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1 Summary

Humans as well as animals react to environmental changes by adjusting their behaviour.
Thereby the nervous system which processes sensory information about environmental
changes and controls behavioural responses has to rely on its sensory cells and neurons
that respond with limited reliability. Even if exactly the same stimulus is presented re-
peatedly, considerable response variability can be found in various cell types in different
animals. Neurons in the visual cortex of monkeys, for examples, show an extremely high
variability with spike count variances in the range of the mean response amplitude. Some-
what smaller, nevertheless formidable, variability is found in the visual system of insects.
These observations lead to the questions where all this variability originates and how the
animal deals with it. In my thesis I address these questions investigating peripheral as
well as central processing stages of the blowfly visual system which served for long as a
model system for studies on the reliability of neural coding.

Visual information processing starts with the sensing of light by the photoreceptors in
the retina. Classically their coding performance is characterised using information the-
oretical approaches, e.g. the widely used Shannon information capacity. I additionally
applied a discrimination measure to assess the photoreceptor response reliability. This
measure, in contrast to the information capacity, takes the time course of the responses
into account. Quite different conclusions about photoreceptor coding performance are
drawn on the basis of these two measures. The discrimination measure shows a safe
discriminability of responses to stimuli which, on the basis of information theoretical
approaches, would have been classified ineffective in evoking responses having any signif-
icant information capacity. These results once more illustrate the dependence of drawn
interpretations on applied measures.

From the photoreceptors to the next higher level of visual information processing, the
large monopolar cells in the first optic lobe, the photoreceptor responses pass a specialised
synapse. Depending on the adaptational state, determined by the mean light level, the
synaptic transfer properties change from lowpass to bandpass behaviour at low respec-
tively high light levels. From information theoretical considerations it has been concluded
to be advantageous to bandpass filter the signals in order to optimize channel capacity.
Can this interpretation be supported by the response discriminability? Therefore, I as-
sessed the reliability of photoreceptor responses to random brightness fluctuations in a
discrimination task and investigated the impact of synaptic filtering on the discriminabil-
ity of response time-courses. I found that the filter characteristics of the first synapse can
increase response discriminability if the random brightness fluctuations that are to be
distinguished are superimposed on a large low frequency modulation of the background
illumination. The advantage of filtering results from an increased noise induced by the
slowly varying background illumination. I further compared these findings with the effects
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1. Summary

of filtering on the discrimination performance of photoreceptor models that can reproduce
the time course of photoreceptor responses accurately. These simulations included photon
noise as the only noise source leading to response variability in the range observed exper-
imentally. Filtering did not affect the disciminability of the model responses. Comparing
the cellular and model noise led to the conclusion that the increased low frequency noise
is attributable to a light or activity dependent intrinsic noise source not included in the
simulations. Thus, the synaptic transfer characteristic does not only reduce redundancy
but also removes noise emerging within the photoreceptor itself.

Photon noise, i.e the randomness in photon emission from a light source, is one of
the main noise sources in photoreceptors. This unavoidable noise source inherent in the
visual input sets the ultimate limit to the reliability of neural coding especially at low
light levels when photons are rare and the gain of photoreceptors is large. Along the
pathways evaluating the visual signals other noise sources add to the overall variability
that can be observed at higher order processing stages. H1 like the other large motion
sensitive tangential cells in the third optic lobe of the fly visual system integrates over
many local motion sensitive elements. Despite this extensive spatial integration that re-
duces uncorrelated noise from the individual input channels, it has been claimed that
response reliability of H1 is limited by photon noise even under daylight conditions. Us-
ing the discriminability measure I was able to show that, at least at the light level used
in the experiments and brighter, though far below daylight conditions, H1 is not limited
by photon noise, but more likely by noise arising from neuronal noise sources such as
synaptic or ion channel noise.

At this central processing stage also higher level noise may play a role for the encoding
and representation of visual motion stimuli. The tangential cells obtain their selectivity
for particular visual motion patterns by spatially integrating excitatory and inhibitory
outputs of thousands of local motion sensitive elements. During the animal’s normal
behaviour they are exposed to a large diversity of motion patterns to which they are not
invariably tuned. From the tangential cell perspective such motion can be considered
as a higher level sort of noise that makes it more difficult to evaluate the overall mo-
tion pattern. This motion noise, even if it does not drive the neuron, i.e. it induces no
distinct excitation or inhibition, modulates the responsiveness of the tangential cell. I
investigated the tangential cell performance in the presence of motion noise on the basis
of the time courses of their membrane potential as well as of spike sequences. I could
show that (i) the very pronounced changes in the input-output characteristic induced by
the motion noise can be attributed to a shunting effect, i.e. a reduction of neuronal gain
resulting from a stimulus-induced increase in membrane conductance of the neuron, (ii)
despite these changes the direction tuning is very robust, and (iii) the representation of
pattern velocity in the response amplitude is almost as good as without any motion noise.

Using the fly visual motion pathway as a model system I have investigated how the
nervous system deals with inevitable noise sources at peripheral as well as central process-
ing stages. Using a novel measure for the reliability of the responses I was able to show
that peripheral synaptic filtering is not only advantageous to optimise the neural code
in an information theoretical sense but also is a prerequisite to enhance reliable over un-
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reliable response components. The filtering and the convergence on different processing
levels contribute to the performance of a central neuron not being limited by photon
noise. The tangential cells could also be shown to be robust against motion noise which
is unavoidable as it results from the complex visual motion patterns experienced during
behaviour.
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2 Introduction

Any organism has to adapt its behaviour to environmental changes dynamically. These
changes can be slow and the behavioural adjustment may take place on timescales of
minutes, hours, or even days. On the other hand, changes may be extremely rapid in
the range of a few tens of milliseconds. On these timescales the precision of the animal’s
reaction to changing sensory input is of great importance, for example, in the case of a
predator wanting to catch its fleeing prey or the prey trying to avoid the predator. Not
only during these critical moments but also during everyday life precise reactions are,
most likely, of an evolutionary advantage increasing an animal’s fitness. Surprisingly, the
neuronal signals which control behaviour exhibit a great deal of variability. That is, when
the same stimulus is presented to a sensory neuron, say, ten times, the ten corresponding
neuronal responses may have a common coarse structure induced by the stimulus but are
different in detail at each presentation. Response variances ranging up to the level of the
mean activity, suggesting a random process generating the responses, have been observed
in vertebrate cortical neurons (Tolhurst et al., 1983; Vogels et al., 1989; Britten et al.,
1993). Somewhat smaller variability is described for peripheral stages of visual processing
in vertebrates (Levine et al., 1988; Levine and Cleland, 1992; Berry et al., 1997; Reinagel
and Reid, 2000; Kara et al., 2000) and also in motion sensitive neurons of the fly, the
experimental model system used in the present account (e.g. de Ruyter van Steveninck
et al., 1997; Warzecha and Egelhaaf, 1999; Warzecha et al., 2000). Irrespective of its
actual degree neuronal variability sets the upper bound for any behavioural performance
of any nervous system.

In my thesis I will address different general aspects of neuronal variability using the
blowfly’s visual system. The fly’s visual system is well suited for studies on neuronal re-
sponse variability and the underlying causes. Several stages of visual information process-
ing are easily accessible with electrophysiological approaches using in vivo preparations
while stimulating the system with its natural (visual) input instead of electrical stimula-
tion as is often applied in in vitro preparations. The blowfly in vivo preparation offers the
opportunity of long-term electrophysiological recordings as is needed for reliability analy-
ses and allows interpreting the results in behaviourally contexts. Over the last decades
much knowledge has been collected ranging from the anatomy (e.g. Strausfeld, 1979) to
the electrical and biophysical properties of single neurons on peripheral (e.g. Lillywhite,
1977; Laughlin, 1994; Uusitalo et al., 1995; Vähäsöyrinki et al., 2006) and more central
processing stages (e.g. Hausen, 1976, 1982; Hengstenberg, 1982; Borst and Haag, 1996;
Haag et al., 1997). The fly visual system is organised in optic lobes (figure 2.1) repre-
senting different aspects of information processing.
Starting in the retina (R in figure 2.1) the photoreceptors transduce light intensities
into graded changes of the photoreceptor membrane potential (e.g. Juusola et al., 1994).
These signals are transmitted to the lamina (L), the first optic lobe, where temporal
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2. Introduction

R

L
M
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Lp

Figure 2.1: Fly visual system. Sketch of a horizontal section through the fly visual system
[adapted from Hausen (1976)]. R Retina: lines indicate the ommatidial structure of the compound
eye. L Lamina: the first optic lobe; information processing in cartridges corresponding to the
ommatidial organisation. M Medulla: second optic lobe. The retinopic structure is preserved.
Here, motion compuation is expected to take place. Lo and Lp Lobula and lobula-plate constitute
the lobula complex, third optic lobe. In the lobula-plate large interneurons, the tangential cells,
spatially integrate the retinotopic information received from the medulla.

signal processing takes place (e.g. Uusitalo et al., 1995). In the second optic lobe, the
medulla (M), visual motion is detected (e.g. Douglass and Strausfeld, 1995). So far all
information is processed in separate columns with each column representing one ”pixel”
of the fly’s retinal image. The third optic lobe is the lobula complex which is subdi-
vided into the lobula (Lo) and the lobula plate (Lp). In the lobula plate an ensemble
of about 60 so called tangential cells is very well investigated (e.g. Hausen, 1976, 1982;
Hengstenberg, 1982; Egelhaaf, 1985; Borst and Haag, 2002; Egelhaaf et al., 2002). These
tangential cells are direction-selective motion sensitive elements that spatially integrate
the columnar outputs of the medulla and project mostly via interneurons onto motoneu-
rons indicating their central role for controlling behaviour. The fly visual system is a well
established system to study principles of visual motion processing and the evaluation
of optic flow (e.g. Krapp et al., 1998; Egelhaaf et al., 2002) and offers the opportunity
to interpret electrophysiological data in a behavioural context (e.g. Kern et al., 2005).
Furthermore, the blowfly has been proven to be a valuable model system for the analysis
of neuronal response reliability on different stages of visual information processing (e.g.
Laughlin, 1994; de Ruyter van Steveninck and Laughlin, 1996; Juusola and French, 1997;
Egelhaaf and Warzecha, 1999; Warzecha and Egelhaaf, 2001; de Ruyter van Steveninck
et al., 2001; Egelhaaf et al., 2002).

In my thesis I address aspects of neuronal response variability in the periphery and
in more central parts of the visual system, i.e. photoreceptors in the retina (chapters 3
and 4) and tangential cells in the lobula plate (chapters 5 and 6). With a novel measure
to discriminate time-dependent neuronal responses (see below, chapter 3) I asked for the
origin of neuronal variability and investigated the ways the nervous system may deal with
noise, for instance, by synaptic filtering and convergence (chapters 4 and 5). Chapter 6
addresses the robustness of neuronal coding in the presence of visual motion noise, again
on level of the tangential cell in the lobula plate.
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In the following I will briefly and quite generally introduce into the topic of how
neuronal variability manifests itself in neuronal responses and describe methods I applied
to analyse it. Subsequently, I will introduce into the scientific background of the four
subprojects presented in later chapters in more detail. Finally I will briefly discuss some
important aspects.

Variability of Neuronal Responses Basically, two response modes are employed by
nervous systems to transmit information: (i) action potentials (spikes) and (ii) graded
membrane potential shifts. These modes may also be used by individual neurons in
combination. Both response modes have their advantages and disadvantages. Spikes are
binary which limits the amount of information that can be transmitted per unit time
but they are robustly transmitted over long distances. Thus, spikes are often employed
to transmit information over long distances, for instance, by human motoneurons where
spikes are generated at the soma located in the spinal cord and conducted to muscles
in more than half a meter distance. Graded membrane potential shifts, on the other
hand, can code for many more stimulus quantities at any instance of time but they are
transmitted in an electrotonic way entailing signal attenuation with increasing distance.
Thus, graded membrane potential shifts are employed on short distances, for example in
many sensory systems like the retina (for review: Roberts and Bush, 1981).

a)

125 ms

b)

125 ms

2
 m

V

Figure 2.2: Variability in neuronal responses. (a) Rasterplots of the fly’s H1 spike responses
to 40 repeated presentations of the identical stimulus. Every Line respresents a single response
and each dot marks the occurence of an H1 spike. Both manifestations, i.e. spike time jitter and
spike count variance, of neuronal response variability can be observed. (b) The neuronal response
variability as also observed in graded responses of fly photoreceptors causes every single response
to have an individual time-course.
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2. Introduction

Irrespective of the type of response every neuron shows response variability. In spiking
neurons response variability expresses itself in a variable number of spikes generated in
response to repetitions of the same stimulus (spike count variability) or in variable timing
of individual action potentials (spike time jitter). Often, variability in spike count and
jitter in the timing of spikes can be observed in parallel as shown in figure 2.2a for the
H1 neuron in the fly’s brain. Neurons that transmit information not by spikes but by
graded changes of the membrane potential show membrane potential noise. For instance,
the membrane potential time-course varies between responses to repeated presentations
as is illustrated for a fly photoreceptor in figure 2.2b.

2.1 Approaches to Analyse Neuronal Response

Variability

The reliability of neuronal responses is often quantified in the frequency domain by
the signal-to-noise-ratio (SNR) (Bendat and Piersol, 2000; Dayan and Abbott, 2001)
or with information theoretical approaches like the Shannon information capacity (Shan-
non, 1948). The fly photoreceptors, for example, have been extensively studied using
these methods (e.g. Juusola et al., 1994; de Ruyter van Steveninck and Laughlin, 1996;
Juusola and Hardie, 2001; Vähäsöyrinki et al., 2006). Since I applied spectral analyses
quite extensively throughout my studies, I will introduce the used methods briefly in the
following paragraphs.

0 1000 2000
time [ms]
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o
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a) b)

1 10 100 1000
10-5

10-4

10-2

10-3

frequency [Hz]

−σ

x
+σ

Figure 2.3: White noise stimulation. (a) White noise is basically a random sequence of
stimulus intensities, for example a series of light intensities. The contrast is defined by the mean
intensity x and the standard deviation σ (equation 2.1). (b) Characterisitc of white noise is the
flat power spectrum. Indicating that the white noise stimulus containes all frequencies in equal
shares.

White Noise Stimulation White noise stimulation is very common when analysing
systems in the frequency domain (Bendat and Piersol, 2000). A white noise stimulus
is basically a random sequence of stimulus intensities (figure 2.3a) that, theoretically,
contains all frequencies in equal shares (figure 2.3b). I applied white noise stimuli to
characterise the response reliability of fly photoreceptors. For this, random sequences of
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2.1. APPROACHES TO ANALYSE NEURONAL RESPONSE VARIABILITY

light intensities with a band-limited spectrum (figure 2.5a) were presented repeatedly to
the fly. The amplitude of the light intensity modulation is defined as the contrast c:

c =
σ

x
, (2.1)

with σ the standard deviation of the stimulus’ light intensity and x the mean light
intensity.
Typical photoreceptor responses to the same sequence of white noise contrast modulations
(c = 0.31) are shown in figure 2.4 top. Different response traces have a common temporal
structure, but are different in detail although evoked by the same stimulus.

125 ms

2
 m

V

across trial averaging

individual resonses

stimulus-induced-

response-component

(signal)

stimulus-independent-

response-component

(noise)

individual response

- signal

Figure 2.4: Stimulus-induced and stimulus independent response component. The in-
dividual responses shown on top are responses of Calliphora photoreceptors repeatedly stimulated
with the same stimulus. Across trial averaging leads to the stimulus-induced-response-component

(signal) common to all individual responses (center). The difference between the induvidual re-
sponses and the signal is the stimulus-independent-response-component (noise) assumed to be a
consequence of unreliable processes (bottom traces).

Separating Signal and Noise Generally, the response component common to all
individual responses is considered to be stimulus-evoked, whereas deviations from this
are stimulus-independent and, thus, can be regarded as noise. The first step of analysing
the reliability of the cellular responses is to separate these two response components from
each other. To do this, responses to a number of repeated presentations of the same
stimulus (trials) are recorded. The average response estimated across trials is assumed to
be the ’real’ response, meaning the response that would have been generated, if the system

9



2. Introduction

were deterministic and free of noise. This average response is often called the stimulus-

induced-response-component (SIRC) or, simply, signal (figure 2.4, center). Consequently,
the difference between each individual response trace and the estimated noise-free signal is
the stimulus-independent-response-component (noise) assumed to be evoked by unreliable
processes in the nervous system (figure 2.4 bottom).

SNR in the frequency domain Signal and noise response components are further
analysed in the frequency domain by calculating their power spectra (figure 2.5b). The
spectral view on the signal and noise response components allows analysing which fre-
quencies are most faithfully represented by the responses and which are not. The SNR
is defined as the ratio of the signal and noise power spectra (Bendat and Piersol, 2000):

SNR (f) =
|〈S (f)〉|2

|〈N (f)〉|2
(2.2)

where S(f) and N(f) are the Fourier-spectra of signal and noise response component,
respectively. || denotes the absolute value of the Fourier spectra and 〈〉 averaging over
several data segments. The SNR is given as a function of the frequency (figure 2.5c)
and provides an intuition of the quality with which different stimulus frequencies are
represented by the responses. Large SNRs, as in the middle frequency range in figure 2.5c,
indicate a high quality signal while SNRs below one show that the respective frequencies
have a stronger noise than signal component.
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Figure 2.5: Spectral response analysis. (a) Stimulus power spectrum of a white noise light
stimulus as used to stimulate photoreceptors. The white noise stimulus was low-pass filtered with
a 2nd-order Butterworth low-pass filter giving the band limitation. (b) Power spectra of the
signal (black) and noise (grey) response components as estimated from repeated presentations of
a white noise stimulus (see figure 2.4). (c) signal-to-noise-ratio calculated from the signal and
noise power spectra (equation 2.2).

Shannon Information Capacity According to Shannon (1998), the amount of in-
formation that a photoreceptor can transmit to subsequent processing stages can be
estimated from the SNR (figure 2.6). The so called information capacity R is calculated
as

R =

∫ ∞

0
dflog2

[

1 +
|〈S (f)〉|2

|〈N (f)〉|2

]

, (2.3)
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2.2. COMPARING INFORMATION CAPACITY AND RESPONSE
DISCRIMINABILITY

with R the information capacity, S(f) and N(f) the Fourier-spectra of the signal and
noise response components, respectively. || denotes the absolute value of the Fourier
spectra and 〈〉 averaging over several data segments.
Shortly after Shannon formulated the theoretical framework to calculate the amount of
information that can be transmitted in an electrical communication channel (Shannon,
1948), information theoretical approaches, e.g. the information capacity, have been widely
applied to quantify information processing in nervous systems (for review e.g. Borst and
Theunissen, 1999). The application of the Shannon information capacity is bound to
assumptions: (i) The system has to be linear, (ii) signal and noise must be normally dis-
tributed, and (iii) signal and noise must be additive. These assumptions are largely met
by fly photoreceptors when stimulated with white noise stimuli (see e.g. de Ruyter van
Steveninck and Laughlin, 1996).
SNR and Shannon information capacity are based on spectral analysis of the responses
by calculating signal and noise power spectra. However, power spectra ignore the phase
information which, together with the amplitude spectrum, represents the temporal struc-
ture of the responses.

s
ig

n
a
l 
to

 n
o
is

e
 r

a
ti
o

10-2

102

101

100

10-1

1  10 100

frequency [Hz]

in
fo

rm
a
ti
o
n
 [
b
it
]

0

1

2

3

4

1  10 100

frequency [Hz]

Shannon information 

capacity [bit*s-1]

Figure 2.6: Estimation of the Shannon information capacity. (left) The response signal-

to-noise-ratio as in figure 2.5c). centre Transmitted information as a function of the frequency.
Integrating this information spectrum (applying equation 2.3 to the SNR) gives the Shannon
information capacity given in bit/s.

2.2 Comparison of Shannon Information Capacity

and Response Discriminability

For a nervous system the time-dependent activity of its neurons may be important for
controlling behavioural responses successfully. Furthermore, a differentiated behaviour
can only be evoked if different stimuli lead to distinguishable responses of the involved
neurons. Assessing whether responses have a different time course is impossible on the ba-
sis of the Shannon information capacity, since the temporal information is lost by omitting
phase information. Therefore, as an alternative way to assess photoreceptor coding per-
formance, I analysed photoreceptor responses in a discrimination task in which responses
to different stimuli are to be distinguished. The question arises whether or not equiv-
alent conclusions about photoreceptor coding performance would be drawn on basis of
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2. Introduction

the Shannon information capacity and the discriminability of time-dependent responses.
Discrimination tasks have been applied in different formats and in different systems rang-
ing from insects to monkey cortex (e.g. Britten et al., 1992; Machens et al., 2001). The
discrimination task I developed estimates response discriminability by assessing response
similarity combined with a two-alternative-forced-choice method. Because of its promi-
nent role in the projects of my doctoral thesis I will explain this method as applied to fly
photoreceptor responses in some more detail.

Estimating Response Discriminability The photoreceptors are stimulated with ran-
dom light intensity fluctuations of a certain contrast (equation 2.1, see above). The basic
idea is to estimate the system’s reliability by asking for the contrast of the stimulus that
is needed to affect the responses detectably. For this, the contrast is increased until an
effect on the responses can be detected with an appropriate measure (see below). In
detail:

1. At each contrast level two stimulus groups are presented. The stimuli of one group
are called the reference stimuli and the others are the test stimuli (figure 2.7 top).
Reference and test stimuli have the same statistical properties, i.e. the same con-
trast and (approximately) the same spectral characteristics. While the reference

stimuli are exact repetitions of a single stimulus trace, the test stimuli are differ-
ent from each other, i.e. have different time courses. By using stimuli with the
same statistical properties cellular nonlinearities and (possibly existent) activity
dependent noise sources affect the responses to reference and test stimuli equally.
Thus, this measure does not make assumptions about the system’s linearity or the
additive nature of inherent noise. The photoreceptor responses are named reference

and test responses, accordingly (figure 2.7 centre).

2. The test and references responses are compared by estimating their mutual sim-
ilarity. As illustrated in the central part of figure 2.7, each reference response is
compared to all other reference responses, giving an average similarity within the
reference group, and to the test responses, giving an average similarity between

the reference and test group. It is assumed that a reference response can then be
distinguished from the test responses, if it is more similar to the other reference

responses than to the test responses. The actual measure of response similarity
depends on the type of response analysed. In the case of the graded photoreceptor
responses the root-mean-square distance is applied (see below, equation 2.4).

3. In analogy to a two-alternative-forced-choice procedure as frequently applied in
psychophsics (Green and Swets, 1974), each reference response is regarded as dis-
tinguishable from the test responses, if it is more similar to the other reference

responses than to the test responses. This judgement is based on the similarities
within and between response groups (see above).

4. The percentage of distinguishable reference responses is then plotted as a function
of the stimulus contrast (figure 2.7 bottom). The discrimination performance ranges
from 50% correct (chance level), if the responses are indistinguishable, to 100%
correct, if all reference responses are more similar to their companions than to the
test responses.

12



2.2. COMPARING INFORMATION CAPACITY AND RESPONSE
DISCRIMINABILITY

5. The resulting physiometric curve is fitted with a logistic curve ranging from 50 to
100% from which the contrast that leads to a safe discriminability (75% correct
assignments) can be directly read out. This threshold contrast is interpreted as a
representative of the photoreceptor response reliability.
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two-alternative-forced-choice

0 0.001 0.01 0.1

40

60

80

100

contrast

d
is

c
ri
m

in
a
b
ili

ty
 [
%

 c
o
rr

e
c
t]

threshold

contrast

2
 m

V

100 ms

reference stimuli test stimuli

1

2

25

100 ms

reference responses test responses

Stimuli

Responses

Physiometric-

curve

Figure 2.7: Estimating response discriminability. (top) Two types of stimuli, namely
the reference (left) and test stimuli (right) are presented at each contrast level. The reference

stimuli are exact repetitions while the test stimuli all have the same statistical properties as
the reference stimuli but are different in detail. (centre) The similarity of the responses is
estimated by comparing each reference response (for example the highlighted one) to all other
reference responses and to all test responses giving the average similarity of this resopnse within

the reference group and between the reference and test responses. (bottom) In a two-alternative-
forced-choice way the individual reference responses are assigned belonging to the reference group
(correct assignement) or to the test group (false) on basis of their similarity within and between.
The whole procedure is done at different contrasts and the percentage of correct assignments is
plotted as a function of the contrast. The resulting physiometric curve is fitted with a logistic
function from which the threshold contrast can be estimated. The threshold contrast is defined as
the contrast leading to a safe (75% correct) discriminability of the responses.
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2. Introduction

Using this measure, the system’s noise can be measured in units of the input signal.
This procedure is attractive since it allows interpreting the observed response noise in
terms of the natural input and drawing conclusions about its behavioural relevance.

