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Abstract 

A carbon nanosheet is a new type of two-dimensional material that is fabricated by 

the electron-induced crosslinking of aromatic self-assembled monolayers. A novel 

bulge test in an atomic force microscope has been used to study the mechanical 

properties of carbon nanosheets. The elastic behavior was investigated by analyzing 

the pressure-deflection relationship in the bulge test. Young’s moduli of carbon 

nanosheets as a function of irradiation electron doses can be determined. With an 

electron dose above 50 mC/cm2, BPT nanosheets exhibit a stable Young’s modulus 

ranging from 6 GPa to 8 GPa and NBPT nanosheets ranging from 8 GPa to 10 GPa. 

CBPS nanosheets have a similar mechanical stiffness which appears to increase 

slightly at higher electron doses. The residual stresses that have been introduced into 

carbon nanosheets through the crosslinking and the transferring process are in the 

range of 40 to 100 MPa. In addition to the adhesion and corrugation of a carbon 

nanosheet on a SiO2 substrate, the adhesion between an AFM tip and a freestanding 

nanosheet was also estimated and analyzed. 

The viscoelasticity of carbon nanosheets was investigated with hysteresis, creep and 

stress relaxation being observed. We were able to probe the creep deformation with a 

strain rate above 1 % and the resultant creep rates range from 10-6 s-1 to 6×10-6 s-1 with 

a dependence on stress levels. Recovery after creep unloading has also been 

demonstrated. The ultimate tensile strength of carbon nanosheets was also determined 

by performing bulge tests. BPT and NBPT nanosheets have tensile strength ranging 

from 400 MPa to 700 MPa.  

We fabricated multilayer carbon nanosheets and the average Young’s modulus is 

demonstrated to be very similar to that of the single layer carbon nanosheet. 

Overlapping reduces the possibility of a rupture of a monolayer because of defects. 

Therefore it improves the mechanical stability and enhances the yield of suspended 

multilayer nanosheets in even larger sizes. 
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The structural transformation of carbon nanosheets upon annealing has been studied 

by various analytical techniques. From a mechanical point of view, annealing leads to 

a systematic increase of Young’s moduli with rising temperature, up to 48 GPa at 

~1000 K. 

Finally, polymer brushes grafted on biphenyl-based nanosheets provided a new class 

of material termed as “polymer carpet”. Both bulge test and nanoindentation were 

used to characterize the mechanical properties of polymer carpets. The polystyrene 

carpets experience a decrease in stiffness with decreases of thickness smaller than 20 

nm. The polystyrene brush component has a Young’s modulus of ~1.3 GPa for the 

thinnest polystyrene carpet. With a thicknesses over 30 nm, Young’s moduli range 

from 3 GPa to 4 GPa. 



Table of Contents 

III 

 

Table of contents 

Chapter 1 Introduction and Basics ····································································· 1 

1.1 Two-dimensional materials ····················································································1 

1.2 Self-assembled monolayers (SAMs)······································································3 

1.3 Electron-induced modification of SAMs ·······························································6 

1.4 Outline of the thesis ·······························································································8 

Chapter 2 Experimental ······················································································· 10 

2.1 Experimental techniques ························································································10 

2.1.1 Atomic force microscope ··························································································· 10 

2.1.2 Scanning electron microscope ···················································································· 14 

2.1.3 X-ray photoelectron spectroscopy ·············································································· 15 

2.1.4 Photolithogrphy ·········································································································· 17 

2.1.5 Critical point drying ··································································································· 19 

2.1.6 Nanoindentation ········································································································· 20 

2.2 Experimental aspects ·····························································································21 

2.2.1 SAM preparation ········································································································ 21 

 2.2.2 Electron crosslinking of SAMs··················································································· 22 

 2.2.3 Transferring of carbon nanosheets ············································································· 23 

 2.2.4 Preparation of PDMS stamps ····················································································· 25 

Chapter 3 Bulge Test and AFM Point Deflection Method ············································· 26 

3.1 Introduction ············································································································26 

3.2 Bulge test theory ····································································································27 

3.2.1 Spherical membrane equations ··················································································· 27 

  3.2.2 Energy minimization method ····················································································· 29 

3.3 Line scanning method ····························································································32 

3.3.1 Experimental description ···························································································· 32 

  3.3.2 Results and discussions ······························································································ 35 

3.4 Central point method······························································································36 

3.4.1 Introduction ················································································································ 36 



Table of Contents 

IV 

 

  3.4.2 Experimental description ···························································································· 36 

  3.4.3 Calibration of Sensor Height Signal ··········································································· 39 

  3.4.4 Deflection correction ·································································································· 40 

  3.4.5 Uncertainty analysis ··································································································· 43 

3.5 AFM point deflection method ················································································45 

3.5.1 Experimental description ···························································································· 46 

3.5.2 Calibration of cantilevers ··························································································· 47 

3.5.3 Results and discussions ······························································································ 48 

Chapter 4 Mechanical Properties of Carbon Nanosheets ·············································· 52 

4.1 Adhesion and corrugation of a carbon nanosheet and a substrate ·························52 

4.1.1 Introduction ················································································································ 52 

4.1.2 Evidence of strong adhesion between a nanosheet and a substrate ···························· 53 

4.1.3 Interfacial adhesion between a carbon nanosheet and a substrate ······························ 54 

4.1.4 Corrugation of a carbon nanosheet on a substrate ······················································ 56 

4.2 Local mechanical properties of freestanding nanosheets ·······································59 

4.2.1 Adhesion between an AFM tip and a freestanding nanosheet ···································· 59 

4.2.2 Deformation of a freestanding nanosheet due to an AFM tip ···································· 61 

4.3 Elastic properties of carbon nanosheets ·································································63 

4.3.1 Introduction ················································································································ 63 

4.3.2 Determination of elastic modulus of carbon nanosheets ············································ 64 

4.3.3 Electron irradiation dose effect··················································································· 68 

4.3.4 Size effect ··················································································································· 70 

4.4 Viscoelasticity of Carbon Nanosheets ···································································71 

4.4.1 Introduction ················································································································ 71 

4.4.2 Experimental description ···························································································· 72 

4.4.3 Results and discussions ······························································································ 73 

4.5 Rupture of carbon nanosheets ················································································79 

4.5.1 Introduction ················································································································ 79 

4.5.2 Determination of the ultimate tensile strength ··························································· 80 

4.5.3 Results and discussions ······························································································ 82 



Table of Contents 

V 

 

4.6 Multilayer carbon nanosheets ················································································86 

4.6.1 Fabrication of freestanding multilayer nanosheets ····················································· 86 

4.6.2 Mechanical properties of multilayer nanosheets ························································ 88 

4.7 Annealed carbon nanosheets ··················································································91 

4.7.1 Introduction ················································································································ 91 

4.7.2 Structural transformation of carbon nanosheets upon annealing ································ 92 

4.7.3 Mechanical properties of annealed carbon nanosheets ··············································· 94 

Chapter 5 Mechanical Properties of Polymer Carpets ····································· 97 

5.1 Introduction ············································································································97 

5.2 Fabrication of polymer carpets ··············································································98 

5.3 Mechanical characterization with bulge test ··························································101 

5.4 Mechanical characterization with nanoindentation ···············································105 

Summary and outlook ························································································ 108 

 Abbreviations ···················································································································· 111 

 List of Figures ······································································································ 113 

 List of Tables ····················································································································· 119 

 References ············································································································ 120 

 Acknowledgements ·········································································································· 124





Chapter 1 Introduction and Basics 

1 

 

Chapter 1 

Introduction and Basics 

1.1 Two-dimensional materials 

Richard P. Feynman, in his classic talk of 1959, pointed out that “there’s plenty of 

room at the bottom”. He foresaw that a new field of phenomena would come out and 

could be accompanied by an enormous number of technical applications, if we could 

manipulate and control things on the molecular or atomic scale. New materials can be 

synthesized with bottom-up strategies which exploit self-processes for the ordering of 

supramolecular or solid state architectures from the atomic to the mesosopic scale. 

Carbyne is an allotrope of the one-dimensional form of carbon that is composed of 

sp-hybridized carbon atoms. As a model for the production of carbyne, polyynes can 

be synthesized by bolting chains of acetylenic units together. So far, the synthesis of 

polyynes of up to 44 contiguous sp-carbons has been reported [1].  

Two-dimensional (2D) materials are some of the most fascinating research targets 

nowadays [2]. Graphene is an ideal system as a two-dimensional crystalline sheet of 

carbon atoms, for its infinite number of repetitive elements and long-range order. 

Strictly speaking, 2D materials are required to be handled as individual molecular 

units and it is also required that there are no interlayer forces existing in the materials 

and the two-dimensional structures are held together via inter- and/or intra-molecular 

interactions. There are many fundamental understandings which need to be clarified, 

including the basic equilibrium morphologies and their optical properties, transport 

properties and mechanical properties. Regarding applications, 2D materials can be 

used as ultrasensitive gas transducers when they are placed over cavities. If they are 

functionalized with defined anchor groups, 2D materials may serve as sensors to 

detect even single molecules absorbing on the surface. 2D materials can also provide 

a platform for the construction of well-defined three dimensional systems. With 

regard to a much wider range of applications, 2D materials with tunable capabilities in 
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mechanical stiffness, conductivity and mobility, transparency, morphology and pore 

size open up new possibilities in nanoscale device fabrication, sensors, imaging, 

separations, membrane mimetics and so on.  

Self-assembled monolayers (SAMs) provide a molecular-thickness limit in 2D 

materials. Enhancement of the mechanical stability by modification of SAMs allows 

us to obtain freestanding 2D polymeric nanosheets and handle them individually. 

However, in terms of a long range order, we may also refer to this new kind of 

material as “quasi-2D polymeric nanosheet”. They can be utilized as ultrathin and 

highly transparent supporting materials for nano-sized objects in microscopy methods. 

They should be very sensitive to external stimuli and may thereby find applications in 

ultrasensitive sensors. Selective chemical modification or biocompatible modification 

of the nanosheet improves its reactivity as a chemical or biological sensor.  

Both theoretical predictions and experiments on the mechanical properties of 2D 

materials are quite challenging. The theory of the elasticity of 2D systems has been 

discussed and mainly applied to solid Langmuir-Blodgett films [3]. As a true 2D 

material, graphene can be modeled as a membrane with zero bending stiffness. 

However, suspended graphene sheets exhibit random distributed ripples that indicate 

interactions between bending and stretching long-wavelength phonons [4]. In the 

same way, the bending stiffness of carbon nanosheets is not kept at zero but can be 

neglected in comparison with in-plane stiffness. It indicates that the in-plane 

deformation of carbon nanosheets could provide more useful information. According 

to the scaling law for 2D materials, the magnitude of deformation under load is 

proportional to scale. The first difficult task is to find a suitable experimental method 

to deform this molecular-thick nanosheet. In order to understand the general nature of 

the experiment data, a suitable theoretical model is also required for analysis. 

In this chapter, we will give a basic introduction related to SAMs and 

electron-induced modifications of SAMs as well as an outline of the thesis will be 

also described. 
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1.2 Self-assembled monolayers (SAMs) 

A monolayer is a single closely packed layer of atoms or molecules. In 1917, 

Langmuir investigated a large number of amphiphilic molecules on a water surface to 

figure out the forces involved in the adsorption and surface tension [5]. These 

amphiphilic molecules spreading upon an aqueous surface are called Langmuir 

monolayers. Later, Langmuir and Blodgett transferred the monomolecular layers from 

a water surface to a solid substrate, and multilayers (20~200 layers), which could be 

deposited on various substrates [6, 7]. The monolayer and multilayers that have been 

deposited onto a solid substrate are named Langmuir-Blodgett films. Even a single 

layer could be seen on polished chromium by using polarized light. The refractive 

index of those multilayers was determined from the reflection intensity of 

monochromatic light. These earlier studies were driven by the study of surface 

tension.  

In 1946, Zisman prepared a monomolecular layer by self-assembly of a surfactant 

onto a clean metal surface [8]. In 1980s, Sagiv reported the preparation of n

-octadecyltrichlorosilane (OTS) monolayers on various solid polar substrates in 

solution [9]. Nuzzo and Allara also reported the preparation of a series of organic 

disulfides that have been adsorbed on gold substrates in dilute solutions [10]. Since 

then, many other SAMs have been prepared and investigated among which 

 

Fig. 1 Schematic diagram of SAMs on a metal surface 
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alkanethiolates on gold are probably the most extensively studied system. SAMs of 

thiols on a gold substrate have been used to study interfacial phenomena including 

wetting [11], adhesion [12], tribology [13, 14], crystallization [15], electron transport 

[16], biochemistry and biology [17, 18]. 

The molecules for preparing SAMs consist of three parts: (1) a head functional group 

which can be chemically absorbed on a metal substrate, (2) a terminal functional 

group which determines the surface properties of SAMs, (3) in between there is a 

molecular backbone which provides a well-defined thickness, mechanical stability, 

electronic conductivity and optical properties, as schematically shown in fig. 1.  

The self assembly process can be achieved either from the solution or from the gas 

phase. In general, the formation of SAMs is not a single step process and it comprises 

multiple time scales and phases. Adsorption of docosanethiol (CH3(CH2)21SH) 

investigated by nonlinear vibrational spectroscopy indicates three different steps [19]: 

(1) a fast initial adsorption step described by Langmuir kinetics results in the coverage 

of 80~90 % and the time scale is 5~6 minutes, this step is related to chemisorptions of 

the head group; (2) a second step indicates a transition of hydrocarbon chains from a 

highly kinked to an all-trans conformation and the time scale is 3~4 times slower than 

the first step, this step is related to straightening of hydrocarbon chains; (3) a third 

step proceeds even slower (35~70 times slower than the second step) and it is related 

to reorientation of terminal functional groups. Both ex-situ and in-situ analytical 

techniques have also been used to investigate SAMs formation kinetics, such as 

electrochemical quartz crystal microbalance (EQCM) [20], grazing incidence X-ray 

diffraction (GIXD) [21], surface plasmon resonance (SPR) [22], atomic force 

microscope (AFM) [23], Fourier transform infrared reflection absorption 

spectroscopy (FT-IRRAS) [24] and so on. 

The reaction to forming SAMs on gold from thiols involves the breakage of a RS-H 

bond and formation of a RS-Au bond. The typical adsorption process of alkanethiol 

on Au can be expressed as follows: 
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3 2 n 3 2 n 2

1
CH (CH ) SH+Au CH (CH ) S-Au+ H

2
→                (1) 

Taking into account the thermodynamics of monolayer formation, there is a balance 

between enthalpic contributions of the reaction and entropy associated with the self 

assembly process. The adsorption enthalpy was found to be -20 kcal/mol [25]. The 

bond dissociation energy for RS-H and RS-Au is estimated to be ~87 kcal/mol and 

~40 kcal/mol, respectively. In addition, the formation of molecular hydrogen is 

favored over the dissolution of H•  into an Au matrix, for the reaction 22H H• → , 

104h∆ = −  kcal/mol. The heat involved in the reaction is -5 kcal/mol, which is 

available in the reactant. Self-assembly is a process from a disordered to an ordered 

system which indicates negative entropy associated with the formation of monolayer. 

The entropy of adsorption is determined to be -48 kcal/mol [26].  

Apart from the most extensively studied n-alkanethiol (AT) SAMs, thioaromatic 

SAMs are expected to have a different relation between intermolecular and 

headgroup-substrate interactions. In comparison to AT molecules, thioaromatic 

molecules have a more rigid chain which may have an influence on the molecular 

structure and coverage. 4-methyl-4'-mercaptobiphenyl assembled on Au (111) has 

been investigated by GIXD and low-energy atomic diffraction (LEAD) and two 

phases of different density similar to AT thiols were observed. In the low-density 

“stripped” phase, a commensurate rectangular ( )8 2 3× structure was identified. In 

the high-density “standing-up” phase, a commensurate hexagonal ( ) o3 3 R30×

structure was found [27]. Self-assembled monolayers formed from thiophenol, 

1,1'-biphenyl-4-thiol, 1,1';4',1"-terphenyl-4-thiol and anthracene-2-thiol on 

polycrystalline Au and Ag were characterized by X-ray photoelectron spectroscopy 

and angle-resolved near-edge X-ray absorption fine structure spectroscopy and it was 

found that the molecular orientations and orientational order of the adsorbed 

thioaromatic molecules depend on the number of aromatic rings, the substrate, and the 

rigidity of the aromatic system [28].   
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1.3 Electron-induced modification of SAMs 

The damage of X-rays, electrons and X-ray generated primary and secondary 

electrons on organic molecules and biological systems have attracted growing 

attention. SAMs have been used as a system for understanding the mechanism behind 

the damage done to organic molecules that are exposed to x-rays [29]. It indicates that 

the electrons instead of x-rays are responsible for the damage to SAMs. The genotoxic 

effect of ionizing radiation (x-rays) in living cells was investigated by detecting the 

transformation of DNA molecules due to the low energy electrons irradiation. It was 

illustrated by the mechanism that electrons initiate fragmentation of small molecules 

by the attachment of the incident electron which leads to the formation of a transient 

molecular resonance that subsequently decays either via electron autodetachment or 

bond dissociation [30, 31]. Dissociative electron attachment (DEA) is considered to 

contribute significantly to these damages. The DEA process can be represented by: 

*AB AB A Be− − −+ → → +                      (2) 

where *AB−
 is a superexcited state of the molecular anion which can dissociate to 

give molecular fragments A−  and  B.  

The damage of alkanethiol SAMs has been intensively investigated by various 

analytical techniques, such as X-ray photoelectron spectroscopy (XPS) [32, 33], 

angle-resolved near edge X-ray absorption fine structure spectroscopy (NEXAFS) [33, 

34], infrared reflection-absorption spectroscopy (IRAS) [34], surface enhanced 

Raman spectroscopy (SERS) [35], static secondary ion mass spectroscopy (SIMS) 

[36], advancing water contact angle measurements [34] and electron stimulated 

desorption (ESD) [37]. Upon electron exposure, alkanethiol SAMs undergo cleavage 

of C H− , C S−  and C C− bonds, formation of crosslinking C C=  bonds and 

desorption of small molecular species including H2, CH2CH3 and CH2CH2CH3. 

Furthermore, cleavage of Au-thiolate bonds, desorption of S-containing fragments and 

appearance of disulfide, degradation of SAM-vacuum interface were also observed. 
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Therefore alkanethiol SAMs have been demonstrated to act as self-developing 

positive electron beam resists. The critical electron dose that cause substantial change 

of SAMs is influenced by substrate conductivity and molecular structures [38].  

For aromatic SAMs, the low-energy electron induced modification has been explored 

with XPS, NEXAS, AFM and infrared spectroscopy (IR) [39-41]. Unlike aliphatic 

SAMs being damaged when exposed to electrons, aromatic molecules remain bonded 

on the substrate and maintain their orientation. An increased etching resistance and 

changes in IR spectra were observed. Formation of crosslinking between adjacent 

molecules has been demonstrated, which implies that aromatic SAMs can be used as 

negative electron beam resists. Furthermore, the nitro group terminated aromatic 

 

Fig. 2 Schematics of the electron induced crosslinking process: (a) NBPT SAMs are 

exposed to the low energy electrons; (b) SAMs are dehydrogenated and crosslinked, with 

terminal nitro group turning into amino group; (c) Amino group can be used to couple 

other molecules. (Images taken from reference 41 ) 

(a) (b) (c) 

 

Fig. 3 (a) DFT-optimized BPT SAMs on Au(111) following the 2 3× 3  

superstructure. (b) After dehydrogenation BPT SAMs form “graphene-like” nanoflakes. 

Insets indicate side views of four BPT units. (Images from reference 43) 

(a) (b) 
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SAMs undergo conversion of a nitro group into an amino group, which is utilized as 

“chemical nanolithography” for immobilizing a variety of molecules on specific 

patterns in molecular nanotechnology and biology [41]. The electron induced 

crosslinking process on NBPT SAMs is schematically shown in fig. 2. 

A very detailed model of electron-induced crosslinking in aromatic SAMs based on 

experimental and theoretical analysis has been presented by Turchanin [42]. The 

UV-photoelectron spectra (UPS) suggest a prevailing formation of stable dimers with 

four C-C crosslinks between two adjacent biphenyl molecules. Density functional 

theory (DFT) calculations have been performed to understand electron-induced 

cross-linking of biphenylthiol SAMs on Au (111) [43]. After dehydrogenation of BPT 

SAMs, molecules tend to interact covalently to spontaneously form small 

“graphene-like” nanoflakes, as schematically shown in fig. 3. However, the 

mechanism of electron-induced crosslinking is far more complex than that is currently 

understood, and other analytical techniques such as scanning tunneling microscope 

(STM) are required to perform more detailed experiments. 

