals qn. We show that for such codes the uniform
distribution is optimal for the symmetric running time of (1-)identification. The
main part of this subsection is Lemma 2.1 where we provide a modification for
a given probability distribution. If this modification is applied iteratively, it
results in the uniform distribution and does not increase the symmetric running
time of (1-)identification. This result is used by the authors of [5] in the proof
of their Lemma 3.

The authors of [4] proved in Theorem 3 that the worst-case running time of
binary (1-)identification can be upper bounded by 3 no matter of how big the
output space U is. This was done by an inductive code construction. We show
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in Subsection 2.2 how this upper bound can be improved by a slight change of
their code construction.

In Section 3 we analyze the asymptotic behavior of the symmetric running
time of L-identification for the case that P is the uniform distribution. For
this we consider the so-called balanced Huffman codes for the uniform distribu-
tion. These codes are special cases of the well-known Huffman codes and were
introduced in [3].

In Subsection 3.1 we point out an interesting connection between balanced
Huffman trees and the colexicographic order. This order can be used to con-
struct a balanced Huffman code.

In Subsection 3.2 we provide Theorem 3.4, the main result of this section.
We prove that if we use balanced Huffman codes for the uniform distribution,
the symmetric running time of q-ary L-identification asymptotically equals a
rational number KL,q, which grows logarithmically in L. In fact, we show that
this number is an approximation of the L-th harmonic number.

The main result of this thesis is in Section 4 the discovery of the q-ary identi-
fication entropy of second degree. We begin this section with the illustration of
our approach in finding this entropy function. In order to find a lower bound for
2-identification concerning general distributions we want to apply our asymp-
totic result of Subsection 3.2 concerning the uniform distribution. Therefore
we first establish a connection between 2-identification inside a given code C
and 2-identification inside the concatenated code Cn. It turns out that not only
2-identification comes into play here but also (1-)identification. In the next step
we prove that if n is sufficiently large, 2-identification inside the concatenated
code can be lower bounded by 2-identification inside a saturated block code
of some given depth. In order to apply Theorem 3.4 we show that also for
2-identification the uniform distribution is optimal for saturated block codes.
With these results we obtain an expression as a lower bound which still depends
on (1-)identification. However, the (1-)identification running time appears neg-
atively signed so that we cannot immediately apply its lower bound. This lower
bound is the identification entropy HI,q established in [3]. During this thesis we
refer to H1,q

ID = HI,q since, as we will see, identification entropy is a special case
of the q-ary identification entropy of degree L.

In the beginning of Subsection 4.2 we show that if the underlying probability
distribution consists only of q-powers, the previously established lower bound
can be attained. This ensures us to define the q-ary identification entropy of
second degree by

H2,q
ID (P ) = 2

q

q − 1

(

1 −
∑

u∈U

p2
u

)

−
q2

q2 − 1

(

1 −
∑

u∈U

p3
u

)

.
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This function obeys some important properties, which appear as desiderata for
entropy functions in [1]. It is symmetric, normalized, decisive and expansi-
ble. Further, it is lower bounded by the probability distribution where all the
probability is concentrated in one point and upper bounded by the uniform dis-
tribution. Finally, we establish a grouping behavior, which is a generalization
of the grouping behavior of the identification entropy function H1,q

ID . With these
properties we finally prove that H2,q

ID is indeed a lower bound for the symmetric
running time for q-ary 2-identification. Moreover, we show that this bound can
be attained if and only if P consists only of q-powers. As a final result of this
subsection we show that balanced Huffman codes are asymptotically optimal
for 2-identification.

In the final subsection we provide an upper bound for the worst-case running
time by the same code construction which we used in Subsection 2.2.

In the following Section 5 we turn to L-identification for general distributions
and define the q-ary identification entropy of degree L by

HL,q
ID

(P ) = −
L∑

l=1

(−1)l

(
L

l

)
ql

ql − 1

(

1 −
∑

u∈U

pl+1
u

)

.

We show that also this entropy function is symmetric, normalized, decisive and
expansible. It further obeys a grouping behavior, which is a generalized version
of the previous grouping behavior for L = 1, 2. Unfortunately, we were not
able to prove a lower and upper bound. There exist counterexamples for which
uniform distribution is not an upper bound. These counterexamples only occur
if N < q, i.e. the size of the output space is strictly less than the alphabet
size. However, in order to show that HL,q

ID is a lower bound for L-identification
we only need the bounds for the case N = q. We prove this relation under the
assumption that in this case uniform distribution is indeed an upper bound. If,
additionally, we assume that it is the only distribution which attains this upper
bound we can show that there exists a code C with HL,q

ID (P ) = LL,q
C (P, P ) if and

only if P consists only of q-powers.

In Section 6 we turn to another type of identification namely L-identification
for sets. We begin by defining L-identification for sets and point out the differ-
ences to L-identification (for vectors). After that we show that if we consider
the uniform distribution and balanced Huffman codes, the symmetric running
time of L-identification for sets asymptotically equals the symmetric running
time of L-identification.

In the final Section 7 we state some open problems which arose during the
analysis of L-identification.
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1 Definitions and Notation

In this section we provide definitions and notations, which are the base for all
further calculations. The first subsection is a short overview of source coding.
We further introduce code trees, which are useful for visualizing behaviors of a
given code. In the second subsection we explain the task of an L-identification
code and define the performance behaviors in which we are interested in this
thesis.

We begin with some set-theoretical notation. The set of the natural numbers
1 to n is denoted by [n] and the set of all natural numbers from m + 1 up to
n is denoted by [m + 1, n]. However, [0, 1] still denotes the closed real interval
from 0 to 1. Let S be any finite set. Then 2S denotes the power set of S,

(
S
k

)

denotes the set of all k-element subsets of S and S∗ =
⋃∞

d=0 S
d. Further, let P

be a probability distribution on S. Then, supp(P ) = {s ∈ S : P ({s}) 6= 0}
denotes the support of P .

We often have to deal with functions whose arguments are probability dis-
tributions on some given finite set. Therefore we formally define a domain for
these functions. Following [1] (pp. 26) we define

∆n = {(p1, ..., pn) ∈ [0, 1]n : 0 ≤
n∑

i=1

pi ≤ 1}

to be the set of all (perhaps incomplete) probability distributions on [n] and

Γn = {(p1, ..., pn) ∈ [0, 1]n :
n∑

i=1

pi = 1}

to be the set of all complete probability distributions on [n]. If we want to
exclude zero probabilities, we write for n ≥ 2

∆̊n = {(p1, ..., pn) ∈ (0, 1)n : 0 <
n∑

i=1

pi ≤ 1}

and

Γ̊n = {(p1, ..., pn) ∈ (0, 1)n :

n∑

i=1

pi = 1}.

13



1 Definitions and Notation

It follows immediately from the above definitions that

Γn = {(p1, ..., pn) ∈ (0, 1)n : (p1, ..., pn−1) ∈ ∆n−1 and pn = 1 −
n−1∑

i=1

pi}. (1.1)

This means that Γn is a (n − 1)-dimensional hyperplane in the n-dimensional
real space. Hence, if we analyze a function f : Γn → R by differentiation, we
only have to consider n − 1 partial derivatives

δ

δxj

f̃ (p1, ..., pn−1) ,

with j ∈ [n − 1] and where f̃(p1, ..., pn−1) = f(p1, ..., pn−1, 1 −
∑n−1

i=1 pi).

For a mapping f : Γn → R we will write f(P ) = f(p1, ..., pN). Thus, omitting
the additional brackets on the right hand side. For a function g : Γ2

n → R,
however, we retain the brackets and write g(P, R) = g((p1, ..., pN), (r1, ..., rN)).

1.1 Source Coding and Code Trees

A discrete source is a probability space (U , 2U , P ), where U is a finite set, called
the output space. W.l.o.g. we assume that U = [N ] for some N ∈ N. Further,
P is a probability distribution on U with pu = P ({u}). It is called the output
probability distribution. Often, the indication of 2U is omitted and we will follow
this standard and call (U , P ) a discrete source with output space U = [N ] and
output probability P . We further introduce the output random variable U = idU .
It follows that Prob(U = u) = pu.

A discrete memoryless source (Un, P n) is characterized by Pun = P n({un}) =
∏n

i=1 pui
for all un = (u1, u2, .., un). Un = idUn is the output random variable

for this discrete memoryless source.

For the alphabet Q = {0, 1, ..., q − 1} a mapping C : U → Q∗ is a called q-ary
code on U and C(u) = cu = cu,1cu,2...cu,‖cu‖ is the q-ary codeword of u ∈ U . The
individual cu,i ∈ Q are called q-bits. We also write shortly that C = {c1, ..., cN}.
Further, for u ∈ U and k ∈ [‖cu‖ − 1] we define ck

u = cu,1...cu,k to be the prefix
of length k of the codeword cu. In addition we set c0

u = e, where e is the empty
codeword.

A code is called a prefix code if no codeword is prefix of another. Formally,
for each c ∈ C let

D(c) =

‖c‖−1
⋃

k=0

ck. (1.2)

14



1.1 Source Coding and Code Trees

Then, C is a prefix code if and only if it holds for all c, c′ ∈ C that c 6∈ D(c′). For
more information on prefix codes we refer to [17]. Hereafter, unless otherwise
specified, by a code we shall always understand a prefix code. We also define
for some code C the set of all prefixes of its codewords by

D(C) =
⋃

c∈C

D(c). (1.3)

A block code is a code where all codewords have the same length. We further
use Cqn to denote the q-ary block code of size qn. It is a special block code and
called saturated.

It is often useful to visualize a code by its code tree. Therefore consider a
q-ary tree, where all branches with the same branching point are labeled with
elements of Q. Such a tree is a code tree TC of a code C if there exists a bijective
mapping φ from the set N̄ (TC) of leaves of TC onto C such that φ(x) equals the
labeled path from the root of TC to leaf x for all x ∈ N̄ (TC). Figure 1.1 shows
an example of a code and its corresponding code tree.

2

0 1

2 2

0

1

0

1

0

1

Figure 1.1: The ternary code tree of C = {00, 01, 020, 021, 10, 11, 12, 2}.

We have already used the expression N̄ (T ) for the set of leaves or external
nodes. In addition, we use N̊ (T ) for the set of branching points or inner nodes
of a tree T and N (T ) = N̄ (T )∪N̊ (T ). The bijective mapping φ from before can
be extended to N (T ) by mapping every inner node x ∈ N̊ (T ) to the element in
D(C) which corresponds to the labeled path from the root of T to x. Because of
this direct connection we do not distinguish between a code and its code tree.
We will use C and N̄ (TC) equivalently and the same we do for D(C) and N̊ (TC).

1

That is, we equivalently use x and φ(x). For example, ‖x‖ = ‖φ(x)‖. Further,
Tx (or Tφ(x)) denotes the subtree of T with root in x for some node x ∈ N (T ).

1This can only be done because we consider prefix codes.
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1 Definitions and Notation

If ‖x‖ = 0, then Tx = Te = T , and if x ∈ N̄ (T ), then Tx = x.

Let C be a source code for the source (U , P ). The concatenated code Cn

for the source (Un, P n) is defined as follows. The codeword for each output
un = (u1, ..., un) is the concatenation of the individual codewords of the ui’s.
That is

cun = cu1...cun
.

If we consider a concatenated code Cn, then C is called the basic code. Cn

can also be obtained by a stepwise construction. Therefore consider the code
tree TC. For each concatenation step 1 ≤ t ≤ n − 1 the new code tree TCt+1

is obtained by replacing each of the leaves of TCt with a copy of TC. Figure
1.2 shows the first concatenation step of a binary code by means of its code
tree. Every node of the concatenated tree where two basic trees are connected
is called a concatenation point.

Figure 1.2: The concatenated tree TC2 corresponding to the binary code C =
{0, 10, 110, 111}.

1.2 L-Identification

Consider the discrete memoryless source (UL, P L) together with a source code
C on U . Additionally and in contrast to classical source coding we also intro-
duce the so-called user space V, with |V| = |U|, together with the user random
variable V = idV . Let f : V → U be a bijective mapping. We encode the users
v with the same code C as before. That is, we set cv = cf(v). W.l.o.g. we assume
from now on that V = U and f = idU .

The task of L-identification is to decide for every user v ∈ U and every output
uL = (u1, .., uL) ∈ UL whether or not there exists at least one l ∈ [L] such that

16



1.2 L-Identification

v = ul. To achieve this goal we compare step by step the first, second, third
etc. q-bit of cv with the corresponding q-bits of cu1 , ..., cuL

. After each step i
all ul with cul,i 6= cv,i are eliminated from the set of possible candidates. We
continue with step i+1 comparing only those ul which still are candidates. If at
some point during this procedure the last possible candidate is eliminated, the
L-identification process stops and returns “No, v is not contained in uL.”. On
the other hand, if there are still candidates after the comparison of the last q-bit
of cv, the L-identification process also halts but returns “Yes, v is contained in
uL at position(s) ...”. The number of steps until the process halts is called the
L-identification running time for (uL, v) ∈ UL × U .

The algorithm LID presented in the appendix in Table 8.1 accomplishes L-
identification. As its input serve the codewords cu1 , ..., cuL

and cv and it returns
the triple (A, s,S). Here A is a boolean variable which is “TRUE” if v is
contained in uL and “FALSE” if not. The second component s equals the
number of steps until the algorithm halted and the third component returns the
set of positions of the output vector uL which coincide with the user v. This
means that if there exist one or more components of uL which coincide with v,
we also know their exact number and positions. This is not a requirement to
L-identification but an extra feature. It follows from the fact that up to the last
comparison of q-bits still all possible candidates may not coincide with v.

In Section 6 we turn to L-identification for sets and there this feature is not
attained since we know that all still possible candidates are pairwise distinct.
This means that in some cases L-identification for sets can be faster than L-
identification (for vectors). In this case, however, we do not know where the
particular user occurred. We explain what we mean by L-identification for sets
and point out the differences in greater detail in Section 6.

Formally, we define the L-identification running time for given uL, v and q-ary
code C by

LL,q
C (uL, v) = LID2(cu1 , ..., cuL

, cv), (1.4)

where LID2(cu1, ..., cuL
, cv) is the second component of the triple returned by the

algorithm LID.

The goal of this thesis is to analyze the expected length of the L-identification
running time, also called the average running time, for a given user v ∈ U

LL,q
C (P, v) =

∑

uL∈UL

PuLLL,q
C (uL, v). (1.5)

This can be done in different ways. The first is the worst-case scenario where
we are interested in the worst-case average running time, which we shortly call
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1 Definitions and Notation

the worst-case running time,

LL,q
C (P ) = max

v∈U
LL,q

C (P, v). (1.6)

We want to find codes which are as close as possible to the optimal worst-case
running time

LL,q(P ) = min
C

LL,q
C (P ). (1.7)

In Subsections 2.2 and 4.3 we provide upper bounds for L1,2(P ) and L2,2(P ).

Let us assume that also user v is chosen at random according to a probability
distribution Q on U . We are now interested in the expected average running
time or shortly the expected running time

LL,q
C (P, Q) =

∑

v∈U

Q({v})LL,q
C (P, v) (1.8)

and in particular in the optimal expected running time

LL,q(P, Q) = min
C

LL,q
C (P, Q). (1.9)

In this thesis we focus on the special case where Q = P so that Equations (1.8)
and (1.9) become

LL,q
C (P, P ) =

∑

v∈U

pvL
L,q
C (P, v) =

∑

(uL,v)∈UL+1

PuLpvL
L,q
C (uL, v) (1.10)

and
LL,q(P, P ) = min

C
LL,q

C (P, P ). (1.11)

We call LL,q
C (P, P ) the symmetric running time for a given code C and LL,q(P, P )

the optimal symmetric running time. In Section 4 we derive an entropy function
for 2-identification. This function provides a lower bound for L2,q(P, P ). In
Section 5 we discuss an extension of this approach to the case of L-identification
for general L. It is clear from the above definitions that

LL,q(P, P ) ≤ LL,q(P ) (1.12)

so that the bounds we derive in Section 5 and Subsections 2.2, 4.2 and 4.3 are
lower (resp. upper) bounds for both values.

All the above values also depend on N = |U|. We do not state this fact
explicitly since it is contained in both P and C.
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2 Two new results for
(1-)Identification

In this section we state two new results for (1-)identification. The first result is
about (1-)identification for block codes. In [5] it is proven that the q-ary identi-
fication entropy H1,q

ID (P ) is a lower bound for L1,q
C (P, P ). A key step in this proof

is to show that if C is a saturated block code, the running time of identification
is minimized by the uniform distribution. This result is provided in Subsection
2.1. Although this may seem obvious the proof is not trivial. Moreover, we will
see in Section 5 that at least for L ≥ 4 the uniform distribution is not always
optimal for L-identification on block codes.

The second result is about upper bounds for the worst-case running time.
In Section 4 of [4] the authors proved in Theorem 3 that L1,2(P ) < 3 by an
inductive code construction. We discovered that with a small alteration of their
construction this upper bound can be strengthened.

2.1 (1-)Identification for Block Codes

In order to show that the uniform distribution is optimal for (1-)identification
on block codes we modify any given probability distribution step by step un-
til we reach the uniform distribution without increasing L1,q

Cqn
(P, P ). It turns

out that not only the uniform distribution is optimal. In fact, all distributions
P = (p1, ..., pqn) are optimal for which we are able to partition U = [qn] into sets
U1, ...,Uqn−1 , all of cardinality q, such that

∑

u∈Ui
pu = 1/qn−1 for all i ∈ [qn−1].

This is due to the fact that the running time regarding v is the same for all u
whose codewords cu coincide with cv in all but the last q-bit. The individual
steps of modification and their monotone decreasing property are content of

Lemma 2.1 Let n ∈ N, q ∈ N≥2, k ∈ {0, ..., n − 1} and t ∈ {0, ..., qn−k−1 − 1}.
Further, let P = (p1, ..., pqn) and P̃ = (p̃1, ..., p̃qn) be probability distributions on
[qn] with

P = (p1, ..., ptqk+1, r1, ..., r1
︸ ︷︷ ︸

qk

, r2, ..., r2
︸ ︷︷ ︸

qk

, ..., rq, ..., rq
︸ ︷︷ ︸

qk

, p(t+1)qk+1+1, ..., pqn)
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2 Two new results for (1-)Identification

and

P̃ = (p1, ..., ptqk+1,
1

q

q
∑

i=1

ri, ...,
1

q

q
∑

i=1

ri

︸ ︷︷ ︸

qk+1

, p(t+1)qk+1+1, ..., pqn).

Then it holds

L1,q
Cqn

(P, P ) − L1,q
Cqn

(P̃ , P̃ ) =
qk(qk − 1)

2(q − 1)

q
∑

i,j=1

(ri − rj)
2 ≥ 0.

The inequality holds with equality if and only if either k = 0 or ri = rj for all
i, j ∈ [q].

Proof:

W.l.o.g. we assume that t = 0, such that

P = (p1, ..., pqn) = (r1, ..., r1, r2, ..., r2, ..., rq, ..., rq, pqk+1+1, ..., pqn)

and

P̃ = (p̃1, ..., p̃qn) = (
1

q

q
∑

i=1

ri, ...,
1

q

q
∑

i=1

ri, pqk+1+1, ..., pqn)

Also, we use for simplicity the abbreviations Lu,v = L1,q
Cqn

(u, v) and

αu,v = (pupv − p̃up̃v)Lu,v. It is clear that Lu,v = Lv,u and hence αu,v = αv,u.
Also, αu,v = 0 for all u, v ∈ [qk+1 + 1, qn]. This yields

L1,q
Cqn

(P, P ) −L1,q
Cqn

(P̃ , P̃ ) =

qn

∑

u,v=1

αu,v =

qk+1
∑

u,v=1

αu,v + 2

qk+1
∑

u=1

qn

∑

v=qk+1+1

αu,v.