How are the measures based on spectral response analysis (section 2.2) and the response
discriminability related? Do both measures lead to the same estimate of the photoreceptor
coding performance? This question will be answered in chapter 3 where responses of
fly photoreceptors to white noise modulated brightness stimuli are analysed with this
discrimination measure. The similarity of reference and test responses is assessed using
the root-mean-square distance.

Dx,y =

√

√

√

√

1

N

N
∑

i=1

(xi − yi)
2, (2.4)

with xi and yi the two responses and N the number of data points. Two identical
responses would have a distance D = 0. The discrimination performances are estimated
for different contrasts, and the results are compared to the Shannon information capacity
of the responses at the same contrasts.
With the discrimination measure, responses can be safely discriminated already for ex-
tremely small contrasts which, on the basis of the information capacity, are concluded not
to be coded at all. Furthermore, the analysis shows that even those response components
that have a SNR below one are valuable, if the temporal structure of the responses is
taken into account.

The results of this analysis are described in chapter 3 and have been sub-
mitted for publication as: Jan Grewe, Matti Weckström, Martin Egelhaaf, and Anne-
Kathrin Warzecha. Two Measures Two Interpretations - Shannon Information Capacity

and Response Discrimination as Measures of Photoreceptor Coding Performance.

2.3 Synaptic Filtering of Photoreceptor Responses

As illustrated above, the photoreceptor responses exhibit considerable variability (figure
2.4). At the same time, photoreception is the first step of visual information processing
and information lost on this early stage will not be available to subsequent processing
steps. In the retinae of vertebrates and invertebrates several mechanisms have been iden-
tified enhancing signal quality.
One of these mechanisms is the convergence, i.e. the combination of the sensory in-
formation received by many units. In the fly retina, for example, six photoreceptors
sampling the same point in the visual space are electrically coupled (e.g. Meinertzhagen
and O’Neil, 1991) and the information combined in this way is transmitted to the same
1st-order neurons and to subsequent processing stages. Similar convergence is also found
in the rod pathway in the mammalian retina to improve signal quality before synaptic
transmission to the bipolar cells (e.g. DeVries et al., 2002; Hornstein et al., 2005). By
this convergence uncorrelated noise in the individual photoreceptor responses is reduced.
Thereby the signal quality is improved, but spatial resolution is sacrificed.
The subsequent transmission of the retinal signals to higher-order processing stages offers
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2.3. SYNAPTIC FILTERING OF PHOTORECEPTOR RESPONSES

the opportunity for further signal processing. The synapses connecting the different cells
are important sites of neuronal signal processing. By synaptic filtering information can
be extracted and the signal quality can be improved. Synaptic transfer characteristics
that increase signal quality have been characterised in the retinae of vertebrates and in-
vertebrates (e.g. Armstrong-Gold and Rieke, 2003; Field and Rieke, 2002; Laughlin, 1994;
Juusola and French, 1997).
In the fly retina the multiple parallel synapses between photoreceptors and first order
neurons (the large monopolar cells, LMCs) are specialised to conserve the signal quality
while it simultaneously processes the photoreceptor responses. Due to its architecture,
with many active zones at which histamine is released into the synaptic cleft, it has been
shown to transmit the photoreceptor signals very faithfully (e.g. de Ruyter van Steveninck
and Laughlin, 1996). The synapse processes the signals by its bandpass-like transfer prop-
erties (e.g. James, 1992) which were concluded to be optimal when viewing natural scenes.
In natural scenes neighbouring points are likely to have similar light intensities. Thus, a
photoreceptor is likely to receive similar light intensities at subsequent instances of time
that originate from the same object when the animal moves around. The visual input is
therefore dominated by relatively slow changes of the light intensity. From an informa-
tion theoretical point of view, the transmitted information at the photoreceptor output is
thus redundant. This redundancy is reflected in the spectral properties of natural input
signals. Natural scenes have, on average, a power spectrum with the power decreasing
following the 1/f rule (e.g. van Hateren, 1997) meaning that the power decreases with the
frequency (f). Assuming that a neuronal ”communication channel” has a limited capacity
it would be most efficient to transmit only those stimulus/response components that are
not redundant. These are the higher frequencies since they are evoked by environmental
brightness changes, thus, the contrast in the texture of the different objects. In this con-
text the bandpass-like transmission of the synapse between photoreceptors and 1st-order
neurons would attenuate the redundant information and emphasise the more informative
middle frequencies (for review see Laughlin, 1994).

Can this conclusion, drawn on the basis of information theoretical considerations, be
supported by the response discriminability? In chapter 4 I analyse the effects of filtering
mimicking different aspects of the synaptic transfer properties found in the fly (e.g. James,
1992), on the discriminability of the time-dependent photoreceptor responses. For this
I apply the discrimination measure as described above. The experimentally determined
results are compared to the discriminability of the responses of photoreceptor models.
The models mimic the responses of photoreceptors phenomenologically either exclusively
by a linear filter or by a combination of a linear filter and a non-linear characteristic
curve. These models have already been used in similar form (van Hateren and Snippe,
2001). In my study, however, the models are not driven by the light as a continuous
function of time but by barrages of simulated individual photons as would be the case for
the real photoreceptors. Thus, the model simulations contain photon noise as the only
noise source.
I show that the bandpass-like transfer behaviour of the photoreceptor-LMC synapse can
be advantageous for discriminating between the responses. However, the discrimination
performance of the bandpassed responses is only better than the discriminability of the
unfiltered responses, if the stimulus contains large low frequency modulations. These
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2. Introduction

large and slow modulations lead to an increased low frequency noise. The impact of this
noise is reduced when the responses are passed through a bandpass filter. The models,
although reproducing the average photoreceptor responses successfully, do not show any
advantage of bandpass filtering. This is, most likely, due to the lack of any intrinsic
noise sources that constitute the additional low frequency noise observed in real pho-
toreceptors. Furthermore, the models allow concluding that the intrinsic noise source is
light or activity dependent suggesting that an activity related process, like voltage-gated
potassium channels, are responsible for the increased low frequency noise. The membrane
potential noise induced by the random absorption of photons (photon noise), however,
can be concluded to be a major noise source in photoreceptors.

The results of this project are presented in chapter 4 and will be submitted
as: Jan Grewe, Martin Egelhaaf, and Anne-Kathrin Warzecha. Intrinsic Photoreceptor

Noise Reduced by Synaptic Filtering.

2.4 Sources of Noise Responsible for Response

Variability

The response reliability of nervous systems is affected by several noise sources intrinsic to
the systems. One noise source is the so-called ion channel noise. The functioning of ion
channels controls the ion-specific conductance changes that are essential for e.g. action
potential generation. Ion channels are stochastic elements and transition from closed to
their open conformation is a stochastic process with the transition probability depending
on the actual membrane potential or the binding of transmitter molecules in the case of
voltage or ligand gated channels, respectively. Therefore, even at resting potential a por-
tion of channels is switching between states inducing conductance changes and thereby
small membrane potential fluctuations (for review White et al., 2000).
Furthermore, the transmission of responses of sensory cells or neurons to the next neuron
through chemical synapses often includes the introduction of noise. Variability induced
by chemical synapses has been concluded in many systems to be a major noise source (e.g.
Laughlin et al., 1987; Simmons, 1999; Zador, 1998). Variability introduced by synapses
has been attributed to three sources: (i) the quantal nature of transmitter release by exo-
cytosis of a limited number of synaptic vesicles, (ii) the site of transmitter release, which
influences the efficacy of the transmitter, and (iii) the stochasticity of the postynaptic
receptors (Franks et al., 2003).
For visual systems also the sensing of light as the very first step of seeing introduces
noise. Unreliability of the transduction process as well as the spontaneous isomeriza-
tion of rhodopsin corrupts the signals of visual neurons. The spontaneous activation of
rhodopsin molecules leads to the same quantum events as a real photon’s absorption does
(e.g. Lillywhite, 1977). Although the spontaneous bump rate in insect photoreceptors is
very low (Lillywhite, 1977), the spontaneous rhodopsin isomerizations form the prominent
”dark noise” in vertebrate rods (e.g. Schneeweis, 2000). However, also bump waveforms
are quite variable with respect to their latency as well as the amplitude, indicating even
more unreliable processes involved in phototransduction (figure 2.8).

Closely related to the spontaneous activation of rhodopsin is the extrinsic noise source
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Figure 2.8: Single photon events in fly photoreceptors. Single photon absorptions are
leading to discrete membrane potential deflections, so-called quantum bumps (e.g. Lillywhite,
1977). The photoreceptors were adapted to absoulte darkness for more than 20 minutes and then
stimulated with very weak constant light. The black line on top of the response indicates the
light-on period. Stars mark single bumps as identified by eye inspection. The bump amplitudes
are very variable which is typical for fly photoreceptors (e.g. Dubs et al., 1981). Inset shows a
single bump.

of visual systems, photon noise. Photon noise results from the probabilistic manner with
which any light source emits photons. The appearance of photons follows a Poisson
process in which each single photon emission is stochastic and independent of preceding
emissions. Increasing the light intensity of a light source increases the average proba-
bility of photon emission. Resulting from the random emission also the absorption is
characterised as a Poisson process. In the dark-adapted photoreceptors of vertebrates
and invertebrates single photon absorptions lead to distinct membrane potential deflec-
tions, called quantum bumps (figure 2.9 e.g. Baylor et al., 1979; Lillywhite, 1977; Dubs
et al., 1981). This underlines the importance of the exact timing of the absorption for
the neuronal response waveform. At higher light levels, when more photons are absorbed
the size of the quantum bumps decreases and the single events merge to a continuous
membrane potential deflection.
For the peripheral processing stages photon noise is a major source of noise as described
in the preceding sections. At any step of neuronal processing synapses and ion channels
underlying neuronal excitability contribute to the overall noise. For the response relia-
bility of the fly’s so-called H1 cell all internal sources of variability were claimed to be of
minor relevance and photon noise to limit the response reliability up to daylight condi-
tions (de Ruyter van Steveninck and Bialek, 1995; Lewen et al., 2001; Borst and Haag,
2001). The H1 cell is a direction-selectively motion sensitive neuron (Hausen, 1976) and
a well-established system for analysing the processing reliability of visual motion infor-
mation (for review see e.g. Egelhaaf and Warzecha, 1999; Warzecha and Egelhaaf, 2001;
de Ruyter van Steveninck et al., 2001; Haag and Borst, 2002; Egelhaaf et al., 2002). It
belongs to the tangential cells located in the fly’s third optic lobe, the lobula plate (figure
2.1), several synapses away from the retina. In contrast to the claim that the reliability
of the H1 cell is limited by photon noise, the noise introduced by the first synapse of
the visual system, between photoreceptors and first-order neurons (the large monopo-
lar cells in the lamina) has been shown to affect significantly the reliability with which
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2. Introduction

visual information is signalled to higher-order processing stages (Laughlin et al., 1987;
de Ruyter van Steveninck and Laughlin, 1996).

In order to resolve these contradicting conclusions I use the discrimination measure to
analyse whether H1 response variability can be attributed to photon noise (chapter 5).
Therefore, the neuron is stimulated by a motion stimulus (random dot pattern) moving
at a constant velocity in H1’s preferred direction. A random luminance modulation,
mimicking photon noise, is superimposed on this pattern. The amplitude (contrast) of
the luminance modulation is gradually increased and the discriminability of different
time-dependent H1 responses estimated. Again, I ask for the minimal contrast of the
luminance modulation that allows a safe discrimination of reference and test responses.
The similarity of the spiking responses is estimated by the use of a measure that calculates
the minimal ”costs” of transforming one response into another (Victor and Purpura,
1997). In this context ”costs” refer to the number of elementary formal operations (e.g.
deleting or inserting a spike or shifting a spike by a certain time interval) that are required
for the transformation of the responses (figure 2.9b).

a)

b)

reference responses

response 1:

response 2:

∆tt

transformation costs:

temporal shiftingdeleting/inserting

1    +    1     =   2

deleting inserting

q  *  ∆t

q[costs/s] defines the

temporal resolution

test responses

Figure 2.9: Estimating the similarity of spike responses. (a) Reference and test responses

of the H1 neuron. Every line indicates a single trial. The vertical lines indicate the occurance of
a spike. The similarity of each reference response (for example the highlighted one) is estimated
within the reference responses and between this reference response and the test responses by
estimating the transformation costs according to the metric developed by Victor and Purpura
(1997). (b) Illustration of similarity estimation. The costs are estimated from the minimal
number of elementary operations (deleting/inserting a spike or shifting a spike by a certain time
interval) that have to be performed to transform one response into the other. Deleting and
inserting of a spike have a cost of 1 while shifting a spike depends on the time interval and the
costs per second ’q’. Varying ’q’ defines the temporal resolution of the measure.

In a first set of experiments the luminance modulation is independent for each stimulus
element (dot) as it would be as a consequence of photon noise. The amplitude that affects
the responses significantly is found to be much larger than the luminance modulation in-
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2.5. ROBUSTNESS OF COMPUTATION IN THE PRESENCE OF NOISE

duced by photon noise under the experimental conditions. This difference suggests that
noise sources intrinsic to the nervous system override the impact of photon noise. With
its large dendrites H1 spatially integrates the motion information conveyed by a larger
number of retinotopic inputs. This convergence reduces uncorrelated noise as used in
the experiments. The real photon noise is also uncorrelated for any input channel. In a
second set of experiments the luminance modulation is the same for different fractions of
the dots thereby introducing noise correlation into the stimulus. With 100% correlation
the modulation amplitude necessary for affecting the responses detectably is smaller than
with uncorrelated noise but still larger than the photon noise estimate. This further sup-
ports the conclusion that photon noise does not limit the reliability with which wide-field
motion is encoded by the fly visual system. Rather, intrinsic noise sources dominate over
photon noise. The comparison of correlated vs. uncorrelated noise demonstrates that
convergence reduces the impact of uncorrelated noise.

These results are presented in chapter 5 and have already been published as:
Jan Grewe, Jutta Kretzberg, Anne-Kathrin Warzecha, and Martin Egelhaaf: Impact of

Photon Noise on the Reliability of a Motion Sensitive Neuron in the Fly’s Visual System.,
Journal of Neuroscience 23(34): 10776 - 10783, 2003

2.5 Robustness of global motion computation in the

presence of noise

Noise is always present in any kind of neuron. The extent of this noise may vary but,
obviously, nervous systems are able to work efficiently even in the presence of noise. So
far, I have analysed individual neurons or pairs of neurons. In the last project of my
doctoral thesis the view will be shifted to neuronal networks.
The synaptic inputs received by cortical neurons have been described as driving and
modulating inputs (Sherman and Guillery, 1998). The driving input excites or inhibits
the receiving neuron and is thought to contain the relevant information that is to be
processed. The modulating synaptic inputs, however, do not necessarily carry relevant
information from sensory inputs but may be a consequence of stimulus-independent ac-
tivity in presynaptic elements. This modulating input can thus be considered as an
additional noise source affecting neurons working in networks and is often called synap-
tic background input. The background input was shown to lead to a higher membrane
conductance and increased membrane potential fluctuations (e.g. Destexhe et al., 2003).
However, besides decreasing the response reliability the effects of synaptic background
input are discussed to be a mechanism controlling the neuronal gain (e.g. Chance et al.,
2002; Fellous et al., 2003; Prescott and De Koninck, 2003). These studies are mainly
based on data obtained from in vitro experiments in brain slices with the background
input mimicked by the so-called dynamic clamp technique (e.g. Prinz et al., 2004). The
functional interpretations based on these experiments about the implications of synaptic
background input are thus limited.

In chapter 6 I use the fly tangential cells (TCs) as a model system to analyse the
consequences of such background input for the neuronal gain and for the computationally
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important characteristics like the tuning to the direction of motion or the representation
of pattern velocity. As already mentioned above, the TCs can be recorded in vivo, while
the animal is stimulated directly by visual input, thus ensuring to drive the neurons in a
physiologic range. In the lobula plate (figure 2.1) an ensemble of about 60 TCs evaluate
optic flow and are thought to be involved in controlling behaviour (e.g. Egelhaaf and
Borst, 1993; Egelhaaf, 2006). TCs are direction-selective motion-sensitive cells with large
receptive fields. The H1 cell, for example, is excited by back-to-front motion and inhibited
by motion in the opposite direction (e.g. Hausen, 1976). This preference is conveyed by the
presynaptic elements which on their own are assumed to be direction selective. The TCs
pool the excitatory and inhibitory outputs of thousands of these retinotopically arranged
presynaptic elements (e.g. Brotz et al., 1996). During preferred direction motion, the
excitatory inputs are activated to a larger extent than the inhibitory input elements.
The situation reverses during null direction and both inputs are equally active during
visual flicker or movement orthogonal to the preferred direction (Egelhaaf et al., 1989;
Borst et al., 1995; Single et al., 1997). During natural behaviour the TCs are exposed to
optic flow patterns containing motion vectors in a wide range of directions. These drive
the neuron, if pointing in preferred or null direction, or do not polarise the membrane,
if the motion vectors are orthogonal to the preferred direction. In the latter case the
input signal would be similar to the modulating input as described for cortical neurons
which does not drive the neuron but activates excitatory and inhibitory inputs to an equal
extent. To analyse the implications of modulating input on the TC properties I present
visual motion stimuli that contain both, a driving preferred- or null-direction component
and a modulating motion noise component. The strength of each input component can
be controlled individually.
I find the modulating input to have a strong impact on the neuronal gain. The observed
gain reduction can be shown to be a result of a reduced input resistance evoked by the
modulating input, although the cell’s membrane potential remains almost unaffected by
the background input alone. I further analyse the direction tuning and the representation
of pattern velocity in the response amplitude of the H1 neuron. Both response features
are very robust against the background input. The direction tuning only degrades when
a relatively weak driving input is combined with a strong modulating input. The coding
of pattern velocity in the H1 response in the presence of the background input is found to
be almost as good as without any background input. This is true even though the gain
reduction induced by the modulating input reduces the average rate of generated action
potentials about 50%.
In the TC ensemble the different TCs are tuned to different kinds of optic flow (e.g. Krapp
et al., 1998; Karmeier et al., 2003). The optic flow a freely behaving animal induces on
its eyes by its own movements is wildly varying over time and in most situations not
matched to the optic flow a TC is tuned to. Thus, in natural situations modulating input
such as evoked by flicker stimulation or by optic flow orthogonal to the preferred direction
can hardly be avoided. Irrespective of the driving or modulating impact the continuous
input signals to all TCs reduces the TC gain by its shunting impact. Therefore, I propose
that the specific way of the TC wiring immanently leads to an equalised gain in the TC
ensemble irrespective of the specific behavioural situation of the animal.
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The results of this project will be presented in chapter 6 and have already
been published as: Jan Grewe, Nélia Matos, Martin Egelhaaf, and Anne-Kathrin
Warzecha: Implications of Functionally Different Synaptic Inputs for Neuronal Gain and

Computational Properties of Fly Visual Interneurons., Journal of Neurophysiology 96:
1838 - 1847, 2006

2.6 Discussion

Noise in neuronal signals eventually limits the precision with which an animal can react to
environmental changes detected with its sensory equipment. Noise is a feature observed
in any neuron and is a result of several unreliable processes involved in neuronal informa-
tion processing. The questions about the origin of neuronal noise and the way nervous
systems cope with it is investigated in many systems. I analysed different aspects of these
questions in the fly’s visual system using electrophysiological and modelling approaches.
In particular, I asked for (i) the origin of noise, (ii) the effects of synaptic filtering and of
convergence on the discriminability of time-dependent responses, and (iii) the robustness
of the coding of motion stimuli in the presence of noise.
In the following I will discuss several important aspects that go beyond the project spe-
cific discussions given in the respective chapters: (i) advantages and disadvantages of the
discrimination measure that has been employed for assessing response discriminability,
(ii) the impact of photon-noise on different stages of visual information processing, (iii)
mechanisms to cope with noise in different visual systems, and (iv) functional implications
of modulating background input on the tangential cell ensemble.

Advantages and disadvantages of the discrimination measure In contrast to
the usually used response analyses in the frequency domain, the discrimination measure I
used in my studies takes the temporal structure of the responses into account. However,
both ways to analyse response reliability are artificial and neither can fully describe the
performance of a system.
The Shannon information capacity and the discrimination measure each have certain ad-
vantages and disadvantages. While the Shannon information capacity (Shannon, 1998)
may only be calculated if signal and noise are normally distributed, additive, and inde-
pendent of each other, the discriminability may be estimated in any case. This advantage,
on the other hand, is traded in for the requirement of more data, since responses to both
reference as well as test stimuli at the same contrast level have to be obtained.
Common to both measures is that the reliability of the results increases with the amount
of available data. Additionally, as shown in chapter 3, the threshold contrast estimated
from the physiometric curves (figure 2.7) depends on the amount of data: decreasing
response length entails a decreasing discrimination performance. As soon as sufficiently
long responses are analysed, however, the discrimination performance appears to saturate.
Control simulations showed that further increasing the duration of the response traces up
to 80 seconds does not shift the threshold to smaller and smaller values (usually I evaluate
response segments of one second and less). Thus, discrimination performance becomes
almost independent of the length of the responses once sufficiently long responses can be
analysed.
The major advantage of the discrimination measure is that the resulting threshold con-
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trast (figure 2.7) is given in units of the input signal. In chapter 5, for example, this allows
relating the estimated threshold (the luminance modulation leading to a safe response
discriminability) to the luminance modulation induced as a consequence of photon noise
under the actual experimental conditions.
In chapter 3 I compare the discrimination measure to the Shannon information capac-
ity (Shannon, 1998) which results in different interpretations about the photoreceptor
coding performance. Which interpretation is the genuine one? This question cannot be
fully clarified at this stage. Whether the application of a certain measure is appropriate
depends on the behavioural context. One aspect that needs to be taken into account is
the behaviourally relevant timescale. For a flying fly the interval between subsequent sac-
cadic turns that characterises the animal’s spontaneous orientation behaviour (Schilstra
and van Hateren, 1998) represents the time available for evaluating the optic flow (Kern
et al., 2005). On this timescale contrast modualtions are already discriminable that lead
to responses with an almost neglible information capacity. Hence, even on this short
timescale the discriminability measure is more sensitive than the information capacity
(chapter 3) indicating that the discrimination measure is the better choice to investigate
the limits of photoreceptor coding performance. On the other hand, using the informa-
tion capacity allows evalutating the coding performance when signals of large contrasts
are encoded at which the discriminability is already saturated.

