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1 Introduction

With ongoing progresses in genome sequencing, more and more sequence data is be-

coming available. The task after the assembly is to identify the functional elements

inside genomes. Different techniques are established to find or predict genes, in bac-

teria and viruses tools like Glimmer [1] make use of prior knowledge of CG content

or codon usage of the analyzed species. In eukaryotes, where introns and exons have

to be identified, conservation plays a bigger role, implemented in tools like Genes-

can/Twinscan [2] or Genewise [3]. The results of predictions as well as experimentally

gained and verified gene positions and structures are stored in annotation databases,

like Ensembl [4], RefSeq [5] or species specific like FlyBase [6] and WormBase.

However, even if all genes can be determined and stored in databases, knowledge

about gene positions and protein functions is still not sufficient to explain all observed

phenotypic variations or to explain how embryonic development works. To do this, it

is necessary to understand which mechanisms are involved in the regulation of gene

expression. What determines which genes are activated or repressed in different cells

at different time points? How can phenotypic divergence be explained between two

closely related species that use the same gene base? Functional genomics is meant as

a general term for the field of molecular biology that tries to shed light on function

and regulation of genes.

Regulation can take place at almost any level of the pathway from the DNA to the

transcription by polymerase, the splicing step in eukaryotes, the ribosomal transla-

tion into the completed protein and finally to the function of the protein. Regulatory

effects start with direct DNA modification, either on nucleotide level by chemical mod-

ifications like DNA methylation, or on structure level like chromatin remodeling and

histone modifications. All these effects can force the DNA into another form, which

prevents the transcription start site to be accessed by the polymerase.

The next regulatory effects take place on the transcription level. Common regula-

tory elements on this level are promoters, which contain elements recognized by the

polymerase. The promoters within one species share common basic elements, which

work as a general method to attract the polymerase and are the standard elements that

enable transcription. In case of eukaryotes, four different elements are characterized.

The first one is the Inr element (a pyrimidin rich region around the start nucleotide),
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1 Introduction

present in most but not all promoters. Secondly, the TATA box is located -30 bp

upstream of the transcription start site and can be found in most genes, except for

housekeeping genes. As a third element, many promoters additionally contain down

stream promoter elements (DPE), consisting of a gene type specific sequence. Finally,

regions of GC rich boxes are located in many promoters and act as regulatory ele-

ments as well. Besides those basic promoter elements, special regulatory elements

exist in cell specific and development specific genes, located in close distance to the

transcription start site as well as several kilobases away.

Elements that are outside the promoter but increase the transcriptional activity of

a gene are called enhancers and belong to the class of cis-regulatory elements. The

latin term “cis” can be approximately translated as “on this side” and is used to mark

regulatory elements that are located in the vicinity of their regulated gene. Remember

that a gene’s vicinity can span several thousand bases. Further types of those elements

are insulators, regions that separate regulatory elements. This is important if two ad-

jacent genes differ in their transcriptional status and are regulated by different classes

of elements. Another cis-regulatory class are Polycomb/Trithorax Response elements

(PRE/TRE), initially discovered in Drosophila melanogaster [7]. Once gene expression

patterns of developmental genes are set in the early developmental stages by activators

and repressors, the transcriptional decision is maintained through cell division cycles.

PRE/TREs are key players in the epigenetic system. They allow the inheritance of gene

transcription patterns from one cell generation to the next without involvement of

DNA mutations.

A common attribute of cis-regulatory elements is that they are targets of DNA bind-

ing proteins, called transcription factors. Within a cis-regulatory element multiple

transcription factor binding sites can be contained. In order to understand how the

regulation of a specific gene works on transcriptional level, the position and function

of the corresponding cis-regulatory elements are of huge interest. Based on known

transcription factor binding sites, different methods exist to identify the element’s po-

sition. In vitro, chromatin immunoprecipitation (ChIP) is one way to detect positions

of protein binding. Methods working in silico search for representations (motifs) of

binding sites. The prediction of protein binding positions is usually combined with a

statistic to choose a certain level of specificity or sensitivity. If single motif occurrence

is not sufficient to predict the location of a cis-regulatory element, but different motif

combinations have to be taken into account, the statistical problem grows bigger.

We present an enhancement for existing prediction tools of cis-regulatory elements

that uses a comparative approach to input results gained in one species as prior knowl-

edge into another, named DynScan. The idea is first mentioned in [8], where it was

tested for PRE/TRE predictions in two Drosophila species. However is that study, in-
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stead of being implemented in a generic way, the analyis was mainly done manually.

In this work, the method is generalized in a way that it can be applied to any bioin-

formatics tool that is based on scoring continuous sequences in at least two related

species and applying cut-offs to ensure some statistical relevance. Algorithms focus-

ing on motif matching or prediction of cis-regulatory elements usually fall into this

category. Increasing a prediction result by introducing comparative genomics is not a

novel approach, the first methods are about 20 years old, originally used in 1988 on

primates [9]. However, in contrast to regular phylogenetic footprinting, which relies

completely on sequence conservation of the element that is to be found, the method

described here works independent of conservation, but gives higher rewards the closer

an element in two species is located to the respective orthologous site. Furthermore,

our method is implemented in form of a framework, allowing the user to arbitrarily

choose the underlying scoring algorithm.

As an application we choose the jPREdictor software [10], which we use to pre-

dict PRE/TREs in multiple Drosophila species. The choice of that algorithm is made

because the software PREdictor [11] already demonstrated in 2003 the general pos-

sibility of computational PRE/TRE prediction. Furthermore the analysis placed em-

phasis on specificity, i.e. the goal was to be confident in the predicted results, not

to predict as many elements as possible. This gives an excellent study case for our

DynScan method, which is aimed to increase sensitivity while keeping specificity. The

data presented in this thesis shows that DynScan predicts novel elements in all of the

Drosophila species we used. Furthermore, the specificity is not only statistically de-

termined, but biological experiments done in collaboration in Leonie Ringrose’s lab at

the “Institue of Molecular Biotechnology GmbH Vienna, Austria” show high accuracy

of the additionally predicted results.

Another part of this work is the prediction of potential novel motifs that are part of

cis-regulatory elements. The number of available motif prediction tools keeps growing,

although many implementations already exist based on enumerative approaches of

candidates as well as probabilistic models that try to sample most promising signals

from a noisy background. As shown in a recent comparison [12], none of those shows

sensitivity above 10% in different test cases. Instead of trying to develop yet another

general purpose motif prediction tool, we introduce different ways to combine existing

complementary methods and furthermore to automatically validate prediction results

based on existing real life data.

With ongoing progresses in experimental methods such as large scale chromatin im-

munoprecipitation (ChIP on chip), which requires less financial effort than it did a few

years ago, motif prediction tools can benefit from larger sets of confirmed sequences

that contain the unknown binding sites, and negative sets that can serve as back-
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ground. We demonstrate an enhancement of motif enumeration tools that directly

makes use of such data sets. In addition, we developed a prediction pipeline that

combines existing methods on large sets of experimental data to increase prediction

accuracy. Furthermore, a motif evaluation algorithm is introduced to rate each motif

in relation to the biological data.

In recent studies genome-wide experimental data for potential PRE/TRE related se-

quences in human and mouse have been published [13, 14], but no functional motifs

are known so far. We chose the data as an application for our motif prediction pipeline

and evaluating algorithm.

Structure of this work

In Chapter 2 background information are provided, that explain the basis of our work,

seperated into the bioinformatic and biological aspects. First the general approach of

phylogenetic footprinting and its limits are explained. Afterwards, I summarize the

different techniques for prediction of motifs as representations of transcription factor

binding sites and give an overview of the most prominent tools. Subsequently, the

biological background is explained, which is necessary for the understanding of the

application of our bioinformatics method. I explain how a special regulatory element,

the Polycomb/Trithorax Response elements work and which methods can be used to

find and to validate those elements in vivo and in silico. In Chapter 3, I describe our

novel method called DynScan, which uses location rather than sequence conservation

to increase statistical sensitivity without losing specificity. The purpose as well as the

implementation details are provided. Furthermore a method is introduced to rate a

sequence’s potential to gain specific regulatory functionality by minor mutations of

transcription factor binding sites.

The second method chapter (Chapter 4) covers various novel approaches to use

motif predictions in order to separate sequences that contain regulatory elements from

a set of background sequences. An algorithm is described that allows an evaluation of

the contribution of predicted motifs in the prediction of specific elements of interest.

The described methods are applied on two related but differing tasks:

First, the DynScan method is used to increase the sensitivity of the prediction of

Polycomb/Trithorax Response elements in Drosophila, as shown in Chapter 5. Based

on the jPREdictor, multiple Drosophila species are scored and DynScan tries to predict

new hits in each species based on results in other species. The results are presented

in combination with experimental data supplied by our collaboration partner, and the

evolutionary study is done on some of the experimental data. The PRE/TRE predic-

tion is compared to three biological studies and the DynScan benefit is shown in that

4



context.

Second, we use the motif prediction methods in order to identify potential novel

motifs involved in a elements similar to fly PREs/TREs in mammalian data (Chapter 6).

Based on recently published new ChIP data, the motif search is performed in differ-

ent ways, and the resulting motifs are put into the validating process. Furthermore,

additional statistical studies and their results on possible overrepresentations of din-

ucleotide distributions are included. The thesis concludes with a discussion of the

described results.
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2 Background

2.1 Bioinformatics

2.1.1 Phylogenetic footprinting

A common task in bioinformatics is to extend knowledge gained about some element

in a single species to other species, in order to learn more about the analyzed element

of interest. For example, known coding regions inside one genome are used to detect

coding regions in other species because those regions are expected to be conserved,

if not on DNA level then at least on the protein level. Gene prediction tools like

Genescan/Twinscan or Genewise [2, 3] use conservation as a main criterion. When

it comes to RNA, the prediction of miRNAs as well as their targets is usually based

on strong conservation of the targeted UTRs and the miRNA’s sequence. The classical

algorithms Miranda [15] or mirScan [16] make use of this approach.

Following this idea, conservation can be used to detect regulatory elements without

knowing their location in any of the observed species, but by scanning for positions

showing higher conservation than adjacent regions. In this case, the conservation

can be considered a signal for a selective pressure, and thus for a biological function

of those regions. Because these spots of high conservations can be thought of as a

footprint left by the phylogeny during evolution, the method was called “Phylogenetic

Footprinting”, first introduced in 1988 for the predicton of cis-regulatory elements

involved in the expression of embryonic A and B globulin in primates [9]. Since then,

the technique has been implemented into different algorithms like Footprinter [17]

and is mainly used for the prediction of transcription factor binding sites in non-coding

DNA regions.

Usually, a gene of interest is chosen in a set of different species and the non-coding

regions upstream of the orthologous promoters are searched for spots of significantly

higher sequence conservation. While these steps are shared by most approaches, the

differences lie only in the calculation of the significance value. All approaches are

affected by the same fundamental difficulties. A comparison of different applications

of phylogenetic footprinting [18] came to the conclusion that the identification of

orthologous genes and, in the next step, promoter regions can be difficult in practice

7



2 Background

due to often incomplete annotations. Especially if distant species are involved, the

alignment of the promoter regions can be another difficult and error prone task. As a

consequence, the method leads to good results in only some cases, highly depending

on the quality of the data. In most cases, phylogenetic footprinting is weakened by

the available annotations. Furthermore, some cis-regulatory elements like enhancers

can consist of multiple clusters of transcription factor binding sites. If the sites’ order

is not conserved, the whole element could be missed by phylogenetic footprinting.

Such motifs turnovers are widely described in literature [19, 20, 21]. Furthermore,

a bioinformatics study by Emberly et al. [22] revealed that clusters of functional

motifs inside enhancers are not neccessarily located inside conserved blocks, even if

the clusters are preserved between species [23].

In general, methods for the prediction of any kinds of elements that rely completely

on conservation will miss elements that are not conserved above background. Nev-

ertheless, elements that are present in different species might at least occur within

the same locus, therefore it sounds reasonable to reward if position conservation is

present, instead of relying on it completely. A method that concentrates on finding

elements occurring at orthologous positions leaves out all situations in which function-

ally analogous elements exist within the same locus, but without showing significant

conservation or are even not sequence conserved at all. This observation is indepen-

dent of the focus of the method, whether single motifs are searched or if complete

functional elements like enhancers are to be detected.

2.1.2 Motif prediction

The task to find potential transcription factor binding sites in a list of sequences that

share common properties has been addressed by multiple bioinformatic tools based

on various approaches in the last decade. Such properties could be that the sequences

are upstream sequences of co-regulated genes. Especially growing biological capabil-

ities like genome-wide ChIP experiments that collect large amounts of data require

the use of such tools. In general, methods to find the possibly degenerated func-

tional subsequences in a set of related sequences can roughly be separated into two

categories.

1. Enumerative approaches

2. Probabilistic approaches

Both methods will be described and examples of implementations will be shown.
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Enumeration

The straight-forward way is to exhaustively enumerate all possible k-words (for a given

k) and search for most overrepresented ones. In order to define overrepresentation, a

background model is required, such as the number of occurrences in a second set of

negative sequences or a probabilistic model based on Markov Chains.

Some transcription factor binding sites can be represented in form of k-word motifs,

if a strongly conserved core binding site is present. In other cases, the motif represen-

tation has to be less strict, accepting different nucleotides to match at some positions.

In this case, a pure k-word approach will reach its limits and the possibility to handle

motifs in a degenerated form is required.

One possibility is to use clustering methods to combine related k-words into a single

model that describes a transcription factor binding site. Such clustering techniques

are described in the next section. Another possibility to introduce degeneration into

enumerative motif prediction is to extend the alphabet from nucleotides [A,C,G,T] to

the IUPAC code1. To keep the search space manageable (4k vs. 14k; e.g. k = 10:

˜1 m vs. ˜289 bn ), usually only a small number of positions are taken from the

IUPAC code. An implementation is the tool YMF [24], depending on the value k,

two or three positions can be degenerated. Alternatively, a motif can be seen as a

consensus sequence of a motif matrix, containing positions of allowed mismatches. In

the implementation of Weeder [25], the number of mismatches depends on the word

length. By default, for words of length 6 one mismatch is allowed, respectively two

in 8 and three in 10-words. The input sequences are transformed into a suffix tree, in

which each of the possible words can be searched in O(k). The matching words are

combined into a common matrix. Furthermore, in a second step the matrix is taken

to score the found words. Those receiving the highest scores are used to build up a

second matrix that is reported as the final prediction result. Enumeration approaches

are exact in the sense that exhaustively the entire search space is covered. On the

other hand, the search space may cover only parts of the real world possibilities to

achieve a usable running time and space consumption behavior.

Probabilistic approaches

The representation of motifs commonly used is a position specific scoring (PSSM),

weighting (PWM), or probability matrix (PSPM). Instead of determining which nu-

cleotides are allowed (and therefore which ones are forbidden) at each position, rela-

tions are provided, so as an exmaple it can be expressed that in all known sequences

1The nucleotide IUPAC code contains symbols for each possible subset of [A,C,G,T]. For example B
means “not A” [C,G,T], or Y means pyrimidin [C,T].
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of a motif an ‘A’ occurs four times as often as ‘C’ at a specific position. The sub-

ject of a matrix based motif prediction is to optimize a PWM and the corresponding

binding probabilities of a binding site. Usually, the optimization is either done by

deterministic optimization or by probabilistic optimization. A common method for

deterministic optimization is Expectation Maximization, shown briefly in the follow-

ing section. In case of probabilistic optimization for motif prediction, Gibbs sampling

is the most prominent technique. Because Gibbs sampling is also used by different

motif clustering algorithms, the mathmatical basics will be described in the following.

Weighting

A matrix is a model (M) to describe the observed data (D), i.e. the potential binding

sites given the sequences. The probability of the model cannot be calculated directly.

Instead, following Bayes theorem, the likelihood of the model is used: L(M |D) =
P (D|M). The probability that a sequence is generated by the matrix in relation to the

probability that it has been generated by the null-model is the weight of that sequence

for a specific matrix.

W (D|M) = log
P (D|M)
P (D|M0)

W (S|M) is the log-likelihood of a sequence S given a matrix. Accordingly, the log-

likelihood of a matrix is therefore:

W (M) =
ÿ

i∈D

log
P (Di|M)
P (Di|M0)

Expectation Maximization (EM)

The idea is to build a preliminary PWM and use it to search the sequences in order to

find new matching elements. As soon as additional sites are detected, the matrix is

updated (Figure 2.1).

In the first step the matrix is initialized with a single (randomly chosen) k-word,

combined with background sequences or pseudoocounts to allow matching of words

similar to the chosen one as well. Without introducing additional occurrences into the

matrix, the probability of every other word would be zero.

Each k-word in the sequence is weighted according to the matrix and a provided

null-model, as described above. By EM a weighted average is chosen from these

weights, and the matrix is updated. By repetition of the steps the maximum log like-

lihood of the model can be reached.

One typical implementation of this approach is MEME [27]. In order to avoid

10



Figure 2.1: Expectation maximization: Select a single site (shown in red), then iterate

between assigning new sites to the matrix (right) and updating the matrix

(left). Figure taken from [26].

11



2 Background

running into a local maxima, each k-word in the sequence is only used in a single

iteration. Then the highest weighting one is selected and iterated until convergence.

Because the initial choice of a k-word directly affects the outcome, different runs on

the same sequence set could lead to different results.

Gibbs sampling

The general approach is similar to EM, but instead of taking a weighted average across

all sites, a weighted sample is chosen. Gibbs sampling itself has its roots in statistical

mechanics, the first adaptation to bioinformatics was published in 1993 [28] and was

used to detect local multiple alignments. Interestingly, the term ‘motif’ was not used

up to that point.

First, we need a formal definition of the motif finding problem. Given a scoring

function f(y1, y2, ..., yn), the problem is to find a vector y̨ that maximizes f . Let p be

a probability distribution with p ∼ f . If f is large at the optimum, than sampling

from p will most likely provide an optimal result. In some cases, sampling from the

joint probability distribution is not feasable, instead we sample from the conditional

distribution where all parameters are fixed except for one. The Gibbs sampling is

based on a Monte Carlo Markov Chain simulation. The Markov Chain is chosen to

has p as its steady state. By running the simulation long enough and sampling from

it, an approximation of the steady state can be found. What is Gibbs sampling used

for? The input is a probability distribution p(y1, y2, ..., yn) where y ∈ S. In case of

motif prediction, S denotes all different motif positions in the input sequences. The

complexity of |S|n might be hard to manage, but |S| can be processed. The output of

the Gibbs sampling is a (random) y̨ chosen from p.

The first step is to build up the Markov Chain that simulates p. As mentioned, p is a

conditional probability distribution. The vectors y̨ and y̨Õ differ in one position only.

y̨ = (y1, ..., ym, ..., yn)

y̨Õ = (y1, ..., yÕm, ..., yn)

The transition probability T is defined as:

T (y̨ → y̨Õ) =
1
n

p(y1, ..., yÕm, ..., yn)
q

ym
p(y1, ..., ym, ..., yn)

Can we be sure that p is the steady state distribution of the Markov Chain? A steady

state is present if two requirements are fulfilled, the global balance and the detailed
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balance. The global balance definition says:

πT = π

The detailed balance constraint is:

π(y̨)T (y̨ → y̨Õ) = π(y̨Õ)T (y̨Õ → y̨)

It can be shown that the global balance is fulfilled if the detailed balance is fulfilled.

Furthermore, by setting T to the defintion above, the term evaluates to true. This

proves that the Markov Chain simulates p.

A motif prediction based on Gibbs sampling works similar to EM. First, for each of

n sequences in the input set, one start positions (y1, ..., yn) is chosen randomly. Given

a fixed motif length k, we achieve a set of k-words that are combined into a common

PWM.

Second, one sequence is taken out of the set and the weight of each k-word in that

sequence towards the matrix is calculated. As a result each position in the sequence

is assigned to a weight.

Third, the former start position in the removed sequence (ym) is replaced by a new

one (yÕm), picked randomly according to the weights. The higher the weight the higher

the probability of the k-word under the matrix and the more likely it is that the start

position of that k-word is chosen by random. The matrix is updated in relation to the

new sequences.

The steps two and three are iterated until convergence.

Gibbs sampling has been implemented into multiple different motif prediction tools.

Enhancements such as MotifSampler [29] use higher order Markov Chains as back-

ground to avoid a bias towards repetitive elements in the weighting step. Other ap-

plications like PhyloGibbs [30] work on aligned sequences and introduce conserved

positions as an additional constraint.

Using Motif Predictions

In [12] 13 different implementations were tested on multiple sets of eukaryotic se-

quences (yeast, Drosophila, mouse), into which known binding sites were inserted.

None of the tools was able to predict more than 10% of the motifs. Furthermore,

the simpler and faster approach of Weeder perfoms surprisingly well. In general, the

overlap between the tools depends on the method they are based on. Different im-

plementations of similar algorithms come to similar results. Different methods on the

other hand can be combined to increase the outcome. The enumarative Weeder was
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shown to be complementary to MEME, while similar algorithms showed higher over-

lap. In order to maximize the chance of good prediction results, some aspects have to

be considered [26].

• Use a combination of multiple tools. For instance, MotifSampler, based on Gibbs

sampling is complementary to enumerative tools such as Weeder.

• The selection of the input data has a huge impact on the result, independent from

the prediction method. Therefore the use of different data sets could improve

the results.

• Masking found motifs and run the prediction again can lead to new results. This

way strong signals that may cover other significant motifs can be removed.

• Especially with tools such as MEME, which select one motif each time and try to

optimize its likelihood, multiple runs may provide different results.

2.1.3 Clustering

Multiple non-degenerated words found by enumeration approaches can be represen-

tations of the same transcription factor binding site. If probabilistic prediction meth-

ods are used, different matrices found by different tools, or by one tool in different

sequences can also refer to the same motif. As long as it is known which words or

sequences belong together, combining them into a common matrix is simple. If the

related elements are mixed with a set of unrelated elements however, a clustering

method has to be found. In general, several different statisticial techniques for clus-

tering of observations are known. For example, K-means clustering is based on a

predefined number of resulting clusters, which is obviously difficult to provide in our

case of motif clustering. Several applications for motif clustering exist, such as Com-

pareAce, PROCSE, Mat-Compare, TREG, and YRSA [31, 32, 33, 34, 35], but all these

tools lack some of the functions needed in this work. The different motif prediction

tools work on score matrices as well as on consensus sequences. Therefore it is manda-

tory that the clustering algorithm is capable of dealing with both. Furthermore, the

clustering tool should be able to create non-redundant motif sets by combining motifs

on its own until optimal clusters are created. Two different tools following completely

different approaches are chosen and described in the following.

Hierarchical clustering

One can think of a motif clustering as a two step approach. First, a similarity function

has to be defined to decide which motifs are to be combined into a larger cluster,
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resulting in a growing tree in which the motifs are represented as leaves and clusters

as nodes. The root eventually represents the all containing cluster. Second, a criterium

has to be found to decide where to cut the tree in order to get a set of distinct clusters

(in this case score matrices) that in an optimal case only contains motifs related to the

same transcription factor. The tool MATLIGN [36] is based on hierarchical clustering.

In the first step the algorithm does a pairwise comparison of each motif in the set

and combines the two most similar ones recursively, until eventually one single cluster

remains. The similarity between two matrices is calculated by a dynamic programming

algorithm that is based on Gotoh’s algorithm for gapped alignments [37]. Different

scoring functions are implemented in MATLIGN, namely Kendaull’s tau rank correla-

tion coefficient, Spearnan’s rank correlation coefficient, Pearson’s correlation coeffi-

cient, and the normalized Euclidean distance. By default, the product of the scores is

used to calculate the pairwise distance. If a new cluster is built, the distances to all

other motifs are recalculated as the average of the motifs in the cluster and the remain-

ing motifs. The clustering procedure ends in a hierarchical tree whose root represents

the all containing cluster. In a second step the number of clusters is optimized based

on silhouette values, which give an evaluation of the classification of the clusters:

s(i) =
b(i) − a(i)

max{a(i), b(i)}

where a(i) gives the average distance of an element to all other elements in the same

cluster and b(i) gives the average distance of the element to all elements inside the

closest different cluster. The result s(i) is an estimation of the classification, reaching

from −1, which shows poor clasification to +1. The maximum silhouette value gives a

cut-off for the hierarchical tree, resulting in a list of optimal clusters under this model.

Bayesian clustering

This method is implemented in the clustering part of the Phyloclus [38] framework.

In contrast to the hierarchical clustering, no explicit separation into two independent

steps of clustering and choosing the stop criterion is done. Alternatively, a Bayseian

approach is implemented. The probability of a cluster given the motifs would allow

straight forward maximization. However, that probability cannot be calculated di-

rectly. Therefore the likelihood is taken instead:

L(Θi|Yi) = P (Yi|Θi)

where Yi is a count matrix indexed by i, and Θi is the set of clusters indexed by i.
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Therefore the probability of a matrix given the set of clusters is:

P (Yi|Θi) =
w

Ÿ

j=1

P (Yij |Θij)

where the column is indexed by j. Yij = (YijA, YijC , YijG, YijT ) and w is the number of

columns. This can be approximated by a multinomial distribution. The basic imple-

mentation idea of Phyloclus is now to use Gibbs sampling to determine whether to add

a motif i to an existing set of clusters without i (z−i) as the c-th cluster (P (zi = c|z−i, Y )
or to leave the motif unclustered (P (zi = 0|z−i, Y ). Because in each step all parame-

ters stay fixed except for one (i), a conditional probability distribution is modeled and

Gibbs sampling can be used to sample z. The result is the cluster set that gives the

highest posterior probability P (z|Y ).

2.2 Biology

2.2.1 What are Polycomb/Trithorax Repsonse Elements?

Homeotic genes are genes involved in the regulation of morphogenesis during the

development of an organism and have been found originally in flies [39]. Hox genes

are homeobox-containing genes, usually occurring in so-called Hox clusters. In the

mean time it has been discovered that hox complexes exist in all bilaterally symmetrical

species [40]. Their main function is to regulate the development of the body axis [41],

for example in the Drosophila fly Hox genes determine which parts of the embryo

develop into each of the segments of the adult fly. In Drosophila two hox complexes

exist, the Bithorax complex and the Antennapedia complex.

During the analysis of the Bithorax complex (BX-C) in Drosophila different studies

came to the conclusion that the regulation of the Hox genes is done in two consec-

utive steps [7, 42]. In the initiation step during the first few hours of embryonic

development, gene expression patterns of homeotic genes are set up by activators

and repressors. These factors occur at different concentrations in different tissues of

the embryo, so depending on the future cell identity, different types of “blueprints”
are used by the cells [43]. Once the genes’ expression states are set up, a second

mechanism takes over to maintain the transcriptional status through various cycles

of cell division. This is done by the so-called Polycomb/Trithorax Response Elements

(PRE/TREs). The identity of each cell is passed on its daughter cells even if the adult

state is reached. Proteins of the Polycomb group (PcG) maintain repression states of

regulated genes while Trithorax group Proteins (trxG) act antagonistically, keeping the
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Figure 2.2: Transcriptional status of gene ultrabithorax as an example for PRE/TRE reg-

ulation. Picture taken from Polycomb Teaching Page (http://www.igh.

cnrs.fr/equip/cavalli/link.PolycombTeaching.html). Tran-

scriptional patterns set up in larval state are tissue specifically maintained

into the adult state, resulting in the development of different body parts.