1.4 Outline of the thesis 

A basic introduction related to SAMs and electron-induced modifications of SAMs is 

presented in this chapter. Chapter two will give fundamental principles of techniques 

involved in our experiments. The operational principle of the AFM is to be presented 

firstly, followed by scanning electron microscope (SEM), XPS, photolithography, 

critical point drying (CPD) and so on. The experimental details of SAM preparation, 

crosslinking and transferring will also be presented in this chapter. 

Chapter three introduces experiments and theory of bulge test which is the most 

widely used method for the mechanical characterization of free standing thin films. 

Two methods (Line Scanning Method and Central Point Method) for determining the 

deflection of membranes are presented in detail and the AFM point deflection method 

and some results will also be presented in this chapter. 
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Chapter four discusses the mechanical properties of carbon nanosheets. First the 

adhesion and corrugation between a carbon nanosheet and a substrate will be 

discussed. The elastic response and viscoelasticity of carbon nanosheets are 

investigated by means of bulge test. Young’s modulus and the residual stress of 

carbon nanosheets which are prepared from different molecules are derived and the 

electron dose effect is also investigated. A rupture test is utilized to determine the 

ultimate tensile strength of carbon nanosheets. Furthermore, multilayer carbon 

nanosheets and annealed nanosheets will also be presented in this chapter.  

Chapter five presents the mechanical properties of polymer carpets. The fabrication of 

polymer carpets is described and a theoretical analysis of such a composite system is 

discussed. Young’s modulus as a function of polymerization time is reported and 

discussed. Nanoindentation has also been employed to determine the hardness and the 

elastic modulus of the polymer carpet. 
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Chapter 2 

Experimental 

2.1 Experimental techniques 

2.1.1 Atomic force microscope (AFM) 

In 1986, Binnig, Quate and Gerber invented the first atomic force microscope that has 

overcome disadvantages of the STM which has limited applications on conductive or 

conducting layer coated specimen.  

An AFM has a general set-up with a sharp tip (with a radius of typically 10~100 nm) 

mounted on a micro-machined cantilever. The tip was brought in a well-controlled 

close proximity to the sample. During the scanning process, interaction forces 

between the tip and the sample result in the bending of the cantilever, as shown in fig. 

4. Vertical bending from its equilibrium is proportional to the normal force applied to 

the tip, while lateral forces cause a twisting of the cantilever. A piezoelectric tube is 

 

Fig. 4 Schematic diagram of a general AFM set-up: A laser beam is transmitted and 

focused on the backside of a cantilever and reflected from it into a four-quadrant 

photodetector. A sample is mounted on a piezo tube that can move the sample in three 

directions. 
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used as a stage for mounting the samples. It can move in z direction for maintaining a 

constant force or a constant height, also in X and Y direction for scanning the samples. 

Measurements can be done in a variety of environments, such as ambient air, liquid 

and ultrahigh vacuum (UHV). 

In the contact mode of operation, the cantilever bending under scanning reflects a 

repulsive force between tip and sample. It mainly contains the constant force mode, 

the constant height mode and the lateral force mode. In the former two modes, a 

vertical cantilever deflection is measured by an optical beam method and converted 

into an electrical signal DFL. In the constant force mode of operation, the deflection 

of cantilever is maintained by the feedback circuit on the preset value, so that the 

vertical displacement of the scanner gives rise to the topography of the sample under 

investigation. In the constant height mode of the operation, the scanner maintains a 

fixed end of the cantilever on the constant height value, so that the deflection of 

cantilever gives rise to the topography of the sample under investigation. In the lateral 

force mode, besides the cantilever deflection in normal direction, an additional torsion 

bending of cantilever occurs and thus is used to record the lateral force. The main 

advantage of the contact mode is high scanning speed. Its disadvantage is requirement 

of a sufficiently smooth surface. The damages due to scratching with tip have a high 

 

Fig. 5 Idealized sketch of tip-sample forces. Different operation modes can be performed 

in contact region, intermittent contact or non-contact region. 
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probability to happen on soft materials such as polymers and biological specimen.  

In the intermittent contact mode of operation, an oscillating cantilever close to or at 

its fundamental resonance frequency is used to scan the sample. The force sensed by 

the tip is not only an attractive force but also a repulsive force that concerns 

oscillation with a relatively high amplitude (typically 100~200 nm). Such a force 

gradient has an influence on the vibration amplitude of the cantilever and also on the 

frequency of the cantilever. A feedback system adjusts the height of the cantilever 

base to maintain the vibration amplitude at a constant set-point value. Therefore the 

topography of the sample is achieved. A phase shift occurs in the inhomogeneous 

sample and thus the phase contrast imaging mode will give additional information on 

the material being scanned.  

In the non-contact mode of operation, the cantilever is forced to vibrate at a preset 

frequency slightly above its resonance frequency. The amplitude of oscillation is in 

the range of a few nanometers (less than 10 nm) where a long range attractive force 

dominates. This has the advantage that the tip never gets into contact with the sample 

and therefore it can be avoided destroying the samples. 

Tip-sample interactions 

When the tip and the sample are in contact, the elastic forces give rise to both sample 

and tip deformations. If we consider only the elastic force, the elastic deformation in 

the contact zone is termed as Hertzian theory. The solution relates to the loading force 

F  and the penetration depth h :  

3
1/2 3/2 4

3

Ea
F ER h

R
= =                        (3) 

where R  , a  and E  are the tip curvature radius, the contact circle radius and the 

reduced Young’s modulus for the tip and the sample by the equation below 

2 21 11 tip sample

tip sampleE E E

ν ν− −
= +                       (4) 
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The Johnson, Kendall and Roberts (JKR) model considered the adhesion within the 

contact regime in a Hertz model, which accounts for the influence of the Van der 

Waals force within the contact zone [44]. 

3
34

8
3

Ea
F Ea

R
πγ= −                        (5) 

whereas γ  is the work of adhesion. 

The Derjagin Muller and Toropov (DMT) theory also considered Van der Waals 

interactions outside the elastic contact regime and was applied to tips with a small 

curvature radius and high stiffness, which weakens the elastic repulsive forces [45]. 

34
2

3

Ea
F R

R
π γ= −                        (6) 

Since water adsorbs at many surfaces, it tends to wet the tip and may form a concave 

or convex meniscus in between the tip and the sample. The maximum attractive 

capillary force acting on the tip is simply given by 

4 coscF Rπγ θ= −                          (7) 

where the contact angles θ  with the sample and the tip are assumed to be equal. 

When the tip is away from the sample, Van der Waals interaction has to be taken into 

account. Considering the probe with a sphere at a small tip-sample separation, the 

corresponding force is given as 

2
1 2

26

n n AR
F

h

π=                           (8) 

where A  is the Hamaker constant ( 78 610 J mA −≈ ⋅ ), 1n  and 2n  are the 

concentrations of tip and sample molecules, h  is the tip-sample separation. For the 

tip radius of 10 nm and separation of 0.1 nm, the force is 93.3 10 N−× .  
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2.1.2 Scanning electron microscope (SEM) 

The first commercial SEM was developed by Charles Oatley and Gary Stewart in 

1965. It is widely used to image the sample surface from signals of interactions 

between electrons and atoms of the sample. Characteristic information from SEM 

comprises topography, morphology, composition and crystallographic information. 

The electron beam is emitted from the filament cathode (e.g. tungsten) in the electron 

gun. The beam is then focused by two condenser lenses: the first one forms the beam 

and limits the amount of current in the beam and the second one forms the beam into 

a thin and coherent beam with a spot size 0.4~5 nm. The beam then passes through a 

set of scan coils which are usually located in the final lens to sweep the beam in a 

raster fashion with a certain scan speed to focus the beam on the part of sample being 

investigated. The secondary electrons being emitted from the sample are collected and 

analyzed by a detector which gives a topographic contrast. The backscattered 

electrons may also be detected to give further compositional contrast.  

  

 

Fig. 6 Block diagram of a typical SEM (Image redrawn from J.W.S. Hearle, J.T. Sparrow, 

P.M. Cross, 1972) 
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2.1.3 X-ray photoelectron spectroscopy (XPS) 

XPS is a technique for surface analysis, such as elemental composition, chemical or 

electronic state of elements, and in-depth distribution of elements. In 1954 XPS 

equipment was developed by Kai Siegbahn who received a Nobel Prize in 1981 for 

this work. The mechanism of XPS is based on the photoelectric effect which describes 

the ejection of electrons when photons are impinging on the surface. In an UHV 

environment, monochromatic X-rays are used to irradiate the sample and the energy 

of those emitted photoelectrons are analyzed by an electrostatic analyzer before the 

intensity of the defined energy is recorded by a detector.  

At an atom with a core hole created by X-ray photons, you can observe the decay of 

an electron from a higher energy level to fill the vacancy in several ways, either in the 

form of characteristic X-ray, or in the form of an Auger electron emitted from an outer 

shell.  

The kinetic energy of ejected photoelectrons KE  is determined by the energy of 

X-ray radiation, hv , binding energy of core electrons, BE , and work function of 

spectrometer, SPΦ . 

K B SPE hv E= − − Φ                         (9) 

Due to the fact that the binding energy is characteristic of core electrons for each 

element, it also depends on the chemical state of that atom, such as oxidation states 

and ligands of that atom.  

However, unlike the photoelectric lines, the kinetic energy of Auger lines are 

independent of photon energy of the X-ray source and only correspond to the 

difference between the states involved in the whole process, which is the energy of 

initial electronic transition and the ionization energy of the electron shell from which 

the Auger electron was emitted.  

If the attenuation length of electrons could be determined by experiments and the 
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elastic electron scattering was neglected, the thickness of an overlayer thin film can be 

determined by comparison of the XPS signal between the clean substrate and that of 

the specimen.  

0 exp( )
cosS S

t
I I

λ θ
= −                        (10) 

where t  is the thickness of the overlayer film, SI  is the substrate intensity from 

under the overlayer thin film, and 0SI  is the pure substrate intensity, θ  is the 

emission angle and λ  is the attenuation length of the electrons of the thin film 

material. In order to collect photoelectrons at a more grazing emission angle, the 

analyzed region can be made more surface-localized and the sensitivity increased. 

XPS detects those electrons ejected from the surface of the specimen. The deeper 

emitted photoelectrons ( 5t λ≥ ) would be captured or trapped into the material due to 

the limitation of the mean free path of low energy electrons. Fig. 7 shows the mean 

free path of electrons in solids as a function of electron energy. 

 

  

 

Fig. 7 The mean free path of electrons in solids, the dashed curve is theoretical 

calculation and the dots are experimental measurements [47].  
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2.1.4 Photolithography 

Optical photolithography is a process of transferring a geometric pattern from a photo 

mask to a light-sensitive photoresist on the substrate. It has been a crucial technique in 

the development of the semiconductor industry from the traditional planar process to 

current super-large-scale integration (SLSI) with one million to ten million transistors 

on single chip. The process combines several complex steps in sequence: cleaning, 

spin coating, pre-baking or soft baking, exposure, post exposure baking, development, 

etching, photoresist removal and so on.  

Fig. 8 describes a simple scheme of photolithography, where photoresists are 

classified into positive and negative types. For positive photoresists, the exposed 

regions become soluble to the developer and the unexposed regions remain insoluble 

to the developer. For negative photoresists, the exposed regions become insoluble to 

the developer and the unexposed regions are still soluble to the developer. 

 

Fig. 8 Scheme of photolithography: 1) Cleaning the silicon wafer; 2) Spin coating the 

photoresist on the wafer; 3) Expose the photoresist to UV light through a photo mask; 4) 

For a negative photoresist the exposed region remain on the wafer, however for a positive 

photoresist the unexposed regions remain on the wafer after development. 
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There are three major exposure methods: contact printing, proximity printing and 

projection printing. Contact printing provides physical contact between the photomask 

and the photoresist and allows for high resolution (0.5~1 um). In proximity printing, a 

small gap from a few microns to tens of microns between the photomask and the 

photoresist is maintained to avoid damages. Proximity printing has a resolution of 2~4 

microns. In projection printing, patterns are transferred by optical imaging of a 

photomask on photoresist. The resolution depends on the optical imaging system. In 

our work, soft contact printing is utilized to get a high resolution of structures. 

After development and removal of undesired photoresist, etching is carried out to 

remove materials from the wafer. It consists of wet etching and dry etching: wet 

etching utilizes liquid chemicals and etchants; dry etching is usually accomplished by 

chemical reactions using reactive gases or plasma with high selectivity. In our work, 

wet etching is the primary method to remove Au, Cr, SiO2, Si3N4, and Silicon. 

Apart from the rigid silicon wafer as rigid substrate on which complex nanostructures 

are constructed, soft and elastomeric substrates are also being desired to build flexible 

plastic optoelectronic systems. Poly (dimethysiloxane) (PDMS) is one excellent 

example for such a purpose. Patterned metal on a PDMS substrate with small feature 

sizes can be generated using optical lithography. Annealed carbon nanosheets can be 

transferred on a PDMS stamp with well-controlled metal electrodes, piezoelectricity 

properties are investigated by stretching or compressing the flexible PDMS stamps. 

Furthermore, patterned Au/PDMS can be employed directly as a photomask which 

has some additional advantages compared to a rigid photomask. Edge-pattern 

generation widens its applications and metal cracks can be avoided. A soft and 

flexible photomask might contribute to organic semiconductor devices. 
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2.1.5 Critical point drying 

Critical point drying is a method to remove liquid in a controlled way, without 

collapsing or deforming the structure of wet specimens. It is widely used in the 

preparation of biological specimens for SEM. It is also used in the final fabrication 

step of releasing microstructures in the Micro- Electro-Mechanical Systems (MEMS) 

devices. The reason for the specimens being damaged by normal air drying is due to 

large surface tension created in a liquid/gas interface. During the air drying process, 

liquid/gas interface moves and the surface tension causes the collapse of those 

structures.  

In critical point drying, a dehydrating fluid miscible with water such as ethanol or 

acetone gradually replaces the water contained in a specimen. The next step is to 

substitute a transitional fluid for the dehydrating fluid in the specimen and then 

removing the transitional fluid. The transitional fluid commonly used is carbon 

dioxide (CO2) and the critical temperature and pressure of carbon dioxide are 31° C. 

and 1,072 psi, respectively. Then the specimens are heated and pressurized above the 

critical pressure and critical temperature. The critical point of a liquid is when its 

temperature and pressure are at or above the critical temperature and pressure and the 

densities of the liquid phase and vapor phase are equal. This absence of a phase 

boundary eliminates surface tension that exists when changing a liquid to a gas. 

In our case, a double layer PMMA needs to be removed by acetone from the surface 

of a monolayer. Specimens are immersed carefully into the cylindrical drying 

chamber of the Critical Point Dryer (Tousimis Autosamdri-815B, Series B) that is 

filled with acetone. After PMMA is completely dissolved by acetone (60 min), CO2 is 

introduced into the chamber to replace acetone according to a predefined time. Finally 

the dryer heats and pressurizes CO2 to its critical point and gas CO2 bleeds off to 

leave the monolayer dry. 
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2.1.6 Nanoindentation 

Nanoindentation tests were carried out with Agilent Nanoindenter G200, as shown in 

fig. 9a. It can be utilized to determine Young’s modulus and the hardness of the 

desired materials. A G200 enables the measurement of deformation over six orders of 

magnitude from nanometers to millimeters. The actuating and sensing mechanism is 

shown schematically in fig. 9b. A load is exerted through the coil-magnet assembly by 

controlling the current in the coil which is mounted on top of the indenter column. 

The field of the coil acts against the permanent magnet and a force is exerted onto the 

column. The indenter column is supported by very delicate leaf springs, which are 

parts of the capacitance device for measuring the displacement of the indenter column. 

The stage is mobile for positioning the sample with an accuracy of 1um . 

The robust standard G200 XP head uses a pyramidal diamond Berkovich indenter tip 

and applies the continuous stiffness technique. A Berkovich indenter is a three faceted 

tip with semi angle (θ ) of 65.3o. 

  

  

Fig. 9 (a) The instrument image of Agilent Nano Indenter G200; (b) The schematic 

diagram of the actuating and sensing mechanism of the Nano Indenter G200 [48]. 

(a) (b) 
 



Chapter 2 Experimental 

21 

 

2.2 Experimental aspects 

2.2.1 SAM preparation 

Preparation of BPT/NBPT SAMs 

For the preparation of 1,1'-biphenyl-4-thiol (BPT) self-assembled monolayers (SAMs) 

and 4'-Nitro-1,1'-biphenyl-4-thiol (NBPT) SAMs, we use a 300 nm polycrystalline Au 

layer with (111) crystal planes epitaxied-grown on a mica substrate (Georg Albert 

Physical vapor Deposition). The substrates are put into an UV-Ozone cleaner (UVOH 

150 LAB FHR Anlagenbau) for 5 min in order to remove main organic 

contaminations from the surface. After that the substrates are rinsed with ethanol 

twice and blown dry in nitrogen stream. Subsequently the substrates are immersed 

into a ~10 ml solution of dry and degassed dimethylformamide (DMF) with 10 mmol 

BPT or NBPT molecules for 72 h in a sealed flask under nitrogen atmosphere. After 

the samples are taken out, they are rinsed firstly with DMF and then with ethanol 

twice, blown dry in a stream of nitrogen. 

Preparation of CBPS SAMs 

To prepare 4'-[(3-trimethoxysilyl)propoxy]-[1,1'-biphenyl]-4-carbonitril (CBPS) 

SAMs, we use silicon nitride substrates (150 nm Si3N4 /10 nm SiO2, CrysTec,  

Germany). The substrates are cleaned with Piranha solution (H2SO4:H2O2 in volume 

ratio of 3:1) for 20 min to remove organic residues. The substrates are rinsed firstly 

with purified water and mounted on a Teflon sample holder under water. Then the 

substrates are rinsed with fresh purified water again and then with methanol, and 

blown dry in a stream of nitrogen. Afterwards the substrates are immersed into a ~10 

ml solution of dry and degassed toluene with 10 mmol CBPS molecules for 120 h in a 

sealed flask under nitrogen atmosphere. After being taken out, they are rinsed firstly 

with ethyl acetate and mounted on a Teflon sample holder under solvent. Then the 

samples are rinsed with fresh ethyl acetate again and then with methanol, and blown 

dry in nitrogen. 
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Sample storage 

In order to avoid contamination from moisture or oxidization, samples are always 

stored in Petri dishes with a piece of cleanroom paper on the bottom. The Petri dishes 

are filled with an argon atmosphere and sealed off with Parafilm (Alcan Packaging) 

strips. 

2.2.2 Electron irradiation of SAMs 

Electron-induced crosslinking of aromatic SAMs is achieved in a home-made 

projection lithography instrument. For BPT and NBPT SAMs, the samples are simply 

mounted on the sample stage with clamps for the purpose of fastening and electrical 

contact. For CBPS SAMs, electrical contact is attained by gently scratching 

continuous cross lines on the blank margin of the sample with a diamond cutter and 

adding gallium indium eutectic (99.99%, Sigma-Aldrich, Germany) and conductive 

pure silver paint (Conrad). Then wait for 10 min until the electrical contact is dry and 

then mount the sample with the conducting region having close contact with the 

clamps.  

Afterwards the samples are put into a vacuum chamber where a high vacuum (<5×

10-8 mbar) can be achieved approximately 1h after both the rotary vane pump and 

turbomolecular pump are switched on. Electron irradiation is operated with an 

electron floodgun at an electron energy of 100 eV and a current of 3 mA. The electron 

beam is made much more homogeneous with a scan controller that is mounted at the 

lower part of the cylinder where a filament is inside. Electron doses are calibrated 

from five faraday cups which are located beneath the metal plate for the holding of 

the samples. A typical electron dose of 50 mC/cm2 is required to obtain the fully 

crosslinked SAMs.  

