
Data Driven Learning for
Feature Binding and Perceptual Grouping

with the Competitive Layer Model

Der Technischen Fakultät

der Universität Bielefeld

vorgelegt von

Sebastian Weng

zur Erlangung des akademischen Grades

Doktor der Naturwissenschaften

August 2005

1

1Gedruckt auf alterungsbeständigem Papier „ISO 9706“.





Acknowledgement

This work was carried out in the Neuroinformatics group, headed by Prof. Dr.
Helge Ritter, at the Faculty of Technology, University of Bielefeld. It was sup-
ported by the DFG grand GK-231 “Strukturbildungsprozesse“.
First, I want to thank Helge, whose challenging lectures introduced me to the field
of neural networks. He provided an excellent workspace with a friendly and infor-
mal atmosphere. Helge is the architect of the different projects in the group. His
ideas constitute the basic cornerstone of this work.
The theoretical fundament of this work was laid in the work of Dr. Heiko Wersing.
Heiko was so kindly to shared his knowledge and experiences. His friendly and
optimistic comments, as his always constructive criticism, were of extreme value
for me.
Additional help came from other members of the group. Junior-Prof. Dr. Tim
Nattkemper and Jörg Ontrup provided their expertise in medical image processing,
texture segmentation and early implementations of the Competitive Layer Model.
This manuscript is build on the foundation walls of Heiko’s, Tim’s and Jörg’s work.
It was on me to construct new building blocks of knowledge on this basis. There-
fore, Thorsten Twellmann gave me a useful tool for my work with his hints on
Support Vector Machines, and Kai Essig gave me an insight to the world of eye-
tracking.
Further, I thank Petra Udelhoven for her helping hand in organizing formal things,
as the other members of the group. It was motivating to watch their advances on
their projects.
Special thanks goes to Dr. Jochen Steil, who was my primary advisor during my
whole time in the group. Jochen was always willing to discuss new ideas and to
enrich them with his great scientific knowledge and personal experiences. I want to
thank him for his patient and friendly way, which advised me, when I was building
too careless on my work or when I was afraid, that the construction could break
down.
Finally, Ingo Bax, Jochen Steil und Heiko Wersing read parts of this manuscript
and tested it’s consistency and stability. I hope the construction is strong enough,
such that other can build on it.
I could never have worked on this manuscript without my family and friends, who
supported me all my life. Thanks a lot.



� �� �� �� �� �� �� �� �



Contents

1 Introduction 5
1.1 Scope and Goals . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Plan of the Manuscript . . . . . . . . . . . . . . . . . . . . . . . 6

2 Perceptual Grouping 9
2.1 Human Perception and Gestalt Laws . . . . . . . . . . . . . . . . 9
2.2 Grouping Algorithms in Image Processing . . . . . . . . . . . . . 12

2.2.1 Feature Extraction . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Segmentation Algorithms . . . . . . . . . . . . . . . . . 14
2.2.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Grouping Principles and Pairwise Compatibilities . . . . . . . . . 16
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 The Competitive Layer Model 19
3.1 The Problem Domain . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Figure-Background-Separation . . . . . . . . . . . . . . . . . . . 23
3.4 Properties of the Binding Process and Annealing . . . . . . . . . 24
3.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Hand-tuned Interaction Weights . . . . . . . . . . . . . . . . . . 27

3.6.1 Point Clustering . . . . . . . . . . . . . . . . . . . . . . 27
3.6.2 Color Segmentation of Gray Scale Images . . . . . . . . . 28
3.6.3 Contour Grouping . . . . . . . . . . . . . . . . . . . . . 29
3.6.4 Segmentation of Fluorescence Cell Images . . . . . . . . 29
3.6.5 Texture Segmentation . . . . . . . . . . . . . . . . . . . 30

3.7 The Learning Approach . . . . . . . . . . . . . . . . . . . . . . . 32
3.7.1 Formulation of the Learning Problem . . . . . . . . . . . 32
3.7.2 Introduction of Basis Functions . . . . . . . . . . . . . . 33
3.7.3 Optimization of Consistency Conditions . . . . . . . . . . 35
3.7.4 Application on Fluorescence Cell Images . . . . . . . . . 36

3.8 Related Architectures and Algorithms . . . . . . . . . . . . . . . 38
3.8.1 Competitive Hopfield Neural Network (CHNN) and Contextual-

Context-Based Hopfield Neural Cube (CCBHNC) . . . . 38

1



2 CONTENTS

3.8.2 Relaxation Labeling (RL) . . . . . . . . . . . . . . . . . 39
3.8.3 Energy-Based Cluster Update (ECU) . . . . . . . . . . . 40
3.8.4 Locally Excitatory Globally Inhibitory Oscillator Networks

(LEGION) . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Lateral Interactions & the Grouping Process 45
4.1 Degrees of Freedom and Cardinality of Grouping . . . . . . . . . 45
4.2 Evaluation of the Grouping Success . . . . . . . . . . . . . . . . 50
4.3 The Trajectory of the Annealing Process . . . . . . . . . . . . . . 52
4.4 Robustness against Noise . . . . . . . . . . . . . . . . . . . . . . 58

4.4.1 Reduced Connection Strength . . . . . . . . . . . . . . . 59
4.4.2 Erased Interaction Weights . . . . . . . . . . . . . . . . . 60
4.4.3 Random Reset of Interaction Weights . . . . . . . . . . . 62
4.4.4 Switching Signs of Interaction Weights . . . . . . . . . . 63

4.5 Interpretation of the Background Layer . . . . . . . . . . . . . . 65
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Learning of Grouping Behaviors 69
5.1 Hebbian Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Special Properties of the Learning Problem . . . . . . . . . . . . 71
5.3 Generalization to New Patterns . . . . . . . . . . . . . . . . . . . 74
5.4 Data Driven Generation of Basis Functions . . . . . . . . . . . . 76
5.5 Aspects of Implementation . . . . . . . . . . . . . . . . . . . . . 77
5.6 Training Sets with several Training Patterns. . . . . . . . . . . . . 80
5.7 Estimation of Background Layer Strength . . . . . . . . . . . . . 81
5.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6 Application 85
6.1 Point Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Spiral Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.3 Segmentation of Fluorescence Images . . . . . . . . . . . . . . . 91

6.3.1 Application of Binary Classifiers . . . . . . . . . . . . . . 91
6.3.2 Influence of the Control Parameter Λ . . . . . . . . . . . 97
6.3.3 Comparison of Proximity Functions . . . . . . . . . . . . 101
6.3.4 Influence of the Target Labeling . . . . . . . . . . . . . . 106
6.3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Texture Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5 Contour Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.5.1 Adaptation to Object Size and Shape . . . . . . . . . . . . 121
6.5.2 Influence of Spurious Features . . . . . . . . . . . . . . . 123
6.5.3 Influence of Errors in Feature Position and Feature Orien-

tation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
6.5.4 Adaptation to more Complex Contours. . . . . . . . . . . 125



CONTENTS 3

6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7 Classification Abilities of the CLM 129
7.1 Competition of Interaction Matrices . . . . . . . . . . . . . . . . 129
7.2 Training the Layer Weights . . . . . . . . . . . . . . . . . . . . . 134
7.3 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7.3.1 Classification of Artifical Letter Contours . . . . . . . . . 138
7.3.2 Example: Classification on COIL20 . . . . . . . . . . . . 143

7.4 On-Line-Learning of the Layer Weights . . . . . . . . . . . . . . 151
7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

8 A Model for Attention 157
8.1 Experiences from Eye-Tracker Experiments . . . . . . . . . . . . 157
8.2 Implementation of Attention . . . . . . . . . . . . . . . . . . . . 158
8.3 Influence of Attention on the Annealing Process . . . . . . . . . . 159
8.4 Simulation on an Ambiguous Image . . . . . . . . . . . . . . . . 161
8.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

9 Variants of Implementation 165
9.1 Random Sparse Support . . . . . . . . . . . . . . . . . . . . . . 165
9.2 Application on Color Images . . . . . . . . . . . . . . . . . . . . 167
9.3 Entropy-based Attention Map . . . . . . . . . . . . . . . . . . . . 170
9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10 Conclusion and Outlook 177

A Example for the Construction of the Interaction Matrix 179

B Heuristic Constraints on the Interaction Coefficients cj 180

C AHL Learning Algorithm 182



4 CONTENTS



Chapter 1

Introduction

1.1 Scope and Goals

One of the key features of intelligent systems is the ability of perception. It trans-
lates the information of the surrounding world, given by sensory input, to an inter-
nal representation which is a precondition for developing plans, formulating goals
and deciding about actions to influence the world according to these goals. Fur-
ther, it gives the possibility to observe and control own actions and to evaluate their
conformity with the intended goals.
One of the most impressing examples of perception lies in the area of human vision,
which enables us to perceive our environment "with one gaze". We can recognize
objects and complex scenes within a few hundred milliseconds [7] without any
conscious effort. Thereby, our perception is very robust against difficult circum-
stances, like changing illumination, distances and different points of view. Further,
we have the ability to detect new, yet unseen, objects and to learn concepts and
categories for them to identify similar objects in new situations.
Obviously, it is an important scientific task to transfer the powerful ability of per-
ception to artifical systems. This task motivates wide areas of research, like the
fields of computer vision, image processing and pattern recognition. One branch of
research in these fields is motivated from the example of the brain. Using informa-
tion from neurobiology about the structure and functionality of single neurons and
from neurophysiology about the connections within and between areas of the brain,
the field of artifical neural networks tries to develop mathematical and algorithmic
models to reproduce functionalities of the brain. Famous results from this area of
research are the Perceptron the Multi Layer Perceptron, the principle of Hebbian
Learning and Self-Organizing Maps. These architectures and concepts are well in-
vestigated and understood (see e.g. [2], [15], [25] for reference). However, because
of their simple feed forward character, they are limited in their abilities.
To improve their abilities it is possible to extend such models by recurrent feed-
back connections between the neurons, which leads to the area of recurrent neural
networks. Through their dynamical character these kind of networks are more pow-
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6 CHAPTER 1. INTRODUCTION

erful and flexible in their abilities. On the other hand, it is also much more difficult
to predict and control their behavior. Clear statements about their functionality and
methods of learning can only be made for very small networks or under very re-
strictive constraints about the structure and connections of neurons. The probably
most common example from this area is the family of associative memory net-
works with the famous representative of Hopfield nets [15],[19]. These networks
have the property to converge to a set of stable attractor states representing a set of
stored patterns, where the process of storing patterns in the weight matrix of the
network is well understood and related to the principle of Hebbian Learning.
In this work, a similar recurrent neural network architecture is investigated, the
Competitive Layer Model (CLM), proposed by Ritter [50]. The CLM is able to
solve sensory segmentation, perceptual grouping and feature binding tasks by con-
verging to stable attractor states that represent a consistent separation of an input
set into coherent groups. The theoretical properties of the CLM were already well
investigated in a number of previous studies [61], [62]. Wersing and Ritter proved
the convergence of the CLM to stable states and described the dynamical behavior
of the CLM through an eigenvalue analysis of it’s weight matrix. Further, they
showed it’s application to various grouping and labeling problems and made a first
suggestion for an automatic learning algorithm.
This work continues this line of research, putting the focus on the advancement
of the learning process. Starting from practical observations according to the pre-
vious analysis in [61], [62], the learning algorithm is simplified. The abilities of
the CLM are extended from the grouping and segmentation of data to the ability
of classification, based on different grouping behaviors. The theme of this work
can be summarized in the question: How deep can the process of perception be
modeled with the CLM under the special aspect of learning? The approach to this
question is presented in the following.

1.2 Plan of the Manuscript

The first chapter gives a short overview over the scope and content of this work in
the area of perception and recurrent neural networks.
The second chapter deepens this introduction to perception processes, describing
the relevance of grouping and segmentation processes for perception. It starts from
some observations in psychology about natural grouping principles in human per-
ception, formulated as Gestalt laws. Further it gives a rough overview over the
wide range of segmentation algorithms and related processing stages that are ap-
plied in computer vision to implement the different Gestalt laws. Finally, it notes,
that in this work all the different grouping principles are approached with a single
architecture, the Competitive Layer Model, and describes, how these principles are
encoded into pairwise compatibilities of elementary objects, called features.
Then chapter three describes the concrete grouping behavior of the CLM. It mainly
presents the previous theoretical and practical results and summarizes the appli-
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cation of the CLM and related architectures in several further works to give an
overview about the present knowledge about the CLM at the beginning of this
work. First the problem domain, the architecture and the notation of the CLM is
introduced, giving an overview over the dynamics of the CLM and describing, how
a specific grouping behavior is encoded in the weights of the CLM by pairwise
compatibilities between feature representing neurons. Then the main theoretical
results from the proof of convergence and the eigensubspace analysis of the CLM-
dynamics are presented, arising in an algorithmic description for the simulation of
the CLM grouping process. This algorithm includes a special annealing technique,
that is applied to prevent suboptimal grouping results in the attractor states of the
CLM. Further this chapter reviews several examples for the application of the CLM
on different grouping problems and gives the original formulation of the learning
method, that was suggested by Wersing [62] and is advanced in this work.
Chapter four demonstrates the theoretical knowledge about the grouping and an-
nealing process of the CLM practically, describing the course of the CLM-dynamics
for an idealized grouping problem. The observations made are discussed and lead
to assumptions about the relation between the structure of the weight matrix, the
annealing process, the robustness of grouping results and the speed of convergence.
Experiments show, that during the annealing process the groups in the input mani-
fest in a predefined ordering according to the structure of the weight matrix in the
CLM. The assumptions and observations of this chapter provide motivations for
the approaches in the following chapters.
In chapter five, a new learning algorithm for the CLM is developed, which uses
the original formulation of the learning problem by Wersing, but is based on the
observations, that the relevant part of the weight matrix can be formulated as a
correlation matrix of special pattern vectors, constructed from goal states of the
CLM. This approach shows parallels to storing a set of pattern vectors in the weight
matrix of a Hopfield network. Learning is achieved by the projection of the com-
ponents of the correlation matrix onto pairwise relations between the elementary
features, like local distance, distance in color or distance of orientation. A similar
weight matrix for a new pattern can then be constructed by projecting the pairwise
relations within the new set of features backwards onto the correlation compo-
nents. A control parameter for the level of segmentation is introduced to give the
user the possibility to adjust the learned grouping behavior towards a rougher or
finer segmentation without repeating the learning process.
The practical properties of the new learning algorithms are discussed in chapter
six, where it is applied to the grouping problems of point clustering, texture seg-
mentation, fluorescence cell image segmentation and contour grouping.
While chapter five and six show the adaptation of the CLM weights to a single
grouping behavior, chapter seven shows an extension of the abilities of the CLM
to classification of different objects by the competition of several object specific
grouping behaviors. These behaviors can be learned by the algorithm proposed in
chapter five. However, they have to be weighted suitably against each other in an
additional learning phase. Chapter seven shows two approaches to this learning
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phase. The first formulates a constrained optimization problem on the additional
weights from the structure of the weight matrices of the different grouping princi-
ples. The second can be implemented by a variant of an on-line error correction
rule similar to the perceptron learning rule.
Chapter eight describes, how the Competitive Layer Model can be extended by
a model of attention, modifying the weight matrix of the CLM with an attention
map. As a result of this modification, the ordering in which the groups in the input
manifest during the annealing process can be changed according to the focus of
attention.
Chapter nine discusses alternative implementations of the simulation algorithm.
The main goal of this chapter is to reduce the computational effort of the simula-
tion for patterns that consist of a high number of features. This effort can be di-
vided into two parts: the precomputation of the weights in the CLM, which mainly
depends on the number of features in the patterns, and the iteration of the CLM-
dynamics, which depends on the number of neurons in the network and the speed
of convergence of the neurons. There the key question is: How much can the
effort in the first part be reduced by omitting the computation of weights without
increasing the effort in the second part too much? The two approaches to this ques-
tion are the computation of sparse weight matrices and the on-line computation of
weights during the simulation process, which enables a parallel implementation of
the CLM on distributed systems that do not have a shared memory for all activities
and weights within the CLM.
Finally, chapter ten summarizes the results of this work and gives an outlook to
interesting aspects of research for future works on the topic of the Competitive
Layer Model.



Chapter 2

Perceptual Grouping

2.1 Human Perception and Gestalt Laws

Grouping processes play an important role for human perception, which is exem-
plified in the optical illusion in Fig. 2.1 a) and b), developed by Kanizsa [24].
Figure 2.1 a) consists only of black colored dots and circular arcs that surround
these points. However, through the special arrangement of these components the
human observer perceives a white square that clearly points out from the back-
ground, even though the two regions have obviously the same color. Interestingly,
this effect vanishes, if the scheme is extended by further line segments in Fig. 2.1
b) that connect the end points of the arcs. This seems to be surprising from a naive
point of view, because the new line segments explicitly describe at least a part
of the outline of the white square, such that it could be rather expected that they
enhance the perception of the square.

a) b) c)

Figure 2.1: Example of an illusion in human perception [24].

Since the schemes only consist of black lines, the reason for this illusion must be
somehow connected to the detection of edges and the way these edges are con-
nected to objects or groups. In Fig. 2.1 a), it seems to be reasonable, that the arcs
are perceived as coherent groups, because the detected edges along the arcs have a
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continuous and smooth curvature. However, at the end points of the arcs there is a
clear break in this course, which may be explained by the higher activation of point
receptors or edge detectors with orientation perpendicular to the course of the arcs.
Assuming, that the end points of the arcs are not perceived as part of the arcs, they
form the structure, as shown in Fig. 2.1 c), which can be detected as the outline
of a square. Together with some kind of fill-in-mechanisms to complete the arcs to
full circles and the structure in Fig. 2.1 c) to the outline of a square, this also might
give the impression of depth, imaging, that the white square occludes the circles
and the background.
Through the connections of the arc end points by the additional line segments in 2.1
b) each pair of arcs at the corners of the scheme are perceived as a closed contour.
This grouping prevents the break out of the end points of the arcs, because they are
part of the closed contours, such that the endpoints can no longer be combined to
the outline of the square.
This simple example shows the strong influence of the early processing state of
grouping on the whole process of perception. Although it is not clear whether
the above argumentation describes the correct biological processes in the brain, it
conforms with a huge amount of experimental data investigating human vision and
grouping behaviors. Based on early results of psychologists like Wertheimer [66],
the school of Gestaltists observed and formulated a number of principles, called
the Gestalt laws. A schematic illustration of the different Gestalt laws is presented
in figure 2.2.
The Gestalt laws describe natural principles for grouping considering various modal-
ities of contextual object properties. For example the principle of proximity only
regards the local position of objects stressing that areas of high concentration of
objects with small inter-object-distances form groups, while areas with low con-
centration and high inter-object-distances separate these groups. In contrast, the
principle of continuation connects the properties of position and orientation and
describes that it is preferred to build coherent contours from line segments that
show a continuous and smooth course, while sharp breaks of orientation and gaps
in the contours separate different groups. The law of similarity represents a whole
class of grouping principles, so similarity can mean similarity by color, texture,
shape or even higher order properties which are connected with the functionality
of objects.
A special role plays the law of Prägnanz, which describes the grouping process, in
the case that the application of several Gestalt laws is possible at the same time. In
general it says, that always that grouping principle dominates which is most simple
for the observer. However, it is not always easy to compare the different modali-
ties of grouping to say which is the simplest. This depends as well on the actual
arrangement and graduation of object properties, like color and position, as on the
experience of the observer. So, there might be differences in the evaluation of simi-
larity for color between people living in artifical terrains or tropical jungle regions.
Another example might be the different levels of granularity in the differentiation
of melodies and musical trained and untrained people.
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Proximity

Similarity

Closure

Continuation

Symmetry

Separation
Figure Ground

Region
Common

Connectedness

Figure 2.2: Table of Gestalt laws

This overview over the Gestalt laws illustrates, that the related grouping principles
are only described on a phenomenological level giving no details about the con-
crete implementation. The Gestalt laws inspired a lot of algorithmic approaches
for the technical realization of grouping and segmentation tasks in computer vi-
sion. Through the different modalities and the high number of possible feature
combinations the number of developed algorithms increases very fast in the course
of present research, often resulting in very problem specific realizations. The fol-
lowing section shall give a rough overview over different approaches that are most
relevant in relation to this manuscript.
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2.2 Grouping Algorithms in Image Processing

A classical bottom up image processing architecture shows the following process-
ing stages: It starts from the respective application specific radiographic or visual-
ization technique which represents each point in the image by a low level feature
vector. The image is often preprocessed by image enhancement methods to reduce
the influence of noise and errors. Then the image is separated into coherent regions,
which might for example represent relevant objects in the image. To analyze these
objects closer, in the next stage higher level features of the different regions are
extracted and fed into a classification algorithm to reveal the rough class of the
displayed objects. Finishing the process of pattern recognition, the exact configu-
ration of the objects can be investigated and represented by suitable data structures.
Afterwards higher order knowledge based processing steps can follow that deduce
contextual meanings of the objects and formulate the semantic information of the
image in an internal representation.
Obviously, the stage of image segmentation based on grouping principles, like the
Gestalt laws, has a high influence on the following steps, such that the segmentation
method has to be chosen carefully concerning the image representation by local
features and the requirements and abilities of further processing steps, like object
classification. The three areas of feature extraction, segmentation algorithms and
object classification are highly connected and are reviewed in the following.

2.2.1 Feature Extraction

The probably most common representation of images are gray scale images, where
each pixel in the image is described by a gray value according to the intensity of
light at its position. The appearance of gray scale images depends on the chosen
resolution of the image and the number of available gray levels, describing a finer
or rougher quantification of the intensity values, which both have an influence on
the detail-level of the displayed objects.
Feature extraction in gray scale images is often realized by the convolution of the
image with specialized filter masks. One of the most common application is the
detection of edges, represented by discontinuities in the course of intensity. A sim-
ple approach is to approximate the first order derivative of the intensities along the
x- and y-axis of the image by Sobel filters to estimate the direction and magnitude
of the intensity gradient. This approach has to deal with several problems like the
tradeoff between sensitivity and robustness, the accuracy in the estimation of edge
orientation, the preference to certain direction of edges and computational artifacts,
like the double response of Sobel filters on both sides of edges. Subject to research
are more sophisticated filters and thresholding methods on the gradient magnitudes
to decide whether an edge is present at a certain position or not [28].
The information about intensity in the image can be extended by more color in-
formation, like the description of hue and saturation of pixels. This raises the
question of color encoding, which can be implemented in various color spaces,
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like the technical red-green-blue (RBG) channeling, the hue-saturation-intensity
(HSI) description or other normalizations, e.g. according to a uniform intensity to
be resistant against changes in illumination. The detection of edges can also be
extended to these additional color dimensions.

Besides intensity, color and edges, texture is an important feature in images. How-
ever, texture is not a feature of a single point, but arises from regular structures in
whole regions. Possible ways to describe textures are measures of energy, contrast
and homogeneity of color transition matrices [13] according to some neighborhood
of a pixel. Another possibility is the convolution with Gabor filters [8] that detect
the occurrence of periodical structures with a certain frequency and orientation.
The texture for a pixel is represented by a vector of filter responses from a set of
Gabor filters with various orientations and frequencies. This turns the different
number of filters in orientation and frequency into degrees of freedom in the en-
coding of textures. In general, texture depends strongly on the size of the observed
neighborhood of a pixel.

The observation of stereo images or image sequences allows the extraction of depth
or motion information, based on the disparity of pixels [54]. However, this de-
mands the ability of matching points from different images, solving the correspon-
dence problem to measure the amount of translation between two images [23].

An approach to extract object specific features is to create a sample set of subim-
ages from training images and to apply a method of dimension reduction, like
mayor Principle Component Analysis (PCA) [22], [15], on it to reveal filter maps
that describe the main variance of the subimages. The idea of this approach is,
that some of the learned principle components become selective for special shape
features of the presented objects. Various approaches that substitute the Principle
Components Analysis by more sophisticated methods follow the aim to generate
features that show a sparse activation from the different objects [39] and to find
hierarchical combinations of these low-level features to build features of higher
order for bigger image patches [64].

Finally, multidimensional features can arise directly from imaging techniques ap-
plied in special branches of science, like medical image processing. One example
is the generation of time series in magnetic resonance imaging [67], where the tem-
poral change in the concentration of a contrast medium indicates different types of
tissues. An other example can be found in [53], where probes of lymphocyte cells
are treated by different contrast mediums that highlight special types of proteins
within the cells. In both examples, the images are analyzed by parallel processing
on multiple image dimensions.

Features can describe a wide range of modalities of information, like color, orien-
tation, texture, speed or shape, by a single value or vectorial representation. These
different modalities also demand different approaches of segmentation or grouping
methods to bind these features into coherent groups or regions of interest, as it is
discussed in the next section.
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2.2.2 Segmentation Algorithms

Let us start the investigation of technical implementation of the Gestalt laws with
the principle of proximity. Proximity is implemented for instance by clustering
algorithms, like the k-Means or LBG-Algorithm [27]. Clustering is a general tech-
nique in datamining that works on arbitrary multidimensional input spaces. The
goal is to reduce a high number of data vectors to a low number of prototypic
reference vectors with an as small as possible average distortion between the pro-
totypes and the data vectors according to problem specific distance measures. The
input data can then be partitioned by the next neighbor criterion, assigning each
data vector to it’s nearest prototype. The output of clustering techniques mainly
depends on the type of distance measures that is used and the scaling of these mea-
sures.
Applied to image data, clustering is often used to describe principles of similarity
by proximity in feature space. For example, in [67], it is used to segment MRI
data in biomedical image processing, where each point in an image is described
by a time series for the concentration of a contrast medium in the observed organs.
These time series are clustered and mapped to prototypes, where the prototypes
can be associated with different types of tissue. Another example can be found
in [18], where clustering is performed according to dissimilarities in responses of
Gabor filters to get a set of prototypes that define regions of coherent texture.
If the observed images consist only of intensity or color information, segmentation
is often realized by the two traditional branches of region-based and edge-based
segmentation approaches. Region based approaches directly try to find regions of
coherent color. This can be done by applying threshold methods that map all pixels
whose color lies in a certain interval of thresholds to the same label. The thresholds
of the intervals can be estimated from a histogram of the observed image, and
pixels that are assigned to the same label and are locally connected are merged to a
segment. Other methods are split and merge or island growing methods, where an
image is first hierarchically split into elementary segments, which are afterwards
merged to more complex regions, if the segments are connected and have similar
values of average color. An example of this approach can be found in the color
structure code (CSC) [47].
Edge based approaches try to find contours as borders between regions and seg-
ments in images and therefore rely on the detection of edges. The set of possible
edges has to be thinned out to one pixel wide line segments by methods, like non
maximum suppression [3]. After this step, the remaining line segments are con-
catenated according to the principle of continuation and closure [10] to contours.
An alternative approach are the more sophisticated methods of active contours, like
the snake algorithm [21]. These methods start from initializations of deformable
models of contours and match them with existing contours by energy minimization
according to image forces based on the magnitude and orientation of edge detec-
tors. These image forces can be extended by interior forces of the contours, like
stiffness and tension, which adds additional constraints to the energy function of
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the active contour.
A special problem arises, when results from both region based and edge based
methods have to be integrated into a consistent segmentation. An example of such
an architecture can be found in [29], where segmentation is implemented by a
graph partitioning technique for weighted graphs and the weights of the graph are
based on the proximity of Gabor responses and the strength of detected edges. A
fundamental part of this architecture is a gating process that estimates the relevance
of the two possible ways of segmentation and controls their influence on the output
segmentation.

2.2.3 Classification

The process of classification often follows the step of image segmentation to reveal
the class or category of an observed object from the detected features. The objects
are presented by feature vectors x ∈ Rd of dimension d and mapped onto a set of
possible object classes C = {C1, . . . CN}. In it’s simplest form, binary classifi-
cation, and under the assumption, that the two classes are linear separable in the
feature space, the separation plane can be described by a straight line in the feature
space (see Fig. 2.3).

0 = wTx + b. (2.1)

From the point of view of artifical neural networks, this can be interpreted as a
linear neuron. Early results from Rosenblatt [48] have shown that any kind of
classification problem that is linearly separable can be solved by a single layered
architecture of linear neurons called perceptron. The necessary weights can be
adapted by the perceptron learning rule, which is proved to find a suitable solution
in a finite number of steps. The limits of the perceptron of dealing with linear sepa-
rable data were extended by the development of the Multi Layer Perceptron, which
is able to approximate more complex shaped separation planes by the well known
Backpropagation learning rule. The well understood abilities of the MLP made it
to a standard tool in pattern classification. In recent research, the MLP is often re-
placed by the more sophisticated Support Vector Machine (SVM). The SVM is in
principle also a linear classifier similar to the perceptron, but with the ability to es-
timate the, in terms of generalization, optimal separation plane from a constrained
optimization of the classification weights. As a result of this optimization, only
data vectors from the borders of the classes, called the support vectors, contribute
to the classification function, while vectors from inside the classes can be omitted.
The extension to nonlinear separation planes can be realized within the SVM by
transferring the input data to a higher dimensional feature space, where the classes
become linear separable and, therefore, can be easily separated. Fortunately, this
feature space does not need to be specified explicitly, but can be defined implicitly
by applying special kernel functions on pairs of data vectors. The most demanding
challenge of research on the field of SVM is to find suitable shapes and sizes of
kernel functions for a given classification problem.
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feature space

separation plane
weight vector w

class 1

bias b
class 2

Figure 2.3: Realization of a binary segmentation by the linear separation plane of
a linear neuron.

Lets us not go deeper into the theory of classification, but only remark the fol-
lowing comment: If the feature space is chosen in a clever way, the classification
problem can be simplified, such that it often can be solved by linear discriminators.
So, the complexity of higher level classification tasks can be drastically reduced by
an appropriate choice of low level features and segmentation methods in early pro-
cessing steps.

2.3 Grouping Principles and Pairwise Compatibilities

The previous overview of existing segmentation methods has shown, that there is a
variety of implementation possibilities for the different grouping principles. Each
grouping algorithm has it’s own tuning parameters that have to be adapted to the
actual grouping problem. The situation becomes more complex, if there is a prob-
lem domain, where several grouping principles can be applied at the same time,
like in Fig. 2.4. In this example, a set of objects is presented that could be grouped
according to similarity in color or shape or columnwise by the principle of prox-
imity. For the human observer, this problem is solved by the law of Prägnanz,
such that probably the principle of similar color dominates over the other princi-
ples. For an artifical segmentation system, this behavior has to be specified by a
suitable adjustment of the parameters of the different grouping algorithms against
each other.
To overcome these problems, in this work an abstract representation of grouping
behaviors is used that can be specialized to any concrete grouping problem. In
the following, a grouping behavior will be encoded into pairwise compatibilities
between the elementary objects. These compatibilities can be positive, which shall
express the compatibility of two objects in the same group, or negative, if two
objects are incompatible for the same group. Examples of such compatibilities
are displayed in figure 2.4, where objects that clearly belong to the same group,
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Figure 2.4: Parallel Occurrence of different Gestalt laws. The displayed objects
can be divided by different grouping principles of similar color, similar shape and
proximity. For a human observer the principle of similar color dominates by the
law of Prägnanz. For an artifical system, this behavior shall be described by pair-
wise compatibilities displayed by red (positive values) and blue (negative values)
arrows.

like two white squares or two black circles, have a high positive compatibility (red
arrows), while objects that clearly belong to different groups, like a white square
and a black circle, have a high negative compatibility (blue arrows). 1

Not all pairwise compatibilities are specified in figure 2.4. Compatibilities between
objects, where it is not directly clear whether they belong to the same group or not,
like a light gray and dark gray circle or a black square and a black circle, have to
be adjusted to smaller positive or negative values to describe the preference of sim-
ilarity in color or shape. Obviously, a manual specification of all compatibilities is
very extensive. Also an automatic generation of such compatibilities from heuris-
tic models can be become complex, because the respective model parameters have
to be adapted suitably. For this reason, a central point of this work is the learning
of suitable compatibilities from a low number of grouping examples to adapt prop-
erties of a single grouping principle as well as the parametrical balance between
several differentiating grouping principles.
The generation of training examples shall be as natural as possible for a human
user by dividing datasets into occurring groups, like in the example of Fig. 2.5. In
the case of image data, this is done by labeling images.

2.4 Summary

It was shown, that human perception is strongly affected by grouping processes
which can be described by principles like the Gestalt laws. The field of image

1This color encoding of positive compatibilities by red color and negative compatibilities by blue
color will be maintained for different visualizations of grouping behaviors throughout this work.
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Figure 2.5: Description of a simple grouping problem. A human observer specifies,
that the set of displayed objects should be divided into the groups of red and yellow
squares, blue squares and blue triangles and circles. A learning process should
adapt the pairwise compatibilities between the objects, to describe the application
of the principles of similarity in color and shape.

processing provides a variety of segmentation algorithms to implement such prin-
ciples. The choice of an algorithm for a concrete application requires an adapta-
tion of the respective parameters and is connected to the related fields of feature
extraction and pattern classification. In this work, an approach is investigated that
describes grouping behaviors by pairwise compatibilities between elementary ob-
jects. These compatibilities are learned from hand-labeled data. The next chapter
describes, how a grouping process can be implemented with the pairwise compati-
bilities introducing the central method of this work, the Competitive Layer Model.
The concrete method of learning the pairwise compatibilities is treated in the fol-
lowing chapters.



Chapter 3

The Competitive Layer Model

3.1 The Problem Domain

The Competitive Layer Model (CLM) [50] is a recurrent neural network that can
perform grouping and labeling tasks. Before we start to investigate how the CLM
implements the binding process of combining elementary sub patterns to more
complex groups or concepts, let give us a formal description of such tasks.
Assume, that each grouping process belongs to a problem specific set, denoted by
F , which defines the set of all elementary objects or sub patterns mr that can occur
as components of a certain class of problems and that are called in the following
“features“. Therefore, F is called the “feature-domain“. In the case of image seg-
mentation problems, F is often a discrete set of pixel instances given by quantized
pixel coordinates combined with also quantized color values. In general grouping
problems, like the example of 2D-clustering in Fig. 3.1, F = Rd is given by a
space of real valued d-dimensional vectors.
A concrete grouping task is given by a subset Ri = {mr ∈ F|r = 1, . . . , N i}
of all possible features and is called a “pattern“, where the index r addresses the
features in the respective pattern Ri.
Assume, that each pattern consists of a certain structure, given by the organization
of the features into several disjunct groups Gi

α, (α = 1, . . . , Li), e.g. point-clusters
in two-dimensional space, where Li specifies the number of groups in pattern Ri
and

⋃Li

α=1 G
i
α = Ri.

To reveal this structure, the pattern has to be segmented by means of a labeling
function α̂(mr), which is denoted shorter by α̂(r), that assigns each feature mr to
one of Li possible labels α ∈ {1, . . . , Li}. This function binds all features that are
assigned to the same label to a coherent group and therefore transforms elementary
information to a higher order concept.
Let xrα ≥ 0 describe the certainty of assigning the feature mr to the label α and
let frr′ describe the certainty for the compatibility of the features mr and mr′ in
the same group Giα, where frr′ > 0 expresses that it is preferable that mr and mr′

belong to the same group Gi
α and frr′ < 0 expresses that it is preferable that mr

19
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PSfrag replacements

Label α
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frr′ > 0 frr′ < 0y

x

Figure 3.1: Example for a grouping problem: the 2D-Clustering Problem.

and mr′ belong to different groups Gi
α 6= Giβ .

The labeling function α̂(r) should assign each feature mr uniquely to the label of
that group to which it is most compatible:

xrα̂(r) > 0, xrβ = 0, for all r, β 6= α̂(r), (3.1)

and ∑

r′
frr′xr′α̂(r) >

∑

r′
frr′xr′β, for all r, β 6= α̂(r), (3.2)

under the constraint of a fixed certainty hr of assigning feature mr to a label α

∑

β

xrβ = hr. (3.3)

The weighted sum
∑

r′ frr′xr′α is called the “support“ of feature mr in group α.
Finding α̂(r), the group with the maximal support, depends on a parallel estimation
of xrα and a recurrent feedback to the support of the other features. To solve an
arbitrary grouping problem, the answers for two important questions have to be
found. The first is: if pairwise compatibilities are given, how can the corresponding
labeling function be found? This question will be discussed in section 3.2 to 3.5.
The second question goes in the opposite direction: if a certain labeling function
shall be implemented, how must the pairwise compatibilities be chosen to achieve
this goal? This question will be treated in section 3.6 and 3.7.