Depending on the torso segment, legs, wings or halteres are developed.

gene in its active state. It has been shown that PRE/TREs are able to keep the status

of a gene even in the absence of the initial activation or repression factors [44].

For example, in the early larval development state the gene Ultrabithorax (ubx) inside

the BX-C is activated in some cells and repressed in others. In the following mainte-

nance phase the repression state is “frozen” by the PcG proteins, while the gene is

kept active in other cells by the trxG proteins, even after the initial repressors and ac-

tivators have disappeared. In the adult fly the Ultrabithrox gene product determines

the development of wings and legs in the second and third thoracic segment. Cells of

the second segment in which the gene is switched off are part of the wings, in the third

segment the activated gene leads to haltere development (Figure 2.2). A mutation in

the ubx gene causes a turning of cells of the thoracic segment three into their segment

two counterpart; the halteres are transformed into a second wing pair, the third leg

pair is transformed into the second one. Ultrabithorax is one of the first genes that

were experimentally verified to be targets of PRE/TRE regulation [45, 46].
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2.2.2 Clusters of PRE/TREs

The segment identity in Drosophila is set up and maintained by two different clusters

of homeotic genes, the Bithorax complex (BX-C) [47] and the Antennapedia complex

(Ant-C) [48]. The BX-C consists of only three protein coding genes Abdominal-A (abd-

A), Abdimonal-B (Abd-B) and Ultrabithorax (Ubx) and is about 300 kb long.

The DNA binding proteins ABD-A and ABD-B specify the parasegments PS7-PS14

[49, 50]. The genes in the BX-C occur in the order the segments are effected, the

order therefore is abd-A, Abd-B and UBX. This order as well as the genes’ sequences

are conserved from flies to mouse and human. However, in mouse and human the

BX-C and Ant-C are clustered together into a common Hox cluster that is duplicated

four times.

In Drosophila, the BX-C genes are regulated by cis-regulatory elements in 9 infra-

abdominal regions (iab1-iab9), one domain for each segment. Each of the domains

contains enhancers and PRE/TREs.

2.2.3 How are PRE/TREs working?

In general PcG and trxG proteins are able to modify the chromatin structure to maintain

either a gene’s activation or repression state. The PcG proteins in Drosophila can be

separated into two categories, the Polycomb repressive complex 1 proteins (PRC1),

and the Polycomb repressive group 2 proteins (PRC2). The PRC2 consists of four main

proteins, Enhancer of Zeste (E(Z)) [51], Extra sex combs (ESC) [52], Suppressor of

zeste-12 (SU(Z)12) [53], and the nucleosome-remodeling factor 55 (NURF-55) [54]

(reviewed in [55]). Through E(Z) the PRC2 leads to trimethylation of lysine 27 histone

H3 [56] and to a lesser extent H3K9me3, both provide binding sites for the Polycomb

(PC) protein. Polycomb together with Polyhomeotic (PH), Posterior Sex Combs (PSC)

and dRING are members of PRC1. Recent studies suggest that additional PcG members

might play a role, such as Polycomb-like [57]. Beside the two Polycomb repressive

complexes two additional complexes Pcl-PRC2 and PhoRC have been described [58,

59].

Although a lot of the details about the way PRE/TREs work have not been resolved

so far, some key steps are known. The PRE/TREs in Drosophila are DNA regions con-

taining clusters of binding sites for a number of different proteins which directly or

indirectly recruit PcG protein binding. One of the most important proteins is Plei-

homeotic (Pho) [60] which, once bound, recruits the PRC2 protein E(Z) [61]. This

leads to H3K27me3 methylation, which is detected by PC and recruits PRC1 pro-

teins. Additionally, Pho can recruit PC direclty, as shown in [62]. Additional to Pho

other DNA binding motifs that assist the Pho function occur in PRE/TREs, such as
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Pleihomeotic-like (Phol) [63], GAGA factor (GAF) [64] and Zeste (Z) [65]. More recent

studies implied that additional binding motifs play a role like DSP1 [66], Grainyhead

and members of the SP1/KLF family [67]. Although it has not determined completely

so far which motifs are sufficient for PRE/TRE functionality, there is strong evidence

that GAF, Pho and Z are necessary and act together to recruit PRC2 proteins.

Available experimental methods such as antibody based ChIP experiments or trans-

genic flies are based on detecting binding sites of PcG proteins or demonstrate the

inhibition of gene transcription and its genetic dependence on PcG genes. In this

case, the functionality to maintain the repression state is targeted by the experiments,

a validation of PREs. Corresponding methods for the antagonistically acting trithorax

group proteins are used in a similar way. Thus the same genomic region can act in

both ways, depending on the transcriptional state that is maintained. In this work I

will use the term PRE to refer to regions targeted by PcG proteins, without making any

assumption about possible trxG related functionality unless stated otherwise.

In [66] a minimal PRE containing only these motifs embedded in a random bacterial

DNA showed no PRE functionality, while the presence of an additional Dsp1 led to

PcG protein recruiting and PcG-dependent silencing. Dsp1 binding can be observed at

many locations to different binding motifs, the representation used by Dejardin et. al

was GAAAA. Although a colocalisation of Dsp1 and Pho has been found on polytene

chromosomes, it also has been shown that Dsp1 functions as a trxG protein. Grainy-

head and Sp1/KLF [67, 68] have been observed to be important for PcG recruiting in

specific PREs. However, a general colocalisation with PcG or trxG proteins on polytene

chromosomes is missing.

How is silencing working? The exact mechanisms of PcG mediated silencing are

not known so far. What is known is that PREs are bound by all known PcG protein

complexes and that histone methylation plays an important role. A comparison of

the ubx gene in its on and off state by quantiative ChIP analysis [69] suggests that

trimethylation in the promoter region and coding regions is important. While exten-

sive trimethylation of promoter, coding regions, and an upstream contol position can

be observed in the off state, only the upstream control shows trimethylation in the on

state.

2.2.4 Methods of PRE detection

Originally only a handful of PREs have been known, all located in Drosophila melanogaster.

Recently, in two different studies Chromatin Immunoprecipitation (ChIP) has been

used [70, 71], covering different regions of the Drosohpila genome while in a third

study the DamID technique was applied [72]. The approach is similar in all three cases,
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regions at which a binding of PcG proteins can be shown are very likely to be PREs. In

contrast to the direct DNA binding proteins like GAF, which is involved in heat shock

reactions as well, no additional function than gene repressing by PRE binding is known

for Polycomb in Drosophila.

Polytene pictures

A common method for the search of binding sites of a specific protein in a genome-

wide scale in Drosophila is the use of immunofluorescence on polytene chromosomes.

In general polytene chromosomes are the result of multiple rounds of DNA replications

without cell division (endoreplication). Various copies of homologous chromatids re-

main inside the same cell and are banded together to large chromosomes. Those struc-

tures have been found in larvae of some two-winged flies like Drosophila melanogaster

and in few plants in ovary and immature seed tissues. In Drosophila, chromosomes of

salivary glands in larvae form giant polytene chromosomes to allow the production of

huge amounts of glue, required for pupation. Immunofluoresence is a technique to

label protein specific anti-bodies that can be detected for example by a fluorescence

microscope. A usual method is to use an anti-body against the protein (or antigen in

general) of interest in the first step, which is brought on the polytene chromosomes. In

a second step labeled anti-bodies against the first anti-body make binding sites of the

first protein visible. Because the binding sites are evaluated by visual techniques, poly-

tene chromosomes are used to enhance visual evaluation. The positions are usually

derived from cytological maps. Therefore multiple binding sites in one region cannot

be distinguished, so neither the exact amount of binding sites nor their exact genomic

location can be determined. Nevertheless, the technique can show binding of a pro-

tein in general and provides valuable data like clusters of active cytological location or

rough estimates about the number of binding sites in general.

Chromatin Immunoprecipitation

ChIP, or the large scale approach ChIP on chip, is used to detect the binding of the

protein of interest (poi) at a specific time point in a chosen cell line. Compared to im-

munofluorescence on polytene chromosomes, this method allows to achieve a higher

resolution i.e. more exact positions can be determined.

In the initial step the poi is cross-linked to the DNA, e.g. by formaldehyde, in the

studied cells, therefore only proteins that are bound at that moment can be detected.

In the next step the DNA is sheared into smaller pieces by sonication. The fragments

are immunoprecipitated with an antibody against the poi. The DNA from the samples
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is purified. To test single positions for poi binding, location specific primers can be

used for PCR. By quantitative PCR the amount of enrichment of the immunoprecipi-

tated samples in relation to a background can be measured. A large-scale alternative

of the last steps is to use DNA microarrays; which is called ChIP on chip. In this case

the poi containing DNA samples are purified, amplified and labeled, e.g. by a fluores-

cent marker. The single stranded DNA fragments are brought onto DNA microarrays,

which cover a larger range of the genome. The labeled fragments hybridize on the

microarrays, allowing an identification of the corresponding genome locations.

Although ChIP experiments are widely used for all different kind of protein bind-

ing search, some aspects raise minor concerns about specificity and sensitivity when it

comes to PRE studies. First, the proteins have to be bound to the DNA at the moment

of the cross-linking in vivo in the cell line used. As already shown in the ubx exam-

ple, Polycomb binding is highly tissue specific. Depending on which cells are used,

even known PREs cannot be detected by ChIP in every case. For example, the well

characterised fab7 PRE is missed in some of the ChIP experiments [11, 71]. Second,

antibody affinities have a huge impact on the ChIP outcome. Furthermore, to ensure

specificity a statistical threshold is used, therefore observed enrichments of true pro-

tein bindings may fall below this threshold. For genome-wide mammalian PcG ChIP

studies a false-negative rate of 30% has been reported [73].

On the other hand, a positive ChIP result does not necessarily prove PRE activity at

the observed position. It has been shown that PcG proteins can loop from a PRE/TRE

site to other sites like the regulated promoters [74]. In this case, ChIP experiments

will show protein binding at the promoter although no protein recruiting takes place

there.

Another experimental technique for detection of protein binding is DamID. The

protein of interest, in our case Polycomb again, is fused to a DNA methyltransferase.

The resulting fusion protein is expressed by the transfection of cultured cells. The

methyltransferase is linked to the positions at which the poi binds, leading to a higher

methylation of that region. In contrast to ChIP, where due to the cross-linking only a

snapshot of protein binding can be observed, DamID allows in theory the detection of

all spots at which the poi bound to during the observation time. Although this is the

main advantage of the technique in theory, it raises new problems. PRE/TRE are usually

only less than 1 kb long, in Tolhuis et al. [72] however, DamID experiments showed

regions with an average size of 30 kb. Traces of temporary binding of Polycomb to the

DNA cannot answer the question of whether it actually functions in the region.

Schwartz et al. [71]performed genome-wide ChIP on chip experiments on Sg4 cells,

probing for binding of the PcG proteins PC, E(Z) and PSC. Additionally, trimethylation

of histone H3 Lys27 (me3K27) was searched. Regions that show a binding of all four
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factors are called “strong” sites, while regions bound by at least two factors are “weak”
sites. Exact positions are not provided in the publication, instead names of genes that

are assumed to be PRE regulated in each cytological position are given. All in all, 187

“strong” and 73 “weak” genes are detected.

Negre et al. [70] used Drosophila embryos to evalute PC, PH and GAF binding in 7

Mb of the X chromosome and 3 Mb of chromosome 2L. Regions that show a binding

of all three factors are assumed to be PREs. In the evaluated regions 41 PREs are

found, the average length of each hit is 5 kb.

Tolhuis et al. [72] used DamID on Kc cells and evaluated binding profiles on chro-

mosomes 2L and 4, 11 Mb of chromosome 2R, and 2Mb of the X chromosome. They

found 131 hit bands with an average length of 28 kb.

Transgenic flies

Although ChIP experiments are able to provide locations of PRC1 and PRC2 protein

bindings, the presence of PRE functionality cannot be completely proven this way.

By using transgenic reporter flies some aspects of Polycomb mediated silencing can

be shown. When a PRE is brought into a P-element vector upstream of the miniwhite

reporter gene, it silences the expression of the miniwhite gene in Drosophila. The gene

product is required for the red eye color in white mutants. Darker eyes can be observed

in miniwhite homozygotes in contrast to whiter eyes in miniwhite heterozygotes. If the

gene is PRE silenced it can be observed that now the silencing is enhanced in flies that

are homozygous for the insertion, giving a lighter eye color. This typical PRE behavior

is called paring sensitive silencing [75]. Another typical PRE behavior is variegation of

the eye color, which also can be observed in transgenic miniwhite reporter flies [76].

Furthermore, a lack of PRE repression of the miniwhite gene in PcG mutants can be

seen by the eye color as well as a lack of miniwhite activation in trxG mutants.

In-silico prediction

In 2003 Ringrose et al. [11] presented a software tool called PREdictor that is de-

signed to predict PREs in Drosophila melanogaster. It works by searching for consensus

sequences of a few known DNA binding motifs that are involved in Polycomb recruit-

ing. The motifs used are Gaga factor/Pipsqueak, Zeste, Engrailed and three versions

of Pho/Pho-like. The algorithm uses a sliding window to calculate scores for an input

sequence. The default parameters are a window of size 500 bp that is shifted by 100

bp each step. Within each window the number of motif pairs is counted. A pair is

defined as two motifs occurring within a distance of 0-220 bp. Each possible motif
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pair is assigned a specific weight, the sum of the weights of all found motif pairs inside

the window is the window’s score. The weights are determined based on motif pair

occurrences in a positive training set (the model) in relation to a negative training set

(the background). The model consists of twelve already known PREs, mainly located

inside the Bithorax complex. As background 16 promoters of genes are chosen that

contain some of the motifs. These are for example heat shock genes that contain GAF

motifs but are not involved in Polycomb regulation. The weight of a motif pair m is

the log-odds score calculated as

log
f(m|model)

f(m|background)

The function f simply counts the motif pair occurrences combined with sequence

length normalization. PREdictor assigns a score value to each window of an input

sequence, a higher score indicates a more probable PRE location. To assess the speci-

ficity, a non-parametric empirical statistic is used. The software scores random data of

100 times the length of the Drosophila melanogaster genome. The score that gives 100

hits in the random sequence is the cut-off at which one false positive can be expected

in the real genome, therefore an E-value of 1 is calculated. The PREdictor predicts

167 PREs genome-wide, out of which 43 were tested by ChIP in S2 cells. An enrich-

ment over 2-fold was observed in 29 cases, 14 were enriched less than 2-fold. Out of

those another 10 were strongly enriched for PcG proteins in other cell types, or were

confirmed by transgenic asssays [11, 71, 72].

The algorithm gives best results for prediction PREs that regulate homeotic genes, in

that case all predicted PREs could be tested positively. This observation might be due

to the fact that training was done on classical canonical PREs that contain clusters of

known motifs. A class of PRE that can be found near homeotic genes. It is not clear if

there are different kinds of PREs, regions that recruit PcG proteins by other mechanims

than the mentioned motifs. In that case, the PREdictor would miss those elements.

A newer and more general rewrite is the jPREdictor [10]. It introduces a more

generalized form of motifs and motif pairs. Instead of relying on consensus sequences

only, it is now possible to provide motifs as position specific weight matrices (PSWM),

as position specific score matrices (PSSM), as regular expressions or simply as gapless

multiple alignments. Motifs can be combined to so-called multi-motifs, the minimum

and maximum distance between each single motif can be set independently. Most

functions are accessible through a graphical user interface.

Some of the new functions were demonstrated in the publication [10] in form of

another PRE prediction run. The different Pho descriptions used in the original version

are combined into a single matrix, the motif DSP1 was added in form of a Pho:Dsp1
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pair, which serves as a single element and is allowed to form motif pairs with the

other single motifs. As a result, the number of predicted elements raises to 306. On

the other hand, the new set is partially overlapping with the old one, instead of just

extending it. A validation of the prediction results by ChIP or transgenic experiments

is lacking. For our analysis in this work the old set will be used because it is based on

a stronger validated background.

2.2.5 Experiments in mammals

Up to this point no PREs have been found in vertebrates. However, there are strong

indications that elements similar to PREs exist. Two studies came to the conclusion

that PcG proteins are able to keep embryonic stem cells pluripotent by maintaining dif-

ferentiation genes silenced [13, 14]. In contrast to fly hox genes, where PcG proteins

maintain transcriptional decisions over many cell generations into the adult fly, the

effect lasts less long in mammals. During the embryonic development differentiation

of ES takes place at some point, which requires the PcG protein to end the silencing

function. One theory is that trxG proteins are able to switch PRE/TREs from repressing

to activation state, but validation is missing. If PcG proteins show similar functions in

mammals too, why have no PREs been determined so far? Although most members of

the PcG show strong conservation, no functional analogs for the DNA binding proteins

GAF/PSQ and Z exist in vertebrates. Analogs for Pho and DSP1 are named YY1 and

HMGB2.

In recent studies, ChIP experiments are presented searching the mouse and human

genome for binding of PRC1 and PRC2 proteins. In mouse, Boyer et al. [13] searched a

region 8 kb downstream until 2 kb upstream of 15742 genes for Phc1 and Rnf2 (both

PRC1) as well as Suz12 and Eed (both RPC1) bindings and H3k27me3 methylation.

Suz12 has been shown to be involved in trimethylation of H3K27 as well as H3K9 in

mammals [77].

The five factors overlap at 561 positions, out of which 512 occur within a radius of

1 kb around a transcription start site. Lee at al. [14] performed genome-wide ChIP

experiments in human to detect Suz12 enriched sites, discovering 3465 positions.

Again, an enrichment of binding sites within promoters can be observed, around 80%

of all found positions are located within short distance to a transcription start site.

2.2.6 CpG islands

The dinucleotide CG is usually rare in vertebrates because the cytosine tends to be

methylated. The methylation works as a signal during DNA replication and helps to

24



2.2 Biology

distinguish the parent strand from the newly synthesized one. Methylated cytosines

are deaminated and turned into uracil, which then is replaced by thymin. If not pre-

vented in some way, CG dinucleotides will be turned into CT dinucleotides eventually,

given a long enough period of time. Nevertheless, in promoters regions of unusual high

CG content exist in mammals, called CpG islands. The ‘p’ refers to the phosphodiester

bond between the two nucleotides and is used to distinguish CpG islands from simple

CG dinucleotides. The definition of a CpG island has changed over time. Originally,

a region of at least 200 bp and a CG percentage of ≥ 50% and an expected/observed

ratio ≥ 0.6 was seen as a CpG island [78]. The observed/expected ratio for a sequence

of length N is calculated as:

Obs/Exp =
Number of CpG

Number of C + Number of G
× N

The parameters were changed during the analysis of CpG islands in the human chro-

mosomes 21 and 22 [79]. In order to rule out ALU repeats, the minimum length is

increased to 500 bp, Obs/Exp to ≥ 0.65 and %CG to ≥ 55%. The numbers of genes

having CpG islands within the promoter sequences differ between various studies. In

general, about 40% of mammalian promoters contain CpG islands [80], while 72% of

human promoters have a high CpG content [81]. Older publications stated 56% in

human and 40% in mouse [82].

Usually DNA methylation of CG dinucleotides leads to their avoidance, an effect that

is prevented in CpG islands. The DNA methylation state of CpG islands in promoters

is thought to have a regulatory effect on gene transcription by modifying chromatin

structure. Methylated CpG promoters restrict transcription, whereas unmethylated

CpG promoters allow gene expression [81]. On the other hand, strong CpG island

promoters are normally unmethylated, even if the gene is inactive [83]. Promoters

that show only weak CpG island enrichment can be both methylated and unmethy-

lated, presumably depending on the gene function, in somatic cells germline-specific

genes are methylated. In case of unmethylated but still inactive CpG island containing

promoters, enrichment of histone methylation can be observed. In particular, elevated

levels of dimethylation of Lys4 of histone H3 have been found, which maybe act as a

chromatin marker to prevent DNA methylation. Vire et al. [84] showed that a direct

connection between DNA methylation of CpG islands and chromatin methylation me-

diated by Polycomb group protein EZH2 exists (Figure 2.3). Polycomb proteins might

be able to prevent transcription by acting over CpG islands. .

Another relation between CpG islands in mammals and targets of Polycomb has been

suggested by Eden et al. [85]. As an example for their motif prediction approach, Eden

et al. ran their software on sequences taken from human cancer cell lines that show
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Figure 2.3: EZH2 controls CpG methylation, in the context of the PRC2/3 complexes,

through direct physical contact with DNA methyltransferases (DNMT). Fig-

ure taken from [84].

CpG methylation and compared the predicted motifs to those found to be bound by

PcG proteins. According to their statements, most of their novel motifs are similar

to DNA sequence elements that are bound by PcG proteins. Remarkably, they even

considered the elements predicted by PREdictor in Drosophila as Polycomb bound

regions, although most Drosophila PcG related DNA binding proteins do not even

exist in human. Their motifs are basically CA repeats. They ruled out also found CG

rich motifs due to possible bias by the CpG islands. Based on this data they suggest a

mechanical linking between CpG methylation and histone methylation.
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conservation constraints

3.1 The idea

In order to allow an alignment independent prediction of various elements, in this

chapter we will present a method and its implementation namedDynScan. Our method

can make use of the knowledge of orthologous regions, but does not depend on an

above average conservation. The method can be applied to any kind of scoring algo-

rithm and is meant to increase sensitivity without losing specificity by using prediction

results in one species to adjust the statistics for a search in other species.

The main idea is to perform a genome-wide prediction with an arbitrary scoring

algorithm in one species in the first step, followed by a search restricted to the same

loci in other species (see Figure 3.1). In each step the search radius is increased around

the orthologous position while dynamically adjusting the cut-off to always keep the

same specificity level. The cut-off directly depends on the length of the searched region

and the number of elements searched in total to guarantee an overall E-value of 1. The

smaller the region, the lower the cut-off. The more searches are performed the greater

is the totaly searched sequence and the higher the cut-off becomes. Because the cut-

off is dynamically adjusted to these two parameters, the package is called DynScan.

Although a direct conservation of the searched element is not required, the closer

the analogous element is located to the orthologous region, the lower is the required

cut-off. This way conserved positions are rewarded but not necessary. It is plausible to

expect analogous functional elements to occur in the same locus, not necessarily fixed

at the same position, because functional regions like promoters or coding regions are

known to be conserved in most cases and elements targeting them can be expected

to be located within range. On the other hand, cis-regulatory elements like enhancers

can be located in a wide radius around the regulated gene [86], single enhancers have

been located directly at the transcription start site as well as several 10s of kilobases

upstream or inside introns [87, 88]. The method described in the next section is

designed to be more sensitive the closer an analogous element occurs to orthologous

site, but also increases sensitivity for elements which are up to several kilobases away.
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Species 1

1. Genome-wide prediction

3. Search within increasing radii

Species 2

2. BLAST

4. Hit

Figure 3.1: DynScan: For each element predicted genome-wide in one species (1) the

orthologous region in another species is searched (2), increasing the search

radius and the cut-off stepwise (3). Search is stopped if either a new ele-

ment is found or if the cut-off reaches the genome-wide one (4).

3.2 DynScan initilization

The requirements are a scoring algorithm that gives a score for each position of a given

sequence, such as the jPREdictor, which has been described in Chapter 2.2.4, and a

null-model used for the background score distribution. The algorithm can now be

applied to a set of genomes, which are known to contain elements that the scoring

algorithm can predict in general. Each genome in the set is to be scored, without

applying a cut-off at this point. The result should be a score value for each genomic

position.

In the initialization phase, background sequences based on the provided null-model

are generated and scored. Because the cut-off calculation is based on those data, larger

data sets allow more accurate results. As a rule of thumb, random data of 100 times

the length of the real data lead to significant results.

The choice of the null-model is independent of the DynScan package, which merely

works on the provided data. Therefore any model that can be combined with the scor-

ing algorithm is imaginable. Common null-models are random data following the real

genome’s nucleotide base composition (0-order Markov chain), random data conserv-

ing longer nucleotide runs (higher order Markov chains), or shuffled versions of real

genomes.

The number of hits at each possible integer score in the null-model gives the back-

ground distribution required for a DynScan run. In the actual implementation, the

background data is stored in a PostgreSQL database. Additionally, the prediction al-

gorithm of choice is used to score each genome in order to store each position’s score
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in the database as well. Once all genomes are scored and the background scores are

calculated, the initialization phase is finished.

3.3 DynScan running phase

The emphasis of the whole method is placed on keeping specificity, i.e. we try to

minimize the false positive predictions, while still being able to raise sensitivity. This

is done for several reasons. First, as can be seen in the analysis of a real world example

in Chapter 5, the choice of the null-model can have a largebig influence on the calcu-

lated E-values. Applying strong constraints at the start helps to increase the result’s
plausibility. Even if a change of the null-model later indicates that the E-value used

might be in fact higher than expected at the beginning, we will see that the overall

outcome of the prediction is only slightly affected and the confidence in the results

is not weakened. Second, because predictions made in one species are used as prior

knowledge in other species, reliable prediction results are required.

In the first step of the running phase, the cut-off corresponding to an E-value of

1 is calculated for any of the genomes in the set. That means we expect one hit to

reach this score by chance when scoring the genome. This significance level of hits is

used throughout the whole prediction process. The exact cut-off is selected from the

database as the lowest score that can be observed in the background at least n-times,

where n is the length of the background data divided by the genome’s length. Using

this cut-off for a genome-wide prediction gives a list of hits out of which we expect

one to be false-positive in each genome.

All non-overlapping positions in the genomes reaching the cut-off are called “static”
elements and are kept in a database table. Because the score of each position within

each genome is already stored in the database, the static hits are created out of this

data in order to build non-overlapping hits. Each static element is assigned to a unique

identification number. Once the genome-wide significant hits are written into the

database, the orthologous positions for each hit inside the other species are deter-

mined. The DynScan implementation uses BLAST [89] to search against indeces built

from each genome in the set. The BLAST search leads to multiple high scoring pairs

(hsp) for each query element, which are also stored in the database. The ortholo-

gous position of each element in each other species is then determined as the longest

continuous sequence covering multiple hsps to which the following criteria can be

applied:

• The hsp’s E-value is ≤ 0.005

• All hsps are located in the same chromosome
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• All hsps are located on the same strand

• The distance between two adjacent hsps must not exceed 1 kb

The intention of the chosen criteria is to ensure that the derived orthologous region

actually hits the correct locus. In case no hit matching the criteria is found in a species,

no further actions are taken for that element. The E-value cut-off is meant to filter out

ambiguous results. The other two criteria are used to assemble a region that is not

completely covered by one single BLAST hit into a common region. For example, if the

query sequence has a length of 1 kb, and BLAST finds three hits of 150 bp each with an

E-vlaue <=0.005 and located on the same strand with a distance of 500 bp between

each adjacent hsp, the whole orthologous region will be assumed to be reaching from

the beginning of the first until the end of the third hsp. In this example, the region

will be of length 1450, showing 450 bp of gaps. The heuristic used by BLAST assumes

that the orthologous positions contain short seeds (default for DNA search is 11) with

high percentage of identity, which are later extended in both directions. Although

it is possible to miss the orthologous region due to this heuristic, the emphasis on

specificity justifies the use of BLAST. Because the DyScan algorithm only needs the

homologous loci and not an alignment of the complete query sequence, single hsps

covering only small subsets of the query with high probability are enough to proceed.

