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Zusammenfassung

Menschen sind offenbar in der Lage ihre Bewegungen mental durch
zu spielen, ohne sie auszufiihren. Dieses Phianomen wird allgemein als
“Probehandeln” bezeichnet und als kognitive Féahigkeit aufgefasst [84].
Probehandeln kann bei der Bewiltigung schwieriger motorischer Auf-
gaben helfen.

Man stelle sich z.B. einen Menschen vor, der einen Baum erklettert.
Der Kletterer wird immer wieder in Situationen kommen, in denen
er aus seiner momentanen Haltung den nichsten Ast nicht erreichen
kann. Oft wird es aber moglich sein, den Ast zu erreichen, wenn der
Kletterer seinen Korper in die Entsprechende Richtung verlagert. Ob
eine solche Verlagerung ausreicht ist jedoch nicht immer offensichtlich.
Hinzu kommt die Frage, in welcher Reihenfolge die Hinde und Fiife
am besten auf neue Aste gesetzt werden, ohne dabei das Gleichgewicht
zu verlieren.

Um solche Probleme mental durch zu spielen, benétigt der Kletterer ei-
ne mentale Reprisentation seines Kérpers und der fraglichen Aste. Je-
doch steht eine solches Représentation vermutlich nicht allein, sondern
ist vielmehr mit zahlreichen reaktiven Systemen zur Bewegungssteue-
rung verkniipft [68, 53, 71]. Moglicher Weise ist das Planungs-System
selbst ein Teil der motorischen Steuerung. Das hiefe “Denken” ist neu-
ronal identisch mit Handeln — lediglich die Muskeln sind wéahrend des
Denkens “abgeschaltet” [106, 71].

Die vorliegende Simulations-Studie stellt die Entwicklung eines derarti-
gen Planungssystems dar. Da fiir die Simulation reaktiver Steuerungs-
Systeme fiir Stabheuschrecken deutlich mehr Vorarbeiten existieren als
fiir Menschen, werden Bewegungen dieser Insekten simuliert und kon-
trolliert. Zur Entwicklung des Planungssystems war es zunéchst not-
wendig, eine einfache und zuverlissige reaktive Steuerung zu entwi-
ckeln. Als Basis dafiir diente das WalkNet [27]| (siehe Kapitel 2 und
teilweise Kapitel 4). Kapitel 3 stellt ein System zur Planung und Eva-
luation von Bewegungen vor. Das oben angesprochene Problem, zu
bestimmen in welcher Reihenfolge die Gliedmafen am besten reposi-
tioniert werden, wird in Kapitel 4 behandelt. Hier wird ein Planungs-
System vorgestellt, das implizit vorausplant und mit reaktiven Syste-
men zur Bewiltigung anderer Aufgaben verkniipft ist.
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1 Introduction

Cognitive science can be said to have be-
gun with Descartes’s assumption that think-
ing is a faculty of the soul that is in-
dependent from the workings of our bod-
ies [42]. The “Homunculus argument” has
since become a classical argument to refute
Descartes’s and similar hypothesis [57, 58].
This argument asserts that in postulating a
Homunculus one is simply shifting the prob-
lem of perception — and thinking — to the Ho-
munculus. If someone’s perception is actu-
ally the perception of his or her Homunculus,
then how does the Homunculus perceive? A
more general form of this argument is also
known as infinite regress.

However, Descartes also claimed in the
same work [42] that "what I thought I had
seen with my eyes, I actually grasped solely
with the faculty of judgment, which is in
my mind". This statement is surprisingly
close to the hypothesis of the contemporary
philosopher Metzinger who proposes that
subjective experience reflects the properties
of a mental construct rather than sensory in-
puts [88, 87].

This proposition can be illustrated with
the example of the Necker cube (Fig. 1.1).
The Necker cube consists of 12 lines, each
being parallel to three others. Yet we cannot
help but see a wire box depicted in one of
two isometric perspectives. The perceived
information about the perspective cannot be
extracted from the simple diagram, it is a
property of the mental construct that the
mind uses to represent the diagram. This
is further illustrated by the following simple

Figure 1.1: The Necker cube

observation: If one looks at the figure long
enough, the perspective will usually switch
to the other possible perspective.

Further evidence for the validity of the
hypothesis of constructed reality is for ex-
ample provided by the existence of phantom
limbs as documented by Ramachandran et
al. |105]. Many patients with amputated
limbs still perceive the void that once was
filled with part of their body as a living part
of themselves. One of Ramachandran’s pa-
tients had a particular problem with his am-
putated arm which he perceived as sticking
out at right angles to his body. He could
not control the position of the phantom arm
and the awkward posture was obstructive in
tasks as for example passing through doors.
Ramachandran could correct the posture of
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the phantom arm with repeated sessions in
a setup where — using mirrors — the patient
saw his still existing arm in the position of
the amputated limb.

Phantom limbs indicate the existence of
a very special kind of mental construct: a
model of the physical body of the model’s
owner. Metzinger would indeed argue that
there is no owner of the model. According
to his view the body model is part of a more
comprehensive self model. The entity that
experiences subjectivity, i.e. the purported
owner of the model is the self model itself.
That self model continuously mistakes its
construct of reality for reality. This implies
that “We are systems that were configured
by evolution in such a way that they con-
stantly confuse themselves with the content
of their phenomenal self model” [88].

This raises the question why evolution has
equipped humans with such elaborate rep-
resentations and — presumably — not cock-
roaches. Cruse [30] and Damasio |36] in-
dependently argued that the body is pre-
destined as the subject for the — evolution-
ary — first mental models, because it is al-
ways part of the reality as perceived by the
modeling mind. That means the percep-
tions concerning the body are much more
constant than perceptions concerning the
environment. Cruse further proposed that
the complex kinematics of human arms and
hands, elephant trunks and octopus arms
might have necessitated mental models to
exploit the mechanical potential of such ac-
tuators [31]. He contrasts such serial com-
plexity with the parallel complexity of e.g.
millipedes. In the case of parallel complex-
ity the problem can be solved by parallel feed
forward controllers like the Walknet [27] and
does not require models.

The biological basis for self models may —
at least partly — be found in the sensory mo-

tor Homunculus [97, 40, 43]. Several other
areas of the brain have also been proposed
to play a role in such modelling, for exam-
ple the cerebellum and the posterior parietal
cortex [40, 43], the basal ganglia [117] and
more (for an excellent overview see [36]).

Cruse has, together with Steinkiihler, pro-
posed a numerical approach that could serve
as a body model [122|. The approach is
based on redundant calculations of a system
of vectors that represent a multi-segment
limb and has been expanded to complex
kinematic trees by Kindermann [76]. The
system is called Mean of Multiple Computa-
tion (MMC) network after its main charac-
teristic, the redundant calculations (see sec.
1.2).

Besides serving as a manipulable body,
model MMC networks can also account for
another observation. Recent research indi-
cates that the faculties of perception and ac-
tion might be more closely linked than was
commonly supposed to be the case (see e.g.
[69, 70, 103, 40]). MMC networks are re-
current networks where inputs and outputs
are not clearly separated. One can for ex-
ample provide Cartesian target coordinates
which might be derived from visual informa-
tion and have the MMC network compute
target angles for the actuator. Conversely,
when thinking —i.e. manipulating the model
without using it to control the actual limb
angles — it could be used to determine where
given limb angles would put the end effector
in Cartesian space.

Recent research has indeed provided evi-
dence that thinking might be something sim-
ilar to the process mentioned in the last use
case for MMC networks, i.e. that thinking is
neurally similar to acting (e.g. [68, 53, 71]).
In order for this to be a plausible hypothesis
one would expect to find neural structures
that inhibit the execution of actions while

2 T. Roggendorf



thinking. Support for the existence of such
inhibitory structures has been provided by
Rizzolatti & Arbib [106] and by Jeannerod
[71].

Manipulations of internal body models
while the control of actuators is inhibited
might be used in complex motoric tasks.
Imagine for example a human climbing up
a tree. When the tree is large and the
branches sparse, the climber will be contin-
ually looking for reliable branches to grip or
step on. In many cases simply stretching
out the according arm or leg will not suffice
to reach the branch but shifting the whole
body might. The human, being equipped
with an elaborate self model, can perform
the required body shift mentally and con-
serve energy in cases where such shifts will
not suffice. According to Lanz and McFar-
land [83] systems endowed with such plan-
ning capabilities are called cognitive.

However, the climbing human, indeed any
organism performing motoric tasks, will not
rely solely on such internal models. Many
details of the motions will be guided by tonic
muscle reflexes like the patellar reflex [63]
and presumably by other more complex re-
flexes.

Complex reflex systems have been studied
comprehensively at the stick insect Carau-
stus morosus. One result of this research is
the Walknet [27], a hexapod walking con-
troller that contains many concepts derived
from observations that were made at stick
insects.

The work presented in this thesis attempts
the integration of advanced MMC models
with reactive systems that were derived from
the Walknet. Both the Walknet and the
MMC principle had to be enhanced consid-
erably to approach this goal. To lend more
credibility to the simulation experiments, a
dynamical simulation of the Walker body

1.1 Reactive Subsystems

and its environment was developed.

1.1 Reactive Subsystems

The first attempts to implement control
structures for robots were based on a mod-
elling rather than a reactive approach. This
strategy was derived from classical Al sys-
tems which tried to integrate as much knowl-
edge — in this case about the environment —
as possible into elaborate maps. Algorithms
were then developed to find optimal paths
through the mapped environment (see e.g.
[90]). In addition fixed patterns were used
to generate rhythmic walking behaviour.

While this approach provided promising
results in laboratory settings, it turned out
to be too inflexible in more realistic envi-
ronments — especially in dynamical environ-
ments where the elaborate planning algo-
rithms are frequently frustrated by sudden
changes of their premises.

Perceiving this approach as a dead end de-
velopment Brooks proposed the bottom up
approach [15, 13]. Instead of starting with
elaborate symbolic representations and de-
riving behaviour from these, the bottom up
approach starts with relatively simple reac-
tive systems. With his “Vehicles” [11], Brait-
enberg can be considered a harbinger of the
“new AI” as proposed by Brooks.

In his seminal work, Braitenberg proposed
very simple, wheeled robots that neverthe-
less exhibit interesting behaviour like orien-
tation towards or away from given stimuli
(see Fig. 1.2). A distinguishing quality of
the Braitenberg vehicles is the direction of
information flow inside of the systems: infor-
mation always flows “feed forward” from the
sensors to the motors. The vehicles are thus
“reactive”, i.e. the system state and motor
output is exclusively determined by sensory

Development of a Planning System for the WalkNet 3
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Figure 1.2: Two Braitenberg vehicles with
two photo sensors and two motors each.
The left vehicle will exhibit negative photo
taxis, the right vehicle positive photo taxis.

input. Internal states have no influence on
the behaviour of the system.

Braitenberg’s vehicles also fulfill another
requirement later put forward by Brooks.
In contrast to earlier “Cartesian” researchers
like Minsky, Brooks does not apprehend in-
telligence as a separable property that looms
beyond the body. Instead he postulated
that true intelligence has to be embodied
[12, 14, 13].

Obviously though, embodiment is a quan-
titative rather than a qualitative property.
A common desktop computer has sensors
(mouse/keyboard ...) and actuators (mon-
itor /speaker ...). Due to its immobile nature
it might however only be used to implement
some kind of plant intelligence. Yet even
Braitenberg’s vehicles would be considered
to represent a form of “weak embodiment”
by some contemporary researchers (see e.g.
Sharkey and Ziemke [116]). With two wheels
(i.e. two degrees of freedom) and two sen-
sors a Braitenberg vehicle has very limited
contingency for complex interaction with the
environment — regardless of the amount of
“intelligence” linking sensors to motors.

It is interesting to note that Braitenberg,

who appears to have been well ahead of his
time, studied medicine rather than computer
science. Cruse, as a biologist another re-
searcher who had not been exposed exces-
sively to computer science, proposed his co-
ordination rules [21| even before Braiten-
berg published “Vehicles”. Observing stick
insects, Cruse derived a few simple, local
rules that are assumed to govern the coor-
dination of the six legs of the walking stick.
He demonstrated the feasibility of these rules
in simulation studies. Compared to Brait-
enberg’s vehicles, stick insects have ample
sensory inputs and 18 degrees of freedom in
their legs alone (three per leg). The body
of the stick insect is also articulated as are
the antennae with two degrees of freedom
each. This presumably leaves ample room
for strong embodiment.

Two decades of research, programming
paradigm revolutions, and many simulations
after their first implementation, the coordi-
nation rules had grown into the Walknet [27]
(for a comprehensive study of the Walknet
see [73]). The Walknet is a complex system
of local rules that control the gait of a six
legged walker. It splits the problem of gait
generation into three sub problems for each
leg:

1. Generating the swing trajectory to
move the leg through the air from the
posterior extreme position (PEP) to the
anterior extreme position (AEP)

2. Generating the stance trajectory to
move the leg on the ground from the
AEP to the PEP and carry the body of
the walker

3. Switching between swing and stance
mode, i.e. determining the AEP and
PEP

4 T. Roggendorf



The last problem — determining AEP and
PEP — can also be called the coordina-
tion problem. It is the only part of the
Walknet where information is exchanged be-
tween legs. Roggendorf showed that velocity
control should also be regarded as a part of
the coordination problem (see section 4.5.1).
However, the Walknet merely tries to keep
the velocity constant and thus does not use
velocity control as an aspect of coordination.

The decentralization of the Walknet is
manifest in many aspects of its architecture,
which is extremely modular. Simple cyber-
netic elements like neuroids and dynamical
temporal filters form the basic elements of
the Walknet. Those are combined in small
functional groups that solve specific prob-
lems (aiming at anterior legs, generating the
swing trajectory, various aspects of stance
trajectory generation, coordination). The
respective groups are combined into the con-
troller for one leg. The leg controllers are
finally combined into the Walknet that con-
trols the gait of the walker. On each of
these levels of abstraction the exchange of
information between the constituting sub-
modules is sparse.

The development goal for the Walknet was
not to find a hexapod walking controller that
exhibits optimal performance in all possi-
ble situations. Rather, the Walknet was im-
plemented to test models that were derived
from observations of stick insects. As shown
in chapters 4 and 2, the Walknet’s perfor-
mance lags behind alternative solutions, in
particular when considering it as a basis for
an extension with higher level planning mod-
ules:

1. Many subsystems are implemented as
artificial neural networks. Consequen-
tially, it is very hard to change cer-
tain parameters of the subsystems (e.g.

2.

1.1 Reactive Subsystems

shifting the target position for swing-
ing legs, i.e. the AEP). In most cases a
parameter change implies retraining the
whole weight matrix of the network.

The swing trajectory generation is not
completely predictable.

The avoidance reflex that should move
legs around obstacles, when they are hit
during the swing trajectory, is so stereo-
typical that it frequently leads to lock
up situations. In such situations eva-
sion motions lead to hitting the obsta-
cle again in the same position and re-
peating the same evasion motion con-
tinuously.

Search mechanisms for finding footholds
when no ground is found at the target
position after swinging are not imple-
mented in the original version of the
Walknet (see |27, 73]) — the swing mo-
tion will simply stop shortly after pass-
ing the target position. The search
mechanisms introduced by Blising |[6]
are specialized for gap crossing be-
haviour and are tightly integrated with
the otherwise insufficient swing trajec-
tory generator (see above).

Subsystems of the stance trajectory
generation system can counteract each
other in certain situations, leading to
lock ups. This can for example hap-
pen when climbing up an obstacle. The
decentralized height control has the ef-
fect that front legs that are “trying” to
raise the height and thus push against
the ground, while middle legs “try” to
lower the height and pull at the ground.
In adverse configurations as depicted in
Fig. 1.3 this can counteract the retrac-
tion, i.e. the pushing forward of the

Development of a Planning System for the WalkNet 5
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Figure 1.3: Hexapod walker climbing up
an obstacle. The Walknet would in such a
situation have front legs push against the
ground and the middle legs pull. This can
counteract the retraction motion and result
in a lock up.

body.

6. The stance trajectory modules use pos-
itive feedback. The implementation of
the positive feedback is technically not
mature and can lead to unstable be-
haviour like building up of oscillations
in the controller. As shown in chap-
ter 2, the positive feedback as imple-
mented in the Walknet does not work as
intended in dynamics simulations or on
real robots (the mechanism was devel-
oped and tested with a kinematics sim-
ulation).

7. The coordination rules disregard retrac-
tion velocity. This is a major reason for
their failure to cope with difficult situ-
ations (see section 4.5.1).

The unpredictable nature of the Walknet
and its incapability to cope with difficult
situations render the Walknet unsuitable
for extension with higher level planning
modules. On the one hand it is essen-
tial that planned motions are executed as

planned. This however can not be guaran-
teed when relying on the unpredictability of
the Walknet. On the other hand it is de-
sirable to have the lower level reactive con-
troller solve as many problems as possible.
Planning becomes important in kinemati-
cally complex situations, but the Walknet
usually fails before the situation becomes in-
teresting for planning.

Therefore a replacement of the Walknet
had to be developed before extensions for
planning could be built on top of the reac-
tive controller. The design goal of the re-
placement controller was a simple, reliable
and predictable controller. The architecture
of the controller should be as close to the
Walknet’s architecture as possible, so that
parts of the replacement controller could be
exchanged for the analogous parts of the
Walknet. Thus the replacement controller
could also be used for further development
of other reactive Walknet components.

The coordination problems of the Walknet
are addressed in chapter 4. For this work
coordination rules proposed by Porta and
Celaya [102, 100] were adapted for operation
in the Walknet architecture and extended
to meet the design goals of the replacement
controller.

The Walknet’s problems with stance and
swing trajectory generation are addressed in
chapter 2. Two antithetic approaches were
successfully followed for resolving the leg tra-
jectory generation problems of the Walknet:
One approach took an engineers perspective
on the Walknet, reduced modularity in fa-
vor of some global controllers and used well
established algorithms for solving the appar-
ent problems. The other approach increased
modularity by abandoning specialized con-
trollers in favor of completely local joint con-
trollers. The local approach also introduced
a further variant of the coordination rules

6 T. Roggendorf



proposed by Porta and Celaya[102, 100].

All of the proposed controllers (see chap-
ters 4 and 2) fulfill the design criteria dis-
cussed above and thus constitute a sensible
basis for further extension with higher level
planning modules.

1.2 Planning Subsystems

As demonstrated by bacteria or stick insects
— both presumably not endowed with cogni-
tion in the sense mentioned above — reactive
controllers can be quite sufficient for many
problems. When a reactive system has to
make a decision between two or more paths
of action, though, it cannot evaluate the con-
sequences in advance. In finding a solution
to complex problems feed forward systems
are therefore limited to trial and error pro-
cedures.

This is fine as long as the cost of perform-
ing actions is low. However, when finding a
solution to a problem would take too long,
or when the mechanical system is in danger
of being damaged during the trial and error
process, the application of internal models
of the manipulator and its environment con-
stitute a significant advantage [23, 31]. The
evaluation of different paths of actions us-
ing an internal model rather than the actual
body might be much faster, is probably ener-
getically cheaper and certainly less danger-
ous.

In order to be able to plan behaviour on
the basis of an internal model, it is essen-
tial that the model is manipulable. Most
systems classically used for representing in-
formation fall in one of two groups.

One group merely stores information for
later retrieval. In classical Al systems this
was done with hash tables, i.e. (usually
long) tables where information could only

1.2 Planning Subsystems

be retrieved by issuing the correct keyword.
More advanced forms of information storage
were developed by the “connectionists” (see
Rumelhart and McClelland [60, 61]). Con-
nectionists design networks of artificial neu-
rons. In these networks information is stored
in a distributed fashion like the visual infor-
mation in a hologram. Examples are the
Perceptrons proposed by Rosenblatt [107]
(see also Minsky [89]). These classical het-
eroassociators can be used to represent infor-
mation in such a way that it can be recalled
even if the input vector differs from the in-
formation originally stored in the network,
i.e. the network can generalize. Yet more
advanced forms of this approach are for ex-
ample the Hopfield networks [64]. These net-
works contain recurrent connections. That
implies that a system using a Hopfield net-
work is not a strictly reactive system, since
information circling in the recurrent loops
can in principle also influence the behaviour
of the system.

However, none of the systems represented
in this first group can be used for planning
behaviour since information can only be re-
trieved from them, but cannot be manipu-
lated. Systems with the ability to manip-
ulate information were the core pursuit of
classical Al researchers. This task was com-
monly approached by representing knowl-
edge as symbols and defining rules to manip-
ulate the information (for a prominent ex-
ample see Newell [93] and Ernst and Newell
[49] for a more recent outlook see Aleksander
[1]). This approach was quite successful in
some areas. Impressive results include mod-
ern chess computers and computer algebra
systems.

In other areas — in particular in complex
motor tasks and behaviour planning — the
approach has only had limited success, which
led Brooks to abandon it for the bottom up

Development of a Planning System for the WalkNet 7
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Figure 1.4: An arm consisting of three
segments represented by vectors L], L, and
Ls. The position of the end effector is de-
scribed by vector R. Furthermore, two ad-
ditional vectors 51 and 52, describing the
diagonals, are shown.

approach of embodiment as discussed above.

In the spirit of the connectionists,
Steinkiihler and Cruse [122] proposed an ar-
tificial neural network that represents infor-
mation in a manipulable form — the Mean
of Multiple Computations (MMC) network.
The first version of the MMC network is
based on redundant calculations in a system
of vectors. Fig. 1.4 shows a 2D manipula-
tor, that consists of the three segments El,
L, and Ls. The segment L can for exam-
ple be computed as L; = 51 - fl, or as
Ly = Dy — 173. Similar — redundant — equa-
tions exist for computing each vector shown
in Fig. 1.4 from the other vectors. The
redundancy is resolved by using the mean
value of all computations for one value —
hence the name “Mean of multiple Compu-
tations”.

In fact, the MMC network can be consid-
ered to merge connectionist and symbolist
approaches. The description of the MMC
principle above uses symbols (vectors to rep-
resent manipulator segments) and rules (the
equations) to process the symbols. However,
Steinkiihler and Cruse [122] showed that this
particular system can easily be translated

into the weight matrix of an artificial neu-
ral network.

Kindermann and Cruse showed that the
MMC principle can also be used to model
the complex kinematics of a six legged
walker [76]. While these works of Cruse,
Steinkiihler and Kindermann can be said to
have translated the symbolist approach into
a connectionist approach, Roggendorf used
the connectionist kernel of the MMC princi-
ple in a symbolic approach (see chapters 4
and 3).

By forgoing weight matrix based networks
the latter approaches simplified the ear-
lier applications of the MMC principle, im-
proved the relaxation behaviour of the net-
works (chapter 3), and opened new fields of
application for the MMC principle (chapter
4). The former work (chapter 3) presents a
mature MMC based system that can serve as
a manipulable body model. The latter work
(chapter 4) presents an MMC based system
that can solve the coordination problem. By
mixing spacial and temporal aspects of the
coordination problem, that system performs
implicit planning. Future states are implicit
part of the representation. The system re-
laxes to states that fulfill desired criteria.

8 T. Roggendorf



2 Stance Trajectory Controllers for
Hexapod Walking and Climbing

A system that controls the movement of
legs during walking has to deal with two ma-
jor problems: control of swing and stance
motions.

This chapter introduces two stance con-
trollers that combine conceptual simplicity
with exceptional walking and climbing per-
formance. One controller is extremely sim-
ple, decentralized and biologically plausible.
The robustness and performance of this con-
troller are surprisingly good. The other con-
troller uses a basic architecture as derived
from insect studies, but follows an engineer-
ing approach for solving crucial problems.
Both controllers can successfully cross ob-
stacles that are three times the height of the
walker hips.

Furthermore, a simple method of enhanc-
ing attitude and height control is proposed,
that uses information from rostrally neigh-
bouring legs.