Patterning of SAMs is attained by placing a shadow mask, e.g. grid for transmission 

electron microscope (TEM) in close proximity to the surface of the samples, with 

clamps which are used for the purpose of close contact and eliminating the charging 

effect.   
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2.2.3 Transferring of carbon nanosheets 

Double layer Electron-Beam resist poly(methyl methacrylate) (PMMA) are used as a 

transfer medium. The first layer is PMMA (50K, AR-P 631.09, Allresist) with a lower 

molecular weight which will be further diluted to a 4% solid content with 

chlorobenzene. This layer assures the cleanness of nanosheets because it can easily 

and more completely be removed. The first layer is spincoated to a nominal thickness 

of 130 nm at 2000 rpm for 30 s and baked on a hotplate at 90℃ for 5 min. The 

second layer PMMA (950K, AR-P 671.04, Allresist) with a higher molecular weight 

provides a mechanical stability for the transferring process. The second layer is 

spincoated to a nominal thickness of 310 nm at 4000 rpm for 30 s and also baked at 

90℃ for 5 min. For Au/mica substrates, all four edges are cut ~1 mm with a scissor 

from the samples to avoid resists’ blocking in the releasing process. For silicon 

substrates, the edges covering the resists are either broken off using a diamond cutter 

or gently scratched with a sharp blade. 

The traditional way to release PMMA/nanosheet/Au from mica is the immersion of 

the sample in hydrofluoric acid (48 %) for 20~60 min. Mica is thus etched both from 

the back side and its lateral interface with Au. The separation of 

PMMA/nanosheet/Au from mica is attained by carefully dipping the sample into 

water. We found recently that the sample floats on the liquid level of I2/KI etching 

bath (I2:KI:H2O with ratio of 1g:2g:10ml ) for 20~60 min and the Au layer is also 

etched laterally which allows us to separate PMMA/nanosheet/Au and mica. 

Afterwards the PMMA/nanosheet/Au structures are put into an I2/KI etching bath for 

15 min. After the Au layer is completely removed, the PMMA/nanosheet is 

transferred to a fresh water bath for rinsing. 

With the new technique we can really avoid using hydrofluoric acid (HF) as an 

etching bath and handling it with extreme care. However, for releasing 

PMMA/nanosheet from Si3N4/Si substrate we have to use HF as an etching bath. 

Now we have a PMMA/nanosheet composite swimming on the purified water surface. 
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Other substrates or devices, such as SiO2/Si, Si3N4/SiO2/Si, quarts, TEM grids, Si 

substrate with window-structured openings, PDMS stamp with metal electrodes, 

Au/Cr/SiO2/Si in transistor structures, can be used as new substrates for the 

monolayer. By fishing out the PMMA/nanosheet with a new substrate and drying it 

carefully with cleanroom paper and gently blow drying with a small stream of 

nitrogen, the transferring process is accomplished. Baking the new sample on a 

hotplate at 90℃ for 2 min could also allow for a much better contact and an adhesion 

between monolayer and new substrate. 

Removal of transfer medium 

For dissolving PMMA, the sample is mounted on a suitable sample holder. If the 

monolayer is on a solid substrate, the sample is simply immersed into an acetone 

solution and then put into an ultrasonic bath for 10~15 min. Later on the sample is 

immersed into another acetone solvent and a methanol solvent for a short while, and 

blown dry in a stream of nitrogen.  

If the monolayer is suspended on the substrate, removing of PMMA is done either by 

a home-made setup that obtains a smooth flowing of liquid or by CPD that avoids 

surface tension induced damage to the monolayer. The sample in the former setup is 

put in an empty glass vessel which is gradually and smoothly filled with acetone. The 

sample is immersed in acetone for 40~60 min, and then put in methanol by the same 

procedure, and lastly blown dry in a stream of nitrogen. By means of CPD (Tousimis 

Autosamdri-815B, Series B), the sample that has been mounted on a sample holder is 

carefully immersed into acetone that fills the chamber of CPD. After 60 min, the 

whole chamber is cooled down with liquid CO2 and then liquid CO2 is introduced into 

the chamber in a very fine stream to avoid turbulence. Liquid CO2 is going to 

substitute acetone according to a predefined time (15 or 20 min). Finally the dryer 

heats and pressurize CO2 to its critical point and gas CO2 bleeds off to leave the 

monolayer dry. 
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2.2.4 Preparation of PDMS stamps 

Polydimethylsiloxan (PDMS) is a silicon-based organic polymer which is widely used 

in microchannel systems, medical devices and flexible organic electronic devices. For 

preparation of PDMS, 10 parts of prepolymer and 1 part of curing agent by weight 

ratio are put in a large petri dish and mixed uniformly with a glass rod for a couple of 

minutes until the entire mixture is full of bubbles. Then the mixture is placed in a 

vacuum oven to be degassed for 15 min. Afterwards the mixture is poured into 

another petri dish with molds which are lying flat on the bottom, such as a pressure 

cell or Si substrate. In order to avoid bubbles, the new petri dish is degassed in the 

vacuum oven again for 2 min. The petri dish is transferred to an oven and cured at 70℃ 

for 2h. The PDMS stamp is gently cut around the pattern with a razor blade and 

removed carefully from the petri dish and also separated from the mold if necessary.  
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Chapter 3 

Bulge Test and AFM Point Deflection Method 

3.1 Introduction 

Bulge testing is one of the most important techniques for the mechanical 

characterization of freestanding thin films. It was first introduced by Beams in 1959 

[49]. In this technique, a membrane is clamped over an orifice with circular or 

rectangular geometries. A controlled pressure is uniformly applied to the film through 

the orifice and the corresponding deflection of the membrane is measured. The 

mechanical properties, e.g. Young’s modulus and residual stress, can be determined 

from the pressure-deflection relationship. The advantages of this technique are that it 

can measure intrinsic membrane properties without any substrate effect, 

microstructures of the membranes under load or unload and could be observed and 

investigated to have more understanding of mechanism. 

In the past, sample preparation was very crucial to the results, because the results are 

quite sensitive to the dimension of membranes. With the development of 

micromachining techniques and improvements in theoretical analysis, many 

preparation problems have been already overcome and the bulge test has been more 

and more accurately understood. The initial states of films, such as residual stress, 

wrinkling, initial height, will have an influence on the pressure-deflection behaviors 

of thin films. Residual stress is an important parameter in device fabrication and 

affects performance of those devices. Failure to consider the initial height of the 

membrane will cause an apparent nonlinear elastic behavior [50]. The effects of 

bending stiffness were investigated by Vlassak [51], and he found that a bending 

momentum was only significant in the region close to the edge of the membranes.  

Until now, the deflection of a membrane was monitored by an optical microscope 

either by viewing the membrane from the side [52] or by using a laser interferometer 

[53]. Both approaches have a rather low resolution in the range of hundreds of 
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nanometers to micrometers. The atomic force microscope enables the recording of the 

sample topography with nanometer resolution and is used as an indenter to perform 

indentation on freestanding membranes with low stiffness [54] as well as on graphene 

monolayers [55]. The combination of a bulge test with an AFM has been reported 

where the curvature of the membrane was determined by AFM [56], while deflection 

was measured with a laser autofocus displacement sensor. 

In our work, the mechanical characterization of carbon nanosheets has been carried 

out by means of an in-situ bulge test in an AFM, where the AFM is used to record the 

deflection of the membrane’s centre either by dynamically scanning a bulged 

membrane (Line Scanning Method) or by statically approaching the center of the 

membrane and measuring the deflection with a sensor built in the piezotube of the 

AFM (Central Point Method). The technique also allows us to determine the creep 

deformation and the ultimate tensile strength of carbon nanosheets. 

3.2 Bulge test theory 

Beams [49] and his coworkers derived a simple model to describe the stress and strain 

in the film. The model featured a circular bulged membrane with spherical cap 

geometry. From such an assumption, different equations can be derived for thin 

membranes with different initial conditions. In the following section, the models of 

bulge test will be presented in a detailed way. 

3.2.1 Spherical membrane equations 

A bulged circular membrane is schematically shown in Fig. 10, where P is the applied 

pressure, σ is the stress of the membrane, t is the membrane thickness, a is the radius 

of the membrane and R is the corresponding bulge radius of its curvature, which is the 

same in both radial and circumferential directions. In Beam’s equation, the 

relationship between pressure P and stress σ is assumed to be 
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2

4t
P h

a

σ=                             (11) 

The stress σ in the membrane is a sum of the stretching stress and the residual stress.  

01

Eσ ε σ
ν

= +
−

                         (12) 

where ε  is the average strain of the membrane, E is Young’s modulus, ν  is 

in-plane Poisson’s ratio, and 0σ is residual stress.  

The stress σ can be derived from the condition of the force equilibrium, resulting in 

the standard formula for stress in a thin-walled spherical pressure vessel: 

2 2R P Rtπ π σ=                           (13) 

2

PR

t
σ =                              (14)                                                             

To apply this to the bulge test, it is rewritten in terms of the deflection height of the 

bulged film in the case where the bulge height, h, is much less than the membrane 

radius, a. The bulge radius of curvature, R, can be written as: 

 

Fig. 10 Schematic diagram of a spherical cap geometry used to calculate the stress and the 

strain in a bulge test 
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2 2

a h a
R

h h

+= ≈                          (15) 

The strain in the membrane can be similarly derived using geometry with the 

assumption that deflection h is much more small than a. The strain is defined as the 

change in arclength divided by the original arclength with the following result: 

2

2

2

3

l R a h

l a a

θε ∆ −= = =                       (16) 

By substituting Eq. 12 and Eq. 16 into Eq. 11, the final form of Beam’s equation 

is written as: 

       30
1 22 3

t Yt
P c h c h

a a

σ= +                       (17) 

where c2=8/3 and c1=4, Y, the biaxial modulus, is defined as 
1

E

ν−
. 

3.2.2 Energy minimization method 

One common approach to model the deflection behavior of thin membranes is the 

energy minimization method. In this method the shape of the deformed membrane is 

assumed in such a way that the strain energy of the whole system is minimized.  

Circular membranes 

The solution for circular membranes can be derived by defining the shape of the 

deformed membrane. The first solution was derived by assuming that the shape of the 

deformed membrane as that of a clamped circular plate [57], 

22

1
r

w h
a

  = −  
   

                       (18) 
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where w  is the vertical deflection of the membrane and h is the deflection at 0r = , 

which means the bulge height. This shape function is valid for very small deflections. 

One can obtain the following pressure-displacement relation by means of energy 

minimization method.  

3 0
4 2

47

(1 ) 3

tEt
P h h

a a

σν
ν

− = + −  
                (19) 

The second solution was derived by Lin [58]. The shape was defined as a circular arc 

assuming that the bulge height is much less than the film radius: 

2

1
r

w h
a

  = −  
   

                      (20) 

In the same way, the corresponding pressure-displacement equation is expressed as 

3
3

4 2 4 2

16 16
0.488

3 (1 ) 3 (1 )

Et Et
P h h

a aν ν
= +

− −
             (21) 

The pressure-displacement curves corresponding to the three models are shown in fig. 

11. It was found that both energy minimization methods predicted more compliant 

membrane behaviors than the spherical membrane equation. Moreover, the two 

energy minimization methods showed a different dependence on the Poisson’s ratio.  
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Fig. 11 Comparison of pressure-displacement relationship from three models. 
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Square and rectangular membrane equations 

Vlassak and Nix [59] have developed a model based on an energy minimization 

method for analysis of the deflection of both square and rectangular models. The 

potential energy of the total system can be written as, 

2 2 2
2

1
2 (1 )

2(1 ) 2x y x y xy

Et
V dxdy pwdxdyε ε νε ε ν γ

ν
 = + + + − − −  

∫∫ ∫∫
 
  (22) 

where xε  and yε  are the strain components in the x-direction and in the y-direction, 

E , t  and ν  are Young’s modulus, thickness and Poisson’s ratio of the membrane, 

respectively, P  is the pressure applied to the membrane. 

Minimization of the above equation with respect to the undetermined parameters 

leads to a set of three simultaneous nonlinear equations. Considering the residual 

stress in the membrane, the pressure-deflection relationship of a stressed membrane is 

given by 

30
1 22 4(1 )

t Et
P c h c h

a a

σ
ν

= +
−

                    (23) 

where both parameters 1c  and 2c  are functions of aspect ratio and Poisson’s ratio 

and the values are given in table 1 for different membrane shapes. 

Table 1 Values of the c1 and c2 parameters for different membrane shapes 

 Square      

( 1b a = ) 

Rectangular 

( 2 1b a> > ) 

Long rectangular 

( 4b a ≥ ) 

1c  3.393 13.393 2c> >  2 

2c  ( ) 3
0.800 0.062ν −+  21.004> >0.827c  ( )

3
6

1
8

ν
−

 + 
 
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3.3 Line scanning method 

It is well known that AFM is used to image specimens by mechanically “feeling” the 

surface with a sharp tip that is mounted on a cantilever. The lateral resolution is 

determined by the radius of the tip. The sharper the tip, the higher resolution it has, 

because the interaction area between tip and specimen is a fraction of the tip radius. 

The radius of an AFM probe tip is at best a few nanometers and this limiting factor 

determined the ultimate lateral resolution of an AFM operated at ambient conditions. 

However, an AFM operated in an ultrahigh vacuum at very low temperature, with a 

carbon monoxide molecule on the tip, can achieve an atomic-scale image of the 

pentacene molecule [60].  

With the line scanning method in a bulge test, the membrane is simply scanned with 

the AFM. The deflection of the membrane is recorded from the topographic AFM 

image. The scanning range of an AFM depends on the scanner, either sample scanner 

or tip scanner. It is the scanning range of an AFM which determines the maximum 

membrane to be measured in a bulge test. The maximum membrane size is thus 

limited to 100 µm and the maximum deflection is limited to 8 µm. 

3.3.1 Experimental description 

The pressure cell is made from a hollow steel cylinder with two sideway openings for 

introducing and measuring the gas pressure, and one circular opening at the centre of 

the topside for applying pressure to the membrane, as shown in fig. 12a. In order to 

establish a gas-tight seal between sample and pressure cell, a layer of 

polydimethylsiloxane (PDMS) with a thickness of 2 mm was prepared on top of the 

pressure cell. In order to achieve a uniform level of PDMS layer while still leaving the 

circular hole open, two supports for the sideways and one screw with a needle-like 

terminate for the central hole are used to adjust the level of the pressure cell when it is 

kept upside down during the preparation of PDMS layer.  
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Pressurized nitrogen is provided by a gas cylinder (Linde Gas). The pressure is 

controlled by a regulator and a loading valve on the gas inlet, as well as by a tube 

regulator on the gas outlet. The differential pressure is measured with a pressure 

transducer (HCX001D6V, Sensortechnics). It is connected with the pressure cell as 

schematically shown in fig. 12b. The pressure range is from 0 to 1 bar and the output 

signal is voltage. The output voltage is measured with a digital multimeter (VC840, 

Voltcraft). The conversion from 1 mV voltage to pressure is 25 Pascal.  

In line scanning method, the deflection of the membrane is measured with an AFM 

(NT-MDT NTEGRA) in contact mode by employing a platinum-coated silicon 

cantilever (force constant: 0.1 N/m). The platinum coating can reduce the adhesion 

between the tip and the suspended monolayers. Scans for data acquisition were 

 

Fig. 12 (a) A photograph of the pressure cell; (b) The schematic diagram of an 

experimental set up and the photograph of the pressure cell with one sample mounted; (c) 

The schematic diagram of the bulge test. 
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conducted in constant height mode with a scan-speed of 5~8 µm/s and a very low 

feedback gain of 0.01~0.02, while scans for imaging were conducted in constant force 

mode with a scan-speed of 15 µm /s and a feedback gain of 0.35. The latter setting 

with a faster scanning period yields an improved image quality of the whole 

membrane. It is not as gentle and the probability of rupture is enhanced.  

The sensheight signal in the AFM instrument was calibrated by using grating sets 

(Calibration grating set TGS1, NT-MDT) and deflection was acquired from the 

Sensheight image. For the substrates usually have a slight obliquity as a result of the 

PDMS layer underneath, it leads to a higher lateral force as well as a higher vertical 

force on the membrane when the AFM probe tip is scanning upward. To avoid the 

error from the height difference between the forward and backward images, either 

forward or backward images or their mean values are used for data acquisition. The 

correction due to point load from the AFM probe tip will be discussed later. 

 

 

Fig. 13 (a) AFM image of a freestanding membrane without applying pressure and a 

downward deformation of 0.2 µm; (b) AFM image of the same membrane with a pressure of 

750 Pa and an upward deflection of 1.67 µm. The scale bar is 20 µm and the membrane has a 

width of 41µm. 

(a) (b) 
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3.3.2 Results and discussions 

Fig. 13a shows the AFM image of a membrane without applying gas pressure, 

whereas a downward step height of ~200 nm was observed which is caused by the 

point load of the AFM probe tip. The step height can be decreased by reducing the 

force of the AFM tip. Fig. 13b shows the AFM image of the same membrane with an 

applied pressure of ~750 Pa, an upward deflection of 1670 nm was measured at the 

center of the membrane. It was found that the monolayer adhered strongly to the Si 

substrate by Van der Waals interaction. During the whole loading and unloading 

process, no lifting events along the border are observed. 

Fig. 14 exhibits a typical nonlinear pressure-deflection relationship of carbon 

nanosheets by means of a line scanning method. Four successive loading cycles 

ending at elevated pressures are carried out and the corresponding experimental data 

is presented with different colors in the plot and the repeatability of measurements is 

thereby demonstrated. The size of this membrane is 36.6 73.2× µm and the maximum 

strain at the highest pressure is 2.08 %. After corrections relating to the point load 

produced by the AFM tip, Young’s modulus and residual stress can be determined 

from the fitting curve.  
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Fig. 14 Pressure deflection relationship of a carbon nanosheet with four test cycles, the 

maximum strain is 2.08 % at a pressure of 5050 Pa. 
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3.4 Central point method 

3.4.1 Introduction 

In the last section the line scanning method was utilized to determine the deflection of 

the membranes. However, this method has some obvious disadvantages. Firstly, the 

membranes can easily become ruptured during the scanning process due to the lateral 

force of the AFM tip, especially for the transferred nanosheets with even a tiny 

amount of residual PMMA on the surface. Secondly, the method is very 

time-consuming due to the scanning at a low speed and the subsequent data analysis. 

Thirdly, the measurement cost is high, once a membrane is ruptured and the AFM 

probe would get contaminated and would be unusable. That is why it is necessary to 

find a new way to perform a bulge test more productively and conveniently. 

3.4.2 Experimental description 

In order to minimize the failure in measurements, a central point detection method 

was utilized in the mechanical characterization of ultrathin membranes in bulge tests. 

Instead of line scanning, the AFM tip was positioned simply on top of the membrane’s 

center to detect the deflection of the membrane.  

The determination of the center of a membrane was done by a well-controlled 

positioning system of the AFM instrument that has a minimum movement of 0.1 um. 

The membrane was positioned very close to the AFM tip with the assistance of an 

optical microscope. As shown by the scheme in fig. 15, the sample is firstly moved 

with larger steps (e.g. 5 um) using the sample stage controlled by the positioning 

system. The height variations between steps were monitored with the AFM tip. There 

will be a detectable variance between the steps on a tilted substrate (red dots on the 

substrate) and the step from substrate to a suspended membrane (two red dots in the 

black frame). After the rough position of the membrane’s left side was determined, 

smaller steps (e.g. 0.5 um) were taken to find out the transition location more 

precisely, as shown in the lower-left enlarged frame. After the transition position from 

the substrate to the membrane was determined, the sample will be moved to a distance 



Chapter 3 Bulge Test and AFM Point Deflection Method 

37 

 

equal to half the width of that membrane, which leads to the central position in the 

horizontal direction. The same procedures can be repeated to determine the transition 

position from the substrate to the membrane on the top or bottom side, afterwards the 

sample is then to be moved a distance equal to half the length of the membrane, which 

leads to the central position in the vertical direction. The dimensions of the 

membranes are measured with an optical microscope before all other measurements. 

Once the AFM tip is positioned above the centre of the membrane, by switching on 

the feedback gain, the piezotube scanner will move up the membrane up to a contact 

with the AFM tip. After the reading is recorded, the scanner will move down the 

membrane by switching off the feedback gain. Different pressures give rise to 

resultant readings from the scanner’s movements. We need a reference on the 

substrate to determine the true deflection of that membrane.  

 

Fig. 15 Scheme of central point determination: Dots represent the positions of the AFM 

tip. The height variations of larger steps (red dots) on a substrate are different from that of 

from a substrate to a suspended membrane. An enlarged frame describes smaller steps to 

detect the sides of the membrane. Move half the width of the membrane to the central 

position in the horizontal direction. The same procedures can be done to move the 

membrane to the central position in the vertical direction. The central point is shown in a 

yellow dot. 
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As shown schematically in fig. 16, the substrate first moves up to get into a contact 

with the AFM tip and the distance is recorded as 0d . In the same way, the central 

point of a membrane can be moved up to the tip with a distance 1d . The deflection of 

that membrane δ  is computed as 0 1d d− . The red and green lines represent the 

deflection of the membrane due to a lower and a higher pressure, respectively. 