It further holds for u ∈ [qk+1] and v ∈ [qk+1 + 1, qn] that

i) pv = p̃v,

ii) Lu,v = L1,v, which we denote by Lv,

iii) p̃u = 1
q

q∑

i=1

ri and

iv)
qk+1
∑

u=1

pu = qk
q∑

i=1

ri.
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2.1 (1-)Identification for Block Codes

From iii) and iv) it follows that

qk+1
∑

u=1

qn

∑

v=qk+1+1

αu,v =

qn

∑

v=qk+1+1

pvLv

qk+1
∑

u=1

(pu − p̃u) = 0

and hence

L1,q
Cqn

(P, P )− L1,q
Cqn

(P̃ , P̃ )

=
qk+1
∑

u,v=1

[

pupv −
1
q2

(
q∑

i=1

ri

)2
]

Lu,v

=
q∑

j,m=1

[

rjrm − 1
q2

(
q∑

i=1

ri

)2
]

jqk
∑

u=(j−1)qk+1

mqk
∑

v=(m−1)qk+1

Lu,v.

Here, the first equality follows from iii) and the definition of P̃ . The second
equality is due to the definition of P .

We now take a look at Lu,v and see that for u ∈ [(j − 1)qk + 1, jqk] and
v ∈ [(m − 1)qk + 1, mqk] we have

Lu,v =







n − k if j 6= m

n − k + L1,q
C

qk
(u, v) if j = m.

With this observation we get

L1,q
Cqn

(P, P ) −L1,q
Cqn

(P̃ , P̃ )

= (n − k)q2k
q∑

j,m=1

[

rjrm − 1
q2

(
q∑

i=1

ri

)2
]

+
q∑

j=1

[

r2
j −

1
q2

(
q∑

i=1

ri

)2
]

qk
∑

u,v=1

L1,q
C

qk
(u, v)

=
q∑

j=1

[

r2
j −

1
q2

(
q∑

i=1

ri

)2
]

qk

[

(q − 1)qk
k∑

l=1

lq−l + k

]

= q

q−1
qk(qk − 1)

q∑

j=1

[

r2
j −

1
q2

(
q∑

i=1

ri

)2
]

.

(2.1)
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2 Two new results for (1-)Identification

The first equality follows from the additional fact that
∑jqk

u,v=(j−1)qk+1
Lu,v is

invariant in the choice of j ∈ [q]. The partial sum behavior of the geometric
series yields the third equality. To understand the second equality we see that

q
∑

j,m=1



rjrm −
1

q2

(
q
∑

i=1

ri

)2


 =

q
∑

j,m=1

rjrm −

(
q
∑

i=1

ri

)2

= 0.

In addition, we have that

qk

∑

u,v=1

L1,q
C

qk
(u, v) =

qk

∑

v=1

k∑

l=1

l|{u ∈ [qk] : L1,q
C

qk
(u, v) = l}|.

For l = 1, ..., k − 1 the codeword of each element in the above sets has to
coincide with cv in the first l − 1 q-bits. Those are qk−l+1 many. Furthermore,
each one of those codewords has to differ from cv in the l-th q-bit. These are
q − 1 out of q. We end up with (q − 1)qk−l elements. If l = k, also v itself
is contained in the corresponding set. As one can see, this is invariant of the
choice of v ∈ [qk]. It follows that

qk
∑

v=1

k∑

l=1

l|{u ∈ [qk] : L1,q
C

qk
(u, v) = l}| = qk

[
k−1∑

l=1

l(q − 1)qk−l + kq

]

= qk

[

(q − 1)qk
k∑

l=1

lq−l + k

]

.

This proves the second equality of Equation (2.1). Finally, since

q
∑

j=1



r2
j −

1

q2

(
q
∑

i=1

ri

)2


 =
1

2q

q
∑

i,j=1

(ri − rj)
2,

we obtain the expression to be proven.

2

Lemma 2.1 provides a way to come step by step from any given distribution
P = (p1, ..., pqn) to the uniform distribution without increasing the symmetric
2-identification running time on q-ary block codes. In the first step (t = 0) of
the first round (k = 0) we level out the probabilities p1, ..., pq. In the second
step (t = 1, k = 0) we level out pq+1, ..., p2q and so on until in the last step
(t = qn−1 − 1) of the first round the remaining probabilities pqn−q+1 up to pqn

are leveled out. We have not changed the symmetric 2-identification running
time, and we have constructed a probability distribution which enables us to go
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2.2 An Improved Upper Bound for Binary Codes

on with Lemma 2.1. This is due to the fact that the first q , the second q up to
the last q probabilities are now identical. In round 2 (k = 1) we begin to level
out the first q2 probabilities, then the second q2 probabilities up to the last q2.
During these actions Lemma 2.1 ensures us that the symmetric 2-identification
running time does not increase. Again we end up with a distribution which
allows us to apply Lemma 2.1 also in the third round k = 2 and so on. Finally,
in the last round k = n−1 we level out the first qn−1 identical probabilities and
the second and last qn−1 identical probabilities and end up with the uniform
distribution. We have proven the following

Corollary 2.2 Let n ∈ N and q ∈ N≥2. Further, let C = Cqn and T = TC.
Then, for all probability distributions P on [qn] it holds that

L1,q
C (P, P ) ≥ L1,q

C

(

(
1

qn
, ...,

1

qn
), (

1

qn
, ...,

1

qn
)

)

,

with equality if and only if P (Tx) = q−‖x‖ for all inner nodes x ∈ N̊ (T ).

2.2 An Improved Upper Bound for Binary Codes

In Section 4 of [4] the authors proved in Theorem 3 that L1,2(P ) < 3 by an
inductive code construction. They assumed that w.l.o.g. p1 ≥ p2 ≥ ... ≥ pN . In
the first step U is partitioned into U0 = [t] and U1 = [t+1, N ] such that

∑t

i=1 pi

is as close as possible to 1/2. Then, they inductively construct code on U0 and
U1. Finally, that they prefixed the codewords for all elements in U0 (resp. U1)
by 0 (resp. 1).

The proof of this theorem contains some cases differentiations. The worst of
these cases is that

∑t

i=1 pi < 1
2

and the user vmax which maximizes L1,2
C (P, v) is

in U1.
1 In this case we may take up to a certain number additional outputs

from U1 and put them into U0 in order to speed up the identification process.
To do so we define

Umax = {u ∈ U : cu,1 = cvmax,1} (2.2)

and
pmax =

∑

u∈Umax

pu. (2.3)

Further, Pmax is a probability distribution on Umax defined by

Pmax,u =
pu

pmax
(2.4)

1vmax may not be unique, but if there are more than one, it does not matter which of these

we choose.
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2 Two new results for (1-)Identification

for all u ∈ Umax and Cmax is the code on Umax which we obtain by deleting the
leading bit of all cu’s. With these definitions we get that

LL,q
C (P ) =

∑

uL∈UL

pu1 ...puL
LL,q

C (uL, vmax)

= 1 +
L∑

l=1

(
L

l

)
(1 − pmax)

L−l
∑

ul∈U l
max

pu1 ...pul
Ll,q

C (ul, vmax)

= 1 +
L∑

l=1

(
L

l

)
(1 − pmax)

L−lpl
maxL

l,q
C (Pmax, vmax)

≤ 1 +
L∑

l=1

(
L

l

)
(1 − pmax)

L−lpl
maxL

l,q
Cmax

(Pmax).

(2.5)

This simplifies for L = 1 and q = 2 to

L1,2
C (P ) ≤ 1 + pmaxL

1,2
Cmax

(Pmax). (2.6)

This equation provides the induction step for the proof of

Theorem 2.3 It holds for all probability distributions P on U that the worst-
case running time for binary (1-)identification can be upper bounded by

L1,2(P ) <
5

2
.

Proof:

W.l.o.g. we assume that p1 ≥ p2 ≥ ... ≥ pN . For the induction bases N = 1, 2
we have that L1,2(P ) = 1 < 5/2 for all P . Now let N > 2.

Case 1: p1 ≥ 1

2

In this case we assign c1 = 0 and U1 = {2, ..., N}. Inductively we construct a
code C′ = {c′u : u = 2, ..., N} on U1 and we extend this code to a code on U by
setting cu = 1c′u for u ∈ U1.

It is clear that vmax 6= 1 because in this case L1,2(P ) would equal 1. This is
a contradiction since N > 2 and thereby we have more than one output whose
codeword begins with 1 and each of these outputs results in a running time
strictly greater than 1.
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2.2 An Improved Upper Bound for Binary Codes

Thus, the maximum is assumed on the “right” side. This yields pmax ≤ 1/2.
Further, by Equation (2.6) and the induction hypothesis we have that

L1,2
C (P ) < 1 +

1

2
·
5

2
=

9

4
<

5

2
.

Case 2: p1 < 1

2

In this case we choose t such that |1/2 −
∑t

u=1 pu| is minimized. Now we
distinguish again between two subcases.

Case 2.1: t = 1

In this case we set U0 = {1, 2} and U1 = {3, ..., N}. Again by we inductively
construct C′ = {c′u : u = 3, ..., N}. And we obtain C by setting c1 = 00,
c2 = 01 and cu = 1c′u for u = 3, ..., N .

If vmax ∈ U0, we have that pmax = p1 + p2 and Cmax = {0, 1}. Again by
equation (2.6) we obtain

L1,2
C (P ) ≤ 1 + (p1 + p2)L

1,2
Cmax

(Pmax) ≤ 2 <
5

2
.

Otherwise it follows from the definition of t that p1 + p2 > 1/2. By this we get
pmax < 1/2 and Cmax = C1. By induction and Equation (2.6) this yields

L1,2
C (P ) < 1 +

1

2
·
5

2
=

9

4
<

5

2
.

Case 2.2: t ≥ 2

We now set U0 = {1, ..., t} and U1 = {t + 1, ..., N} and construct inductively
codes C′ = {c′u : u = 1, ..., t} and C′′ = {c′′u : u = t + 1, ..., N}. We obtain a
code C on U by setting

cu =







0c′u for u = 1, ..., t

1c′′u for u = t + 1, ..., N.

Case 2.2.1: vmax ∈ U0

It follows that pmax =
∑t

u=1 pu. If
∑t

u=1 pu ≤ 1/2, we get again by induction
and Equation (2.6) that

L1,2
C (P ) < 1 +

1

2
·
5

2
=

9

4
<

5

2
.
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2 Two new results for (1-)Identification

In the case that
∑t

u=1 pu > 1/2 we have by the definition of t that

t∑

u=1

pu −
1

2
≤

1

2
−

t−1∑

u=1

pu.

It follows
∑t

u=1 pu ≤ (pt+1)/2. Additionally, we have pt−1 < 1/(2(t−1)) because
otherwise

∑t−1
u=1 pu ≥ 1/2. This would be a contradiction to the definition of t.

This together implies

pmax =

t∑

u=1

pu <
1 + 2(t − 1)

4(t − 1)
. (2.7)

If t = 2, we obtain for the same reasons as in Case 2.1 that

L1,2
C (P ) <

5

2
.

If t = 3, we get that Cmax = C′ = {c′1, c
′
2, c

′
3}, with c′1 = 0, c′2 = 10 and c′3 = 11.

Further, pmax = p1 + p2 + p3 and Pmax = (p1/pmax, p2/pmax, p3/pmax). Since
p1 ≥ p2 ≥ p3 it follows that

p2 + p3

pmax
≤

2

3
.

This yields

L1,2
Cmax

(Pmax) = 1 +
p2 + p3

pmax
≤

5

3
.

It now follows from Equations (2.6) and (2.7) that

L1,2
C (P ) ≤ 1 +

5

3
pmax < 1 +

5

3
·
5

8
=

49

24
<

5

2
.

For t ≥ 4 the induction hypothesis and Equation (2.7) yield

L1,2
C (P ) < 1 +

1 + 2(t − 1)

4(t − 1)
·
5

2
≤ 1 +

7

12
·
5

2
=

59

24
<

5

2
.

Case 2.2.2: vmax ∈ U1

We get that pmax =
∑N

u=t+1 pu. If
∑N

u=t+1 pu ≤ 1/2, we get like before

L1,2
C (P ) < 1 +

1

2
·
5

2
=

9

4
<

5

2
.

If
∑N

u=t+1 pu > 1/2, it follows that

t∑

u=1

pu ≥
1

2
−

1

2
pt+1.
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2.2 An Improved Upper Bound for Binary Codes

Since pt+1 ≤
(∑t

u=1 pu

)
/t, we further obtain

t∑

u=1

pu ≥
t

2t + 1
≥

2

5
. (2.8)

Since pmax = 1 −
∑t

u=1 pu, we finally get by induction and Equation (2.8) that

L1,2
C (P ) < 1 +

3

5
·
5

2
=

5

2
.

2

From Theorem 2 in [2] and Theorem 2.3 follows

Corollary 2.4 It holds for all probability distributions P on U that

2

(

1 −
∑

u∈U

p2
u

)

≤ L1,2(P, P ) ≤ L1,2(P ) <
5

2
.
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3 L-Identification for the Uniform
Distribution

In the first subsection we point out an interesting connection between the so-
called balanced Huffman codes for the uniform distribution and the colexico-
graphic order (see e.g. [14]). This order can be used to construct such codes. In
the remaining we refer only to balanced Huffman codes and skip the add on “for
the uniform distribution”. This is somewhat detached from L-identification but
since balanced Huffman codes are crucial for the analysis in the second subsec-
tion, we feel that this section is the right place to state this result.

We assume familiarity with the concept of Huffman coding (see [12]) and shall
start by recalling the concept of balanced Huffman codes, which was introduced
in [3]. Let N = qn−1+d, where 0 ≤ d ≤ (q−1)qn−1−1. The q-ary Huffman cod-
ing for the uniform distribution of size N yields a code where some codewords
have length n and the other codewords have length n − 1. More precisely, if
0 ≤ d < qn−1, then qn−1−d codewords have length n−1 and 2d codewords have
length n, while in the case qn−1 ≤ d ≤ (q−1)qn−1 −1 all codewords have length
n. It is well-known that for data compression all Huffman codes are optimal.
This is not the case for identification.

In [3] it is shown (for q = 2) that for identification it is crucial which code-
words have length n or, in terms of codetrees, where in the codetree these
longer codewords lie. Moreover, those Huffman codes have a shorter expected
and worst-case running time for which the longer codewords are distributed
along the code tree in such a way that for every inner node the difference be-
tween the number of leaves of its left side and the number of leaves of its right
side is at most one. In [3] Huffman trees satisfying this property were called
balanced. By analogy, we shall also say that a q-ary Huffman code is balanced
if its corresponding q-ary codetree H obeys the property that for every inner
node x ∈ N̊ (H) the difference between the number of leaves of Hxi and Hxj

is at most one for all i, j ∈ Q. We further denote by Hq,N the set of all q-ary
balanced Huffman trees with N leaves and the corresponding set of q-ary bal-
anced Huffman codes of size N is denoted by Cq,N . If N = qn, there exists only
a single balanced Huffman code, namely Cqn . We denote the balanced Huffman
tree which corresponds to Cqn by Hqn.
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3 L-Identification for the Uniform Distribution

In identification what is relevant is not the length of a codeword but the
length of the maximal common prefix of two or more different codewords. This
is why a balanced Huffman code is better for identification than an unbalanced
one. It is easy to see by the pigeonhole principle that if we consider Huffman
codes with codewords of lengths n − 1 and n, a balanced Huffman code is op-
timal for the worst-case running time and we will see in the proof of Theorem
3.4 that the balancing property is also crucial for the symmetric running time
of L-identification.

The q-ary Shannon-Fano coding procedure [10] constructs codes where for
every inner node the difference between the sum of the normalized probabilities
within its individual branches is as close as possible to 1/q. It is an easy observa-
tion that if we are dealing with uniform distributions, a code is a Shannon-Fano
code if and only if it is a balanced Huffman code.

The main result of this section is the examination of the asymptotic behavior
of LL,q

C (P, P ) for the case when P is the uniform distribution. We shall prove
that this is equal to a rational number KL,q (Theorem 3.4), which grows loga-
rithmically in L. In fact, we show that KL,2 approximates the L-th harmonic
number. We note that Theorem 3.4 also plays a major role in the discovery of
the identification entropies, which are discussed in Sections 4 and 5.

3.1 Colexicographic Balanced Huffman Trees

In this subsection we will show how one can construct a balanced Huffman tree
for given q, n and N = qn−1 + d for some d by applying the colexicographic
order. Therefore, let k = ⌊d/qn−1⌋ ≤ q − 2 and m = d mod qn−1. Since a
Huffman code contains only codewords of lengths n − 1 and n, we begin our
construction of a balanced Huffman tree with Hqn−1 and extend it into the next
level by replacing all its leaves with copies of Hk, which we call extension trees.
We call this constructed tree the base tree B. Obviously, B is a balanced Huff-
man tree. We still have m elements left which have to be inserted into the base
tree. It remains to determine which ones of the extension trees will be used for
this. Of course, every extension tree can only be used once, because otherwise
the balancing property would be violated. Before we explain the construction
which provides this, we formalize matters.

Let A ⊆ N̄ (Hqn−1) be a set of leaves of Hqn−1 . Then, we define B(A) to be
the tree which we obtain by replacing all the extension trees of the base tree B
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3.1 Colexicographic Balanced Huffman Trees

with roots in A by Hk+1. Such a set is called a valid extension set, if

∣
∣
∣ |B(A)x1...x‖x‖i| − |B(A)x1...x‖x‖j|

∣
∣
∣ ≤ 1 (3.1)

for all i, j ∈ Q and all inner nodes x ∈ N̊ (B). See Figure 3.1 for examples of a
valid and an invalid extension. Equivalently we could have defined that A is a
valid extension set if

| |Ax,i| − |Ax,j| | ≤ 1 (3.2)

for all x ∈ N̊ (B) and all i, j ∈ Q and where Ax,i = {a ∈ Ax : a‖x‖+1 = i} and
Ax = {a ∈ A : a1...a‖x‖ = x}. An immediate conclusion is that if A is a valid
extension set, then B(A) is a balanced Huffman tree.

B B({l2, l4, l5, l7})

invalid

valid

B({l4, l5, l7, l9})

l2 l3 l7l1 l4 l5 l6 l8 l9

Figure 3.1: Examples for a valid and an invalid extension of the ternary base
tree B for N = 22.

An easy consequence of the balancing property is the following

Lemma 3.1 Let qn−1 < N ≤ qn, H ∈ Hq,N and x be a node of H, then it
follows

⌊
N

q‖x‖

⌋

≤ |Hx| ≤

⌈
N

q‖x‖

⌉

. (3.3)

The inequality holds with equality for all x if and only if N = qn. Moreover, it
simplifies to

|Hx| = qn−‖x‖. (3.4)
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3 L-Identification for the Uniform Distribution

For given q and N there may exist many different balanced Huffman trees.
We want to point out an interesting case the so-called colexicographic balanced
Huffman tree. This tree is obtained by taking as the extension set Acol the first
m codewords of length n − 1 in colexicographic order.

Let x, y ∈ Qn−1 and imax = max{i ∈ {1, ..., n − 1} : xi 6= yi}. Then x is
said to be less or equal than y in the colexicographic order, denoted by x � y,
if ximax ≤ yimax. One can easily verify that (Qn−1,�) is a linearly ordered set
since Qn−1 is a product space and the colexicographic order is induced by the
trivial linear ≤ order on Q. If we denote by ci the i-th codeword in this order
and focus on the k-th q-bits, we observe the following structure.

c1,k...cqn−1,k = Qk...Qk
︸ ︷︷ ︸

qn−k−1

,

where
Qk = 0...0

︸︷︷︸

qk−1

1...1
︸︷︷︸

qk−1

..... (q − 1)...(q − 1)
︸ ︷︷ ︸

qk−1

.

Moreover, the prefixes of length k−1 of the codewords within a block Qk which
coincide in the k-th q-bit form the complete Qk−1. And all the codewords in
such a block have identical suffixes of length n − k − 1.

We further define sk and rk by m = skq
k + rk, where rk < qk and k ∈ [n− 1].

Finally, r′k and r′′k are given by rk = r′kq
k−1 + r′′k , where 0 ≤ r′′k < qk−1. With

this notation we obtain that the k-th q-bits of the first m codewords look like

c1,k...cm,k = Qk...Qk
︸ ︷︷ ︸

sk

0...0
︸︷︷︸

qk−1

... (r′k − 1)...(r′k − 1)
︸ ︷︷ ︸

qk−1

r′k...r
′
k

︸ ︷︷ ︸

r′′
k

.