Impact of photon noise on different stages of visual processing The responses
of photoreceptors and of tangential cells in the third optic lobe, for example the H1 neu-
ron, are corrupted by noise. For the photoreceptors my results show that photon noise
plays a prominent role in determining the reliability of encoding light stimuli (chapter 4).
The relevance of photon noise at the first stage of visual information processing is obvi-
ous at very low light levels, when the absorption of single photons leads to distinct single
photon responses, so-called quantum bumps (figure 2.8; e.g. Lillywhite, 1977). Photon
noise still affects the photoreceptor responses at higher light levels (at about 30000 ab-
sorbed photons per photoreceptor and second) as used in chapter 4. However, it is not
the only noise source shaping the performance of photoreceptors. I identified an activity-
dependent noise source that affects the response discriminability (chapter 4).
Photon noise was claimed to be the limiting noise source even of the tangential cells
(de Ruyter van Steveninck and Bialek, 1995; Lewen et al., 2001; Borst and Haag, 2001),
although the tangential cells are several synapses away from the photoreceptor level, and
chemical synapses are generally concluded to be a significant source of response variability
(e.g. Franks et al., 2003; Laughlin et al., 1987; Simmons, 1999; Zador, 1998). Analysing
H1 responses with the discrimination measure revealed that photon noise is of only minor
importance at this rather central part of the visual system (chapter 5) and that it is over-
ridden by noise originating within the nervous system such as ion channel and synaptic
noise.
The question of whether processing of visual information is limited by noise sources in-
trinsic to the nervous system or by photon noise has been discussed also for vertebrate
visual systems (review: Field et al., 2005). Vertebrate rods, as well as insect photorecep-
tors, can signal the absorption of single photons (e.g. Baylor et al., 1979), and behavioural
responses have been found even at light levels when only few photons were absorbed (e.g.
Hecht et al., 1942; Bouman et al., 1985). This implies that further signal processing is
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rather perfect and noise-free. Field et al. (2005) argue that this interpretation might not
be entirely correct, which is supported by recent findings that the reliability of retinal
ganglion cells is limited by intrinsic noise introduced during retinal information process-
ing rather than by rod noise (Dunn et al., 2006).
Intrinsic noise was concluded to dominate over photon noise in higher-order neurons of
both flies and vertebrates (chapter 5; Dunn et al., 2006). How does this finding relate
to the observed single (or few) photon events measured electrophysiologically in the H1
neuron (Lillywhite and Dvorak, 1981) or even in behavioural and perceptual responses
(e.g. Hecht et al., 1942; Reichardt, 1965; Bouman et al., 1985)? All the experiments that
report the effects of single photon absorptions were done with the investigated system
adapted to total darkness. Under these conditions the system operates with an extremely
high gain when quantum bumps may have amplitudes of several millivolts (figure 8; e.g.
Lillywhite, 1977; Dubs et al., 1981). Even at the moderate light conditions as used in my
experiments which were still much dimmer than daylight each individual photon already
contributes much less to the photoreceptor potential than in total darkness. A detailed
discussion of the contradicting conclusions that photon noise limits up to daylight con-
ditions as put forward in other studies (Lewen et al., 2001; Borst and Haag, 2001) is
included in chapter 6.

Mechanisms to cope with noise If every synapse and the biophysical machinery of
each interneuron involved in the information processing add to the overall noise, it would
be astonishing to some extent that animals are able to perform differentiated behavioural
responses. To ensure functioning of the nervous system in presence of noise it uses sev-
eral mechanisms that reduce the influence of noise on the processing of information. One
such mechanism is filtering of the signals as occurs at synapses. I simulate the effects of
synaptic filtering similar to the transfer properties of the synapse between photoreceptors
and 1st order neurons (chapter 4) and find that the transfer characteristics reduce noise
originating in the photoreceptors themselves thereby enhancing response discriminabil-
ity. Similarly, the synaptic transfer properties of rod - rod bipolar synapses in the mouse
retina have been found to improve the rod bipolar response reliability at visual threshold
by rejecting unreliable signal components (van Rossum and Smith, 1998; Field and Rieke,
2002; Armstrong-Gold and Rieke, 2003).
Together with synaptic filtering both invertebrates and vertebrates use convergence of
signals conveyed by parallel elements to reduce uncorrelated noise. Convergence is ac-
complished by the direct electrical coupling or by dendritic integration. In the fly retina
coupling of photoreceptors (e.g Meinertzhagen and O’Neil, 1991) has been shown to in-
crease the sensitivity of 1st-oder neurons at visual threshold (Dubs et al., 1981). Similarly,
electrical coupling can be found between rods as well as cones in the vertebrate retina
(Hornstein et al., 2005). Convergence of many input signals takes place at subsequent
processing stages in the visual system, i.e. on the dendrites of bipolar cells and ganglion
cells in the vertebrate retina (e.g. Tsukamoto et al., 2001) as well as on the tangential
cell dendrites in the fly visual system (e.g. Brotz et al., 1996).
Mimicking correlated noise (chapter 5) revealed a much stronger impact of the noise
on the H1 responses than in the uncorrelated situation which corresponds more closely
to the natural situation where photon noise in different photoreceptors is uncorrelated.
This finding underlines the importance of convergence to remove uncorrelated noise. The
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impact of photoreceptor coupling in the fly retina, however, on the response discrim-
inability in 1st oder interneurons needs to be investigated. This would further allow to
test whether the predictions about effect of synaptic filtering on response discriminability,
made in chapter 4, are correct.

Functional implications of modulating background input A different kind of
noise was investigated in chapter 6. Neurons embedded in networks receive two types
of inputs which have been considered as drivers and modulators (Sherman and Guillery,
1998). While driving input is thought to carry relevant information, modulating input is
assumed to be induced by noise in presynaptic elements. The specific input organisation
of fly tangential cells entails that optic flow not matching the preferred direction, like
motion orthogonal to the preferred direction, activates excitatory and inhibitory inputs
in equal shares simultaneously. This kind of input can be considered as modulating input
since it does not drive the neuron, but affects the computation of preferred direction mo-
tion. In Chapter 6 I analysed the consequences of such background input, which on its
own did not excite or inhibit the tangential cell, for response gain and for computation-
ally important features like direction tuning and the representation of stimulus velocity.
I found that the gain is significantly reduced while direction tuning and representation
of pattern velocity are very robust.
The results of this study lead to the hypothesis that the gain of all cells of the tangen-
tial cell ensemble, irrespective of their actual preferred optic flow pattern, is constantly
equalised by the modulating component of the visual input. In situations in which per-
ceived optic flow matches the preferred optic flow of a particular tangential cell, the cell
is strongly excited. However, concomitantly, its gain is reduced due to increased mem-
brane conductance induced by the excitatory synaptic input. This optic flow pattern
does not excite all tangential cells. It does not match the preferred optic flow patterns of
many other tangential cells. Thus, for the latter cells the modulating input component
may prevail, and the gain is reduced by combined excitatory and inhibitory input to a
similar extent as in the driven tangential cell. Therefore, the specific input organisation
of tangential cells might be a key feature to match the gain of the whole tangential cell
ensemble to the actual stimulus conditions. This hypothesis needs to be tested in future
experiments where, instead of the artificial stimuli used here for systems analysis, op-
tic flow stimuli and modifications of them are used that resemble input in behavioural
situations.
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3 Two Measures, Two

Interpretations - Shannon

Information Capacity and

Response Discrimination as

Measures of Photoreceptor

Coding Performance

The content of this chapter has been submitted for publication: Jan Grewe,
Matti Weckström, Martin Egelhaaf, and Anne-Kathrin Warzecha: Two Measures, Two

Interpretations - Shannon Information and Stimulus Discrimination as Measures of Pho-

toreceptor Coding Performance

3.1 Summary

Response variability is one fundamental issue in neural coding because it affects all infor-
mation processing. Measures derived from information theory (Shannon, 1948) or signal
detection theory(Green and Swets, 1974) have been applied to quantify the coding per-
formance of individual neurons or neuronal populations. But how are these measures
related and what do they reveal about the systems analyzed? We address these questions
using time-dependent responses of blowfly photoreceptors, since their response charac-
teristics allow the easy calculation of information capacities(de Ruyter van Steveninck
and Laughlin, 1996; Juusola et al., 1996; van Hateren and Snippe, 2001). We studied
the performance of single photoreceptors in encoding white noise light intensity fluctu-
ations at different contrasts by comparing the information capacity estimated from the
signal-to-noise ratio (SNR) of responses with the discriminability of the response time
course. Surprisingly, a safe discrimination is possible even if the SNR is well below unity
and thus, the information capacity of the photoreceptor response is low. Applying one
or the other measure may therefore lead to very different interpretations concerning the
system’s coding performance. We stress that neither measure alone tells the whole story
and that the arbitrariness in their selection can only be resolved if information coding is
seen in its functional context.
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3. Shannon Information and Response Discrimination as Performance Measures

3.2 Results and Discussion

Some of the most fundamental questions in neuroscience address the stimulus features
encoded by a sensory system, the amount of information that can be transmitted given
the neuronal response variability, the timescale on which relevant information is encoded,
or the nature of the neural code. Many accounts applied information theory to quantify
the amount of information conveyed by neuronal responses (Borst and Theunissen, 1999;
Haag and Borst, 1997; Koch et al., 2004; Passaglia and Troy, 2004). Others characterised
the reliability of synaptic transmission (de Ruyter van Steveninck and Laughlin, 1996;
Simmons and de Ruyter van Steveninck, 2005). Discriminability measures have been
applied, for instance, to estimate the relevant timescale of neuronal coding (Kretzberg
et al., 2001; Machens et al., 2001) or to quantify the response reliability (Grewe et al.,
2003; Chichilnisky and Rieke, 2005).

Here we compared estimates of system performance obtained from information the-
ory and discrimination methods based on the same set of responses. This study was
done on an intensively investigated sensory system, the photoreceptors in the blowfly
(Calliphora vicina) retina (de Ruyter van Steveninck and Laughlin, 1996; Juusola and
de Polavieja, 2003; van Hateren and Snippe, 2001). Single photoreceptors were stimulated
with Gaussian distributed random light intensity fluctuations of different contrasts (’c’,
defined as the standard deviation over the mean luminance; figure 3.1a, b) superimposed
on a background luminance. The applied contrasts ranged from no modulation at all
(constant luminance) to the average contrast of natural scenes (cnatural=0.31; Laughlin
et al., 1987). With increasing contrast the response amplitude increases, but the standard
deviation representing response variability stays about the same (figure 3.1c). Accord-
ingly, the noise power spectral densities (referred to as N(f), dashed lines figure 3.2a)
remain at the same level independent of the respective stimulus contrast indicating the
additive nature of the noise. Both the mean response as well as the membrane voltage
noise are normally distributed and can be fitted well with a Gaussian function (figure
3.1d). Together with the almost linear light intensity coding in blowfly photoreceptors
(Juusola et al., 1995) these conditions allowed the calculation of the information capacity
(Shannon, 1998), R, from the ratio of average response and noise power spectral densities
[S(f) and N(f), respectively]:

R =

∫ ∞

0
dflog2

[

1 +
S(f)

N(f)

]

(3.1)

Since S(f) (solid lines in figure 3.2a) increases with increasing contrast while the differ-
ent N(f) stay nearly the same, the SNR (figure 3.2b) increases with increasing stimulus
contrast (Howard et al., 1987). For all tested contrasts but the largest (0.31) the SNR
is well below unity for the entire frequency range, indicating that the noise component
dominates the individual photoreceptor responses. Parallel to the SNR the amount of
transmitted information and the bandwidth in which information is transmitted increases
with contrast (figure 3.2c). The total information capacity (equation 3.1) increases with
increasing contrast, initially very slowly and steeply only beyond the contrast of 0.035
(figure 3.4). One may conclude that stimuli with a contrast below 0.035 are hardly
transmitted at all, because signals appear to be buried in noise.

In the second analysis of photoreceptor performance we formulated a discrimination
task in which we tried to discriminate the cell responses to a certain white noise stimulus
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Figure 3.1: Stimulus and response properties. (a) Stimulus traces of different contrast. The
contrast is defined as the ratio of standard deviation of the light intensity modulation and the mean
light intensity (3.04 · 104 effective photons per second and receptor). The light intensity values
were drawn from normal distribution and the sequences were lowpass filtered with a 2nd order
Butterworth filter with 256 Hz cutoff. (b) Probability density of the 0.31 contrast stimulus with a
Gaussian fit. (c) Typical responses taken from a single cell with 25 trials at each contrast. Shown
are the average response ± the standard deviation (lighter colours). (d) Probability density
functions of cell response (black dots) and the response noise (red dots) fitted with Gaussian
functions.

from those to different white noise stimuli. We therefore presented two sets of stimuli,
one being 25 exact repetitions of the same white noise sequence (reference stimuli) and
the other a set of 25 presentations of statistically equivalent but different sequences (test
stimuli) with the same contrast and cutoff frequency (figure 3.3a). This procedure was
repeated at each contrast level. We took the response traces used above for the SNR
analysis as reference responses to ensure that the two neuronal performance measures
are assessed on the basis of the same data. For each reference response two distances
were determined: (i) the average distance to the other reference responses 〈Dr〉 and (ii)
the average distance to the test responses 〈Dt〉 (figure 3.3b). The individual distances

33



3. Shannon Information and Response Discrimination as Performance Measures

b)a) c)

s
ig

n
a
l 
to

 n
o
is

e
 r

a
ti
o

1  10 100

frequency [Hz]

p
o
w

e
r 

[m
V

2
*H

z
-1

]

100

10-2

10-4

10-6
10-2

102

101

100

10-1

in
fo

rm
a
ti
o
n
 [
b
it
]

0

1

2

3

4

1  10 100

frequency [Hz]
1  10 100

frequency [Hz]

0.000
0.002
0.009
0.017
0.035
0.310

Figure 3.2: Response characteristics in the frequency domain. (a) S(f), the power
spectral density of the stimulus induced response component (solid lines), and N(f), the power
spectral density of the noise (dashed lines), normalised to the response or noise mean square
amplitude. (b) Signal to noise ratios at the six different contrasts used [same colour code as in
a]. (c) Shannon information as a function of frequency at the different contrasts [same colour
code as in a]. Information estimated from the signal to noise ratio as: log2[1 + S(f)/N(f)]. All
spectra were smoothed using a 4 point running average.

were calculated as a root-mean-square distance according to

Dx,y =

√

√

√

√

1

N

N
∑

i=1

(xi − yi)
2, (3.2)

with xi and yi being the two response values (either two different reference responses or
a reference and a test response) at time i and N the length of the data segment, i.e. the
number of data points included in the analysis.

For each reference response it was assessed whether 〈Dt〉 was larger than 〈Dr〉. This
was expected if the fluctuations in light intensity affected the responses in a distinct
way. The percentage of correct discriminations thus indicated the fraction of reference
responses for which was larger than . The discrimination performance was estimated at
all contrasts except the largest (figure 3.3c).

As expected, the discriminability increases with increasing contrast. Unlike the (Shan-
non) information capacity (figure 3.4), the discrimination performance has its strongest
increment already at contrasts exceeding only 0.009. A discrimination performance of
75% correct decisions can be achieved at a contrast of only about 0.0138 (estimated from
the logistic fit, equation 3.3). Thus, this measure of neuronal performance allowed us to
draw the somewhat paradoxical conclusion that the temporal structure of the responses
can be discriminated safely already at contrasts where the SNR is much smaller than
unity and there is hardly any information in the responses in terms of the SNR measure.
In fact, the information capacity at the contrast of 0.017 is, on average, only 4.66 bit/s
above the zero contrast information capacity (21.91±1.79 bit/s and 17.25±2.46 bit/s for
0.017 and zero contrast respectively). At zero contrast any information capacity larger
that zero is attributable to the bias in the SNR obtained from limited data sets (van
Hateren and Snippe, 2001). We therefore treated the information capacity estimate at
zero contrast as a baseline. The gain of information capacity of a few bits/s in the low
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Figure 3.3: Discrimination task. (a) Stimulus illustration for the discrimination task at
one contrast level. Left hand column: the reference stimulus which is repeated 25 times; right
hand column: test stimuli at the same contrast level. Individual stimuli with the same statistics
as the reference stimulus. (b) The way, the two distances 〈Dr〉 and 〈Dt〉 were estimated for
each reference response (e.g. the highlighted one in the left box). Test responses in red. (c)
Discriminability of reference and test responses as a function of contrast (mean ± s.e.) fitted
with a logistic function (equation 3.3) ranging from 50 to 100% calculated using data segments
of different lengths. (d) Uncertainty of distance estimation for the different segment lengths. For
each of the 12 cells analysed, the standard deviation of discrimination performance gained in the
single data segments is estimated and subsequently averaged across the cells. The two largest
segment lengths give only one respectively two segments, thus no S.D. was calculated.

frequency range at contrasts below the natural contrast, however, appear to be negligible
compared with what obtained at natural contrast (R = 449.46±57.79 bit/s for c = 0.31).
The information capacities found here are in the range reported before and may be even
larger for higher contrasts and larger average light levels (de Ruyter van Steveninck and
Laughlin, 1996). It should be noted that contrasts exceeding 0.035 lead to saturated dis-
crimination performance whereas information capacity appears to increase significantly
only above that contrast level. This indicates a point above which the discrimination
measure gives no additional clues about the system’s capabilities to discriminate the
time course of the responses.

The animal has only a limited time available to distinguish meaningful stimuli buried
in noise, and the dependence of the duration of the evaluated data segments has to
be considered. Both measures of coding performance depend differently on the length
of data segment: the information capacity decreases slightly with decreasing segment
length since the lowest resolvable frequency depends on segment length. Additionally,
the use of less data degrades the reliability of the SNR estimation (which is certainly true
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Figure 3.4: Comparison of discrimination performance and Shannon information.
Dots mark the average discrimination performances at the different contrast (n = 12) ± s.e..
Data fitted with a logistic function (equation 3.3). Black diamonds mark the average information
capacity. Information capacities at the lower contrasts are estimated from the same cells as the
discrimination performance. At the 0.31 contrast 14 additional cells were analysed. Standard
errors are smaller than marker size.

in real life discrimination tasks as well). The discrimination measure also suffers from
a reduced segment length as shown in figure 3.3c, but shows insignificant differences in
discrimination performance once the segment length is sufficient to reliably estimate the
distance. With short segments, the reduced discrimination performance is accompanied
by increased uncertainty of discrimination performance (figure 3.3d). This less reliable
discrimination estimate is partly responsible for parts of the reduction in discrimination
performance, due to the asymmetry of the discrimination measure, i.e. discriminability
may well drop below 50% but cannot exceed 100%.

Although both measures, the SNR and the discriminability, are artificial measures
of system performance, the distance estimation (equation 3.2) could well be neuronally
implemented. All essential parts of the distance measure, i.e. the subtraction and the
multiplicative correlation of two inputs signals are implemented for example in circuits
involved in motion detection (e.g. Egelhaaf and Borst, 1993). Additionally, with a data
segment of 125 ms, approximating a behaviourally relevant time for a fly to evaluate optic
flow (Kern et al., 2005), i.e. the interval between subsequent saccadic turns characterizing
fly orientation behaviour, two signals can be discriminated faithfully at contrasts (75%
correct discrimination performance at c = 0.023). In this range the Shannon information
capacity indicates hardly any increase. Here we found considerable differences between
two measures of coding performance on the very first stage of visual information process-
ing, i.e. the photoreceptor level. Related differences have been found in the electrosensory
organ of the weakly electric fish (Gabbiani et al., 1996). There, signal detection and infor-
mation theoretical approaches gave seemingly contradicting results after a sensory signal
underwent dendritic filtering. The choice of the appropriate measure, out of the variety
of applied measures (e.g. Dayan and Abbott, 2001) depends very much on the scientific
question to be answered. If, for instance, the question were how many different stimulus
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levels could be coded given the observed neuronal noise, the information capacity may
be well suited. On the other hand, if we assume any decoding mechanism that takes
temporal characteristics into account, information capacity would not be the measure
of choice since it considers only the frequency content of the responses assuming their
independence and not their phase relations. Instead, the discrimination measure appears
appropriate to quantify the system’s performance in representing the time-course of a
stimulus.

3.3 Methods

Electrophysiology. Experiments were carried out on female blowflies (Calliphora vic-
ina). The retina were accessed through a small hole cut into the fly’s eye on the equatorial
line close to the lateral rim. The hole was sealed with silicon grease to prevent drying-up.
Sharp electrodes (Clark GC-150) were pulled on a Brown-Flaming P-97 Puller (Sutter
Instruments) to have resistances of 80 to 90 MΩ when filled with 2M KCl. Recordings
were done in bridge mode using a SEC-10L amplifier (npi electronics, Tamm, Germany).
We accept recordings with a saturating light response of at least 50 mV and input resis-
tance of at least 25 MΩ. Responses were sampled at 4096 Hz (DAQBoard 2000, IOtech,
Cleveland, OH) and stored on hard disk for offline analysis.

Light stimulation. Data shown here were collected as part of a study on motion vision
therefore photoreceptors were stimulated using two LEDs (3mm diameter, 525nm light
emission, type: WU-14-730GC, Vossloh-Schwabe Optoelectronic GmbH, Germany) each
covering approximately 1.15◦ of visual space separated by 3◦ with one of them positioned
in the optical axis of the recorded cell. The off-axis LED had only little impact on
the responses of the recorded cell and, anyway, the same stimulus combinations (for on
and off-axis LED) were used so that a cell received the same visual input in repeated
presentations (control experiments with only a single LED revealed no different results).
LEDs were driven by a voltage-to-current converter controlled by the analogue outputs of
the data acquisition board, the LEDs were driven in the linear range of the current-light
characteristic. Light intensities were calibrated by counting single photon responses at
very low light intensities yielded with neutral density filters (Lee Filters, UK) in front of
the LED.

Data analysis. Data analysis was done in MATLAB (The Mathworks, Natick, MA).
Response and noise power spectral densities [S(f) and N(f)] for all but the largest contrast
were calculated from 4000 data point segments (963.379 ms) zero padded to 4096 data
points (1s) windowed with a 4096 point Hanning window. Power spectra were normalised
to the mean square amplitude of the data. At largest contrast three such segments with
50% overlap were used, again a 4096 point Hanning window was applied. A similar
method was used with the smaller data segments.
Distances were calculated from the same data stretches according to equation 3.2. The
responses were lowpass filtered with a 500 Hz cutoff which is far beyond the photoreceptor
cutoff. Discrimination was done according to the two average distances 〈Dr〉 and 〈Dt〉. If
the difference between both was less than could be expected from electrical noise (origi-
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nating form the recording setup) the according response was classified indistinguishable.
Discrimination performance was fitted with a logistic function of the form:

Pc =
1

2
·

100

1 + eα(xi−β)
+ 50, (3.3)

with Pc the discrimination performance, xi the contrast, α the slope, and β the position
of the inflection point. The function is scaled to range from 50 to 100% correct.
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4 Intrinsic Photoreceptor Noise

Reduced by Synaptic Filtering

The results presented in this chapter will be submitted for publication as: Jan
Grewe, Martin Egelhaaf, and Anne-Kathirn Warzecha. Intrinsic Photoreceptor Noise

Reduced by Synaptic Filtering.