3.2 The Architecture

The Competitive Layer Model represents the assignment variables xrα as activa-
tions of recurrently connected linear threshold neurons. These kind of neurons are
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characterized by non-saturating linear transfer functions

θj(x) =

{
0 : x < θj
kj(x− θj) : x ≥ θj , (3.4)

where θj is an activation threshold and kj > 0 is the gain of the transfer function
of neuron j. The plausibility of such neurons is supported by observations that
cortical neurons rarely operate close to saturation [9], despite strong recurrent ex-
citation. Additionally they provide useful theoretical properties, like convergence
conditions for asynchronous update procedures [11] and non-divergent and multi-
stable dynamics in winner-takes-all (WTA) networks [14].
The neurons are organized in layers α = 1, . . . , L and columns r = 1, . . . , N i,
where each layer contains all neurons belonging to the same label α and each col-
umn contains the neurons belonging to the same feature mr. Obviously the number
of columns is determined by N i, the number of features in the actual pattern, but
L, the number of layers, can to be chosen according to the number of maximally
expected groups in the pattern.
A binding between two features, represented by columns r and r ′, is expressed by
simultaneous activities xrα̂ > 0 and xr′α̂ > 0 that share a common layer α̂. All
neurons in a column r are equally driven by an external input hr , which represents
the significance of the detection of feature r by a preprocessing step. The afferent
input hr is fed to the activities xrα with a connection weight J > 0. Within each
layer α the activities are coupled via lateral connections frr′ , which characterize
the degree of compatibility between features r and r ′ and which are symmetric
under feature exchange, thus frr′ = fr′r. The purpose of the layered arrangement
in the CLM is to enforce an assignment of the input features to the layers by a
dynamics, using the contextual information stored in the lateral interactions. The
unique assignment of each feature to a single layer is realized by a columnar WTA
circuit, which uses mutual symmetric inhibitory interactions with absolute strength
J > 0 between neural activities xrα and xrβ that share a common column r. Due
to the WTA coupling, for a stable equilibrium state of the CLM only a neuron from
one layer can be active within each column [65]. The number of layers does not
predetermine the number of active groups, since for sufficiently many layers only
those are active that carry a salient group.
The combination of afferent inputs and lateral and vertical interactions is combined
into the standard linear threshold additive activity dynamics

ẋrα = −xrα + σ
(
J(hr −

∑

β

xrβ) +
∑

r′
frr′xr′α + xrα

)
, (3.5)

where σ(x) = max(0, x) is the uniform non-saturating linear threshold transfer
function. The special form of this function makes it possible to formulate concrete
statements about the behavior of the CLM dynamics. The main statements can be
summarized in two theorems about the convergence and assignment properties of
the CLM [65].
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∑
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PSfrag replacements

lateral interaction frr′

feature mr
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significance Jhr
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xrα̂(r) > 0
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Figure 3.2: The Competitive Layer Model. The CLM is based on a layer wise arrangement of feature representative neurons xrα. These
neurons are recoupled by inhibitive (blue) connections J between the layers and by inhibitive and excitatory (red) lateral connections
frr′ within the layers. In the attractor state of the CLM each feature is uniquely assigned to one of the layers α̂(r) such that this state can
be interpreted as segmentation or labeling of the input pattern.
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Convergence Theorem: If J > λmax{frr′}, where λmax{frr′} is the largest
eigenvalue of the lateral interaction matrix F, or J > maxr (

∑
r′ max(0, frr′)),

then the CLM dynamics is bounded and convergent.
Assignment Theorem: If the lateral interaction is self-excitatory, frr > 0 for all
r, then an attractor of the CLM has in each column r either
i) at most one positive activity xrα̂(r) with

xrα̂(r) = hr +

∑
r′ frr′xr′α̂(r)

J
, xrβ = 0 for all β 6= α̂(r), (3.6)

where α̂(r) is the index of the maximally supporting layer characterized by

∑

r′
frr′xr′α̂(r) >

∑

r′
frr′xr′β for all r, β 6= α̂(r) (3.7)

or,
ii) all activities xrα, α = 1, . . . , L in a column r vanish and

∑
r′ frr′xr′α ≤ −Jrhr

for all α = 1, . . . , L.

3.3 Figure-Background-Separation

background layer

figure layer(s)

self interaction m

lateral lnteraction f r r´

vertical interaction J

Figure 3.3: Extension of the CLM architecture with a background layer. The lat-
eral connections in the background layer are reduced to mere self excitatory con-
nections.

A special goal in many grouping and segmentation tasks is the separation of the
relevant objects in the data from noisy or incoherent parts that form some kind of
background for the desired information. This requirement can be easily integrated
into the CLM architecture by using an additional layer b, where the lateral interac-
tions are restricted to a mere self interaction, expressed by the product of the self
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interaction strength m with the Kronecker Delta δrr′ between the features mr and
mr′ , such that

f brr′ = mδrr′ =

{
m : r = r′

m : r 6= r′
. (3.8)

By inserting this expression into the consistency conditions (3.7), it can be seen
easily that m defines a threshold of minimal mutual support that is necessary to
assign a feature mr to one of the relevant groups (α 6= b). All features whose
mutual support lies below this threshold are assigned to the background.

3.4 Properties of the Binding Process and Annealing

The dynamics (3.5) has an energy function of the form

E = −J
∑

rα

hrxrα +
1

2
J
∑

r

∑

αβ

xrαxrβ −
1

2

∑

α

∑

rr′
frr′xrαxr′α. (3.9)

The energy is non-increasing under the dynamics (3.5) [61] :

d/dt E = −
∑

rα

Erαẋrα = −
∑

rα

Erα(−xrα + σ(Erα + xrα)) ≤ 0, (3.10)

where
Erα = −∂E/∂xrα = Jhr − J

∑

β

xrβ +
∑

r′
frr′xr′α. (3.11)

Thus the attractors of the dynamics (3.5) are the local minima of (3.9) under con-
straints xrα ≥ 0. Additionally a kind of annealing process can be included in the
dynamics by extending the energy function with:

E′ = E + T
∑

rα

x2
rα, (3.12)

which adds a convex term that biases the local minima towards graded assignments
and thus makes the WTA process more soft. Within the dynamics this introduces a
new self-inhibitory term

ẋrα = −xrα + σ
(
J(hr −

∑

β

xrβ) +
∑

r′
frr′xr′α + (1− T )xrα

)
. (3.13)

Through gradually lowering the self-inhibition T , (3.12) becomes (3.9) and (3.13)
becomes (3.5).
A detailed analysis of the annealing process can be found in [61], where an eigen-
subspace analysis of the linear part of the CLM-dynamics is made by observing
the eigenmodes of the matrix G ∈ RN i·L×N i·L, which is the matrix of all lateral,
vertical and self inhibitory weights:

Gαβrr′ = −Jδrr′ + δαβfrr′ − Tδαβδrr′ . (3.14)
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The dynamics (3.5) is approximated by the linear system:

ẋ = Jh +Gx, (3.15)

where the activities and the external inputs are represented as N i × L vectors

x = (x1, . . . ,xL) with xα = (x1α, . . . , xN iα) and (3.16)

h = (h0, . . . ,h0) with h0 = (h1, . . . , hN i). (3.17)

The CLM-dynamics is then characterized by the N i ·L eigenvectors vkγ ∈ RN i×L

and eigenvalues Λkγ of G (k = 1, . . . , N i, γ = 1, . . . , L).
The result of this analysis is, that the CLM-dynamics is driven by two kind of
eigenmodes called the AC- and DC-eigenmodes (sketched in Fig. 3.4) whose
eigenvalues and eigenvectors mainly depend on the matrix F of lateral weights
frr′ .

DC
AC

affine constraint surface

rh

xr2

xr1

xr1 xr2 rh+ =

x

hr

F

Figure 3.4: Sketch of the linear dynamics for two layers (sketch and caption from
[61], p. 51). Shown are the activity trajectories for the two activities xr1, xr2
of a single column r. Starting from small initial values (grey square) the activi-
ties quickly approach the fixed point xF , which represents the “totally undecided”
state, and the constraint surface

∑
α=1,2 xrα = hr in the DC subspace. Then the

dynamics in the orthogonal AC subspace drives the WTA process until only one
layer is active.

DC-Modes: It is shown, that the eigenmodes in the DC-Subspace have equal com-
ponents in all layers of the CLM

vk1 = 1/
√
L(bk, . . . ,bk), (3.18)
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where bk is the eigenvector of the kth greatest eigenvalue λk of the matrix of
lateral interactions F . The eigenvalues of the DC-eigenvectors depend also on the
eigenvalues of F

Λk1 = λk − JL, (3.19)

which can be assumed to be high negative values, if J is chosen clearly higher than
the greatest eigenvalue of F to fulfill the convergence theorem of the CLM. The
DC-eigenmodes drive the activities of the CLM to the constraint surface

∀r :
∑

α

xrα = hr, (3.20)

and, therefore, cause a partition of the external input hr to the activities of the rth
column of the CLM.
AC-Modes: In contrast to the DC-Modes, the eigenvectors of the AC-Modes have
different components in the layers of the CLM

vkγ 6=1 = (qγ1 bk, . . . , qγLbk), (3.21)

where the coefficients qγα are the components of the γth eigenvector qγ of IL×L
which is the L× L matrix of 1’s

qγ = (qγ1 , . . . , q
γ
L)T ∈ RL. (3.22)

Through the special structure of IL×L for γ 6= 1 the components qγ1 , . . . , q
γ
L sum

to zero. Therefore, also the layer vectors of the AC-eigenvectors sum to zero. So
the AC-eigenvectors change the distribution of activity among the layers and drive
the WTA process within the columns of the CLM.
The eigenvalues of the AC-modes correspond to the eigenvalues of F

Λkγ = λk (3.23)

and can be positive or negative, where only modes with positive eigenvalues con-
tribute to the WTA-process. For high values of J , the absolute values of the
AC-eigenvalues are significant smaller than the DC-eigenvalues, such that the AC-
modes influence the CLM-dynamics on a slower time scale than the DC-modes.
Influence of annealing of the dynamics: Since the modification of the pseudo-
temperature T has only influence to the weights on the main diagonal of G, the
annealing process of lowering T can be interpreted as a simple shift of the eigen-
values of G. At T = λmax{F}, which is the greatest eigenvalue of the lateral
interaction matrix F , all eigenvalues in the AC-Subspace are negative and the dy-
namics is mono stable, which means it is driven to the global fixed point xF :

∀r, α : xFrα ≈
1

L
hr. (3.24)

By gradually lowering T the eigenvalues of the AC-Subspace are shifted into the
positive quadrant, such that step by step the different AC-Modes are switched on
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in the course of the dynamics in the ordering of the strength of the corresponding
eigenvalues. The dynamics becomes multi stable, where the CLM can converge
to different distributions of the groups to the layers, while the distribution of the
features to the groups is the same for all attractor states.

3.5 Algorithm

The CLM dynamics can be simulated efficiently with a Gauß Seidel approach of
solving iteratively the fixed point equations of (3.5) for a randomly chosen activity
xrα, while all other activities are held constant [40], [61]. The algorithm can be
implemented in the following way:

1. Initialize all xrα with small random values around
xrα(t = 0) ∈ [hr/L− ε, hr/L+ ε].
Initialize T with greatest eigenvalue of matrix {frr′}.

2. Do N ·L times: Choose (r, α) randomly and update xrα =
max(0, ξ), where

ξ :=
J(hr−

P
β 6=α xrβ)+

P
r′ 6=r frr′xr′α

J−frr+T

3. Decrease T by T := ηT, with 0 < η < 1. Go to step 2
until convergence.

3.6 Hand-tuned Interaction Weights

The behavior of the CLM grouping process mostly depends on the structure of the
lateral weight matrix F , whose components describe the problem specific group-
ing principle by mapping each pair of features (mr,mr′) in a pattern onto it’s
compatibility frr′ . To be able to generate a similar weight matrix for every new
pattern from the same problem domain a general interaction function f : F 2 → R
has to be specified that maps all possible pairs from the feature-domain onto their
compatibilities. In early applications, this was done by hand-tuning parameterized
functions. The following recapitulation of examples from the history of the CLM
motivates the necessity of an automatic learning method.

3.6.1 Point Clustering

The first introduction and application of the CLM by Ritter [50] treated the group-
ing problem of point clustering based on the principle of proximity. Each feature
mr was described as a simple position vector mr = pr (exemplary applications
were made in 2D, such that pr ∈ R2). The lateral weights frr′ were computed by
the simple “on-center-off-surround” function

frr′ =

{
1 if ‖ pr − pr′ ‖< R0

−J2 else
, (3.25)
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which returns positive compatibilities of 1 for feature pairs (mr,mr′), whose dis-
tance is smaller than a certain radius R0, and returns negative compatibilities of
−J2 otherwise.
Obviously, the size of resulting groups in the output of the CLM depends on the
choice of the parameters R0 and J2, where R0 defines the principle shape of the
interaction function and J2 describes some balance between positive and negative
interactions. This simple example already describes the main difficulties in the
design of the interaction function:

• The main feature properties, which are the basis of the interaction function
have to be chosen. Here this property is given trivially by the local distance.

• The principal shape of the interaction function has to be chosen. In the ex-
ample a step function is chosen.

• The shape parameters of the interaction function, here given by the expected
cluster radius R0, have to be chosen.

• Different parts of the interaction function have to be balanced against each
other, e.g., by scaling with the parameter J2.

The complexity of these degrees of freedom in the design of the interaction func-
tion increases with the complexity of the grouping principle, as is shown in the
following.

3.6.2 Color Segmentation of Gray Scale Images

For the segmentation of gray scale images in [61], each pixel in the image is repre-
sented by a feature vector mr = (pr, Ir), given by it’s position pr = (pxr , p

y
r)T and

intensity value Ir. The compatibility between two pixels is expressed according to
the difference of intensity by

frr′ =

{
1− |Ir−Ir′ |Θ − k : r′ ∈ Nr
−k : otherwise

, (3.26)

where Nr is the neighborhood of the pixel mr defined by the maximum norm and
radius R

Nr = {r′|max(|pxr − pxr′ |, |pyr − pyr′ |) ≤ R}, (3.27)

Θ is the intrinsic short range similarity given by

Θ =
1

N

1

(2R − 1)2 − 1

∑

r

∑

r′∈Nr
|Ir − Ir′ | (3.28)

and k defines the global inhibition. Here the behavior of the segmentation process
is effected by the parameters R and k, while the direct scaling of the differences in
intensity by Θ depends on the statistics of intensity differences in the given image.
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3.6.3 Contour Grouping

A possibility to express the principle of good continuation by pairwise compatibil-
ities between local edge elements mr = (pr, n̂r), given by position pr = (pxr , p

y
r)

and unit orientation vector n̂r = (n̂xr , n̂
y
r) (‖ n̂r ‖= 1), is applied in [65]. The

lateral interaction weights are expressed by

frr′ = exp(−(|n̂d̂| − |n̂d̂|)2σ)exp(−d2/R)− k, (3.29)

where d = pr − pr′ , d̂ = d/ ‖ d ‖ is the spatial (normalized) difference vector.
The first factor of the interaction describes the difference in orientation, while the
second factor implements a variant of the law of proximity. The range of these
two factors is controlled by the parameters σ and R to balance the two grouping
principles against each other, while the global inhibition k, like before, defines the
ratio between positive and negative interactions.

3.6.4 Segmentation of Fluorescence Cell Images

a) b) c)

contour

n̂1

p
2

p
1

n̂
2

d

Figure 3.5: Segmentation of fluorescence cell images: a) artifical generated exam-
ple: cells show a characteristic structure of low intensity at the center and high in-
tensity are the borderline, for details of the pattern generator see [36]; b) plot of in-
tensity gradient directions in a): violet dots are features with gradient strength zero,
red/yellow are orientations of features form the background of the cell, blue/green
are orientations of features from the cell body; c) principle of convexity after [34]:
two features (m1,m2) belong to the borderline of an cell, if they lie on a circular
contour measured by the angles between the two feature orientations n̂1 and n̂2

and the connection difference vector d.

In [33], [34], [35], Nattkemper et al. apply the CLM to a problem from medical
image processing. A probe of lymphocyte cells is observed that is treated with a
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contrast medium that highlights proteins from the membrane of the cells. The cells
show a high irregular structure of low intensity at the centers and a high intensity
corona at the cell borders, as it is demonstrated in the artifical generated prototype
image Fig. 3.5 a). This structure has the characteristics of intensity gradients
pointing from inside the cell to outside (see Fig. 3.5 b), while the intensity gradients
around the cell point inside.
The task is to separate the regions of different cells from each other and from a dif-
fuse background. Therefore, the interaction function is specified by an advanced
version of contour grouping according to continuity, which is extended by addi-
tional measures for the convexity of the contours to describe the closed borders of
the cells.
Again, the features mr = (pr, n̂r) are represented by position pr = (pxr , p

y
r)

and orientation n̂r = (n̂xr , n̂
y
r) (‖ n̂r ‖= 1), computed by standard Sobel-x- and

Sobel-y-operators. The interaction function is chosen as:

frr′ =





ξ((‖d‖π2R )2 + Ψ(n̂r, n̂r′)
2) : ‖ d ‖< R, n̄rd̂ < s and n̄r′ d̂ < −s

−Il : ‖ d ‖< R, n̄rd̂ ≥ s or n̄r′d̂ ≥ −s
−Ig : ‖ d ‖≥ R

.

(3.30)
The vectors n̄r = (−n̂yr , n̂xr ) are the normal vectors to the feature orientations n̂r.
Positive interaction is returned, only if the angles between the two features mr and
mr′ and the length of the connecting difference vector d are relative small and the
two orientation normal vectors n̂r and n̂r′ point in the same direction of curvature,
such that it is probable that both features lie on a circular contour, like in Fig. 3.5
c). The strength of this positive interaction depends on the difference of the two
feature orientations measured by

Ψ(n̂r, n̂r′) =
π

4
(1− n̂rn̂r′) (3.31)

and the local distance in the term ( ‖d‖π2R )2.
The area of this positive interactions is determined by the parameters R and s,
which control the radius of the segmented cells and the strength of the convexity
constraint, and the function

ξ(x) =

{
cos(x) : cos(x) > S
0 : cos(x) ≤ S . (3.32)

The positive interaction is scaled against a local and a global inhibition, described
by the parameters Il and Ig. The complexity of this interaction function is ex-
pressed by the case differentiations for feature configurations, scaling of different
parts of the interaction function and the adaption of the shape parameters R, s, and
S to the experiment settings.

3.6.5 Texture Segmentation

In [40], Ontrup extracts texture information from an image by convolution with
a set of Gabor filters. Gabor filters describe a wavelet function with a specified
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Figure 3.6: The set of 2D Gabor filters used for the feature extraction (Figure and
caption from [40]): On the left hand side the daisy-like pattern of the frequency do-
main is shown. Again, the circles denote the half-peak contours of each 2D Gabor.
Their corresponding receptive fields in the spatial domain are depicted on the right.
Note, that small receptive fields in the spatial domain have a large counterpart in
the frequency domain, and vice versa. This also expresses the uncertainty relation
and shows that information content in spatial and frequency domain are inversely
related.

frequency and orientation that is overlaid with a Gaussian function. In frequency
space Gabor filters look like two Gaussians that are centered at the frequencies
(u0, v0) and (−u0,−v0). Gabor filter responses are complex valued, where the
real part describes the components of even symmetric cosine waves, while the
imaginary part describes the components of odd symmetric sinus waves. Figure
3.6 shows the set of Gabor-filters and a sketch of their shape in the frequency
space, applied by Ontrup. This set consists of fifteen filters at five different orien-
tations and three different frequencies that realize a sparse sampling of the whole
frequency space. For an argumentation in [30] and results from own experiments,
Ontrup motivates the usage of only the even symmetric components of the Gabor
filters. Further, he applies a non-linear function in form of a hyperbolic tangent
onto the filter responses, such that texture information of a feature mr at position
pr = (pxr , p

y
r) in encoded by the fifteen transformed components of the Gabor

filters cmnr , m = 1, . . . 3, n = 1, . . . , 5.

Since texture is not only a property of a single point, but from a whole image re-
gion, these components are substituted by statistical information in form of their
mean values µmnr and variances σmnr (m = 1, . . . 3, n = 1, . . . , 5) in a neighbor-
hood of pixels. This is achieved by convolution of the filter components cmnr with a
Gaussian, the size of which is roughly two to tree times the width of the respective
Gabor filter. So the texture information at position pr is now characterized by the
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30-dimensional vector zr = (µr, σr), where

µr = (µ11
r , . . . , µ

35
r )T , σr = (σ11

r , . . . , σ
35
r )T . (3.33)

To reduce the dimensionality of the texture vectors, the standard multidimensional
scaling method Principle Component Analysis (PCA) [15], [22] is applied and
the texture vectors zr ∈ R30 are replace by their projection onto their first four
principal components ẑr ∈ R4.
A feature mr = (pr, ẑr) is finally represented as aggregation of position and tex-
ture information. Consequently the design interaction function is based on differ-
ences within these two properties:

frr′ = cproxe
−‖pr−pr′‖2/R2

prox + edtext(ẑr ,ẑr′)/R
2
text − k, (3.34)

where the first term describes the Euclidean distance according to feature position
and the second term describes the city block distance in the principle components
of the texture vectors:

dtext(ẑr, ẑr′) =

4∑

i=1

(
|(ẑr)i − (ẑr′)i|√

α((ẑr)i)

)
. (3.35)

α((ẑr)i) is here the standard deviation of the ith principle component.
The range of positive interaction in the two distance measures is controlled with the
parameters Rtext andRprox. They are weighted against each other by the parameter
cprox and, furthermore, weighted against the strength of a global inhibition k.

3.7 The Learning Approach

The last section has shown, that the manual design of a suitable interaction function
for a grouping problem can result in the construction of complex functions, whose
parameters have to be adapted to achieve a multidimensional scaling of different
feature properties, like position, orientation, color and texture. To simplify the
design process for the user, Wersing introduced a learning approach for the CLM
that estimates the parameters of the desired interaction function from a set of hand-
labeled training patterns [62]. In this section, the original approach of Wersing
is presented and its application on the segmentation of fluorescence cell image
(compare section 3.6) is reviewed.

3.7.1 Formulation of the Learning Problem

The learning problem consists of finding a suitable compatibility function frr′ =
f(mr,mr′), which expresses the preference to bind similar features mr,mr′ by
positive values or the preference to segregate dissimilar features by negative values,
respectively. Assume that a set of M labeled training patterns P i, i = 1, . . . ,M
is given. For each P i a subset Ri = {m1, . . . ,mN i} of N i different features
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Figure 3.7: Goal state of the CLM: Activations of neurons that describe a correct
assignment yrα̂(r) are set to one, while all others are set to zero.

and their corresponding target labels α̂i(r) = α̂(mi
r) ∈ {1, . . . , Li} is obtained,

where Li is the number of groups in the pattern P i. Unless otherwise stated, the
convention is used that r ∈ {1, . . . , N i} and that α̂(r) denotes the target label for
feature mr in pattern P i, while β, β ′ 6= α̂(r) denote other possible labels from
{1, . . . , Li}.
To obtain a target state yi from the desired labels, α̂(r) the activations of neurons
that describe a correct assignment α̂(r) are set to one, while all others are set to
zero.

yirα̂(r) = 1; yirβ = 0; for all r, β 6= α̂(r). (3.36)

The learning goal is to choose frr′ , such that these target states are stable states
of the CLM grouping dynamics, which implies that they must be consistent with
respect to (3.7). Therefore, the target states (3.36) are substituted into (3.7) to
obtain (L− 1)

∑
iN

i target consistency conditions

∑N i

r′=1 frr′y
i
r′β <

∑N i

r′=1 frr′y
i
r′α̂(r). (3.37)

It is typical for real world problems, that not all conditions (3.37) can be ful-
filled simultaneously, because of inconsistencies or ambiguities in natural data.
So, learning results in an optimization problem to violate the consistency of the
hand-labeling for the training set as little as possible.

3.7.2 Introduction of Basis Functions

Since in natural problems the feature domain F ∈ Rd often is a high dimensional
discrete or non-finite set and the training examples cover only a small discrete
subset of F , the estimation of frr′ from (3.37) can be impracticable. To achieve
generalization from the training data, it is necessary to reduce the number of pa-
rameters which have to be adapted during learning. This reduction can be realized
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by the decomposition of the sought interaction function into a linear combination

frr′ =

K∑

j

cjg
j
rr′ (3.38)

of a set of basis functions gjrr′ = gj(mr,mr′), which contribute a priori knowl-
edge about the grouping problem. So, the problem of learning is reduced to the
estimation of the K coefficients of the basis functions. The definition of the basis
functions (3.38) is substituted into the consistency conditions (3.37) to get a set of
dimension-reduced consistency conditions of the form:

∑

j

cjZ
k
j < 0 for all k = (i, r, β |mr ∈ Ri, β 6= α̂i(r)), (3.39)

where k is a super-index for the consistency conditions running over all combina-
tions of pattern i, feature r, and label β 6= αi(r) and the values Zkj describe the
information from the training set and the basis functions by

Zkj = Zirβj =
∑

r′|α̂i(r′)=β
gjrr′ −

∑

r′|α̂i(r′)=α̂i(r)
gjrr′ . (3.40)

The values Zkj are written as vectors Zk = (Zk1 , . . . , Z
k
K). Each vector Zk is

associated exactly with one consistency condition in (3.37) and, therefore, is called
a “consistency vector“.
The observation of the consistency vectors in the weight space of learning parame-
ters cj gives a simple geometrical interpretation of the learning problem (see Figure
3.8). To fulfill the kth consistency condition c = (c1, . . . , cK)T has to be chosen
from the opposite half space of Zk. Therefore, each new consistency condition
restricts the area of suitable interaction weights c. In order to achieve a better gen-
eralization to further yet unseen patterns, it can be tried to restrict this area further
by the introduction of a positive margin variable κ > 0 in (3.39).

∑

j

cjZ
k
j + κ < 0 for all k = (i, r |mr ∈ Ri, β 6= α̂i(r)). (3.41)

Obviously, this approach can only achieve good results, if the basis functions
describe relevant aspects of the desired interaction function. An example for the
difficulties in the manual design is given in the following, which describes the
application of this learning method to fluorescence cell images. A strategy to gen-
erate suitable basis functions more automatically is presented in chapter 5 about
the simplification of the learning approach.
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Figure 3.8: Geometry representation of the learning problem of QCO. The con-
sistency vectors Zk describe the learning problem. To fulfill the k-th consistency
condition, the vector of learning parameters c has to be chosen from the opposite
half space of the weight state space. Therefore, each new consistency condition
restricts the area of suitable interaction weights further (shaded area).

3.7.3 Optimization of Consistency Conditions

In [59, 62], the optimization problem to satisfy (3.41) is solved by searching the
minimum of the quadratic error

EQCO =
∑

k


∑

j

cjZ
k
j + κ




2

. (3.42)

This approach is more restrictive than the original learning problem (3.41), because
it demands, that all consistency conditions are fulfilled in the same manner. How-
ever, applications of this approach for designing BSB associative memories have
shown, that it is competitive to more sophisticated optimization methods [43]. The
minimum of (3.42) is searched by gradient descent under additional constraints
|cj | ≤ 1. This property should keep single interaction coefficients from obtaining
large values, which might disturb the group formation process. E.g., if one basis
function describes a pure self interaction girr′ = δrr′ , it follows, that all Zki are
equal to one, such that the minimum of (3.42) can be found trivially by setting ci
to κ and all other parameters cj, j 6= i to zero. The result would be frr′ = κδrr′ ,
which, obviously, can not produce a reasonable grouping, since all lateral interac-
tions a set to zero. However, if |cj | ≤ 1, it is claimed that this trivial solution is not
allowed for κ > 1, such that all cj have to be adapted to find a minimum of (3.42)
and a suitable interaction function can be learned.
The qualitative performance of the QCO-approach is good [60], [62]. However,
the computational performance suffers from the fact that all consistency conditions
(3.37) have to be transformed by equations (3.40) and (3.41) to the space of learn-
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ing parameters cj , before the optimization step is performed according to the error
function (3.42).

3.7.4 Application on Fluorescence Cell Images
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Figure 3.9: Relative orientations and symmetry under feature exchange (Figure
and caption from [62]).

For a practical implementation of the learning method, the previous description still
lacks an important ingredient: the exact definition of the basis functions g jrr′ , which
introduces problem specific knowledge about the relevant grouping principles into
the interaction function. In [62], Wersing showed, how suitable basis functions can
be designed by hand for the segmentation of fluorescence cell images, presented in
section 3.6.
As already stated, the features mr = (pr, n̂r) are represented by position pr =
(pxr , p

y
r) and orientation n̂r = (n̂xr , n̂

y
r) (‖ n̂r ‖= 1). Further, the interaction

function depends on the relative angles between the two orientation vectors n̂r and
n̂r′ and the difference vector d as well as on the length of d, where the two angles,
called θ1 and θ2, always start in the direction of d and turn to the left, until they
reach the two orientation vectors (see Fig. 3.9).
The designed basis functions describe a disjunct partitioning of the range of the pa-
rameters θ1, θ2 and ‖ d ‖, plus an additional basis function for the self-interaction
in the background layer. The local distance is discretized into three intervals
‖ d ‖ < R

2 , R
2 <‖ d ‖< R, and R <‖ d ‖, where R is the expected radius

of the lymphocyte cells in the image. The angle θ1 and θ2 are discretized into eight
orientation intervals by

s(θ) = floor(8θ/(2π)) ∈ {0, . . . , 7}, (3.43)

where floor(x) is the largest integer number n for which n < x. There are 64
combination of the orientation intervals of θ1 and θ2. As can be seen in Fig. 3.9,
some combinations are identical, if the ordering of the features is changed. These
combinations have to be mapped on the same response of the basis functions g jrr′
to ensure the symmetry of the interaction frr′ = fr′r under feature exchange. The
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matrix

Q =




1 2 3 4 27 28 29 30
5 6 7 8 28 31 32 33
9 10 11 12 29 32 34 35
13 14 15 16 30 33 35 36
17 18 19 20 1 5 9 13
18 21 22 23 2 6 10 14
19 22 24 25 3 7 11 15
20 23 25 26 4 8 12 16




(3.44)

describes this symmetry and shows, that there actually exist only 36 different com-
binations of the orientation intervals of θ1 and θ2. The basis functions are now
defined as membership functions of the different quantization intervals of θ1, θ2

and ‖ d ‖:

g1
rr′ = g1α

rr′ = δα1δrr′

g2
rr′ = g2α

rr′ =

{
1 : α > 1 and ‖ d ‖> R
0 : else

g3≤j≤38
rr′ = gjαrr′ =

{
1 : α > 1, ‖ d ‖< R

2 and j = 2 + q(θ1, θ2)
0 : else

g39≤j≤74
rr′ = gjαrr′ =

{
1 : α > 1, R2 <‖ d ‖< R and j = 2 + q(θ1, θ2)
0 : else

(3.45)
where

q(θ1, θ2) = Qs(θ1)s(θ2) (3.46)

returns the index of the discretization of θ1 and θ2 in Q and α = 1 belongs to the
interaction in the background layer, while α > 1 belongs to the other layers.
The first basis function of (3.45) defines the self-interaction in the background-
layer. The second basis function expresses a uniform interaction, if the distance
between the features is bigger than the expected cell radius R. The other 72 basis
functions are the combinations of the 2 × 36 remaining quantization intervals of
θ1, θ2 and ‖ d ‖. This gives a total number of 74 basis functions.
Wersing showed that suitable interaction coefficients cj of the defined basis func-
tions can be estimated with the presented QCO learning approach to solve the cell
segmentation problem, which constitutes an enormous simplification of the design
process of the problem specific interaction function. Nevertheless, this approach
still has some difficulties. The case differentiation in (3.45) shows, that there is
still a high demand on the user, who must decide for quantization levels and com-
binations of feature properties. Further, the presented basis functions have to be
evaluated for a high number of times in the learning process: equation (3.40) has
to be computed for each combination of a feature in the training set with a basis
function and a possible label, where each computation of (3.40) demands, that a
basis function has to be evaluated for each feature in the actual training pattern.
If the CLM is applied on image data, where each pixel represents a feature, this
means an unreasonable computational effort.
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3.8 Related Architectures and Algorithms

The presented CLM architecture can be extended to general labeling problems by
connecting the neurons with symmetric inter layer weights f αβrr′ , expressing the
compatibility of the assignment of feature mr to label α with the assignment of
feature mr′ to label β. This section refers to several alternative approaches that
use lateral interaction weights to implement feature binding and segmentation pro-
cesses and either suggest own methods of learning or would profit from the devel-
opment of a learning algorithm.
Presented are the binary recurrent neural networks Competitive Hopfield Neural
Network (CHNN) [6] and Contextual-Content-Based Hopfield Neural Cube (CCB-
HNC) [4], since they are based on the same layer-wise architecture as the CLM,
the method of Relaxation Labeling (RL) [49], which treats labeling processes in
a probabilistic framework, the Energy-based Cluster Update (ECU) as represen-
tative of spin models, and the Locally Excitatory Globally Inhibitory Oscillatory
Network (LEGION) [52], where binding is implemented by the principle of tem-
poral correlation of oscillating units, as it is proposed in [55], [56], [57].

3.8.1 Competitive Hopfield Neural Network (CHNN) and Contextual-
Context-Based Hopfield Neural Cube (CCBHNC)

The CHNN [6] and the CCBHNC [4] use the same layer-wise architecture of neu-
rons xrα as the CLM, but consist of binary neurons instead of linear threshold
neurons, where the vertical WTA loop in the CLM is replace by an explicit WTA
update rule

xrα =

{
1 : Frα = maxβ{Frβ}
0 : otherwise

. (3.47)

Frα is the support the neuron xrα receives form all other neurons in the network.
Thereby the CHNN and CCBHNC differ in the kind of lateral connections f αβrr′ ,
which enables them to solve different types of labeling and assignment problems.
In [6], the CHNN is used for polygon approximation, where a closed polygon
contour given by a set of L points mα = pα = (xα, yα)T with cyclic indices α+
L = α, which should by approximated by a sequence of line segments connecting
a set of breakpoints mr, r = 1, . . . , N , r +N = r, N < L on the given contour.
Therefore, the given points mα are associated with the layers of the CHNN and the
indices r of the breakpoints are associated with the columns. Each neuron receives
only input from all neurons in the previous and subsequent column (breakpoint).

Frα =

L∑

β=1

fαβx(r−1)β + fαβx(r+1)β . (3.48)

Two points on the contour interact with

fαβ =

{ −∞ : pα = pβ
−maxp∈p̃αpβ

{d(p,pαpβ)} : pα 6= pβ
, (3.49)
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where d(p,pαpβ) is the distance of a point p to the line connecting pα and pβ
and p̃αpβ is the clockwise pass on the given contour starting in pα and ending in
pβ .
The WTA-rule (3.47) guarantees the unique assignment of the breakpoints r to the
contour points mα and enables the CHNN to deal with strictly negative f αβ < 0
and non-symmetric fαβ 6= fβα lateral weights, while the infinite negative self-
interaction weights in the first line of (3.49) ensure the unique assignment of the
contour points to the break points.
In [4], the CCBHNC is applied to the segmentation of Computed Tomography
(CT), Magnet Resonance (MR) and Single Photon Emission Computed Tomogra-
phy (SPECT) images using a similar approach like the CLM color segmentation
example in section 3.6.2, based on the local intensity Ir and position pr = (xr, yr)
of image pixels mr = (pr, Ir).

Frα =
1

2

∑

r′

∑

β

fαβrr′ xrβ. (3.50)

fαβrr′ = −(A
|Ir − Ir′ |
maxr{Ir}

+BΦrr′(1− δαβ), (3.51)

where Φrr′ is the membership function of a certain neighborhood Nr of the pixel
mr

Φrr′ =

{
1 : mr ∈ Nr
0 : mr 6∈ Nr

, (3.52)

δαβ is the Kronecker Delta between label α and β, and A and B are scaling factors
to weight the influence of intensity distance and uniform labeling in the neighbor-
hood Nr. Again, the lateral interactions are strictly negative f αβrr′ < 0. Each neuron
interacts with all neurons in the same layer according to the distance in intensity
and with all neurons in neighboring columns, depending whether they are assigned
to the same label or not.

3.8.2 Relaxation Labeling (RL)

In the framework of RL, introduced by Rosenfeld, Hummel and Zucker [49], the
assignment variables xrα are interpreted directly as probabilities for assigning a
feature mr to the labels α = 1, . . . , L, which means they are constrained by

∑

α

xrα(t) = 1. (3.53)

Starting from an initial estimation xrα(0) for the labeling probabilities, the algo-
rithms relaxes inconsistencies in the labeling expressed by compatibilities f αβrr′ with
an iterative update rule:

xrα =
Frαxrα(t)∑
β Frβxrβ(t)

. (3.54)
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The support Frα should return positive values to guarantee, that the probabilities
xrα stay in [0, 1], which is usually ensured by shifting the lateral interactions f αβrr′ ∈
[−1, 1] into the positive quadrant f ′αβrr′ = fαβrr′ + 1 > 0.

Frα(t) =
1

N

∑

r′β

(1 + fαβrr′ )xr′β(t) (3.55)

The probabilities xrα converge under the iterative update (3.54) to a consistent la-
beling depending on the initial guess, which, however, does not necessarily means,
that the output labeling describes a unique assignment with

∀r : xrα̂(r) = 1 ∧ ∀β 6= α̂(r) : xrβ = 0. (3.56)

Rosenfeld, Hummel and Zucker suggest to specify the lateral interactions f αβrr′ by
the correlation of labels α and β, computed from the probabilities P (α) and P (β)
for feature mr and mr′ and the joint probability P (α, β) of observing both labels
in parallel at mr and mr′ :

fαβrr′ =
P (α, β) − P (α)P (β)

[(P (α)− P 2(α))(P (β) − P 2(β))]
1
2

∈ [−1, 1]. (3.57)

Other approaches interprete the lateral interactions weights as mutual information
between labeling feature mr with α and mr′ with β [44] or suggest supervised
learning methods [45]. Kittler and Illingworth [26] refer to a wide range of appli-
cations based on RL, covering fields of feature (e.g. edge) enhancement, figure-
background separation and shape and stereo matching.