Let x ∈ B. With the notation of Equation (3.2) we get that Acol
x contains

exactly q codewords from each of the sk blocks Qk each with a different k-th q-
bit. In addition, it contains exactly one codeword from each of the small blocks
0...0 to (r′k −1)...(r′k −1) and at most one codeword from the partial small block
r′k...r

′
k. This yields

|Acol

x,i| =







sk + 1 if i = 1, ..., r′k
sk or sk + 1 if i = r′k + 1
sk if i = r′k + 2, ..., q.

This together with Equation (3.2) shows that Acol is a valid extension set. For
further information about linear orders see [14].
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3.2 An Asymptotic Theorem

3.2 An Asymptotic Theorem

The goal of this subsection is to analyze the asymptotic behavior of

LL,q
C

(

(
1

N
, ...,

1

N
), (

1

N
, ...,

1

N
)

)

=
1

NL+1

N∑

u1,...,uL,v=1

LL,q
C (uL, v), (3.5)

with C ∈ Cq,N . This will be done by applying a different counting method. The

above equation suggests to calculate LL,q
C (uL, v) for all pairs (uL, v) individually.

Instead we merge all uL having the same running time regarding some v into
sets

RL,q
C (k, v) =

{

uL ∈ UL : LL,q
C (uL, v) = k

}

(3.6)

for k ∈ [‖cv‖]. The above defined sets also depend on N . As well as the L-
identification functions in Subsection 1.2 they contain this dependency implicitly
via C. Equation (3.5) now becomes

LL,q
C

(

(
1

N
, ...,

1

N
), (

1

N
, ...,

1

N
)

)

=
1

NL+1

N∑

v=1

‖cv‖∑

k=1

k|RL,q
C (k, v)|. (3.7)

In order to apply this equation we need to know upper and lower bounds on
the cardinalities of these sets. Corollary 3.3 below provides such bounds and
exact values for the case when N is a q-power. The base for this corollary is the
following

Lemma 3.2 Let qn−1 < N ≤ qn, C ∈ Cq,N , H = TC and v ∈ U .
Then, for k ∈ [‖cv‖ − 1] it holds that

|RL,q
C (k, v)| =

L∑

m=1

(
L

m

)

|N̄ (Hck−1
v

)\N̄ (Hck
v
)|m
(
N − |N̄ (Hck−1

v
)|
)L−m

and

|RL,q
C (‖cv‖, v)| =

L∑

m=1

(
L

m

)

|N̄ (H
c
‖cv‖−1
v

)|m
(

N − |N̄ (H
c
‖cv‖−1
v

)|
)L−m

.

Proof:

In order to simplify notation we shall write R(k, v) for RL,q
C (k, v).
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3 L-Identification for the Uniform Distribution

Case 1: k = 1

The L-identification algorithm terminates after the first step if and only if
the codewords of all components of uL differ already in the first q-bit from cv,1.
This gives us

R(1, v) =
{
uL ∈ [qn]L : cui

∈ N̄ (H)\N̄ (Hcv,1) ∀ i ∈ [L]
}

and therewith

|R(1, v)| = |N̄ (H)\N̄ (Hcv,1)|
L = (N − |N̄ (Hcv,1)|)

L.

This coincides with the first equation of Lemma 3.2.

Case 2: k = 2, ..., ‖cv‖ − 1

The identification time of uL and v equals k if and only if it holds for all i ∈ [L]
that ck

ui
6= ck

v and that there exists at least one i ∈ [L] such that ck−1
ui

= ck−1
v .

This consideration yields

R(k, v) =
{
uL ∈ [qn]L : ∃ i ∈ [L] with cui

∈ N̄ (Hck−1
v

)\N̄ (Hck
v
)

and cui
6∈ N̄ (Hck

v
) ∀ i ∈ [L]

}
.

In order to count the elements we partition R(k, v) into L subsets Sk,1, ..., Sk,L,
where

Sk,m =
{
uL ∈ [qn]L : ∃ i1, ..., im ∈ [L] with cui1

, ..., cuim
∈ N̄ (Hck−1

v
)\N̄ (Hck

v
)

and cui
∈ N̄ (H)\N̄ (Hck−1

v
) ∀ i ∈ [L]\{i1, ..., im}

}
.

If we fix the positions i1, ..., im, we see that the number of possible vectors is

|N̄ (Hck−1
v

)\N̄ (Hck
v
)|m(N − |N̄ (Hck−1

v
)|)L−m.

Since we have no restrictions for these positions, it follows that

|Sk,m| =

(
L

m

)

|N̄ (Hck−1
v

)\N̄ (Hck
v
)|m
(
N − |N̄ (Hck−1

v
)|
)L−m

.

Altogether we obtain

|R(k, v)| = |
L⋃

m=1

Sk,m| =
L∑

m=1

|Sk,m|

=
L∑

m=1

(
L

m

)
|N̄ (Hck−1

v
)\N̄ (Hck

v
)|m
(
N − |N̄ (Hck−1

v
)|
)L−m

.
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3.2 An Asymptotic Theorem

Case 3: k = ‖cv‖

In this case also cv itself may be one of the components of uL. This yields

R(n, v) = {uL ∈ [qn]L : ∃ i ∈ [L] with cui
∈ N̄ (H

c
‖cv‖−1
v

)}.

According to this we adjust the subsets Sn,1, ..., Sn,L, such that

Sn,m = {uL ∈ [qn]L : ∃ i1, ..., im ∈ [L] with cui1
, ..., cuim

∈ N̄ (H
c
‖cv‖−1
v

)

and cui
∈ N̄ (H)\N̄ (H

c
‖cv‖−1
v

) ∀ i ∈ [L]\{i1, ..., im}}.

Of course, these sets partition R(n, 1) and since

|Sn,m| =

(
L

m

)

|N̄ (H
c
‖cv‖−1
v

)|m(N − |N̄ (H
c
‖cv‖−1
v

)|)L−m,

for all m ∈ [L], we obtain the desired result for |R(n, v)|.

2

If we combine Lemma 3.1 and Lemma 3.2, we obtain

Corollary 3.3 With the same definitions as in Lemma 3.2 we have the follow-
ing upper bounds for k ∈ [‖cv‖ − 1]

|RL,q
C (k, v)| ≤

L∑

m=1

(
L

m

)(⌈
N

qk−1

⌉

−

⌊
N

qk

⌋)m(

N −

⌊
N

qk−1

⌋)L−m

and

|RL,q
C (‖cv‖, v)| ≤

L∑

m=1

(
L

m

)⌈
N

q‖cv‖−1

⌉m(

N −

⌊
N

q‖cv‖−1

⌋)L−m

.

Additionally, we get lower bounds for k ∈ [‖cv‖ − 1]

|RL,q
C (k, v)| ≥

L∑

m=1

(
L

m

)(⌊
N

qk−1

⌋

−

⌈
N

qk

⌉)m(

N −

⌈
N

qk−1

⌉)L−m

and

|RL,q
C (‖cv‖, v)| ≥

L∑

m=1

(
L

m

)⌊
N

q‖cv‖−1

⌋m(

N −

⌈
N

q‖cv‖−1

⌉)L−m

.
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3 L-Identification for the Uniform Distribution

The above inequalities hold with equality for all v ∈ U if and only if N = qn.
Moreover, they simplify for all k ∈ [n − 1] to

|RL,q
C (k, v)| = qnL

L∑

m=1

(
L

m

)

q−km(q − 1)m(1 − q−k+1)L−m

and

|RL,q
C (‖cv‖, v)| =

L∑

m=1

(
L

m

)

qm(qn − q)L−m.

With the above estimates we are now ready to prove the asymptotic theorem
for uniform distributions. If we consider the uniform distribution and use a bal-
anced Huffman code for the encoding, the symmetric L-identification running
time asymptotically equals a rational number KL,q.

Theorem 3.4 Let L, n ∈ N, q ∈ N≥2, qn−1 < N ≤ qn, C ∈ Cq,N and P be the
uniform distribution on [N ]. Then it holds that

lim
N→∞

LL,q
C (P, P ) = KL,q = −

L∑

l=1

(−1)l
(

L

l

)
ql

ql−1
.

Proof:

Case 1: N = qn

It follows from Corollary 3.3 and Equation (3.7) that

LL,q
C (P, P ) = 1

qnL

[
n−1∑

k=1

kqnL
L∑

m=1

(
L

m

)
q−km(q − 1)m(1 − q−k+1)L−m

+ n
L∑

m=1

(
L

m

)
qm(qn − q)L−m

]

.

(3.8)

It is easy to check that the second summand together with the leading factor
q−nL converges to 0 if n goes to infinity. In fact,

L∑

m=1

(
L

m

)

nq−m(n−1)(1 − q−n+1)L−m → 0.
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3.2 An Asymptotic Theorem

This is because nq−m(n−1) → 0 and (1 − q−n+1)L−m → 1. Thus, we get

lim
n→∞

LL,q
C (P, P ) =

∞∑

k=1

k
L∑

m=1

(
L

m

)
q−km(q − 1)m(1 − q−k+1)L−m

=
L∑

m=1

L−m∑

t=0

(−q)t
(

L

m

)(
L−m

t

)
(q − 1)m

∞∑

k=1

kq−k(m+t)

=
L∑

m=1

L−m∑

t=0

(−q)t
(

L

m

)(
L−m

t

)
(q − 1)m qm+t

(qm+t−1)2
.

(3.9)

The second equality follows from (1 − q−k+1)L−m =
∑L−m

t=0

(
L−m

t

)
(−q)tq−tk,

while the last equality is a consequence of the geometric series.

In the following we set xm,t = (−q)t
(

L

m

)(
L−m

t

)
(q−1)m as well as zl = ql/(ql−1)2

and change the order of summation. This yields

lim
n→∞

LL,q
C (P, P ) =

L∑

m=1

L−m∑

t=0

xm,tzm+t =
L∑

l=1

zl

l−1∑

t=0

xl−t,t

=
L∑

l=1

ql

(ql−1)2

l−1∑

t=0

(−q)t
(

L

l−t

)(
L−l+t

t

)
(q − 1)l−t

=
L∑

l=1

(
L

l

)
ql

(ql−1)2

l−1∑

t=0

(
l

t

)
(−q)t(q − 1)l−t

=
L∑

l=1

(
L

l

)
ql

(ql−1)2

(
(−1)l − (−q)l

)

= −
L∑

l=1

(−1)l
(

L

l

)
ql

ql−1
.
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3 L-Identification for the Uniform Distribution

Case 2: qn−1 < N < qn

For this case we obtain

LL,q
C (P, P )

≤ 1
NL+1

N∑

v=1

[
‖cv‖−1∑

k=1

k
L∑

m=1

(
L

m

) (

⌈ N
qk−1 ⌉ − ⌊N

qk ⌋
)m (

N − ⌊ N
qk−1 ⌋

)L−m

]

+ 1
NL+1

N∑

v=1

[

‖cv‖
L∑

m=1

(
L

m

)
⌈ N

q‖cv‖−1 ⌉
m(N − ⌊ N

q‖cv‖−1 ⌋)
L−m

]

≤ 1
N

N∑

v=1

[
‖cv‖−1∑

k=1

k
L∑

m=1

(
L

m

)
(q−k+1 − q−k + 2

N
)m(1 − q−k+1 + 1

N
)L−m

]

+ 1
N

N∑

v=1

[

‖cv‖
L∑

m=1

(
L

m

)
(q−‖cv‖+1 + 1

N
)m(1 − q−‖cv‖+1 + 1

N
)L−m

]

.

(3.10)

The first inequality is obtained by the insertion of the upper bound in Corol-
lary 3.3 into Equation (3.7). ⌈N/qk⌉ ≤ N/qk + 1 and ⌊N/qk⌋ ≥ N/qk − 1 yield
the second inequality. We now divide this case into two subcases.

Case 2.1: 2qn−1 ≤ N < qn

In this case all codewords have length n. Hence Equation 3.10 reduces to

LL,q
C (P, P ) ≤

n−1∑

k=1

k
L∑

m=1

(
L

m

)
(q−k+1 − q−k + 2

N
)m(1 − q−k+1 + 1

N
)L−m

+ n
L∑

m=1

(
L

m

)
(q−n+1 + 1

N
)m(1 − q−n+1 + 1

N
)L−m.

(3.11)
As in the case N = qn the second summand goes to zero as N goes to infinity.

Thus, we only have to consider the first summand. In fact, we can reduce this
case to the previous one by applying the binomial theorem. We obtain
(

q−k(q − 1) +
2

N

)m

=
(
q−k(q − 1)

)m
+

m−1∑

t=0

(
m

t

)

(q−k(q − 1))t

(
2

N

)m−t

and
(

1 − q−k+1 +
1

N

)L−m

=
(
1 − q−k+1

)L−m
+

L−m−1∑

s=0

(
L − m

s

)

(1−q−k+1)s 1

NL−m−s
.
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3.2 An Asymptotic Theorem

In the following we use

A =

m−1∑

t=0

(
m

t

)

(q−k(q − 1))t

(
2

N

)m−t

and

B =

L−m−1∑

s=0

(
L − m

s

)

(1 − q−k+1)s 1

NL−m−s
.

With this notation the right hand side of Equation (3.11) asymptotically
equals

n−1∑

k=1

k
L∑

m=1

(
L

m

) [(
q−k(q − 1)

)m (
1 − q−k+1

)L−m
+
(
q−k(q − 1)

)m
B

+
(
1 − q−k+1

)L−m
A + AB

]

.

(3.12)

If we focus on the second summand in the square brackets, we see that

n−1∑

k=1

k
L∑

m=1

(
L

m

) (
q−k(q − 1)

)m
B

=
L∑

m=1

L−m−1∑

s=0

(
L−m

s

)(
L

m

)
(q−1)m

NL−m−s

n−1∑

k=1

kq−km
(
1 − q−k+1

)L−m

=
L∑

m=1

L−m−1∑

s=0

L−m∑

r=0

(−1)r
(

L−m

r

)(
L−m

s

)(
L

m

)
qr(q−1)m

NL−m−s

n−1∑

k=1

kq−k(m+r)

=
L∑

m=1

L−m−1∑

s=0

L−m∑

r=0

α(m, s, r) 1
NL−m−s

1
(qm+r−1)2

(

qm+r − (qm+r−1)n+qm+r

qn(m+r)

)

,

where α(m, s, r) = (−1)r
(

L−m

r

)(
L−m

s

)(
L

m

)
qr(q − 1)m. The last equality follows

from the partial sum behavior of the geometric series. This expression tends to
zero as N (resp. n ≈ logq N) goes to infinity because L − m − s ≥ 1.

In the same way it can be shown that the third and the fourth summand
of Equation (3.12) also tend to zero. Thus, we end up with exactly the same
expression like Equation (3.9). This proves the upper bound for this case. By
using the same arguments and the lower estimates in Corollary 3.3 one can eas-
ily show the matching lower bound.
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3 L-Identification for the Uniform Distribution

Case 2.2: qn−1 < N < 2qn−1

In this case N = qn−1 +d, with 0 < d < qn−1, and there exist exactly qn−1−d
codewords of length n−1 and 2d codewords of length n. Then, Equation (3.10)
becomes

LL,q
C (P, P )

≤ qn−1−d

N

[
n−2∑

k=1

k
L∑

m=1

(
L

m

)
(q−k+1 − q−k + 2

N
)m(1 − q−k+1 + 1

N
)L−m

+ (n − 1)
L∑

m=1

(
L

m

)
(q−n+2 + 1

N
)m(1 − q−n+2 + 1

N
)L−m

]

+2d
N

[
n−1∑

k=1

k
L∑

m=1

(
L

m

)
(q−k+1 − q−k + 2

N
)m(1 − q−k+1 + 1

N
)L−m

+ n
L∑

m=1

(
L

m

)
(q−n+1 + 1

N
)m(1 − q−n+1 + 1

N
)L−m

]

=
n−2∑

k=1

k
L∑

m=1

(
L

m

)
(q−k+1 − q−k + 2

N
)m(1 − q−k+1 + 1

N
)L−m

+ (qn−1−d)(n−1)
N

L∑

m=1

(
L

m

)
(q−n+2 + 1

N
)m(1 − q−n+2 + 1

N
)L−m

+2d(n−1)
N

L∑

m=1

(
L

m

)
(q−n+2 − q−n+1 + 2

N
)m(1 − q−n+2 + 1

N
)L−m

+2dn
N

L∑

m=1

(
L

m

)
(q−n+1 + 1

N
)m(1 − q−n+1 + 1

N
)L−m.

For the same reason as in the preceding cases the last three summands tend
to zero as N → ∞ and since the first summand asymptotically equals the
first summand of Equation (3.11), the upper bound also in this last case is
settled. Omitting the details we limit ourselves to remark that also in this
case the matching lower bound can be easily obtained by a perfectly analogous
argument. Thus, the proof of the theorem is complete.

2
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3.2 An Asymptotic Theorem

A natural question regards the asymptotic growth of KL,q with respect to L.
Table 3.1 shows some values of KL,2. This motivates the assumption that KL,2

grows logarithmically in L. In fact, this assumption proves true by the following
considerations. First, we see that

KL,2 = −
L∑

l=1

(−1)l

(
L

l

)
2l

2l − 1
= 1 −

L∑

l=1

(−1)l
(

L

l

)

2l − 1
.

By using the geometric series we get

KL,2 − 1 = −
L∑

l=1

(−1)l
(

L

l

)

2l

∞∑

k=0

2−kl = −
∞∑

k=0

L∑

l=1

(
L

l

)

(−1)l2−(k+1)l.

The binomial theorem now yields

KL,2 − 1 = −
∞∑

k=0

((1 − 2−(k+1))L − 1) =

∞∑

k=1

(1 − (1 − 2−k)L).

If we now set ξk = (1 − 2−k), we obtain

KL,2 − 1 =
∞∑

k=1

(1 − ξL
k ) =

∞∑

k=1

(1 − ξk)(1 + ξk + ξ2
k + ... + ξL−1

k )

=
∞∑

k=1

1
2k (1 + ξk + ξ2

k + ... + ξL−1
k ).

Figure 3.2 shows that this expression is an approximation by the upper sum of
the integral

1∫

0

(1 + x + x2 + ... + xL−1)dx = 1 +
1

2
+

1

3
+ ... +

1

L
= HL,

where HL denotes the L-th harmonic number. Since HL grows logarithmically
with respect to L, so does KL,2.

Volker Strehl ([16]) generalized this result for the case q > 2. His result is the
content of the following

Proposition 3.5 (V. Strehl [16])
It holds that

lim
L→∞

HL

KL,q

= ln q,

where HL denotes the L-th harmonic number and ln is the natural logarithm.
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3 L-Identification for the Uniform Distribution

L 1 2 22 23 25 210 213

KL,2 ≈ 2 2, 6667 3, 5048 4, 4211 6, 3552 11, 3335 14, 3328

KL,2−1

log L
≈ * 1, 6667 1, 2524 1, 1404 1, 0710 1, 0333 1, 0256

Table 3.1: The growth of KL,2 in L.

11

2

1

4

1

8

1

16

1

32

f(x)

1

L

Figure 3.2: KL,2 − 1 approximates the integral of f(x) = 1 + x + x2 + ... + xL−1.
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4 2-Identification for General
Distributions

In the previous section we have seen how L-identification behaves for the uni-
form distribution. In this section we turn to general distributions and establish
a lower bound for 2-identification.

Let us focus on the case L = 2, N = qn, P = (1/qn, ..., 1/qn) and C = Cqn .
Every q-ary comparison which is done during 2-identification for u2 and v is
itself an l-identification (l ∈ [2]) between the t-th q-bit of the codewords of the
l still possible candidates and cv,t. The running time of each of those “small”
identifications is 1 no matter of the value of l. In fact, we have applied up to
n “small” identifications within the code Cq in order to perform the original
2-identification within Cqn .