Once the orthologous positions for each element in the static table within each

other genomes are known, the main scoring can take place. The hypothesis is that

functional elements might not be completely conserved, but are still located around

the same locus in different species, to allow a regulation of the same gene for example.

For some cis-regulatory elements the presence within a specific distance to a gene can

be enough to act as a regulator, while the exact position does not affect the biological

function. The algorithm now takes all static elements from the first species and counts

the number of orthologous regions (n), determined as described above. In the first

step, the search region is set to contain the orthologous region only. Depending on

the assumed average length of the element of interest, the search radius around the

center of the orthologous position has to be chosen. A common value could be 1 kb.

The score cut-off for the prediction around each of the n regions is set to reflect an

E-value of 1/n for a sequence length of for example 2 kb (assume a radius of 1 kb),

which is equivalent to an E-value of 1 for a sequence of length 2000n.

The scored region is now extended stepwise, each time a new cut-off is calculated

to leave the overall E-value set to 1. Increasing radii lead to increasing cut-offs, so the

greater the distance of an analogous element to the orthologous region, the higher the

score that has to be reached. This way conservation is not required, but elements that

have constrained position during evolution get a bonus by the scoring scheme. The
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algorithm looks in the prediction score database table for the nearest position within

the search radius that reaches the cut-off. The procedure stops once an element is

found, or if the increasing cut-off comes too close to the genome-wide one, so that

the dynamic search is stopped and the nearest genome-wide predicted element is

taken. The result of the search is an element in each other species, which in each case

is considered to be the functional analog of the query element.

Because the overall E-value is set to 1, only one of the predicted functional analogs

in all orthologous loci is expected to be false-positive. Furthermore, because the initial

genome-wide search in each species was based on the same stringent cut-off, except

for one all other loci indeed serve as prior knowledge of likely elements whereabouts

in the target species, which allows a high confidence in the data. The resulting el-

ements are stored in the database, so that for each static element it can be looked

up where the assumed functional analogs in the other species are located. In the fol-

lowing section, the implementation details including the underlying database schema

are shown. DynScan has been used for the prediction of PREs, the steps taken and a

detailed evaluation of the achieved results will be presented in Chapter 5.

3.4 Technical details

3.4.1 Database layout

The database layout (Figure 3.2) allows the addition of other genomes without af-

fecting previously stored data. Species are stored in the species table, identified by

a unique primary key (id) and provided with a version identifier. The scores for each

position within each genome, identified by a species id, the chromosome, and the

base pair position are stored in the prediction score table. In order to allow different

prediction runs on the same genome, each run is identified by the “run” parame-

ter, which refers to an entry in the run table. The run table again keeps track of the

parameter set used for each prediction, containing an unique identifier, as well as ref-

erences to the motif set, null model and training set tables, together with additional

parameters “length” and “step”. A description field allows comments for each run.

The parameters are chosen to reflect the possible parameters used by the jPREdictor,

but other prediction software can be used easily either by adding other parameters

to the table or by using the description fields in the ecalc motif set, ecalc null model

and ecalc training set tables. The cut-off for any given E-value and sequence length is

calculated based on the ecalc scores table, that contains the number of hits found for

each integer score within the background identified by the “run” parameter. Based on

a given E-value, the score table entries can be evaluated and all non-overlapping hits
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ecalc_run

id INTEGER P

motif_set INTEGER F

null_model INTEGER F

training_set INTEGER F

length INTEGER

step INTEGER

description TEXT

ecalc_motif_set

id INTEGER P

description TEXT

ecalc_training_set

id INTEGER P

description TEXT

ecalc_null_model

id INTEGER P

description TEXT

prediction_score

chr VARCHAR

species INTEGER F

position INTEGER

score FLOAT

run INTEGER F

species

id INTEGER P

revision VARCHAR

name VARCHAR

static_elements

id INTEGER P

chr VARCHAR

begin INTEGER

end INTEGER

score FLOAT

species INTEGER F

date TIMESTAMP

run INTEGER F

blast_hits

query_element INTEGER F

target_species INTEGER F

hsp attributes ...

dynamic_search

id INTEGER

query_element INTEGER F

target_species INTEGER F

chr VARCHAR

begin INTEGER

end INTEGER

score FLOAT

run INTEGER F

blasthit_best

id INTEGER

query_element INTEGER F

target_species INTEGER F

chr INTEGER

begin INTEGER

end INTEGER

blast_length INTEGER

score FLOAT

e-value FLOAT

Figure 3.2: SQL schema of the database. Lines denote foreign key constraints. At-

tributes labeled as “P” are primary keys, the ones labeled as “F” are foreign

keys. Only most elementary tables are shown.
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that reach the score are stored in the static hits table, identified by a unique primary

key id and stored with location (chromosome, begin and end) as well as the maximum

score of each hit, a reference to the species table, a timestamp of the database entry

and a reference to the “run” parameter sets.

This way it is possible to combine all genome-wide predicted elements in one table,

regardless of the species or the parameters used for the prediction run. The results

of a BLAST search of each genome-wide predicted element within the other genomes

of the species set used for DynScan are stored in the blast hits table. It contains a

reference to the genome-wide element used as query, a reference to the targeted

species, a timestamp of the BLAST search and of course the BLAST results, namely

the chromosome (named “hit accession”), and the details of each found high scoring

pair (hsp). The stored hsp details are score (“hsp score”), start and end position in the

query sequence (“hsp query from”, “hsp query to”), start and end positions in the tar-

get sequence (“hsp hit from”, “hsp hit to”), number of gaps, length of the alignment,

percentage of identity, number of similarities (“hsp positive”) and most importantly

the E-value of the hits. Out of the single hsp the positions of the orthologous regions

are determined and stored in the blasthit best table, that contains an unique primary id

key, references to the query element in the static table, and a reference to the targeted

species as well as the position’s location, stored in the chromosome, begin and end

fields. The sum of the length of all hsps in one region is written to the “blast length”

field. The results of the dynamic search are stored in the dynamic search table, identi-

fied by a unique id. Each stored element contains a reference to the query element in

the static hits table, the id of the species the element is located in (“target species”),

the position (“chr”, “begin”, “end”), the element’s score and a reference to the param-

eter set used in the prediction (“run”). Additional information about each element is

stored in static elements gene and dynamic elements gene tables. These tables contain

cross-references for each element’s id to gene ids of the nearest located gene. The

genes are stored in the genes positions table, which holds locations of known genes

inside the species. The table’s attributes are a unique id for each gene, a species

reference, a gene’s global id referring to the entry in the original genome database,

a name, the position (chromosome, begin and end), and globally unique identifiers.

Which identifiers are chosen depends on the species; in case of Drosophila, FlyBase

[6] identifiers are used.

3.4.2 Implementation

The DynScan algorithm is designed as a software package written in Perl. Each step

in the dynamic search is implemented as a standalone script, all combined by a main
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>Chr2

250 6.554

260 7.445

270 8.556

280 9.0

290 10.12

300 8.4

Figure 3.3: Example of jPREdictor raw score output. Sequence identifier is provided in

FASTA format, position and score are seperated by any whitespace char-

acter.

wrapper script that serves as the main component once the initial phase is finished.

Several helper tools are provided to set up the requirements.

Species identifiers and names must first be stored into the database, as well as iden-

tifiers for the different prediction parameter sets. The only prediction parameters re-

quired by the dynamic search are the width in case a sliding window is used and the

value by which the window is shifted in each step. This is important for later calcula-

tions of begin and end positions of hits. Once this is done, a helper script can be used

to store positions and their scores for each genome used in the database. The format

expected is the one used by jPREdictor (see example Figure 3.3). Chromosome names

are given in form of FASTA format, in the other lines position and score values are

expected, separated by a whitespace character. As the position of a scored window

the center should be provided, so that start and end positions are calculated based on

the window width. The required data for the E-value calculation are scoring results of

significant amounts of data following some null-model.

In addition to the introduction of the different species to the database and the

import of prediction scores, the scripts need to know some parameters, which are to

be provided in form of a configuration file (syntax in Figure 3.4). Mandatory settings

are the BLAST index for each species and the path where the fasta files of each element

will be stored together with the location of the genomes’ fasta files. A list of distinct

non-overlapping predicted PREs with an E-value of 1 or less can be built out of the

stored postion scores in the database.

For each entry in the static element table, an additional script creates a fasta file

inside the directory set in the configuration file by cutting the region out of the pro-

vided genomes’ fasta files. The files’ filenames contain the element’s database id as

well as the chromosomal position. The DynScan software can now be started by the

main script (1 add species.pl), which needs to be provided with a species name and a
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#Generic path to chromosome. “CHR” is replaced by specific

value according to names used in database

$chr path{pseudoobscura 2.0}=/path/to/chr/dpse/CHR.fa;
#Path to genome-wide predicted elements

$pre path{pseudoobscura 2.0}=/path/to/elements/;
#Path to BLAST indeces

$blast path=/path/to/blast/indeces/;

#Name of species specific BLAST index

$blast index{pseudoobscura 2.0}=dpse-all-chr-2.0;
#Prefix for database tables

${test string}=debug;
#Number of parallel processes

$jobs=4
#Database specific “run” parameter (refers to motif set,

training set,...)

$run=1

Figure 3.4: DynScan configuration file. Parameters are described in Perl syntax. Lines

beginning with “#” are comments.

configuration file (options described in Appendix A.1). A dynamic search will be per-

formed against all other species. The software iterates over all species in the database

and selects a new target species in each run while the query species stays the one

provided. The subsequent steps will be called automatically but can be run manually

if needed.

In the first step, each static element in the query species stored in the database

serves as input for a BLAST search against the index of the target species of the run.

The input file is taken from the file system, identified by the element’s database id; the

location of the target index is taken from the configuration file. In order to enhance

running time, multiple BLAST jobs can be run simultaneously. The number of threads

can be set in the configuration file. The result of each BLAST run is a single XML file,

which is stored in a temporary directory and parsed in the same step. The BLAST

results are written to the blast hits database table.

In the second step, the orthologous positions are determined by another script,

which takes query and target species as options. By default, the script is called au-

tomatically with the actual query and target species. For each static element of the

query species in the database that has a BLAST result in the target species, the ho-

mologous position is determined by applying the criteria mentioned in Section 3.3. If
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existent, the determined region is stored in the blasthit best table. Because the script

iterates over all static elements, it is possible to gain benefit from parallelization again,

especially if the script is run on a multi-processor or multi-core machine.

Once the homologous positions are known, they can be used as prior knowledge in

the dynamic search, done in the third step by the next script, which again takes the

query and target species as options. The main script calls this script with the current

values for query and target species. For the actual dynamic search, each entry in the

blasthit best table is taken that is referenced to a static element in the query species

and belongs to the target species. Around the center of the region, increasing search

radii are used. The steps by which the radius is increased are set in a hash inside

the script. The default values, used for the prediction od cis-regulatory elements with

the jPREdictor, are 1 kb, 10 kb and 20 kb. The required cut-offs at each step are

depending on the radius and the overall searched number of orthologous regions and

are calculated at run time. The radii can be set to arbitrary values. The radius hash is

processed step by step with increased values. Each time the analyzed region is set to

the center of the orthologous region, extended in both directions by the radius. If the

highest score in this region, looked up in the score table of the database, reaches the

current cut-off a hit has been found. The position of the highest score is then extended

to the maximum region that scores above the cut-off and returned as the assumed

functional analog. If all radii in the hash table have been processed without finding a

dynamic hit, the nearest located static hit on the same chromosome is returned.

The returned hit region is written to the dynamic element table. Because the steps

can be done independently for each orthologous region, they can be run in parallel

threads again. After all blasthit best entries have been processed, the steps one until

three are repeated with switched query and target species. The complete run is done

for every other species in the database. This way each species can be added separately

by a run of the main script “1 add species.pl”. Adding species number n requires

2(n − 1) dynamic searches. The most essential scripts are listed in Appendix A.1.

3.5 Evolutionary studies

Regulatory elements, which consist of several clustered transcription factor binding

sites, can be predicted computationally by software such as the jPREdictor. With the

DynScan software we presented a method to increase sensitivity of such predictions.

But if we are interested in the question, what is necessary to turn a given not-functional

sequence into a predictable element, a new approach is required. The question might

arise if DynScan reveals that a functionally analogous element is shifted outside the
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orthologous region to different spots in various species. Which of the regions that are

functional in one but not functional in other species is the evolutionary ancestor? We

base our method on the idea of motif presites, regions that have a higher predispo-

sition to become a functional motif than other surrounding regions. For enhancers it

is known that presites of motifs are overrepresented in some regions [90], allowing

the gain of a regulatory element within fewer generations than in regions without or

with fewer presites. Presites are defined as sequences that need only minor mutations

to turn into a transcription factor binding site. We call regions that contain clusters

of presites, or even mixtures of functional but not sufficient motifs and presites, pre-

elements in general. In case of the Polycomb/Trithorax Response Elements we use the

term pre-PRE.

As a second aspect we have to keep in mind the frequency of presites expected to be

found by chance within regions of given window length. For each motif, we calculate

the Hamming distance at each position in a sufficient amount of background data, e.g.

a complete chromosome or even a whole genome. The calculation is done for each

window of motif width, which is slid in steps of one. The Hamming distances for each

motif are therefore between 0, which is a direct match, and the motif length, which

means no overlap at all.

Within each window the numbers of occurrences of the same distance are summed

up for each motif. Depending on each motif’s length and degeneration, different dis-

tances are chosen to define a presite Higher numbers of presites within a window

mean higher probabilities to gain a motif by mutation. We explicitly do not consider

motif pairs but look for windows in which different motifs have a high chance of being

gained within few mutation steps. Based on background number of presites within a

window, we can calculate the p-value for a specific number of sites to be found in a sin-

gle window simply by counting how many percent of all windows in background have

at least the same number of presites. The overall p-value for a window is the product

all motif’s p-values in this window. The smaller the p-value, the higher the chance

that the region spanned by the window becomes functional by random mutations.

However, the model only expresses at which positions more presites with small

Hamming distances to motifs are present and therefore have a higher chance of gaining

a motif within less mutation steps than other regions. Nevertheless, even windows

having less presites than the background could gain motifs by only one single mutation,

but the chances are lower. As long as a presite occurs within a window, it cannot be

said that this sequence cannot be turned into an active element by random mutation,

but we expect such gains to occur at other positions with a higher chance.
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Evaluation

The DynScan package relies on a working scoring algorithm that calculates scores of

genomic positions, as for example jPREdictor. In any case, some kind of description

of the elements of interest is required. In the example of jPREdictor, a set of motifs

has to be provided which are representative for a searched regulatory element. For

some elements, such as Drosophila PREs or enhancers, some of the transcription fac-

tors involved as well as their DNA binding sites are known. If motifs are not known,

however, we have to start there first before we can even consider using jPREdictor in

combination with DynScan. A method of finding motifs must first be found. Motif

prediction is a difficult and error prune task. Although several prediction tools already

exist, relying on only a single one of them limits the chances of receiving good re-

sults. Here we describe several new methods we have developed to combine motif

prediction tools and to evaluate their outcome.

4.1 k-word approach

Enumerative approaches for motif prediction work by looking for all words of a spe-

cific length and try to filter out those that are statistically overrepresented. Different

tools already exist that aim to extend the approach by introducing degeneration. Our

method takes a different approach. Examination the binding sites of some of the

known DNA binding transcription factors in PREs shows that concentrating on non-

degenerated motifs alone does not inevitably rule out any sensitivity. The core binding

site of Pho for example is GCCAT, the GAGA factor is described as GAGAG. Further-

more, a clustering of overrepresented k-words into a degenerated matrix is possible

in a subsequent step, as well as using such words as prior knowledge in other mo-

tif predictions. Instead of extending the k-words to degeneration as performed by

Weeder or YMF, our focus lies on finding motifs for a more specific case. A prediction

of regulatory elements performed by jPREdictor based on motifs requires an additional

positive and negative training set to calculate each motif’s weight. If the training set

contains a set of sequences that share a common functionality that is absent in the

39



4 Method: Motif Prediction and Evaluation

negative set, this fact could be reflected in the motif prediction as well. The k-word

search therefore favors words that are overrepresented in the set of positive sequences

in relation to the negative sequences. Furthermore, because the searched motifs are

meant to be functional elements of all positive sequences, we want to reward if they

occur equally spread over all of those.

The basic idea is now to search for words with a fixed length over the alphabet

{A, C, G, T} that occur more often in a positive training set than in a negative training

set and appear equally distributed in all positive sequences.

Occurrences For each possible k-word m out of all 4k possible ones for a given k, an

occurrence score O can be calculated as

O(m) = log
f(m|M)
f(m|B)

where f counts the occurrences of motif m in a set of given sequences, normalized

by the length of the sequences; M and B denote the model and background.

Distribution As a value representing the distribution of a motif throughout the pos-

itive training set, we use the joint entropy.

H(m) = −
ÿ

s∈M

p · log(p)

where p = f(m|s)
f(m|M) . If no motif is present in s, f(m|s) returns a small pseudocount.

The value p gives the probability for each motif m to be located in sequence s. If

a motif occurs with the same frequency in all sequences of the positive training set

M , the joint entropy becomes maximal. In general the value gets higher the more se-

quences in the set contain the motif to an equal amount. If the motif occurs n−times

in all sequences but for example 5n−times in a single sequence in the set, the entropy

value will be lower as if the motif occured only n−times in that sequence as well. We

made this decision based on the assumption that all sequences in the set are repre-

sentatives of the same functional element, sharing a common structure of functional

motifs. The ideal motif we want to find occurs therefore equally often in all members

of the positive set. In real application data, the ideal motif might not be existent, so

that different numbers of occurrences might be observed in different sequences. In

that case the optimal entropy value will not be reached, but in relation to motifs that

are absent in a large fraction of the sequences, the value will be higher. The “quality”

of a motif is now determined as a combination of its overrepresentation in the positive

set and its relative entropy.
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The score S of a motif m is defined as

S(m) = O(m) · H(m).

Motifs that are most overrepresented in the positive training set and are equally spread

through all of its sequences receive the highest overall score. One could think to

weight the influence of the two factors O(m) and H(m) by introducing a parametric

sum instead,

S(m) = w1O(m) + w2S(m)

allowing to arbitrarily place the emphasis on either the motif’s occurrences or entropy,

by using different values for w1 and w2. If prior knowledge is present about the data

in an application that requires a specific weighting, this option can be used. Both

definitions of S(m) are implemented in the same Perl script.

4.2 Phylogenetic Footprinting Pipeline

In [23] a comparative analysis of 12 Drosophila species is presented that demonstrates

the potential of phylogenetic methods. The authors were able to provide novel gene

predictions as well as new miRNA genes. Phylogenetic footprinting can also be used

to predict novel transcription factor binding sites. In case the element of interest is

usually located at homologous positions in multiple species, phylogenetic footprinting

approaches may be used that consider local alignments showing higher conservation

as more likely motif positions. Two examples of those tools are Footprinter [17] and

Phylogibbs [30], both are regular motif prediction tools that have a rewarding function

for putative motifs that occur at conserved positions in the input sequences. But even

if no explicit phylogenetic footprinting is implemented into a prediction algorithm, we

still can make use of the technique by running a prediction on homologous sequences

of an element known in at least one species. For example, if biological data show the

presence of a regulatory element in the same conserved promoter region within human

and mouse, both sequences could serve as input in a single prediction run, expecting

the same motif to occur in both species. Furthermore, homologous sequences taken

from other species could be added into the prediction input.

General suggestions for dealing with motif prediction tools include [12, 26]:

• Try substantial amounts of input data to minimize effect of biasing sequences.

• Choose multiple tools that are based on different approaches.

• Remove found hits and run prediction again.
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• Combine related results into common motif representations.

Additionally, as described before, a motif should be contained in a large fraction of the

input sequences. Motifs appearing only rarely in the input sequences are less likely to

play an important role in the input sequences’ common functionality.

Pipeline

We combine those criteria into a prediction pipeline, that takes large sets of aligned

sequences as input, runs different prediction tools, masks the hits in each run, clusters

predicted motifs, and finally checks whether the motifs appear in a substential number

of the input sequences (Figure 4.2).

The pipeline itself is implemented in Perl. The input sequences are received by

querying the UCSC genome database for Multiz17way [91] alignments via HTTP. For

a set of given positions in one sequence, the alignments are requested and a configured

set of sequences is kept. For example, if the provided positions are from the human

genome, only sequences from mammals can be kept. Although it can vary how many

alignments are available, depending on the query positions, constraints can be defined

such as that at least human and mouse have to be present.

The alignments are prepared for three different prediction tools. MEME is chosen

exemplarily for an approach based on Expectation Maximization. The alignments are

converted into gapless sets of five sequences each to meet MEMEs constraints on input

data. Larger sets of sequences between 2 kb and 4 kb each lead to a running time of

more than 24 hours on a 2.4 GHz dual-opteron system, so restricting the number of

alignments to five each time reduces time consumption. The hits reported in the first

run are masked and the search is repeated in order to allow the detection of lower

scoring motifs.

Additionally to MEME the tool Footprinter is run on the input data. It works di-

rectly on alignments and rewards motifs showing a high conservation in all provided

species. However, in each step only one alignment can be handled at a time. The

parameters are set for a search for motifs with up to one mutation within each branch

of the phylogenetic tree. Filtering of low complexity regions is enabled to avoid a

bias towards repetitive regions. Even in a single alignment up to 15 predicted motifs

can be observed giving sequences of 4 kb each. The total amont of distinct motifs

is smaller, several reported hits belong to the same matrix. Therefore related motifs

have to be combined in common matrices before a further processing of the predicted

motifs can take place. A direct clustering of all Footprinter runs, especially if the input

set contains 100 sequences or more, is beyond computational limits for the clustering

tools MATLIGN and Phyloclus. The problem can be avoided by introducing a two-step
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Figure 4.1: Phylogenetic pipeline. Input alignments are called from UCSC database

and transformed into input for MEME, Footprinter and Weeder. Motifs

are predicted and hits masked. In case of Footprinter, hits of each align-

ment are clustered. Prediction and masking are repeated. All results are

combined in a single list and clustered. If clustered motifs can be found

in ≥ 50% of the input, motif is reported as hit. Otherwise Phylogibbs is

called to align additionally predicted motifs to the existing clusters.
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motif 1 motif 2

cluster 

Figure 4.2: Allowing gaps in MATLIGN clustering could lead to matrices that are not

matched by original motifs. Neither motif 1 nor motif 2 are matching the

cluster directly in this example. If the matrix is treated like any position

probability matrix and used in additional software, the elements building

the matrix would not be found.

clustering. First, each alignment’s prediction is clustered separately to get an overlap

free list of predicted motifs for each prediction run. The resulting clusters are then

clustered a second time. As done in the MEME part, the hits are masked in each step

and the prediction is iterated.

Moreover, Weeder is used as an example for an enumerative approach that has

been shown to be complementary to probabilisitc predictions [12, 25]. The input

alignments are transformed into gapless FASTA files of up to 100 alignments at once.

The parameters are set to search for motifs of length six, eight, and ten with none,

two, or three mutations allowed. Again, hits are masked and the search is repeated.

All three methods report a list of putative motifs. Because in each prediction step

only subsets of the input have been processed, multiple reported motifs could be

part of the same transcription factor binding site representation. The different motifs

are converted into the input format of the clustering tools MATLIGN and Phyloclus.

MATLIGN is set to not allow spacers in the input motifs to prevent the creation of

matrices matching the input motifs only if gaps are included (Figure 4.2). Additionally

the input motifs are extended by “N” at the beginning and end. Otherwise it can

happen that the input motifs are not matching the generated cluster (Figure 4.3). .

The result is two motif lists which are overlap free in the sense of the clustering

algorithm. Each new motif is checked whether it meets the requirement that it should

be contained in at least 50% of the input sequences. If so, it is reported as a putative

result. If not, the motif can either be a false positive and is not related to the input

sequences’ biological functionality, or the motif lacks of sensitivity. In the latter case,

trying to align other subsequences of the input data could lead to a more sensitive
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...AAACCCCCCCCCCAAA...

...TTTCCCCCCCGGGTAG...

motif 1

motif 2

TTTCCCCCCCCCCcluster 

Figure 4.3: MATLIGN clustering problems: Red regions show motifs predicted in two

sequences that are clustered by MATLIGN. Because the flanking regions of

the motifs are lost, the clustering could lead to a matrix that don’t match

the original motifs. This can be prevented by adding ’N’ to the motifs

before the clustering is done.

matrix.

Prior knowledge

Phylogibbs offers the possibility to take a set of matrices as input sequences to which

predicted motifs are aligned if possible. All motifs that do not occur in at least 50% of

the input data serve as prior knowledge for a Phylogibbs search. The motifs provided

to Phylogibbs have to be of the same length as the motifs that are searched. The

motif length parameter is set to 10 in our pipeline. Longer motifs are just cut-off

while shorter motifs are padded by ‘N’ per default by Phylogibbs. The clusters created

by Phyloclus have the same length as the input sequences, no further processing is

required. Because the MATLIGN output varies in length and a restriction to the first

10 positions does not reflect the positions of the individual cluster members, another

criterion has to be chosen. The continuous part taken from each input cluster has to

be a subsequence of as many cluster members as possible.

For example, the best MATLIGN result of the Footprinter output is shown in Figure

4.4. The bars are the positions of the individual clustered motifs, the common region

is chosen as the longest overlap.

Phylogibbs is run on each alignment seperately, provided with the clustered motifs

as input. For each of those clusters it is counted in how many of the input sequences

it has been found in the Phylogibbs run. Again, the threshold is set to 50%.
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Figure 4.4: Selecting input as prior knowledge for Phylogibbs from MATLIGN clusters.

The motif example shows largest Footprinter cluster of length 17. The

sequences of length 10 each, that are combined into the cluster are indi-

cated as green bars. To get again a cluster of length 10 that can be used

as Phylogibbs input, the 10 bp subsequence (rectangle) is chosen to cover

as many cluster elements as possible.
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4.3 Evaluation algorithm

The problem of assessing a set of motifs in order to distinguish specific and significant

motifs from statistically random hits or motifs that do not have a positive impact in

further use, occurs in most cases that involve a motif prediction. Therefore in this

chapter a generalized method for choosing potential motifs that can be used in a motif

based prediction of elements of interest is presented. The motif based prediction

software for regulatory elements we choose is jPREdictor.

In 2003, when the first PREs in Drosophila were predicted genome-wide, some of

the involved transcription factors and their binding motifs were known, namely Zeste,

GAF, and Pho. In addition the En1 site has been used, which has been found to be

conserved in the Engrailed PRE. But as long as not all binding motifs for an element

class of interest are identified, it is necessary to decide on a set of motifs to use in a

prediction. This problem occurs in the motif based prediction of any kind of elements,

let it be PREs in flies or mammals, or enhancers.