4.1 Summary

Neuronal signals are always corrupted by noise from different sources, be it channel or
synaptic noise or, in the case of the visual system, photon noise. Studies on the reliability
of neuronal signalling try to unravel the noise sources and how the system deals with it.
One important site of neuronal information processing is the synapse. From studies on
the first synapse in the fly visual system it has been concluded on the basis of information
theoretical considerations that its band-pass behaviour optimises neuronal coding by en-
hancing the responses to changes in the visual input, thereby reducing redundancy in the
signals. Here we assess the reliability of photoreceptor responses to random brightness
fluctuations in a discrimination task and investigate the impact of synaptic filtering on
the discriminability of the response time-courses. We find that the filter characteristics of
the first synapse can increase response discriminability if the random brightness fluctua-
tions that are to be distinguished are superimposed on a large low frequency modulation
of the background illumination. The advantage of filtering results from an increased
noise induced by the slowly varying background illumination. We compare these findings
with the effects of filtering on the discrimination performance of photoreceptor models
that can reproduce the time course of photoreceptor responses accurately. These simu-
lations include photon noise as the only noise source leading to response variability in
the range observed experimentally. Filtering does not affect disciminability of the model
responses. Comparing cellular and model noise leads to the conclusion that the increased
low frequency noise is attributable to a light or activity dependent intrinsic noise source
not included in the simulations. Thus, the synaptic transfer characteristic does not only
reduce redundancy but also removes noise emerging within the photoreceptor itself.
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4.2 Introduction

Neuronal responses are corrupted by noise from different sources. These can be intrinsic
to the nervous system like ion channel (e.g. White et al., 2000) or synaptic noise (e.g.
Franks et al., 2003), or, in the case of the visual system, by extrinsic noise contained in the
visual input, i.e. photon noise, the random emission of photons from a light source. As a
result of these noise sources neuronal responses to repeated stimulation with exactly the
same stimulus may differ considerably despite a common stimulus dependent temporal
structure. Since the nervous system controls an animal’s behaviour, neuronal response
variability limits the precision with which it can respond to environmental changes. Thus,
it is likely that an animal’s evolutionary fitness depends, to some extent, on the reliability
of its nervous system. Consequently, different mechanisms have evolved that increase, or
at least preserve, response reliability at successive levels of the nervous system.
Nervous systems invest into the reliability in different ways. For instance, convergence
of about 20 rods onto one rod-bipolar cell in the mouse retina (Tsukamoto et al., 2001)
or the coupling of photoreceptor axons in the fly retina (e.g. Meinertzhagen and O’Neil,
1991), sacrifices spatial resolution for enhanced response reliability. Furthermore tempo-
ral integration has been shown to increase the response reliability of spiking neurons that
are driven by random input (Softky and Koch, 1993), but trades temporal resolution for
response accuracy. Moreover, the transfer characteristics of synapses have been shown in
several systems to enhance response reliability (e.g. Juusola et al., 1995; van Rossum and
Smith, 1998; Field and Rieke, 2002). The synapses connecting vertebrate rods with rod-
bipolar cells exhibit a non-linear transfer characteristic which increases the rod-bipolar
reliability under dim light conditions by rejecting small rod responses which are likely to
result from rod noise (Field and Rieke, 2002). Here, we addressed the potential effects
of synaptic filtering on the reliability of blowfly photoreceptor responses. In the fly, the
synapse linking photoreceptors to 1st order neurons, the large monopolar cells (LMCs),
can be well described as a linear filter processing the photoreceptor responses (Laughlin,
1994; Juusola and French, 1997). In the light adapted state the synapse exhibits a band-
pass like transfer behaviour (Juusola and French, 1997). Assuming a limited capacity
of the neuronal information channel, this filtering has been concluded to be the optimal
procedure to optimise coding performance when viewing natural scenes (e.g. Laughlin,
1994; Juusola et al., 1996). The power spectra of natural scenes follow a 1/f rule, meaning
that the spectral power declines with frequency (f; e.g. van Hateren, 1997). This is due
to the fact that neighbouring points in space and time are likely to have a similar light
intensity which leads to a dominance of low frequency light intensity changes. Because
of this redundancy the low frequencies are less informative than the higher frequencies.
Band-pass filtering by the first synapse in the visual system attenuates the lower frequen-
cies while it emphasises the informative higher frequencies. Reducing the redundancy in
the input was concluded to lead to an efficient neuronal code (Barlow, 1961; Simoncelli
and Olshausen, 2001).

By a combined experimental and modelling approach we assessed the role of synaptic
filtering from a different point of view: We characterised photoreceptor response reliability
using a discrimination measure (Grewe et al., 2003). This approach to led to conclusions
quite different from those obtained with information theoretical approaches (Grewe et al.,
2007, submitted). In the present account we compared the discriminability of experimen-
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tally recorded responses with the discrimination performance after simulated synaptic
filtering. We further compared the consequences of filtering on the discriminability of
experimentally determined responses and of those of phenomenological photoreceptor
models that have been shown to reproduce photoreceptor responses to naturalistic stim-
ulation (van Hateren and Snippe, 2001). We extended their model by including photon
noise as the only noise source. Comparison of the results gained from experimental and
model data allowed us to assess the influence of nonlinearities and synaptic filtering on
the system’s performance.

4.3 Methods

Electrophysiology

Experiments were carried out on 1 to 7 day old female blowflies (Calliphora vicina) taken
from the laboratory stocks. Flies were briefly immobilised with CO2 and fixed ventral
side up to a piece of glass. Legs and antennae were removed and the head bent down and
fixed to the thorax with beeswax. A small hole was cut into the cornea (close to the lateral
rim, on the level of the eye equator). The hole was then sealed with a drop of silicon
grease to prevent the retina from drying up. Recordings were done with sharp electrodes
(GC 150F-10, Clark Elektromedical, Edenbridge, UK) pulled on a Brown/Flaming P-97
Puller (Sutter Instruments, San Rafael, CA) and filled with 2M KCl. The electrodes had
tip resistances of 60 to 80MΩ. The electrode holder’s silver wire was chlorided before
every recording. A SEC 10-L amplifier (npi - electronics, Germany) operated in bridge
or discontinuous current clamp (DCC) mode. In DCC mode the switching frequency was
about 10kHz. Only those recordings were accepted for further analysis which satisfied
three criteria: (i) the resting potential in darkness had to be below -50mV, (ii) the input
resistance (Rin), measured by injection of a 0.5 nA hyperpolarising current in DCC mode,
had to be at least 25MΩ (usually Rin was larger 30MΩ), and (iii) the cell response to a
brief saturating light flash had to be larger than 50 mV.

Data Acquisition

The cell responses were sampled at 4096 Hz (DaqBoard2000, IOTech Inc., OH) and stored
on hard disk for off-line analysis which was done in Matlab (The Mathworks, Natick, MA).
The program for data acquisition was written in Delphi 7 (Borland Software Corpora-
tion). The two analogue outputs, used to control the stimulus were also paced with 4096
Hz. Additionally to the membrane potential the actual analogue output voltages were
recorded as a control.

Visual stimulation

Photoreceptors were stimulated using LEDs (3mm diameter, 525nm light emission, type:
WU-14-730GC, Vossloh-Schwabe Optoelectronic GmbH, Germany, covering approximately
1.15◦ of visual space). Since the data were collected as part of a study on motion vision
two LEDs were used separated by 3◦. One of them was positioned in the optical axis
of the recorded cell. The off-axis LED had only little impact on the responses of the
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recorded cell (control experiments with only a single LED revealed no different results).
LEDs were driven by a custom built voltage-to-current converter controlled by the ana-
logue outputs of the data acquisition board. The LEDs were driven in the linear range of
the current-light characteristic. Light intensities in units of effective photons per second
were calibrated by counting single photon responses at very low light intensities yielded
with neutral density filters (Lee Filters, UK) in front of the LED.

Here we addressed the reliability with which the time course of a stimulus is represented
by the photoreceptors. For this purpose we formulated a discrimination task in which
we asked for the minimal amplitude of a brightness modulation (contrast) that made the
photoreceptor responses to a certain stimulus safely recognisable among the responses to
stimuli that share the same statistics but were different in detail. The contrast is defined
by:

c =
σ

x
, (4.1)

with σ the standard deviation of the band limited (filtered with a 2nd order lowpass
filter with a 256 Hz cutoff) white noise modulation and x the mean brightness. We
performed the experiments at a mean brightness of about 30,000 effective photons per
second. Random brightness modulations were superimposed on a background brightness
including sections of constant and of 5Hz sine-wave modulated brightness (figure 4.1a).

Five different contrasts were used (c = 0, 0.0022, 0.0087, 0.0174, and 0.0348, figure
4.1b). At each contrast-level a set of 50 stimuli were presented. Half of these were exact
repetitions called reference stimuli while the other half, called test stimuli, share the same
statistics but were based on different random sequences and, thus, were different in detail
(figure 4.1c). All 250 stimuli were presented in a pseudo-random order.

Data Analysis

We wanted to know the minimum contrast level that shaped the responses sufficiently to
allow a safe discrimination of reference and test responses. Since the reference responses

were evoked with exactly the same stimulation one can expect them to be more similar
to each other than to the test responses, which were evoked by a different stimulation at
each presentation. The similarity of the responses was estimated with a root-mean-square
metric in terms of the distance D.

Dx,y =

√

√

√

√

1

N

N
∑

i=1

(xi − yi)
2, (4.2)

with xi and yi the two responses and N the number of data points. Two identical
responses would have a distance D = 0. The discriminability of each reference response
from the test responses is estimated by comparing the average distance within the refer-
ence responses, 〈Dr〉, with the average distance between each reference response and all
test responses 〈Dt〉 (figure 4.2a). The percentage of reference responses for which 〈Dr〉
indeed is smaller than 〈Dt〉 is plotted as a function of the superimposed modulation’s con-
trast. The resulting physiometric curve (figure 4.2b) is then fitted by a logistic function
ranging from 50% to 100% correct:

Pc =
1

2
·

100

1 + eα(ci−β)
+ 50, (4.3)
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Figure 4.1: Visual stimulus. (a) All stimuli for the discrimination task consist of a basic
structure of a constant (first second) and a dynamic (2nd second; 5Hz sine wave) background
light. During this dynamic section the background luminance increases/decreases by 65% of
the mean luminance. On the background a zero symmetric white noise brightness modulations
(middle) is superimposed. The noise was filtered with a 2nd order Butterworth lowpass filter with
a cut-off at 256 Hz (right). (b) The white noise sequences are scaled to give different contrasts.
(c) At each contrast level a set of 50 stimuli is presented. 25 of which are exact repetitions
(reference stimuli, left panel) while the other 25 share the same statistics but are different in
detail (test stimuli, right panel). Reference and test stimuli of all contrast levels were presented
in pseudorandom order.

with α representing the slope, β the position of the inflection point, and ci the contrast.
A safe discrimination was assumed to be possible if 75% of the reference responses had a
smaller distance within the references responses than between reference and test responses.
The contrast level at which a safe discrimination is achieved can be directly read from the
parameters defining the logistic function (parameter β in equation 4.3). This threshold
contrast (C75) was interpreted as a measure of response reliability.

Estimating the threshold contrast from the physiometric curve has an advantage com-
pared to testing for statistically significant differences between the distances between and
within: Whereas in the case of the statistical test, the smallest differences could get sig-
nificant if enough trials can be recorded for each cell, thresholding the physiometric curve
makes the C75 largely independent of the number of trials in a single experiment and,
thus, reflects in principle how well the signals can be discriminated on the basis of single
trials. Of course, data points are safer if the number of trials per experiment and the
numbers of experiments are larger.
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Figure 4.2: Response discrimination. (a)Each reference response (left), e.g. the bold one,
is compared to all other reference responses and to all test responses (right) giving for each
reference response the average distance (equation 4.2) within the reference group and between
the reference response and all test responses. (b) The physiometric curve is defined by the
percentage of reference responses for which the distance within the reference responses is smaller
than the distance between the reference and the test responses as a function of the stimulus’
contrast level. Data are fitted with the logistic function (equation 4.3).

Synaptic filter

The first synapse in the fly visual system changes its transfer properties with the light
level (e.g. Juusola et al., 1996). At low light intensities it has lowpass characteristics
and changes to a bandpass like behaviour under high light conditions. To investigate the
consequences of filtering on the discriminability of the photoreceptor responses several
different filters were applied to the responses. The impulse responses (figure 4.3a) of these
filters were constructed according to:

h(t) = a1 · exp

(

− (ln (t/τ1))
2

2σ2
1

)

+ a2 · exp

(

− (ln (t/τ2))
2

2σ2
2

)

. (4.4)

Using equation 4.4 five different filter kernels were constructed with the parameters
shown in table 4.1. The integral under the filter was normalised to -1 indicating the
sign reversal introduced by the synapse. We filtered the responses with a lowpass filter
with a cutoff frequency of about 507 Hz (LP507) which represents the virtually unfiltered
response since the cutoff is far beyond the photoreceptor cutoff frequency (figure 4.18).
The discrimination performances obtained after filtering with the LP507 will serve as
reference. The synaptic transfer characteristic under high light were approximated by a
bandpass filter (BP in table 1) with a lowpass cutoff at 75 Hz and a highpass cutoff at
20Hz We further used these low- and highpass components separately (LP75 and HP ,
respectively). Under low light conditions the synapse acts as a lowpass filter with a cutoff
frequency of about 20Hz which is approximated by the LP20 filter.

Frequency behaviours of the filters are shown in figure 4.3b. Even though the frequency
behaviour (figure 4.3b) of the HP filter does not match that of a first order highpass filter
we keep on referring to it as highpass (HP ). The cutoff frequencies were estimated from
the power spectra as the frequency with half the maximum of the passband output which
is 1√

2
in the amplitude spectrum. The bandpass parameters were taken from (Lindemann

et al., 2005) and fit the linear component of the blowfly LMC response (Juusola et al.,
1995).
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Table 4.1: Kernel parameter.

cutoffs [Hz] (HP/LP) a1 τ1 σ1 a2 τ2 σ2

LP507 –/507 0 0 0 -1 10 0.025

BP 20/75 -1.2 10 0.197 0.35 14 0.345

LP75 –/75 0 0 0 -1 10 0.15

HP 20/– -5 0.5 0.045 0.095 2 1

LP20 –/20 0 0 0 -1 11 0.45
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Figure 4.3: Synaptic filter kernels. (a) Different 1st order Wiener kernels as used in the data
analysis. The cutoff frequencies of the bandpass, lowpass, and highpass filters (BP , LP , and HP ,
respectively) are estimated as the frequencies at which half of the passband power was reached.
(b) Frequency behaviour of the different filters in form of power spectra. Spectra were calculated
as the power spectra of a 100 second white noise sequence sampled at 4096 Hz convolved with
the kernels shown in (a). Spectra were normalised to the variance of the input signal. Note:
although the HP frequency behaviour does not entirely match the frequency behaviour of a first
order highpass filter we keep referring to it as highpass.

Photoreceptor Models

Experimental results were compared to phenomenological photoreceptor models. The
models were either a linear temporal filter (’linear model’) or a linear temporal filter
followed by a static nonlinearity (’LN-model’). The only noise source that was always
present in the simulations was photon noise, the random emission and absorption of
individual photons. For this the stimuli given as continuous functions of time were trans-
formed into series of individual photons. Photon emission was modelled as a Poisson
process. The probability of photon absorption was estimated on the basis of the actual
light intensity in the original experimental stimulus. The simulations were done with a
temporal resolution of 409.6 kHz. The linear model consisted of a 1st-order Wiener kernel
estimated from experimentally determined photoreceptor responses to white noise light
fluctuations. It was calculated in the frequency domain (e.g. van Hateren and Snippe,
2001):

H(f) =
〈r(f) · s(f)∗〉

〈s(f) · s(f)∗〉
, (4.5)
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with H(f), r(f), and s(f) the Fourier spectra of the forward filter, the response, and the
stimulus, respectively. * denotes the complex conjugate and the brackets denote averaging
over several segments of the stimulus and responses, respectively. This forward filter was
estimated from the mean response to a white-noise brightness sequence (averaged across
135 trials). Frequency components of H(f) beyond 1024 Hz were set to zero, since these
frequency components are a consequence of residual noise in the average response that
could not be eliminated by averaging. After eliminating the high-frequency noise, the
impulse response was scaled to the same area as the impulse responses of the complete
filter. Noise reduction did not significantly change the reconstruction (not shown).
The output of a linear model can reproduce the real photoreceptor responses as long as
the stimulus contrast is relatively low. Larger contrasts lead to non-linear behaviours of
the photoreceptor response. We accounted for this by using a static non-linearity fitted to
the experimentally observed input-output characteristic (figure 4.11 centre). The static
nonlinearity was a least square fit to a saturation nonlinearity of the form:

y = α · [β − log(x − γ) − δ] , (4.6)

with y the cell response and x the linear model response. α, β, γ, and δ are free
parameters defining the shape. The intensity-response functions measured from step
responses suggest a sigmoid shape of the input output characteristic (e.g. Matic and
Laughlin, 1981). Since our data do not support this characteristic we kept the logarithmic
shape.

4.4 Results

Frequently reliability of photoreceptor responses is assessed by information theoretical
approaches. Here we alternatively assessed it by the response discriminability which we
could show to lead to different conclusions about the photoreceptor coding performance
(Grewe et al., 2007, submitted). As a first step of analysis we wanted to find out the
minimal contrast that shaped the photoreceptor responses sufficiently to grant a safe dis-
crimination of reference and test responses (see methods). For this, the discriminability
was estimated for responses evoked by different contrast stimuli (figures 4.1 and 4.2).
In a second step effects of synaptic filtering on response discriminability were estimated
by applying different linear filters (figure 4.3) to the photoreceptor responses modelling
postsynaptic responses. Finally these results were compared with predictions from phe-
nomenological photoreceptor models.

Experimental Data

The photoreceptor responses follow the time-course of the stimulus brightness used in
the discrimination task (figure 4.4). The membrane potential deflections are strongly
asymmetric when the background brightness is sinusoidally modulated (dynamic section,
comp. figure 4.1), i.e. hyperpolarising deflections deviate by up to 7.5mV from the
response amplitude at constant background light, while depolarising deflections reach
only 4.1mV at maximum. This asymmetry indicates a nonlinear relationship between
light intensity and cell response. It is most likely a consequence of the activation of slow
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delayed rectifiers (K+ channels) which prevent the cell from saturating (Vähäsöyrinki
et al., 2006). The average standard deviations of the individual responses from the
corresponding average response during the constant (1st second of response) and dynamic
(2nd second) response sections (compare figure 4.1a) are almost the same: 0.34mV and
0.35mV, respectively.
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Figure 4.4: Photoreceptor response example: (a) Average responses (black line) of 25
reference responses recorded in a single photoreceptor at zero contrast. The grey lines indicate
response variability in terms of the standard deviation of the stimulus independent response
component. Dashed lines and numbers denote the maximal de- and hyperpolarising membrane
potential deflections with respect to the resting potential. (b) Same as (a) but reference responses
at maximum contrast used for the discrimination task (c = 0.0348).

Unfiltered Responses

We analysed this kind of data gathered from 12 photoreceptors recorded in 12 different
animals with respect to their discriminability (see methods). The responses were passed
through a lowpass filter with a 507 Hz cutoff frequency (LP507, figure 4.3) which reduces
mainly noise originating from the recording setup. The responses can still be considered
virtually unfiltered since photoreceptor response power drops strongly beyond a frequency
of approximately 100 Hz (e.g. Juusola et al., 1995).
Response discriminability increases with increasing contrast (figure 4.5). A safe discrim-
ination was assumed to be possible if reference responses can be separated from test

responses with a discrimination performance of at least 75% correct (dashed horizontal
lines in figure 4.5). The contrast allowing response discrimination with this certainty
will be referred to as the threshold contrast (C75) which we interpret as a measure of
photoreceptor response reliability (see methods).

Discrimination on basis of the entire response traces leads to a C75 of 0.013 (black
data in figure 4.5a). This contrast is very small compared to the average contrast of
natural scenes of 0.31 (e.g. Laughlin, 1981). Estimating the discriminability separately
for the constant and dynamic background sections shows that the C75 depends strongly
on the kind of background the contrast modulation is riding on. On basis of the constant
background section approximately the same C75 is obtained as for the whole response
(0.012; dark grey data in figure 4.5a). Contrast modulations superimposed on the dy-
namic background are more difficult to discriminate (C75 of 0.023, light grey line in figure
4.5a). To elucidate the reason for this difference we split up the dynamic section (with
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Figure 4.5: Response discriminability in different response sections. (a) Physiometric
curves estimated on basis of the full response (black), the constant background section (dark
grey), and the dynamic background section (light grey) as indicated by the insets. Dots represent
discrimination performance averaged across 12 experiments. Lines are least-square fits of the
logistic function (equation 4.3). Black dashed line is the 75% threshold. The contrast allowing a
threshold performance is taken from the fitted curve. (b) Physiometric curves estimated in the
depolarised (black) and hyperpolarised (dark grey) parts of the dynamic response section.

respect to the actual membrane potential relative to the mean potential) into depolarised
and hyperpolarised parts (figure 4.5b).
It is easier to discriminate the time-course of the contrast modulations, if they are super-
imposed on a hyperpolarising instead of a depolarising background (C75 of 0.0378 and
0.0138 for depolarised and hyperpolarised response sections, respectively; figure 4.5b).
Thus, there must be a quite pronounced difference in the responses depending on their
polarisation, respectively the light level evoking the responses.

As was already mentioned above, the cellular response depends non-linearly on the
light level (figure 4.4) as can be seen in the input output relation (figure 4.6a). This non-
linearity leads to stronger membrane potential deflections in response to a decreasing than
to an increasing light intensity. Since the membrane potential noise, characterised by the
standard deviation of the stimulus-independent response component (difference between
each single trial and the response averaged across trials), is largely independent of the
light level (figure 4.6b) the signal-to-noise ratio in the hyperpolarised response section is
larger than in the depolarised (shown for the extreme light intensities in figure 4.6c). This
difference is reflected in an increased C75 obtained for the depolarising response section
(figure 4.5b).

Filtered Data

Synapses, in general, and the synapse connecting fly photoreceptors to first-order in-
terneurons, in particular, are an important site of signal processing. To investigate the
impact of synaptic filtering on response discriminability the photoreceptor responses were
passed through different linear filters (figure 4.3).

The discrimination performances of virtually unfiltered responses (LP507-filtered) served
as a benchmark. We further used the experimentally established (light adapted) bandpass-
like synaptic filter (BP ) and this bandpass’s lowpass (LP75) and highpass (HP ) compo-
nents separately. Additionally the LP20-filter was used which represents the dark adapted
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Figure 4.6: Response characteristics. (a) Input - output characteristic of the 12 photore-
ceptors analysed (grey lines) together with the average across the cells. The curve is estimated in
100 light intensity bins from the lowest to largest light intensity in the dynamic response section.
Light stimulus and cellular responses were aligned by compensating the response delay estimated
by cross-correlation of stimulus and response. (b) Noise - light dependence in the single cells
recorded (grey lines) and the average (black line). The noise is the average standard deviation of
the stimulus independent response component estimated in 100 light intensity bins. (c) Signal
to noise ratio at the extreme light intensities calculated as the ration of the response (a) and the
noise (b) for each cell individually. Grey lines indicate the median and the box bounds the upper
and lower quartiles. Whiskers denote the extent of the data.

synaptic transfer properties.

The different filters do not strongly affect response discriminability as long as the ran-
dom contrast modulation is superimposed on a constant background (figure 4.7a). C75 is
similar for all filters except for LP20 where the performance is slightly inferior. The low
cutoff frequency of this filter rejects most of the high-frequency component of the stimulus
spectrum. Therefore, the decreased discrimination performance might be a quite obvious
consequence. More obviously, filtering affects response discriminability if the contrast
modulation is riding on the dynamically varying background (figure 4.7b). All lowpass
filters give C75s that are much larger than those resulting from BP or HP -filtering.

To understand the different filtering effects and the divergence in the two response
sections (constant versus dynamic background), we assessed the spectral characteristics
of the membrane potential fluctuations. We separated the responses to the contrast
modulation from the response component resulting from the background by subtracting
the average response when no contrast modulation was superimposed from the individ-
ual responses to the largest contrast. The remaining response component, induced only
by the contrast modulation, was then divided into stimulus-induced-response-component
(signal) and stimulus-independent-response-component (noise) and analysed in the fre-
quency domain (figure 4.8). Constant and dynamic background sections were analysed
separately and the power spectral densities and signal-to-noise ratios (SNR) were esti-
mated (figure 4.8a and b, respectively). The signal component of constant and dynamic
section have similar power spectra, whereas the noise power spectra of both response
sections deviate from each other in the low frequency range (≤ 10 Hz; dashed lines in
figure 4.8a). An increase in low frequency noise in the dynamic response section leads to
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Figure 4.7: Effect of synaptic filtering on response discriminability. (a) Physiomet-
ric curves (left) estimated in the constant background section and the corresponding contrast
thresholds (C75, right). Grey solid line indicates the discrimination performance of the unfiltered
responses (LP507). Different colours denote different filters (compare figure 4.3). (b) Same but
estimated in the dynamic background section.

a decreased SNR in the respective frequency band (figure 4.8b). This explains the superi-
ority of band- and highpass filters for the discriminability in the dynamic section (figure
4.7b). Bandpass and highpass filters emphasise the more reliable middle frequencies and
attenuate the less reliable low frequencies. The lowpass filters LP75 and LP20 transmit
the low frequency range while cutting off parts of reliable higher frequencies, thus giving
ever-decreasing discrimination performances.