3.8.3 Energy-Based Cluster Update (ECU)

In [42], the ECU algorithm is applied to color segmentation problems given by
pixels mr = (pr, Ir). The assignment variables xrα are replaced by a set of
spin variables x1, . . . , xN ∈ {1, . . . , L}, which can take one of L different spin
states. The output of ECU is given by a total spin state x = (x1, . . . , xN ) which
minimizes the energy

E(x) =

N∑

r=1


Jr −

∑

r′∈Nr
frr′δxrxr′


 . (3.58)

Jr is a global inhibition and the lateral interactions are chosen by

frr′ = 1− |Ir − Ir′ |
Θ

. (3.59)

Nr is the neighborhood of feature mr , Θ is the intrinsic short range similarity
(compare equation (3.28) in section 3.6.2), and δxrxr′ is the Kronecker Delta be-
tween the spin states of xr and xr′ . To find the minimum of (3.58), ECU starts
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with a random initialization of the spin variables and divides the spin variables
into coherent clusters of uniform spin states (δxrxr′ = 1). Therefore, each spin
xr is assigned initially to its own cluster Cr and two clusters Cr and Cr′ of two
neighboring features are merged with the probability

P (merging Cr and Cr′) = 1− exp
(
− 1

2T
frr′δxrxr′

)
, (3.60)

where T is a annealing temperature which controls the size of the merged clusters:
large values of T allow only small clusters, while small values of T allow large
clusters.
After the clusters are build, the amount of energy is computed for changing the
state of all spin variables in cluster Ci to spin α.

E(Ci → α) =
∑

r∈Ci
(Jr −

∑

r′∈Nr,Cr′ 6=Ci
frr′δxrxr′ ), (3.61)

which allows to compute the probability of switching the whole cluster Ci to spin
state α:

P (Ci → α) =
E(Ci → α)/T∑
β E(Ci → β)/T

. (3.62)

The minimum of (3.58) is found by performing alternating clustering (3.60) and
cluster update (3.62) steps under gradually lowering of the annealing temperature
T . An comparison of ECU and the CLM approach in section 3.6.2 showed [61],
that both algorithms achieve qualitative similar results. However, ECU showed
a severe faster rate of convergence, especially, when the range of lateral interac-
tions is restricted to a relative small pixel neighborhood Nr, such that that CLM
dynamics requires very slow annealing speed to reveal the desired segmentation.

3.8.4 Locally Excitatory Globally Inhibitory Oscillator Networks (LE-
GION)

While the CLM describes a binding or grouping of features by the principle of
spatial coactivation in the same layer, the LEGION approach [52] follows the al-
ternative principle of temporal correlation [55], [56], [57]. Each feature mr in the
input is associated with an oscillatory unit, specified by an excitatory and inhibitory
subunit xr and yr.

ẋr = 3xr − x3
r + 2− yr + ρ+ hr + Fr, (3.63)

ẏr = ε(γ(1 + tanh(xr/β)) − yr), (3.64)

where ρ is an amplitude of Gaussian noise, hr is an external input and Fr is the
input from other units. A single unit with positive input hr > 0 and without
connection to other units (Fr = 0) describes a stable periodic orbit with different
time phases of increasing and decreasing values of xr and yr, where the adaptation
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rate ε and the parameters β and γ determine the exact shape of the orbit and the
time the unit spends in the respective phases of oscillation. For hr < 0, a single
unit converges to a stable fixed point and stops oscillating.
Connecting several of such oscillator units with excitatory weights frr′ results in
a temporal synchronization of the units firing rates. In contrast, inhibitive connec-
tions frr′ < 0 result in a temporal desynchronization of the respective units. The
synchronal oscillation of different units expresses the binding of the associated
features to the same group.
As denoted by the name LEGION, neighboring units are connected by positive in-
teractions frr′ > 0, while simultaneously they are connected through an inhibitive
weight J with a global inhibitor z.

Fr =
∑

r′∈Nr
frr′σ∞(xr′ , θx)− Jσ∞(z, θxz). (3.65)

where σ(x, θ) is the Fermi function

σ∞(x, θ) =
1

1 + exp{−κ(x− θ)} . (3.66)

The activation of the global inhibitor z is defined by

ż = Φ(ξ − z), (3.67)

where Φ is the reaction rate of the global inhibitor and the global inhibitor is excited
(ξ = 1), if the activation of at least one oscillator exceeds of threshold xzx, and it
is suppressed (ξ = 0), if all oscillator are inactive.

ξ =

{
1 : ∃r : xr ≥ θxz
0 : ∀r : xr < θxz

. (3.68)

In [52], LEGION is used to segment coherent regions in binary images (mr =
(pr, Ir), Ir ∈ {0, 1}), where the lateral interaction are simply set to one for all
oscillators in the direct neighborhood Nr of mr:

frr′ =

{
1 : mr′ ∈ Nr
0 : mr′ 6∈ Nr

, (3.69)

and the external input of the oscillators is set to

hr

{
> 0 : Ir = 1
< 0 : Ir = 0

. (3.70)

Thereby connected regions of Ir = 1 are synchronized through the lateral interac-
tions, while the global inhibitor causes desynchronization of disconnected regions
of Ir = 1, and the regions of Ir = 0 stay permanent inactive.
In [58], LEGION is demonstrated on the segmentation of real world satellite im-
ages with pixels (mr = (pr, Ir), Ir ∈ {0, . . . , 255}), where the lateral interactions
are set to

frr′ =
255

1 + |Ir − Ir′ |
. (3.71)
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3.9 Summary

This chapter has described the grouping process implemented by the dynamics of
the Competitive Layer Model. Cited results have shown that the dynamics con-
verges to consistent attractor states in the sense of grouping principles encoded by
pairwise compatibility weights between feature representative neurons. An effi-
cient simulation algorithm is available that includes an annealing process imple-
mented by self-inhibitory weights of the CLM neurons.
Several examples of hand-tuned interaction functions have shown the applicabil-
ity of the CLM on a wide range of segmentation tasks. However, they have also
shown the necessity of an automatic learning method to simplify the design of such
functions.
The original learning approach of Wersing was recapitulated. The learning problem
is formulated by constructing a set of CLM target states from hand-labeled training
patterns. These states are transformed into a set of linear constraints on the lateral
interaction weights that characterize the attractors of the CLM-dynamics. To make
the optimization problem of estimating feasible interaction weights practicable, the
number of learning parameters is reduced by the projection of the linear constraints
to a set of basis functions. The new learning parameters can then be estimated by
gradient descent according to an error function that punishes the violation of the
projected constraints.
As will be shown in the application examples of chapter six, this learning approach
reaches a reasonable level of quality, but can be computational expensive, because
all consistency conditions have to be projected onto the basis functions. Further,
it demands some experience and skills from the user in designing suitable basis
functions. To handle these drawbacks the learning algorithm is improved in chapter
five.
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Chapter 4

Lateral Interactions & the
Grouping Process

The last chapter has shown that the grouping result of the CLM dynamics is mainly
determined by the lateral interaction weights frr′ . Especially, section 3.4 has
stressed the importance of the eigenvalues and eigenvectors of the interaction ma-
trix F during the self inhibitory annealing process. As preparation for the design
of an effective and efficient learning algorithm the present chapter gives abstract
examples of ideal grouping problems to discuss properties like the automatic adap-
tion to the number of groups in the input or the robustness of the grouping process
against noise. Thereby it introduces a quality measure to estimate the correctness
of different output groupings in relation to a specified target labeling. This mea-
sure will be used in the later chapters to evaluate the learning success in adapting
specified grouping behaviors.
Further, this chapter gives a more detailed insight into the annealing process, espe-
cially for high dimensional data, like image data. This process is characterized by
a sequence of prototypic attractor states. Based on the ordering of these states the
concept of saliency of presented groups is introduced which opens new view points
to the problem of figure-background separation and motivates an attention-based
control of the dynamics presented in chapter 8.

4.1 Degrees of Freedom and Cardinality of Grouping

To observe the influence of the lateral interactions on the grouping process inde-
pendently from the influence of other parameters of the CLM the experiments of
this chapter follow the conventions:

1. All neuron inputs are equal and constant:

∀r : hr := 1. (4.1)

45
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2. The strength of the vertical inhibitory weights J is specified uniquely by the
matrix of lateral interactions:

J := 2 max
r

∑

r 6=r′
max(0, frr′). (4.2)

3. The self-interaction weights are set to zero:

∀r : frr := 0. (4.3)

Equation (4.1) provides that the basic amount of activity that can be assigned to the
neurons in a column of the CLM is the same for all columns. Equation (4.2) guar-
antees that a scaling of the lateral interaction Matrix F ′ := aF is accompanied by
an equivalent scaling of the vertical competition weights J ′ := aJ . Both scalings
indicate a scaling of the whole CLM energy function:

E′ = −J ′∑rα hrxrα + 1
2J
′∑

r

∑
αβ xrαxrβ − 1

2

∑
α

∑
rr′ f

′
rr′xrαxr′α

= −aJ∑rα hrxrα + 1
2aJ

∑
r

∑
αβ xrαxrβ − 1

2

∑
α

∑
rr′ afrr′xrαxr′α

= −a
(
J
∑

rα hrxrα + 1
2J
∑

r

∑
αβ xrαxrβ − 1

2

∑
α

∑
rr′ frr′xrαxr′α

)

E′ = aE
(4.4)

Since the CLM dynamics minimizes E, as any other E ′, the choice of the scaling a
only effects the concrete step size of the dynamics in direction of the gradient of E
but not the location of the attracted minima, as long as the dynamics is not trapped
in local minima of E as a result of the changed step size.
To prevent such suboptimal attractor states self-inhibitory annealing is employed
which is controlled by the pseudo temperature T . Since there is a contradiction
between the inhibitory pseudo temperature and possible self-excitatory lateral con-
nections frr, equation (4.3) sets all diagonal elements of the lateral interaction ma-
trix F to zero. This convention could violate the CLM assignment theorem which
requires self-excitatory weights frr > 0 to guarantee the unique assignment of all
features to the layers. To fulfill the assignment theorem anyway, annealing can
be performed to a pseudo temperature T = −ε which lies slightly beneath zero.
This strategy is equivalent to shifting all eigenvalues of F into the positive quad-
rant by ε. Thereby equation (4.2) guarantees that the CLM convergence theorem is
fulfilled as long ε < maxr

∑
r 6=r′ max(0, frr′).

The interaction matrix F of a grouping problem with N features consists of N 2

weights frr′ , but since F is symmetric and (4.3) erased all diagonal elements of F ,
there exist only

M =

N∑

i=0

i− 1 =
1

2
N(N − 1) (4.5)

different interaction weights frr′ , r, r′ ∈ {1, . . . , N}, r > r′. Thus choosing an
interaction matrix F corresponds to choosing a point from RM . This situation is
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Figure 4.1: Weight space for grouping problems with three features. The green
sphere shows the sphere of interaction weights that describe different grouping
processes for three features. The corners of the black cube correspond to the eight
binary matrices that lie on this sphere. Only five of these eight matrices are con-
sistent with one of the five possible groupings (indicated by green labels) for the
three features.

visualized by the 3D cube in Fig. 4.1 for the case of N = 3 features. Since the
grouping behavior is invariant (besides a modified gradient step size) to a scaling
of F , the space of possible interaction matrices can be restricted further to a hyper
sphere in RM with a fixed radius. E.g., for R =

√
M the hyper sphere contains

all 2M symmetric matrices of binary off-diagonal elements frr′ ∈ {−1, 1}, r 6= r′

which in the following are simply called “binary matrices”.
Each point on this hyper sphere in RM is mapped by the application of the CLM
dynamics on the respective interaction matrix F onto an output labeling. There
exists only a limited number of possible output labelings. Figure 4.2 sketches a
recursive method to construct all possible labelings for a grouping problem. Two
labelings are assumed to be different, if they can not be mapped onto each other
by permutation of the labels. The trivial origin for N = 1 is the case that only one
feature exists that is assigned to the label one. In the following recursive steps each
grouping on the level N splits into L+ 1 new groupings on the level N + 1, where
L is the maximal label in the original grouping and the new feature can be either
assigned to any of the existing labels or to a newly introduced label L+ 1.
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Figure 4.2: Sketch for the recursive construction of all possible groupings for a
pattern with N features. Starting from the trivial case of a single feature, which is
assigned to the one and only group, each labeling is split into L+1 new labelings
on the next level, where L is the maximal index of the labels at the actual level.
The number of possible labelings explodes, but stays clearly below N!.
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# features # groupings # weights # binary matrices
2 2 1 2
3 5 3 8
4 15 6 64
5 52 10 1024
6 203 15 32768
7 877 21 ≈ 2, 1 · 106

8 4149 28 ≈ 2, 7 · 108

9 21147 36 ≈ 6, 9 · 1010

10 115975 45 ≈ 3, 5 · 1013

Figure 4.4: Table of the number of groupings and the number of binary matrices in
the weight space for N = 2 to N = 10.

Figure 4.3 shows that the number of possible groupings explodes super exponen-
tially with the number of features N . However the number of possible groupings
increases slower than N ! = ΠN

i=1i.
Each grouping can be associated with an binary interaction matrix on the hyper
sphere in RM , with

frr′ =





0 : r = r′

1 : r 6= r′ ∧ α̂(r) = α̂(r′)
−1 : r 6= r′ ∧ α̂(r) 6= α̂(r′)

, (4.6)

where all features that are assigned to the same label are connected by frr′ = 1,
while all features that are assigned to different labels are connected by frr′ = −1.
This structure is called in the following an “ideal block diagonal structure” inde-
pendent of a concrete ordering of the features, because if the features are ordered
according to their assigned labels (r > r ′ ⇔ α̂(r) > α̂(r′)) the 1s appear in blocks
along the main diagonal, while the -1s appear in all off-diagonal blocks. Compared
to the set of all binary matrices which increases according to N with 2

1
2
N(N−1)

faster than N ! the set of ideal block diagonal matrices of possible groupings is
distributed sparsely for high number of features.
Figure 4.4 shows how the numbers of possible groupings and possible binary ma-
trices increases from N = 2 to N = 10. The matrix only consisting of -1 corre-
sponds to the highest segmentation level, where each feature is assigned to its own
group, while the matrix only consisting of 1s corresponds to the lowest segmenta-
tion level, where all features are assigned to the same group. A trajectory between
these two extreme cases along the surface of the weight hyper sphere corresponds
to a decrease or increase of the segmentation level by splitting or merging existing
groups.
The following experiments shall demonstrate the robustness of the grouping result
against errors in the interaction matrix. Therefore a quality measure is defined



50 CHAPTER 4. LATERAL INTERACTIONS & THE GROUPING PROCESS

which estimates the overlap between a desired target labeling and an existing CLM
output labeling.

4.2 Evaluation of the Grouping Success

To be able to evaluate the success of learning a specified grouping behavior, a
suitable criterion for the achieved grouping quality has to be defined. This is done
by comparing the labels α̂C(r) resulting from the CLM-dynamics with a set of
target labels α̂T (r), which, in the case of natural input patterns, are given by a
human user. In the case of artifical input patterns, they are provided directly from
the respective pattern generator.
The grouping quality measure Q computes the percentage of features that have
been labeled correctly by the CLM-dynamics compared to the target labeling.
Assuming that there exist LT target labels αT = 1, . . . , LT and LC layers αC =
1, . . . , LC in the CLM, the entries of an LT × LC matrix O(0) are initialized by
the number of features that are assigned in the target labeling to αT and in the
CLM-answer to αC .

O
(0)

αT αC
= #mr with α̂T (r) = αT ∧ α̂C(r) = αC . (4.7)

The maximal entry of O(0) is selected, which describes the largest overlap between
a group in the target labeling and the CLM-answer. All other entries in the same
column and row are erased. From the resulting matrix O(1) the second largest entry
is selected and this procedure is iterated for the number of target labels LT . At the
end of this procedure the sum of remaining entries in O(LG) gives the number of
correctly labeled features. Divided by the total number of features this number Q
lies within [0, 1] and can be interpreted as the percentage of overlap between the
target labeling and the CLM-output (Fig. 4.5 sketches the process for an example
with N = 12 features and LT = LC = 4 groups).
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Figure 4.5: Sketch for the evaluation of the grouping quality.
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The maximal quality Q = 1 is reached, when the target and the CLM labeling
are equivalent, while values close to 1 indicate minor errors in the labeling. The
minimal Quality corresponds to Q = 1

N , in the case where all features in the target
labeling are assigned to the same label, while in the CLM labeling each feature is
assigned to its own label, or vice versa.
Disadvantages of the quality measure are that many labelings are mapped onto
the same quality value, especially for medium values (see examples in Fig. 4.6),
and that suboptimal quality values give no information about the type of errors in
the CLM labeling, e.g., whether they were caused by oversegmented, merged or
overlapping groups.
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Figure 4.6: Quality values for different labelings of a 12-feature pattern compared
to the shaded target labeling.
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4.3 The Trajectory of the Annealing Process

The qualitative evaluation of the achieved grouping result is an important indicator
to investigate the influence of the lateral interaction matrix on the dynamics ( 3.13).
However, another important indicator is the trajectory of the network states that
lead to the output grouping. To show this, the following experiment investigates
the annealing process specified by an ideal block diagonal matrix from an abstract
image segmentation problem.
The observed pattern (see Fig. 4.7) consists of N = 900 features which are ar-
ranged in a 30 × 30 image and shall be divided into five disjoint groups of 390,
236, 188, 81 and 5 features. The segmentation is abstracted from a concrete appli-
cation, like color or texture segmentation, such that the features mr = (xr, yr) are
assumed in first place to be ordered according to the target labels to visualize the
ideal block diagonal structure that is specified by (4.6).
If the diagonal elements of this matrix were set to one (∀r : frr = 1), this ma-
trix would have only five linear independent columns respectively rows which
would mean that only five eigenvalues λ1, . . . , λ5 would be unequal to zero, with∑N

i=1 λi = N . Erasing the diagonal elements corresponds to a shift of all eigen-
values by -1 which results in the eigenvalue spectrum on the right hand side of Fig.
4.7, where

∑N
i=1 λi = 0 holds. The eigenvectors corresponding to the four largest

eigenvalues describe mainly the separation of one of the five groups from the rest
of the pattern, as can be seen in the first row of Fig. 4.8.
Up to now, the pattern shows no clear interpretation of the groups, besides their
size. Therefore it is transformed into a more reasonable structure by permuting
the features such that the groups describe several interlaced circular regions. To
construct the equivalent interaction matrix with (4.6), the columns and rows of the
original block diagonal matrix have to be permuted in the same way as the features.
The permutation of the features has no influence on the size of the groups or the
eigenvalues of the interaction matrix. Only the components of the eigenvectors of
F are permuted in the same way as the features.
According to Wersing’s eigensubspace analysis, the eigenvalues of F mark char-
acteristic thresholds for the pseudo temperature T which activate corresponding
AC eigenmodes and change the attractor space of the CLM dynamics during the
self-inhibitory annealing process (see [61] or section 3.4).
To visualize this process in Fig. 4.9, annealing is started with T > λ1(F ) and the
neuron activations of an L = 20-layered CLM with L · N = 18000 neurons are
observed under gradually lowering T to zero.
Therefore, the maximal activity in a present CLM state is normalized to an intensity
value of 255. Thus each layer of the CLM can be displayed by a 30 × 30 activity
image whose pixel values lie in [0, 255]. A complete CLM state is visualized by
a concatenating of the L = 20 layer activity images to a 2 × 10 matrix of such
images.
To highlight the information from neurons with low activation a second visualiza-
tion shows the same activity images in a logarithmic scale. A third visualization
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900 features pattern weight matrix eigenvalues

group 1 : 390
group 2 : 236
group 3 : 188
group 4 : 81
group 5 : 5

λ1 : 654
λ2 : 418
λ3 : 208
λ4 : 14

λ5 − λ895 : -1
λ900 : -400

group 1 : 390
group 2 : 236
group 3 : 188
group 4 : 81
group 5 : 5

λ1 : 654
λ2 : 418
λ3 : 208
λ4 : 14

λ5 − λ895 : -1
λ900 : -400

Figure 4.7: Example pattern with 900 features. The table an the left shows the
distribution of the 900 features to five groups. The features are arranged in a 30×30
image. In the upper case the features are ordered according to their target labels.
The corresponding interaction matrix shows an ideal block diagonal structure of
1’s (red) and -1’s (blue) lateral interaction weights frr′ , where the self-interaction-
weights frr are set to zero (black). It’s eigenvalues are shown on the right. The
lower case shows the same pattern and it’s corresponding interaction matrix after
permutation of the features which has no effect on the size of the groups nor the
eigenvalues of the interaction matrix.

λ1 λ2 λ3 λ4 λ5 − λ899 λ900

. . .

. . .

Figure 4.8: Eigenvectors of the interaction matrices shown in Fig. 4.7. The eigen-
vectors are scaled, such that their components cover the interval [-255,255]. The
positive components are displayed by intensities in red color, while the negative
components are displayed by intensities in blue color. The top row shows the
eigenvalues, if the features are ordered according to the labeling. The lower row
shows the eigenvectors, if the features are permuted. In this case the components
of the eigenvectors have to be permuted in the same way as the features.
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Figure 4.9: Attractor states of the CLM during the annealing process of the dy-
namics. Each row shows an attractor state of a 20-layered CLM, specified by
the interaction matrix F in Fig. 4.7, at a certain pseudo-temperature T , if T is
decreased slowly. In the first column the activities in the CLM are displayed as
intensity values, where the maximal activity is always normalized to the intensity
value 255. The activities in the 20 layers are arranged in a 2×10 matrix of 30×30
images. The second column shows the logarithms of the activities to give a better
resolution of low activities. Again, the maximal value is normalized to the intensity
value 255. The third column shows binary values of the activities. White pixels
show activity equal to zero, while black pixels show positive activity.

highlights the state of the WTA processes by showing binary images for neurons
with activity equal to zero, where neurons with xrα > 0 are mapped to intensity 0,
while neurons with xrα = 0 are mapped to intensity 255.
If the CLM dynamics has reached a stable attractor state the three visualizations
stay constant. To decide for a given temperature T whether the CLM has reached a
stable state or not, the activity histogram, as is shown for prototypic attractor states
in Fig. 4.10, is observed manually. If the activity histogram stays constant for
several iterations of the CLM dynamics, it is assumed that the CLM has reached an
attractor state and T is lowered for the next iteration. Otherwise the CLM dynamics
is iterated further at the present temperature.
As can be seen in the simulation algorithm of the dynamics in section 3.5, T occurs
only in the denominator of the neuron activities. Thus each modification of T in the
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Figure 4.10: Activity histograms of the CLM-states in Fig. 4.9 at T = 430 and
T = 400.

first neuron updates simply rescales the activity values. Together with the random
selection of neurons for update this process disturbs the activity histogram. A
modification of T is called “not significant”, if the activity histogram stabilizes to
a similar distribution as before the change of T , which means the position of peaks
in the histogram can move a little bit, affected by the rescaling of the activities, but
the number of peaks and the height of the peaks is restored. An “not significant”
change of T does not change the principal activity patterns in the visualization
and changes the attractors continously. In contrast a “significant” change of T
destabilizes the current activity pattern and the CLM dynamics converges to a new
attractor state with a different histogram, leading to different numbers and heights
of existing peaks.
A set of critical temperatures which mark significant changes of the attractor states
is approximated by slow annealing and backtracking reheat of T . The observed
attractor states are visualized for specified temperatures in Fig.4.9, while the criti-
cal temperature thresholds which switch between these attractors are listed in Fig.
4.11.
The temperature thresholds activate three types of phenomena in CLM states, which
in the following are called “splitting the layer directions”, “orthogonalization”, and
“WTA activation”. Thereby the temperature thresholds for splitting the layer di-
rections partially correspond to eigenvalues of F and the thresholds for the WTA
activations correspond to the inner group support, indicated by the size of the corre-
sponding group (minus one for the erasement of the self-interaction weights). Each
temperature threshold in Fig. 4.11 is attached with a label for hysteresis effects.
“No hysteresis” effects means, that the observed phenomena is directly “reversible”
by a reheat of the temperature above the corresponding threshold. “Reversible”
means, that the CLM returns to the same activation patterns in the layers as before
the temperature had fallen beneath the threshold. However, the patterns can be per-
muted according to the layer indices. At a temperature threshold “with hysteresis”
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threshold meaning phenomena hysteresis
T = 654 λ1(F ) splitting no
T ≈ 450 - orthogonalization yes
T = 418 λ2(F ) splitting no
T = 389 support(group 1) WTA group 1 yes
T ≈ 300 - orthogonalization yes
T ≈ 250 - splitting no
T = 235 support(group 2) WTA group 2 yes
T = 188 support(group 3) WTA group 3 yes
T = 80 support(group 4) WTA group 4 yes
T = 4 support(group 5) WTA group 5 yes

Figure 4.11: Temperature thresholds for the self-inhibitory annealing process.

effect, the CLM state can only be restored (up to permutation of the layers) after a
severe reheat clearly above the corresponding activation threshold.
The annealing process starts for T > λ1 = 654 with a single global attractor,
where all features show the same activation in each layer, indicating that the DC
eigenmodes dominate against the AC eigenmodes (see section 3.4). By lowering
T below T = λ1 = 654, the first AC eigenmode is activated and causes a dif-
ferentiation of the layer activation patterns in the direction of the corresponding
eigenvector of F . However, the CLM state is still driven by the DC eigenmodes
to the constraint surface ∀r :

∑
α xrα = hr, which causes an equalization of all

layer vectors pointing into the same direction. Thereby the attractor state shows
the typical distribution of seven to thirteen layers, which arises in each simulation
run, while the permutation of the layers can change from run to run. As can be
seen in the third column, second row of Fig. 4.9 there exists a small but significant
overlap between the activity patterns in the two types of layers, where the features
of the inner circle are activated in both types of layers.
When T falls below a certain temperature (approximately at T ≈ 450), this over-
lap vanishes abruptly by moving all activation of the inner circle form the layers
containing the features of the outer ring to the layers containing the other features.
Parallel to this process one of the layers containing the features of the outer ring
changes its attracted activation pattern and equalizes with the layers of the other ac-
tivation pattern to compensate the perturbation of the activation equilibrium. After
this process the two types of activation patterns are orthogonal to each other.
The process of splitting the layer direction repeats at T = λ2 ≈ 408, where T
falls below the second eigenvalue of F , and, more surprisingly, approximately at
T ≈ 250 which does not correspond to any of the eigenvalues of F . A further
splitting which separates the five features of group 5 from the rest of the pattern
must exist, but is hard to detect in the activity histogram, such that it is neglected
in Figs. 4.9 and 4.11. The other eigenvalues of F beside λ1 and λ2 mark no
significant temperatures thresholds of the annealing process.
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As third type of phenomena, the activation of the WTA behavior, which causes
to the unique assignment a group to a single layer, can be observed at T = 389,
T = 235, T = 188, and T = 80. These thresholds correspond to the inner group
support through the lateral interaction weights, given by the number of features in
the respective group minus one for the erasement of the diagonal self-interaction
weights frr. The WTA process starts by differentiating the strength of the activa-
tion pattern in the layers showing the same group. Then the activation of the layers
with weakest activation is suppressed by the layers with strongest activation, until
only one layer shows activation for the respective group. The other layers whose
activities reach zero are reused by equalization to the activity patterns of layers
containing other groups.The WTA process for group 5 is not visualized in Fig. 4.9,
because of the small size of the group, but it is activated at T = 4.
In summary Fig. 4.9 shows, how the output grouping results from a sequence of
splitting and WTA processes among the layers, triggered by the AC and DC eigen-
modes of the CLM dynamics. Thereby the recycling of unused layers in the course
of the WTA processes provides the detection of the correct number of groups, as
long as the number of layers is larger than the number of groups. Otherwise the
groups with lowest inter-group inhibition are merged into the same layer, because
no further splitting processes can be performed. Slow annealing prevents subopti-
mal grouping states, in the sense of an oversegmentation of the input, because the
WTA processes of the groups with highest inner-group support are activated be-
fore the WTA processes of subgroups with smaller support or subsequent splitting
processes.
Compared to the two dimensional sketch of the AC/DC eigenmodes in Fig. 3.4 this
experiment stresses different aspects of the grouping process. It puts higher atten-
tion onto the WTA thresholds, here indicated by the size of the groups, than on the
splitting thresholds, indicated by the eigenvalues of the lateral interaction matrix
F . Thereby the groups with the highest inner-group support are first switched into
the WTA process, such that the ordering of the WTA processes mirrors some kind
of importance or saliency of the groups in the input. This aspect is investigated in
detail in chapter 8, where it is tried to change the ordering of the WTA processes
by modifying F with a kind of attention map. Further, the experiment opens a new
interpretation of figure-background separation presented in section 4.5.
The demonstrated recycling of idle layers from the WTA process shows that neu-
rons with activation zero can be reactivated to detect further groups. This stresses
the importance of continuing the simulation of the dynamics for these neurons.
The equalization of inactive layers with other layers in the course of the splitting
and WTA processes suggests a dynamical adaptation of the number of layers in the
course of the CLM dynamics. The simulation could be started with a low num-
ber of layers and succeeded as long as at least two layers converge to the same
activation pattern. Otherwise, the CLM could be extended by free layers which
automatically converge to an activation pattern of undecided groups.
Surely, the observed clear activation thresholds for the different phenomena are
a result of the ideal block diagonal structure of the interaction matrix, assumed
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by (4.6), which provides a simple eigenvalue spectrum and a constant support of
all features belonging to the same group. More natural interaction matrices with
real valued and partial inconsistent interaction weights initiate a richer and more
unpredictable set of phenomena. However, the following experiments show the
resistance against random distortions of the lateral interaction weights.

4.4 Robustness against Noise

For the example in the last section a regular interaction matrix with a ideal block
diagonal structure was assumed. Therefore, clear thresholds of T for the three
phenomena of splitting of layer directions, orthogonalization of layer directions
and activation of the WTA-process could be observed. In general grouping prob-
lems much more irregular matrices occur for various reasons: The applied grouping
behavior might not be described completely consistently by positive and negative
values. The CLM must work on noisy our incomplete patterns with absent features
and therefore also absent columns and rows of the interaction matrix and, finally,
the user of the CLM might purposely decide to neglect weights frr′ of the in-
teraction matrix to reduce the computation time and memory requirements for the
interaction matrix. Consequently, real interaction matrices show much more eigen-
vectors with different eigenvalues and also the support that a feature gets from the
other features in its group may vary within the groups. For these reasons it must be
expected that there exist much more thresholds for the splitting of layer directions
and that the WTA process is no longer activated at a unique threshold for the com-
plete groups, but more gradually for the different part of the groups, such that the
activation of the WTA-process extends over the whole intervals of T .

Below, it is investigated how random perturbations of the ideal block diagonal
matrix in Fig. 4.7 influence the output grouping and the course of the annealing
process. Therefore, weights in the ideal block-diagonal interaction matrix in Fig.
4.7 are erased or randomly resetted.

Since a much more complex set of switching thresholds is expected, the strategy of
determining all of them by manual exploration of T is changed. Instead only a fixed
set of predefined values of T , derived from the sample values in Fig. 4.9 and the
maximal eigenvalues of the distorted interaction matrices, are inspected. First the
relations T/λ1(F ) between the eleven sample thresholds in Fig. 4.9 and the maxi-
mal eigenvalue λ1(F ) = 654 of the ideal block-diagonal matrix are computed. For
a new distorted interaction matrix F̃ , its biggest eigenvalue λ1(F̃ ) is computed and
the CLM-dynamics is simulated only at values of T that show roughly the same
relation T/λ1(F̃ ) to the biggest eigenvalue as the sample values to the maximal
eigenvalue of the ideal block diagonal matrix.

The resulting attractor states can be observed for four different types of distortions
in Figs. 4.13, 4.15, 4.17 and 4.19.
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4.4.1 Reduced Connection Strength
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Figure 4.12: Influence of reducing the interaction strength. On the left hand side the
quality of the CLM-output grouping is plotted against the percentage η of weights
with changed interaction strength. The right hand side shows the maximal eigen-
values of the corresponding interaction matrices.

The experiment is started with a very weak distortion, where the block-diagonal
structure of positive and negative weights is left intact and only the strength of
the interactions weights is changed. Here, a certain percentage η of all interaction
weights is chosen whose connections strength is reduced by multiplying them with
random values from the interval [0, 1]. The remaining interaction weights are left
unchanged. Figure 4.12 plots the effect of this perturbation on the grouping quality
and the largest eigenvalues of the perturbed interaction matrices for η = 0% to
100%. The changed connection strength has only small effects on the grouping
process. It can be seen that the output grouping stays correct for all values of η,
while the largest eigenvalues decrease linearly with η. The impact on the annealing
process is visualized exemplary in Fig. 4.13 for η = 90%.
The main difference to the original annealing process in Fig. 4.9 is, that the maxi-
mal eigenvalue λ1 = 360 is clearly smaller than before, which corresponds roughly
to a scaling of factor 1

2 . The structure of the activity patterns in the first two
columns of Fig. 4.13 show hardly visible differences to the original attractor states.
The splitting of the layer directions, the orthogonalization and the WTA-processes
are activated at the same thresholds relative to the largest eigenvalue of F . The only
exception can be found in the eighth row, where the third split of layer directions
is activated a little bit later, such that it’s activation time lies closer to the activation
of the WTA-process for the inner ring than before.
Beside this, slight differences in the other attractor states can be detected, if the
third column of Fig. 4.13 is inspected. It can be seen that the neurons forming
a coherent group do not meet zero activity at exactly the same time any more.
The reason for this can be found in the small deviation of the inter-group support
through the random connection strength. The distortion of the interaction shows
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Figure 4.13: Attractor states of the CLM, if the original block-diagonal interaction
matrix is blurred by scaling 90% of the weights with random values from [0,1].

mainly the same effects as a scaling of the original interaction matrix with the
factor 1

2 . Since J is chosen depending on F , this can also be interpreted as a direct
scaling of the whole CLM-dynamics, which means, that the dynamics shows only
half the speed of convergence compared to before. So the concrete interaction
strength within the interaction matrix has no effect on the grouping result, but on
the speed of it’s computation.

4.4.2 Erased Interaction Weights

As the exact interaction strength in the interaction matrix does not seem to play
an important role for the grouping result, in the following the degree of distortion
is enforced by completely removing η percent of the original interaction weights,
where the erased interaction weights are chosen randomly. Fig. 4.12 shows the
influence of η on the grouping quality and the largest eigenvalues of F . While
the largest eigenvalue decreases linearly until it reaches zero, the grouping quality
stays unaffected up to η ≈ 95% and then decreases abruptly. The course of the
resulting attractor states for η = 90 can be seen in Fig. 4.14, where a more distinct
deviation from the original attractor states can be observed.
At the first glance on the first column of Fig. 4.15, the attractor state seem to be
the same as before. However, differences become clear, if the number of layers
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Figure 4.14: Influence of erasing entries in the interaction matrix. On the left hand
side the quality of the CLM-output grouping is plotted against the percentage of
erased interaction weights. The right hand side shows the maximal eigenvalues of
the corresponding interaction matrices.

in the different layer groups is counted. After the first split of layer directions the
CLM shows a new attractor state at T = 270 with a slightly modified relation of
eight to twelve layers in the two layer groups. With the decrease of T this state
becomes unstable and switches to the typical relation of seven to thirteen layers,
as in the case of the original interaction matrix. With the further decrease of T a
second layer changes its direction during the orthogonalization process, such that
the relation between the layer groups passes over to six against fourteen layers.
This observation shows that the CLM passes more attractor states than before,
where gradually single layers change their layer direction from one layer group
to the other.
Further, a distortion of the different layer directions can be seen in the small ac-
tivities of the second column of Fig. 4.15 . Also the pattern of neurons that reach
activity zero in the third column of Fig. 4.15 shows a higher distortion compared
to the reduced strength of interaction weights. This indicates that the inner-group
support is more diverse, because the columns of the interaction matrix show differ-
ent numbers of non negative weights due to the random selection of connections
in the erasure step. Actually the phenomena of orthogonalization does not occur
any more: the effect that the activation of the inner circle in the layer group that
contains the outer ring vanishes with the decrease of T can still be observed, but
this process happens gradually during the complete annealing process, such that
at most temperature values a small but significant overlap between the activation
patterns in the different layer groups exists. Orthogonalization occurs only accord-
ing to certain feature activities in the layer groups, but no more for the whole layer
vectors.
The value of the largest eigenvalue is reduced further to λ1 = 65 which indi-
cates a much slower speed of convergence. This shows, that a sparse interaction
matrix on the one hand reduces the computation time and memory demand for
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Figure 4.15: Attractor states of the CLM, where 90% of the weights in the original
interaction matrix a set to zero to build a sparse interaction matrix.

the lateral interactions, but on the other hand increases the simulation time of the
CLM-dynamics, because of a smaller speed of convergence.