Because the calculation of the cut-off to be used in predictions is based on the

number of occurrences found for each score in a prediction run in a null-model, the

choice of the motif-set directly influences the cut-off and therefore has an effect on the

sensitivity and specificity of the whole prediction. Every motif or multi-motif within

the motif-set with a positive or negative weight raises or lowers the cut-off because

each motif has a chance greater zero to occur even in a random sequence. Every time

such a motif is found in a scored window, the score is influenced. Trivially, the smaller

the motif set is, the smaller the chance of finding a member of the set in a random

sequence. Every motif inserted into the motif set influences the cut-off (if the weight

is not 0). Thus a motif set restricted to important motifs only is preferable. The basic

considerations are not affected if the cut-off calculation is based on a probabilistic

model instead of the empirical statistic. It does not matter whether the chance to

find a motif pair is determined by random data or is calculated directly. The reason is

that a positive weight only gives the relation between the numbers of occurrences in a

model and in a background, independent of the actual expectation of an occurrence.

For example, if a motif pair that is built of two single nucleotides ‘A’ and ‘C’ occurs

only slightly more often in the model with a weight of only ‘0.2’, the cut-off will still be

very high and completely bias the prediction output. The A:C motif pair occurrences

will contribute almost exclusively to any score in either the background or in model

sequences. Real element specific motifs that receive high weights of maybe ≥8 but

occur only a few times in each of the real sequences, will be masked and have little to

none impact on the scoring.

This observation leads to the conclusion that a good motif-set should only contain
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those motifs or multi-motifs whose contribution to the separation of positive and neg-

ative training sets is stronger than their effect on the cut-off calculation. The question

to be answered now, is how can we evaluate the effect of each multi-motif on the

prediction and keep only those that give a benefit. Furthermore, multi-motifs that are

kept in the motif list are meant to be characteristic for the elements in the positive

training set and therefore their weights should not be altered too strongly if single

sequences are removed out of the training set.

Furthermore, motif pairs are weighted according to their occurrences in a positive

set in relation to a negative set. In case of jPREdictor, the distribution of motif pairs

within a set is not considered. Basically, the weight is the same if a motif pair occurs

one time in each of n sequences in the model as if it occurs n times in one sequence

of the model. In practice, there might be small differences due to pseudo-counts,

but the general description demonstrates the potential problem. In our evaluation

step, a weight will be put into relation to the total number of hits and the number of

sequences it occurs in.

Given a set of potential motifs and a positive (M ) and negative (B) training set, the

optimal motif set to separate the two training sets is derived as the result of a multi

step pipeline. In the first step all motifs are combined to all possible motif pairs P ,

then each pair is weighted according to the training sets. The “net” effect of each pair

on the output of a set of sequences S is calculated as

σSm =
ÿ

s‘S

O(s,m) · Wm

where Wm is the weight of motif pair m ∈ P and O(s,m) is the number of occurrences

of that pair in sequence s of training set S. The motif pair with the biggest proportion

of the positive training set’s score is therefore argmaxm(σMm). Each motif pair in σM is

now either kept in the motif set or removed, depending on its relation to the maximum

score and to its value in σB. For positive σMm , a motif pair is chosen to be part of the

motif set if

(σMm ≥ maxscore

µp
) and (σMm ≥ µs · σBm).

The µ parameters are scaling parameters that determine the minimum fraction of the

maximal or minimal score (µp, µn) and the factor between scores in model and in

background (µs).

A negative value means a negative weight, indicating that a motif pair is underrep-

resented in the positive training set in relation to the negative set. Negative weights

lower the score at positions that are less likely to be an element of interest and there-

fore increase the prediction’s specificity. Motif pairs for which σMm is negative are
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kept if

(σMm ≤ minscore

µn
) and ((σMm ≥ µsÕ · σBm) or (σBm ≥ µsÕ · σMm))

This step restricts the motif set to the motif pairs providing the highest information

content. The values µs and µsÕ give the factor between the model and background σ-

values for a motif pair m if the values are positive (µs) or negative (µsÕ). The parameters

µp, µn, µs and µsÕ are chosen depending on the actual oberserved distribution of the

σ-values.

Robustness test

Although positive weights reflect an overrepresentation of motifs in the positive train-

ing set, a positive weight alone is not sufficient to prove that the motifs are symp-

tomatic for the element of interest. Because the distribution within the training sets is

not considered in the weighting step, strong motif repeats in one single sequence can

bias the weight. In the last pipeline step decribed above a motif set has been built and

can be used to score the training sets. To avoid the time consuming cut-off calculation

at this point in the pipeline, a preliminary cut-off is set to 2·((highest score in background)+
1). The 1 is added in case no motif pair is found in the background which would lead

to a cut-off of 0.

The common way in statistics to determine potential bias in a given set of data points

is resampling, either in form of bootstrapping or as a jack-knife test. The latter is ap-

plied to our set to rule out single sequences that bias σM . In [92] a similar method is

used in relation to motif predictions. They removed random single sequences from the

prediction process to observe their effect on the outcome. In our case, all sequences

scoring above the preliminary cut-off within the positive training set are removed in

the next pipeline step. These sequences are detected by the prediction, using the

motif set derived in the first steps. Biased weights due to motif repeats in single se-

quences will result in a high score above the cut-off in only few positive sequences.

If we remove the sequences that contain repeats, the motif weights will be drasti-

cally decreased, while the weights of motifs that are equally overrepresented in most

sequences will show robustness. Repeating the pipeline multiple times eventually re-

moves the biasing motifs and sequences. As the result, either a motif set and positive

training set are found that are representative for the element of interest, or no single

motif sets can be found that can predict a large amount of elements.
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Figure 4.5: Motif evaluating pipeline: A list of single motifs, a set of positive sequences
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are combined to pairs and weighted, σ-scores are calcutated for model

and background, highest scoring motif pairs are selected and used in a

prediction in the model. Positive sequences scoring above preliminary cut-

off are removed from model and pipline is iterated.



5 Application and Results: Fly PREs

5.1 The search and results

The prediction of Polycomb Response Elements in Drosophila seems to be well suited

as an application for the DynScan package. The original PREdictor already showed

in 2003 [11] that a prediction of PREs in Drosophila melanogaster (D.mel) is pos-

sible. As described in Section 2.2.4, the specificity had the main emphasis in the

prediction, which let to reduced sensitivity. Because a large number of the 167 pre-

dicted PREs have been experimentally verified, the confidence in the chosen signif-

icance level is justified. Furthermore, the later developed jPREdictor allows to base

the extended prediction on the same motif and training sets while further making use

of additional features. Thus the DynScan requirements are fulfilled, jPREdictor serves

as an algorithm that can score whole genomes if a set of motifs and training sets for

motif weighting are provided. These parameters are taken from the original PREdictor

publication, because they already have been partially validated by ChIP and transgenic

experiments.

For the comparative dynamic search, a set of species needs to be supplied. The

existence of PREs in D.mel is well confirmed, whereas there is as yet no information

about PRE locations and functions inside other Drosophila species. The results that

the DynScan method can provide may give further insights into PRE functionality and

give a better understanding about the essential functional parts inside the PRE regions.

The species set we used for DynScan consists of five Drosophila species (see tree

in Figure 5.1). Additional to D.mel (version 4 [94]), we added Drosophila pseudoob-

scura (D.pse) (version 2.0 [94]), Drosophila yakuba (D.yak) (version 1.0), Drosophila

simulans (D.sim) (version 1.0) and parts of Drosophila erecta (D.ere) (Comparative As-

sembly Freeze 1 [95]). Four of the species are part of the melanogaster subgroup,

while D.pse, as part of the obscura subgroup, is ˜25 million years apart. D.mel, D.yak,

D.sim, and D.pse are the only species within the 12 Drosophila species that have been

assembled to chromosomes. The results presented in this chapter are gained from

these species unless stated otherwise. The recently published Comparative Assembly

Freeze 1 was chosen for specific analysis, as will be shown later in this chapter, but
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Figure 5.1: Phylogenetic tree of Drosophila [93].
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5.1 The search and results

did not make its way into the complete DynScan run, because DynScan requires long

sequences around the orthologous positions in order to dynamically search the loci.

Unfinished assemblies in form of contigs are avoided to minimize assembly related bias

on the results.

In the first step, all species are scored by jPREdictor, using the same parameters as

the original PREdictor. Because analyses of the effect of different parameters were not

done in 2003, the scoring parameters are reconsidered. The original parameters (win-

dow width 500, shifted by 100 in each step) predict 167 PREs above the genome-wide

cut-off of 157 that corresponds to an E-value of 1. The maximum distance between

two single motifs to be taken as a motif pair is 220. The distance directly influences the

weights, because even if the same two motifs occur in the model and the background,

the distance will most likely be different. Because of the low number of sequences in

the training sets, using individual weights for each motif pair to maximize each weight

could lead to biased results. A thorough statistical analysis of distance distribution

is not within the scope of this work. The chosen step width of 100 on the other

hand, could lead to a miss of motif pairs if one motif falls into another window than

the other one. The smaller the step width, the less likely this happens. Using a step

width of 1 however, results in lower running time, and more important, the size of the

score values increases by factor 100. As can be seen in the database layout described

in Section 3.4.1, for each scored position three integers (run, species, position), one

float (score) and one set of characters with variable length (chromosome) have to be

stored. This sums up to 32 bytes, plus the overhead for the database index on the

chromosome field. At a step width of 1, the database data would be at least 32 times

the genome length. The tradeoff between the most accurate step width and the space

overhead is at a step width of 10.

The species D.mel, D.pse, D.sim, D.yak and D.ere are added to the species database

table and are referenced by an identification number. The chosen species contain

all fully assembled genomes, as well as D.ere, which has been chosen because it is

evolutionary located between D.pse and the melanogaster species and about 80% of

the genome is available in scaffolds with a length of at least 50 kb. All species are

scored by jPREdictor with a window width of 500 and a step size of 10. The motif

set and the training set are the ones used by PREdictor. All scores and positions are

copied into the database. For the E-value calculation, 20 GB of random data following

the D.mel nucleotide distribution are created and scored, the number of hits for each

integer score is also stored in the database. This parameter setting is identified by

run number 1. Out of this data the entries for the static element table are created, at

an E-value of 1 we now predict 201 PREs genome-wide in D.mel, in contrast to the

originally found 167 in 2003.
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Figure 5.2: Number of predicted PREs in different species. The cut-off is set to 157,

which reflects an E-value of 1 in Drosophila melanogaster. Motif and traing-

ing sets are taken from original publication [11], window size is 500, shifted

by 10.

Genome-wide predictions

For each scored species, the same cut-off (in this case 157) is used to build the genome-

wide prediction table. The numbers of predicted elements inside the different species

differ drastically, as shown in Figure 5.2. Inside the melanogaster subgroup, the num-

ber varies around 200; the smaller amount of 143 in D.sim could in part be explained

by the fact that 18% of the genome are either annotated as ‘N’ or are provided in

forms of random reads for each chromosome. In D.pse, 538 hits can be predicted,

which cannot be explained by the difference in genome-length. Although the esti-

mated D.pse genome is about 18% longer than the D.mel genome [96] (while [95]

estimate a 9% longer genome), the effect on the cut-off is small. The chosen cut-off

reflects an E-value of 1 in D.mel and thus an E-value of 1.18 in D.pse, so according

to our statistic, at least 536 elements are true positive. The question to be answered

now is whether the increase of hits in D.pse has a biological background, or shows a

weakness in the prediction’s parameters or the statistic. Due to the lack of different

decriptions of the functional transcription factor binding sites in other species than
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5.1 The search and results

Figure 5.3: Immunofluorescence on polytene chromosomes with anti PC antibodies in

four species. Pictures taken from [97].

D.mel, we took the same motif set under the assumption that the proteins and even

more the binding sites are conserved within all Drosophila species.

To validate this hypothesis, our collaboration partner has performed different bio-

logical tests [97]. Pictures of Polycomb protein distribution made by immunofluores-

cence using anti Polycomb antibody on polytene chromosomes prepared from third

instar larvae of four species show different numbers of bands in different species (Fig-

ure 5.3). The number within the melanogaster subgroup varies arounf 100. In D.pse

on the other hand, about 220 bands have been identified. Because the resolution of

this kind of experiments does not allow an exact determination of single PRE loca-

tions, the total number of PREs within each species remains unknown. One band of

Polycomb binding can contain multiple PREs, as for example the Bithorax complex, in

which we predict 7 PREs in D.mel. The number of bands is not only consistent with

our prediction, but also matches the number of detected bands of H3K27 methylation

(Figure 5.4). As can be seen in Figure, , a strong increase of Polycomb binding as

well as histone methylation can be observed in D.pse in relation to the melanogaster

subgroup species. The experimental data indicates an increase of regions that contain

PREs of 72% between D.mel and D.pse. Our prediction detects 178% more PREs in

D.mel than in D.pse.

The difference in PRE numbers gives a first impression of potential dynamics in

the evolution of such elements. We refer to this observation as the first type of

evolutionary plasticity.
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D.melanogaster D.pseudoobscuraD.simulans D.yakuba

Figure 5.4: Immunostaining with anti histone H3 K27 me3 antibody on four species.

Figure 5.5: Average band numbers from polytene chromosomes as shown in Figure

5.3 and Figure 5.4. Error bars give standard deviation.
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Figure 5.6: Experimental validation of PRE prediction: a) Prediction scores of Bitho-

rax complexes. Positions of homeotic genes promoters and experimentally

verified PREs are given above each plot. Orthologous positions of addi-

tionally predicted D.pse PRE at iab3 marked by asterisks. b) ChIP analysis

of Polycomb (PC) and Polyhomeotic (PH) enrichments on the bxd PRE in

embryos of four species. Error bars indicate standard deviation. Horizontal

lines represent mean enrichments of negative control fragments that were

present at detectable levels in all samples. c) Transgenic reporter assays

for 1.6kb centered around PRE bxd. Top row: the D.mel bxd PRE26 was

cloned upstream of the miniwhite reporter gene. The eyes of transgenic

flies show variegation, pairing sensitive silencing (left panel), loss of silenc-

ing in a PcG mutant background (middle panel) and loss of activation in

a trxG mutant background (right panel). Bottom three rows: miniwhite

reporter constructs containing 1.6kb of D.sim, D.yak and D.pse sequences

orthologous to the D.mel bxd PRE were injected into D.mel embryos. All

show behaviour similar to the D.mel bxd PRE. All figures are from [97].



5 Application and Results: Fly PREs

Bithorax complex

The role of the three genes inside the Bithorax complex as well as the location of some

PREs within regulatory regions of BX-C are well studied (Section 2.2.2). As a positive

control experiment, we score the Bithorax complexes of four species and see a signifi-

cant peak at the position of the bxd [98] PRE (Figure 5.6). By ChIP experiments, it can

be shown that Polcycomb group proteins are enriched at the bxd position in all four

species. This shows that the prediction parameters based on D.melanogaster PREs lead

to high score peaks at positions in other Drosophila genomes, and that these positions

are actually bound by Polycomb group proteins. Additional transgenic reporter array

experiments in D.mel show typical PRE behavior of the predicted bxd PRE from all

species (pairing sensitive silencing, variegation, loss of silencing in PcG mutants). All

those experiments show that the transcription factor binding sites used in the motif

set are in fact conserved in other Drosophila species as well. Thus the requirements

of the dynamic search are fulfilled - the jPREdictor in combination with the motif and

training set can be used to score and to predict PREs in different Drosophila species.

Dynamic PRE search

The dynamic search by DynScan is performed in each direction between the four

species D.mel, D.pse, D.sim, and D.yak. Because D.ere is only available in form of

assembled scaffolds instead of complete chromosomes, it is not considered for the

genome-wide dynamic search. As search radii we took 1 kb, 10 kb, and 20 kb. The

chosen 1 kb reflects the case that the analog is directly located at the orthologous

position. Predicted PREs are between 500 and 1000 base pairs long, the orthologous

sites however can be shorter, depending on the locations of the hsps.

The first category of dynamically predicted PREs contains those that are located

within 1 kb around the orthologous site. In this case, the found PREs occur at con-

served positions. As can be seen in Table 5.1, the cut-off required to get an E-value of

0.005 is calculated as 70. If the number of orthologous positions is 200, (remember

we have 201 genome-wide hits in D.mel), the overall E-value is 1, instead of 157 in

the genome-wide search.

The next radius is set to 10 kb to detect analogous PREs that are not overlapping

with the orthologous site, but are still close enough to allow the categorization of

assumed functional analogs. The cut-off used in case of 200 searches is 102.

In the last step the search radius is set to 20 kb. The analogous PREs have now

moved more than 10 kb, but are is still required to be inside the same locus. Because

the hypothesis is that some cis-regulatory elements can be at different positions in

different genomes, but the functional analog is at least located inside the same locus,
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5.1 The search and results

E-value 1 kb 10 kb 20 kb

1 14 34 42

0.1 34 61 70

0.01 61 95 104

0.005 70 104 114

0.001 94 127 139

Table 5.1: Cut-off scores for different E-values and different sequence length. Ranges

are given as radius. Scores calculated empirically in 20 GB random data,

created as 0-order Markov Chain and following D.mel nucleotide composi-

tion.

the dynamic search stops after a radius of 20 kb is searched. The confidence that

the nearest predicted element is the query element’s functional analog decreases with

growing distances. That explains why no more dynamic steps are considered after

20 kb and the nearest genome-wide predicted PRE is taken.

In addition to the position of the statically and dynamically predicted PRE, the near-

est located genes are stored in the database. The table genes positions contains the

positions of all known genes in D.mel and D.pse, received from FlyBase. The database

layout has been described in Section 3.4.1. For each predicted PRE in any of the two

species, the nearest gene is determined. If the PRE is overlapping directly with the

transcription start site of a gene, this gene is taken as the nearest one and the dis-

tance is set to zero, otherwise the distance to the two nearest transcription start sites

is calculated. Because a PRE that is located in intergenic regions could regulate a gene

located upstream as well as downstream, the two nearest genes are stored.

The distribution of distances between the homologous site and the nearest predicted

functional analog is supposed to give first insights into the dynamic search’s outcome.

Because in the first step the cut-off is the lowest, even weak signals within 1 kb around

the homologous position are detected. Despite the lowered cut-off, it can be observed

that in multiple cases no score of at least 70 can be found within a 2 kb window.

Considering that although the homologous positions contain by definition BLAST hsps

and therefore highly conserved subsequences, in some cases not enough motif pairs

are conserved to gain a score peak.

The distance definition takes into account the fact that the center of the region

spanned by the hsps can vary from the query sequence’s center. The distance is calcu-

lated as the absolute value of the difference (D1-D2) between the distances between

the center of sequences defined by the hsps and the center of the PRE in the query

sequence (D1) and the center of the PRE in the target sequence (D2) (Figure 5.7).
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Figure 5.7: Distance definition: The blue bars indicate the PRE in the target and the

query species. The contained red bars show the single HSPs of a BLAST

search, starting with the query PRE. D1 is defined as the difference between

the center of the query PRE and the center of the BLAST query hits. D2

is defined as the difference between the center of the BLAST hits and the

center of the nearest predicted PRE. The overall distance is the difference

between D1 and D2.

The numbers of dynamically predicted PREs in D.mel in relation to the distances are

presented in Figure 5.8. The percentage of analagous PREs in D.mel in close posi-

tion (<1 kb) to the homologous regions is above 80%, if the dynamic search is per-

formed within the melanogaster subgroup. Still the predicted PREs do not cover the

exact BLAST positions in most of the cases, although a slight overlap can be observed.

In general, we can say that sequences homologous to PREs in one species lack PRE

features in the other, suggesting that they have lost (or never acquired) PRE func-

tionality. Instead, we can detect PREs in non-homologous regions nearby that are

assumed to be functionally analogous. The hypothesis of the dynamic search is that

cis-regulatory elements may not be sequence conserved but occur in orthologous loci

in related species. The observed behavior of PRE evolution supports this hypothesis

and gives a first impression of high evolutionary dynamics in the development of these

cis-regulatory elements. The distance distributions reflect the phylogenetic distances

between the species, inside the melanogaster subgroup the vast majority of assumed

functionally analogous elements are in close proximity to the homologous positions,

whereas the situation is different if the divergence between the species increases.

Although more static PREs are predicted in D.pse and therefore more loci are dy-

namically searched in the melanogaster subgroup species, even the absolute number

of hits within a 1 kb radius is lower. Out of 531 D.pseudoobcura PREs, only 120 lead to

a functional analog within 1 kb in D.mel. Furthermore, in 41% of the cases no analog
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Figure 5.8: Results of dynamic search in D.melanogaster. The plot shows the result

of the dynamic searches starting from D.pse, D.yak, D.sim and D.ere. The

numbers of PREs predicted within D.mel at different radii are given in dif-

ferent colors (1 kb=red, 10 kb=yellow, 20 kb=green, >20 kb=dark purple).
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Figure 5.9: Distances between orthologous regions and predicted analogs. Trian-

gles: genome-wide predicted static D.melanogaster PREs versus D.yakuba

analogs. Boxes: genome-wide predicted D.melanogaster PREs versus

D.pseudoobscura analogs. Diamonds: 1 kb sequences randomly chosen

from the D.melanogaster genome versus D.pseudoobscura. The numbers of

random sequences on each chromosome equal the numbers of predicted

static PREs on that chromosome.

can be found within a 20 kb radius, indicating that no analog may exist. This is consis-

tent with the results of the static prediction and the polytene pictures – although the

overall number of PREs in all Drosophila species remains unknown, the data indicate

at least twice as many PREs in D.pse than in D.mel.

As an additional control for the DynScan method, in Figure 5.9 the results of dynamic

searches of the 201 static D.mel PREs against D.yak and D.pse are shown, together with

201 randomly chosen and BLASTed D.mel positions in D.pse. The results show that

closer phylogenetic divergence leads to smaller distances (80% of the D.mel PREs have

an assumed functional analog within 1 kb in D.yak) and that random data lead to only

very few hits within 1 kb (less than 10%).

Validation of Evolutionary Plasticity

Especially between D.pse and the melanogaster subgroup species we can find foot-

prints of strong evolutionary dynamics in the PRE sequences. It can be seen that the

positions of analogous PREs appear to be independent of direct sequence conserva-
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5.1 The search and results

tion, an observation we refer to as the second type of evolutionary plasticity. In order

to validate the prediction, our collaboration partner performed ChIP on chosen ex-

amples. The experiments are designed to test the presence of protein binding at the

positions of predicted analogous PREs as well as the absence of binding at the cor-

responding homologous positions. The examples are chosen to cover the different

observed aspects of PRE divergence. Experimental targets are chosen from the follow-

ing categories of dynamically predicted PREs:

• PREs that show no movement in any species

There are nine examples in which a PRE can be predicted directly at the homolo-

gous positions in all four species that shows a genome-wide significant prediction

score.

• PREs that are located next to but not directly at the homologous position in other

species

In this category lies the majority of PREs predicted by DynScan. A PRE can be

found in one species by a genome-wide search but the homologous positions in

other species show no score peak. Instead, within 1 kb-20 kb distance a PRE

can be predicted with an either locally or even genome-wide significant score.

• PREs that show no functional analog in other species

Especially if the search is based on static D.pse PREs, multiple cases do not show

an assumed functional analog within 20 kb in melanogaster subgroup species.

One example is the additional peak in the D.pse Bithorax complex that does not

have a counterpart in the other species (Figure 5.6 a).

Example bxd

The bxd PRE inside the Bithorax complex regulates the Ultrabithorax gene. It is located

at the same position in all four tested species and shows a score above 157 in every

case. The ChIP experiments detect an enrichment of Polycomb group proteins at all

positions, and an enrichment of Polyhomeotic proteins in all species except for D.sim

(Figure 5.6 a,b). The bxd PRE serves as a positve control, because it is characterised

in D.mel. The detected enrichment in D.mel shows that the ChIP experiments lead to

correct results.

Example eyes absent

The next example of a PRE that is conserved in its position is the PRE located inside

the first intron of the gene eyes absent in D.mel and D.pse (Figure 5.10). The PRE is
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Figure 5.10: PRE inside the eyes absent gene. The red asterisks indicate homologous

positions. Polycomb protein (PC) and Polyhomeotic protein (PH) are

tested by ChIP.

also predicted at the homologous positions in the other analyzed species, but the ChIP

experiments have been perfomed only on the former two. By ChIP an enrichment of

Polyhomeotic group proteins can be detected in D.mel while in D.pse Polycomb group

proteins are enriched. Both experiments indicate a functional PRE at the same position

in the same gene, supporting the prediction results.

Example spalt major

The PRE inside the first intron of the gene spalt major in D.mel scores above the

genome-wide cut-off and shows strong ChIP enrichment of Polycomb group proteins

(Figure 5.11). The same situation can be observed in the other two melanogaster

subgroup species. In D.pse however, no genome-wide significant score is present.

Instead, in a distance of 782 bp a score of 107 is found, which is significant in the

dynamic search step only. As can be shown by ChIP, a strong Polycomb group protein

enrichment is detected, but additionally Polyhomeotic is enriched in D.pse, which is

not the case in the other tested species. This could indicate a different structure of

the D.pse PRE, which recruites different proteins than the other species’ PREs. The as-

sumption is consistent with the fact that only minor parts of the D.pse PRE sequence

are conserved in the other PREs (5.11 d).
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Figure 5.11: PRE close to Spalt major (salm) promoter. b) Prediction score plots. First

row shows D.mel, second D.sim, third D.yak, and fourth D.pse. Black

boxes indicate PCR fragments used for real time PCR detection in ChIP

analysis shown in c, grey boxes indicates region shown in d. c) PC and

PH ChIP for predicted position, error bars give standard deviation. d) The

core D.mel PRE and the orthologous regions from the other three species

are shown. Conservation between D.mel and D.pse is marked on the

diagrams for these two species: Dark grey: regions of over 70% identity.

Light grey: 50%-70% identity. Motif positions are indicated above the

figure. Motifs shown in red on D.sim, D.yak and D.pse are not present in

the D.mel PRE. D = Dsp1; Z = Zeste; G = GAF; P = Pho extended site (PF

or PM; p = Pho core site (GCCAT). Underlined motifs indicate overlapping

runs of motif separated by 2 bases. G5, G7, G9 = 5, 7 or 9 GA repeats.

Figure taken from [97].
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Example trachealess

In the last example the PRE could only be found by the dynamic search in D.pse. Al-

though the position was not exactly conserved, the sequences at least partially over-

lapped. The PRE of the gene trachealess is an example for stronger PRE movement

(Figure 5.12). In D.mel, D.sim, and D.yak the PRE is located in the promoter region

of the gene. In all three cases the score reaches the cut-off of 157. ChIP experiments

show strong Polycomb enrichment in all melanogaster subgroup species and addition-

ally Polyhomeotic enrichment in D.yak. The ChIP results in D.pse at the homologous

position show only a weak signal of Polycomb binding and no significant Polyhomeotic

folding is present. A dynamic search started from either of the melanogaster subgroup

PRE positions leads to the prediction of a functionally analogous PRE in D.pse, lo-

cated around 4.4 kb upstream of the transcription start side inside an intron. At this

position strong enrichments of Polyhomeotic proteins can be detected, indicating a

functional PRE site. The score of the PRE falls below the genome-wide cut-off, but

shows significance in the scored 10 kb radius around the homologous site.