All controllers are tested on a dynamics
simulation of an insect like hexapod.

2.1 Introduction

Most controllers for six legged walking are
developed by mechanical engineers whose
main interest is to construct a robot and
only then as a second step to develop some
controller software to make the main focus
of their work walk. This approach consid-
erably limits the ongoing research in con-

trollers for six legged walkers, since current
robots have (compared to insects) very lim-
ited mechanical capabilities. In particular
the torques produced by their actuators are
generally not sufficient for climbing.

Therefore insect-like climbing is rarely
evaluated by mechanical engineers (for an
exception see [8]), and most engineers limit
their research on hexapod walking to plane
ground (see for example [50]), sometimes
with patches of the ground unsuitable for
stepping onto (see for example [86, 94]).
More recent work has considered low ob-
stacles (see for example [109, 52]), in some
cases even approaching walker hip height
(see for example [124, 101]). Scorpion —
currently the mechanically most advanced
multi-legged walker (see [119]) — is even able
to cross obstacles, that are somewhat higher
(30 cm) than its hip height (26 cm, see [118])

Biologists develop controllers for hexapod
walking, too. The most notable of these
is the Walknet (see [27]| and section 2.1.3),
which is able to cover a broad range of prob-
lems associated to hexapod walking. How-
ever, the main focus of the Walknet develop-
ment was to find models that explain biolog-
ical data, not to find a controller that per-
forms particularly well. Still, the Walknet’s
performance, as demonstrated in simulation
(see e.g. [73]) and partly in robot (see
[99]) studies, put it in league with the best
controllers developed specifically for robots.
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But even the Walknet is not able to cross ob-
stacles that are much higher than the walker
hips. For an overview of related works by
mechanical engineers and biologists see [41].

This chapter introduces two novel bio-
logically inspired controllers. Both are re-
flex /sensory driven (see [27]), i.e. they do
not use central pattern generators (see e.g.
[5]) and produce free gait walking patterns
(see [80]).

Both controllers follow a decentralized ar-
chitecture which is generally assumed to ex-
ist in insects (see [27]). The first type,
Akin, consists of six leg controllers. Each ex-
plicitely computes the kinematics of the leg
movement based on globally given require-
ments, e.g. body height or foreward velocity.
Thus it uses engineering approaches where
purely biologically inspired controllers may
fail in difficult situations (as will be shown
below).

Therefore Akin comprises a perfect decen-
tral controller. It is well suited as a basic
system that can be used as a tool to test the
properties of newly introduced extensions.
The application of such a tool is sensible be-
cause it is hard to study the properties of
an extension when it is added to a complex
and therefore not fully understood system.
Of course, Akin can also be used to control
a robot.

The other controller, Ejoin, is even more
decentralized than biologically inspired con-
trollers. Its architecture is extremely simple
and easy to implement — it is probably the
simplest controller devised, yet. Each joint
of a stance leg is simply controlled by an in-
dependent proportional controller with fixed
reference inputs. Therefore it might well be
realized in biological systems.

The goal of this investigation is to test, to
which extent these approaches are suited for
the control of a hexapod walker in difficult
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situations. It is shown in dynamics simula-
tions that both of these controllers perform
very well, even when crossing very high ob-
stacles.

As the general goal is to understand in-
sect walking, in the simulations the legs are
equipped with adhesive structures that fix
stance legs to the ground. In other words,
stance legs can develop forces pulling the
body to the ground.

2.1.1 Problem Definition

The problem of controlling the gait of a six
legged walker can be broken down into three
subproblems:

1. Generating swing trajectories, in order
to move legs from the liftoff point or
posterior extreme position (PEP) to the
touch down point or anterior extreme
position (AEP) (see Fig. 2.1)

2. Generating stance trajectories, to move
legs from AEP to PEP (see Fig. 2.1)

3. Determining the positions of AEPs and
PEPs, i.e. deciding when to lift legs and
where to put them. This includes the
problem of how to coordinate the move-
ment of different legs.

This chapter deals with the second issue, i.e.
generating stance trajectories. Controlling
leg trajectories comes down to controlling
joints. A kinematics controller controls joint
angles, a dynamics controller controls joint
torques. The controllers described in this
chapter are all kinematics controllers, but
are tested in a dynamics simulation environ-
ment.

Stance trajectory control has to deal
with special problems: retracting legs are
parts of closed kinematic chains (see [2]).

T. Roggendorf



Figure 2.1: Leg geometry, angle and coor-
dinate conventions, segment names, trajec-
tory and extreme point name as used in the
text.

That means the legs cannot move inde-
pendently because they are mechanically
coupled through the walker body and the
ground. This mechanical constraint enforces
all leg motions to be consistent with the mo-
tions of all other retracting legs. This re-
sults in a reduced number of degrees of free-
dom. The Kutzbach criterion (see [82]) can
be used to calculate the remaining degrees
of freedom. A comprehensive discussion of
this topic can be found in [67]. The problem
of finding consistent solutions in such con-
straint systems has been studied by several
researchers (see e.g. [18, 77, 91, 92|).

In addition to this general requirement of
performing consistent leg movements there
are further specific constraints. The legs
have to carry the body, which furthermore
means that a stability criterion has to be
fulfilled at all times. Static stability exists
if the walker center of gravity is above the
convex polygon enclosing the footholds (see
[9, 85, 102]). The stability issue is however
not crucial for most walking insects because
they have adhesive structures on their tarsi
(see [108, 79, 4, 3, 125]). In statically un-
stable situations though, adverse levers can
result in excessive torques which increase en-
ergy consumption or might even exceed in-
sect muscle capabilities.

Development of a Planning System for the WalkNet

2.1 Introduction

2.1.2 Body Degrees of Freedom

The body of the walker has six degrees of
freedom in space — three translational and
three rotational degrees of freedom. These
are coupled to different tasks in stance tra-
jectory control (see Fig. 2.1 for conventions):

x Body motion along the x-axis determines
walking speed. Control of that degree
of freedom can therefore be regarded as
velocity control.

y In order to maintain stability as described
above, the walker body may be moved
along the y-axis to be centered between
the footholds or to maintain the maxi-
mal stability margin (see section 2.3.3).

z The walker position on the z-axis deter-
mines the body height above ground
and might be adapted to ground prop-
erties.

roll, pitch Roll motions are rotations along
the x-axis, pitch motions along the y-
axis. Roll and pitch determine the atti-
tude.

yaw Rotation around the z-axis changes the
walking direction. This control variable
can be determined by higher order be-
havioural controllers.

2.1.3 Walknet

The Walknet [27] may be the best estab-
lished biologically inspired controller for a
six-legged walker. It has however only been
thoroughly tested in a kinematics simula-
tion. One cursory experiment was done on a
dynamics simulation |73]. The Walknet can
only reliably cope with obstacles of about
walker hip-height [27, 73]. It is however used

11
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as one benchmark for the controllers intro-
duced here. Furthermore, the Walknet’s ba-
sic architecture is used as a template for the
development of the other subsystems (sub-
systems concerning the generation of swing
trajectories) of the walking controller used in
the experiments presented in this chapter.

The Walknet breaks the task of control-
ling a six legged walker into three sub-tasks
as mentioned above: Swing trajectory gen-
eration, stance trajectory generation and co-
ordination which is defined as switching be-
tween the former two sub-tasks, i.e. deter-
mining the positions of AEP and PEP. This
is illustrated in Fig. 2.2.

In the Walknet four subsystems control
the six degrees of freedom of the walker
body: The velocity subsystem controls x-
translation, the g-subsystem controls y-
translation, the height subsystem controls z-
translation. The height subsystem only uses
information that is local to the correspond-
ing leg. The resulting equilibrium leads to
a sensible body attitude. Thus the height
subsystem can also be regarded as control-
ling roll and pitch. Yaw is controlled by the
direction subsystem. « and ~ joints (see Fig.
2.1) are controlled based on their angular ve-
locity. The « joints are mostly responsible
for protraction and retraction of the legs, the
~ jonts are mostly responsible for lengthen-
ing the leg. The ¢,,,;, system enforces the &
value to stay above a given threshold. With-
out applying the ¢,,;, subsystem the whole
system is extremely unstable.

The Walknet’s stance trajectory controller
does not explicitly compute kinematics. It
relies on the approximation that, in the leg
coordinate system, z is about proportional
to o and 7, y is about proportional to v, and
z is about proportional to 3. The error of
this approximation is mitigated by the posi-
tive feedback loop, which implements active

protraction
trajectory

(X, atarget
anterior tar etm
antenor g g

7Y anterior Subsystem

a
[coordinationH selector j%ﬁ
j T A ¥
height
a,B,D—r cight Ly @) b{ | H—¢
height controller ®

/
q controller

vSens p €
Ref velocity controller |I 89

ddir /

direction controller

ddRef

é 0

Figure 2.2: The Walknet controller
for one leg. Targeting and swing trajec-
tory subsystems generate the swing trajec-
tory. Selector and coordination switch be-
tween swing and stance. All other ele-
ments are subsystems of the stance trajec-
tory controller. Note that the sensed angu-
lar changes & and  are passed unchanged
into selector if the error signals from the
subsystems of the stance trajectory con-
troller are zero. This is the positive feed-
back loop.
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compliance (see [73]|). Since this is insuffi-
cient in some walking situations, and as sub-
systems work against each other the walker
can get stuck (see [73]): depending on the
slope of the substrate, the different height
controllers may work against each other. In
particular, the height controller can work
against the velocity controller when climb-
ing up obstacles.

Targeting subsystem

The target positions for the front legs are
given by fixed reference positions or refer-
ence angles. The other legs aim at points
behind the current position of the anterior
leg (see [20, 24, 39| for similar mechanisms
in Carausius). All target positions includ-
ing those for the front legs are adjusted to
aim at the correct height (the information is
taken from global knowledge about the envi-
ronment simulation, but could potentially be
retrieved from interpolation, or — in case of
the front legs — from the antennae which are
not simulated in the experiments presented
here). That means all target points are al-
ways points on the ground.

2.2 Novel Models

Two controllers are introduced which are
termed the Akin (“analytical kinematics”)
controller and the Ejoin (“each joint on its
own”) controller.

Definitions

e Conventions for the global coordinate
system: positive x values point to the
anterior, positive y point to the left, and
positive z point upwards.

Development of a Planning System for the WalkNet

2.2 Novel Models

e The leg coordinate system is rooted in
the coxa (« joint) of the legs. = and z
direction are equal to global coordinate
system, y always increases toward the
outside (i.e. left on the left body side
and right on the right body side)

e A specific integrator is used, which is
termed the auto reset integrator. This is
an integrator that is automatically emp-
tied when the sign of its input changes.
When this special integrator is used
in a negative feedback I-controller, the
controller can have high gains without
tending toward oscillations, combining
advantages of proportional and integral
controllers — i.e. it reacts as fast as a
proportional controller, but corrects the
error almost as completely as an inte-
gral controller. This graceful behaviour
can however only be expected, when the
controller controles the change rate of
the actual value — as is the case with
the controllers presented below — rather
than its absolute value. If absolute val-
ues were controlled, the auto reset in-
tegrator would lead to major jumps of
the controlled value, possibly resulting
in instable behaviour of the system.

2.2.1 Akin Controller

The Walknet is an already complex system,
able to control walking in disturbed situ-
ations. When more difficult tasks had to
be solved (as are investigated in biological
experiments like climbing over large gaps,
negotiating sharp turns, climbing over nar-
row substrate), the controller had to be ex-
tended. To be able to test the properties
of such extensions, a basic controller with
predictable behaviour is required. There-
fore, the core of the Akin controller is an

13
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analytical kinematics. For each leg this core
has nine inputs — the six degrees of freedom
of the body as explained in section 2.1.2 and
the three current leg angles. The desired mo-
tions in these degrees of freedom are trans-
lated into the three new leg angles for each
leg, the changes of the leg angles being the
output of the subsystem. This means that
information about body motion and rotation
is translated into new local leg coordinates
and that these are transformed into angles
using the inverse kinematics of each leg.
The six body degrees of freedom are con-
trolled by separate global subsystems.

Velocity control Velocity is determined
by the coordination subsystem (see below,
section 2.2.1.2). If all retracting legs are in
the middle or in the anterior range of their
work-spaces, the default velocity vgefqui 1S
used as the reference input for the velocity
controller. If retracting legs do however ap-
proach the posterior end of their workspace,
the reference velocity is lowered, eventually
reaching zero.

The reference velocity is fed into a nega-
tive feedback integral controller to determine
Ax: Az = [ky (Ve — vy) dt, with reference
velocity v,.r determined by the coordination
(see sec. 2.2.1.2) and current velocity v mea-
sured by an odometric subsystem (see [73]).
k. is the constant controller gain.

Controller Prescale Before entering the
kinematics core, all six values are prescaled
by a velocity influence so that fast move-
ments are inhibited when the overall velocity
is rather low. The control value Az is used
to determine the prescale p for all control
values of the stance trajectory controller:

Uref
p = Vde fault
1

ifvref < Vde fault
else
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The velocity that is used as input for
the leg kinematics is scaled by p as are all
other control values (Ay, Az, Aroll, Apitch,
Ayaw): Azgegreq = pAx. This method is
responsible for adjusting the velocity of mo-
tions of all stance legs.

Q-Controller The g-controller centers the
body between the footholds. The mean dis-
tance of the footholds from their correspond-
ing coxae is calculated separately for the left
and right body side. The mean left distance
is then subtracted from the mean right dis-

tance. The resulting Ay,,. is fed through

dBupreky with

a derivative controller: Ay = ==

controller gain k,,.

Height Controller The height controller
calculates the mean height (z coordinate in
leg coordinate system) of all retracting legs
and feeds this value through a negative feed-
back integral controller with auto reset (see
definitions above):

Az = / kz (htmean - href) dt (21)
auto—reset

Attitude is determined by roll and pitch.
The first approach was to project the
foothold points into two rotational planes
(i.e. the x/z-plane for pitch and the y/z-
plane for roll) and calculate an orthogonal
regression line for those points. The control
values were then the angles between the ac-
tual attitude and the regression lines, scaled
by a gain factor and the confidence value
computed from the regression. Preliminary
tests showed that this approach only works
for plane ground or moderately high obsta-
cles. It occasionally fails in difficult situ-
ations. However, it turned out that using

T. Roggendorf



height values yields much better results: The
roll control value is the difference between
the mean height of the left retracting legs
and the mean height of the right retracting
legs.

The pitch control value is derived from
comparing mean heights of front, middle and
hind retracting legs:

> {1

i=f,m;j=m,h;i#j 0
, with f, m, h = front mean height, middle
mean height and hind mean height. The if
statement tests if mean values could be cal-
culated, i.e. if at least one leg of each leg pair
1, j is retracting. That means that in typical
walking situations all leg pairs are compared
against each other. Note that this approach
is similar to the one described above with
linear instead of orthogonal regression.

Both roll and pitch control values are
scaled by gain factors and fed through an
auto reset integrator.

ifdi A 3y
else

Apitch =

Yaw Controller The derivative of the mea-
sured yaw value is scaled by a gain and inte-
grated to determine the control value. This
constitutes a negative feedback integral con-
troller based on Ayaw, that enforces straight
walking paths. For curve walking a bias is
added to the derivative before scaling and in-
tegration: Ayaw = [ kyqy (digw + bias) dt.
[73] used a proportional controller rather
than an integral controller. Integral control
does however work well with the kinematics
core of the model and it ensures long term
straight walking, which can simplify the ex-
periment setup significantly.

2.2.1.1 Anticipation Extensions

In this section two simple extensions are in-
troduced, one for the height-, the other for

Development of a Planning System for the WalkNet
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the attitude controller. Both extensions use
information from the targeting subsystem
(see Fig. 2.2 and subsection 2.1.3). Both
controllers use height as their control val-
ues. In the attitude- and height controllers
explained above the current height of the re-
tracting leg is used. In the extended versions
also the height values of the target points of
legs are used that are yet swinging. This
means that information from the rostrally
neighbouring leg is used as well.

The effect of these extensions is an an-
ticipative lifting and rolling/pitching of the
body in front of obstacles. This behaviour
is in accordance with biological data (see
[47, 96, 115]).

The anticipative control was combined
with an adjustment of the height controller
to the ground properties: in addition to cal-
culating the mean height Ay ,cqn Of all stance
legs as above, the variance of that mean
value was also calculated. The square root
of the variance was scaled with gain factor
kg. The result, limited to a maximal value
bgmaz, 18 the ground bias by:

i<nstance
@zmwGN > wmm—m%w4

1=0

b, is added to the reference height height, s
as used in equation 2.1. The effect of
this procedure is that the walker body will
maintain higher ground clearance on rough
ground.

2.2.1.2 ThreshPorta Coordination

For testing the above stance trajectory con-
troller (and the WalkNet), a complete walk-
ing controller including a coordination sub-
system has to be provided. A modified ver-
sion (see chapter 4) of a model proposed by
Porta and Celaya [100] has been used for
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solving the leg coordination problem. The
ThreshPorta model has been proven to work
well in experiments (see chapter 4) similar to
the ones presented here.

In order to describe the model proposed by
Porta & Celaya [100], the term of neighbour-
ing legs has to be defined. According to the
Porta & Celaya model, all adjacent legs are
neighbouring with the exception of the two
middle legs, which are not considered neigh-
bours. Thus each leg has exactly two neigh-
bours (the middle left and front right legs are
the neighbours of the front left leg; the front
right and hind right leg are the neighbours
of the middle right leg). According to the
Porta & Celaya model a leg is to be lifted,
if it has a higher lifting priority than both
neighbouring legs.

Lifting priority is defined in the follow-
ing way: Protracting legs have the highest
lifting priority (this implicitly means that
neighbouring legs cannot protract simulta-
neously — the prime condition which Porta
& Celaya wanted to fulfill). For retracting
legs, the lifting priority is negatively propor-
tional to the leg’s distance from its physical
PEP (the closer a leg is to its physical PEP,
the higher its lifting priority). The physical
PEP is determined by leg geometry (leg seg-
ment lengths). It is the hindmost point a leg
can reach in a normal walking position.

In the original version of the model, the
default stance velocity vgefqur cannot be
controlled: it has to be close to the swing
velocity. If vgefque is lowered, coordination
breaks down. The following extension has
been introduced to solve this problem (see
chapter 4).

The lifting rules are only applied, if the
distance D of a given leg from its physical
PEP is smaller than a preset threshold 7. T
was set to 5.0 mm in our experiments (com-
pare to step lengths, being in the order of 20
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mm).

These parameters are used for calculat-
ing the actual reference stance velocity v,.;.
Each retracting leg proposes a “desired”
global stance velocity accorded by v,.; =
%vdefault it D < T, and v, = Vgefqur Oth-
erwise. The leg with the smallest proposal
determines the actual v,.f.

2.2.2 Ejoin Controller

In strong contrast to the mathematically
exact yet decentral Akin controller, a con-
troller with an extremely simple architecture
is studied in this section. The Ejoin con-
troller controls Fach Joint On Its owN. Ev-
ery joint angle # has a simple negative feed-
back proportional controller with a fixed ref-
erence value 0,.5 and a gain factor ky:

AG = kg (B,e; — 0) (2.2)

Fig. 2.3 shows a diagram of the hexa-
pod controller; it is divided into six parti-
tions (boxes marked by thin lines), one for
each leg; each partition contains three neg-
ative feedback controllers according to the
equation above — one for each joint.

2.2.2.1 Anticipation Extension

The Ejoin controller is easily extensible, be-
cause it is very robust against additional in-
fluences and parameter changes. As an ex-
ample an extension is introduced here, that
behaves similarly to the anticipative attitude
control introduced in section 2.2.1.1.

When approaching an obstacle, values de-
scribing the height of this obstacle are used
to influence the (3 controllers of the front
legs and of the hind legs in order to adjust
the body pitch to the obstacle situation in
front of the walker. The actual height of
the front leg’s target points are taken from
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world knowledge in the simulation, but could
be retrieved from antennae which were not
simulated in the experiments presented here,
see Fig. 2.2 and subsection 2.1.3.

The actual target height values of the tar-
get positions are translated into the front
leg’s coordinate system. By calculating the
inverse kinematics of those legs, the accord-
ing actual target 3 angles, 3; and 3, are
determined. The sum of these angles, 3’ =
81, + B, is used to influence the height of
the front and hind legs. (' is compared to
a fixed default value (3 that corresponds to
an obstacle of height zero. The difference
By — (' is multiplied by a constant factor,
kg, fed through an autoauto reset integra-
tor (see sec. 2.2) and then added to the error
of the front and hind leg’s negative feedback
controller. The equation for the front leg’s
(3 angles (see 2.2) is extended to

Aﬁ B kﬁ (ﬁref - ﬁ)+ autoresetkﬁl (ﬁ() - ﬁ/) dt
, the equation for the hind legs is
AB = ks (Bres = B)- [

autoreset

kg (By — 5') dt

(kg is the constant gain of the proportional
controller). See Fig. 2.3, circuit above and
left of the walker.

2.2.2.2 Ejoin Coordination

A simple coordination mechanism that is
modeled after the Porta coordination scheme
was developed for the FEjoin controller.
Neighbourhood in the Ejoin coordination is
identical to neighbourhood in the Porta co-
ordination. As in the ThreshPorta coordina-
tion, legs are lifted, when their lifting prior-
ity is higher than the lifting priority of their
neighbouring legs. Swinging legs have high-
est priority — as in the Porta controller. The

2.2 Novel Models

Figure 2.3: The complete Ejoin controller
for all legs (hexapod body) with attitude
anticipation (above and left of body) and
coordination (right of body, coordination
only shown for middle right leg).
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lifting priority of stance legs is not deter-
mined by considering leg positions and work
spaces as in the ThreshPorta variant, but is
given by == (with the controller error A« as
calculated from eq. 2.2). This means the leg
with the more posterior position has higher
priority. Since the Ejoin controller cannot
explicitly control stance velocity but does
this implicitly, no stance velocity is calcu-
lated and no threshold is required.

Using the above rules, it is possible to de-
sign a simple circuit (see Fig. 2.3, right side
of the body) to determine the PEP of a leg:
The swing signal is one, if a leg is swing-
ing and zero otherwise. Aa is subtracted
from the A« of the neighbouring leg and the
swing signal of the neighbour is subtracted
from the result. The resulting value will be
positive only if A« of the current leg is lower
than A« of the neighbouring leg and if the
neighbouring leg is not swinging. This result
is finally mapped to zero or one by a relay
characteristic.

This is done for both neighbouring legs.
The PEP is reached if both results are one.

2.3 Experimental Testbed

The two controllers and the Walknet were
tested in a dynamics simulation of a six
legged walker and its environment.

2.3.1 Swing Trajectory
Controller

For better comparability, the same, simple
swing trajectory controller was used for all
leg controllers investigated. It moves the leg
forward (in x direction) with a constant ve-
locity of one millimeter per iteration cycle
until it reaches the target position. The y-
component of the motion was controlled by
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a negative feedback proportional controller,
the height component was moved through
a sawtooth trajectory between liftoff and
touchdown.

If the leg hit an obstacle while still not
close to the target position, an evasive mo-
tion was executed. The motion started in
the opposite direction as that given by the
torque vector in each leg joint when hitting
an obstacle. The leg was then moved up a
bit and finally continued its trajectory (see
[111] for a similar reaction in the stick insect
Carausius).

If ground contact was not registered at the
position determined by the targeting system,
the leg was moved straight down with a con-
stant velocity. If still no ground contact oc-
curred after a constant number of iterations,
a search movement was generated by com-
bining low (covering the whole workspace)
and high frequency sine waves. Thus the
whole workspace was searched with cirular
patterns. Similar behaviour has been ob-
served in Locusta [95] and Carausius [44, 7|.

2.3.2 Dynamics Simulation

The dynamics simulation is based on the
rigid body dynamics library ODE (Open Dy-
namics Engine, http://ode.org). The walker
body is simulated as two bodies, one repre-
senting head/thorax, the other representing
the abdomen. Both were linked by a pas-
sive hinge joint with elastic properties (see
below).