It is clear that Cqn = Cn
q . Further, let rt+1,l be the probability that after the

t-th comparison there are still l possible candidates left. We can now calculate
2-identification running time within Cn

q by

L2,q
Cn

q

(

( 1
qn , ..., 1

qn ), ( 1
qn , ..., 1

qn )
)

= 1 +
n−1∑

t=1

2∑

l=1

(
2
l

)
rt+1,lL

l,q
Cq

(

(1
q
, ..., 1

q
), (1

q
, ..., 1

q
)
)

= 1 + 2
n−1∑

t=1

rt+1,1 +
n−1∑

t=1

rt+1,2.

Here, the binomial coefficient in the first equality occurs since in the case l = 1
either u1 or u2 is the leftover candidate. We have to take into account both pos-
sibilities. As stated before l-identification running time within Cq always equals
1. This proves the second equality. This approach yields an alternative proof of
Theorem 3.4 for L = 2 and |U| = qn. However, we stop this analysis here and
will come back to it later.

The above observations lead us to the attempt of doing the same for any given
source code C. Namely, to consider the discrete memoryless source ((Un)2 , (P n)2)
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4 2-Identification for General Distributions

together with the concatenated code Cn and try to establish a connection be-
tween the 2-identification running time within Cn and the l-identification run-
ning times within C. This relation is the content of Lemma 4.1. It turns out
that we also have to consider (1-)identification within the basic code. This fact
makes further analysis more sophisticated, especially for the general case of Sec-
tion 5.

In order to apply Theorem 3.4 we firstly let n go to infinity. The result of
this procedure is stated in Corollary 4.2. It is a consequence of Lemma 4.1.
Furthermore, we show that from a particular concatenation step on we can
lower bound all further concatenated codes to a saturated code CqKn of some
given length Kn. This is done in the proof of Lemma 4.5. Finally, Corollary
4.4 states that the uniform distribution is optimal for 2-identification within a
block code. Altogether at the end of the first subsection we obtain

L2,q
C (P, P ) ≥ (1 −

∑

u∈U

p3
u)

(

2
q

q − 1
−

q2

q2 − 1

)

− 2





1 −
∑

u∈U

p3
u

1 −
∑

u∈U

p2
u

− 1



L1,q
C (P, P ).

as a lower bound for 2-identification.

Unfortunately, (1-)identification appears negatively signed so that we can-
not immediately apply the lower bound L1,q

C (P, P ) ≥ H1,q
ID (P ), which has been

proven in [5]. In the same work it has been shown that this lower bound is
attainable if P consists only of q-powers. Proposition 4.7 at the beginning of
the second subsection proves this equality also for 2-identification. This is the
base for the definition of the q-ary identification entropy of second degree

H2,q
ID

(P ) = 2
q

q − 1

(

1 −
∑

u∈U

p2
u

)

−
q2

q2 − 1

(

1 −
∑

u∈U

p3
u

)

.

In the remaining part of the second subsection we prove some fundamental
properties of this function. There are symmetry, expansibility, normalization,
decisiveness, bounding between 0 and the uniform distribution and a special
grouping behavior. Using these properties we prove Theorem 4.8 where we
show that H2,q

ID (P ) is a lower bound for 2-identification. We end this part with
a corollary which states that if we consider the uniform distribution on U , bal-
anced Huffman codes are asymptotically optimal for 2-identification.

Finally, we establish an upper bound for the binary case in the third Sub-
section. The code construction in the proof coincides with the one used for
(1)-identification in Subsection 2.2.
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4.1 An Asymptotic Approach

4.1 An Asymptotic Approach

Lemma 4.1 Let U be a finite set, q ∈ N≥2, P be a probability distribution on
U and C be a prefix code. It holds that

L2,q
Cn (P n, P n) = L2,q

C (P, P )

(

1 +
n−1∑

t=1

(
∑

u∈U

p3
u

)t
)

+2L1,q
C (P, P )

(
n−1∑

t=1

(
∑

u∈U

p2
u

)t

−
n−1∑

t=1

(
∑

u∈U

p3
u

)t
)

.

Proof:

It is clear that while we are in the first basic tree we have to apply 2-identification
and there are three possibilities of what might happen.

1. Both elements un
1 and un

2 do not coincide with vn.
The reason would be that their first components u1,1, u2,1 do not coincide
with v1. This stops the identification process.

2. Only one element, e.g. un
1 , coincides with vn.

This would be because u1,1 = v1 and u2,1 6= v1. Then, we continue with
applying (1-)identification in the next tree (resp. code).

3. Both elements coincide with vn.
In this case also in the next tree 2-identification would have to be applied.

The main idea now is to exploit the fact that the symmetric 2-identification
running time is an expectation. Therefore we introduce Xt+1 as the random
variable which indicates how many components of (Un

1 , Un
2 ) are still candidates

at step t. For all t ∈ {1, ..., n − 1} we define

Xt+1 =







0 if U t
1 6= V t and U t

2 6= V t

1 if (U t
1 = V t and U t

2 6= V t) or (U t
1 6= V t and U t

2 = V t)

2 if U t
1 = U t

2 = V t

and we set X1 = 2. In order to calculate the corresponding probabilities we use
the facts that U1, U2 and V are independent identically distributed. With this
we get

Prob(Xt+1 = 2) = Prob(U t
1 = U t

2 = V t)

=
∑

ut∈Ut

p3
ut =

∑

u1,...,ut∈U

(pu1 ...put
)3 =

(
∑

u∈U

p3
u

)t
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4 2-Identification for General Distributions

and

Prob(Xt+1 = 1) = 2Prob(U t
1 = V t and U t

2 6= V t) = 2
∑

ut∈Ut

p2
ut(1 − put)

= 2

[

∑

u1,...,ut∈U

(pu1 ...put
)2 −

∑

u1,...,ut∈U

(pu1 ...put
)3

]

= 2

[(
∑

u∈U

p2
u

)t

−

(
∑

u∈U

p3
u

)t
]

.

As stated before the symmetric 2-identification running time is an expecta-
tion. Since for the first timestep X1 = 2 and for all other timesteps the case
Xt = 0 leads to the termination of the identification process before timestep t,
we obtain

L2,q
Cn (P n, P n) =

n∑

t=1

E(LXt,q
C (P, P )) =

n−1∑

t=0

E(LXt+1,q

C (P, P ))

= L2,q
C (P, P ) +

n−1∑

t=1

Prob(Xt+1 = 1)L1,q
C (P, P )

+
n−1∑

t=1

Prob(Xt+1 = 2)L2,q
C (P, P )

= L2,q
C (P, P )

(

1 +
n−1∑

t=1

(
∑

u∈U

p3
u

)t
)

+2L1,q
C (P, P )

(
n−1∑

t=1

(
∑

u∈U

p2
u

)t

−
n−1∑

t=1

(
∑

u∈U

p3
u

)t
)

.

2

If we now establish the limit for n going to infinity and apply the geometric
series for k = 2, 3 we obtain

∞∑

t=1

(
∑

u∈U

pk
u

)t

=
1

1 −
∑

u∈U pk
u

− 1

and thus,

lim
n→∞

L2,q
Cn (P n, P n) =

L2,q
C (P, P )

1 −
∑

u∈U

p3
u

+ 2




1

1 −
∑

u∈U

p2
u

−
1

1 −
∑

u∈U

p3
u



L1,q
C (P, P ).
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4.1 An Asymptotic Approach

This proves

Corollary 4.2 Let U be a finite set, q ∈ N≥2, P be a probability distribution
on U and C be prefix code. It then holds that

L2,q
C (P, P ) = (1 −

∑

u∈U

p3
u) lim

n→∞
L2,q

Cn (P n, P n) − 2





1 −
∑

u∈U

p3
u

1 −
∑

u∈U

p2
u

− 1



L1,q
C (P, P ).

Let us go back to the case where U = [q], P = (1/q, ..., 1/q) and C = Cq. In

this case Ll,q
C (P, P ) = 1 for l ∈ [2]. It follows immediately from Corollary 4.2

that

lim
n→∞

L2,q
Cn (P n, P n) = 2

q

q − 1
−

q2

q2 − 1
. (4.1)

This is the promised alternative proof of Theorem 3.4 for L = 2 and |U| = qn.

What we do now is to lower bound the expression limn→∞L2,q
Cn (P n, P n). In

Lemma 4.5 we show that we can limit ourselves to typical sequences (see [9]).
Then we cut the codetree at some given depth and fill up the shorter branches
to this depth with zero probability elements in order to obtain a saturated tree,
resp. a block code. This does not increase the symmetric identification running
time.

In Theorem 3.4 of Section 3, we have shown how L-identification and in par-
ticular 2-identification behaves asymptotically on block codes if we consider the
uniform distribution. To use this result we have to show that for 2-identification
uniform distribution is optimal for block codes. The following lemma provides
a way for coming from any probability distribution to the uniform distribution
without increasing the symmetric identification running time.

Lemma 4.3 Let n ∈ N, q ∈ N≥2, k ∈ {0, ..., n − 1} and t ∈ {0, ..., qn−k−1 − 1}.
Further, let P = (p1, ..., pqn) and P̃ = (p̃1, ..., p̃qn) be probability distributions on
[qn] with

P = (p1, ..., ptqk+1, r1, ..., r1
︸ ︷︷ ︸

qk

, r2, ..., r2
︸ ︷︷ ︸

qk

, ..., rq, ..., rq
︸ ︷︷ ︸

qk

, p(t+1)qk+1+1, ..., pqn)

and

P̃ = (p1, ..., ptqk+1 ,
1

q

q
∑

i=1

ri, ...,
1

q

q
∑

i=1

ri

︸ ︷︷ ︸

qk+1

, p(t+1)qk+1+1, ..., pqn).
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4 2-Identification for General Distributions

Then it holds that
L2,q

Cqn
(P, P ) −L2,q

Cqn
(P̃ , P̃ ) ≥ 0.

The inequality holds with equality if and only if either k = 0 or ri = rj for all
i, j ∈ [q].

Proof:

W.l.o.g. we further assume that t = 0 such that for i ∈ [q]

p(i−1)qk+1 = p(i−1)qk+2 = ... = piqk = ri.

Also, we use for simplicity the abbreviations Lu1u2,v = L2,q
Cqn

((u1, u2), v) and

αu1u2,v = (pu1pu2pv − p̃u1 p̃u2 p̃v)Lu1u2,v. With this notation we obtain

LL,q
Cqn

(P, P ) − LL,q
Cqn

(P̃ , P̃ )

=
qn
∑

u1,u2,v=1

αu1u2,v

=
qn
∑

v=1

[
qk+1
∑

u1,u2=1

αu1u2,v + 2
qk+1
∑

u1=1

qn
∑

u2=qk+1+1

αu1u2,v +
qn
∑

u1,u2=qk+1+1

αu1u2,v

]

=
6∑

i=1

Ri,

(4.2)

where the second equality comes from the fact that Lu1u2,v = Lu2u1,v and where

R1 =
qk+1
∑

u1,u2,v=1

αu1u2,v R2 =
qk+1
∑

u1,u2=1

qn
∑

v=qk+1+1

αu1u2,v

R3 = 2
qk+1
∑

u1,v=1

qn
∑

u2=qk+1+1

αu1u2,v R4 = 2
qk+1
∑

u1=1

qn
∑

u2,v=qk+1+1

αu1u2,v

R5 =
qn
∑

u1,u2=qk+1+1

qk+1
∑

v=1

αu1u2,v R6 =
qn
∑

u1,u2,v=qk+1+1

αu1u2,v.

As one might expect the above summands disappear, except for R1 and R3.
This is obvious for R6 since pu = p̃u for all u ∈ [qk+1 + 1, qn].

If u1, u2 ∈ [qk+1 +1, qn], we have on the one hand that Lu1u2,v = Lu1u2,1 for all
v ∈ [qk+1]. We denote this by Lu1u2. On the other hand pui

= p̃ui
for i = 1, 2.
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4.1 An Asymptotic Approach

This yields

R5 =
qn
∑

u1,u2=qk+1+1

qk+1
∑

v=1

Lu1u2pu1pu2

[

pv −
1
q

q∑

i=1

ri

]

=
qn
∑

u1,u2=qk+1+1

Lu1u2pu1pu2

[
qk+1
∑

v=1

pv − qk
q∑

i=1

ri

]

= 0.

Here, the final equality follows from
∑qk+1

v=1 pv =
∑q

i=1 qkri.

If u2, v ∈ [qk+1 + 1, qn] and u1 ∈ [qk+1], we see that Lu1u2,v = L1u2,v and
pu2 = p̃u2 as well as pv = p̃v. Thus, proceeding as before we have that R4 = 0.

If u1, u2 ∈ [qk+1] and v ∈ [qk+1 + 1, qn], it follows that Lu1u2,v = L11,v, which
is denoted by Lv, and pv = p̃v. With this we get

R2 =
qk+1
∑

u1,u2=1

qn
∑

v=qk+1+1

Lvpv

[

pu1pu2 −
1
q2

(
q∑

i=1

ri

)2
]

=
qn
∑

v=qk+1+1

Lvpv

[
qk+1
∑

u1,u2=1

pu1pu2 − q2k

(
q∑

i=1

ri

)2
]

= 0.

Here,
∑qk+1

u1,u2=1 pu1pu2 =
(∑q

i=1 qkri

)2
yields the final equality. Altogether we

end up with

LL,q
Cqn

(P, P )− LL,q
Cqn

(P̃ , P̃ ) = R1 + R3.

We begin our remaining examinations with R3. Similar as before we get
Lu1u2,v = Lu11,v, which we denote by Lu1,v, and pu2 = p̃u2 if u1, v ∈ [qk+1] and
u2 ∈ [qk+1 + 1, qn]. We obtain

1
2
R3 =

qk+1
∑

u1,v=1

qn
∑

u2=qk+1+1

Lu1,vpu2

[

pu1pv −
1
q2

(
q∑

i=1

ri

)2
]

=
qk+1
∑

u1,v=1

Lu1,v

[

pu1pv −
1
q2

(
q∑

i=1

ri

)2
]

qn
∑

u2=qk+1+1

pu2

= (1 − qk
q∑

i=1

ri)
qk+1
∑

u,v=1

Lu,v

[

pupv −
1
q2

(
q∑

i=1

ri

)2
]

.
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4 2-Identification for General Distributions

We set A =
∑qk+1

u,v=1 Lu,v

[

pupv −
1
q2 (
∑q

i=1 ri)
2
]

and separate the different sub-

trees with roots in level n − k − 1 in which u and v can occur. We get

A =

q
∑

s,t=1

sqk

∑

u=(s−1)qk+1

tqk

∑

v=(t−1)qk+1

Lu,v



rsrt −
1

q2

(
q
∑

i=1

ri

)2


 .

Since it holds for s, t ∈ [q], u ∈ [(s − 1)qk + 1, sqk] and v ∈ [(t − 1)qk + 1, tqk]
that

Lu,v =







n − k if s 6= t

n − k + L1,q
C

qk
(u, v) if s = t,

the above equation becomes

A = (n − k)

[
q∑

s,t=1

q2krsrt − q2k

(
q∑

i=1

ri

)2
]

+
q∑

s=1

qk
∑

u,v=1

L1,q
C

qk
(u, v)

[

r2
s −

1
q2

(
q∑

i=1

ri

)2
]

= 1
2q

q∑

i,j=1

(ri − rj)
2

qk
∑

u,v=1

L1,q
C

qk
(u, v).

The second equation follows on the one hand from
∑q

s,t=1 rsrt = (
∑q

i=1 ri)
2
.

From this follows that the first summand is 0. On the other hand

q∑

s=1

r2
s −

1

q

(
q∑

i=1

ri

)2

=
1

2q

q∑

i,j=1

(ri − rj)
2.

By applying Corollary 3.3 we obtain

qk
∑

u,v=1

L1,q
C

qk
(u, v) = qk

k∑

l=1

l|R1,q
C

qk
(qk, l, 1)|

= qk

[
k−1∑

l=1

lqk−l(q − 1) + kq

]

= qk

[

qk(q − 1)
k∑

l=1

lq−l + k

]

= qk
[

qk(q − 1) q(qk−1)−k(q−1)
qk(q−1)2

+ k
]

= q

q−1
qk(qk − 1).
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4.1 An Asymptotic Approach

Putting all this together we get

R3 =
1

q − 1
qk(qk − 1)(1 − qk

q
∑

i=1

ri)

q
∑

i,j=1

(ri − rj)
2 ≥ 0.

This equals 0 if and only if either k = 0 or ri = rj for all i, j ∈ [q] or
∑q

i=1 ri = q−k. The last condition is equivalent to pi = 0 for all i ∈ [qk+1+1, qn].

We now turn to R1. With the same notation as before we have

R1 =
qk+1
∑

u1,u2,v=1

Lu1u2,v

[

pu1pu2pv −
1
q3

(
q∑

i=1

ri

)3
]

=
q∑

s1,s2,t=1

2∑

r=1

srqk
∑

ur=(sr−1)qk+1

tqk
∑

v=(t−1)qk+1

Lu1u2,v

[

rs1rs2rt −
1
q3

(
q∑

i=1

ri

)3
]

.

=
q∑

s1,s2,t=1

[

rs1rs2rt −
1
q3

(
q∑

i=1

ri

)3
]

2∑

r=1

srqk
∑

ur=(sr−1)qk+1

tqk
∑

v=(t−1)qk+1

Lu1u2,v.

For ur ∈ [(sr − 1)qk + 1, srq
k] and v ∈ [(t − 1)qk + 1, tqk] it holds that

Lu1u2,v =







n − k if s1 6= t and s2 6= t

n − k + L1,q
C

qk
(u1, v) if s1 = t and s2 6= t

n − k + L1,q
C

qk
(u2, v) if s1 6= t and s2 = t

n − k + L2,q
C

qk
((u1, u2), v) if s1 = s2 = t.
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4 2-Identification for General Distributions

If we insert the above equations into R1, we get

R1 = (n − k)

[
q∑

s1,s2,t=1

q3krs1rs2rt − q3k

(
q∑

i=1

ri

)3
]

+
q∑

s1=1

q∑

s2=1,s2 6=s1

qk
qk
∑

u1,v=1

L1,q
C

qk
(u1, v)

[

r2
s1

rs2 −
1
q3

(
q∑

i=1

ri

)3
]

+
q∑

s2=1

q∑

s1=1,s1 6=s2

qk
qk
∑

u2,v=1

L1,q
C

qk
(u2, v)

[

rs1r
2
s2
− 1

q3

(
q∑

i=1

ri

)3
]

+
q∑

s=1

qk
∑

u1,u2,v=1

L2,q
C

qk
((u1, u2), v)

[

r3
s −

1
q3

(
q∑

i=1

ri

)3
]

= 2qk

[
q∑

s=1

q∑

t=1,t6=s

r2
srt −

q−1
q2

(
q∑

i=1

ri

)3
]

qk
∑

u,v=1

L1,q
C

qk
(u, v)

+

[
q∑

s=1

r3
s −

1
q2

(
q∑

i=1

ri

)3
]

qk
∑

u1,u2,v=1

L2,q
C

qk
((u1, u2), v).

If all ri’s are zero, we obtain R1 = 0. We exclude this case and normalize the
probabilities r1, ..., rq by setting r̄i = ri/

∑q

j=1 rj for i ∈ [q]. This yields

R1 =

(
q∑

i=1

ri

)3
[

2qk

(

∑

s

∑

t6=s

r̄2
s r̄t −

q−1
q2

)
qk
∑

u,v=1

L1,q
C

qk
(u, v)

+

(
∑

s

r̄3
s −

1
q2

)
qk
∑

u1,u2,v=1

L2,q
C

qk
((u1, u2), v)

]

.