To evaluate whether this site in fact is the functional analog to the promoter PREs

in the other species instead of just a second PRE, the homologous positions of the

D.pse PRE within D.mel, D.yak and D.sim are also tested by ChIP. Neither significant

Polycomb nor Polyhomeotic group protein fold enrichments can be detected in any of

the species. The data support the theory that only one PRE regulates the trachealess

gene in the four species. The location of the PRE seems to be not conserved, it can be

located inside the promoter as well as inside an intron, depending on the species.

Example decapentaplegic (dpp)

The trachealess example illustrated the case of two different positions in close distance

to each other in different species, regulating the same gene. The PREs of the gene de-

capentaplegic serve as an example for three different PRE positions, which can be iden-

tified by the dynamic search within the four different species (Figure 5.13). In D.pse

a PRE is predicted genome-wide directly within the promoter region of the gene dpp

(position 3). The dynamic search finds a locally significant score peak 5 kb upstream

(position 2) in D.yak and 10 kb upstream (position 1) of the promoter in D.mel and

D.sim. ChIP detects enrichment of Polycomb as well as Polyhomeotic proteins at posi-

tion 3 only in D.pse. In the other three species neither a score peak nor protein binding

can be observed, indicating that position 3 functions only in D.pse as a PRE. At posi-

tion 2, Polycomb enrichment can be found again in D.pse and additionally in D.yak,

strikingly consistent with the prediction results. Furthermore, Polyhomeotic proteins

also bind position 2 in D.pse, which is not the case in D.yak, but in D.mel and D.sim

66



Figure 5.12: Predicted PREs within promoter region and intron of trachealess gene. a)
Prediction scores in four species, gene location shown above. Two posi-

tions marked by black boxes are orthologous positions that are predicted

in at least one species. b) ChIP for PC and PH on the positions 1 (first

column) and 2 (second column) marked in a).
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Figure 5.13: Three predicted PRE positions upstream of the gene decapentaplegic in

four species. Score plots and ChIP data for marked positions shown as

described in Figure 5.12.
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at least weak binding can be seen. While the position 2 seems to be a strong func-

tional PRE in D.pse and D.yak, the weak binding in the D.mel and D.sim species gives

no clear answer. In both species the prediction score is below the dynamic cut-offs,

but at position 1 a significant peak is present exclusively in these species. According

to Polycomb enrichment, position 1 shows PRE functionality in all melanogaster sub-

group species but not in D.pse. Although it cannot be answered clearly which PREs are

the functional analog of which other species’ PREs, the complete region demonstrates

the possible dynamics in PRE evolution. It might be the case that two PREs are nec-

essary in the upstream region of the dpp gene in order to achieve a regulatory effect.

A deeper analysis of the possible evolutionary processes is presented in Section 5.2.

Motif turnover

According to the previous observations and the experimental results, functionally anal-

ogous PREs can occur in close distance to the homologous positions or even up to

several kilobases away. Nevertheless, in some cases a PRE is predicted or even vali-

dated at conserved positions in several genomes. Following the idea of phylogenetic

footprinting, the motifs, as the functional elements, should show stronger sequence

conservation than non-functional regions in the PREs. Two aspects are considered in

the next step. First, does the sequence conservation provide any information about

functional elements inside the PREs, and second, do the same motifs occur in the same

order in all species? Even the PREs that are predicted genome-wide at the exact same

position in multiple species show different score levels, which indicates that at least

minor changes in the motif composition are to be expected. As an example serves

the PRE of the gene eyes absent. As already shown, the PRE is validated in D.mel and

D.pse, located at the same position in both species. Additionally, at the homologous

positions in D.yak and D.sim a PRE can be found as well by a genome-wide predic-

tion. Thus the same region in four species scores above the genome-wide threshold.

In Figure 5.14 a multiple alignment of the extended PRE regions in the four species

is shown, created by MLAGAN [99] and visualized by the Vista browser [100]. The

sequences are taken from our prediction and extended by 1 kb in each direction to

cover non-PRE regions as well. The alignments are shown in relation to the D.mel se-

quence. Except for a few gapped regions, the complete sequences of D.yak and D.sim

show conservation of at least 70%. In D.pse, due to the bigger evolutionary distance,

only four positions reach a 70% conservation level, out of which two are located out-

side the PRE sequence. According to these data, a significant increase of sequence

conservation at functionally active sites cannot be observed. Nevertheless, the two

conserved positions in the D.pse PRE sequence require a deeper analysis.
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Figure 5.14: Conservation plot of the extended (±1 kb) eyes absent PRE in relation to

D.melanogaster in the species D.simulans, D.yakuba and D.pseudoobscura.

Colored regions show a conservation ≥70%. Y-axis gives conservation in

%, X-axis refers to D.melanogaster sequence position. Alignment created

by MLAGAN.
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Figure 5.15: Conservation plot of the eyes absent PRE regions in relation to the pre-

dicted D.melanogaster PRE sequence in the species D.simulans, D.yakuba

and D.pseudoobscura. Colored regions show a conservation ≥70%. Y-

axis gives conservation in %, X-axis refers to D.mel sequence position.

Alignment created by MLAGAN.
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5.2 Explaining evolutionary plasticity : pre-PREs?

A concentration on the D.mel PRE region (Figure 5.15) reveals again high conserva-

tion throughout the complete regions in D.yak and D.sim whereas in D.pse only two

single peaks in the center show high conservation. This indicates that major parts of

the D.mel PRE are not highly conserved in D.pse, although functional elements are

expected to be located in these parts as well. To evaluate this theory, a comparison

of the motif occurrences inside the four PRE sequences is required (Figure 5.16).

The different motifs in the motif set and additionally Dsp1 and SP1/KLF are drawn as

colored boxes at the corresponding positions in the four species. The PRE sequences

are displayed as bars, arranged in relation to the D.mel PRE. A comparison of the motifs

between D.mel and D.sim shows high overlap of motif order and position. Motifs that

are not exactly aligned in the figure can still occur at the same position because gaps

are not represented. The only noticeable difference is an additional Dsp1 binding site

occurrence in D.mel. The sequence in D.yak is reverse complementary to the other

species. Compared to D.mel it can be observed that again most motifs are conserved

in their order, but a few differences are present. The first Sp1/KLF motif in D.mel is

exchanged by a Dsp1 motif, furthermore three Dsp1 motifs occur between the Gaga-

Zeste motif pairs and the nearest Pho cluster. In D.yak one Dsp1 motif is located on

the other side of the Gaga-Zeste cluster. Instead of the Zeste in D.mel an additional

Dsp1 can be found in D.yak. Furthermore the distances between several motifs are

different in D.yak.

In general, it can be observed that inside the melanogaster subgroup, as reflected

by a conservation of at least 70% in the whole sequence, the motifs are conserved

to a major extent. The situation changes if the D.mel motifs are compared to D.pse.

Except for two small Pho clusters and an adjacent Dsp1 motif, hardly any similarity can

be detected. This introduces the third type of evolutionary plasticity, even in the rare

cases where the PREs occur at homologous and therefore at least partially sequence

conserved sites, the motif composition can be independent of the conservation. The

rearrangement of motifs is called motif turnover. Although it has been known so far

that motif turnover exists [19, 20, 21], the extent to which it can be found between

melanogaster subgroup species and D.pse has not been observed earlier.

5.2 Explaining evolutionary plasticity : pre-PREs?

The observation of described types of evolutionary plasticity gives rise to the question

at which point in evolution a region gained or lost its PRE functionality. To answer this

question we want to analyze multiple aspects of this topic. First, does our prediction

in multiple species follow the phylogenetic tree of the Drosophila species? Second,
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5.2 Explaining evolutionary plasticity : pre-PREs?

even if we can predict a PRE in one species, but don’t see a predicted PRE in the

homologous region in another species, does this conserved region contain “presites”

of the binding motifs, favouring a PRE gain in this region over adjacent regions?

Phylogenetic trees and PRE gains

The recent release of the sequenced genomes of 12 Drosophila species [95] pro-

vides us with the data needed to trace single PREs through their evolutionary history.

A complete dynamic search between all 12 species is not performed because most

genomes are not completely assembled yet. On the other hand, for questions that

cannot be answered based on the completed genomes alone, additional data can pro-

vide further information. During the dynamic search on the four species, an additional

PRE has been predicted genome-wide in D.pse inside the Bithorax complex. The PRE

is located upstream of the gene abd-A within the infraabdominal region 3, named as

iab3-abd-A. As shown in Figure 5.18, an enrichment of Polycomb and Polyhomeotic

protein binding can only be detected by ChIP in D.pse, but not in D.mel, D.sim, or

D.yak. Transgenic reporter assays of 1.6 kb of the predicted D.pse PRE show typical

PRE behavior like variegation, paring sensitive silencing and response to Polycomb

group proteins. None of these are present at the orthologous region in D.mel.

The additional D.pse PRE in the usually strongly conserved Bithorax locus could

either be a relic of an ancestral Bithorax complex that has lost PRE functionality at

this position during the evolution, or the development of an additional PRE during

the D.pse development. To answer this question, a 5 kb region at the same region

in all 12 genomes has been scored (Figure 5.17). It can be seen that none of the

melanogaster subgroup species reaches a score above 50 and no ChIP enrichment can

be detected at those positions. The dynamic search predicts the iab3 PRE in only four

out of 12 species, in D.pse, D.persimilis, D.willistoni, and D.ananassae. In the most

parsimonious tree two mutations are sufficient to simulate the evolution. In addition

to a loss during the separation into the melanogaster subgroup, either another loss

during the development of the D.mojavensis, D.grimshawi, and D.virilis branch, or an

early gain are required. In both cases, according to this tree, the iab3 PRE we found

in D.pse is not a novel gain in that species, but a loss in the melanogaster species.

Motif presites and pre-PREs

Presites definition

We already saw PREs that are located at different positions in different species. How

is it possible that clusters of functional motifs are moved to different locations, inde-
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Figure 5.18: Additional prediction hit iab3-abd-A in D.pse shows no ChIP enrichment

of PC nor PH in D.mel, D.sim, and D.yak. D = Dsp1; Z = Zeste; G = GAF; P

= Pho extended site (PF or PS); p = Pho core site (GCCAT). Motifs shown

in red are absent in D.mel. Figure taken from [97]
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5 Application and Results: Fly PREs

Figure 5.19: Distribution of number of sites with a Hamming distance of 1 to PM or

PF binding sites within a 2.5 kb window in chromosome 3R of Drosophila

melanogaster.

pendent of sequence conservation?

We apply the presite model shown in Section 3.5 to regions in which we can predict

and furthermore validate strong evolutionary shift of PRE locations. The window size

is set to 2.5 kb in order to make sure that the regions completely cover potential PREs,

while on the other hand still keep a resolution at least on the level of ChIP experiments.

As background the chromosome 3R of Drosophila melanogaster is chosen, because the

observed examples as well as the motif rich Bithorax complex are located on that

chromosome.

The motifs used are Zeste, GAGA, Engrailed, G10 and Pho, which is a combination

of the PF and PM motifs. For example, the distribution of the number of sites with a

Hamming distance of one to either PF or PM within a window of 2.5 kb is shown in

Figure 5.19 for chromosome 3R and serves as a background for the analysis of specific

subsequences.

For Zeste, Gaga and Pho only one mutation is allowed, while in case of the longer

Engrailed motif three mutations are accepted. The average number of presites within

a 2.5 kb window in the background are shown in Table 5.2.
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5.2 Explaining evolutionary plasticity : pre-PREs?

Motif #mutations Ø sites

Zeste 1 56.4

GAF 1 56.5

Pho 1 32.1

En1 2 3.6

En1 3 26.8

G10 2 2.5

G10 3 15.1

Table 5.2: Average numbers of presites for different motifs with fixed number of mu-

tations allowed in a 2.5 kb window in chromsome 3R of D.mel.

Example Decapentaplegic

The PREs of the gene decapentaplegic are the first region analyzed by the presite model

because they serve as an example for the plasticity of PRE locations. In the four species

analyzed, the PRE has been detected in three adjacent but distinct places. In D.mel

(Figure 5.13), the PRE is located around 15 kb upstream of the gene while in D.pse a

PRE is located directly next to the transcription start site. A third PRE site is in between

the first two, showing strong ChIP enrichment in D.yak and D.pse and also weaker

enrichment in D.mel and D.sim. While the first and second sites are ChIP enriched in

different species, the third one near the transcription start site only shows enrichment

in D.pse. The prediction scores of the three sites show only a genome-wide significant

peak in D.pseudoobscura at the third position. A dynamic search based on the D.pse

PRE leads to the prediction of a PRE at positions 1 in D.sim, 3 in D.yak and at both

positions in D.mel. All three species show no score peak at the third position.

Presites of Pho, Gaga, Zeste and engrailed are searched in the complete region in

all species combined in a p-value for each window as described in Section 3.5. The

chosen maximal Hamming distance is 1 for Zeste, GAF, and Pho as well as 2 for En1

and G10. In D.mel (Figure 5.20) the highest Pho presite density is shown at position 1,

overlapping with the highest score peak within a 50 kb radius. Because only Hamming

distances of one are counted as Pho presites, the score peak does not reflect the presite

presence but in fact the accumulation of matching Pho motifs which cannot be seen in

the presite plot. Other motif presites are not that significantly enriched in position 1,

dropping the combined p-value to 0.001. The lowest p-value (< 0.0001) can be found

at position 3, showing higher pre-PRE potential there than at any other site in the

region. Nevertheless, Pho presites are the least enriched with a motif specific p-value

of 0.28. Furthermore, the low and unsignificant prediction score at that position might
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5.2 Explaining evolutionary plasticity : pre-PREs?
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Figure 5.21: D.simulans: Prediction score and presites around the dpp gene as de-

scribed for D.mel in Figure 5.20. ChIP results taken from [97].

be explained by the small number of found Pho motifs which is consistent with the

ChIP data that shows the lowest enrichment of all species in D.mel. The data suggests

that there might be a pre-PRE at position three mainly defined by GAGA, Zeste and

Engrailes motifs, but the site is not active due to only few Pho motifs and presites.

The situation in the other three species differs from the one observed in D.mel in

some cases, allowing different interpretations. In D.pse (Figure 5.23) positions 2 and

3 are shown to be ChIP enriched, in contrast to position 1. Looking at the presites

found at the positions we can see an enrichment of GAGA and Engrailed at position 1, a

score for Zeste which is still above 75% of the background, and only low Pho potential,

similar to the observations of position 3 in D.mel. Interestingly, Pho presites are not

enriched in any position within the analyzed region, the prediction of position 3 is due

to exact Pho matches. At the ChIP enriched position 2, except for high numbers of

GAGA presites, no other presites can be found significantly above background. The

positive ChIP result cannot be explained by the model since neither Pho motifs nor Pho

presites appear to be enriched. One possible explanation is that the motifs used are not
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Figure 5.22: D.yak: Prediction score and presites around the dpp gene as described

for D.mel in Figure 5.20. ChIP results taken from [97].
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D.mel in Figure 5.20. ChIP results taken from [97].
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5 Application and Results: Fly PREs

able to detect all various kinds of Pho motifs. The prediction’s emphasis on specificity

inevitably leads to a lack of sensitivity as already discussed in previous chapters. In

D.sim (Figure 5.26) and D.yak (Figure 5.27), ChIP results indicate PRE activity at the

positions 1 and 2 but not in 3. Interestingly, in D.yak the lowest combined p-value

within the analyzed area can be observed at position 3, although Pho presites are

again not overrepresented in contrast to the other motifs. In D.sim only En1 presites

are found above background at position 3 while especially Pho occurrences are rare.

This observation does not allow any concrete statement because a function of En1

sites in Polycomb recruitment has not been verified.

Example trachealess

As the second example serves the PRE of the gene trachealess which has been an-

alyzed by ChIP in all for species. As can be seen by the ChIP data, two different

positions might act as a PRE regulating the gene, depending on the species. In D.mel

(Figure 5.24), the prediction reveals a high and genome-wide siginificant score peak

near the transcription start site at which position ChIP shows strong protein bindings

(position 2). The same position in D.pse (Figure 5.25) shows no significant prediction

score, the nearest potential PRE predicted by dynamic search is located 5 kb down-

stream inside an intron (position 1). The ChIP experiments indicate only weak protein

binding at position 2 but high fold enrichment at position 1 in D.pse. The other two

species D.sim (Figure 5.26) and D.yak (Figure 5.27) have high score peaks at position

2, covered by ChIP and low scores as well as low to none enrichment at position 1.

Using the presite method we want to explore whether the non-enriched regions 1 or

2 in the different species show pre-PRE potential. Interestingly, the highest pre-PRE

scoring site in D.mel is actually at position 2, where high numbers of Zeste, GAGA

and Engrailed presites can be observed, although the region already scores above the

genome-wide cut-off and therefore contains direct motif matches. One possible ex-

planation is that the accumulation of presites favored the development of the PRE at

this position and the remaining presites are not necessary to be mutated into motifs

to keep the PRE functional. This theory is supported by the lower number of Pho

presites in combination with the found overrepresentation of Pho motifs which might

be sufficient for a PRE at this position. In this case the found GAF, Zesete and En1

presites could be considered as an artifact of PRE development. At position 1 only

Pho presites are found strongly overrepresented with a p-value of 0.04. This could be

a hint to the importance of Pho for PRE functionality. At two more positions, p-values

≤0.999 can be seen. Because these regions have not been experimentally tested in

any species, it cannot be said for sure whether there are really pre-PRE. Nevertheless,
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5.2 Explaining evolutionary plasticity : pre-PREs?

the lack of Pho presites at both positions could be the reason that PRE functionality

is present at position 1 in other species. In D.pse, the most significant p-value can

be observed at position 2. The negative prediction score is caused by repeats of the

GAGA motif because this motif paired with itself is underrepresented in the positive

training set. At the same position, strong enrichments of Zeste and Engrailed presites

can be found, which allows the assumption that minor mutations in this region might

add additional motifs to the present GAGA motifs, enabling PRE functionality.

The situation found in D.yak and D.sim can neither be used to confirm nor to dis-

prove the model. In both cases there actually is a significant amount of presites at po-

sition 1 but in comparison to adjacent windows it cannot be seen that there is higher

pre-PRE potential at that position. The plots of both species show similar values at

some positions, again indicating a third site approximately 1 kb in front of position 1

that shows high presite accumulations, although Pho is the only presite not overrep-

resented. This observation matches with the one made in D.pse. Further experimental

studies of this position in various species could detect even more PRE positions in the

trh region. A fourth PRE that is present in only some species would demonstrate even

stronger evolutionary changes in that region.

Result

The hypothesis of the pre-PRE model follows the one used in former presites based

evolutionary studies. MacArthur et al. [90] calculated the “output” of a sequence

based on the score a motif PSSM provides in combination with a clustering factor.

This factor favors occurrences of motifs in close proximity to each other, preferably lo-

cated on the same side of the DNA strand. The output is calculated for each possible

mutation at each position and steps increasing the output are defined as a selective

advantage and hence introduced into the population. While their model is used to

give an estimate about the required numbers of generation to develop enhancer func-

tionality at different position using three different motif PSSMs, we want to find sites

of higher probability to gain PRE functionality during evolution to give possible expla-

nations for the observed plasticity. One has to keep in mind that it is unknown what

is the minimum requirement to make a PRE functional. Although it can be said that

some of the involved motifs are known, it remains unclear which motif combination

is sufficient. We could use the genome-wide prediction cut-off as the stop criterion,

but this way we restrict the potential of the presite analysis to the types of PRE that

are preferably detected by the prediction.

Nevertheless, a second model was used mutating a set of randomly chosen bases

in each step, keeping only those sets that increased the prediction score. Once the
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Figure 5.24: D.mel: Prediction score and presites around the trh gene, description as

in Figure 5.20. ChIP results taken from [97].
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Figure 5.25: D.pse: Prediction score and presites around the trh gene, description as

in Figure 5.20. ChIP results taken from [97].

85



-300

-250

-200

-150

-100

-50

 0

 50

 100

 150

 200

 0  1000  2000  3000  4000  5000  6000

 0

 2

 4

 6

 8

 10

 12

 14

 0  1000  2000  3000  4000  5000  6000

21

0

14

10

0

50

100

150

200

0 6 kb

Figure 5.26: D.sim: Prediction score and presites around the trh gene, description as

in Figure 5.20. ChIP results taken from [97]. Scale of Y-axis on second
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86



-250

-200

-150

-100

-50

 0

 50

 100

 150

 0  1000  2000  3000  4000  5000  6000

21

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  1000  2000  3000  4000  5000  60000
0 6 kb

18

10

150

0

100

50

Figure 5.27: D.yak: Prediction score and presites around the trh gene, description as

in Figure 5.20. ChIP results taken from [97]. Scale of Y-axis on second

plot in log scale 1 − log(Πpresite(pvaluepresite)) .

87



5 Application and Results: Fly PREs

prediction score cut-off was achieved, the Hamming distance was calculated in those

parts of the sequence that are part of a motif in either the original sequence or the

newly mutated one. Sequences of length 5-7 kb were used at different positions

around the dppand trh genes, in each step mutating 20-50 bases. The results showed

a large variation in the Hamming distance, which can be understood as the required

steps to turn the sequence into a high scoring one, going from 9 to 100 required

steps. A comparison of the average or mean number of mutations showed a direct

correlation between the difference in initial prediction score of two sequences and the

steps required to reach the cut-off. The higher the prediction score, the less steps are

neccessary to reach the cut-off score. This model could not give additional information

to the prediction score in terms of pre-PRE sites and therefore the motif based distance

model was chosen.

In general, the data suggest that the presite model can provide further insights into

PRE plasticity. The pre-PRE theory might be capable of explaining the evolutionary

mechanism involved in PRE gaining. As been shown in the dpp example, orthologous

sites of active PREs in one species that neither show ChIP binding nor high prediction

scores can be matched with a significant p-value to predicted pre-PRE sites. Similar

observations in the trh example show high pre-PRE potentail at non-functional sites

in one species that are validated PREs in homologous position in other species.

5.3 Comparing DynScan to genome-wide ChIP

In the original PREdictor run, with emphasis on high specificity, 167 PREs were pre-

dicted in D.mel, containing only one false-positive to be expected by chance (E-value

of 1). The calculation of the E-value is based on counting false-positive hits in back-

ground sequences generated from a null-model, which in this case is a zero-order

Markov Chain.

Inevitably, a focus on high specificity leads to a lack of sensitivity. As mentioned by

Ringrose et al. [11] more than 50% of the known PREs in their positive training set

scored below the stringent score cut-off and since were not part of the 167 predicted

PREs. In the mean time multiple publications [70, 71, 72] gave positions of regions

expected to contain PREs generated by different methods (see Section 2.2.4).

All these publications compared their results to the 167 previously predicted PREs

and found at most a 20% overlap (Figure 5.28). Because new motifs involved in PRE

functionality have been published, the authors suggested to use these additional mo-

tifs in the PRE prediction to improve sensitivity.

Furthermore, the absence of experimentally supported regions in the area of most
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non-specific interactions with weak PRE/TRE-like sites. The
DamID technique may detect transient interactions that are not
detected by ChIP (see Box 1). Indeed, Tolhuis et al. (2006) detect
broader domains of Polycomb-binding using DamID than either of
the recent ChIP studies (Schwartz et al., 2006; Negre et al., 2006),
which is perhaps not surprising given the fact that Polycomb is a
highly mobile protein (Ficz et al., 2005).

Third, it is possible that there are classes of PRE/TREs that do not
use the Gaf/Psq, Zeste and Pho proteins at all to recruit the PcG and
TrxG proteins. Such PRE/TREs may be revealed by systematic
computational analysis of the sequences of PcG targets in the new
data sets, and should be verified by transgenic assays to rule out the
possibility of recruitment by indirect or non-specific binding.
However, it should be kept in mind that classes of PRE/TRE might
exist that will not function as isolated fragments in transgenic
reporter assays, as they might require additional DNA elements or
chromatin configurations, and thus would function only in their
endogenous environment.

Improved definition of PRE/TREs?
A recent study suggests that although Gaf, Zeste and Pho sites are
necessary, they are not alone sufficient to make a PRE/TRE
(Dejardin et al., 2005). The authors constructed a synthetic
PRE/TRE from Gaf, Zeste and Pho sites embedded in an otherwise
unrelated bacterial sequence. This synthetic PRE/TRE showed
none of the behaviour typical of transgenic PRE/TREs, such as
pairing-sensitive silencing, variegation, and recruitment of PcG
proteins. However, the addition of a 14 bp sequence that contained
a single binding site for the Dsp1 protein (Fig. 3) gave a synthetic
PRE/TRE that now supported some aspects of PRE/TRE function,
such as the recruitment of PcG proteins, and PcG-dependent
silencing. The Dsp1 protein is involved in regulation of homeotic
genes (Decoville et al., 2001), but also regulates many other genes,

where it can elicit either activation or silencing, depending on the
specific promoter (Brickman et al., 1999; Lehming et al., 1994).
Dsp1 binds to a broad range of DNA motifs (Brickman et al., 1999),
including the GAAAA motif used by Dejardin et al. (Dejardin et
al., 2005). Dejardin et al. suggest a general role for Dsp1 in PcG
recruitment and silencing at many PRE/TREs based on the
extensive colocalisation of Dsp1 with PcG proteins on polytene
chromosomes. However, earlier studies have demonstrated that
Dsp1 can also act as a TrxG protein at other homeotic PRE/TREs
(Decoville et al., 2001; Rappailles et al., 2005; Salvaing et al.,
2006). Thus, although the synthetic PRE/TRE study has shown that
Dsp1 is important for silencing at a specific minimal PRE/TRE
fragment (Dejardin et al., 2005), it is not clear how this function
may be modified by other features of this PRE/TRE that are present
in its endogenous context, and how it may be different at other
PRE/TREs.

Clues to further pieces in the puzzle of PRE/TRE design come
from two other recent studies, showing that the Grainy head (Grh)
(Blastyak et al., 2006) and Sp1/KLF DNA-binding proteins (Brown
et al., 2005) are each also vital for recruiting the PcG proteins to
specific PRE/TREs. However, each of these reports studied only a
single PRE/TRE, and colocalisation studies with known PcG or
TrxG proteins on polytene chromosomes were not performed,
making it difficult to assess whether these proteins are PRE/TRE-
specific regulators, or whether they play a more global role. In
favour of a global role, one study reported the finding of consensus
binding sites for Sp1/KLF in known PRE/TRE elements (Brown et
al., 2005); however, these sites are short and rather degenerate and

Embryos (ChIP)
(Negre et al.)

Sg4 cells (ChIP)
(Schwartz et al.)

Kc cells (DamID)
(Tolhuis et al.)

4(3)

6(4)

5(3)

4(2)
1

22(11)

Fig. 2. Overlap between Polycomb targets in three different
studies. A comparison of results from three studies which looked at
binding profiles for several PcG proteins using tiling path arrays
covering all or part of the Drosophila genome (Negre et al., 2006;
Tollhuis et al., 2006; Schwartz et al., 2006) (see Box 1 for more detail
on the techniques used). The diagram compares the regions in
common between the three studies (2 Mb of the X chromosome and 3
Mb of chromosome 2L.) The large-type numbers in each field show the
number of genes found to be bound by PcG proteins. Subscript
numbers in brackets show the number of those genes that have a score
of over 70 using PRE/TRE prediction (Ringrose et al., 2003). The score
cut-off used in Ringrose et al. (Ringrose et al., 2003) was 157 (see main
text for details).