Six legs are attached to the thorax, each
leg consisting of three segments (coxa, femur
and tibia) and linked to the body and one
another through hinge joints (o, 3 and 7).
The joints receive their reference values from
the controllers.

Since the Walknet, the Ejoin controller
and in some cases also the Akin do not
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Segment | Length (mm) | Weight (mg)
Front

Coxa 1.61 0.43
Femur 17.85 10.30
Tibia 17.10 3.30
Middle

Coxa 1.57 1.00
Femur 13.47 8.05
Tibia 13.20 1.70
Hind

Coxa 1.39 1.00
Femur 15.51 8.60
Tibia 16.51 2.70
Body 365.40

Table 2.1: Walker- length and weight pa-
rameters of dynamic simulation, see [48]

produce kinematically consistent configura-
tions, the joints have to yield. Therefore the
joints were implemented to be elastic. When
pulled out of the reference position they pro-
duce a force proportional to the deviation.
The joint behaviour is determined by spring
constant and damping.

The spring constants were set as low as
possible, but at least high enough to carry
the walker weight even in adverse walking
situations. The damping constants were
then set as high as possible. The spring con-
stant and damping was identical for all joints
except for the thorax abdomen joint.

The segment lengths and masses were
taken from [48], which partly relies on [19]
(see tab. 2.1). Fig. 2.6 illustrates the pro-
portions of the walker parts. It is an exact
representation of the dynamics simulation.

The environment was simulated as a
ground plane on which obstacle boxes could
be placed.

Collisions were calculated between all
bodies, including the ground plane and ob-
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stacle boxes. The contact points were also
simulated as springs. Spring constants for
contacts between walker parts and environ-
ment were three orders of magnitude higher
than the joint spring constants. Spring
constants for contacts between walker parts
were three orders of magnitude lower than
joint spring constants — this improves sim-
ulation stability because it prevents force
buildup when walker parts collide. All con-
tacts were frictionless.

When the tarsus (the lower part of the
tibia segment) had ground contact and the
controller set the according leg to stance
mode, a frictionless ball joint was created
between tarsus and environment. This joint
was removed when the controller set the leg
into swing mode. This simulated the ad-
hesive properties of the tarsi of many in-
sects (see 108, 79, 4, 3, 125]). Mechan-
ical analogues for robots are currently in-
vestigated, prototypes have been shown to
facilitate walking on vertical surfaces (see
[104, 72]).

The simulation step was 0.05 s, i.e. one
second took 20 iterations.

The walker was initialized with a leg angle
configuration that resulted in all legs having
ground contact and allowing to start walking
without coordination problems. The walker
was dropped from a height of maximum leg
length, i.e. 36.56 mm. For the first 10 iter-
ations, fixed angles — the start configuration
— were set for the simulation, then the con-
trollers determined the leg angles.

2.3.3 Stability

For evaluating the performance of the con-
trollers the “stability margin” is introduced
as a measure. The stability margin is based
on the stability polygon (see. [9, 85, 102])
and a special characteristic.
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Figure 2.4: The stability characteristic for
three or more ground contact points (CoM
= centre of mass, SP = support polygon);
distance CoM<->SP is the smallest dis-
tance between the center of mass to any
boundary of the support polygon, see text
for details.

The stability polygon is the convex hull
around all ground contact points. A ground
contact point is given by a leg in stance
mode touching the ground. The centre of
mass is assumed to lie between the middle
leg coxae, projected into the ground plane
(the plane that is orthogonal to the gravity
vector). The distance of the centre of mass
to the closest point of the stability polygon
is measured. If the centre of mass lies inside
the polygon, the distance value is set to be
positive, otherwise it is set to be negative. If
the centre of mass lies exactly on a corner or
edge of the stability polygon, the distance is
zero. 85| defines a similar concept, the lon-
gitudinal stability margin. For the longitudi-
nal stability margin the distance of the cen-
tre of mass to the boundaries of the support
polygon is only calculated in the direction
of motion of the centre of mass. The stabil-
ity margin used here gives a better measure
since it calculates the smallest distance of
the centre of mass to any boundary of the
support polygon.
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This distance value is mapped by a func-
tion that enhances resolution in critical sit-
uations and lowers resolution in “uninterest-
ing” situations (Fig. 2.4). If all legs are fully
extended and have ground contact, the dis-
tance reaches a maximum, which is mapped
to a stability margin of 2 by the stability
characteristic. The mean distance during
walking on a plane is mapped to show a
stability margin of 1. The minimum (i.e.
the greatest negative) distance possible with
three ground contact points is mapped to -1.

The following extreme cases are not de-
picted in Fig. 2.4: When only two legs have
ground contact, the stability margin is de-
termined by a linear function that maps the
distance of the centre of mass to the line con-
necting the two ground contact points, to lie
between -1 (if the centre of mass lies exactly
between the two ground contact points) and
-2. When only one leg has ground contact,
the distance of the ground contact point to
the centre of mass is linearly mapped to lie
between -2 and -3. If no legs have ground
contact, the stability margin is set to -4.

The stability margin is recorded along
with the walker’s body position (x/y posi-
tion of point between the bases of the hind
coxae, see Fig. 2.1) for each simulation iter-
ation of each run.

2.3.4 Torque measurement

In one set of experiments the joint torques
produced by the different controllers were
measured. Phase changes of single legs pro-
duce relatively high torques in all legs (e.g.
when protracting legs hit the ground and
start retracting). In order to make the
torque measurements independent from the
frequency of phase changes, torque measure-
ments were only updated when no phase
changes occurred during the last five iter-
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Figure 2.5: Algorithm for determin-
ing torques (in this case Akin controller).
noPhaseChange is 1 if there was no phase
change in any leg during the last five itera-
tions, mean is the mean |3| torque of all re-
tracting legs, continue is the same as mean,
but is only updated if noPhaseChange.

ation. This is visualized in Fig. 2.5, where
continue shows the torque value that is ac-
tually used.

For better comparability of standing,
tetrapod, and tripod walking, the mean ab-
solute torques 7 were then normed to six
ground contacts, taking the actual number

of legs with ground contacts gc into account:
= 6_7—
ge’

2.3.5 Parameter Optimization

The parameters of the Akin controller (as
listed in sec. 2.2.1) and the Ejoin con-
troller (gains and reference values, see sec.
2.2.2) were optimized by evolutionary pro-
gramming.

For each controller a sensible start con-
figuration was chosen. Each generation con-
sisted of 100 individuals. The ten fittest were
propagated to the next generation. Nine mu-
tated copies were made of each of the ten
fittest individuals to fill up the population to
100 again. In the mutated individuals each
parameter had a 0.1 chance of being scaled
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by 0.6 to 1.4.

The fitness function f (x) selected for high
speed and low torques (see sec. 2.3.4). The
torque and velocity values were long tempo-
ral mean values. v is velocity, ¢; is the mean
joint torque over all retracting legs filtered
as described in section 2.3.4:

f(l’):ﬁ

i=a,B,y

The environment in which the evolution
proceeded contained one obstacle of height
20 mm, which the walker had to traverse.
Evolution proceeded until no parameters
changed in the best controller for ten gen-
erations.

2.3.6 Experiments
The following controllers were tested:
1. No controller (fixed angles)
2. Walknet
3. Ejoin without attitude anticipation
4. Ejoin with attitude anticipation

5. Ejoin B without attitude anticipation
and reference angles adjusted for stand-
ing

6. Akin with neither anticipation nor
ground clearance adjustment

7. Akin with attitude anticipation

8. Akin with height anticipation and
ground clearance adjustment

9. Akin with attitude and height anticipa-
tion and ground clearance adjustment
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Three tasks have been investigated: stand-
ing still on plane ground (torque measure-
ments at models 1, 2, 3, 5, and 9), walking on
plane ground (torque measurements at mod-
els 2, 3, and 9) and climbing over an obstacle
(all models except 1, 2, and 5). Models 1 and
5 could not be used for walking experiments,
because they are not designed to walk. The
Walknet (#2) was not used in the obstacle
crossing task, because it was shown in the
torque experiments that it does not walk
properly in a dynamics simulation. Those
Ejoin and Akin controllers were selected for
the torque experiments that performed best
in the obstacle crossing task.

The following sections will refer to the
models by using the numbers of the list pre-
sented above accordingly, e.g. (#1) for the
uncontrolled system.

2.3.6.1 Standing on Plane Ground

The task was to stand on a plane for 5000
iterations (250 seconds). A starting posture
different to that used for the walking exper-
iments was chosen for this experiment: the
posture was left /right symmetrical. To bal-
ance this posture, the velocity subsystem of
the Akin controller was turned off. That
partly disabled controller then controlled the
walker while standing. The posture was bal-
anced to neither shift forward nor backward.
Resulting leg positions along the x-axis in
leg coordinate system were: front 16.65 mm,
middle 0 mm, hind -10 mm; y position was
left /right 15/-15 mm; height was 6.5 mm.

Because of technical reasons various mod-
ifications had to be introduced to the con-
trollers to make them stand still:

Walknet (#2) The Walknet contains the a-
min module that assures that A« is al-
ways at least 1° as it enters the pos-
itive feedback loop (see Fig. 2.2 and
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[73, 27]). This module was deactivated
and the reference velocity was set to
zero. Since the Walknet started show-
ing erratic behaviour due to numeric ef-
fects when standing for more than 1000
iterations the test was limited to 1000
iterations in this case.

Ejoin (#3) Coordination was deactivated so
that legs would remain glued to the
ground.

Ejoin B (#5) Reference angles were ad-
justed to reflect the standing position
(as defined above); this was done to
reach smaller torques; coordination was
deactivated.

Akin (#9) The default velocity was left un-
changed, because otherwise the velocity
prescale (see sec. 2.2.1) would deacti-
vate all controllers. x-position was de-
termined by a separate negative feed-
back controller with gain 1 and refer-
ence velocity 0.

The normed long temporal mean torque was
recorded as described in section 2.3.4.

2.3.6.2 Walking on Plane Ground

The task was to walk on a horizontal plane
for 5000 iterations in a line as straight as
the controller would permit. During walking
the normed long temporal mean torque was
determined as described in section 2.3.4.

2.3.6.3 Climbing over an Obstacle

The task for all controllers was to cross an
obstacle of varying height. It consists of an
upward step and a downward step that are
separated by a distance of 100 mm. For each
obstacle height (see below) 150 trials were
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Figure 2.6: Screenshot of the dynamic
simulation. The walker is ascending an ob-
stacle of height 25. Small boxes between
tarsi and ground represent contact points.

run. For each trial, the x-position of the ob-
stacle is shifted by 0.1 mm. This has the
effect that the legs make first contact with
the obstacle at different points in their duty
cycle, introducing randomness into the ex-
periments.

26 obstacle heights (ranging from 0 - 25)
were tested. Thus 3900 experiments were
done with each of the six controllers. For an
illustration of the highest obstacles see Fig.
2.6.

During the experiments the position of the
walker’s centre of gravity, walker velocity,
and stability (see sec. 2.3.3) were recorded.

In the collected data each run was split
into three parts according to the walker po-
sition. The first part was the area around the
first obstacle cliff, where the walker was as-
cending, the second part was the area where
the walker was descending and the third part
was an area behind the obstacle, where the
walker was walking on plain ground after
traversing the obstacle. All areas had the
same size. The data was sorted by obstacle
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height.

The mean velocity was calculated as the
arithmetic mean of all data points from all
x-shifted obstacles for each task (ascending,
descending walking on a plane). To calcu-
late the probability pu,.sia 0of the walker to
become unstable while performing a task, all
runs for a given obstacle height were pooled.
If the walker became unstable anytime in one
run while performing a given task, p was 1
for that task in that run. If the walker never
became unstable while performing the task
in one run, p was 0 for that task in that
run. The probability of becoming unstable,
while performing a given task at an obstacle
height, is the mean of all according p.

The resulting data was smoothed for the
plots (Fig. 2.8): each data point in the plots
is the arithmetic mean of seven surround-
ing points, including the according point it-
self. Three data points containing the value
for height = 0 were prepended to the test
data and three values containing the value
for height = 25 were appended, to avoid the
cropping that is necessary for the smoothing.

2.4 Results

2.4.1 Torques
2.4.1.1 Standing

The absolute torques produced by the un-
controlled system with fixed reference angles
(#1S) can serve as a benchmark for all other
controllers. This benchmark was beaten by
all controllers (see Fig. 2.7, top) except the
Ejoin controller with standard reference an-
gles (#3 S, see Fig. 2.7, bottom, right). The
latter produced torques that are two orders
of magnitude higher than the torques pro-
duced by any other controller while stand-
ing. The torques were even higher than
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Figure 2.7: Joint-torques produced by

various controllers when standing (marked
S) and walking (marked W). Numbers for
stick insect Carausius taken from [19].

those produced by any controller while walk-
ing.

The Akin (#9 S) controller produced the
lowest torques, followed by the Ejoin B (#5
S) controller with reference angles adjusted
for standing and by the Walknet (#2 S). In
all controllers the torques are close to the
torques of the uncontrolled system. While
the torques in the uncontrolled system are
about evenly distributed over the three joint
types, all controlled systems — including
Ejoin B (#5 S), but not Ejoin (#3 S) — put
more load on the beta joints that carry the
walker weight while relieving the gamma and
alpha joints.

The Ejoin controller with standard ref-
erence angles (#3 S) produces the highest
torques in 3 and v joints indicating tension
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in these joints due to an inconsistent refer-
ence posture. This controller immediately
shifted the standing walker far to the ante-
rior direction into a crouching position with
lowered head and elevated abdomen.

The Walknet started shifting the walker
body backwards after about 1000 iterations.
Later it would start oscillating.

2.4.1.2 Walking

The Akin controller (#9 W) produced
torques (see Fig. 2.7) that were only slightly
higher than the torques produced while
standing, the Ejoin controller (#3 W) and
the Walknet (#2 W) both produced much
higher torques, the Ejoin controller (#3 W)
performing slightly better.

The Walknet only achieved an average ve-
locity of 0.3 mm per iteration — half of the
default velocity. 0.3 mm per iteration is the
value to be expected from the sole action of
the Aamin module. When this module was
turned off, the walker would indeed not move
at all. Or rather, it would start shifting er-
atically and oscillating.

2.4.2 Crossing an Obstacle

The results are shown in Fig. 2.8. The data
shown in that figure was statistically ana-
lyzed. All data as shown was analyzed data
point by data point. The probability of be-
coming unstable was analyzed with the 2
test, the velocity data was analyzed with
the t-test. In the stability plots there is a
one percent error probability where the dif-
ferences between lines are about 0.06 for low
values, 0.11 for mid range value and 0.13 for
high values. In the velocity plots there is a
one percent error probability where the dif-
ferences between lines are about 0.02.
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The general result is that all controllers
can cross high obstacles with reasonable ve-
locity and a low probability of becoming un-
stable. The Ejoin controllers perform better
in most tasks than the Akin controllers. At-
titude anticipation is advantegous as imple-
mented in the Akin controller (#7, #9) and
ambiguous in the Ejoin controller (#4). An-
ticipative height control yielded ambiguous
results (#8, #9).

The Ejoin controller performs better with-
out the attitude anticipation (#3) except
for walking on plane ground after crossing
the obstacle — there the attitude anticipation
(#4) puts it in league with the Akin vari-
ants, while it performs much worse without
the extension.

The probability of becoming unstable
while ascending or descending an obstacle
is lowest with the Ejoin controller without
attitude anticipation (#3). Controller #3
performs the descending task on average a
bit faster than the other controllers, but is
slower when ascending or walking on plane
ground (in these tasks it is slower still, when
attitude anticipation (#4) is used).

The various Akin controllers cannot be
discriminated by their performance on plane
ground. However, both extensions (#7, #8,
#9) improve the performance (mean veloc-
ity and stability) when ascending the ob-
stacle. Attitude anticipation (#7, #9) also
improves the performance when descending.
The attitude anticipation (#7, #9) is ap-
parently more important than the anticipa-
tive height adjustment (#8, #9), yet both
improve the performance especially for as-
cending the obstacle. When descending the
obstacle, the anticipative height adjustment
(#8, #9) might even be disadvantageous.

The anticipative attitude controller in the
Ejoin controller (#4) performs better on
very high obstacles than on moderately high
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obstacles.

2.5 Discussion

Two novel controller designs for six legged
walking were presented in this chapter. Both
designs proved very performant at the dif-
ficult task of crossing very high obstacles,
a task that was to our knowledge not yet
solved by other hexapod walking controllers.
The basic modular layout of the Akin con-
troller is analogue to the layout of the
Walknet. Therefore, parts of the Akin con-
troller can be exploited as drop ins, when
other parts of biological models are to be
tested, since no reliable biologically inspired
subsystems exist for practically any part of
the walking problem.

The Ejoin controller may be the simplest
controller yet, that reliably solves the six
legged walking problem. It is therefore well
possible that such controllers form the ba-
sis of biological solutions. It however differs
from controllers assumed to exist in stick in-
sects in two aspects.

First, height control was found to contain
nonlinear characteristics [28|, which are not
included in the Ejoin controller but could
easily be implemented. Second, stick insects,
when walking, are assumed to use a mixture
of positive and negative feedback in contrast
to the simple negative feedback solution used
here.

Implementing both aspects might lead to
smaller torque values, and thus explain, why
torque values produced by the Ejoin con-
troller are higher than those found in free
walking stick insects (see below and tab.
2.2). The Ejoin controller lends itself par-
ticularly well to such modifications because
of its simplicity and robustness.

The general usefulness of anticipative
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Figure 2.8: Performance of various controllers when climbing up (“Ascend”, top plots) and
down (“Descend”, middle plots) an obstacle and for walking on plane ground after having
negotiated the obstacle (bottom plots). p unStab is the probability of becoming unstable at
least once when performing the according task (left plots), mean velocity is measured over
the whole task (right plots). Note that for the left plots lower values correspond to better
performance, whereas on the right side higher values mean better performance.

Error probability is 1% where the differences between lines are about 0.06 for low values, 0.11
for mid range value and 0.13 for high values on the left and where the differences are about
0.02 on the right (see text for details on statistical analysis).
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height and attitude control was demon-
strated for both controllers.

2.5.1 Torques

It is interesting to note that all controllers
(except for Ejoin with standard references
angles (#3 S)) optimize the torque distribu-
tion in the standing walker in comparison to
a system with fixed angles (#1 S) — even
though none of the controllers use any force
information.

In fact the Ejoin controller with reference
angles adjusted for standing (#5 S) is very
similar to the system with fixed joints (#1
S). The fixed joint system can be regarded
as an Ejoin controller where all gain factors
are one. When the gain of a proportional
controller (in this case the Ejoin controller)
is lower than one, the controller’s reference
value will only be approximated. Thus the
gains of the Ejoin controller introduce slack
into the system. Physics then “exploit” this
slack to minimize the system-energy. There-
fore it is not absolutely necessary to use force
feedback to optimize forces.

The same line of argument also covers
the optimization going on in the other con-
trollers: proportional controllers are used
with few exceptions in the Walknet (#2) and
the Akin controller (#9) as well.

The Akin controller (#9) constitutes a
rather good benchmark for torques in walk-
ing systems. The torques produced by
the Akin controller while walking are only
marginally higher than the torques it pro-
duces while standing. This small rise in the
torques can be explained by two factors:

1. The walker configuration changes con-
tinually during walking and will neces-
sarily include stretched legs at certain
times. These stretched legs contribute
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j(l)'%ﬁt front mid hind
o 0.2-85 0-26 1.8
6 | 7.8-11.3|14.4-21.9 | 35.6
v 0.1-6.7 1.7-5.1 6.8

Table 2.2: Peak torques measured at a
walking stick insect, reprinted from [19].
Unit is 107Nm.

unfavourable levers which explain part
of the increased torques — in particular
in the beta joints which carry most of
the walker’s weight.

2. The reference velocity control used
with the ThreshPorta coordination (sec.
2.2.1.2) continually changes the walking
velocity. This continuous acceleration
explains another part of the increased
torques — in particular in the alpha joint
which contribute most to acceleration
along the walker x-axis.

It should be noted that the torques the Akin
controller (#9 W) produces while walking
are a bit lower than the torques produced by
real stick insects (see [19]), while the torques
produced by the Ejoin controller (#3 W) are
much higher. For better comparability the
according results of [19] are reprinted here
(Tab. 2.2). Note that the torques reprinted
in Table 2.2 are peak and not mean values.
The Akin controller (#9) may be even closer
to the real insect when mean torques are
compared to mean torques.

The most obvious mismatch between bi-
ological and simulation data for the Ejoin
controller (#3 W) is in the alpha joints. The
insects produce rather low torques in the al-
pha joints.

Another observation made with stick in-
sects can also not be reproduced by the Ejoin
controller (#3): The insects are assumed to
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exhibit local positive velocity feedback in the
« and v joints [25, 73]. Superficial tests were
made to introduce positive feedback to the
Ejoin controller (#3) by simply adding pos-
itive and negative feedback signals for the
error signal. Application of artificial evo-
lution though, minimized the gains of the
positive feedback loops, indicating that this
approach is detrimental to walking velocity
and/or produced torques.

More elaborate local positive feedback
controllers (see [113, 112]) and a combina-
tion of positive and negative feedback (see
[33, 51]), that were modeled after the be-
haviour of stick insects, have already been
proposed. The Ejoin controller (#3) could
serve as a platform to test such propositions
in a six legged walker instead of the simple
systems tested until now (single leg / crank-
ing). If the « joint controllers (and maybe
the v joint controllers, as appears to be the
case in stick insects) of the Ejoin controller
(#3) were replaced with such more elabo-
rate controllers, the torque discrepancy be-
tween Ejoin and real insect might also van-
ish. The Ejoin controller is particularly use-
ful for such experiments because it is sim-
ple to implement, controls joints completely
locally (allowing the test of different con-
trollers for single joints instead of whole
legs), and is extremely robust against pa-
rameter changes.

Problems with positive feedback as
implemented in the Walknet

A close inspection of the torques produced
by the Walknet (#2) — that was specifically
designed to simulate the positive feedback
observed in stick insects, see [73, 27] — while
walking, revealed that the walking speed was
solely maintained by the a,,;, module of the
Walknet.
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Without the «,,;, module, the simple
positive feedback loop, as implemented in
the Walknet, does not maintain the desired
stance velocity. It has been shown that the
angular velocity of an elastic leg joint under
positive feedback control is proportional to
the amount of bending (torque) that occurs
in the joint [114]. This can be regarded as
an active compliance behaviour. Yet, active
compliance by definition relaxes the joint
bending and therefore deprives the joint of
the foundation for an ongoing stance move-
ment.

In order to recover the ability of maintain-
ing the initially imposed joint movement,
the stance module of the Walknet can be
equipped with a power controlled Local Pos-
itive Velocity Feedback (LPVF) controller
as introduced in [114, 112]. As has been
mentioned above, application of such a con-
troller might lead to smaller differences be-
tween simulation and biological results.

2.5.2 Crossing an Obstacle

The most surprising result of the experi-
ments presented here are the good obstacle
crossing capabilities of the Ejoin controller.
In this task it outperformed the Akin con-
troller in all measured criteria except for the
ascension velocity. The results concerning
velocity are particularly significant since the
Ejoin controller is notably slower on plane
ground than the Akin controller. One disad-
vantage should however be noted: as shown
in Fig. 2.8, bottom right, the velocity of the
Ejoin controller after crossing the obstacle is
more dependent on obstacle height than for
the Akin controller. This indicates that the
Ejoin controller takes longer to recover from
a disruption of the leg phase relationships.
The anticipative attitude control exten-
sion of the Ejoin controller (#4) is not un-
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ambiguously advantageous. The extension
as implemented here is rather sensitive to
optimizations. This is indicated by its bet-
ter performance when ascending very high
obstacle as compared to ascending moder-
ately high obstacles: as in all other con-
trollers it was optimized in an artificial evo-
lution where it had to cross an obstacle of
height 20 (see sec. 2.3.5). This is exactly
the obstacle height where the controller per-
forms best in the very high obstacle range.