4.4.3 Random Reset of Interaction Weights

Up to now the distortion of the interaction matrix leaves the block-diagonal struc-
ture intact and only modifies the connection strength. In the following, inconsistent
weights are introduced to the interaction matrix by randomly selecting η percent of
the interaction weights and reseting them to random values from the interval [-1,1].
The effect of this modification on the grouping quality and the largest eigenvalue
of F can be observed in Fig. 4.16. Similar to the erasement of weights the largest
eigenvalue decreases linearly towards zero. However, its value stays constant for
η = 95% to 100%. For η = 0% to 90%, the grouping quality stays nearly correct.
Only sporadic errors in the smaller groups of the pattern disturb the optimal quality
for η = 50% to 90%. For η > 95% the grouping quality breaks down.
The grouping process is investigated for η = 90% in more detail in Fig. 4.17. Since
there is a probability of 50% that a weight changes it’s sign, if it is resetted, it can
be assumed that 45% of all interaction weights disturb the block diagonal structure
of the interaction matrix. However, the unchanged 10% of the interaction weights
still show a higher connection strength of +1 and -1 than the modified weights,
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Figure 4.16: Influence of resetting entries in the interaction matrix. On the left
hand side the quality of the CLM-output grouping is plotted against the percentage
of reset interaction weights. The right hand side shows the maximal eigenvalues of
the corresponding interaction matrices.

such that it can be assumed that the block diagonal structure still dominates the
grouping process.
Through the change of sign the inner-group support differentiates stronger than in
the case of the earlier distortions. Therefore, the activation thresholds for the WTA-
process and the splitting of layer directions become fuzzy, such that the different
processes proceed in parallel and can not be divided clearly from each other. For
example, the WTA-process of the outer ring no longer happens at a single thresh-
old, but on multiple thresholds, where layers of the corresponding layer group
change their direction. This can be observed in the third, fourth and fifth row of
Fig. 4.17, where the number of layers that contain activities corresponding to the
outer ring decreases from seven over four to one. In the meanwhile the remaining
layers split into two new groups with different activation patterns.
Also, the activity patterns of the different layer groups are disturbed. Indeed this is
not obvious from the direct observation of the activities, but the logarithms of the
activities show serious noise in the activation patterns. The noise covers mainly the
regions of smaller groups which show the smallest inner-group support, which can
be seen in the last row of Fig. 4.17, where relevant parts of the inner circle are not
assigned uniquely to a single layer. The speed of convergence is further decreased,
however, the size of the largest eigenvalue λ1 = 65 did not decrease in comparison
to the sparse but consistent interaction matrix.

4.4.4 Switching Signs of Interaction Weights

In the last kind of distortion the inconsistent weights in the matrix showed the same
strength as the remaining weights originating from the original block-diagonal
structure. In the following experiment, η percent of the weights are randomly cho-
sen from the original interaction matrix whose signs are switched from 1 to -1, or
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Figure 4.17: Attractor states of the CLM, where 90% of the original interaction
matrix are reseted randomly in the interval [0, 1].

from -1 to 1, respectively. The influence of the distortion on the grouping quality
and the largest eigenvalue can be seen in Fig. 4.18.
The grouping quality remains high for η = 0% to 40%, which indicates that the
separation of the bigger groups is more robust against random noise, because of
the higher redundancy in the inner-group support, while smaller groups can be dis-
turbed more easily. If the percentage of switched interaction weights is increased
above 40% the bigger groups become also disturbed stronger than before. At a
percentage of changed weights near 50%, the distortion becomes so strong that
the original groups are totally decomposed and the output grouping of the CLM
results in a random distribution of the features to the 20 layers. If the percentage
of switched interaction weights is increased above 50% the modified interaction
matrix is more similar to the negative of the original interaction matrix as to the
original interaction matrix itself. Since the interaction matrix is dominated by pos-
itive interaction weights between all parts of the patterns, all features are assigned
to the same layer.
The annealing process is investigated for η = 45% in Fig. 4.19. The maximal
eigenvalue of the interaction matrix lies roughly at λ1 = 65, which is the same
value as in the case of the sparse and noisy interaction matrices from the last two
experiments. However, the speed of convergence is seriously reduced in compar-
ison to the other experiments. This can be explained by the fact that there exist
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Figure 4.18: Influence of binary switching of the entries of the interaction matrix.
On the left hand side, the quality of the CLM-output grouping is plotted against the
percentage of switched interaction weights. The right hand side shows the maximal
eigenvalues of the corresponding interaction matrices.

much more different eigenmodes than before, such that it is more likely that T is
chosen close to a critical threshold, where a new eigenmode is activated. In this
case, the just activated eigenmode drives the dynamics on a slow timescale.
For this reason, the dynamics is exceptionally interrupted before the dynamics has
completely converged in this experiment, as can be seen in the top left of row five
in Fig. 4.19, where one layer is not equalized to the directions of the other layers.
Nevertheless, the attractor states of the dynamics can be anticipated and they can
be compared to the attractors in the previous experiments. It becomes difficult to
judge whether phenomena, like the activation of the WTA-process or the splitting
of layer directions, have been activated at a certain value of T or not. The noise in
the activity patterns of the attractor states is increased. However, they still show a
high similarity to the original attractor states. If the attractor states of low values of
T are inspected, it can be seen, that the grouping of the first three groups is almost
correct, but in each group a small subset of features exists that show activation in
other layers. This indicates that these features are either spuriously assigned to
other layers or at least need very long time to be assigned to the correct layer. This
effect can be observed more clearly for the fourth group of the inner circle. Indeed,
the logarithms of the activities show a preference of this group to the layer on the
lower right, but this preference is very hard to see in the original activities, where
it seems that the inner circle is separated into several random sets.

4.5 Interpretation of the Background Layer

The observations of the annealing process for the ideal block-diagonal matrix have
demonstrated that the grouping result of the CLM arises from gradually splitting
layer directions and activation of the WTA-processes for the different groups, or-
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Figure 4.19: Attractor state of the CLM, where the sign of 45% of the weights in
the original interaction matrix is switched.

dered by the strength of the inner-group support. In this section these observa-
tions are connected to the use of the background layer in section 3.3. Therefore, a
new example pattern is investigated that consist of four relevant groups and a fifth
group with no coherent structure that forms some kind of background for the other
groups. This pattern is shown in Fig. 4.20, where four squirrel-shaped regions
can be seen that are assigned to different labels, while the rest of the features are
assigned randomly to ten further labels. According to (4.6) a consistent interaction
matrix is constructed, which again shows a characteristic (after permutation) ideal
block diagonal structure. Since the region of the background is split into several
labels, the blocks of the four relevant groups and therefore also their inner-group
supports are bigger than the blocks of the subsets in the background.
One interpretation of the background layer is that it collects all features whose
support is smaller than the self-interaction strength m. But if the annealing process
is inspected, like it is displayed in Fig. 4.21 at four typical values of T , a second
interpretation of m arises. At T = 300, it can be seen that the dynamics converges
to the global fixed point, where all layers show the same activation for all features in
the pattern. At T = 180 the layers are split into five different layer directions. Four
of them show activation for one of the four relevant groups, while the fifths shows
activation for all remaining features in the background. At T = 100, the WTA-
process is activated for the four relevant groups, such that each of them is assigned
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Figure 4.20: Label vector of a pattern with four main groups against an “over
segmented background”.

to a single layer, while the features in the background show a uniform activation in
the remaining 20 layers. Finally at T = 0, the WTA-process is activated for the 10
random subsets of the background, and each of these subsets is assigned to a single
layer, while the remaining six layers are empty.
Now, assume the usage of an additional background layer with the interaction
frr′ = mδrr′ . The WTA-process for this layer is activated at T = m. There-
fore, the background layer collects all features whose activations describe an un-
decided state at temperature T = m of the annealing process. Finding a good
self-interaction strength m corresponds to finding a good temperature to stop the
annealing process. All features that - up to this temperature - are not assigned
uniquely to one of the figure layers can be treated as background features. For the
present example pattern a suitable choice for the figure-background separation is
m = 180. Thus a possible strategy to estimate the self-interaction strength m in the
background layer is to observe the annealing process of representative test patterns
and to adjust m between temperature thresholds which trigger the WTA-processes
for relevant foreground groups and spurious background groups.
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Figure 4.21: Course of the CLM-dynamics during the annealing process for a pat-
tern with an “over segmented background“.
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While in most image processing tasks big and homogeneous regions are inter-
preted as background for more diversified image regions of salient objects, the
use of a background layer can result in an switching roles of fore- and background.
Large and coherent regions often show a high inner-group support and therefore
are switched earlier into the WTA behavior than smaller, more structured groups.
Background in the sense of the CLM background layer means a set of non coher-
ent subgroups. To achieve a figure background segmentation more similar to the
classical interpretation, either the coherence of the background has to be destroyed
by artifical inhibitory connections or the interactions of relevant groups have to be
highlighted as will be demonstrated in chapter 8.

4.6 Summary

This chapter has shown on an example of an ideal block-diagonal interaction ma-
trix, how the CLM attractor states change in the course of the annealing process.
The output grouping of the CLM arises from a gradually splitting of the layer ac-
tivation patterns and the activation of the WTA processes for the different groups
in the order of the inner group support. However, to characterize the complete
grouping behavior of the CLM it is not enough to inspect only the output grouping
of the CLM. Other aspects, like the ordering of the manifestations of the different
groups and the speed of convergence towards the different attractor states during
the annealing process, must also be considered.
Thereby, the attractors states are very robust against random noise in the interaction
matrix, which can be explained by the high redundancy in the interaction weights,
such that the set of possible groupings becomes sparsely distributed in the weight
space of the CLM, at least for grouping problems with a high number of features.
Bigger groups are more robust than smaller ones, because their inner group support
shows a higher redundancy. The grouping result of the CLM stays stable as long as
the corresponding block-diagonal structure dominates over the influence of noise.
A high number of interaction weights can be neglected or randomly resetted with-
out seriously effecting the correct separation of the relevant groups. However, each
distortion of the block diagonal structure results in a slower speed of convergence
of the dynamics.
With regard to the implementation of a learning algorithm, the practical sample
simulations leave the impression that a coarse coding of the interaction weights
might be sufficient to describe a desired grouping behavior, because of the robust-
ness of the CLM attractor states. This suggests a very simple learning approach
by binary classification of the lateral interaction weights, as it is presented in the
next chapter. In terms of a possible hardware implementation of the CLM dynam-
ics the experiments suggest that a simple binary encoding of the lateral interaction
weights might be sufficient to describe the grouping process.



Chapter 5

Learning of Grouping Behaviors

The last chapter has shown, how the CLM computes an output grouping, if a suit-
able interaction matrix is given. In this chapter, the opposite question is investi-
gated: How must the interaction weights be adapted to achieve a specified group-
ing with the CLM? To answer this question a new learning approach is developed,
which is based on binary classification in a pairwise proximity space and turns out
to be computationally much simpler than the earlier learning approach of quadratic
consistency optimization presented in section 3.7.

5.1 Hebbian Learning

Our starting point is a reformulation of the learning problem presented in section
3.7.1, which shows that the intuitive choice of a block-diagonal matrix as interac-
tion matrix fulfills the consistency conditions of the attractor states of the CLM.
It will be shown, that this approach can be interpreted as a variant of Hebbian
learning.
For the moment, the training set is restricted to the case, that it consists only of a
single pattern P , such that the consistency conditions (3.37) simplify to:

N∑

r′=1

frr′yr′β <

N∑

r′=1

frr′yr′α̂(r), r = 1, . . . , N, β 6= α̂(r). (5.1)

To fulfill (5.1), the matrix F̂ of lateral interactions can be set to the correlation
matrix of all differential vectors (yγ − yµ), where the vectors yγ and yµ represent
the γ-th and µ-th layer vector of the goal state y (see Fig. 3.7).

F̂ =
∑

γ

∑

µ6=γ
(yγ − yµ)(yγ − yµ)T . (5.2)

Because of the special structure of the vectors (yγ − yµ), F̂ can be computed
without an explicit evaluation of (5.2): Without restriction the features and target
labels can be considered to be ordered, such that r ≤ r ′ ⇔ α̂(r) ≤ α̂(r′). By
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this permutation new target state vectors (yordγ and yordν ) can be derived. Since the
vectors (yordγ − yordν ) have only entries 1, -1, and 0, and due to the ordering of the
labels, the block-diagonal matrix

F̂

2
=




[
L−1

]
N1×N1

[
−1
]
N1×N2

. . .
[
−1
]
N1×NL[

−1
]
N2×N1

[
L−1

]
N2×N2

. . .
[
−1
]
N2×NL

...
. . . . . .

...[
−1
]
NL×N1

[
−1
]
NL×N2

. . .
[
L−1

]
NL×NL




(5.3)

is obtained from (5.2), where [·]Ni×Nj is a constant matrix of size Ni × Nj . A
more descriptive derivation of (5.3) is presented in the appendix A for the concrete
example of 3 groups with 3, 2, and 1 features.
Remembering, that L is the number of groups in the target labeling, it becomes
obvious, that the negative entries are scaled against the positive ones with a scalar
factor Λ = 1

L−1 , which only depends on the number of groups in the pattern. This
reflects, that there exist for each feature r a total number of L − 1 consistency
inequalities (5.1). The block-diagonal structure of (5.3) fulfills the consistency in-
equalities (5.1), because all positive values yr′β on the left hand side are multiplied
with negative weights frr′ < 0, while all positive values yr′α̂(r) on the right hand
side are multiplied with positive weights frr′ > 0. This property still holds for
all simultaneous permutations of the columns and rows of (5.3) that describe an
arbitrary ordering of the features in a concrete pattern.
Obviously, for any positive value of Λ the interaction matrix (5.3) makes the tar-
get labeling consistent for the CLM according to (5.1), because it preserves the
block-diagonal structure of positive and negative values in the interaction matrix
F̂ . However, in the following argumentation the choice of Λ = 1

L−1 is main-
tained to show the similarity of this approach with storing a set of attractor states
in a Hopfield Network by Hebbian Learning. The later chapters will show, how
the modification of Λ controls the segmentation level of the output labeling of the
CLM.
To apply well-known arguments from Hebbian learning describing the storage of
attractor states in a Hopfield network [19], the consistency inequalities (5.1) are
made more restrictive by introducing further assumptions about the stable states of
the CLM. It is required, that the support of all features mr belonging to a group
α̂(r) has equal strength in all other layers β, β ′ 6= α̂(r), which can be expressed
by the equations: ∑N

r′=1 frr′yr′β =
∑N

r′=1 frr′yr′β′ . (5.4)

On the other hand, it is assumed that the inequalities in (5.1) for the target label
hold with a strict margin of one:

1 +
∑N

r′=1 frr′yr′β =
∑N

r′=1 frr′yr′α(r) (5.5)
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Collecting all lateral interaction weights frr′ corresponding to the feature mr as
a row vector fr = (fr1, . . . , frN) and all components yrµ in the layer µ, µ =

1, . . . , L, of the target state y as yµ = (y1µ, . . . , yNµ)T , equation (5.4) and (5.5)
are rewritten as scalar products.

fr(yβ − yβ′) = 0⇔ fr(yβ′ − yβ) = 0, (5.6)

fr(yα̂(r) − yβ) = 1⇔ fr(yβ − yα̂(r)) = −1. (5.7)

Now, two arbitrary labels γ, µ ∈ {1, . . . , L} are chosen and all equations from
(5.6), (5.7) which contain the vector (yγ − yµ) are collected, then for all r holds:

fr(yγ − yµ) = 1, α(r) = γ (⇔ (yγ − yµ)r = 1) ,

fr(yγ − yµ) = −1, α(r) = µ (⇔ (yγ − yµ)r = −1) ,

fr(yγ − yµ) = 0, γ 6= α(r) 6= µ (⇔ (yγ − yµ)r = 0) .

Stacking the vectors fr to obtain the desired interaction matrix F = (f T1 , . . . , f
T
N )T

yields the matrix-vector product

(F (yγ − yµ))r =





1 : (yγ − yµ)r = 1
−1 : (yγ − yµ)r = −1

0 : (yγ − yµ)r = 0
. (5.8)

Assuming, that the learning method shall not find the lateral connections for the
linear threshold neurons of the CLM, but instead shall adapt the matrix F as a
weight matrix of a Hopfield network with binary neurons, the learning problem
shows high similarity to the problem of storing the L(L− 1) pattern vectors (yγ −
yµ) in the weight matrix of a Hopfield network. According to standard Hebbian
learning, F̂ can be chosen as the correlation matrix of all vectors (yγ − yµ) as in
(5.2).
The argument of Hebbian Learning holds exactly, if all pattern vectors (yγ − yµ)
are orthogonal. In the present case, every two vectors (yα − yβ) and (yα − yβ′)
have an overlap proportional to the size of the group α. Nevertheless, (5.2) is a rea-
sonable choice, because essentially the CLM shall not converge to an exact recon-
struction of the pattern vectors (yα−yβ), but shall reconstruct the correct grouping,
indicated by the vectors yα. In this respect, the overlap causes a self-reinforcement
of the groups proportional to their size rather than to distort the grouping. Conse-
quently, the CLM dynamics becomes biased towards finding larger groups faster
than smaller ones.

5.2 Special Properties of the Learning Problem

Up to now, the lateral interaction weights are computed by constructing the target
activity vector of the different layers of the CLM from the desired labeling in the
training set and setting F according to (5.2) proportional to the correlation matrix
of the difference vectors between the layer wise target activity vectors.
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To be able to segment a new pattern with the CLM, the learning method must find a
way to construct a similar correlation matrix for a set of features, where the desired
labels are unknown. To achieve this, an interaction function is constructed, which
approximates the positive and negative interaction weights by mapping typical in-
tervals of pairwise feature relations onto their average interaction.

At the first sight the learning methods simply has to solve the two class problem
of dividing the space of feature-pairs (mr,mr′) into regions of excitatory and in-
hibitory weights. From this point of view a wide range of standard classification
methods that are available from the field of neural networks, e.g. the MLP, the
SVM or several types of SOMs, can be applied on the learning problem.

But before concrete candidates are inspected this section emphasizes some fun-
damental properties of learning a grouping behavior that are different to general
learning problems in pattern classification and recognition.

Supervised Learning Method: The first important property of grouping prob-
lems is, that they can often be ambiguous, because there exist many possible ways
to divide a data set. E.g. the data set in Fig. 5.1 can be divided according to the
principle of proximity into two point clusters, according to the principle of sim-
ilarity into two symbol classes or by a mixture of both principles. The correct
grouping behavior depends on the significance of the different grouping laws to
the specific problem domain and the adequacy of differentiation. Therefore, it is
assumed, that the learning process always is based on supervised methods, where
a teacher specifies the desired grouping in form of a set of pre-labeled reference
patterns P i = (Ri,Li), where Li contains the desired labels α̂(r) of the features
in Ri.

Figure 5.1: Combination of grouping principles.
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Consideration of relational information:
y
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Figure 5.2: An easy two cluster problem

If concrete reference patterns P i are inspected, only information about interactions
frr′ between features in these patterns is obtained. To be able to segment new
patterns using the same grouping principles, this information has to be generalized
to interactions frr′ in the whole space of all possible pairs of features mr from the
feature domain F .
This aspect is clarified for the sample problem of point clustering. Figure 5.2 shows
two point clusters of features mr = (xr, yr)

T that are clearly separated from each
other. To reproduce this grouping, frr′ can be trivially be set to

frr′ =

{
1 : xrxr′ > 0
−1 : xrxr′ < 0

. (5.9)

This solution works perfectly on the training pattern, but what is desired is a group-
ing principle that is invariant against simple transformations, like translation and
rotation. Also, the learned grouping principle should be robust against varying
inter-cluster and intra-cluster distances. Further more, a general grouping principle
should abstract from the number of point-clusters given in the pattern, and perhaps
it even should be possible to segment an pattern, if it is scaled along the dimensions
of F .
The only way to achieve such a generalization is to consider relational information
between the features. It would cost a lot of training work to adapt a classification-
algorithm that works directly on the feature-pairs (mr,mr′) = (xr, yr, xr′ , yr′)

T ,
to achieve such a generalization ability. Therefore, this external knowledge about
the learning problem is provided by applying the learning method to relational
functions d(mr,mr′) which are symmetric under feature exchange d(mr,mr′) =
d(mr′ ,mr). Note, that these functions need not be metrics in a strict mathe-
matical sense, because it is their only purpose to map excitatory and inhibitory
features pairs to different regions of the relational space. The relational func-
tions d(mr,mr′) can return negative values, violate the triangle inequality and
d(mr,mr) can be unequal zero. Only symmetry is demanded to guarantee the
symmetry of the interaction matrix F , which is necessary for the convergence prop-
erties of the CLM.
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Overlapping and fuzzy interaction classes:
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Figure 5.3: Clustering problem with and without perfect separable space of feature
pairs

Following the above arguments, a classifier has to be trained on the relational in-
formation between features to distinguish between feature-pairs with mutual exci-
tation from features-pairs with mutual inhibition. If the given grouping problem is
unambiguous, like the example in Fig. 5.3 a), where two clusters two clusters can
be identified whose distance is bigger than the respective cluster radii, this task can
be solved perfectly. In Fig. 5.3 b), the distances along the x- and y-axis between
features within the same clusters (red) and from both clusters (blue) are plotted.
These two classes of feature-pairs can be modeled by the interaction weights

fss′ =

{
1 : |xs − xs′ | ≤ 9
−1 : |xs − xs′ | > 9

. (5.10)

Unfortunately, this situation does not mirror real world problems, where the bor-
ders between the regions of attraction and repulsion of features can not be resolved
so easily. If the grouping task is complicated by moving the two clusters closer
together, like in Figure 5.3 c), the two classes of interaction weights can not be
divided strictly any more (Fig. 5.3 d)). In the area of 3 < |xr − xr′ | < 7 the
two classes intersect. A crisp classifier that tries to discriminate the two classes
will have problems in approximating the separation manifold between the classes.
Instead, it would be reasonable to use a fuzzy classification function that describes
the membership of pairs in the intersection region to one of the two classes by
a continuous value, where the sign reflects the dominance of either excitatory or
inhibitive pairs and the absolute value shows the degree of this dominance.

5.3 Generalization to New Patterns

In general, the feature domain F ∈ Rd is a high-dimensional discrete or a non
finite set and the training examples cover only a small and discrete subset of F .
Therefore, the discrete interaction matrix F̂ obtained by the Hebbian learning, as
it was described above, has to be generalized to an interaction function defined
on the full feature domain f : F 2 → R. As proposed already in the context of
the quadratic optimization approach to CLM learning [62], generalization can be
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obtained by decomposing the interaction function into a linear combination of a set
of K arbitrary symmetric basis interaction functions gjrr′ = gj(mr,mr′) : F2 →
R, j = 1, . . . K , which are defined on the whole feature space, such that

frr′ =
∑

j

cjg
j
rr′ . (5.11)

The analysis above provides an elegant way to choose suitable coefficients cj by
projecting the Hebbian correlation matrix F̂ in (5.2) onto the basis functions gj

cj =
∑

r,r′
f̂rr′g

j
rr′/ ‖ gj ‖ . (5.12)

The basis functions embody contextual knowledge that is used to reduce the di-
mension of the learning problem. Equation (5.11) is only a good approximation
of frr′ , if there is a high overlap between f̂rr′ and the shape of gjrr′ , such that the
coefficients cj describe the relevant components of f̂rr′ . Therefore, the manual def-
inition and adjustment of suitable basis interactions requires both problem-specific
knowledge and detailed knowledge about the functionality of the CLM and results
in much training and testing work for the user. This raises the problem, how suit-
able basis functions can be generated automatically without making assumptions
about the shape of the interaction function [59]. The main focus lies here on a high
evaluation speed of the learned interaction function. This point is essential for the
practical application of the CLM, because the number of lateral interaction weights
that have to be computed is quadratic in the number of features in the input pattern,
so already the computation of the matrix F can be very resource demanding, if the
definition of basis functions is too complex.
Assume the basis functions as binary step functions (gjrr′ ∈ {0, 1}) that describe a
disjunct partitioning of the space F 2 (gjrr′g

i
rr′ = δij). This partitioning should be

symmetric according to feature exchange (gjrr′ = gjr′r) to ensure symmetry of the
matrix F . Now, the projection of the theoretical interaction onto the basis functions
(5.12) can be simplified to the average interaction value within the respective region
of F2:

cj =
∑

r,r′
f̂rr′g

j
rr′/

∑

rr′
gjrr′ . (5.13)

This average can be approximated by random sampling of feature pairs (mr,mr′)
from the training set, evaluation of the basis functions and using f̂rr′ = 1, if the
features belong to the same group, and f̂rr′ = −1/(L − 1) = −Λ (remember
section 5.1), if they belong to different groups, respectively.
(5.11) can only be a good approximation of frr′ , if the partitioning described by
the basis functions defines regions which consist either mainly of feature pairs
with f̂rr′ > 0 or mainly of feature-pairs with f̂rr′ < 0, such that the interaction
coefficients can adopt high absolute values. Therefore, the borders of the basis
functions should describe the borders between positive and negative values f̂rr′ in
F2 as good as possible.
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There are two principal approaches to this problem: The first is to discretize F 2 to
a lattice structure. However, through the curse of dimensionality in F 2 for a fine
discretization results in an impracticable high number of basis functions.
The second approach is to train a standard classifier in F 2 to separate the regions
of f̂rr′ > 0 and f̂rr′ < 0 from each other. This approach was tested in [60] by
application of the Multi Layer Perceptron (MLP) and the Support Vector Machine
(SVM) on the problem of fluorescence cell image segmentation. The results will
be presented in section 6.3.1, where they are compared to the application of the
original QCO learning of Wersing and the new learning algorithm derived here.
The following section presents an alternative to these two approaches for finding
basis functions based on an unsupervised learning step from a variant of Vector
Quantization (VQ) that results in a very simple learning algorithm and high evalu-
ation speed.

5.4 Data Driven Generation of Basis Functions

As frr′ and thus as well gjrr′ expresses some degree of mutual compatibility or
proximity of a feature pair (mr,mr′) these values are transformed into a general-
ized proximity space D by a vector function

drr′ = [a1d1(mr,mr′), . . . , aPdP (mr,mr′)]
T , (5.14)

where each component dp(mr,mr′) defines a proximity function according to
some properties of the features mr and mr′ . These components are normalized
by their variance in the pattern or left unchanged, if the variance is zero:

ap =

{
1

σ2(dp(mr ,mr′))
: σ2(dp(mr,mr′)) > 0

1 : σ2(dp(mr,mr′)) = 0
. (5.15)

It has to be emphasized, that the proximity functions dp(mr,mr′) need not de-
fine a metric in a strict sense, e.g. proximity between local edge feature mr =
(pr,or), given by position pr and orientation or, can be defined by local distance
‖ pr − pr′ ‖ as well as the scalar product oTr or′ describing the angle between
the edges. The only constraint is, that they are symmetric under feature-exchange
dp(mr,mr′) = dp(mr′ ,mr), such that there is a high freedom in defining group-
ing principles for the interaction function. It is possible to introduce additional
properties, like translation, rotation and scale invariance of the proximity functions,
in order to achieve a generalization of the desired grouping behavior according to
object properties like position, size and orientation.
In the next step, a variation of Self-Organizing Map, the activity equilibration vec-
tor quantization AEV [16], is used to reduce the proximity vectors drr′ to a set of
K prototypes d̃j .
Now, the multidimensional Voronoi cells

Vj = {(mr,mr′) | ∀i 6= j : ‖ drr′ − d̃j ‖≤‖ drr′ − d̃i ‖}. (5.16)
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defined by the proximity prototypes can be use to define the basis functions[59]:

gjrr′ =

{
1 : (mr,mr′) ∈ Vj
0 : (mr,mr′) 6∈ Vj

. (5.17)

Since clustering techniques based on SOMs are dependent on the initialization of
prototypes and, therefore, might result in states with “unused” prototypes, which
means low activation of prototypes d̃j measured by low values of Aj = |Vj|, the
AEV uses a heuristics to reinitialize prototypes with low activation close to proto-
types with a high activation that causes an activity equalization of the prototypes,
such that in the following the normalization term in (5.13) can be neglected.
The representation of the basis functions as Voronoi cells in the proximity space
simplifies the computation of the interaction weights frr′ . For a given feature pair
we only have to compute the proximity vector drr′ , evaluate it’s nearest neighbor
from the set of K prototypes d̃j and return the interaction coefficient cj of this
prototype. Figure 5.6 shows a sketch of this procedure.

5.5 Aspects of Implementation

The special structure of the theoretically derived interaction matrix F̂ in section
5.1 and the basis functions in the last section motivate an efficient straight-forward
learning algorithm. This algorithm gives also the possibility to control the segmen-
tation level of the grouping result, as the following shows.
Since activation equalization is a part of the clustering algorithm for the design
of basis functions, the normalization term in equation (5.13) can be neglected for
the computation of the interaction coefficients cj . Further, section 5.1 has shown,
that the theoretical interaction weights f̂rr′ can adopt only two different values,
namely one positive and one negative, where the negative value is scaled against
the positive one by the factor Λ = 1

L−1 . Therefore, (5.13) is rewritten as

cj =
∑

r,r′|α̂(r)=α̂(r′)

gjrr′ −
∑

r,r′|α̂(r)6=α̂(r′)

Λgjrr′ . (5.18)

This term can be computed by separately counting the feature-pairs (mr,mr′) with
positive and negative values f̂rr′ within the Voronoi cells of the corresponding basis
functions.

c+j =
∑

(mr ,mr′)∈Vj |α̂(r)=α̂(r′)

1; c−j =
∑

(mr,mr′)∈Vj |α̂(r)6=α̂(r′)

1, (5.19)

Afterwards the two parts can be combined to the desired learning parameters by

c = c+ − Λc−. (5.20)

where c, c+ and c− are the vectors of the values cj , c+j and c−j , j = 1, . . . ,K
respectively.
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Figure 5.4: Sketch of the Approximated Hebbian Learning (AHL). Starting from a set of hand-labeled patterns, which can be interpreted
as target states of the CLM-dynamics, the learning algorithm extracts two aspects of information. On the one hand, each pair of features
(mr,mr′) can be mapped onto a proximity vector drr′ by applying a set of predefined proximity functions dp(mr,mr′), p = 1, . . . , P .
On the other hand, each feature-pair can be mapped onto a desired positive (red) or negative (negative) interaction value. In the first
learning phase, a set of randomly chosen proximity vectors drr′ is clustered to achieve a Voronoi partitioning of the proximity space.
In the second learning phase, the distribution of positive and negative interactions within the proximity space is measured by counting
feature pairs with positive and negative desired interaction within the Voronoi cells (dark color shows low concentration of feature-pairs
and light color shows high concentration). These two density distributions are added to a resulting interaction function by multiplication
of the distribution of negative interaction with the factor −Λ and adding both distributions.
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Figure 5.5: Choice of Λ: The vector c+ describes the projection of the positive
components of F to the basis functions gjrr′ , while c− shows the projection of
the negative components of F to the basis functions. The vector of interaction
coefficients c is computed by c = c+ − Λc−. Fulfillment of the consistency
conditions is implied, if Λ is chosen, such that c lies between the lines cT c− = 0
and cT c+ = 0. The right choice of Λ depends essentially on the angle between c+

and c−. If both vectors are linear independent, Λ can be chosen almost arbitrarily,
while the feasible interval for Λ shrinks as smaller the angle between c+ and c−

becomes. Therefore, the qualitative performance of the learning approach depends
on a good choice of basis functions, which are ideally orthogonal for feature pairs
within and between groups.

Obviously, the quality of the so-constructed interaction matrix depends on the an-
gle between the vectors c+ and c−, because clear positive or negative interaction
weights frr′ can only arise, if for each basis function gjrr′ either the value of c+

j

dominates against c−j or c−j against c+
j respectively. Otherwise, the values of the

c+j and c−j annihilate each other, such that the resulting cj coefficients are close
to zero. In this sense, the learned interaction is optimal, if (c+)T c− = 0 holds,
while in the other cases it depends on the strength of the factor Λ and the relation
between c+

j and c−j whether the corresponding coefficient cj becomes positive or
negative. Thus the angle between c+ and c− is a good measure for the evaluation
of learning success. It yields information whether the basis functions have been
chosen appropriately and whether the labeled training pattern is compatible with
this choice.

Now regard the scaling factor Λ not as a fixed value, but as a variable parameter,
then equation (5.20) defines a line within the learning parameter space RK (see Fig.
5.5), where the choice of Λ effects the grouping behavior of the CLM: an increase
of Λ biases the interaction function towards a higher attraction, which results in
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fewer, but bigger groups in the segmentation of new patterns; a decrease biases the
interaction function towards a higher repulsion, which results in more, but smaller
groups in the output of the CLM. Thus after training of c+ and c−, Λ can be used
to adjust the CLM to a finer or rougher segmentation of the input pattern.
To constrain the range of Λ, once more the consistency conditions (5.1) are in-
spected, which are fulfilled, if the left hand side of equation (5.1) is always < 0
and the right hand side is always > 0. By separate summation of all left hand sides
and all right hand sides, the insertion of the superposition of basis functions (5.11)
and the comparison of the results with the definitions of the components c+

j and c−j
in (5.19), two inequality constraints for c can be derived (for details see appendix
B):

cT c+ > 0 and cT c− < 0. (5.21)

From (5.20) and (5.21) an upper and lower bound for Λ can be derived (see Fig.
5.5) :

(c+)T c+

(c−)T c+
> Λ >

(c+)T c−

(c−)T c−
. (5.22)

A linear search between the upper and lower bound can be performed to adjust Λ
to a desired segmentation level. In the following, the convention is used that c+

and c− will be normed by 1
‖c+‖ and 1

‖c−‖ , where ‖ · ‖ means the sum of all (per
definition nonnegative) values c+

j respectively c−j to uniquely specify the value of
Λ.
Since the generation of basis functions as well as the estimation of the interaction
coefficients depends on the statistical distributions of the feature-pairs within the
proximity space, both learning phases can be applied on a representative sample
set of feature-pairs for the training pattern. This can be realized by a fixed number
of clustering respectively sampling steps, where the computational complexity of
these two types of steps depends of the complexity of the proximity functions and
the nearest neighbor search in the prototype vectors of the basis functions. The
number of learning steps in each learning phase has to be chosen large enough to
get an adequate number of feature-pairs for each basis function, but, because of
the simplicity of each learning step even large numbers of learning steps result in a
high learning speed of the whole algorithm, such that the number of learning steps
is not a critical parameter of the algorithm.
In this framework, the only choice left to the user is the selection of appropriate
feature properties, like color, position, orientation, an adequate distance function
dp(mr,mr′) and the number of basis functions K . From this choice, the learning
is fully self-contained with Λ as the only free parameter left for setting a bias on
larger or smaller groups.

5.6 Training Sets with several Training Patterns.

Up to now, it was assumed that the training set consists only of a single pattern.
This approach can be sufficient to learn a grouping behavior, because the learn-
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Figure 5.6: Sketch of the application process. An interaction matrix F is con-
structed for a new pattern by mapping each pair of features (mr,mr′) onto their
proximity vector drr′ and taking the interaction coefficient cj of the nearest prox-
imity prototype d̃j as their pairwise interaction. Then F is used as the weight-
matrix for the lateral connections within the layers of the CLM and the dynamics
of the CLM is simulated, until it converges to an attractor state which defines the
output labeling.

ing algorithm mainly uses statistics on pairwise feature relations and their correla-
tion according to the hand labeling. A single patterns can comprise a huge set of
pairwise feature combinations and, therefore, might be sufficient to represent the
statistics of the desired grouping behavior.
The algorithm can be applied to a training set with several patterns without ma-
jor modifications. The scaling of proximity functions (5.15), the clustering step of
AEV and the estimation of c+ and c− (5.19) can be simply performed on a rep-
resentative sample of feature-pairs, which is uniformly selected from all patterns.
The only thing that has to be provided is, that the two features forming a pair are
drawn from the same pattern.
An implementation of the whole learning algorithm, which in the following is
called “Approximated Hebbian Learning“ (AHL), can be found in the appendix
C. A summary of the complete approach is sketched in Fig. 5.4. An additional
sketch for the application process of the CLM is given in Fig. 5.6.