In reality, the substrate has an inclination angle θ  which can be used to figure out 

the initial height of the central point without applying pressure. Considering the 

elevation of the substrate which resulted from the deformation of PDMS beneath the 

sample and the thermal drift on the AFM itself as well, several reference points on the 

substrate were taken in order to eliminate these effects, as shown in fig. 16c. The 

initial height of the central point O is determined as, 

 

 

Fig. 16 Schematic diagram of the central point method in a bulge test: (a) The Piezotube 

moves the substrate up to contact with an AFM tip. (b) The Piezotube moves the 

membrane up to contact with the AFM tip. (c) The central point “O” and three other 

reference points “A”, “B” and “C” on the substrate are presented as yellow dots and the 

scanning frame is shown as a red frame. 

(a) (b) 

(c) 
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O C B Ah h h h= + −                         (24) 

Once the initial height was known, only one reference point (e.g. point C) will be 

measured as a reference for each measurement, assuming the variation between the 

other two references (e.g. point A & B) keeps constant during the measurements. 

3.4.3 Calibration of sensor height signal 

To examine the validity of the central point method in comparison with the line 

scanning method, pressure versus deflection curves of one membrane were obtained 

from both methods. All the experimental data were presented in fig. 17a. It was 

observed that the deflection signals in the line scanning method are much higher than 

that in the central point method at the same applied gas pressure. For confirmation, we 

employed both the contact mode and the tapping mode and the different cantilevers 

have been used as well. This indicates that the signal readings from oscillograph panel 

in the software are not yet calibrated. The calibration grating set TGS1 (NT-MDT) 

contains three grating TGZ1 (21.5±1 nm), TGZ2 (113.5±2 nm), TGZ3 (540±3 nm) 

with different step heights. The height signal obtained from the oscillograph is exactly 

two times smaller than that from Sensheight image. All the deflection data need to be 

corrected by multiplying by a factor of 2. After correcting the data, both methods are 

in good agreement, as it was demonstrated in fig. 17b. 

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0

2.5

3.0

P
re

ss
ur

e 
(K

P
a)

Deflection (nm)

Line-Scanning
Measurement

Contact Mode
        (trianglar cantilever)

 Contact Mode
        (retangular cantilever)

 Tapping Mode

Central Point
Measurement

0 200 400 600 800 1000

0.0

0.5

1.0

1.5

2.0

2.5

3.0
Central Point Measurement
Line scanning Measurement

P
re

ss
ur

e 
(K

P
a)

Deflection (nm)
 

Fig. 17 Pressure vs. deflection curves determined with the central point method in 

comparison with the line scanning method: (a) Before correcting the data, a large deviation 

was found. (b) After correcting the data, both methods are in agreement. 

(a) (b) 
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3.4.4 Deflection correction 

The deflection setpoint can be preset in order to adjust the force which the tip applies 

to the nanosheet. This force leads to an indentation as a step between the silicon frame 

and the nanosheet. A series of setpoint settings with the resultant step heights is 

presented in fig. 18. The linear dependence shows a decreasing step height as the 

result of a reducing deflection setpoint. The step height tends towards vanishing at a 

zero setpoint, which corresponds to the deflection value of an unperturbed cantilever, 

e.g. far away from the sample. In other words the cantilever is not bent at the 

deflection value of zero and therefore it does not apply any force to the nanosheet at 

this deflection value.  

In the central point method, the measurements were usually performed with a setpoint 

slightly higher than zero which leads to a certain step height. This quantity was 

measured on nonpressurized membranes and it was employed to correct the measured 

deflection of the nanosheets as shown in the following diagram. The deflection of the 

membrane h is given by the AFM height signal hAFM and the step height by 
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Fig. 18 Step heights between a membrane and a silicon frame as a function of the setpoint 

determined in an AFM. 
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corrected measuredh h δ= +                         (25) 

If we consider the main energy contributions to such a system, the energy from the 

AFM tip is balanced by the lateral tension of the membrane, the bending stiffness at 

the boundary, the curvature energy around the tip, the adhesion energy between the 

AFM tip and the membrane. The energy contributed by the bending stiffness is much 

smaller than that from the tension and can thus be neglected. A small tip radius in 

comparison to the membrane dimension allows us to neglect both the curvature 

energy and the adhesion energy related to the tip. To simplify the calculation, the 

tension energy (or the stretch energy) of the membrane is assumed to be the only 

contribution. Without applying a pressure, the membrane has a prestress that 

dominates the tension energy of the membrane. After applying a pressure, the 

indentation depth δ  can be obtained from total stress in a bulged membrane, in 

comparison to the step height 0δ  from the prestress of a non-pressurized membrane, 

0 0
0 0 3

0
0 2

2
3 1-

chE

a

σ σδ δ δ
σ σ σ

ν

= =
+ +

                    (26) 

Note that one approximation of this correction scheme assumes a constant step height, 

i.e. 0δ δ= , this simplification results in an underestimation of Young’s modulus and 

an overestimation of the residual stress. Nevertheless, all the data could be treated 

with the full correction scheme. In order to avoid thermal drift from the AFM 

cantilever and to obtain constant force during the whole measurements, the setpoint is 

always set at the same value as that of the unperturbed cantilever and the feedback 

gain signal is also set to a constant, e.g. 0.25. 
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Table 2 Young’s modulus and residual stress before and after deflection correction 

 1st Test Cycle 2nd Test Cycle 3rd Test Cycle 

Load Unload Load Unload Load Unload 

 Young’s Modulus 
Not-Corrected(GPa) 8.62 11.0 9.32 11.0 9.16 10.5 

Young’s Modulus 
Corrected(GPa) 8.86 11.2 9.55 11.2 9.37 10.7 

Residual Stress 
Not-Corrected(GPa) 49.4 32.1 43.9 30.5 42.9 32.1 

Residual Stress 
Corrected(GPa) 46.9 28.8 41.1 27.2 40.2 28.6 

Fig. 19a shows an example of the pressure-displacement curves of three successive 

loading and unloading measurements before deflection correction. It can obviously be 

observed that all the displacements at zero pressure became zero after the deflection 

correction, as presented in fig. 19b. Table 2 presents a detailed comparison of Young’s 

modulus and residual stress before and after the deflection correction. A small 

increase in Young’s modulus and a decrease in the residual stress were found. The 

detailed determination will be explained in the next chapter.  
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Fig. 19 (a) Pressure-displacement curves of three loading and unloading tests before the 

deflection correction; (b) Pressure-displacement relationship after the deflection correction. 

(a) (b) 



Chapter 3 Bulge Test and AFM Point Deflection Method 

43 

 

3.4.5 Uncertainty analysis 

The precision of the bulge test describes how close a number of measurements agree 

with each other, which is limited by random errors. The accuracy of the bulge test 

describes how close the measured values are to the true value, which is limited by 

systematic errors. 

Estimation of the random error in a bulge test, Eq. 23 can be divided into five parts.  

4
23

1
(1 )

P
E a c

h t
ν ∝ × × × × − 

 
                  (27) 

The first term 
3

P

h
 is determined from the fitting curve for the pressure-deflection 

relationships. In this term, the pressure was measured with a pressure transducer and 

the output voltage was measured with a digital multimeter. The random error in the 

pressure measurement is from both the transducer and the multimeter. The 

displacement was recorded from a Sensheight signal in the AFM which has been 

already calibrated with the standard calibration gratings. The random error of the term 

3

P

h
 was estimated as 1 %. 

The second term 4a  describes the half width of a membrane which was measured 

with an optical microscope and further examined with a SEM. Because Young’s 

modulus is proportional to the fourth power of width, a larger random error of 

approximately 6 % is estimated for this term. 

The third term is the parameter 2 3

1

( , / )
c

g b aν
=  which was taken from a chart in the 

literature [59]. The random error is mainly due to measuring and reading. A 3 % 

random error is thus estimated. The thickness and the Poisson’s ratio are constants 

which do not contribute to a random error. In all we achieve approximately 10 % 

random errors in the bulge test, as shown in Eq. 28. 
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Table 3 Uncertainty analysis of bulge test 

E 

Young’s Modulus 
Error Components Error Descriptions Error Estimation 
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To estimate the systematic error in a bulge test, the accuracy of values (e.g. thickness, 

Poisson’s ratio and constant ( , / )g b aν ), the calibration of the measurements (e.g. 

pressure transducer, AFM, SEM) and the reliability of theoretical calculations have to 

be taken into account. The errors from the AFM, SEM and the pressure transducer 

sum up to 15 %. The accuracy of the constant ( , / )g b aν  gives a contribution to 

Young’s modulus uncertainty of 9 %. The monolayer thickness uncertainty was 

estimated to be 15 %. Thus these error contributions add up to about 40 %. 
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3.5 AFM point deflection method 

Apart from the bulge test, the point deflection method has been another technique for 

the mechanical characterization of freestanding thin films with very low stiffness [61]. 

Unlike the uniform pressure on thin films in a bulge test, a spherical nanoindenter or 

an AFM tip is utilized to apply a small concentrated transverse point load at the center 

of a thin film. Young’s modulus and residual stress are determined from the 

corresponding force displacement relationships.  

Theoretically, there are different regimes of behavior for thin films subjected to point 

loads, such as plate, linear membrane and nonlinear membrane. Focused on literature 

results for point loads, Komaragiri and his co-workers provide a comprehensive 

theoretical framework that describes the effects of prestretch, film thickness and loads 

[62]. Experimentally, freestanding circular elastomer films were measured using 

spherical indenters. It demonstrates that soft materials and ultra-thin films with 

load-deflection stiffness on the order of 0.01 N/m can be characterized with such an 

experiment and theoretical framework [63]. A high-throughput mechanical 

characterization (HTMECH) apparatus was constructed for polymer films in 10~1000 

µm thickness [64] and it allows measurements from near-static to dynamic 

deformation and characterization of the viscoelasticity. The point deflection method 

using the AFM tip as an indenter has attracted researchers to evaluate the mechanical 

response of nanoscale freestanding membranes to indentation. The graphene 

monolayer has also been investigated by the point deflection method in an AFM 

(nanoindentation in an AFM) [65].  

In this section, we will introduce the point deflection method in an AFM for the 

mechanical characterization. The cantilever calibration and some results will be 

presented and discussed. The boundary constraint and other limitations of this method 

will also be discussed.   
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3.5.1 Experimental description 

The point deflection method using a nanoindenter is schematically shown in fig. 20a. 

A spherical indenter is usually utilized to apply a load on the freestanding membrane 

[63]. The indenter is driven by a load cell which is mounted on a linear screw-driven 

positioning stage. The deflection of thin films could be determined in various ways, 

for example by light interferometer and strain stage on the film itself. One can also 

measure the displacement directly using an optical encoder built into the positioning 

stage. 

The point deflection method using an AFM tip as an indenter is schematically shown 

in fig. 20b. First of all, the central point of a freestanding membrane can be 

determined according to the method mentioned in the last section. For polymer thin 

membranes with thicknesses bigger than 20 nm, the whole membrane can be imaged 

using the AFM and the central positions are thus determined more precisely. A load is 

applied by an AFM tip with the radius of 20~50 nm. The maximum load, i.e. the 

maximum bending of the cantilever, is defined by presetting a DFL signal for the 

quadrant photodiode. The deflection of the cantilever is recorded from a 

force-distance curve. The force constant of the cantilever has to be calibrated in order 

to subtract the cantilever stiffness from the force-distance curves. 

  

 

Fig. 20 (a) A schematic diagram of the point deflection method using a nanoindenter for a 

freestanding thin film [63]. (b) A schematic diagram of the point deflection method using 

an AFM tip as an indenter for a carbon nanosheet. 

(b) (a) 
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3.5.2 Calibration of cantilevers 

The spring constant of a cantilever has to be calibrated in order to calculate the exact 

force applied through this cantilever. For a rectangular cantilever, Sader’s method [66] 

is believed to be very practical and accurate. The mechanism of calibration is based 

on a shift in the resonant frequency of the cantilever from a vacuum to a fluid, whose 

density and viscosity are known, 

1/2

f
vac f r f

c

πρ b
ω =ω 1+ Γ (ω )

4ρ h

 
 
 

                   (29) 

where fρ  is the density of the fluid, cρ  the areal mass density, vacω  the vacuum 

resonant frequency, fω  the resonant frequency in fluid, rΓ  the real component of 

the hydrodynamic function Γ . The spring constant k  is given by 

2 2
f f i f fk=0.1906ρ b LQ Γ (ω )ω                  (30) 

where b  and L  are dimensions of the cantilever, fQ  the quality factor, iΓ  the 

imaginary component of the hydrodynamic function Γ . 

The dimensions of the cantilever can be determined with an optical microscope. Fig. 

21a shows an optical microscopy of an AFM cantilever that has a length of 222.8 µm 

 

Fig. 21 (a) The optical microscopic image of an AFM cantilever. (b) The amplitude of the 

oscillation of the cantilever as a function of the excitation frequency with a resonance 

frequency of 21.434 KHz and a Q factor of 75. 

(b) (a) 
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and a width of 35 µm. The resonance frequency of the cantilever can be recorded by 

the AFM software. The Q factor was calculated from the graph of the resonance 

frequency peak. It is equal to the resonance frequency divided by full width of that 

peak at maximum magnitude multiplied by 0.707, which gives rise to half of the 

initial maximum energy in the resonator. As shown in fig. 21b, the cantilever has a 

resonant frequency of 21.434 KHz and a Q factor of 75. The force constant is 

therefore estimated to be 0.182 N/m. 

Table 4 Cantilever’s specific for calibration of spring constant 

cantilever 
length (L ) 

Cantilever 
width (w ) 

Resonance 

frequency ( fω ) 

Quality factor 

( fQ ) 

Force 
constants (k ) 

222.8 µm 35.0 µm 21.434 KHz  75 0.182 N/m 

3.5.3 Results and discussions 

The point deflection method has been firstly used to check the membrane stiffness. 

Two different forces (7.25 nN and 21.75 nN) were applied and the corresponding 

deflections of the cantilever were recorded. The coupled stiffness S  of the AFM 

cantilever in contact with the membrane (a NBPT nanosheet) is given by 

0

1 1 1

cS S S
= +                          (31) 

where cS  is the AFM cantilever stiffness and 0S  is the membrane stiffness which 

can be computed from the equation. 

Fig. 22 shows an example of the determined membrane stiffness as a function of the 

eccentricity ratio 2 /r a , where a  is the diagonal dimension of the membrane and 

r  is the distance from the membrane center to the position where the load has been 

applied, 2 / 1r a =  corresponds to the corner of the membrane. It indicates that the 

measured stiffness is independent of the eccentricity ratio in the range of 0~0.5.  
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The point deflection method has been carried out on the freestanding PS/nanosheets 

bilayer membranes. The force distance curves that were applied on a silicon nitride 

substrate were taken as a reference, which is based on the assumption that once the 

AFM tip contacted the substrate the cantilever would undergo a simple bending 

without penetrating into the surface.  

Fig. 23a exhibits a force-distance curve with respect to the AFM tip on the substrate 

and its linear behavior representing the stiffness of the AFM cantilever. The force 

curve with respect to a PS/nanosheets membrane is shown in fig. 23b, a nonlinear 

deformation was observed from the force curve. The displacement was recorded from 

the Z-piezo sensor and it contained both the displacement of the membrane and the 

bending of the cantilever. As discussed above, the cantilever’s displacement has to be 

subtracted in order to obtain the pure load-indentation depth relationship. The 

displacement of the membrane is equal to the Z-piezo displacement minus that of the 

cantilever, 

- - /membrane piezo cantilever piezo F kδ δ δ δ= =                  (32) 
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Fig. 22 Variation of the membrane stiffness S0 as a function of the eccentricity ratio. 
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where F  is the force applied with the AFM cantilever and k  is the spring constant 

of the cantilever. In fig. 24, the lower red curve shows the load vs. indentation depth 

relationship derived from the original force curve and the upper green curve shows 

the relationship after subtracting the cantilever stiffness. 

Both the carbon nanosheets and PS/nanosheets bilayer system have a much lower 

thickness (in the range of nanometers) compared with their dimensions (in the range 

of tens of micrometers). The classical plate theory which is based on the assumption 

 

Fig. 23 (a) Force-distance curve with respect to an AFM tip on a substrate; (b) 

Force-distance curve with respect to an AFM tip on a freestanding polystyrene/nanosheet 

membrane. (red curve: snap in; blue curve: retract) 

(a) (b) 
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Fig. 24 Load vs indentation depth derived from the original force curve (red one) and load 

vs indentation depth after subtracting the cantilever stiffness (Green one). 
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that stretching in the plane of the film is negligible compared to the bending 

deformation is not suitable to interpret such systems. They are supposed to be in the 

linear membrane regime where prestress is greater than the bending stiffness, as well 

as the load is still small enough to balance the prestrain and to avoid a large deflection. 

In this regime, the relationship between force and deflection can be expressed as [67], 

( ) 3
0 2

Et
F=πσ δ+ f ν δ

a
                      (33) 

where F is the applied force, δ  is the displacement at the central point, 0σ  is the 

prestress, f(ν)  is a dimensionless constant. Young’s modulus E  can be derived 

from the cubic term in the equation. 

Table 5 A comparison of the point deflection method and the bulge test 

Method PS2h_G1 PS2h_G2 PS2h_G3 PS2h_G5 

Point Deflection Method 4.45 GPa 3.08 GPa 6.0 GPa 1.14 GPa 

Bulge Test 2.05 GPa n.a. 2.8 GPa n.a. 

A series of samples have been measured by using both the point deflection method 

and the bulge test. The results were shown in table 5. Young’s modulus determined 

from the point deflection method exhibits a bigger scattering in comparison with that 

of a bulge test. It indicates that the point deflection method has some limitations: (1) 

the deformation in the point deflection method is rather small and the elastic response 

is largely influenced by the prestress; (2) the tip radius is not quantitatively 

determined and the uncertainty is thus much bigger; (3) the membrane’s stiffness is 

not sensitive to the central position; (4) the equation is derived for circular membranes, 

which needs to be further modified for square and rectangular membranes.  
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Chapter 4  

Mechanical Properties of Carbon Nanosheets 

4.1 Adhesion and corrugation of a carbon nanosheet on a substrate 

4.1.1 Introduction 

Interfacial adhesion describes the adhesion in which interfaces between phases or 

components are maintained by intermolecular forces, chain entanglements or both, 

across the interfaces [68]. Interfacial adhesion plays an important role in wide 

categories from construction materials to optical coatings, from block copolymers to 

cell adhesion. In MEMS systems, one common failure mechanism is adhesion 

between structures that prevents the normal motion and function of the devices [69], 

which is due to their large surface-to-volume ratio. Hydrophobic self-assembled 

monolayers (SAMs) have been used as coatings in micromachines for the purpose of 

adhesion reduction, which cause the apparent work of adhesion of polysilicon 

cantilever beams reduced by four orders of magnitude [70]. The interfacial adhesion 

of a SAMs-based system to a substrate is rather strong due to covalent siloxane 

(Si-O-Si) bonds to the surface or metal thiolate (Au-S) bonds.  

In the case of carbon nanosheets, their covalent bonds to the surface have been 

already cleaved and some free radicals are consequently formed. If a carbon 

nanosheet is transferred to a new substrate, the interfacial adhesion is mainly due to 

van der Waals interactions rather than previous chemical bonds. How big the 

interfacial strength is or how much force it needs to peel the carbon nanosheet from 

the surface, the answers to these questions are very important in determining the 

performance and the reliability of the nanosheets-based MEMS systems or the 

flexible organic electronic devices. They are important to build a fundamental 

adhesion model for a monolayer-substrate system. 
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4.1.2 Evidence of strong adhesion between a nanosheet and a substrate 

In the mechanical characterization of suspended thin membranes, one of the most 

crucial procedures is mounting the membranes. For semiconductors, the membranes 

are prepared on a sacrifice layer by sputtering or vapor deposition. The substrate and 

sacrifice layer are then selectively removed from the backside and the suspended 

membrane to be measured is supported by the sacrifice layer patterns that are not 

removed. In the case of polymers, the membranes are formed by casting the film in a 

mold composed of two clamping plates that fit into the mounting metal disks. In our 

experiments, the nanosheet is transferred together with a transfer medium onto a 

silicon substrate which has structured orifices. The transfer medium is subsequently 

dissolved in acetone and only the carbon nanosheet is left on the silicon substrate. 