However, the results of the Akin controller
tests show that anticipative attitude control
as observed by [115, 96, 45, 47| can indeed be
advantageous in both tasks (ascending and
descending), and that the problems of an-
ticipative attitude control in the Ejoin con-
troller are artifacts of the specific implemen-
tation in that controller.

The positive contributions of the antici-
pative height control to the ascending task
are comparable to the anticipative attitude
extension. But when descending, anticipa-
tive height control is of no advantage or even
detrimental. This is due to the fact that
this extension will raise the walker height
before ascending as well as before descend-
ing. While ascending this lowers the remain-
ing height between upper obstacle rim and
walker body, but when descending that level
difference is increased by the same mecha-
nism.

This behaviour might be improved by
changing the implementation of the antici-
pative height control. Instead of using the
square root of the variance of the individ-
ual leg heights, one could for example use
the difference between mean leg height and
mean target height.
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2.5 Discussion

Figure 2.9: The hexapod robot Tarry II
with elastic a and ~ joints and antennae.

2.5.3 Application to robots

The Akin controller has been used to con-
trol the hexapod robot Tarry II that has no
adhesive feet (see [112] and Fig. 2.9). In
this case the Akin controller was used to test
various coordination schemes (ThreshPorta
as explained in sec. 2.2.1.2 and the Cruse
rules as implemented in the Walknet, see sec.
2.1.3 and [27]) as well as the application of
artificial neural network based swing trajec-
tory generators. The Akin controller proofed
to consistently produce sensible stance tra-
jectories in these tests. It also turned out to
be easily parametrizable. Due to mechanical
constraints the tests were limited to plane
ground and low obstacles, though.

As shown above, the Akin controller com-
bined with ThreshPorta coordination and
adhesive feet has a low probability of becom-
ing unstable when crossing high obstacles.
While this poses no problems to insects, it is
critical for robots without adhesive feet: the
robot would topple in such situations, po-
tentially causing considerable damage to the
hardware.

StabPorta, a more reliable alternative to
ThreshPorta coordination, was presented in
chapter 4. It does not use the threshold T’
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(see sec. 2.2.1.2) to determine, if a leg may
be lifted, but lifts legs as soon as lifting will
not lead to unstabilities. It also lowers the
reference velocity or stops the walker when
unstability is impending. Thus a walker us-
ing StabPorta coordination will never be-
come unstable. However, using StabPorta
coordination does in some cases result in
lock up situations, where the robot would
not walk any further.

This dilemma could be resolved in two
ways: Either the robot is equipped with ad-
hesive structures at its feet (see [104, 72])
or the StabPorta variant is used and com-
bined with higher level control structures to
resolve lock up situations. Such higher level
structures could either plan ahead to find
suitable footholds / gait patterns in advance
(see [86, 94]) or it could kick in only after
the lock up occurs and resolve it by reorder-
ing leg positions one by one or by walking
backwards for one or two steps. The Akin
controller lends itself well to the combina-
tion with higher level structures since all de-
grees of freedom of the walker body are sep-
arately controlled and could be interfaced
with higher level controllers.

The Ejoin controller is currently not suit-
able for implementation on a robot. It pro-
duces excessive torques that may cause me-
chanical damage to current robots. This
might be resolved by introducing positive
feedback into the joint control loops as dis-
cussed above. Furthermore, the Ejoin con-
troller will frequently produce forces that
pull the walker toward the substrate. With-
out adhesive structures this would lead to
lifting legs in stance mode. This would
potentially disrupt walker stability and the
function of the controller, because it relies
on inconsistent effects of different legs can-
celling each other out. This could only be
addressed by adding adhesive structures to
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the robot feet (see [104, 72]) or by adding
some kind of force control loops. The latter
approach would however imply a thorough
redesign of the controller.

2.6 Acknowledgements

e Software for programming, simulating,
doing the math, the graphics and the
text of this chapter and software for
running above software was written and
made available free — thanks to the peo-
ple who did that.

e Holk Cruse inspired the work, kept it on
track and got this chapter in shape.

e This work was funded by DFG grant
Cr58/10 and EC-IST SPARK project.

T. Roggendorf



3 Angular-, Momentum-,
Non-relaxing- MMC; Dynamical

Weighting

MMC networks [29] provide a general ab-
straction for solving problems with extra de-
grees of freedom. In this chapter I propose
several extensions to the concept of “mean of
multiple computations” (MMC). First, “an-
gular” MMC networks which are based on
trigonometry rather than vector math sim-
plify many geometrical problems. Second,
the relaxation behaviour of MMC networks
can be tuned for better performance when a
“momentum” term is introduced. This can
be used to avoid local minima, has better
damping properties than the traditional ap-
proach, and might also allow the simula-
tion of dynamic processes with MMC net-
works. Third not least, a Posture Optimiza-
tion MMC network is introduced, that sim-
plifies the model proposed in [76] by orders
of magnitude. The realization of the Posture
Optimization MMC introduces three other
novel concepts: (1) an MMC that never
relaxes in the classical sense, (2) dynami-
cal weighting of computations and (3) dy-
namical damping. All extensions are finally
tested by applying them for a geometrical
body model of a multi-legged walker.

3.1 Introduction

Consider a four or more legged walker walk-
ing over very rough terrain. If the walker is

to climb up or down a high step it has to
stretch all its legs to the limit to accomplish
the task. Therefore, on sufficiently rough
terrain it is necessary to operate the limbs
and the actuators of the walker close to their
kinematic limits. Such a walker might be en-
dowed with sensors to identify terrain prop-
erties. Insects for example do have eyes and
antennae and robots might have any kind of
visual and/or range sensors.

The sensors can provide information
about where possible footholds lie but not
if these footholds can be reached. Decid-
ing this question is not trivial: Either the
foothold is in reach from the current po-
sition of the according leg’s shoulder joint,
or it might still be reachable if the body
were shifted to another possible position. In
this chapter a Posture Optimization MMC
is proposed that is capable to solve this kind
of task.

This model can not only be used to check
if a valid walker configuration exists for
given footholds, it can at the same time
also be used to optimize postures for given
footholds. Furthermore the results suggest
that the model might also be usable as an
indicator of dynamical aspects of such pos-
tures and of the process of assuming them.

The proposed model is based on a spe-
cial type of recurrent neural networks, the
so called MMC networks. MMC networks
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have been used for the control of mechani-
cal devices characterized by extra degrees of
freedom [29, 34|, for example redundant ma-
nipulators, or six-legged walkers |76]. Fur-
thermore, MMC networks have been pro-
posed to be applied for landmark naviga-
tion [32]. Those models are based on vec-
tor equations that can easily be translated
to recurrent neural networks. This chapter
introduces novel concepts that can simplify
the models significantly. Furthermore addi-
tional concepts are introduced that modify
the relaxation behaviour of MMC networks.

In the case of MMC networks being used
as a kinematic simulation of a six legged
walker [76], the model consisted of a com-
puter simulation of the body and environ-
ment of a six legged walker. This simulation
was used for the development of the con-
troller of a six legged walker [74]. The con-
troller — the “Walknet” — is essentially a feed-
forward model (reflex system). While even a
simple feed-forward model can show surpris-
ingly complex behaviour [10, 98] — when the
loop through the environment is utilized —
these reflex systems are nevertheless limited
to reacting to sensory input. When a reac-
tive system has to make a decision between
two or more paths of action, it cannot evalu-
ate the consequences in advance. In finding
a solution to complex problems feed forward
systems are therefore limited to trial and er-
ror procedures.

This is fine as long as the cost of perform-
ing actions is low. However, when finding a
solution to a problem would take too long,
or when the mechanical system is in danger
of being damaged during the trial and error
process, the application of internal models
of the manipulator and its environment con-
stitute a significant advantage[23, 31]. The
evaluation of different paths of actions us-
ing an internal model rather than the actual
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body might be much faster, is probably ener-
getically cheaper and certainly less danger-
ous.

Kinematic MMC networks can be used
to simulate states, i.e. given geometrical
body configurations. They can be used to
determine whether a given body configura-
tion is consistent with the geometrical and
mechanical constraints of the body. A ma-
jor advantage of MMC networks is that the
body configuration can be determined in
joint space, Cartesian space or any mixed
representation. MMC networks will find so-
lutions of under-determined or determined
problems and will find good approximations
for overdetermined problems. Furthermore,
MMC networks make it simple to describe
mechanical or other geometrical constraints.

In the earliest version [29] a multitude of
geometrical conditions have been applied to
formulate an MMC network. The later ver-
sion strictly relies on the application of vec-
tor equations. For the linear part of this ver-
sion a convergence proof was possible[122)].
This chapter proposes concepts to simplify
these models. The simplified versions are
used to build a complete geometrical body
representation. The model is divided into
substructures: the posture optimization net-
work represents the overall body posture in
relation to the available footholds and links
the sub networks, which represent the ma-
nipulators (legs) and their constraints.

3.2 Classical MMC

The basic idea of MMCs is that various vari-
ables (e.g. vectors forming a closed chain,
Fig. 3.1) can be linked by equations — the
value of one variable results from the val-
ues of other variables. MMC networks ex-
ploit computational redundancy. An MMC

T. Roggendorf



L3
p2!
1.+ /12

Ll

X

Figure 3.1: An arm consisting of three
segments represented by vectors L], L, and
Ls. The position of the end effector is de-
scribed by vector R. Furthermore, two ad-
ditional vectors 51 and 52, describing the

diagonals, are shown.

variable has to be computable from multi-
ple different equations. When the network
is not relaxed, different ways of computing
the value of a given variable can yield differ-
ent results. This was the case if the vectors
shown in Fig. 3.1 would not form a closed
chain. To approximate a solution, i.e. a re-
laxed state, the mean of all results for one
variable is computed, lending MMCs their
name: “Mean of Multiple Computations”.

In an MMC network variables are thus re-
dundantly linked through a matrix of equa-
tions. The classical example [34] for this
is an MMC network describing a three seg-
ment two dimensional manipulator (see Fig.
3.1). The model consists of 6 vectors. Two
of these vectors, D1 and Dg, serve the sole
purpose of yielding redundant equations to
get multiple computations for each of the
other more meaningful variables, that rep-
resent the manipulator segments L; and the
vector R pointing to the position of the end
effector. The variables in the MMC net are
the coordinates (x/y) of the vectors depicted
in Fig. 3.1. There are six vectors with two
coordinate values each, making a total of 12
variables in the network.
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To obtain multiple computations for each
of these variables all closed paths (Fig. 3.1)
with three edges' are expressed as vector

equations:
Ly + Ly — D, =0
Lo+ hy =Dy =0 g
L1 + D2 - R - O
Dy + Ly — R 0

Each of these equations can be rearranged to
yield each of the variables that occur in the
according equation (two equations fiand f,
for each variable):

i (L) = D = L
fi (L) = D - L
fi (L3) = Dy — L
N1 Eﬁg = E1 + EQ
fi D) = Ly + L;,
i (R) = Lo+ D (3.2)
fo (Li) = R — Dy
J2 Ez§ = D, — Iy
f» (Ls) = R - D
f EX; = R — L
o (D) = R - L
fo (]%) = 51 + L}

Note that this equation matrix can be
transformed into a weight matrix in this spe-

!There are 4 such paths in the graph, see Fig.
3.3. Note that in [35] the three possible closed
quadrangle paths through the vector graph were
also used. These paths are redundant though.
The resulting weight matrix is identical whether
triangle paths (Fig. 3.3), quadrangle paths or
both are used together. Using quadrangles the
equation matrices would become more compli-
cated, but the behaviour of the network would be
identical because the redundant equations cancel
each other.
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cial case of an MMC network: each compo-
nent (x/y) of each vector has to be calculated
separately, then. The resulting network will
have twice as many equations (or weights
respectively), the equation (weight) matri-
ces for calculating x and y values are identi-
cal though. By adding for example f; (fl)
and f, (L:) one gets f (fl) = Di=litR-Dp
Thus an equation ‘computing L requlres
four inputs from Dl, I:;, R and D2 and
each weight is 0.5 or -0.5. Corresponding
equations can be determined for all other
variables[121].

In the case of an equation matrix x/y com-
ponents can however be disregarded because
equations dealing with vectors make sense
without disassembling them into their com-
ponents. This chapter will not deal with
weight matrices (as used in [34]) but only
use equation matrices because concepts in-
troduced below cannot be easily translated
into weight matrices.

Running the network implies calculating
the complete equation matrix 3.2. For each
variable all equations are calculated and the
mean is taken as the value used for the vari-
able V' in the next iteration:

S V)
v = =l

n

(in our example n is = 2). If one wants to
calculate vectors L;, Lo, L3, that are con-
sistent with a given end effector position R,

one ?f:an set R and iterate the network un-

til ZEZ = R. While iterating the network
i=1
new values calculated for R by the net are
overwritten by the preset value of E. Or
equations for computing R are not used at
all, which is more efficient.
Additionally each equation ¢ for comput-
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ing variable V' can be associated with a
weight wy; so that some relations may be
more influential than others:

Zfz
Z Wy

wVi

MMC (V) = (3.3)

This is the general form for computing the
MMC equation array of one MMC variable
V. Note that the weights wy,; are different
from the weights referred to in the weight
matrix discussion above.

Depending on the kind of MMC network
and the problem to be solved, MMC net-
works might tend to oscillate [122]. Oscilla-
tions can be easily damped by adding equa-
tions that calculate new values for variable
V at time ¢ from V’s old value V,_q:

J3 (Vt) =

Variables with such damping terms tend to
keep their old values. This kind of damp-
ing is therefore called persistence through-
out the rest of this chapter. Combined with
weighting as explained above persistence can
be arbitrarily strong.

The MMC network described so far com-
prises a linear system that has the property
that the vector lengths for fq, f@, Eg are not,
fixed. That is a disadvantage when applied
to real world manipulators with fixed seg-
ment lengths. To keep the length of segment
i fixed to a given value /; one can simply add
another equation for each of Ll, Lz, Ls:

fi(L) =Ly

1

Vi, (3.4)

(3.5)

In addition, eq. 3.5 includes the damping
property of eq. 3.4 and can therefore be used
to replace it. Application of eq. 3.5 also
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illustrates another reason to express MMC
networks as equation matrices rather than
weight matrices: In the MMC version de-
scribed in [121] these nonlinear expansions
were described in the following way. The
network was divided into two parts, the lin-
ear vector part described above and a nonlin-
ear part calculating direct and inverse kine-
matics. Nonlinear constraints were hidden
in the nonlinear part. Instead, the equation
matrix version provides a more compact and
consistent description and is easily expand-
able since any constraints and transforma-
tions can simply be added to the equations
of the according variable.

Another disadvantage of the network de-
scribed so far is that the state of the seg-
ments fl, L;, Ly are expressed as Carte-
sian vectors while real world manipulators
are usually controlled in angle space. Ex-
plicit representations of angular values can
simply be achieved by adding variables for
angles between the segments. These angles
can be computed during each iteration. The
angle o between vectors Ly and L, could for
example be calculated from

L L
arctan ﬁly — arctan fy
Ly, Lo,

Additional equations for L, would then re-
sult from

n(n)= (7

To constrain the workspace of a an equa-
tion can be added:

fila) =

|L]
IZ.|

Lg cos o — L2 sin o
L2 sma+L2 cos

min 1fa < nuin
max ifa > max
a else

fa () = (3.6)

In Hopfield nets there is a simple and ele-
gant way to describe the state of the net-
work: the energy value[64]. Similarly, a
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scalar value can be introduced to describe
the actual state of an MMC network. For
this purpose, the network error, a measure to
which extent an MMC network has reached
its goal state after setting all target parame-
ters and constraints can be calculated in the
following way: For each variable V' its error
Ey is the standard deviation of all its equa-

tions: By = Z {f: (V) = M}?, where M is

the mean value calculated from eq. 3.3. The

network error is the sum of all variable errors
EZ‘Z

Eyvye =Y E;

i=1

(3.7)

This is related to the calculation of a har-
mony value used earlier [32]. When the net-
work error becomes zero all target parame-
ters (e.g. a vector R in the above example)
are consistent with the free variables and all
constraints are met. If the error does not be-
come zero but variables do not change any-
more, the network has reached its final state
allthough some constraints have nevertheless
not been met.

3.3 Angular MMC
networks

As described above, computing the MMC
net with all constraints and explicit angle
values requires the computation of the for-
ward and inverse kinematics in each iteration
in addition to all other equations. The same
goal can however be achieved with a yet sim-
pler network called angular MMC that is
based on trigonometric relations instead of
vector equations (eq. 3.1).

To this end triangles are used as illus-
trated in Fig. 3.2. The cosine rule defines
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Figure 3.2: An arm consisting of three
segments L1, Lo and L3 (compare to Fig.
3.1). The position of the end effector is de-
scribed by segment R. A triangle is drawn
into the polygon enclosed by Ly, Ly, Ls and
R. Three more triangles could be drawn
into the polygon accordingly.

the following relations in triangles:

a’*= b2+ 2+ 2bccosa
b = a’+ 2+ 2accos
= a?+b*+ 2abcosy

These equations can be rearranged to
yield the lengths of the sides of the triangle:

a= bcosy+ccosf

b= acosy+ccosa (3.8)

c= acosf+bcosa

, or to yield the angles of the triangle corners:

b—acosy + c—acosf

b
cosa = £
2
a—bcosy + c—bcosa
cos B = . 5 e (3.9)
a—ccos 3 b—ccos o
_ b + a
cosy = 5

Note that both eq. 3.8 and 3.9 could be sim-
plified, but MMC is about having everything
influence everything else, thus this form was

chosen.

In the following, equations 3.8 and 3.9
are used as the base equations to construct
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Figure 3.3: An arm consisting of three tri-
angles (compare to Fig. 3.2). All four possi-
ble triangles are drawn within the polygon.
Variable names are adapted to lowercase
(triangle side lengths instead of vectors).
Arm segment names are c(oxa), f(emur),
t(ibia). Angle names are Greek letters of
opposing triangle sides plus index because
each triangle side has two opposing angles
in two different triangles.
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Figure 3.4: Three angles from three dif-
ferent triangles of Fig. 3.3 drawn into one
diagram.

the angular MMC. As shown in Fig. 3.3 it
is possible to define four triangles enclosed
with the arm-target polygon. The target line
and arm segments have been renamed to ex-
press the change from vector MMC to angu-
lar MMC. The whole MMC network consists
of six length variables and twelve angle vari-
ables (Fig. 3.3). The complete equation ma-
trix consists of twelve equations to compute
lengths (eq. 3.8), since each length variable
occurs in two triangles and twelve equations
to compute angles (eq. 3.9).

The values calculated for the variables by
an angular MMC do not have to be consis-
tent with Fig. 3.3 even if r is kept constant
accordingly. The reason is that the relation
indicated in Fig. 3.4, e = 75 + ¢7 is not
enforced. The triangles will be inconsistent
in most cases and additional computations
are required to interpret the output of such
a network. It is however possible to simply
add such relations to the MMC network for
all according angles. In this example three
equations result:

E1= T+ @
To = &1 — ¢2 (310)
P2= £1— T

Similar equations result for the three other
corners of the polygon. Note that arc cosines
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and cosines have to be calculated in each it-
eration if eq. 3.10 are to be used. In that
case all triangles will be calculated by the
network to be consistent. However, inter-
preting the results of the simpler version of
the network (i.e. without eq. 3.10) once it is
relaxed, is computationally simpler than cal-
culating trigonometrical functions each iter-
ation (as required for using eq. 3.10).

Fig. 3.5 shows two examples for the relax-
ation process of an angular MMC with eq.
3.10. Fig. 3.5 b, d depict a case where the
target is positioned outside the workspace.
This means that there is no solution to the
problem. Nevertheless, the network “tries”
to approximate the target as good as possi-
ble. Note that the relaxation process would
be much faster with lower damping (see eq.
3.4). It was slowed down to give a better
impression of the process.

3.3.1 Discussion of angular
MMCs

The vector MMC was based on 12 vector
equations (eq. 3.2). Apparently the angular
MMC has more equations (12 length equa-
tions and 12 angle equations) than the vector
MMC. In addition the equations of the vec-
tor MMC are computationally simpler: they
are just sums as opposed to sums, products
and fractions in the former.

This is however only true for the lin-
ear version of the vector MMC. If segment
lengths have to be kept constant, the angular
MMC can be simplified by simply neglecting
the according length computations: the an-
gular MMC then consists of only six length
equations (two for each of r, d and e) and
twelve angle equations, whereas the vector
MMC becomes computationally much more
complicated since vector length computation
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Figure 3.5: Two examples for relaxation
processes of angular MMCs. a, b shows
the positional changes of the three arm seg-
ments. Starting configurations are indi-
cated by dashed lines, target position by
stars. c, d the corresponding time course
of the joint angles (see Fig. 3.3).

requires squares and roots.

A further advantage is that the angular
MMC already operates in angle space: there
is no need to compute kinematics each it-
eration as with the vector MMC. It is not
even necessary to compute cosines during
the iteration of the simple version (without
eq. 3.10) of the angular MMC — every angle
that occurs in the equations only ever oc-
curs as cosa. If the network operates in a
system where all angles are already encoded
as cosines the transformation never has to
happen. In biological systems this is rather
plausible since the controlled parameter of
the sensor/motor devices, i.e. the muscle
length, is — in the ideal case — proportional
to the cosine of the joint angle.

If signals on sensor or motor side are en-
coded differently, the transformation has to
happen only for setting the network up be-
fore starting iterations — e.g. to define a goal
state — and/or after the network is relaxed
for interpreting the result.

In one experiment the angular MMC
was also combined with the classical vector
MMC. All equations of the simpler version of
angular MMC (without eq. 3.10) were com-
bined with all equations of the linear part
of the classical MMC. The segment lengths
were used to link the two separate networks:
Length constraints (eq. 3.5) were used for
all vectors of the classical MMC (not just
the three manipulator vectors EZ) The de-
fault lengths [; were replaced by the length
values taken from the angular MMC, which
were variable for the diagonals and fixed for
the other segments. The vector lengths of
the diagonals in the classical MMC were ac-
cordingly used for calculating the lengths of
the diagonals in the angular MMC. The per-
formance of the network was similar to the
performance of the nonlinear classical MMC
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and the angular MMC with angle consis-
tency equations (3.4).

Numerical tests indicate that the angular
MMC has similar properties as the vector
MMC. It apparently finds solutions for all
points in the workspace. Workspace con-
straints can be simply added as equations
(similar to eq. 3.6). It also seems to always
approximate the best solution for points out-
side the workspace.

Other than the vector MMC the angular
MMC does have singularities where triangle
side lengths become zero. This can however
be circumvented by a simple procedure de-
activating the according equations. In that
case no values are computed by the affected
equation and the mean value is determined
by accordingly fewer equations. Due to the
redundancy built into the network it will
thus find solutions even at singularities. The
network can easily be extended to more seg-
ments by adding the according variables and
triangle calculations.

Extending the angular network to the 3D
case requires the computation of projections
of the triangles into planes adding consid-
erable computational complexity. However,
since the calculation of 3D kinematics are
also rather complex, the angular MMC is
still simpler than the vector MMC.