Box 1. Chromatin and DamID: techniques to map binding
profiles 

In chromatin immunoprecipitation (ChIP), living cells, tissues or
embryos are treated with formaldehyde, which covalently
crosslinks proteins to nucleic acids (Kim and Ren, 2006). To look at
chromatin-binding proteins, crosslinked chromatin is isolated and
the DNA is sheared into small pieces. A specific antibody is used to
recover the protein of interest and its associated DNA fragments.
The enrichment of each DNA fragment over control samples that
lack antibody is determined by PCR or by hybridisation to
microarrays, and gives an indication of how much of the protein
of interest was bound in living cells. The crosslinking reagent is
added to living cells and incubated for 10-30 minutes; thus, this
technique gives a ‘snapshot’ of interactions that are occurring at
the time the crosslinking is performed. Since all protein and DNA
molecules are crosslinked, this technique can also detect indirect
protein-DNA interactions, such as those mediated by DNA
looping. In DamID, the protein of interest is fused to a DNA
methyltransferase (van Steensel, 2005). This fusion protein is then
expressed at low levels, either in transgenic animals or, as in the
study of Tolhuis et al. (Tolhuis et al., 2006), by the transient
transfection of cultured cells. The DNA methyltransferase is thus
tethered to the sites at which the protein of interest binds, giving
a higher level of DNA methylation at those sites than in control
samples, where the methyltransferase is expressed alone.
Methylated DNA fragments are subsequently isolated and
quantified using microarrays. This technique should in principle
detect all the DNA methylation that accumulates during the time
that the fusion protein is expressed; thus, it gives a view not only
of the abundance of the protein of interest at a given site, but also
of the places where that protein has been up to the point the
analysis is performed.

Figure 5.28: Overlap between Polycomb targets in three different studies for common

tested regions. Numbers in brackets show predicted overlaps at cut-off

of 70 (Figure from [101]).
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5 Application and Results: Fly PREs

of the predicted PREs let to a questioning of the specificity of [11], indicating these

predicted PREs to maybe be false-positive. Nevertheless, the transgenic experiments

performed on the prediction results by Ringrose et at. [11] as well as the ChIP exper-

iments justified the use of PRE predictions as a DynScan application, leading to even

stronger indications of the method’s specificity (see Section 5). Additional motifs had

not been introduced in the DynScan search to allow the evaluation of the method on

an already published basis.

In this chapter the effect of DynScan on the sensitivity of PRE prediction will be

analyzed in relation to large scale ChIP experiments, as well as the effect of additional

motifs.

Original set

Because of the strong emphasis on specificity, several real PREs score below the cho-

sen threshold of 157 [11]. It is no surprise that in a lot of the regions given in the

three large scale experimental studies [70, 71, 72], none of the original 167 PREs are

located. For example, the PcG protein enriched regions in [70] have an overall length

of 57kb, covering only 0.05% of the whole genome and the 131 enriched regions from

[72] cover only 3.2%. Therefore overlaps with predicted 167 PREs are very unlikely,

which means that every single match raises the confidence of the biological methods

as well as our prediction. Furthermore, most of the predicted PREs are not covered by

the given regions, which does not necessarily weakens the specificity of the prediction

but questions the sensitivity of the biological experiments for two reasons. First, out of

43 tested PREs that were predicted in [11], 41 are true positives, while the remaining

two are not proven to be false positives. Secondly, the overlap between the regions

in all three papers [70, 71, 72] is as little as it is with the predicted PREs, indicating

that a negative result in a genomic region in each of the papers is not sufficient to

show absence of PRE functionality (Figure 5.28). Furthermore, PRE activity is cell type

specific, depending on the cell lines used in the experiments different results are to

be expected. In Table 5.3 the comparison of the biological regions with the PREs pre-

dicted based on the original motif set is shown. The Schwartz domains are provided

in form of cytological positions and corresponding genes. For a first analysis of the

overlap, the large cytological regions are used. The significance of the overlaps can

be assessed by hypergeometric distribution, considering the genome as a set of dis-

tinct subsequences of the lengths given in the table. Counting the overlaps between

experimental data and predictions is then modeled as a drawing experiment.

As already stated only very few predicted PREs are located in those regions.
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5.3 Comparing DynScan to genome-wide ChIP

Source #Sequences Length # Predictions/# Overlaps p-value

Schwartz et al. [71] 96 110 kb 41/29 6.4e−7

Tolhuis et al. [72] 131 28 kb 7/7 0.16
Negre et al. [70] 141 5 kb 0 -

Table 5.3: Overlap between predictions with classic motif set (201 elements) and three

biological studies. Numbers of total overlapping PREs and number of dis-

tinct biological regions are shown. P-value calculation based on hypergeo-

metric distribution.

Source # Sequences Length # Predictions/# Overlaps p-value

Schwartz et al. [71] 96 110 kb 112/55 2.5e−13

Tolhuis et al. [72] 131 28 kb 22/16 0.13
Negre et al. [70] 141 5 kb 2/2 0.55

Table 5.4: Overlap between predictions with extended motif set (603 elements) and

three biological studies. Numbers of total overlapping PREs and number

of distinct biological regions are shown. P-value based on hypergeometric

distribution.

Motif-sets

The original prediction was based on a limited motif set consisting of Engrailed, Gaga,

G10, Zeste and three different Pho motifs. This motif set will be referred to as “original

motif-set”. In the mean time new studies stated that other DNA binding motifs may

play a significant role in PRE functionality, like DSP1 (GAAAA) and Sp1/KLF (RRGGYG).

Furthermore. the different Pho definitions have been combined to a single matrix in

the jPREdictor work [10]. Combining the jPREdictor motif set with Sp1/KLF gives us a

new “extended” motif set. Additionally the training sets are also extended (sequences

from personal communications with Thomas Fiedler). A prediction based on this ex-

tended motif set has a cut-off of 114 at an E-value of 1. The number of genome-wide

predicted elements rises to 603. The increased number of predicted elements also

increases the number of overlaps with the three studies (Table 5.4). An increase of

predicted PREs by factor three leads to an increased overlap of almost the same fac-

tor. A difference in specificity of both different motif sets cannot be observed in this

case.
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5 Application and Results: Fly PREs

Source # Sequences Score cut-off # Overlaps with prediction

Schwartz et al. [71] 96 85 72

Tolhuis et al. [72] 131 72 43

Negre et al. [70] 41 43 12

Table 5.5: Number of PC domains containing at least one PRE predicted with the ex-

tended parameter set. The cut-off for PRE prediction is set to reflect an

E-value of 1 depending on the amount and length of Polycomb regions.

Searching regions only

In three cases multiple genomic regions are given that are shown to be bound by

Polycomb and hence are expected to contain PREs. We used these regions as prior

knowledge to our search by setting the score cut-off equivalent to an E-Value of 1 for

searching these domains only. This is similar to the DynScan approach, but instead of

using predictions in another species as prior knowledge, experimental data is used.

For example according to Negre et al. [70] we can expect to find PREs in 41 regions

with average length of ca. 5 kb. To ensure the overall E-Value to be 1 the individual

E-Value is set to 1
41 for each region of 5 kb length. The cut-off drops from 114 for

a genome-wide search with the extended motif-set to 43, allowing a more sensitive

prediction by still expecting only one false-positive by chance thus the specificity is

kept the same (Table 5.5).

DynScan

The DynScan approach as well as the PRE prediction based on the classic motif set

has been presented in sections 3.2-5. The same approach is repeated based on the

extended motif set in a similar way.

In D.mel we predict 603 PREs with a genome-wide treshold of at least 114 using the

new motif-set. In D.pse, D.yak and D.sim we predict 2457, 681 and 516 respectively

with a score of at least 114. The comparative search in D.mel starting with D.pse, D.yak

and D.sim combined with the 603 genome-wide predicted Dmel PREs reveals 1683

distinctively predicted PREs in D.mel, i.e. no overlaps between PREs are allowed. The

results of both DynScan runs are compared to the three biological studies. It can be

seen that the number of overlaps grows with increased number of hits, but strikingly

so does the significance of the overlaps. According to the data, the specificity of PREs

predicted by DynScan is not lower than of genome-wide predicted ones, regardless of

the motif set (Table 5.6).
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5.3 Comparing DynScan to genome-wide ChIP

Source # Sequences Motif set # Predictions/# Overlaps p-value

Schwartz et al. [71] 96 classic 83/45 3.2e−9

extended 278/78 2.5e−17

Tolhuis et al. [72] 131 classic 18/14 0.08
extended 66/40 0.07

Negre et al. [70] 41 classic 1/1 0.76
extended 8/6 0.15

Table 5.6: Overlap of DynScan results with experimental data, based on search of

D.pse, D.yak, and D.sim predictions in D.mel. Classic motifset contains PM,

PS, PF, Zeste, GAF, G10, and En1 motifs, extended set contains additional

DSP1/KLF and DSP1 motifs and additional sequences in training set. Num-

bers of predicted elements in all regions as well as distinct regions are given.

Motif set influence

Up to this point, we used two different parameter sets, the “classic” one and the

“extended” one. The “classic” version has been used in our DynScan application. Ad-

ditionally, a third motif set has been published as an example application of jPREdictor

[10]. The latter one leads to a higher number of predicted PREs but lacks of experi-

mental validation yet. As it has been shown, the number of hits predicted with the

“extended” set is three times higher than with the “classic” set. But how accurate are

the predictions with the newer sets?

To get an idea of the effect of the motif sets, we compare different sets to our

previously shown ChIP data. In D.mel, we predicted a PRE by DynScan at position 1

of Figure 5.29 using the classic parameters (already discussed for Figure 5.13). The

motif set described in the jPREdictor publication combines PM, PF, and PS to a single

matrix and adds a Pho:DSP1 motif pair. Even with DynScan no PRE can be predicted

at position 1 based on that set. Instead, the score at position 2 is significant genome-

wide. The ChIP data for position 2 indicate possible PH binding, but to a lesser extend

than at position 1. Adding the SP1/KLF motif drops the score at position 2 below the

genome-wide cut-off but increases the score at position 1 above the 1 kb radius cut-

off. Finally, extending the training sets with additional sequences provided by Thomas

Fiedler only effects the scores to a minor extend.

In D.sim, a similar situation can be observed (Figure 5.30). The PC enriched position

1 has a signficant score within a 20 kb radius only with the classic set. In the other sets,

position 2 receives higher scores while position 1 falls below any significance value.

Furthermore, position 3 gets high scores if SP1/KLF is added, although neither PC nor
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5 Application and Results: Fly PREs

PH enrichment can be detected.

In D.yak position 1 shows PC binding but scores below cut-off with all sets (Figure

5.31), while the highest score is based on the classic set. The enriched position 2 is

found by DynScan with all four sets. However, none leads to a genome-wide prediction

hit. The non enriched region 3 gets the least significant score with the classic set. In

the other cases the score is significant in a 2 kb window.

Finally, in D.pse positions 2 and 3 show PC and PH enrichment. Position 3 is found

in a genome-wide search based on the classic set only (Figure 5.32) while at position

2 a PRE is predicted genome-wide by SP1/KLF containing sets.

In all four species the classic set gives the highest overlap with the ChIP data in the

dpp example. Furthermore it leads to a prediction of a reasonable number of PREs out

of which a large fraction has been validated experimentally.

Cut-off influence

It can be seen that the overlap between the different predictions and the experimental

results strongly depends on the chosen experiment. While the overlap with Schwartz

et al. [71] can be risen to almost 50% with the classical motif set and even higher

with the extended training set, the overlap with the sequences provided by Negre et

al. [70] remains poor.

Furthermore, one has to keep in mind that it remains to be seen whether the large

scale ChIP on chip experiments find only functional PREs or are influenced by indirect

binding as described in Section 2.2.4, or detect binding to elements that use different

factors for recruitment. Because Schwartz et al. [71] provided the most comprehen-

sive study, we concentrate on those results to examine the influence of the cut-off

on the overlap. The scoring is done by the classic motif set only, due to the fact that

the classic prediction results has shown to be more consistent with our experimental

results.

Additionally to the cytological positions, the identifiers of presumably regulated

genes are provided, although without exact coordinates. Still, taking ±10 kb around

each gene restricts the length of hits to 4 Mb. All in all 187 genes are provided, that

are categorized as “strong” hits (i.e. binding of all four factors). For each gene the

highest prediction score is taken and transformed into an E-value based on the total

4 Mb instead of the whole genome. The number of hits at each E-value is set into

relation to the number of hits with at least the same score in a set of randomly picked

genes. The random background search is repeated several times to determine the error

rate as standard deviation (Figure 5.33).

Rising the E-value from 1 to 10 means that according to the null-model only nine
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Classic version

pho PSSM, pho_dsp1, classic TS (NAR version)

NAR+ SP1/KLF

NAR+ SP1/KLF extended TS

3

D.melanogaster

201 hits genomewide

344 hits genomewide

603 hits genomewide

1 2

31 2

31 2

31 2

Figure 5.29: Influence of four different parameter sets on prediction of dpp PRE in

D.melanogaster. Classic set (GAF, Z, En1, PF, PM, PS, G10) prediction

scores shown in first plot, set from [10] (NAR version) in second plot,

NAR + Sp1/KLF motif in third plot, NAR+Sp1/KLF weighted on extended

training set in fourth plot. DynScan cut-offs for 1 kb, 10 kb, 20 kb, and

genome-wide search marked green, blue, purple, and light blue. Posi-

tions tested by ChIP provided as 1,2,3. ChIP results given in plot on the

right (taken from [97]).

95



NAR+ SP1/KLF

NAR+ SP1/KLF extended TS

D.simulans

Classic version 31 2

pho PSSM, pho_dsp1, classic TS (NAR version)

31 2

31 2

31 2

1 2 3

Figure 5.30: Influence of four different parameter sets on prediction of dpp PRE in

D.simulans. Figure explained in Figure 5.29.
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Classic version

pho PSSM, pho_dsp1, classic TS (NAR version)

NAR+ SP1/KLF

NAR+ SP1/KLF extended TS

D.yakuba

31 2

31 2

31 2

31 2

1 2 3

Figure 5.31: Influence of four different parameter sets on prediction of dpp PRE in

D.yakuba. Figure explained in Figure 5.29.

97



Classic version

pho PSSM, pho_dsp1, classic TS (NAR version)

NAR+ SP1/KLF

NAR+ SP1/KLF extended TS

D.pseudoobscura

31 2

31 2

31 2

31 2

Figure 5.32: Influence of four different parameter sets on prediction of dpp PRE in

D.pseudoobscura. Figure explained in Figure 5.29.
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additional false-positives are to be expected. Nevertheless, the number of hits is dou-

bled, at an E-value of 10 around 60% of the 187 genes can be found as well as a

third of the random genes. While there still is a strong enrichment of overlaps with

Schwartz’ genes in relation to random genes, a few concerns about the reliability of

the null-model may be necessary. The extreme rise of predicted elements by minor

increases of the E-value can be observed at any sequence length, in this 4 Mb example

as well as in a genome-wide prediction. One possible explanation might be potential

“pre-PREs” as described in Section 5.2 that occur in multiple regions and score only a

little bit under the cut-off. Depending on the null-model (higher order Markov Chains

or shuffled genome data) the corresponding cut-off for an E-value of 1 varies1. In each

case, the discrepancy between the number of expected additional hits and observed

additional hits stays. For this reason, the Drosophila prediction data presented in this

work is based on the classical motif set at an stringent E-value. Results based on these

parameters have shown reliability in various experiments.

1Impact of different null-models on PRE predictions is evaluated by Thomas Fiedler and is not described
in detail in this work.
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“PREs”

6.1 Building training sets

The prediction of PREs in Drosophila served as a first application for the dynamic

search. The results show the general potential of DynScan to enhance sensitivity. Fur-

thermore, the data give very interesting insights into biological aspects of PREs in flies.

In mammals, no PREs have been characterized so far, but genome-wide ChIP data are

available in mouse [13] and human [14], giving positions of binding sites of PcG

proteins such as Suz12. None of these PcG proteins binds directly to the DNA, but

possibly to some transcription factors that are recruited by DNA motifs. The lack of

validated DNA binding motifs prevents a direct jPREdictor prediction and therefore a

dynamic PRE search in mammals. For that reason, in this chapter an analysis of the

ChIP data [13, 14] is presented combined with an application of the methods de-

scribed in Chapter 4, which aimsto identify mammalian PREs, if existent. No binding

factors for proteins involved in PcG recruiting have been identified outside Drosophila

so far, but homologs of Pleihomeotic (YY1) and Dsp1 (HMGB2) are known. Because

it is known that YY1 is involved in PcG protein recruiting [102], the correspond-

ing binding sites should be overrepresented in the Suz12 bound region in contrast to

Suz12 unbound background sequences. The Pho motif was provided in form of three

different consensus sequences (PS, PM, PF) for the original prediction, while in the

jPREdictor publication multiple Pho binding sites were combined into a single matrix.

The weight of this matrix based on the original Drosophila model and background sets

is 1.7, a Pho-Pho motif pair reaches a weight of 2.7. In Drosophila PREs, the Pho

motif is obviously overrepresented. Because YY1 is also involved in PcG protein re-

cruiting, its binding sites should be overrepresented in mammalian PREs. To calculate

weights for YY1 single and double motifs, mammalian model and background need to

be provided. We therefore build training sets based on the ChIP data recently made

available.
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Murine Training Set Design

To cover a wide range of possible types of potential mammalian PREs, different train-

ing sets are used, built out of mouse as well as human sequences. In mouse, ChIP

results for the four proteins Eed, Phc1, Rnf2, and Suz12 as well as H3k27me methy-

lation are available in form of single positions. The main criteria for sequences to be

part of the positive training set is that all five factors have to be located inside a 2

kb window. We require the overlap to maximize the specificity of the experimental

result. Furthermore, if a set of motifs is present in the sequences, shorter sequences

give higher weights due to the sequence length normalization. The criterion that all

sequence have to be completely within 2 kb limits the overall number to 71 sequences,

covering 17 different chromosomes. We combine subsets of 10-20 sequences to pos-

itive training sets. The background is built out of the promoters of chosen genes that

are very unlikely to be PcG protein targets. First, the ChIP data for the genes must not

indicate binding for any PcG group protein nor H3k27me3 methylation. Furthermore,

the function of the gene should raise the confidence in a PcG independent regula-

tion. For example, genes that are involved in reaction to external stimuli such as heat

shock genes can be assumed not to be involved determination of cell identity, the

same refers to house keeping genes which are meant to be essential for the cell and

therefore cannot be switched off by PcG proteins. The negative training set consists of

20 sequences of 2 kb each which are cut out 2 kb upstream of the transcription start

site of such genes.

The ChIP experiments were performed on a list of 15742 chosen genes, provided in

form of Entrez gene identifiers and assembled from different databases, based on NCBI

build 34. To rebuild the dataset, we store all gene annotations from Ensembl, RefSeq

and UCSC databases in a local PostgreSQL database. The local schema contains an

unique integer identification number, a species id, a source database specific geneid,

the location of the gene, a reference to the source database, and corresponding En-

trez identifiers. A gene’s location is stored as a 4-tupel (begin, end, chromosome, and

strand). The begin position refers to the transcription start site, the end gives the end

of the 3’ UTR. The Ensembl database contains 38000 genes out of which 21155 can

be referenced to 19930 distinct Entrez identifiers. From the RefSeq database 20329

genes are stored in our database, cross referenced to 18441 different Entrez identi-

fiers. Finally, gene annotations from the UCSC “known genes” database are added,

23723 genes are cross-referenced to 15037 Entrez genes. In total, we store refer-

ences to 18424 different Entrez identifiers. Unfortunately, there is an n:m relation

between Entrez identifiers and annotated genes. Different genes, even in the same

source database, can be assigned the same Entrez identifier. In contrast, also the op-
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posite occurs, the same gene can be cross-referenced to multiple Entrez identifiers.

Furthermore, annotations for the same gene in the different databases provide dif-

ferent transcription start site positions. For example, the Entrez identifier 66640, a

gene that has been positively tested for all five factors, is cross-referenced to a gene

starting at position 52,310,128 according to the UCSC “known genes” database and

a gene starting at position 52,309,174 according to Ensembl database. Out of the

15742 tested genes, 15729 can be referenced to at least one entry in any of the three

databases.

Instead of running future predictions on the whole mouse genome we take the

promoter regions of those genes as the dataset. Boyer et al. [13] performed ChIP

tests on sequences reaching from -8 kb until +2 kb around the transcription start site

of each of the 15742 genes. Our dataset is set to ±10 kb in order to make sure that the

tested regions are included, although the exact position depends on the annotation

database used. Overlapping 20 kb regions are combined to a single one, so the 15729

Entrez identifiers are found within 12370 blocks of 20 kb each.

Human Training Set Design

Additionally, training sets are built for the human ChIP experiments. Lee et al. [14]

provide genome-wide ChIP data detecting Suz12 sites at 3465 different positions with

a length between 21 bp and 35665 bp. In the supplements, the authors give gene

identifiers from various databases for genes with a transcription start site within 1 kb

around the Suz12 enriched sites. Furthermore, genome-wide polymerase II activity is

given in the supplement, together with ChIP results for Suz12, Eed, and H3K27me3

methylation on promoter arrays on selected genes. We combine all data in a local

database. First, gene annotations taken from RefSeq, Ensembl and UCSC are stored

in the database using the same table in which the mouse genes are stored (mam-

mal gene positions). The genes are cross-referenced to Entrez identifiers if correspond-

ing information are provided in the source databases. For human, the local database

contains around 158000 entries, referenced to 19911 different Entrez genes. Again,

annotations in Ensembl and RefSeq for the same Entrez identifier can differ in the

gene coordinates. The data given by Lee et al. [14] are stored in two local tables,

in (human chip data) the locations of Suz12 enriched sites are stored together with

gene identifiers if a transcription start site is within a 1 kb radius. In addition, we

cross-referenced the gene names given by Lee et al. as database specific identifiers

to the Entrez identifiers that are stored in the mammal gene positions table. The pro-

moter array results are combined with the polymerase II activities and are stored in

the second table (human tested genes). Entrez identifiers serve as unique primary key,
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6 Application and Results: Mammalian “PREs”

bindings of Suz12, Eed, H3K27me3, and polymerase II are stored as Booleans. For

further analysis, out of the overall 3465 ChIP regions only those are chosen that do

not exceed 2 kb in length (2484). The sequences are set to ±2 kb around the ChIP

regions’ center positions to cover a possible error range of ChIP positions. Lee et al.

observed an enrichment of CpG islands around the ChIP positions which we have to

keep in mind for the design of the training sets.

The PRE prediction in Drosophila has been found to show highest accuracy for “clas-

sic” PREs, namely the PREs that regulate homeobox transcription factors. Assuming

that different classes showing different types of motif occurrences exist in mammals

as well, one human training set is built out of ChIP regions that are located inside the

promoters of homeobox transcription factors. The databases RefSeq and Ensembl pro-

vide information about homeobox containing genes. Our local ChIP data containing

database is queried for all Suz12 enriched sites that are located around 2 kb of the tran-

scription start site of the homeotic genes and do not exceed 3 kb. These constraints

limit the number to 100 ChIP sequences which are split equally on two different hu-

man positive training sets. To build a negative training set, the combined results of

human ChIP experiments are considered. The supplements of the genome-wide ex-

periments give a list of Suz12 bound genes and polymerase II activity. Furthermore

experiments in selected promoters show ChIP results for the PcG proteins Suz12 and

Eed, as well as H3K27me3 methylation.

Now all genes that show no binding for Suz12, Eed, or methylation but show poly-

merase II activity are potential members of a negative training set. Negative results

for PcG proteins indicate no PcG silencing, which is even stronger supported by active

transcription indicating polymerase II activity. These criteria are served by only 237

Entrez genes, out of which 194 have an unambiguous position entry in the local gene

database. Sequences of ± 2 kb around the transcription start site of the genes are cut

out. The negative training sets are chosen out of these sequences.

As general negative background sequences for statistical tests all genes are chosen

that have an unambiguous RefSeq to Entrez relation and have no positive Suz12 near

the promoter regions. The sequences are chosen ±2 kb around the transcription start

site. All in all, 14907 sequences are selected for background tests. The different data

sets are summerized in Table 6.1.

6.2 CpG islands

Lee et al. [14] observed an enrichment of CpG islands near Suz12 enriched sites: “It is

interesting that 40% of all SUZ12 bound regions are within 1 kb of CpG islands, given
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Species Type No. of

seq.

Length Source

Mouse Positive 71 2 kb Overlap of Suz12, Eed,

Phc, Rnf2, H3K27me3

within 2 kb

Mouse Negative 20 2 kb Collection of promoters

tested negatively. Heat

shock and house keeping

genes preferred

Mouse Positive 20 2 kb Subset of set mouse set

#1

Human Positive 2484 4 kb Set of all Suz12 enriched

sites with length ≤4 kb.

All normalized to 4 kb

length.

Human Negative 14907 4 kb Sequences taken ±2 kb

around TSS of all Entrez

genes that can

unambiguously be

cross-referenced to

RefSeq genes without

Suz12 enrichment

Human Positive 50 4 kb ±2 kb of TSS of homeotic

genes that contain Suz12

hits

Human Negative 50 4 kb ±2 kb of TSS of genes

that are negative for

SuZ12 and show strong

enrichment of low

density CpG islands

Human Positive 50 4 kb Second positive TS, same

type of sequences

Human Negative 50 4 kb Second negative TS

Table 6.1: Overview of the different mammalian training sets. Length refers to each

sequence in set.
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Figure 6.1: Number of low density CpG islands in 2484 Suz12 enriched sites of 4 kb

each. Definition of CpG island in this figure: C+G content ≥ 50%, Ob-

served/Expected CG ratio ≥ 0.6, length ≥ 200bp.

the recent discovery of a mechanistic link between PcG proteins and DNA methyl-

transferoses (Vire et al. [84]).” Their observation requires a more detailed analysis to

estimate the effect of CG rich regions on motif occurrences and motif predictions. First,

a clear definition of a CpG island is necessary. We used both parameter sets described

in the background on CpG islands (Section 2.2.6). First, CpG island are searched that

show an observed CG to expected CG ratio ≥ 0.6, a C+G content ≥ 50% and a length ≥
200 bp. CpG islands are searched by newcpgreport from the EMBOSS [103] package.

Within the 2484 Suz12 sequences of 4 kb each, only around 8% contain no CpG

island at all. Almost two thirds even contain two or more islands (Figure 6.1). Do we

observe an enrichment of CpG islands in the Suz12 bound sequences? According to

Antequera and Bird [82], 56% of all human genes are associated with a CpG island.