Further segmenting the responses into their de- and hyperpolarised sections (figure 4.9a
and b, respectively) revealed some pronounced differences: (i) irrespective of the applied
filter the C75 is larger in the depolarised than in the hyperpolarised response section and
(ii) the depolarised response section shows the same dependence of C75 on the applied
filter as shown for the complete dynamic section (i.e. better performance of BP and HP
filter and worse performance of the LP20; compare figure 4.7b) whereas in the hyper-
polarised response section all filters, except for the LP20, lead to similar discrimination
performances (figure 4.9a and b). Spectral analysis of these data was not possible since
data segments available for a separate analysis of de- and hyperpolarised response sections
were too short to resolve the low frequency range. Experimental approaches also do not
easily resolve this issue, since prolonged high or low light stimulation would change the
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Figure 4.8: Response characteristics in the frequency domain. (a) Power spectral den-
sities of the stimulus-induced-response-component (signal) and stimulus-independent-response-
component (noise) of the constant and dynamic response section separately (black and grey
lines, respectively). Power spectra were calculated from the 1 second (4096 sample points) long
data stretches in three 2048 sample point segments with 50% overlap. The segments were win-
dowed with a 2048 point Hanning window. (b) Signal-to-noise ratio calculated as the ratio of
signal and noise power spectral densities.

adaptational state of the photoreceptor. One possible explanation of the observed differ-
ences between the two response sections could be the non-linearity in the photoreceptor
input - output characteristic (figure 4.6a). This non-linearity damps contrast modula-
tions at high light levels, but transforms the same modulation more linearly at lower light
levels. It might, therefore, be advantageous to emphasise higher frequencies, which are
characteristic of large contrast deflections, at high light levels and thereby counteracting
the non-linearity.

In summary, the discriminability of photoreceptor responses evoked by different random
brightness modulations and represented by the threshold contrast depends on the kind of
background the random brightness modulations are superimposed on. The slowly varying
background brightness decreases the discriminability of the unfiltered responses. Filtering
the data by linear filters can be advantageous. A bandpass filter mimicking the transfer
properties of the synapse between photoreceptors and LMCs in the light adapted state is
almost always the better choice than transmitting the unfiltered photoreceptor response
to subsequent processing stages. The different effects of the applied filters could in part
be explained by a smaller signal-to-noise ratio in the low frequency range.

Responses of Model Photoreceptors

In the following we will compare the above described experimental results to results
obtained from two phenomenological models that have been employed to simulate the
responses of fly photoreceptors. We will compare the responses discriminabilities of of a
linear and a linear-nonlinear model (LN-model) with those experimentally observed. The
only noise source in both models was photon noise introduced by modelling light input as
a time sequence of single photon absorptions. The occurrence of a photon was generated
by a Poisson process with an event probability set by the stimulus light intensity at any
instance of time.
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Figure 4.9: Effect of filtering on response discriminability in the dynamic section. (a)
Physiometric curves (left) estimated from the depolarised response section and the according C75

values (right). Same colour code as in figure 4.7. Grey sold line represents the discriminability of
the unfiltered response. (b) Same as (a) but estimated from the hyperpolarised response section.

The linear model consisted of the 1st-order Wiener kernel estimated from white noise
responses following equation 4.5 (figure 4.10 centre). The model responses to white-noise
brightness modulations are very close to the cellular responses (figure 4.10, left column)
even though the cell exhibits a distinct non-linear behaviour (compare figure 4.6a). Re-
sponses to the stimulus used for discriminability analysis, on the other hand, are not so
well fitted by the linear model (figure 4.10 right column).
To account for the non-linearity of the cellular response the LN-model consisted of the

same 1st-order kernel as the linear model, but the filter output (figure 4.11 top) was passed
through a static non-linearity fitted to the experimentally observed input-output char-
acteristic (figure 4.11 centre). Measured photoreceptor responses to the discrimination
stimulus are much better captured by this model (figure 4.11, bottom right). Photore-
ceptor white-noise responses, on the other hand, are no longer so well fitted (figure 4.11,
bottom left). The static non-linearity does not capture the hysteresis effect visible in the
input output characteristics (figure 4.12) when evaluated for rising and falling flanks of
the sine-wave separately. This, most likely, reflects different time constants in the bio-
physical machinery, e.g. there are at least two different voltage gated potassium channels
with different kinetics (e.g. Vähäsöyrinki et al., 2006). A dynamic non-lineartiy would
have been needed to capture this behaviour. For the sake of simplicity, we decided not
to account for this.
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Figure 4.10: Linear model. (top) Section of a white noise stimulus (left) and the stimulus
used for the discrimination task (right). The white noise stimulus was a band limited white
noise brightness lumination with a cutoff at 256 Hz and a contrast of 0.31. The full sequence
for the forward filter estimation had a duration of two seconds segmented into three one second
sections with 50% overlap. Segments were windowed with a one second Hanning window to reduce
frequency leakage. (centre) Forward filter estimated from the average white noise response and
the stimulus according to equation 5. (bottom) The corresponding cellular (grey) and linear
model (black) responses to the white noise (top left) and discrimination stimulus (top right).

As a consequence of photon noise both models show response variability (figure 4.13a
and b). The membrane potential noise is slightly larger in the simulations than in the real
data. This might be due to the calibration method by counting single photon responses
under very dim light and linearly extrapolating. Anyway, less noise would not lead to
qualitytively different results. Similar to the cellular responses the noise level in constant
and dynamic response sections are about the same (σ = 0.49 and 0.47 in the constant
and dynamic section for the linear model and σ = 0.52 and 0.52 in the respective sections
of the LN-model).
Linear and LN-model have different input output characteristics (figure 4.14a, d) and

their response reliability depends differently on light level. The linear model shows in-

55



4. Intrinsic Photoreceptor Noise Reduced by Synaptic Filtering

data
fit

-4 0 4 8
-8

-4

0

4

8

c
e
ll 

re
s
p
. 

∆
E

m
 [
m

V
]

lin. model resp. ∆E
m

 [mV]

100 200 300
-4

-2

0

2

4

time [ms]

re
s
p

o
n

s
e
 ∆

E
m

 [
m

V
]

cell
linear model

0 500 1000 1500 2000
-10

-5

0

5

10

time [ms]

cell
linear modelre

s
p

o
n

s
e
 ∆

E
m

 [
m

V
]

100 200 300
-4

-2

0

2

4

time [ms]

cell
LN - model

re
s
p

o
n

s
e
  

∆
E

m
 [
m

V
]

0 500 1000 1500 2000
-10

-5

0

5

time [ms]

re
s
p

o
n

s
e
 ∆

E
m

 [
m

V
]

cell
LN - model

Figure 4.11: Linear-nonlinear model. (top) left: Cellular and linear model response to white
noise stimulation. Top, right: Cellular and linear model responses to the discrimination stimulus
(lowest contrast; c = 0). (centre) Static non-linearity used to map linear model responses to the
cellular response amplitude. Non-linearity fitted to the experimental data by equation 4.6 with
the parameters: α = 8.4032, β = 1.4687, γ = −11.6079, and δ = 3.6558. (bottom) Cellular
and Linear-Nonlinear model responses to the white noise stimulus (left) and the discrimination
stimulus (right).

creasing membrane potential noise with increasing light level (figure 4.14b). This depen-
dence is not linear; the slight curvature reflects the fact that the variance of absorbed
photons per second increases linearly with the mean light level, but the standard devia-
tion only with the square root of the mean number of photons. The static non-linearity in
the LN-model, however, leads to an almost linearly decreasing membrane potential noise
with increasing light intensity (figure 4.14e). At low light levels the membrane potential
noise is larger in the LN-model than in the linear one leading to a smaller SNR. The situ-
ation is inverted at high light levels. There, the LN-model has a slightly better SNR than
the linear model (figure 4.14f, e). Since the model responses capture many properties of
the experimental data, they will be used to further analyse the effects of linear filtering
on response discriminability.
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Figure 4.12: Hystersis. Cell response amplitude as a function of light intensity when analysed
in rising (grey) and falling flank (black) of the dynamic section. Light stimulus and cellular
response were aligned by correcting for the response delay estimated from the cross-correlation
of stimulus and average response.
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Figure 4.13: Model responses to the discrimination stimulus. (a) Average response
of the linear model (black line, 25 trials) and the response variability indicated by the average
response ± the standard deviation of the stimulus independent response component (grey lines).
(b) Same as (a) but from the LN-model.

Discriminability of Model Responses

Response discriminability of the unfiltered model responses is worse (larger C75 values) in
the constant section than that of the cellular responses (compare black dots in figure 4.15
top row). This was expected, since the standard deviation of the membrane potential
noise is larger in the simulations (figure 4.13). In the dynamic response section (figure
4.15 bottom row) the discriminability of unfiltered model responses is on the same level
as in the constant section, which is in contrast to the experimental results. Splitting
up the dynamic section into de- and hyperpolarised parts leads to discriminabilities that
qualitatively fit the experimental data: the C75 values of unfiltered responses are much
lower for the hyperpolarised response section than for the depolarised section (figure 4.16
top and bottom row for de- and hyperpolarised response section, respectively). For the
experimental data we identified a smaller SNR at high light levels as the main reason
for the overall reduced discriminability within the dynamic section. Although the SNR
obtained from both models depends in basically the same way on the light level (figure
4.14), the response discriminability in the whole dynamic section is not reduced. This
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Figure 4.14: Response characteristics of linear and linear-nonlinear model. (a), (d)
Input - output characteristics of linear and LN-model, respectively. Response amplitude calcu-
lated as the average response in 100 light intensity bins. (b), (e) Noise light dependence of
linear and LN model. Noise is estimated as the standard deviation of the stimulus independent
response component averaged in the same 100 light intensity bins as in (a). Grey lines indicate
the 20 model cells; black line is the average across the model cells. (c), (f) Signal to noise ratio
estimated for the highest and lowest light intensity bin for linear model (c) and LN model (f).
Grey lines indicate the median SNR, the boxes include the upper and lower quartiles, and the
whiskers represent the rest of the data.

finding indicates that the SNR estimated from the average response and the standard
deviation of the membrane potential noise does not fully describe the relevant features.

Analysing the response characteristics in the frequency domain, i.e. power spectral
densities of signal and noise response component, of the experimental data reveals a
prominent increase in noise power in the low frequency range that is not present in the
constant section (figure 4.8). The models do not show such increased low frequency noise.
Thus, unfiltered responses in the dynamic and constant response section give about the
same discrimination performance (figure 4.17). Because of the drop in the cellular SNR in
the low frequency range it is advantageous to transmit the photoreceptor response after
bandpass filtering to subsequent processing stages. Since the SNR of the corresponding
model responses is not reduced, it does not appear to be advantageous to selectively
attenuate or emphasise certain frequency bands. Accordingly, discriminability of the
model responses is largely unaffected by the applied filters (figures 4.15 and 4.16). Only
the LP20 lowpass filter always leads to C75 values larger than those obtained with the
other filters: here the cutoff frequency is at such a low frequency that valuable information
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Figure 4.15: Comparison of cellular and model response discriminability in constant
and dynamic section. (top) C75 values in dependence of the applied filter estimated in the
constant section for, from left to right, the cellular responses, the linear, and the LN-model. Grey
line indicates the discrimination performance of the unfiltered response. (bottom) Discrimina-
tion performance in the dynamic response section.

is attenuated by the filter.

In summary, the two photoreceptor models used here, the linear and the LN-model,
can mimic average cellular responses quite well. The linear model is superior for white
noise contrast modulations but inferior for stimuli with other statistical properties like
the stimuli used in our discrimination experiments. The LN-model consisting of the
same linear part plus a static non-linearity could well fit the experimental results to
the discrimination stimulus; when approximating the white noise responses, however, its
performance is somewhat worse. Both models fail to mimic some other aspects of the
cellular responses: (i) while the membrane potential noise of the cellular responses is
almost independent of light intensity, membrane potential noise of the linear model and
the LN-model depend on the light intensity in an inverse way. These light dependencies
are not altered even if additional noise is added to the model responses (not shown). (ii)
The models do not capture the quite prominent increase in noise power of the cellular
responses in the dynamic response section. This confirms indirectly that bandpass or
highpass filtering is advantageous due to the decreased SNR in the low frequency range.

4.5 Discussion

In this study we analysed consequences of simulated synaptic filtering for the discrim-
inability of fly photoreceptor responses. The applied discrimination measure has been
shown previously to lead to quite different conclusions about photoreceptor coding per-
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Figure 4.16: Comparison of cellular and model Response Discriminability within
the Dynamic Section. (top) C75 values in dependence of the applied filter estimated in the
depolarised response section for, from left to right, the cellular responses, the linear, and the LN-
model. Grey line indicates the discrimination performance of the unfiltered response. (bottom)
Same as on top but in the hyperpolarised response section.
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Figure 4.17: Model response characteristics in the frequency domain. (a) signal and
noise power spectral densities estimated in the constant and dynamic sections for the linear
model. Power spectra were calculated from the 1 second (4096 sample points) long data stretches
in three 2048 sample point segments with 50% overlap. The segments were windowed with a 2048
point Hanning window. (b) Same as (a) but for the LN-model.

formance than conclusions based on an information theoretical evaluation of the responses
(Grewe et al., 2007, submitted). Here, we found that a bandpass filter resembling the real
synapse’s transfer properties can increase response discriminability. Thus, bandpassing
the photoreceptor response appears to be a good way to transmit visual information to
subsequent processing stages. This observation is in good agreement with earlier conclu-
sions based on information theoretical considerations (e.g. Laughlin, 1994; Juusola et al.,
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1996). In our analysis we could trace the bandpass advantage back to an increased noise
power in the low frequency range which occurs as soon as the stimulus contains large
low frequency light intensity modulations. The question arises where this noise power
originates. Is it caused by sources intrinsic to the photoreceptor itself or by photon noise
as an extrinsic source?

An Intrinsic Noise Source To resolve this issue we compared the real photoreceptor
response characteristics with the characteristics of the corresponding model responses.
Two types of models have been used. The linear model consisted of the 1st order Wiener
kernel estimated from white noise responses and the LN-model of the same kernel and
a static nonlinearity. Both models are capable of reproducing the average photoreceptor
responses quite well. In the model simulations the only noise source included was the
extrinsic photon noise. As a consequence, the responses of both models show consider-
able membrane potential noise suggesting that photon noise is a major noise source in
photoreceptor cells. The noise power spectra of the model responses, however, do not
show the increased low frequency noise as we found in the cellular responses. Thus, we
conclude that this increased noise source is attributable to intrinsic sources.

Intrinsic Noise Depends on Contrast The intrinsic noise depends on the actual
stimulus: The increased noise power becomes visible only when the background brightness
was modulated at a low frequency (’dynamic background’). Consequently, the SNR drops
in the respective frequency band. By contrast, when the background brightness was kept
constant (’constant background’) the noise power spectrum is almost flat and the SNR
does not decrease in the low frequency range as long as the contrast is low. At high
contrasts (c = 0.31), however, the SNR is reduced in the low frequency range even when
the background brightness was constant (figure 4.18; or also e.g. Juusola et al., 1995;
Juusola and Hardie, 2001) and thus resembles the frequency dependence of the SNR
obtained during the dynamical section. This decrease in the SNR in the low-frequency
range is likely to be due to two reasons: (i) an increased noise and (ii) a reduced signal
power attributed to adaptational changes induced by the large low frequency brightness
changes (Juusola and Hardie, 2001). The contrasts leading to a safe discrimination of the
responses in our experiments are relatively small (c = 0.012 to 0.023) and do not induce
the two effects. Thus, it is a large brightness modulation that induces increased noise
power. Since adaptational changes are attributed to voltage gated potassium channels
(e.g. Niven et al., 2003; Vähäsöyrinki et al., 2006) it appears plausible that potassium
channel activation is responsible for the intrinsic noise component. When increasing the
constant background light the activation of potassium channels leads to a reduced input
resistance and thereby a reduced photoreceptor gain which attenuates signal and noise
in parallel (Laughlin and Weckström, 1993).

Intrinsic Noise is Light or Voltage Dependent The present results suggest that the
measured photoreceptor noise is rather independent of the actual light level (figure 4.6).
The photoreceptor models, on the other hand, show strong dependences on the light level
(figure 4.14). Increasing light intensity goes along with increased photon noise and in the
case of the linear model directly entails increased membrane potential noise. The non-
linearity incorporated in the LN-model, however, leads to decreasing membrane potential
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Figure 4.18: High contrast white noise response spectra. (a) Signal (solid) and noise

(dashed) power spectra from high contrast white noise stimulation (c = 0.31). Shown spectra
are averages across the results from 26 cells. Spectra were calculated from 2.5 second long data
stretches in 1s segments (4096 sample points) with 50% overlap and windowed by a 4096 point
Hanning window. (b) Signal-to-noise-ratio defined as the ratio of signal and noise power spectra
shown in (a).

noise with increasing light level. We can assume the LN-model to be an appropriate
representation of the photoreceptor, since it reproduces the average response under these
conditions very well. Therefore, the intrinsic noise itself is concluded to increase with
either the light level or the level of membrane depolarisation. In this way the reduced
impact of photon noise is compensated by an amplification of the membrane potential
noise.

Functional Implications The contrasts needed to grant a safe discriminability of time
dependent stimuli based on photoreceptor responses are small compared to the average
contrast encountered when viewing natural scenes. Additionally, large low frequency
stimulus components induce increased intrinsic noise that makes bandpass filtering as
has been described for the synapse linking photoreceptors to first-oder interneurons (e.g.
James, 1992) advantageous. Can we relate these findings to the coding requirements an
animal encounters in everyday life? When freely behaving, an animal’s visual system is
exposed to light intensity fluctuations of a statistic very different to the laboratory-used
white noise. Analysing natural visual input in the frequency domain reveals that the
relative contribution of frequencies to the overall signal decreases with frequency (’f’)
with approximately 1/f (e.g. van Hateren, 1997). This means that slow (low frequency)
light intensity changes have more power, i.e. contribute more strongly to the overall
modulations, than the higher frequencies (rapid light intensity changes). A fly moving
around in its environment may pass through local areas with alternately high or low light
intensity, e.g. depending on the leafage in the woods or when moving from a sunny spot
into the shade. These light intensity changes are slower and much larger than those re-
sulting from changes in the textures within an area of a certain overall illumination, e.g.
within a sunlit scene or in the shade. In other words, the light intensity changes resulting
form local textures contain much higher frequencies than those originating from large
intensity changes. In this line, we may interpret the large sine-wave modulations in our
experimental design as mimicking the global illumination changes in the outside world.
The superimposed small contrast white noise may then be interpreted as representing
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the finer light intensity variations originating from the texture of objects. To extract
information about its own movement and the environmental layout the animal should
rely much more on the object characteristics than on the global changes in illumination.
Hence, bandpassing the photoreceptor signals can be expected to help separating object
texture from overall illumination changes and, in addition, reduces the impact of low
frequency noise. This interpretation results in the same conclusion as previous informa-
tion theoretical analyses which stress that low-frequency components in the input largely
reflect redundancies in the visual input and, therefore, may be removed from the signals
without compromising the performance of the system (Laughlin, 1994; Juusola et al.,
1996). We observe that the noise originating in the photoreceptor in the low-frequency
range makes synaptic bandpass filtering advantageous.
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5 Impact of photon noise on the

reliability of a motion sensitive

neuron in the fly’s visual system

The content of this chapter has already been published as: Jan Grewe, Jutta
Kretzberg, Anne-Kathrin Warzecha, and Martin Egelhaaf: Impact of photon noise on the

reliability of a motion sensitive neuron in the fly’s visual system., Journal of Neuroscience
23(34): pages 10776 - 10783, 2003

5.1 Summary

Variable behavioural responses to identical visual stimuli can, in part, be traced back to
variable neuronal signals, which provide unreliable information about the outside world.
This unreliability in encoding of visual information is due to several noise sources such
as photon noise, synaptic noise or the stochastic nature of ion channels. Neurons of the
fly’s visual motion pathway have been claimed to represent perfect encoders with photon
noise as the main noise source limiting their performance. Other studies on the fly’s
visual system suggest, however, that internal noise emerging within the nervous system
also affects the reliability of motion vision. To resolve these contradictory interpretations
we carried out an electrophysiological investigation, inspired by the ”equivalent noise”
paradigm applied in psychophysics, on the fly’s motion-sensitive H1 neuron. Noise-like
brightness fluctuations of different strength were superimposed on the motion stimuli.
Since the noise level found to affect the temporal properties of the spike responses is
much larger than the estimate of photon noise under the experimental conditions, our
results indicate that motion vision is more likely to be limited by internal sources of
variability than by photon noise.
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5.2 Introduction

Animals including humans respond to sensory stimuli with limited reliability. In the
brain, this behavioural or perceptual variability is reflected in variable neuronal responses
providing unreliable information about the outside world. For instance, neurons in the
visual cortex of cats and monkeys respond to stimuli with a spike count variance in the
range of the mean activity (e.g. Tolhurst et al., 1983; Vogels et al., 1989; Britten et al.,
1993; Barberini et al., 2000). Although neuronal variability of insect visual interneu-
rons (Warzecha and Egelhaaf, 1999; Warzecha et al., 2000; Warzecha and Egelhaaf, 2001;
de Ruyter van Steveninck et al., 2001; Borst and Haag, 2002) and of vertebrate retinal
ganglion cells is somewhat smaller (Levine et al., 1988; Berry et al., 1997; Kara et al.,
2000), it still limits the reliability of behavioural reactions. Various noise sources within
the nervous system constrain the reliability of neuronal responses, such as the photo-
transduction process (e.g. Rodieck, 1998), the stochastic nature of ion channels, as well
as synaptic transmission (e.g. Johnston and S., 1995). In addition, the incoming visual
signal is inherently noisy because of the quantum nature of light (e.g. Rodieck, 1998).
Especially at extremely low light levels, the absorption of single photons triggers promi-
nent membrane potential changes in the photoreceptor (e.g Hardie, 1979; Rodieck, 1998).
In flies, single-photon effects could then be detected in spike patterns of the motion-
sensitive H1-neuron that is several synapses away from the photoreceptors (Lillywhite
and Dvorak, 1981) and in behavioural responses (Reichardt, 1965). In humans single-
photon absorptions were found to affect perception (Bouman et al., 1985). Thus, at the
sensitivity threshold, the reliability of motion vision is limited by photon noise. Although
individual photons contribute much less to the overall photoreceptor response at higher
light levels, it was concluded that, even in daylight, photon noise is the major source of
variability in the fly motion-sensitive H1-neuron (de Ruyter van Steveninck and Bialek,
1995; Lewen et al., 2001; Borst and Haag, 2001). The H1-neuron is a well-established
system for analysing the reliability of neural coding (reviews e.g. Egelhaaf and Warzecha,
1999; Warzecha and Egelhaaf, 2001; de Ruyter van Steveninck et al., 2001; Haag and
Borst, 2002; Egelhaaf et al., 2002). All internal sources of variability were claimed to
be of minor relevance implying that neuronal information processing is virtually perfect
(de Ruyter van Steveninck and Bialek, 1995; Lewen et al., 2001; Borst and Haag, 2001).
However, at least for the light-adapted eye, noise sources inherent in synaptic transmis-
sion between photoreceptors and second-order neurons were shown to significantly affect
the reliability with which visual information is signalled to higher-order processing stages
(Laughlin et al., 1987; de Ruyter van Steveninck and Laughlin, 1996). Is H1’s response
reliability limited by photon noise or also shaped by noise sources inherent in the ner-
vous system? In an experimental design adapted from psychophysics, external noise was
introduced into the system. Random brightness modulations, which corrupt the input
signal similar to photon noise, were superimposed on random dots, moving in the pre-
ferred direction of H1. We examined how much noise could be added before the motion
response was affected noticeably and how this noise level relates to photon noise under
the experimental conditions.
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5.3 Materials and Methods:

Electrophysiology

Experiments were carried out on 21 two-to-eight-days old female blowflies (Lucilia spec.)
at temperatures between 22◦ and 26◦C. The animals were obtained from laboratory
stocks. Dissection was done as described previously (Warzecha et al., 1993). After dissec-
tion the flies were adjusted in the experimental setup with respect to the symmetry of the
deep pseudopupil (Francescini, 1975). The spike activity of the H1-cell, a directionally-
selective motion-sensitive neuron (e.g. Hausen, 1976) was recorded extracellulary at its
output region in the left half of the fly’s visual system. This H1-cell has its input region
in the right visual field and conveys visual motion information to the contralateral visual
system. To reduce background noise resulting from the activity of neurons that receive
input from the left visual field, the left eye was covered with black varnish. Insulated
tungsten electrodes were used for recording. As reference electrode a glass capillary filled
with Ringer’s solution (Hausen, 1982) was used. The recorded signals were amplified
(factor 3000) and bandpass filtered (corner frequencies: 300 Hz and 3 kHz). Recorded
action potentials were transformed into pulses of fixed height and duration, fed into a PC
and stored onto hard disk for further analysis. Data acquisition was done at a sampling
frequency of 1200 Hz using the analogue input of a VSG 2/3 card (Cambridge Research
Systems, Cambridge UK). Data were analysed using Matlab (Version 6.5, Release 13,
The Mathworks Inc.) and some routines written in C.