3.4 Momentum

Eq. 3.3 is the general form of the compu-
tation of an equation array of one MMC
variable. For better readability it is printed
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again? here:

n

Zfz‘ (V) wy;
MMC (v) = =

n
D> W
i=1

This equation is now extended to allow bet-
ter control of the dynamical behaviour of the
network:

Doy = (1= 1) (MMC (1) — v 1)
([Avt—l + Avto) (1 o F)
v = vy + A,

P
I

(3.11)
, where A,, is the change of variable v at
time (iteration) t and A,, , is the change of
v during the previous time step. Two ad-
ditional parameters are introduced: F' and
I. 0 < F < 1 describes a velocity depen-
dant friction. A,, decreases with higher F'.
The value 0 < I < 1 corresponds to some
kind of “inertia”. With larger I, A,, depends
more on A,, ,. This is actually called mo-
mentum. v will be constant in systems with
{I=1NA,, =0}V F = 1. Systems with
I = 0A F = 0 are identical to the classical
MMC (eq. 3.3).
Fig. 3.6 shows the relaxation process of
an angular MMC network with momentum.

3.4.1 Damping and stability

This section analyzes the damping proper-
ties of the momentum parameters [ and F.

Completely linear MMC networks do not
oscillate if equation weights are chosen ap-
propriately. In nonlinear systems the oscil-
lations depend on the kind of non-linearity.
A minimal MMC network, where the sole
MMC variable z is determined by f; (z) =

2Variable name V was exchanged for v since upper
case letters were used to indicate vectors.
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12 12

Figure 3.6: Relaxation process of angular
MMC with momentum. Inertia I (see text)
was set to 0.9 for all equations and friction
F was set to 0.05. No damping terms (eq.
3.4) were used. Dotted lines in figure a and
b show end effector trajectory (see Fig. 3.5
for details).

—23, illustrates the damping properties of I
and F. The equation weight of f; is 1. This
system will oscillate stably if 23 = z. This
is because the system will jump from —zx to
x in that case. When 2® > x the system will
build up oscillations. Otherwise it relaxes
to x = 0. By solving the equation 2® = x
it can be determined that the stable area is
-l<z<l

This area can be increased by applying
persistence terms (eq. 3.4). Inserting the
persistence term and f; (z) into eq. 3.3 we

can write the limit case as
3 —dx

1+d

=z (3.12)

, where d is the damping weight. Thus
the stable area of the damped system is
—V1+2d <z <1+ 2d.

To calculate the stable area of the same
system damped with inertia I and friction
F, the values of the limit case are entered
into eq.3.11:

r = —r+ (3.13)
(221 +(1-1) (" +2)) (1 - F)

For this equation it is assumed that the sys-
tem is currently (time ¢) at position —zx.
During the last iteration the system jumped
from x to —z thus A,, , was replaced with
—2x. Eq. 3.13 can be solved to

F(31-1)—4
r = I—1 -3
1—-F

F@EI-1)-4 g4
i.e. the stable area is — 11_—1717 <z <
F(3I—-1)—4

S i3 Fig. 3.7 visualizes the depen-

dence of the stable area on inertia and fric-
tion. It is only plotted for 0 < I, F' < 0.9.
The stable areaiscofor I =1V F = 1.
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Figure 3.7: Dependence of stable area
of simple momentum MMC system with
f1 (z) = —23 on inertia and friction . Ordi-
nate: size of stable area.

Inertia contributes more to the stability
than friction, which makes sense since fric-
tion lowers the velocity whereas inertia low-
ers acceleration. Thus while friction might
be said to damp the velocity, i.e. it consti-
tutes a first order damping, inertia damps
acceleration, i.e. it is a second order damp-
ing. Both combined though increase the sta-
ble area more than either alone.

To compare damping using the momen-
tum parameters / and F' with damping using
persistence (eq. 3.4), damping parameters
for both were calculated from above equa-
tions (eq. 3.12 for persistence and 3.13 for
momentum, each solved for the required pa-
rameters). It was then tested how long the
network takes to relax from z = Stabgﬂ
That value was chosen to prevent the net-
work from oscillating, because in that case
“lucky jumps” could take it quite close to
x = 0. The network was considered to be
relaxed if |z| < 1. Since damping parame-
ters for MMCs with momentum cannot be
calculated directly from eq. 3.13, two com-
binations were chosen: for one test inertia
and friction always had the same value cal-
culated from eq. 3.13, for the other friction
was set to 0.5 and inertia was calculated
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— Persistence
PR =F
---F=0.5

iterations

60 80 100
stable area

Figure 3.8: Comparison of relaxation
speed of simple MMCs (f () = —3) with
persistence and MMCs with momentum.
Abscissa shows the parameter {-stable area
< x < stable area} for which the damp-
ing parameters were calculated. Ordinate
shows the number of iterations it took the
model to relax from Stablearea ¢ |7 < 1,
For the I=F plot, inertia and friction had
the same value, for the F=0.5 plot friction
was always 0.5 and inertia was calculated.

from eq. 3.13. The results are shown in
Fig. 3.8. For F' = I, momentum damping is
only slightly more efficient than persistence
damping (both were >0.9 for all stable ar-
eas shown in Fig. 3.8). When F is kept at
0.5 and [ is accordingly higher, momentum
damping is much more efficient than per-
sistence damping. Numerical tests not pre-
sented here indicate that persistence damp-
ing may be mathematically identical to fric-
tion damping when inertia is kept to 0. This
was tested for the minimal MMC used above
and for an MMC that had the additional

equations fs (r) = —z and f3 (z) = —2°.
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3.4.2 Discussion of momentum
in MMC networks

Momentum in MMC networks, i.e. the in-
ertia parameter [, facilitates the adjustment
of the dynamical behaviour. As in other ar-
tificial neural network architectures it can
be used to heave MMC networks over local
minima should they exist. As indicated in
the next section, the momentum term can
also be used to better simulate dynamic pro-
cesses. It should be noted though, that such
a network will not correctly reflect Newto-
nian dynamics. It is presumably possible to
extend MMC networks to correctly simulate
such processes, but that is out of the scope
of this chapter.

The friction parameter F' is just another
way of expressing persistence damping (eq.
3.4) and provides another way to influence
the dynamic properties of MMCs.  Fric-
tion damping has two possible advantages
over persistence damping: It is independent
from weighting of MMC equations (as in eq.
3.3), whereas the value for persistence damp-
ing has to be adjusted when changing other
equation weights. And it is expressed in the
same way as inertia, which might render it
more intuitive.

Together inertia and friction provide a
more efficient way of damping MMC net-
works than friction or persistence damping
alone. Lower relaxation times were mea-
sured when inertia was used while the stable
area was identical. It is however not advis-
able to use inertia alone, because this will
yield a system with slowly decaying oscilla-
tions. Friction can accelerate the decay of
oscillations significantly, without negatively
affecting stability. It indeed even raises sta-
bility.

42

3.5 A Posture
Optimization MMC

3.5.1 The model

As mentioned in the Introduction, the main
goal of this chapter is to develop a body
model that can be used for posture optimiza-
tion and to find feasible postures for extreme
cases of foothold positions. The core of the
model is the optimization algorithm which
uses a built in optimal posture that it tries
to approximate (see [102]). The capability
of feasibility evaluation is achieved by intro-
ducing further constraints into the model.

Every foothold yields two equations for
the MMC, one for body rotation and one
for body translation (see Fig. 3.9). Two vec-
tors are constructed to yield these equations.
One vector F points from the current center
of the walker to the according foothold. The
other vector O points from the current cen-
ter of the walker to the optimal foothold of
that leg with respect to the current orienta-
tion of the walker body. The optimal posi-
tion is defined by the dotted lines in Fig. 3.9
(see also Fig. 3.14) following [102]. Only the
equations for the two dimensional case will
be presented here, but the model was also
tested in 3D. Body translation T (for both
2D and 3D cases) is given by:

T=F-0 (3.14)

Body rotation & (for 2D) is given by:

o AN o,
o arctan (ﬁz) arctan (61)

arctan (Sin o )

cos &’

(3.15)

To extend this equation for 3D cases, the
three rotation angles roll, pitch and yaw
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. N
\\ F \\T
T \ 1(} \\

(a) (b)

Figure 3.9: Posture optimization. (a) shows the walker body (central rectangle), the actual
leg positions (solid lines) and optimal leg positions (dashed lines). (b) shows figure (a) (grey)
and lines from the body center to the optimal leg positions (solid lines), lines from the body
center to the actual leg positions (dotted lines) and lines from the optimal leg positions to
the actual leg positions (dashed lines). For the middle left leg the line between optimal (solid
line, vector 6) and actual (dotted line, vector F ) leg position is marked as vector T which is
equal to F — O (see text), the angle between optimal leg direction and actual leg direction is
marked as angle «. Vector T is also shown shifted to the body center.
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have to be calculated from the same equa-
tion (3.15) with the vector components V,
and ‘7y chosen from the three available vec-
tor components to reflect the plane in which
the according rotation takes place.

Dealing with angular values requires a
technical extension: at some point & may
jump from —7 to +7 or vice versa. This can
lead to oscillations. To solve the problem a
case decision is introduced, where &' is the
result of eq. 3.15:

-
s oz/ zfozl>2

A x

T—a ifa <=3

&' else

(3.16)

o=

Using equations 3.14 and 3.16 for each leg,
an MMC network can be constructed for the
complete walker (see Fig. 3.9). The result-
ing MMC network has only two variables
being determined by multiple computations:
body rotation® and body center translation
vector* . For each of these variables one
equation results per supporting leg.

To compute this MMC network the actual
footholds F have to be computed every iter-
ation according to the translation and rota-
tion of the body. There are no multiple com-
putations for these variables though. The
foothold vectors are first shifted and then
rotated:

—

F, = F_,—T,

P ﬁmt cos —Qy  — ﬁyt sin —ay
¢ F:Bt sin —dt -+ Fyt COS —(jét
(3.17)

For the 3D case F’t can be computed by ro-
tation matrices:

F, = F,_yM(7) (3.18)

3or a 3D rotation vector for 3D cases

42D or 3D depending on the dimensionality of the
problem
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Figure 3.10: Relaxation process of a Pos-
ture Optimization MMC as described in the
text. Rotation refers to & translation is 7'.

, where M () is the rotation matrix of the
(roll, pitch, yaw) vector 7.

Fig. 3.10 shows the relaxation process of
a 2D Posture Optimization MMC network
with 4 footholds. No damping (eq. 3.4) was
used. Body center translation (T') takes only
one iteration, body rotation stabilizes after
2 iterations.

3.5.2 Constraints: Dynamical
Weighting

This network has a property that did not oc-
cur in any MMC network that has been pro-
posed until now: for most problems it will
never relax, i.e. the result of eq. 3.7 will
never become zero. The network is neverthe-
less very robust and yields good results while
being much simpler and faster to compute
than previously proposed MMC networks for
similar problems [76].

This model does however have the disad-
vantage that conventional MMC constraints
(e.g. eq. 3.5 or 3.6) cannot be used. The
reason for this is that the network does not
relax in the sense that traditional MMCs re-
laxed. It only reaches an equilibrium and
traditional constraints will shift that equi-
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librium toward the desired state. They will
however not enforce that state. To over-
come this problem novel constraints are in-
troduced that change equation weights (see
eq. 3.3). A Posture Optimization MMC
that operates on a real system will for ex-
ample have to deal with finite leg lengths.
In the context of the MMC described here,
the length of leg ¢ is given by the absolute
value of the leg vector L‘

To calculate L a vector S describing the
relative position of the according shoulder
joint is required. S vectors are a predeﬁned
part of the model like the O vectors. L is
computed as

L=F-§ (3.19)

To enforce the limited leg length max (i.e.

), the weights of those equations,

where F, occurs®, have to be dynamically
changed to achieve the desired states:

1 lf max
w; max fmax < max
max— |L;
max else
(3.20)

This dynamical weighting must be applied
to the corresponding equations for the calcu-
lation of T and it can also be applied to the
computations of &. Dynamical weighting in-
troduces non-linearities into the model that
lead to oscillations when |L| > ™. These
oscillations can be successfully damped us-
ing persistence (eq. 3.4) or momentum terms
(eq. 3.11) for the computations of T' and a.

Fig. 3.11 shows the relaxation process of
a length constrained MMC with dynamical

Shecause F‘z is the onlyq MMC wvariable involved in
the computation of L
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Figure 3.11: Relaxation process of a Pos-
ture Optimization MMC with a length con-
straint, dynamical weighting and persis-
tence as described in the text. See Fig. 3.10
and main text for further explanations.

weighting on T and a computations and per-
sistence. The damping was the same for all
computations: the damping weight was 50,
all other weights were 1.

The relaxation process takes much longer
than in an undamped Posture Optimization
MMC. The rotation in particular changes
significantly until iteration 30.

The optimal damping value depends on
the problem at hand. The damping value
for this experiment was hand picked. It is
close to the optimum for the given problem.
In picking a good damping value one has
to make a trade off between an acceptable
potential oscillation amplitude and network
relaxation velocity. Sufficiently high damp-
ing values eliminate oscillations completely,
but they also slow down the network signif-
icantly.

3.5.3 Dynamical Damping

To solve the problem of optimizing the
damping values for non-linear problems as
described above, damping values can be de-
termined dynamically. The damping weight

45



3 Angular-, Momentum-, Non-relaxing- MMC; Dynamical Weighting

wg, for a given MMC variable v (eq. 3.4)
is determined during each iteration after the
mean result for v was computed from eq. 3.3
using wy, as determined during the previous
iteration. The equations for calculating wy,
are

sc(xy) sign (—xpxy_q) (3.21
hr(x) = sign(z)x (3.22
li(x,) = Zla; —hr(li (zi_1)l)  (3.23

Way, = li(sc(MMC (v;) —v—1)) k (3.24
, where

sc(zy) is a sign change detector function
that returns 1, if the sign of iteration
t is different from the sign of iteration
t — 1, and 0 otherwise;

sign (z) is the signum function;
hr (x) is a half wave rectifier;

li (x;) is a leaky integrator that looses 0 <
[ <1 times its value during each itera-
tion — though the computation of li (z;)
appears to take longer for each itera-
tion, it can easily be implemented to
take the same time for each iteration;

k is an amplification scale that determines
the strengths of the dynamic damping
effect.

Eq. 3.24 increases the damping when sign
changes in the derivative of the calculated
value are detected — such sign changes indi-
cate oscillations. The damping will be in-
creased immediately, there is no time delay
as with low pass filtering. The longer the
system oscillates, the stronger the damping
will become — independently from the am-
plitude of the oscillations. Due to the leak
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Figure 3.12: Relaxation process of a Pos-
ture Optimization MMC with a length con-
straint, dynamical weighting and dynamical
damping as described in the text. See Fig.
3.10 and main text for further explanations.

in the integrator the effect will degrade over
time. This has the advantage that the sys-
tem can become fast again after damping
oscillations. It does however have the dis-
advantage that the system is frequency de-
pendent and only partly damps oscillations
with a sufficiently low frequency.

Fig. 3.12 shows the relaxation process of
a Posture Optimization MMC with dynam-
ical weighting and dynamical damping. The
value of the parameter k was 15, the value
of [ was 0.05 in this example.

This system starts with high amplitude os-
cillations which are quickly damped — after
about 5 iterations. The system relaxes no-
tably faster than a system with fixed damp-
ing optimized for the same task.

3.5.4 The complete model

The posture optimization MMC network
only represents the body posture in relation
to the footholds. Angular MMCs (section
3.3) can be used to represent the legs and for
example introduce angular workspace con-
straints into the complete body model.
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Figure 3.13: Relaxation process of
the complete model with four angular leg
MMCs (simple version without angle con-
sistency, i.e. eq. 3.10), a central posture
MMC, dynamical weighting and damping.
Abscissa shows iteration number, ordinates
show rotation and translation (differently
scaled).

Each leg network is linked to the posture
network by two variables. One variable — leg
length — passes information from the posture
network to the leg network. The other vari-
able — MMC error — passes information from
the leg network to the posture network. Leg
length in the posture MMC is ‘E‘ as com-
puted from eq. 3.19. In the angular MMC it
is the length of the radius r that enters into
equations 3.8 and 3.9. The MMC error of
the leg sub-network can be computed from
eq. 3.7. It enters the posture MMC as a
dynamical weight for computation of F; and
replaces eq. 3.20.

By using the MMC errors of the leg sub-
networks as dynamical weights in the pos-
ture network, effects of, for example, angu-
lar workspace constraints in the legs will au-
tomatically propagate into the posture net,
which mediates between the legs. Fig. 3.13
shows a relaxation process of the complete
model. For this plot simple versions of the
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angular MMC (without eq. 3.10 for angle
consistency) were used. The whole network
was dynamically damped (I = 0.1 in eq. 3.23
and £ = 20 in eq. 3.24). The complete
model is much less susceptible to oscillations,
when the leg networks are faster than the
posture network, thus the leg networks were
iterated twice for each iteration of the pos-
ture network.

3.5.5 Discussion

A Posture Optimization MMC is introduced
that solves a similar task as the one pro-
posed in [76], but is orders of magnitude
simpler and relaxes much faster. The net-
work proposed here solves a slightly differ-
ent problem than [76], though. The latter
would only relax to postures that are consis-
tent with given constraints (e.g. leg lengths
and/or joint work-spaces) and not optimize
the posture as the network proposed in this
chapter does. The network presented here
can however be used to solve the constraint
problem too, without optimization. To this
end one simply has to change eq. 3.20 to:

0 if | <
— ; £ max 7.
TR W— if5% < |L;| < max
1 else

, and not use computations of unconstrained
variables. The behaviour of the system will
then be similar to the one presented in [76].

The use of dynamical weighting shows how
computation weights can be used to serve
different purposes. Unsymmetrical equation
weights have been proposed together with
the earlier MMC networks [120]. The propo-
sition of a Posture Optimization MMC is
however the first work to demonstrate the
usefulness of computation weights in MMC
networks.
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The dynamical damping is in fact just an-
other instance of dynamical weighting since
the variables controlled by dynamical damp-
ing are computation weights — weights of
damping computations respectively. As in-
dicated by Fig. 3.12, dynamically damped
MMC networks are much more susceptible
to oscillations than systems with a high,
but fixed damping value. The reason for
this is that dynamically damped systems
start off undamped. The damping only
starts when oscillations are detected (eq.
3.21). The damping weights increase fast
and are then lowered (eq. 3.23) until a stable
state is achieved or until an equilibrium is
reached between oscillation induced damp-
ing buildup (eq. 3.21) and the damping
decrement (eq. 3.23). The overall effect is a
system that relaxes faster than systems with
fixed damping. At the same time dynami-
cally damped systems can be parametrized
to stabilize MMC networks against a broader
range of possible oscillations since dynami-
cally damped systems can successfully damp
oscillations of any amplitude (eq. 3.22). The
only problem that remains to be solved are
low frequency oscillations. These however
occurred rarely in the experiments and had
a low amplitude.

All concepts introduced in section 3.5 were
tested in 2D and 3D. 3D problems are more
susceptible to oscillations than are 2D prob-
lems. The reason is that oscillations in
one rotational degree of freedom can prop-
agate to other rotational degrees of freedom
when the roll, pitch, yaw convention is used.
These oscillations can however be tackled
with fixed or dynamical damping. All of
these concepts were tested each by itself and
in different combinations — without apparent
problems.

The Posture Optimization MMC was also
tested with momentum terms (section 3.4)

Figure 3.14: A mechanical posture op-
timization system. The central rectangle
depicts the walker body. Actual leg posi-
tions are indicated by solid lines and opti-
mal leg positions by dashed lines. This can
be considered as a wire frame mechanical
model where actual leg positions are con-
nected to optimal leg positions by springs,
which move the body to a “most comfort-
able” position.
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alone and in combination with other con-
cepts introduced in section 3.5; if e.g. dy-
namical damping is to be combined with
momentum, eq. 3.24 controls the friction
parameter F' of eq. 3.11. Such a system
behaves remarkably like a real world phys-
ical model as depicted in Fig. 3.14. This
indicates that MMC networks with momen-
tum might also serve as models for dynami-
cal processes. To verify this, one would have
to compare the proposed system with a real
mechanical model or at least with a dynam-
ics simulation of such a system.

The equation based nature of the model
may make it implausible that such a model
could also be used in biological systems.
However, in [110] it was shown that the com-
putations necessary for the basic model —
vector translations and rotations, see sec.
3.5.1 — can be implemented in artificial neu-
ral networks using population coding and
possibly also in real neural systems.

3.6 Conclusions

Several new concepts were introduced in this
chapter that extend the theory of MMC
networks significantly. All of these exten-
sions were demonstrated by specific exam-
ples. They are however not constricted to
these examples. Using these concepts MMC
networks can be implemented for solving
completely different problems.

The momentum concept can be used to
solve any problem that has local minima in
its state space. Dynamical weighting can be
used to introduce constraints into any MMC
system that does not relax in the classical
sense and probably has other applications,
too. Dynamical damping can be applied in
any MMC network that suffers from oscilla-
tions. Angular MMC networks can be used
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for simulating any multi segment manipula-
tor.

This chapter introduced novel approaches
to problems that have previously been mod-
eled with MMC networks. The novel ap-
proaches simplify the problems and extend
the available tools to model various problem
with MMCs.
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4 Comparing different controllers for
the coordination of a six legged

walker

This chapter compares four models for co-
ordination: the Cruse rules [27], two ex-
tended versions of a model based on ideas
by Porta & Celaya [100] and one model that
is based on the idea of MMC networks [122].
All models are capable of coordinating a six
legged walker on level terrain and of crossing
low obstacles. The experiments presented
here show that an MMC network for coordi-
nation is feasible and that the Porta vari-
ants, which are based on rather intuitive
ideas, show the best performance.

4.1 Introduction

4.1.1 Problem Definition

The problem of controlling the gait of a six
legged walker can be broken down into three
subproblems:

e Generating swing trajectories, in or-
der to move legs from the liftoff point
or posterior extreme position (PEP) to
the touch down point or anterior ex-
treme position (AEP) (that movement
is hence called protraction, see Fig. 4.5)

e Generating stance trajectories, to move
legs from AEP to PEP (that movement
is hence called retraction, see Fig. 4.5)

e Determining the positions of AEPs and
PEPs, i.e. deciding when to lift legs and
where to put them

As the last issue of this list contributes to the
coordination between the different legs, this
will be called the coordination problem in
this chapter. The solution of the coordina-
tion problem can become anything from triv-
ial to extremely complex, depending on in-
tended walking path (straight or more or less
curved), ground properties (even, sloped,
rough and/or patchy) and desired walking
performance (e.g. velocity and stability).

On even ground already very simple co-
ordination schemes can cope with straight
paths and all sensible stability and velocity
requirements [54, 16]. An often used ex-
ample is a simple oscillator that alternat-
ingly lifts three of the six legs [16], generat-
ing what is called a tripod walking pattern
[126, 56|, where three non-neighbouring legs
are lifted simultaneously. However, tripod
gaits could also be regarded as a special case
of wave gaits [126]. The latter are described
as a wave of swing movements running along
the body from rear to front [9].

The solutions to the coordination prob-
lem, that have been proposed in the past,
can be broken down into two broad groups:
fixed gait approaches and free gait ap-
proaches [80]. Gaits are referred to as “fixed”,
if internally produced recurring patterns are
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used for coordination.

The coordination schemes tested in this
chapter all belong to the free gait group — co-
ordination is generated by local rules, which
may lead to somewhat irregular patterns.
Free gaits have the advantage that they are
more flexible and can in principle cope with
more difficult situations. On the downside
the generation of free gaits is an accordingly
more difficult problem, because it is not ob-
vious how to guarantee body stability in ev-
ery situation.

Coordination schemes can also be classi-
fied based on their internal signal flow organ-
isation rather than by their use of pattern
generators - or lag thereof. The most com-
mon classification of implementations di-
vides coordination schemes into local rules
and global/central systems. If a system is
based on local rules, legs are lifted solely
based on locally available information - e.g.
the state of the affected leg itself, or at most
the states of adjacent legs. Global systems
can take the states of all legs into account,
when deciding about lifting one leg.

Advantages of local rules are their superfi-
cial simplicity and - leaning from that - their
simple implementation. The behaviour of a
system of local rules can however only be
predicted with difficulty. Therefore it is also
hard to design such a system to meet cer-
tain criteria (e.g. body stability). Systems
of local rules commonly generate free gaits.