We have already seen during the calculations of R3 that

qk

∑

u,v=1

L1,q
C

qk
(u, v) =

q

q − 1
qk(qk − 1).
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4.1 An Asymptotic Approach

By applying Corollary 3.3 we further get that

qk
∑

u1,u2,v=1

L2,q
C

qk
((u1, u2), v) = qk

k∑

l=1

l|R2,q
C

qk
(qk, l, 1)|

= qk

[
k−1∑

l=1

lq2k
(
2q−l(q − 1)(1 − q−l+1) + q−2l(q − 1)2

)
]

+qkk
(
2q(qk − q) + q2

)

= qk

[
k∑

l=1

lq2k
(
2q−l(q − 1)(1 − q−l+1) + q−2l(q − 1)2

)
]

+qkk(2qk − 1)

= (q − 1)q3k

[

2
k∑

l=1

lq−l − (q + 1)
k∑

l=1

lq−2l

]

+kqk(2qk − 1)

= (q − 1)q3k
[

2 q(qk−1)−k(q−1)
qk(q−1)2

− (q + 1) q2(q2k−1)−k(q2−1)
q2k(q2−1)2

]

+kqk(2qk − 1)

= 2 q

q−1
q2k(qk − 1) − q2

q2−1
qk(q2k − 1)

= q

q−1
qk(qk − 1) (q+2)qk−q

q+1
.

Applying this result we obtain

R1 =

(
q∑

i=1

ri

)3
q

q−1
qk(qk − 1)

[

2qk

(
∑

s

r̄2
s −

∑

s

r̄3
s −

q−1
q2

)

+ (q+2)qk−q

q+1

(
∑

s

r̄3
s −

1
q2

)]

= −

(
q∑

i=1

ri

)3
q

q−1
qk(qk − 1)

[

q

q+1
(qk + 1)

∑

s

r̄3
s − 2qk

∑

s

r̄2
s

+ (2q+1)qk−1
q(q+1)

]

.
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4 2-Identification for General Distributions

It remains to show that

q

q + 1
(qk + 1)

∑

s

r̄3
s − 2qk

∑

s

r̄2
s +

(2q + 1)qk − 1

q(q + 1)
≤ 0.

The left hand side obviously equals 0 if r̄1 = ... = r̄q = 1/q, i.e. r1 = ... = rq.
Let us define f : ∆q−1 → R by

f(x1, ..., xq−1) = a1





q−1
∑

s=1

x3
s +

(

1 −

q−1
∑

s=1

xs

)3


− a2





q−1
∑

s=1

x2
s +

(

1 −

q−1
∑

s=1

xs

)2


 ,

where a1 = q(qk + 1)/(q + 1) and a2 = 2qk. We will show that (1/q, ..., 1/q) is
the only extremal point of f in Γq and that it is a local maximum. The first
partial derivative for j ∈ [q − 1] is

δ
δxj

f(x1, ..., xq−1) = 3a1

(

x2
j − (1 −

q−1∑

i=1

xi)
2

)

− 2a2

(

xj − (1 −
q−1∑

i=1

xi)

)

=

(

xj − (1 −
q−1∑

i=1

xi)

)[

3a1

(

xj + 1 −
q−1∑

i=1

xi

)

− 2a2

]

.

It follows that the gradient ∇f = 0 if and only if either xj = 1−
∑q−1

i=1 xi for all
j ∈ [q−1], which yields x1 = ... = xq−1 = 1/q, or 3a1(xj +1−

∑q−1
i=1 xi)−2a2 = 0

for all j ∈ [q − 1]. Since

3a1(1 −

q−1
∑

i=1,i6=j

xi) − 2a2 ≤ 3
q

q + 1
(qk + 1) − 4qk < −qk + 3 ≤ 0,

the latter is impossible. We conclude that the only extremal point of f is
(1/q, .., 1/q). Further, the second partial derivatives are

δ2

δxkδxj

f(x1, ..., xq−1) =







6a1(1 −
q−1∑

i=1

xi) − 2a2 if k 6= j

6a1(1 −
q−1∑

i=1,i6=j

xi) − 4a2 if k = j

such that

δ2

δxkδxj

f

(
1

q
, ..,

1

q

)

=







6a1

q
− 2a2 if k 6= j

12a1

q
− 4a2 if k = j.

Since (6a1/q) − 2a2 = [6(qk + 1)/(q + 1)] − 4qk ≤ −2(qk − 1) < 0, we see
that (1/q, .., 1/q) is a global maximum. With this we obtain that R1 ≥ 0, with
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4.1 An Asymptotic Approach

equality if and only if either k = 0 or ri = rj for all i, j ∈ [q]. Remember that
R3 ≥ 0. It equals zero if and only if either k = 0 or ri = rj for all i, j ∈ [q] or
pi = 0 for i ∈ [qk+1 + 1, qn]. Further, L2,q

Cqn
(P, P ) − L2,q

Cqn
(P̃ , P̃ ) = R1 + R3. It

follows that this difference is not negative. Moreover, it equals 0 if and only if
either k = 0 or ri = rj for all i, j ∈ [q]. This concludes the proof.

2

By applying Lemma 4.3 in the same way as Lemma 2.1 in Subsection 2.1 we
obtain

Corollary 4.4 Let n ∈ N and q ∈ N≥2. Further, let C = Cqn and T = TC. Then
it holds for all probability distributions P on [qn] that

L2,q
C (P, P ) ≥ L2,q

C

(

(
1

qn
, ...,

1

qn
), (

1

qn
, ...,

1

qn
)

)

.

The inequality holds with equality if and only if P (Tx) = q−‖x‖ for all inner
nodes x ∈ N̊ (T ).

Before we come to Lemma 4.5, we provide a short excurs on δ-typical se-
quences. These are defined e.g. in [8] Definition 2.8 (p. 33). We will change
some of the notation of this definition in order to harmonize it with the notation
used in this thesis and related papers.

“For any distribution P on U , a sequence un ∈ Un is called P -typical with
constant δ if ∣

∣
∣
∣

1

n
< un|a > −pa

∣
∣
∣
∣
≤ δ (4.3)

for every a ∈ U and, in addition, no a ∈ U with pa = 0 occurs in un. The set of
such sequences will be denoted by T n

P,δ .”

Here, the value of < un|a > is the number of appearances of a as a component
of un. In words, a sequence un ∈ Un is called P -typical with constant δ if for all
a ∈ U the difference between the relative frequency of a in un and the actual
probability of a with respect to P is at most δ.

Lemma 2.12 in [8] and its subsequent remark state that

P n(T n
P,δ) ≥ 1 −

|U|

4nδ2
(4.4)

Further, it follows from Equation (4.3) for all un ∈ T n
P,δ that

P n
un =

∏

a∈U

p<un|a>
a ≤

∏

a∈supp(P )

pn(pa−δ)
a = 2

−n

 

H(P )+δ
P

a∈supp(P )

log pa

!

. (4.5)
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4 2-Identification for General Distributions

Here, H(P ) = −
∑

a∈supp(P ) pa log pa is Shannon’s classical entropy. In the fol-

lowing we use MP = −
∑

a∈supp(P ) log pa. It holds that 0 ≤ MP < ∞ with

equality on the left hand side if and only if supp(P ) = 1. We exclude this case
in our further analysis. It follows that for all ǫ > 0 exists δ > 0 such that on
the one hand it holds that

P n((T n
P,δ)

c) ≤
|U|MP

4nǫ2
. (4.6)

On the other hand it holds for all un ∈ T n
P,δ that

P n
un ≤ 2−n(H(P )−ǫ). (4.7)

To see this choose δ = ǫ/MP and apply Equations (4.4) and (4.5). Things are
now settled to prove

Lemma 4.5 Let P be probability distribution on U with |supp(P )| > 1. For all
ǫ > 0 and all q-ary prefix codes C over U there exist sequences αn(ǫ) = αn → 0
and Kn(ǫ) = Kn → ∞ such that

L2,q
Cn (P n, P n) ≥ (1 − αn)3L2,q

C
qKn

(

(
1

qKn
, ...,

1

qKn
), (

1

qKn
, ...,

1

qKn
)

)

holds for all sufficiently large n.

Proof:

The proof of this theorem follows the same guidelines as the proof of Lemma
3 in [5]. However, we changed some of its steps in order to obtain a more ex-
planatory proof.

We begin the proof without explicitly specifying Kn and αn. This will be
done later. We partition Un according to the given code Cn into Un

1 = {un ∈
Un : ‖cun‖ ≤ Kn} and Un

2 = Un\Un
1 . Since Cn is a q-ary prefix code, we have

that
|Un

1 | ≤ qKn. (4.8)

For ǫ > 0 we choose δ = ǫ/MP and obtain

P n(Un
1 ) = P n(Un

1 ∩ T n
P,δ) + P n(Un

1 ∩ (T n
P,δ)

c)

≤ | Un
1 ∩ T n

P,δ|2
−n(H(P )−ǫ) + P n((T n

P,δ)
c)

≤ qKn2−n(H(P )−ǫ) + |U|MP

4nǫ2
.
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4.1 An Asymptotic Approach

The first inequality follows by Equation (4.7). Equations (4.6) and (4.8) yield
the second inequality.

We now set Kn =
⌊

n(H(P )−2ǫ)
log q

⌋

as well as αn = 2−nǫ + |U|MP

4nǫ2
and obtain

P n(Un
1 ) ≤ αn

and thus

P n(Un
2 ) ≥ 1 − αn. (4.9)

We will now construct a new source code by cutting all codewords in Un
2

back to length Kn. Formally, we define the new source Ũ = Ũ1 ∪ Ũ2, where
Ũ1 = Un

1 and Ũ2 is defined as follows. Let ∼= be an equivalence relation on
Un

2 with un ∼= vn :⇔ cKn
un = cKn

vn and let E1, ..., Em be the equivalence classes.
Further, we associate with every equivalence class Ei the object ei and define
Ũ2 = {e1, ..., em}. Moreover, we define a probability distribution P̃ on Ũ by
P̃ (un) = P (un) for all un ∈ Ũ1 and P̃ (ek) =

∑

un∈Ek
P (un) for k ∈ [m]. Finally,

we obtain a new code C̃ : Ũ → Q∗ by c̃un = cun if un ∈ Ũ1 and c̃ek
will be

the common prefix of length Kn of the objects in Ek. This construction step is
visualized in Figure 4.1. It follows that

L2,q
Cn (P n, P n) ≥ L2,q

C̃
(P̃ , P̃ ). (4.10)

The next step is to focus only on the Ũ2-part of Ũ . Again we operate without
increasing the symmetric 2-identification running time since

L2,q

C̃
(P̃ , P̃ ) =

∑

ũ1,ũ2,ṽ∈Ũ

P̃ (ũ1)P̃ (ũ2)P̃ (ṽ)L2,q

C̃
((ũ1, ũ2), ṽ)

≥
∑

ũ1,ũ2,ṽ∈Ũ2

P̃ (ũ1)P̃ (ũ2)P̃ (ṽ)L2,q

C̃
((ũ1, ũ2), ṽ)

=
m∑

i1,i2,j=1

P̃ (ei1)P̃ (ei2)P̃ (ej)L
2,q

C̃
((ei1 , ei2), ej)

=

(
m∑

k=1

P̃ (ek)

)3 m∑

i1,i2,j=1

P̃2(ei1)P̃2(ei2)P̃2(ej)L
2,q

C̃2
((ei1 , ei2), ej).

Here, P̃2 is a probability distribution on Ũ2 defined by P̃2(ej) = P̃ (ej)/
∑m

k=1 P̃ (ek)
for j ∈ [m]. Further, C̃2 is the restriction of C̃ to Ũ2.
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4 2-Identification for General Distributions

TC̃

e1 u2 u3

u9

e3 u5e2 u4

u6

u7e4 u8

u1

Kn

TC

u1 u6

u9

u2 u3 u4 u5 u7 u8

E1

E2 E4

E3

Figure 4.1: The cutting of TC at depth Kn yields TC̃ with Ũ1 = {u1, u2, ..., u9}
and Ũ2 = {e1, e2, e3, e4}.
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4.2 The q-ary Identification Entropy of Second Degree

Since
m∑

k=1

P̃ (ek) =

m∑

k=1

∑

un∈Ek

P n(un) = P n(Un
2 ),

we obtain by Equation (4.9) that

L2,q

C̃
(P̃ , P̃ ) ≥ (1 − αn)3L2,q

C̃2
(P̃2, P̃2). (4.11)

Although C̃2 is a block code with codewords of length Kn it may be - and
maybe by far - not saturated. To achieve this property we extend Ũ2 to a set of
cardinality qKn, assign zero probabilities to the additional elements and use for
them codewords from QKn\C̃2. We now obey the conditions of Corollary 4.4 by
which we obtain

L2,q

C̃2
(P̃2, P̃2) ≥ L2,q

C
qKn

((
1

qKn
, ...,

1

qKn
), (

1

qKn
, ...,

1

qKn
)). (4.12)

The inequalities (4.10), (4.11) and (4.12) finally yield the statement of the
lemma.

2

By applying Theorem 3.4 and Lemma 4.5 to Corollary 4.2 we obtain

Corollary 4.6 Let U be a finite set, q ∈ N≥2, P be a probability distribution
on U with |supp(P )| > 1 and C be a q-ary prefix code. It then holds that

L2,q
C (P, P ) ≥ (1 −

∑

u∈U

p3
u)

(

2
q

q − 1
−

q2

q2 − 1

)

− 2





1 −
∑

u∈U

p3
u

1 −
∑

u∈U

p2
u

− 1



L1,q
C (P, P ).

4.2 The q-ary Identification Entropy of Second

Degree

Since (1-)identification appears negatively signed, we can not immediately apply
its lower bound L1,q

C (P, P ) ≥ H1,q
ID (P ) (see [5]). But we can show that the bound

of Corollary 4.6 is attained if P consists only of q-powers and C is a code with
‖cu‖ = − logq pu.

Proposition 4.7 Let P be a probability distribution on U which only consists
of q-powers and C be a q-ary prefix code, where ‖cu‖ = − logq pu for all u ∈ U .
It then holds that

L2,q
C (P, P ) = 2

q

q − 1

(

1 −
∑

u∈U

p2
u

)

−
q2

q2 − 1

(

1 −
∑

u∈U

p3
u

)

.
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4 2-Identification for General Distributions

Proof:

It is an immediate consequence from the condition ‖cu‖ = − logq pu for all u ∈ U
that

P (Tx) = q−‖x‖ (4.13)

holds for all x ∈ N (T ), where T = TC . We now introduce for all v ∈ U and
k = 1, ..., ‖cv‖ the set

R̄1,q
C (k, v) = R1,q

C (1, v) ∪̇ ... ∪̇ R1,q
C (k − 1, v). (4.14)

Proceeding as in the proof of Theorem 3.4 we obtain

LL,q
C (P, P ) =

∑

v∈U

pv

‖cv‖∑

k=1

k
∑

(u1,u2)∈R
2,q
C (k,v)

pu1pu2.

In the following we use Sk,v =
∑

(u1,u2)∈R
2,q
C (k,v) pu1pu2 . With the notation of

Equation (4.14) it holds that

Sk,v = 2
∑

u1∈R
1,q
C (k,v)

∑

u2∈R̄
1,q
C (k,v)

pu1pu2 +
∑

u1,u2∈R
1,q
C (k,v)

pu1pu2.

Here, the equality holds because there exists either one component for which
(1-)identification against v takes exactly k timesteps and the other yields a (1-
)identification time regarding v of at most k − 1 or both components have a
(1-)identification time regarding v of k.

Case 1: k = 1, ..., ‖cv‖ − 1

In this case we have that R1,q
C (k, v) = T̄ck−1

v
\T̄ck

v
and R̄1,q

C (k, v) = U\T̄ck−1
v

.
This together with Equation (4.13) yields

∑

u∈R1,q
C (k,v)

pu = P (Tck−1
v

) − P (Tck
v
) = q−k+1 − q−k = q−k(q − 1)

and ∑

u∈R̄1,q
C (k,v)

pu = 1 − P (Tck−1
v

) = 1 − q−k+1.

Thus,

Sk,v = 2q−k(q − 1)(1 − q−k+1) + q−2k(q − 1)2

= (1 − q−k)2 − (1 − q−k+1)2.
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4.2 The q-ary Identification Entropy of Second Degree

Case 2: k = ‖cv‖

In this case we have that R1,q
C (‖cv‖, v) = T̄

c
‖cv‖−1
v

and R̄1,q
C (‖cv‖, v) = U\T̄

c
‖cv‖−1
v

.

Equation (4.13) yields

∑

u∈R1,q
C (‖cv‖,v)

pu = P (T
c
‖cv‖−1
v

) = q−‖cv‖+1

and ∑

u∈R̄1,q
C (‖cv‖,v)

pu = 1 − P (T
c
‖cv‖−1
v

) = 1 − q−‖cv‖+1.

Thus, we obtain

S‖cv‖,v = 2q−‖cv‖+1(1 − q−‖cv‖+1) + q−2(‖cv‖−1) = 1 − (1 − q−‖cv‖+1)2.

Together, the above two cases yield

‖cv‖∑

k=1

kSk,v

=
‖cv‖−1∑

k=1

k
[
(1 − q−k)2 − (1 − q−k+1)2

]
+ ‖cv‖

[
1 − (1 − q−‖cv‖+1)2

]

=
‖cv‖−1∑

k=1

k(1 − q−k)2 + ‖cv‖ −
‖cv‖∑

k=1

k(1 − q−k+1)2.

If we take a look at the first sum plus ‖cv‖, we see that

‖cv‖−1∑

k=1

k(1 − q−k)2 + ‖cv‖ =
‖cv‖−1∑

k=1

k(1 − 2q−k + q−2k) + ‖cv‖

=
‖cv‖∑

k=1

k − 2
‖cv‖−1∑

k=1

kq−k +
‖cv‖−1∑

k=1

kq−2k.

Further, we obtain

‖cv‖∑

k=1

k(1 − q−k+1)2 =
‖cv‖∑

k=1

k(1 − 2q−k+1 + q−2k+2)

=
‖cv‖∑

k=1

k − 2
‖cv‖∑

k=1

kq−k+1 +
‖cv‖∑

k=1

kq−2k+2.
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4 2-Identification for General Distributions

Subtracting the second from the first result we get

‖cv‖∑

k=1

kSk,v = 2(q − 1)
‖cv‖∑

k=1

kq−k − (q2 − 1)
‖cv‖∑

k=1

kq−2k

+‖cv‖q−‖cv‖(2 − q−‖cv‖)

= 2 q

q−1
(1 − pv) − 2‖cv‖pv −

q2

q2−1
(1 − p2

v) + ‖cv‖p
2
v

+‖cv‖pv(2 − pv)

= 2 q

q−1
(1 − pv) −

q2

q2−1
(1 − p2

v).

Here, the first equality follows from the previously calculated sums. The second
equality holds since by assumption q−‖cv‖ = pv for all v ∈ U and since we have
for j = 1, 2 that

‖cv‖∑

k=1

kq−jk = 1
(qj−1)2

[qj − (qj(‖cv‖ + 1) − ‖cv‖)q
−j‖cv‖]

= ql

(ql−1)2
(1 − pl

v) −
‖cv‖
ql−1

pl
v.

Finally the above calculations yield

LL,q
C (P, P ) =

∑

v∈U

pv

‖cv‖∑

k=1

kSk,v

= 2 q

q−1

(

1 −
∑

v∈U

p2
v

)

− q2

q2−1

(

1 −
∑

v∈U

p3
v

)

.

2

This result encourages us in the believe that the right side of the equation in
Proposition 4.7 is in general a lower bound for 2-identification. As we will see
soon it obeys some fundamental properties for entropy functions. Therefore, we
define H2,q

ID : ΓN → R by

H2,q
ID

(P ) = 2
q

q − 1

(

1 −
∑

u∈U

p2
u

)

−
q2

q2 − 1

(

1 −
∑

u∈U

p3
u

)

. (4.15)

We call it the q-ary identification-entropy of second degree. Its role as a lower
bound for 2-identification is expressed in
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4.2 The q-ary Identification Entropy of Second Degree

Theorem 4.8 Let U be a finite set and q ∈ N≥2. It holds for all probability
distributions P on U and all q-ary prefix codes C that

L2,q
C (P, P ) ≥ H2,q

ID
(P ),

where equality is attained if and only if P consists only of q-powers, and C is a
prefix code, with ‖cu‖ = − logq pu for all u ∈ U .

Before we prove Theorem 4.8, we will first analyze the functional properties
of H2,q

ID . A list of desiderata for entropy functions can be found in [1], pp. 50.
We now show that entropy function obeys important ones of them.

Theorem 4.9 The following properties hold for H2,q
ID (P ).