We observed that carbon nanosheets adhere to substrates very strongly. Even the 

treatment in an ultrasonicating bath is not able to separate the nanosheets from the 

substrates. One argument was that delamination or blisters will form unless there is 

covalent bonding to the surface. It is speculated that the nanosheets might slip on the 

surface during gas pressure loading. If such a slipping event really occurs, we could 

immediately find out with the central point method in the bulge test. Here we show 

the result from one experiment where the deflection of a membrane was recorded 
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Fig. 25 (a) Deflection of a nanosheet keeps constant at a pressure of 1375 Pa, which 

indicates a time-independent behavior; (b) Strain of the nanosheet also keeps constant. 

(a) (b) 
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under a certain pressure for 1h. Due to the uncertainties in pressure controlling, the 

pressure applied to the membrane was 1375±75 Pa. The deflection of that membrane 

was 1607±15 nm and the corresponding tensile strain was 0.431±0.008 %, as 

shown in fig. 25a and 25b, respectively. It turns out that the interfacial adhesion is 

very strong and a slipping of the monolayer due to pressure loading is impossible. 

4.1.3 Interfacial adhesion between a carbon nanosheet and a substrate 

To simplify the interfacial interaction between a carbon nanosheet and a substrate, we 

first consider an ideal substrate with a perfectly flat surface. We take the 

Lennard-Jones potential model which describes the interaction of a pair of atoms or 

non-polar molecules, 

6 12

0 0( ) 4
h h

V r
r r

ε
    = − −    
     

                    (34) 

where ε  is the depth of potential well, 0h  is the separation at which the potential is 

zero, r  is the distance between the atoms. The 6r−  term describes the attraction at 

long range due to van der Waals forces and London dispersion forces. The 12r−  term 

describes the repulsion due to overlapping electron orbitals. For one atom on an ideal 

surface, we integrate the energy between this molecule and all the atoms in the 

substrate to obtain an atom-surface potential and then integrate an atom-surface 

potential for all atoms in a flat monolayer. The interaction potential between a flat 

monolayer and a flat substrate surface can be written as [71] 

3 9

0 0
0

3 1
( )

2 2

h h
V r

r r

    = −Γ −    
     

                   (35) 

where 0Γ  is the interfacial adhesion energy per unit area, 1c  and 2c  are constants 

for attractive and repulsive forces, 0h  is the equilibrium separation, r  is the 

distance between the monolayer and the substrate. When the distance is equal to the 
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equilibrium separation, the interaction potential reaches a minimum and the interfacial 

adhesion energy corresponds to the depth of the energy well at the equilibrium.  

The separation between a carbon nanosheet and a substrate can be estimated from the 

height profiles which are determined by AFM and the thickness of carbon nanosheets 

which is determined by XPS. XPS spectra indicate that the thickness of the BPT 

nanosheets ranges from 8.5 to 9.5 Å. The AFM height profiles exhibit that BPT 

nanosheets have a thickness ranging from 12.0 to 14.0 Å. It indicates that BPT 

nanosheets that have been transferred to a substrate have a separation values ranging 

from 3.5 to 4.5 Å. For a graphene monolayer, the equilibrium separation between it 

and an oxide substrate was assumed to be similar to the interlayer spacing in bulk 

graphite (3.4 Å) and the AFM measurements reported the height ranging from 4.0 to 

9.0 Å [72, 73].  

The adhesion energy between a carbon nanosheet and a substrate has not yet been 

experimentally measured so far. For a graphene monolayer, the adhesion energy was 

estimated according to the interlayer interaction energy in graphite, which has a value 

of 0.6 eV/nm2 (0.096 J/m2). In the case of the carbon nanosheet, we estimate the 

adhesion energy as 30 mJ/m2, based on the adhesion energy of the hydrocarbons in 

the range of 20~36 mJ/m2 [71, 74-75]. 

By taking the first derivative of equation (2), the van der Waals interaction between a 

monolayer and a flat substrate is presented as 

4 10

0 0 0

0
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2vdW

h h
F

h z z

 Γ    = −    
     

                   (36) 

When the distance is equal to 00.165h , the van der Waals force reaches its maximum. 

We obtain a maximum van der Waals force of 120 MPa, taking the equilibrium 

separation as 4 Å and the adhesion energy as 30 mJ/m2. The force is approximately 

half of the value for a graphene monolayer (~230 MPa)[76].  
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4.1.4 Corrugation of carbon nanosheet on a substrate 

We have discussed the ideal case for a flat carbon nanosheet on a flat surface, where 

the van der Waals force can be estimated from the adhesion energy and the separation, 

as shown in fig. 26a. In reality, the surface of a substrate usually exhibits a 

nanometer-scale roughness which can be assumed to be sinusoidal with an 

wavelength λ  and an amplitude δ , as shown in fig. 26b. When the carbon 

nanosheet is transferred onto a corrugated surface, the van der Waals interaction 

between a monolayer and a substrate tends to conform the monolayer to the 

corrugation, however, the elastic strain energy which resulted from corrugation tends 

to counteract the corrugation and thus form a flat morphology. Since a carbon 

nanosheet has a lower stiffness than a graphene monolayer, we believe that the carbon 

nanosheet is much more conformal to the substrate surface than the graphene 

monolayer. Furthermore, considering the transfer medium (double layer PMMA) is 

not yet removed after the carbon nanosheet is transferred to the substrate, we believe 

that the elastic strain energy is contributed both from the transfer medium and the 

carbon nanosheet.  

 

Fig. 26 (a) Schematic illustration of a flat carbon nanosheet on a flat surface with a separation 

of 0h ; (b) Schematic illustration of a carbon nanosheet on a corrugated substrate surface with 

a corrugation wavelength λ. 

(a) (b) 
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Fig. 27 (a) and (b) AFM images of SiO2/Si substrate topside surface without and with a 

BPT carbon nanosheet and their corresponding height profiles; (c) and (d) AFM images of 

the backside surface of a SiO2/Si wafer without and with a BPT carbon nanosheet and 

their corresponding height profiles. 

2 µm 2 µm 

2 µm 2 µm 

(a) (b) 

(c) (d) 

The equilibrium morphology is thus determined by competition between the van der 

Waals interaction and the elasticity of the PMMA/nanosheet layer. If the corrugation 

wavelength is much larger than its amplitude, the monolayer tends to completely 

conform to the surface with the same corrugation wavelength and amplitude. If the 

wavelength is comparable to or even smaller than the amplitude, the monolayer tends 

to have a flatter morphology with similar corrugation wavelength and smaller 

amplitude. 
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To investigate corrugation of a carbon nanosheet on a substrate, we take a SiO2/Si 

wafer (with a thickness of SiO2 ~300 nm) which is frequently used to measure 

conductivity of an annealed carbon nanosheet and acts as a very basic embodiment for 

building electronic devices as well. The surface was found out to have long range 

corrugations which are multiples of the correlation length of 39 nm and the AFM 

measurements indicate that the correlation length of 78 nm (amplitudes: 0.196nm, 

0.294 nm, 0.392 nm) and 117 nm (amplitudes: 0.294 nm, 0.392 nm, 0.589 nm) are the 

dominant surface morphology, as shown in fig. 27a. After the carbon nanosheet 

transferred onto the SiO2 surface, the same corrugation wavelength and amplitude are 

observed which implies that the nanosheet conforms very well to the surface. The 

RMS roughness within a scanning range of 5×5 µm in both cases is very close 

(substrate: Sq=0.87 nm; nanosheet: Sq=0.98 nm). We have also measured the 

backside surface of a SiO2 /Si wafer as a rough supporting surface for the carbon 

nanosheet. The surface is dominated by corrugation wavelength of 78 nm and 118 nm 

with a larger amplitude of 1.5 nm. The PMMA/nanosheet on the backside was 

determined to have the same corrugation wavelength with a smaller amplitude of 0.15 

nm. After the PMMA layer was removed, the nanosheet had the same amplitude as the 

bare surface, as shown in fig. 27d. The RMS roughness of the nanosheet is pretty 

much the same as that of the bare surface (substrate: Sq=2.14 nm; nanosheet: Sq=2.11 

nm).  

In conclusion, carbon nanosheets are found to have a strong adhesion to the substrate, 

which is mainly due to the van der Waals interaction between nanosheet and substrate. 

The van der Waals force was estimated to be ~120 MPa which is half of that of a 

graphene monolayer. Our experiments exhibit that carbon nanosheets have a 

morphological corrugation with both wavelength and amplitude conforming to the 

surface with different roughness.  
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4.2 Local mechanical properties of freestanding carbon nanosheets 

4.2.1 Adhesion between an AFM tip and a freestanding nanosheet 

The adhesion between an AFM tip and a freestanding nanomembrane can be 

characterized through the force-distance curve which displays the cantilever’s normal 

deflection versus the cantilever-sample displacement. The pull-off force is the 

resulting change in force relaxation where the adhesive bond ruptures in the course of 

retracting the tip. The force may come from electrostatic interaction, capillary 

condensation, or van der Waals interaction. We determined the pull-off forces both for 

the nanosheet supported on a silicon nitride frame (nanosheet/substrate) and a 

freestanding nanosheet. Four different positions have been chosen to derive the 

force-distance curves, as shown in fig. 28. 
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Fig. 28 Force vs. distance curves generated on a silicon nitride frame (Left column: blue 

curves) and a freestanding nanomembrane (Right column: olive curves), the corresponding 

pull-off forces are presented.  
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The experiments were carried out at room temperature (24.0℃) and at a relative 

humidity (48 %). The pull-off force is independent of relative humidity for a 

hydrophobic tip, while exhibits an obvious dependence for a hydrophilic tip. M. He 

and his coauthors refer to three distinct regimes of the pull-off forces as a function of 

relative humidity: van der Waals regime, mixed van der Waals-capillary regime, and 

capillary regime respectively [77]. The relative humidity in our experiments is in the 

mixed van der Waals-capillary regime. The capillary condensations keep constant 

both for nanosheet/substrate and the freestanding nanosheet, because there is no 

influence on Laplace pressure or surface tension from the substrate beneath the 

nanosheet. The van der Waals interaction between tip and nanosheet/substrate is 

contributed from both tip-nanosheet and tip-substrate interactions, which is bigger 

than a simple tip-nanosheet interaction. Moreover, another main contribution to a high 

adhesion between tip and nanosheet/substrate is the electrostatic interaction. Because 

the semiconductor substrate is placed on a PDMS stamp and not directly grounded, an 

electric charge may appear on the surface of the substrate. From the above analysis, 

the adhesion between tip and nanosheet/substrate should be much higher. We 

observed that pull-off forces for the tip-nanosheet/substrate system ranges from 15 to 

16 nN, which are 5~6 times bigger than the pull-off force for the tip-nanosheet 

system.  

This observation also gives us a hint as to why the line-scanning method in a bulge 

test is very destructive. Rupture events occur at the positions where the tip is scanning 

from the silicon frame to a freestanding nanosheet. Here an abrupt change in adhesion 

causes the rupture of nanosheets. 
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4.2.2 Deformation of a freestanding carbon nanosheet due to an AFM tip 

Bending stiffness can be derived from continuum mechanics. Based on Kirchhoff 

hypothesis, there is a linear relationship between the classical bending modulus and 

Young’s modulus. Bending stiffness of carbon nanosheets can be roughly derived 

from the following equation [78]: 

3

212(1 )

Et
D

ν
=

−
                          (37) 

where E and ν  are Young’s modulus and Poisson’s ratio, t the membrane thickness. 

If we take a typical Young’s modulus of 10 GPa and a Poisson’s ratio of 0.35, 

thickness of 1 nm. The bending rigidity was computed to be 9.5×10-19 Nm. In the 

plate regime, the stretching in the plane of the film is negligible in comparison to the 

bending deformation. While in the membrane regime, the bending stiffness is 

negligible in comparison to the stiffness generated by prestrain or stretching arising 

from large deformations. Carbon nanosheets are in the membrane regime and we can 

neglect contribution from the bending stiffness of carbon nanosheets. 
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Fig. 29 (a) Indentation depth with different forces shows a time independent behavior; (b) 

Strain of nanosheets with different forces also shows a time independent behavior. 

(a) (b) 
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We want to understand the local deformation of a carbon nanosheet that is in contact 

with an AFM tip. Does the AFM tip cause any permanent deformation of the carbon 

nanosheet around the tip? What is the secure force that can be applied to the carbon 

nanosheets without breaking them? For that purpose, both indentation depth and strain 

of an unstressed membrane were measured with different forces over time, as seen in 

fig. 29. Neither indentation depth nor strain shows time dependent behavior. It 

indicates an equilibrium in the global deformation which is balanced between the 

force applied via an AFM tip and the stretching energy and the residual stress of the 

membrane. No permanent local deformation around and/or under the AFM tip was 

detected. However a large force will cause a permanent deformation and will even 

break the membrane. Our experiments suggest a secure force range until ~30 nN. In 

experiments, the forces to be applied are limited within 0 ~ 5 nN to avoid large 

correction parameters.  

  



Chapter 4 Mechanical Properties of Carbon Nanosheets 

63 

 

4.3 Elastic properties of carbon nanosheets 

4.3.1 Introduction 

Elasticity describes the tendency of a material under external stress to return to its 

original shape when the stress is removed. Linear elasticity is characterized by the 

relationship defined as Hooke’s law where the ratio of stress to strain keeps constant. 

During the tensile test along an axial, the ratio of uniaxial stress to uniaxial strain is 

called elastic modulus or Young’s modulus which is a measure of stiffness or 

elasticity of a material. Axial strain is usually accompanied by transverse strain in the 

other two directions. The ratio of transverse and axial strain with a minus sign is 

defined as Poisson’s ratio. Most common materials have a positive Poisson’s ratio 

ranging from 0.08 to 0.5, with few exceptions such as cubic “single crystal” pyrite 

(
1

7
− ) [79] and reentrant foam (-0.7) [80]. 

The elastic responses of alkanethiol SAMs have been investigated by simulations [81] 

and experiments [82-84]. The elastic moduli have been reported to have a huge wide 

range from 0.15 GPa to 75 GPa. There was also a debate whether the elastic response 

is dependent on the number of carbon atoms in the molecular chains, with some 

suggesting independent behavior [81] while some believing dependence [83-84]. All 

the research works were limited to normal stress locally applied to alkanethiol SAMs 

on substrate where the substrate effect may account for the huge difference among 

them. Furthermore, an adhesive force between an AFM tip and the substrate and a 

capillary force must be taken into account to correct the results.  

Carbon nanosheets provide a system that enables applying lateral stress to SAMs and 

measurements of its elasticity as well. As a quasi-two-dimensional material, carbon 

nanosheets may shed light on the understanding of the elasticity in low-dimensional 

material and bring challenges to experiments as well as theoretical models. 
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4.3.2 Determination of elastic modulus of carbon nanosheets 

The central point method in a bulge test is utilized to investigate the elastic response 

of carbon nanosheets. A typical pressure deflection relationship obtained from a bulge 

test is shown in fig. 30. In order to evaluate the reproducibility of those results, we 

applied three loading and unloading test cycles. It was found that three test cycles 

were also quite similar. This indicates that there is neither a sliding of the nanosheet 

on the substrate nor a small permanent deformation of the nanosheet which resulted 

from pressure loading. It turns out that the characterization method is very reliable 

and has a good repeatability.  

For each loading and unloading curve, we find that the loading curve is slightly higher 

than the unloading curve. The difference can be reduced with a longer period of time 

to reach the equilibrium. This hysteresis is believed to relate to the viscoelasticity of 

carbon nanosheets, which will be investigated in the next section in detail.  
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Fig. 30 Pressure and deflection relationship of a NBPT nanosheet with three loading and 

unloading test cycles and the corresponding elasticity fitting curve. 
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For the determination of the elastic modulus and the residual stress of freestanding 

carbon nanosheets, the thickness and Poisson’s ratio have to be estimated. The 

isotropic upper limit of the Poisson’s ratio is 0.5. The Poisson’s ratio of polymers is in 

the range of 0.3~0.4. Carbon nanosheet is structurally like amorphous polymers. The 

Poisson’s ratio is assumed to be 0.35 in all our calculations. Such an assumption will 

only contribute to systematic errors in the determination of Young’s modulus and the 

residual stress. Further experiments need to be designed to determine the true 

Poisson’s ratio of carbon nanosheets. 

Table 6 Poisson’s ratio of various materials [85] 

Carbon & Silicon Polymers Metals, Ceramic & Glass 

Graphene 0.165 Polycarbonate 0.37 Gold 0.42 

Isotropic Graphite 0.31 PS 0.33 Copper 0.33 

Diamond (natural) 0.1~0.29 Polyvinyl Chloride 0.38 Aluminum 0.36 

Diamond-like 

Films 
0.22 

Poly methyl 

methacrylate 
0.37 

Hafnium 

Carbide 
0.18 

Silicon (111) 0.27 
Polyethylene 

Terephthalate 
0.43 Glass 0.18~0.3 

The thickness of nanosheets is determined from XPS spectra. Considering the 

attenuation of photoelectrons that penetrate through BPT SAMs, the thickness is 

calculated from the formula 0
IMFPexp( / cos )S SI I t λ θ= −  where MFPIλ indicates the 

inelastic mean free path (Au 4f). The inelastic mean free path is the crucial parameter 

in determining the film thickness. Lamont reported that the attenuation length of 

electrons in alkanethiol SAMs can be described by the expression 0.640.3Eλ =  
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where E  denotes the kinetic energy of photoelectrons [86]. It was believed that 

MFPIλ  also depends sensitively on the film density which can locally vary 

significantly and the value 32 Ǻ is achieved by using the Gries formula and an 

effective density of 1.63 g/cm3 for the BPT SAMs [87]. 

Fig. 31 shows XPS spectra of C 1s, S 2p and Au 4f regions of both BPT SAMs and 

NBPT SAMs. It was calculated that BPT SAMs usually have a thickness of 10.0±0.7 

Ǻ and NBPT SAMs 12.5±0.8Ǻ, with the inelastic mean free path value of 36 Ǻ [88]. 

Electron-induced irradiation could slightly decrease the thickness of BPT nanosheets 

to ~9 Ǻ. From a mechanical point of view, the main contribution to elasticity is from 

biphenyl rings and the functional groups have much less effect on the mechanical 

properties. In our work, we take the thickness of carbon nanosheets as 1 nm. 
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Fig. 31 XPS spectra of BPT and NBPT SAMs on Au surface acquired with a 

monochromatic Al-K α  source and the effective thickness is determined by comparison 

of Au 4f intensity of a clean Au substrate and that of the samples. 
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Table 7 Young’s modulus of a NBPT nanosheet 

Young’s Modulus 

(GPa) 
Loading Unloading Average Value 

Test Cycle 1 10.2 11.2 10.7 

Test Cycle 2 11.2 12.2 11.7 

Test Cycle 3 10.2 12.2 11.2 

 

Table 8 Residual stress of a NBPT nanosheet 

Residual Stress 

(MPa) 
Loading Unloading Average Value 

Test Cycle 1 52.7 44.3 48.5 

Test Cycle 2 46.5 37.2 41.9 

Test Cycle 3 50.7 37.3 44.0 

Table 7 and 8 present an example of Young’s modulus and residual stress for a NBPT 

nanosheet with three successive loading and unloading cycles. Small differences 

among these measurements are observed which indicates that this method is quite 

repeatable. The values obtained from unloading measurements show a higher Young’s 

modulus and lower residual stress compared with those for loading measurements, 

which is also correlated with pressure and deflection relationships in which loading 

curves are slightly higher than unloading curves. The average values are taken to 

estimate Young’s moduli and residual stress more precisely.  
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4.3.3 Electron irradiation dose effect 

In order to understand the low energy electrons induced crosslinking process in the 

formation of carbon nanosheets, we measured the mechanical properties of carbon 

nanosheets as a function of electron doses. Three different kinds of molecules with 

biphenyl rings have been used to prepare carbon nanosheets for comparison. They are 

4’-[(3-trimethoxysilyl)propoxy]-[1,1’-biphenyl]-4-carbonitril(CBPS), 

4’-Nitro-1,1’-biphenyl-4-thiol(NBPT) and 1,1’-biphenyl-4-thiol (BPT). Fig. 32 shows 

the evolution of the mechanical stabilities during the cross-linking process, Young’s 

modulus of carbon nanosheets as a function of irradiated electron doses.  