Visual Stimulation

Visual stimuli were presented to the fly at 300 Hz with a Joyce Scope DM5 monochrome
(P-31 phosphor, decay to 10% in approximately 40µs) computer monitor (Joyce Elec-
tronics Ltd., UK). The brightness range of the monitor was resolved with 8 bits. The
monitor was controlled using the VSG2/3 graphics card (Cambridge Research Systems,
UK). The card was programmed using Borland Delphi 3.0 and VSG Software Library
Version 6.0. As seen by the fly, the monitor screen (464x375 pixel resolution) had a hor-
izontal and vertical extent of 127 and 120 respectively. The screen centre was positioned
at 0◦ elevation and 20◦ azimuth. At this point, one pixel had a vertical and horizontal
extent of approximately 0.5◦. While the frame rate was 300 Hz, the update rate of the
presented motion stimulus was 150 Hz. Cross-correlation of 200 response traces of H1
revealed no time locking to either of these frequencies.

Random dot stimuli

Random dot kinematograms were used as visual stimuli. They consisted of ten bright dots
with a vertical and horizontal extent of approx. 1.5◦ as seen by the fly. In the first frame
of the stimulus sequence the dots were randomly positioned in front of a dark background.
In subsequent frames these dots were moved in the H1-cell’s preferred direction, i.e. from
back to front, by steps of 3 pixels (corresponding to 1.5 ) per frame. The position of the
dots was updated at a rate of 150 Hz which results in a velocity of approx. 450 ◦/s in
the screen centre. The same dot pattern was used in every stimulus presentation. The
stimulation sequence consisted of 3 seconds motion and 7 seconds interstimulus interval
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during which the monitor showed the starting image of the motion sequence. At mean
brightness all dots had a radiance of 2.7 · 10−1W · m−2 · sr−1 and the background of
3.0 · 10−5W · m−2 · sr−1 (corresponding to 130cd/m2 and 0.001cd/m2 respectively). In
the following, we indicate light intensities and intensity changes in relative units. Since
the brightness range of our stimulus was resolved with 8 bits (i.e. 256 intensity levels),
an intensity level of 127 corresponds to the mean brightness of the dots and 0 to the
background brightness. The gamma correction of the video screen was approved to result
in an virtually linear relationship between intensity level and real brightness.
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Figure 5.1: Visual Stimuli. Illustration of the visual stimuli for the smallest (σ = 4, upper
part) and the largest (σ = 64, lower part) noise level. On the left side the same frame of the
motion sequence is shown. For the first frame a number of dots is randomly placed on the screen,
in subsequent frames the dots are shifted in the preferred direction of the H1-cell (indicated
by the arrows). As can be seen, each dot has its own brightness. The right part shows the
properties of a sample dot. The noise sequence applied to this dot during presentation was made
up of randomly drawn brightness values drawn from a Gaussian distribution centred at the mean
brightness (’127’ on the 8 bit scale) and a standard deviation of σ = 4, 8, 16, 32 or 64, defining
the noise level (shown for σ = 4 and 64). This distribution was truncated at mean ±2σ. While
the brightness variations over time are quite small in the upper part, modulations covering the
full brightness range are possible at the largest noise level (σ = 64).

To introduce external noise into the fly’s visual system, random brightness modulations
were superimposed on the dots, i.e. each dot’s brightness was varied between subsequent
frames. As is illustrated in figure 5.1 the brightness values were randomly taken from
Gaussian distributions with the same mean but different standard deviations. The dis-
tributions were truncated at mean level ±2σ. We define the noise level as the standard
deviation of the original Gaussian. Five noise levels were used in the experiments (σ =
4, 8, 16, 32 and 64 brightness levels on the 8 bit scale). Thus, at maximum noise level,
brightness modulations covered the available brightness range entirely (compare figure
5.1 lower part). In a first set of experiments, the time-dependent noise sequences added
to all ten dots were statistically independent. In a second set of experiments the noise
added on fractions of the dots was correlated. We used 6 correlation levels (0, 20, 40, 60,
80 and 100%) at two different noise levels(σ = 16 and σ = 64). In both sets of experi-
ments the noise was added in two different ways: The same brightness noise sequence was
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superimposed on the dots in each stimulus presentation (’reference stimulus’). Different
brightness noise sequences, yet with the same statistical properties, were employed in
each presentation (’test stimulus’).

Experimental protocol

Prior to data acquisition, the fly was adapted to the stimulus and laboratory conditions.
For this purpose the stimulus with a randomly chosen noise level was presented 40 times
in a row which lasted 7 minutes. After this adaptation period the experiments were
done block-wise for each noise level (σ = 4, 8,16, 32, and 64) or each correlation level
(0, 20,40, 60, 80 or 100%). The interstimulus interval during which the monitor showed
the starting image of the motion sequence with all dots at mean brightness was used for
data storage and providing Ringer’s solution to the fly if necessary. Both reference and
test stimuli were presented 30 times in random order within each noise level/correlation
block. The blocks were also shuffled in experiments performed on different H1-cells in
different animals. For further analysis, 25 out of the 30 responses to each stimulus type
were used. We selected those 25 spike trains that deviate least with respect to their mean
activity from the mean response averaged over all reference and test responses.

Data analysis and comparison of spike trains

The aim of the experiments was to find the level of external noise which leads to a major
change in the cell’s responses to the test stimuli as compared to the responses to the
reference stimulus. Since reference and test stimuli have the same statistical properties we
expected them to lead to the same spike rate but possibly to different spike patterns. We
applied two approaches to detect differences in the temporal properties of the spike trains.
The first approach compares spike trains by calculating the minimal costs of transforming
one spike train into another (Victor and Purpura, 1997). The transformation is done by
either deleting, inserting or temporally shifting of single spikes. Each of these procedures
is linked to defined costs. Deleting or inserting of single spikes has the cost of ’1’. The cost
for a temporal shift (’q’ per second) is variable and determines the temporal resolution
of the measure. For example, a ’q’ value of 200 equals a temporal resolution of 10 ms:
for this time-scale spikes in two response traces are considered as ”nearly coincident”
if a given spike in one of the spike trains is shifted by less than 10ms with respect to
the corresponding spike in the other spike train. As long as this condition is met, it is
”cheaper” to temporally adjust the spikes in the two spike trains by shifting than by
deleting and inserting one of them. In our analysis we used a set of 9 different values for
q (q = 2, 4, 8, 16, 32, 64, 128, 256 and 512) which correspond to temporal resolutions of
1000, 500, 250, 125, 62.5, 31.25, 15.625, 7.8125 and 3.90625 ms. Moreover, we calculated
the similarity between test and reference responses on the basis of the mean spike rate
over the entire stimulation interval (see figures 5.4b, 5.5b, e rightmost data points). The
second approach calculates the distance between two spike trains by determining spike-
count differences between the smoothed spike trains (Kretzberg et al., 2001)

D(Xτ , Y τ ) =

√

√

√

√

1

N
·

N
∑

j=1

(Xj − Yj)2, (5.1)
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with N = number of time steps, τ = filter width (milliseconds), and Xτ , Y τ = the
smoothed spike trains that are to be compared. A rectangular filter of variable width was
used for smoothing. We calculated the distances using six different filter widths (500,
200, 100, 50, 20 and 10 msec).

Classification of responses

To determine the similarity of the spike trains we took each single reference response (e.g.
the highlighted spike train in figure 5.2a) and computed the mean similarity (see above)
to the other reference responses and to the test responses. We can assume the reference
responses to be more similar to each other than compared to the test responses if the
external noise affects the responses. Thus, a reference response is subsequently classified
correctly as a reference response when its similarity within the reference responses is
higher than between reference and test responses. This procedure is done for all 25
reference responses. The percentage of correct classifications represents a measure of
the discriminability of reference and test responses. If the test responses do not differ
more from the reference responses than the reference responses do from each other, the
percentage of correct assignments is 50%. In this case, the added noise does not detectably
affect the temporal structure of the spike trains and their variability is dominated by noise
sources intrinsic to the nervous system and/or by photon noise. If both types of responses
can be discriminated perfectly, the percentage of correct classification is 100%. In this
case, the responses are heavily affected by the external noise that was added to the
stimuli. We assume a major influence of the external noise on the responses when the
discrimination performance exceeds 75%, a threshold-value often used in psychophysics.

Domain of uncertainty

To assess whether deviations of the discrimination performance from chance level (figure
5.2 compare b,c) are attributable to the external noise, we calculated the percentage of
correct decisions for ten different sets of shuffled responses; i.e. we replaced half of the
reference responses (selected by chance) with the same number of randomly chosen test
responses. For each shuffle, the classification performance was calculated as described
above. A 50% performance is expected, since the shuffle consists of responses of either
type mixed in equal shares. A deviation from chance level can thus be understood as a
measure of variability caused by any kind of noise. The shaded area in figure 5.2 b and c
show the ”domain of uncertainty” which is defined by the mean (dotted line) and twice
the standard deviation of the classification performances obtained by comparing the ten
different sets of shuffled responses. Classification performances that fall into the domain
of uncertainty are likely to be a result of the noise in the system (including photon noise)
and not of the added external noise.

Estimation of photon noise

Following the approach of de Ruyter van Steveninck (1986), the number of photons
impinging per second on a single photoreceptor can be estimated according to

N = ǫsp ·

∫ ∞

0
Lph(λ) · Spr(λ)dλ (5.2)
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Figure 5.2: Illustration of the data analysis for a single cell example. (a) The raster plots
show 750ms sections of ten responses to reference (left) and test (right) stimulus at maximum
noise level (σ = 64). A common spike pattern can be seen in all responses despite differences in
timing of individual spikes. Although all reference responses were elicited by the same stimulus,
they do not seem to be more similar to each other than compared to the test responses that were
evoked by stimuli, which were statistically equivalent but differed in the noise sequence added on
the stimuli. The way of analysing more subtle changes in the temporal structure of the responses
is sketched by the lines drawn between the highlighted reference response and all other reference
and test responses. (i) Each reference response is compared to all other reference responses
(solid lines) with two different measures of similarity (see Methods) and the average similarity
within the reference responses is calculated. (ii) The mean similarity of each reference response
to all test responses is determined (dashed lines), and the average similarity between reference
and test responses is calculated. (b) If the external noise affects the responses the reference
responses should be more similar to each other than compared to the test responses. With this
assumption we tried to classify the individual reference responses on the basis of the similarity
values estimated with the measure developed by Victor and Purpura, (1997) (see Methods for
details). The percentage of correct classifications is plotted as a function of added noise level
for this single cell example. The shaded area represents the domain of uncertainty (see Methods
for details). Discrimination performances falling into this range are likely to be a consequence
of chance. A significant effect of the added noise on the responses can be assumed if the actual
percentage-correct value is outside the domain of uncertainty. (c) same as b but the responses
were compared using the measure developed by Kretzberg et al., 2001.

with λ the wavelength, ǫsp (m2 ·sr) the spatial efficiency factor, Lph(λ) (photons ·m−2 ·
sr−1 · s−1 ·nm−1) the spectral density of the photon flux, and Spr(λ) the relative spectral
sensitivity of fly photoreceptors (type R1-6). The spatial efficiency factor is given by the
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product of lens surface and photoreceptor solid angle, which results in

ǫsp = 3.5 · 10−13m2 · sr (5.3)

assuming a circular lens (van Hateren, 1984) with a point spread function approxima-
tion as a circular symmetric Gaussian (Götz, 1965). The lens diameter and the acceptance
angle are assumed as D = 30µm and ∆ρ = 1.2◦, respectively (Smakman et al., 1984).
The integral in formula 5.2 is the spectral overlap Lso which can be calculated for the
mean radiance of the dots of 2.7 ·10−1W ·m−2 · sr−1 to (de Ruyter van Steveninck, 1986)

Lso = 4.47 · 1017photons · m−2 · sr−1 · sec−1 (5.4)

Inserting (5.3) and (5.4) in (5.2) we get:

N = Lso · ǫsp = 1.56 · 105photons · sec−1 (5.5)

Thus, approximately 1034 photons impinge on a photoreceptor while a dot is in its
receptive field (1/150 s). Because the number of photon arrivals is a statistical event
following the Poisson distribution, the variance of which is equal to the mean, the standard
deviation and thus the signal-to-noise-ration (SNR) amounts to approximately 32. In
order to mimic a SNR matching photon noise in our stimulation paradigm, brightness
noise with a standard deviation of σ = 4 [with mean brightness of 127 on the 8 bit scale
(0. . . 255)] would have to be added to the moving dots (i.e. 128/4 = 32). Persistence of
the P-31 phosphor increases the time a dot stimulates a photoreceptor and thus, slightly
increases the number of photons impinging on the receptors. Consequently, photon noise
is slightly overestimated by the above approximation.

5.4 Results

To find out whether the reliability of H1 responses to motion stimuli is limited by photon
noise or noise sources intrinsic to the nervous system the consequences of external bright-
ness noise superimposed on a random dot cinematogram were analysed. The brightness
of the ten dots moving coherently in the preferred direction of the H1-cell was modulated
in two ways. The time-dependent brightness noise was either exactly the same in each
stimulus presentation (’reference stimulus’) or it was different, but had the same statis-
tical properties in each presentation (’test stimulus’). We examined for a wide range of
time-scales to what extent the temporal structure of spike responses was affected by the
added noise. In case of photon noise being the dominant noise source limiting motion
vision, the added noise, as soon as it is larger than photon noise itself, should affect the
responses. Thus, the reference responses should be more similar to each other than com-
pared to the test responses. This is because the reference stimulus is, apart from photon
noise, the same for each trial, the variability in the reference responses reflects the conse-
quences of noise sources in the nervous system and/or of photon noise. In contrast, the
variability of the test responses is also affected by the external noise introduced by using
a different stimulus for every presentation - unless the external noise level is negligible
in the presence of the other noise sources that cannot be controlled by the experimenter.
The larger the brightness noise level needed to have a major impact on the responses the
less important is photon noise for the reliability of motion vision in H1.
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Figure 5.3: Mean firing rate of H1 in response to reference and test stimuli at the
five noise levels (σ = 4, 8, 16, 32 and 64) used in the experiments. The box and
whisker diagrams represent the distribution of mean firing rates, averaged over all presentations
of each stimulus type. All diagrams are based on the same 11 H1-neurons recorded in 11 different
flies. The boxes’ horizontal lines represent the lower, median and upper quartile of the data.
The whiskers extending vertically from the boxes show the extent of the rest of the data. The
distributions were tested for significant differences using a Wilcoxon test for paired samples.
An α-value, shown above each pair of distributions, larger than 5% denotes a non significant
difference.

Impact of uncorrelated noise

Since the statistical properties of reference and test stimuli were identical, we expected
them to elicit the same average responses. Comparing the mean response amplitudes for
all noise levels using a Wilcoxon test for paired samples confirmed this expectation (figure
5.3). Thus, if there were differences in the responses to reference and test stimuli, they
exist only on a finer time-scale, i.e. in the temporal spike-pattern. The raster plots shown
in figure 5.2a reveal some variability in the spike-trains even if the responses were elicited
by repeated presentation of the same stimulus (figure 5.2a; reference responses at maxi-
mum noise level). In case of different noise sequences superimposed on the moving dots
at each presentation (figure 5.2a; test responses at maximum noise level), the responses
appear not to be more variable than the reference responses. Under both stimulus con-
ditions, a common time structure is visible despite differences in the timing of individual
spikes. Based on the raster plots it is hard to tell whether the individual spike trains
obtained under the reference condition are more similar to each other than to spike trains
obtained with the test stimulus. Therefore, we scrutinised the responses by quantitative
measures.

Two different measures were applied to quantify the similarity of individual spike trains
(see methods). As is shown for the single cell example in figure 5.2b and figure 5.2c
(measures developed by Victor and Purpura (1997) (figure 5.2b) and Kretzberg et al.
(2001) (figure 5.2c) were used), the classification performance varies around 50% for small
noise levels; it increases with increasing noise level to almost perfect discrimination. The
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responses of this H1-cell to reference and test stimulus can be reliably distinguished at
noise levels larger than σ = 32 if the 75% criterion is satisfied and the data value is outside
the domain of uncertainty. At maximum noise level the responses can be distinguished
perfectly. Since both measures of similarity lead to qualitatively the same results for all
analysed cells, only results obtained with the measure of Victor and Purpura (1997) will
be shown in the following.
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Figure 5.4: Response discriminability. (a) Averaged discriminability of reference and test
responses as a function of the noise level added to the stimuli and the temporal resolution of the
measure of discrimination as developed by Victor and Purpura (1997). Data are based on a set
of 11 H1 neurons recorded in 11 different flies. Transects ’b’ and ’c’ are shown in more detail
in (b) and (c). Mean discriminability of reference and test responses at maximum noise level
(σ = 64) in dependence of the temporal resolution used for data analysis. The error bars show the
standard deviation of percentage correct decisions across the 11 cells. The shaded area represents
the domain of uncertainty (see Methods for details). As b, but the noise amplitude was varied at
the ”best” temporal resolution (15.625ms).

The average discrimination performance (n = 11 H1-cells recorded in 11 different flies)
is shown in figure 5.4a as a function of both, the temporal resolution and the noise level.
In some flies the 75% criterion, as shown in figure 5.2b, was reached for high noise levels
while other recordings revealed discrimination performances below this threshold even
at the highest noise levels used in the experiments. The averaged discrimination perfor-
mance peaks at large noise levels and at temporal resolutions between 5 and 20ms. Finer
resolutions yield performances, even at the highest noise level, below threshold and only
weakly above the domain of uncertainty (figure 5.4b). On average, also temporal resolu-
tions coarser than 62.5ms result in no significant discriminability. Even for the temporal
resolution at which the discrimination performance is best (15.625ms), the performance
is significantly better than chance level only at noise levels above σ = 32 (figure 5.4c).
Hence, the temporal structure of the neuronal responses is systematically affected only
at noise levels exceeding this value. However, even at the highest noise level the 75%
threshold is not reached on average. In none of the recordings the discrimination thresh-
old was reached with noise levels lower than σ = 32. As it is common in psychophysical
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experiments, this value may be understood as an estimate of the overall noise in the sys-
tem, including internal sources of variability as well as photon noise (see e.g. Pelli, 1990).
In our stimulus paradigm photon noise is estimated to equal a brightness modulation of
approximately σ = 4 (see methods). As can be concluded form the experiments, this
level of added noise has no major impact on the cell’s mean response amplitude nor the
temporal fine structure.
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Figure 5.5: Response Discriminability with correlated noise. (a)Mean discrimination
performance as a function of the noise-correlation and the temporal resolution of the measure of
discrimination as developed by Victor and Purpura (1997). The experiments were performed at
maximum noise level (σ = 64). The average performance is based on 10 H1 recordings in another
set of 10 different flies than those on which the data shown in figure 5.4 are based. The transections
refer to sections shown in (b), (c) and (d). Average discrimination performance at 100% noise
correlation expressed in percentage correct decisions as a function of the temporal resolution
used for data analysis. Error bars show the standard deviation across the 10 H1 recordings.
The shaded area illustrates the domain of uncertainty (for explanation see Methods). As b but
the noise correlation was varied at the ”best” temporal resolution. The temporal resolution
was 15.625ms. As c but at a temporal resolution used for data analysis of 500ms.(e) Mean
discrimination performance at 100% noise correlation and a noise level of σ = 16 as a function
of the temporal resolution for 4 H1 recordings of 4 different flies. The error bars represent the
standard deviation of performance levels. In grey the domain of uncertainty, which represents the
performance levels which are likely to be the result of internal noise and photon noise but not of
the added external noise.
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Impact of correlated noise

In the experiments described so far, the noise added to the different moving dots was
uncorrelated. The effect of external noise on a neuron can be expected to increase if the
noise carried by the neuron’s different inputs is correlated to some extent (see e.g. Zohary
et al., 1994). Since photon noise is uncorrelated at the different photoreceptors, the degree
of correlation needed to affect the neuronal response pattern can be used as another way
to assess the role of photon noise versus noise intrinsic to the nervous system for the
reliability of visual motion computation. In a second set of experiments (n = 10 recorded
H1-cells in another set of 10 different flies) the noise superimposed on a fraction of the dots
was correlated. The number of dots with correlated noise was either 0, 2, 4, 6, 8 or 10 out
of 10 dots. When the correlation at maximum noise level was increased, the H1 responses
were affected not only on a relatively fine time-scale, as is the case for uncorrelated
noise, but also on a coarser time-scale. When the noise was 100% correlated, i.e. the
brightness fluctuations of all ten dots are identical, reference and test responses could
be discriminated with temporal resolutions of up to 1000ms (figure 5.5b and transection
’b’ in figure 5.5a). With the finest temporal resolution the discrimination performance is
significantly different from chance level but does not reach the 75% threshold. However,
even with 100% noise correlation at maximum noise level (σ = 64), no effect on the mean
spike rate could be observed (only one of the 10 cells showed a significant difference in
the mean spike rate; α < 5%, Wilcoxon rank sum test, the mean spike frequency of the
corresponding reference responses was 78.6Hz with a standard deviation of 1.55Hz the
test responses had a mean and standard deviation of 80.7 and 2.3Hz respectively). At the
temporal resolution which led to the best discrimination performance (15.625ms) with
uncorrelated external noise (compare figure 5.4), we found a weak increase in performance
with increasing noise-correlation (figure 5.5c and transection ’c’ in figure 5.5a). At this
temporal resolution the performance was above threshold for all correlation levels. Again,
the responses of some cells could not be distinguished with more than 75% performance.
With a coarser temporal resolution (500ms; figure 5.5d and transection ’d’ in figure 5.5a),
a more obvious increase in performance could be observed. While it was below threshold
and not clearly different from chance level without noise-correlation, a major impact of the
external noise was obtained at 100% noise-correlation. When adding noise to the moving
dots with a noise level of σ = 16 and 100% correlation, the responses to reference and
test stimuli are nearly indistinguishable for all temporal resolutions (n = 4 recorded in 4
different flies; figure 5.5e). Hence, even for absolutely correlated noise, a noise level, more
than four times larger than photon noise, is needed to affect the responses significantly.

Conclusion

The temporal structure of the H1 responses to motion stimuli are affected by superim-
posed noise only if the noise fluctuations cover most of the available brightness range of
the monitor screen, and thus, is much larger than photon noise under our experimental
conditions. Then the temporal structure of the responses is affected on a time-scale in the
range of approximately 15 ms. If the noise added to different dots of the motion stimulus
is correlated, the range of temporal resolutions at which changes in the response can be
detected is extended. Nevertheless a high noise level is needed to affect the responses,
even when the noise in the input signal is 100% correlated. Thus, both sets of experi-
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ments, using uncorrelated as well as correlated noise superimposed on the input signal,
support the conclusion of photon noise being of only minor importance for the reliability
of motion vision in H1.