The best tested system of local coordina-
tion rules is the one devised by Cruse [27],
which is based on six-legged insect walking.
Calvitti & Beer conducted a detailed analy-
sis of the system from a dynamical systems
perspective [17]. Due to the complexity of
the interactions between different local rules
and the mechanics of the walker, forming a
loop through the environment, only single,
isolated coordination rules could be analysed

52

as yet [17]. Kindermann tested the model
extensively in a simulation of a six legged
walker [75]. This allowed him to evaluate the
performance of all coordination rules being
active at the same time plus the coupling
with the mechanics of the walker through
the external world as well as the dynamics
of other controller components.

In this chapter I adopt Kindermann’s
ethological approach to system analysis, i.e.
the behaviour of the complete, rather com-
plex system is analysed and quantified. The
systems are run in a complex simulation and
the behaviour of the systems is observed.
This approach yields a statistical descrip-
tion of aspects of the observed behaviour
rather than a complete formal (mathemati-
cal) analysis. Instead of the thorough inves-
tigation of only one system, here I compare
the performance of four different coordina-
tion schemes, using the same testbed:

1 Cruse’s coordination rules,

2 and 3 two extended versions of a model
proposed by Porta & Celaya [100] and

4 anewly developed model, called the MMC
model.

All four belong to the class of free gait con-
trollers. The Cruse rules can be imple-
mented as local rules. The other coordina-
tion schemes can be mostly implemented as
local rules, but use and control a few global
parameters like retraction velocity that af-
fects all legs or global stability.

4.1.2 The Cruse model and the
Porta & Celaya model

Both the Cruse model and the Porta &
Celaya models determine the position of the
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PEP of a given leg by taking only parame-
ters of neighbouring legs into account. In all
models (including the MMC model) only the
x-component of PEP positions is used. Note
that the coordinate system for PEPs (and
other coordination parameters) is rooted in
the shoulder joint of the according leg.

Cruse’s model |27] uses default positions
for all PEPs. The local coordination rules
shift these default PEPs along the x-axis (see
Fig. 4.5). Cruse’s model as implemented
here introduces three coordination rules (see
Fig. 4.1):

1. The PEP of the affected (e.g. middle
left) leg is shifted backwards along the x-
axis (by 15 to 20 units depending on leg,
see tab. 4.1 for scaling of values), if the
ipsilateral posterior (e.g. hind left) leg
is protracting. This prolongs retraction
in the affected leg.

2. The PEP of the affected (e.g. middle
left) leg is temporarily shifted forward
(by about 3.5 units), if the ipsilateral
posterior (e.g. hind left) leg or the con-
tralateral (e.g. middle right) leg just
changed from protraction to retraction.
This shortens retraction in the affected
leg.

3. While the ipsilateral anterior (e.g. front
left) or the contralateral (e.g. middle
right) leg is retracting, the PEP of the
affected (e.g. middle left) leg is shifted
forward proportionally (by about -1 to
6 units depending on state of influenc-
ing leg). This shortens retraction in the
affected leg.

Legs are lifted, if the current position lies
behind the PEP thus determined.

In order to describe the model proposed
by Porta & Celaya [100], the term of neigh-
bouring legs has to be defined. According to
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the Porta & Celaya model, legs connected
by arrows in Fig. 4.1 (a) are neighbouring -
with the exception of the middle legs, which
are not considered neighbours. Thus each
leg has exactly two neighbours. According
to the Porta & Celaya model a leg is lifted,
if it has a higher lifting priority than both
neighbouring legs.

Lifting priority is defined in the follow-
ing way: Protracting legs have the highest
lifting priority (this implicitly means, that
neighbouring legs cannot protract simulta-
neously — the prime condition which Porta
& Celaya wanted to avoid). For retracting
legs, the lifting priority is negatively propor-
tional to the leg’s distance from its physical
PEP (the closer a leg is to its physical PEP,
the higher its lifting priority). The physical
PEP is determined by leg geometry (leg seg-
ment lengths). It is the hindmost point a leg
can reach in a normal walking position.

In [100] Porta & Celaya propose an opti-
misation on that model: As a shortcut for
“leg a has higher lifting priority than leg b”
we say a>b. Then if a>b>c>d, change pri-
orities to a>b<c>d - leg ¢ can be lifted in
spite of the original rule. Vice versa: If
a<b<c<d, change priorities to a<b>c<d -
leg b can be lifted. Since protracting legs al-
ways have higher lifting priorities than both
neighbours, the rule not to lift neighbouring
legs simultaneously is not violated. How-
ever, since farther neighbourhood relations
have to be taken into account, the model
is less local when using this optimisation
procedure. Without the optimisation, only
immediate neighbourhood relations are re-
quired for coordination. The optimisation
was used in the experiments presented here.

Note that in [102] Porta & Celaya pro-
posed to determine the lifting priority by
temporal parameters. In that paper they
also describe how they determine the ref-
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4 Comparing different controllers for the coordination of a six legged walker

Figure 4.1: This figure illustrates Cruse’s coordination rules. a) shows which legs influence
each other: arrows point from influencing to affected legs. The numbers refer to the enumer-
ation of coordination rules explained in the text (section 4.1.2).

b) illustrates how each influence works. Time is on the abscissa, the ordinate denotes x-
positions (see Fig. 4.5) of the tips of the legs relative to the long axis of the body. Higher
x-values indicate anterior positions. The dashed zig-zag line at the top shows the presumed
position of an influencing leg. During protraction the leg is moved forward relatively to the
body - the line ascends. During retraction the line descends. The solid lines below the num-
bers show the periods during the cycle in which the coordination rules are active. The three
dotted lines below illustrate, how each coordination rule shifts the PEP of the affected leg
away from the default PEP (marked 0 at the ordinate).
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Figure 4.2: Physical analogue of retrac-
tion trajectory control according to Porta
& Celaya [102]. An optimal posture of the
legs is defined (dotted lines). Each retract-
ing leg tries to minimise the distance from
its actual position (solid lines) to its posi-
tion in the optimal posture. The minimisa-
tion follows a gradient (indicated by springs
in the figure). The resulting translational
and rotational vectors are averaged to de-
termine the global movement vector for all
legs. Retraction in a given leg is achieved by
protracting other legs to new positions: legs
that step (protract) will shift their positions
forward (in front of their optimum), “drag-
ging” the body with them by minimising
their distances to their according optimal
positions once they reach the ground. Re-
traction velocity is thus determind by pro-
traction trajectory length. Curved walking
can be achieved by making protraction trac-
tories on one side of the body longer than
on the other.

4.1 Introduction

erence velocity (v,,.f, for a discussion on
retraction velocity control in walking sticks
see [37]). Their method is however closely
linked to their method for leg trajectory gen-
eration which I did not reproduce (see Fig.
4.2). Instead I propose an even simpler ap-
proach: as legs get close to their physical
PEPs, the retraction velocity v, for all legs
is lowered. The retraction velocity can reach
zero. This approach is somehow similar to
the one discussed in [102]. In the Porta
model one leg that approaches its physical
extreme will “stretch its spring” (Fig. 4.2)
exerting a backward force on the body, even-
tually halting retraction altogether.

Porta & Celaya designed their model for
the walker to achieve the highest possible
v,. | tested the models with different ref-
erence retraction velocities v, ,.¢. The origi-
nal model performs very poorly with low re-
traction velocities, since it lifts legs as soon
as possible. With low retraction velocity,
the PEPs are thus shifted very far forward
- eventually to positions shortly behind the
AEPs. This can lead to grave instabilities
(the centre of mass lies outside of the sup-
port polygon which would let the walker top-
ple in real world, see detailed discussion of
stability in section 4.3.2). Therefore I ap-
plied two different extensions to the model.

4.1.2.1 ThreshPorta

According to this version of the Porta &
Celaya model, its lifting rules were only ap-
plied, if the distance (D) of a given leg from
its physical PEP was smaller than a preset
threshold (7"). T was set to 5.0 length units
in our experiments (compare to mean step
size of 20 units, see table 4.1).

These parameters are used for calculating
the actual retraction velocity v,. Each re-
tracting leg proposes a “desired” global re-
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traction velocity accorded by v, = 2uv, . if
D < T, and v, = vy,es otherwise. The leg
with the smallest proposal determines the
actual v, pf.

4.1.2.2 StabPorta

The second extended version of the Porta &
Celaya model made use of the threshold T
for calculation of v, only. Instead of a sim-
ple application of the lifting rule of Porta &
Celaya, it was checked whether the walker
would become instable if that leg was lifted:
A leg is only lifted if the walker retained
static stability. Instability in this context
was reached if the stability margin (see sec-
tion 4.3.2) became < 0.5. Note that this
extension implies some planning ahead.

4.2 The MMC Model

4 2.1 Introduction

In addition to the above mentioned reactive
control systems, yet another approach to co-
ordination is introduced here that is based
on a “mental model” [31, 23, 75|. Certain as-
pects of the coordination problem are mod-
elled by linking essential parameters of co-
ordination by various equations. High level
constraints are then applied to some of these
parameters. Through the network of equa-
tions all parameters are calculated to be con-
sistent with the constraints and with each
other. The essential parameters, i.e., the de-
grees of freedom in the coordination problem
considered here, are the positions of AEPs
and PEPs and the protraction (swing) and
retraction (stance) velocities, v, and v,.

In this chapter, the MMC model is used
with high level constraints that prevent
neighbouring legs from swinging at the same
time. Theoretically the model should also

26

be flexible enough to comply with other re-
quirements of coordination and requirements
made by higher level structures [55] (e.g.
AEPs determined by patchy ground, prede-
termined protraction velocity, desired walk-
ing direction ...). The MMC model exploits
all remaining degrees of freedom (i.e. all pa-
rameters — AEPs, PEPs, velocities ... — that
are not determined by constraints as above)
to produce parameters that are consistent
with the requirements, regardless of whether
the problem at hand is under-determined or
not.

4.2.2 Introducing MMC
Networks

The problem of leg coordination is mod-
elled using “mean of multiple computations”
(MMC,) nets [122, 76, 35|. A mathematical
proof exists that MMC nets reliably produce
consistent results for under-determined lin-
ear systems [122]. Anecdotal evidence from
computer simulation suggests that MMC
nets can also cope with nonlinear systems
[76].

The MMC nets established and tested
by Cruse and collaborators, were modelling
kinematic systems, especially three degrees
of freedom actuators [122, 35] and an 18 de-
grees of freedom kinematic model of a stick
insect |76]. Recently, this type of network
was applied to simulate landmark naviga-
tion [32]. These MMC nets could be rep-
resented by asymmetric weight matrices of
recurrent neural networks with optional con-
straint characteristics in the recurrence loop.
The weight matrices were derived from vec-
tor equations describing the kinematic sys-
tem.

However, the MMC principle [35] does not
necessarily imply weight matrices. It re-
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quires a consistent set of equations that de-
scribe the subject-matter to be modelled.
Each equation is then calculated in each it-
eration. If several equations yield results for
the same variable, the mean is used. The
result is fed back to all equations for the
next iteration. Optionally the results can
be passed through constraint characteristics
[35], before being fed back. If all equations
for a given variable yield the same result, the
error for that value is zero. If the errors for
all variables computed by the network are
zero, the net is “relaxed” [35] and iteration
stops.

When calculating the mean of different re-
sults for the same value, each result (i.e.
equation) can be weighed [35]. If the sum
of all such weights is 1, then the weighed
mean of the different results is the sum of the
weighed results. To prevent oscillations, the
network can be damped. To damp oscilla-
tions of a given variable, last iteration’s value
for that variable also enters into the mean of
results for that variable [35]. Using weight-
ing of equations, heavy damping is possible.
MMC nets can easily be implemented in the
usual form of recurrent artificial neural net-
works, if all equations can be reorganised to
be sums of factors (i.e. weighed sums) of
the results of the other equations. This is
not true for the MMC-net introduced here,
since products and ratios are used.

4.2.3 Basic Equations

Coordination can be considered to be a prob-
lem determined in space and time. Many co-
ordination schemes explicitly determine spa-
tial parameters [100, 27, 50, 94, 85, 109]:
the positions of AEPs and PEPs. But one
of the most basic requirements on any co-
ordination scheme is that it prevents adja-
cent legs from swinging at the same time,
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because this would almost certainly let a
walker topple [100]. Therefore the coordi-
nation model proposed here explicitly repre-
sents time (see also [55]). Nevertheless, coor-
dinates for AEPs and PEPs are determined
in space and time. Spatial representation is
convenient, since it allows calculation of sta-
bility measures.

The MMC system introduced here estab-
lishes equations to calculate AEPs and PEPs
and other important parameters of coordi-
nation. All equations are linked in a MMC
network for the coordination of the whole
animal where the parameters determining
the state of one leg are propagated to both
neighbouring legs. Coordination is achieved
by imposing constraints on certain parame-
ters that relate neighbouring legs (Aij, see
below). This MMC network is related to
the kinematic MMC network described in
[122, 76] only in its use of the MMC prin-
ciple. It constitutes a novel application of
the MMC principle in a rather different con-
text. It is also the first time an MMC net-
work has been devised that cannot be repre-
sented as a weight matrix, because products
and ratios are used in the equations. The
following relations (see Fig. 4.3) are applied
to provide the basic equations that are used
to construct the MMC system (to simplify
the problem only the x-component (see Fig.
4.5) of coordinates was used):

For a given leg, the

e time to AEP ta and
e time to PEP tp
can be determined from
e the current position z,
e the aep coordinate,

e the pep coordinate,
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S legj ~

O aep

O pep
— = retraction
- === protraction

>

Figure 4.3: Illustration of ta, tp and Aij.
Coordinate system analog to Fig. 4.1 b.
Current leg position z (see Fig. 4.5) is
shown at time = 0 (ordinate). Dashed and
dotted lines show presumed positions of leg
¢ and leg j through time.

e the protraction velocity v, and

e the retraction velocity v,

The equations for computing ta and tp de-
pend on whether a leg is currently protract-
ing or retracting. As illustrated in Fig. 4.3,
we obtain

=P (4.1)
Up
aep —x  aep — pe
fp— 4P =T, aep —pep (4.2)
Up Uy
for protraction and
aep — pe x — pe
to= LR PP T DOP (4.3)
Up Uy
ip— TPP (4.4)
Uy

for retraction. In Fig. 4.3, v, and v, are
represented by the slopes of the dashed and
dotted lines.

o8

4.2.4 Relating Legs

Since coordination is about the relation be-
tween legs, a variable to relate two legs has
to be established: Variable A:j denotes the
time that passes between the occurrence of
the next AEP in leg 7 (at time ta;) and the
occurrence of the next PEP in leg j (at time
tp;; see Fig. 4.3):

Any too legs could be thus related, e.g. by
calculating Aih = ta; — tpy. However A
values are only calculated for neighbouring
legs in this model (h and ¢ are neighbours
as are ¢ and j but not h and j, i.e. Aij =
ta; — tpj, Aji = ta; — tp;, Aih = ta; — tpy,
and Ahi = tay, — tp; are calculated but not
Ajh = ta; —tp, or Ahj = ta;, — tp,); neigh-
bourhood is defined as in the Porta & Celaya
model: the middle left and right legs are not
considered neighbours, i.e. each leg has ex-
actly two neighbours (see section 4.1.2 and
[100]). The calculation of Aij depends on
whether the legs are protracting or retract-
ing. Inserting equations 4.1 - 4.4 in equation
4.5, one obtains:

1. if both legs 7 and j are retracting:

_ [ @epi — pepi n Li —pepi\ Tj — Pep;
Up Uy U

(4.6)
2. iflegi is retracting and leg j is protract-
ing:

_ [ aepi — pep; n Ty — Pep;
Up Uy

_ (aepj —Zj i aep; —pepj> (47)

Up Uy
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3. ifleg i is protracting and leg j is retract-

ing:
Aij = ta;—tp; = LT LT Py
Up Uy
(4.8)

4. The case that both legs ¢ and j pro-
tract simultaneously is not considered,
because it should not occur, if the con-
troller is operating appropriately.

4.2.5 Multiple Computations

The equations 4.6 to 4.8 as formulated above
can be used to calculate Aij. They can
however be reorganised to calculate any
other variable that occurs in these equations.
Thus the model could control any variable
that occurs in its equations.

In order to decrease the number of free
variables, the following assumptions were
made. The protraction velocity v, is as-
sumed to be constant. The retraction veloc-
ity v, could be variable, but was determined
separately (see section 4.2.7). The extreme
positions aep; and aep; could be controlled
by the model, but in our setup they were de-
termined by a targeting mechanism that was
also used with the other models tested (see
section 4.2.7). The current positions of the
legs, x; and x;, are given values. Thus, only
Aij, ta;, tpj, pep; and pep; remain as vari-
ables that are to be calculated by the MMC
model.

For the MMC principle to apply, multiple
ways to compute each variable are required.
The complete set of all equations used in this
model is documented in appendix A. The
equations for each variable depend on the ac-
tual protraction/retraction states of the ac-
cording legs, and have to be determined by
reorganising equations 4.6 - 4.8. For exam-
ple, the PEP of leg j, pep;, can be calculated
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by the following two equations, if leg 7 is pro-
tracting and leg j retracting (base equation
4.8):

.. aep; — &
pep; = (AU — L) (U

Up
pep; = (Aij — ta;) v, + x;

pep;in turn is used to calculate pep;: Reor-
ganise equation 4.6 or 4.7. Since pep; does
not occur in equation 4.8, pep; does not
influence pep; through this equations when
leg 7 is protracting and leg j is retract-
ing. In that case pep; is (among other re-
lations) determined by equation 4.7 with in-
dices swapped for the calculation of Aji:

_ aepj — pepj i .’L‘j — pepj
Up Uy

_ (a'epi — 4 acp; — pepi) (4.9)
Up Uy

Further, similar equations for computing
pep; (and all other variables) are available
by swapping indices accordingly for the cal-
culation of Aji in equations 4.6 and 4.8 and
from the relations of leg j to its other adja-
cent leg h: Ajh and Ahj (swap indices ac-
cordingly in equations 4.5 - 4.8). Thus pep;,
also enters the calculation of pep, — and vice
versa. That means each variable shows up
in the equation set of three legs. The actual
number of equations for each variable de-
pends on the protraction/retraction states of
the according legs, but redundancy for each
variable occurs in all possible combinations.
Please refer to appendix A for the complete
set of equations.

This set of equations allows to describe
the time of occurrence and position of AEPs
and PEPs from any given starting position.
Furthermore the delays between AEPs and
PEPs of neighbouring legs are given.
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Constraint(PEP)

5 N

PEP

Figure 4.4: Constraint function of ex-
ponential extremes. Coordinate origin is
min/min. See main text.

4.2.6 Constraints

As long as no constraints are introduced, the
MMC model will relax to the closest consis-
tent parameter set without respect to for ex-
ample kinematic stability of the walker. Sta-
bility can be ensured in most cases if two
neighbouring legs are prevented from pro-
tracting at the same time. Using the MMC
model this can be achieved by constraining
Aij values: A negative Aij implies that the
AEP in leg i occurs before the pep of leg j
- leg j begins protraction after leg ¢ finishes
it. Thus Aij values are constrained to be
negative in most situations (see below).

These high level constraints on Aij values
implement the actual coordination between
legs. Physical limitations concern the posi-
tions of peps. The peps must lie within reach
of the leg and — retraction being directed
backwards — should be behind the current
position of the leg.

To make the model fulfil these require-
ments, hard wired constraints and other
mechanisms were implemented. With these
constraints and mechanisms, the MMC
model should consistently produce coordina-
tion parameters, that lead to a stable gait of
the walker even in difficult situations. Dif-
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ferent types of constraints were plugged into
the recurrence loop of the MMC-network for
the PEPs and the A:j variables as described
in detail below.

The range of possible PEP-values is de-
termined by anterior and posterior extreme
values. The anterior extreme is the current
position x of the according leg. The pos-
terior extreme of the PEP range is a fixed
value determined by leg lengths:

Range of anterior extremes of PEP:
“Hard” limits are used. If the mean
value of all computations for a variable
exceeds this limit, the value fed back to
the equations is set to that limit.

Range of posterior extremes of PEP:
Soft limits formed by exponential
functions are used: the constrained
PEP value cannot fall below its
physical posterior extreme (min), only
converge to it: constraint(PEP) =
PEP + e HPEP=min) (oo fig 4.4),
where k is an appropriately chosen con-
stant. This approach yields a system
that can be regarded as a system of
pseudo springs, which looks for a good
compromise solution |76.

The constraints on the Aij values implement
the actual coordination mechanism for test-
ing the model. It forced Aij to be < 0, un-
less

1. both legs 7 and 7 were in stance mode,
and

2. the condition (z; — pep;) > (x; — pep;)
applied.

A negative Aij implies ta; < tp;, thus leg
1 reaches its AEP before leg j reaches its
PEP (Fig. 4.3). If this condition is always
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enforced, adjacent legs are prevented from
swinging at the same time.

For Aij values a “safe extreme” is used.
“Safe extremes” work much like hard lim-
its with an additional safety margin: Aijs
are set to —7 time units if they exceed —7
(compare to tab. 4.1, protraction/retraction
times). As the iteration cycles of the MMC
network proceed, the safety margin is de-
creased, until the hard limit —2 is hit — if
the network does not relax beforehand. This
“melting” of the safety margin is active from
iteration 100 until iteration 300.

4.2.7 Retraction velocity

The protraction velocity is kept constant at
v, = 1. The retraction velocity v, is set to
the default value v, s (see section 4.3.3), be-
fore starting to iterate the MMC net. This
value is maintained fixed during the first 400
iterations. v, is then decreased as iterations
proceeded, until the lower limit 0.1v,,.f is
hit - if the network does not relax before-
hand. v, is decreased during iterations 400
to 900.

If the network does not relax after another
100 iterations (1000 cycles total), iteration
is stopped. Whatever values are assigned to
the variables at that point are used for co-
ordination. The global reference retraction
velocity (vRef in Fig. 4.6) is 0.1v,,¢s in that
case.

4.3 Experimental Testbed

The MMC model for coordination was tested
on a simulation of a six legged walker and
its performance was compared to three other
coordination schemes.
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front leg length 32.9
middle leg length 25.6
Amiddle/hind legs 11.3
hind leg length 29.0
body length 27.1

body width 1.0
mean body height ~ 6.5

mean step size ~ 20.0
Up ~ 1.0
mean t, ~ 20.0
mean t, ~

Table 4.1: Geometrical measures in dis-
tance units and iteration cycles of the simu-
lated six legged walker I used for testing the
models. = indicates approximate equality.
Leg lengths is given for fully extended legs
from shoulder joint to the tip of the tibia. A
middle/hind legs is the distance from mid-
dle shoulder joint position to hind shoul-
der joint position. Body length is distance
from front to hind shoulder joint positions,
width is distance from left to right shoulder
joint positions (see Fig. 4.5). v, is protrac-
tion velocity, t, is protraction time. The
mean retraction time ¢, depends on the re-
traction velocity v, which is varied between
experiments. Protraction/retraction trajec-
tory lengths (step size) and velocities and
other mean values vary during walking and
are only approximations.
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aep, _- !
retraction

Figure 4.5: The figure illustrates an insect
leg and denotes the angular and coordinate
conventions used in this paper. Protrac-
tion and retraction trajectories are schemat-
ically shown by dashed arrows.

4.3.1 Controllers and Simulation

Since the four models discussed here
(Cruse’s coordination rules ([27] and section
4.1.2), ThreshPorta and StabPorta ([100]
and section 4.1.2) and the MMC model de-
scribed above (section 4.2)) only control co-
ordination, additional systems are required
to determine the AEPs, and to generate pro-
traction and retraction trajectories.