5.7 Estimation of Background Layer Strength

If the CLM contains a special background layer g, the strength of the self-interaction
m in the background layer has to be weighted against the lateral interactions frr′ .
A feature mris assigned to the background, if m is larger than the support in all
other layers, while it is assigned to the relevant groups, if the support in at least
one layer is larger than m. Therefore, m is constrained by additional consistency
conditions, where m has to be bigger or smaller than the maximal lateral support
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maxα
∑

r′ frr′xrα of the feature mr in the other layers α 6= g whether the feature
mr should be assigned to the background or not.
A suitable value for m can be estimated by assuming the average maximal support
of all features in the background as lower bound mlow

mlow =

∑
mr |α̂(r)=g maxα (

∑
r′ frr′yr′α̂)

#mr|α(r) = g
, (5.23)

and the average maximum support of all features in the figure groups as upper
bound mup for m.

mup =

∑
mr |α̂(r)6=g maxα (

∑
r′ frr′yr′α̂)

#mr|α(r) 6= g
. (5.24)

A simple heuristics, which proved to work, is to set m between mlow and mup, e.g.

m = (mlow + 3mup)/4. (5.25)

5.8 Summary

This chapter has introduced the new AHL method for the CLM learning problem.
It started with general and theoretical assumptions about the learning problem.
Showing parallels to the Hopfield network, it was argued, that learning can be re-
alized in principle by binary classification on pairwise feature relations. Thereby,
some problems were expected because of the possible overlap between the two
classes of excitatory and inhibitory feature-pairs. Further, the necessity of param-
eter tuning should be prevented and the trained classifier should have a high appli-
cation speed, because during the computation of a lateral interaction matrix F the
classifier has to be applied for each pair features in the input pattern.
Due to the high redundancy of the CLM, it is not required to find the optimal
classifier (compare experiments in section 4.4), such that in this work the AHL-
algorithm was derived. It transforms feature-pairs to a predefined, problem-specific
proximity space, performs vector quantization to segment this space into a set of
basis functions, and estimates the partitions of inhibitory and excitatory feature-
pairs according to these basis functions.
These two partitions are combined to an interaction function that computes the
lateral interaction weights of the CLM for new input patterns, where the weight-
ing between the two partitions controls the segmentation level of the CLM output
grouping.
The AHL algorithm can be implemented very efficiently by a number of clustering
and sampling steps within the feature proximity space. Thereby, the main learn-
ing parameter is the number of basis functions within the proximity space, which
dominates the accuracy and the evaluation speed of the learned interaction func-
tion. The other parameters can be specified naturally for the user by presenting a
set of hand labeled example patterns.
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To be able to learn a demonstrated grouping behavior, the AHL algorithms re-
quires knowledge from the application designer about the feature structure and the
proximity functions between the features that characterize the relevant grouping
principles. A clever choice of proximity functions is essential to guarantee, that
AHL can separate excitatory and inhibitory feature-pairs in the proximity space,
but also gives the possibility to determine some a priori properties of the learned
grouping behavior, like translation and rotation invariance.
Surely, the construction of suitable proximity functions for the AHL algorithm
faces the same problems as designing heuristics for complete interaction func-
tions. However, these problems occur on a much simpler level, where grouping
principles can be described by the underlying distance functions of elementary
features, e.g. smoothness and continuity by angles between edges, similarity of
color by distances in color spaces and similarity of texture by distance of Gabor jet
responses, while the further parameters, like the range and strength of excitatory
and inhibitory connections and the weighting of different proximity principles, are
extracted from the target labeling.
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Chapter 6

Application

So far, the AHL algorithm has been motivated and it’s theoretical properties have
been discussed. This chapter now shows, how AHL performs practically on the
problems of point clustering, fluorescence cell image segmentation, texture seg-
mentation and contour grouping.

6.1 Point Clustering

As a simple example, the clustering of 2d-points mr = pr = (xr, yr)
T , which

is implemented in [50] by an on-center-off-surround function (compare section
3.6 Point Clustering), is inspected. The top row of Fig. 6.1 shows four example
patterns from this problem domain. Pattern 1 shows 160 points which are equally
distributed on two clusters at the positions (8,0) and (-8,0), where each cluster
has a radius of 8, such that the two clusters show slight contact. In pattern 2,
the left cluster is divided into two subclusters at position (-8,4) and (-8,-4) with
radius 4 and a size of 40 points per cluster, such that the two subclusters again
show slight contact. In pattern 3 and 4, this splitting procedure is iterated for one
of the smallest clusters. The four patterns describe borderline cases of separating
neighboring, non-overlapping clusters, where the conflict between forming large
clusters and separating small clusters increases from pattern 1 to 4.
To be able to apply AHL, the necessary problem knowledge has to be introduced by
specifying a set of proximity functions dp(mr,mr′), p = 1, . . . , P . Since the fea-
tures are described only by their position pr, a single proximity function, defined
by the Euclidean distance, is chosen:

d1(mr,mr′) =‖ pr − pr′ ‖ . (6.1)

For clusters with a different shape, e.g. oval, an alternative would be to use separate
distance functions for the different feature components, whose scaling factors then
can be adapted to the variance of the clusters in different orientations. But since in
the example circular clusters are inspected, one function is adequate, such that the
proximity prototypes d̃j , j = 1, . . . ,K are one dimensional.
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Figure 6.1: Influence of the control parameter Λ on the grouping quality. The top
row shows four training patterns from the problem domain of point clustering. The
plots in the rows two to four show, how the grouping quality on the training pattern,
achieved from the CLM with an AHL-learned interaction function of K = 10,
K = 100 and K = 1000 basis functions, develops with the modification of the
control parameter Λ. The bounds Λmin and Λmax derived from (5.22) are marked
by vertical red lines within the plots.

As a next step, the number of basis functions has to be chosen and the AHL algo-
rithm has to be applied. For each of the four patterns, AHL is trained with K = 10,
K = 100, and K = 1000 basis functions to estimate the positive and negative in-
teraction coefficients c+

j and c−j , j = 1, . . . ,K . Finally, a value for Λ has to be
chosen to adjust the segmentation level of the constructed interaction function.
Figure 6.2 shows the effect of Λ on the shape of the interaction function resulting
from training with pattern 1 and K = 10 basis functions. The values of the re-
sulting interaction coefficients cj at specified Λ values are plotted against the one
dimensional prototypes d̃j . The color of the data points (red = positive, blue = neg-
ative) shows the sign of the corresponding interaction coefficients. It can be seen,
that the range and the strength of positive interactions decreases with the increase
of Λ, such that the grouping behavior changes from forming few large clusters to
forming many smaller clusters.
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Figure 6.2: Influence of the control parameter Λ onto the shape of the interaction
function. The plots shown the interaction coefficients of the ten prototypes result-
ing from training with pattern 1 andK = 10 basis functions for the specified values
of Λ. The interaction coefficients are normalized, such that their maximal absolute
value is equal to one. Positive coefficients have red color, and negative coefficients
have blue color. The position of the prototype according to the local distance of
two features in shown on the x-axis, while the interaction value of the interaction
coefficients is shown on the y-axis.

The question is: How must Λ be chosen to achieve an optimal segmentation of
the training pattern according to the target labeling? And, is it always possible to
reconstruct the target labeling 100 % correctly? To examine these questions, gen-
eralization aspects of the training are neglected and only the grouping performance
of the learned interaction functions on the training patterns themself is inspected.

Figure 6.1 shows, how the grouping quality changes with the choice of Λ. The
plots in a column show results from training with the corresponding pattern, the
rows 2, 3 and 4 show the results from training with K = 10, K = 100 and
K = 1000 basis functions, where each learning phase (see AHL implementation in
appendix C) consists of 10000 steps. Each plot shows the values of Λ on the x-axis
and the quality values Q resulting from the application of the learned interaction
function on the training pattern on the y-axis. The vertical, red lines mark the
interval of Λmin and Λmax estimated from training. The value of Λ runs with a
constant step size from 0.5Λmin to 2Λmax. At each step, the resulting interaction
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function is applied within an L = 20-layered CLM on the training pattern. During
the annealing process, T is decreased from T = 100 to T = 0 in 1000 steps of
constant step size. At T = 0, 100 additional steps are performed. Each annealing
step consists of L · N neuron updates, where N = 160 in each pattern. The state
of the CLM at the end of the annealing process is assumed as attractor state, where
the maximal activated neuron in each column specifies the output label. These
output labels are compared with the target labeling according to the the algorithm
in section 4.2. The resulting quality values Q specify the y-values of each data
point.
The interval of Λmin and Λmax, where the optimal Λ value is expected, shrinks
from pattern 1 to 4. This mirrors, that the grouping problem becomes more difficult
and inconsistent to the proximity function, such that the overlap between positive
and negative interaction increases. The optimal value lies always between Λmin

and Λmax. However, the optimal quality reaches only 100% for pattern 1. For
the other patterns, each choice of Λ causes errors by splitting the bigger clusters
or merging the smaller clusters, which is represented by an optimal quality around
95%, 85% and 80%. For pattern 1, the optimal value is reached in a wide interval
which, however, covers only the half of the interval [Λmin,Λmax]. For the other
patterns, the optimal value lies on a sharp spike in the quality plot.
The increase of K brings for most values of Λ no gain in the grouping quality.
However, for patterns 2 and 3 the spike of maximal quality is more distinct in the
quality plot of K = 1000, but this increase of quality means also a significant in-
crease of the evaluation time of the next neighbor criterion during the computation
of the lateral interaction weights.
It can be concluded, that pattern 1, which shows an extreme case of two neigh-
boring clusters, can be reconstructed correctly by the AHL algorithm. The exact
grouping can not be restored for the different scale levels in the pattern 2, 3, and 4,
where either small groups are merged of large groups are split. An automatic esti-
mation of Λ seems to be challenging, because the process of merging and splitting
of small and large groups can have contradictory effects on the quality, such that
there can be local minima in the graph of quality along Λ. Further, the evaluation of
the quality demands the simulation of the CLM dynamics, which can be very time
consuming, especially, at a slow annealing speed. For this reason in the following
Λ is chosen by hand.

6.2 Spiral Problem

In the last example, circular clusters were inspected which show a compact shape.
In the next example, the principle of proximity is applied to extreme cases of clus-
ters in form of two spiral arms. The first column of Fig. 6.3 shows four example
patterns from this problem domain. Each pattern shows a set of 40 two-dimensional
points mr = pr = (xr, yr)

T . These points are divided into two groups. Each
group is specified by a two-dimensional spiral function sα(R) with a predefined
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Figure 6.3: Spiral Problem: Two spiral shaped sets of 2d-points shall be separated
from each other. a) Pattern and target labeling for training with AHL (K = 100). b)
Visualization of the learned interaction coefficients cj (y-axis) according to the 1d-
proximity prototypes d̃j (x-axis) represented by the local distance. c) Visualization
of the reconstructed interaction matrix F . The features along the rows and columns
of F are ordered according to their target labeling and their appearance on the two
spiral arms. d) Output labeling of an L = 2-layered CLM resulting from the
interactions in c).

curvature, where R is the distance of a point on the spiral to the origin of the two
spirals. The two spirals are rotated around each other by 180◦, such that they are
contorted into each other. The points on each spiral arm are generated by evalu-
ating the two spiral functions for 20 points, whose distances to the central point
increase with a constant step size from Rmin to Rmax. Rmin is set to 10 to ensure,
that there is a gap between the start points of the two spirals, while for Rmax the
values 100, 200, 400 and 800 are chosen in pattern 1, 2, 3 and 4, such that the
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degree of contortion between the two spiral arms increases from pattern 1 to 4.
The proximity between two features is specified, like in the previous example, by
the local distance

d1(mr,mr′) =‖ pr − pr′ ‖ . (6.2)

The number of basis functions K is set to 100, where each learning phase consists
of 10000 learning steps. The control parameter Λ is set to the value 0.7.
The second column of Fig. 6.3 shows the interaction functions that result from
training with the four example patterns. The x-axis describes the one-dimensional
proximity prototypes, the y-axis the interaction coefficients and the color the sign
of the interaction coefficients.
Training with pattern 1 results in clear positive interactions for small distances and
clear negative interactions for high distances. In the intermediate range, positive
and negative interaction annihilate each other, but the regions where positive and
negative interactions dominate alternate one time, which mirrors the curvature of
the spiral functions.
For pattern 2 to 4, the learning problem becomes more difficult, such that there is
a higher overlap between positive and negative interaction, which results in more
interaction coefficients close to zero. The stronger curvature of the spiral arms
in the pattern 2, 3 and 4 results in a higher alternation of positive and negative
interactions according to the local distance.
The third column of Fig. 6.3 shows the interaction matrices that result from the
application of the learned interaction functions onto the training patterns. Positive
entries are visualized by red color, negative entries are visualized by blue color, and
the absolute values are described by the color intensities. The features are ordered
along the x- and y-axis according to their target labeling, such that in the ideal case
a block-diagonal structure can be expected.
For pattern 1, the reconstructed interaction matrix comes close to this block-diagonal
structure. For pattern 2 to 4, this structure degenerates increasingly, because most
of the interaction coefficients are close to zero. For pattern 3 and 4, the positive
sub-blocks become more and more similar to the identity matrix. Consequently,
the annealing process has to be performed very slowly to prevent an over segmen-
tation of the two spiral arms. For the same reason the interaction matrices are only
applied only in a L = 2-layered CLM.
The fourth column of Fig. 6.3 shows the labeling result from this two-layered
CLM. The annealing process is performed in 200 steps of constant step size for
T = 50 to T = 0. Each annealing step consist of L · N = 2 · 40 = 80 neuron
updates. The input labeling can be reconstructed for pattern 1 to 3. However, at
least for pattern 3 it seems that the correct grouping is only achieved, because the
number of layers is restricted to the correct number of groups. For pattern 4, the
deformation of the interaction matrix is too strong, such that errors occur in the
output labeling.
Conclusion: From this example application it can be seen, that the global struc-
ture of patterns, like the membership to the two spiral arms, which usually requires
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information about the relative positions of the features to the spiral origins, can be
reconstructed by local feature relations, like in this case the local distance, as long
as positive and negative interactions can be clearly separated according to these
relations. Further, the increase of inconsistency affects the learning and grouping
result. It should be clear, that the grouping performance can be enhanced for the
spirals arms in pattern 3 and 4 by inserting more features, such that a higher sam-
pling rate to the two groups is achieved. This shifts the interaction coefficients for
smaller distances stronger into the positive values, such that a higher inner group
support arises, like in the case of pattern 1 and 2.

6.3 Segmentation of Fluorescence Images

1 2 3 4 5 6 7 8 9 10

Figure 6.4: Dataset of fluorescence cell images. The ten images in the upper row
show areas of fluorescence cell probes that shall be divided into the regions of the
occurring cells, origin [33] and [35]. The lower row shows a human hand labeling
of the images.

In this section, AHL is applied to a real-world problem, namely the segmentation
of fluorescence cell images as introduced in section 3.6 and investigated also by
Wersing [61] (see section 3.7.4).
The first row of Fig. 6.4 shows the dataset that represents this problem domain. It
consists of ten 45× 45 images, such that each pattern consists of 2025 features. In
each image the relevant groups representing cells are indicated by a dark cell body
and a light corona. These images are a part of the data source in [33] and [35].
The second row of Fig. 6.4 shows a human hand labeling that is applied as target
labeling for the training.
In this domain four experiments are performed. The first shows that learning can be
implemented in principle by standard binary classifiers in the proximity space. The
second experiment describes the influence of the parameter Λ in the AHL algorithm
on the segmentation results. The third experiment compares and discusses several
ways of describing the grouping behavior in different proximity spaces. And the
last experiment shows the influence of different labeling strategies.

6.3.1 Application of Binary Classifiers

The AHL algorithm can be interpreted as a kind of binary fuzzy-k-nearest-neighbor
classifier. Therefore, it is compared with the application of standard classifiers from
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Figure 6.5: Edge proximity measures for the cell segmentation problem: Proximity
is expressed by the local distance ‖ d ‖ between two edges and the relative angles
θ1, θ2 ∈ [0, 2π] between the edge directions and the connecting vector d.

the field of artifical neural networks.
The feature vectors are represented as mr = (pr, ϕr), where pr is the pixel po-
sition and ϕr is the orientation of the intensity gradient described by Sobel-x and
Sobel-y filters. Features with gradient strength equal to zero are removed from the
pattern, such that the real number of features N can be slightly smaller than 2025.
Proximity between the features is defined, similar to Wersing’s approach, by the
local distance

d1(mr,mr′) =‖ pr − pr′ ‖ (6.3)

and the relative angles θ1 and θ2, see Fig. 6.5. To ensure the uniqueness and
symmetry under feature exchange, mr and mr′ are swapped, such that the vector
d = pr−pr′ always points from the left to the right or from the top to the bottom,
if both features have the same x-coordinate. The angles θ1 and θ2 always start in
direction of the vector d and turn to the right till ϕr respectively ϕr′ is reached.
Training is always performed on one of the ten images in Fig. 6.4 and the resulting
interaction function is tested on all ten images (including the training image) by
comparing the output labeling of the CLM with the target labeling.
The algorithms QCO (κ = 100), AHL (Λ = 1

Li−1
) and Average Consistency

Condition (ACC) are applied for learning. ACC is a variant of QCO, where the
optimization step (3.42) is avoided by setting the interaction coefficients into the
opposite direction of the average of the consistency vectors Zk = Ziβr:

c = − 1∑
k 1

∑

k

Zk. (6.4)

For the generation of the basis functions, K = 30 is set and the clustering step is
performed. A slight difference to section 5.4 is that the scaling factors a1, a2 and
a3 of the three proximity dimensions are not generated automatically, but set by
hand to the values a1 = 1, a2 = 5 and a3 = 5, such all three proximity functions
are normalized to the same range of values.
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Figure 6.6: Comparison of segmentation results from training with different learn-
ing algorithms. The algorithms QCO, AHL, ACC, MLP, SVM and MCC are ap-
plied on pattern one. For MLP, SVM and MCC the feature-pairs are presented in
variant 1 by a simple concatenation of the feature vectors and in variant 2 in the
same way as for QCO, ACC and AHL by the proximity function in Fig. 6.5. Each
row shows the output labeling on all ten test patterns resulting from the respective
learning method.

The results of these three algorithms are compared to that of three standard classi-
fiers: the Multi Layer Perceptron (MLP), the Support Vector Machine (SVM) and
the Maximum Contrast Classifier (MCC) [32], which is a kernel based classifier
similar to the SVM. It models the conditional density of each class by a weighted
sum of Gaussian kernel functions centered at given training points. Therefore, the
weights of the kernel functions are optimized under additional constraints that max-
imize the contrast, which is the difference in the answers of the class conditional
densities.
Each classifier is trained with 1000 positive feature pairs (target value 1) and 1000
negative feature pairs (target value -1). Thereby, the feature-pairs are presented
in two variants. In the first variant, the feature vectors are simply concatenated,
such that the classifier has to adapt suitable proximity functions on its own. In the
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second variant, the feature pairs are presented, like in the case of QCO, ACC and
AHL, by the proximity vectors drr′ .
The parameters of the MLP, SVM and MCC were explored by hand. These are for
the MLP the architecture, a 6-6-6-1 network of Fermi neurons, where the output
neuron has a linear threshold function, and the learning step size ε = 0.01 for the
standard on-line back propagation learning algorithm. For the SVM, the parame-
ters are the width of Gaussian kernel functions σ = 2, a uniform margin variable
ε = 0.01 for all constraints and C = 30, a scaling weight that punishes the viola-
tion of the constraints by slack variables. The MCC uses similar parameters as the
SVM. These are also the width of Gaussian kernel functions σ = 2, λMCC = 0.2
the maximal contrast between the two class densities and δ = 0.2, a scaling weight
between the optimization term and the constraints.
The interaction functions resulting from the training of each classifier are tested
within an L = 10-layered (one background layer with m = 0 and nine figure
layers) on all ten patterns. This time, the CLM-dynamics is simulated without
annealing (T = 0), until it reaches an attractor state. The output labeling of the
attractor state is compared with the target labeling of the test pattern and displayed
statistically in Fig. 6.7. For the training of each learning algorithms, the average,
standard deviation, minimal and maximal quality, achieved on the ten test patterns,
is displayed. To make these statistics more descriptive, Fig. 6.6 shows explicitly the
labeling results that are achieved on all ten test patterns after training the different
learning methods with pattern 1.
In the quality plots, it can be seen, that there is a relative high deviation in the
quality results from training with one of the images and testing on all ten images.
Further, the maximal quality reached lies only around 80 % of the images. Before
the results of the different algorithms are compared, these observations shall be
discussed.
First, the self-interaction strength m = 0 is too weak to assign smaller regions
to the background. Consequently, the background is split into several subgroups,
which reduces the quality. Second, the target labeling is controversial. Even for a
human expert it is not sure, how many cells should be actually marked in the target
labeling, such that for each region it has to be decided individually whether it
should be assigned to the background or not. Further, the exact contour of the cell
borderline may be controversial between different human observers [37], where
already a pixel wide difference in two labelings results in a noticeable difference
according to our quality measure. Consequently, there is some kind of uncertainty
in the target labeling, such that it is improbable that two labelings agree at 100%.
As third point, it should be kept in mind that there is some variation along the
example patterns according to the size of the cells, i.e. pattern 1 and 2 show relative
small cells, while pattern 5 and 8 show relative large cells. If an adaptation of the
learning methods to the cell size is assumed, an over segmentation of large cells,
like it can be observed in Fig. 6.6 for patterns 5, 6, 8 and 9 after training with small
cells, and a merging of small cells after training with large cells, can be expected.
This behavior explains the high deviation in the quality plots.
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Figure 6.7: Comparison of the statistical grouping quality Q achieved on all ten
patterns after training the different learning methods on one pattern P i.

Besides these three points, the following results can be observed in the experiment.
The best grouping performance is achieved by training with the algorithms SVM
and MCC in variant two, where the feature pairs are represented in form of pre-
processed proximity vectors. In contrast to this, the presentation of the feature
pairs by concatenation of the feature vectors leads to a total failure in the grouping
performance for MLP, SVM and MCC.

This failure can be expected from the fact, that only a single pattern is presented
for learning. The interaction function shall learn, that features from the same cell
interact positively, while features from different cells interact negatively, or more
formally:
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Figure 6.8: Construction of a trivial solution for the interaction function in equa-
tion (6.5) that overfits to the cell positions in a single training pattern. a) Logical
And- and Or-operators can be implemented by simple linear perceptrons. b) The
membership of a pixel to a cell region can be approximated by an And-combination
of linear discriminators that work on pixel positions and are tangential to the cell
borderline.

frr′ =

{
1 :

∨
j(mr ∈ cellj ∧mr′ ∈ cellj)

−1 : otherwise
. (6.5)

The logical And- and Or-operations in (6.5) can be implemented by simple lin-
ear perceptrons (see Fig. 6.8), while the membership mr ∈ cellj of a feature mr

belonging to a cell region can be discriminated on the pixel positions in the in-
put pattern (see Fig. 6.8). Thus there exists a solution for the interaction function
that perfectly fits to the pixel positions in the target labeling of the training pat-
tern. However, this solution cannot generalize to other patterns, since it ignores the
orientation information of the features. It would return for all patterns the same
interaction matrix and output grouping, since the pixel positions in all patterns are
the same.
The results in Fig. 6.6 show, that the MLP, SVM and MCC were not even able
to find this overfitting solution, not to mention a more general solution, indicat-
ing, that it is a non trivial problem to choose a suitable training set and learning
parameters without external knowledge. The choice of problem specific proximity
functions constraints the degrees of freedom in the classifier function and enforces
the generalization of the learned grouping principle from a single training pattern.
On the other side, it simplifies the learning problem, such that the simple quantiza-
tion approach of the algorithms AHL, QCO and ACC becomes competitive to the
standard classifiers.
AHL and QCO perform slightly worse than SVM and MCC in variant two. The
algorithm ACC shows, again, a small loss of quality compared to AHL and QCO
and the application of MLP in variant two shows a further significant decrease in
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grouping quality, but the resulting output labeling still shows some similarity to the
target labeling.
The experiment shows, that the learning problem can be solved in principle by sev-
eral binary classifiers. This result provokes the question: Why should the learning
process not be implemented by the SVM, since it shows a better grouping perfor-
mance than AHL. For the present choice of learning parameters of the different
learning methods, the answer to this question lies in the application speed of the
learned interaction functions. For the proximity functions in Fig. 6.5, the classes
of feature pairs with positive and negative target interactions have a high overlap.
At the same time, the parameters of the SVM define relative short-ranged kernel
functions and relative hard constraints (high value of C). For this reason, the SVM
takes more than the half of the 2000 training examples as support vectors (the
same argumentation holds for MCC). This means, that for each application of the
interaction function the kernel function has to be evaluated at more than 1000 sup-
port vectors, which is a relatively high computational effort compared to the next
neighbor criterion according to the K = 30 proximity prototypes of AHL, QCO
and ACC. Since the interaction function has to be evaluated a quadratic number of
times according to the number of features in a pattern, which in this sample appli-
cation is around 20252 = 4100625 times, the higher application time relativizes
the small gain in grouping quality.
Surely, there exist methods to reduce the number of support vectors either by so-
phisticated methods of parameter tuning, like in [5], and even the classification rate
of the MLP can be enhanced by well known techniques, like weight decay or an
learning rule with an adaptive size of learning steps, e.g. RPROP etc. [2],[15].
However, this means, that the problem of parameter tuning has to be solved during
the learning process, which can be for problems with high overlap between positive
and negative interaction a highly non trivial task. In contrast to this, the number of
basis functions K can be directly controlled for AHL, ACC and QCO.
For small values of K , AHL, ACC and QCO show a slightly worse binary clas-
sification rate than SVM and MCC, but as it was observed in chapter 4, the high
redundancy within the CLM can compensate this, such that a relative weak, but
efficient classifier, like AHL, shall be preferred against a stronger, but also more
(computational) demanding algorithm, like SVM or MCC.
From the comparison of AHL, ACC and QCO, AHL is preferred, because it has
the simplest and fastest learning algorithm of these three approaches, since it pre-
vents the explicit computation of all consistency conditions (3.39). Further, the
classification manifold of AHL can be shifted by modification of Λ towards higher
attraction or higher repulsion between the features without repeating the learning
process, as is shown in the next experiment.

6.3.2 Influence of the Control Parameter Λ

The last experiment stated, that in this work the AHL algorithm is preferred against
other binary classifiers, even if it’s grouping performance is slightly worse than
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Figure 6.9: Proximity functions for directed edge features: The proximity func-
tions for oriented line segments have to be enhanced by additional case differen-
tiations for the directions of the features. The angles θ1, θ2, and θ3 are counted
positive, if both mr and mr′ point towards their intersection point I(mr,mr′).
They are counted negative, if both feature point away from I(mr,mr′). In the
case, that only one feature points towards I(mr,mr′), the angle at this feature
is counted positive, while the others are counted negative. To preserve symmetry
under feature exchange θ2 and θ3 are swapped, if θ3 > θ2.

other approaches, like SVM, because of it’s fast learning and application rate. This
experiment highlights the effect of the control parameter Λ on the grouping result
of the cell segmentation problem .
In contrast to the last experiment, an alternative feature representation and defini-
tion of the proximity space is used. The features in the input images mr = (pr,or)
are encoded by their position pr and orientation vector or = (Sxr , S

y
r ), which is

given by the Sobel-x and Sobel-y response of position pr, such that this approach
can also deal with pixels with intensity gradient magnitude equal to zero.
The proximity functions are an enhancement of an approach derived for oriented
line segments that will be discussed on another application later in this chapter (see
section 6.5). Two features mr and mr′ define a triangle (see Fig. 6.9) with vertices
at the two feature positions pr and pr′ and the intersection point I(mr,mr′) of the
two features. This triangle is described by the local distance between the features
and the three angles within the triangle. Further, configurations shall be distin-
guished, where the intensity gradients point towards each other or away from each
other. Therefore the angles θ1, θ2 and θ3 are counted positive or negative according
to whether mr and mr′ point towards the intersection point I(mr,mr′) or not, like
it is shown in the four configurations in Fig. 6.9. As last property of the proxim-
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Figure 6.10: Comparison of the statistical grouping quality for different values of
the control parameter Λ of AHL.

ity functions the symmetry under feature exchange must be ensured. Therefore,
the components θ2 and θ3 are swapped in the four dimensional proximity space, if
θ3 > θ2.

Learning is performed by QCO (κ = 100) and AHL, where K is set to 100 and
10000 learning steps are performed per learning phase. After learning with AHL,
Λ is set to the values Λ = 1, 2 and 3 and the grouping performance is compared to
QCO and a naive approach of directly clustering the feature vectors mr.

The interaction functions resulting from learning with QCO and AHL are applied
within an L = 20-layered (19 figure layers, one background layer) CLM and the
self-interaction strength m is estimated, like it is sketched in section 5.7. Annealing
is performed in 1000 steps from T = 1000 to T = 0. L ·N = 20 · 2025 = 40500
neurons are updated in each annealing step. The results are compared to a naive
application of the k-means algorithm onto the feature vectors mr. The feature
vectors mr in a training pattern are reduced by k-means algorithm in variant 1 to
k = 10 prototypes and in variant 2 to k = Li prototypes, where Li is the number
of labels in the target labeling of the training pattern. After that, all patterns are
segmented by mapping each feature vector onto the index of it’s nearest feature
prototype.
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Figure 6.11: Comparison of segmentation results for different values for the control
parameter Λ of AHL.

The statistical grouping qualities that arise from testing on all ten input patterns
after training with one of them, are displayed for the three approaches QCO, AHL,
and k-means in Fig. 6.10. The exemplary grouping results on all ten input patterns,
after training with pattern 1, are shown in Fig. 6.11.

It can be seen, that the naive approach of k-means clustering fails in separating the
cells from the background, which is indicated by an average quality of 39 respec-
tively 45 %. The application of the QCO trained interaction function shows with
an average grouping quality around 70 % an adequate reproduction of the group-
ing behavior. However, it shows in Fig. 6.11 the tendency of oversegmentation,
which might be explained by the fact that the training pattern 1 shows relative small
cells. The application of AHL with Λ = 1 shows slightly worse average grouping
quality results than QCO. In Fig. 6.11, the main errors in the output segmentation
arise from merging smaller cells in the patterns 1, 2 and 3, which indicates that
the influence of positive interactions is too strong against the negative ones. This
effect can be compensated by increasing Λ, such that the influence of the negative
interactions is increased. The average grouping quality is improved for AHL with
Λ = 2. It can be seen in Fig. 6.11, that smaller cells are no longer merged and
that the areas of salient cells become smaller. If Λ is increased to Λ = 3, the av-
erage grouping quality decreases again. The size of the salient cell regions in Fig.
6.11 is reduced and, in the case of pattern 6, over segmentation starts. It can be
concluded, that a further increase of Λ enforces over segmentation, such that the
average grouping quality decreases further.
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This experiment has shown, that, even if the interaction function adapts to a dom-
inant cell size from the training pattern, the parameter Λ can be used to adjust the
interaction function to cell sizes in new patterns. It showed, that there are several
ways of feature representations and corresponding proximity functions that are suf-
ficient to construct an interaction function to solve the cell segmentation problem.
In the next experiment, it is tried to evaluate, how suitable a set of given proxim-
ity functions is for the adaptation of a target labeling. Further, it will inspect the
effect of spurious proximity functions on the grouping performance of the learned
interaction function.

6.3.3 Comparison of Proximity Functions

In the last two experiments, two different proximity functions were used to solve
the cell segmentation task. Both of them were suitable to solve the problem. This
implies the question: Can different sets of proximity functions be compared to
judge whether one is more appropriate for a problem than the other? And what
happens, if the set of proximity functions is extended by spurious proximity func-
tions?
In the following, the feature representation and proximity functions from the bi-
nary classifier experiment are called “Proximity 1“and the feature representation
and proximity function from the experiment showing the influence of Λ are called
“Proximity 2“. “Proximity 3“ is defined on the same features mr = (pr,or) as in
the last experiment by the local distance

d1(mr,mr′) =‖ pr − pr′ ‖, (6.6)

the orientation distance

d2(mr,mr′) =
oTr
‖ or ‖

or′

‖ or′ ‖
, (6.7)

and a third function that indicates with high negative values, that both features point
away from each other, and with high positive values, that they point towards each
other, while small positive and negative values indicate, that both features point
into the same direction:

d3(mr,mr′) =
oTr
‖ or ‖

1
2(pr + pr′)− pr

‖ 1
2(pr + pr′)− pr ‖

+
oTr′

‖ or′ ‖
1
2(pr + pr′)− pr′

‖ 1
2(pr + pr′)− pr′ ‖

.

(6.8)
“Proximity 4“ is given by a spurious set of proximity functions, which is based on
the principle of similarity in color, where each feature mr = (pr, Ir) is presented
by it’s position and intensity value in the input image. Proximity 4 is expressed by
local distance

d1(mr,mr′) =‖ pr − pr′ ‖, (6.9)

and distance in intensity

d2(mr,mr′) = |Ir − Ir′ |. (6.10)
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This proximity set is spurious, because it ignores the relevant information of the
intensity gradient directions and only uses the intensity information, which is only
capable to segment dark cell centers from the light cell corona, but not to find the
exact borders of each cell.
Additionally, Proximity 1 and 4 are combined to “Proximity 5“, Proximity 2 and 4
are combined to “Proximity 6“, and Proximity 3 and 4 are combined to “Proximity
7“ by appending the intensity distance (6.10) to the proximity vectors of Proximity
1, 2 and 3.
For each of the seven proximity functions, AHL is applied with K = 30, Λ = 2
by performing 10000 learning steps per learning phase. The resulting interaction
functions are tested in an L = 20-layered (19 figure layers and one background
layer) CLM. The self-interaction strength m is estimated deviant from section 5.7.
The upper and lower bounds mlow and mup are estimated by taking the sum of
a certain number nm of randomly selected feature pairs, where both features are
labeled as background for mlow and both features are labeled to the same figure
group for mup. Then m is set heuristically, like in section 5.7, to

m = (mlow + 3mup)/4. (6.11)

nm can be interpreted as the expected group size, such that mlow represents the
expected support in the background and mup represents the expected support in a
figure layer. nm was set to 100, which seems to be too small, as can be seen in the
segmentation results in Fig. 6.13, because the self-interaction is too weak to assign
the smaller regions in the pattern to the background.
The annealing process is performed in 1000 steps of uniform step size from T =
λmax(F ) (maximal eigenvalue of the lateral interaction matrix) to T = 0. 20000
neuron updates are performed in each annealing step .
The quality plots in Fig. 6.12 show similar results for the application of Proximity
1, 2 and 3 with an average grouping quality around 70 %. Also, the exemplary
grouping results from training with pattern 1 in Fig. 6.13 show almost now dif-
ference between the output labelings. The only striking point is the tendency of
Proximity 3 to over-segment the patterns 5, 8, 9 and 10, which indicates that Prox-
imity 3 shows a higher adaption rate to the typical cell size in the training pattern
1. But as was shown in the last experiment, this cell size can be influenced by the
adjustment of Λ.
For Proximity 4, which is assumed to be spurious to the target labeling, a clear
decrease in group quality is observable compared to Proximity 1, 2 and 3. This
impression is confirmed in the exemplary output labelings of Fig. 6.13, where
the output labelings show no similarity to the target labeling for most of the test
patterns.
When the spurious Proximity 4 is combined with Proximity 1, 2 and 3 to construct
Proximity 5, 6 and 7, the average grouping quality rises again and comes close to
the results of Proximity 1, 2 and 3. It can be seen in the exemplary grouping results
in Fig. 6.13, that the original behavior can be reconstructed, besides the tendency
of merging cells in pattern 1, 2 and 3, where Λ can be adjusted to reduce this effect.
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Figure 6.12: Comparison of the statistical grouping quality for the application of
AHL with different proximity functions.

It can be concluded, that the grouping performance of Proximity 1, 2, 3, 5, 6 and 7
are hardly to distinguish. Only Proximity 4 fails in solving the grouping problem.
The AHL learning algorithm showed the ability to select the relevant proximity
criteria to reconstruct the target labeling. But the question is: Are there other
arguments to prefer one of the proximity spaces?
One indicator might be the overlap between positive and negative interaction, de-
scribed by the bounds Λmax and Λmin (see section 5.5), because a small overlap
between c+ and c− results in higher absolute values of the interaction coefficients
cj , which define the block-diagonal structure of the interaction matrix F . As chap-
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Figure 6.13: Comparison of segmentation results from the application of AHL with
different proximity functions.

ter 4 has shown, the strength of the block-diagonal structure has influence on the
eigenvalues of F and defines the speed of convergence of the CLM dynamics.
Another criterion of the proximity functions is the application time of the learned
interaction function, which on the one-hand side depends on the complexity of the
proximity functions, such that spurious or useless proximity functions should be
preferably removed, and on the other hand depends on the number of used basis
functions K .
To investigate these two criteria pattern, seven is chosen as fixed training pattern
for all proximity functions, AHL is applied for all values of K = 1 to K = 200
(with K · 100 learning steps per learning phase) and the graphs of Λmax and Λmin
that result from these training runs are plotted in Fig. 6.14, where the red lines
show the upper bounds Λmax and the blue lines show the lower bounds Λmin.
In all plots a relatively high fluctuation of Λmax against K can be observed, which
mirrors the stochastic components of the AHL learning approach, where different
samples of feature pairs in the clustering and interaction sampling phase can result
in different vectors c+ and c− with a varying overlap from run to run. However,
in average the overlap between c+ and c− decreases with the number of basis
functions K , which means that the classification rate of the learned interaction
function increases.
For the spurious Proximity 4, the graph course of Λmax converges to the relative
poor upper bound Λmax ≈ 6, while for the other proximity functions it increases
further. No significant differences are observable between the graphs of Proximity
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Figure 6.14: Plot of the bounds Λmin (blue) and Λmax (red) against the increase of
the number of basis functions K for different proximity functions.