1. Symmetry:
H2,q

ID
(p1, ..., pN) = H2,q

ID
(pπ(1), ..., pπ(N)), (4.16)

where π is a permutation on [N ].

2. Expansibility:
H2,q

ID
(p1, ..., pN) = H2,q

ID
(p1, ..., pN , 0). (4.17)

3. Decisiveness:
H2,q

ID
(1, 0, ..., 0) = 0.

4. Normalization:

H2,q
ID

(
1

q
, ...,

1

q

)

= 1. (4.18)

5. Bounds:

H2,q
ID

(1, 0, ..., 0) ≤ H2,q
ID

(P ) ≤ H2,q
ID

(
1

N
, ...,

1

N

)

. (4.19)

6. Grouping Behavior: For m ≤ N let

a) U1,U2, ...,Um be a partition of U of non-empty sets

b) Q = (Q1, ..., Qm) be the probability distribution on [m] defined by
Qi =

∑

u∈Ui
pu

c) Pi is the probability distribution on Ui defined by pi,u = pu/Qi for all
i ∈ [m] and u ∈ Ui.

It then holds that

H2,q
ID

(P ) = H2,q
ID

(Q) +

m∑

i=1

[
2Q2

i (1 − Qi)H
1,q
ID

(Pi) + Q3
i H

2,q
ID

(Pi)
]
. (4.20)
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4 2-Identification for General Distributions

Proof:

Symmetry, expansibility and decisiveness follow directly from the definition
of H2,q

ID . Further, the normalization property follows from

H2,q
ID

(
1

q
, ...,

1

q

)

= 2
q

q − 1

(

1 −
1

q

)

−
q2

q2 − 1

(

1 −
1

q2

)

= 1.

Bounds:
Let f(p1, ..., pN−1) = H2,q

ID (p1, ..., pN−1, 1 −
∑N−1

i=1 pi). We will show that the
gradient ∇f(p1, ..., pN−1) = 0 if and only if (p1, ..., pN−1) = (1/N, ..., 1/N). For
that we set pN = 1 −

∑N−1
i=1 pi and obtain that it holds for all j ∈ [N − 1] that

δ

δpj

f(p1, ..., pN−1) = −4
q

q − 1
(pj − pN) + 3

q2

q2 − 1
(p2

j − p2
N).

It follows immediately that ∇f(1/N, ..., 1/N) = 0.

Assume now that for any P ′ 6= (1/N, ..., 1/N) it holds that ∇f(P ′) = 0. It
follows that there exists j ∈ [N − 1] such that pj 6= pN . If we now take a look
at δ

δpj
f(P ′), we see that

δ
δpj

f(P ′) = 0

⇔ 3 q

q+1
(pj + pN) = 4.

This is a contradiction because q

q+1
(pj + pN) is clearly smaller than 1.

In order to ensure that (1/N, ..., 1/N) is indeed a maximum we show that the
Hessian is negative definite. In fact, we will obtain a stronger result namely
that all second derivatives δ2

δpkδpj
f(1/N, ..., 1/N) are strictly negative.

δ2

δpkδpj

f

(
1

N
, ...,

1

N

)

=







4 q

q−1
( 3q

N(q+1)
− 2) if k = j

2 q

q−1
( 3q

N(q+1)
− 2) if k 6= j.

From q ≥ 2 now follows that 3q

N(q+1)
− 2 < 0 if N ≥ 2. And for N = 1 we are

in the trivial case, where H2,q
ID (1) = 0.
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4.2 The q-ary Identification Entropy of Second Degree

Grouping Behavior:
We use

Si = 2Q2
i (1 − Qi)H

1,q
ID

(Pi) + Q3
i H

2,q
ID

(Pi),

for all i ∈ [m] and observe that

Si = 2Q2
i (1 − Qi)

q

q−1
(1 − 1

Q2
i

∑

u∈Ui

p2
u)

+Q3
i

[

2 q

q−1
(1 − 1

Q2
i

∑

u∈Ui

p2
u) −

q2

q2−1
(1 − 1

Q3
i

∑

u∈Ui

p3
u)

]

= 2 q

q−1
(Q2

i −
∑

u∈Ui

p2
u) −

q2

q2−1
(Q3

i −
∑

u∈Ui

p3
u).

By summing the Si’s up we obtain

m∑

i=1

Si = 2
q

q − 1
(

m∑

i=1

Q2
i −

∑

u∈U

p2
u) −

q2

q2 − 1
(

m∑

i=1

Q3
i −

∑

u∈U

p3
u)

and thus

H2,q
ID (Q) +

m∑

i=1

Si = 2 q

q−1
(1 −

m∑

i=1

Q2
i ) −

q2

q2−1
(1 −

m∑

i=1

Q3
i )

+2 q

q−1
(

m∑

i=1

Q2
i −

∑

u∈U

p2
u) −

q2

q2−1
(

m∑

i=1

Q3
i −

∑

u∈U

p3
u)

= 2 q

q−1
(1 −

∑

u∈U

p2
u) −

q2

q2−1
(1 −

∑

u∈U

p3
u)

= H2,q
ID (P ).

2

In order to prove Theorem 4.8 we need a decomposition formula for the
2-identification running time. It turns out that the decomposition of the 2-
identification running time behaves mainly in the same way as the grouping
behavior of the q-ary identification entropy of second degree. We prove this for-
mula in its general form since we will also need this lemma in the next section.
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4 2-Identification for General Distributions

Lemma 4.10 For all i ∈ Q let

1. Ui = {u ∈ U : cu,1 = i}

2. Qi =
∑

u∈Ui

pu

3. Pi be a probability distribution on Ui defined by pi,u = pu

Qi
for all u ∈ Ui

4. C(i) : Ui → Q∗ be the code on Ui defined by c
(i)
u = cu,2cu,3...cu,‖cu‖ for all

u ∈ Ui.

Then it holds that

LL,q
C (P, P ) = 1 +

∑

i∈Q

L∑

l=1

(
L

l

)

Ql+1
i (1 − Qi)

L−lLl,q

C(i)(Pi, Pi).

For L = 2 this becomes

L2,q
C (P, P ) = 1 +

∑

i∈Q

[
2Q2

i (1 − Qi)L
1,q

C(i)(Pi, Pi) + Q3
iL

2,q

C(i)(Pi, Pi)
]
.

Proof:

We observe that

LL,q
C (P, P ) =

∑

uL∈UL

∑

v∈U

P L
uLpvL

L,q
C (uL, v)

=
∑

i∈Q

∑

v∈Ui

∑

uL∈UL

P L
uLpvL

L,q
C (uL, v).

Since LL,q
C (uL, v) = LL,q

C ((u1, ..., uL), v) = LL,q
C ((uπ(1), ..., uπ(L)), v) for all per-

mutations π on [L], we get for all i ∈ Q
∑

v∈Ui

∑

uL∈UL

P L
uLpvL

L,q
C (uL, v)

=
L∑

l=0

(
L

l

) ∑

v∈Ui

∑

u1,...,ul∈Ui

∑

ul+1,...,uL∈U\Ui

P L
uLpvL

L,q
C (uL, v)

=
L∑

l=0

(
L

l

)
(1 − Qi)

L−l
∑

u1,...,ul,v∈Ui

pu1 ...pul
pv(1 + Ll,q

C(i)((u1, ..., ul), v))

= Qi

L∑

l=0

(
L

l

)
Ql

i(1 − Qi)
L−l +

L∑

l=1

(
L

l

)
(1 − Qi)

L−lQl+1
i Ll,q

C(i)(Pi, Pi)

= Qi +
L∑

l=1

(
L

l

)
(1 − Qi)

L−lQl+1
i Ll,q

C(i)(Pi, Pi).
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4.2 The q-ary Identification Entropy of Second Degree

The second equality follows since LL,q
C (uL, v) = 1 + Ll,q

C(i)((u1, ..., ul), v) holds if
u1, ..., ul, v ∈ Ui and ul+1, ..., uL ∈ U\Ui. Adding this up for i ∈ Q we obtain the
desired result.

2

As one can see there is a strong relation between the above decomposition for-
mula for 2-identification and the grouping behavior of the identification entropy
of second degree. In the following inductive proof of Theorem 4.8 we exploit
this relation in order to apply the induction step.

Proof of Theorem 4.8:

For L = 1 the statement follows for all N ∈ N from Theorem 2 in [3]. As
the induction base for N we have to consider all the cases N = 1, .., q and
since here L2,q

C (P, P ) = 1, we have to show that H2,q
ID (P ) ≤ 1. It follows by the

expansibility property (4.17) of the second degree identification entropy function
that we only have to consider the case N = q. Further, the maximality of the
uniform distribution (4.19) and the normalization property (4.18) yield

H2,q
ID

(p1, ..., pq) ≤ H2,q
ID

(
1

q
, ...,

1

q

)

= 1.

We set Q = (Q0, ..., Qq−1) and use the same notation as in Lemma 4.10. The
inequality of Theorem 4.8 now follows from

L2,q
C (P, P ) = 1 +

∑

i∈Q

[
2Q2

i (1 − Qi)L
1,q

C(i)(Pi, Pi) + Q3
iL

2,q

C(i)(Pi, Pi)
]

≥ H2,q
ID (Q) +

∑

i∈Q

[
2Q2

i (1 − Qi)H
1,q
ID (Pi) + Q3

i H
2,q
ID (Pi)

]

= H2,q
ID (P ).

(4.21)

Here, the equality of the first line follows from Lemma 4.10. The inequality is
a consequence of the induction step together with the normalization property
(4.18) and the established bounds (4.19) of H2,q

ID . Finally, the grouping behavior
(4.20) of H2,q

ID yields the second equality.
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4 2-Identification for General Distributions

The fact that this lower bound is attained for every q-ary prefix code C for
which equality (4.13) holds has already been proven by Proposition 4.7. If we
instead have that the inequality of Theorem 4.8 holds with equality, then also
the inequality of equation (4.21) is in fact an equality and thus

i) H2,q
ID (Q) = 1

ii) H1,q
ID (Pi) = L1,q

Ci
(Pi, Pi)

iii) H2,q
ID (Pi) = L2,q

Ci
(Pi, Pi).

We have seen in the proof of the bounds of the entropy function that the uni-
form distribution is the only point where the first derivative of the identification
entropy function equals zero and thus (1/q, ..., 1/q) is the only point for which
H2,q

ID (Q) = 1. Together with i) this means that we get for all i ∈ Q that

Qi =
1

q
(4.22)

The crucial part is now ii). For all i ∈ Q we obtain from Equation (4.22) and
the definitions of Pi and C(i) (see Lemma 4.10) that for u ∈ Ui we have

pu = Qipi,u =
pi,u

q
(4.23)

and
‖cu‖ = ‖c(i)

u ‖ + 1. (4.24)

Moreover, Theorem 1 in [5] stated that for (1-)identification an equality be-
tween the running time and identification entropy is only attained if and only
if the probability distribution consists only of q-powers and the lengths of the
codewords equal the negative logarithm of the probability of their correspond-
ing elements. Thus it follows from ii) that all the pi,u’s are q-powers and that

‖c(i)
u ‖ = − logq pi,u. Together with Equations (4.23) and (4.24) we finally obtain

that P consists only of q-powers and that

‖cu‖ = − logq pi,u + 1 = − logq

pi,u

q
= − logq pu.

2

In Theorem 3.4 we have shown for the uniform distribution that if C is a bal-
anced Huffman code, its symmetric 2-identification running time asymptotically
equals

K2,q = 2
q

q − 1
−

q2

q2 − 1
.
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4.3 An Upper Bound for Binary Codes

Since

H2,q
ID

(
1
N

, ..., 1
N

)
= 2 q

q−1
N−1

N
− q2

q2−1
N2−1

N2

= 2 q

q−1
− q2

q2−1
− 2 q

q−1
1
N

+ q2

q2−1
1

N2

and thus

lim
N→∞

H2,q
ID

(
1

N
, ...,

1

N

)

= K2,q,

we get

Corollary 4.11 Considering the uniform distribution, balanced Huffman codes
are asymptotically optimal for 2-identification.

4.3 An Upper Bound for Binary Codes

In this subsection we establish an upper bound for q = 2. As said in the
introduction of this section this is done mainly by the same code construction
as in Subsection 2.2. We define Umax, pmax and Pmax according to Equations
(2.2), (2.3) and (2.4). Further, Equation (2.5) becomes

L2,2
C (P ) ≤ 1 + 2(1 − pmax)pmaxL

1,2
Cmax

(Pmax) + p2
maxL

2,2
Cmax

(Pmax). (4.25)

We prove now by induction over N the following

Theorem 4.12 It holds for all probability distributions P on U that the worst-
case running time for binary 2-identification can be upper bounded by

L2,2(P ) <
55

16
.

Proof:

W.l.o.g. we assume that p1 ≥ p2 ≥ ... ≥ pN . As induction base serve the
cases N = 1, 2 for which the running time always equals 1.

In order to apply the upper bound for (1-)identification, we use the same code
construction as in Theorem 2.3. We partition U into sets U0 and U1, which differ
from case to case. We choose t such that |1

2
−
∑t

u=1 pu| is minimal and set

U0 =







{1} if p1 ≥
1
2

{1, 2} if p1 < 1
2

and t = 1

{1, ..., t} if p1 < 1
2

and t ≥ 2.
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4 2-Identification for General Distributions

Once we have chosen U0 and U1 = U\U0 we inductively construct codes Ci on
Ui. Note that C0 = ∅ if p1 ≥ 1/2. From these codes we derive a code C on U by
prefixing all codewords in Ci with i.

Case 1: p1 ≥ 1

2

For the same reason as in the proof of Theorem 2.3 we have that the element
vmax, which maximizes L2,2

C (P, v), is in U1. It follows by induction, Equation
(4.25) and Theorem 2.3 that

L2,2
C (P ) < 1 + 5(1 − pmax)pmax +

55

16
p2

max.

Since the right hand side is monotone increasing in pmax and pmax ≤ 1/2 we
obtain

L2,2
C (P ) < 1 +

5

4
+

55

16
·
1

4
=

199

64
<

55

16
.

In the following, whenever there occurs the case that pmax ≤ 1/2 we obtain for
the same reasons as above that L2,2

C (P ) < 199/64 < 55/16.

Case 2: p1 < 1

2

Case 2.1: t = 1
We obtain by the definition of t that

∑4
u=1 pu > 1/2. If vmax ∈ U0 it follows

that L2,2
C (P ) ≤ 2. Further, we get for vmax ∈ U1 that pmax < 1/2.

Case 2.2: t ≥ 2

Case 2.2.1: vmax ∈ U0

We have pmax =
∑t

u=1 pu. If t = 2, we again get that pmax ≤ 1/2 and if t = 3
we get by the same case within Case 2.2.1 of the proof of Theorem 2.3 that

L1,2
Cmax

(Pmax) = 1 +
p2 + p3

pmax

≤
5

3
.

Further, for the same reasons we obtain

L2,2
Cmax

(Pmax) = 1 +
2(p2 + p3)

pmax
≤

7

3
.

Applying the above two equations together with Equations (2.7) and (4.25)
yields

L2,2
C (P ) ≤ 1 + 2 ·

3

8
·
5

8
·
5

3
+

25

64
·
7

3
=

517

192
<

55

16
.
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For t ≥ 4 we get by Equation (2.7) that

pmax <
7

12

if pmax ≥ 1/2. This together with the induction hypothesis and Theorem 2.3
yields

L2,2
C (P ) < 1 + 5 ·

5

12
·

7

12
+

49

144
·
55

16
=

7799

2304
<

55

16
.

Case 2.2.2: vmax ∈ U1

We get pmax =
∑N

u=t+1 pu. Now, Equation (2.8) yields

pmax = 1 −
t∑

u=1

pu ≤
3

5
.

From this it follows together with the induction hypothesis and Theorem 2.3
that

L2,2
C (P ) < 1 + 5 ·

2

5
·
3

5
+

9

25
·
55

16
=

55

16
.

2

We have established a lower and an upper bound for binary 2-identification
so that we close this section with

Corollary 4.13 It holds for all probability distributions P on U that

4

(

1 −
∑

u∈U

p2
u

)

−
4

3

(

1 −
∑

u∈U

p3
u

)

≤ L2,2(P, P ) ≤ L2,2(P ) <
55

16
.
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Distributions

We now try to generalize the results of the preceding section. We begin with
the definition of the q-ary identification entropy of degree L. Again, this func-
tion obeys some important desiderata for entropy functions. However, we did
not succeed in proving the analogous lower and upper bounds for these en-
tropies. In fact, there exist counterexamples to the natural conjecture that the
uniform distribution is an upper bound. In order to show that HL,q

ID is a lower
bound for L-identification we only need the bounds for the case where the size
of the output space equals the size of the alphabet. We show that we can prove
HL,q

ID ≤ LL,q
C (P, P ) if we assume that in this case the uniform distribution is

indeed an upper bound. Moreover, if we assume that for N = q the uniform
distribution is the only distribution for which the upper bound of HL,q

ID is at-
tained, we can show that again if and only if P consists only of q-powers we get
that there exists a code C such that HL,q

ID (P ) = LL,q
C (P, P ).

Definition 5.1 Let U be a finite set with |U| = N , L ∈ N, q ≥ 2 and
P = (p1, ..., pN) ∈ ΓN . Then the q-ary identification entropy of degree L
HL,q

ID : ΓN → R is defined by

HL,q
ID

(P ) = −
L∑

l=1

(−1)l

(
L

l

)
ql

ql − 1

(

1 −
∑

u∈U

pl+1
u

)

.

It is an easy observation that for L = 1 the above function equals the identi-
fication entropy established in [3]. Also for L = 2 it coincides with the identifi-
cation entropy of second degree from Subsection 4.2.

This function again obeys important desiderata for entropies from [1]. It
clearly is symmetric, expansible and decisive. It is also normalized. This follows
from

HL,q
ID

(
1

q
, ...,

1

q

)

= −
L∑

l=1

(−1)l

(
L

l

)

= 1. (5.1)

73



5 L-Identification for General Distributions

Another interesting property is that HL,q
ID obeys a grouping behavior which

is a generalized version of the grouping behavior of the q-ary identification en-
tropy of the second degree. With the same definitions as in 6. of Theorem 4.9
we obtain

HL,q
ID

(P ) = HL,q
ID

(Q) +
m∑

i=1

L∑

l=1

(
L

l

)

Ql+1
i (1 − Qi)

L−lH l,q
ID

(Pi). (5.2)

To see this we set

Si =
L∑

l=1

(
L

l

)

Ql+1
i (1 − Qi)

L−lH l,q
ID

(Pi),

for all i ∈ [m] and observe that Si equals

−
L∑

l=1

(
L

l

)
Ql+1

i (1 − Qi)
L−l

l∑

k=1

(−1)k
(

l

k

)
qk

qk−1
(1 − Q

−(k+1)
i

∑

u∈Ui

pk+1
u )

= −
L∑

k=1

(−1)k qk

qk−1
(1 − Q

−(k+1)
i

∑

u∈Ui

pk+1
u )

L∑

l=k

(
L

l

)(
l

k

)
Ql+1

i (1 − Qi)
L−l

= −
L∑

k=1

(−1)k
(

L

k

)
qk

qk−1
(Qk+1

i −
∑

u∈Ui

pk+1
u )

L∑

l=k

(
L−k

l−k

)
Ql−k

i (1 − Qi)
L−l

= −
L∑

k=1

(−1)k
(

L

k

)
qk

qk−1
(Qk+1

i −
∑

u∈Ui

pk+1
u ).

Here, the last equality follows from

L∑

l=k

(
L − k

l − k

)

Ql−k
i (1 − Qi)

L−l =

L−k∑

l=0

(
L − k

l

)

Ql
i(1 − Qi)

L−l−k = 1.

If we now replace k by l, we obtain

m∑

i=1

Si = −
L∑

l=1

(−1)l

(
L

l

)
ql

ql − 1
(

m∑

i=1

Ql+1
i −

∑

u∈U

pl+1
u ).