To control retraction velocity, the retrac-
tion trajectory controller compares the ac-
tual retraction velocity to a reference veloc-
ity (see Fig. 4.6). In the Porta & Celaya
models and the MMC model, the retraction
velocities are calculated by these models and
these values are entered into the retraction
trajectory controller as the reference veloc-
ity. Since the Cruse coordination mecha-
nisms do not influence retraction velocities,
fixed default velocities v,,.; as defined in
section 4.3.3 are used as reference velocities.

Protraction and retraction trajectories are
generated by analytical kinematic modules
(see chapter 2), i.e. delta angles are calcu-
lated from the current angles and from addi-
tional information (target angles in swing or
delta z (=height) and delta x (=velocity) in

o IR
target rotraction (

B arget p (x
e ) trajectory B

Ylarget

e a\
&:oordination-> selector —>a.B,y
J
p [
height retraction
OL’B’D_' negt "~ trajectory
. — 7/
height controller [}
hRef
VSe@ >
speed controller
vRef B,y

Figure 4.6: Common controller compo-
nents used with all coordination models.
For angle conventions see Fig. 4.5. vSens
is the sensed velocity, hRef the reference
height.
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stance). The AEPs are determined by a tar-
geting mechanism that is used for the gen-
eration of protraction trajectories (see Fig.
4.6): Hind and middle legs are aiming at
the current position of the according ante-
rior leg, the AEPs of the front legs are con-
stant. This method was first introduced by
Cruse [20] as a fourth coordination mech-
anism, and is justified through ethological
studies on stick insects [20]. Furthermore,
legs that hit the cliff of an obstacle during
protraction perform an avoidance reflex [38]:
the leg moves backward and up before con-
tinuing it forward motion.

To simulate the kinematics of the walker,
an MMC network is used which adopts
a completely different approach than the
MMC network implementing the internal co-
ordination model [76]. The kinematic simu-
lation is embedded in a simple environment
simulation, that allows walking over plane
ground and obstacles.

4.3.2 Stability margin

For evaluating the performance of the four
coordination models I introduce the “sta-
bility margin” as a measure. The stabil-
ity margin is based on the stability polygon
[9, 85, 102] and a special characteristic.
The stability polygon is the convex poly-
gon around all ground contact points. A
ground contact point is determined by a
leg in retraction mode touching the ground.
The centre of mass is assumed to lie be-
tween the middle leg coxae, projected into
the ground plane (the plane that is orthog-
onal to the gravity vector). The distance of
the centre of mass to the closest point of the
stability polygon is measured. If the centre
of mass lies inside the polygon, the distance
value is set to be positive, otherwise it is set
to be negative. If the centre of mass lies
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2.0f
1.5]
1.0]
0.5]

0.0]

stability margin

-0.5|

-1.0
distance CoM <-> SP

Figure 4.7: The stability characteristic for
three or more ground contact points (CoM
= centre of mass, SP = stability polygon);
see text for details.

exactly on a corner or edge of the stability
polygon, the distance is zero. [85] defines
a similar concept, the longitudinal stability
margin. For the longitudinal stability mar-
gin the distance of the centre of mass to the
boundaries of the support polygon is only
calculated in the direction of motion of the
centre of mass. The stability margin used
here gives a better measure since it calcu-
lates the smallest distance of the centre of
mass to any boundary of the support poly-
gon.

This distance value is mapped by a func-
tion that enhances resolution in critical sit-
uations and lowers resolution in “uninterest-
ing” situations (Fig. 4.7). If all legs are fully
extended and have ground contact, the dis-
tance reaches a maximum which is mapped
to a stability margin of 2 by the stability
characteristic. The mean distance during
walking on a plane is mapped to show a
stability margin of 1. The minimum (i.e.
the greatest negative) distance possible with
three ground contact points is mapped to -1.

The following extreme cases are not de-
picted in Fig. 4.7: When only two legs have
ground contact, the stability margin is de-

63



4 Comparing different controllers for the coordination of a six legged walker

termined by a linear function that maps the
distance of the centre of mass to the line con-
necting the two ground contact points, to lie
between -1 (if the centre of mass lies exactly
between the two ground contact points) and
-2. When only one leg has ground contact,
the distance of the ground contact point to
the centre of mass is linearly mapped to lie
between -2 and -3. If no legs have ground
contact, the stability margin is set to -4.

The stability margin is recorded along
with the walker’s body position (x/y posi-
tion of point between the bases of the hind
coxae, see Fig. 4.5) for each simulation iter-
ation of each run.

4.3.3 The Tasks
4.3.3.1 Climbing an Obstacle

The four controllers (Cruse, ThreshPorta,
StabPorta and the MMC model) are each
tested on the simulation of a six legged
walker. The task for all controllers is to
cross an obstacle that is approximately as
high as the shoulder joints (coxae, see Fig.
4.5) of the walker. It consists of an upward
step and a downward step that are separated
by a distance of 100 length units (this cor-
responds to about 4-5 normal walker steps,
see tab. 4.1). For each default retraction ve-
locity (see below) 10 trials are run. For each
trial, the x-position of the obstacle is shifted
by 2 length units. This has the effect that
the legs make first contact with the obstacle
at different points in their duty cycle, intro-
ducing randomness into the experiments.
The default retraction velocity v, is varied
systematical from v, = 0.05v, to v, = 0.6v,
in steps of 0.05v,. This means that the du-
ration of retraction is between 20 and 1.67
times longer than the duration of protrac-
tion. Thus 12 default velocities are tested,
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with 10 trials with shifted x-positions of the
obstacle each, summing to a total of 120
trials for each controller type. Since the
walker takes obviously longer to cross the
obstacle at lower velocities, the number of
controller /simulation iterations for each trial
depended on v,.

4.3.3.2 Curve Walking

Since the performance of the two versions
of the Porta & Celaya model can not be
discriminated in the obstacle climbing setup
an additional simple experiment is applied
(both remain statically stable at all times;
mean stability of ThreshPorta variant is
higher, but it turns out to be inferior to
StabPorta variant in the additional exper-
iment): The walker has to run on plane
ground with default v, = 0.7v, in a circle
with a diameter of about 3—4 body lengths.
When walking in a circle with such a diame-
ter, the retraction trajectories of all legs are
still directed mostly backward, but not nec-
essarily parrallel to the body long axis. Since
all models use x-coordinates of tarsi (in local
coordinate systems — see beginning of section
4.1.2), curve walking should pose no prob-
lems as a matter of principle.

4.3.4 Processing Time

In order to evaluate the computational com-
plexity of the models, each model was run
separately without any other controller parts
and without the kinematic MMC simulation
(see section 4.3.1). Inputs required by each
model was supplied by fixed reference values
which did not change during the whole test,
i.e. the walker did not move at all. For the
tests, parameters of a reasonable walker con-
figuration were chosen where all six legs had
ground contact.
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4.4 Results

Two tests were run for each model. One
test for each model lasted zero iterations.
This is required to account for the time
needed for module initialisation. The other
test lasted one billion iterations for the
ThreshPorta and Cruse models, 10,000 it-
erations for the StabPorta model and 1000
iterations for the MMC model. The num-
bers of iterations were chosen to make the
tests significantly longer than initialisation
time while keeping all tests in a reasonable
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All tests were run on Pentium IV system 28] - i

with 2.66 GHz clock cycle. The operating °¢1Susedescend o MMCdescend |
system was Linux version 2.4.22 (gcc version 107 §* I e =
3.3.2) . 0.8 IS,
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In these tests lock-up situations occurred
with all models at times. With all mod- T
els, lock-ups could for example occur when ] 1 }\ %%
a protracting leg hit the cliff of the obsta- ol P

. 0.6 ThreshPorta plane StabPorta plane
cle and perpetually performed an avoidance do 5 o os oo oz o ob
reflex, without ever reaching the top of the velocity velocity
obstacle. Since lock-ups occurred rarely and
with all models, such trials were excluded
from the results. For a discussion on avoid-
ing lock-ups see e.g. [85, 94].

The mean stability margin for the dif-
ferent default velocities was determined for
all four models in three distinct situations:
While ascending the obstacle, while descend-
ing from the obstacle and while walking on
plane horizontal ground some distance be-
hind the obstacle (Fig. 4.8). All measure-
ments from about one step before the walker
reaches the obstacle, until it is well above it,
were pooled in the “ascend” data. The “de-
scend” data were pooled accordingly. The

0.6 | ThreshPorta descend

|

Figure 4.8: Mean stabilities for all four
models, while ascending the obstacle, de-
scending from the obstacle and walking on
plane ground at different default velocities.
The standard errors of the mean values are
given as error bars.
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“plane” data were pooled from an equally
sized stretch behind the obstacle. Mean val-
ues and standard errors are presented in Fig.
4.8.

All models except the StabPorta model
tend to perform better at lower default ve-
locities in all situations. The StabPorta
model shows the worst mean performance.
The Cruse model also shows performance
problems when ascending or descending the
obstacle. With the exception of the Cruse
model all models show roughly the same
mean stability in different walking situation.
However, in all cases the mean stability was
positive.

Considering the performance of coordi-
nation models, apart from considering the
mean stability, it is useful to know how
likely they are to fail when performing a
given task. Toppling of the walker is a
good indicator for failure. In real world the
walker would topple when it becomes insta-
ble. Thus the probability of becoming insta-
ble when performing a given task was also
determined (see Fig. 4.9). For each run data
were pooled separately into three tasks (“as-
cend”, “descend”, “plane” according to mean
stability calculation above). If the stabil-
ity margin became negative (i.e. the walker
became instable and would topple in real
world) for at least one iteration cycle during
one task of one run, that task was marked as
“failed”. Each task was performed 10 times
for each model and each default retraction
velocity. If the model failed a task in one
out of ten trials at a given default retrac-
tion velocity, a probability of 0.1 results for
that model to fail the task at that default
retraction velocity.

The Cruse model only performs reliably
when walking slowly on plane ground. Its
performance worsens with higher walking
speeds. The MMC model has problems with
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Figure 4.9: Probability of becoming insta-
ble while performing different tasks. The
plots in the left and right column visualise

the same data, grouped differently.

Thus

the performance of different models in the
same situation (left), and for one model in
different situations (right), can be better

compared.

T. Roggendorf




ascending or descending the obstacle, par-
ticularly at low and high velocities. Neither
variant of the Porta & Celaya model ever
became instable.

The data plotted in Fig. 4.9 were also
used in Fig. 4.10 (left), but now showing
on the abscissa the spatial position of the
walker relative to the obstacle (x-positions
were measured at hind left shoulder joints).
For that figure the x-coordinates for each
walk were plotted in such a way that the
obstacle always begins at position zero and
ends at position 100 (abscissa). Each run
was then partitioned into x-position bins
(bin size 10 length units - about half a mean
step - see tab. 4.1 and Fig. 4.5). The left
side of Fig. 4.10 shows the probability for
the walker to become instable (compare to
Fig. 4.9 left).

If the stability became negative at any
point in a bin, that bin was assigned value
1.0, otherwise 0.0. For each default veloc-
ity each bin was set to the arithmetic mean
of all 10 runs of that velocity. The result-
ing 2D-distributions were smoothed with a
Gaussian-filter of width 10 bins (with an x-
position bin size of 10 length units this cor-
responds to 100 units in Fig. 4.10, about 5
mean steps or three to four walker lengths),
and then used in the plots (Fig. 4.10). No
smoothing was done in y-direction.

Note that the walker position was mea-
sured between the hind coxae (see end of sec-
tion 4.3.2). Thus instabilities can occur at
position before the obstacle (when the front
legs are climbing the obstacle).

Fig. 4.10, right shows the same stabil-
ity data with a different criterion applied: a
value of 1.0 was assigned where the stability
reached values < -1.0, i.e. where the walker
has ground contact with only two or less legs
(otherwise 0.0 was assigned). Having two or
less legs on the ground is here defined as a co-
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ordination error. Fig. 4.10 right thus shows
the probability to make coordination errors.

The performance of both variants of the
Porta & Celaya model is far better than
that of the other models under this measure.
Both Porta & Celaya models did not make
any coordination errors in these tests, and
retained stability all the time. With MMC
and Cruse model, instabilities mostly occur
while ascending the obstacle and while de-
scending it.

The MMC model also has some problems
at low velocities while the Cruse model tends
to fail at high velocities. The performance of
the MMC model is much better than that of
the Cruse model, but not quite as good as
both variants of the Porta & Celaya model.

Both with the Cruse and with the MMC
model instabilities seem to cluster at certain
positions in relation to the obstacle and in-
dependently from phase and velocity. The
first such cluster occurs when the front legs
hit the obstacle upward cliff. The second
cluster occurs when the middle legs hit the
obstacle upward cliff. The third cluster oc-
curs when the front legs step into the gap
after the downward cliff, the fourth and last
cluster occurs when only the hind legs re-
main on the obstacle. With the MMC model
the second and third clusters are very week
and do not occur at all retraction velocities.

4.4.2 Curve Walking

To discriminate between the two variants
of the Porta & Celaya model another ex-
periment was applied: Walking in circles
on plane ground at v,,.; = 0.7v,. Quali-
tative inspection shows the StabPorta vari-
ant which uses stability evaluation to deter-
mine PEPs to perform far superior as com-
pared to the ThreshPorta variant. Fig. 4.11
shows the results of this experiment. The
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Figure 4.10: Probability for the walker to topple over (left), or make coordination errors
(right). The upper plots show the performance of the Cruse model and the lower showsthe
performance of the MMC model. The results for the two variants of the Porta & Celaya model
are not displayed since they did not make any errors. The x-position of the walker is denoted
on the abscissa. The obstacle begins at position 0 and ends at 100. The default velocity is
denoted on the ordinate. Grey level shows the probability of becoming instable (left: white =
0, black = 0.5), or making coordination errors (right: white = 0, black = 0.25). Body length
corresponds to about 27 units (see table 4.1).
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4.4 Results

Cruse 2.5%107°
ThreshPorta | 1.7%107°
StabPorta 0.84 %1073
MMC 2.7% 1072

Table 4.2: This table gives the time in
seconds each model needs to complete one
iteration.

ThreshPorta variant was instable during 19
of 6000 iterations, while the StabPorta vari-
ant never became instable. Yet the mean
stability was about the same in both cases
(0.93) — compare this result to Fig. 4.8
where the StabPorta variant is shown to
have lower mean stabilities than the Thresh-
Porta variant without ever becoming insta-
ble (Fig. 4.9). The StabPorta variant keeps
the stability margin in a relatively narrow
band as compared to the simpler variant. It
also achieves a much higher actual walking
speed (mean 0.62v,) than the ThreshPorta
variant (mean 0.33v,).

Curve walking was also tested with the
other models. The MMC model produced
instable walker configurations in 64 out of
6000 iterations, the Cruse rules 1065. Mean
retraction velocity was 0.53v, with the MMC
model and 0.69v, with the Cruse rules (note
that the Cruse rules do not control retrac-
tion velocity). It is interesting to note that
with the MMC model all instances of in-
stable walker configurations occurred dur-
ing the first 1400 iterations while they were
evenly distributed over all 6000 iterations
with the ThreshPorta model and the Cruse
rules. This indicates that the MMC model
can reliably solve the curve walking problem
once it falls into an appropriate “rhythm”.
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4.4.3 Processing Time

The different values for processing time are
given in table 4.2. The ThreshPorta model
is the fastest. The Cruse model takes a
bit longer to compute but is still in the
same order of magnitude as the ThreshPorta
model. The StabPorta model takes two or-
ders of magnitude longer to compute and the
MMC model takes another order of magni-
tude longer to compute.

4.5 Discussion

4.5.1 Model Comparison

The extended versions of the Porta &
Celaya model yield the best results. Com-
pared to these versions, the original vari-
ant as published by Porta & Celaya [100]
is considerably less modular and less reli-
able. However, with the extensions pro-
posed here (StabPorta variant with stabil-
ity evaluation) it presents a reliable yet still
simple and efficient solution. In further
experiments similar to the ones described
here, I determined the impact of impor-
tant concepts of these models on perfor-
mance. Both Porta & Celaya models were
tested with/without the optimisations pro-
posed in [100] and with/without reference
velocity control. With both features turned
off both models still outperform the Cruse
rules and the MMC model. The optimisa-
tion has a minor yet measurable effect on
static walker stability, the reference velocity
control has a major effect. The optimisation
yields greater walking speeds - as claimed by
Porta & Celaya [100].

The performance of the new MMC model
by far exceeded that of the Cruse model.
This result was acquired with quite simple,
hard wired, hand tuned constraints, while
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the Cruse mechanisms used long tested char-
acteristics and parameters that were opti-
mised using genetic algorithms. This com-
parison is not really fair though, because the
Cruse model does not control retraction ve-
locity. In the introduction (section 4.1.1) I
defined coordination as the problem of de-
termining the positions of AEPs and PEPs.
The results indicate that the determination
of an appropriate walking speed should be
considered another important aspect of the
coordination problem.

The MMC model was outperformed by the
Porta & Celaya variants. This was unex-
pected because the MMC model has the ca-
pability to look ahead for one complete step
— a feature that sets it apart from the other
models. Certain aspects of the MMC model
might be improved, but only by introduc-
ing more complexity. Everything that could
possibly be achieved by the MMC model is
already achieved by the two variants of the
Porta & Celaya model tested here.

The StabPorta model which showed the
best over all performance is prone to a spe-
cial kind of lock-up: When a hind leg is near
its physical PEP and the neighbouring hind
and middle legs are close to their AEP, the
hind leg cannot be lifted without loosing sta-
bility. To cope with all possible lock-ups
purely reactive models will probably not do.
One has to either plan ahead quite some time
into the future (see e.g. [94]), or change tac-
tics when the lock-up occurs. If the latter
approach is to be taken the system has to
be quite flexible and be able to try many
different tactics — e.g. moving sideways or
stepping back and changing stepping order
and so on.
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4.5.2 Model Complexity

The results concerning the computational
complexity should be regarded qualitative
results rather than quantitative, since the
implementation of the models was not at all
focused on execution speed. The Thresh-
Porta and Cruse models should be con-
sidered to be of roughly equal complexity,
the ThreshPorta variant being slightly more
simple. Both the StabPorta model and the
MMC model are much more complex, the
MMC model probably being the most com-
plex.

Obviously the MMC model has to iterate
until it relaxes. For each controller itera-
tion, the MMC net has to compute dozens
of equations for tens or even hundreds of it-
erations. The processing time for the MMC
model varies with the number of iterations.
The model tends to take longer the more re-
stricted a situation is. This is not reflected
in the processing time tests.

The StabPorta variant also requires iter-
ative processes for determining the convex
polygon from the cloud of (ground-contact-)
points. The C++ code dealing with the geo-
metric and kinematic calculations in the im-
plementation of the StabPorta model, which
was used in the tests presented here, are par-
ticularly inefficient. The code also performs
more stability calculations than are strictly
required for the StabPorta model, because
the code is designed to be of general use.
In an implementation focused on execution
speed the StabPorta model would become
exponentially faster with each lifted leg. The
StabPorta variant requires all code from the
ThreshPorta variant be executed too. But
compared to the StabPorta model the exe-
cution time for ThreshPorta code is insignif-
icant.

The Cruse model has to perform a few
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simple calculations for each retracting leg.
Coordination rule 1 is a simple product, co-
ordination rule 2 consists of a delay, two low
pass filters and two products in the imple-
mentation used in this test and coordination
rule 3 consists if four thresholds and a couple
of sums and products.

The ThreshPorta model only has to com-
pare three values for each retracting leg and
determine the lowest value from all retract-
ing legs to determine the retraction velocity
with one multiplication.

In an implementation focused on execu-
tion speed both the Cruse model and the
ThreshPorta model scale linearly with the
number of retracting legs.

4.6 Conclusions

Several points could be made in this chapter.
It could be demonstrated that retraction ve-
locity control is an essential part of leg coor-
dination. A novel application of the MMC
principle on coordination is introduced and
demonstrated to perform more or less reli-
ably. Two coordination models were shown
to excel in the coordination model compar-
ison performed in this chapter: the Thresh-
Porta variant is the simplest model tested
and performs reliably under most conditions.
The StabPorta variant is still relatively sim-
ple (an inefficient implementation taking a
millisecond to compute on a contemporary
personal computer) while performing reli-
ably in all tested situations.

I thank the Deutsche Forschungsge-
sellschaft for funding this work by the
graduate program Strukturbildungsprozesse
(grant number GK 231) and DFG grant no.
Crb8/9-3.
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Appendix
A MMC Equations

This appendix contains all equations that
define the MMC model for coordination.
The equations listed below are all equations
for relating leg i and leg j (indices).

A.1 Base equations

The following four equations are base equa-
tions that occur in most other equations. In-
dex r indicates that the respective leg is re-
tracting, index p indicates it is protracting.
For saving space I only list the equations.
The concerning phase combinations can be
determined from the indices r and/or p.

aep; XT; — Pep;

tag () = U_ppepﬂr . (4.10)

tay, () = % (4.11)

i ()= 2= (@)

thp () = == 4 SR (413)
A2 Aij

Base relation between legs i and j (all phase
combinations):

Inserting equations 4.10 to 4.13 in equa-
tion 4.14 for ta and/or tp (according to
phase constellation, see indices p and r):

- tpjr () (415)
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Aij = tai () — tpjp () (4.16)
Aij = taip () = tp;r () (4.17)
Aij = ta;, () — tp; (4.18)
Aij = tag, () — tp; (4.19)
Aij = ta; — tp;, () (4.20)
Aij = ta; — tpj, () (4.21)

All of the following equations were de-
duced by reorganising the above equations.

A.3 ta and tp

ta and tp can be calculated from the base
equations above. They are also stored in
variables that are used directly in some equa-
tions. More equations for ta and tp result
from reorganising the Aij equations above:
ta; = Aij — tp,; from 4.14
= Aij — tpj, () from 4.20
= Aij — tpj, () from 4.21
ta; = ta; () from 4.10
ta; = ta;, () from 4.11

tp = ta; — Aij from 4.14
= ta; () — Aij from 4.18
= ta;, () — Aij from 4.19
= tpj, () from 4.12
= tp;p () from 4.13
A.4 pep;

To simplify the equations the following
helper function is used (for leg i in retrac-
tion). From 4.18 (with 4.10 inserted; 4.11
does not, contain pep;):
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aep;vy + v, — (Aij + tp) v,v,
Ur + Up

hipr (tp) =

(4.22)

pep; does not occur in equations where leg
1 is in protraction. Thus no equations for
pep; are listed for the according phase com-
binations.

Inserting the established expressions for
tp; we get:

pep; = hipr (tpjr () 4.12 in 4.22

pep; = hipr (tpjp () 4.13 in 4.22

pep; = hipr ( pj) 22

A.5 pep;

Two helper functions (one for leg j in pro-
traction and one for leg j retraction) are used
for the calculation of pep;. These are derived
from 4.13 inserted in 4.21 (4.23) and 4.12 in-
serted in 4.20 (4.24):

Pjpp (ta) = (Aij —ta + (aepj - xj) Up) [
(4.23)
hjpr (ta) = (Aij — ta) v, + x; (4.24)

Inserting established expressions for ta; we
get:

pep; = hjpr (tai, () 4.10 in 4.24

pep; = hjpp (ta; ())4.10 in 4.23

pep; = hjpr (tag, ())4 11 in 4.24

pep; = hjpepp (ta;) 4.

pep; = hjpepr (ta;) 4.