1 and 2. Both runs end up with a maximal value of Λmax around 11 to 12, such that
it is hard to say, which proximity should be preferred. However, if these proximity
functions are compared to Proximity 3, it becomes clear, that Proximity 3 ends up
in a higher maximal value of Λmax around 13 to 15. Additionally, the value of
Λmax increases faster for small values of K , such that the interaction function of
Proximity 3 needs less basis functions to reach the same classification rate than
Proximity 1 and 2.
If the proximity functions 1, 2 and 3 are compared to their aggregations with Prox-
imity 4, no differences in the graphs of Λmax are visible. Consequently, the sim-
pler variants should be preferred, since the distance in intensity values brings no
increase in the classification rate.
The result of the above analysis is, that Proximity 3 gives the best results in terms
of grouping quality and convergence speed of the CLM-dynamics at a predefined
evaluation time of the interaction function. However, this benchmark has to be
regarded with caution, since in the sample results in Fig. 6.13 have also shown,
that Proximity 3 shows a higher adaption to the cell size in the training pattern than
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the other proximity sets. The overlap between c+ and c− gives only information
about the consistency of the training pattern with the target labeling, but gives no
information about the generalization properties of the learned interaction function.
Therefore, it is very important to choose a representative training pattern and to
give a suitable target-labeling.
In the last experiment on the cell segmentation problem, it is investigated, how
different ways of labeling influence the learning process.

6.3.4 Influence of the Target Labeling

Pattern 7

Labeling 1 Labeling 2 Labeling 3

Labeling 4 Labeling 5 Labeling 6

Figure 6.15: Six different ways to label pattern 7. Black labeled features are
marked as background, while the other labels describe figure groups.

It was stated before, that the correctness of the target labeling of the cell images is
controversial. Figure 6.15 shows six different ways of labeling pattern seven.
In Labeling 1, only a single cell is marked as salient group, while the rest of the
image is assigned to the background. This kind of labeling is conformable for a
human teacher, since he can choose the most salient cell region and must not con-
sider whether the rest of the image shows a cell or not. But this labeling might
be confusing for the learning algorithm. Since there exists only one figure la-
bel, the only source for negative interaction are feature pairs from the background.
Consequently, feature pairs from the unmarked cell regions are treated as negative
examples instead of positive ones.
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1 2 3 4 5 6 7 8 9 10
Pattern

Label

Label 1

Label 2

Label 3

Label 4

Label 5

Label 6

Figure 6.16: Comparison of segmentation results from the application of AHL on
pattern seven with the different target labelings in Fig. 6.15.

In Labeling 2, this problem is avoided by marking the three most salient regions,
which actually describe complete cells. And in Labeling 3, additionally the smaller
regions at the border of the image, which might be parts of neighboring cells, are
marked.
Labeling 4 is a spurious labeling similar to Labeling 2, but this time the background
is marked as salient group, such that the learning algorithm might be confused by
spurious positive interactions.
Labeling 5 shows another spurious variant of Labeling 2, where each of the three
cell regions is divided into two labels, and, finally, Labeling 6 shows a total spuri-
ous labeling of pattern seven into six random, but coherent regions.
This experiment shall inspect, how the AHL algorithm can deal with these six
different labelings of pattern seven. AHL is applied with K = 30 basis functions
(10000 learning steps per learning phase) on each of the labelings, where Λ is set
to Λ = 2. The resulting interaction functions are tested on an L = 20-layered
(19 figure layers, one background layer) CLM, where the self-interaction strength
m is estimated like in the last experiment. The annealing process is performed
in 1000 steps of uniform step size from the maximal eigenvalue T = λmax{F}
of the matrix of lateral interactions F to T = 0, and for 200 additional steps at
T = 0. 20000 neurons are updated in each annealing step. The grouping results
from testing the six interaction functions on all ten input patterns are shown in Fig.
6.16. The quality statistics of these results are plotted for each labeling in Fig. 6.17
and the bounds Λmax and Λmin are plotted in Fig. 6.18.
It can be seen in the quality statistics, that AHL is able reconstruct a suitable in-
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Figure 6.17: Quality results for different types of labeling.

teraction function from Labeling 1, 2, 3 and 5. Additionally, Fig. 6.18 shows, that
these four labelings result in a relative high gap between Λmin and Λmax, which
indicates a low overlap of positive and negative interactions within the basis func-
tions. The value of Λmax is reduced only for Labeling 1, since the unmarked cell
regions cause additional overlap between positive and negative interactions. The
grouping results in Fig. 6.16 show the correct grouping behavior, besides merging
of small neighboring cells, which can be reduced by the adjustment of Λ.
Errors in the target labeling that can not be compensated are shown in Labeling 4
and 6. Features that form no group should not be labeled uniformly, but be assigned
as unknown to the background, and an arbitrary labeling leads to no acceptable
interaction function, which shows the importance of the target labeling respectively
the knowledge of the human teacher for the learning process.

Λ

L
2

4

6

8

10

2 3 4 5 6

Figure 6.18: Λ-bounds Λmax (red) and Λmin (blue) resulting from training with
the different labelings in Fig. 6.15.
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It can be concluded, that the AHL learning algorithms does not need a perfect target
labeling, which for some problems, like the cell segmentation problem, might not
exist. A relative rough approximation of relevant parts of the salient groups is
sufficient, such that a suitable statistics of positive and negative interactions can be
achieved during the learning process.

6.3.5 Summary

The grouping behaviors realized by the hand-tuned, respectively learned, interac-
tion functions reviewed in sections 3.6 and 3.7.4 from [34] and [61] can be repro-
duced with the AHL algorithm and in principle with several other binary classifiers.
In this work, AHL is preferred over other approaches, because of it’s simple and
fast learning algorithm, the management of the evaluation speed of the interac-
tion function with the number of basis function K and the control abilities of the
segmentation level with the parameter Λ.
Further, it was shown that different possible ways of encoding proximity criteria
between feature pairs can be compared by the observation of the classification rate
of the AHL learned interaction function. Finally, the robustness of the AHL ap-
proach against uncertainties in the target labeling was shown.

6.4 Texture Segmentation

Pattern P1 Pattern P2 Pattern P3 Pattern P4 Pattern P5 Target labeling

Figure 6.19: Dataset for texture segmentation.

As second application of the AHL algorithm on real world problems, it is tried to
reproduce results Ontrup [40] on the problem of texture segmentation, achieved
with the hand tuned interaction function reviewed in section 3.6.
Figure 6.19 shows five patterns that are applied as test data set for this problem
domain. Each pattern shows five different texture regions constructed from the
Bordatz album [1], such that the same unique target labeling can be used for all
five patterns.
The feature extraction is performed according to Ontrup’s approach by the follow-
ing steps (compare section 3.6):

1. Computation of the even symmetric responses of a set of Gabor filters in m
different scales and n different orientation.

2. Applying a non linearity in form of the hyperbolic tangents on the filter re-
sponses.
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1× 9 2× 7 3× 5 4× 3

Figure 6.20: Four different sets of Gabor filters.

3. Computing the average and standard deviation for each Gabor filter response
by convolution with a Gaussian filter. The widths of the Gaussian filter
σGaussian(m,n) in frequency space that is used for the convolution with
the filter at scale m and orientation n is taken by dividing the width of the
Gabor filter σGabor(m,n) with a factor k:

σGaussian(m,n) := σGabor(m,n)/k. (6.12)

4. The results are concatenated to the 2 · m · n dimensional texture vector
zr = (νr, σr), where νr consists of the m · n mean values and σr of the
m · n standard deviation values of the Gabor filter responses at position
pr = (xr, yr). A feature mr = (pr, zr) is described by it’s position and
texture information.

The size of the input patterns is 256 × 256 pixels. If each pixel defines a feature,
this would require 2564 ≈ 2.3 · 109 lateral interaction weights. Therefore, the
features are subsampled by the factor 8 in each dimension of the images, resulting
in 32 × 32 = 1024 features and 324 = 1048576 lateral interaction weights per
pattern. The feature extraction depends on the two parameters m and n for the
Gabor filters and the scaling k of the width of the Gaussian filters against the width
of the Gabor filters in frequency space. Four different sets of m× n Gabor filters,
sketched in Fig.6.20: 1 × 9, 2 × 7, 3 × 5 and 4 × 3, and five scaling factors:
k ∈ {2, 4, 8, 16, 32} are tested as feature parameters.
The dimension reduction step, applied by Ontrup on the texture vectors zr, is omit-
ted and in a first approach proximity is defined by the local distance

d1(mr,mr′) =‖ pr − pr′ ‖ (6.13)

and texture distance
d2(mr,mr′) =‖ zr − zr′ ‖ . (6.14)

Training is performed with K = 100 basis functions and 10000 learning steps per
learning phase, Λ is set to 2.
The grouping process for the learned interaction functions is simulated within an
L = 10-layered CLM, where annealing is performed in 1000 steps of uniform step
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Test P1 Test P2 Test P3 Test P4 Test P5

AHL(P1)

AHL(P2)

AHL(P3)

AHL(P4)

AHL(P5)

Figure 6.21: Segmentation results for 3x5 Gabor filters, k = 8 and a single texture
proximity function. Each row shows the grouping results from an L = 10-layered
CLM on the five test patterns after training is performed on one of them.

size from T = 1000 to T = 0, and each annealing steps consists of 10000 neuron
updates.
Figure 6.21 shows results for the feature extraction parameters m = 3, n = 5 and
k = 8. Each row shows the segmentation results on all five patterns, while training
is performed only on one of these patterns. The quality values for these results
are shown in Fig. 6.22, where each column of the plot corresponds to the quality
values of a row in Fig. 6.21.
The segmentation results show differences in the grouping performances for the
five patterns. The best result can be achieved for pattern 1. This result is inde-
pendent of the training pattern (besides training with pattern five), where in each
of these training runs a grouping quality around 90% is realized. For the other
patterns, the grouping performance is worser, where mostly two (grouping quality
around 80%) or three texture regions (grouping quality around 60%) are assigned
to the same label. Partially, this result is plausible for a human observer, e.g. the
left and bottom textures in pattern 3 look very similar, but the textures in pattern
2, 4 and 5 are clearly separable for the observer. This time, these grouping errors
cannot easily be prevented by a simple adjustment of the parameter Λ, because at
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Figure 6.22: Qualities for the segmentation results in Fig. 6.21 based one a 3 × 5
Gabor jet and a smoothing factor of k = 8. The x-axis shows the number of the
respective training pattern. The y-axis shows the achieved grouping quality on the
numerated test patterns.

a higher segmentation level the new borders between the groups do not arise at the
expected borders between the textures, but form spurious groups, like the results
achieved by training with pattern five in Fig. 6.21. Thus the only way to enhance
the grouping performance is to change the feature representation and the proximity
functions.
To investigate, if the AHL algorithm is capable to reproduce the correct grouping
of the different texture types, the learning success is measured by two values: the
average grouping quality achieved one the test patterns, in the following called
adaptation rate A:

A :=
1

5

5∑

i=1

Q(AHL(P i),P i), (6.15)

and the average quality over all combinations of training and test patterns, in the
following called generalization rate G:

G :=
1

25

5∑

i=1

5∑

j=1

Q(AHL(P i),Pj). (6.16)

Figure 6.23 lists the observed adaptation and generalization rates for the explored
parameters m, n and k. The best generalization rates around G ≈ 0.73 and G ≈
0.74 are achieved for k = 8 and k = 4. An exact segmentation of pattern 3, 4, and
5 is not achieved, not even, if they are used as training pattern. The best adaptation
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A
G k = 32 k = 16 k = 8 k = 4 k = 2

0.659 0.732 0.774 0.752 0.700
Average 0.633 0.707 0.735 0.735 0.706

0.726 0.710 0.738 0.759 0.733 0.692
1× 9 0.727 0.700 0.732 0.743 0.739 0.722

0.731 0.716 0.733 0.745 0.744 0.717
2× 7 0.717 0.673 0.735 0.738 0.722 0.717

0.728 0.621 0.759 0.802 0.760 0.697
3× 5 0.688 0.593 0.695 0.736 0.730 0.689

0.708 0.587 0.698 0.789 0.772 0.693
4× 3 0.681 0.566 0.666 0.721 0.749 0.701

Figure 6.23: Table of the adaptation (red) and generalization (black) rate of dif-
ferent types of m× n Gabor jets and smoothing parameters k for a single texture
proximity function. The shaded values are investigated in detail in Fig. 6.21 and
6.22.

A
G k = 32 k = 16 k = 8 k = 4 k = 2

0.829 0.853 0.825 0.777 0.686
Average 0.711 0.716 0.693 0.662 0.626

0.773 0.829 0.855 0.775 0.735 0.670
1× 9 0.700 0.728 0.731 0.704 0.683 0.656

0.800 0.844 0.867 0.837 0.756 0.696
2× 7 0.686 0.715 0.721 0.694 0.656 0.646

0.800 0.810 0.846 0.867 0.806 0.664
3× 5 0.661 0.685 0.691 0.698 0.647 0.586

0.804 0.831 0.845 0.822 0.811 0.712
4× 3 0.677 0.715 0.719 0.675 0.663 0.615

Figure 6.24: Table of the adaptation (red) and generalization (black) rate of differ-
ent types ofm×n Gabor jets and smoothing parameters k for individual proximity
functions for each texture dimension.

rate of A = 0.802 is achieved for the initial parameter setting of (m,n, k) =
(3, 5, 8). The only systematic results are, that segmentation gets worse, if the shape
of the Gaussian filters that are used to compute the average and standard deviation
values is too sharp (k = 2) or too wide (k = 32), and, that the segmentation of
pattern 1 is more difficult for 3× 5 and 4× 3 Gabor filters than for 1× 9 and 2× 7.
The last way to enhance the grouping performance is the modification of the prox-
imity functions. Therefore, the single texture distance (6.14) is split into 2 ·m · n
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A
G k = 32 k = 16 k = 8 k = 4 k = 2

0.843 0.853 0.848 0.796 0.718
Average 0.730 0.723 0.709 0.694 0.662

0.793 0.835 0.822 0.807 0.775 0.728
1× 9 0.723 0.756 0.723 0.710 0.716 0.709

0.804 0.861 0.837 0.850 0.769 0.703
2× 7 0.705 0.748 0.738 0.720 0.676 0.643

0.813 0.837 0.856 0.876 0.805 0.690
3× 5 0.683 0.694 0.705 0.703 0.686 0.629

0.836 0.840 0.898 0.857 0.835 0.750
4× 3 0.702 0.721 0.724 0.702 0.696 0.667

Figure 6.25: Table of the adaptation (red) and generalization (black) rate of differ-
ent types of m×n Gabor jets and smoothing parameter k for individual proximity
function for each texture dimension plus an additional proximity function for the
intensity distance. The shaded values are investigated in detail in Fig. 6.27 and
6.26.
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Figure 6.26: Qualities for the segmentation results in Fig. 6.27 based one a 4 × 3
Gabor jet and a smoothing factor of k = 16. The x-axis shows the number of the
respective training pattern. The y-axis shows the achieved grouping quality on the
numerated test patterns.
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Test P1 Test P2 Test P3 Test P4 Test P5

AHL(P1)

AHL(P2)

AHL(P3)

AHL(P4)

AHL(P5)

Figure 6.27: Segmentation results for 4x3 and k = 16 and individual texture prox-
imity function for each texture dimension, plus an additional proximity function
for the intensity distance.

independent proximity functions (one for each component of the texture vectors
zr):

d1+l(mr,mr′) = |(zr)l − (zr′)l|, l = 1, . . . , 2 ·m · n, (6.17)

with the intention that the AHL learning algorithm selects the relevant proximity
components to segment the patterns. Figure 6.24 lists the adaptation and gener-
alization rates of the corresponding exploration of (m,n, k). The results show,
that the split texture proximity can achieve a better adaptation (about 90%) for the
pattern 1, 2, 3 and 4. For pattern 5, the best performance lies only around 80%,
which means, that roughly one of the five texture regions is labeled incorrectly,
such that the maximal adaptation rate lies at A ≈ 0.867 for (m,n, k) = (2, 7, 16)
and (3, 5, 8). However, there is lower generalization between the patterns indicated
by a maximal value of G ≈ 0.731 for (m,n, k) = (1, 9, 16). The interaction func-
tion mostly adapts to the training pattern and shows high segmentation errors on
the other patterns.
As further extention, the proximity set (6.13) and (6.17) is extended by additional
color (intensity) information. Let Ir be the average intensity in 64× 64 subblocks
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of the original 256×256 images that corresponds the subsampled feature mr. Then
the distance of average intensity

d2+2·m·n(mr,mr′) = |Ir − Ir′ | (6.18)

is appended to the set of proximity functions. The adaptation and generalization
rate for this experiment are shown in Fig. 6.25. The gray shaded parameter set of
m = 4, n = 3, and k = 16 is selected for detailed display of the results in Fig.
6.27. Compare them with those of Fig. 6.21.
The new grouping results show a higher adaption A ≈ 0.898 to the respective
training pattern, while the segmentation results of the other patterns, not applied
for training, are equal (mainly for pattern 1) or worse (G ≈ 0.724) than in the case,
when the texture proximity is represented by a single function.
The example shows that the AHL algorithm can deal with (relative) high (around
30) dimensional proximity spaces. Further it once more stressed the importance of
feature representation and proximity criteria. It has to considered, that it is difficult
to predict the generalization abilities of the learned interaction functions.

single texture individual proximity individual texture
proximity fct. for each proximity fcts. plus

texture dimension distance in intensity
avg. adaptation 0.723 0.794 0.815

avg. generalization 0.7032 0.681 0.703

Figure 6.28: Average adaptation and generalization rates for the three types of
texture proximity functions.

6.5 Contour Grouping

As last example for the application of the AHL and CLM algorithm, artifically
generated data sets from the problem domain of contour grouping are inspected. As
stated in section 3.6, Wersing [61] specified a parameterized interaction function
for the grouping of continuous and smooth contours in images. In contrast to this
application, the following experiments try to adapt characteristic object specific
shape parameters by constructing corresponding interaction functions. In the next
chapter, this approach will be elaborated to a shape classifier by using several of
such object specific interaction functions in mutual competition within the CLM.
The investigation starts on simple and highly regular polygons, like lines, trian-
gles, squares and circles. The task is to combine local line segments to regular
geometrical objects of predefined size and shape.
A polygon is described by the parameters (x, y,R, θstart, S), where x, y, and R
define the center and radius of a circle. Starting on the contour of this circle at the
angle θ = θstart, a set of surrounding lines of a regular geometrical object arises
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d = pr − pr′

θ1
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Figure 6.29: Proximity measures for oriented line segments: Two line segments
mr and mr′ define a triangle (pr,pr′ , I(mr,mr′)), where I(mr,mr′) is the
intersection point of the two line segments. The proximity of mr and mr′ is
expressed by the local distance ||d|| and the three angles within the triangle,
where θ2 and θ3 are swapped, if θ3 > θ2 to ensure the symmetry of drr′ . So
drr′ = (a1||d||, a2θ1, a3θ2, a4θ3)T . If I(mr,mr′) does not exist, because both
features have parallel orientation, θ1 is set to zero, describing an infinitely sharp
angle. θ2 and θ3 describe the angles between the orientation of the two features
and the vector d under the constraint θ1 + θ2 + θ3 = π.

from successively increasing θ with 2π
S and stepping to the next contour point of

the circle at the angle θ. So S generates a polygon shaped as point, line, triangle,
square, etc.
These lines are divided in into small line segments of equal length, where each
oriented segment defines a feature vector mr = (pr, ϕr)

T by it’s position pr =
(xr, yr) and orientation ϕr ∈ [0, π]. A pattern is given by one to five objects of
the same shape S and similar size R, where the remaining object parameters are
chosen randomly as x, y ∈ [R, 3R] and θstart ∈ [0, 2π].
The CLM has to learn to segment patterns which contain objects of the same shape
S and size R into the constituting polygons. It has to adapt the compatibilities
for typical angles and distances within the observed polygons. To model this task
with basis functions, it is assumed, that each two features define a triangle (see Fig.
6.29). The proximity between two features is described by their local distance and
the three angles within the triangle, which defines a four-dimensional proximity
space D.
The proximity vectors drr′ occurring in one typical training pattern are clustered to
100 prototype vectors d̃j , whose Voronoi cells define the basis functions according
to (5.17). Then the algorithms QCO (κ = 100) and AHL (Λ = 0.5) are applied to
estimate the interaction coefficients cj of these basis functions. Some examples for
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Figure 6.30: Training results for contour grouping on artifical data: the first col-
umn shows three training patterns, with five ideal triangles, squares and circles of
size R = 20. The label of the features are displayed by color and number. The
second column displays parts of interaction functions resulting from the applica-
tion of AHL (Λ = 0.5) on the training patterns. In each diagram a discretization
(according to position and orientation) of line segments is plotted, which have a
positive interaction with a reference segment at position (50,50) with horizontal
orientation. The length of the line segments reflects the strength of positive inter-
action. The third column shows unlabeled test patterns. The last column shows
results of a ten-layered (nine figure-layer, one background layer) CLM which ap-
plies the learned interaction function of the test image. The labels are displayed by
color and number.

training patterns, learned interaction functions, input patterns and CLM-Outputs
are shown in Fig. 6.30 for datasets containing triangles (S=3), squares (S=4) and
approximated circles (S=20) of size R = 20.
Figure 6.31 and 6.32 demonstrate the effectiveness of the learned interaction func-
tion in more detail on the example of the triangle interaction function. Equation
(5.22) suggests an upper and lower bound for Λ at Λmin ≈ 0.44 and Λmax ≈ 8.4.
Two patterns are presented to an L = 10-layered CLM which uses the learned
triangle interaction function and Λ is varied from 0 to 10.
In the first pattern, two overlapping triangle contours in random, uncorrelated ori-
entation are presented. The second pattern presents a configuration, where two
triangles show two neighboring lines with parallel orientation. Figure 6.32 plots
the grouping quality achieved for the two pattern against Λ, where the red graph
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Figure 6.31: Output labelings and corresponding interaction matrices resulting
from a triangle interaction function. The first and third row show output labelings
of a ten-layered CLM for two triangles in different configurations resulting from
the triangle interaction function at different values of Λ. The second and fourth
row show the corresponding interaction matrices, where red color represents posi-
tive interaction and blue color negative interaction. The interaction weights of each
matrix are normalized to maxr,r′ |frr′| = 1. The normalized connection strength
|frr′ | is mapped to the color intensities.

corresponds to the pattern with uncorrelated orientations and the blue graph cor-
responds to the pattern with parallel orientations. Additionally, Fig. 6.31 shows
typical output groupings and interaction matrices of the two patterns for character-
istic values Λ ∈ {0.2, 1, 2, 4, 6}.
Each displayed interaction matrix is normalized to maxrr′ |frr′ | = 1, positive in-
teractions are mapped to red color, negative interactions are mapped to blue color,
and the normalized interaction strength |frr′ | is mapped to the color intensities.
The features are ordered according to their membership to the two present trian-
gles and, on a finer level, according to their occurrence on the different lines that
form the triangles to clarify the visualization. This ordering reveals the observed
block structures, which for some values of Λ come close to an ideal block diagonal
interaction matrix.
For small values of Λ and for both patterns, the positive interactions dominate, such
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Figure 6.32: Plot of the quality achieved on the two triangle stimuli in Fig. 6.31
with values of Λ ∈ [0, 10] for a triangle interaction function. The red graph cor-
responds to the pattern with triangles in random orientation, while the blue graph
describes the situation when both triangles show a symmetric orientation.

that both triangles are assigned to the same layer reaching a quality of Q = 0.5.
However, it can be seen, that the positive cross interactions between the triangles is
higher for the pattern with parallel orientations, where the two parallel lines attract
each other as also attract the two remaining lines of the respective other triangle,
than for the pattern with uncorrelated orientation, where positive cross interaction
only occurs in the small area of contour overlap.
The increase of Λ enhances the influence of negative interactions by shifting the
components of the interaction matrices into the negative quadrant. Within the out-
put labeling this process is accompanied by a splitting of the labeling into more,
smaller groups.
In the case of uncorrelated orientations, the negative cross interactions between the
triangles become early (Λ ≈ 0.5) strong enough to produce the desired segmenta-
tion of the two triangles, indicated by Q = 1. In the more complicated situation
of parallel orientation, Λ has to be increased to a higher level (Λ ≈ 1.5), until
the negative interactions between the far away parallel lines of the triangles are
strong enough to compensate the positive cross interactions. From this point on,
both input patterns behave in the same way and result in the correct grouping, un-
til (Λ ≈ 4.8) inner-triangle interactions are shifted into the negative quadrant and
the triangles are decomposed into subgroups. Thereby, the high positive inner-line
subblocks of the interaction matrices still result in a reasonable segmentation of the
triangles into three lines indicated by Q = 0.33.
The interval of feasible Λ values is larger for the pattern with uncorrelated trian-
gle orientations than for the pattern with parallel triangle orientations, but in both
cases it covers a relative large subinterval of [Λmin,Λmax]. If Λ is chosen from
this interval and the pattern is extended by further triangle contours in random po-
sition and orientation, the corresponding interaction matrix is simply extended by
corresponding positive inner-triangle interaction blocks along the main diagonal of
the interaction matrix and negative off-diagonal inter-triangle interaction blocks,



6.5. CONTOUR GROUPING 121

a) input pattern b) interaction matrix
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Figure 6.33: Example of an input pattern with six triangle contours and a back-
ground of random line segments.

as can be seen in Fig. 6.33. Spurious features with random orientation can be
separated easily from the relevant triangle contours by application of a background
layer, because background features receive an evident smaller support from other
features than features on a triangle contour.
The following four experiments address the evaluation of the learning method ac-
cording to the adaption of object size and shape, the influence of spurious features,
the influence of errors in feature position and the influence of errors in feature ori-
entation:

6.5.1 Adaptation to Object Size and Shape

In this experiment, it is investigated whether the algorithms QCO and AHL can
adapt an interaction function to noise-free datasets with S ∈ {3, 4, 20} and R ∈
{15, 20, 25, 30, 35, 40, 45, 50, 55, 60}. For each combination of (algorithm, S, R)
random patterns with five groups are obtained from a pattern generator to train an
interaction function frr′ .
Each of these functions is tested with a ten-layered (one ground layer, nine figure
layers) CLM on ten new patterns with the same object properties S and R, but with
the number of objects varying from one to five. This gives a number of 100 CLM
responses for each triple (algorithm, S and R) for which the average grouping
quality is plotted in Fig. 6.34.
The results show, that AHL is always able to adapt the correct compatibilities for
the relevant feature combinations in the patterns. It has to be remarked, that the
desired grouping behavior is learned from the representation of a single pattern,



122 CHAPTER 6. APPLICATION

Example R = 15 Example R = 65
y

x

50

100

150

200

250

300

0 50 100 150 200 250 300

y

x

50

100

150

200

250

300

0 50 100 150 200 250 300

QCO AHLQ

R0

0.2

0.4

0.6

0.8

1

20 30 40 50 60

Q

R0

0.2

0.4

0.6

0.8

1

20 30 40 50 60

Figure 6.34: Average grouping quality for objects of different size: Plots of group-
ing quality against object size R (15 to 65) for S = 3 (triangles), 4 (squares) and 20
(circles). Top row shows stimulus examples.

where the property of rotation invariance is guaranteed from the design of the prox-
imity functions. With the learned interaction function the CLM is able to reveal
the correct number of groups, as long as the number of groups does not exceed the
number of figure layers in the CLM.

QCO also performs quite good, at least when R ranges from 15 to 30. For higher
values of R, a serious decrease can be observed in the grouping quality for QCO.
The reason for this lies in the different number of features per pattern. For a pattern
with low R, this number is smaller than for a pattern with high R, because the
length of the surrounding contour grows, while the length of each local edge feature
is fixed. In QCO, a set of L−1 consistency conditions has to be computed for each
feature, which are extended by a uniform margin κ. It seems, that the choice of
κ = 100 is not suitable for varying R. Actually, the qualitative performance of
QCO for patterns with a higher value of R can be improved, if the value of κ is
increased with the number of features in the patterns. A second disadvantage of
QCO against AHL lies in the higher computation time, which becomes significant
for patterns which consist of many features.
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6.5.2 Influence of Spurious Features

Example for η = 30% Example for η = 50%
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Figure 6.35: Statistic grouping quality for noisy patterns: Plots of grouping quality
against percentage of spurious features η (5% to 50%) for S = 3 (triangles), 4
(squares) and 20 (circles). Top row shows stimulus examples.

In the other three experiments, it is investigated, how different types of errors in
the datasets affect the grouping performance of the CLM. Again, the learning algo-
rithms QCO and AHL are tested on objects S ∈ {3, 4, 20}, but this time R = 20 is
kept fixed. Instead η ∈ { 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%}
varies, where η indicates the percentage of features that are removed from the
pattern and that are replaced by randomly generated features mr with xr, yr ∈
[0, 5R], ϕr ∈ [0, π] that are labeled as background features. The average grouping
quality over 100 CLM responses (10 tests for each of 10 training runs) is plotted in
Fig. 6.35 for each triple (algorithm, S, η).
A high grouping quality for AHL and QCO is obtained in all test runs. These results
highlight both, the robustness of the two learning methods and the robustness of
the CLM against fragmentary data, which can be explained by the high redundancy
in the matrix of lateral interactions and the redundant character of the CLM. The
results also show, that the CLM is able to separate the relevant groups from a noisy
background using the background layer.
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6.5.3 Influence of Errors in Feature Position and Feature Orientation

Example for εp = 2 Example for εp = 4.5
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Figure 6.36: Statistic grouping quality for translation errors: Plots of grouping
quality against translation error εp (0.5 to 5) for S = 3 (triangles), 4 (squares) and
20 (circles). Top row shows stimulus examples.

In the third and fourth experiment, the second experiment is repeated, where the
error η is substituted by two other errors εp ∈ {0.5,1, 1.5, 2, 2.5,3, 3.5, 4,4.5, 5}
and εo ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35 , 0.4, 0, 45, 0.5}. εp defines an error
in feature position, where all features in the dataset are randomly shifted in x-
and y-coordinate by dx, dy ∈ [−εp, εp]. εo defines an error in feature orientation,
where all features in the dataset are randomly rotated by an angle dϕ ∈ [−εo, εo].
The average grouping qualities of all triples (algorithm, S, εp) are plotted in Fig.
6.36, while the average grouping qualities of all triples (algorithms, S, εo) are
plotted in Figure 6.37.
The results show, that the learned grouping principles are relatively robust against
errors in feature extraction. With respect to errors in feature position both AHL
and QCO show high grouping quality, which can be explained by the interaction
fields in Fig. 6.30. Each feature gets positive feedback not only from features with
the correct orientation, which are in a small interval of local distance, but also from
features which are shifted parallel to the relevant orientation.
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Example for εo = 0.05 Example for εo = 0.5
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Figure 6.37: Statistic grouping quality for rotation errors: Plots of grouping quality
against rotation error εo (0.05 to 0.5) for S = 3 (triangles), 4 (squares) and 20
(circles). Top row shows stimulus examples.

In the case of errors in feature orientation, there is a noticeable decrease in group-
ing quality, which is serious for AHL. This difference between AHL and QCO be-
comes clear, if the kind of errors are inspected that are made by the AHL-learned
CLM. In patterns of triangles, a triangle is often divided into three separate lines,
which causes a typical quality of 0.33. Similarly, in patterns of squares, a square
in often divided into two perpendicular groups of two parallel lines, which causes
a typical quality of 0.5. Consequently, the interactions of feature pairs with the
characteristic inner angles of 60 respectively 90 degrees are not excitatory enough.
These errors can be reduced by decreasing the parameter Λ to achieve a coarser
segmentation of the data into bigger groups, as was is demonstrated in Fig. 6.31
and Fig. 6.32. The patterns of circles are more robust to this kind of errors, because
they are more regular.

6.5.4 Adaptation to more Complex Contours.

The previous experiments have shown, that the AHL approach can achieve a good
amount of generalization and robustness, if the representation of the feature space
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Figure 6.38: Contour grouping for more complex objects like a fish and a bird.

F and the pairwise proximity space D are consistent with the grouping behavior
specified by the target labeling. For the artifical polygon contours, this consistency
is a result of the high self-similarity of the polygon shapes, where the rotation
invariant interaction function matches at each point of the contour.

In Fig. 6.38, the application of the contour grouping approach is demonstrated on
the more complex and non-symmetric contours of a bird and a fish. Therefore,
Sobel-x and Sobel-y filters are applied on the two images in column one of Fig.
6.38 to extract salient edge features mr = (pr, ϕr). The Sobel responses are
thinned out to one pixel wide contours by non maximum suppression according
to the intensity gradient strength and orientation, followed by a thresholding with
50% of the maximal intensity gradient strength and a subsampling of the resulting
edge set by the factor 2. The orientation angles ϕ ∈ [0, π] are extracted from the
Sobel-responses or = (Sxr , S

y
r ) at the remaining edge positions pr = (xr, yr)

neglecting the unique direction information, such that the edge sets are invariant
to a black/white switching of the foreground and background color. Training and
test patterns are constructed by copying randomly rotated and translated versions
of the extracted edge sets into a 2D coordinate system, where the maximal distance
of an edge to the center of its group is normalized to a fixed radius R = 30 (see the
second column of Figure 6.38).
Since the contour of the bird and the fish show varying shape along the border line,
the learning problem of extracting relevant inter-edge angles and distances is less
consistent than before. The higher overlap between positive and negative interac-
tions within the pairwise proximity space can be interpreted as loss of higher order
relation information in the AHL-learned (Λ = 2) interaction functions in column
three of Figure 6.38. Both interactions integrate several edge combinations typ-
ical for different points on the object contours, which makes them similar to an
ordinary edge clustering interaction expressed by excitatory connections for short
ranged local distances at all feature orientations. Thereby, the interaction functions
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concentrate the excitatory connections to different types of object specific edge
configurations. The similarity to the edge clustering behavior weakens the ability
of the CLM to separate overlapping and close-by contours, which is reflected by
suboptimal grouping quality values of Q = 0.93 and Q = 0.97 for the CLM out-
puts in Fig. 6.38. Also, the ability of figure-background separation are weaker,
because both type of interactions generate an extensive support for features in ran-
dom edge clusters. However, the next chapter will show, that these degenerated
interaction functions still contain enough information to differentiate the contours
of the respective objects in a CLM architecture with layer specific interaction func-
tions.

6.6 Summary

Several examples on artifical and real world problems have shown, how the learn-
ing can be practically realized to solve a wide range of grouping problems.
The example of point clustering has shown, how the control parameter Λ influences
the shape of the interaction function by scaling the strength of inhibitory feature-
pairs against that of the positive ones. Thereby, the segmentation level of the CLM
output labeling can be adapted to the target labeling. Further, this example showed,
that the problem of finding a suitable value for Λ complicates with the degree of
inconsistency in the training pattern.
The effect of inconsistent data was visualized in detail on the spiral problem ex-
amples, where the increasing degree of contortion of two spiral arms resulted in an
increasing annihilation of positive and negative interaction.
The cell image segmentation problem compared the AHL-algorithm with standard
binary classification approaches. Qualitatively, the results of AHL were slightly
outperformed by the application of the SVM. But it was argued, that, nevertheless,
AHL has advantages against the other approaches from its simple algorithm, which
reduces parameter tuning to a minimum and results as well in a very fast learning
speed as a fast evaluation speed of the learned interaction function. Further, it was
shown, that the control parameter Λ can be used to adapt the grouping behavior to
different cell sizes and that the grouping behavior can be implemented by different
types of feature proximity functions, where spurious proximity functions are ig-
nored by the AHL algorithms. Finally, the robustness of the AHL approach against
errors in the target labeling was shown.
The problem domain of texture segmentation was characterized by a relative high
dimensional proximity space, where the AHL algorithm was able to extract the
relevant information from this space.
Finally, an example from the domain of contour grouping showed that the AHL
algorithm can extract simple shape parameters from edge sets of dynamical length.
This behavior were very robust against lacking or noisy features and showed the
interesting properties of translation and rotation invariance, which were specified a
priori by the choice of the feature proximity functions.



128 CHAPTER 6. APPLICATION

Surely, this high adaptation bases on the high regularity within the polygon pat-
terns, but it motivates the question: Can several such shape descriptive interaction
functions be applied in competition within the CLM to develop a shape classifier
that can work on object contours? This question is subject of the next chapter.



Chapter 7

Classification Abilities of the
CLM

Up to this point, the CLM was only applied on pure grouping and segmentation
tasks, where in all layers of the CLM the same interaction matrix was used.
Wersing [61] has already shown, that the convergence and assignment conditions
(see section 3.2) can be generalized to the case of layer specific interaction matri-
ces, where fαrr′ is the interaction between feature mr and mr′ in the layer α.
This motivates the approach to implement several class specific grouping behav-
iors by applying the corresponding interaction functions in competition between
different types of layers. As a result of this approach, the features can not only be
divided into groups, but can also be classified according to the class of layer, they
are assigned to.
Inspecting the artifical polygon examples in section 6.5, it becomes clear, that this
approach causes problems, if two or more interaction functions describe the same
or similar grouping behavior. In the polygon example this is the case, because lines
are subgroups of triangles and squares and, therefore, can be grouped by any of the
three corresponding interaction functions.
To solve this subsumption problem, additional layer weights wc, c = 1, . . . , C are
introduced, where C is the number of different object classes. These weights are
used to scale the different interaction functions, respectively matrices, against each
other by

f ′crr′ = wcf
c
rr′ . (7.1)

Before the problem of finding suitable layer weights is inspected, it is observed,
similar to chapter 4, how the CLM behaves during the annealing process, if several
ideal block-diagonal interaction matrices are set into competition to each other.