Below 20 mC/cm2, cross-linkages in SAMs are not mechanically stable enough to 

support and to form suspended carbon nanosheets. No intact membranes can be 

obtained. From 30 mC/cm2 to 40 mC/cm2, more and more cross-linkages are formed 

and promote stabilities of suspended carbon nanosheets. Very few intact membranes 

can be obtained. For CBPS nanosheets, Young’s modulus with an electron dose of 30 

mC/cm2 is a little bit higher than that at 40 mC/cm2. The results can be interpreted in 

the way that incomplete statistic values from very few intact membranes might 

overestimate Young’s modulus. 

In case of BPT nanosheets, when the irradiation electron doses are above 50 mC/cm2, 

cross-linkages are getting saturated and Young’s moduli are in the range of 6~8 GPa. 

In case of NBPT nanosheets, the mechanical stiffness exhibits quite stable 

characteristics when the electron doses exceed 50 mC/cm2 and Young’s moduli of 

carbon nanosheets tends to keep constant at 8~10 GPa. CBPS nanosheets show a 

similar behavior in the mechanical stiffness. But it still shows a small increase at 

higher electron doses. Since CBPS SAMs are prepared on Si3N4 substrates, 

considering the secondary electron yield, we cannot assume the same electron dose as 

that received by BPT and NBPT SAMs on an Au substrate. It has been demonstrated 

that the degradation of SAMs is strongly dependent on conductivity of substrate [34].  
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Fig. 32 Young’s modulus of CBPS, NBPT and BPT carbon nanosheets as a function of 

electron irradiation doses. 
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In the same way, at a given electron dose, aromatic SAMs on semiconductor substrate 

endure different crosslinking compared with those on metals. In our experiments, we 

use conductive pure silver paint on the substrate to ground the sample, but a possible 

static charge buildup may still exist, we need further investigation on the charging 

effect of CBPS nanosheets on Si3N4 substrate due to the electrons. 

4.3.4 Size effect 

As shown in fig. 33, smaller membranes tend to exhibit a higher Young’s modulus, 

while residual stresses don’t display a size dependent behavior. The phenomenon may 

be interpreted under two aspects: (1) Limitations of the theoretical formula in 

determining nanoscale membranes and in boundary conditions of the 

monolayer/substrate system due to the interfacial adhesion; (2) Large random errors 

in determining the central point of membranes with sizes smaller than 30 µm. 

Accordingly the membranes’ sizes ranging from 30 to 50 µm give more consistent 

values. 
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Fig. 33 Young’s modulus and residual stress as a function of membranes’ width and area. 
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4.4 Viscoelasticity of carbon nanosheets 

4.4.1 Introduction 

In the previous section we assumed that carbon nanosheets behave as a linear elastic 

material in small strains which can be described by Hook’s law. However, in reality, 

all materials deviate from Hook’s law in various ways, for example, both viscous and 

elastic characteristics under a constant load, so called viscoelasticity. Viscoelasticity 

refers to the deformation exhibits time-dependent behavior, which manifests itself in a 

number of ways, such as creep, relaxation and hysteresis. 

Creep describes that strain increases with time under a constant load and creep rate 

increases at elevated temperatures. This characteristic exists in many materials, such 

as metals, ceramics, polycrystalline solid, polymers and so on. Sliding and climbing 

of dislocations, sliding of grain boundaries and diffusional flow are the basic 

mechanisms of creep in metals and polycrystalline solids. In polymers, there are two 

types of bonds: strong chemical bonds along the main chains in polymers and weak 

intermolecular bonds. It’s hard to determine which type of bond determines the creep 

behavior of polymers. Regel [89] reported that ultraviolet radiation can break 

chemical bonds in the main chain of polymers and the creep rate increased by a few 

orders of magnitude. In the same way, both active liquid media and hydrostatic 

pressure can influence the intermolecular interaction and reduce them, which leads to 

a significant increase of the creep rate. In case of crosslinked polymers, a constant 

load leads to a creep deformation and the equilibrium compliance will be established. 

After the load is removed, the recovery deformation follows a mirror image of the 

creep deformation and no permanent flow phenomena appear [90].  

Carbon nanosheets can be considered as a crosslinked 2D polymeric network. The 

creep and recovery deformation are expected to be observed. In this section, we 

employ an experiment to determine the creep deformation under a constant load. We 

will present the results on the initial strain when the creep occurs, creep rates as a 

function of applied stress and discuss the recovery deformation as well. 
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4.4.2 Experimental description 

The time-dependent deformations were carried out by performing bulge testing in an 

AFM. The central point method is chosen for probing the small change in the 

displacement of the membrane under certain pressure. As shown in the scheme fig. 34, 

the deflection of a carbon nanosheet could be determined as 0h  that is measured at 

time 0t ; At time 1t , the carbon nanosheet experiences a small deformation that leads 

to a deflection increasing to 1h .  

The tensile train can be derived from the following formula 

2

2

2

3

h

a
ε =                            (38) 

where h  is the deflection and a  is the half-width of membrane. 

The creep rate is equal to the derivative of the creep strain ε  with respect to time t  

2
1 0

2 2
1 0

2 4

3 3

h hd d h h

dt dt a a t t

ε   −= = ×  − 
                (39) 

The creep rate has a unit of percentage of elongation/hour or % of elongation/second. 

 

Fig. 34 A schematic diagram of the time-dependent deformation determined by the AFM. 
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4.4.3 Results and discussion 

Hysteresis in Carbon Nanosheets 

In section 4.3, we observed that the loading portion of the pressure-deflection curve 

was higher than the unloading curve. We considered such a small hysteresis loop as an 

indication of specific characteristic of the viscoelasticity in carbon nanosheets. The 

pressure-deflection curves can be converted into the stress-strain curves in terms of 

the equations mentioned in section 3.2.  

Fig. 35a shows the stress-strain curves of three cyclic loading and unloading 

measurements with a maximum strain at 0.85 %. They represent very little hysteresis 

between the loading and unloading curve, as well as a slight deviation existing among 

those cyclic measurements. The stretching energy dissipated as heat in the loading 

cycles and the energy loss is equal to the area between the loading and unloading 

curves. Fig. 35b also shows three stress-strain curves of loading-unloading 

measurements, with increasing maximum strains at ~0.65 %, ~1.2 % and ~1.7 %, 

respectively. The hysteresis loops between the loading and unloading curves were 

observed to increase with increasing the tensile strain. The dissipation energy as a 

function of the stress level could be further investigated and determined. 
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Fig. 35 (a) Stress-strain relationship of three successive loading-unloading measurements 

with the same maximum strain up to ~0.85 %. (b) Stress-strain relationship of three 

loading-unloading measurements with different maximum strains at ~0.65 %, ~1.2 %, 

~1.7 %, respectively. 

(a) (b) 
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Tensile creep and stress relaxation in carbon nanosheets 

Creep refers to the general characteristic of viscoelastic materials that undergo an 

increased deformation along time when loaded under a constant stress. Stress 

relaxation describes another characteristic of viscoelastic materials. The stress 

undergoes a relaxing process while under a fixed level of strain. 

In our experiment, the deflection of carbon nanosheets can be recorded with time at 

room temperature. During the whole measurement, the pressure is kept as stable as 

possible, however still a small decrease in pressure was observed as a result of stress 

relaxation. A quantitative analysis was possible to be carried out by means of the 

central point method. As shown in fig. 36a, the strain fluctuates randomly from 0.816 % 

to 0.824 % when the nanosheet was stressed at 156 MPa. When the membrane was 

stressed over a certain limit, the creep deformation can be clearly observed with the 

AFM. The deflection of the membrane was measured every two minutes. A linear 

relationship between strain and time and the fitting curve was plotted in fig 36b. 

The determination of the starting point of creep in carbon nanosheets is very 

important for engineering this material. It depends on the stress accumulated in the 

membrane that can overcome certain energy barriers and also relates to the sensitivity 

Fig 36 The time-dependent deformation of a carbon nanosheet: (a) Random variation of 

strain under an external tensile stress of 156 MPa; (b) An obvious time-dependent 

deformation under an external tensile stress of 216 MPa. 
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of instruments used for measurements. In case of a membrane that has a width of 60 

µm and a deflection of 120 nm, the AFM can determine 1 nm variation in deflection 

every 2 min, the corresponding sensitivity of the strain rate is in the range of 10-8~10-9 

s-1. However, the sensitivity of the AFM in determining the strain rate is rather limited 

by the pressure supply which fluctuates randomly and causes big errors to the 

deflection signal. As a result, we could determine a strain rate in the range of 10-7 s-1. 

Table 9 Creep strain and creep stress at starting point in different samples 

Sample 
Creep strain  

(%) 
Creep stress (MPa) 

Young’s Modulus 

(GPa) 

NBPT_I2 0.93 257 6.86 

NBPT_E2 1.09 287 9.81 

NBPT_E4 1.01 320 9.66 

Table 9 shows the results of strain and stress values above which a creep behavior was 

detected by the AFM instrument. The creep strain ranges from 0.9 % to 1.2% and the 

corresponding stress from 250 MPa to 320 MPa. Carbon nanosheets with bigger 

Young’s moduli creep at a higher tensile strain, which implies that the microstructures 

of carbon nanosheets play an important role both in elasticity and creep properties. 

The strain rates at the beginning of the creep are also variable from membranes with 
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Fig. 37 (a) Creep deformation of a BPT carbon nanosheet; (b) Stress relaxation of the same 

carbon nanosheet. 
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different stiffness and range from 6 11.5 10 s− −×  to 6 13 10 s− −× .  

As shown in fig. 37a, at a large time scale, strain is not linearly proportional to time 

and the growth exhibits a logarithmic growth along time, accompanied with a 

decreasing rate. The decrease in the strain rate is related to work-hardening of 

materials. Fig. 37b shows that the stress is also slowly decreasing with time, which 

can be explained by stress relaxation. In our experiments, we focus on creep behavior 

rather than stress relaxation.  

Creep rate of carbon nanosheets 

The creep rate 
d

dt

ε
 depends on the stress level and the temperature. It can be roughly 

derived from the slope of the creep curve. We observe that the creep rate of carbon 

nanosheets at room temperature is proportional both to tensile strain and tensile stress, 

as shown in fig. 38. Unlike polymers whose creep rate could span several orders of 

magnitude under different stress levels, carbon nanosheets display a rather stable 

creep rate in the range of 10-6 s-1, even though being under a tensile strain 3.5 % that 

will lead to rupture. Furthermore, the creep rate is rather low compared to polymers. 

Traditional plastic polymers, such as polyamide (PA), polyethylene (PE) and 

poly(propylene) (PP), have a creep rate in the range of 10-4~10-2 s-1 under a very low 
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Fig 38 (a) Creep rate as a function of tensile strain, the creep can be only observed above 

certain strain; (b) Creep rate as a function of tensile stress and the corresponding power 

law creep fitting curve. 
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stress level, e.g. 14 MPa [91]. Enhancement of resistance to creep for polymers is 

favorable to realize by incorporation of micro- or nano-sized inorganic particles in the 

polymer matrix or distribution of inorganic networks in the soft organic polymer 

matrix. Here carbon nanosheets exhibit a very high resistance against creep which 

normally leads to failure. It indicates that the matrix of cross-linked SAMs is quite 

dense and close. Such unique and intrinsic structural properties of the matrix in a 

carbon nanosheet could be further proven by the gas permeability and ion 

transportation experiments. 

Recovery of carbon nanosheets 

In many high polymers, creep under a constant load can be subdivided into reversible 

and irreversible components. To understand the reversible creep in carbon nanosheets, 

we employed two different experiments: (1) Repeat the creep tests after a certain 

period of time and examine the recovery from those creep curves; (2) Measure the 

steady-state deflection at a lower stress level, afterwards the membrane is loaded to a 

higher stress level and held for a certain period, then unload the membrane for another 

certain period and load it to the same lower stress level and measure the 

corresponding steady-state deflection.  
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Fig 39 (a) Three creep deformations were recorded at room temperature, the second test 

was carried out 200 min after unloading and the third 160 min, respectively; (b) Deflection 

of a BPT nanosheet at 1.6±0.1 KPa before loading to a higher pressure (~4 KPa), 1 min 
and 60 min after unloading, respectively. 

(a) (b) 



Mechanical Characterization of Carbon Nanosheets 

78 

 

The results from the first experiment were presented in fig. 39a. Three creep tests 

were recorded at room temperature. The second and third creep tests were carried out 

200 and 160 minutes after the last creep test, respectively. It indicates that carbon 

nanosheets undergo a slow recovery after creep unloading. It is also worthy to 

mention that stress relaxations were observed in these creep tests. The final 

steady-state stress in the second and third creep tests are 98 % and 94 % of that in the 

first creep test. 

The second experiment was presented in fig. 39. The membrane’s deflection was 

stabilized at 2.4 µm under a constant pressure ~1.6 KPa. The membrane was loaded to 

~4 KPa for 5 min and was thus unloaded. After 1 min the membrane was again loaded 

to ~1.6 KPa, the resultant deflection was observed to decrease from 2.75 µm to 2.56 

µm. After another 60 min, the deflection at ~1.6 KPa was stabilized at 2.35 µm, which 

is pretty close to the first steady deflection.  

Both experiments demonstrated recovery of carbon nanosheets after creep unloading. 

It seems that most of the creep deformation could recover after a certain period of 

time, which implies that constant load leads to a slow process of molecular 

rearrangement that is temporary and reversible. 

In summary, we have characterized time-dependent properties of carbon nanosheets. 

Carbon nanosheets show typical viscoelastic behavior as high polymers. Hysteresis, 

creep and relaxation were observed and the minimum strain that causes creep was 

thus determined. The creep rate increases with stress levels but appears to be rather 

stable in the range of 10-6 s-1. Recovery from creep deformation is also demonstrated. 

The mechanism for the creep and recovery in carbon nanosheets is still not clear and 

further investigation should be performed. 
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4.5 Rupture of carbon nanosheets 

4.5.1 Introduction 

Ultimate tensile strength describes the maximum strength that a material can 

withstand when subjected to an external tension. It is one of the most important 

parameters for material engineering and applications, from which the failure of 

devices can be estimated under certain working conditions. 

For bulk specimens, the common way to determine tensile strength is a micro-tensile 

testing machine where the specimen with a fixed cross section is clamped and pulled 

with a controlled and gradually increased force until it fails. For single molecules, the 

kinetics of bond rupture can be directly measured with an AFM and some theoretical 

models have been introduced to explain bond rupture [92]. However, the tensile 

strength and the rupture mechanism of ultrathin nanomembranes are not well 

understood. Watanabe [93] reported the ultimate tensile strength of ultrathin (20~40 

nm) crosslinked organic macromolecules (e.g. melamine resin, urethane resin and 

phthalic resin) by means of the bulge test. The observed tensile strength of these 

nanomembranes is approximately 25% of the value for conventional materials.  

Since the carbon nanosheet is a new 2D polymeric material, determination of tensile 

strength is very important for the application of this material. The rupture mechanism 

of carbon nanosheets is also crucial due to the fracture involving breaking bonds on 

the atomic level including the rigid covalent bonding and weak interactions between 

molecular domains. It may serve as a bridge to extract the energy landscape from a 

single molecular bond rupture to the fracture of macroscopic materials.  

In this section, rupture testing is simply performed in a bulge test in order to 

determine the ultimate tensile strength of carbon nanosheets. The burst pressure is 

used to calculate the ultimate strength. The tensile strength of BPT nanosheets and 

NBPT nanosheets are compared in a basic statistic way. The mechanism will be 

discussed in a preliminary way. 
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4.5.2 Determination of ultimate tensile strength 

The bulge test technique is used to determine the ultimate tensile strength of thin 

membranes from the burst pressure. For a small deflection compared to the 

dimensions of the membrane, a spherical shape may be assumed and other higher 

order geometrical terms are neglected. As we discussed before, the relationship 

between stress and pressure in a thin walled spherical pressure vessel is 

0
x

PR

c t
σ =                            (40) 

where xσ  is the stress in the x  direction, P  is the pressure applied to the 

membrane, R  is the radius of curvature and t  is the thickness of the membrane. 0c  

is a constant that is dependent on the geometry of the membrane. Substituting 

2 / 2R a h≈  for in this equation,  
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where a  is the half width of the membrane in the x  direction, h  is the deflection 

of the membrane. 1 02c c=  is a geometric parameter. For rectangular membranes 1c  

is a function of aspect ratio. Long-rectangular means a much higher aspect ratio 
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The strain can be obtained from the geometric considerations: 
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Because rupture events occur usually at higher pressure and the corresponding 

deflection is rather determined by the stretching energy of the membrane. The 

deflection of a membrane at higher pressure and the constant 2c  are given as 

4
1/3

2

(1 )
( )
Pa

h
c Et

ν−=                         (44) 

3

2 3

8 circular3

(0.8 0.062 ) square

( , / ) rectangular

4 long-rectangular3(1 )

c
g b a

ν
ν

ν

−

−



 += 


 +

⋯⋯⋯⋯⋯⋯⋯

⋯⋯

⋯⋯⋯

⋯⋯⋯

              (45) 

where ( , / )g b aν  is a function of the Poisson’s ratio and the aspect ratio of the 

membrane and the value is taken from the literature. 

Here we neglected the influence of residual stress on the ultimate deflection as well as 

the influence of the tensile creep at a higher load. Both assumptions overestimate the 

ultimate deflection value to some extent and thus underestimate the ultimate tensile 

strength of carbon nanosheets. Combine it with the equation for calculating 

membrane’s stress and ultimate tensile stress uσ  and the corresponding ultimate 

strain xε  may be presented as follows:  
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If the residual stress is taken into account, the deflection will be re-estimated 

according to the pressure ratio that are both balanced by residual stress and stretching 

energy of a membrane.  
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Deflection values are calculated from both linear term 1h  for residual stress and 

cubic term 3
2h  for the stretching energy and compared to each other, by adjusting the 

ratio n  of two parts of pressure until two deflection values converge (1 2h h h= = ). 

Substitute the new deflection value h  into equation (44), the ultimate tensile 

strength is thus corrected.  

In case of a membrane with a residual stress of 70~100 MPa, the pressure which is 

used to balance the residual stress is estimated to be 15~25 percent of the whole 

pressure that is applied to the membrane. It gives rise to an additional correction 

factor to enhance the ultimate tensile strength with ~30 MPa. 

4.5.3 Results and discussions 

When a differential pressure is gradually increasing and is applied to a membrane, a 

rupture incident occurs at the point where the pressure was recorded as burst pressure. 

There are several ways to monitor the rupture of membranes. The first one is to land 

the AFM tip directly on the membrane and observe the rupture from a DFL signal of 

photodiodes. The advantage is that the rupture incident can be precisely and directly 

determined and the disadvantage is that the influence of the AFM tip has to be taken 

into account. The second way is to observe with an optical microscope whether the 

membrane is still intact. This is a nondestructive method and it has yet rather bigger 

uncertainty compared to the fist method. During pressure loading in our experiments, 

the membranes are examined immediately after the pressure is increased. Small steps 

are chosen when the pressures are close to the estimated burst pressure. 
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Tensile strength from dynamic pressure loading is different from static pressure 

loading. The former causes instabilities on the membrane under a tension state, which 

may reduce the tensile strength value accordingly. To avoid that, gas stream is 

controlled as smoothly as possible in the experiments. Loading history and loading 

rates are considered to have influences on the rupture events. More frequent loading 

cycles will cause the membrane to break easily as a result of continuously cumulative 

permanent deformations. Therefore less loading cycles are preferred especially at 

higher pressure. The thermal effect of light shining in the optical microscope  

Fig. 40 shows the statistical histogram of the ultimate tensile strength of 6 NBPT 

nanosheets and 12 BPT nanosheets. The tensile strength of NBPT nanosheets ranges 

from 430~700 MPa where a narrow peak is located at ~600 MPa. The tensile strength 

of BPT nanosheets has a relatively wide distribution, with a major peak at ~480 MPa. 

These results indicate that NBPT nanosheets are mechanically more stable than BPT 

nanosheets. From the wider distribution of BPT nanosheets, we can derive that there 

are more random defects in the membranes. According to XPS spectra, NBPT SAMs’ 

thickness is determined as ~1.3 nm which is relatively higher than that of BPT 

nanosheets with a thickness of ~1 nm. This also suggests a better structural ordering 

of NBPT self-assembled monolayers. In aromatic SAMs, phenyl rings and their 

functional groups will introduce stronger interactions between molecule and substrate, 

as well between adjacent molecules. During the formation of the standing-up phase of 

300 400 500 600 700 800
0

1

2

3

Tensile strength (MPa)

 

 

C
ou

nt

300 400 500 600 700 800
0

1

2

3

4

5

6

 Tensile strength (MPa)

 

 

C
ou

nt

 

Fig. 40 (a) Histogram of the ultimate tensile strength of NBPT nanosheets; (b) Histogram of 

the ultimate tensile strength of BPT nanosheets. 