5.5 Discussion

Comparison with Photon noise

Is the neuronal variability a consequence of the noisy visual input, i.e. photon noise,
as has recently been proposed (Borst and Haag, 2001; Lewen et al., 2001), or does it
emerge within the nervous system? While these studies applied more indirect methods
to tackle this question, with our approach we directly manipulated the input signal. The
brightness modulations superimposed on the dots mimicked photon noise and by varying
the strength of the modulations allowed us to assess the impact of photon noise on the
reliability of the H1 responses. The overall system noise is approximately equivalent to
a noise level of σ > 32 in our stimulus paradigm (compare figure 5.4). How much of the
overall noise can be attributed to photon noise respectively noise emerging within the
visual system? As estimated in the methods section, photon noise under the conditions
of our experiments corresponds to a noise of approximately σ = 4 in our paradigm. Thus,
neuronal unreliability, rather than photon noise appears to be the major noise source that
limits the reliability of visual motion computation. This conclusion needs to be qualified
in two respects: (i) The estimation of the relevant photon noise is based on the implicit as-
sumption that noise in only those photoreceptors that are stimulated by the moving dots
contribute to the response variability of H1. This assumption appears to be justified, in
a first approximation, because the stationary background was much darker than the dots
and the variability found in fly motion-sensitive neurons during stimulation with station-
ary dark patterns was much smaller than during motion stimulation (Hengstenberg, 1982;
Warzecha, 1994). (ii) It was assumed that each motion dot perfectly covers the receptive
field of just a single photoreceptor and does not affect neighbouring receptors. Since this
may frequently not be the case, the photons emitted by a dot may be shared, as a con-
sequence of the hexagonal lattice of ommatidia, by three adjacent photoreceptors. As a
consequence, the amount of photons reaching a single receptor and, thus, the SNR of the
input signal may be reduced. In the ’worst case’ a single dot is centred above the corner
of three neighbouring ommatidia. This would reduce the number of photons reaching a
single photoreceptor by two-thirds. To meet the worsened signal-to-noise-ratio caused by
light reduction an added noise with standard deviation of approximately σ = 6.8 would
be needed. Even this noise level is much smaller than the noise level found to influence
the H1 responses. On the other hand, in the fly retina the signals of six photorecep-
tors sampling the same point in space are averaged by electric coupling of their axons
(e.g. Laughlin, 1994). This coupling would reduce the variance in the averaged signal by
the square-root of 6, since photon noise is independent for each of them. Moreover, at
noise levels of more than twice this noise level, the responses to the reference and to the
test stimulus are indistinguishable even when the noise added to all moving dots is com-
pletely correlated (see figure 5.5e). Since photon noise affecting different photoreceptors
is statistically independent, this finding further corroborates our conclusion that under
the conditions of our experimental analysis photon noise does not limit the reliability of
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neural coding. Rather, we can conclude that the variability in the timing of spikes in H1
is mainly a consequence of noise sources intrinsic to the nervous system. This conclusion
is likely to extend to most light levels when the diurnal flies fly around, because our stim-
ulus was much darker than daylight. Under behaviourally relevant light conditions the
number of photon arrivals, and thus the SNR, is much higher. The conclusion that noise
intrinsic to the nervous system limits the reliability of motion information processing is in
accordance with experimental data on the peripheral visual system of the fly. Although
in completely dark-adapted eyes single photons could be inferred to affect the signal of
the H1-neuron (Lillywhite and Dvorak, 1981), even at moderate light levels that are still
much lower than daylight individual photons only have a small effect on the overall pho-
toreceptor potential and the synapse between photoreceptor and second-order neurons
contribute significantly to the response variability at this processing stage (e.g. Laughlin
et al., 1987; Juusola et al., 1995; de Ruyter van Steveninck and Laughlin, 1996). Thus
our results are in line with earlier findings which suggest that, at least for light levels as
used in our experiments and for larger ones, internal noise sources are of more importance
than the noise in the visual input (Laughlin et al., 1987; de Ruyter van Steveninck and
Laughlin, 1996), but are in contrast with other interpretations (Lewen et al., 2001; Borst
and Haag, 2001).

Comparison with contradictory interpretations

Lewen et al. (2001) performed methodologically challenging outdoor recordings of H1
while rotating the whole fly about its vertical body axis in a naturalistic manner. Ex-
periments were done with the same fly at different times of the day and thus at different
mean light levels. From noon to half an hour after sunset, the H1-cell responded to the
same motion sequence with decreasing mean spike rate. The conclusion of photon noise
being the limiting factor is based on the finding that information rate increases with
increasing light level and, thus, with an increasing signal-to-noise ratio of the stimulus.
However, in other studies, the information rate was shown to be linked approximately
linearly to the mean number of spikes, even if spike activity was increased at the same
mean light level by changes in stimulus parameters such as velocity or contrast (Schneid-
man et al., 2001; Borst and Haag, 2001). Hence, the changes in information rate observed
during the course of the day may be interpreted as consequence of increasing spike rate
rather than signal-to-noise ratio of the incoming signals. This suggestion is corroborated
by the finding that during the course of the day changes in spike rate are more likely
linked to changes in ambient temperature than to changes in light level (Egelhaaf et al.,
2001; Warzecha and Egelhaaf, 1999). On this basis we conclude that the experimental
results of Lewen et al. (2001) do not necessarily disagree with our finding that the perfor-
mance of the H1-neuron is mainly limited by noise sources intrinsic to the nervous system
rather than by photon noise. Borst and Haag (2001) analysed the amount of information
transmitted by H1 in dependence of the activity level that was altered by visual motion
stimulation. The experimental results were compared to predictions which were drawn
from a model H1 which receives input from eight correlation type motion detectors and
transforms the resulting graded membrane potential changes into spike trains using a
Hodgkin-Huxley-type spike generator. The model’s input signal was additionally cor-
rupted by brightness modulations mimicking photon noise which were adjusted to match
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experimentally found response variability. Since the performance of both real and model
H1 were similar and no other noise but photon noise was introduced into the system, it
was concluded that photon noise is the dominant noise source of the fly’s visual motion
pathway. Given that the model H1-cell was driven by only eight motion detectors, their
gain had to be sufficiently high to drive the cell to a realistic activity level. However,
under the stimulus conditions of the experiments of (Borst and Haag, 2001) the H1-cell
receives input from hundreds of motion-sensitive elements which contribute to the overall
response. Hence, the individual input channels are likely to have contributed much less
to the variability of the H1-neuron than was assumed in the corresponding model sim-
ulations. Thus, these results do not appear to contradict our conclusion, that the noise
level found in H1 is mainly determined by sources intrinsic to the nervous system rather
than by photon noise.
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6 Implications of Functionally

Different Synaptic Inputs for

Neuronal Gain and Computational

Properties of Fly Visual

Interneurons

The content of this chapter has already been published as: Jan Grewe, Nélia
Matos, Martin Egelhaaf, and Anne-Kathrin Warzecha: Implications of Functionally Dif-

ferent Synaptic Inputs for Neuronal Gain and Computational Properties of Fly Visual

Interneurons., Journal of Neurophysiology 96: pages 1838 - 1847, 2006

6.1 Summary

Neurons embedded in networks are thought to receive synaptic inputs that do not drive
them on their own, but modulate the responsiveness to driving input. Although studies
on brain slices have led to detailed knowledge of how non-driving input affects dendritic
integration, its origin and functional implications remain unclear. We tackle this issue
using an ensemble of fly wide-field visual interneurons. These neurons offer the opportu-
nity to combine in vivo recording techniques and natural sensory stimulation as well as
to interpret electrophysiological results in a behavioral context. By targeted manipula-
tion of the animal’s visual input we find a pronounced modulating impact of non-driving
input, whereas functionally important cellular properties like direction tuning and the
coding of pattern velocity are left almost unaffected. We propose that the integration
of functionally different synaptic inputs is a mechanism that immanently equalizes the
ensemble’s sensitivity irrespective of the specific stimulus conditions.
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6.2 Introduction

Dendritic integration is a central and often highly nonlinear stage of neuronal information
processing. The many different presynaptic signals a neuron receives have been classified
as drivers and modulators (Sherman and Guillery, 1998). Driving input is thought to
carry the relevant information, while the modulating input shapes the neuronal computa-
tions without any driving contribution. Shunting inhibition is one example of modulating
input, which may even veto the driving input (Koch et al., 1983). Cortical neurons are
assumed to be continually bombarded with excitatory and inhibitory inputs induced by
background network activity. The impact of background activity leads e.g. to a drop
in input resistances in vivo as compared to those in vitro or in anaesthetized animals
when there is only reduced network activity (Destexhe et al., 2003). Accordingly, the
background activity has been proposed to be a mechanism that modulates the gain of a
neuron (Chance et al., 2002; Mitchell and Silver, 2003; Prescott and De Koninck, 2003).
Despite great methodological advances such as the dynamic clamp technique, applied to
mimic background activity in slice preparations (Prinz et al., 2004), conclusions about
the functional significance and origin of background input are still limited.
Here we address the functional significance of modulating synaptic background input link-
ing cellular physiology with the functional aspects of encoding and representing visual
stimuli. We investigate how visual shunting input affects the encoding of visual motion
stimuli in fly visual interneurons. The task of these tangential cells (TCs) is to evaluate
optic flow patterns, i.e. the retinal image flow evoked during self-motion of the animal
(Borst and Haag, 2002; Egelhaaf et al., 2002, 2004; Hausen, 1984). Optic flow patterns
are the only source of information about the environmental layout when airborne. TCs
spatially integrate the excitatory and inhibitory outputs of thousands of retinotopically
arranged local motion sensitive elements (Brotz et al., 1996). Accordingly, TCs have
receptive fields that cover large parts of the visual field and are tuned to optic flow as
is generated on the eyes during certain types of translational or rotational self-motion
of the animal (Egelhaaf et al., 2002; Kern et al., 2005; Krapp et al., 2001; van Hateren
et al., 2005). The activation ratio of excitatory and inhibitory inputs depends on stimulus
parameters as pattern contrast and texture or the direction and velocity of visual motion.
Even during motion in the preferred direction, which distinctly depolarizes the cell, the
inhibitory inputs are activated, though to a much smaller extent than the excitatory input
(Borst et al., 1995; Single et al., 1997). Motion orthogonal to the preferred direction is
assumed to activate both types of inputs in approximately equal shares, whereas during
null-direction motion the inhibitory input predominates. Fly TCs offer the opportunity
to investigate under in vivo conditions the influence of selectively manipulated sensory
input in a well established functional context. In this study we examined the functional
consequences of modulating input on neuronal sensitivity, direction tuning, and the rep-
resentation of the time course of pattern velocity. Coherent motion as driving input
and balanced motion noise as the modulating background input were combined for visual
stimulation. This decomposition of the visual input into a driving and a modulating com-
ponent was done for the sake of systems analysis only, although under natural conditions
TCs are exposed to optic flow containing motion vectors in a wide range of directions
driving its activity to a different extent or not at all. Thus, in behavioral situations TCs
receive inputs that have both driving and modulating impact.
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6.3 Methods

Electrophysiology

Experiments were carried out on 1-7 day old female blowflies (Calliphora vicina). The
animals were prepared as described in Warzecha et al. (1993). In short: the flies were
briefly anaesthetized with CO2 and fixed ventral side up on a small piece of glass. The
head was bent down and waxed to the thorax to allow access to the backside of the
head. The head-capsule was opened and tissue like air-sacs, fat bodies, and trachea that
cover the lobula plate were removed. In some preparations we also removed the gut to
eliminate peristaltic movements that can cause disturbances. After preparation, the flies
were adjusted according to the symmetry of the deep pseudopupil (Francescini, 1975) to
ensure that different animals received the same visual input.

Extracellular recordings The H1 neuron was recorded extracellulary with self-made
tungsten electrodes. A Ringer-filled glass capillary, through which we could provide
Ringer solution if necessary (for composition see Hausen, 1982a), was used as indifferent
electrode. The recorded signals were amplified by a factor of 3000, bandpass filtered
(corner frequencies of 300 Hz and 3 kHz), and subsequently passed through a threshold
device that transforms detected spikes into uniform pulses. The H1 neuron was recorded
in the left half of the brain in its output arborization. It can be easily identified by its
preferred direction, i.e. back to front motion in front of the right eye.

Intracellular recordings VS neurons were recorded in or close to their main dendrite
with sharp electrodes pulled on a Brown/Flaming P-97 Puller (Sutter Instruments) and
filled with 2M KCl. The electrodes had resistances between 30 and 40 MΩ and the
electrode holder’s silver wire was chlorided before every recording. We used a SEC 10-L
amplifier (npi - electronics, Germany) operated in bridge or discontinuous current clamp
(DCC) mode. In DCC mode the switching frequency was about 8 kHz. The raw data
traces of intra- and extracellular recordings as well as the thresholded H1 spike trains were
sampled at 4 kHz (DaqBoard2000, IOTech Inc., OH) and stored on hard disk for offline
analysis. The program for data acquisition was written in Delphi 7 (Borland Software
Corporation).

Visual Stimulation

Visual stimuli were generated using a VSG 2/3 graphics card (Cambridge Research Sys-
tems, Cambridge, UK) and presented on a Joyce Scope DM5 monochrome (P-31 phos-
phor) monitor (Joyce Electronics Inc., Cambridge, UK). As seen by the fly, the monitor
screen (464 x 375 pixel spatial resolution) had a horizontal and vertical extent of 127◦

and 120◦, respectively. The screen centre was positioned at 0◦ elevation and 20◦ azimuth.
At this point, one pixel had a vertical and horizontal extent of 0.5◦. While the frame
rate was 300 Hz, new stimulus pictures were presented with 150 Hz. We could disprove
time-locking of H1 spikes to either frequency by cross-correlating 200 response traces to
identical stimulation (data not shown). The stimuli consisted of two sets of dots moving
on the black screen (luminance: 0.001cd/m2). The first set of dots, the motion dots, were
randomly positioned in the first frame and moved coherently in the preferred direction of
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the recorded TC. These served as driving input, forming the sensory signal to be encoded
by the TCs. Each dot had a vertical and horizontal extent of 3 pixels resulting in an angu-
lar size of approximately 1.5◦x1.5◦ as seen by the fly; it was surrounded by a 6◦ ’forbidden
zone’ in which no other dot was allowed to be placed. By varying the number of dots
(between 4 and 64) different movement strengths were produced. The motion dots were
always presented at full brightness (300cd/m2). The second set of dots consisted of 112
noise dots, which have the same size and forbidden zone as the motion dots. The noise
dots were designed to constitute the modulating background input. Initially the noise
dots were also randomly placed. In subsequent frames they performed a random walk,
in which eight directions (the horizontal, vertical, and diagonal directions) were possible.
For each time step the direction of each dot was chosen randomly from a predefined dis-
tribution. This distribution of directions was defined so that the directions into which
the noise dots moved were balanced, i.e. the resulting motion noise did not, on average,
excite or inhibit the recorded neuron. Balancing was done in control experiments for one
sample VS-cell and H1-cell. The distribution of movement directions that led to the best
balancing, that is, with no clear excitation or inhibition, was used for all other experi-
ments on the same cell type. The strength of the motion noise was altered by changing
the brightness of the noise dots to 30 cd/m2 (weak motion noise), 150 cd/m2 (medium
motion noise), and 300 cd/m2 (strong motion noise). Even the lowest brightness value
was sufficient to significantly affect the neuronal responses, increasing the firing rate of
the H1-neuron when dots of this brightness moved in the cell’s preferred direction. As
mentioned above, the dots were surrounded by a ”forbidden zone”, in which no other
dot occurred. This zone was introduced to prevent the motion dots and noise dots from
interacting on a local basis, i.e. generating apparent motion. In flies, adapted to total
darkness, it is possible to evoke a weak direction-selective response in H1 when the two
stimuli of an apparent motion paradigm are separated up to 12◦ (Schuling et al., 1989).
Although the flies in our experiments were not completely dark adapted, we could show
in a control experiment that increasing the forbidden zone to above 12◦ (with a reduced
number of dots) or completely separating motion and noise dots (coherent motion in the
upper third of the screen and motion noise in the lower third or vice versa) does not
significantly alter the effect of motion noise on H1 responses.

Measurements of TC input resistance

The input resistances of VS-cells were measured by injecting 200 ms pulses of constant
hyperpolarizing current (-0.75 to -1.5 nA) into the cells. Trials with and without current
were recorded in a pseudo-random order which allows to calculate the input resistances
from direct comparisons of the corresponding response sections (Figure 6.2a).

Gain modulation by visual motion noise

To investigate the consequences of motion noise on the sensitivity of TCs for preferred
direction motion, we tested the neuronal responses to motion stimuli of five different
strengths, determined by the number of dots moving on the screen (4, 8, 16, 32, and
64 dots) combined with (or without) motion noise. As mentioned above, three different
strengths of motion noise were used. Each trial consisted of three test sections: (i)
coherent motion with the actual number of motion dots moving, (ii) the motion noise
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alone at a given intensity, and (iii) coherent motion and motion noise combined. These
were alternated with so-called reference sections in which the maximum number of motion
dots moved and breaks showing a stationary image (Table 6.1). This image was the first
image of the following section.

Table 6.1: Experimental protcol describing the images shown.

Duration, s Gain modulation Direction tuning

0.5 Blank screen Blank screen
Reference section

1.0 Pure motion Pure motion
1.0 Stationary image Stationary image

Test section I

1.0 Pure motion (4-64 dots) Pure motion (various directions)
1.0 Stationary image Stationary image

Reference section

1.0 Pure motion Pure motion
1.0 Stationary image Stationary image

Test section II

1.0 Noise (weak, medium, strong) Noise (weak, strong)
1.0 Stationary image Stationary image

Reference section

1.0 Pure motion Pure motion
1.0 Stationary image Stationary image

Test section III

1.0 Motion (4-64 dots)+noise Motion (various directions)+noise
1.0 Stationary image Stationary image

Direction tuning in the presence of motion noise

A similar stimulus protocol was used to test the direction selectivity of TCs (Table 6.1,
right). In these reference sections the maximum number of motion dots moved in the
preferred direction of the cell. In the test sections the coherently moving dots (16 or 64)
were moved in one of the 8 tested directions (0-315◦ in 45◦ steps). To reduce the number
of conditions (in order to have a reasonable number of trials for each condition) we used
only the medium and strong motion noise.

Representation of pattern velocity in the presence of motion

noise

We investigated the representation of pattern velocity with extracellular recordings of
the H1-cell, because this analysis requires stable recordings over a longer time than can
routinely be accomplished by intracellular recording. The motion dot velocity was dy-
namically modulated (Figure 6.6, left column). The underlying velocity profile was built
up from sinewaves of 1, 3, 5, 7, and 9 Hz at random phases. The frequencies were
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matched to the frequency band in which the H1-cell codes pattern velocity with a high
gain (Warzecha et al., 1998). Here we used a stimulus protocol consisting of three test
sections (dynamic motion alone, motion noise alone, and the combination of both, each
of 1000ms duration). The test sections were separated by stationary image sections of
5000ms duration. The interstimulus interval between consecutive trials of any experi-
ment was 5000ms. This time was used to save the data and to provide Ringer solution if
necessary.

Data analysis

Offline analysis was done with Matlab Release 14 (the Mathworks, MA). To analyze the
performance of H1 to encode stimulus velocity (see above) we employed the coherence
analysis (Haag and Borst, 1998; van Hateren and Snippe, 2001) using the coherence
function distributed with Matlab. For this purpose the responses were aligned with
the velocity profile by removing the response delay which was calculated from the cross
correlation of the mean response and the velocity profile. Both stimulus and response
vectors were zero padded to give 4096 sample points. Due to the rectification non-
linearity inherent in the spike generation process, the H1 can only code pattern velocity
in its preferred direction. Therefore, we rectified the stimulus velocity accordingly and
set it to zero if the dots moved in the null-direction. The coherence between stimulus
and response was calculated using a 4096 point Hanning window and an overlap of 2048
points. The coherence analysis quantifies the similarity between the stimulus and the
stimulus reconstructed from the responses using the best linear filter. In the case of
a noise-free linear encoder the coherence is 1 for all frequencies. Deviations from unity
could be a consequence of noise and of non-linearities in the system. To separate these two
effects the expected coherence (van Hateren and Snippe, 2001) was used. The expected
coherence is defined as the coherence between the individual responses and the ”noise
free” average response. The deviation of the expected coherence from unity can be
traced back to noise in the system. The difference between coherence and expected
coherence is due to non-linearities. To estimate the information that is transmitted by
the neuronal responses about the stimulus the coherence rate was calculated from the
coherence spectrum according to van Hateren and Snippe (2001).

Rcoh = −

∫ ∞

0
log2(1 − γ2)df (6.1)

with Rcoh the coherence rate and γ the coherence. The expected coherence rate (Rexp)
was calculated accordingly. Since the interpretation of the coherence rate in terms of
transmitted information depends on assumptions that neuronal noise is Gaussian and
additive, an assumption which is not strictly correct, we additionally calculated the in-
formation rate with the measure developed by Brenner et al. (2000).

I =
1

T

∫ ∞

0
dt

(

r(t)

r

)

log2

(

r(t)

r

)

(6.2)

with T the number of time bins, r(t) the time-dependent spike rate and r the average
spike rate. Both measures implicitly assume that information is encoded by the spike
rate of the neuron. This assumption appears justified as a first approximation, since TC
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spikes were concluded to lock precisely to the stimulus in a frequency range of velocity
fluctuations that are only weakly represented in TC responses (Kretzberg et al., 2001;
Warzecha et al., 1998).

6.4 Results

We analyze the nonlinear dendritic integration of driving and modulating synaptic in-
put in two types of directionally selective, motion sensitive neurons: (1) The H1 neuron
(Hausen, 1976) offers the opportunity of stable long lasting extracellular recordings, which
is required for a detailed analysis of coding properties (Bialek et al., 1991; Warzecha et al.,
2000). The H1-cell is excited by back-to-front motion and inhibited by motion in the op-
posite direction within almost the entire visual field of one eye. It uses spikes to transmit
information from one brain hemisphere to the other. (2) The VS-cells (Hengstenberg,
1982; Krapp et al., 1998) can be recorded intracellularly and respond to downward and
upward motion within a broad vertical stripe of the visual field with graded de- and hy-
perpolarizations, respectively. These graded membrane potential shifts are assumed to
represent the summated postsynaptic potentials of the cell and can be recorded even close
to the output terminal of the cells (e.g. Egelhaaf and Warzecha, 1999). Since VS graded
depolarization may be superposed by spikes, reminiscent of the variable spikes observed
in cortical neurons (e.g. Azouz and Gray, 1999), VS-cells can also be employed to study
the transformation of postsynaptic potentials into spikes. In this study we concentrate
on two types of the ten VS-cells, i.e. VS1 and VS2/3. Since VS2 and VS3 are two cells
with largely overlapping receptive fields and virtually indistinguishable functional prop-
erties (Krapp et al., 1998), they are lumped here into one category of cells ’VS2/3’. The
analyzed VS-cells have their receptive fields in the frontal part of the visual field. To test
the influence of modulating input on the response to a driving visual signal, two types
of stimuli were employed (Figure 6.1, insets): (1) The driving visual input consists of a
variable number of dots moving coherently either in the cell’s preferred or null direction.
(2) The modulating input consists of dots moving in a variety of directions so that excita-
tory and inhibitory effects cancel each other (’motion noise’). The driving input and the
motion noise can be presented individually or combined. The motion noise component
then acts as a modulating background input (see methods for details).