7.1 Competition of Interaction Matrices

Consider the seven binary patterns displayed in Fig. 7.1. Each pattern consists
of N = 900 features, where each feature has it’s own relation between black and
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325/575 247/653 553/347 366/534 403/497 203/697 272/628

Figure 7.1: Seven patterns and their interaction matrices

white labeled features, e.g. the first pattern consists of 325 white features and
575 black features. An ideal block-diagonal interaction matrix of 1’s and -1’s is
constructed for each pattern, where the diagonal elements are set to zero (∀c : ∀r :
f crr = 0).
These seven interaction matrices have the same eigenvalues λ1 = 899,
λ2, . . . , λ900 = −1, but different eigenvectors, where the eigenvector of the largest
eigenvalue λ1 describes always the separation of the corresponding pattern into it’s
two groups. If only one of these seven interaction matrices is applied within the
different layers of the CLM, the WTA behavior of the two groups in the respective
pattern are activated when T reaches the corresponding “group size-1“ (compare
observations of chapter 4). For the first pattern these thresholds are T = 574 and
T = 324.
To give each pattern a meaning, the features are permuted according to the third
row of 7.1 and the patterns are called: ghost, man, squirrel, yin-yang, horse, vase,
and woman.
Consequently, the columns and rows of the corresponding interaction matrices have
to be permuted in the same way, which has no effect on the eigenvalues and acti-
vation thresholds of the WTA behavior and permutes the components of the eigen-
vectors correspondingly.
Now the annealing process is simulated for an L = 70-layered CLM, where always
10 layers of the CLM share the same interaction matrix and all seven layer classes
are scaled identically: w1, . . . , w7 = 1. The external input of the neurons is set
uniformly to hr = 1, and the strength of vertical WTA connections is set to J :=
2 maxrα

∑
r′ max(0, wαfαrr′) to guarantee convergence. The pseudo-temperature

is explored by hand and the attractor states at the interesting thresholds of T are
visualized in Fig. 7.2 corresponding to the visualizations in chapter 4.
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T Activities Log. activities Zero activities

750

600*

600

150*

150

Figure 7.2: Course of the CLM-dynamics under the dominance of pattern vase.
Each subimage describes the state of an L = 70-layered CLM with seven different
types of layers. Always ten layers use the same pattern dependent interaction ma-
trix and form a row in the CLM state. The seven different patterns and interaction
matrices are shown in Fig. 7.1. The seven types of layers are scaled uniformly by
the layer weights w = (1, 1, 1, 1, 1, 1, 1)T . States marked by “*“ show intermedi-
ate states, where the dynamics was halted, before it had reached a stable attractor
state.

Annealing is started at a temperature, where the WTA behavior is inactive for
all groups in the different interaction matrices. Since the pattern vase shows the
biggest group of all patterns (697 features), T is set to T = 750, such that it can
be expected that the DC-modes of the CLM dynamics (see section 3.4) dominate
for all interaction matrices. The characteristic attractor state in the first row of Fig.
7.2 shows, that all layers which share the same interaction matrix converge to the
same activation pattern. Thereby, each layer class shows it’s own activation pat-
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tern, which tries to point into the direction of the larger group of it’s corresponding
pattern.
The manifestness of the different activation patterns decreases with the size of the
larger group of the corresponding input pattern, such that the structure of pattern
vase dominates (shows the strongest activation) mostly, while the pattern horse is
suppressed mostly by the other patterns. Thus already at this early simulation state,
the dominance of pattern vase in the output grouping becomes visible.
After the dynamics has converged, the pseudo-temperature is switched to the value
T = 600, which activates the WTA process for the larger groups in the patterns
vase, man and woman. Since the pattern vase already dominates the attractor state
at T = 750, it also dominates the WTA process. However, this happens in two
phases. In the first phase, the CLM is driven towards an intermediate state, indi-
cated by the notation T = 600∗ in Fig. 7.2, where all layers of pattern vase show
the same activation pattern, which shows the larger group of pattern vase. All other
layers show the same activation pattern for the smaller group of pattern vase, but
this state is not stable. Instead, in the second phase, the WTA behavior is activated
between the layers of pattern vase. The activation of the larger group starts to
differentiate, where the activation of the most active layers grows most, while the
activation in the less activated layers decreases. If the activation in a layer reaches
zero, it changes it’s activation pattern towards the smaller group of pattern vase. At
the end of the WTA process at T = 600, one layer of pattern vase shows activation
for the bigger group of this pattern, while all other layers show activation of the
smaller group in pattern vase. The activation of the smaller group is slightly higher
(see logarithm of activities) in the layers of pattern vase than in the other layers,
which can be explained by the fact that the remaining features exchange the highest
support in the layers of pattern vase.
In a second annealing step, the pseudo-temperature is reduced to T = 150, which
activates the WTA behavior for all groups within the seven patterns. But since the
WTA-behavior was already activated at T = 600 for the bigger group of pattern
vase, and since the CLM had time to converge to its attractor state, the vase layers
are also dominant for the second group of the pattern.
Again, the WTA process is divided into two phases. In the first phase, the activation
in all layers not belonging to the pattern vase is suppressed and the CLM is driven
to the state marked by T = 150∗. This state is not stable. In the second phase, the
WTA process forces the total activation of the smaller group into a single layer of
pattern vase. A further decrease has no more effect on the structure of the CLM
attractor state (besides a scaling of the activities). Finally, there are only two active
layers for the two groups of pattern vase in the corresponding layer class.
From this sample simulation two results shall be marked: the first is, that it depends
on the ordering of activation thresholds in the different interaction matrices which
layer class is dominant for a group. The second is, that the WTA behavior is
divided into two phases. The first acts between the dominant and not dominant
layer classes and the second acts only within the dominant layer class. Annealing
should be performed very slow around the critical T -values, especially, if layers
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T Activities Log. activities Zero activities

650

500*

500

200*

200

Figure 7.3: Course of the CLM-dynamics under dominance of pattern
horse. The seven types of layers are scaled by the layer weights (w =
(0.65, 0.65, 1, 0.65, 0.65, 0.65, 0.65)T ). Again, states marked with “*“show in-
termediate states, where the dynamics was halted before it had reached a stable
attractor state.

of the same layer class shall be reused for further groups, and, if the gap between
the activation thresholds in the dominant and non-dominant interaction matrices is
very small.
Layer weights can be used to rescale the interaction matrices and, thereby, their
WTA activation thresholds. Obviously, there exist weights that make any of the
seven patterns encoded in the interaction matrices dominant. For example the
weights that leave the interaction of pattern horse unchanged w3 = 1 and scale
all other interactions with the factor w1 = w2 = w4 = w5 = w6 = w7 = 0.65
make the pattern horse dominant (see Fig. 7.3). The only difference to the simula-
tion in Fig. 7.2 is an early-state split of the layers of the pattern horse.
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For the example, this predictable behavior is a result of the high regularity of the
ideal block diagonal interaction matrices and it becomes more complex for the
competition of more approximative interaction matrices, e.g. like results from the
AHL algorithm. However, the results on the contour grouping of regular polygons
in section 6.5 have shown, that at least for simple shapes the reconstructed interac-
tion matrices come close to the desired block diagonal structure, such that it might
be reasonable to classify simple shapes with the CLM. The next section presents an
approach to estimate suitable layer weights that make such a classification process
possible.

7.2 Training the Layer Weights

y

x

20

40

60

80

100

0 20 40 60 80 100

y

x

20

40

60

80

100

0 20 40 60 80 100

y

x

20

40

60

80

100

0 20 40 60 80 100

Figure 7.4: Examples of training patterns for learning of class-specific interaction
functions with the AHL algorithm.

The goal is to build a simple shape classifier that is able to distinguish lines, trian-
gles and squares of a certain size. In a first step, three different interaction functions
f crr′ , c = 1, . . . , 3 can learned independently, e.g. by applying AHL on the three
patterns in Fig. 7.4. Each of these functions is parameterized by its own segmen-
tation control parameter Λ. For simplicity, it is assumed, that a uniform value of Λ
is chosen for all functions. Since the adjustment of Λ to an optimal value depends
on the number of groups in training pattern, which can differ from the number of
labels in the target labeling, and, since the decision about the correct segmentation
level demands much problem-specific knowledge, Λ is chosen by hand.
What is left is an automatic estimation of the layer weights wc, c = 1, . . . , 3
(c = 1, . . . , C) that induces a correct assignment of the three shapes to the cor-
responding layers. Therefore, three additional input patterns for a single line, tri-
angle and square, like in Fig. 7.5, are presented to each of the interaction functions
to construct an interaction matrix, such that a 3 × 3(C × C) matrix of interaction
matrices is obtained.
Let the index k, k = 1, . . . , 3 (k = 1, . . . , C) enumerate the interaction functions,
and, let the index l, l = 1, . . . , 3 (l = 1, . . . , C) enumerate the input patterns, such
that F k(P l) is the interaction matrix computed with interaction function f krr′ on
pattern P l.
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Figure 7.5: Presentation of single object patterns to estimate the layer weights.

For dimension reduction, each matrix is represented only by its largest eigenvalue.
Then ekl = λmax{F k(P l)} is the largest eigenvalue of the interaction matrix con-
structed from pattern l with the interaction function k, and E is the 3× 3(C × C)
matrix of these eigenvalues. Since each pattern shows only one figure group, the
eigenvalues approximate the inner-group support and, thereby, also the activation
thresholds of the WTA behavior.
Each interaction function and, therefore, each column of E is scaled with it’s layer
weight wk, k = 1, . . . , 3(k = 1, . . . , C).
If only two interaction functions with indices i and j have to be scaled against each
other, only the submatrix [

wieii wjeji
wieij wjejj

]
. (7.2)

has to be considered. If on the one hand object i is presented

wieii > wjeji (7.3)

must hold, such that class i dominates, because it is switched firstly into the WTA
behavior. If object j is presented on the other hand

wjejj > wieij (7.4)

must hold, such that layer class j dominates, because it is switched firstly into the
WTA behavior. Consequently, wi

wj
is bound by (7.3) and (7.4) to

ejj
eij

>
wi
wj

>
eji
eii

respectively
eii
eji

>
wj
wi

>
eij
ejj

. (7.5)

Figure 7.6 a) sketches these bounds, where the layer weights wi and wj are given
along the x- and y-axis and the proportions ejj

eij
and eji

eii
are drawn as slope trian-

gles. Adding the constraint maxk wk ≤ 1, it becomes clear, that the shaded area
describes the base of a volume unit perpendicular to the axes of wi and wj , where
the size of this volume decreases with the similarity of the two interaction functions
f irr′ and f jrr′ , respectively the eigenvalues eii, eij , eji and ejj .
Suitable layer weights for scaling two interaction functions can be found by

wi
wj

=
1

2

(
ejj
eij

+
eji
eii

)
or

wj
wi

=
1

2

(
eii
eji

+
eij
ejj

)
. (7.6)
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Figure 7.6: a) Relation between two layer weights. The two layer weights wi and
wj can be chosen from the gray area defined by the eigenvalues eii, eij , eji and ejj .
b) Relation between three layer weights results from the intersection of the three
pairwise weightings.

However, the exemplary classification problem consists of 3 (C) classes. There-
fore, the 6 (C(C− 1)) inequalities for all pairwise comparisons of the classes have
to be fulfilled:

∀i : ∀j 6= i : wieii > wjeij . (7.7)

This means, that w1, . . . , w3 (w1, . . . , wC ) have to be chosen from the intersection
of all constraint volumes perpendicular to the pairs of weight axes (see Fig. 7.6 b).
Obviously, this intersection volume of feasible layer weights is restricted more and
more by any new constraint. If many or strongly overlapping interaction functions
are applied in parallel, this intersection can be empty, such that no feasible layer
weights can be found. In this case, a simultaneous classification of all classes is
impossible. Therefore, a set of slack variables ξij is introduced into equation (7.7)
and it is formulated as a constrained optimization problem:

minimize : −∑i

∑
j 6=i(wieii − wjeij)

subject to : ∀i : ∀j 6= i : wieii − wjeij + ξij > 0
∀i : ∀j 6= i : ξij > 0
∀i : wi > 0

. (7.8)

This problem can be solved with a standard Linear Matrix Inequality (LMI) solver
from the mathematical environment SCILAB [12]. Figure 7.7 summaries the com-
plete learning and application process of the classification approach.
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Figure 7.7: Sketch for classification process. In the first learning phase, individual class-specific interaction functions f crr′ , c = 1, . . . , C
are learned separately with the AHL algorithm. Then a uniform value of Λ is specified for all these interaction functions. In the second
learning phase, suitable layer weights are estimated by computing the maximal eigenvalues of the interaction matrices resulting from the
application of each interaction function on each object and solving the constrained optimization problem for the layer weights (7.8). In
the application phase, each interaction function f crr′ is scaled with it’s layer weight wc and is used to compute an interaction matrix for
the new input pattern. These different interaction matrices compete within the CLM and drive the CLM dynamics to an attractor state,
where the layer label can be extended by a class label according to the layer class a group of features is assigned to.
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It seems reasonable, that this classification approach works for the three class clas-
sification of lines, triangles and squares as sketched in Fig. 7.7, because of the low
number of classes and the high regularity of the three shapes. In the next section,
it’s qualification for more complicated problems is tested.

7.3 Application

7.3.1 Classification of Artifical Letter Contours

y

x

20

40

60

80

100

0 20 40 60 80 100

y

x

20

40

60

80

100

0 20 40 60 80 100

y

x

20

40

60

80

100

0 20 40 60 80 100

y

x

20

40

60

80

100

0 20 40 60 80 100

y

x

20

40

60

80

100

0 20 40 60 80 100

Figure 7.8: Examples of artificial letter patterns for the letters C, L, M, B and P
in standard orientation. Each pattern consists of 40 to 100 line segments. The
shape of the letters C, L and M is clearly distinguishable, while the letters B and P
describe a subsumption problem.

In the first application of the shape classification approach, artifical contours are
investigated, where the number and complexity of the contours is increased com-
pared to the regular polygons example in section 6.5. The set of classes is defined
by the 26 letters of the alphabet. Each letter is defined by a set of lines and circular
or ellipsoid arcs that are divided into small line segments mr = (pr,or), specified
by position pr and orientation or. Examples are shown for the letters C, L, M, B
and P in Fig. 7.8. Each letter consists of 40 to 100 line segments.
The dataset induces several subsumption and high similarity problems between the
classes, e.g. between the letters C, G, O, and Q, which all show the same circular
arc of line segments, or the letter I, L, T and X, which all consist of single or
perpendicular lines.
The interaction weights are adapted to detect each letter in an arbitrary orientation,
but fixed size. Therefore, the same proximity functions as visualized in Fig. 6.29
are applied.
In the first step, the 26 interaction functions are learned separately with AHL
(K = 100, 10000 learning steps per learning phase) on a pattern consisting of five
objects of the respective class in random orientation and position. Figure 7.9 shows
examples for the training patterns. Since the letters are less regular than the poly-
gons, the interaction functions have to adapt more than one typical object-specific
angle and distance. To prevent the AHL algorithm form learning the trivial group-
ing behavior of edge clustering, each training pattern shows several overlapping
contours of the respective letter in arbitrary orientation. Actually, the interaction
functions adapt several angle and distance configuration within the letters.
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Figure 7.9: Examples of training patterns for AHL in the first phase of the learning
approach. Each pattern shows five overlapping instances of the respective letter in
arbitrary orientations.

Since the letters have different levels of complexity, the learned interaction func-
tions show different overlaps between the positive and negative interactions. These
differences are shown in Fig. 7.10, where the lower bound Λmin (blue) and upper
bound Λmax (red) of the control parameter Λ is plotted for each interaction func-
tion. For the simple shaped letters, like I, O and T, the gap between both Λ-bounds
is relative large, while it is smaller for more complex letters, like B, P and R. The
value of Λ is set with Λ = 0.9 close to the lower bound of all interaction functions.
This prevents the split of the letters into several subgroups, but also increases the
probability of merging the letters with spurious features from the background.
In the second learning phase, the 26 × 26 matrix E of largest eigenvalues is com-
puted by representing randomly rotated versions of the patterns in Fig. 7.8 to each
of the interaction functions to build corresponding interaction matrices. The en-
tries of the resulting E-Matrix are visualized in Fig. 7.11. This matrix mirrors the
similarity between the letters, e.g. the interaction function of the letter C shows
high responses for the letters G, O and Q.
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Figure 7.10: Plot of the upper bounds Λmax (red) and lower bounds Λmin of the
control parameter Λ for all letter patterns.
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Figure 7.11: Visualization of the 26 × 26 E-matrix of the artifical letter problem.
The maximal entry is normalized to the intensity 255. Each row describes the
response (maximal eigenvalue of a resulting interaction matrix) of an interaction
function, while each column shows the responses on a single object input pattern.

Binary Classification: Before it is tried to distinguish all letters at the same time,
it shall be tested whether at least a correct binary classification between all possible
pairs of letters can be achieved. Therefore, the interaction functions of two letters
and the corresponding submatrix of E

[
eii eji
eij ejj

]
, (7.9)

are chosen. The layer weights wi and wj are estimated with (7.6) and each of the
two scaled interaction functions is applied in three layers of an L = 6-layered
CLM. Since the eigenvalues in the E-matrix between two classes can lie close
together, the annealing process has to be performed very slowly. This is done in
10000 steps of equal stepsize from T = 30 to T = 0, where in each annealing step
4000 neurons are updated.
The classification rate is tested by presenting each of the two classes five times
by an arbitrary rotation of a single object pattern without background, like the
examples shown in Fig. 7.8. With very few exceptions all features are assigned to
the same layer, such that the class where the majority of features is assigned to is
returned as output class. The number of 0 to 10 correct classifications is counted
for each test run. This classification rate is tested for ten subsampling rates of the
test pattern, where 0% to 90% of the features in the patterns are erased.
Figure 7.12 shows the classification rate for this binary classification. Each column
and row corresponds to one of the 26 letters. The squares show the number of
correct classifications of 100 test patterns on 10 different pattern subsampling rates.
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Figure 7.12: Binary classification rates for the artifical letter problem. Each square
in the diagram shows the classification rate for the classification of two classes i
and j. The complete diagram shows the results of the 26 × 26 binary classifiers.
Each column of the squares corresponds to a subsampling rate of the pattern from
0 to 90%. The height of each column shows the number (from 10 test patterns (5
of each class)) of patterns that are classified correctly. The color of the columns
corresponds to different classification rates: blue: 9-10 patterns correct, green: 7-8
patterns correct, yellow: 5-6 patterns correct, red 3-4 pattern correct, and black 0-2
patterns correct.

It can be seen, that a binary classification between the majority of patterns can be
achieved. Only for extremely (under arbitrary rotation) similar letters, like A and K
or A and V, equation (7.6) results in insufficient layer weights. However, a classifi-
cation between these classes can be achieved by manual tuning of the layer weights
using slow annealing speed during the CLM-dynamics or by an adjustment of the
control parameter Λ. The classification rate stays stable for high subsampling rates
of the features. However, it is not tested systematically in this experiment whether



142 CHAPTER 7. CLASSIFICATION ABILITIES OF THE CLM

the classification abilities show some generalization in terms of figure-background
separation, multiple detection of the same object class and the disturbance of the
patterns by noisy edge features.
Figure-background separation needs an adjustment of the self-interaction strength
m according to the subsampling rate of the patterns and multiple detection of ob-
jects needs a very slow annealing speed to prevent a certain class from manifesting
in the layers of a similar class, when already one or more objects of the target class
have reached the WTA behavior (compare to the behavior in section 7.1, Fig. 7.2
at T = 600∗/T = 600).
It can be concluded, that the classification approach is at least suitable for the binary
classification of the artifical letter contours, which motivates the question: How
does it performs, if all 26 interaction functions are applied in parallel?
Parallel Classification of all Classes:

estimated layer weights weighted E-matrix maximal entries per column
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Figure 7.13: Left: layer weights resulting from the optimization of (7.8); middle:
rescaled rows of the E-matrix; right: the maximal entries in each column of the
weighted E-matrix are highlighted.

The left-hand side of Fig. 7.13 shows the layer weights that result from the SCILAB
LMI-solver applied on the E-Matrix in Fig. 7.11. The middle part of Fig. 7.13
shows, how theE-matrix is changed, if its rows are scaled with these layer weights,
and on the right-hand side of Fig. 7.13 the maximal entry in each column of the
weighted E-matrix is highlighted.
The learned layer weights achieve the domination of most of the diagonal-elements
of the E-matrix. However, they also indicate confusion between the classes of
the layers J and U, O and Q, and T and X, where the optimization fails. This
expectation is tested on an L = 78-layered CLM, where each of the 26 interaction
functions is applied in 3 layers. Actually, misclassifications arise when letter F is
assigned to class P, letter J is assigned to class U, and letter Q is assigned to class
G.
This shows, that the LMI-solver did not find a feasible solution of the inequalities
(7.7) and therefore violates the conditions for the layer weights of the classes J,
O, Q, T, U and X. Further, the criterion of maximal diagonal elements of the E-
matrix does not describe perfectly the correct classification criterion for the layer
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weights. There exists a deviation between the expected classification errors from
the optimization problem and the actual classification errors from the simulation
of the CLM. However, these errors occur between very similar classes and for
most of the classes the optimization of (7.8) results in the correct layer weights.
It seems, that for high number of classes it becomes improbable to find feasible
layer weights, while for subsets of these classes feasible solutions are possible. A
possible solution might be to find several sets of layer weights that are feasible for
different subsets of the classes and combine the results of the different subclassi-
fiers by logical operators to a global classifier. The advantage of such a classifier is,
that classes can be simply added or removed by adding or removing corresponding
class-specific interaction functions and adjusting the layer weights. The disadvan-
tages are a high memory effort, because an interaction matrix has to be stored for
each class, and a high computation time, because annealing has to be performed
very slowly, if similar classes shall be discriminated. In the next section, it is inves-
tigated whether the classification abilities of the CLM still hold for more realistic
patterns.

7.3.2 Example: Classification on COIL20

As second more realistic dataset a subset of the COIL20 [38] data set is observed.
This subset is shown in Fig. 7.14. It consists of 20 different objects at one specified
view. These patterns are described by the salient edge features mr = (pr,or)
within the images, where pr is given by the pixel positions, and or = (Sxr , S

y
r )

by the responses of Sobel-x and Sobel-y filters as approximation of the intensity
gradient.
Therefore, the maximal strength of the intensity gradient is computed for each
image and only pixels whose intensity gradient strength lies above a certain per-
centage (here 20%) of the maximal strength are considered as salient features. To
reduce the number of features, this set is subsampled with the factor four by ran-
domly erasing 75% of these edge features. As a result of this procedure, each
image is represented by a set of around 200 edge features.
The shape classifier shall find a map from arbitrary translations and rotations of
these edge sets back to the represented object. Therefore, the same learning ap-
proach is applied as for the artifical letter data set. In the first learning phase,
AHL (K = 100, 10000 learning steps per learning phase) is applied separately
on patterns showing five objects of the same class in randomly configuration. An
example of a complete training set is shown in Fig. 7.15.
The upper and lower bounds for the control parameter Λ are plotted for each of the
20 resulting interaction functions in Fig. 7.16 a). Compared to the bounds of the
artifical letter contours in Fig. 7.10 the gaps between the lower and upper bounds
are significant smaller, which mirrors the higher complexity of the contours and
the stronger inconsistency of the grouping problems.
As a result of this inconsistency, all interaction functions describe more or less a
simple clustering of edges with object specific preferences for some edge combi-
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Figure 7.14: Subset of the COIL20 dataset[38].

nations (compare the bird-fish example in Fig. 6.38), e.g. inner angles around 45◦

for pattern 2 and around 90◦ for pattern 5. This effect is enhanced by the uniform
choice of Λ = 0.9 for all interaction functions, which favors positive interactions.
So, the figure-background separation abilities and the ability to segment overlap-
ping objects that can be observed for the regular polygons and the artifical letter
contours are clearly reduced.
The interaction functions show a high similarity, which requires a slow annealing
speed. The different objects are distinguished by the stronger attraction of typical
edge configurations to one of the edge clustering interaction functions.
The 20 × 20 E-matrix is generated by presenting single object patterns to each
of the interaction functions and computing the largest eigenvalues of the resulting
interaction matrices. An example of E is shown in Fig. 7.16 b).
Binary Classification: Similar to the last experiment on the artifical letter con-
tours, this experiment starts to investigate the binary classification of the data set.
Figure 7.18 shows the same benchmark visualization for the 20 class COIL20 clas-
sification problem as for the 26 class artifical letter contour problem in Fig. 7.12,
with two differences. The first difference is, that the COIL20 patterns contain more
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Figure 7.15: Examples of training patterns for the AHL-based learning phase ap-
plied on contours of the COIL20 data set.
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Figure 7.16: Λ-bounds and E matrix for the COIL20 dataset.
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features than the artifical letter contours, a higher inner-group support is observed
and, therefore, annealing starts at a higher temperature T = 120. The second dif-
ference is, that the columns of the squares in Fig. 7.18 do not correspond to a
simple subsampling of the feature sets, but describe the degree of disturbance of
the input patterns. This disturbance is realized by adding a random Gaussian dis-
tributed noise in the range of−σ to σ intensity values per pixel to the input pattern.
The range of σ goes from σ = 0 for the left most column in each square in steps
of 10 to σ = 90 for the right most column. Figure 7.17 shows the effect of this
disturbance on the input images and the set of extracted edges. With the increase
of noise the clear edge contours degenerate to random distributions of edges, such
that generalization is only possible for low levels of noise.
It is relatively easy to realize a binary classification between objects of strongly
differing shape, e.g. between object 2 and 3, where the correct classification holds,
even for higher levels of noise, while for similar objects, like pattern 3, 6 and 19,
which all show variants of toy cars, the correct classification is only possible for
very low noise and under the constraint of very slow annealing.
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Figure 7.17: Different levels of disturbance for the COIL20 data.

Parallel Classification of all Classes: For the parallel discrimination of all classes
at the same time the optimization problem (7.8) has to be solved for the E-matrix.
Figure 7.24 a) shows the layer weights resulting form the matrix in Fig. 7.16 b),
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Figure 7.18: Binary classification rates for the COIL20 classification problem.
Each square in the diagram shows the classification rate for the classification of
two class i and j. The complete diagram shows the results of the 20 × 20 binary
classifiers. Each column of the squares corresponds to a disturbance rate of the
pattern from σ = 0 to σ = 90 (see Fig.7.17). The height of each column shows the
number (from 10 test patterns (5 of each class)) of patterns that are classified cor-
rectly. The color of the columns corresponds to different classification rates: blue:
9-10 patterns correct, green: 7-8 patterns correct, yellow: 5-6 patterns correct, red
3-4 pattern correct and black 0-2 patterns correct.

if these weights scale the rows of E, the weighted E-matrix in Fig. 7.16 b) arise,
where the maximum entry per column is highlighted in Fig. 7.16c). It seems, that
the optimization approach has found a feasible solution for the layer weights that
causes a domination of the diagonal elements.
Actually, the practical simulation on an L = 60-layered CLM (three layers per
class) shows, that they realize the correct classification in the case of no noise and
slow annealing. However, generalization is very poor, where even smallest noise
causes classification errors.
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Figure 7.19: Estimation of the layer weights for the COIL20 dataset. a) Layer
weights resulting from the optimization (7.8). b) weighted E-matrix. c) the maxi-
mal entry in each column of the weighted E-matrix is highlighted.

Generalization according to point of view:
The green graphs in Fig. 7.20 show the classification rate of the L = 60 layered
CLM: The left hand side of Fig. 7.20 shows the classification rate over all 72 dif-
ferent views of the 20 objects in the COIL20 dataset. The right hand side plots the
average classification rate over all views per object. The overall average classifica-
tion rate lies at 48, 2% of all patterns, which describes a relative poor generalization
ability compared to a simple Nearest Neighbor (NN) classifier (red graphs), which
uses the 20 images in Fig. 7.14 as class prototypes and achieves in average 63, 9%
correct classifications.
However, the NN classifier computes the distance between all pixels in the input
and prototype images to evaluate the index of the nearest prototypes class, which
demands an exact alignment of the input and the prototype image according to
rotation and translation. In contrast, the CLM-based classifier uses only the salient
edge features, concentrates on the shape properties of the objects and is invariant to
a rotation or translation of the whole edge set. Thereby, the COIL20 dataset holds
some hard problems for a pure shape based classifier, e.g. the objects 3, 6, and 19
all represent toy cars with similar shape, the box (object 5) and the bottle (object
8) have a (according to the rotation invariance of the classifier) simular rectangular
shape and some objects, like objects 1, 2, 4, 10 and 11, show a strongly varying
shape for different points of view. Additionally, the CLM classifier is confused by
inner object edge configurations, like in object 12 and 13, which strongly change
their relation to the object outline for different points of view. All these factors
provoke, that the CLM-approach, in fact it reaches a comparable classification rate
as the NN classifier for the view invariant objects 15, 16, 17, and 18, in average is
not competitive to the NN approach.
The generalization abilities of the CLM based classifier can be enhanced by per-
forming a more accurate preprocessing for feature extraction, as it is demonstrated
on the right hand side of Fig. 7.21 and by the blue graphs in Fig. 7.20. The in-
put images are preprocessed by a figure-background segmentation from an island



7.3. APPLICATION 149

View Object

0.2

0.4

0.6

0.8

1

 2 12 22 32 42 52 62

classification rate
number of view

0.2

0.4

0.6

0.8

1

4 6 8 10 12 14 16 18 20

number of object
cl

as
si

fi
ca

tio
n 

ra
te

Figure 7.20: Generalization of classification rate according to point of view and
type of object. Left: classification rate according to the 72 different views of
COIL20. Right: classification rate according to the 20 different objects of COIL20.
Red: Nearest Neighbor Classifier on view 1. Green: CLM-approach with rotation
invariant basis functions applied on salient edges. Blue: CLM-Approach with ro-
tation invariant basis functions applied on edges from the object boundaries. Ma-
genta: CLM-approach with rotation variant basis functions applied on edges from
the object boundaries.

growing method, applied on the black background color at the border of the images.
The region of respective object is resized by performing two subsequent morpho-
logical erosion steps and edge features are extracted only form the one pixel wide
borderline of the remaining object region. The actual learning process is perform
with the same AHL-based approach and the same set of parameters as before.
The clearer object contours relax the detection of object 1, 12, 13 and 20, which
benefit from the pure outline representation. However, the differentiation of the toy
cars (object 3, 6, and 19) is complicated and also the detection of the cup (object
19) is confused by the varying position of the handle. In average, the CLM outline-
classifier achieves an overall classification rate of 54%, but it is still performed out
by the NN classifier.
The classifier characterized by the magenta graphs in Fig. 7.20 tries to enhance
the classification rate of the CLM based classifier further by giving up the rotation
invariance of the proximity space. This is done by extending the four dimensional
proximity space, sketched in Fig. 6.29, by a fifth dimension describing the angle
θ4 between the connecting vector d = (pr − pr′) and the vertical vector (1, 0)T

(see Fig. 7.22).
This strategy simplifies the differentiation of some objects, like object 5 and 8,
which through the different orientation of the contours become easily separable,
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Figure 7.21: Different types of feature extractors. Left: salient edges are extracted
based on intensity gradient strength. Right: edges are only extracted from the
object outline, estimated by binary segmentation of the image against the black
background.

but on the other side enhances the similarity between other objects, e.g. object 8
and 16. Overall, this approach decreases the classification rate to 49.3%.

Although the CLM classifiers seem to be not competitive to standard classification
approaches on the COIL20 object recognition task, the experiments show, that the
CLM is able to differentiate distinct object contours. A high number or similar
sets of object contours makes it hard to find suitable layer weights and leads to low
generalization.
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Figure 7.22: a) Rotation invariance is omitted by extending the four dimensional
proximity space between the local edge features, sketched in Fig. 6.29, by the angle
θ4 ∈ [0, π] which specifies the angle between the vertical vector (1, 0)T and the
connecting vector d = (pr−pr′) of the two edges. b) example of a corresponding
training pattern.
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7.4 On-Line-Learning of the Layer Weights

It was shown, that the optimization problem (7.8) can be solved to find suitable
layer weights for the COIL20 classification problem. Through the high number of
constraints, solving (7.8) can be very time consuming for high number of different
classes C . In this section, an alternative approach is tested that works without com-
putation of the E-matrix and is motivated by an on-line variant of the perceptron
learning rule.
At the beginning, all layer weights are set equally to 1: ∀i = 1, . . . , C : wi := 1.
Now, a random sequence of patterns, each showing a single randomly selected
object ctarget ∈ {1, . . . , C}, is presented iteratively to an L = C-layered CLM,
where each interaction function is applied in one layer. If the classification output
cCLM of the CLM corresponds to the index of the presented class ctarget, the layer
weights stay unchanged. Otherwise, the layer weights have to be modified to pre-
vent similar classification errors in following steps, where it is known, that wctarget
is too small against wcCLM .
An naive method, that can be associated as kind of error-correction rule might be
the increase of wctarget and the decrease of wcCLM , e.g. by

wctarget := wctarget + 1 (7.10)

and
wcCLM := wcCLM − 1. (7.11)

However, the constraint ∀i : wi > 0 has to be fulfilled, such that the learning rule
is restricted only to (7.10). If there exists a feasible solution for the layer weights,
it should be reached with a finite number of weight modifications (7.10).
Figure 7.23 a) plots, how the number of weight modifications (red) develops against
the number of presented objects (blue) for a random sequence of 600 patterns. At
the beginning, of the learning process, most of the objects are classified incorrectly,
which results in a high proportion of weight changes according to the presented pat-
terns. After the weighting between some of the layer classes is adjusted correctly,
the number of weight changes increases slower than the number of presented pat-
terns. If there exists a feasible weighting between all classes, the layer weights
reach a stable state, where no further weight changes are necessary. However, if
no feasible solution exists there is a characteristic non vanishing increase of the
number of weight changes, because the learning rule disturbs correct weightings
between some classes that are reached by earlier weight updates.
The disadvantage of this approach is, that it can not be predicted whether it con-
verges to a feasible solution, and, that each pattern presentation needs a simulation
of the CLM-dynamics, which means in this case 1000 annealing steps with a uni-
form step size from T = 120 to T = 0 and 4000 neuron updates per annealing
step.
A faster annealing speed acts like a blurring of the output classes, because objects
can be assigned to suboptimal layers, such that the area of feasible layer weights
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Figure 7.23: Plots of the number of weight modifications (red) against the num-
ber of presented patterns (blue). The green lines in run b) mark steps, where the
annealing speed is reduced by the factor 10.

is restricted stronger. Nevertheless, a faster annealing speed can be interpreted as
faster, but coarser learning rate at the beginning of learning that drives the layer
weights close to the feasible region. After the gradient of the weight changes does
not decrease any more, the annealing speed can be decreased to achieve a slower,
but more exact learning rate.
Figure 7.23 b) shows a number of weight modifications for this strategy. The first
500 pattern presentations are performed with 100 annealing steps from T = 120
to T = 0. The gradient of weight changes decreases after 70 and 380 pattern
presentations. However, after the second decrease, the gradient still describes a
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Figure 7.24: Comparison of the layer weights resulting from the optimization of
the E-matrix and the on-line learning rule at different time steps. Red line: op-
timization of the E-matrix; Magenta: on-line learning rule after 600 steps with
slow annealing; Green: on-line learning rule after 500 steps with fast annealing;
Blue: on-line learning rule after 500 steps plus 200 steps at slow annealing; Black:
on-line learning rule after 700 steps plus 200 steps at very slow annealing.

linear increase of the weight modifications, compared to the number of presented
patterns. After decreasing of the annealing speed for the next 200 pattern presen-
tations, the gradient of the number of weight updates decreases significantly, but it
is hard to say, if it has vanished after the first 700 pattern presentations.
The learning rule is performed for 200 additional steps with an even slower an-
nealing speed of 10000 annealing steps with a uniform step size from T = 120 to
T = 0. Actually, the average gradient of weight updates vanishes and the layer
weights reach feasible values for the classification task.
It can be concluded, that the adaptation of the layer weights can be realized by a
kind of error-correction on-line learning rule, where the speed of annealing during
the simulation of the CLM-dynamics can be interpreted as blurring factor on the
output classes.
Figure 7.24 compares the layer weights resulting from the optimization (7.8) of the
E-matrix in Fig. 7.16 b) with the layer weights at different stages of the investi-
gated on-line learning rule, where each solution if normed to maxi wi = 1.
The optimization of the E-matrix (red line) returns high weights for pattern 1, 4
and 14 and low weights for pattern 3, 7, 12, 19 and 20. The magenta line shows
the layer weights after the 600 pattern presentations of the first learning run of the
on-line learning rule. The structure of these weights is similar to the first result,
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e.g. it also shows high weights for pattern 1, 4 and 14 and low weights for pattern
7 and 15, but there are significant deviations between the two solutions. The green
line shows the layer weights after the first 500 learning steps of the second run of
the on-line learning rule, which was expected to find only a rough approximation
of a feasible solution. This result is even more similar to the optimization of the
E-matrix (red) than to the first run of the on-line learning rule (magenta).
After decreasing the annealing speed for the next 200 learning steps, the layer
weights (blue line) are only fine tuned. During the last 200 learning steps at very
slow annealing, only a single adaption of the weight w17 is performed (black line).
After that, all weights stay constant, which is indicated by the fact that the black
line is covered by the blue line.