This yields

HL,q
ID (Q) +

m∑

i=1

Si

= −
L∑

l=1

(−1)l
(

L

l

)
ql

ql−1

(

1 −
m∑

i=1

Ql+1
i +

m∑

i=1

Ql+1
i −

∑

u∈U

pl+1
u

)

= HL,q
ID (P ).
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The crucial part are the lower and upper bound. It is natural for an entropy
function that it is minimized if the probability is 1 for a single object and upper
bounded by the uniform distribution. However, we encountered counterexam-
ples such as L ≥ 4, q ≥ 15 and N = 2 or L ≥ 5, q ≥ 100 and N = 3. We
conjecture that it holds at least for N ≥ q and all L and q that

HL,q
ID

(1, 0, ..., 0) ≤ HL,q
ID

(P ) ≤ HL,q
ID

(
1

N
, ...,

1

N

)

. (5.3)

This claim, in fact just in the case N = q, would suffice to prove that HL,q
ID is

a lower bound for L-identification. We did not succeed in proving this claim in
general for all L and q and will discuss this problem in greater detail in Section
7. Before we turn to the cases for which we were able to prove the desired
bounds, we state

Proposition 5.2 If Equation (5.3) holds for N = q, we get

HL,q
ID

(P ) ≤ LL,q(P, P ).

Proof:

We will use induction over L and N . As the induction base for L serves the case
L = 1 for which it has been proven in [3] that identification entropy (of first
degree) is a lower bound for (1-)identification. Also the case L = 2 has been
settled in the preceding Section 4.

The induction base for N is the case N = q. By the expansibility property
this case settles all necessary induction bases 1, ..., q. Trivially, if C = Q, we get
that LL,q

C (P ) = 1. Since we have assumed that Equation (5.3) holds, Equation
(5.1) proves this induction base.

To prove the proposition we partition U according to some given code C into
U0, ...,Uq−1, where Ui = {u ∈ U : cu,1 = i}. Further, let Q be a probability
distribution on Q defined by Qi =

∑

u∈U pu and Pi be probability distributions
on U defined by Pi,u = pu/Qi for all u ∈ U . With these definitions we obtain

LL,q
C (P, P ) = 1 +

∑

i∈Q

L∑

l=1

(
L

l

)
Ql+1

i (1 − Qi)
L−lLl,q

C(i)(P
l
i , Pi)

≥ HL,q
ID (Q) +

m∑

i=1

L∑

l=1

(
L

l

)
Ql+1

i (1 − Qi)
L−lH l,q

ID (Pi)

= HL,q
ID (P ).

(5.4)
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5 L-Identification for General Distributions

Here the first equality follows from Lemma 4.10, the inequality from the nor-
malization property (5.1), the assumed bounds (5.3) and the induction base.
The final equality is a consequence of the grouping behavior (5.2).

2

As stated before there are some cases for which we can prove Equation (5.3).
In fact, we prove more, namely

Proposition 5.3 HL,2
ID (P ) is strictly concave for L ≤ 20.

Proof:

Let

f(p) = HL,2
ID

(p, 1 − p) = −
L∑

l=1

(−1)l

(
L

l

)
2l

2l − 1

(
1 − pl+1 − (1 − p)l+1

)
.

If we now look at all derivatives, we see that for k = 1

δk

δkp
f(p) =

L∑

l=1

(−1)l

(
L

l

)
2l

2l − 1

(l + 1)!

(l − k + 1)!

(
pl−k+1 − (1 − p)l−k+1

)

and for all k ∈ {2, ..., L + 1}

δk

δkp
f(p) =

L∑

l=k−1

(−1)l

(
L

l

)
2l

2l − 1

(l + 1)!

(l − k + 1)!

(
pl−k+1 + (−1)k(1 − p)l−k+1

)
.

A first observation is that if k is odd, we get

δk

δkp
f

(
1

2

)

= 0.

If we sort f(p) with respect to the power of p, we get

f(p) = ((−1)L − 1) 2L

2L−1
pL+1

+
(

(L + 1) 2L

2L−1
− (1 + (−1)L)L 2L−1

2L−1−1

)

pL +
L−1∑

l=1

αlp
l,

for some αl. This yields that for even L we have a polynomial of degree L with

δL

δLp
f(p) =

(

(L + 1)
2L

2L − 1
− 2L

2L−1

2L−1 − 1

)

L! < 0
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and for odd L we have a polynomial of degree L + 1 with

δL+1

δL+1p
f(p) = −2

2L

2L − 1
(L + 1)! < 0.

Since for even (resp. odd) L the L-th (resp. (L+1)-th) derivative is a strictly
negative constant, we know that the (L − 2)-th (resp. (L − 1)-th) derivative is
a concave function. To show that it is also strictly negative it suffices to show
that it is negative for p = 1/2 since the (L− 1)-th (L-th) derivative is zero only
at this point. This step can then be iterated and if we can show that all even
derivatives are strictly negative at p = 1/2, we finally obtain that HL,2

ID is a
concave function. For L = 2, ..., 20 the values of all even derivatives at p = 1/2
have been computed and turn out to be strictly negative.

2

For L ≥ 21 there occur positive values within the even derivatives so that we
cannot prove concavity via this argument. Nevertheless, also for these cases the
graphs of the identification entropy functions let us assume that they are still
concave. Since the binary identification entropy of degrees up to 20 are concave
and symmetric, we obtain

Corollary 5.4 Let L ≤ 20 it then holds that

HL,2
ID

(1, 0, ..., 0) ≤ HL,2
ID

(P ) ≤ HL,2
ID

(
1

N
, ...,

1

N

)

,

with equality on the right hand side if and only if P = (1/N, ..., 1/N).

The cases proved above and especially the strong connection between the
grouping behavior (5.2) and Lemma 4.10 provide us with strong believe that
the q-ary identification entropy of degree L is indeed a lower bound for the
symmetric L-identification running time. But there are two other encouraging
facts about the connection between those two concepts. The first is that we get
for the uniform distribution the same result like for 2-identification. In fact, we
have

HL,q
ID

(
1

N
, ...,

1

N

)

= −
L∑

l=1

(−1)l

(
L

l

)
ql

ql − 1
(1 −

1

N l
)

yielding

lim
N→∞

HL,q
ID

(
1

N
, ...,

1

N

)

= −
L∑

l=1

(−1)l

(
L

l

)
ql

ql − 1
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5 L-Identification for General Distributions

and thus, if C ∈ Cq,N ,

lim
N→∞

HL,q
ID

(
1

N
, ...,

1

N

)

= lim
N→∞

LL,q
C

(
1

N
, ...,

1

N

)

.

Therefore, a proof of Equation (5.3) would also imply that for the case of
the uniform distribution balanced Huffman codes are asymptotically optimal
for L-identification.

The second encouraging fact is stated in the following

Proposition 5.5 Let P be a probability distribution on U which consists only
of q-powers and C be a code for (U , P ) with ‖cu‖ = − logq pu for all u ∈ U .
Then for all L and q it holds that

HL,q
ID

(P ) = LL,q
C (P, P ).

Proof:

We first introduce for all v ∈ U and k = 1, ..., ‖cv‖ the following sets

• UL
v,k = {uL ∈ UL : LL,q

C (uL, v) = k}

• Uv,k = {u ∈ U : L1,q
C (u, v) = k}

• Ūv,k = Uv,1 ∪̇ ... ∪̇ Uv,k−1

With this notation we obtain

LL,q
C (P, P ) =

∑

v∈U

pv

‖cv‖∑

k=1

k
∑

uL∈UL
v,k

P L
uL.

We use Sk =
∑

uL∈UL
v,k

pu1...puL
and obtain

Sk =

L∑

l=1

(
L

l

)
∑

u1,...,ul∈Uv,k

∑

ul+1,...,uL∈Ūv,k

pu1...puL
.

Here, the second equality holds because there has to be at least one output for
which identification against v takes exactly k timesteps while all others (or none
if l = L) have an identification time regarding v of at most k − 1.
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Case 1: k = 1, ..., ‖cv‖ − 1
In this case we have that Uv,k = T̄ck−1

v
\T̄ck

v
and Ūv,k = T̄C\T̄ck−1

v
. This yields

∑

u∈Uv,k

pu = P (Tck−1
v

) − P (Tck
v
) = q−k+1 − q−k = q−k(q − 1)

and
∑

u∈Ūv,k

pu = 1 − P (Tck−1
v

) = 1 − q−k+1

and therewith

Sk =
L∑

l=1

(
L

l

)

q−kl(q − 1)l(1 − q−k+1)L−l = (1 − q−k)L − (1 − q−k+1)L.

Case 2: k = ‖cv‖
In this case we have that Uv,‖cv‖ = T̄

c
‖cv‖−1
v

and Ūv,‖cv‖ = T̄C\T̄c
‖cv‖−1
v

. We obtain

∑

u∈Uv,‖cv‖

pu = P (T
c
‖cv‖−1
v

) = q−‖cv‖+1

and
∑

u∈Ūv,‖cv‖

pu = 1 − P (T
c
‖cv‖−1
v

) = 1 − q−‖cv‖+1

and therewith

S‖cv‖ =

L∑

l=1

(
L

l

)

q−(‖cv‖−1)l(1 − q−‖cv‖+1)L−l = 1 − (1 − q−‖cv‖+1)L.

Combining the above two cases yields

‖cv‖∑

k=1

kSk

=
‖cv‖−1∑

k=1

k
[
(1 − q−k)L − (1 − q−k+1)L

]
+ ‖cv‖

[
1 − (1 − q−‖cv‖+1)L

]

=
‖cv‖−1∑

k=1

k(1 − q−k)L + ‖cv‖ −
‖cv‖∑

k=1

k(1 − q−k+1)L.
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5 L-Identification for General Distributions

We set A =
∑‖cv‖−1

k=1 k(1 − q−k)L + ‖cv‖ and B =
∑‖cv‖

k=1 k(1 − q−k+1)L. We
then get for A

A =
‖cv‖−1∑

k=1

k
L∑

l=0

(
L

l

)
(−1)L−lq−(L−l)k + ‖cv‖

=
L∑

l=0

(
L

l

)
(−1)L−l

‖cv‖−1∑

k=1

kq−(L−l)k + ‖cv‖

=
L−1∑

l=0

(
L

l

)
(−1)L−l

‖cv‖−1∑

k=1

kq−(L−l)k +
‖cv‖∑

k=1

k

=
L−1∑

l=0

(
L

l

)
(−1)L−l

‖cv‖∑

k=1

kq−(L−l)k

−
L−1∑

l=0

(
L

l

)
(−1)L−l‖cv‖q−(L−l)‖cv‖ +

‖cv‖∑

k=1

k

and for B respectively

B =
‖cv‖∑

k=1

k
L∑

l=0

(
L

l

)
(−1)L−lq−(L−l)(k−1)

=
L∑

l=0

(
L

l

)
(−1)L−lqL−l

‖cv‖∑

k=1

kq−(L−l)k

=
L−1∑

l=0

(
L

l

)
(−1)L−lqL−l

‖cv‖∑

k=1

kq−(L−l)k +
‖cv‖∑

k=1

k.

Subtracting B from A yields

‖cv‖∑

k=1

kSk =
L−1∑

l=0

(
L

l

)
(−1)L−l(1 − qL−l)

‖cv‖∑

k=1

kq−(L−l)k

−
L−1∑

l=0

(
L

l

)
(−1)L−l‖cv‖q

−(L−l)‖cv‖.
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Since

‖cv‖∑

k=1

kq−(L−l)k =
qL−l

(qL−l − 1)2
(1 − q−(L−l)‖cv‖) −

‖cv‖q
−(L−l)‖cv‖

qL−l − 1

and by assumption of the theorem q−‖cv‖ = pv for all v ∈ U , we finally obtain

LL,q
C (P, P ) =

∑

v∈U

pv

‖cv‖∑

k=1

kSk = −
L∑

l=1

(
L

l

)

(−1)l ql

ql − 1
(1 −

∑

v∈U

pl+1
v ) = HL,q

ID (P ).

2

According to the previous results for (1-) and 2-identifications it seems natural
that the equality of Proposition 5.5 is only assumed for the mentioned cases and
that we have a strict inequality between the q-ary identification entropy of degree
L and the symmetric L-identification running time if P does not consists only of
q-powers. The following proposition formalizes this if we assume that for N = q
the uniform distribution maximizes HL,q

ID and that

HL,q
ID

(P ′) < HL,q
ID

(
1

q
, ...,

1

q

)

for all other distributions P ′ 6= (1/q, ..., 1/q).

Proposition 5.6 Let P be a probability distribution on U for which it holds
that

HL,q
ID

(P ) = LL,q
C (P, P ).

We further assume that HL,q
ID (P ′) < HL,q

ID ((1/q, ..., 1/q)) for all P ′ 6= (1/q, ..., 1/q).
It then follows that P consists only of q-powers and C is a code for (U , P ) with
‖cu‖ = − logq pu for all u ∈ U .

Proof:

As induction base serves the case L = 1, which has been proven in Theorem
1 in [5]. For the induction steps it now follows from the assumptions of that the
inequality in equation 5.4 becomes an equality so that we have

1 +
∑

i∈Q

L∑

l=1

(
L

l

)
Ql+1

i (1 − Qi)
L−lLl,q

C(i)(P
l
i , Pi)

= HL,q
ID (Q) +

m∑

i=1

L∑

l=1

(
L

l

)
Ql+1

i (1 − Qi)
L−lH l,q

ID (Pi).

(5.5)
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5 L-Identification for General Distributions

For the definitions of Qi, Pi and C(i) see again Lemma 4.10. From this equation
follows

i) HL,q
ID (Q) = 1

ii) H l,q
ID (Pi) = Ll,q

C(i)(P
l
i , Pi) for l ∈ [L]

On the one hand it follows from the assumptions and i) that Q = (1/q, ..., 1/q)
and on the other hand it follows from the induction hypothesis and ii) that Pi

consists only of q-powers and that ‖c(i)
u ‖ = − logq pi,u. Since pu = Qipi,u = pi,u/q

for all u ∈ Ui, we obtain that also P consists only of q-powers and finally
‖cu‖ = − logq pi,u + 1 = − logq

pi,u

q
= − logq pu for all u ∈ Ui.

2
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6 L-Identification for Sets

Like before the discrete source (U , P ) together with a source code C forms the
basis for our analysis of L-identification for sets. Unlike Subsection, however, 1.2
we do not consider as the output space the discrete memoryless source (UL, P L)
but the discrete source (Ũ , P̃ ), where Ũ =

(
U
L

)
. We write P̃S for P̃ ({S}). The

task of L-identification for sets is in principle the same as before. It has to be
able to distinguish for all users v ∈ U and all outputs S ∈ Ũ whether there
exists an element u in S with u = v or not.

In this section we will analyze the asymptotic behavior of the symmetric
running time of L-identification for sets for the case when P̃ is the uniform
distribution on Ũ and also the users are chosen uniformly. We will see that it
asymptotically equals the symmetric running time of L-identification (for vec-
tors) and thus KL,q, which was examined in Subsection 3.2.

It is clear that L-identification for sets can be seen as a special case of our pre-
liminary L-identification (for vectors) as we exclude all vectors with two or more
identical components. This fact changes the running time of L-identification in
the following way. Again, we compare q-bit by q-bit the codewords of the el-
ements of S to the corresponding q-bit of cv and after every step we cancel
out all elements which do not coincide. Suppose after some step k during the
identification process we are left over with the same amount of possible candi-
dates as there are codewords in N̄ (Tck

v
). Since we are considering sets and not

vectors, we know that each of the elements which belong to the codewords in
N̄ (Tck

v
) are elements of S and so does v itself. At such a point we terminate

the identification process and answer: “Yes, v is in S!”. Figure 6.1 shows an
example of such an event for N = 17 and L = 9. In this example v equals u1.
This is indicated by the thick path from the root to u1. After the first q-ary
comparison u5 and u7 are deleted from the set of possible candidates but there
are more than seven codewords which begin with 0 so that v still might be not
contained in S. After the second comparison u2 and u9 are canceled and we
still have more codewords in N̄ (T00) than possible candidates. After the third
step, however, u6 is not longer a candidate. This leaves us with four possible
candidates. Since |N̄ (T000)| = 4, we know that v has to be an element of S and
terminate the L-identification process.
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6 L-Identification for Sets

u9

S2 = {u1, u2, u3, u4, u6, u8, u9}

S3 = {u1, u3, u4, u6, u8}

S4 = {u1, u3, u4, u8}

u5 u7

u3u4

u2u6

u8u1

Figure 6.1: An example when the 9-identification process terminates because
|S4| = |{u ∈ U : c3

u = c3
v}| = 4. For the definition of Si see Table

8.2 in the appendix.

The L-identification algorithm LID now becomes the L-identification algo-
rithm for sets. It is called LIDforSets and stated in Table 8.2 in the appendix.
Now let S = {u1, u2, ..., uL} ∈ Ũ we then define the L-identification time for S,
an user v and a q-ary code C by

L̃L,q
C (S, v) = LIDforSets2(cu1, ..., cuL

, cv), (6.1)

where LIDforSets2(cu1 , ..., cuL
, cv) is the second component of the return pair of

the algorithm LIDforSets.

In the same way as in Subsection 1.2 we now define the average running time
for a given user v ∈ U by

L̃L,q
C (P̃ , v) =

∑

S∈Ũ

P̃SL̃
L,q
C (S, v), (6.2)

the worst-case running-time by

L̃L,q
C (P̃ ) = max

v∈U
L̃L,q

C (P̃ , v) (6.3)

and if we have a probability distribution Q on U , we define the expected running
time by

L̃L,q
C (P̃ , Q) =

∑

v∈U

Q({v})L̃L,q
C (P̃ , v).1 (6.4)

1Remember that all those functions implicitly depend also on N = |U| via C, P̃ and Q.
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In both scenarios we are again interested in the optimal running time. That
is

L̃L,q(P̃ ) = min
C

L̃L,q
C (P̃ ) (6.5)

and
L̃L,q(P̃ , Q) = min

C
L̃L,q

C (P̃ , Q). (6.6)

We will now take a look at the asymptotic behavior of L̃L,q
C (P̃ , Q) for the

case when both P̃ and Q are uniform distributions on Ũ , resp. U , and that
C ∈ Cq,N is a balanced Huffman code. In this case we call L̃L,q

C (P̃ , Q) as before
the symmetric running time for L-identification for sets. In order to simplify

notation we shall write P̄ =
((

N

L

)−1
, ...,

(
N

L

)−1
)

. Equation 6.4 then becomes

L̃L,q
C

(

P̄ , (
1

N
, ...,

1

N
)

)

=
1

N
(

N

L

)

∑

S∈Ũ

∑

v∈U

L̃L,q
C (S, v). (6.7)

It turns out that

lim
N→∞

L̃L,q
C

(

P̄ , (
1

N
, ...,

1

N
)

)

= lim
N→∞

LL,q
C

(

(
1

N
, ...,

1

N
), (

1

N
, ...,

1

N
)

)

(6.8)

and thus equals the same rational number KL,q which has been examined in
Subsection 3.2. This may be somewhat surprising at first glance since the out-
put spaces UL and Ũ as well as the underlying algorithms differ from each other.
Yet, it becomes clear if we take into account that these differences “disappear”
if N goes to infinity. By this we mean that the cardinality of the family of sets,
which cause the algorithm LIDforSets to terminate with a positive answer be-
fore it reaches the last step, is so small that its probability goes to zero as N
tends to infinity. The same is true for the set of all vectors which have more
than one identical component. We will now formalize the above explanations in
order to prove Equation (6.8).

Let f : UL →
⋃L

l=1

(
U
l

)
be defined by f(uL) =

⋃L

i=1{ui}. Further, let U ′ ⊂ U
be the set of all vectors whose components of are pairwise distinct. It follows that
the restriction f |U ′ is a surjective mapping from U ′ onto Ũ and that |f−1(S)| = L!
for all S ∈ Ũ . This yields |U ′| = L!

(
N

L

)
and

LL,q
C

(
( 1

N
, ..., 1

N
), ( 1

N
, ..., 1

N
)
)

= 1
NL+1

∑

v∈U

[
∑

uL∈U ′ L
L,q
C (uL, v) +

∑

uL∈U\U ′ L
L,q
C (uL, v)

]

.
(6.9)

Since
∑

uL∈U\U ′ L
L,q
C (uL, v) ≤ (1+ logq N)L!