Balanced motion noise has shunting characteristics

The motion noise was balanced having no pronounced driving effect on the membrane
potential on its own (Figure 6.1a right shaded response section). To achieve balance,
more dots were required with a motion component in the null-direction than into the
preferred direction of the respective cell. This is most likely due to the stronger driving
force for the excitatory currents than for the inhibitory ones. Although the motion
noise neither excites nor inhibits the neuron considerably, it increases the membrane
potential fluctuations around the resting potential (Figure 6.1a, right shaded area). These
fluctuations were smaller in some recordings, like the one shown in Figure 6.2. This might
be due to the slight hyperpolarising effect of the motion noise in this experiment or to
the different recording sites (close to the dendrites and close to the output terminals for
the experiments shown in Figure 6.1 and 6.2 respectively).
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Figure 6.1: Measurement of the TC input resistance. (a), Average response of one VS-
cell (5 trials) to coherent null direction motion and to motion noise (first and second shaded
area). The strongest motion noise was chosen for this measurement. In half of the trials (black
trace) 1nA hyperpolarising current pulses of 200ms duration were injected into the cell. The
input resistance was calculated from the difference between the ”current responses” and the ”no-
current” responses (black and grey traces, which were recorded alternately). (b), Input resistance
on single trial basis (black dots) and on average across the 5 trials on this condition (asterisks)
of the same cell as shown in a). Input resistances were measured at rest, during null-direction
motion and motion noise. (c), Pooled results from 4 VS-cells recorded in 4 different animals, each
dot is the input resistance estimated in a single trial. The input resistances are normalized to the
respective input resistances at rest. The different symbols denote results from the different cells.

To determine whether motion noise has shunting characteristics, we measured the
changes in input resistance of VS neurons relative to the resting input resistance induced
by motion noise stimulation and by null-direction motion stimulation, respectively (Figure
6.1). The input resistance was estimated by injecting hyperpolarizing current pulses
into the cells. The VS-cell input resistances at rest were on average 6.81 ± 2.56 MΩ
(n=4 cells) which is in the range reported before (Borst and Haag, 1996). However,
the resting input resistances varied considerably. In one VS-cell (shown in Figure 6.1
a, b) an input resistance of 10.5 MΩ at rest was measured deviating much from the
average. We did not find any obvious correlation between the difference in input resistance
and the visually induced responses of VS-cells. Anyway, during coherent null direction
motion, when the cell is hyperpolarized, the input resistance is decreased relative to the
resting input resistance [4.71 ± 2.05 MΩ; -32.23 ± 5.86% (Figure 6.1b, c)]. Motion
noise does not depolarize or hyperpolarize the cell significantly but it reduces the input
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resistance to 5.06 ± 1.95 MΩ [-26.05 ±6.52 % (Figure 6.1b, c)]. This reduction is in
the same range, though slightly smaller, as the reduction of the input resistance during
coherent null-direction motion. From these experiments we conclude that visual motion
noise can be considered a shunting input comparable to the background input artificially
induced in slice preparations (Chance et al., 2002; Mitchell and Silver, 2003; Prescott and
De Koninck, 2003).

Non-linear integration of motion information

To analyze the effect of motion noise on the neuronal gain we determined the response
amplitudes of VS- and H1-cells as a function of stimulus strength in the presence of
motion noise of different levels. Stimulus strength was varied by varying the number of
coherently moving dots. The strength of the motion noise was altered by increasing the
brightness of the dots constituting the motion noise.

no noise
weak
medium 
strong

no noise
weak
medium
strong

Figure 6.2: Influence of motion noise on VS sensitivity to preferred direction mo-
tion. (a), Individual VS1 responses to coherent preferred direction motion, motion noise and
the combination of coherent motion and motion noise recorded close to the axon terminal. These
responses were evoked by the strongest motion stimulus (64 dots moving coherently) and the
strongest motion noise (maximal brightness of the 112 motion noise dots). VS-cells show graded
shifts of the membrane potential superimposed with spikes. (b), Input-output characteristics
of the graded membrane potential shift on different motion noise intensities. Motion strength
was varied by increasing the number of dots moving coherently while the intensity of the motion
noise was altered by varying the brightness of the dots constituting the motion noise (solid line,
dashed line with open circles, dotted line with open squares, and dash-dotted line with open dia-
monds represent no, weak, medium and strong motion noise, respectively). Response amplitudes
are normalized to the response to the strongest coherent motion (64 dots moving in preferred
direction). (c), Same as b but for the spike response of this cell.
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Whereas both graded postsynaptic potentials and spikes can be recorded in VS-cells
(Figure 6.2a), the H1-cell allows only spike responses to be recorded, though for extended
periods of time (Figure 6.3). For both response modes of VS-cells the cell’s sensitivity
to motion stimuli is reduced by motion noise, independent of motion strength (Figures
6.2, 6.3). Stronger motion noise produces larger reductions in response amplitude. This
reduction cannot be explained by a summation of the respective responses to coherent
motion and motion noise (Figure 6.2a left and middle sections). Thus, the reduction
in responsiveness is mainly due to the shunting effect of the motion noise. This is true
despite the slight hyperpolarization of about -3.5 mV for the strongest motion noise in the
example shown in Figure 6.2 a (middle column). Similar reductions were observed in other
recordings in which motion noise led to slight depolarizations. The reduction in sensitivity
for the driving input induced by coherent motion is similar for both the graded membrane
potential shift and the spiking response of the VS recording (compare Figures 6.2a and
b). However, the threshold nonlinearity of spike generation is apparent, since strong
motion noise suppresses completely the spike responses to small and moderate motion
strengths. Similar results were found in two other VS recordings and two recordings
from other TCs (1 HSE and 1 CH cell). H1 is a spiking tangential cell which we recorded
extracellularly. The responses of one sample recording are shown as PSTHs in Figure 6.3a.
Figure 6.3b shows the average characteristics measured in 4 cells (similar results were
found in 4 additional recordings which are not included since a slightly different stimulus
protocol was applied). As for VS cells H1 spike frequency increases with increasing
stimulus strength. When the motion stimulus is combined with motion noise the response
amplitude is reduced in a similar way as those found in VS-cells. As for VS-cells, this
reduction is present even if the motion noise induces a slight increase of the spike rate
on its own. Thus, the interaction of the input mediated by coherent motion, on the one
hand, and the input by motion noise, on the other hand, is far from linear. Shunting
inhibition resulting from motion noise has severe consequences on the response amplitude
and the cell’s sensitivity for preferred direction motion.

spont. activity

no noise
weak noise
medium noise
strong noise

Figure 6.3: Influence of motion noise on H1 sensitivity to preferred direction motion.
(a), Averaged responses of a single H1-cell shown as PSTHs (peri stimulus time histograms,
bin width 20 ms) to coherent preferred direction motion, motion noise, and the combination of
coherent motion and motion noise (columns from left to right) for three different motion noise
intensities (weak, medium, and strong motion noise in the upper, middle, and bottom row).
(b), Input-output characteristics averaged over four cells recorded in four different animals at
different motion noise intensities (black solid, dashed, dotted, and dash-dotted lines represent no,
weak, medium, strong motion noise, respectively; the grey solid line is the spontaneous activity).
Errorbars are standard errors.
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Robust direction tuning

In which way does motion noise affect the coding properties of blowfly motion sensitive
TCs? We used the motion noise to target the robustness of direction tuning of TCs. For
this analysis H1 responses were recorded extracellulary to obtain sufficiently long and
stable recordings. The coherent motion pattern moved in different directions (45◦ steps)
and was combined with motion noise. We used three conditions: (i) no motion noise (ii)
medium and (iii) strong motion noise. The solid lines in Figure 6.4 show the direction
tuning curves for coherent motion alone (64 or 16 motion dots in Figure 6.4a and b,
respectively) averaged across 6 H1 recordings. The response amplitude was normalized
to the average response amplitude determined in the first reference section at the begin-
ning of the trial where all 64 dots moved coherently in the cell’s preferred direction (see
methods). H1 exhibits the typical broad direction tuning, with an abnormal ”dent” in
the response amplitude at the ”preferred direction”. This seemingly surprising finding
is in line with the conclusions drawn by Buchner (1976). Given the hexagonal lattice of
the fly’s eye, there are three ways to detect for example horizontal movement involving
nearest neighbor interactions (inset Figure 6.4, shown for left to right movement). In
addition to interactions along the horizontal axis of the eye, there are also strong inter-
actions along the oblique axes of the ommatidial lattice (Buchner, 1976; Schuling et al.,
1989). If the direction sensitivity of TCs is probed with grating patterns (Hausen, 1976,
1982b) the dent in the tuning curve did not appear. In contrast to stripe patterns, which
simultaneously activate all three types of movement detectors when moving horizontally,
the dots used here (each dot’s size approximates the acceptance angle of a single photore-
ceptor) stimulate only one type of detector at a time. Depending on the relative weight
of the different types of nearest neighbor interactions, dot stimuli may, thus, lead to the
dent in the tuning curve observed here.

Figure 6.4: H1 Direction tuning when combined with motion noise. (a), H1 responses
as a function of the coherent motion direction (64 dots) without motion noise (solid line) and
combined with medium and strong motion noise (dashed and dash-dotted lines, respectively).
180◦ corresponds to the right H1’s preferred direction. Plots are averages across 6 H1 recordings
done in 6 different animals. Errorbars represent the standard error. The right inset sketches
the ommatidial lattice of the fly compound eye. The dashed lines indicate the three different
connections responding to horizontal motion from left to right. (b), Same as a but with 16 dots
moving coherently.

When the motion stimulus is combined with motion noise, the peak amplitudes of
the direction tuning curve decrease considerably (dashed curves in Figure 6.4). The
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tuning width does not significantly change for the combinations of coherent motion with
medium and strong motion noise (Figure 6.4, dashed and dash-dotted line). Rather than
sharpening, the tuning curves become slightly broader. With a very weak motion stimulus
of only 16 dots moving in the different directions (Figure 6.4b) the motion noise reduces
the response so much that the cell’s direction tuning almost vanishes. Nevertheless, if
we take into account that the very weak motion stimulus consists of only 16 dots and
is combined with motion noise consisting of 112 dots moving in random directions, the
direction tuning can be concluded to be quite robust against motion noise.

Robust representation of pattern velocity

From analyses with white noise velocity fluctuations it is known that the spike rate of
the H1-cell represents the time course of velocity of a moving pattern up to frequencies of
about 10 Hz, as long as the velocities are sufficiently small (Bialek et al., 1991; Haag and
Borst, 1998; Warzecha et al., 1998). Here we tested the velocity coding of the H1-cell when
the dynamic motion signal is corrupted by motion noise. The motion dots moved with a
dynamic velocity profile which contained frequencies up to 10 Hz (Figure 6.5 left column).
Motion noise of different strengths was added. To quantify the coding performance we
calculated the coherence (Haag and Borst, 1998; van Hateren and Snippe, 2001) between
the time-dependent velocity profile of the motion stimulus and the neuronal responses
under three conditions, (i) without, (ii) with weak, and (iii) with strong motion noise
(Figures 6.5 upper, middle and bottom plots). The time course and amplitude of the H1
responses to the first and the second condition are very similar. The spike rate reflects
the pattern velocity in the preferred direction to a certain extent, while the null direction
velocity cannot be resolved due to the rectifying effect of spike generation. Like the
response amplitude, the overall response power and the coherence spectra under these
two conditions are very similar. The coherence is close to 0.9 for almost the entire tested
frequency range (grey solid lines in Figure 6.5). A noise-free linear system would give a
coherence of one. The difference between one and the measured coherence may be due
to both the noise and the non-linearities in the fly visual motion pathway. To obtain
an estimate of the relative contribution of these two sources, the expected coherences
were calculated. The expected coherence (black solid lines in Figure 6.5) is defined as
the coherence between the individual responses and the mean response which can be
considered the noise-free response if a sufficiently large number of trials is averaged.
The deviation of the expected coherence from one is due to noise in the responses (van
Hateren and Snippe, 2001). Consequently, the difference between measured and expected
coherence reflects the non-linearity of the system. The data shown in Figure 6.5 are based
on a single cell with 80 trials per condition. Neither the measured coherence nor the
expected coherence changed much when fewer trials were evaluated (not shown). Thus,
the responses to dynamically varied pattern velocity are quite reliable and the H1-cell is
well able to code stimulus velocity even in the presence of the motion noise. When the
strong motion noise is added the response amplitude drops in accordance with the results
obtained with constant velocity motion. Nonetheless, the time course of the response is
still very similar to those obtained with weak or without noise (compare the reduction in
Figures 6.3 and 6.4). With the reduced response amplitude the response power drops as
well but the coherence declines only slightly. Though the decrease is much smaller than
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the corresponding reduction in spike frequency, the coherence remains high (between 0.6
and 0.8). This reflects that the time course of the H1 response does not much change
and that the pattern velocity is still encoded very well even though motion noise reduces
the spike rate to about 50%. The expected coherence is somewhat lower for strong
motion noise than under the other two stimulus conditions suggesting that the noise in
the responses increases when the strong motion noise is added to the stimulus.

Figure 6.5: Representation of pattern velocity in the H1 responses. (Left column)
Stimulus time-course. Positive and negative velocities denote movement in the preferred and null-
direction, respectively. The coherent motion following this velocity profile was presented without
motion noise and combined with weak and strong motion noise. (middle column) Averaged
responses of a single H1-cell (80 stimulus presentations per condition) as PSTHs and the response
power spectrums. (Right column) Coherence (grey solid line) and expected coherence (black
solid line) spectra and expected coherence rates (black) and the coherence rates (grey) obtained
under the three conditions (no, weak, and strong motion noise, top to bottom).

The information transmitted by spike responses can be estimated from the coherence
spectrum under certain conditions. For additive Gaussian noise, the so-called coherence
rate is related to the Shannon information (van Hateren and Snippe, 2001) and is given
in bits/s. Even if these requirements are not met, the coherence rate can still be treated
as an approximation of the Shannon information. Figure 6.5 (rightmost plots) shows
the coherence rates and the expected coherence rates for the three conditions. For this
sample recording the coherence and expected coherence rates are about the same for the
conditions with and without weak motion noise (31.6 and 30.4 bits/s coherence rates and
41.3 and 43.5 bits/s expected coherence rates), but are reduced to a coherence rate of 26.3
bits/s and an expected coherence rate of 33.7 bits/s when strong motion noise is added.
Again, the coherence rate in the presence of strong motion noise still amounts to 86.5% of
the coherence rate obtained under the no motion noise condition, although the spike rate
dropped to only 43.6% (49.5±3.25 and 21.6±2.5 spikes, for no noise and strong motion
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noise, respectively). Thus, the contribution of a single spike to the coherence rate is higher
when strong motion noise is added to the dynamic motion stimulus than without added
noise. Figure 6.6 shows the coherence rate per spike for the two conditions (black symbols)
as an average over 5 cells. We find the coherence rate per spike almost doubled (0.55±0.06
bit/spike to 1.07±0.22 bit/spike under the no-noise condition and strong motion noise
condition, respectively). Similar results were obtained using a different measure (Brenner
et al., 2000) which estimates the information transmitted per spike on the basis of the
time dependent spike rate (0.912±0.10 bit/spike and 1.22±0.26 bit/spike for the two
conditions, grey symbols in Figure 6.6). Despite the increased information per spike
the total transmitted information decreases. The dashed lines in Figure 6.6 indicate
the coherence rate (information) per spike that would be needed to fully counterbalance
the decreased spike rate when strong noise is added to the dynamic motion stimulus. A
similar change in the information per spike was found in the context of motion adaptation:
the loss of spikes was largely balanced by an increased information per spike (Heitwerth
et al., 2005).
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Figure 6.6: Information content of individual spikes. The information transmitted by
each single spike is shown for two conditions (no motion noise and combined with strong motion
noise). The information was estimated from the coherence analysis (black symbols) and according
to Brenner et al. (2000) (grey symbols). Open symbols represent the information content that
would be needed to fully compensate the loss of spikes.

To conclude, H1 is well able to encode the time course of pattern velocity, even if
a dynamically moving pattern is combined with strong motion noise that reduces the
response amplitude quite drastically. The loss of spikes is partly compensated by the
increased information carried by individual spikes.

6.5 Discussion

We addressed how different types of synaptic inputs interact on dendritic trees under in

vivo conditions. By manipulating the natural sensory input of fly tangential cells (TCs),
we find that visually induced responses and the input resistance of the cells are strongly
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affected by motion noise that was designed to be balanced and not to drive the cell on its
own. Although the response amplitudes to coherent visual motion are strongly reduced in
the presence of motion noise, functionally important properties like the direction tuning
and the ability to encode time-varying motion are robust against motion noise. From
these results we hypothesize that the integration of functionally different synaptic inputs
is a mechanism that immanently equalizes the ensemble’s sensitivity irrespective of the
specific stimulus conditions (see below).

Integration of functionally different synaptic inputs

Inputs to neurons in the primate lateral geniculate nucleus were classified as drivers or
modulators depending on their origin (Sherman and Guillery, 1998). For rat cortical neu-
rons a classification was suggested based on the context in which the inputs are activated
rather than on their origin (Chance et al., 2002). Those excitatory and inhibitory inputs
which are active at different times drive the neuron, while those active simultaneously
cancel each other and constitute the modulating input. Simultaneous activation of excita-
tory and inhibitory inputs affects the membrane potential or the firing rate only little, but
increases the membrane conductance and therefore represents a shunting input. In our
stimulus design the impact of a dot of the motion noise moving in one direction is counter-
acted by another dot moving in the opposite direction. Thus, the motion noise as a whole
constitutes a modulating input and does not drive the cell on its own. In contrast, those
inputs which are activated by coherent motion drive the neuron by either depolarizing or
hyperpolarizing it, depending on the direction of motion. Motion noise was found reduce
the cell’s sensitivity to simultaneously presented coherent motion by reducing the cell’s
input resistance and can therefore be considered as a shunting input to the cell. Even
though this classification of the synaptic inputs into drivers and modulators is artificial in
the case of TCs, especially since both components are embedded in the same visual input,
it is useful for the system analysis presented here. In the real in vivo situation the actual
role of an input signal depends on the context in which it is active, as was put forward for
cortical neurons (Chance et al., 2002). The specific consequences of a shunting input on
dendritic computation of driving inputs is still controversially discussed. On the level of
the postsynaptic potential, a decreased input resistance acts divisively on driving inputs
(e.g. Holt and Koch, 1997). The slope of the input output characteristic is reduced as
the membrane conductance increases. Things appear differently when the postsynaptic
potential is converted into spikes. Several in vitro and modeling studies concluded that
a tonic shunt then shifts the input-output characteristic along the input axis (Berman
et al., 1992; Connors et al., 1988; Holt and Koch, 1997). This is often described as a
subtractive effect since it resembles the effect of a hyperpolarizing input although the un-
derlying postsynaptic potential is in fact divisively modulated (e.g. Holt and Koch, 1997).
Recent analyses mimicking the natural synaptic input by the dynamic clamp technique
concluded that shunting can modulate a neuron’s gain resulting in slope changes of the
input-output characteristic (Chance et al., 2002; Fellous et al., 2003; Mitchell and Silver,
2003). Prerequisite is an increased membrane potential noise induced as a by-product of
the shunting input as is characteristic of synaptic signals. Consequently, driving stim-
uli, which on their own would not suffice to induce spiking, are enabled to cross spike
threshold, an effect reminiscent of stochastic resonance (e.g. Wiesenfeld and Moss, 1995).
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In our experiments done under in vivo conditions, the shunting effect and the increased
membrane potential fluctuations induced by the modulating input (Figure 6.1) lead, at
least in principle, to conditions for a divisive change of the spike response. However,
the changes observed in the input-output characteristics (Figures 6.2 and 6.3) do not
allow us to infer a shift or a slope change as exclusive mechanism. On the other hand,
subtractive and divisive mechanisms affect tuning curves of spiking neurons very differ-
ently: in case of a subtractive shift, non-optimal directions fail to induce spiking and the
tuning curve is sharpened, the so called iceberg effect (e.g. Anderson et al., 2000). As a
consequence of a divisive mechanism the overall spike rate is scaled but the width of the
tuning curve stays the same. Thus, the observed reduction in directional gain with an
almost unaffected tuning width (Figure 6.4) suggests a divisive in favor of a subtractive
effect on the H1 spike responses. As mentioned above, this might be the consequence
of the increased membrane potential fluctuations at higher motion noise levels which al-
low occasional action potential generation even at suboptimal directions, i.e. when the
average postsynaptic potential is below spike threshold. This is in line with conclusions
drawn by Anderson et al. (2000) who showed that membrane potential noise is the key
for contrast invariant tuning curves in cat complex and simple cells.

Alternative explanations of gain control

Similar changes of the input-output characteristics as described above are also found in
simple cells of the macaque visual cortex. For instance, the contrast dependence of the re-
sponse to an optimally oriented drifting grating is shifted when simultaneously presented
with an orthogonal grating which has no own driving impact. Likewise, superimposed
visual noise reduces the response to the drifting grating (Carandini et al., 1997; Caran-
dini and Heeger, 1994). These gain changes were interpreted by shunting input to the
considered neuron mediated by another cortical neuron pooling many local retinotopic
inputs (Carandini et al., 1997; Carandini and Heeger, 1994). This scheme is reminiscent
of a model originally proposed to account for gain control of fly TCs which also relies on
a shunting pool cell (Reichardt et al., 1983). Since in later studies this gain control could
be explained in a more parsimonious way by realizing, in line with our present findings,
that the driving input does not only drive the cell, but also leads to pronounced shunting
(Borst et al., 1995), a similar influence of the direct peripheral input of cortical cells on
the cell’s input resistance may also play a role in controlling the gain of these neurons.

Robustness of temporal encoding properties

Both effects of motion noise, the reduced gain and the increased membrane potential
noise could impair the coding performance of TCs. Surprisingly, the stimulus time course
can be recovered from the neuronal responses almost as well in the presence of motion
noise as in its absence, although the corresponding spike rate decreased to 50%. This
result seems to contradict findings that visual flicker impairs the ability of monkey area
MT/MST neurons to discriminate between motion in different directions (Churan and
Ilg, 2002). This discrepancy may be a consequence of the method used to discriminate
between neuronal responses. Churan and Ilg (2002) employed a measure derived from
signal detection theory to discriminate between two alternative directions of motion on
the basis of the mean response to constant velocity stimuli combined with flicker. In
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contrast, we tested how well the time course of the dynamic stimulus can be recovered
from the neuronal response.

Functional implications

The fly’s visual system offers the opportunity to link neuronal performance to the animal’s
behaviour (reviews: Egelhaaf et al., 2002; Egelhaaf and Borst, 1993; Hausen, 1984). TCs
are involved in the evaluation of optic flow and have been shown to encode information
about the three-dimensional layout of the environment (Kern et al., 2005) as well as
certain self-motions like body roll (Karmeier et al., 2005; Krapp et al., 1998, 2001). Some
TCs project directly to motoneurons that control compensatory head movements (Gilbert
et al., 1995; Gronenberg et al., 1995; Milde et al., 1995; Strausfeld et al., 1987). During
aerobatic flight maneuvers the fly induces optic flow, which is characterized by peculiar
patterns of motion vectors depending on the type of self-motion and the environmental
layout. While some maneuvers induce motion vectors optimally driving a certain TC,
they are ineffective for other TCs (Karmeier et al., 2006). Irrespective of the efficiency
of driving a specific combination of TCs at a given time, the input resistance and thus
the gain of all TCs is decreased regardless of the actual stimulus situation. Hence, under
natural conditions the gains of all TCs can be expected to be about the same level at
any time. This level may be low when the animal is flying rapidly and thus confronted
mainly with rapid retinal motion, somewhat higher when the animal is walking and thus
experiencing mainly slower retinal motion and at its highest level when the animal is just
sitting and thus experiencing virtually no motion at all. Hence, all TCs are proposed
to operate with a similar gain and thus a similar sensitivity to motion, irrespective of
the overall strength of the optic flow and thereby the behavioral context. Thus, the
continuous bombardment with motion stimuli, though not necessarily driving all TCs,
can equalize the network’s gain, leaving it well able to code for different parameters as we
could show for the direction tuning of constant motion or a dynamically varying stimulus.
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