B aeps and v,

Equations for calculating aeps and v, are a
logical part of the model therefore they are
also listed here. They were implemented and
tested. They were however not used in the
experiments presented in this chapter.
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B.1 aep;

Two helper functions (see equations for cal-
culation of peps) are used for the calculation
of aep;, derived from 4.11 inserted in 4.19
(4.25) and 4.10 inserted in 4.18 (4.26):

(4.25)

hiap (tp) = (Aij + tp) v, + z;

. T; — Pep;
Riar (tp) = <A2j +tp— #) vy, + pep;
' (4.26)
Inserting established expressions for tp;

we get:

aep; = hiap (tpjr () 4.12 in 4.25
aep; = hiar (tpjp () 4.13 in 4.26
aep; = hiar (tpjr () 4.12 in 4.26
aep; = higp (tpj) 4.25
aep; = hiqr (tp]) 4.26

B.2 aep;

One helper function is used (for leg 7 in re-
traction) for calculating aep;, derived from
4.13 in 4.21:

(ta — Aij) v,v, + zv,. + pep;v,
Up + Up

Rjar (ta) =

(4.27)

aep; does not occur in equations where leg
7 is in protraction. Thus no equations for
aep; are listed for the according phase com-
binations.

Inserting the established expressions for
ta; we get:

aep; = hjar (ta; () 4.10 in 4.27

aepj = hjq (ta;) 4.27

B.3 v,

Since no retraction/protraction indices oc-
cur in the equations for calculating v, the
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according phase combinations are given for
once:
leg i protracting / leg j retracting

° U, = % 4.12 in 4.20

o v, = 2L 411 4192 in 4.17

Aijvp—aep;+x;

leg i retracting / leg j protracting

_ (wi—pepi)vp :
® Ur = Ry Fip,yo,—aepTrer: 4.10 in 4.18
_ __ (aepj—pepj)vp :
® Ur =~ (Rij—taJo,tacp, ) 4.13 in 4.21
___ (wi—pepi—aepj+pep;)vp :
® Ur = Riu—acpitpepitachs—; 4.10, in 4.13
in 4.16

leg i retracting / leg j retracting

_ (zi—pepi)vp :
[ ] e — . .
Uy FXTEE R r— 4.10 in 4.18

o v, = 5B 419 in 4.20

_ (mi—pepi—z;+pep;)vp :
® Ur = R aentpen: 4.10,4.12in 4.15

C More Redundancy

The above appendices list all equations re-
sulting from Aij = ta; — tp;,. The inverse
relation Aji = ta; —tp; yields another set of
equations like the one above (to get this set
of equations, swap all indices ¢ and j). That
doubles the number of ways each variable
can be calculated. Still only the relations be-
tween legs ¢ and j are accounted for. But all
variables of leg leg 7 also occur in equations
derived from the relation between j and its
other neighbour, k: Ajk = ta; —tpy, Akj =
tay —tp; (to get the derived equations, swap
indices accordingly). That means, the above
appendices list one quarter of the equations
that concern variables of one leg.
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5 Discussion

In this thesis several concepts have been
developed that allow to improve the control
of a kinematically complex body. The prop-
erties of these newly developed systems will
be discussed by describing their possible ap-
plications to future problems.

The systems presented in this thesis pro-
vide a viable base for a controller that com-
bines low level reactive modules for hexa-
pod walking (see chapter 2) with higher level
modules for motion planning (see chapter 3).
For the coordination problem the integration
of the reactive controller with a module that
performs implicit planning has already been
demonstrated (see chapter 4).

5.1 Future Works

With this solid development base several
possibilities for future research are simplified
or opened.

5.1.1 Reactive Systems

One important aspect of stick insect walk-
ing has been completely ignored in Walknet
studies until now — the role of the anten-
nae. Biological studies by Krause and Diirr
[78, 46| have provided sufficient data for in-
tegrating antennae into the Walknet sim-
ulations. The Walknet is however prone
to complex interactions between its parts.
When introducing new modules, unexpected
effects that are very hard to interpret are
frequently observed. The integration of an-
tennae would be vastly simplified, if the de-

velopment started with integrating the an-
tennae with the Akin (analytical kinematic
stance trajectory generation as proposed in
section 2.2.1) controller and ThreshPorta co-
ordination (section 4.1.2). Once the anten-
nae simulation works as intended with these
controllers, the various submodules can be
replaced one by one by their Walknet equiv-
alents.

The Ejoin controller — stance trajectory
generation with local joint controllers as pro-
posed in section 2.2.2 — can be used to
test the advanced positive velocity feedback
mechanisms proposed by Schneider [113,
112] and the integrated positive/negative
feedback mechanisms proposed by Fischer
and by Cruse et al. [51, 33]. Both ap-
proaches constitute models for the behaviour
of standing or retracting stick insect legs.

Since such tests would only concern stance
trajectory generation, instead of using origi-
nal Walknet modules, it would be sensible
to use the more reliable alternatives pre-
sented here — e.g. ThreshPorta for coordina-
tion as proposed in chapter 4 and kinemat-
ical targeting and swing trajectory genera-
tors based on analytical kinematics as pro-
posed in chapter 2. This would consider-
ably reduce the complexity of the develop-
ment task. Positive feedback as proposed
by Schneider only concerns the a and ~
joints. Therefor the Akin (analytical kine-
matic stance trajectory generation as pro-
posed in section 2.2.1) controller could still
be used to control the (3 joints. Thus, the
interference between retraction and height
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control as observed in the Walknet (see chap-
ter 1) could be minimized. As the develop-
ment of alternative positive feedback mech-
anisms proceeds, the kinematic controllers
could be replaced by Walknet variants once
the development has stabilized.

Research of stick insects frequently leads
to novel observations. Almost as frequently
the models derived from these observations
are tested in simulation studies. Several of
these studies could profit from the develop-
ment of the Akin and Ejoin controllers as
explained in the examples above.

5.1.2 Posture MMC as Attitude
Controller

The primary goal of the Akin development
was to have a reliable and predictable con-
troller which might be extended with plan-
ning modules, though. The integration of
these reactive and “cognitive” modules could
be approached in one of two ways: The Akin
controller could be used for all tasks until
problems are detected that cannot be solved
by the reactive controller. The planning
modules could then take over.

However, one of the most important argu-
ments in Cruse’s hypothesis about the evo-
lution of cognition [31] was that cognitive
properties must not necessarily have implied
the — evolutionary — development of com-
pletely new modules. Instead, Cruse postu-
lated that existing modules could be modi-
fied to use them for planning.

The posture MMC network as proposed
in section 3.5.1 constitutes the first MMC
network that could be used for control as
well as for modelling. In the proposed form
it optimizes the walker posture and could as
such already be used to replace the stance
modules of the Akin controller for all but
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the x-component, which controls the actual
retraction. In terms of implementation, both
systems — Akin controller and posture MMC
—would run in parallel in such a system. The
Akin controller would only be used to control
retraction, the MMC network would be used
to control all other degrees of freedom of the
walker body.

Retraction can in principle also be con-
trolled by the posture MMC (section 3.5.1).
The system might not even have to be
changed to achieve this goal. Porta and
Celaya proposed an alternative posture op-
timization algorithm [102|. In contrast to
the posture MMC the algorithm of Porta
and Celaya does not stem from the connec-
tionist approach, they do not explain if or
how constraints could be introduced to their
approach and it could not serve as a model
for sensor fusion and sensory motor integra-
tion as the MMC network can. However,
they show that their approach can still be
used for controlling retraction: while walk-
ing, legs are continuously moved from PEP
to AEP during the swing phases. Once these
legs reached their anterior positions, the pos-
ture optimization takes these legs into ac-
count and shifts the body forward to opti-
mize the posture, thus retracting the legs.

Since the MMC can replace the posture
optimization approach of Porta and Celaya,
it should be possible to use it for retraction
in the same manner without having to mod-
ify the MMC. It might however be advan-
tageous to shift the “optimal” posture back-
ward for stance trajectory generation. With-
out such a shift the resulting gait pattern
might dominantly use the anterior part of
the leg work space. To achieve this shift
with the posture MMC network, one would
simply have to change the vectors defining
the optimal posture (O in section 3.5.1) ac-
cordingly. Anticipative attitude and height
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control could be implemented in a similar
manner. In that case the actual target posi-
tions as determined by antennae or anterior
legs are taken into account to determine the
optimal posture in the anticipated situation.

When the posture optimization MMC net-
work is thus embedded into the reactive part
of the controller, it could not only serve as
a first model for how motion planning could
be achieved, it could then also account for
the above mentioned argument of Cruse —
namely that novel developments might not
be necessary in all cases, when evolving plan-
ning capabilities [31].

Furthermore it could account for the em-
pirical evidence that thinking is neurally
similar to acting (see chapter 1 or [68, 53,
71]) and for the inhibitory structures that
seem to block action execution while think-
ing (see chapter 1 or [106, 71, 59]).

5.1.3 Further Development of
Coordination MMC

Several new mechanisms for influencing the
dynamical behaviour of MMC nets were
proposed in chapter 3. This work has
been performed after developing the gener-
alized MMC approach which dispenses with
weight-matrix-based networks and after us-
ing that approach for the development of the
coordination MMC (chapter 4). Therefore
the coordination MMC network does not yet
use these novel mechanisms.

Instead, customized characteristics were
used to control various aspects of the dy-
namical behaviour of the network. Vari-
ous “hard” and “soft” extreme values were
imposed onto the system to constrain the
leg workspace. The dynamical weighting
of MMC variables as introduced in section
3.5.2 might constitute a better alternative
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to implement such constraints. That section
(3.5.2) explicitly demonstrated how to im-
plement constraints on MMC variables with
dynamical weighting. Dynamical weighting
would work similarly to the “soft extreme”
proposed in section 4.2.6 and could be used
to replace it.

To keep the dynamic behaviour of the net-
work under control in all situations, the co-
ordination MMC uses a mechanism that lin-
early raised the network damping while oscil-
lations proceeded. Dynamical damping (sec-
tion 3.5.3), which constitutes a significantly
more elaborate control mechanisms for the
network dynamics, will likely yield better re-
sults.

Since coordination is a highly nonlinear
problem due to the binary nature of leg
mode (swing versus stance), the state space
of the coordination problem will likely con-
tain local minima. The momentum mech-
anisms proposed in section 3.4 might thus
help to further improve the performance of
the coordination MMC.

Finally, the constraints that are used in
the coordination MMC network for intro-
ducing some kind of coordination (“safe ex-
treme”) are extremely simple. They merely
prevent simultaneous swinging of adjacent
legs and exceeding of the leg workspace. Us-
ing dynamical weighting might open the pos-
sibility to implement more elaborate coor-
dination rules, like the ThreshPorta variant
(sections 4.1.2.1 and 2.2.1.2).

5.1.4 Complete Integration

All systems discussed above should finally be
integrated. Since accurate motion execution
is essential after motion planning, the an-
alytical kinematics controllers as proposed
in chapter 2 should be used as the reactive
base system where posture MMC (chapter
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3) and coordination MMC (chapter 4) can-
not be used for motion control (i.e. for swing
trajectory generation).

The determination of suitable target posi-
tions for swinging legs could then be facili-
tated by evaluating the resulting postures for
possible footholds using the posture MMC
before executing the motion. When it be-
comes necessary to shift several legs for as-
suming another posture, the coordination
MMC can be used for evaluating different
sequences of the rearrangement in advance.

With such a system, elaborate planning of
most aspects of hexapod walking would be-
come possible. Once such a system is imple-
mented, two possible lines of further research
are possible.

The first way concerns the generation of
swing movements, at this point the only part
of hexapod walking not covered by “inter-
nal or mental models”. However, the serial
complexity of stick insect legs is rather low.
Cruse argued that serial complexity might
be the main factor that has led evolution to
evolve mental body models [31]. This the-
sis demonstrated that it can be sensible to
model parallel complexity as well, though.
However, swinging legs are not kinematically
coupled to the other legs — they constitute
open kinematic chains. Thus it might make
little sense to model aspects of swing trajec-
tory generation in detail.

The other possible line of research consid-
ers higher levels of behaviour. It has already
been demonstrated by Cruse that MMC net-
works can be used for solving navigation
problems [32]. Other behavioural problems
that could be approached in a similar man-
ner are for example decisions whether an ob-
stacle should be crossed or circumvented.

As mentioned above, all models of stick
insect behaviour currently implemented,
model aspects of parallel complexity. Serial
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complexity might however also be modeled
in the form of sequential behaviour. Such a
sequence might for example regard the path
the simulated walker takes from one point
to another. Modelled aspects might con-
tain various local landmark situations and
obstacles. Kiihn and Cruse proposed an
MMC network that can model sequential be-
haviour [81]. The actual behaviour consid-
ered in that work is language, though. How-
ever, the approach might also be suitable
for modeling other kinds of sequential be-
haviour.

5.2 Cognition

Discussion of problems of cognition on the
one hand and control of stick insect walking
on the other hand appears to comprise very
different domains. This thesis is not actu-
ally about cognitive capabilities of stick in-
sects, though. The work on motion planning
was inspired by research on human arm mo-
tion (see Cruse et al. |22, 26]). The choice
to implement Cruses’s ideas about motion
planning [31] on top of the Walknet rather
than on top of an analogous controller for
human arm movement is a practical one:
While work on modeling human arm control
has just begun (see Hartmeier [62]), research
on modeling stick insect walking is going on
for decades and has already resulted in ad-
vanced controllers like the Walknet.

However, if the propositions of the first
part of the Discussion were to be realized,
what would this imply? Would such a
project actually be the implementation of a
cognitive entity? Before attempting to an-
swer that question, a couple of theoretical
concepts have to be introduced:
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5.2.1 Models

Modelling may address different levels and
aspects. The Walknet is a computer model
of the controller supposed to enable stick in-
sects to walk. A dynamics simulation of a
stick insect and its environment is used to
test the Walknet. This dynamics simulation
is a model of the stick insect’s mechanics and
its interaction with its environment.

On the one hand, when analysing the stick
insects mechanics, physical laws have to be
applied. On the lowest level one might have
to analyze the forces between atoms, apply-
ing laws of relativity and quantum mechan-
ics, presumably though, Newtons laws will
suffice for the purpose of this work. When
the original stick insect controller was an-
alyzed, one had to deal with chemical and
electrochemical phenomena.

On the other hand, when analyzing the
Walknet and the dynamics simulation, one
has to deal with mathematics and program
code. Everything comes down to zillions of
transistors having one of two possible states.
How are these two phenomena — the real in-
sect and its simulation — related?

If the simulation is indeed a valid simula-
tion of the stick insect, the short answer is:
Insect and simulation share a similar causal
topology as will be explained below.

5.2.1.1 Causal Topology

Causal relationships have two or more ele-
ments: at least one cause, the subject of the
relationship, and one effect, the object. A
billiard player hits the white ball with a cue.
In this case the system billiard player/cue
become the subject of a causal relationship
with the white ball, the object. The bil-
liard player is, presumably, not utterly inapt
and the white ball will consequentially hit
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another ball, thus becoming a subject in a
causal relationship itself ... and so on. Each
element of the billiard game is a node in the
network of the causal relationships inherent
in the game. A formal description of this
network is given by the causal topology: an-
alyzing the connections between the nodes.

A good computer simulation of a billiard
game will have a similar causal topology as
the game itself. Hopefully the Walknet has
a similar causal topology as the neural net-
works in the stick insect that are responsible
for generating its gait. As long as the causal
topology is similar, it is irrelevant if the ac-
tual implementation relies on artificial net-
works — which in the Walknet are for a good
part trained by back propagation to emu-
late kinematics computations — or directly
on the computation of kinematics. The im-
plementation as artificial networks may have
the advantage of being more convincing to
other researchers, in particular to neurobiol-
ogists. But it has numerous disadvantages,
too: it is very hard to adapt the artificial
networks to new walker geometries; it is not
easily testable, whether the implementation
is correct, since weight matrices are not an-
alyzable with simple mathematics; the func-
tionality of the networks is very hard to ex-
tend.

Since the implementation as artificial neu-
ral networks has already been demonstrated
to be feasible, there is no reason to choose
such an implementation for further research.
The development of the Akin controller
would have taken much longer, had it been
done using artificial neural networks. The
same is true for the posture- and the coordi-
nation MMC networks.
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5.2.1.2 Systems

There is a fundamental difference between
a billiard ball, the game of billiard, the
Walknet and the posture MMC network.
This difference is found in the very nature
of the causal topology of each of these phe-
nomena.

The causal topology of a billiard ball is
very structured, very constant and very sim-
ple. When a billiard ball is hit by another
ball, the shock wave will pervade the hit ball
in easily predictable ways. The ball reacts
similarly to identical inputs and its causal
topology is unchanged, if it is not hit too
hard. Note that the actual structure of the
ball (the exact arrangement of its constitut-
ing atoms) will probably change a bit over
time. However, the actual structure of its
causal topology will be rather constant. The
possible range of the ball’s reactions to vari-
able inputs is very limited and governed by
few simple rules, i.e. its causal topology is
rather simple.

Like its balls, the game of billiard has a
relatively simple causal topology — it can
be completely described by a few basic laws
and the coordinates of the constituting balls.
But quite opposed to its balls the game’s
causal topology is volatile, i.e. the causal
topology is unstructured (at least after the
first shot) and changes from shot to shot,
because the coordinates of its balls change.
The game will never (or rather extremely
rarely) react similarly to the same input (cue
motion).

The causal topology of the Walknet,
though, is very constant. It will always react
similarly to identical inputs in most cases,
since previous states of the Walknet play
only a very minor role. The reason for this is
that information in the Walknet flows mostly
into one direction: from sensors to motors.
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The Walknet’s reactions to variable inputs
follow relatively complex rules, i.e. it has a
complex causal topology. I call phenomena
with relatively complex and constant causal
topologies “systems”.

The posture MMC network also has a
rather constant causal topology. However,
its actual reactions to inputs are governed
by internal states as well as by inputs. The
reason for this is that information is flowing
into all directions in this system, not just
from inputs to outputs. Such loops in the
causal topology are a prerequisite for a sys-
tem to establish a model about itself. Like
the Walknet, the posture MMC has a com-
plex causal topology. The posture MMC has
another distinguishing property: Its causal
topology can change due to varying inter-
nal states. But it has attractor topologies
to which it will always return to when dis-
turbed.

5.2.2 Perspective

At any position in space there is only a lim-
ited set of information available. Examples
are: properties of a medium at the position
(temperature, sound waves, chemical tex-
ture) and electromagnetic waves crossing the
according position. The actual set of avail-
able information at that position determines
the respective perspective. This also means
that a perspective must exist for any posi-
tion in space and thus for any system.

5.2.2.1 Egocentric versus Allocentric
models

Any system as defined in section 5.2.1.2 (ex-
cluding the universe as a whole which might
or might not be a system according to that
definition) must have a given perspective.
As discussed above, “perspective” is defined
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by the set of information that is available
to the system. According to the definition
of “system” given in section 5.2.1.2, models
of systems are themselves systems (or sub-
systems respectively). When considering the
perspective of models, two forms of represen-
tation can be distinguished. These forms are
called “egocentric” and “allocentric” model
throughout this discussion.

Egocentric models have also been called
“implicit models”, “lookup tables”, or “re-
active models” (see Cruse [31]). Egocen-
tric models do not abstract the underlying
mechanisms of the modeled systems from
the sensory information that is used to con-
struct the model. They will usually merely
model the stochastics of sensory informa-
tion. That means that stimulus configura-
tions are mapped to certain responses, with-
out abstracting the causal topology of the
phenomenon that causes the stimulus. Ex-
amples are

e associative memory modules. In a given
stimulus situation such modules will re-
trieve information that was previously
recorded in similar stimuli configura-
tions.

e heteroassociators that will produce a
previously learned response to a given
stimulus configuration. Like associative
memory, heteroassociators can for ex-
ample be implemented as Perceptrons
(see Rosenblatt [107]) or Hopfield net-
works (see [64, 65]).

e Tani proposed networks that contain
specialized sub-networks to predict the
output of other sub-networks [123]
(Tani uses Jordan networks that might
be described as asymmetric Hopfield
networks with refined architecture).
These predictors then gate the activity
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of the other sub-networks and can thus
be regarded to make behavioural deci-
sions. The predictors can be regarded
as egocentric self models.

In contrast allocentric models model the ac-
tual rules governing the observed behaviour
of the modeled phenomena. They have a
similar causal topology as the modeled phe-
nomenon. An example for an allocentric
model is the classical MMC network that
models a three segment arm (see Steinkiih-
ler and Cruse [122]). This network models
the kinematics of the manipulator indepen-
dently from the observer’s perspective. The
causal topology of the underlying vector sys-
tem is expressed in the equations that are
underlying the network’s weight matrix.

One application of this network is the
translation of the joint angles of the manip-
ulator into the Cartesian coordinates of its
tip. The same transformation can for ex-
ample be computed by the height-net sub-
system of the Walknet. The height-net is
a feed forward network that is trained by
back propagation to approximate that ex-
act transformation. However, the height-net
has just the three angles as inputs and only
the z-coordinate as an output. It constitutes
a heteroassociator, that was trained to ap-
proximate the according mapping function.
The training is susceptible to over-training
and other adverse effects known to compli-
cate the application of artificial neural net-
works. Only when the training is very ade-
quate, the mapping will be a good approxi-
mation. With its defined inputs the height-
net can be said to be adapted to a certain
perspective from which it can not generalize.
More importantly, the weight matrix of the
height net merely reflects the stochastics of
the training stimuly rather than the under-
lying mechanisms.
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The MMC network can be used to cal-
culate the inverse transformation as well as
any mixed form, and it can even model con-
straint angle- or Cartesian work-spaces and
approximate solutions, when the requested
transformation is impossible under the given
constraints. The MMC network can thus be
said to be a general — allocentric — model
of the manipulator, while the height-net is
an egocentric model that can only yield the
stimulus response for which it was trained.

This example was chosen to make the dif-
ference as clear as possible. The dichotomy
into egocentric and allocentric models might
be artificial, though, or rather the bound-
ary might be blurred. It seems likely that
the evolutionary oldest models were egocen-
tric. Evidently though, allocentric models
exist, at least in humans — most prominently
demonstrated in science. According to evo-
lution theory any development is continuous.
Therefore egocentric and allocentric models
are probably the extremes of a continuum.

5.2.2.2 Manipulable Allocentric Models
and Cognition

Allocentric models have a big advantage over
egocentric models: Any of their parameters
can be manipulated and the remaining pa-
rameters adjust into a configuration that re-
flects the underlying rules. While egocentric
models can only be used to test rather spe-
cific stimuli that have to be in accordance
with the perspective for which the model
was build, allocentric models model the ac-
tual causal topology and can therefore be re-
garded as general problem evaluators for the
phenomena they represent.

Thus allocentric models are an important
prerequisite for cognition (see Cruse [31]).
Yet allocentric models like the three segment
manipulator MMC network (see Steinkiihler
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and Cruse [122]) are not sufficient for cog-
nition. Such systems can merely be used to
evaluate the effects of given parameter con-
figurations. According to Cruse such eval-
uation takes place in the course of probe-
handeln (i.e. imagining an action without
actually performing it, see chapter 1).

There have to be additional mechanisms
that choose parameters to test. One ap-
proach to achieve this has been proposed in
this thesis: MMC networks can be designed
in such a way that they either fulfil certain
constraints (as demonstrated in chapter 4
with the coordination MMC network, also
see Cruse et al. [122, 76]) or they can be de-
signed to completely optimize a problem as
demonstrated in chapter 3 with the posture
MMC network (also see Hopfield and Tank
[66] for another approach to decision mak-
ing using attractor networks). The posture
MMC network would not, however, produce
novel, “creative” solutions, it would always
produce the same result. Therefore sensibly
constraining the workspace might be a more
promising approach for designing cognitive
systems. MMC networks are particularly
suitable for allocentric representations with
constrained parameter spaces as for exam-
ple demonstrated by Kindermann and Cruse
[76].

Parameters for probehandeln could then
be generated by various well established al-
gorithms like random search, evolutionary
strategies or pruned search trees as proposed
by Aleksander [1]. Note that all of these
strategies also require memory to remember
tested parameter sets and some algorithm to
compare the stored results.

An integrated system with such manipu-
lable models and according parameter gen-
erators for probehandeln could indeed be
called cognitive according to McFarland and
Bosser [84] or Cruse [31].
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