(
N

L

)
, it follows that the second sum-

mand multiplied by 1/NL tends to zero for N → ∞.
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We now turn to Ũ and assume that N = qn such that C = Cqn .2 We define
Ũ ′ ⊂ Ũ to be the family of sets S for which there exists at least one leaf in each
subtree with root in level n − 1 which is not contained in S. We use T = TCqn

and obtain
Ũ ′ = {S ∈ Ũ : N̄ (Tx)\S 6= ∅ ∀x ∈ Qn−1}.

It follows that from the nature of the algorithms LID and LIDforSets that for
all v ∈ U , S ∈ Ũ ′ and uL ∈ f−1(S) we have that

L̃L,q
C (S, v) = LL,q

C (uL, v). (6.10)

It is clear that if L < q, we get that Ũ ′ = Ũ and if L ≥ q, we obtain that

Ũ\Ũ ′ =
⋃

x∈Qn−1

(

N̄ (Tx) ∪

(
Ũ\N̄ (Tx)

L − q

))

.

From this follows that

|Ũ\Ũ ′| ≤
∑

x∈Qn−1

∣
∣
∣

(

N̄ (Tx) ∪
(
Ũ\N̄ (Tx)

L−q

))
∣
∣
∣

= qn−1
(

q +
(

N−q

L−q

))

= N + N
q

(
N−q

L−q

)
.

This yields

1

N(N
L)

∑

v∈U

∑

S∈Ũ\Ũ ′ L̃
L,q
C (S, v)

≤ 1

(N

L)
logq N |Ũ\Ũ ′|

≤ 1

(N

L)
logq N

(

N + N
q

(
N−q

L−q

))

.

The right hand side of the third line tends to zero as N goes to infinity. We
return to L-identification for vectors and similar to the definition of Ũ ′ we define

U ′′ = {uL ∈ U ′ : ∀x ∈ Qn−1 ∃ w ∈ N̄ (Tx) and l ∈ [L] s.th. w 6= ul}

and for similar reasons as above we obtain that for N → ∞

1

NL+1

∑

v∈U

∑

uL∈U ′\U ′′

LL,q
C (uL, v) → 0.

2The analysis for N 6= qn, which we omit, involves the same calculations but includes some

more case distinctions.
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Finally, we can partition U ′′ =
⋃

S∈Ũ ′ f−1(S) and get

1
NL+1

∑

v∈U

∑

uL∈U ′′ L
L,q
C (uL, v)

= 1
NL+1

∑

v∈U

∑

S∈Ũ ′

∑

uL∈f−1(S) L
L,q
C (uL, v)

= L!
NL+1

∑

v∈U

∑

S∈Ũ ′ L̃
L,q
C (S, v),

where the last equality follows from Equation (6.10). Since L!/NL asymptoti-
cally equals 1/

(
N

L

)
, we finally proved

Theorem 6.1 Let L, n ∈ N, q ∈ N≥2, qn−1 < N ≤ qn, C ∈ Cq,N and P̄ be the
uniform distribution on Ũ . Then it holds that

lim
N→∞

L̃L,q
C

(

P̄ , (
1

N
, ...,

1

N
)

)

= lim
N→∞

LL,q
C

(

(
1

N
, ...,

1

N
), (

1

N
, ...,

1

N
)

)

= KL,q,

where KL,q ∈ R is defined in Theorem 3.4.
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7 Open Problems

In this final section we will give an overview of some open problems which arose
during the study of L-identification. We begin with three types of problems
concerning L-identification (for vectors). The first is to settle the induction
base in the proof of Proposition 5.2. It is the only fragment left in order to
completely prove that q-ary identification entropy HL,q

ID of degree L is a lower
bound for L-identification.

The second problem is a generalization of Lemmas 2.1 and 4.3 where we
proved that concerning block codes the uniform distribution is optimal for (1-)
and 2-identification. At least for L ≥ 4 this is not longer true in general as there
exist simple counterexamples. However, we claim that if the size of the block is
sufficiently large, again uniform distribution becomes optimal.

The second subsection covers L-identification for sets. We have seen in Sub-
section 6 that for the uniform distribution L-identification for sets behaves in
the same way as L-identification (for vectors) if the cardinality of the output
space tends to infinity. Unfortunately we have not made any major discoveries
if we turn to general distributions.

7.1 Some Open Problems for L-Identification

Induction Base for the proof of Proposition 5.2

The most important problem is to settle for all L and q the induction base
N = q of the proof of Proposition 5.2. With the solution of this problem we
would obtain that the q-ary identification entropy HL,q

ID of degree L is a lower
bound for L-identification. In the following we establish a chain of problems
which are partly subproblems. Figure 7.1 visualizes this chain.

Problem 1:
Show that it holds for all L, q and probability distributions P on [q] that

HL,q
ID (P ) ≤ 1. (7.1)
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7 Open Problems

Since HL,q
ID is normalized (see Equation (5.1)), the above problem is equivalent

to

Problem 1∗:
Show that it holds for all L, q and probability distributions P on [q] that

HL,q
ID

(P ) ≤ HL,q
ID

(
1

q
, ...,

1

q

)

. (7.2)

We have claimed in Section 5 that Equation (5.3) holds which solves problem
1∗ in the more general form where N ≥ q. This yields

Problem 1.1:
Show that it holds for all L, q and probability distributions P on [N ], where
N ≥ q, that

HL,q
ID (1, 0, ..., 0) ≤ HL,q

ID (P ) ≤ HL,q
ID

(
1

N
, ...,

1

N

)

.

We provide three approaches which possibly are suitable for solving prob-
lem 1.1. The first is somewhat in the spirit of Lemmas 2.1 and 4.3 where we
step by step adjust an arbitrary probability distribution so that it becomes the
uniform distribution without increasing the symmetric L-identification running
time. For this let P 6= (1/N, ..., 1/N) be a probability distribution on [N ]. Re-
member that we assumed N ≥ q. Clearly, there exists an element, say 1, for
which p1 > 1/N and an element, say 2, for which p2 < 1/N . We now construct
a new probability distribution P̄ by setting p̄1 = p̄2 = (p1 + p2)/2 and p̄i = pi,
for all i ∈ {3, ..., N}. If we can show that HL,q

ID (P̄ ) − HL,q
ID (P ) ≥ 0, we would

have solved problem 1.1 since we can come arbitrarily close to (1/N, ..., 1/N) by
applying the above construction iteratively and sufficiently many times. Thus
we state

Problem 1.1.1:
Show that it holds for all L, q and probability distributions P on [N ], where
N ≥ q, that

HL,q
ID

(P̄ ) − HL,q
ID

(P ) ≥ 0,

where P̄ is defined by p̄1 = p̄2 = (p1 + p2)/2 and p̄i = pi for all i ∈ {3, ..., N}.
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7.1 Some Open Problems for L-Identification

We begin the calculation of this difference and obtain

HL,q
ID (P̄ ) − HL,q

ID (P )

=
L∑

l=1

(−1)l
(

L

l

)
ql

ql−1

(
1
2l (p1 + p2)

l+1 − pl+1
1 − pl+1

2

)

=
L∑

l=1

(−1)l
(

L

l

)∑

t≥0

q−tl
(

1
2l (p1 + p2)

l+1 − pl+1
1 − pl+1

2

)

=
2∑

i=1

pi

∑

t≥0

[(

1 − p1+p2

2qt

)L

− (1 − pi

qt )
L

]

.

Note that while the first summand is positive the second one is negative. Yet
the positive summand is weighted by p1 which is greater than p2 by which the
negative summand is weighted. We therefore feel that the following problem
may be a good candidate for solving the main problem 1. One has to keep in
mind that N ≥ q is crucial so this fact has to come in play.

Problem 1.1.1.1:
Show that if N ≥ q, p1 + p2 ≤ 1 and p1 > 1/N > p2, we get that

2∑

i=1

pi

∑

t≥0

[(

1 −
p1 + p2

2qt

)L

− (1 −
pi

qt
)L

]

≥ 0.

We also could try to prove problem 1.1 via the direct way. For this consider
an probability distribution P on [N ] (still N ≥ q) and assume w.l.o.g. that

p1 ≥ p2 ≥ ... ≥ pn1 >
1

N
> pn1+1 ≥ ... ≥ pn2 (7.3)

and pn2+1 = ... = pN = 1/N . With the same calculations as above we obtain

HL,q
ID

(
1

N
, ...,

1

N

)

− HL,q
ID

(P ) =

n2∑

i=1

pi

∑

t≥0

[(

1 −
1

Nqt

)L

− (1 −
pi

qt
)L

]

.

Again the first n1 summands are positive and weighted by the greater weights
p1, ..., pn1. We obtain

Problem 1.1.2:
Show that if N ≥ q and if (p1, ..., pN) obeys Equation (7.3), we get that

n2∑

i=1

pi

∑

t≥0

[(

1 −
1

Nqt

)L

− (1 −
pi

qt
)L

]

≥ 0.
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7 Open Problems

Another approach would be to follow the proof of the bounds for the q-
ary identification entropy of second degree (see Theorem 4.9). In this proof
we analyze the first derivative of the entropy function and showed that there
exists only one extremal point namely a maximum at (1/N, ..., 1/N). As we
have mentioned in the definition section we only have to consider N − 1 partial
derivatives and obtain for v ∈ [N − 1]

δ

δpv

HL,q
ID

=
L∑

l=1

(−1)l

(
L

l

)
ql

ql − 1
(l + 1)

(

pl
v − (1 −

N−1∑

u=1

pu)
l

)

.

This obviously is zero if p1 = ... = pN−1 = 1/N . We are left with

Problem 1.1.3:
Show that p1 = ... = pN−1 = 1/N is the only point in ∆N−1 which is for all
v ∈ [N − 1] the root of

L∑

l=1

(−1)l

(
L

l

)
ql

ql − 1
(l + 1)

(

pl
v − (1 −

N−1∑

u=1

pu)
l

)

.

1.1

1.1.1

1.1.2

1.1.3

1.1.1.1

=⇒=⇒

=⇒ =⇒

=⇒

1∗ ⇐⇒ 1

Figure 7.1: The logical chain of the problems leading to a proof of Proposition
5.2.

L-Identification for Block Codes

In Subsections 2.1 and 4.4 we proved that concerning block codes the uni-
form distribution is optimal for the symmetric running time of (1-) and 2-
identification. This, however, is not longer true at least for L ≥ 4. This we
can show by an easy example. Therefore consider q = 2, N = 4, L = 4 and
C = C22 . It follows with the notation of Subsection 3.2 that
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7.1 Some Open Problems for L-Identification

L4,2
C

(
(1

4
, 1

4
, 1

4
, 1

4
), (1

4
, 1

4
, 1

4
, 1

4
)
)

= 1
44

(
|R4,2

C (1, 1)| + 2|R4,2
C (2, 1)|

)

= 1
44 (24 + 224(24 − 1))

= 31
16

.

We now take the probability distribution P = (1/8, 1/8, 3/8, 3/8). The assign-
ment of the individual probabilities to the codewords (resp. the corresponding
outputs) is depicted in Figure 7.2. We obtain

L4,2
C

(
(1

8
, 1

8
, 3

8
, 3

8
), (1

8
, 1

8
, 3

8
, 3

8
)
)

=
2∑

i=1

2i∑

v=2(i−1)+1

pv

4∑

l=0

(
4
l

) 2i∑

u1,..,ul=2(i−1)+1

∑

ul+1,...,u4∈[4]\{2(i−1)+1,2i}

Pu4L(u4, v)

= 1
4

(

34

28 + 1
27

4∑

l=1

(
4
l

)
34−l

)

+ 3
4

(

1
28 + 1

27

4∑

l=1

(
4
l

)
3l

)

= 491
256

< 496
256

= 31
16

= L4,2
C (1

4
, ..., 1

4
).

p1 = 1
8

p2 = 1
8

p3 = 3
8

p4 = 3
8

Figure 7.2: An example for 4-identification on block codes which has a faster
symmetric running time than the uniform distribution.

This inconsistency disappears for 4-identification already for the next level,
where N = 8. In general we claim for all L that if the block code is large enough,
the uniform distribution becomes optimal again. This is the content of

93



7 Open Problems

Problem 2:
Show that for all L exists nL ∈ N such that it holds for all n ≥ nL and all
probability distributions P on [qn] that

LL,q
Cqn

(P, P ) ≥ LL,q
Cqn

(

(
1

qn
, ...,

1

qn
), (

1

qn
, ...,

1

qn
)

)

.

Of course, we cannot solve this problem by applying generalized versions
of Lemmas 2.1 and 4.3. Since these lemmas are applied to small subtrees in
the beginning, we would get that during the first modifications of some given
probability the symmetric running time would increase if we level out the cor-
responding probabilities. But we think that these small increases are absorbed
by later steps where we level out bigger and bigger subtrees. A big help in order
to solve problem 2 would be if we could establish an exact expression for the
differences like we have done in Lemma 2.1. With this we would hopefully be
able to solve problem 2. However, already for L = 2 we do not have such an
expression. Like before in the corresponding lemmas for (1-) and 2-identification
let n ∈ N, q ∈ N≥2, k ∈ {0, ..., n − 1} and t ∈ {0, ..., qn−k−1 − 1}. Further, let
P = (p1, ..., pqn) and P̃ = (p̃1, ..., p̃qn) be probability distributions on [qn] with

P = (p1, ..., ptqk+1, r1, ..., r1
︸ ︷︷ ︸

qk

, r2, ..., r2
︸ ︷︷ ︸

qk

, ..., rq, ..., rq
︸ ︷︷ ︸

qk

, p(t+1)qk+1+1, ..., pqn)

and

P̃ = (p1, ..., ptqk+1,
1

q

q
∑

i=1

ri, ...,
1

q

q
∑

i=1

ri

︸ ︷︷ ︸

qk+1

, p(t+1)qk+1+1, ..., pqn).

Problem 2.1:
Establish for L ≥ 2 an exact expression for the difference

LL,q
Cqn

(P, P )− LL,q
Cqn

(P̃ , P̃ ).

7.2 L-Identification for Sets for General

Distributions

The basic problem if we turn to general distributions is that the connection
between a probability distribution P on U and a distribution P̃ on Ũ =

(
U
L

)
is

not as straight forward as it is if we consider the discrete memoryless source
(UL, P L), where the probability of a vector is the product of the probabilities
of its components. In order to establish such a connection we provide
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7.2 L-Identification for Sets for General Distributions

Definition 7.1 Let P be a probability distribution on U . Then we define its
correlated distribution P (L) on Ũ by setting

P
(L)
S =

∑

π∈ΠL

L∏

l=1

psπ(l)

1 −
∑l−1

m=1 psπ(m)

for all S = {s1, ..., sL} ∈ Ũ and where ΠL is the set of all permutations on [L].

This probability equals the probability of a set S which is filled step by step
with elements from U according to P . The first element, say u1 ∈ U , is cho-
sen with probability pu1. Now we normalize the probabilities of the remaining
elements by dividing with 1 − pu1 and chose the next element, say u2, with
probability pu2/(1 − pu1) and so on until S contains L elements. The fact that
different choosing sequences result in the same set S is taken into account by
the sum over all permutations of [L].

Problem 5:
Establish an identification entropy for L-identification for sets which provides a
lower bound for L̃L,q(P (L), P )?

We have seen that a crucial part in the discovery of the q-ary identification
entropy of degree L and its role as a lower bound for L-identification is the
Decomposition Lemma 4.10. We have

Problem 5.1:
Establish a decomposition formula for L̃L,q(P (L), P ) which is suitable to finding
a solution for problem 5?
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8 Appendix

LID {

S1 := [L];

for i from 1 to ‖cv‖ − 1 do {
if (∀ l ∈ Si : cul,i 6= cv,i) then {

return ("FALSE",i,∅);
}
else {

set Si+1 := {l ∈ Si : cul,i = cv,i};
}

}

if
(
∀ l ∈ S‖cv‖ : cul,‖cv‖ 6= cv,‖cv‖

)
then {

return ("FALSE",‖cv‖,∅);
}
else {
set S := {l ∈ S‖cv‖ : cul,‖cv‖ = cv,‖cv‖};
return ("TRUE",‖cv‖,S);

}
}

Table 8.1: The L-identification algorithm.

97



8 Appendix

LIDforSets {

S1 := S

for i from 1 to ‖cv‖ do {

if (∀ u ∈ Si : cu,i 6= cv,i) then {
return ("FALSE",i)

}
else {
set Si+1 := {u ∈ Si : cu,i = cv,i}
if |Si+1| = |N̄ (Tci

v
)| then {

return ("TRUE",i)
}

}
}

}

Table 8.2: The L-identification algorithm for sets.
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List of Symbols

2S . . . . . . . . . . . . power set of S

C . . . . . . . . . . . . . a mapping from U toQ∗, called a q-ary code on U

Cn . . . . . . . . . . . . the concatenated code of the basic code C

Cq,N . . . . . . . . . . the set of all q-ary balanced Huffman codes of size N

Cqn . . . . . . . . . . . the q-ary code of size qn all codewords having length n

cu . . . . . . . . . . . . codeword of u ∈ U

ck
u . . . . . . . . . . . . prefix of length k of cu

∆n . . . . . . . . . . . {(p1, ..., pn) ∈ [0, 1]n : 0 ≤
∑n

i=1 pi ≤ 1}

∆̊n . . . . . . . . . . . {(p1, ..., pn) ∈ (0, 1)n : 0 <
∑n

i=1 pi ≤ 1}

LL,q(P ) . . . . . . . min
C

LL,q
C (P ), optimal worst-case (average) running time

fn → a . . . . . . . a sequence tending to a as n goes to infinity

Γn . . . . . . . . . . . . {(p1, ..., pn) ∈ [0, 1]n :
∑n

i=1 pi = 1}

Γ̊n . . . . . . . . . . . . {(p1, ..., pn) ∈ (0, 1)n :
∑n

i=1 pi = 1}

Hq(P ) . . . . . . . . Shannon’s classical entropy for the alphabet size q

H(P ) . . . . . . . . . H2(P )

HL,q
ID (P ) . . . . . . q-ary identification entropy of degree L

Hq,N . . . . . . . . . . the set of all q-ary balanced Huffman trees with N leaves

LL,q
C (uL, v) . . . . L-identification running time for given uL, v and q-ary code C

LL,q
C (P, v) . . . . .

∑

uL∈UL

PuLLL,q
C (uL, v), average running time

LL,q
C (P ) . . . . . . . max

v∈U
LL,q

C (P, v), worst-case (average) running time
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8 Appendix

LL,q
C (P, Q) . . . .

∑

v∈U

Q({v})LL,q
C (P, v), expected (average) running time

LL,q(P, Q) . . . . min
C

LL,q
C (P, Q), optimal expected (average) running time

logq . . . . . . . . . . . logarithm to the base q

log . . . . . . . . . . . log2

[m + 1, n] . . . . . {m + 1, ..., n}

[n] . . . . . . . . . . . . {1, 2, ..., n}

N̄ (T ) . . . . . . . . . set of leaves of a tree T

N̊ (T ) . . . . . . . . . set inner nodes of a tree T

N (T ) . . . . . . . . . N̄ (T ) ∪ N̊ (T )

Q . . . . . . . . . . . . . {0, 1, ..., q − 1}

q-bit . . . . . . . . . . an element of Q

S∗ . . . . . . . . . . . .
⋃∞

d=0 S
d

Sc . . . . . . . . . . . . complement of S
(
S
k

)
. . . . . . . . . . . the set of all k-element subsets of S

supp(P ) . . . . . . support of P

TC . . . . . . . . . . . . code tree of the code C

Tx . . . . . . . . . . . . the subtree of T with root in x

U . . . . . . . . . . . . . finite set, the output space

(U , P ) . . . . . . . . source with output space U and output probability P

U . . . . . . . . . . . . . output random variable, U = idU

(Un, P n) . . . . . . discrete memoryless source

V . . . . . . . . . . . . . finite set, the user space, w.l.o.g. V = U

V . . . . . . . . . . . . . user random variable, V = idV

x, ..., x
︸ ︷︷ ︸

m

. . . . . . . . block of m identical elements x
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