(a) (b) 
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SAMs, hydrophobic interaction may become a competing driving force as the 

interactions of head-head group and molecule-molecule. Biphenylthiol molecules 

with a smaller dipole moment tend to have a higher adsorption rate which may create 

a bigger energy barrier for new molecules. It also explains why the exchange rate of 

BPT SAMs replaced by NBPT SAMs is three times lower than the other way round 

[94]. The NBPT molecule has a larger dipole moment and the mobility of molecules 

in solvent is expected to be better than BPT molecules. The mobility of molecules that 

are already bonded to the substrate reduces the energy barrier for new molecules and 

thus results in a good packing density of the monolayers. Among all other 

nanomembranes, IPN nanocomposite with organic-inorganic networks exhibit the 

highest tensile strength as 105 MPa [109]. Tensile strength of carbon nanosheets is 

4~7 times higher than IPN nanocomposite. 

Fig. 41a shows the tensile strength of three circular NBPT membranes as a function of 

diameters. With the decrease of dimensions, the membranes exhibit an increasing 

ultimate tensile strength. Fig. 41b shows that the circular nanomembranes have higher 

tensile strength than square membranes do. With a uniform pressure applied, the 

circular membranes have a uniform stress distribution. However square membranes 

bear a stress that gradually decreases from the middle of its sides to its corners. Such a 

non-uniform stress distribution enhances the possibility of a rupture event and thus 
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Fig. 41 (a) Tensile strength as a function of membranes’ diameters; (b) Circular membranes 

show higher tensile strength than square membranes do. 
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reduces their ultimate tensile strength. 

The rupture mechanism of carbon nanosheets is rather complex. If SAMs are regarded 

as an ideal two-dimensional system without defects, the fracture will be only related 

to the breaking of covalent bonds. In reality, it is well known that SAMs contain a few 

defects. First of all, some defects are caused by the substrate, such as surface 

impurities, gold vacancy islands, defects at gold crystalline grain boundaries, defects 

at gold step edges and so on. Secondly, some defects are formed as a result of the 

impurity of molecules, impurity of the solution during preparation, and the humidity 

and oxygen content in the atmosphere of the solution. Lastly, the formation of SAMs 

is a thermodynamic process and some defects are formed dynamically due to 

desorption of molecules from the substrate. Besides those defects formed during SAM 

preparation, new defects may be introduced into monolayers during the crosslinking 

process. It was reported that electron irradiation with a very low dose leads to 

noticeable reorientation of SAM constituents, creating potential sites for the exchange. 

As a result, creation of irradiation-induced defects seems to occur with a higher rate 

than crosslinking at the initial stage of irradiation [95]. 

Carbon nanosheets contain densely and uniformly distributed covalent bonds. They 

come either from the molecules themselves or form in the crosslinking process. 

Carbon nanosheets contain the relatively weak bonds in different kinds of defects and 

among those molecular domains as well. During pressure loading, the monolayer 

undergoes a series of structural rearrangements where stress is built up as stretching 

energy, and dissipated as thermal fluctuations. When the mechanical stress 

accumulated in the monolayer exceeds relatively weak bonds in those defects or 

among molecular domains, weak bonds are to break and defects may grow and 

coalesce consequently until a rupture event occurs. Therefore more experiments need 

to be carried out, for example observing defects growth with high-resolution 

transmission electron microscope (HRTEM) and observing free radicals with electron 

paramagnetic resonance (EPR), to obtain a better and complete understanding of the 

rupture mechanism of carbon nanosheets.  
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4.6 Multilayer carbon nanosheets 

A multilayer system consists of a series of thin films, either metal, dielectric or 

polymer thin films, which are constructed in a certain way to meet a variety of 

requirements. Multilayer optical coatings are very important in advanced lenses and 

mirrors, optical fiber telecommunications. Multilayer polymer films are mainly used 

as food packages and multichannel medical bags.  

Multilayer devices are prepared in various ways. Multilayer inorganic thin films are 

usually prepared by vacuum deposition, such as sputtering and evaporation. 

Multilayer polymer films are produced using co-extrusion and lamination techniques.  

In this section, we introduce a technique to fabricate multilayer carbon nanosheets 

that could also be transferred to other substrates. The mechanical characterization has 

been performed on these freestanding multilayer carbon nanosheets. 

4.6.1 Fabrication of freestanding multilayer nanosheets 

Fabrication procedure is schematically shown in fig. 42. First of all, carbon 

nanosheets together with double layer PMMA (130 nm PMMA 50K/ 260 nm PMMA 

950 K) are transferred on a silicon nitride substrate (150 nm Si3N4/10 nm SiO2/Si, 

CryTec). After being baked at 90℃ for 2 min, the sample is mounted on a Teflon 

sample holder and immersed into acetone solvent and thus sonicated in an ultrasonic 

bath for 15 minutes. Afterwards the sample is rinsed with methanol and blown dry 

with nitrogen. It is possible to examine the completeness of the monolayer with an 

optical microscope. The second layer of carbon nanosheets with a PMMA double 

layer will be transferred onto the first monolayer. The same procedure is repeated to 

dissolve PMMA on the monolayer. The sample needs to be checked up with an optical 

microscope to make sure that each new layer is completely transferred.  
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When the desired number of layers has been reached, fresh PMMA will be spin 

coated onto the last layer of multilayer carbon nanosheets. Connections between 

PMMA and the edges of substrate need to be broken using a sharp blade, so that the 

HF solution can easily penetrate the interface. After a few seconds, the sample could 

be taken out from HF solution for further transferring. For the purpose of mechanical 

measurements it will be transferred to the silicon substrate with window-structured 

openings. Fig. 43 shows the optical microscopic images of a single layer, double layer 

and four multilayer carbon nanosheets in a suspended state. 

 

Fig. 42 Schematic diagrams describes the fabrication procedures of a freestanding 

multilayer carbon nanosheet. 
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Since carbon nanosheets are quite flexible and have a relatively low stiffness, folds 

may exist in the nanosheets when they are transferred to new substrates. Once 

nanosheets are made freestanding, they have more freedom to adjust themselves and 

counteract those uneven morphologies. For a single monolayer, such folds cannot be 

observed on the freestanding nanosheets with an optical microscope. However, in 

multilayer carbon nanosheets, those folds probably existing in each layer are 

embedded in the system and could not be relaxed even in a suspended state. That is 

the reason why folds may often be clearly observed in multilayer carbon nanosheets. 

These folding features are one of the disadvantages of multilayer carbon nanosheets. 

On the other hand, microscopic cracks and holes, as well as invisible molecular 

defects can also be embedded in a multilayer stack. It improves the mechanical 

stability of suspended multilayer nanosheets and will enhance the yield of suspended 

multilayer nanosheets in even bigger sizes. Folds and cracks are shown in fig. 43 with 

black and white arrows, respectively.  

4.6.2 Mechanical properties of multilayer nanosheets 

The mechanical characterization of multilayer nanosheets is carried out by means of 

bulge testing. For larger membranes (>20 µm), the central point can be precisely 

 

Fig. 43 The optical microscopy images of freestanding carbon nanosheets: (a) single layer; 
(b) double layers; (c) four multilayers. Scale bar: 20 µm 

(a) (b) (c) 
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determined with a micro-positional system in an AFM instrument. In case of smaller 

membranes, we need to scan the membrane to find the central position.  

We prepared multilayer nanosheets with various dimensions, such as of rectangular 

and circular shape, as well as of various sizes from 4 µm in diameter to around 30 by 

60 µm in dimensions. The thicknesses are estimated to be a number of layers 

multiplied by 1 nm. All the results were presented in table 10. Basically, circular 

membranes have shown to be in agreement with each other, even though they have 

different dimensions with up to five times of size.  

For measuring the small membranes with diameters below 10 µm, we have to scan the 

membrane to determine the central point due to the increased difficulties in the central 

point method. The deviation between rectangular and circular membranes was not so 

prominent. Such a random error is acceptable, because folds and cracks are also 

playing an important role in the mechanical stiffness of multilayer nanosheets. Such 

influence is not easily to be quantified and taken into account. 

Table 10 Young’s moduli of multilayer carbon nanosheets 

Geometry Sample 
Number of 

layers 

Young’s Modulus 

(GPa) 

Dimension 

Rectangular 

Membranes 

XZB004_D5 2 (~1.3) 5.6 (~8.8) 34.3×58.3 µm 

XZB004_D4 2 9.3 33.5×57.0 µm 

XZB010_F2 4 9.7 30.3×37.6 µm 

Circular 

Membranes 

XZB010_2 2 6.1 20 µm in diameter 

XZB012_3 3 6.7 4 µm in diameter 

XZB012_4 4 6.8 5 µm in diameter 
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It is worthy to mention that sample XZB004_D5 and XZB004_D4 are different 

membranes on the same substrate and they also have similar sizes. But Young’s 

modulus of XZB004_D5 is about 40 % lower than that of XZB004_D4. The 

explanation for such an abnormal phenomenon would be that double layers in 

XZB004_D5 are not complete. From an optical microscope image we found that the 

membrane consisted of a complete first monolayer and only part of (about 30%) the 

second layer. If we take the thickness as 1.3 nm, Young’s modulus would be 8.8 GPa 

for sample XZB004_D5, which is pretty close to the value of sample XZB004_D4.  

In summary, we have successfully fabricated multilayer carbon nanosheets. The 

average Young’s modulus is demonstrated to be very similar to the single layer carbon 

nanosheet. However, there are some open questions relating to multilayer nanosheets, 

for example, what interactions are there between each monolayer? How do they 

influence the mechanical stiffness? For answering these questions, further 

experiments need to be designed and a theoretical model is required as well. 
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4.7 Annealed carbon nanosheets 

4.7.1 Introduction 

In material science, annealing is a heating treatment through which desirable 

properties of materials can be achieved. For metal, this treatment will alter the 

microstructures and phase structures and it provides a way to adjust the strength and 

hardness of that material. For polymers, annealing can relieve the internal stress and 

also bring some changes in morphology, crystallization, chain mobility and 

thermodynamic properties. Apart from tailoring properties of the original materials 

via annealing treatment, organic polymers can also be utilized as a precursor to 

prepare other inorganic materials. Kyotani [96] reported that highly orientated 

graphite was prepared from polyacrylonitrile (PAN) by making use of the 

interlamellar openings of montmorillonite (MONT) as a two-dimensional space for 

cabonization, whereas carbon atoms from PAN between MONT are further subjected 

to annealing treatment after being released from MONT. This research suggested a 

way to prepare the multilayer graphene from organic molecules or polymers that are 

constrained in a limited space. Carbon nanotubes with diameters in the range of 

40~200 nm have also been prepared from PAN using a porous aluminium oxide 

template via high-temperature pyrolysis [97]. 

Cross-linked aromatic SAMs were found to have a high thermal stability with an 

annealing termperature of ~1000 K [98]. Molecular surface patterns can be created 

due to desorption of non-crosslinked molecules and conservation of crosslinked 

structures after annealing treatment. Such a novel system provides a molecular route 

to prepare new two-dimensional carbon networks when subjected to an annealing 

treatment. Firstly, the monolayer could provide a carbon matrix as a precursor for the 

molecular rearrangement at high temperature. Secondly, the limited number of carbon 

atoms allows the formation of new structures with the thickness of only one 

nanometer. In this section, we will discuss the structural transformation of carbon 

nanosheets upon annealing treatment as well as their mechanical properties. 
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4.7.2 Structural transformation of carbon nanosheets upon annealing 

The electrical properties of annealed nanosheets have been determined both with a 

two-point measurement in UHV and a four-point measurement under ambient 

conditions [99]. It was found that the annealing treatment can transform carbon 

nanosheets from an insulating to a conducting state. Sheet resistivity values measured 

in both methods are in very good agreement. After annealing at ~800 K, sheet 

resistivity corresponds to ~108 kΩ/□. Increasing the annealing temperature to ~1200 

K, drops the sheet resistivity to ~100 kΩ/□, demonstrating the clear metallic nature 

of the film. This resistivity is only one order of magnitude higher than that of a 

defect-free graphene monolayer [100], and ~100 times lower than the sheet resistivity 

of single chemically reduced graphene oxide sheets [101], which are currently most 

favored for the mass production of graphene. 

High-resolution transmission electron microscopy (HRTEM) was used to investigate 

the structural transformation of carbon nanosheets upon annealing [99]. For 

non-annealed carbon nanosheets, only one amorphous phase can be observed. For 

annealed carbon nanosheets, some curvy and parallel fringes can be observed, which 

indicates the presence of graphitic materials. From the selected area electron 

diffraction (SAED) patterns, the sharpness and intensity of the rings that correspond 

to the real space periodicities of 0.11±0.02 nm and 0.20±0.02 nm, increase in the 

samples which are annealed at higher temperatures and this indicates a progressing 

ordering in the graphitic nanosheets. 

Raman spectroscopy has also been used to investigate the structural transformation of 

carbon nanosheets upon annealing. For annealing temperatures above 700 K, two 

peaks, at ~1350 and ~1590 cm-1, are observed in the Raman spectrum. The Raman 

line at around 1580 cm-1, the so-called G band, is assigned to the E2g species of the 

infinite crystal. The other line at 1355 cm-1, the so called D band, is attributed to the 

vibration mode A1g of the graphite lattice which achieves Raman activity at the 

borders of the crystalline areas due to loss of translational symmetry. Since Raman 
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spectroscopy is very sensitive to structural disorder in different types of graphite and 

carbon, a small FWHM (full width at half maximum) of those lines indicates higher 

graphitization in the sample. The intensity ratio (R) of the D line to the G line is 

directly related to the “amount of crystal boundary”. 

Tuinstra and Koenig [102] have reported that the intensity ratio of the D line to the G 

line is reversely proportional to the average crystal size La in the graphite plane 

determined from X-ray diffraction techniques. They presented an experimental curve 

relating a series of samples in powders without orientational effect which can be used 

to estimate the average crystal size in annealed carbon nanosheets. 

As shown in fig. 44a, the intensity ratio R=I(D)/I(G) systematically increased from 

~0.75 to ~1 as the annealing temperature increased from ~750 K to ~1250 K. The 

average crystallite size of graphite in the annealed nanosheets can be obtained by 

substituting the intensity ratio R in that experimental curve. The relationship of 

crystallite size La and annealing temperature is shown in fig. 44b. It indicates that 

annealed nanosheets exhibit an average crystallite size of 50 Å, however a higher 

annealing temperature leads to a slight decrease of La, which may result from the 

desorption of more molecules with weaker bonds.  
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Fig. 44 (a) The intensity ratio of I(D)/I(G) and the position of G line as a function of 

annealing temperature (image taken from reference 99); (b) The crystallite size La as a 

function of annealing temperature. 

(a) (b) 
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4.7.3 Mechanical properties of annealed carbon nanosheets 

The structural transformation of a crosslinked aromatic monolayer is also reflected in 

its mechanical properties. To quantify these, we also fabricated a nanomechanical 

pressure sensor in which the annealed nanosheet acts as a membrane. This rather 

simple device demonstrates the utilization of carbon nanomembranes as 

nanomechanical transducers. Freely suspended nanosheets were mounted onto a 

sealed pressure cell, and a well-defined pressure difference between both sides of the 

membrane was applied. The resulting membrane deflection was measured by the 

AFM and was used to determine Young’s modulus and the residual strain of 

nanosheets by bulge tests. Figure 45a shows an AFM image of a nanosheet annealed 

at ~900 K without applied pressure. Although the membrane is pushed down ~15nm 

by the tip, it remains intact. By applying a pressure of ~450 Pa to the sealed cell under 

the membrane, an upward deformation (bulging) occurs (Fig. 45b). This deformation 

is quantified by recording the AFM tip height at the membrane center as function of 

the applied pressure.  

 

Fig. 45 AFM images of a membrane (topography, contact mode) (a) without and (b) with 

an applied pressure of 450 Pa. Scale bar: 10 mm. Line scans along the red lines are 

superimposed to the AFM images. (Images taken from reference 99) 

(a) (b) 
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Deformation datasets are presented in Figure 46a, which contains three successive 

measurement cycles. All measured data lie on one curve, and no hysteresis is 

detectable, we concluded that the deformation is elastic without any permanent 

change within the investigated strain range of up to 0.6%. The absence of any 

hysteresis shows that the nanosheet does not slide on the silicon frame, presumably 

due to a sufficiently strong van der Waals interaction. Long-term stability was tested 

after five months, and no changes in the elastic properties could be observed. This 

demonstrates that the nanomembrane deflection can be utilized for pressure sensing. 

The same model for pressure–deflection was chosen and the experimental data fit 

very well to this model, which is plotted in Figure 46a. Curve fitting yields Young’s 

modulus and the residual strain. Figure 46b shows both quantities as a function of the 

annealing temperature. Without thermal treatment, Young’s modulus is ~10 GPa. 

This value is comparable to Young’s modulus of multilayered molecular/metallic 

nanocomposite membranes that are thicker by an order of magnitude. Annealing leads 

to a systematic increase of the modulus with rising temperature, up to 48 GPa at 

~1000 K. This is in good agreement with an increasing graphitization, as Young’s 

modulus of graphite varies from 39GPa to 1.1 TPa [103], depending on its orientation. 

 

 

Fig. 46 (a) Young’s modulus determination is presented for one nanomembrane (annealed 

at ~900 K). First the deflection at the membranes center is measured for different 

pressures, and then data are fitted by the displayed dependency, which yields the modulus. 

(b) Young’s modulus as function of annealing temperature. At higher temperatures, the 

modulus shifts toward the value of graphite. (Images taken from reference 99) 

(a) (b) 
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The formation of residual strain in the nanosheet is most likely related to structural 

transformations during the crosslinking process. Without annealing, the nanosheet 

shows a residual strain of 0.8%. Annealing reduces the residual strain of the 

nanosheet to ~0.35% above 800 K, which correlates with the onset of conductivity. 

Since nanomembranes are elastic and mechanically stable at ambient conditions, they 

can be further utilized as sensitive diaphragms in various applications. Conducting 

nanomembranes may act as transducers in NEMS and open an opportunity to build 

highly miniaturized pressure sensors that might eventually lead to microphones with 

nanometer dimensions. The possibility of chemically functionalizing nanosheets by 

chemical lithography [104] further permits their use as highly sensitive chemical 

sensors that change their electromechanical characteristics upon the adsorption of 

distinct molecules. 

In summary, annealing treatment in UHV leads to structural transformation of carbon 

nanosheets. Increased graphitization was observed in Raman spectra which also 

indicate decreased crystallite size. Their mechanical properties showed an increased 

Young’s modulus upon annealing treatment.  
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Chapter 5  

Mechanical Properties of Polymer Carpets 

5.1 Introduction 

Ultrathin polymer membranes have been considered as one of the most promising 

nanomaterials, due to their potential applications as nanosensors [105, 106], 

nano-separation membranes [107], and functional biosensors [108].  

However, nanometer-thickness and macroscopic size seem to be not easily compatible, 

mainly due to the mechanical stabilities of those ultrathin membranes. Therefore, 

different methods have been tried to enhance the mechanical strength of the 

nanomembranes. For example, Kunitake et al. developed methods for the preparation 

of large, robust, free-standing nanomembranes by taking advantage of densely 

cross-linked interpenetrating hybrid networks (IPN) [109] of zirconia and acrylate, as 

well as by means of organic components of resin alone [110] . Tsukruk et al. showed 

that very robust 25-70 nm thick membranes were accessible by embedding rigid gold 

nanoparticles within polymeric nanomembranes prepared by a so-called SA-LbL 

assembly (spin-assisted layer-by-layer assembly) [111].  

Due to embedding of polymer chains in those polymeric nanomembranes, the 

sensitivity of the system is mainly dependent on the exposed chains on the surface. In 

contrast with polymer-based nanomembranes, polymer brushes are much more 

stimulus-responsive and react much faster to environmental changes, such as solvent 

quality, PH, ionic strength, or temperature [112]. Therefore, polymer brushes that are 

grafted on biphenyl-based nanosheets provide a freestanding system for the 

development of adaptive layers as actuators and sensors. Because their morphological 

analogy is just like a real carpet that consists of soft and flexible brushes that are 

firmly attached to a thin and rigid two-dimensional framework, we refer to this as a 

“polymer carpet” [113].  
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In this chapter, the fabrication and mechanical characterization of polymer carpets 

will be discussed. Both bulge testing and nanoindentation are used to characterize the 

mechanical properties of polymer carpets. The composite system of mechanically 

stable nanosheets and flexible polymer brushes will also be analyzed. 