7.5 Summary

In this chapter, it was investigated how the CLM behaves, if several layer spe-
cific interaction functions are applied simultaneously. Layer weights were used to
scale the interaction functions against each other. Two methods were presented to
estimate these layer weights. One that optimizes the maximal eigenvalues of inter-
action matrices resulting from the application of the interaction functions on single
object patterns, and a second that performs a kind of on-line error-correction rule
by classifying a random sequence of single object patterns.
It was shown, that class specific layers can be used to construct simple shape clas-
sifiers for artifical letter contours and a subset of the COIL20 data set.
The advantages of such a classifier are, that it is rotation invariant, because of the
special properties of the predefined proximity functions, it can deal with incom-
plete data of data of variable pattern length, and, that interaction functions for dif-
ferent classes can be trained independently, such that they can be added or removed
by adding or removing the corresponding layers within the CLM.
The disadvantages are a high memory demand for the computation and storage
of the different interaction matrices and a high computation time, because slow
annealing speed is acquired to discriminate information form similar interaction
matrices. Further, there may be no feasible solution for the layer weights, if many
classes have to be discriminated, or, if there is a high similarity between the classes.
In this case, the classification network has to be divided into several subclassifiers.
As last disadvantage, it has to be recapitulated, that for more complex patterns, like
the COIL20 data set, all interaction functions highly react on random clusters of
edges, such that a rejection of unknown patterns or parts from noisy background
and a segmentation of overlapping objects becomes difficult.
The learning and classification approach is restricted to a uniform segmentation
control parameter Λ for all interaction functions. A more sophisticated, but also
more complicated learning method could try to optimize class dependent Λ param-
eters Λ1, . . . ,ΛC and layer weights w1, . . . , wC in parallel, may be in an on-line
learning rule with an adaptive learning rate, represented by changing the annealing
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speed for the simulation of the CLM-dynamics during learning. The higher number
of Λ parameters could be used to enhance the differences between the interaction
functions, which allows a faster annealing speed.
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Chapter 8

A Model for Attention

In the last chapter, it was shown, that discriminators for global object properties,
like shape, can be build from dynamical and highly redundant application of pair-
wise relations between elementary features. The dynamical character of the CLM
binds these elementary features to groups which can be interpreted as higher order
features.
In this chapter, it is investigated, if the grouping or classification process of the
CLM can be influenced by extending it with a model of attention.

8.1 Experiences from Eye-Tracker Experiments

The approach is motivated by results from eye-tracker experiments made on am-
biguous images. Figure 8.1 a) shows an ambiguous image that was investigated by
Pomplun in [46]. It is a part of an illustration from the artist M.C. Escher, which
can be either interpreted as black devils an a white background or white angels on
a black background.
Pomplun traced the gaze trajectories of people, who perceived either the one or the
other interpretation. The gaze distributions for the two different interpretations are
visualized in Fig. 8.1 b) and c), where the image regions of high gaze frequency are
displayed by high intensity, while low gaze frequency is displayed by low intensity.
People, who perceived the angels as foreground, mainly focus the heads of the
angels and people, who perceived the devils are foreground, focus mainly the heads
of the devils. Pomplun took these results as motivation to construct two derivations
of the ambiguous image Fig. 8.1 a) by enhancing the image features at the areas
of high attention in the two gaze distributions. He showed, that the two derived
images were no longer ambiguous for unbiased observers, but allowed a unique
map to the interpretation of the corresponding gaze distribution. This experiment
can be summarized by the observation that object recognition is highly dependent
on attention, where attention in this case is simply measured by gaze distribution.
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a b c

Figure 8.1: Eye-Tracker experiment on the perception of ambiguous images from
[46]. a) Illustration of an optical illusion derived by M.C. Escher. It can be in-
terpreted as white angels on a black background or black devils on a white back-
ground. b) and c) Distributions of focus points for persons, who see either the
angels b) or the devils c). Areas with high gaze rate are shown in high intensity
values, while areas of low gaze rate are shown in low intensity values.

8.2 Implementation of Attention

A simple method is introduced to integrate such gaze distributions, here called
attention maps, into the interaction matrix of the CLM and to observe their effect
on the course of the CLM- dynamics during annealing. Therefore, two results
from the previous chapters are used. The first is the observation from chapter 4,
that the WTA process for the groups in the input is activated in the ordering of the
inner group support within the interaction matrix. The second is equation (5.2),
where the desired interaction matrix was formulated as a correlation matrix for the
differences between the layer vectors of the target state y:

F̂ =
∑

γ

∑

ν 6=γ
(yγ − yν)(yγ − yν)

T . (8.1)

Suppose a normalized attention map p = (p1, . . . , pN ) has been specified, where
the components pr, r = 1, . . . , N describe the probability that feature mr is fo-
cused in the input pattern and p is normalized to maxr pr = 1. This attention
map is applied on the layer vectors yα, α = 1, . . . , L of the target vector y by
multiplication with a N × N diagonal matrix P = diag(p) of the components of
p:

∀α = 1, . . . , L : y′α := Pyα (8.2)

If now the target vectors yα in (8.1) are substituted by their weighted variant (8.2),
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a new weighted interaction matrix arises

F̂ ′ =
∑

γ

∑

ν 6=γ
(y′γ − y′γ)(y′γ − y′γ)T (8.3)

=
∑

γ

∑

ν 6=γ
(Pyγ − Pyγ)(Pyγ − Pyγ)T (8.4)

=
∑

γ

∑

ν 6=γ
P (yγ − yγ)(yγ − yγ)TP (8.5)

= P F̂P (8.6)

by multiplication of F̂ from right and left with the attention matrix P . In the
following , different attention maps are applied on the pattern in Fig. 4.7 to show
the effect of this modification on the CLM-dynamics.

8.3 Influence of Attention on the Annealing Process

a) b) c)

Figure 8.2: Three examples of attention maps. a) Gaussian distributed attention
map pcenter, the focus of attention lies at the center of the input. b) Linearly
increasing attention map plinear, the focus of attention lies on the right hand side
of the input. c) Diffuse distribution of attention mrandom.

The first attention map is defined by a Gaussian distribution (see Fig. 8.2 a)) cen-
tered at the middle of the input pattern. Figure 8.3 shows the influence on the
course of the annealing process, if this attention map is applied on the interaction
matrix (4.6) of the pattern in Fig. 4.7.
Since the application of the attention map scales down interactions of features at
the periphery of the pattern, it changes the ordering of the inner group support. In
the original simulation, the WTA process was activated in the ordering of the group
sizes: first the outer ring, then the inner ring, the border region, the inner circle and,
finally, the five spurious features in the corners of the image. The new ordering is
the inner ring, the inner circle and then the outer ring. The features outside the
focus of attention are still distributed equally between the unused layers at T = 10
and form the background of the groups within the focus of attention.
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Figure 8.3: Attractor states of the CLM-dynamics during annealing. The interac-
tion matrix is weighted according to the centered attention map in Fig. 8.2 a).

Thus the distribution of attention controls the figure-background separation of the
input and defines the saliency of the observed groups according to the annealing
thresholds, where they reach the WTA process.
The second attention map in Fig. 8.2 b) shows a gradual increase of attention
from left to right. Such kind of attention map might be associated with a verbal
instruction “take the object/group on the right”. Actually, this kind of instruction
makes no sense for the example pattern, because all groups have the same center
of mass at the middle of the pattern. But the course of the annealing process in
Fig. 8.4 gives a good description of the case, that the WTA process is activated
gradually within the groups.
The split of layer directions and their orthogonalization starts at the right hand side
of the groups, while the left hand side stays undecided between the layers for a long
time period. This effect proceeds to the left with the decrease of T . The exemplary
attractor states at T = 140, T = 132 and T = 110 show, that the WTA processes,
in the sense of a unique assignment of the features in a group to a single layer, does
not happen at a single threshold T any more. Instead, it is a more gradual process,
which passes several different minima in the energy landscape of the CLM, where
step by step single layers of the corresponding layer class change their attracted
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Figure 8.4: Attractor states of the CLM-dynamics during annealing. The interac-
tion matrix is weighted according to the linear attention map in Fig. 8.2 b).

activation patters.
Since the weighting of the attention map does scale the interactions of all groups in
the same way, the groups switch into the WTA process in their original ordering.
The last example of an attention map is the random noise shown in Fig. 8.2 c),
which actually describes a diffuse distribution of attention. Figure 8.5 shows, that
the application of such an attention map has a similar effect as the relatively strong
disturbance of the ideal block diagonal interaction matrix by reseting 90% or binary
switching 45% of the lateral interaction weights (compare Fig. 4.17 and 4.19).
Thus a diffuse attention can also complicate the grouping process by decreasing
the rate of convergence and the quality of the grouping result.

8.4 Simulation on an Ambiguous Image

As last simulation in this chapter, it is tried to model the switching effect between
the interpretation of an ambiguous image, similar to the results of Pomplun [46].
Figure 8.6 sketches the approach of this experiment: The pattern vase from Fig. 7.1
is presented in form of its ideal block diagonal interaction matrix to an L = 20-
layered CLM. The pattern can be interpreted either as two white faces at both sides
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Figure 8.5: Attractor states of the CLM-dynamics during annealing. The interac-
tion matrix is weighted according to the random attention map in Fig. 8.2 c).

of the image on a black background or a black vase on a white background. To
simulate these two figure-background separations, two attention maps are applied
onto the interaction matrix during the annealing process. The one describes con-
centration to the center of the pattern, while the other shows concentration to the
periphery of the pattern. In the first case, the group of the vase reaches the WTA
first and is assigned to a single layer, while the regions of the two faces stay unde-
cided between the rest of the layers. Therefore, this attractor state can be associated
with the interpretation, where the vase describes the observed object and the two
faces form the background. In the second case, an attractor state is reached, where
the faces are the relevant objects and the vase forms the background.
A possibility to switch between these two stages might be to choose a fixed anneal-
ing temperature and to modify the gaze distribution of the attention map, instead.

8.5 Summary

In this chapter, attention was implemented as a simple gaze distribution that can be
modeled by a relevance weighting of the feature vectors for the patterns. Through
the quadratic character of the interaction matrix the model results in an multipli-
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Figure 8.6: Sketch of the switching effect between the two possible figure-
background separations of the pattern vase.

cation of the attention diagonal matrix P from left and right with the original in-
teraction matrix F . The result of this model is, that the groups are switched into
the WTA process according to the ordering of the focus of attention. Together
with the interpretation from chapter 4, that groups early switched into the WTA
process form relevant groups, while groups switched into the WTA process later
form the background, a variable figure-background separation can be implemented
dependent on the actual attention map.
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Chapter 9

Variants of Implementation

If the CLM is applied to high dimensional patterns that consist of many features,
e.g. real world images with several hundred pixels in each dimension, much of
the computational resources must be invested into the computation of the lateral
interactions frr′ , whose number is quadratic in the number of features. Even the
simple storage of such a full interaction matrix can become very memory exhaust-
ing. Therefore, in this chapter, strategies are tested to run the dynamics with a
sparsely filled matrix of lateral interaction weights.

9.1 Random Sparse Support

Full Support Random Sparse Support

Figure 9.1: Approximation of the exact support from the full interaction matrix by
summation over a sparse set of randomly selected interaction weights.

Chapter 4 showed, that the CLM-dynamics can be simulated with a sparse (90%
weights erased) interaction matrix. The price to pay for this is a slower speed of
convergence, a relatively low level of noise in the labeling result of small groups
and a blurring of the activation thresholds of the splitting and WTA processes dur-
ing self-inhibitory annealing.
In this chapter, the CLM simulation algorithm from section 3.5 is rearranged, such
that it operates on random sparse interactions (see Fig. 9.1) and works without
storage of fixed connections between the neurons. The idea is, that the support
of the features is not computed exactly by the sum over all features at the time
of the neuron update xrα, but instead each neuron iteratively collects it’s support
in an individual variable srα. This individual support is collected over time by
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iteratively receiving messages from randomly selected neurons in the same layer.
These messages consist of the activations xr′α and the associated feature vectors
mr of the other neurons. The individual support srα is updated on-line by the
computation of the connecting lateral interaction weight frr′ = f(mr,mr′) and
the summation:

srα := srα + f(mr,mr′)xr′α. (9.1)

The number of messages a neuron received is counted in an additional variable
crα. When this number exceeds a specified number cmin of necessary messages,
the neuron is updated by using it’s individual support. After that, the individual
support and the counter of received messages are resetted to zero. This procedure
is formulated in the following algorithm:

1. Specify simulation parameters:
set number of annealing steps tmax;
set number of received messages before neuron update
cmin;

2. Specify grouping behavior:
specify f(mr,mr′), e.g. by applying AHL;
enter feature vectors mr, r = 1, . . . , N;

3. Initialize network and the annealing process:
choose number of layers L;
initialize all xrα with small random values around
xrα(t = 0) ∈ [hr/L− ε, hr/L+ ε];
initialize all srα := 0 and crα := 0;
initialize T := 1, η := (1+ε)−tmax and J := cmin+maxr frr+
ε;

4. Run annealing process:
For t = 1 to tmax

Do N · L times
Choose (r, α) randomly and perform:

(a) neuron update:
If (crα > cmin)

ξ :=
J(hr−(

P
β 6=α xrβ)+srα

(J−frr)∗(1+T ) ;

Update xrα := max(0, ξ), srα := 0 and crα := 0;

(b) sending messages:
For c = 1 to cmin

Choose r′ randomly and compute frr′ = f(mr,mr′);
For β = 1 to L

sr′β := sr′β + frr′xrβ and cr′β := cr′β + 1;
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Decrease T by T := ηT;

There are some details in this implementation that have to be emphasized. The
first is, that the vertical inhibition is set to J := cmin + maxr frr + ε, (ε is a
small positive margin variable) under the assumption, that the specified interaction
function responses with a maximal values of maxr,r′ frr′ = f(mr,mr′) = 1,
which can be ensured by normalization with a suitable layer weight. Under this
assumption the convergence condition for section 3.2 is fulfilled, if J is bigger
than the number of incoming messages plus the self-interaction.
The second detail is, that the annealing process is modeled slightly different than
in section 3.5. There the pseudo-temperature is added to the numerator of the
neuron update, while in the new implementation the dominator is increased by
the multiplication with the factor (1 + T ). However, this is no critical difference,
since each temperature in one of the implementations can be translated to a unique
temperature in the other implementation, e.g. for frr = 0 a value of T = J in
the original implementation corresponds to T = 1 in the new implementation,
while T = 0 describes the same nominator in both implementations. The two
implementations only differ in the size of the annealing steps. Thereby, it must be
considered, that the stochastic character of the individual support srα causes some
permanent noise on the attractor states in the new implementation, such that a kind
of blurring effect on the activation thresholds in the pseudo-temperature T occurs.
The characteristic phenomena of splitting the layer directions and the activation of
the WTA process can still be observed. However, at a certain annealing temperature
it can not be clearly decided whether these processes are active or not.
The last detail in the new implementation is, that all messages between the neurons
in two columns r and r′ are sent in parallel to avoid the multiple computation of
the interaction weight f(mr,mr′). Thereby, each columns sends cmin messages
to other columns to make it probable, that each neuron xrα has actually received
cmin messages, when it is selected for update.
For the new implementation, it can be concluded, that the number of weights that
are computed on-line during the simulation is significantly smaller than for the
computation of the full interaction matrix of the input pattern, if the number of
features in the input is large. In return, more neuron updates have to be performed
to reach the output grouping, because of the slower speed of convergence and the
stochastic fluctuations in the support, which add a permanent level of noise to the
attractor states.
The new simulation algorithm has to deal with some disadvantages, but the fol-
lowing example shows, that the new approach achieves suitable results in problem
domains, where the size of input patterns makes the exact simulation impracticable.

9.2 Application on Color Images

The eligibility of the new simulation algorithm is shown on the five images in the
first column of Fig. 9.2. These images are a subset of a benchmark data set for
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P1 P2 P3 P4 P5

Pattern

Target
labeling

Recolored
labeling

Figure 9.2: Data set for color segmentation [31].

segmentation algorithms provided by the image vision group of Berkley Califor-
nia [31]. Each image is accompanied by several human example labelings, where
only one of these labelings defines the target labeling for the AHL algorithm. Each
image consists of 321 × 481 pixels described by RGB color, which means a set of
154401 features and ≈ 2.38 · 1010 lateral interaction weights for the full represen-
tation of the interaction matrix.
Obviously, this makes an application of the original simulation algorithm imprac-
ticable without subsampling of the input patterns. Therefore, the new implementa-
tion is applied for tmax = 200 annealing steps and the extreme case, that a neuron
is updated after it has received at least cmin = 1 message to compute it’s individual
support.
Figure 9.3 shows results from the application on an L = 20-layered CLM after
training AHL on each of the five example patterns. Each row is associated with a
different training pattern, while the columns are associated with the test patterns.
The grouping qualities of these results are plotted in Fig. 9.6 a). For training, the
pixel colors are translated into the hue-saturation-intensity (HSI) color space and
each pixel is represented by it’s position and the three color dimensions: mr =
(pr, hr, sr, ir). The proximity space of the feature pairs is defined by the local
distance

d1(mr,mr′) =‖ pr − pr′ ‖ (9.2)
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AHL(P3)
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Figure 9.3: Segmentation of HSI color images. The row correspond to the training
pattern and its target labeling, while columns correspond to the application of the
respective test image.
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and the distances in the three color dimensions

d2(mr,mr′) = |hr − hr′ | (9.3)

d3(mr,mr′) = |sr − sr′ | (9.4)

d4(mr,mr′) = |ir − ir′ | (9.5)

In this four dimensional proximity space, AHL is applied with K = 50 basis
functions and a fixed segmentation control parameter Λ = 1 for all simulation
runs. A remarkable adaptation to the color segmentation of the respective training
pattern can be observed in the segmentation results, e.g. the coherent labeling of
the palm leaves in pattern one or the koala in pattern two are hard to reproduce
with a standard split and merge segmentation algorithms, like the Color Structure
Code (CSC). In terms of the generalization, the same grouping behavior between
pattern one and three can be achieved. For the other combinations of training and
test pattern, strong differences between the target and output labeling are visible,
but most of the segmentation errors result from an over- or under segmentation of
the test pattern, such that the modification of the control parameter Λ can enhance
the grouping result.

9.3 Entropy-based Attention Map

The states of the CLM underlie a permanent fluctuation, because the random sparse
support introduces a serious amount of noise onto the CLM dynamics. Therefore,
it is not easy to check whether the dynamics has reached a stable output labeling
or not and to define a suitable abort criterion for it. A possible strategy might be to
simply perform a predefined number of annealing respectively neuron update steps,
but as the segmentation outputs in Fig.9.3 show, it is non trivial to specify suitable
iteration numbers, because big and coherent groups, like the beach in pattern 1 and
the sky in pattern 3 and 5, are switched relative fast into the WTA process, while
smaller and diffuse regions, like the border line between beach and sea in pattern 1
or the rock in the background of pattern 3, are switched later into the WTA process
or never reach it.
However, in image processing big and coherent regions often form some kind of
background and small, but salient regions often show interesting objects. This
means, that after the bigger groups are manifested in their layers most of the com-
putation time is wasted on these regions, while the smaller, more interesting regions
manifest on a much slower time scale.
As the last chapter has shown, the weighting of the interaction matrix with an
attention map can enhance the formation of smaller groups, if they are in the focus
of attention.
Since the neurons exchange messages to collect their individual support, the at-
tention based weighting of the connections can be implemented by changing the
frequencies of sending messages for the columns of the CLM. However, if the fo-
cus of attention is changed, the groups that were in the focus of attention before
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may leave the WTA process and can be driven backwards to an undecided assign-
ment by the DC-modes of the CLM-dynamics. To prevent this, a heuristics is
introduced that removes features that are not in the focus of attention from the dy-
namics by freezing the respective columns of the CLM. This is done practically by
setting the update probabilities of the columns as well as the frequencies of sending
messages to the components of the attention map. These modifications of the sim-
ulation algorithm brings us to the following reformulation of the implementation
(modifications are highlighted):

1. Specify simulation parameters:
set number of annealing steps tmax;
set number of received messages before neuron update
cmin;

2. Specify grouping behavior:
specify f(mr,mr′), e.g. by applying AHL;
enter feature vectors mr, r = 1, . . . , N;

3. Initialize network and the annealing process:
choose number of layers L;
initialize all xrα with small random values around
xrα(t = 0) ∈ [hr/L− ε, hr/L+ ε];

initialize all srα := 0 and crα := 0 and pr(0) := 1 ;

initialize T := 1, η := (1+ε)−tmax and J := cmin+maxr frr+
ε;

4. Run annealing process:
For t = 1 to tmax

update attention map p(t);
Do N · L times

choose random variable k for [0,1];

repeat choose column r randomly until pr(t) > k;
Choose α randomly and perform:

(a) neuron update:
If (crα > cmin)

ξ :=
J(hr−(

P
β 6=α xrβ)+srα

(J−frr)∗(1+T ) ;

Update xrα := max(0, ξ), srα := 0 and crα := 0;

(b) sending messages:
For c = 1 to cmin

choose random variable k from [0,1];

repeat choose column r′ randomly until pr′(t) > k;

compute frr′ = f(mr,mr′);
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For β = 1 to L
sr′β := sr′β + frr′xrβ and cr′β := cr′β + 1;

Decrease T by T := ηT;

Thereby, the following heuristics is applied for the update of the attention map: It
starts with a uniform attention of ∀r : pr(0) = 1 and estimates the up-to-now
output labeling of the features after each annealing step by:

∀r : α̂(r, t) := argmaxαxrα(t). (9.6)

Then it computes the entropy of the output labels in the (here 3× 3) neighborhood
N (mr) by

∀r : er(t) =
L∑

α=1

P (α = α̂(r′, t)|mr′ ∈ Nr)logP (α = α̂(r′, t)|mr′ ∈ Nr),

(9.7)
where P (α = α̂(r′, t)|mr′ ∈ N(mr)) is the probability of label α in the neigh-
borhood of feature mr , and updates the attention map with the normalized entropy
map

∀r : pr(t) = er(t)/max
r
er(t). (9.8)

The effect of this heuristics is, that at the beginning of the dynamics the attention is
distributed over all features, because the neuron activities are initialized randomly.
When the dominant groups reach the WTA process, they start to form regions of
coherent labels, which decreases the labeling entropy in these regions and removes
them from the CLM-dynamics. The entropy of labeling stays high only at the
borderline of homogeneous regions, such that the activities on the borderline are
updated and activities within the groups are frozen.
Figure 9.4 shows, how the output labeling of the CLM changes, if the entropy-
based attention map is applied to control the simulation process. The learning
and simulation parameters of the CLM are the same as in the first simulation run.
Figure 9.5 shows the corresponding attention maps of these output labelings and
9.6 b) shows the quality values of the output labelings to compare them with the
results from the first simulation run a).
For some of the results, e.g. when training and testing is performed on the pat-
terns 1 and 3, even smaller groups are assigned coherently to a single layer, where
the attention map mainly describes the relevant contours in the input image at the
end the simulation process. For these examples the attention heuristics brings a
speedup of the grouping process. However, the gain of quality is too small to have
a reasonable effect on the quality plot.
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Figure 9.4: Segmentation result under control of the CLM-dynamics with the en-
tropy map (9.7).
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Figure 9.5: Entropy maps of the output labelings in Fig. 9.4.
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More striking is the relative strong loss of quality for other patterns, especially,
when training is performed with pattern 2 and 4, where some of the bigger regions
are split into several regions with a diffuse separation line. This effect can be
explained by the fact, that long ranged inhibitory interactions and short ranged
excitatory connections exist between the features within these groups. In the first
simulation, the excitatory interactions in the interior of the groups are stronger
than the long range inhibitory connections between the opposite border regions,
such that the whole groups are assigned to the same layer.
In the case of the entropy-based attention control, most of the inner group excita-
tory connections are removed and the long ranged inhibitory connections dominate,
such that the groups are split to different layers of the CLM. Since there are still
short ranged positive interactions between features on both sides of the separation
lines, there is a random exchange of features between these layers, which causes
the diffuse junction of the labels.

a) Standard b) Entropy map
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Figure 9.6: Quality of the grouping results in Fig. 9.3 (a), where the dynamics is
simulated without the control of the entropy map (9.7), and Fig. 9.4 (b), where the
dynamics is influenced by the entropy map.

9.4 Summary

The removal of inner group features enhances the effect of over segmentation.
Consequently, the heuristics of attention based control of the CLM dynamics only
enhances the grouping performance, if a suitable adjustment between the update
rate of the attention map, the segmentation control parameter Λ and the annealing
speed of the CLM-dynamics can be found. However, the results have shown, that
the strategy of random sparse support makes the CLM, in principle, applicable on
high dimensional patterns without a subsampling of the feature vectors.
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Chapter 10

Conclusion and Outlook

In this work, perceptual segmentation and grouping processes, like they can be de-
scribed by the Gestalt Laws, were implemented with the Competitive Layer Model.
Several grouping principles were encoded in the excitatory and inhibitive lateral
interaction weights of the network, while the vertical competition weights imple-
mented a WTA process between the occurring groups.
Key features of the CLM are an automatic detection of the number of present
groups, an annealing process to prevent suboptimal segmentations, which is sup-
ported by theoretical knowledge about the convergence and assigning properties
of the CLM-dynamics, and a general architecture that can be expanded to a wide
range of grouping problems.
The goal of this work was to advance the learning approach of estimating the lateral
interaction weights from hand-labeled training patterns.
The practical simulations have shown, how the output labeling arises from a suc-
cessive activation of splitting and WTA processes during annealing. Thereby, this
behavior was very robust against random noise in the lateral interactions weights,
because of the high redundant and dynamical character of the CLM.
From this observation the AHL algorithm was derived, which roughly approxi-
mates the distributions of excitatory and inhibitive feature-pairs within a pairwise
feature proximity space to describe some kind of binary classification of the lateral
interaction weights. In this term, the AHL approach competes with more accurate,
but also more complex methods, like the SVM.
The advantages of AHL are a simple and fast implementation and the direct control
of the complexity and the segmentation level of the learned interaction function.
AHL was successfully applied to the problems of point clustering, contour group-
ing and texture, color and fluorescence cell image segmentation. Generalization
properties were guaranteed by external knowledge from the predefined proximity
spaces.
Although AHL represents a significant simplification of the learning process, it still
leaves some open problems. One is the automatic estimation of the segmentation
control parameter Λ. Another is the still extensive effort for the user in designing
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suitable feature and proximity spaces.
An approach to this problem might be the combination of the AHL algorithm with
the concept of evolutionary learning. A set of general feature and proximity proper-
ties might be encoded as chromosomes that are combined to feature and proximity
spaces. The fitness of these spaces could be evaluated very efficiently by comput-
ing the classification rate of an AHL-based interaction function according to the
target labeling.
Since the AHL algorithm shows robustness against errors in the target labeling,
also some kind of bootstrapping strategies might be interesting, where the target
labeling as well as the features and proximity functions is evolved from random
initializations.
If several interaction functions are applied in parallel within the CLM, the WTA
behavior enables a classification of different types of object shapes by a kind of per-
ceptron approach. This approach works quite good for clear and simple shapes, like
artifical letter contours. For more complex shapes, like the COIL20 data, the sit-
uation gets more complicated, where the mere bottom-up grouping process based
on the pairwise feature relations has more problems to describe global object prop-
erties. Here the estimation of class specific control parameters Λc, c = 1, . . . , C
combined with the adaption of the layer weights might be useful to differentiate
the competing interaction functions from each other.
Another approach may be to introduce higher order feature relations or top-down
backward loops to the CLM architecture. An exemplary scenario of this approach
on the detection of circular objects may be to start with the original CLM-dynamics
on an AHL-learned interaction function. After the groups have manifested in dif-
ferent layers, some kind of super-features could be extracted from the groups, e.g.
the average distance of the features to the center of the groups, and the interaction
weights of the elementary features could be modified according to these super-
features, e.g., such that all features whose distance to the center deviate drastically
are reduced to remove them from the respective group, similar to the application
of the attention maps in this work. Such an architecture would require a temporal
coordination of the annealing process and the weight modifications from the adap-
tation of the segmentation control parameter, the application of attention maps and
the influence of global top-down information.
One of the main drawbacks of the practical simulation of the CLM-dynamics was
the resource demand for the high number of interaction weights. Therefore, further
works should try to speed up the simulation algorithm, e.g. by an efficient hardware
implementation or a massive parallelization of the actual simulation algorithm. A
far goal would be to apply the CLM to image sequences in real time, such that
the CLM can trace objects or groups over time by recycling the information from
previous grouping results. Together with additional mechanisms for storing infor-
mation, like position, orientation, type and velocity about perceived objects such
an architecture might be developed to a complex model for perception.



Appendix A

Example for the Construction of
the Interaction Matrix

Six arbitrary features mr, r = 1, . . . , 6 shall be separated into three groups con-
taining three, two and one features. This problem can be described by assigning
each feature to a label α̂(r) ∈ 1, 2, 3, where it is assumed, that the features are
ordered according to their label which results in the labeling vector:

α̂ord =
[

1 1 1 2 2 3
]T
. (A.1)

Using this labeling in (3.36), a three layered target state of the CLM can be gener-
ated containing the layer vectors:

yord1 =
[

1 1 1 0 0 0
]T

yord2 =
[

0 0 0 1 1 0
]T

yord3 =
[

0 0 0 0 0 1
]T
.

(A.2)

Now, the block-diagonal correlation matrix for the difference vectors between these
layer vectors can be computed according to (5.3) as

F̂ =




4 4 4 −2 −2 −2
4 4 4 −2 −2 −2
4 4 4 −2 −2 −2
−2 −2 −2 4 4 −2
−2 −2 −2 4 4 −2
−2 −2 −2 −2 −2 4



. (A.3)

The negative entries of F̂ are scaled against the positive ones by the factor Λ =
1

3−1 . For any other ordering of the six features, the rows and the columns of (A.3)
must be permuted in the same way as the features to make the interaction matrix
consistent with the consistency conditions in equation (3.37).
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Appendix B

Heuristic Constraints on the
Interaction Coefficients cj

To estimate an lower bound for the control parameter Λ, it is provided, that the sum
of all left hand sides in (5.1) is smaller than zero:

∑

r

∑

β 6=α̂(r)

∑

r′
frr′yr′β < 0

(3.36)

⇐⇒
∑

(mr ,mr′)|α̂(r)6=α̂(r′)

frr′ < 0
(5.11)

⇐⇒
∑

(mr ,mr′)|α̂(r)6=α̂(r′)

∑

j

cjg
j
rr′ < 0 ⇐⇒

∑

j

cj
∑

(mr ,mr′)|α̂(r)6=α̂(r′)

gjrr′ < 0
(5.17)

⇐⇒
∑

j

cj
∑

(mr ,mr′)∈Vj |α̂(r)6=α̂(r′)

1 < 0
(5.19)

⇐⇒
∑

j

cjc
−
j < 0 ⇐⇒

cT c− < 0
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For an upper bound for Λ, it is provided, that the sum of all right hand sides in (5.1)
is larger than zero:

∑

r

∑

β 6=α̂(r)

∑

r′
frr′yr′α̂(r) > 0

(3.36)

⇐⇒

(L− 1)
∑

(mr ,mr′)|α̂(r)=α̂(r′)

frr′ > 0
(5.11)

⇐⇒

(L− 1)
∑

(mr ,mr′)|α̂(r)=α̂(r′)

∑

j

cjg
j
rr′ > 0 ⇐⇒

(L− 1)
∑

j

cj
∑

(mr ,mr′)|α̂(r)=α̂(r′)

gjrr′ > 0
(5.17)

⇐⇒

(L− 1)
∑

j

cj
∑

(mr ,mr′)∈Vj |α̂(r)=α̂(r′)

1 > 0
(5.19)

⇐⇒

(L− 1)
∑

j

cjc
+
j > 0 ⇐⇒

(L− 1) cT c+ > 0
(L− 1 > 0)

⇐⇒
cT c+ > 0



Appendix C

AHL Learning Algorithm

The input of the AHL algorithm is given by a set of training patterns P i, where
each training pattern consists of a set of N i features mi

r, with a target labeling
α̂i(r) = α̂i(mi

r). The distances in the proximity space are computed by a set of P
similarity functions dp(mr,mr′), p = 1, . . . , P .
First, the individual mean µp and variance σp of each distance function is computed
on the training set:

µp =
1∑
iN

2
i

∑

i

∑

r,r′
dp(m

i
r,m

i
r′),

σp =

√
1∑
iN

2
i

∑

i

∑

r,r′
(dp(mi

r,m
i
r′)− µp)2.

The distances are then normalized by their variance using

ap =

{ 1
σp

: σp > 0

1 : σp = 0
,

and Dirr′
p = apdp(m

i
r,m

i
r′) is defined as the normalized distance for all p, i, r, r ′.

The set of distance vectors Dirr′ = (Dirr′
1 , . . . , Dirr′

P )T is quantized using a set of
K prototypes d̃j ∈ RP , j = 1, . . . ,K . The Voronoi cell set Vj of prototype d̃j is
defined as

Vj = {(i, r, r′)| ‖ Dirr′ − d̃j ‖<‖ Dirr′ − d̃k ‖ for all k 6= j},
which carries the training pairs assigned to this prototype. This can be further
subdivided into a set V +

j , where features are assigned to the same layer, and V −j ,
where they are in different layers 1:

V +
j = {(i, r, r′) ∈ Vj|α̂i(r) = α̂i(r′)},
V −j = {(i, r, r′) ∈ Vj|α̂i(r) 6= α̂i(r′)}.

1Feature-pairs, where both features are assigned to the background (like in Fig. 6.15) or one
feature is not assigned to any label, should be treated as assigned to different labels, to prevent
spurious support in the the background.
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The algorithm can be performed using simple vector quantization, or the more
advanced AEV algorithm for resetting unused prototype vectors. For AEV, an
activation score Aj is computed for each prototype, based of the population of the
Voronoi cell set Vj . Based on an activation threshold ΘAEV and a given update
probability PAEV prototypes are then reinitialized.
The target of the learning are the coefficients c+

j and c−j of the basis interaction
prototypes, derived from the vector quantization in the proximity space.
The AHL learning algorithm is implemented by:

1. Initialize (d̃j)p(t = 0) = N (apµp, 1) 2;

2. For iterations t = 0, . . . , tmax:

(a) For all j ∈ 1, . . . ,K:
set d̃j(t+ 1) = 1

Aj(t)

∑
i,r,r′∈Vj(t) Dirr′(t),

where Aj(t) =
∑

i,r,r′∈Vj(t) 1;

(b) For all j ∈ 1, . . . ,K:
compute Vj(t+ 1), based on

the new prototypes d̃j(t+ 1);

(c) AEV step with PAEV = 1− i
tmax

:

For all j ∈ 1, . . . ,K with
AjP
k Ak

< ΘAEV :

choose s ∈ [0, 1] randomly;
if s < PAEV (t):

set (d̃j)p ∈ N (apµp, 1);
otherwise:

choose another prototype d̃n;
place d̃j near d̃n:

(d̃j)p ∈ N ((d̃n)p, 0.01);

3. For all j ∈ 1, . . . ,K:
compute:
c+j =

∑
i,r,r′∈V +

j
1 and c−j =

∑
i,r,r′∈V −j

1;

4. For all j ∈ 1, . . . ,K:
normalize:
c+j := c+j /

∑K
i=1 c

+
i and c−j := c−j /

∑K
i=1 c

−
i ;

2N (µ, σ) is a normal distribution with mean µ and variance σ.
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The AEV step is omitted by removing step 2(c) from the algorithm. For all the
simulations in this work, ΘAEV = 1

2K is chosen and eleven iterations of step 1 to 5
(tmax = 10) are performed. All summations over (i, r, r ′) that run over all feature
pairs from the training patterns can be approximated by a randomly selected subset
of Npairs feature pairs. The number N pairs is called the “number of learning steps
per learning phase“ (step 2(a) and 3) in the application examples.
The learned interaction is applied to a new test pattern PT with NT features
mr, r = 1, . . . NT by computing the lateral interactions:

frr′ = f(mr,mr′) = c+I(mr ,mr′)
− Λc−I(mr ,mr′)

,

where I(mr,mr′) is the index of the corresponding proximity prototype

I(mr,mr′) = argminj

(∑

p

(apdp(mr,mr′)− (d̃j)p)
2

)
.
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