As described in Section 2.2.6, at the time of the publication in 1993 only limited gene

annotations could be used, it is not sure how accurate the data really is. Furthermore a

direct comparison with the CpG island occurrences inside the Suz12 sequences men-

tioned by Lee et al. [14] is not possible due to a lack of a clear definition of CpG

106



6.2 CpG islands

Figure 6.2: Number of low density CpG islands in 14907 Suz12 unbound promoter

regions of 4 kb each. CpG island definition used in this figure: C+G content

≥ 50%, Observed/Expected CG ratio ≥ 0.6, length ≥ 200bp.

islands, sequence length and distances between promoters and CpG islands. There-

fore as a background the list of 14907 genes is used. The sequences have the same

length as the chosen Suz12 enriched sites (4 kb) and cover ±2 kb around the TSS.

Because it is known that CpG islands often overlap the promoter and extend up to

1 kb downstream, the background set should cover as many CpG islands as possible.

Out of the 14907 sequences, 28% show no CpG island at all and only 42% contain

more than one (Figure 6.2). Interestingly, if the 14907 sequences are set to cover the

region 4 kb upstream until TSS instead of ±2 kb around the TSS, the number of se-

quences without a CpG island raises to 52%. This supports the observation that CpG

islands can extend into the downstream region of promoters. Our data suggest that

CpG islands are strongly overrepresented in Suz12 bound regions. On the other hand,

the definition of a CpG island is no longer the commonly used one. Instead, Takai and

Jones [79] suggested to set the parameters to demand a C+G ratio ≥ 55%, a observed

CpG to expected CpG ratio ≥ 0.65 and a length ≥ 500.

Again, the set of 2484 Suz12 regions of 4 kb each is searched. In 45% no CpG can

be detected, 46% contain one CpG island and 9% two or three islands (Figure 6.3). In

the background set, 62% of the promoters have a CpG island. Still CpG islands seem to

be overrepresented in Suz12 bound regions, but to a lower extend compared with the

previous CpG island definition. However, CpG island occur favored within promoter
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6 Application and Results: Mammalian “PREs”

No. of strong CpG islands

Dist to TSS % of all Suz12 0 1 2 3

≤2 kb 60% 35% 55% 8% 1%

2−20 kb 30% 70% 27% 3% 0%

>20 kb 10% 67% 27% 5% 0%

Table 6.2: Number of high density CpG islands within Suz12 region in relation to dis-

tance to nearest transcription start site. Distance is calculated between

center of Suz12 region to nearest TSS in local database (first column). Pro-

portion of regions for different distances given in % (second column), num-

ber of high density CpG islands reaching from none to three are given in

percent (right columns).
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Figure 6.3: Numbers of high density CpG islands in 2484 Suz12 enriched promoters.

regions but the Suz12 sites are gained from genome-wide experiments while the back-

ground data consists of promoters only. The net enrichment in Suz12 regions could

be higher. Therefore the distance of Suz12 enriched sites to the nearest transcription

start site has to be taken into account.

Within a radius of 2 kb around the center of 60% of the Suz12 sites a transcription

start site is found in the local database (Table 6.2). In this case the ChIP regions are

most likely located inside a promoter and only 35% show no CpG island. If the distance

to the nearest TSS is between 2 kb and 20 kb, which can be observed in 30% of the

cases, 70% of the 4 kb regions do not contain a CpG island. If the distance exceeds

20 kb (10% of the ChIP regions), the proportion of regions without CpG island is very

similar.
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6.2 CpG islands

Thus it can be seen that promoters that have a Suz12 enriched site show high den-

sity CpG island occurrences in 65%, while promoters without a Suz12 region only

contain a CpG island in 38% of the cases. Low density CpG islands occur in more

than 92% of all Suz12 regions and in almost 100% of Suz12 regions inside promoters.

Can this observation be used as a criterion for a genome-wide mammalian PRE or at

least Suz12 recruiting site prediction? Instead of the whole human genome, promoter

regions of all RefSeq annotated genes that can be referenced to Entrez identifiers are

used. Each sequence is taken ±5 kb around each TSS, all in all 15110 sequences are

chosen, out of which 2022 overlap with a Suz12 enriched site. A high density CpG

island can be found in 5853 sequences while out of these 1396 overlap with a Suz12

site. Although only 39% of the 10 kb promoters contain a strong CpG island, 69% of

the Suz12 regions are found within these sequences. The p-value calculated by the

hypergeometric distribution is 1.3e−213. This leads to the conclusion that CpG islands

are overrepresented in Suz12 bound regions for both definitions of CpG islands used.

CpG islands in mouse - applying a filter

In human, Suz12 enriched sites are significantly enriched with CpG islands, regardless

of the exact CpG island definition. This observation will now be tested on the mouse

data. According to Antequera and Bird [82], in mouse fewer genes are associated with

CpG islands (40% vs. 56% in human), but the average size of a CpG island is bigger.

We want to see if this has an effect on the relation between Suz12 enriched sites and

CpG islands. Our complete mouse dataset as described above covers 15729 genes in

12370 non-overlapping regions of 20 kb each. This time none of the classic CpG island

definitions are used but the parameters are chosen to be sensitive enough to detect

a CpG island in almost all of the 512 regions that have an overlap of all factors tested

in mouse and are located within 1 kb around a transcription start site. CpG islands

are predicted by newcpgreport from the EMBOSS package. The cut-off is chosen to

reflect about 20 CpG repeats per 200 bp window. Out of the 512 sequences 473 are

found this way. Genome-wide 9120 promoters are found. Therefore 92% of the ChIP

regions are located within 60% of the tested regions. Again a significant enrichment of

CpG island can be observed. Furthermore, the presence of CpG island might be used

as a filter criterion to reduce the search space by 40% while only losing 8% sensitivity.

As described in Section 2.2.6, CpG islands occur around unmethylated promoters of

house keeping or other essential genes that are usually expressed. In a regulatory con-

text, CpG islands also occur methylated around promoters of regulated and therefore

sometimes repressed genes. The overrepresentation of CpG islands in Suz12 bound re-

gions is a strong indication of methylated CpG islands, which regulate homeotic genes
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6 Application and Results: Mammalian “PREs”

or genes involved in stem cell proliferation in general.

Preventing CpG bias in human training set design

As described earlier in Section 6.1, we built two positive homeotic training sets for

human sequences. The corresponding negative training set, again 50 sequences each,

are chosen to circumvent potential biasing due to CpG island inside the positive sets.

The definition of a CpG island in this case is the most sensitive one to get around the

same number of CG repeats in model and background. Only 5% of the sequences in

the positive training set contain no low density CpG island, around two-third contain

more than two islands. The negative sequences are chosen preferably from the list

of promoters that are negative for PcG proteins but show active polymerase II. Addi-

tional promoters without Suz12 enrichment in the genome-wide experiment have to

be added to meet the CpG island requirements. This way we make sure that the level

of CpG enrichment is equal in model and background sequences.

6.3 Motif predictions in mammals

Common motif prediction tools search for statistically overrepresented words in a pro-

vided sequence in relation to a null-model (see Section 2.1.2). Usually one single se-

quence or a set of related sequences can be provided. A subset of such algorithms

relies on conservation of functional regions inside an alignment. In order to find mo-

tifs that are involved in PcG protein recruiting in Suz12 enriched sites, two tasks have

to be performed. First, motifs that are generally involved in Suz12 recruiting should

be contained in at least most of Suz12 enriched sequences (and therefore the positive

training sets). To consider this in the motif prediction, the tools have to be able to

work on multiple sequences at once. The second task is to eliminate the influence of

other functional elements on the prediction. The Suz12 enriched sites occur prefer-

ably inside promoters, which could lead to the prediction of promoter specific motifs.

Furthermore CpG islands are overrepresented in the sequences, which could lead to

false positive detection of CG rich motifs. This can be prevented by using negative

training sets as null-model, either directly in the prediction or in a following filtering

and evaluation step.

6.3.1 Running k-words approach

A first search for motifs in Suz12 regions is perfomed by applying our k-word method

described in Section 4.1. Model and background are chosen from the first of the two
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Figure 6.4: Highest scoring k-words (k = 6) in homeotic training set (red) and 100 ran-

domly created sets of model and background taken from the list of Suz12

unbound promoters. X-axis=rank of hit, Y-axis=score value.

homeotic training set pairs, the positive as well as the negative training set contain 50

sequences of 4 kb each. The parameter k is set to 6, 8, and 10. As a background test

the same search was performed on randomly chosen sequences. Out of the 14907

negative promoters, 100 pairs (model, background) of 50 sequences each are chosen

randomly. The scores of the 50 highest scoring motifs for k = 6 show that values

for words observed in the real sets occur in the random data as well (Figure 6.4). The

promoters bound by Suz12 in the real training sets show a similar behavior to any set of

chosen Suz12 unbound promoters of the same length. Even the best hit scores below

most of the highest scoring hits in the random data. Are the scores of the real data

below the maximized value at each position only, or does a single set exists that scores

higher than the real data? We test this by calculating the sum of scores for each random

set independently. The sum for the real data is 113.25 and the maximal sum of scores

in the background is 142.6. For k=8 it can be seen that the scores for the k-words found

in the real data are higher than almost all values in the background except for the best

five hits (Figure 6.5). The sum of scores is this time 286.97, which is higher than any

sum found in the 100 random sets (maximum is 281.49) With increasing k, (i.e. k = 10)

the real data separate strongly from the background (Figure 6.6), again except only for

the highest scoring hits in the background. Nevertheless, the higher scores of the real
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Figure 6.5: Highest scoring k-words (k = 8) in homeotic training set (red) and 100

background sequences chosen randomly from list of Suz12 unbound pro-

moters. X-axis=rank of hit, Y-axis=score value
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Figure 6.6: Highest scoring k-words (k = 10) in homeotic training set (red) and 100

background sequences chosen randomly from list of Suz12 unbound pro-

moters. X-axis=rank of hit, Y-axis=score value.
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Figure 6.7: Weights of highest scoring 10-mers in second homeotic training (red) set

vs. background (green), derived by taking highest scoring 10-mers from

100 random sets and weighting in 100 different sets.

data in contrast to the background can be considered significant, indicating that Suz12

specific motifs might exist (real sum=292.08, max random sum=238.73). On the other

hand, none of the highest scoring motifs occurs in more than 22 (GAGGAGGAGG)

sequences. A possible explanation is that motifs of this length are degenerated and the

limits of this approach are simply reached. Nevertheless, the best hits are considered

potential motifs for a prediction of human PRE-like or at least Suz12 bound sequences.

So far the k-word analysis has been performed on one of the two homeotic training

sets. Words receiving a high score in the first set are assumed to show equal values in

the second if it is about Suz12 related motifs. We assessed this assumption by using

the jPREdictor to weight the highest scoring words found in the first homeotic set

in the second. For k = 6 and k = 8 even best scoring words showed none to low

significance, compared to the random experiments. In contrast to k = 10, so only

the latter one is considered in the weighting step. Because the 50 best hits contain

reverse complements, the dataset can be restricted to 25 sequences, or a few more

in case of palindromes. The best scoring words for each of the 100 background pairs

have been weighted in 100 different randomly chosen sets of Suz12 negative promoter

sequences (Figure 6.7), model and background are both selected from the same data

source. It can be seen that even in the real data, negative weights occur, stating that

113



6 Application and Results: Mammalian “PREs”

words overrepresented in one positive training set are underrepresented in another

positive training set, although both sets should give positive weights to motifs related

to observed Suz12 enrichment. Furthermore, none of the best 25 positions is outside

the range of the random background, as it has been with the overall score values in

Figure 6.6. A list of the highest scoring 8-mers and 10-mers is provided in annex A.2

and A.1.

6.3.2 Running prediction tools

A simple search for k-words over the alphabet [A,C,G,T] gives only few signals that

score above the empirically determined background. Furthermore, a following weight-

ing step in another set of training sequences even removes most of the highest scoring

candidates. Compared to the background, the highest weights are still not highly sig-

nificant. On the other hand, at least for k=10 the analysis shows that some words are

overrepresented and can be considered significant according to the statistic used. The

observation that none of the highest scoring words occur in at least half of the positive

sequences suggests that multiple words belong to the same motif. It is therefore nec-

essary to introduce degenerated motifs by extending the alphabet to the IUPAC set

or by using matrices. This can be achieved by either considering degenerated motifs

directly in the prediction step, as will be seen in this chapter, or by adding a clustering

step to combine similar motifs into a degenerated motif description. The latter one

will be used in combination with a pipeline approach in the next chapter.

The algorithmic problem of a motif prediction has been addressed in many different

implementations; a collection will be used in this chapter. To add the possibility to

use a negative training set instead of a generic null-model, we will apply the motif

evaluation pipeline based on the jPREdictor (Section 4.5) on the results. In [12] 13

tools were assessed by using known eukaryotic motifs taken from TransFac [104]. The

tested tools cover the enumerative approaches as well as deterministic optimization

and probabilistic optimization (Section 2.1.2). The results show that no single tool

is able to predict all motifs in the sets. The selection of tools chosen in our analysis

represents all three approaches.

Weeder [25] showed some of the best results in the different evaluating steps taken

by Tompa et al. [12]. It is based on an enumerative approach and contains a cluster-

ing method to combine similar overrepresented hits. Version 1.3 has been installed

locally to run on our X86 Solaris computers. The parameters are set to search for mo-

tifs of length 6, 8, or 10 that occur in at least half of the sequences and can appear

on both strands. The statistical background depends on the species, we use either

predefined mouse or human nucleotide probabilities. In detail, Weeder has been run
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Figure 6.8: Weeder: highest scoring predicted motif in human homeotic training set.

Logo created by SeqLogo [105].

on one of the two positive human homeotic sets and a 20 sequences murine set. The

highest scoring hit (Figure 6.8) in the human set is of length 10 (Weeder score 1.13).

Strikingly, the highest scoring 10-mer (GAGGAGGAGG) in our previous k-word anal-

ysis (Section 6.3.1) matches the matrix found by Weeder. The clustering procedure

done by Weeder led to degenerations of the motif especially at positions 6 and 9. In

total the matrix consists of 704 sequences found in all 50 sequences. In the murine

sequences, the highest scoring motif has a length of eight. The matrix logo shows that

the motif mainly consists of C and G nucleotides only. If the prediction is biased by

CpG islands in the training set, a weighting against CpG rich negative sets will lead to

low weights. Remember we already built such a negative training set and are going to

use it in a motif evaluation step, described later in Section 6.3.4.

The classic probabilistic motif prediction approach is based on the Gibbs sampling

algorithm, implemented in various tools like for example AlignACE [31], GLAM [106],

SeSiMCMC [107], or MotifSampler [29]. The latter one extends Gibbs sampling

to higher order Markov background models and allows one motif to occur multiple

times within one sequence. We used MotifSampler on our human and murine training

sets. The software has been run locally on a X86 Linux system. As background serve

precompiled human (or mouse) upstream regions as a 3rd order Markov chain. The

motif lengths are set to 8 and 10, the prior probability to find the motif in each of the

sequences is 0.5, i.e. we expect the motif to occur in at least half of the sequences in

the positive set. The maximum number of one motif in each sequence is not restricted
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Figure 6.9: MotifSampler: Best hit in murine training set. Logo created by SeqLogo

[105].

and the reverse strand is considered as well. Adjacent motifs are allowed to overlap.

In the human set, a consensus sequence of GGCGGCGG is returned, the murine motif

is slightly more degenerated (Figure 6.9), but still a bias towards CpG islands is very

likely. Nevertheless, the motif is kept for future evaluation.

As a third tool Improbizer [108] , which is based on Expectation Maximization (see

Chapter 2.1.2), is used on the training sets. Run as an online tool, the available process

time is limited to 5 minutes. To avoid these constraints, Improbizer is run locally on a

X86 Linux system. The background can be provided in form of a negative sequence,

out of which lower order Markov chains are created. For human, the 50 negative

regions from the homeotic set are used. These sequences contain a similar CpG island

enrichment as the positive sequences. Calculating the background on all negative

promoter regions instead, leads to a CG enrichment in the positive data against the

background again, as can be seen in the murine data. The human prediction reveals

two “TA” rich motifs of length 10-40, which are stored in the hit list of potential

motifs, too.

Furthermore, the tool MEME [27] is applied on the same human and murine training

sets. Motifs of length between six and eight are searched in up to 20 Expectation

Maximization iterations (see Figure 2.1 in Section 2.1.2). In the homeotic human

training set, a poly-A motif is reported. In mouse, the consensus sequence of the best

motifs is TTTTTTTT, but an A is allowed at different positions.

The last two prediction runs revealed possible motifs poly-T, poly-A, or AT-repeats,

116



6.3 Motif predictions in mammals

which could either be a different motif or an artefact of a clustering of reverse poly-A

and poly-T motifs. Poly-A as well as poly-T of length 6 to 10 are added to the list of

potential motifs, together with the same number of AT repeats.

Instead of relying on the created training sets completly, we performed additional

predictions with the mentioned tools on different subsets of murine and human Suz12

regions, which are chosen randomly from the set of all bound regions of length ≤
4 kb. This time, instead of concentrating on promoters only, all positive ChIP regions

are considered. Furthermore, to remove the CpG bias, the CpG islands within the

sequences are masked out in some steps. In addition we ran the tool RepeatMasker

[109] to remove low complexity regions in some of the sequences. As a result, different

potential motifs are predicted, like ’CTAATG’ found by Weeder in human sequences.

Reported motifs are contained within the list of potential motifs.

Furthermore, the motifs found by the software Drim [85] (see Section 6.2) are

also added to the list. The TransFac database version 11.1 contains 822 different

matrices, which we search within our training sets. In the package the tools “match”

and “patch” are provided to search given sequences for matches against the database.

Match searches in given sequences for hits against the stored PSSMs, while patch

searches consensus strings in the input. We ran both tools on our different human

and murine sequences and kept those reported motifs that appear in at least 50% of

each input set. In case of the human homeotic set, the search for TransFac motifs

has been performed on the negative set as well. All motifs that occur in most of the

negative sequences as well are not taken into further consideration. A list of the best

hits of each prediction method in the human homeotic set is shown in Table 6.3.

6.3.3 Phylogenetic footprinting

In flies, PREs occur in different positions, in promoters as well as in introns or inter-

genic regions. As showed in the Drosophila application (Section 5), the mean distance

to the nearest assumed analogous PRE increases with growing phylogenetic distance.

In mammals, the situation might be different. Human and mouse show a higher se-

quence similarity than any of the Drosophila species. Furthermore, Suz12 sites are

mainly detected in promoter regions, most of them even in very close distance to a

transcription start site. To check for conservation of Suz12 regions, the distances of

BLAST sites of each murine Suz12 enriched sites to the nearest human Suz12 sites are

calculated.

In mouse, 1800 Suz12 enriched regions are considered which are located in pro-

moter sequences. Each of those is BLASTed against the human genome with an E-value

cut-off of 10−4.
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Prediction Motif

Weeder [25]

CTCSBCSA

GAGGVVGVVG

GAVGRVGA

CTCSBCSA

MotifSampler [29]

GGCGGCGG

Improbizer [108]

ATATTATTATATAAATAAATATATTTATGTAAATATTATAAAATTCA

AATATTATTAATATATAAATAAATAAAA

MEME [27]

AAAAAAAA

TransFac

Oct1 RTAATNA

Pax6 TTYACGCWTSA

PPARG TAGGTCA

FAC1 CACAACA

VDR GGGKNARNRRGGWSA

RFX SHGWTGCSD

POU32F2 TTATGYTAAT

RFX1 HRGYAAC

NKX HSYCACTTS

GATA-4 AGATADMAGGGA

CdxA AWTWMTR

Table 6.3: Results of motif predictions on suz12 bound regions that are located in

promoter regions of human homeotic transcription factors.
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Due to the stringent cut-off, only 931 homologous positions can be identified in

human. About two-third (around 600) of those positions are overlapping with a hu-

man Suz12 site, 100 are within a distance of 10 kb to the nearest Suz12 region, and in

200 cases no Suz12 site is found in human anywhere in the area around the gene. The

data show that the nearest Suz12 site is either located very closely to the homologous

site, or is more than 10 kb away. Especially if one considers a false-negative rate of

the ChIP experiments of up to 30%, even the 22% examples without a detected Suz12

region nearby the homologous region do not suggest any “evolutionary plasticity”, as

observed in the Drosophila study. A phylogenetic footprinting approach is reasonable

and presented in the following.

Data

This observation is now used in a phylogenetic footprinting approach based on align-

ments of Suz12 enriched sites in different mammalian species. The alignments are

taken from the Multiz17way [91] entries in the UCSC genome database [110]. The

positions of selected Suz12 enriched sites, like the ones in the homeotic training set,

are sent by a Perl script via HTTP requests. Only sequences from the species human,

mouse, rat, dog, and chimpanzee are kept in the alignments. All in all 100 alignments

are received, based on human Suz12 positions. The sequences are chosen by length

(≤ 2 kb for the human Suz12 site) and availability as alignment. At least the murine

sequence has to be contained in the alignment.

Phylogibbs

The tool Phylogibbs [30] extends traditional Gibbs sampling to a phylogenetic foot-

printing approach. It works on one alignment and looks for motifs that show conserva-

tion above background. Because Phylogibbs handles each alignment independently,

further actions have to be taken to find those motifs that are potentially related to

Suz12 recruiting and occur therefore in most sequences. Phylogibbs returns matrices

of degenerated motifs in each run, which have to be clustered to a single motif if they

refer to the same transcription factor binding site. Previously used tools have implicit

built in clustering methods. As standalone clustering applications, MATLIGN [36] and

Phyloclus [38] are chosen because both are designed to work on matrices. Phylogibbs

version 1.1 is run on all 100 alignments provided in FASTA format, including gaps. Pa-

rameters set are “-D 1” (consider phylogeny), “-m 10” (motif length of 10), “-S 100”
(100 steps in the tracking phase), “-N 0” (order of background Markov chain), and the

option “-L (((hg17:0.85,panTro1:0.9):0.6,(mm7:0.8,rn3:0.9):0.7):0.9,canFam2:0.7)” (pro-
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6 Application and Results: Mammalian “PREs”
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Figure 6.10: MATLIGN cluster of Phylogibbs results. Biggest cluster (26 members)

shown.

vides phylogenetic tree). The output of the tracking phase is converted into input files

for MATLIGN as well as Phyloclus. The number of combined motifs differs drastically

between the two tools. MATLIGN combines 31 motifs into one, reaching an informa-

tion content of 0.75 at the highest position (Figure 6.10). Phyloclus combines only

eight predicted motifs in four clusters, which consist of two motifs each (an example

is given in Figure 6.11). Nevertheless, both clustered motifs show big similarity if

the reverse complement is taken. The motifs match G or A repeats, respectively the

complementary C or T.

Phyloclus is run with 100 iterations in the pre-processing step, the motif length is

set to 10. The same parameters are used in the post-processing step.

Additionally, the 50 sequences in the homeotic training set are searched by Phy-

logibbs. Again, results are clustered by MATLIGN to combine predicted motifs in dif-

ferent sequences. The largest cluster consists of five elements and matches the GA rich

10-mer found by both our k-word approach and Weeder. The reverse complementary

CT rich motifs are combined in a second cluster.

Applying phylogenetic footprinting pipeline

A combination of phylogenetic footprinting, masking of found hits, combining mul-

tiple prediction tools, and clustering is implemented in the phylogenetic footprinting

pipeline described in Section 4.2. We used the pipeline on Suz12 data. The input is the

same as in the single Phylogibbs run, 100 positions of human Suz12 enriched regions
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6.3 Motif predictions in mammals
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Figure 6.11: Phyloclus cluster of Phylogibbs results. Biggest cluster (2 members)

shown.

are provided to the pipeline, which queries the UCSC database for Multiz17way align-

ments. Again, the constraints are set to limit the species in the alignments to mam-

mals only (human, mouse, dog, rat, and chimp). In addition to the human sequence,

murine sequences have to be present in the alignment. All in all, 100 alignments serve

as pipeline input.

In the fist step, the alignments are transformed into the different input formats and

processed by MEME, Footprinter and Weeder. After each run, hits are masked and

the pipeline is repeated. The results in each step are added to a global motif list for

further processing. After the first MEME run, 11%, and after the second run 19% of

the input sequences are masked. In total, 126 motifs are predicted by MEME, out of

which 4 are clustered together by MATLIGN. The motifs found in the second iteration

are similar to the ones found in the first step. In both cases mainly repetitive motifs

are reported. Even after the second iteration, the resulting cluster shows mainly GA

repeats.

In the first iteration of Footprinter, run on unmasked input alignments, the best

overall cluster consists of seven clustered motifs. That means that the motif can only

be found in seven out of 100 sequences. In the second iteration, only four single

alignment clusters are combined to one cluster. None of the predicted motifs meets

the constraints to occur in at least 50% of the input sequences. Nevertheless, all

motifs show a low rate of degeneration at some positions, the maximum information

content reaches up to one. Additionally to MATLIGN, the two-step clustering of Foot-
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6 Application and Results: Mammalian “PREs”

printer results is also done by Phyloclus, which puts 714 out of 1092 overall motifs in

315 different clusters. In average, a cluster consists of less than three elements. The

biggest cluster is built from 10 elements, but like MATLIGN, the degeneration rate is

low (MASMAGCCGS). While the MEME results are very similar to the previous run

on not aligned sequences, Footprinter reports non-repetitive motifs that show low

degeneration rates, but occur in only very few sequences in the input data.

The third prediction method implemented into the pipeline is Weeder. All 100

alignments, which sum up to 460 sequences in total, are put into one single Weeder

run. The motif occurring most often is of length six (AGCGCG), found in 200 out of 460

single sequences. Longer motifs are only found in eight or nine different sequences.

Since none of the motifs predicted in the pipeline so far occurs in at least 50%

of the input data, they are used as prior knowledge in the Phylogibbs step. Except

for the short Weeder motif, no other motif occurs more often than in 10% of the

input. The biggest Phyloclus cluster after two Footprinter iterations combines ten

elements, the second one nine, and another four clusters have four or five members.

The MATLIGN clustering results of the same Footprinter predictions contain only up

to seven elements. These clusters combined with the MEME and Weeder outputs are

given to Phylogibbs, which is run on each single input alignment independently.

The Phyloclus cluster of the Footprinter predictions that contains five elements is

matched to nine motif predictions by Phylogibbs. The other clusters occur in even less

alignments in the Phylogibbs run. Phylogibbs applied to MATLIGN clusters returns

motifs that occur in almost all input sequences, but consist of single nucleotide repeats

with low information content. The Weeder and MEME results lead to predictions of

widely found motifs, the AGCGCG motif is turned into GC-repeats by Phylogibbs and

is found in most of the input sequences.

The resulting motifs of the phylogenetic footprinting pipeline are either found in

only a small subset of the input sequences, or show strong rates of degeneration, or

are part of repetitive regions. Nevertheless, the results are kept as potential motifs for

an evaluation step.

6.3.4 Motif evaluation

The runs of different motif prediction tools on the different sets of Suz12 enriched

sequences led to a list of potential motifs, despite the observed tendency to repetative

sequences. A motif list containing all potential binding site descriptions includes about

60 entries. The motif evaluation algorithm described in Section 4.3 is now applied to

evaluate the motifs’ ability to seperate a positive set of Suz12 enriched promoters from

sets of not enriched promoters. As a control experiment, the same algorithm is applied
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6.3 Motif predictions in mammals
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Figure 6.12: Weights of all motif pairs build from 60 single motifs. Most pairs have

weight close to 0, around 100 have a weight smaller -1 or greater +1.

to Drosophila data, in which case the motifs are known and have shown to be able to

at least partially seperate model from background.