5.2 Fabrication of polymer carpets 

Photochemistry is a convenient way to graft organic polymers on inorganic and 

organic surfaces. In a surface photografting polymerization process [114], the 

substrate was placed in bulk monomer with benzophenone (BP) as a photosensitizer 

and irradiated with UV light at 340 to 360 nm. BP is excited to a single state (S1) and 

transformed to a triplet state (T1) by intersystem crossing and removing hydrogen 

from the substrate surface. The substrate radicals formed add monomers leading to 

grafted chains. However, in the self-initiated photografting and photopolymerization 

(SIPGP) process [115], a monomer itself acts as the photosensitizer and reaches a 

triple state upon photon adsorption in the range of near UV (300~400 nm). This triple 

state is in equilibrium with a biradical species, e.g. (�St�), which initiates a free radical 

polymerization in solution. This biradical species can also abstract a hydrogen radical 

from the organic substrate and thus create a surface radical site for surface-initiated 

polymerization of styrene. 

The scheme of polymer carpets’ preparation is outlined in Fig. 47. First, a ~1 nm thin 

nanosheet is prepared by electron beam induced crosslinking of a biphenyl SAM. A 

crosslinked 4’-amino-1,1’-biphenyl-4-thiol (cABT) SAM is prepared by electron 

irradiation of NBPT SAMs. After detachment from the substrate and deposition onto a 

solid silicon support, the nanosheet was used as a 2D template to grow polymer 

brushes by surface-initiated polymerization (SIP), forming the polymer carpet. 

The silicon supported nanosheets were submerged into approx. 1 mL of freshly 

distilled and degassed styrene (Fluka) in a glass photoreaction vial. Polymerization 

was performed under argon atmosphere for different time periods under irradiation 
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with UV-light (max = 350 nm) at room temperature. After the polymerization, the 

samples were removed from the reaction solution and immediately washed with 

toluene. The samples were additionally cleaned in ethyl acetate and ethanol. 

Freestanding polymer carpets can be obtained by dissolving a few nitride layers 

beneath polymer carpets in hydrofluoric (48 %) and subsequently detaching them 

from a solid substrate on the water.  

Afterwards freestanding polymer carpets can be transferred to other substrates, such 

as TEM Cu grids, Si substrate with window-structured openings for the mechanical 

characterization. We found out that no transferring medium is required for polymer 

carpets with a thickness bigger than 30 nm, while the transferring medium required 

for the thinner membranes due to difficulty of observing them with naked eyes. 
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5.3 Mechanical characterization by means of bulge test 

 

 

 

 

 

Fig. 47 Scheme of the preparation of polymer carpets: (a) A crosslinked cABT SAM is 

prepared by electron irradiation of NBT SAMs and (b) detached by dissolving the gold 

substrate with a KI/I2 solution. (c) The nanosheet is deposited on a silicon substrate with 

thin silicon oxide or silicon nitride layer. (d) Supported polymer carpets are obtained by 

SIPGP of a vinyl monomer (styrene, 4-vinylpyridine or MMA). (e) Freestanding polymer 

carpets are obtained by dissolving the underlying layer (Si3N4) with HF. (Images taken 

from reference 113) 
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5.3 Mechanical characterization with bulge test 
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Fig. 49 Thicknesses of the PS carpets determined via an AFM instrument as a function of 

polymerization time. 

 

 

 

Fig. 48 The AFM height images and line profiles of polymer carpets transferred on silicon 

substrates with polymerization time and the corresponding thicknesses marked on figures. 
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First of all, thickness determination of polymer carpets is very crucial for the 

mechanical characterization. The thicknesses are linearly proportional to the UV 

irradiation time. However data scattering is more prominent from different sample 

preparing conditions. One should not just rely on the thickness derived from 

polymerization time. In order to obtain much more precise thicknesses, we use an 

AFM instrument to measure polymer carpets that were transferred on the silicon 

substrate. Over five different positions on the membrane edges are scanned with the 

AFM and five line profiles out of each position are taken to calculate the mean value 

of thicknesses. At lower polymerization time, their morphology indicates that a layer 

of flat and homogeneous film was formed on the surface. However, buckling 

structures were found in the polymer carpet with longer polymerization time. The 

AFM images and the corresponding line profiles are presented in fig. 48, where 

polymerization time and thicknesses were marked on those figures. The relationship 

between thicknesses and polymerization time is shown in fig. 49. 
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Fig. 50 Bulge testing on the polymer carpet: (a) the optical microscopy image of one 

membrane with a width of 40 µm and a length of 61 µm, and a thickness of 195 nm; (b) the 

relationship between pressure and deflection of the membrane determined by a bulge test; (c) 

the folding feature as shown in the line profile of the membrane without applying pressure; 

(d) the membrane has a deflection of 1150 nm at a pressure of 3750 Pa.  

 (a)  (b) 

 (c)  (d) 

1150 nm 
330 nm 
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A bulge test has been used for characterizing the mechanical properties of polymer 

carpets. Fig. 50 shows the experiment data from one polystyrene (PS) carpet with an 

UV irradiation time of 8 hr. From the optical microscopy image one can see small 

folding feature across the membrane. The line profile of the AFM image clearly 

reveals that the fold has a height distribution of ~330 nm. After applying some 

pressure, the fold disappeared and displayed an arc profile, as shown in fig.50d. Its 

Young’s modulus is determined as 1.37 GPa and residual stress as -147 MPa that 

could be explained by its existing folding feature. 

Since polymer carpets are considered to be a composite system which consists of soft 

polymer brushes and a relatively rigid two-dimensional framework. Contributions 

from both components have to be taken into account. By means of mixture law [116, 

117], the Poisson’s ratio of the composite system is used to calculate Young’s modulus 

and residual stress: 

1 1 2 2cυ υ υ= Φ + Φ                        (48) 

where cυ  represents the Poisson’s ratio of the composite system, 1υ  and 2υ  are 

Poisson’s ratio of each component, 1Φ  and 2Φ  the volume fraction of each 

component. Since PS has a Poisson’s ratio of 0.34 and the NBPT nanosheet is 

assumed to have a Poisson’s ratio of 0.35, the Poisson’s ratio of this composite is 

taken as 0.35 to simplify the calculations. 

Therefore, Young’s modulus and residual stress can be determined for each 

component of the system using mixture formula: 

NBPT PS
composite NBPT PS

total total

t t
E E E

t t
= +                   (49) 

NBPT PS
composite NBPT PS

total total

t t

t t
σ σ σ= +                   (50) 

where iE and iσ  represent Young’s modulus and residual stress of composite 

system and two components, NBPTt and PSt  represent the thickness of each 
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component. According to our knowledge of NBPT nanosheets, Young’s modulus is 

taken as 8 GPa and thickness is estimated to be 1 nm for theoretical calculations.  

Fig. 51 shows a clear relationship between Young’s modulus and the PS carpets layer 

thicknesses. As a whole, PS carpets have a Young’s modulus in the range of 1~4 GPa 

which are lower than that of NBPT nanosheets. When the thicknesses are over 30 nm, 

Young’s modulus get saturated at 3~4 GPa, which are very close to the PS’s bulk 

value of 3.0~3.6 GPa. However, PS carpets experience a decrease in stiffness with a 

decrease of thickness smaller than 20 nm. The mixture law has been used to extract 

Young’s modulus of the PS brushes component from the whole composite system, 

which is shown as red dots in the graph. It was found that the PS brushes component 

has a Young’s modulus of ~1.3 GPa for the thinnest PS carpet. Our findings are in 

agreement with a recent report on PS brushes on solid substrates by Tsukruk et al 

[118], where they also reported that Young’s modulus are significant lower than that 

of bulk PS. It can be explained that the ordering of the polymer chains in the brush 

morphology with lower polymer chain entanglement and the spatial constraints within 

the layer are responsible for the specific mechanical properties for thin brush layers.  
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Fig. 51 Young’s moduli of PS carpets of different thickness with (green squares) and 

without (red dots) the contribution of a NBPT nanosheet. (Image from reference 113) 
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5.4 Mechanical characterization with nanoindentation 

Microindentation was commonly used to perform hardness testing. It can be used to 

study fine scale changes in hardness, either intentional or accidental. The Vickers and 

the Knoop tests are two most common microindentation tests. While the trend of 

miniaturization and fast development in nanotechnology requires new methods for the 

mechanical characterization of nanoscale materials and structures. Nanoindentation 

was established in such way that the penetration as a function of the applied load was 

recorded, instead of observing the dimensions of the residual indentation area in 

microindentation.  

The mechanical properties of a substrate-film system can be determined by means of 

nanoindentation that is able to distinguish the deformation of individual components 

in the system. SAMs on a metal surface have been investigated by means of 

nanoindentation technique with a constant harmonic frequency [119]. It is shown that 

a different functional tail group of SAMs gives rise to the variation of phase angles 

and bulk density of alkyl chains may have an influence on the harmonic contact 

stiffness. It is quite challenging to carry out nanoindentation on a 1 nm thin carbon 

nanosheet. We have done some preliminary nanoindentation tests on carbon 

nanosheets and the technique was not sufficient to characterize them. The contact 

point between indenter and nanosheets is difficult to determine because of the 

uncertainty in the range of a few nanometers. Furthermore, the contribution of the 

substrate brings big difficulties to data analysis. Polymer carpet with a larger 

thickness was measured with nanoindentation.  

In order to calibrate the nanoindentation instrument, first tests were performed on a 

Corning fused silica reference material. Continuous stiffness tests were performed up 

to an indentation depth of 2000 nm in Corning reference material. The material was 

deformed at a constant strain rate of 0.05 and this indicates that continuous values of 

modulus and hardness in fused silica are 72 GPa and 9.7 GPa, respectively, which are 

in agreement with typical values of fused silica reference. 
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As a next experiment, continuous indents to a depth of around 2000 nm were 

performed both on the sample with polymer carpets that have been transferred on the 

silicon substrate and on the substrate as a reference. All the experimental results were 

shown in fig. 52. Hardness and reduced moduli for both PS carpets and reference 

substrate as a function of displacement into surface were directly determined from 

measurements and presented together for comparison. 

The reduced modulus rE  is determined from the slope of the unloading curve and 

calculated from the contact stiffness contributed from both indenter tip and sample.  

2 21 11 i s

r i sE E E

ν ν− −= +                      (51) 

where iE  and sE  indicate the elastic modulus of indenter tip and sample, iν  and 

sν  indicate Poisson’s ratio of indenter tip and sample. In our case, a Berkovich 

pyramidal tip was used which has the elastic modulus of 1140 GPa and iν  of 0.07. 

The moduli of PS carpets were computed and the results were presented in table 11. 

 

Fig. 52 (a) Hardness as a function of indentation depth on a PS carpet and its reference 

substrate; (b) Reduced moduli as a function of indentation depth on the PS carpet and its 

reference substrate. 
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Table 11 Statistical average modulus and hardness for polymer carpets and the substrate 

 Polymer Carpets Substrate 

 Young’s Modulus 

(GPa) 

Hardness (GPa) Young’s Modulus 

(GPa) 

Hardness (GPa) 

1 68.7 0.68 199.2 19.46 

2 81.9 0.87 195.4 18.70 

3 87.5 0.97 183.2 15.71 

4 81.1 0.86 196.7 19.17 

5 72.7 0.74 184.3 16.77 

6 73.7 0.73   

7 85.3 0.89   

8 104.0 2.02   

9 87.9 0.99   

Mean 82.5 0.97 191.8 17.96 

Std. 

Dev. 

10.5 0.41 7.4 1.64 

% COV 12.7 42.08 3.8 9.14 

In fig. 52b, the substrate has a reduced modulus of about 168 GPa. It had a hardness 

of 18 GPa at an indentation depth of 80 nm. Although the PS carpet has a thickness of 

120 nm, the hardness and reduced modulus for PS carpet even at an indentation depth 

of 80 nm showed clearly that substrate played a decisive role. On the one hand, it 

turns out that PS carpets can be easily distinguished from the substrate underneath and 

the nanoindentation is demonstrated to be a useful technique; On the other hand, the 

substrate effect was found to be too prominent to characterize intrinsic modulus of a 

PS carpet with a thickness of 120 nm. Much higher uncertainties could be expected 

for thinner PS carpets.  

In summary, we presented the fabrication and mechanical characterization of polymer 

carpets which is a composite system of carbon nanosheets and polymer brushes. Both 

bulge testing and nanoindentation were used to determine the mechanical properties 

of polymer carpets. With big uncertainty in characterizing polymer carpets with 

nanoindentation instrument, we come to the conclusion that current nanoindentation is 

not yet suitable for the characterization of ultrathin nanomembranes such as carbon 

nanosheets.  
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Summary and outlook 

Summary 

The present work in this thesis focused on the mechanical characterization of carbon 

nanosheets that are prepared from the low energy electrons induced cross-linking of 

biphenyl-based self-assembled monolayers. For this purpose, we employed a novel 

bulge test for characterizing freestanding thin films, in order to apply tensile stress 

with a well-controlled gas pressure and to probe the resultant nanometer-scale 

deformation of carbon nanosheets with an AFM. CBPS nanosheets were directly 

prepared on silicon wafers with window-structured silicon nitride membranes as a 

sacrificial material. The AFM was used to scan the membranes and the resultant 

deflection as a function of applied gas pressure was used to determine Young’s 

modulus and the residual stress of CBPS nanosheets. This was termed as the “line 

scanning method”. However, regarding BPT and NBPT nanosheets, they were 

prepared on Au substrates and the transferring process had to be carried out. The line 

scanning method was not reliable for these carbon nanosheets due to the presence of a 

tiny amount of contamination from the PMMA on the surface. We developed a central 

point method to probe the deflection at the center of the membrane without scanning 

it. Calibration was carried out and it was demonstrated that the two methods were in 

good agreement.  

At first, the adhesion between a carbon nanosheet and a substrate was estimated in 

order to prove that the van der Waals interaction guarantees neither slipping nor 

peeling during the gas pressure loading. We found that carbon nanosheets tended to 

conform to the substrate with the same corrugation wavelength and amplitude, even 

on substrates with different surface roughness. Apart from that, the adhesion between 

an AFM tip and a freestanding carbon nanosheet was also measured. The mixed van 

der Waals-capillary force was believed to dominate the interaction. We observed that 

the pull-off force between a tip and a nanosheet supported by a substrate was 5~6 



Summary and Outlook 

109 

 

times higher than that of between a tip and a suspended nanosheet.  

The results focused on electron irradiation effects on the mechanical properties of 

carbon nanosheets that were prepared from various molecules. It was found that the 

mechanical stability was not enough to support freestanding carbon nanosheets with 

an electron irradiation dose of less than 20 mC/cm2. A few intact membranes may 

come into being due to increasing cross-linkages with a dose from 30 to 40 mC/cm2. 

The mechanical stiffness begun to stabilize with an electron doses above 50 mC/cm2. 

Young’s modulus range from 6 GPa to 8 GPa for BPT nanosheets and from 8 GPa to 

10 GPa for NBPT nanosheets. CBPS nanosheets exhibit a Young’s modulus in the 

range of 10~12 GPa and show a slight increase at higher electron doses. The 

mechanism can be understood by substrate conductivity and resultant different 

crosslinking for CBPS nanosheets on Si3N4 substrate.  

Carbon nanosheets exhibit typical viscoelastic behavior as high polymers. Hysteresis, 

creep and relaxation were observed and the minimum strain that causes creep was 

determined. The creep rate increases with stress levels and appears to be rather stable 

in the range of 10-6 s-1. The ultimate tensile strength of carbon nanosheets was also 

determined with a bulge test. BPT and NBPT nanosheets have tensile strengths 

ranging from 400 MPa to 700 MPa.  

Multilayer carbon nanosheets have been successfully fabricated. The average Young’s 

modulus is demonstrated to be very similar to that of the single layer carbon 

nanosheet. Annealing treatment in UHV leads to a structural transformation of carbon 

nanosheets. An increased graphitization was observed in Raman spectra which also 

indicated a decreased crystallite size. The mechanical characterization also 

demonstrated an increased Young’s modulus upon an annealing treatment. 

Moreover, polymer brushes grafted on biphenyl-based nanosheets provide a new class 

of material termed as “polymer carpet”, which is considered as an adaptive 

nanomembrane in actuators and sensors. Bulge testing and nanoindentation were used 

to characterize the mechanical properties of polymer carpets.   
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Outlook 

We have shown the fabrication and mechanical characterization of carbon nanosheets. 

They were demonstrated to act as a sensitive pressure sensor. We expect that carbon 

nanosheets could serve as a diaphragm in microphones, which is very sensitive to 

sound. As far as we know, on the macroscopic scale, the physics of sound is well 

understood. On the micro- and nanoscale, where macromolecules, membranes and 

supramolecular assemblies constitute living cells, the role of sound is less clear. We 

would expect that the motions of cellular membranes and of molecular machines 

inside the cells generate fluctuating pressure changes, i.e. sound.  

A sufficiently small, yet sensitive microphone that can operate in the vicinity and 

inside cells is crucial for such sound measurements. We expect that supramolecular 

assemblies in a living cell generate sound in the MHz and GHz range. A microphone 

that operates inside a living cell must thus be able to detect sound in the GHz range. 

There the short attenuation length (2 µm at 5 GHz in water [120]) requires a 

correspondingly small distance between the source of the sound and the microphone.  

The size of a nano microphone must be small enough so that it can be moved to 

different extra- and intracellular regions to detect sound levels with spatial resolution. 

Its dimensions should thus not exceed a few 100 nm. The active element in a 

microphone is an elastic membrane (diaphragm). In a nano-microphone, the 

diaphragm must be extremely small, thin and still elastic. 

In the near future we want to build a functional nano-microphone with a carbon 

nanosheet diaphragm with a size of 100x100 nm2 or smaller. We will optimize the 

microphone’s performance and utilize it for sound measurements in liquids and in the 

vicinity of living cells. Due to its miniature size, the microphone might penetrate 

through the cell membrane and detect sound inside of living cells. We thus aim at 

investigating the intensity and the frequencies of sound at different extra- and 

intracellular locations, as well as in different physiological and developmental states 

of a living cell.   
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Abbreviations 

2D   two-dimensional  
AFM  atomic force microscope  
AT   n-alkanethiol 
BP   benzophenone 
BPT  1,1'-biphenyl-4-thiol 
cABT  crosslinked 4’-amino-1,1’-biphenyl-4-thiol 
CBPS  4'-[(3-trimethoxysilyl)propoxy]-[1,1'-biphenyl]-4-carbonitril 
CPD  critical point drying 
DEA  dissociative electron attachment 
DFT  density functional theory 
DMF  dimethylformamide  
DMT  Derjagin Muller and Toropov 
EPR  electron paramagnetic resonance 
EQCM  electrochemical quartz crystal microbalance 
ESD  electron stimulated desorption 
FT-IRRAS fourier transform infrared reflection absorption spectroscopy 
FWHM  full width at half maximum 
GIXD  grazing incidence X-ray diffraction 
HF   hydrofluoric acid 
HRTEM  high-resolution transmission electron microscope 
HTMECH high-throughput mechanical characterization 
IPN   interpenetrating hybrid networks 
IR   infrared spectroscopy 
IRAS  infrared reflection-absorption spectroscopy 
JKR  Johnson, Kendall and Roberts 
LEAD  low-energy atomic diffraction 
MEMS  micro- electro-mechanical systems 
MONT  montmorillonite 
NBPT  4'-Nitro-1,1'-biphenyl-4-thiol 
NEXAFS near edge X-ray absorption fine structure spectroscopy 
OTS  n -octadecyltrichlorosilane 
PA   polyamide 
PAN  polyacrylonitrile 
PDMS  Poly (dimethysiloxane) 
PE   polyethylene 
PMMA  poly(methyl methacrylate) 
PP   poly(propylene) 
PS   polystyrene 
SAED  selected area electron diffraction 
SA-LbL  spin-assisted layer-by-layer 
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SAMs  self-assembled monolayers 
SEM  scanning electron microscope 
SERS  surface enhanced Raman spectroscopy 
SIP   surface-initiated polymerization 
SIPGP  self-initiated photografting and photopolymerization 
SIMS  static secondary ion mass spectroscopy 
SLSI  super-large-scale integration 
SPR  surface plasmon resonance 
STM  scanning tunneling microscope 
TEM  transmission electron microscope 
UHV  ultrahigh vacuum 
UPS  UV-photoelectron spectra 
XPS  X-ray photoelectron spectroscopy 
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