Results

Homeotic 1

As a first application, the pipeline is used to evaluate our potential mammalian motif

set, which contains 60 single motifs. The first training set used as model and back-

ground is the human homeotic set 1, as described in Table 6.1. The distribution of

motif pair weights (Figure 6.12) shows that most motif pairs get a weight close to 0,

while few pairs show strong positive or negative weights and therefore should have

the biggest impact on the prediction score. If all motif pairs exceeding an arbitrary

weight threshold of 1 are selected, the motif set would contain about 60 motif pairs.

However, comparing the highest score of σM with σB (Figure 6.13) filters out most

of these motif pairs (µm = 10, µb = 5, µs = 3 ). Even high weighting motifs can get high

scores in single sequences in the negative set. This reduces the difference between σM
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6 Application and Results: Mammalian “PREs”
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Figure 6.13: σM (blue) and corresponding σB (red) values for the 10 lowest and 20

highest scores in σM . X-axis gives the motif pairs, Y-axis gives corre-

sponding values cropped to 3000. Highest σM value at 7234.

and σB, and adds only low information content to the motif set, leading to an increased

cut-off, which only weakens sensitivity without strengthen specificity. Furthermore,

one motif pair alone contributes extremely high to the scores, with a more than three

times higher value of σM than the other motif pairs. In the first pipeline run, only one

sequence in the positive training set scores above the preliminary cut-off, and only

four motif pairs are kept in the motif set from which the highest scoring pair alone is

sufficient to reach the required cut-off in the found sequence. These results strongly

indicate, that the found sequence biases the motif weights due to repeats of the motif

sequence. The motif pair providing alone about 75% of the overall score is the drim4

(DGAGAGV) motif paired with itself.

In the second iteration the same motif pairs are used, but the one high scoring

sequence is removed from the positive training set. The background remains the same.

While in the first iteration the values of σM reach up to 7234, the achieved maximum

is the second iteration is only 154. Furthermore, the preliminary cut-off drops from

1024 to 45 and is not reached by any sequence in the positive set. Although more
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6.3 Motif predictions in mammals

Motif 1 Motif 2

CACACACA GGGGTNCC

CACACACA GCTGCNBB

CACACACA GGGRTGGG

Table 6.4: Motifs pairs left after second iteration in homeotic set 2

than 60 potential motifs are introduced and combined to 1230 motif pairs (
!60

2

"

+ 60),

none of the pairs can be used to distinguish the positive from the negative training

set.

As mentioned during the motif prediction runs on human sequences, the generated

motif list contains poly-A and poly-T respectively as well as AT repeats of various

length. None of those received a positive weight in the homeotic training sets, neither

as single nor as double motifs. The single motif AT10 alone received a weight of −2.1
and poly-T10 of −1.1. The double motif AT6 : AT10 is strongly underrepresented in the

positive set with a weight of −5.9. The T10 : T10 double motif is weighted -2.4, again

strongly underrepresented in homeotic promoters.

Homeotic 2

A control run on the second homeotic set does not lead to a hit in the positive training

set in the first iteration. However, if the required distance between the score for a

motif pair in the model and the background is increased (i.e. µs = 5 instead of 3), the

drim4:drim4 double motif is removed (σM = 2700 and σB = 800 in homeotic set 2).

The resulting motif set consists of three pairs with positive (Table 6.4) and six pairs

with negative scores. As can be seen in the table, each of the three motif pairs contain

the same repetitive single motif. The preliminary cut-off is 61, which is reached by

only 3 out of 50 sequences in the positive set. Again, a repetitive element is part of

every motif pair.

Murine sets

Because the murine training set has not been designed to be enriched with CpGislands,

the result reflects the previously observed CpG island enrichment in Suz12 bound re-

gions. Motifs that show high CG content receive very high values for σM . Remov-

ing the motifs or the CpG rich sequences in the positive set leads to an absence of

significant motif scores. After the first iteration, no separation between model and

background can be achieved.
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6 Application and Results: Mammalian “PREs”

Drosophila

The Drosophila PRE prediction serves as a positive control. The training sets as well

as the motif sets are taken from the original 2003 analysis [11] (En1, GAF, G10, PF,

PM, PS, Z). The evaluation algorithm selects 13 out of all 28 motif pairs. Each of

the seven single motifs occurs in at least one motif pair, which means that every motif

used in the study actually contributes to a separation between model and background.

The highest σM value is achieved by the motif pair GAF:PF. Seven out of the twelve

sequences in the positive training set score above the preliminary cut-off. The genome-

wide cut-off drops from 157 to 152.

As a control for the robustness test, the positive training set is extended by a 3 kb

random sequence, into which 24 copies of the word (GTGTGTGT) are inserted. The

same word is entered into the motif list as an additional motif “Test”. The result

of the evaluation algorithm is as expected, in the first iteration only the motif pair

“Test:Test” is selected and only the placed GT rich sequence is found. The sequence

is automatically removed and the next iteration is run on the original set.

6.4 Dinucleotide repeats (CpG islands, GA repeats)

All approaches used for the prediction of potential motifs that are related to Suz12

recruiting in mammals, returned some motifs of single or dinucleotide repeats (see

Section 6.3). The analysis of CpG islands in the Section 6.2 explains CG rich k-words,

but additionally GA and CA rich motifs are found. In flies, GA repeats up to the length

of ten are known as the G10 motif, a double repeat of the GAGA factor binding site.

The GA repeats predicted in mammals on the other hand, show strong rates of degen-

eration, some reported matrices have a basic consensus sequence of poly-R1. Repeats

of C and A are found to a lesser extent. Interestingly, although AT repeats are reported

as well, the double motif TATATA:TATATA shows a high difference between σM and

σB (-36 to -3460) and is more likely to occur in Suz12 unbound promoters.

A motif evaluating pipeline run on a motif set containing additionally AC, AG, and

AG repeats of length 6, 8, and 10 calculates high σM values in the homeotic set 1

and 2 in the first iteration (Table 6.5), while in the murine set no motif pair meets

the requirements. Still, only 3 out of 50 sequences score above the preliminary cut-

off. Removing the found sequences in the second and third iteration and running the

pipeline again shows no enrichment of AG repeats anymore, only 6% of the positive

sequences contain AG repeats. Instead, to a lesser extent AC repeats are reported in

another four positive sequences.

1R in IUPAC = purine (A or G)
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6.4 Dinucleotide repeats (CpG islands, GA repeats)

Motif σM σB

AT6:AT6 -232 -2159

AT6:AT8 -200 -5632

...

AG10:AG8 1392 111

AG10:AG6 1689 220

AG6:AG6 3177 459

AG6:AG8 3241 434

Table 6.5: Sigma-values (σ) of dinucleotide repeats in human homeotic set. Pairs with

similar values for positive and negative set not shown.

Depending on the training set, repeats of AG or AC seem to be overrepresented.

Analyzing those repeats on a pure motif level just leads to the shown results. Alterna-

tively, one could define repeats not in form of degenerated motifs, but similar to CpG

island as regions of overrepresented AG (or AC) content.

AG repeats

We define an AG “island” as a sequence with a length ≥ 40 that has an AG content

≥ 75% and an expected vs. observed ratio of AG dinucletotides of ≥ 0.6. In the

homeotic sets, 60% of the positive sequences contain at least one “island” (30 out of

50 in each set). Of all 2484 Suz12 regions of length 4 kb, 47% contain at least one

“island” (in total 1182). In promoters without Suz12 enrichment, an “island” is found

in 39% (5857 out of 14907) of the cases, which indicates an enrichment in Suz12

regions.

Considering the background set of 15110 human promoters (10 kb each), 42% con-

tain an “island” (in total 6461). All in all 1335 promoters are Suz12 enriched, out of

which 56% additionally contain an AG “island” (749). The p-value calculated by hy-

pergeometric distribution is 9e-25. Therefore AG “islands” are significantly enriched

in Suz12 bound region. The overlaps of promoters with high density CpG islands, AG

“islands”, and Suz12 enrichments (Figure 6.14) show that 8% of all promoters are

bound by Suz12, 11.5% of the AG “island” containing promoters are bound by Suz12,

14.7% of the CpG island containing promoters are bound by Suz12, and finally 18.9%

of the CpG island and AG “islands” containing promoters are bound by Suz12.
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Figure 6.14: Overlaps of 15110 promoters that are Suz12 enriched (red), high density

CpG islands (blue), or AG ”islands” (green). Overlaps of CpG and AG is

shown in cyan, of CpG and Suz12 in pink, of AG and Suz12 in yellow and

overlaps of all three in grey.
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6.4 Dinucleotide repeats (CpG islands, GA repeats)

AC repeats

In a similar way regions of enriched AC repeats are determined, defined as regions of

length ≥ 50, an observed/expected AC ratio of ≥ 1 and an AC percentage ≥ 65%. The

parameters are chosen to find 60% of the homeotic training set again. A search in all

2484 Suz12 regions of 4 kb each, shows a similar result of 1461 hits (59%). The set

of 15000 negative 4 kb promoters contains 8579 AC regions (57%), therefore low to

none enrichment is detected.

Additionally, the set of 15110 human promoters of 10 kb each is tested. In the

longer sequences more AC regions can be found, 12,802/15,110 (85%) contain at

least one AC region. In 1335 promoters, a Suz12 enriched site is reported, out of

which 1172 also have an AC region (88%). The p-value of 0.0006 shows only low

significance. A slight enrichment of AC repeats might be present in Suz12 bound

regions, but is too low to be used in predictions.
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7 Discussion

In Chapter 3 we described a framework for the enhancement of predictions that are

based on genome-wide scoring, called DynScan. The method takes benefit from pre-

diction runs in related species and uses those as prior knowledge to increase sensitivity

without losing specificity by scoring stepwise increased windows around orthologous

sites. The threshold directly depends on the search space, rewarding small radii around

the orthologous sites while still staying alignment independent.

The prediction of Polycomb/Trithorax Response Elements (PREs) in Drosophila serves

as an application for the method (Section 5). PREs are cis-regulatory elements that

take over from enhancers once expression patterns of developmental genes are set

and maintain the status over many cell division cycles. The jPREdictor [10] and the

corresponding parameters gained in the preceeding PREdictor [11] work provide a

tool capable of a highly specific but less sensitive PRE prediction. Using jPREdictor

in combination with DynScan on a set of four different Drosophila species not only

increases sensitivity, but also reveales extraordinary insights into dynamic processes

during PRE evolution, which we refer to as evolutionary plasticity. All observations

are strikingly consistent with the results of biological experiments, proving the general

capabilities of our method.

First type of evolutionary plasticity

First, the number of predicted PREs differs drastically between different Drosophila

species, an observation that is also reflected in the number of different bands in giant

polytene chromosomes. Although the exact number of PREs cannot be determined

by any available method, the prediction as well as the experimental data show around

twice as many hits in D.pse than in any melanogaster subgroup species. We can say

that species that are more closely related to each other such as the members of the

melanogaster subgroup show similar amounts of PREs while, the number can differ

drastically if the evolutionary divergence grows larger.

A possible biological reason for this observation is that an orthologous gene is regu-

lated by a different number of PREs in different species. Following that idea, additional

PREs in D.pse could be a relic of ancestral loci that contained multiple PREs for the
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regulation of a single gene. For example, we can detect an additional PRE in the D.pse

Bithorax complex that can only be predicted in species outside the melanogaster sub-

group. We assume that this PRE regulates the gene Abd-A, which is regulated by

three PREs in D.mel (iab-2, iab-3, and iab-4). The additionally predicted PRE in D.pse

is located between iab-3 and iab-4. In species where the additional PRE is absent, its

functionality could be taken over by the remaining PREs near the gene. On the other

hand, D.pse shows phenotypical diversity from D.mel. The species differ dramatically

in the number of sex-combs, a trait that is known to depend on PcG regulation [97].

Furthermore the species differ in size, body shape, color and even the choice of habitat.

Differences that at least partially could be related to the observed variety of PREs.

Second type of evolutionary plasticity

As the second type of evolutionary plasticity we observe that genomic positions of

PREs change rapidly during evolution. A search between more closely related species

like D.mel and D.sim finds an assumed functionally analogous PRE in close distance to

the orthologous PRE positions in most of the cases. However, the orthologous posi-

tion itself shows no significant prediction score in the vast majority of elements. The

distribution of distances between orthologous site and nearest predicted PRE strongly

correlates with the phylogenetic distance between the species. While between D.mel

and D.sim most analogs are located within 1 kb around the orthologous position, the

majority of the D.pse PREs show no functional analog within 10 kb around their orthol-

ogous site in D.mel. This can be explained by the first type of evolutionary plasticity.

For many additional PREs in D.pse no functional analog exist in D.mel. This even sup-

ports DynScan’s claimed specificity. Although a lower cut-off is used, no hit is found

within 1 kb in those cases. This effect is expected considering the difference in overall

PRE numbers and only supports our method.

ChIP experiments on the orthologous sites as well as on the predicted analogs were

performed on chosen examples. In cases where the orthologous sites show neither

PC nor PH protein binding, strong enrichments can be detected at the predicted func-

tional analagous sites. This demonstrates actual PcG protein recruiting on the sites that

are predicted by DynScan and show no genome-wide significant score. Additionally,

transgenic fly assays confirm PRE functionality in terms of pairing sensitive silencing,

eye color variegation and response to PcG and trxG mutations in several selected cases.
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Third type of evolutionary plasticity

Finally, we demonstrate that even for those PREs that indeed are positionally con-

served, clusters of functional motifs are usually located outside of highly conserved

spots. Even PREs at orthologous positions differ in composition and positions of func-

tional motifs. Our data show that motif turnover is not an exception but the rule in

PRE development, even between more closely related species.

DynScan specificity and sensitivity

A comparison of the prediction results with available D.mel ChIP data shows again the

boost in sensitivity gained from DynScan (Section 5.3). It can be shown by p-value

calculation that the DynScan predicted PREs are of same specificity based on the ChIP

experiments as the regular predicted ones. Furthermore, a comparison of different

prediction parameters shows that DynScan leads to a higher increase of sensitivity by

keeping specificity level than can be achieved by adding DSP1 or SP1/KLF as addi-

tional motifs. The dpp examples demonstrates that the “classic” motif set shows more

coverage with experimental results. Adding new motifs could increase sensitivity in

some cases, e.g. in D.pse a PcG protein enriched site near the dpp gene can be pre-

dicted, but other validated PREs fall below the threshold and regions without protein

binding that scored below any cut-off earlier are increased in scores. Changing the

prediction’s parameter set affects already validated prediction results, while applying

DynScan only allows additional hits, without changing previous results.

Still not all ChIP positions provided by Schwartz et al. [71] can be confirmed by

our prediction. This can be explained by the genome-wide ChIP inherent problems.

Enrichment of PcG proteins alone does not prove the presence of canonical PREs that

contain the few known motifs as functional elements. The algorithm is trained on

such PREs regulating homeotic genes. Thus other types of regions that recruit totally

different types of DNA binding proteins may escape detection, and to this point even

biological characterization. Furthermore, the presence of PcG proteins in promoter

regions does not necessarily prove a recruitment of DNA binding proteins at those po-

sitions. Instead, indirect binding by looping from nearby motif containing PRE regions

has been reported [74]. In this case no positive prediction result can be expected at

those promoter positions.

Finally low sensitivity of genome-wide ChIP experiments may lead to further dis-

crepancies between prediction and experiments. Absence of genome-wide ChIP en-

richment does not contradict prediction results at a high scoring position. PRE ac-

tivity is strongly tissue specific. Second, antibody affinities affect the ChIPs sensitiv-

ity. Furthermore, thresholds are applied to ensure statistical significance, which allow
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real positives to fall below the cut-off. The estimated false-negative rate of 30% for

genome wide ChIP on chip data [13, 14] explains why some of the predicted PREs

are not confirmed by genome-wide ChIP experiments but are confirmed in other ex-

periments including the Fab-7 PRE [11], which demonstrates that the predicted PREs

are not false positives.

In this work, we showed that the DynScan method indeed increases sensitivity in

case of PRE predictions. Other applications could also take benefit from DynScan. For

obvious reasons, any prediction that can be based on the jPREdictor will work. An

example would be enhancer prediction. Other scoring algorithms beside jPREdictor

could also work, as long as a cut-off is calculated as a trade-off between specificity and

sensitivity. With ongoing improvements in large-scale biological experiments such as

genome-wide ChIP on chip, it also could become possible to skip the prediction step

and to run DynScan on those data directly. The Suz12 experiments in human and

mouse showed which amounts of data are to be expected in the future, although

similar studies in different Drosophila species are still missing. Nevertheless, since the

evaluation of ChIP data is based on thresholds to ensure statistical significance, each

genomic positions is assigned some kind of significance value, such as fold enrichment.

Given the raw scores for each genomic positions in different species and the desired

significance level, we could use DynScan to increase sensitivity of large scale ChIP

experiments.

Evolutionary studies

To give answers about potential mechanisms involved in the observed dynamics of PRE

development, we followed the idea of pre-PREs, regions that contain motifs or presites

that can be turned into functional motifs by minor mutations but have not developed

PcG protein recruiting potential (Section 5.2). Presites adjacent to an existing PRE may

acquire new functional motifs and replace former functional motifs in other positions,

allowing the PRE to “creep” from one site to the other. Sequence insertions could

accelerate this process. We observe such a local shift in the spalt major PRE, in which

a single motif cluster spanning approximately 600 bp in the D.mel PRE has split into

two clusters in D.pse, which are separated by an insertion of a few hundred base

pairs. We followed the theory by developing a scoring scheme for presites of different

transcript factor binding sites (Section 5.2) and applying the scoring on orthologous

positions of experimentally tested PREs that show a lack of PRE functionality but have

a validated PcG binding within a few kilobases. The respective inactive sites show

higher PRE potential scores than other regions nearby, indicating that presites indeed

exist and serve as a highly probable explanation for shifting of PRE positions as well
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as for possible de-novo evolution of PREs. The data further show that the Pho motifs

seem to play a very important role and might be neccessary for PRE functionality, while

other motifs might assist in PcG protein recruiting but are not neccessarily essential.

Tracking PREs through their evolution by scoring regions around orthologous posi-

tions in all twelve Drosophila species again shows strong dynamics. For example, in

case of an additional Bithorax complex PRE that is predicted and validated in D.pse

but not in D.mel, D.sim, or D.yak, it can be assumed that the functionality changed

at two points during the evolution. This shows that the PRE was lost in the Bithorax

complex of the melanogaster subgroup species but survived in D.pse.

In other cases, a PRE can be predicted in some but not all species, independent

of their phylogenetic relation. In general, the absence of a significant prediction

score does not prove absence of PRE functionality. On the other hand, the sensi-

tivity strongly depends on the “type” of PREs, classical homeotic PREs are the predic-

tion’s main target. If a PRE is predicted in some species, but no score peak is found

within a reasonable radius around the same position in other species, at least it can

be suggested that the type of PRE found in some species is absent in others. A loss of

functionality as well as a possible substitute by a different kind of PRE are both signs

of dynamics in PRE evolution.

Mammalian studies

The success in the PRE application for DynScan and the availability of large-scale ChIP

data for PcG proteins in mammals made us take a deeper look into potential mam-

malian PREs, although not a single one has been found experimentally yet. We ran

different motif prediction algorithms that cover all known theoretical approaches (Sec-

tion 6.3), and implemented a pipeline based on phylogenetic footprinting that con-

siders all common “rules” of motif prediction: Different tools are used, results of each

run are masked, different clustering strategies are performed on results and different

source sequences are chosen (Section 4.2). Furthermore an evaluating algorithm has

been developed that tests potential motifs for their capability to separate model from

background sequences by considering motif weights and number of occurrences in

positive and negative training sets, combined with a robustness test (Section 4.3).

The method has been tested on Drosophila sequences and shows that it is able to

detect biasing sequences that have strong influence on the scoring output by con-

taining repetitive elements. Furthermore the method puts additional constraints on

jPREdictor’s weighting scheme, forcing even high weighted motif pairs to occur in a

sufficient amount of positive sequences. This way the net effect of motifs on separating

positive from negative sequences can be estimated (Section 6.3.4).
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7 Discussion

All motif prediction data in human and mouse test sequences indicate the absence of

classic transcription factor binding sites for recruiting DNAbinding members of the PcG

complex. Instead, all used methods come to the conclusion that repetitive elements,

namely CpG islands and GA rich regions are the only predicted motifs. We thereofore

suggest that CpG islands are part of Polycomb induced gene silencing. We proved

that CpG islands are statistically strongly enriched around Suz12 sites in mouse and

human (Section 6.2). This fact could be used as filter for potential future computational

predictions. Concentrating on CpG islands only reduces the search space by 40% while

only losing 8% sensitivity.

To a lesser extent this is also true for GA rich regions which are still overrepresented

in Suz12 regions but with lower significance. One could speculate that GA repeats we

found on any strand are signs of any GA, AG, or reverse complimentary TC, CT enrich-

ment, which could be involved into looping of DNA on itself in form of a triplex struc-

ture which builds a DNA-H form [111]. Such DNA structures, involved in transcription

silencing, have been observed for different kinds of monopurine-monopyrimidine re-

peats like C-G or CT-GA.

In summary, with DynScan we presented a novel approach that reveals extraordinary

dynamics in PRE development in Drosophila, adding new knowledge about evolution

of cis-regulatory elements in general. Furthermore, by combining current knowledge

about motif predictions with a new evaluation algorithm, we indicate different and

unrevealed processes to be involved in PcG protein recruitment in mammals.
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A Appendix

A.1 DynScan package elements

copy score in db.pl

Does a copy of a given score file in the database table instead of using insert to speed

up the process.

make hit bands.pl

Builds a list of non-overlapping regions in a given genome which score above the cut-

off and stores them in table static pres

extract pre sequences.pl

Creates a single FASTA file for each distinct PRE

1 add species.pl –q SPECIES –c FILE

Main part of the DynScan package. Runs a dynamic search between query species

provided by “–q” option and all other species in database. Query species has to be

entered in database first. Additonally required parameters are taken from configura-

tion file provided by option “-c”

2 find orthologous hits.pl –q SPECIES –t SPECIES –c FILE

Evaluates the best BLAST hits according to the described criteria and stores the result in

the database. Task is performed for each element in the query species (“-q”) against the

target species (“-t”). Required parameters are taken from configuration file provided

by parameter “–c”.
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A Appendix

3 run prediction complete.pl –q SPECIES –t SPECIES –c FILE

Runs the dynamic search around the homologous sites in the database for the provided

query (“-q”) and target species (“-t”). Required parameters are taken from configura-

tion file provided by parameter “–c”.

A.2 Motif evaluation

evaluate motif list.pl -m MODEL -b BACKGROUND -o MOTIFLIST -r RUN

Builds all possible double motifs out of the given list of single motifs (“-o”). All mo-

tif pairs are weighted acccording to the provided positive (“-m”) and negative (“-b”)

training sets. Those motif pairs that help to distinguish the sets best are kept in a

jPREdictor option file, the sequences in the model are either copied in a FASTA file

of found or missed sequences. The run identifier “-r” determines the ID used in the

names of the created files.

A.3 Phylogenetic footprinting pipeline

footprinter pipeline.pl -r RUN

Runs Footprinter on a remote Linux system. Option ”-r” determines iteration. Se-

quences are taken from default pipeline Footprinter directory. Hits are masked, result-

ing sequences are stored in iteration+1 directory. Hits are transfered into clustering

input format and clustered by MATLIGN. Clustering results of all single sequences are

clustered again.

meme pipeline.pl -r RUN

Runs MEME on all alignemnts. Option ”-r” determines iteration. Input sequences are

built as blocks out of Multiz17Way alignments first, MEME is run, results are trans-

fered into input for clustering tools. Hits are masked and new sequences in directory

iteration+1 are created.

weeder pipeline -r RUN

Runs Weeder on a set of alignments. All sequences are searched at once, hits are

masked. Hits are transformed into input for clustering tools.
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A.4 Supplementary data

count tree.pl -t treefile -c clusterfile [-p] [-l] [-j] [-T]

Evaluates MATLIGN output and outputs all clusters sorted by the number of elements.

Files containing the tree and cluster have to be provided. Option -p (print) gives a

complete output of all clusters, -l (logo) creates motif logo in PDF format of largest

cluster. Output can be got in TransFac style ”[-T]” or in jPREdictor format ”-j”. The

variable ”$max” determines how many of the best clusters are reported by default if is

”-p” is omitted. If ”$texoutput” is set to 1, logos will be combined in a LaTex file.

A.4 Supplementary data
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10-mer # in homeotic pos

set

# number in

homeotic neg set

# number of diff seq

in pos set

GGCTGCAGCG 9 1 8

AGAGAGCGAG 10 1 8

CCTCTTCCTC 14 2 11

CTCCCTCTTC 10 1 8

CTTTTTAAAA 10 1 8

AGGAGGAGGA 42 6 15

CCCGGCCGCC 13 2 13

CCTGGGCTGC 9 1 9

CGGGCCCGGC 9 1 9

CTTCTCTCCC 9 1 9

GCCCGCCGGC 9 1 9

GCCGGGGCGC 9 1 9

TCTGGAACCA 9 1 9

AGGAGGAGAG 10 1 9

AGGGGGAGAA 10 1 9

GCGCCGCTCC 10 1 9

AGGCCGGGGC 10 1 10

CCTTCTCTCC 10 1 10

CTCCCCTCCA 10 1 10

CTCCTCTCCC 10 1 10

GGTTCCAGAA 10 1 10

GAGAAAGGGA 12 1 9

GCCCGCGCGC 14 1 10

TTTTTAAAAA 26 2 12

GAGGGGGAGA 17 1 12

GAGAGAAAGA 14 1 14

Table A.1: Highest scoring (entropy∗log odds score) 10-mers in human homeotic train-

ing set. Column two gives absolute numbers in all 50 positive sequences,

column three give numbers in negative set. Column four shows number of

distinct positive sequences that contain at least one hit.
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8-mer # in homeotic pos

set

# number in

homeotic neg set

# number of diff seq

in pos set

CGTCCGTC 13 1 9

CAGCTCAA 15 2 14

AAACCTCT 10 1 10

CAAGTGGA 10 1 10

CACGGGAC 10 1 10

CTGGAATC 10 1 10

GTTTAATA 10 1 10

AATTAAGA 12 1 9

AAGAAGTC 11 1 10

AGACATCC 11 1 10

AGTCTAGA 11 1 10

ATCTTAAT 11 1 10

AGACTGAA 11 1 11

CAGTGCAC 11 1 11

AATGAATT 13 1 10

CAGTGGAG 21 3 20

AACTTTCA 12 1 11

ACGGGAAG 12 1 11

ATGAACAA 12 1 12

CTAGAAGC 12 1 12

CCCCTAGA 13 1 12

CCGCGGAA 13 1 12

AGTGAGGC 14 1 12

AGCCAAAG 13 1 13

GGACAGCC 13 1 13

Table A.2: Highest scoring (entropy∗log odds score) 8-mers in human homeotic train-

ing set. Column two gives absolute numbers in all 50 positive sequences,

column three give numbers in negative set. Column four shows number of

distinct positive sequences that contain at least one hit.
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